
™

PROGRESS
®

ARTIX
Developing Artix Applications in C++

Version 5.6, December 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology–Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments:

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technologies from the Apache
Software Foundation (http://www.apache.org). Such Apache technologies are subject to the
following terms and conditions: The Apache Software License, Version 1.1. Copyright (C)
1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copy-
right notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3.
The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Ant", "Xerces," "Xalan," "Log 4J," and "Apache Software Foundation" must
not be used to: endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was
originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the
Apache Software Foundation ((http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

http://www.apache.org

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
International Business Machines, Inc., http://www.ibm.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1. - Copy-
right (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
Lotus Development Corporation., http://www.lotus.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 2000-2003 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgement may
appear in the software itself, if and wherever such third-party acknowledgements normally
appear.
 4. The names "The Jakarta Project", "Velocity", and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", "Velocity" nor may
"Apache" appear in their names without prior written permission of the Apache Group.
 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache
Software Foundation (http://www.apache.org). Such Apache technology is subject to the
following terms and conditions: The Apache Software License, Version 1.1 - Copyright (C)
1999 The Apache Software Foundation. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally
appear.
4. The names "log4j" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see <http://www.apache.org/>.
(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM.
Such technology is subject to the following terms and conditions: Copyright (C) 2000-2004
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
<request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we request (but
do not require) that you include in the end-user documentation provided with the redistribu-
tion and/or in the software itself an acknowledgement equivalent to the following: "This

product includes software developed by the JDOM Project (http://www.jdom.org/)." Alter-
natively, the acknowledgment may be graphical using the logos available at http://
www.jdom.org/images/logos. THIS SOFTWARE IS PROVIDED AS IS AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software
consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter_AT_jdom_DOT_org> and
Brett McLaughlin <brett_AT_jdom_DOT_org>. For more information on the JDOM
Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technol-
ogies from IBM. Such technologies are subject to the following terms and conditions: Cop-
yright (c) 1995-2003 International Business Machines Corporation and others All rights
reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, pub-
lish, distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation. THE SOFTWARE IS PRO-
VIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in adver-
tising or otherwise to promote the sale, use or other dealings in this Software without prior
written authorization of the copyright holder. All trademarks and registered trademarks
mentioned herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from
John Wilson. Such technology is subject to the following terms and conditions: Copyright
(c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. All
advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by John Wilson. The name of
John Wilson may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN
WILSON ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technol-
ogy from SourceForge and Networks Associates Technology, Inc. Such technology is sub-
ject to the following terms and conditions: Various copyrights apply to this package, listed
in various separate parts below. Please make sure that you read all the parts. Up until 2001,
the project was based at UC Davis, and the first part covers all code written during this time.
From 2001 onwards, the project has been based at SourceForge, and Networks Associates
Technology, Inc hold the copyright on behalf of the wider Net-SNMP community, covering
all derivative work done since then. An additional copyright section has been added as Part
3 below also under a BSD license for the work contributed by Cambridge Broadband Ltd. to
the project since 2001. An additional copyright section has been added as Part 4 below also
under a BSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the
THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like) ----- Copyright
1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000.
Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its documenta-
tion for any purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of CMU and The Regents of the
University of California not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. CMU AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR

IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ----
Part 2: Networks Associates Technology, Inc copyright notice (BSD) ----- Copyright (c)
2001-2003, Networks Associates Technology, Inc. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: *Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.* Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribu-
tion.* Neither the name of the Networks Associates Technology, Inc nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 3: Cambridge Broadband Ltd. copyright notice
(BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:*Redistributions of
source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.* The name of Cambridge Broadband Ltd. may not be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun
Microsystems, Inc. copyright notice (BSD) -----Copyright © 2003 Sun Microsystems, Inc.,
4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Use is
subject to license terms below. This distribution may include materials developed by third
parties. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-

lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.* Neither
the name of the Sun Microsystems, Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) -----Copy-
right (c) 2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met:* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.* Redistributions in binary form must repro-
duce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.* Neither the name of
Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 6: Cisco/BUPTNIC
copyright notice (BSD) ----- Copyright (c) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications. All rights reserved. Redis-
tribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. * Redistribu-
tions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunica-
tions, nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R&D Soft-
ware GmbH & Co KG copyright notice (BSD) ----- Copyright (c) Fabasoft R&D Software
GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. * The
name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or prod-
uct names may not be used to endorse or promote products derived from this software with-
out specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSLeay v0.9.8i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES ==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.
 OpenSSL License ---------------
/*
==
====

 Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
 Original SSLeay License -----------------------
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.
This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL. This library is free for
commercial and non-commercial use as long as the following conditions are aheared to.
The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright notices in
the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided with
the package. Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement: "This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from
the library being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement: "This product includes soft-
ware written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. The licence and distribution terms for any publically available ver-
sion or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technol-
ogy from the Legion Of The Bouncy Castle (http://www.bouncycastle.org). Such Bouncy-
castle 1.3.3 cryptographic technology is subject to the following terms and conditions:
Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycas-
tle.org). Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of
providing a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. Such technology is subject to the following terms and
conditions: PCRE LICENCE. PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those of the Perl 5 language. Release
7 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The doc-
umentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions. THE BASIC LIBRARY
FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright
(c) 1997-2008 University of Cambridge All rights reserved. THE C++ WRAPPER FUNC-
TIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc. All rights
reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. * Neither the name of the University
of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mcpp v2.6.4 from Kiyoshi Matsui. Such
technology is subject to the following terms and conditions: Copyright (c) 1998, 2002-2007
Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. This software including the files
in this directory is provided under the following license. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corpo-
ration 2010 (IBM 32-bit Runtime Environment for AIX, Java Technology Edition v 1.6.0
SR9 FP2).

Updated: December 5, 2011

Contents

List of Tables 25

Preface 29
What is Covered in This Book 29
Who Should Read This Book 29
The Artix Documentation Library 29

Chapter 1 Getting Started with Artix Programming 31
The Hello World Application 32
Prerequisites 35
Define a WSDL Contract 36
Develop a Service Plug-In 41
Develop a Client 44
Run the Application 47
Adding Configuration to the Application 48

Chapter 2 Server Programming 53
Programming with the Container Model 54

Container Architecture 55
Multiple Services in a Container 58
Service with Multiple Ports 61
Implementing a Servant Class 63
Implementing the Plug-In Class 68
Implementing the Service Activator Class 72

Programming with the Standalone Model 76
Default Servants 79

Introduction to Default Servants 80
Functions Defined on IT_Bus::Service 83
The Server Address Context 85
Implementing a Factory 87
Implementing a Default Servant 92

Transient Servants 95
How Services Locate WSDL Contracts 100
 17

CONTENTS
Registering Static Servants 103
Registering Default Servants 108
Registering Transient Servants 109

Chapter 3 Client Programming 117
Programming with Client Proxies 118

What is a Client Proxy? 119
Initializing Proxies from References 124
Other Ways of Initializing Proxies 128

Implementing a Client 130
Programming with Initial References 134
Obtaining Initial References 137
Overriding a HTTP Address in a Client 140

Chapter 4 Artix Programming Considerations 143
Operations and Parameters 144

RPC/Literal Style 145
Document/Literal Wrapped Style 149

Exceptions 154
System Exceptions 155
User-Defined Exceptions 160

Memory Management 165
Managing Parameters 166
Assignment and Copying 170
Deallocating 172
Smart Pointers 173

Multi-Threading 177
Client Threading Issues 178
Servant Threading Models 179
Setting the Servant Threading Model 182
Thread Pool Configuration 185

Converting with to_string() and from_string() 188
Locating Services with UDDI 193
Compiling and Linking an Artix Application 195
Building Artix Stub Libraries on Windows 197

Chapter 5 Endpoint References 199
Introduction to Endpoint References 200
18

CONTENTS
Using References in WSDL 203
Programming with References 209

Creating References 210
Resolving References 215

The WSDL Publish Plug-In 217
Migration Scenarios 222

Chapter 6 Callbacks 225
Overview of Artix Callbacks 226
Callback WSDL Contract 230
Client Implementation 233
Server Implementation 237
Routing and Callbacks 241

Chapter 7 Artix Contexts 245
Introduction to Contexts 246

Request, Reply and Configuration Contexts 247
Header Contexts 250
Registering Contexts 252

Reading and Writing Context Data 258
Getting a Context Instance 259
Reading and Writing Basic Types 265
Reading and Writing User-Defined Types 267
Reading and Writing Custom Types 269
Durability of Context Settings 272

Context Example 273
HTTP-Conf Schema 274
Setting a Request Context on the Client Side 278
Setting a Configuration Context on the Server Side 281

SOAP Header Contexts 284
Custom SOAP Header Demonstration 285
SOAP Header Context Schema 287
Declaring the SOAP Header Explicitly 289
Client Main Function 292
Server Main Function 297
Service Implementation 300

CORBA Header Contexts 303
Custom CORBA Header Scenario 304
 19

CONTENTS
CORBA Service Contexts 306
Configuration Prerequisites 309
Client Main Function 311
Server Main Function 315
Service Implementation 318

Header Contexts in Three-Tier Systems 321

Chapter 8 Working with Transport Attributes 323
How Artix Stores Transport Attributes 324
Getting and Setting Transport Attributes 326
Getting IP Attributes 336
Setting HTTP Attributes 339

Client-side Configuration 340
Server-side Configuration 351
Setting the Server’s Endpoint URL 364

Setting CORBA Attributes 368
Setting WebSphere MQ Attributes 369

Working with Connection Attributes 370
Working with MQ Message Descriptor Attributes 375

Setting FTP Attributes 386
Setting FTP Connection Policies 387
Setting the Connection Credentials 391
Setting the Naming Policies 394

Setting i18n Attributes 395
Setting WS-A and WS-RM Attributes 398

Setting the WS-A ReplyTo Endpoint 399
Setting WS-RM Attributes 402

Chapter 9 Artix Data Types 413
Including and Importing Schema Definitions 414
Simple Types 416

Atomic Types 417
String Type 419
NormalizedString and Token Types 424
QName Type 428
Date and Time Types 430
Duration Type 432
Decimal Type 438
20

CONTENTS
Integer Types 440
Binary Types 443
Deriving Simple Types by Restriction 451
List Type 454
Union Type 456
Holder Types 461
Unsupported Simple Types 463

Complex Types 464
Sequence Complex Types 465
Choice Complex Types 468
All Complex Types 472
Attributes 475
Attribute Groups 479
Nesting Complex Types 482
Deriving a Complex Type from a Simple Type 486
Deriving a Complex Type from a Complex Type 489
Arrays 499
Model Group Definitions 504

Binary Types and MTOM 509
Introduction to MTOM 510
Default XOP Encoding 512
Specifying the MIME Content Type 515
Restricting the MIME Content Type 519

Wildcarding Types 521
anyAttribute Type 522
anyURI Type 526
anyType Type 528
any Type 533

Occurrence Constraints 541
Element Occurrence Constraints 542
Sequence Occurrence Constraints 547
Choice Occurrence Constraints 551
Any Occurrence Constraints 555

Nillable Types 560
Introduction to Nillable Types 561
Nillable Atomic Types 563
Nillable User-Defined Types 567
Nested Atomic Type Nillable Elements 570
Nested User-Defined Nillable Elements 574
 21

CONTENTS
Nillable Elements of an Array 578
Substitution Groups 581
SOAP Arrays 590

Introduction to SOAP Arrays 591
Multi-Dimensional Arrays 595
Sparse Arrays 598
Partially Transmitted Arrays 601

IT_Vector Template Class 602
Introduction to IT_Vector 603
Summary of IT_Vector Operations 606

IT_HashMap Template Class 609
Introduction to IT_HashMap 610
Summary of IT_HashMap Operations 611

Unsupported XML Schema Constructs in Artix 614

Chapter 10 Artix IDL to C++ Mapping 617
Introduction to IDL Mapping 618
IDL Basic Type Mapping 620
IDL Complex Type Mapping 622
IDL Module and Interface Mapping 631

Chapter 11 Reflection 637
Introduction to Reflection 638
The IT_Bus::Var Template Type 641
Reflection API 645

Overview of the Reflection API 646
IT_Reflect::Value<T> 648
IT_Reflect::All 652
IT_Reflect::Sequence 655
IT_Reflect::Choice 658
IT_Reflect::SimpleContent 661
IT_Reflect::ComplexContent 663
IT_Reflect::ElementList 666
IT_Reflect::SimpleTypeList 668
IT_Reflect::Nillable 669

Reflection Example 672
Print an IT_Bus::AnyType 673
Print Atomic and Simple Types 678
22

CONTENTS
Print Sequence, Choice, and All Types 683
Print SimpleContent Types 686
Print ComplexContent Types 688
Print Multiple Occurrences 691
Print Nillables 693

Chapter 12 Persistent Maps 695
Introduction to Persistent Maps 696
Creating a Persistent Map 699
Inserting, Extracting, and Removing Data 702
Handling Exceptions 706
Supporting High Availability 709
Configuration Example 712

Appendix A WSDL-to-C++ Compiler Utility 713
Generating Stubs and Starting Point Code 714

Index 719
 23

CONTENTS
24

List of Tables

Table 1: Artix Import Libraries for Linking with an Application 195

Table 2: Details for HTTP Client Outgoing Context 327

Table 3: Details for HTTP Client Incoming Context 327

Table 4: Details for HTTP Server Outgoing Context 328

Table 5: Details for HTTP Server Incoming Context 328

Table 6: Details for CORBA Transport Context 329

Table 7: Details for Principal Context 329

Table 8: Details for MQ Connection Attributes Context 330

Table 9: Details for MQ Outgoing Message Attributes Context 330

Table 10: Details for MQ Incoming Message Attributes Context 331

Table 11: Details for FTP Connection Policy Context 331

Table 12: Details for FTP Connection Credentials Context 332

Table 13: Details for I18N Server Attributes Context 332

Table 14: Details for I18N Client Attributes Context 333

Table 15: Details for Bus Security Attributes Context 333

Table 16: Details for HTTP Endpoint URL Context 334

Table 17: Details for Server Address Context 334

Table 18: Details for Server Operation Context 335

Table 19: Outgoing HTTP Client Attributes 341

Table 20: Incoming HTTP Client Attributes 349

Table 21: Outgoing HTTP Server Attributes 353

Table 22: Incoming HTTP Server Attributes 361

Table 23: MQ Connection Attributes Context Properties 370

Table 24: MQ Transactional Values 373

Table 25: MQ Message Attributes Context Properties 376

Table 26: CorrelationStyle Values 378
 25

LIST OF TABLES
Table 27: Delivery Values 380

Table 28: Format Values 381

Table 29: ReportOption Values 383

Table 30: ConnectionMode Values 387

Table 31: Simple Schema Type to Simple Bus Type Mapping 417

Table 32: IANA Character Set Names 420

Table 33: Description of token and Types Derived from token 424

Table 34: Validity Testing Functions for Normalized Strings and Tokens 426

Table 35: Member Fields of IT_Bus::DateTime 430

Table 36: Member Fields Supported by Other Date and Time Types 431

Table 37: Accessors and Modifier Functions for Duration Class 434

Table 38: Examples of Duration String Conversion 436

Table 39: Operators Supported by IT_Bus::Decimal 438

Table 40: Unlimited Precision Integer Types 440

Table 41: Operators Supported by the Integer Types 440

Table 42: Schema to Bus Mapping for the Binary Types 443

Table 43: List of Artix Holder Types 462

Table 44: Nillable Atomic Types 563

Table 45: Member Functions Not Defined in IT_Vector 603

Table 46: Member Types Defined in IT_Vector<T> 606

Table 47: Iterator Member Functions of IT_Vector<T> 607

Table 48: Element Access Operations for IT_Vector<T> 607

Table 49: Stack Operations for IT_Vector<T> 607

Table 50: List Operations for IT_Vector<T> 608

Table 51: Other Operations for IT_Vector<T> 608

Table 52: Member Functions Not Defined in IT_Vector 610

Table 53: Member Types Defined in IT_HashMap<T> 611

Table 54: Iterator Member Functions of IT_HashMap<T> 612

Table 55: Element Access Operations for IT_HashMap<T> 612
 26

LIST OF TABLES
Table 56: Map Operations for IT_HashMap<T> 612

Table 57: List Operations for IT_HashMap<T> 612

Table 58: Other Operations for IT_HashMap<T> 613

Table 59: Artix Mapping of IDL Basic Types to C++ 620

Table 60: Basic IT_Bus::Var<T> Operations 642

Table 61: Non-Atomic Built-In Types Supported by Reflection 650

Table 62: Effect of nillable, minOccurs and maxOccurs Settings 669
 27

LIST OF TABLES
 28

Preface
What is Covered in This Book
This book covers the information needed to develop applications using the Artix
C++ API.

Who Should Read This Book
This guide is intended for Artix C++ programmers. In addition to a knowledge
of C++, this guide assumes that the reader is familiar with WSDL and XML
schemas.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library.
 29

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

PREFACE
 30

CHAPTER 1

Getting Started
with Artix
Programming
This chapter shows you how to rapidly build and deploy a complete
client/server application using the Artix command-line tools.

In this chapter This chapter discusses the following topics:

The Hello World Application page 32

Prerequisites page 35

Define a WSDL Contract page 36

Develop a Service Plug-In page 41

Develop a Client page 44

Run the Application page 47

Adding Configuration to the Application page 48
 31

CHAPTER 1 | Getting Started with Artix Programming
The Hello World Application

Overview Figure 1 provides a brief overview of the Hello World application, a simple
two-tier client/server application, on which the rest of this chapter is based. The
communication protocol for this example is SOAP over HTTP.

The server exposes a service, HelloWorldSOAPService, which listens on a
single HTTP port for incoming invocation requests.

The client obtains the connection details for the HelloWorldSOAPService by
reading a local copy of the Hello World WSDL contract. The client then calls
the two operations, sayHi and greetMe, that are supported by the Hello World
service.

Figure 1: The Hello World Application

WSDL

HTTP Port

SOAP Service

ServerClient

WSDL

sayHi Request

sayHi Reply

Container

Hello
World

Servant

Service Plug-In
32

The Hello World Application
WSDL contract The Web Services Description Language (WSDL) contract provides the
foundation for the Hello World distributed application. The contract contains all
of the information needed by a Web services client, including a detailed
description of the Hello World Web service and details of the operations
supported by the service. The WSDL contract contains the following main
sections:

• WSDL port type—describes the interface for the Hello World service,

including all of the WSDL operations supported by the service. The Hello

World port type is named Greeter and contains the following operations:

♦ sayHi—requests the server to send a message of greeting (the

operation returns a string).

♦ greetMe—sends the user’s name to the server and requests the server

to send a personalized greeting (the operation takes a single string

argument and returns a string).

• WSDL binding—describes how operation request and reply messages are

to be encoded. For example, the Hello World application encodes

messages in a SOAP format.

Artix provides tools to generate the WSDL binding automatically.

• WSDL service and port—provides connection data and properties for a

particular transport. For transports based on the Internet Protocol, you can

specify the service’s hostname and IP port. For example, the Hello World

service uses the HTTP transport and the connection data is specified in the

form of a HTTP URL.

Server The server provides the implementation of the Hello World Web service. In
particular, it provides a servant class that implements the sayHi and greetMe
WSDL operations.

The preferred approach for building and deploying an Artix server is to use the
container model. The Artix container model is based on the idea that the server
can be broken up into the following parts:

• Artix container.

• Service plug-in.
 33

CHAPTER 1 | Getting Started with Artix Programming
Artix container The Artix container is an executable, it_container, that provides a basic
environment for Web services to run in. Service implementations are loaded into
the container as plug-ins. Artix exploits the dynamic loading capabilities of
modern operating systems to load service plug-ins as shared libraries or DLLs.

Service plug-in A service plug-in is an Artix plug-in that contains the implementation of one or
more servant classes. Typically, a servant class is responsible for implementing
the operations from a single WSDL port type. Implementing a servant class in
C++ is equivalent to implementing a Web service.

Client The client is a standalone executable that invokes the sayHi and greetMe
operations from the Hello World service.

The key artifact on the client side is the client proxy class, which provides an
interface mapped from the Greeter port type. By calling functions on a client
proxy object, a client can initiate remote procedure calls on the corresponding
operations in the remote Web service.
34

Prerequisites
Prerequisites

Overview Before attempting to build and run the Hello World application, check that the
following prerequisites are satisified:

• Basic environment variables.

• Path variable.

• Artix environment script.

• C++ compiler.

Basic environment variables Ensure that the following basic environment variables are set:

Path variable Make sure that the Java bin directory—%JAVA_HOME%\bin on Windows and
$JAVA_HOME/bin on UNIX—is on your path.

Artix environment script Artix provides a script, artix_env.bat or artix_env.sh, in
ArtixInstallDir/bin, that sets a variety of environment variables (not just the
basic ones mentioned here). If your user account is not configured to run this
script, you might have to run it manually.

Depending on what compiler you use and what platform you are running on, it
might be necessary to run the artix_env script with particular command-line
switches. For details, see the Artix Installation Guide.

C++ compiler Make sure that your environment is configured to use the correct version of C++
compiler. In general, it is necessary to use precisely the right compiler version,
as specified in the Artix Installation Guide.

IT_PRODUCT_DIR The absolute pathname of the Artix install directory.

IT_LICENSE_FILE The absolute pathname of the Artix license file,
licenses.txt.

JAVA_HOME The root directory of Sun’s J2SE Java platform (also
known as JDK). Check the Artix installation guide for
details of the correct J2SE version.
 35

CHAPTER 1 | Getting Started with Artix Programming
Define a WSDL Contract

Overview This section assumes that you already have the logical part of the contract (that
is, the WSDL port type and associated type definitions) and shows you how to
proceed to generate the rest of the contract (WSDL binding and WSDL service)
using the Artix command-line tools. In particular, this section describes how to
define a WSDL contract for the Hello World application.

To define a Hello World WSDL contract, perform the following steps:

1. Example directories.

2. Define the logical contract.

3. Add a SOAP binding to the contract.

4. Add a HTTP endpoint to the contract.

Example directories First of all, you need to create a few directories to hold the files associated with
the Hello World example. In a convenient location of your choosing, create the
following directories:

ArtixExampleDir
ArtixExampleDir/etc
ArtixExampleDir/client
ArtixExampleDir/server

Where ArtixExampleDir is the root of your example directory tree.

Define the logical contract The logical part of a WSDL contract is the part that contains the WSDL port type
definitions, along with the requisite definitions of any associated message types
and XML schema types.

If you are defining a logical contract from scratch, you can write the contract
directly (assuming you are sufficiently familiar with the syntax for XML
schemas and WSDL contracts). For the Hello World example, use the logical
contract from Example 1.

Example 1: Logical Contract for the Hello World Example

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld" targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
36

Define a WSDL Contract
Where the Hello World contract defines a single port type, Greeter, having two
operations, sayHi() and greetMe(). The sayHi() operation returns a string.
The greetMe() operation takes a single string argument and returns a string.

Using your favorite text editor, copy the WSDL contract from Example 1 on
page 36 into the following file:

ArtixExampleDir/etc/_hello_world.wsdl

 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/hello_world_soap_http"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="sayHiRequest"/>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="tns:responseType" name="theResponse"/>
 </wsdl:message>
 <wsdl:message name="greetMeRequest">
 <wsdl:part element="tns:requestType" name="me"/>
 </wsdl:message>
 <wsdl:message name="greetMeResponse">
 <wsdl:part element="tns:responseType" name="theResponse"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
 </wsdl:operation>
 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Example 1: Logical Contract for the Hello World Example
 37

CHAPTER 1 | Getting Started with Artix Programming
Add a SOAP binding to the
contract

The SOAP binding describes the encoding of request and reply messages in the
SOAP protocol. By adding a SOAP binding for the Greeter port type from
Example 1 on page 36, you make it possible to invoke Greeter’s operations
using a SOAP protocol. Note that the SOAP binding describes only how the
messages are encoded, it does not describe how to send the messages to and
from the remote service (that is the responsibility of the transport).

To add a SOAP binding to the contract, change directory to
ArtixExampleDir/etc and enter the following command:

In this example, the wsdltosoap command takes the following switches:

This command generates a new file, _hello_world-soap.wsdl, which contains
the SOAP binding shown in Example 2.

wsdltosoap -i Greeter
-b GreeterSOAPBinding
_hello_world.wsdl

-i PortType WSDL port type for which to generate a binding.

-b Binding Name of the newly generated binding.

Example 2: SOAP Binding for the Greeter Port Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 ...
 <binding name="GreeterSOAPBinding" type="tns:Greeter">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="greetMe">
 <soap:operation soapAction="" style="document"/>
 <input name="greetMeRequest">
 <soap:body use="literal"/>
 </input>
 <output name="greetMeResponse">
38

Define a WSDL Contract
Add a HTTP endpoint to the
contract

To enable you to invoke Greeter’s operations over SOAP/HTTP, you must add
a HTTP endpoint to the contract. A typical HTTP endpoint consists of a service
element containing a single port element. In the port element, you can indicate
that the transport protocol is HTTP and you can provide the relevant properties
for the HTTP endpoint.

To add a HTTP endpoint to the contract, change directory to
ArtixExampleDir/etc and enter the following command:

In this example, the wsdltoservice command takes the following switches:

 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
</definitions>

Example 2: SOAP Binding for the Greeter Port Type

wsdltoservice -b GreeterSOAPBinding
-e HelloWorldSOAPService
-t HTTPPort
-transport http
-a http://localhost:4444
-o hello_world.wsdl
_hello_world-soap.wsdl

-b Binding Binding for which an endpoint is to be generated.

-e ServiceName The name of the new WSDL service.

-t PortName The name of the new WSDL port.

-transport http Specifies that this is a HTTP endpoint.

-a LocationURL The location URL for the new endpoint.

-o OutputFile The name of the output file containing the updated
WSDL contract.
 39

CHAPTER 1 | Getting Started with Artix Programming
This command generates a new file, hello_world.wsdl, which contains the
HTTP endpoint shown in Example 3.

Example 3: HTTP Endpoint for the Greeter Port Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 ...
 <service name="HelloWorldSOAPService">
 <port binding="tns:GreeterSOAPBinding" name="HTTPPort">
 <http:address location="http://localhost:4444"/>
 </port>
 </service>
</definitions>
40

Develop a Service Plug-In
Develop a Service Plug-In

Overview To develop a service plug-in for the Hello World WSDL application, perform
the following steps:

1. Generate service code from the WSDL contract.

2. Edit the servant class.

3. Compile the service plug-in.

Generate service code from the
WSDL contract

Artix has a built-in code generator that can automatically generate most of the
code required for a simple service plug-in.

To generate service plug-in code from the Hello World WSDL contract, open a
command prompt, change directory to ArtixExampleDir/server, and enter the
following command (for your respective platform):

Windows

UNIX

In this example, the wsdltocpp command takes the following switches:

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-server
-impl
-m NMAKE:library
-plugin:it_hello_world
-deployable
..\etc\hello_world.wsdl

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-server
-impl
-m UNIX:library
-plugin:it_hello_world
-deployable
../etc/hello_world.wsdl

-i PortType The port type for which code is to be generated.
 41

CHAPTER 1 | Getting Started with Artix Programming
The preceding command generates all of the files needed to build and deploy the
Hello World service plug-in. The plug-in is packaged in the form of a shared
library or DLL.

Edit the servant class The generated GreeterImpl servant class is the class that actually implements
the Greeter port type. In order to implement the Hello World service, all that
you need to do is to implement the relevant functions in this class. An outline
implementation of the GreeterImpl class is provided in the GreeterImpl.cxx
file.

To complete the implementation of the GreeterImpl servant class, open the
GreeterImpl.cxx file with your favorite text editor and edit the sayHi() and
greetMe() functions as shown in Example 4.

-e ServiceName The WSDL service associated with the port type.

-server Generate server skeleton code.

-impl Provide an outline implementation of the Greeter
servant class.

-m [NMAKE|UNIX]:library Generate a makefile that builds the service plug-in
library (for Windows and UNIX respectively).

 -plugin:LibName Generate the code required for a plug-in library,
using LibName as the root name of the library.

-deployable Generate a deployment descriptor file for the
service plug-in.

Example 4: Sample Implementations of sayHi() and greetMe()

// C++
...

void
GreeterImpl::sayHi(
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception))
{
 std::cout << "GreeterImpl::sayHi() called." << std::endl;
 theResponse = "Greetings from the Artix HelloWorld service.";
}

void
GreeterImpl::greetMe(
42

Develop a Service Plug-In
Edit the sayHi() and greetMe() functions, replacing the function bodies with
the lines of code highlighted in bold font.

Compile the service plug-in To compile the service plug-in, enter the following at a command prompt:

Windows

nmake all

UNIX

make all

 const IT_Bus::String &me,
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception))
{
 std::cout << "GreeterImpl::greetMe() called." << std::endl;
 theResponse = "Hello " + me;
}

Example 4: Sample Implementations of sayHi() and greetMe()

Note: It is essential to specify all as the make target, because the default
target does not generate the dependencies file.
 43

CHAPTER 1 | Getting Started with Artix Programming
Develop a Client

Overview To develop a client for the Hello World WSDL application, perform the
following steps:

1. Generate client code from the WSDL contract.

2. Edit the client main() function.

3. Compile the client.

Generate client code from the
WSDL contract

To generate client code from the Hello World WSDL contract, open a command
prompt, change directory to ArtixExampleDir/client, and enter the following
command (for your respective platform):

Windows

UNIX

In this example, the wsdltocpp command takes the following switches:

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-client
-sample
-m NMAKE:executable
..\etc\hello_world.wsdl

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-client
-sample
-m UNIX:executable
../etc/hello_world.wsdl

-i PortType The port type for which code is to be generated.

-e ServiceName The WSDL service associated with the port type.

-client Generate client stub code.

-sample Provide an outline implementation of the client’s
main() function.
44

Develop a Client
The preceding command generates all of the files needed to build a client of the
Hello World service. The client is implemented as a standalone executable.

Edit the client main() function An outline implementation of the client main() function is provided in the
generated GreeterClientSample.cxx file.

To complete the implementation of the client, open the
GreeterClientSample.cxx file with your favorite text editor and edit the
main() function as shown in Example 5, adding the lines of code shown in bold
font.

-m

[NMAKE|UNIX]:executable
Generate a makefile that builds the client executable
(for Windows and UNIX respectively).

Example 5: Client main() function for Hello World Application

// C++
...
try
{
 /*
 * Create an instance of the web service client
 */
 IT_Bus::init(argc, argv);

 GreeterClient client;
 ...
 IT_Bus::String theResponse;
 client.sayHi(theResponse);
 cout << "sayHi() returned: \"" << theResponse << "\"" <<

endl;

 IT_Bus::String me = "YourName";
 client.greetMe(me, theResponse);
 cout << "greetMe() returned: \"" << theResponse << "\"" <<

endl;
}
catch(IT_Bus::Exception& e)
...
 45

CHAPTER 1 | Getting Started with Artix Programming
The additional lines of code invoke the sayHi() and greetMe() operations on
the HelloWorldSOAPService service. The client code performs the following
steps:

1. Initialize an Artix Bus instance—the call to IT_Bus::init() initializes an

Artix Bus object (of IT_Bus::Bus type), which provides the basic Artix

functionality.

2. Create a client proxy instance—a client proxy is an object that

encapsulates the information required to contact a remote WSDL service.

In this example, the GreeterClient class is the proxy for the

HelloWorldSOAPService service.

If you call the default constructor (as here), the client proxy is constructed

with default values for the WSDL contract location, service name, and port

name (the defaults are hard-coded in the client stub file,

GreeterClient.cxx).

3. Invoke the sayHi() and greetMe() operations on the remote

HelloWorldSOAPService service—you can invoke the remote Greeter

operations by calling the sayHi() and greetMe() operations on the client

proxy, client.

Compile the client To compile the service plug-in, enter the following at a command prompt:

Windows

nmake all

UNIX

make all
46

Run the Application
Run the Application

Overview To run the Hello World WSDL application, perform the following steps:

1. Run the container and load the service plug-in.

2. Run the client.

Run the container and load the
service plug-in

To run the container and load the Hello World service plug-in, open a command
prompt, change directory to ArtixExampleDir/server, and enter the following
command:

After issuing this command, the Artix container starts up and the
HelloWorldSOAPService is activated. You should see the following output
logged to the console screen:

See Configuring and Deploying Artix Solutions for more details on running the
Artix container.

Run the client To run the sample client, open a command prompt, change directory to
ArtixExampleDir/client, and enter the following command:

You should see the following output logged to the console screen:

it_container -publish -deploy deployHelloWorldSOAPService.xml

Progress it_container server starting
Progress it_container server ready

GreeterClient

 GreeterClient
sayHi() returned: "Greetings from the Artix HelloWorld service."
greetMe() returned: "Hello YourName"
 47

CHAPTER 1 | Getting Started with Artix Programming
Adding Configuration to the Application

The Artix configuration file The Artix configuration file, ArtixConfig.cfg, is a local file that contains
configuration settings for Artix applications. It is primarily used for settings that
do not belong in a WSDL contract (although there is some overlap between
WSDL contract settings and Artix configuration file settings).

For more details about Artix configuration files, see Configuring and Deploying
Artix Solutions.

Default configuration file Artix provides default configuration files, which are located in the
ArtixInstallDir/etc/domains directory. The default configuration files are, as
follows:

• artix.cfg—suitable for non-secure applications. Artix is configured to

use this configuration file by default.

• artix-secure.cfg—suitable for secure applications. You need to

configure Artix explicitly to use this configuration file.

Sample configuration for Hello
World

Example 6 shows an example of a configuration file that can be used for the
Hello World appliction.

Example 6: Sample Configuration for the Hello World Application

Artix Configuration File
1 include "ArtixInstallDir\etc\domains\artix.cfg";

artix_example {
2 client {
3 orb_plugins = ["xmlfile_log_stream"];

 };

4 server {
 orb_plugins = ["xmlfile_log_stream"];

5 bus:initial_contract_dir = ["ArtixExampleDir\etc"];
 };
};
48

Adding Configuration to the Application
The preceding configuration can be described as follows:

1. The artix.cfg file is the default configuration file provided with Artix. It

contains many default configuration settings, which are needed by all Artix

applications.

You should include the artix.cfg file in your own Artix configuration file

by invoking the include directive, as shown. You need to edit the

pathname from this example to match the actual location of artix.cfg in

your Artix installation.

2. The configuration scope, artix_example.client, contains the settings

specific to the Hello World client.

3. The orb_plugins list specifies the set of Artix plug-ins to load at program

start-up time. Additional plug-ins can be loaded later on, if needed, through

the dynamic loading capability of the Artix plug-in framework.

In the current example, just the XML logging plug-in,

xmlfile_log_stream, is loaded at program start-up time.

4. The configuration scope, artix_example.server, contains the settings

specific to the Hello World service plug-in.

5. The bus:initial_contract_dir configuration variable gives the location

of a directory containing WSDL contracts. Artix searches this directory to

locate the service plug-in’s WSDL contract.

Artix provides a variety of other ways to specify the location of the

service’s WSDL contract—for more details, see “Options for providing

WSDL contracts” on page 101.

Command-line switches for
configuration

To run an Artix program with a configuration other than the default, you can
supply the following command-line switches to the Artix executable:

Note: The majority of Artix plug-ins are loaded dynamically, in the
course of parsing a WSDL contract.

For example, if a WSDL contract has a port that uses the HTTP transport
protocol, Artix automatically loads the at_http plug-in to enable support
for HTTP.

-BUSconfig_domains_dir DomainDir Look for the Artix configuration file in
the directory, DomainDir.
 49

CHAPTER 1 | Getting Started with Artix Programming
These command-line switches can be supplied to the Artix container executable,
it_container, or any standalone Artix executable (assuming the main()
function was implemented to pass command-line arguments to the
IT_Bus::init() function).

Running the application with
configuration switches

Using the preceding configuration command-line switches, you can customize
the configuration for the Hello World service plug-in and client.

For example, to run the Hello World application with a customized
configuration, do the following:

1. Copy the sample configuration from Example 6 on page 48 into the text

file, ArtixExampleDir/etc/hello_world.cfg,

2. Open a command prompt, change directory to ArtixExampleDir/server,

and enter the following command:

3. Open another command prompt, change directory to

ArtixExampleDir/client, and enter the following command:

Environment variables for
configuration

Instead of supplying the -BUSconfig_domains_dir and the -BUSdomain_name
switches at the command line, you can specify the Artix configuration file
location using the following environment variables:

-BUSdomain_name DomainName The name of the Artix configuration file
is DomainName.cfg.

-BUSname ConfigScope Initialize the Artix Bus instance with the
settings from the ConfigScope
configuration scope in the
DomainName.cfg configuration file

it_container -BUSname artix_example.server
-BUSconfig_domains_dir ../etc
-BUSdomain_name hello_world
-publish -deploy deployHelloWorldSOAPService.xml

GreeterClient -BUSname artix_example.client
-BUSconfig_domains_dir ../etc
-BUSdomain_name hello_world

IT_CONFIG_DOMAINS_DIR Environment variable that specifies the directory in
which the Artix configuration file is located.
50

Adding Configuration to the Application
There is no environment variable corresponding to the -BUSname command-line
switch. Hence, the -BUSname command-line switch still needs to be supplied to
the command, even if the preceding environment variables are set.

See Configuring and Deploying Artix Solutions for more details on environment
variables.

IT_DOMAIN_NAME Environment variable that specifies the domain
name, DomainName, from which the name of the
Artix configuration file, DomainName.cfg, is
derived.
 51

CHAPTER 1 | Getting Started with Artix Programming
52

CHAPTER 2

Server
Programming
This chapter describes how to develop an Artix server, which can
be based either on the container model or on the standalone model.
In many cases, the bulk of the server code can be generated by the
Artix WSDL-to-C++ compiler, leaving the programmer to
implement just the servant classes.

In this chapter This chapter discusses the following topics:

Programming with the Container Model page 54

Programming with the Standalone Model page 76

Default Servants page 79

Transient Servants page 94

How Services Locate WSDL Contracts page 99

Registering Static Servants page 102

Registering Default Servants page 107

Registering Transient Servants page 108
 53

CHAPTER 2 | Server Programming
Programming with the Container Model

Overview The Artix container model is a way of building and deploying Artix servers,
which is based on the idea that an Artix server can be divided into two pieces: a
container piece and a service plug-in (or plug-ins). The container piece is a
standard executable, it_container, which is the same for all Artix servers. The
service plug-in is a shared library or DLL, which must be implemented by an
Artix server programmer.

This section provides a general overview of the container architecture and how it
affects server-side programming. In this model, the programmer can focus on
implementing service plug-ins instead of implementing standalone server
executables.

In this section This section contains the following subsections:

Container Architecture page 55

Multiple Services in a Container page 58

Service with Multiple Ports page 61

Implementing a Servant Class page 63

Implementing the Plug-In Class page 68

Implementing the Service Activator Class page 72
54

Programming with the Container Model
Container Architecture

Overview Figure 2 shows an overview of the Artix container architecture, which shows
how a service plug-in fits into the container model. The server programmer is
responsible for implementing a service plug-in, which is deployed by loading it
into the Artix container.

The basic elements of the Artix container architecture are:

• Container.

• Artix configuration file.

• Service plug-in.

• Servant.

• WSDL contract.

Figure 2: Architecture of the Artix Container

WSDL

Container

Port
Plug-In

A

 Container Port

 Container Service

 Service A

Config

Servant

Service Plug-In
 55

CHAPTER 2 | Server Programming
Container The Artix container provides a convenient model for deploying Artix services,
removing the need for much of the boilerplate code that would otherwise appear
in the main() function of a traditional stand-alone server. As shown in Figure 2,
a WSDL service deployed using the container model, consists of the following
major components:

• Container executable—the container is an executable, it_container,

capable of loading service plug-ins.

• Service plug-ins—plug-ins are packaged either as shared libraries or DLLs,

depending on the platform. The plug-ins are loaded into the container using

the dynamic linking capabilities of the operating system.

An added benefit of deploying services in a container is that the container
supports elementary operations for administering services, as follows:

• Deploy new services to the container.

• List all services in the container.

• Stop a specified service.

• Start a specified service.

• Publish a URL, a reference, or a WSDL contract for a specified service.

These operations are supported by a dedicated WSDL port which provides
access to the container service. To administer the container, Artix provides a
command-line utility, it_container_admin. For details, see Configuring and
Deploying Artix Solutions.

Artix configuration file The Artix configuration file provides general-purpose configuration data for the
container process (see “Adding Configuration to the Application” on page 48 for
details on configuration). You can specify which configuration scope applies to
the container by passing the -BUSname command-line switch when you launch
the container, where the argument to the -BUSname switch is the Bus ID.

Note: For each container process, it is possible to specify a single Bus ID and
only one Bus instance is created. That is, service plug-ins that load into a
container cannot be configured independently. In view of this limitation, only
related service plug-ins should be loaded into the same container instance. The
Artix container is not an application server.
56

Programming with the Container Model
Service plug-in A service plug-in is a component that contains the implementation of one or
more WSDL services. It consists of the following:

• Shared library or DLL—a dynamically loadable library that contains the

code for the service plug-in.

• Shared library dependencies file—a dependencies file that lists the Artix

plug-ins on which this plug-in depends (can be empty).

• Deployment descriptor file—an XML file that is passed to the Artix

container in order to deploy the service plug-in.

• WSDL contract (or contracts)—the contract for the WSDL services

provided by the plug-in.

Servant A servant is a C++ class that implements operations from a WSDL port type (or,
sometimes, from multiple port types).

It is important to understand that a servant is not identical to a service. The
separation of the implementation from the service permits greater flexibility in
the way services are implemented. For example, in some cases a service is
implemented by multiple servants; in other cases, multiple services are
implemented by a single servant.

A servant is not associated with a service until it is registered. See “Registering
Static Servants” on page 102 and “Registering Transient Servants” on page 108.

WSDL contract A service plug-in is always associated with a WSDL contract (in some cases,
with multiple WSDL contracts). The WSDL contract describes the interfaces
(WSDL port types) for all of the services deployed in the plug-in.

The WSDL contract must be made available to the container through one of the
mechanisms described in “How Services Locate WSDL Contracts” on page 99.
 57

CHAPTER 2 | Server Programming
Multiple Services in a Container

Overview Consider the case where you have two services, service A and service B, that
you want to deploy into the same container. Figure 3 shows two alternative
approaches to deploying these services. In the first approach (Figure 3 (a)), each
service is deployed separately in its own plug-in. In the second approach
(Figure 3 (b)), the services are deployed together in a single plug-in. Generally,
if the services are closely related, it makes sense to deploy them in a single
plug-in (as shown in Figure 3 (b)). Deploying the services as a single plug-in
makes it easier for the two services to interact with each other and to share
common data.

Figure 3: Multiple Services in Separate (a) or Common (b) Plug-In

Container

Port
Plug-In

A

 Container Port

 Container Service

 Service A

Port
Plug-In

B

 Service B

Container

Port

 Container Port

 Container Service

 Service A

Port

Common
Plug-In Service B

(a) (b)
58

Programming with the Container Model
Separate plug-ins for each service Generating separate plug-ins for each service is the default model of
deployment, which you get if you use wsdltocpp to generate the service plug-in.

Example 7 shows the implementation of the bus_init() function in a service
plug-in, Service_A_PlugIn, that registers just a single service, Service A. The
bus_init() function for the other service, Service B, is implemented in a similar
way in a separate plug-in class, Service_B_PlugIn.

Common plug-in for all services Typically a more efficient solution, if you want to deploy a number of closely
related services, is to combine the different services in a single service plug-in.

Example 8 shows the implementation of the bus_init() function for a common
plug-in, which combines the registration of both Service A and Service B.

Example 7: One Service Registered in each Plug-In

// C++
void
Service_A_PlugIn::bus_init(
) IT_THROW_DECL((Exception))
{

 WSDLService* wsdl_service =
 get_bus()->get_service_contract(m_service_A_qname);

 get_bus()->register_servant(
 m_servant_A,
 *wsdl_service_A
);
}

 59

CHAPTER 2 | Server Programming
Example 8: Multiple Services Registered in a Plug-In

// C++
void
CommonPlugIn::bus_init(
) IT_THROW_DECL((Exception))
{
 WSDLService* wsdl_service_A =
 get_bus()->get_service_contract(m_service_A_qname);

 get_bus()->register_servant(
 m_servant_A,
 *wsdl_service_A
);

 WSDLService* wsdl_service_B =
 get_bus()->get_service_contract(m_service_B_qname);

 get_bus()->register_servant(
 m_servant_B,
 *wsdl_service_B
);
}

60

Programming with the Container Model
Service with Multiple Ports

Overview Consider the case where a single service, service A, exposes two different
WSDL ports. For example, one of the ports might accept only insecure
connections while the other port accepts only secure connections.

Figure 4 shows two different approaches to activating the ports. In the first
approach (Figure 4 (a)), a single servant object is registered against both ports,
so that request messages from both ports are directed to the same servant object.
In the second approach (Figure 4 (b)), each port is registered against a different
servant object. The second approach (servant for each port) is useful in cases
where you need to fine-tune the servant implementation for each of the WSDL
ports. For example, if one of the ports is insecure, you might want to implement
a corresponding servant object that restricts access to sensitive resources.

Figure 4: Multi-Port Service Registered against a Single Servant (a), or
Multiple Servants (b)

Container

Port

Plug-In
A

 Container Port

 Container Service

 Service A

Port

Container Container Port

 Container Service

(a) (b)

Port

Plug-In
A

 Service A

Port
 61

CHAPTER 2 | Server Programming
Activating all ports together If you activate a service’s ports together, you associate all of the ports with a
single servant object. For details of how to program this approach, see “Activate
all ports together” on page 104.

Activating ports individually If you activate a service’s ports individually, you can optionally associate each
of the WSDL ports with a different servant object. For details of how to program
this approach, see “Activate ports individually” on page 105.
62

Programming with the Container Model
Implementing a Servant Class

Overview The main task required of an Artix server programmer is the implementation of
one or more servant classes. A servant class provides the implementation of a
WSDL service. Because the servant member functions are generated from a
particular WSDL port type, a given servant class can implement only WSDL
services that have the same WSDL port type.

Figure 5 shows the class hierarchy for a typical servant implementation class,
PortTypeImpl.

The following classes appear in this hierarchy:

• IT_Bus::Servant class—is the base class for all servant types. It declares

a few standard member functions.

• PortType class—an abstract class generated from the WSDL port type

named PortType. This class contains a function corresponding to each of

the WSDL operations in the PortType port type.

• PortTypeServer class—the server skeleton class, which is generated by

the wsdltocpp utility when the -server switch is supplied. The skeleton

class includes code for dispatching the operations in the PortType port

type.

• PortTypeImpl class—the servant class, which provides the implementation

of the PortType port type.

You must implement this class in order to implement a WSDL service.

Figure 5: Class Hierarchy for the Servant Implementation Class

PortTypeImpl

PortTypeServer

PortTypeIT_Bus::Servant
 63

CHAPTER 2 | Server Programming
Generating the servant class To generate an outline implementation of the servant class, invoke the
wsdltocpp command as follows:

In this example, the last item on the command line, WSDLContractFile, is the
path name (or possibly URL) of the WSDL contract. The switches shown in the
preceding command have the following meaning:

wsdltocpp -i port_type
-e web_service_name
-server
-impl
-m [NMAKE|UNIX]:library
-plugin[:plugin_name]
-deployable
WSDLContractFile

-i port_type Specifies the name of the port type for which the tool
will generate code.

-e web_service_name
[:port_list]

Specifies the name of the service for which the tool will
generate code.

-server Generates stub code for a server (cannot be combined
with the -client switch).

-impl Generates an outline implementation of the servant
class.

-m {NMAKE | UNIX}
:[executable |
library]

Used in combination with -impl to generate a makefile
for the specified platform (NMAKE for Windows or UNIX
for UNIX). You can specify that the generated makefile
builds an executable, by appending :executable, or a
library, by appending :library. For example, the
options, -impl -m NMAKE:executable, would generate
a Windows makefile to build an executable.

-plugin
[:plugin_name]

Generates a service plug-in. You can optionally specify
the plug-in name by appending :plugin_name to this
option. If no plug-in name is specified, the default name
is <ServiceName><PortTypeName>. The service name,
<ServiceName>, is specified by the -e option.

-deployable (Used with -plugin.) Generates a deployment descriptor
file, deploy<ServiceName>.xml, which is needed to
deploy a plug-in into the Artix container.
64

Programming with the Container Model
Implementing the constructor You can implement any kind of constructor you like for the servant
implementation class. There is, however, one condition that must always be
fulfilled: one of the arguments to the PortTypeImpl() constructor must be of
type IT_Bus::Bus_ptr and the bus argument must be passed into the base
constructor, PortTypeServer().

For example, you can implement a simple constructor for the Bank port type, as
follows:

Implementing WSDL operations For every operation belonging to a particular port type in the WSDL contract,
the wsdltocpp compiler generates a corresponding member function in the
servant class. The C++ function signatures are derived from the WSDL
operation definitions, as follows:

• First come the parameters corresponding to the input messages,

• Next come the parameters corresponding to the input/output messages

(messages sent both to and from a service),

• And finally come the parameters corresponding to the output messages.

None of the messages are represented as a return value in C++. Hence, C++
functions corresponding to WSDL operations always return the void type. For
more details about mapping WSDL operations to C++ functions, see
“Operations and Parameters” on page 144.

For example, the create_account operation in the Bank port type maps to the
following C++ member function:

// C++
BankImpl::BankImpl(IT_Bus::Bus_ptr bus) : BankServer(bus)
{
 ...
}

// C++
void
BankImpl::create_account(
 const IT_Bus::String &account_name,
 WS_Addressing::EndpointReferenceType &_return
) IT_THROW_DECL((IT_Bus::Exception))
{
 ...
}

 65

CHAPTER 2 | Server Programming
The account_name string parameter corresponds to an input message and the
_return parameter, of WS_Addressing::EndpointReferenceType type,
corresponds to an output message. The
WS_Addressing::EndpointReferenceType type enables a reference to a WSDL
service to be transmitted over the wire. A reference encapsulates the location
information for a particular WSDL service. For more details about references,
see “Endpoint References” on page 199.

Implementing runtime callbacks There are some standard functions that the servant class inherits from
IT_Bus::Servant. You can optionally override these functions to receive
callback notifications from the Artix runtime when certain events occur. The
following callback functions are inherited from IT_Bus::Servant:

Whenever a WSDL port is activated or deactivated, Artix calls activated() or
deactivated(), respectively, to notify the servant of this event. If you do not
implement these functions, the server skeleton code provides default
implementations, which do nothing. These functions are typically only needed
by advanced applications.

The clone() function gets called by the Artix runtime to create a new servant
instance. An implementation of the clone() function is required to support
certain threading policies on the server side. For more details see “Servant
Threading Models” on page 179.

Calling Bus APIs The servant application code can also access a variety of Artix APIs through the
Bus object. The Bus object can be conveniently accessed by calling the
get_bus() member function, which is implemented by the IT_Bus::Servant
base class:

// C++
// Servant functions inherited from IT_Bus::Servant.
void activated(IT_Bus::Port& port);

void deactivated(IT_Bus::Port& port);

IT_Bus::Servant* clone() const;

// C++
virtual Bus_ptr get_bus() const;
66

Programming with the Container Model
One of the most common reasons for accessing the Bus instance, is in order to
write to or read from an Artix context. Artix contexts provide a mechanism for
accessing data in message headers or for fine-tuning Artix behavior by setting
policies programatically. For more information about Artix contexts, see “Artix
Contexts” on page 245.
 67

CHAPTER 2 | Server Programming
Implementing the Plug-In Class

Overview The service plug-in class provides the entry point for initializing and shutting
down the plug-in. For very simple applications, you can use the default,
generated implementation of the plug-in class. For most applications, however,
you will probably need to make some modifications to the plug-in class.

Plug-in functions The service plug-in class essentially provides a programmer with two hooks:

• bus_init()—a function called as the plug-in initializes.

• bus_shutdown()—a function called as the plug-in shuts down.

The primary purpose of the bus_init() function is to let you register servant
objects. By registering a servant object, you create an association between the
servant object and a particular WSDL service, such that requests received by the
WSDL service are invoked on the servant object. If you are using service
activators, however, you would typically delegate servant registration to the
service activators.

The bus_shutdown() function enables you to perform clean-up tasks as the Bus
and the plug-in are shutting down.

Summary of container
programming

The following points summarize how to program an Artix server in the container
programming model:

• The bus_init() and bus_shutdown() functions in the plug-in class take

the place of a main() function.

• The plug-in class is primarily used for registering service activators and for

registering and deregistering servants (in bus_init() and

bus_shutdown() respectively).

• There is no need to call either the IT_Bus::init() function or the

IT_Bus::Bus::shutdown() function. The container looks after initializing

and shutting down the Bus object.

• Call get_bus() to get the IT_Bus::Bus instance.

• Instead of hard-coding the location of a WSDL contract, you can find a

contract using the IT_Bus::Bus::get_service_contract() function.
68

Programming with the Container Model
Generating the plug-in class To generate a default implementation of the service plug-in class, invoke the
wsdltocpp command as follows:

In this example, the last item on the command line, WSDLContractFile, is the
path name (or possibly URL) of the WSDL contract. The switches shown in the
preceding command are explained in “Generating the servant class” on page 64.

The wsdltocpp utility with the -plugin switch generates the following files
containing a default implementation of the service plug-in class:

<web_service_name><port_type>PlugIn.h
<web_service_name><port_type>PlugIn.cxx

Where <web_service_name> is the WSDL service specified by the -e switch of
the wsdltocpp command and <port_type> is the port type specified by the -i
switch.

Plug-in constructor The plug-in constructor is called as the plug-in is loaded. This is a convenient
place to create basic objects that the plug-in needs.

Example 9 shows an example of a constructor for the BankService plug-in. This
constructor creates a service activator instance, m_service_activator, that is
responsible for activating the BankService service and a QName instance,
m_service_qname, that holds the name of the BankService service.

wsdltocpp -i port_type
-e web_service_name
-server
-impl
-m [NMAKE|UNIX]:library
-plugin[:plugin_name]
-deployable
WSDLContractFile

Example 9: Sample Plug-In Constructor for the Bank Service Plug-In

// C++
BankServantBusPlugIn::BankServantBusPlugIn(
 Bus_ptr bus
) IT_THROW_DECL((Exception))
 :
 BusPlugIn(bus),
 m_service_activator(0),
 m_service_qname("", "BankService",

"http://www.iona.com/bus/demos/bank")
 69

CHAPTER 2 | Server Programming
bus_init() function The bus_init() function is called either during Bus initialization or just after
the plug-in is loaded. The bus_init() function is the place to put the code that
registers servants with the Bus. If the plug-in uses service activators, the
bus_init() function should register the service activators with the Bus and then
delegate servant registration to the service activators.

Example 10 shows an implementation of bus_init() that registers a service
activator object against the BankService service. The code then explicitly calls
activate_service() on the service activator instance, which has the effect of
registering a Bank servant with the Bus

{
 // complete
}

Example 9: Sample Plug-In Constructor for the Bank Service Plug-In

Example 10: Sample Implementation of bus_init()

// C++
void
GreeterServantBusPlugIn::bus_init(
) IT_THROW_DECL((Exception))
{
 try
 {
 m_service_activator
 = new IT_Bus_Services::ServiceActivatorImpl(get_bus());

 if (0 == m_service_activator.get())
 {
 String error("Failed to initialize

ServiceActivator");
 error += " for service, ";
 error += m_service_qname.to_string();
 throw Exception(error);
 }

 ServiceActivator::register_sa(
 get_bus(),
 m_service_qname,
 m_service_activator.get()
);

 m_service_activator->activate_service(m_service_qname);
70

Programming with the Container Model
bus_shutdown() function The bus_shutdown() function is called when the Bus instance is shut down (that
is, when the container calls IT_Bus::Bus::shutdown()).

Example 11 shows an implementation of bus_shutdown() that deactivates the
BankService service, which results in de-registration of the Bank servant.

 }
 catch (const IT_Bus::Exception & ex)
 {
 throw Exception(ex);
 }
}

Example 10: Sample Implementation of bus_init()

Example 11: Sample Implementation of bus_shutdown()

// C++
void
GreeterServantBusPlugIn::bus_shutdown(
) IT_THROW_DECL((Exception))
{
 m_service_activator->deactivate_service(
 m_service_qname
);
}

 71

CHAPTER 2 | Server Programming
Implementing the Service Activator Class

Overview The service activator class provides the entry point for creating, registering and
deregistering servants. In general, this class is used to manage the lifecycle of an
Artix service. If the relevant member functions of the service activator class are
properly implemented, it should be possible to deactivate and then re-activate a
service without needing to shut down the entire service plug-in.

Service activator functions The service plug-in class provides two functions that control the lifecycle of an
Artix service, as follows:

• activate_service()—a function called either from within bus_init()

or whenever the it_container_admin -deploy command is executed.

The purpose of the activate_service() function is to perform all of the

housekeeping tasks necessary to start up an Artix service, including the

creation of a servant object and the registration of that servant object with

the Bus.

• deactivate_service()—a function called either from within

bus_shutdown() or whenever the it_container_admin -removeservice

command is executed.

The purpose of the deactivate_service() function is to perform all of

the housekeeping tasks necessary to shut down an Artix service, including

deregistration of the service and deletion of the associated servant object.

Related container administration
commands

The lifecycle functions provided by the service activator class are closely related
to the following it_container_admin commands:

• it_container_admin -deploy—the effect of issuing this command

depends on whether this is the first or subsequent deployment, as follows:

♦ First deployment—load and initialize the service plug-in. The

container calls bus_init(), which is normally programmed to call

activate_service() for each of the WSDL services.
72

Programming with the Container Model
♦ Subsequent deployment (re-deploy)—activate any inactive services.

The container calls activate_service() on each of the registered

service activators, but only if the service is currently inactive. The

container does not call bus_init() in this case.

• it_container_admin -removeservice—de-activate a specific service.

When you issue the -removeservice command, the container calls

deactivate_service(), but only if the specified service is currently

active.

For more details about the it_container_admin command-line utility, see
Configuring and Deploying Artix Solutions.

Generating the service activator
class

The service activator class is generated by the wsdltocpp command at the same
time as the plug-in class. For details of how to generate a default implementation
of the service activator class and the plug-in class, see “Generating the plug-in
class” on page 69.

The wsdltocpp utility generates the following files containing a default
implementation of the service activator class:

<port_type>_service_activator_impl.h
<port_type>_service_activator_impl.cxx

Where <port_type> is the port type specified to wsdltocpp by the -i switch.

activate_service() function The activate_service() function is called either from the body of the
bus_init() function or whenever the it_container_admin -deploy command
is issued. The activate_service() function is the appropriate place to put the
code that creates and registers servants.

Note: Artix does not currently provide an administration command that
re-activates a single service at a time. The -deploy command re-activates
all of the inactive services from the specified plug-in.
 73

CHAPTER 2 | Server Programming
Example 12 shows an implementation of activate_service() that registers a
Bank servant, thereby associating it with the BankService WSDL service.

In this example, it is assumed that the service activator instance was registered as
shown in Example 10 on page 70—that is, the service activator instance is
registered only against the BankService service. Hence, it follows that the
activate_service() function shown in Example 12 will only be called when
service_name equals the BankService QName.

Advanced applications might choose to register a service activator instance
against several different services. In that case, you would need to examine the
service QName, service_name, in order to decide which servant to activate.

Example 12: Sample Implementation of activate_service()

// C++
void
ServiceActivatorImpl::activate_service(
 const IT_Bus::QName& service_name
) IT_THROW_DECL((IT_Bus::Exception))
{
 if (m_impl==0) {
 m_impl = new COM_IONA_BANK::BankImpl(
 m_bus.get()
);
 }

 IT_WSDL::WSDLService* wsdl_service =
 m_bus->get_service_contract(service_name);

 if (wsdl_service != 0)
 {
 m_bus->register_servant(
 *m_impl,
 *wsdl_service
);
 }
}

74

Programming with the Container Model
deactivate_service() function The deactivate_service() function is called either from the body of the
bus_shutdown() function or whenever the
it_container_admin -removeservice command is issued.

Example 13 shows an implementation of deactivate_service() that
deregisters and deletes the Bank servant that was registered by
activate_service().

Example 13: Sample Implementation of deactivate_service()

// C++
void
ServiceActivatorImpl::deactivate_service(
 const IT_Bus::QName& service_name
)
{
 m_bus->remove_service(service_name);

 delete m_impl;
 m_impl = 0;
}

 75

CHAPTER 2 | Server Programming
Programming with the Standalone Model

Overview If you prefer not to deploy your Artix server using the container model, you can
opt for the standalone model instead. In the standalone model, you are
responsible for writing the server’s main() function directly. Instead of building
a plug-in, the servant code and main() function are linked together and built as a
standalone executable.

The standalone model is simpler than the container model in some respects, but
it has the disadvantage that you cannot monitor a standalone executable using
the Artix management console.

Generating the standalone server To generate an outline implementation of a standalone server, invoke the
wsdltocpp command as follows:

In this example, the last item on the command line, WSDLContractFile, is the
path name (or possibly URL) of the WSDL contract. The switches shown in the
preceding command have the following meaning:

wsdltocpp -i port_type
-e web_service_name
-sample
-impl
-m [NMAKE|UNIX]:executable
WSDLContractFile

-i port_type Specifies the name of the port type for which the tool
will generate code.

-e web_service_name
[:port_list]

Specifies the name of the service for which the tool will
generate code.

-sample Generates code for a server main function and a client
main function.

-impl Generates an outline implementation of the servant
class.
76

Programming with the Standalone Model
Sample main() function Example 14 shows the basic outline of a server main() function. In this
example, the main() function registers a single GreeterImpl servant against the
HelloWorldSOAPService service.

-m {NMAKE | UNIX}
:[executable |
library]

Used in combination with -impl to generate a makefile
for the specified platform (NMAKE for Windows or UNIX
for UNIX). You can specify that the generated makefile
builds an executable, by appending :executable, or a
library, by appending :library. For example, the
options, -impl -m NMAKE:executable, would generate
a Windows makefile to build an executable.

Example 14: Sample main() Function for Standalone Server

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_cal/iostream.h>

IT_USING_NAMESPACE_STD

#include "GreeterImpl.h"

using namespace COM_IONA_HELLO_WORLD_SOAP_HTTP;
using namespace IT_Bus;

int main(int argc, char* argv[])
{
 cout << " Greeter service" << endl;

 try
 {

1 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

2 GreeterImpl servant(bus);

 IT_Bus::QName service_name_0("", "HelloWorldSOAPService",
"http://www.iona.com/hello_world_soap_http");

 bus->register_servant(
 servant,
 "../etc/hello_world.wsdl",
 service_name_0
 77

CHAPTER 2 | Server Programming
The preceding code example can be explained as follows:

1. When writing the server main() function, you need to initialize the Artix

Bus explicitly by calling the IT_Bus::init() function.

It is important also to pass the command line arguments to the

IT_Bus::init() function, otherwise the server would not respond to the

standard Artix command-line options.

2. This example creates a single servant object, of GreeterImpl type, and

registers this servant against the HelloWorldSOAPService service. Artix

supports many different options for registering servant options—for more

details, see “Registering Static Servants” on page 102 and “Registering

Transient Servants” on page 108.

3. Call IT_Bus::Bus::run() to send the main thread to sleep. This allows

the background threads to continue processing incoming request messages.

);

3 bus->run();
 }
 catch(IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.message() << endl;
 return -1;
 }
 return 0;
}

Example 14: Sample main() Function for Standalone Server
78

Default Servants
Default Servants

Overview A default servant enables you to implement a scalable factory pattern, enabling
you to replace multiple servants of the same type by a single servant.

In this section This section discusses the following topics:

Introduction to Default Servants page 80

Functions Defined on IT_Bus::Service page 83

The Server Address Context page 85

Implementing a Factory page 87

Implementing a Default Servant page 91
 79

CHAPTER 2 | Server Programming
Introduction to Default Servants

Overview A default servant enables you to implement multiple services of the same type,
using only a single servant instance. In many respects, the default servant
programming model is similar to the transient servant programming model (for
example, see “Transient Servants” on page 94), except that multiple servant
instances are now replaced by a single default servant instance. The advantage of
the default servant model is its smaller footprint, in terms of memory and other
resources.

Figure 6 shows an example of how a default servant could be used in a bank
application. The Bank service creates and provides access to an unlimited
number of account instances. Each account is accessed through a unique service
(for example, john.doe). These Account services are created dynamically.

Figure 6: Default Servant Implementing Multiple Account Services

Container Container Port

 Container Service

Plug-In

Bank Service

Account - john.doe

Account - fred.flintstone

Account - irma.flintstone

 Account Port

 Bank Port

Default
Servant

irma.flintstone

fred.flintstone

john.doe
80

Default Servants
Factory pattern A default servant is typically deployed in the context of a factory pattern. For
example, Figure 6 on page 80 shows a Bank service, which plays the role of a
factory object, and a collection of cloned Account services, which are created
and managed by the Bank service.

The role played by each of the servants, for Bank and Account services, can be
described as follows:

• Bank servant—the Bank servant is responsible for creating and finding

Account service instances. Because the accounts are implemented using a

default servant, the bank does not need to create and register individual

servants for every new account. Instead, the bank creates an account as

follows:

i. Create a record to hold the account details (for example, by creating a

database record).

ii. Generate a unique endpoint reference for the account service

instance, based on a unique service ID.

In effect, each new service has a unique identity and an associated data

record, but a new servant is not created for the service.

• Default servant for accounts—a single default servant instance processes

incoming requests for all of the account services. Hence, during an

operation invocation, the default servant needs to have some way of

finding out the identify of the account service for which it is acting. The

current service ID can be obtained from the address context—see “The

Server Address Context” on page 85 for details.

Service ID A service ID is a unique identifier for a cloned service.

For example, in Figure 6, the account names, john.doe, fred.flintstone, and
irma.flintstone are service IDs.

Template service To give you the ability to define an unlimited number of WSDL services, Artix
lets you define a template service in the WSDL contract. A template service is
defined using the same syntax as a regular service. The only additional condition
that a template service must obey is that the endpoint address should conform to
a placeholder format (for details, see “SOAP template service” on page 110 and
“CORBA template service” on page 110).
 81

CHAPTER 2 | Server Programming
For example, the following WSDL fragment shows a template service for
accounts services. In this case, the placeholder format for the HTTP address is
http://localhost:0.

Cloned services Whenever you generate a new reference using the default servant programming
model, you are implicitly creating a cloned service based on a template service.
This is similar to the concept of a cloned service in the context of transient
servants—see “Transient Servants” on page 94.

For a default servant, you can create a cloned service by calling the
IT_Bus::Service::get_endpoint_reference_with_id() function—see
“Service functions” on page 84.

Supported transports Default servants are supported by the following transports:

• SOAP/HTTP,

• CORBA/IIOP,

• Tunnel.

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 ... >
 ...
 <service name="AccountService">
 <port name="AccountPort" binding="tns:AccountBinding">
 <soap:address location="http://localhost:0" />
 <http-conf:server HonorKeepAlive="false"/>
 <http-conf:client Connection="close"/>
 </port>
 </service>
</definitions>
82

Default Servants
Functions Defined on IT_Bus::Service

Overview Generally, in order to activate a service in Artix, you need to obtain a service
object, of IT_Bus::Service type, and register one or more servant objects with
this service.

For the default servant programming model, you need two functions that you can
call on the IT_Bus::Service class, as follows:

• A function to register the default servant with the template service and,

• A function to clone new services from the template service.

These functions are, in fact, defined on the IT_Bus::ServerService class,
which is an alias of IT_Bus::Service.

ServerService class The IT_Bus::ServerService class, which is an alias of IT_Bus::Service,
provides functions to support the default servant programming model, as shown
in Example 15.

Example 15: Some Member Functions in IT_Bus::ServerService

// C++
namespace IT_Bus {
 ...
 class IT_BUS_API ServerService : public ServiceBase
 {
 public:

 virtual void
 register_default_servant(
 Servant & servant,
 const String & port_to_register = IT_BUS_ALL_PORTS
) = 0;
 ...
 virtual WS_Addressing::EndpointReferenceType
 get_endpoint_reference_with_id(
 const String & instance_id,
 const String & port_to_register = IT_BUS_ALL_PORTS
) = 0;
 ...
 };
 ...
};
 83

CHAPTER 2 | Server Programming
Service functions The member functions shown in Example 15 can be explained, as follows:

• register_default_servant()—activates the given service and

associates the default servant, servant, with the service. If you use the

second argument, port_to_register, to specify a particular port, only

that port will be activated; otherwise, all of the service’s ports are

activated.

• get_endpoint_reference_with_id()—returns an endpoint reference to a

newly-cloned service, which is identified by the given service ID,

instance_id. The significance of the ID depends on the transport, as

follows:

♦ SOAP/HTTP—the URL address of the cloned service is obtained by

appending the ID, ReferenceID, to the end of the template service’s

URL.

For example, if the template service’s URL is

http://enghost:2048/Account, the cloned service’s URL would be

http://enghost:2048/Account/ReferenceID.

♦ IIOP—the ID is used as the CORBA Object ID, which is ultimately

embedded in a CORBA Interoperable Object Reference (IOR). The

IOR is then stored inside the endpoint reference.

♦ Tunnel—similarly to the IIOP transport, the tunnel transport uses the

ID as the CORBA Object ID.

Note: The ServerService class (and the IT_Bus::Service class, which is
an alias of it) also supports a function, get_reference_with_id(), that
returns a legacy reference type, IT_Bus::Reference. This function is provided
solely for backward compatibility reasons.
84

Default Servants
The Server Address Context

Overview In contrast to a regular servant, which implements a unique service instance, a
default servant implements an unlimited number of service instances. In the
course of an invocation, therefore, a default servant needs some way of finding
out which service it represents.

The mechanism that enables default servants to discover the current service
identity is by obtaining the value of the server address context. The address
context is a data type that can be retrieved during an invocation using the Artix
context mechanism.

AddressContext class Example 16 shows the IT_Bus::AddressContext class, whose instances can be
accessed from within a server invocation.

Example 16: The IT_Bus::AddressContext Class

// C++
namespace IT_Bus
{
 ...
 class IT_CONTEXT_ATTRIBUTE_API AddressContext
 : public Context
 {
 public:
 ...
 virtual const IT_Bus::String&
 get_context() const;
 ...
 virtual const IT_Bus::String&
 get_full_address() const;

 protected:
 ...
 };
}

 85

CHAPTER 2 | Server Programming
AddressContext functions The AddressContext class in Example 16 provides the following functions for
accessing the address context data:

• get_context() function—obtain an ID string that identifies the current

cloned service. The ID string returned from this function is the same as the

ID string that is passed to the

IT_Bus::Service::get_endpoint_reference_with_id() function—see

“Functions Defined on IT_Bus::Service” on page 83.

• get_full_address() function—obtain the full address of the current

cloned service. The return value from this function depends on the

transport, as follows:

♦ SOAP/HTTP—returns the URL address for the current cloned

service. For example, if the current service has an ID of ReferenceID,

a typical return value would be:

http://enghost:2048/Account/ReferenceID

♦ IIOP—returns the full IOR (with embedded Object ID) for the

current cloned service.

♦ Tunnel—same as IIOP.

Obtaining an AddressContext
instance

An AddressContext instance can be obtained using the Artix context API, but it
is only available during an operation invocation—that is, during an upcall on the
servant function that results from an incoming invocation request.

To obtain the address context data, first get a pointer to a request context
container (of IT_Bus::ContextContainer type) and then call
get_context_data(), passing in the string constant,
IT_ContextAttributes::SERVER_ADDRESS_CONTEXT.

For more details on Artix contexts, see “Artix Contexts” on page 245.
86

Default Servants
Implementing a Factory

Overview When using a default servant to implement a collection of Account services, the
associated factory service, of type Bank, plays a crucial role. The Bank member
functions that are responsible for creating and finding account objects must be
written to fit the default servant programming model. In particular, you must call
a special function, IT_Bus::Service::get_endpoint_reference_with_id()
in order to create each instance of a cloned Account service.

Bank factory implementation Example 17 shows a sample implementation of the BankImpl servant class,
where the managed Account objects are implemented using a default servant.
The implementation of the constructor and two member functions,
create_account() and get_account(), are shown here.

Example 17: Bank Factory that Uses a Default Servant for Accounts

// C++
#include "BankImpl.h"
#include <it_cal/cal.h>
#include <it_cal/iostream.h>

using namespace IT_Bank;
using namespace IT_Bus;

IT_USING_NAMESPACE_STD

1 const IT_Bus::QName ACC_SERVICE_NAME(
 "",
 "AccountService",
 "http://www.iona.com/bus/demos/bank"
);

BankImpl::BankImpl(IT_Bus::Bus_ptr bus) : BankServer(bus)
{

2 IT_WSDL::WSDLService* wsdl_service =
 get_bus()->get_service_contract(ACC_SERVICE_NAME);

3 m_template_service = get_bus()->add_service(*wsdl_service);

 AccountImpl * default_servant = new AccountImpl(bus);
 87

CHAPTER 2 | Server Programming
4 m_template_service->register_default_servant(
 default_servant
);
}

void
BankImpl::create_account(
 const IT_Bus::String &account_name,
 WS_Addressing::EndpointReferenceType &_return
) IT_THROW_DECL((IT_Bus::Exception))
{
 // Check whether account already exists.
 ...

5 if (/* Account does NOT already exist... */)
 {
 // Create a new account for the account_name account.

6 _return =
 m_template_service->get_endpoint_reference_with_id(
 account_name
);

7 // Create a new account record, update the database, etc.
 //
 ... // (not shown)
 }
 else {
 // Account already exists - throw an exception!
 ... // (not shown)
 }
}

void
BankImpl::get_account(
 const IT_Bus::String &account_name,
 IT_Bus::Reference &_return
) IT_THROW_DECL((IT_Bus::Exception))
{
 // Search for the account_name account.
 ... // (not shown)

8 if (/* Account exists... */)
 {

9 _return =
 m_template_service->get_endpoint_reference_with_id(
 account_name
);

Example 17: Bank Factory that Uses a Default Servant for Accounts
88

Default Servants
The preceding code example can be explained as follows:

1. The ACC_SERVICE_NAME constant holds the QName of the Account

template service. The template service is used as a basis for cloning

Account service instances.

2. The get_service_contract() function locates the contract containing the

specified Account service. The returned IT_WSDL::WSDLService object

represents all of the data contained in the service element for the Account

service.

For more details, see “How Services Locate WSDL Contracts” on page 99.

3. The m_template_service object, which is of IT_Bus::Service_var type,

is a data member of the BankImpl class. Artix uses an IT_Bus::Service

object to associate a service’s endpoints with a particular servant (or

servants).

4. Call register_default_servant() to associate the template service,

m_template_service, with the default servant, of AccountImpl type.

5. In the body of the BankImpl::create_account() function, the first think

you need to do is to check whether the requested account, account_name,

already exists or not. If the account already exists, you would need to

throw an exception.

6. Call get_endpoint_reference_with_id(), passing account_name as the

ID, to create a new endpoint reference, of

WS_Addressing::EndpointReferenceType type. This step effectively

clones a new service from the template service. The name of the cloned

service is derived by appending the specified ID (in this case,

account_name) to the Account service URL.

For example, if the Account service’s URL is

http://enghost:2048/Account and the account name is john.doe, the

 return;
 }

 // Account not found - throw an exception!
 ... // (not shown)
}

Example 17: Bank Factory that Uses a Default Servant for Accounts
 89

CHAPTER 2 | Server Programming
name of the cloned service would be

http://enghost:2048/Account/john.doe.

7. You can use the account name as a key for creating a database record that

holds the account details.

8. In the body of the BankImpl::get_account() function, you first need to

check whether the specified account exists. If not, you would throw an

exception.

9. Call the get_endpoint_reference_with_id() function to generate an

endpoint reference with the specified ID.
90

Default Servants
Implementing a Default Servant

Overview This section describes how to implement a default servant class for a collection
of cloned Account services. A single default servant instance is sufficient to
provide an implementation for all of the Account services.

The key difference between a regular servant and a default servant is that the
default servant has multiple identities. Whereas a regular servant has its identity
set at the time it is constructed, a default servant assumes a new identity each
time it is invoked through the Artix call stack. A programmer is, therefore,
obliged to discover the default servant’s current identity by obtaining the
address context for the current invocation.

Default servant class
implementation

Example 18 shows a sample implementation of the Account template service,
using a default servant. The implementation of the get_balance operation
provides a typical example of how to implement a WSDL operation in a default
servant.

Example 18: Default Servant Class for Accounts

// C++
#include "AccountImpl.h"
#include <it_cal/cal.h>
#include <it_cal/iostream.h>

#include <it_bus/bus.h>
#include <it_bus/service.h>
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/address_context.h>

using namespace IT_Bank;

IT_USING_NAMESPACE_STD

const IT_Bus::QName AccountImpl::SERVICE_NAME("",
"AccountService", "http://www.iona.com/bus/demos/bank");

AccountImpl::AccountImpl(
 IT_Bus::Bus_ptr bus
): AccountServer(bus)
{

 91

CHAPTER 2 | Server Programming
}

AccountImpl::~AccountImpl()
{
}

IT_Bus::Servant*
1 AccountImpl::clone() const

{
 assert(0);
 return 0;
}

void
2 AccountImpl::get_balance(

 IT_Bus::Float & balance
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::ContextRegistry* context_registry =
 get_bus()->get_context_registry();

 IT_Bus::ContextCurrent& context_current =
 context_registry->get_current();

3 IT_Bus::ContextContainer* context_container =
 context_current.request_contexts();

4 IT_Bus::Context* result =
 context_container->get_context_data(
 IT_ContextAttributes::SERVER_ADDRESS_CONTEXT
);

5 IT_Bus::AddressContext* address =
 dynamic_cast<IT_Bus::AddressContext*>(result);

 if (address)
 {
 // Get the account name from the address context.

6 IT_Bus::String account_name = address->get_context();

 // Consult the account_name record in the database to
 // get account balance.

7 balance = ... // (not shown)
 }
 else {

Example 18: Default Servant Class for Accounts
92

Default Servants
The preceding code example can be explained as follows:

1. The clone() function is required for certain Artix threading policies (see

“Servant Threading Models” on page 179). It is not relevant to default

servants and is not used in this scenario.

2. The get_balance() function illustrates the basic principles of

implementing an operation in a default servant. The function simply

returns the account balance for a particular account. There is just one

difficulty: seeing as how the default servant can represent any account

instance, you have to figure out which particular account to access. To find

the name of the account, you must obtain the address context for this

invocation.

3. Obtain the context container for request contexts, context_container. On

the server side, contexts can be used to hold miscellaneous data relevant to

the current invocation. For more details about programming with contexts,

see “Artix Contexts” on page 245.

4. Call get_context_data() on the request context container in order to

obtain the address context for the current invocation. The address context

is identified by the IT_ContextAttributes::SERVER_ADDRESS_CONTEXT

string constant.

5. In order to use the address context, you must cast it first of all to the

IT_Bus::AddressContext* type.

6. Retrieve the account name from the address context by calling

AddressContext::get_context(). You know that the address context

contains the account name, because the account name was used as the

reference ID at the time the account was created (see “Implementing a

Factory” on page 87).

7. You can now use the account name to retrieve the account balance from a

database record.

 // Could not access address context - throw an exception!
 ... // (not shown)
 }
}
...

Example 18: Default Servant Class for Accounts
 93

CHAPTER 2 | Server Programming
Transient Servants

Overview Artix allows you to generate an unlimited number of services from a single
template by taking advantage of transient servants. This feature is useful for
those cases where Artix bridges into a technology domain that maps services to
object instances. Because it is usual to allow an unlimited number of objects of a
particular type, it follows that this kind of bridge can work only if Artix allows
an unlimited number of services of a particular type.

Note: For highly scalable applications, it is recommended that you choose
the default servant approach over the transient servant approach—see “Default
Servants” on page 79.

Using the transient servant approach, there is a risk that the number of transient
servants could become unmanageably large. But this problem does not arise
with the default servant approach, because you only need a single default
servant to process requests for an unlimited number of services.
94

Transient Servants
Figure 7 shows an example of how transient servants could be used in a bank
application. The Bank service creates and provides access to an unlimited
number of Account objects. Each Account object is accessed through a unique
service (for example, Account1, Account2, and Account3). These Account
services are created dynamically by registering servants as transient.

Factory pattern The need for transient servants commonly arises when implementing the factory
pattern, which is a common object-oriented design pattern. At a mininum, the
factory pattern involves two interfaces, as follows:

• Creator—an interface that provides operations for creating and finding

objects of a particular type (the products). In the current example, the Bank

port type plays the role of a creator interface.

• Product—an interface for the objects produced by the creator. In the

current example, the Account port type plays the role of a product

interface.

Figure 7: Transient Servants for an Account Service

Container Container Port

 Container Service

Plug-In

Bank Service

Account 1

Account 2

Account 3

 Account Port

 Bank Port

Transient
Servants
 95

CHAPTER 2 | Server Programming
The following WSDL fragment shows the outline of a Bank port type and an
Account port type, which together exemplify a factory design pattern:

The Bank port type exposes a create_account operation, which creates a new
account with a specified name and returns a reference to the newly created
Account object. The returned reference is represented by the
wsa:EndpointReferenceType type.

References An endpoint reference is an XML schema type that encapsulates the information
required to connect to an Artix service. Essentially, a reference contains the
same information as is contained in a WSDL service element.

For more details about the endpoint reference type, see “Endpoint References”
on page 199.

Template service A noteworthy feature of the factory pattern is that the creator (of Bank type) can
create an unlimited number of products (of Account type). Because each account
instance needs to be represented by a WSDL service, this implies that Artix
needs the capability to generate an unlimited number of WSDL services for the

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 ... >
 ...
 <message name="create_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
 </message>
 ...
 <portType name="Bank">
 ...
 <operation name="create_account">
 <input name="create_account" message="tns:create_account"/>
 <output name="create_accountResponse" message="tns:create_accountResponse"/>
 </operation>
 ...
 </portType>

 <portType name="Account">
 ...
 </portType>
 ...
</definitions>
96

Transient Servants
accounts. This requirement, however, is at odds with the standard approach to
defining Web services, where a fixed number of WSDL services are defined
explicitly in the WSDL contract.

To give you the ability to define an unlimited number of WSDL services, Artix
lets you define a template service in the WSDL contract. A template service is
defined using the same syntax as a regular service. The only additional condition
that a template service must obey is that the endpoint address should conform to
a placeholder format (for details, see “SOAP template service” on page 110 and
“CORBA template service” on page 110).

For example, the following WSDL fragment shows a template service for
accounts services. In this case, the placeholder format for the HTTP address is
http://localhost:0.

At runtime, Artix modifies the in-memory copy of this WSDL service by
replacing the placeholder address, http://localhost:0, with a URL that has a
specific host and port. The server then listens for operation invocations on that
host and port.

Cloned services When you register a servant object as a transient servant, Artix implicitly clones
a new service from the template service and associates the newly cloned service
with the transient servant. Artix generates a cloned service from the template
service by copying the template service and then making the following changes:

• The service QName is replaced by a unique identifier (that is, unique for

every cloned service).

• The placeholder address is replaced by an active endpoint address that is

unique for every cloned service.

For example, in the case of a HTTP port, the placeholder address,

http://localhost:0, is replaced by a real IP address with a specific host

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 ... >
 ...
 <service name="AccountService">
 <port name="AccountPort" binding="tns:AccountBinding">
 <soap:address location="http://localhost:0" />
 <http-conf:server HonorKeepAlive="false"/>
 <http-conf:client Connection="close"/>
 </port>
 </service>
</definitions>
 97

CHAPTER 2 | Server Programming
and port. A unique identifier is then appended to this URL to give the

address of the cloned endpoint.
98

How Services Locate WSDL Contracts
How Services Locate WSDL Contracts

Overview For all but the simplest applications, it is recommended that you do not
hard-code the location of a WSDL contract into your service code. In place of
hard-coding the contract location, Artix supports a mechanism for locating
WSDL contracts based on the service QName. If you supply Artix with a service
QName, Artix will then find and parse the corresponding WSDL contract.

This approach to locating WSDL contracts consists of two steps:

1. In the application code, call IT_Bus::Bus::get_service_contract()

with a service QName argument for the WSDL service that you want to

find.

2. Using the supported location mechanisms (see “Options for providing

WSDL contracts” on page 100 for details), Artix searches the available

WSDL contracts to find one that contains the requested WSDL service.

Example of finding a WSDL
contract

Example 19 shows how to find a WSDL service element, SOAPService, in the
namespace, http://www.iona.com/hello_world_soap_http , and register a
servant against it, given that the Bus has access to the WSDL contract containing
the service.

Example 19: Finding a WSDL Contract Using get_service_contract()

// C++
IT_Bus::QName service_qname(
 "", "SOAPService", "http://www.iona.com/hello_world_soap_http"
);

// Find the WSDL contract
IT_WSDL::WSDLService* wsdl_service = bus->get_service_contract(
 service_qname
);

// Register the servant
bus->register_servant(
 servant,
 *wsdl_service
);
 99

CHAPTER 2 | Server Programming
Options for providing WSDL
contracts

Artix finds WSDL contracts from the following sources, in order of priority:

1. Contract specified on the command line—you can provide a WSDL

contract by specifying the location of the WSDL contract file on the

command line. For example:

2. Contract specified in the configuration file—you can provide a WSDL

contract from the configuration file. For example:

The first line of this example associates a nickname, hello_service, with

the QName for the HelloWorldSOAPService service. The

bus:initial_contract:url:hello_service variable then specifies the

location of the WSDL contract containing this service.

For more details, see Configuring and Deploying Artix Solutions.

3. Contract directory specified on the command line—you can provide a

WSDL contract by specifying a contract directory on the command line.

When Artix looks for a particular WSDL service, it searches all of the

WSDL files in the specified directory. For example:

For more details, see Configuring and Deploying Artix Solutions.

4. Contract directory specified in the configuration file—you can provide

WSDL contracts by specifying a list of contract directories in the

configuration file. For example:

it_container -BUSservice_contract ../../etc/hello_world.wsdl
-BUSname artix_example.server
-deploy deployHelloWorldSOAPService.xml

Artix Configuration File
bus:qname_alias:hello_service =
"{http://www.iona.com/hello_world_soap_http}HelloWorldSOAPS

ervice";
bus:initial_contract:url:hello_service =

"../../etc/hello.wsdl";

it_container -BUSservice_contract_dir ../../etc/
-BUSname artix_example.server
-deploy deployHelloWorldSOAPService.xml

Artix Configuration File
bus:initial_contract_dir = [".", "../../etc"];
100

How Services Locate WSDL Contracts
5. Stub WSDL shared library—Artix can retrieve WSDL that has been

embedded in a shared library.

Currently, this mechanism is not publicly supported. However, it is used

internally by the following Artix services: LocatorService,

SessionManagerService, PeerManager, and ContainerService.

References For more details about how to register servants, see “Registering Static
Servants” on page 102 and “Registering Transient Servants” on page 108.
 101

CHAPTER 2 | Server Programming
Registering Static Servants

Overview Initially, when a servant object is created, it is associated with a particular
logical contract (that is, WSDL port type), but has no association with any
physical contract (that is, WSDL service). The link between a servant instance
and a physical contract must be established explicitly by registering the servant.

Figure 8 illustrates the effect of registering a static servant: registration
establishes an association between a servant instance and a part of the WSDL
model that represents a particular WSDL service.

Static servant The defining characteristic of a static servant is that, when registered, it is
associated with a service appearing explicitly in the original WSDL contract.
This implies that a static servant is restricted to using a service from the fixed
collection of services appearing in the WSDL contract.

Figure 8: Relationship between a Static Servant and a WSDL Contract

<portType>
 ...
</portType>
...
...
...
...
...
...
<service>
 <port>
 ...
 </port>
</service>

WSDL Contract

physical contract

logical contract

static servant

IT_Bus::Servant IT_WSDL::WSDLService
102

Registering Static Servants
IT_Bus::Bus registration
functions

The IT_Bus::Bus class defines the functions in Example 20 to manage the
registration of static servants:

Example 20: The IT_Bus::Bus Static Servant Registration API

// C++
void
register_servant(
 IT_Bus::Servant & servant,
 IT_WSDL::WSDLService & wsdl_service,
 const IT_Bus::String & port_name = IT_BUS_ALL_PORTS
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

void
register_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name = IT_BUS_ALL_PORTS
) IT_THROW_DECL((Exception)) = 0;

IT_Bus::Service_ptr
add_service(
 IT_WSDL::WSDLService & wsdl_service
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

IT_Bus::Service_ptr
add_service(
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name
) IT_THROW_DECL((Exception)) = 0;

virtual IT_WSDL::WSDLService*
get_service_contract(
 const QName& service_name
) IT_THROW_DECL((Exception)) = 0;

IT_Bus::Service_ptr
get_service(
 const IT_Bus::QName & service_name
);

void
remove_service(
 const QName & service_name
);
 103

CHAPTER 2 | Server Programming
IT_Bus::Service registration
function

In addition to the registration functions in IT_Bus::Bus, the IT_Bus::Service
class also supports a register_servant() function. The
IT_Bus::Service::register_servant() function enables you to activate
ports individually.

Activating a static servant There are different approaches to activating a static servant, depending on
whether you want to activate ports together or individually. The following
approaches are supported:

• Activate all ports together.

• Activate ports individually.

Activate all ports together To activate all ports together, registration is a single step process. You add the
service to the Bus and activate all of its ports by calling
IT_Bus::Bus::register_servant(). For example:

Example 21: The IT_Bus::Service register_servant() Function

// C++
void
register_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & port_to_register
);

// C++
PlugInImpl::PlugInImpl(
 Bus_ptr bus
) IT_THROW_DECL((Exception))
 :
 BusPlugIn(bus),
 m_bank_servant(bus),
 m_service_qname("", "BankService",

"http://www.iona.com/bus/demos/bank")
{
 // complete
}

void
PlugInImpl::bus_init(
) IT_THROW_DECL((Exception))
{

104

Registering Static Servants
In this case, all the service’s ports dispatch their invocations to the same servant
object, m_bank_servant.

Activate ports individually To activate ports individually, registration is a two-step process. First you add a
service to the Bus, then you activate individual ports. For example:

 IT_WSDL::WSDLService* wsdl_service =
 get_bus()->get_service_contract(m_service_qname);

 bus->register_servant(
 m_bank_servant,
 *wsdl_service
);
}

void
PlugInImpl::bus_shutdown(
) IT_THROW_DECL((Exception))
{
 get_bus()->remove_service(m_service_qname);
}

// C++
PlugInImpl::PlugInImpl(
 Bus_ptr bus
) IT_THROW_DECL((Exception))
 :
 BusPlugIn(bus),
 m_corba_servant(bus),
 m_soap_servant(bus),
 m_service_qname("", "BankService",

"http://www.iona.com/bus/demos/bank")
{
 // complete
}

void
PlugInImpl::bus_init(
) IT_THROW_DECL((Exception))
{
 IT_WSDL::WSDLService* wsdl_service =
 get_bus()->get_service_contract(m_service_qname);

 IT_Bus::Service_var bank_service =
 get_bus()->add_service(*wsdl_service);
 105

CHAPTER 2 | Server Programming
In this case, each port can be programmed to dispatch invocations to distinct
servant objects. For example, invocations arriving at the CORBAPort port are
dispatched to the corba_servant servant instance. Whereas, invocations
arriving at the SOAPPort port are dispatched to the soap_servant servant
instance.

Default threading model The default threading model for a registered servant is multi-threaded. That is,
the servant is liable to have its operations invoked simultaneously by multiple
threads. With this model, it is essential to ensure that your servant code is
reentrant and thread-safe. Alternatively, you can select another threading model
when registering the servant.

See “Servant Threading Models” on page 179 for more information.

 bank_service->register_servant(m_corba_servant,"CORBAPort");
 bank_service->register_servant(m_soap_servant, "SOAPPort");
}

void
PlugInImpl::bus_shutdown(
) IT_THROW_DECL((Exception))
{
 get_bus()->remove_service(m_service_qname);
}

106

Registering Default Servants
Registering Default Servants
For information on registering default servants, in “Functions Defined on
IT_Bus::Service” on page 83, see the explanation of the
register_default_servant() member function.
 107

CHAPTER 2 | Server Programming
Registering Transient Servants

Overview In contrast to a static servant, a transient servant is not limited to using services
that appear explicitly in the WSDL contract. A transient servant creates a new
service every time it is registered by cloning from an existing service (that is, a
template service) in the WSDL contract. This behavior is useful in cases where
you require an unlimited number of services of a particular kind.

For example, consider the WSDL contract for the
demos/servant_management/transient_servants demonstration, which has a
Bank port type and an Account port type. In this case, you require an unlimited
number of Account services to represent customer accounts.

Figure 9 illustrates the effect of registering a transient servant. Registration
establishes an association between a servant instance and a cloned service.

Figure 9: Relationship between a Transient Servant and a WSDL Contract

<portType>
 ...
</portType>
...
...
...
...
...
...
<service>
 <port>
 ...
 </port>
</service>

WSDL Contract

physical contract

logical contract

<service>
 <port>
 ...
 </port>
</service>

clone service

transient servant

IT_Bus::Servant IT_WSDL::WSDLService
108

Registering Transient Servants
Supported protocols Artix currently supports transient servants for the following transports:

• HTTP

• CORBA

• Tunnel

Template service A prerequisite for creating transient services is that you define a template service
in the WSDL contract. A template service is distinguished by having a port
address that is a placeholder (otherwise, the template is like an ordinary service
element).

For example, the placeholder for a HTTP port address is any URL of the form
http://Hostname:Port (or https://Hostname:Port for a secure service).

Transient servant registration When a transient servant is registered, the following steps are implicitly
performed by the IT_Bus::Bus instance (see Figure 9):

1. A new WSDL service is cloned from an existing service in the WSDL

contract. The cloned service has the following characteristics:

♦ The cloned service is based on an existing service element that

appears in the WSDL contract.

♦ The clone’s service QName is replaced by a dynamically generated,

unique service QName.

♦ The clone’s addressing information is replaced such that each address

is unique per-clone and per-port.

2. The transient servant becomes associated with the newly cloned service.

Examples of transient services Transient services are currently supported by the HTTP, CORBA and Tunnel
transports. For example, you could define the following kinds of template:

• SOAP template service.

• CORBA template service.
 109

CHAPTER 2 | Server Programming
SOAP template service Example 22 shows an example of a SOAP service that could be used as a
template for cloning transient SOAP services.

The SOAP template service has the following features:

• The ServiceName and PortName are the same as the values passed to the

IT_Bus::Bus::register_transient_servant() function in the

application code.

• The location attribute of <soap:address> must be initialized with a

placeholder URL, http://Hostname:Port. If the URL has the special

form, http://localhost:0, Artix substitutes the actual host name and a

dynamically allocated IP port.

CORBA template service Example 23 shows an example of a CORBA service that could be used as a
template for cloning transient CORBA services.

The CORBA template service has the following features:

• The ServiceName and PortName are the same as the values passed to the

IT_Bus::Bus::register_transient_servant() function in the

application code.

• The location attribute of <corba:address> must be initialized with the

ior: placeholder IOR.

Example 22: Example of a HTTP Template Service

<service name="ServiceName">
 <port name="PortName" binding="BindingName">
 <soap:address location="http://localhost:0" />
 ...
 </port>
</service>

Example 23: Example of a CORBA Template Service

<service name="ServiceName">
 <port name="PortName" binding="BindingName">
 <corba:address location="ior:" />
 ...
 </port>
</service>
110

Registering Transient Servants
Reuse of IP ports To avoid over-use of IP ports, cloned services are designed to use the same IP
ports as the template service.

IT_Bus::Bus transient
registration functions

The IT_Bus::Bus class defines the functions in Example 24 to manage the
registration of transient servants.

Example 24: The IT_Bus::Bus Transient Servant Registration API

// C++
IT_Bus::Service_ptr
register_transient_servant(
 IT_Bus::Servant & servant,
 IT_WSDL::WSDLService & wsdl_service,
 const IT_Bus::String & port_name = IT_BUS_ALL_PORTS
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

IT_Bus::Service_ptr
register_transient_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name = IT_BUS_ALL_PORTS
) IT_THROW_DECL((Exception)) = 0;

IT_Bus::Service_ptr
add_transient_service(
 IT_WSDL::WSDLService & wsdl_service
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

IT_Bus::Service_ptr
add_transient_service(
 const IT_Bus::String & wsdl_location,
 const IT_Bus::QName & service_name
) IT_THROW_DECL((Exception)) = 0;

virtual IT_WSDL::WSDLService*
get_service_contract(
 const QName& service_name
) IT_THROW_DECL((Exception)) = 0;

IT_Bus::Service_ptr
get_service(
 const IT_Bus::QName & service_name
);
 111

CHAPTER 2 | Server Programming
IT_Bus::Service registration
function

In addition to the registration functions in IT_Bus::Bus, the IT_Bus::Service
class also supports a register_servant() function. The
IT_Bus::Service::register_servant() function enables you to activate
ports individually.

Activating a transient servant There are several different approaches to activating a transient servant,
depending on whether you want to activate ports together or individually and
depending on whether you want to specify the WSDL contract directly or use the
get_service_contract() function. The following approaches are supported:

• Activate all ports together.

• Activate ports individually.

Activate all ports together Registration is a single step process. You add the transient service to the Bus and
activate all of its ports by calling
IT_Bus::Bus::register_transient_servant(). For example:

void
remove_service(
 const IT_Bus::QName & service_name
);

Example 24: The IT_Bus::Bus Transient Servant Registration API

Example 25: The IT_Bus::Service register_servant() Function

// C++
void
register_servant(
 IT_Bus::Servant & servant,
 const IT_Bus::String & port_to_register
);

Example 26: Activating All Ports Together for a Transient Servant

// C++
void
BankImpl::create_account(
 const IT_Bus::String &account_name,
 WS_Addressing::EndpointReferenceType &_return
112

Registering Transient Servants
In this case, all the service’s ports dispatch their invocations to the same servant
object, account_servant.

Note that the IT_WSDL::WSDLService object passed to
register_transient_service(), wsdl_template_service, represents the
template service, whereas the IT_Bus::Service object returned by
register_transient_service() represents the cloned service. When
generating the endpoint reference for the transient service (by calling
populate_endpoint_reference()), you must generate the reference from the
cloned service, not from the template service.

) IT_THROW_DECL((IT_Bus::Exception))
{
 // Find the account data for the account_name account and
 // create a servant, account_servant, to represent it.
 ... // (not shown)

 // Register account_servant as a transient servant and
 // return a reference to it.

 IT_Bus::QName template_service_name("", "AccountService",
"http://www.iona.com/bus/demos/bank");

 IT_WSDL::WSDLService* wsdl_template_service =
 get_bus()->get_service_contract(template_service_name);

 IT_Bus::Service_var cloned_service =
 get_bus()->register_transient_servant(
 account_servant,
 *wsdl_template_service
);

 get_bus()->populate_endpoint_reference(
 cloned_service->get_wsdl_service(),
 _return
);
}

Example 26: Activating All Ports Together for a Transient Servant
 113

CHAPTER 2 | Server Programming
Activate ports individually Registration is a two-step process. First you add a transient service to the Bus
(thereby cloning the service), and then you activate individual ports. For
example:

Example 27: Activating Ports Individually for a Transient Servant

// C++
void
BankImpl::create_account(
 const IT_Bus::String &account_name,
 WS_Addressing::EndpointReferenceType &_return
) IT_THROW_DECL((IT_Bus::Exception))
{
 // Find the account data for the account_name account and
 // create two servants: corba_servant and soap_servant.
 // These servants provide distinct implementations of the
 // Account service, for the CORBA and SOAP protocols
 // respectively.
 ... // (not shown)

 // Register account_servant as a transient servant and
 // return a reference to it.

 IT_Bus::QName template_service_name("", "AccountService",
"http://www.iona.com/bus/demos/bank");

 IT_WSDL::WSDLService* wsdl_template_service =
 get_bus()->get_service_contract(template_service_name);

 IT_Bus::Service_var cloned_service =
 get_bus()->add_transient_service(*wsdl_template_service);
 cloned_service->register_servant(corba_servant,"CORBAPort");
 cloned_service->register_servant(soap_servant, "SOAPPort");

 get_bus()->populate_endpoint_reference(
 cloned_service->get_wsdl_service(),
 _return
);
}

114

Registering Transient Servants
In this case, each port can be programmed to dispatch invocations to distinct
servant objects. For example, invocations arriving at the CORBAPort port are
dispatched to the corba_servant servant instance. Whereas, invocations
arriving at the SOAPPort port are dispatched to the soap_servant servant
instance.

Default threading model The default threading model for a registered servant is multi-threaded. That is,
the servant is liable to have its operations invoked simultaneously by multiple
threads. With this model, it is essential to ensure that your servant code is
reentrant and thread-safe. Alternatively, you can select another threading model
when registering the servant.

See “Servant Threading Models” on page 179 for more information.
 115

CHAPTER 2 | Server Programming
116

CHAPTER 3

Client
Programming
This chapter describes how to develop an Artix client. The key
concepts that a client programmer needs to understand are
references, which encapsulate the location of a remote service, and
client proxies, which enable you to invoke WSDL operations.

In this chapter This chapter discusses the following topics:

Programming with Client Proxies page 118

Implementing a Client page 130

Programming with Initial References page 134

Obtaining Initial References page 137

Overriding a HTTP Address in a Client page 140
 117

CHAPTER 3 | Client Programming
Programming with Client Proxies

Overview Client proxies are the basic objects needed for Web services programming on
the client side. A client proxy is a C++ object that provides a Remote Procedure
Call (RPC) interface to a local or remote Web service. Each proxy instance
represents a connection to a particular service endpoint and the proxy’s member
functions provide programmatic access to the service’s WSDL operations.

In this section This section contains the following subsections:

What is a Client Proxy? page 119

Initializing Proxies from References page 124

Other Ways of Initializing Proxies page 128
118

Programming with Client Proxies
What is a Client Proxy?

Overview A client proxy is a C++ object that exposes member functions that correspond to
WSDL operations from a specific WSDL port type. By calling the C++
functions exposed by the proxy, a client can invoke the corresponding operations
on a Web service, either locally or remotely.

Figure 10 illustrates the role of a client proxy in a distributed Web services
application. In this example, the client proxy represents a Greeter port type,
which supports the sayHi WSDL operation. When the client calls the sayHi()
function on the proxy, the proxy converts this call into a request message, which
is transmitted to the server port. The server then converts the request message to
a sayHi() function call on a servant object. The return values from the sayHi()
call are transmitted back to the client in a reply message.

Client proxy features Artix client proxies provide the following advantages to the client programmer:

• Location invariance—calls can be made either on local or remote services.

The syntax and semantics are the same in either case.

• Protocol invariance—the syntax of client calls is independent of the

underlying binding and transport protocol.

• Distributed exception handling—exceptions raised in a remote server are

automatically propagated back to the client and raised as local exceptions.

Figure 10: Role of a Client Proxy in a Distributed Application

Container

HTTP Port

SOAP Service

sayHi()

ServerClient

sayHi Request

sayHi Reply

Proxy Object
 119

CHAPTER 3 | Client Programming
Greeter WSDL port type The interface for a client proxy is defined by a WSDL port type. The port type
defines a collection of operations which are mapped to C++ functions by the
WSDL-to-C++ compiler. For example, Example 28 shows the Greeter port
type, which defines two WSDL operations, sayHi and greetMe.

Example 28: Greeter WSDL Port Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorld"
 targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/hello_world_soap_http"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://www.iona.com/hello_world_soap_http"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>
 </schema>
 </types>
 <message name="sayHiRequest"/>
 <message name="sayHiResponse">
 <part element="tns:responseType" name="theResponse"/>
 </message>
 <message name="greetMeRequest">
 <part element="tns:requestType" name="me"/>
 </message>
 <message name="greetMeResponse">
 <part element="tns:responseType" name="theResponse"/>
 </message>

 <portType name="Greeter">
 <operation name="sayHi">
 <input message="tns:sayHiRequest" name="sayHiRequest"/>
 <output message="tns:sayHiResponse" name="sayHiResponse"/>
 </operation>
 <operation name="greetMe">
 <input message="tns:greetMeRequest" name="greetMeRequest"/>
 <output message="tns:greetMeResponse" name="greetMeResponse"/>
 </operation>
120

Programming with Client Proxies
Greeter proxy class To generate a proxy class, run the WSDL-to-C++ compiler with the appropriate
options (see “Generating client stub code” on page 130 for details). The proxy
class implementation is contained in the client stub files. For example, compiling
the Greeter port type generates the following stub files:

Greeter.h
GreeterClient.h
GreeterClient.cxx

The generated proxy class, GreeterClient, is shown in Example 29.

 </portType>
 ...
</definitions>

Example 28: Greeter WSDL Port Type

Example 29: Generated GreeterClient Proxy Class

// C++
1 namespace COM_IONA_HELLO_WORLD_SOAP_HTTP

{
2 class GreeterClient : public Greeter, public

IT_Bus::ClientProxyBase
 {

 public:
3 // Constructors and Destructor

 // (not shown)
 ...

 virtual void
4 sayHi(

 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception));

 virtual void
 greetMe(
 const IT_Bus::String &me,
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception));

 };
}

 121

CHAPTER 3 | Client Programming
The preceding code example can be explained as follows:

1. By default, the C++ namespace enclosing the proxy class is derived from

the target namespace of the corresponding WSDL port type. For example,

the Greeter port type is defined with the target namespace,

http://www.iona.com/hello_world_soap_http, which translates to the

C++ namespace, COM_IONA_HELLO_WORLD_SOAP_HTTP. It is also possible to

override the default namespace name.

2. In general, a proxy class generated from the PortTypeName port type maps

to a C++ class, PortTypeNameClient. For example, the Greeter port type

maps to the C++ class, GreeterClient.

3. In general, you must specify the protocol and connection details when

initializing a client proxy instance. The proxy class itself is completely

protocol-independent.

The proxy constructors are not shown here—for a discussion of proxy

constructors, see “Initializing Proxies from References” on page 124 and

“Other Ways of Initializing Proxies” on page 128.

4. The proxy class includes C++ member functions that correspond to each of

the WSDL operations defined in the Greeter port type.

WSDL services for the proxy Apart from representing a WSDL port type, each instance of a client proxy
encapsulates specific protocol and connection details, which correspond to the
information in a WSDL service element. Thus, a WSDL service element
effectively represents the state of a proxy object.

Example 30 shows a WSDL service with a single port. In this case, the
HelloWorldSOAPService service unambiguously represents a single endpoint.

Example 30: WSDL Service with Single Port

<definitions
targetNamespace="http://www.iona.com/hello_world_soap_http"
... >

 ...
 <service name="HelloWorldSOAPService">
 <port binding="tns:GreeterSOAPBinding" name="HTTPPort">
 <http:address location="http://localhost:4444"/>
 </port>
 </service>
</definitions>
122

Programming with Client Proxies
Example 31 shows a WSDL service with multiple ports. In this case, the
MultiPortService service represents two different endpoints. In order to
choose which endpoint to connect to, you must use a form of proxy constructor
that lets you specify the port name. See “Initializing Proxies from References”
on page 124 and “Other Ways of Initializing Proxies” on page 128 for details.

Example 31: WSDL Service with Multiple Ports

<definitions
targetNamespace="http://www.iona.com/hello_world_soap_http"
... >

 ...
 <service name="MultiPortService">
 <port binding="tns:GreeterSOAPBinding" name="HTTPPort">
 <http:address location="http://localhost:3333"/>
 </port>

 <port binding="tns:GreeterGIOPBinding" name="IIOPPort">
 <corba:address
 location="file:../../hello_world_service.ior"/>
 </port>
 </service>
</definitions>
 123

CHAPTER 3 | Client Programming
Initializing Proxies from References

Overview Typically, the cleanest way to initialize a client proxy is by constructing it from
an endpoint reference. A reference object encapsulates all of the information
needed to open a connection to a particular service. By using references in your
client program, it is relatively easy to avoid hard-coding details such as the
location of a WSDL contract file.

This subsection describes both how to use references to initialize proxies and
how to obtain the references themselves.

Proxy constructors with a
reference argument

To initialize a proxy from a reference, the GreeterClient class defines the
constructors shown in Example 32.

Constructor with a reference
argument

The first constructor takes one argument representing an endpoint reference,
WS_Addressing::EndpointReferenceType. The endpoint reference contains
complete service and port details, including addressing information, enabling the
client proxy to open a connection to a remote service. This form of constructor is
suitable for a reference that contains details of just a single WSDL port.

For a detailed discussion of endpoint references, see “Endpoint References” on
page 199.

Constructor with reference
argument and contract details

The second constructor takes additional arguments—wsdl_location,
service_name, and port_name—that can provide additional information about
the endpoint. This constructor is useful in the following cases:

Example 32: Proxy Constructors with a Reference Argument

GreeterClient(
 const WS_Addressing::EndpointReferenceType & epr_ref
);

GreeterClient(
 const WS_Addressing::EndpointReferenceType& epr_ref,
 const IT_Bus::String& wsdl_location,
 const IT_Bus::QName& service_name,
 const IT_Bus::String& port_name
);
124

Programming with Client Proxies
• The endpoint reference contains multiple ports—in this case you can use

the port_name argument to specify which port the client connects to, while

leaving the wsdl_location and service_name arguments empty.

For example, to initialize a proxy that connects to the CORBAPort port from

the multi_port_epr endpoint reference:

• The endpoint reference lacks metadata—when a reference originates from

a non-Artix service, sometimes it might contain just an URL (the endpoint

address) and provide no other details about the endpoint. In this case, you

can supply the missing endpoint details from a WSDL contract, by

specifying the WSDL contract location, wsdl_location, the service

QName, service_name, and port name, port_name, for the endpoint.

Obtaining a reference You can obtain an endpoint reference from one of the following sources:

• Initial reference mechanism.

• Return value from a WSDL operation.

• Artix locator.

Initial reference mechanism The Artix initial reference mechanism provides a layer of abstraction for
obtaining references. The client programmer requests a reference to a particular
WSDL service, by passing the service’s QName to the
IT_Bus::Bus::resolve_initial_references() function. The source of the
WSDL service description is determined independently of this function call. For
example, the location of a file containing a WSDL service might be provided as
a command-line argument to the client executable.

// C++
AccountClient* proxy = new AccountClient(
 multi_port_epr,
 IT_Bus::String::EMPTY,
 IT_Bus::QName::EMPTY_QNAME,
 "CORBAPort"
);
 125

CHAPTER 3 | Client Programming
The function for obtaining an initial reference has the following signature:

For more details, see “Programming with Initial References” on page 134.

Return value from a WSDL
operation

Endpoint references can be passed as parameters in WSDL operations. Hence, a
common way of obtaining a reference is as a return value from a WSDL
operation.

For example, consider a Bank service that manages customer accounts. The
Bank service could provide a WSDL operation, get_account, that returns a
reference to an Account service. You could define the get_account operation as
follows:

// C++
// In IT_Bus::Bus
virtual IT_Bus::Boolean resolve_initial_reference(
 const IT_Bus::QName & service_name,
 WS_Addressing::EndpointReferenceType & endpoint_reference
) IT_THROW_DECL((Exception)) = 0;

<definitions ... >
 ...
 <message name="get_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="get_accountResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
 </message>
 ...
 <portType name="Bank">
 ...
 <operation name="get_account">
 <input name="get_account" message="tns:get_account"/>
 <output name="get_accountResponse" message="tns:get_accountResponse"/>
 </operation>
 ...
 </portType>
</definitions>
126

Programming with Client Proxies
In the Bank proxy class, the get_account operation would map to a C++
function, get_account(), as follows:

The return value from get_account() is represented by the
WS_Addressing::EndpointReferenceType type. For more details, see
“Endpoint References” on page 199.

Artix locator The Artix locator is a dedicated service for storing and retrieving references. The
mechanism for retrieving references from the locator consists essentially of
calling a WSDL operation that returns a reference. For more details about the
Artix locator service, see the Artix Locator Guide.

// C++
void get_account(
 const IT_Bus::String &account_name,
 WS_Addressing::EndpointReferenceType &_return
) IT_THROW_DECL((IT_Bus::Exception));
 127

CHAPTER 3 | Client Programming
Other Ways of Initializing Proxies

Overview Instead of initializing a proxy using an endpoint reference, you can specify the
proxy’s connection information explicitly: WSDL location URL, service
QName, and port name. This way of initializing a proxy is useful, if you need to
provide the proxy’s connection information in a customized manner.

Other proxy constructors Besides the constructors with reference arguments (see Example 32 on
page 124), the GreeterClient class defines the constructors shown in
Example 33.

Constructor with no arguments When using the constructor with no arguments, the client requires that the
contract defining its behavior be located in the same directory as the executable.
The client uses the service name specified at code generation time using the -e
flag.

If the specified service has multiple WSDL ports, the client proxy connects by
default to the first port in the wsdl:service element.

Constructor with WSDL URL
argument

The second constructor takes one argument that allows you to specify the URL
of the contract defining the client’s behavior. The client uses the service
specified at code generation time using the -e flag.

In particular, the wsdl argument could be a file: URL or a uddi: URL (for
details of how to use UDDI, see “Locating Services with UDDI” on page 193).

Example 33: Other Proxy Constructors

GreeterClient();

GreeterClient(
 const IT_Bus::String & wsdl
);

GreeterClient(
 const IT_Bus::String & wsdl,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name
);
128

Programming with Client Proxies
Constructor with WSDL URL,
service, and port arguments

The fourth constructor provides you with the most flexibility in determining how
the client connects to its server. It takes three arguments:

The ability to specify the port name in the constructor is useful for WSDL
services that contain multiple ports—for example, see Example 31 on page 123.
This argument enables you to pick one of the ports explicitly, instead of
defaulting to the first port in the service element.

wsdl Specifies the URL of the contract defining the client’s
behavior.

service_name Specifies the QName of the service, defined in the contract
with a <service> tag, to use when connecting to the server.

port_name Specifies the name of the port, defined in the contract with a
<port> tag, to use when connecting to the server. The port
name given must be defined in the specified <service> tag.

If you don’t want to specify the port name, you can leave this
argument blank by passing IT_Bus::String::EMPTY. In this
case, the client proxy connects to the first port in the
wsdl:service element.
 129

CHAPTER 3 | Client Programming
Implementing a Client

Overview The stub code for a client implementation of the service defined by the contract
is contained in the files PortTypeNameClient.h and PortTypeNameClient.cxx.
You should never make any modifications to the generated code in these files.

To access the operations defined in the port type, the client initializes the Artix
bus, instantiates an object of the generated client proxy class,
PortTypeNameClient, and makes function calls on the object. When the client is
finished, it then shuts down the bus.

Generating client stub code To generate client stub code from the Hello World WSDL contract,
hello_world.wsdl, enter the following command (for your respective
platform):

Windows

UNIX

The -client switch ensures that client stub code is generated. For full details of
the wsdltocpp switches, see “Generating code from the command line” on
page 715.

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-client
-sample
-m NMAKE:executable
hello_world.wsdl

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-client
-sample
-m UNIX:executable
hello_world.wsdl
130

Implementing a Client
Initializing the Bus Client applications initialize the Bus, by calling IT_Bus::init(). You should
always pass the command-line arguments from main() to IT_Bus::init().
This ensures that you can use standard Artix switches at the command-line (for
example, -BUSname BusID to specify the Bus ID at the command line).

Invoking the operations To invoke the operations offered by the service, the client calls the member
functions of the client proxy object. The generated client proxy class contains
one member function for each operation defined in the contract. The generated
functions all return void. Any response messages are passed by reference as a
parameter to the function. For example, the greetMe operation defined in
Example 28 on page 120 generates a function with the following signature:

Full client code A client developed to access the service defined by the
HelloWorldSOAPService contract will look similar to Example 34.

void greetMe(
 const IT_Bus::String & me,
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception));

Example 34: Sample Hello World Client

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

1 #include "GreeterClient.h"

2 IT_USING_NAMESPACE_STD

3 using namespace COM_IONA_HELLO_WORLD_SOAP_HTTP;
using namespace IT_Bus;

int
main(
 int argc,
 char* argv[]
)
{
 cout << " GreeterClient" << endl;
 131

CHAPTER 3 | Client Programming
The preceding code can be explained as follows:

1. The PortNameClient.h header includes the definitions for the client

proxy class.

2. The IT_USING_NAMESPACE_STD preprocessor macro expands to the

following line of code:

 try
 {
 /*
 * Create an instance of the web service client
 */

4 IT_Bus::init(argc, argv);

5 GreeterClient client;

 // Sample invocation calls.
 //
 IT_Bus::String theResponse;

6 client.sayHi(theResponse);
 cout << "sayHi() returned: \"" << theResponse << "\""
 << endl;

 IT_Bus::String me = "YourName";
 client.greetMe(me, theResponse);
 cout << "greetMe() returned: \"" << theResponse << "\""
 << endl;
 }

7 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 34: Sample Hello World Client

// C++
using namespace std;
132

Implementing a Client
The std namespace scopes entities from the C++ Standard Template

Library. For example, using this namespace lets you write cout and cin,

instead of std::cout and std::cin.

3. The COM_IONA_HELLO_WORLD_SOAP_HTTP namespace contains the client

proxy class, GreeterClient. See “Greeter proxy class” on page 121.

4. The IT_Bus::init() static function initializes the bus. You should always

pass in the command line arguments (argc and argv) to init().

5. This line instantiates the proxy class using the no-argument form of the

proxy client constructor. When this client is deployed, a copy of the

contract defining its behavior must be deployed in the same directory as

the client executable.

In a real application, however, it would be better to initialize the client

proxy from an initial reference. See “Programming with Initial

References” on page 134.

6. Invoke the sayHi() operation on the client proxy.

7. Catch any exceptions thrown by the bus. It is essential to enclose remote

operation invocations within a try/catch block which catches the exception

types derived from IT_Bus::Exception.
 133

CHAPTER 3 | Client Programming
Programming with Initial References

Overview Artix provides an API function, IT_Bus::resolve_initial_references(), for
finding endpoint references based on the service QName.

The initial reference mechanism abstracts the procedure for obtaining endpoint
references. Using this approach, a programmer needs to know only the name of a
service in order to create a proxy. The endpoint details could actually be
provided from configuration, from the command-line, by programming, or by
some other method. The client programmer does not have to worry about the
precise source of the endpoint reference.

Order of precedence for initial
reference sources

Artix finds initial references from the following sources, in order of priority:

1. Colocated service—if the client code that calls

resolve_initial_reference() is colocated with (that is, in the same

process as) the required service, the resolve_initial_reference()

function returns a reference to the colocated service. This assumes that the

client and server code are using the same Bus instance.

2. References registered using register_initial_reference()—you can

register a reference explicitly by calling the

IT_Bus::Bus::register_initial_reference() function on a Bus

instance.

3. References specified on the command line—you can provide an initial

reference by specifying on the command line the location of a file

containing an endpoint reference. For example:

GreeterClient -BUSname BusID
-BUSinitial_reference ../../etc/hello_ref.xml

4. References specified in the configuration file—you can provide an initial

reference from the configuration file, either by specifying the location of

an endpoint reference file or by specifying the literal value of an endpoint

reference.

For more details, see Configuring and Deploying Artix Solutions.
134

Programming with Initial References
5. Service in a WSDL contract—the service element in a WSDL contract

contains essentially the same data as an endpoint reference. Hence, if a

reference is not specified using one of the other methods, Artix searches

any loaded WSDL contracts to find the specified service.

The sources of WSDL contracts are the same as on the server side. The

mechanism for finding references is, thus, effectively an extension of the

mechanism for finding WSDL contracts—see “How Services Locate

WSDL Contracts” on page 99.

Example of programming with an
initial reference

Given that the Bus has already loaded and parsed the details of a service called
HelloWorldSOAPService in the namespace,
http://www.iona.com/hello_world_soap_http, you can initialize a client
proxy, proxy, as follows:

Example 35: Resolving an Initial Reference

// C++
IT_Bus::QName service_qname(
 "", "HelloWorldSOAPService",

"http://www.iona.com/hello_world_soap_http"
);
WS_Addressing::EndpointReferenceType ref;

// Find the initial reference using the bootstrap service
bus->resolve_initial_reference(
 service_qname,
 ref
);

// Create a proxy and use it
GreeterClient proxy(ref);
proxy.sayHi();
 135

CHAPTER 3 | Client Programming
Abbreviated constructor for initial
references

To simplify the steps required to create a proxy from an initial reference, Artix
provides a special constructor that initializes a proxy from a service QName in a
single step. The constructor has the following form (for a GreeterClient
proxy):

With this constructor, you can initialize a proxy from an initial reference using
the code fragment shown in Example 36.

Where the proxy constructor implicitly looks up the initial reference based on
the specified service QName, service_qname.

GreeterClient(
 const IT_Bus::QName service_name,
 const IT_Bus::String& port_name = IT_Bus::String::EMPTY,
 IT_Bus::Bus_ptr bus = 0
);

Example 36: Resolving an Initial Reference with a Special Constructor

// C++
IT_Bus::QName service_qname(
 "", "HelloWorldSOAPService",

"http://www.iona.com/hello_world_soap_http"
);

// Create a proxy and use it
GreeterClient proxy(service_qname);
proxy.sayHi();
136

Obtaining Initial References
Obtaining Initial References

Overview Given that you have programmed your client to use initial references, as
described in the previous section, you then need provide those initial references
at runtime. This section describes how to obtain the initial references needed by
the client and how to pass the initial references to the client through its
command-line arguments.

Options for obtaining initial
references

Some of the possible options for obtaining initial references are, as follows:

• Access local WSDL contract.

• Obtain reference from a container.

• Obtain WSDL contract from a container.

• Obtain WSDL location URL from a container.

Access local WSDL contract If a WSDL service uses a statically allocated port (where the IP port is specified
explicitly in the original WSDL contract), the client can obtain the endpoint
reference from a local copy of the WSDL contract. When using the initial
references API, you can specify the location of the WSDL contract using the
command-line switch, -BUSservice_contract WSDLFile, where WSDLFile is
a WSDL contract that provides initial references for the client. For example, you
can run the Greeter client as follows:

GreeterClient -BUSname BusID -BUSservice_contract WSDLFile
 137

CHAPTER 3 | Client Programming
Obtain reference from a container You can obtain an endpoint reference directly from an Artix container, after the
container has started up. Use the it_container_admin utility to retrieve the
endpoint reference and store it in a file, as follows:

Where ContainerURLFile is a file that contains the URL for the container
service (to get this URL file, start it_container with the -publish option). The
service QName is specified by an open brace, {, followed by the target
namespace, Namespace, followed by a close brace, }, followed by the local part
of the service’s name, LocalPart. For example, the QName for the
HelloWorldSOAPService service (see Example 30 on page 122) would be
specified as follows:

{http://www.iona.com/hello_world_soap_http}HelloWorldSOAPService

Given that the reference has been stored in the file, ReferenceFile, and assuming
that the client has access to the file system where this file is stored, you can run
the Greeter client as follows:

Obtain WSDL contract from a
container

You can obtain a WSDL contract directly from an Artix container, after the
container has started up. Use the it_container_admin utility to retrieve the
WSDL contract and store it in a file, as follows:

Given that the WSDL contract has been stored in the file, WSDLFile, and
assuming that the client has access to the file system where this file is stored,
you can run the Greeter client as follows:

it_container_admin -container ContainerURLFile
-publishreference
-service {Namespace}LocalPart
-file ReferenceFile

GreeterClient -BUSname BusID -BUSinitial_reference ReferenceFile

it_container_admin -container ContainerURLFile
-publishwsdl
-service {Namespace}LocalPart
-file WSDLFile

GreeterClient -BUSname BusID -BUSservice_contract WSDLFile
138

Obtaining Initial References
Obtain WSDL location URL from
a container

You can provide the client with a URL from which the client can download an
up-to-date copy of the WSDL contract. Use the it_container_admin utility to
retrieve the WSDL location URL and store it in a file, as follows:

Given that the URL has been stored in the file, WSDL_URLFile, and assuming
that the client has access to the file system where this file is stored, you can run
the Greeter client as follows:

it_container_admin -container ContainerURLFile
-publishurl
-service {Namespace}LocalPart
-file WSDL_URLFile

GreeterClient -BUSname BusID -BUSservice_contract WSDL_URLFile
 139

CHAPTER 3 | Client Programming
Overriding a HTTP Address in a Client

Overview Usually, client applications obtain the HTTP address for a remote Web service
by parsing the port element of a WSDL contract. Sometimes, however, you
might need to specify the HTTP address by programming, thereby overriding the
value from the WSDL port element.

This section describes how to program an Artix client to override the HTTP
address, by setting the HTTP_ENDPOINT_URL context value.

HTTP address in a WSDL
contract

Example 37 shows how to specify the HTTP address in a WSDL contract for a
SOAP/HTTP service. The location attribute in the soap:address element
specifies that the SOAPService service is running on the localhost host and
listening on IP port 9000. By default, clients will use this address,
http://localhost:9000, to contact the remote SOAPService. It is possible,
however, to override this address by programming.

Example 37: HTTP Address Specified in a WSDL Contract

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/hello_world_soap_http"

 ...>
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding"
 name="SoapPort">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>
140

Overriding a HTTP Address in a Client
HTTP_ENDPOINT_URL context You can use the HTTP_ENDPOINT_URL context to program the HTTP address that
a client uses to contact a Web service, thereby overriding the value configured in
the WSDL contract. The mechanism for setting the HTTP_ENDPOINT_URL value is
based on Artix contexts (see “Artix Contexts” on page 245). The programming
steps for overriding the HTTP address are as follows:

1. Obtain a reference to a request context container (of

IT_Bus::ContextContainer type).

2. Use the request context container to set the HTTP_ENDPOINT_URL context.

3. Create a client proxy and invoke an operation on the proxy.

For the first invocation, Artix takes the address in the HTTP_ENDPOINT_URL

context and uses it to establish a connection to the remote service.

Subsequent invocations on the proxy continue to send requests to the same

endpoint address.

4. After the first invocation on the proxy, Artix clears the

HTTP_ENDPOINT_URL context. Hence, subsequent client proxies created in

this thread revert to using the HTTP address configured in the WSDL

contract.

How to override the HTTP
address

Example 38 shows how to override the HTTP address to contact a SOAPService
service running on the host, yourhost, and IP port, 5432.

Example 38: Using HTTP_ENDPOINT_URL to Override a HTTP Address

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>

using namespace IT_Bus;
using namespace IT_ContextAttributes;

ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

ContextContainer* request_contexts =
 context_current.request_contexts();
 141

CHAPTER 3 | Client Programming
The steps for obtaining a reference to a request context follow a standard pattern.
For full details about how to program with contexts, see “Artix Contexts” on
page 245.

IT_Bus::AnyType* any_string = request_contexts->get_context(
 IT_ContextAttributes::HTTP_ENDPOINT_URL,
 true
);

IT_Bus::StringHolder* str_holder =
dynamic_cast<IT_Bus::StringHolder*>(any_string);

str_holder->set("http://yourhost:5432");

// Open a connection to the SOAPService service at yourhost:5432.
GreeterClient hw;
hw.sayHi("Hello World!");

Example 38: Using HTTP_ENDPOINT_URL to Override a HTTP Address
142

CHAPTER 4

Artix Programming
Considerations
Several areas must be considered when programming complex
Artix applications.

In this chapter This chapter discusses the following topics:

Operations and Parameters page 144

Exceptions page 154

Memory Management page 165

Multi-Threading page 177

Converting with to_string() and from_string() page 188

Locating Services with UDDI page 193

Compiling and Linking an Artix Application page 195

Building Artix Stub Libraries on Windows page 197
 143

CHAPTER 4 | Artix Programming Considerations
Operations and Parameters

Overview This section describes how to declare a WSDL operation and how the operation
and its parameters are mapped to C++ by the Artix WSDL-to-C++ compiler.

In this section This section contains the following subsections:

RPC/Literal Style page 145

Document/Literal Wrapped Style page 149
144

Operations and Parameters
RPC/Literal Style

Overview This subsection describes the RPC/literal style for defining WSDL operations
and parameters. The RPC binding style is distinguished by the fact that it uses
multi-part messages (one part for each parameter).

For example, the request message for an operation with three input parameters
might be defined as follows:

Parameter direction in WSDL WSDL operation parameters can be sent either as input parameters (that is, in
the client-to-server direction or as output parameters (that is, in the
server-to-client direction). Hence, the following kinds of parameter can be
defined:

• in parameter—declared as an input parameter, but not as an output

parameter.

• out parameter—declared as an output parameter, but not as an input

parameter.

• inout parameter—declared both as an input and as an output parameter.

How to declare WSDL operations
in RPC/literal style

You can declare a WSDL operation in RPC/literal style as follows:

1. Declare a multi-part input message, including all of the in and inout

parameters for the new operation (for example, the testParams message in

Example 39 on page 146).

2. Declare a multi-part output message, including all of the out and inout

parameters for the operation (for example, the testParamsResponse

message in Example 39 on page 146).

3. Within the scope of <portType>, declare a single operation which includes

a single input message and a single output message.

<message name="operationRequest">
 <part name="X" type="X_Type"/>
 <part name="Y" type="Y_Type"/>
 <part name="Z" type="Z_Type"/>
</message>
 145

CHAPTER 4 | Artix Programming Considerations
WSDL declaration of testParams Example 39 shows an example of a simple operation, testParams, which takes
two input parameters, inInt and inoutInt, and two output parameters,
inoutInt and outFloat.

C++ mapping of testParams Example 40 shows how the preceding WSDL testParams operation (from
Example 39 on page 146) maps to C++.

Mapped parameters When the testParams WSDL operation maps to C++, the resulting
testParams() C++ function signature starts with the in and inout parameters,
followed by the out parameters. The parameters are mapped as follows:

Example 39: WSDL Declaration of the testParams Operation

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 ...
 <message name="testParams">
 <part name="inInt" type="xsd:int"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 <message name="testParamsResponse">
 <part name="inoutInt" type="xsd:int"/>
 <part name="outFloat" type="xsd:float"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testParams">
 <input message="tns:testParams" name="testParams"/>
 <output message="tns:testParamsResponse"
 name="testParamsResponse"/>
 </operation>
 ...
</definitions>

Example 40: C++ Mapping of the testParams Operation

// C++
void testParams(
 const IT_Bus::Int inInt,
 IT_Bus::Int & inoutInt,
 IT_Bus::Float & outFloat
) IT_THROW_DECL((IT_Bus::Exception));
146

Operations and Parameters
• in parameters—are passed by value and declared const.

• inout parameters—are passed by reference.

• out parameters—are passed by reference.

WSDL declaration of
testReverseParams

Example 41 shows an example of an operation, testReverseParams, whose
parameters are listed in the opposite order to that of the preceding testParams
operation.

C++ mapping of
testReverseParams

Example 42 shows how the preceding WSDL testReverseParams operation
(from Example 41 on page 147) maps to C++.

Example 41: WSDL Declaration of the testReverseParams Operation

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 ...
 <message name="testReverseParams">
 <part name="inoutInt" type="xsd:int"/>
 <part name="inInt" type="xsd:int"/>
 </message>
 <message name="testReverseParamsResponse">
 <part name="outFloat" type="xsd:float"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testReverseParams">
 <output message="tns:testReverseParamsResponse"
 name="testReverseParamsResponse"/>
 <input message="tns:testReverseParams"
 name="testReverseParams"/>
 </operation>
 ...
</definitions>

Example 42: C++ Mapping of the testReverseParams Operation

// C++
void testReverseParams(
 IT_Bus::Int & inoutInt
 const IT_Bus::Int inInt,
 IT_Bus::Float & outFloat,
) IT_THROW_DECL((IT_Bus::Exception));
 147

CHAPTER 4 | Artix Programming Considerations
Order of in, inout and out
parameters

In C++, the order of the in and inout parameters in the function signature is the
same as the order of the parts in the input message. The order of the out
parameters in the function signature is the same as the order of the parts in the
output message.

Note: The parameter order is not affected by the relative order of the <input>
and <output> tags in the declaration of <operation>. In the mapped C++
signature, the in and inout parameters always appear before the out parameters.
148

Operations and Parameters
Document/Literal Wrapped Style

Overview This subsection describes the document/literal wrapped style for defining
WSDL operations and parameters. The document/literal wrapped style is
distinguished by the fact that it uses single-part messages. The single part is
defined as a schema element which contains a sequence of elements, one for
each parameter.

Request message format The request message for an operation with three input parameters might be
defined as follows:

The request message in document/literal wrapped style must obey the following
conventions:

• The single element that wraps the input parameters must have the same

name as the WSDL operation, OperationName.

• The single part must have the name, parameters.

<types>
 <schema>
 <element name="OperationName">
 <complexType>
 <sequence>
 <element name="X" type="X_Type"/>
 <element name="Y" type="Y_Type"/>
 <element name="Z" type="Z_Type"/>
 </sequence>
 </complexType>
 </element>
 </schema>
</types>
<message name="operationRequest">
 <part name="parameters" element="OperationName"/>
</message>
 149

CHAPTER 4 | Artix Programming Considerations
Reply message format The reply message for an operation with three output parameters might be
defined as follows:

The reply message in document/literal wrapped style must obey the following
conventions:

• The single element that wraps the output parameters must have the form,

OperationNameResult.

• The single part must have the name, parameters.

How to declare WSDL operations
in document/literal wrapped style

You can declare a WSDL operation in document/literal wrapped style as
follows:

1. In the <schema> section of the WSDL, define an element (the input part

wrapping element) as a sequence type containing elements for each of the

in and inout parameters (for example, the testParams element in

Example 43 on page 151).

2. In the <schema> section of the WSDL, define another element (the output

part wrapping element) as a sequence type containing elements for each of

the inout and out parameters (for example, the testParamsResult element

in Example 43 on page 151).

3. Declare a single-part input message, including all of the in and inout

parameters for the new operation (for example, the testParams message in

Example 43 on page 151).

<types>
 <schema>
 <element name="OperationNameResult">
 <complexType>
 <sequence>
 <element name="Z" type="Z_Type"/>
 <element name="A" type="A_Type"/>
 <element name="B" type="B_Type"/>
 </sequence>
 </complexType>
 </element>
 </schema>
</types>
<message name="operationReply">
 <part name="parameters" element="OperationNameResult"/>
</message>
150

Operations and Parameters
4. Declare a single-part output message, including all of the out and inout

parameters for the operation (for example, the testParamsResult message

in Example 43 on page 151).

5. Within the scope of <portType>, declare a single operation which includes

a single input message and a single output message.

WSDL declaration of testParams
in document/literal wrapped style

Example 39 shows an example of a simple operation, testParams, which takes
two input parameters, inInt and inoutInt, and two output parameters,
inoutInt and outFloat.

Example 43: testParams Operation in Document/Literal Wrapped Style

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <wsdl:types>
 <schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="testParams">
 <complexType>
 <sequence>
 <element name="inInt" type="xsd:int"/>
 <element name="inoutInt" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="testParamsResult">
 <complexType>
 <sequence>
 <element name="inoutInt" type="xsd:int"/>
 <element name="outFloat"

type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <message name="testParams">
 <part name="parameters" element="tns:testParams"/>
 </message>
 <message name="testParamsResult">
 <part name="parameters" element="tns:testParamsResult"/>
 </message>
 <wsdl:portType name="BasePortType">
 <wsdl:operation name="testParams">
 151

CHAPTER 4 | Artix Programming Considerations
C++ default mapping of
testParams

The Artix WSDL-to-C++ compiler automatically detects when you use
document/literal wrapped style (as long as the WSDL obeys the conventions
described here). If document/literal wrapped style is detected, the
WSDL-to-C++ compiler (by default) unwraps the operation parameters to
generate a normal function signature in C++.

For example, Example 44 shows how the preceding WSDL testParams
operation (from Example 43 on page 151) maps to C++.

 <wsdl:input message="tns:testParams"
 name="testParams"/>
 <wsdl:output message="tns:testParamsResult"
 name="testParamsResult"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</definitions>

Example 43: testParams Operation in Document/Literal Wrapped Style

Example 44: C++ Mapping of the testParams Operation

// C++
void testParams(
 const IT_Bus::Int inInt,
 IT_Bus::Int & inoutInt,
 IT_Bus::Float & outFloat
) IT_THROW_DECL((IT_Bus::Exception));
152

Operations and Parameters
C++ mapping of testParams using
-wrapped flag

If you want to disable the auto-unwrapping feature of the WSDL-to-C++
compiler, you can do so by running wsdltocpp with the -wrapped flag. For
example, assuming that the WSDL from Example 43 on page 151 is stored in the
test_params.wsdl file, you can generate C++ without auto-unwrapping by
entering the following at the command line:

Example 45 shows the result of mapping the WSDL testParams operation to
C++ with the -wrapped flag:

wsdltocpp -wrapped test_params.wsdl

Example 45: C++ Mapping Using the -wrapped Flag

// C++
virtual void
testParams(
 const testParams ¶meters,
 testParamsResult ¶meters_1
) IT_THROW_DECL((IT_Bus::Exception));
 153

CHAPTER 4 | Artix Programming Considerations
Exceptions

Overview Artix provides a variety of built-in exceptions, which can alert users to problems
with network connectivity, parameter marshalling, and so on. In addition, Artix
allows users to define their own exceptions, which can be propagated across the
network by declaring fault exceptions in WSDL.

In this section This section contains the following subsections:

System Exceptions page 155

User-Defined Exceptions page 160
154

Exceptions
System Exceptions

Overview When an error occurs during an operation invocation, Artix throws an exception
of IT_Bus::FaultException type (which inherits from the IT_Bus::Exception
base class). The IT_Bus::FaultException member functions enable you to
access a considerable amount of information about the exception.

IT_Bus::FaultException
attributes

A FaultException instance has several attributes that provided detailed
information about the exception. The following FaultException attributes are
available:

• description—a human-readable string that summarizes the error.

• category—a formal category that indicates what kind of error occurred.

The following categories are supported:

♦ IT_Bus::FaultCategory::NO_PERMISSION

♦ IT_Bus::FaultCategory::CONNECTION_FAILURE

♦ IT_Bus::FaultCategory::MARSHAL_ERROR

♦ IT_Bus::FaultCategory::NOT_EXIST

♦ IT_Bus::FaultCategory::TRANSIENT

♦ IT_Bus::FaultCategory::UNKNOWN

♦ IT_Bus::FaultCategory::TIMEOUT

♦ IT_Bus::FaultCategory::VERSION_ERROR

♦ IT_Bus::FaultCategory::NOT_UNDERSTOOD

♦ IT_Bus::FaultCategory::MEMORY

♦ IT_Bus::FaultCategory::BAD_OPERATION

♦ IT_Bus::FaultCategory::INTERNAL

♦ IT_Bus::FaultCategory::INVALID_REFERENCE

♦ IT_Bus::FaultCategory::NOT_IMPLEMENTED

♦ IT_Bus::FaultCategory::LICENSE

• source—indicates whether the error occurred on the client side or on the

server side. The following values are supported:

♦ IT_Bus::FaultSource::CLIENT

♦ IT_Bus::FaultSource::SERVER

♦ IT_Bus::FaultSource::UNKNOWN

• completion status—indicates whether or not the operation completed its

work on the server side. The following values are supported:
 155

CHAPTER 4 | Artix Programming Considerations
♦ IT_Bus::CompletionStatus::YES

♦ IT_Bus::CompletionStatus::NO

♦ IT_Bus::CompletionStatus::MAYBE

IT_Bus::FaultException class Example 46 shows the definition of the IT_Bus::FaultException class. This is
the class you must catch to handle an Artix system exception. Accessor and
modifier functions are provided for all of the FaultException attributes.

Example 46: The FaultException Class

// C++
namespace IT_Bus
{
 class IT_BUS_API FaultException :
 public SequenceComplexType,
 public Exception,
 public Rethrowable<FaultException>
 {
 ...
 public:
 FaultException(
 const FaultCategory::Category category,
 const String & namespace_uri,
 const String & code
);

 FaultException();
 ...
 const FaultCategory & get_category() const;
 FaultCategory & get_category();
 void set_category(const FaultCategory & val);

 const String & get_namespace_uri() const;
 String & get_namespace_uri();
 void set_namespace_uri(const String & val);

 const String & get_code() const;
 String & get_code();
 void set_code(const String & val);

 const String & get_detail() const;
 String & get_detail();
 void set_detail(const String & val);
156

Exceptions
IT_Bus::FaultCategory class Example 47 shows the definition of the IT_Bus::FaultCategory class. This
class provides the functions, get_value() and set_value(), to access or
modify the fault category.

 const FaultSource & get_source() const;
 FaultSource & get_source();
 void set_source(const FaultSource & val);

 const FaultCompletionStatus & get_completion_status()
 const;
 FaultCompletionStatus & get_completion_status();
 void set_completion_status(
 const FaultCompletionStatus & val
);

 const String & get_description() const;
 String & get_description();
 void set_description(const String & val);

 const String & get_server_id() const;
 String & get_server_id();
 void set_server_id(const String & val);
 ...
 private:
 ...
 };
}

Example 46: The FaultException Class

Example 47: The FaultCategory Class

// C++
namespace IT_Bus
{
 class IT_BUS_API FaultCategory : public AnySimpleType
 {
 public:
 enum Category
 {
 NO_PERMISSION,
 CONNECTION_FAILURE,
 MARSHAL_ERROR,
 NOT_EXIST,
 TRANSIENT,
 157

CHAPTER 4 | Artix Programming Considerations
IT_Bus::FaultSource class Example 48 shows the definition of the IT_Bus::FaultSource class. This class
provides the functions, get_value() and set_value(), to access or modify the
fault source.

 UNKNOWN,
 TIMEOUT,
 VERSION_ERROR,
 NOT_UNDERSTOOD,
 MEMORY,
 BAD_OPERATION,
 INTERNAL,
 INVALID_REFERENCE,
 NOT_IMPLEMENTED,
 LICENSE
 };
 ...
 FaultCategory();
 FaultCategory(const Category value);
 ...
 void set_value(const Category value);
 Category get_value() const;
 ...
 };
};

Example 47: The FaultCategory Class

Example 48: The FaultSource Class

// C++
namespace IT_Bus
{
 class IT_BUS_API FaultSource : public AnySimpleType
 {
 public:
 enum Source
 {
 CLIENT,
 SERVER,
 UNKNOWN
 };
 ...
 FaultSource();
 FaultSource(const Source value);
 ...
158

Exceptions
IT_Bus::FaultCompletionStatus
class

Example 49 shows the definition of the IT_Bus::FaultCompletionStatus
class. This class provides the functions, get_value() and set_value(), to
access or modify the fault completion status.

 void set_value(const Source value);
 Source get_value() const;
 ...
 };
};

Example 48: The FaultSource Class

Example 49: The FaultCompletionStatus Class

// C++
namespace IT_Bus
{
 class IT_BUS_API FaultCompletionStatus : public AnySimpleType
 {
 public:
 enum CompletionStatus
 {
 YES,
 NO,
 MAYBE
 };
 ...
 FaultCompletionStatus();
 FaultCompletionStatus(const CompletionStatus value);
 ...
 void set_value(const CompletionStatus value);
 CompletionStatus get_value() const;
 ...
 };
};
 159

CHAPTER 4 | Artix Programming Considerations
User-Defined Exceptions

Overview Artix supports user-defined exceptions, which propagate from one Artix
application to another. To define a user exception, you must declare the
exception as a fault in WSDL. The WSDL-to-C++ compiler then generates the
stub code that you need to raise and catch the exception.

FaultException class User exceptions are derived from the IT_Bus::UserFaultException class,
which is defined in <it_bus/user_fault_exception.h>. The
IT_Bus::UserFaultException class extends IT_Bus::Exception.

Declaring a fault in WSDL Example 50 shows an example of a WSDL fault which can be raised on the
echoInteger operation. The format of the fault message is specified by the
tns:SampleFault message.

Example 50: Declaration of the faultMessage Fault

<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace="http://www.iona.com/userfault"
 xmlns="http://schemas.xmlsoap.org/wsdl/" ... >
 <types>
 <schema targetNamespace="http://www.iona.com/userfault"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="my_exceptionElement"
 type="tns:my_exceptionType"/>

1 <complexType name="my_exceptionType">
 <sequence>
 <element name="ErrorMsg" type="xsd:string"/>
 <element name="ErrorID" type="xsd:int"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name="requestMessage"/>
 <message name="responseMessage"/>

2 <message name="faultMessage">
 <part element="tns:my_exceptionElement"
 name="my_exceptionDetails"/>
 </message>
160

Exceptions
The preceding WSDL extract can be explained as follows:

1. If the fault is to hold more than one piece of data, you must declare a

complex type for the fault data (in this case, my_exceptionType holds an

error message string, ErrorMsg, and an error ID, ErrorID).

2. Declare a message for the fault, containing just a single part. The WSDL

specification allows only single-part messages in a fault—multi-part

messages are not allowed.

3. The <fault> tag must be added to the scope of the operation (or

operations) which can raise this particular type of fault.

C++ mapping of user fault When the user fault is mapped to C++, two classes are generated to represent the
exception.

The first class, faultMessageException, represents the fault message,
faultMessage. This class, which inherits from IT_Bus::UserFaultException,
is the class that you actually throw and catch as an exception in C++.
Example 51 shows the definition of the faultMessageException class.

 <portType name="Receiver">
 <operation name="pingMe">
 <input message="tns:requestMessage"
 name="pingMeRequest"/>
 <output message="tns:responseMessage"
 name="pingMeResponse"/>

3 <fault message="tns:faultMessage"
 name="pingMeFault"/>
 </operation>
 </portType>
 ...
</definitions>

Example 50: Declaration of the faultMessage Fault

Note: There is no limit to the number of <fault> tags that can be
included in an operation element.

Example 51: The faultMessageException Class

// C++
namespace userfault
{

 161

CHAPTER 4 | Artix Programming Considerations
The get_message_name() function returns the name of the user exception. The
faultMessageException class declares functions, getPartName() and
setPartName(), for accessing and modifying the message part (there is only
one part in the message). For example, the getmy_exceptionDetails()
function returns a reference to a my_exceptionType object.

The second class, my_exceptionType, represents the exception data.
Example 52 shows the definition of the my_exceptionType class. This class
provides accessor and modifier functions for the ErrorMsg and ErrorID
exception members.

 class faultMessageException
 : public IT_Bus::UserFaultException,
 public

IT_Bus::Rethrowable<userfault::faultMessageException>
 {
 public:
 ...
 faultMessageException();
 ...
 virtual const IT_Bus::QName &
 get_message_name() const;

 my_exceptionType & getmy_exceptionDetails();
 const my_exceptionType & getmy_exceptionDetails() const;
 void setmy_exceptionDetails(const my_exceptionType &

val);

 private:
 ...
 };
};

Example 51: The faultMessageException Class

Example 52: The my_exceptionType Class

// C++
...
namespace userfault
{
 ...
 class my_exceptionType : public IT_Bus::SequenceComplexType
 {
 public:
 ...
162

Exceptions
Raising a fault exception in a
server

Example 53 shows how to raise the faultMessageException exception in the
server code. This implementation of pingMe always throws the user exception,
faultMessageException.

 my_exceptionType();
 ...
 IT_Bus::String & getErrorMsg();
 const IT_Bus::String & getErrorMsg() const;
 void setErrorMsg(const IT_Bus::String & val);

 IT_Bus::Int getErrorID();
 const IT_Bus::Int getErrorID() const;
 void setErrorID(const IT_Bus::Int val);

 private:
 ...
 };
};

Example 52: The my_exceptionType Class

Example 53: Raising a faultMessageException in the Server

// C++
void
ReceiverImpl::pingMe() IT_THROW_DECL((IT_Bus::Exception))
{
 // Initialize an instance of the my_exceptionType
 my_exceptionType exception_details;

 // Set ErrorMsg and ErrorID
 exception_details.setErrorMsg("pingMe: No implementation");
 exception_details.setErrorID(555);

 // Now set exception details into faultMessageException
 faultMessageException the_exception;
 the_exception.setmy_exceptionDetails(exception_details);

 // Throw the exception
 throw the_exception;
}

 163

CHAPTER 4 | Artix Programming Considerations
Catching a fault exception in a
client

Example 54 shows how to catch the faultMessageException exception on the
client side. The client uses the proxy instance, client, to call the pingMe
operation remotely.

Example 54: Catching faultMessageException in the Client

// C++

// Create an instance of the web service client
IT_Bus::init(argc, argv);

try
{
 ReceiverClient client;

 client.pingMe ();
}
catch (const faultMessageException& ex)
{
 my_exceptionType exception_details
 = ex.getmy_exceptionDetails();

 // Now display the details of the exception
 cout << "Exception Message: "
 << exception_details.getErrorMsg() << endl;
 cout << "Exception ID: "
 << exception_details.getErrorID() << endl;
}

164

Memory Management
Memory Management

Overview This section discusses the memory management rules for Artix types,
particularly for generated complex types.

In this section This section contains the following subsections:

Managing Parameters page 166

Assignment and Copying page 170

Deallocating page 172

Smart Pointers page 173
 165

CHAPTER 4 | Artix Programming Considerations
Managing Parameters

Overview This subsection discusses the guidelines for managing the memory for
parameters of complex type. In Artix, memory management of parameters is
relatively straightforward, because the Artix C++ mapping passes parameters by
reference.

Memory management rules There are just two important memory management rules to remember when
writing an Artix client or server:

1. The client is responsible for deallocating parameters.

2. If the server needs to keep a copy of parameter data, it must make a copy of

the parameter. In general, parameters are deallocated as soon as an

operation returns.

WSDL example Example 55 shows an example of a WSDL operation, testSeqParams, with
three parameters, inSeq, inoutSeq, and outSeq, of sequence type,
xsd1:SequenceType.

Note: If you use pointer types to reference operation parameters, see “Smart
Pointers” on page 173 for advice on memory management.

Example 55: WSDL Example with in, inout and out Parameters

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
 </schema>
166

Memory Management
Client example Example 56 shows how to allocate, initialize, and deallocate parameters when
calling the testSeqParams operation.

 </types>
 ...
 <message name="testSeqParams">
 <part name="inSeq" type="xsd1:SequenceType"/>
 <part name="inoutSeq" type="xsd1:SequenceType"/>
 </message>
 <message name="testSeqParamsResponse">
 <part name="inoutSeq" type="xsd1:SequenceType"/>
 <part name="outSeq" type="xsd1:SequenceType"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testSeqParams">
 <input message="tns:testSeqParams"
 name="testSeqParams"/>
 <output message="tns:testSeqParamsResponse"
 name="testSeqParamsResponse"/>
 </operation>
 ...
 </portType>
 ...
</definitions>

Example 55: WSDL Example with in, inout and out Parameters

Example 56: Client Calling the testSeqParams Operation

// C++
try
{
 IT_Bus::init(argc, argv);

1 BaseClient bc;

2 // Allocate all parameters
 SequenceType inSeq, inoutSeq, outSeq;

3 // Initialize in and inout parameters
 inSeq.setvarFloat((IT_Bus::Float) 1.234);
 inSeq.setvarInt(54321);
 inSeq.setvarString("One, two, three");
 inoutSeq.setvarFloat((IT_Bus::Float) 4.321);
 167

CHAPTER 4 | Artix Programming Considerations
The preceding client example can be explained as follows:

1. This line creates an instance of the client proxy, bc, which is used to invoke

the WSDL operations.

2. You must allocate memory for all kinds of parameter, in, inout, and out. In

this example, the parameters are created on the stack.

3. You initialize only the in and inout parameters. The server will initialize

the out parameters.

4. It is the responsibility of the client to deallocate all kinds of parameter. In

this example, the parameters are all deallocated at the end of the current

scope, because they have been allocated on the stack.

Server example Example 57 shows how the parameters are used on the server side, in the C++
implementation of the testSeqParams operation.

 inoutSeq.setvarInt(12345);
 inoutSeq.setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(inSeq, inoutSeq, outSeq);

4 // End of scope:
 // Implicit deallocation of inSeq, inoutSeq, and outSeq.
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.message()
 << endl;
 return -1;
}

Example 56: Client Calling the testSeqParams Operation

Example 57: Server Calling the testSeqParams Operation

// C++
void
BaseImpl::testSeqParams(
 const SequenceType & inSeq,
 SequenceType & inoutSeq,
 SequenceType & outSeq
) IT_THROW_DECL((IT_Bus::Exception))
168

Memory Management
The preceding server example can be explained as follows:

1. The server programmer has read-only access to the in parameters (they are

declared const in the operation signature).

2. If you want to access data from in or inout parameters after the operation

returns, you must copy them (deep copy). It would be an error to use the &

operator to obtain a pointer to the parameter data, because the Artix server

stub deallocates the parameters as soon as the operation returns.

See “Assignment and Copying” on page 170 for details of how to copy

Artix data types.

3. You have read/write access to the inout parameters.

4. You should initialize each of the out parameters (otherwise they will be

returned with default initial values).

{
 cout << "BaseImpl::testSeqParams called" << endl;

1 // Print inSeq
 cout << "inSeq.varFloat = " << inSeq.getvarFloat() << endl;
 cout << "inSeq.varInt = " << inSeq.getvarInt() << endl;
 cout << "inSeq.varString = " << inSeq.getvarString() << endl;

2 // (Optionally) Copy in/inout parameters
 // ...

3 // Print and change inoutSeq
 cout << "inoutSeq.varFloat = "
 << inoutSeq.getvarFloat() << endl;
 cout << "inoutSeq.varInt = "
 << inoutSeq.getvarInt() << endl;
 cout << "inoutSeq.varString = "
 << inoutSeq.getvarString() << endl;
 inoutSeq.setvarFloat(2.0);
 inoutSeq.setvarInt(2);
 inoutSeq.setvarString("Two");

4 // Initialize outSeq
 outSeq.setvarFloat(3.0);
 outSeq.setvarInt(3);
 outSeq.setvarString("Three");
}

Example 57: Server Calling the testSeqParams Operation
 169

CHAPTER 4 | Artix Programming Considerations
Assignment and Copying

Overview The WSDL-to-C++ compiler generates copy constructors and assignment
operators for all complex types.

Copy constructor The WSDL-to-C++ compiler generates a copy constructor for complex types.
For example, the SequenceType type declared in Example 55 on page 166 has
the following copy constructor:

// C++
SequenceType(const SequenceType& copy);

This enables you to initialize SequenceType data as follows:

Assignment operator The WSDL-to-C++ compiler generates an assignment operator for complex
types. For example, the generated assignment operator enables you to assign a
SequenceType instance as follows:

// C++
SequenceType original;
original.setvarFloat(1.23);
original.setvarInt(321);
original.setvarString("One, two, three.");

SequenceType copy_1(original);
SequenceType copy_2 = original;

// C++
SequenceType original;
original.setvarFloat(1.23);
original.setvarInt(321);
original.setvarString("One, two, three.");

SequenceType assign_to;

assign_to = original;
170

Memory Management
Recursive copying In WSDL, complex types can be nested inside each other to an arbitrary degree.
When such a nested complex type is mapped to C++ by Artix, the copy
constructor and assignment operators are designed to copy the nested members
recursively (deep copy).
 171

CHAPTER 4 | Artix Programming Considerations
Deallocating

Using delete In C++, if you allocate a complex type on the heap (that is, using pointers and
new), you can generally delete the data instance using the delete operator. It is
usually better, however, to use smart pointers in this context—see “Smart
Pointers” on page 173.

Recursive deallocation The Artix C++ types are designed to support recursive deallocation.

That is, if you have an instance, T, of a complex type which has other complex
types nested inside it, the entire memory for the complex type including its
nested members would be deallocated when you delete T. This works for
complex types nested to an arbitrary degree.
172

Memory Management
Smart Pointers

Overview To help you avoid memory leaks when using pointers, the WSDL-to-C++
compiler generates a smart pointer class, ComplexTypePtr, for every generated
complex type, ComplexType. The following aspects of smart pointers are
discussed here:

• What is a smart pointer?

• Artix smart pointers.

• Client example using simple pointers.

• Client example using smart pointers.

What is a smart pointer? A smart pointer class is a C++ class that overloads the * (dereferencing) and ->
(member access) operators, in order to imitate the syntax of an ordinary C++
pointer.

Artix smart pointers Artix smart pointers are defined using a template class, IT_AutoPtr<T>, which
has the same API as the standard auto pointer template, auto_ptr<T>, from the
C++ standard template library. If the standard library is supported on the
platform, IT_AutoPtr is simply a typedef of std::auto_ptr.

For example, the SequenceTypePtr smart pointer class is defined by the
following generated typedef:

The key feature that makes this pointer type smart is that the destructor always
deletes the memory the pointer is pointing at. This feature ensures that you
cannot leak memory when it is referenced by a smart pointer.

Client example using simple
pointers

Example 58 shows how to call the testSeqParams operation using parameters
that are allocated on the heap and referenced by simple pointers

// C++
typedef IT_AutoPtr<SequenceType> SequenceTypePtr;

Example 58: Client Calling testSeqParams Using Simple Pointers

// C++
try
 173

CHAPTER 4 | Artix Programming Considerations
The preceding client example can be explained as follows:

1. The parameters are allocated on the heap.

2. Before you reach the end of the current scope, you must explicitly delete

the parameters or the memory will be leaked.

{
 IT_Bus::init(argc, argv);

 BaseClient bc;

1 // Allocate all parameters
 SequenceType *inSeqP = new SequenceType();
 SequenceType *inoutSeqP = new SequenceType();
 SequenceType *outSeqP = new SequenceType();

 // Initialize in and inout parameters
 inSeqP->setvarFloat((IT_Bus::Float) 1.234);
 inSeqP->setvarInt(54321);
 inSeqP->setvarString("One, two, three");
 inoutSeqP->setvarFloat((IT_Bus::Float) 4.321);
 inoutSeqP->setvarInt(12345);
 inoutSeqP->setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(*inSeqP, *inoutSeqP, *outSeqP);

2 // End of scope:
 delete inSeqP;
 delete inoutSeqP;
 delete outSeqP;
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.message()
 << endl;
 return -1;
}

Example 58: Client Calling testSeqParams Using Simple Pointers
174

Memory Management
Client example using smart
pointers

Example 59 shows how to call the testSeqParams operation using parameters
that are allocated on the heap and referenced by smart pointers

Example 59: Client Calling testSeqParams Using Smart Pointers

// C++
try
{
 IT_Bus::init(argc, argv);

 BaseClient bc;

 // Allocate all parameters
1 SequenceTypePtr inSeqP(new SequenceType());

 SequenceTypePtr inoutSeqP(new SequenceType());
 SequenceTypePtr outSeqP(new SequenceType());

 // Initialize in and inout parameters
 inSeqP->setvarFloat((IT_Bus::Float) 1.234);
 inSeqP->setvarInt(54321);
 inSeqP->setvarString("One, two, three");
 inoutSeqP->setvarFloat((IT_Bus::Float) 4.321);
 inoutSeqP->setvarInt(12345);
 inoutSeqP->setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(*inSeqP, *inoutSeqP, *outSeqP);

2 // End of scope:
 // Parameter data automatically deallocated by smart pointers
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.message()
 << endl;
 return -1;
}

 175

CHAPTER 4 | Artix Programming Considerations
The preceding client example can be explained as follows:

1. The parameters are allocated on the heap, using smart pointers of

SequenceTypePtr type.

2. In this case, there is no need to deallocate the parameter data explicitly.

The smart pointers, inSeqP, inoutSeqP, and outSeqP, automatically delete

the memory they are pointing at when they go out of scope.
176

Multi-Threading
Multi-Threading

Overview This section provides an overview of threading in Artix and describes the issues
affecting multi-threaded clients and servers in Artix.

In this section This section contains the following subsections:

Client Threading Issues page 178

Servant Threading Models page 179

Setting the Servant Threading Model page 182

Thread Pool Configuration page 185
 177

CHAPTER 4 | Artix Programming Considerations
Client Threading Issues

Client threading The runtime library is thread-safe, in that multi-threaded applications may safely
use the library from multiple threads simultaneously.

Moreover, the client stub code is thread-safe by default. That is, you can safely
share a single proxy instance amongst multiple threads. The Artix stub code uses
mutex locks to protect the proxy instance from concurrent access by multiple
threads.

Note: Versions of Artix prior to 4.0 are not thread-safe by default. In these
older Artix versions, it was possible to enable thread-safe proxies by calling
the IT_Bus::Port::set_threading_model() function. For backward
compatibility reasons, the set_threading_model() function is still available
in Artix 4.0, but it has no effect.
178

Multi-Threading
Servant Threading Models

Overview Artix supports a variety of different threading models on the server side. The
threading model that applies to a particular service can be specified by
programming (see “Setting the Servant Threading Model” on page 182). This
subsection provides an overview of each of the servant threading models in
Artix, as follows:

• Multi-threaded.

• Serialized.

• Per-port.

• PerThread.

• PerInvocation.

Default threading model The default threading model is multi-threaded.

Multi-threaded The multi-threaded threading model implies that a single instance is created and
shared on multiple threads. The servant object must expect to be called from
multiple threads simultaneously.

Figure 11 shows an outline of the multi-threaded threading model. In this case,
the threads all share the same servant instance.

Figure 11: Outline of the Multi-Threaded Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2
 179

CHAPTER 4 | Artix Programming Considerations
Serialized The Serialized threading model implies that access to the servant is serialized
(implemented using mutex locks). The servant object can be called from no
more than one thread at a time.

Figure 12 shows an outline of the Serialized threading model. In this case, the
threads all share the same servant instance, but access is serialized.

Per-port The per-port threading model implies that a servant instance is created per port.
Each servant object must expect to be called from multiple threads
simultaneously, because each port has an associated thread pool.

Figure 13 shows an outline of the PerPort threading model. In this case, the
threads in a thread pool share the same servant instance.

Figure 12: Outline of the Serialized Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2

12

Figure 13: Outline of the Per-Port Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2
180

Multi-Threading
PerThread The PerThread threading model implies that a servant instance is created per
thread. This allows the servant objects to use thread-local storage, resources with
thread affinity (like MQ), and reduces synchronization overhead.

Figure 14 shows an outline of the PerThread threading model. An Artix service
can have multiple ports, and each of the ports is served by a work queue that
stores the incoming requests. A pool of threads is reserved for each port, and
each thread in the pool is associated with a distinct servant instance.

PerInvocation The PerInvocation threading model implies that a servant instance is created
for every invocation. In this case, the servant implementation does not need to be
thread-safe, because a servant can be called from no more than one thread at a
time.

The relationship between threads and servants is similar to the case of the
PerThread threading model (see Figure 14 on page 181). There is a difference in
servant lifecycle management, however. Each thread is associated with a servant
for the duration of an operation invocation. At the end of the invocation, the
servant instance is destroyed.

Figure 14: Outline of the PerThread Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2
 181

CHAPTER 4 | Artix Programming Considerations
Setting the Servant Threading Model

Overview Some of the servant threading models are implemented using wrapper servant
classes, which work by overriding the default behavior of a servant’s
dispatch() function. Exceptions to this pattern are the default multi-threaded
model and the per-port threading model. This section describes how to program
the various servant threading models.

How to set a per-port threading
model

The per-port threading model can be enabled by employing the two-step style of
servant registration (see “Activating a static servant” on page 104 or “Activating
a transient servant” on page 112). For example, you could register distinct
servants, corba_servant and soap_servant, against distinct ports, CORBAPort
and SOAPPort, using the following code example:

Wrapper servants The only wrapper servant function that you need is a constructor. Example 60
shows the constructors for each of the wrapper servant classes.

// C++
IT_Bus::QName service_name("", "BankService",

"http://www.iona.com/bus/demos/bank");

IT_Bus::Service_var bank_service =
 bus->add_service("bank.wsdl", service_name);
bank_service->register_servant(corba_servant, "CORBAPort");
bank_service->register_servant(soap_servant, "SOAPPort");

Example 60: Constructors for the Wrapper Servant Classes

// C++
IT_Bus::SerializedServant(IT_Bus::Servant& servant);

IT_Bus::PerThreadServant(IT_Bus::Servant& servant);

IT_Bus::PerInvocationServant(IT_Bus::Servant& servant);
182

Multi-Threading
How to set a threading model using
wrapper servants

To register a servant with a Serialized, PerThread or PerInvocation
threading model, perform the following steps:

• Step 1—Implement the servant clone() function (if required).

• Step 2—Register the wrapper servant.

Step 1—Implement the servant
clone() function (if required)

If you intend to use a PerThread or PerInvocation threading model, you must
implement the clone() function in your servant class. The clone() function
will be called automatically whenever the threading model demands a new
servant instance. Example 61 shows the default implementation of the clone()
function for the servant class, PortTypeImpl.

Step 2—Register the wrapper
servant

To register a wrapper servant, you must pass the original servant object to a
wrapper servant constructor and then pass the wrapper servant to the
register_servant() function (or the register_transient_servant()
function in the case of transient servants).

For example, Example 62 shows how the main function of the bank server
example can be modified to register the BankImpl servant with a PerThread
threading model.

Example 61: Default Implementation of the clone() Function

// C++
IT_Bus::Servant*
PortTypeImpl::clone() const
{
 return new PortTypeImpl(get_bus());
}

Example 62: Registering a Servant with a PerThread Threading Model

// C++
...
try {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, (char **)argv);

 BankImpl my_bank(bus);
1 IT_Bus::PerThreadServant per_thread_bank(my_bank);

 QName service_name("", "BankService",
"http://www.iona.com/bus/demos/bank");
 183

CHAPTER 4 | Artix Programming Considerations
The preceding C++ code can be described as follows:

1. In this step, the BankImpl servant is wrapped by a new

IT_Bus::PerThreadServant instance.

2. When it comes to registering, you must register the wrapper servant,

per_thread_bank, instead of the original servant, my_bank.

2 bus->register_servant(
 per_thread_bank,
 "../wsdl/bank.wsdl",
 service_name
);

 IT_Bus::run();

 bus->remove_service(service_name);
}
catch (IT_Bus::Exception& e) { ... }

Example 62: Registering a Servant with a PerThread Threading Model
184

Multi-Threading
Thread Pool Configuration

Thread pool settings The thread pool for each port is controlled by the following parameters (which
can be set in the configuration):

• Initial threads—the number of threads initially created for each port.

• Low water mark—the size of the dynamically allocated pool of threads

will not fall below this level.

• High water mark—the size of the dynamically allocated pool of threads

will not rise above this level.

Thread pools are configured by adding to or editing the settings in the
ArtixInstallDir/etc/domains/artix.cfg configuration file. In the following
examples, it is assumed that the Artix application specifies its configuration
scope to be sample_config.

Thread pool configuration levels Thread pools can be configured at several levels, where the more specific
configuration settings take precedence over the less specific, as follows:

• Global level.

• Service name level.

• Qualified service name level.

Note: You can specify the configuration scope at the command line by
passing the switch -BUSname ConfigScopeName to the Artix executable.
Command-line arguments are normally passed to IT_Bus::init().
 185

CHAPTER 4 | Artix Programming Considerations
Global level The variables shown in Example 63 can be used to configure thread pools at the
global level; that is, these settings would apply to all services by default.

The default settings are as follows:

thread_pool:initial_threads = "2";
thread_pool:low_water_mark = "5";
thread_pool:high_water_mark = "25";

Service name level To configure thread pools at the service name level (that is, overriding the global
settings for a specific service only), set the following configuration variables:

thread_pool:initial_threads:ServiceName
thread_pool:low_water_mark:ServiceName
thread_pool:high_water_mark:ServiceName

Where ServiceName is the name of the particular service to configure, as it
appears in the WSDL <service name="ServiceName"> tag.

For example, the settings in Example 64 show how to configure the thread pool
for a service named SessionManager.

Example 63: Thread Pool Settings at the Global Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at global level
 thread_pool:initial_threads = "3";
 thread_pool:low_water_mark = "5";
 thread_pool:high_water_mark = "10";
};

Example 64: Thread Pool Settings at the Service Name Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at Service name level
 thread_pool:initial_threads:SessionManager = "1";
 thread_pool:low_water_mark:SessionManager = "5";
 thread_pool:high_water_mark:SessionManager = "10";
};
186

Multi-Threading
Qualified service name level Occasionally, if the service names from two different namespaces clash, it might
be necessary to identify a service by its fully-qualified service name. To
configure thread pools at the qualified service name level, set the following
configuration variables:

thread_pool:initial_threads:NamespaceURI:ServiceName
thread_pool:low_water_mark:NamespaceURI:ServiceName
thread_pool:high_water_mark:NamespaceURI:ServiceName

Where NamespaceURI is the namespace URI in which ServiceName is defined.

For example, the settings in Example 65 show how to configure the thread pool
for a service named SessionManager in the http://my.tns1/ namespace URI.

Example 65: Thread Pool Settings at the Qualified Service Name Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at Service name level
 thread_pool:initial_threads:http://my.tns1/:SessionManager =

"1";
 thread_pool:low_water_mark:http://my.tns1/:SessionManager =

"5";
 thread_pool:high_water_mark:http://my.tns1/:SessionManager =

"10";
};
 187

CHAPTER 4 | Artix Programming Considerations
Converting with to_string() and from_string()

Overview This section describes how you can use the << operator, the
IT_Bus::to_string() function and the IT_Bus::from_string() function to
convert Artix data types to and from a string format.

Header files The following header files must be included in your source code to access the
string conversion APIs:

• <it_bus/to_string.h>

• <it_bus/from_string.h>

Library To use the string conversion functions and operators, link your application with
the following library:

• it_bus_xml.lib, on Windows platforms,

• libit_bus_xml[.a][.so], on UNIX platforms.

Demonstration The following demonstration gives an example of how to use the Artix string
conversion functions, to_string() and from_string():

ArtixInstallDir/cxx_java/samples/basic/to_string

Example struct Example 66 shows the definition of an XML schema type, SimpleStruct,
which is used by the string conversion examples in this section.

Example 66: Schema Definition of a SimpleStruct Type

<?xml version="1.0" encoding="UTF-8"?>
<schema

targetNamespace="http://schemas.iona.com/tests/type_test"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/tests/type_test">

 <complexType name="SimpleStruct">
 <sequence>
 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
188

Converting with to_string() and from_string()
operator<<() By including the <it_bus/to_string.h> header file and linking with the
it_bus_xml library, you can use the << operator to print out any Artix data type
in a string format (assuming that the stub code for this data type is already linked
with your application).

Example using << The following code example shows how to print a simple struct, first_struct,
as a string using the << stream operator:

The preceding code produces the following output:

In the stringified output, the element name defaults to <to_string>.

 </sequence>
 <attribute name="varAttrString" type="string"/>
 </complexType>

</schema>

Example 66: Schema Definition of a SimpleStruct Type

// C++
...
#include <it_bus/to_string.h>
...
int main(int argc, char** argv)
{
 SimpleStruct first_struct;
 first_struct.setvarString("goodbye");
 first_struct.setvarInt(121);
 first_struct.setvarFloat(3.14);

 cout << endl << "Print using operator<<"
 << endl << first_struct << endl;
}

Print using operator<<
<?xml version='1.0' encoding='utf-8'?><to_string

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><varFloat>3.1400
00105e0</varFloat><varInt>121</varInt><varString>goodbye</var
String></to_string>
 189

CHAPTER 4 | Artix Programming Considerations
to_string() Example 67 shows the signature of the IT_Bus::to_string() function, as
defined in the <it_bus/to_string.h> header.

You can convert any Artix data type to a string, IT_Bus::String, by passing it
as the first argument in to_string() (IT_Bus::AnyType is the base class for all
Artix data types). The resulting string has the following general format:

Where the ElementName has one of the following values:

• If the second parameter of to_string() is defaulted, the ElementName is

to_string.

• If the second parameter of to_string() is a simple string, say foo, the

ElementName is foo.

• If the second parameter of to_string() is an IT_Bus::QName, say

QName("", "foo", "http://xml.iona.com/IDD/test"), the

ElementName is m1:foo, where m1 is the prefix associated with the

http://xml.iona.com/IDD/test namespace URI.

Example using to_string() The following code example shows how to convert a simple struct,
second_struct, to a string using the to_string() function:

Example 67: Signature of the IT_Bus::to_string() Function

// C++
namespace IT_Bus
{
 String IT_BUS_XML_API
 to_string(
 const AnyType& data,
 const QName& element_name=default_to_string_element_name
);
}

<?xml version='1.0' encoding='utf-8'?>
<ElementName

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 ...
</ElementName>

// C++
...
190

Converting with to_string() and from_string()
The preceding code produces the following output:

In the stringified output, the element name is defined as m1:foo.

from_string() Example 68 shows the signature of the IT_Bus::from_string() function, as
defined in the <it_bus/from_string.h> header.

#include <it_bus/to_string.h>
...
int main(int argc, char** argv)
{
 SimpleStruct first_struct;
 second_struct.setvarString("hello");
 second_struct.setvarInt(2);
 second_struct.setvarFloat(1.1);

 String resulting_xml = IT_Bus::to_string(
 second_struct,
 QName("", "foo", "http://xml.iona.com/IDD/test")
);

 cout << endl << "Resulting XML String:"
 << endl << resulting_xml.c_str() << endl;
}

Resulting XML String:
<?xml version='1.0' encoding='utf-8'?><m1:foo

xmlns:m1="http://xml.iona.com/IDD/test"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><varFloat>1.1000
00024e0</varFloat><varInt>2</varInt><varString>hello</varStri
ng></m1:foo>

Example 68: Signature of the IT_Bus::from_string() Function

// C++
namespace IT_Bus
{
 void IT_BUS_XML_API
 from_string(
 const String & data,
 AnyType & result,
 const QName &
 element_name=default_from_string_element_name
);
 191

CHAPTER 4 | Artix Programming Considerations
You can initialize an Artix data type from an XML element in string format
using the from_string() conversion function. Pass the XML string as the first
argument, data, and the data type to initialize as the second parameter, result.

Example using from_string() The following code example shows how to convert an XML string,
original_xml, to a simple struct, simple_struct, using the from_string()
function:

}

Example 68: Signature of the IT_Bus::from_string() Function

// C++
...
#include <it_bus/from_string.h>
...
int main(int argc, char** argv)
{
 String original_xml = "<?xml version='1.0'

encoding='utf-8'?><to_string
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"><varFloat>1.10
0000024e0</varFloat><varInt>2</varInt><varString>hello</varSt
ring></to_string>";

 SimpleStruct simple_struct;

 IT_Bus::from_string(original_xml, simple_struct);

 cout << endl << "Output values of SimpleStruct C++ type using
accessor methods."

 << endl << " SimpleStruct populated with the following
values:"

 << endl << " SimpleStruct::varString = " <<
simple_struct.getvarString().c_str()

 << endl << " SimpleStruct::varInt = " <<
simple_struct.getvarInt()

 << endl << " SimpleStruct::varFloat = " <<
simple_struct.getvarFloat() << endl;

}

192

Locating Services with UDDI
Locating Services with UDDI

Overview A Universal Description, Discovery and Integration (UDDI) registry is a form of
database that enables you to store and retrieve Web services endpoints. It is
particularly useful as a means of making Web services available on the Internet.
Instead of making your WSDL contract available to clients in the form of a file,
you can publish the WSDL contract to a UDDI registry. Clients can then query
the UDDI registry and retrieve the WSDL contract at runtime.

Publishing WSDL to UDDI You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http://uddi.ibm.com from IBM or
http://uddi.microsoft.com/ from Microsoft. To publish your WSDL
contract, navigate to one of the public UDDI Web sites and follow the
instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html).

UDDI URL format Artix uses UDDI query strings that take the form of a URL:

uddi:<UDDIRegistryEndpointURL>?<QueryString>

The UDDI URL is built up from the following components:

• UDDIRegistryEndpointURL—the endpoint address of a UDDI registry.

This could either be a local UDDI registry (for example,

http://localhost:9000/services/uddi/inquiry) or a public UDDI

registry on the Internet (for example,

http://uddi.ibm.com/ubr/inquiryapi for IBM’s UDDI registry).

• QueryString—a combination of attributes that is used to query the UDDI

database for the Web service endpoint data. Currently, Artix only supports

the tmodelname attribute. An example of a query string is:

Within a query component, the characters ;, /, ?, :, @, &, =, +, ,, and $ are

reserved.

tmodelname=helloworld
 193

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html

CHAPTER 4 | Artix Programming Considerations
Examples of valid UDDI URLs

uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=hello
world

uddi:http://uddi.ibm.com/ubr/inquiryapi?tmodelname=helloworld

Initializing a client proxy with
UDDI

To initialize a client proxy with UDDI, pass a valid UDDI URL string to the
proxy constructor. For example, if you have a local UDDI registry,
http://localhost:9000/services/uddi/inquiry, where you have registered
the WSDL contract from the HelloWorld demonstration (this contract is in
InstallDir/cxx_java/samples/basic/hello_world_soap_http/etc), you
can initialize the GreeterClient proxy as follows:

Configuration To configure an Artix client to support UDDI, you must add uddi_proxy to the
application’s orb_plugins list (for the C++ plug-in). For example:

// C++
...
IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

// Instantiate an instance of the proxy
GreeterClient hw("uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld");

String string_out;

// Invoke sayHi operation
hw.sayHi(string_out);

Artix Configuration File

my_application_scope {
 orb_plugins = [..., "uddi_proxy"];
 ...
};
194

Compiling and Linking an Artix Application
Compiling and Linking an Artix Application

Compiler Requirements An application built using Artix requires a number of Progress-supplied C++
header files in order to compile. The directory containing these include files
must be added to the include path for the compiler, so that when the compiler
processes the generated files, it is able to find the necessary included
infrastructure header files.

The following include path directives should be given to the compiler:

Linker Requirements A number of Artix libraries are required to link with an application built using
Artix. The following directives should be given to the linker:

Table 1 shows the libraries that are required for linking an Artix application and
their function.

-I"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\include"

-L"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\lib" it_bus.lib it_afc.lib it_art.lib it_ifc.lib

Table 1: Artix Import Libraries for Linking with an Application

Windows Libraries UNIX Libraries Description

it_bus.lib libit_bus.so

libit_bus.sl

libit_bus.a

The Bus library provides the functionality required to access
the Artix bus. Required for all applications that use Artix
functionality.

it_afc.lib libit_afc.so

libit_afc.sl

libit_afc.a

The Artix foundation classes provide Artix specific data type
extensions such as IT_Bus::Float, etc. Required for all
applications that use Artix functionality.

it_ifc.lib libit_ifc.so

libit_ifc.sl

libit_ifc.a

The IONA foundation classes provide Progress proprietary
data types and exceptions.

it_art.lib libit_art.so

libit_art.sl

libit_art.a

The ART library provides advanced programming
functionality that requires access to the Artix infrastructure
and the underlying ORB.
 195

CHAPTER 4 | Artix Programming Considerations
Runtime Requirements The following directories need to be in the path, either by copying them into a
location already in the path, or by adding their locations to the path. The
following lists the required libraries and their location in the distribution files
(all paths are relative to the root directory of the distribution):

On some UNIX platforms you also have to update the SHLIB_PATH or
LD_LIBRARY_PATH variables to include the Artix shared library directory.

"$(IT_PRODUCT_DIR)\bin"
196

Building Artix Stub Libraries on Windows
Building Artix Stub Libraries on Windows

Overview The Artix WSDL-to-C++ compiler features an option, -declspec, that
simplifies the process of building Dynamic Linking Libraries (DLLs) on the
Windows platform. The -declspec option defines a macro that automatically
inserts export declarations into the stub header files.

Generating stubs with declaration
specifiers

To generate Artix stubs with declaration specifiers, use the -declspec option to
the WSDL-to-C++ compiler, as follows:

wsdltocpp -declspec MY_DECL_SPEC BaseService.wsdl

In this example, the -declspec option would add the following preprocessor
macro definition to the top of the generated header files:

#if !defined(MY_DECL_SPEC)
#if defined(MY_DECL_SPEC_EXPORT)
#define MY_DECL_SPEC IT_DECLSPEC_EXPORT
#else
#define MY_DECL_SPEC IT_DECLSPEC_IMPORT
#endif
#endif

Where the IT_DECLSPEC_EXPORT macro is defined as _declspec(dllexport)
and the IT_DECLSPEC_IMPORT macro is _declspec(dllimport).

Each class in the header file is declared as follows:

class MY_DECL_SPEC ClassName { ... };

Compiling stubs with declaration
specifiers

If you are about to package your stubs in a DLL library, compile your C++ stub
files, StubFile.cxx, with a command like the following:

cl -DMY_DECLSPEC_EXPORT ... StubFile.cxx

By setting the MY_DECLSPEC_EXPORT macro on the command line,
_declspec(dllexport) declarations are inserted in front of the public class
declarations in the stub. This ensures that applications will be able to import the
public definitions from the stub DLL.
 197

CHAPTER 4 | Artix Programming Considerations
198

CHAPTER 5

Endpoint
References
References provide a convenient and flexible way of identifying and
locating specific services.

In this chapter This chapter discusses the following topics:

Introduction to Endpoint References page 200

Using References in WSDL page 203

Programming with References page 209

The WSDL Publish Plug-In page 217

Migration Scenarios page 222
 199

CHAPTER 5 | Endpoint References
Introduction to Endpoint References

Overview An endpoint reference is an object that encapsulates addressing information for a
particular WSDL service. Essentially, a reference encapsulates all of the
information that is required to open a connection to an endpoint. References
have the following features:

• A reference encapsulates the data from a wsdl:service element.

• References can be sent across the wire as parameters of or as return values

from operations.

• References can be passed to client proxy constructors, enabling a client to

open a connection to a remote endpoint.

• References are protocol and transport neutral.

XML representation of a reference An endpoint reference is represented by the wsa:EndpointReferenceType type
from the following WS-Addressing schema:

ArtixInstallDir/schemas/wsaddressing.xsd

The WS-Addressing schema is also available online at:

http://www.w3.org/2005/08/addressing/ws-addr.xsd

The XML representation is used when marshaling or unmarshaling a reference
as a WSDL operation parameter.

Note: From Artix 4.1 onwards, the on-the-wire format of endpoint references
has changed, in order to comply with the Web Services Addressing 1.0 -
WSDL Binding specification. This might give rise to some interoperability
issues, if you require Artix 4.1 programs to interact with older Artix versions.
For details, please consult Configuring and Managing Artix Solutions.

Note: In versions of Artix prior to 4.0, references were represented by the
proprietary type, IT_Bus::Reference. Since version 4.0, however, Artix
complies with the WS-Addressing standard for endpoint references. For details
of migration issues around references, see “Migration Scenarios” on page 222.

Note: You cannot use references with rpc-encoded bindings, because
references contain attributes, which are not compatible with rpc-encoding.
200

http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/2005/08/addressing/ws-addr.xsd

Introduction to Endpoint References
C++ representation of a reference In C++, an endpoint reference is represented by an instance of the
WS_Addressing::EndpointReferenceType class.

Empty endpoint reference An endpoint reference containing the following address:

http://www.w3.org/2005/08/addressing/none

represents an empty endpoint reference (also called a null endpoint reference).
You cannot send any messages to such an endpoint reference.

Contents of an endpoint reference Generally, the on-the-wire XML representation of an endpoint reference has the
following form (where wsa:EndpointReference is an element of
wsa:EndpointReferenceType type):

An endpoint reference encapsulates the following data:

• wsa:Address—gives the URI of the endpoint, in whichever format is

appropriate for the transport in question. This element must be present.

• wsa:ReferenceParameters—an optional list of additional parameters that

might be needed for establishing a connection to the endpoint (or

endpoints).

• wsa:Metadata—according to the Web Services Addressing 1.0 - WSDL

Binding specification, either or both of the following kinds of metadata can

be included in this element:

♦ A reference to WSDL metadata—this metadata identifies an endpoint

whose details are contained either in this wsa:Metadata section or in

an external WSDL file.

<wsa:EndpointReference>
 <wsa:Address>xs:anyURI</wsa:Address>
 <wsa:ReferenceParameters>xs:any*</wsa:ReferenceParameters> ?
 <wsa:Metadata>xs:any*</wsa:Metadata> ?
</wsa:EndpointReference>

Note: Because Artix supports references with multiple endpoints (that
is, WSDL ports), the wsa:Address element, which supports only one
endpoint, is often superceded by the wsa:Metadata element, which
supports multiple endpoints. If both are present, the wsa:Metatdata
element takes precedence.
 201

http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/

CHAPTER 5 | Endpoint References
♦ Embedded WSDL metadata—consists either of a WSDL 2.0

description element or a WSDL 1.1 definitions element. This

element contains a fragment from the WSDL contract describing an

endpoint (or endpoints).

The Bank example Figure 15 shows an overview of the Bank example, illustrating how the Bank
service uses references to give a client access to a specific account.

The preceding Bank example can be explained as follows:

1. The client calls get_account() on the BankService service to obtain a

reference to a particular account, AccName.

2. The BankService creates a reference to the AccName account and returns

this reference in the response to get_account().

3. The client uses the returned reference to initialize an AccountClient

proxy.

4. The client invokes operations on the Account service through the

AccountClient proxy.

Figure 15: Using Bank to Obtain a Reference to an Account

Server

Bank servant

Account servant

Reference

Account DB

Client

Bank proxy

Account proxy

Reference

1

2

3
4

get_account()

get_balance()
202

Using References in WSDL
Using References in WSDL

Overview To use endpoint references in WSDL—that is, to declare operation parameters
or return values to be endpoint references—perform the following steps:

1. Define the wsa namespace prefix in the <definitions> tag at the start of

the contract—for example, by setting

xmlns:wsa="http://www.w3.org/2005/08/addressing".

2. Import the WS-Addressing schema using an xsd:import element.

3. Declare the relevant parameters and return values to be of

wsa:EndpointReferenceType type.

The WS-Adressing XML schema The WS-Addressing schema is stored in the following file:

ArtixInstallDir/schemas/wsaddressing.xsd

The schema is also available online at:

http://www.w3.org/2005/08/addressing/ws-addr.xsd

WS-Addressing namespace URI The endpoint reference type is defined in the following target namespace:

http://www.w3.org/2005/08/addressing

To access the WS-Addressing types in a WSDL contract file, you should
introduce a namespace prefix in the <definitions> tag, as follows:

Endpoint reference type The WS-Addressing schema defines an endpoint reference type for use within
WSDL contracts. The endpoint reference type is, as follows:

WSAPrefix:EndpointReferenceType

Where WSAPrefix is associated with the
http://www.w3.org/2005/08/addressing namespace URI:

<definitions xmlns="..."
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 ... >
 203

http://www.w3.org/2005/08/addressing/ws-addr.xsd

CHAPTER 5 | Endpoint References
The Bank WSDL contract Example 69 shows the WSDL contract for the Bank example that is described in
this section. There are two port types in this contract, Bank and Account. For
each of the two port types there is a SOAP binding, BankBinding and
AccountBinding.

Example 69: Bank WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
1 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/bus/demos/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd"
 xmlns:stub="http://schemas.iona.com/transports/stub"
 xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
 xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:ns1="http://www.iona.com/corba/typemap/BasePortType.idl
"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:mq="http://schemas.iona.com/transports/mq"
 xmlns:routing="http://schemas.iona.com/routing"
 xmlns:msg="http://schemas.iona.com/port/messaging"
 xmlns:bank="http://www.iona.com/bus/demos/bank"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 name="BaseService" >
 <types>

2 <xsd:import schemaLocation="/schemas/wsaddressing.xsd"
namespace="http://www.w3.org/2005/08/addressing"/>

 <schema elementFormDefault="qualified"
 targetNamespace="http://www.iona.com/bus/demos/bank"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="AccountNames">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0"
 name="name" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </types>
204

Using References in WSDL
 <message name="list_accounts" />
 <message name="list_accountsResponse">
 <part name="return" type="bank:AccountNames"/>
 </message>

 <message name="create_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="create_accountResponse">

3 <part name="return" type="wsa:EndpointReferenceType"/>
 </message>

 <message name="get_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="get_accountResponse">

4 <part name="return" type="wsa:EndpointReferenceType"/>
 </message>

 <message name="delete_account">
 <part name="account_name" type="xsd:string"/>
 </message>
 <message name="delete_accountResponse" />

 <message name="get_balance"/>
 <message name="get_balanceResponse">
 <part name="balance" type="xsd:float"/>
 </message>

 <message name="deposit">
 <part name="addition" type="xsd:float"/>
 </message>

 <message name="depositResponse"/>

 <portType name="Bank">
 <operation name="list_accounts">
 <input name="list_accounts"
 message="tns:create_account"/>
 <output name="list_accountsResponse"
 message="tns:list_accountsResponse"/>
 </operation>

5 <operation name="create_account">

Example 69: Bank WSDL Contract
 205

CHAPTER 5 | Endpoint References
 <input name="create_account"
 message="tns:create_account"/>
 <output name="create_accountResponse"
 message="tns:create_accountResponse"/>
 </operation>

6 <operation name="get_account">
 <input name="get_account" message="tns:get_account"/>
 <output name="get_accountResponse"

message="tns:get_accountResponse"/>
 </operation>

 <operation name="delete_account">
 <input name="delete_account"
 message="tns:delete_account"/>
 <output name="delete_accountResponse"
 message="tns:delete_accountResponse"/>
 </operation>
 </portType>

 <portType name="Account">
 <operation name="get_balance">
 <input name="get_balance" message="tns:get_balance"/>
 <output name="get_balanceResponse"
 message="tns:get_balanceResponse"/>
 </operation>
 <operation name="deposit">
 <input name="deposit" message="tns:deposit"/>
 <output name="depositResponse"
 message="tns:depositResponse"/>
 </operation>
 </portType>

 <binding name="BankBinding" type="tns:Bank">
 ...
 </binding>
 <binding name="AccountBinding" type="tns:Account">
 ...
 </binding>

7 <service name="BankService">
 <port name="BankPort" binding="tns:BankBinding">
 <soap:address
 location="http://localhost:0/BankService/BankPort/"/>
 </port>

Example 69: Bank WSDL Contract
206

Using References in WSDL
The preceding WSDL contract can be described as follows:

1. The <definitions> tag associates the wsa prefix with the

http://www.w3.org/2005/08/addressing namespace URI. This means

that the reference type is identified as wsa:EndpointReferenceType.

2. The xsd:import imports the wsa:EndpointReferenceType type definition

from the WS-Adressing schema, wsaddressing.xsd. You must edit this

line if the references schema is stored at a different location relative to the

bank WSDL file. Artix stores the WS-Addressing schema at

ArtixInstallDir/schemas/wsaddressing.xsd.

3. The create_accountResponse message (which is the out parameter of the

create_account operation) is defined to be of

wsa:EndpointReferenceType type.

4. The get_accountResponse message (which is the out parameter of the

get_account operation) is defined to be of wsa:EndpointReferenceType

type.

5. The create_account operation defined on the Bank port type is defined to

return a wsa:EndpointReferenceType type.

 </service>
 <service name="BankServiceRouter">
 <port name="BankPort" binding="tns:BankBinding">
 <soap:address

location="http://localhost:0/BankService/BankPort/"/>
 </port>
 </service>

8 <service name="AccountService">
 <port name="AccountPort" binding="tns:AccountBinding">
 <soap:address location="http://localhost:0" />
 </port>
 </service>
</definitions>

Example 69: Bank WSDL Contract

Note: Alternatively, you could cut and paste the references schema
directly into the WSDL contract at this point, replacing the xsd:import
element.
 207

CHAPTER 5 | Endpoint References
6. The get_account operation defined on the Bank port type is defined to

return a wsa:EndpointReferenceType type.

7. The information contained in this <service name="BankService">

element is approximately the same as the information that is held in a

BankService reference, apart from the addressing information in the

soap:address element.

The BankService reference generated at runtime replaces the

http://localhost:0/BankService/BankPort/ SOAP address with

http://host_name:IP_port/BankService/BankPort/ where host_name

and IP_port are substituted with the port address that the server is actually

listening on (dynamic port allocation).

8. The information contained in this <service name="AccountService">

element serves as a prototype for generating AccountService references.

Because the account objects are registered as transient servants, the

corresponding AccountService references are cloned from the

AccountService service at runtime by altering the following data:

♦ The service QName is replaced by a transient service QName, which

consists of AccountService concatenated with a unique ID code.

♦ The http://localhost:0 SOAP address is replaced by

http://host_name:IP_port/TransientURLSuffix, where host_name

and IP_port are set to the port address that the server is listening on

and TransientURLSuffix is a suffix that is unique for each transient

reference.

Note: If the IP port in the WSDL contract is non-zero, Artix uses the
specified port instead of performing dynamic port allocation. The
hostname would still be substituted, however.
208

Programming with References
Programming with References

Overview This section explains how to program with endpoint references, using a simple
bank application as a source of examples. The bank server supports a
create_account() operation and a get_account() operation, which return
references to Account objects.

To program with references, you need to know how to generate references on the
server side and how to resolve references on the client side.

In this section This section contains the following subsections:

Creating References page 210

Resolving References page 215
 209

CHAPTER 5 | Endpoint References
Creating References

Overview This subsection describes how to create endpoint references, which can be
generated on the server side in order to advertise the location of a service to
clients.

The following topics are discussed in this section:

• Factory pattern.

• Creating a reference from a static servant.

• Creating a reference from a transient servant.

• Creating a reference from a WSDL contract.

• Creating an empty reference.

Factory pattern References are usually created in the context of a factory pattern. This pattern
involves at least two kinds of object:

• The product—that is, the type of object to which the references refer.

• The factory—which generates references to the first type of object.

For example, the Bank is a factory that generates references to Accounts.

Creating a reference from a static
servant

Example 70 shows how to create a BankService reference from a static servant,
BankImpl.

Example 70: Creating a Reference from a Static Servant

// C++
...
try {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, (char **)argv);

 IT_Bus::QName service_name(
 "", "BankService", "http://www.iona.com/bus/demos/bank"
);

1 BankImpl my_bank(bus);

2 IT_WSDL::WSDLService* wsdl_service =
 get_bus()->get_service_contract(service_name);
210

Programming with References
The preceding C++ code can be described as follows:

1. This line creates a BankImpl servant instance, which implements the Bank

port type.

2. Call the IT_Bus::Bus::get_service_contract() function to find details

of the service_name service amongst the known WSDL contracts. This

function returns a parsed WSDL service element, of

IT_WSDL::WSDLService type.

3. The register_servant() function registers a static servant instance,

taking the following arguments:

♦ Servant instance.

♦ Parsed WSDL service element.

The return value is an IT_Bus::Service object, which references the

original BankService WSDL service.

4. Call IT_Bus::Bus::get_service() to get a pointer to the Service object.

5. The get_endpoint_reference() function populates an endpoint

reference, based on the state of the service object, service.

3 bus->register_servant(
 my_bank,
 *wsdl_service
);

4 IT_Bus::Service_var service = bus->get_service(service_name);

5 WS_Addressing::EndpointReferenceType bank_reference;
 service->get_endpoint_reference(bank_reference);
 ...
}

Example 70: Creating a Reference from a Static Servant

Note: The preceding example activates all of the ports associated with
the Bank service. If you want to activate ports individually, see “Activate
ports individually” on page 105.

Note: In versions of Artix prior to 4.0, the equivalent functionality (a
function that returns an IT_Bus::Reference type) was provided by the
get_reference() function.
 211

CHAPTER 5 | Endpoint References
Creating a reference from a
transient servant

Example 71 gives the implementation of the BankImpl::create_account(),
function which shows how to create an AccountService reference from a
transient servant, AccountImpl.

Example 71: Creating a Reference from a Transient Servant

// C++
void
BankImpl::create_account(
 const IT_Bus::String &account_name,
 WS_Addressing::EndpointReferenceType &account_reference
) IT_THROW_DECL((IT_Bus::Exception))
{
 AccountMap::iterator account_iter = m_account_map.find(
 account_name
);
 if (account_iter == m_account_map.end())
 {
 cout << "Creating new account: "
 << account_name.c_str() << endl;

1 AccountImpl * new_account = new AccountImpl(
 get_bus(), account_name, 0
);

2 IT_WSDL::WSDLService* wsdl_template_service =
 get_bus()->get_service_contract(
 AccountImpl::SERVICE_NAME
);

3 IT_Bus::Service_var cloned_service =
 get_bus()->register_transient_servant(
 *new_account,
 *wsdl_template_service
);

 // Now put the details for the account into the map so
 // we can retrieve it later.
 //
 AccountDetails details;

4 details.m_service = cloned_service.release();
 details.m_account = new_account;
212

Programming with References
The preceding C++ code can be described as follows:

1. This line creates an AccountImpl servant instance, which implements the

Account port type.

2. Call the IT_Bus::Bus::get_service_contract() function to find details

of the AccountImpl::SERVICE_NAME service amongst the known WSDL

contracts. This function returns a parsed WSDL service element, of

IT_WSDL::WSDLService type.

3. The register_transient_servant() function registers a transient

servant instance, taking the following arguments:

♦ Servant instance.

♦ Parsed WSDL service element.

The return value is an IT_Bus::Service object, which references a WSDL

service cloned from the AccountService template service.

4. The release() function is part of the Artix smart pointer API—it tells the

smart pointer, cloned_service, not to delete the referenced

IT_Bus::Service object once the cloned_service smart pointer goes out

of scope.

 account_iter = m_account_map.insert(
 AccountMap::value_type(account_name, details)
).first;
 }

5 (*account_iter).second.m_service->get_endpoint_reference(
 account_reference
)
}

Example 71: Creating a Reference from a Transient Servant

Note: The preceding example activates all of the ports associated with
the Bank service. If you want to activate ports individually, see “Activate
ports individually” on page 114.
 213

CHAPTER 5 | Endpoint References
5. The get_endpoint_reference() function populates an endpoint

reference, based on the state of the account service object.

Creating a reference from a
WSDL contract

You can create a reference directly from an IT_WSDL::WSDLService object,
which is the Artix representation of a parsed wsdl:service element. Call the
IT_Bus::Bus::populate_endpoint_reference() function as follows:

As this example shows, you can create an endpoint reference without ever
registering a servant.

Creating an empty reference You can create an empty or null reference as follows:

Note: In versions of Artix prior to 4.0, the equivalent functionality (a
function that returns an IT_Bus::Reference type) was provided by the
get_reference() function.

// C++
IT_Bus::QName service_qname("", ..., ...);

const WSDLService * wsdl_service =
bus->get_service_contract(service_qname);

WS_Addressing::EndpointReferenceType result;

bus->populate_endpoint_reference(
 *wsdl_service,
 result
);

// C++
WS_Addressing::EndpointReferenceType null_reference;
null_reference.getAddress().getvalue().set_uri(
 "http://www.w3.org/2005/08/addressing/none"
);
214

Programming with References
Resolving References

Overview To a client, an WS_Addressing::EndpointReferenceType object is just an
opaque token that can be used to open a connection to a particular Artix service.
The basic usage pattern on the client side, therefore, is for the client to obtain a
reference from somewhere and then use the reference to initialize a proxy object.

Initializing a client proxy with a
reference

Client proxies include special constructors to initialize the proxy from an
WS_Addressing::EndpointReferenceType object. For example, the
AccountClient proxy class includes the following constructors:

The first form of constructor connects to the first port in the reference.

The second form of constructor is useful, if the reference contains multiple ports.
You can use the port_name argument to specify which port the client connects
to, while leaving the wsdl_location and service_name arguments empty. For
example, to initialize a proxy that connects to the CORBAPort port from the
multi_port_epr endpoint reference, call the constructor as follows:

// C++
AccountClient(
 const WS_Addressing::EndpointReferenceType & epr_ref,
 IT_Bus::Bus_ptr bus = 0
);

AccountClient(
 const WS_Addressing::EndpointReferenceType& epr_ref,
 const IT_Bus::String& wsdl_location,
 const IT_Bus::QName& service_name,
 const IT_Bus::String& port_name,
 IT_Bus::Bus_ptr bus = 0
);

// C++
AccountClient* proxy = new AccountClient(
 multi_port_epr,
 IT_Bus::String::EMPTY,
 IT_Bus::QName::EMPTY_QNAME,
 "CORBAPort"
);
 215

CHAPTER 5 | Endpoint References
The second form of constructor is also useful for interoperability purposes,
where an endpoint reference originates from a non-Artix application. The
WS-Addressing specification does not require an endpoint reference to
encapsulate metadata for the endpoint. Hence, sometimes the endpoint reference
might contain just an URL (the endpoint address) and provide no other details
about the endpoint. In this case, you can supply the missing endpoint details
directly from a WSDL contract. The second form of constructor enables you to
specify the WSDL contract location, wsdl_location, the service QName,
service_name, and port name, port_name, for the endpoint.

Client example Example 72 shows some sample code from a client that obtains a reference to an
Account and then uses this reference to initialize an AccountClient proxy
object.

Example 72: Client Using an Account Reference

// C++
...
BankClient bankclient;

// 1. Retrieve an account reference from the remote Bank object.
WS_Addressing::EndpointReferenceType account_reference;
bankclient.get_account("A. N. Other", account_reference);

// 2. Resolve the account reference.
AccountClient account(account_reference);

IT_Bus::Float balance;
account.get_balance(balance);
216

The WSDL Publish Plug-In
The WSDL Publish Plug-In

Overview It is recommended that you activate the WSDL publish plug-in for any
applications that generate and export references. To use references, the client
must have access to the WSDL contract referred to by the reference. The
simplest way to accomplish this is to use the wsdl_publish plug-in.

By default, a reference’s WSDL location URL would reference a local file on
the server system. This suffers from the following drawbacks:

• Clients are not able to access the server’s WSDL file, unless they happen to

share the same file system.

• Endpoint information (the physical contract) might be inaccurate or

incomplete, because the server updates transport properties at runtime.

In both of these cases, the client needs to have a way of obtaining the
dynamically-updated WSDL contract directly from the remote server. The
simplest way to achieve this is to configure the server to load the WSDL publish
plug-in. The WSDL publish plug-in automatically opens a HTTP port, from
which clients can download a copy of the server’s in-memory WSDL model.

Loading the WSDL publish
plug-in

To load the WSDL publish plug-in, edit the artix.cfg configuration file and
add wsdl_publish to the orb_plugins list in your application’s configuration
scope. For example, if your application’s configuration scope is demos.server,
you might use the following orb_plugins list:

Artix Configuration File
demos{
 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish"];
 plugins:wsdl_publish:prerequisite_plugins = ["at_http"];
 ...
 };
};
 217

CHAPTER 5 | Endpoint References
Generating references without the
WSDL publish plug-in

Figure 16 gives an overview of how a reference is generated when the WSDL
publish plug-in is not loaded.

In this case, references generated by the IT_Bus::Bus object would, by default,
have their WSDL location set to point at the local WSDL file.

The Artix server reads and parses the WSDL file as it starts up, creating a
WSDL model in memory. Because the WSDL model can be updated
dynamically by the server, there may be some significant differences between
the WSDL model and the WSDL file.

WSDL model When an Artix server starts up, it reads the WSDL files needed by the registered
services—for example, in Figure 16, a single WSDL file is read and parsed.
After parsing, the WSDL definitions exist in memory in the form of a WSDL
model. The WSDL model is an XML parse tree containing all the WSDL
definitions imported into a particular IT_Bus::Bus instance at runtime. Different
IT_Bus::Bus instances have distinct WSDL models.

The WSDL model is dynamically updated by the Artix server to reflect changes
in the physical contract at runtime. For example, if the server dynamically
allocates an IP port for a particular port on a WSDL service, the port’s
addressing information is updated in the WSDL model.

Figure 16: Generating References without the WSDL Publish Plug-In

WSDL

WSDL Model

Reference

WSDL

WSDL File

IT_Bus::Bus

Artix Server

Read and parse
218

The WSDL Publish Plug-In
Generating references with the
WSDL publish plug-in

When the WSDL publish plug-in is loaded, the Artix server opens a HTTP port
which it uses to publish the in-memory WSDL model. Figure 17 gives an
overview of how an Artix reference is generated when the WSDL publish
plug-in is loaded.

In this case, references generated by the IT_Bus::Bus object have their WSDL
location set to the following URL:

http://host_name:WSDL_publish_port/QueryString

Where host_name is the server host, WSDL_publish_port is an IP port used
specifically for the purpose of serving up WSDL contracts, and QueryString is a
string that requests a particular WSDL contract (see “Querying the WSDL
publish port” on page 220).

If a client accesses the WSDL location URL, the server will convert the WSDL
model to XML on the fly and return the resulting WSDL contract in a HTTP
message.

Specifying the WSDL publish port If you need to specify the WSDL publish port explicitly, set the
plugins:wsdl_publish:publish_port variable in the Artix configuration file.

Figure 17: Generating References with the WSDL Publish Plug-In

WSDL

WSDL Model

Reference

WSDL

WSDL File

IT_Bus::Bus

Artix Server

Read and parse

wsdl_publish plug-in

WSDL publish port

Artix Client

Reference
 219

CHAPTER 5 | Endpoint References
Querying the WSDL publish port It is possible to query the WSDL publish port to obtain various kinds of
metadata for the services currently running in the server. Details of this query
protocol are provided in Configuring and Deploying Artix Solutions.

Usefulness of the published WSDL
model

In most cases, clients do not need to download the published WSDL model at
all. Published WSDL is primarily useful for dynamic clients that try to invoke an
operation on the fly. Because dynamic clients are not compiled with Artix stub
code, the only way they can obtain the logical contract is by downloading the
published WSDL model.

Whether or not you can use the physical part of the WSDL model depends on
how the corresponding servant is registered on the server side:

• If registered as static, the physical contract is available from the WSDL

model.

• If registered as transient, the physical contract is available only from the

reference, not from the WSDL model. The associated reference

encapsulates a cloned service which is generated at runtime and is not

included in the WSDL model. See “Registering Transient Servants” on

page 108.
220

The WSDL Publish Plug-In
Multiple Bus instances Occasionally, you might need to create an Artix server with more than one
IT_Bus::Bus instance. In this case, you should be aware that separate WSDL
models are created for each Bus instance and separate HTTP ports are also
opened to publish the WSDL models—see Figure 18.

Figure 18: WSDL Publish Plug-In and Multiple Bus Instances

WSDL

WSDL Model

IT_Bus::Bus

Artix Server

wsdl_publish plug-in

WSDL publish port

WSDL

WSDL Model

IT_Bus::Bus

WSDL publish port
 221

CHAPTER 5 | Endpoint References
Migration Scenarios

Overview With the release of Artix 4.0, Artix switched from using a proprietary reference
format to using the standard WS-Addressing endpoint reference format. If you
have existing applications that use the old proprietary reference format, you
might want to consider migrating those applications to the WS-Addressing
standard.

The following migration scenarios are considered here:

• Retaining proprietary references.

• Migrating to WS-Addressing references.

• Mixing new and old references.

Retaining proprietary references The simplest option for existing applications that are being migrated to Artix 4.0
is to continue using the old Artix proprietary references. Artix 4.0 maintains
complete backwards compatibility with the IT_Bus::Reference type.
Specifically, the backwards compatibility enables you to leave the following
aspects of your application untouched:

• WSDL contracts—continue to use the references:Reference type, where

the references namespace prefix is associated with the

http://schemas.iona.com/references namespace URI.

• C++ source code—continue to use the IT_Bus::Reference type.

• On-the-wire format—remains the same as Artix 3.0.

Migrating to WS-Addressing
references

If you have an existing application that you want to migrate to Artix 4.0, you can
switch to the WS-Addressing standard by changing the following aspects of
your application:

• WSDL contracts—replace the references:Reference type by the

wsa:EndpointReferenceType type, where the wsa namespace prefix is

associated with the http://www.w3.org/2005/08/addressing

namespace URI.
222

Migration Scenarios
Modify the xsd:import element for references so that it imports the new

WS-Addressing schema instead of the old Artix references schema. For

example:

• C++ source code—besides regenerating Artix stub code from the updated

WSDL contracts, two changes are required:

♦ Replace the IT_Bus::Reference type by the

WS_Addressing::EndpointReferenceType type.

♦ Replace any occurrence of IT_Bus::Service::get_reference()

with IT_Bus::Service::get_endpoint_reference(), where

get_endpoint_reference() populates an endpoint reference

argument instead of returning an endpoint reference.

• On-the-wire format—the endpoint reference is formatted as a

wsa:EndpointReference element (which is of

wsa:EndpointReferenceType type).

Mixing new and old references It is possible to mix the new and old reference types in a single program.

• Using new and old references in the same program—you can mix new and

old style references freely in the same program. Parameters declared to be

of wsa:EndpointReferenceType type in WSDL will map to the

WS_Addressing::EndpointReferenceType C++ type and parameters

declared to be of references:Reference type in WSDL will map to the

IT_Bus::Reference C++ type.

<definitions xmlns="..."
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 ... >
 <types>
 <xsd:import schemaLocation="/schemas/wsaddressing.xsd"
 namespace="http://www.w3.org/2005/08/addressing"/>
 ...
 </types>
 ...
</definitions>
 223

CHAPTER 5 | Endpoint References
224

CHAPTER 6

Callbacks
An Artix callback is a pattern, where the client implements a WSDL
service. This chapter explains the basic concept of a callback and
describes how to implement a simple example.

In this chapter This chapter discusses the following topics:

Overview of Artix Callbacks page 226

Callback WSDL Contract page 230

Client Implementation page 233

Server Implementation page 237

Routing and Callbacks page 241
 225

CHAPTER 6 | Callbacks
Overview of Artix Callbacks

What is a callback? A callback is a pattern, where a client implements a service whose operations
can be called by a server (the server calls back on the client). In other words, the
usual direction of the operation invocation is reversed in this case.

Stock monitor scenario Figure 19 shows an example of a scenario where the callback pattern is used. On
the client side, a GUI application is running that is used to monitor and trade
stocks and shares. One of the services accessible to the clients is a Stock Monitor
Service that tracks the price of stocks in real time.

Scenario description The stock monitor scenario shown in Figure 19 can be described as follows:

• Two stockbrokers, Janet and John, want to monitor the current price of two

stocks, FOO and BAR. Janet has orders to sell FOO, if it dips below $10, and

John has orders to sell BAR, if it dips below $100.

• When Janet and John log on in the morning, they use the stockbroking

application on their PCs to set up price triggers for the respective stocks.

As shown in Figure 19 (a), the client application sets up the price trigger by

calling the remote register() operation on the Stock Monitor Service.

Figure 19: Callback Pattern Illusted by a Stock Monitor Scenario

Client
Janet

Stock
Monitor
Service

Client
John

register()

register()

Stock Price

FOO

BAR

$12

$150

(a)

Client
Janet

Stock
Monitor
Service

Client
John

price("FOO",9)

Stock Price

FOO

BAR

$9

$151

(b)
226

Overview of Artix Callbacks
• Later that afternoon, when the stock price of FOO drops to $9, the Stock

Monitor Service sends a callback notification to Janet’s client application,

alerting her to the fact that the price has just dropped below $10—see

Figure 19 (b).

Characteristics of the callback
pattern

Callback scenarios typically have the following characteristics:

• Clients must implement a callback service—the callback service is

required, so that clients can receive notifications from the server side. One

consequence of this is that implementing a callback client is rather like

implementing a server.

• IP port for callback service is dynamically allocated—typically, on a client

host, it is not possible to allocate a fixed IP port. In most cases, therefore, it

is necessary to use a dynamically allocated IP port for the callback service.

• Clients must register interest in receiving callbacks—the server must be

notified explicitly that the client is available and interested in receiving

certain events. In particular, the server needs to acquire the address of the

client’s callback service.

• Callbacks typically occur asynchronously—usually, the server is

constantly monitoring some state and must be ready at any time to send a

notification to the registered clients. This normally requires the server to be

multi-threaded.

Likewise, the client must be ready to receive a callback at any time from

the server. This normally requires the client to be multi-threaded.
 227

CHAPTER 6 | Callbacks
Callback demonstration The callback example described in this section is based on the Artix callback
demonstration, which is located in the following directory:

ArtixInstallDir/samples/callbacks/basic_callback

Demonstration scenario Callbacks rely, essentially, on endpoint references. Using references, the client
can encapsulate the details of its callback service and pass on these details to the
server in a reference parameter. Figure 20 illustrates how this process works.

Callback steps Figure 20 on page 228 shows the callback proceeding according to the following
steps:

1. After the basic initialization steps, including registration of the

CallbackImpl servant and CallbackService service, the client generates

a reference for the callback service.

The client callback service is activated and capable of receiving incoming

invocations as soon as it is registered.

Figure 20: Overview of the Callback Demonstration

WSDL

WSDL File

Artix Server

RegisterCallback(Ref)

Artix Client

Ref

WSDL

WSDL File

ServerImpl

1
2

3
ServerSayHi("...")

CallbackImpl
228

Overview of Artix Callbacks
2. The client calls RegisterCallback() on the remote server, passing the

reference generated in the previous step.

3. When the server receives the callback reference, it immediately calls back

on the CallbackImpl servant by invoking ServerSayHi().

Note: In a more realistic application, it is likely that the server would
cache a copy of the callback reference and call back on the client at a
later time, instead of calling back immediately.
 229

CHAPTER 6 | Callbacks
Callback WSDL Contract

Overview This subsection describes the WSDL contract that defines the interaction
between the client and the server in the callback demonstration. This WSDL
contract is somewhat unusual in that it defines port types both for the client and
for the server applications.

WSDL contract Example 73 shows the WSDL contract used for the callback demonstration.

Example 73: Example Callback WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="basic_callback"
 targetNamespace="http://www.iona/com/callback"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:ns1="http://www.iona/com/callback/corba/typemap/"
 xmlns:ns2="http://schemas.iona.com/routing"
 xmlns:addressing="http://www.w3.org/2005/08/addressing"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona/com/callback"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://www.iona/com/callback"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <import
 namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="../../../../schemas/wsaddressing.xsd"/>

 <element name="callback_message" type="xsd:string"/>
 <element name="RegisterCallback">
 <complexType>
 <sequence>
 <element name="reference"
 type="addressing:EndpointReferenceType"/>
 </sequence>
 </complexType>
 </element>
 <element name="returnType" type="xsd:string"/>
 </schema>
230

Callback WSDL Contract
 </types>

 <message name="server_sayHi">
 <part element="tns:callback_message"
 name="return_message"/>
 </message>
 <message name="register_callback">
 <part element="tns:RegisterCallback"
 name="callback_object"/>
 </message>
 <message name="returnMessage">
 <part element="tns:returnType" name="the_return"/>
 </message>

1 <portType name="CallbackPortType">
 <operation name="ServerSayHi">
 <input message="tns:server_sayHi"
 name="ServerSayHiRequest"/>
 <output message="tns:returnMessage"
 name="ServerSayHiResponse"/>
 </operation>
 </portType>

2 <portType name="ServerPortType">
 <operation name="RegisterCallback">
 <input message="tns:register_callback"
 name="RegisterCallbackRequest"/>
 <output message="tns:returnMessage"
 name="RegisterCallbackResponse"/>
 </operation>
 </portType>
 ...
 <service name="CallbackService">
 <port binding="tns:CallbackPortType_SOAPBinding"
 name="CallbackPort">

3 <soap:address location="http://localhost:0"/>
 </port>
 </service>

 <service name="SOAPService">
 <port binding="tns:ServerPortType_SOAPBinding"
 name="SOAPPort">

4 <soap:address location="http://localhost:9000"/>
 </port>
 </service>

Example 73: Example Callback WSDL Contract
 231

CHAPTER 6 | Callbacks
The preceding WSDL contract can be described as follows:

1. The CallbackPortType port type is implemented on the client side and

supports a single WSDL operation:

♦ ServerSayHi operation—takes a single string argument. The server

calls back on this operation after it has received a reference to the

client’s service.

2. The ServerPortType port type is implemented on the server side and

supports a single WSDL operation:

♦ RegisterCallback operation—takes a single endpoint reference

argument, which is used to pass a reference to the client callback

object.

3. The client callback address should be specified as http://localhost:0,

which acts as a placeholder for the address generated dynamically at

runtime. When the callback servant is activated, Artix modifies the

address, replacing localhost by the client’s hostname and replacing 0 by a

randomly allocated IP port number.

4. The server’s address, http://SvrHost:SvrPort, should be specified

explicitly, where SvrHost is the host where the server is running and

SvrPort is a fixed IP port. In this example, the client obtains the server’s

address directly from the WSDL contract file.

</definitions>

Example 73: Example Callback WSDL Contract

Note: Do not add a terminating / character at the end of the address—
for example, http://localhost:0/. Artix does not accept addresses
terminated with a forward slash.
232

Client Implementation
Client Implementation

Overview In a callback scenario, the client plays a hybrid role: part client, part server.
Hence, the implementation of the callback client includes coding steps you
would normally associate with a server, including an implementation of a
servant class. The callback client implementation consists of two main parts, as
follows:

• Client main function.

• CallbackImpl servant class.

Client main function Example 74 shows the code for the callback client main function, which
instantiates and registers a CallbackImpl servant before calling on the remote
server to register the callback.

Example 74: Callback Client Main Function

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

#include "ServerClient.h"
#include "CallbackImpl.h"

IT_USING_NAMESPACE_STD

using namespace BasicCallback;
using namespace IT_Bus;
using namespace WS_Addressing;

int
main(int argc, char* argv[])
{
 try
 {
 // Need to retain reference to Bus
 //
 Bus_var bus = IT_Bus::init(argc, argv);
 233

CHAPTER 6 | Callbacks
 QName soap_service_qname(
 "",
 "SOAPService",
 "http://www.iona/com/callback"
);

 ServerClient client(
 "../../etc/basic_callback.wsdl",
 soap_service_qname,
 "SOAPPort",
 bus
);

1 CallbackImpl servant(bus);

2 QName service_qname(
 "",
 "CallbackService",
 "http://www.iona/com/callback"
);

 // Use Bus reference to register and activate servant
 //

3 Service_var service =
 bus->register_transient_servant(
 servant,
 "../../etc/basic_callback.wsdl",
 service_qname
);

 EndpointReferenceType callback_reference;
4 service->get_endpoint_reference(callback_reference);

 String outcome;

 // Create instance of wrapper class
 //
 RegisterCallback callback_object;

 // Set reference into wrapper
 //
 callback_object.setreference(callback_reference);

5 client.RegisterCallback(callback_object, outcome);

Example 74: Callback Client Main Function
234

Client Implementation
The preceding code example can be explained as follows:

1. The CallbackImpl servant class implements the CallbackPortType port

type. The CallbackImpl instance created on this line is the client callback

object.

2. The service_qname specifies the WSDL service to be activated on the

client side. This QName refers to the <service

name="CallbackService"> element in Example 73 on page 230.

3. Register the callback servant with the Bus, thereby activating the

CallbackService service. From this point on, the CallbackService

service is active and able to process incoming callback requests in a

background thread.

4. A reference to the callback service is generated by calling

IT_Bus::Service::get_endpoint_reference().

5. This line invokes the RegisterCallback() operation on the remote server,

passing in the reference to the client callback object. Before this operation

returns, the server calls back on the ServerSayHi() operation of the

CallbackImpl servant.

 // Display return message from RegisterCallback operation
 //
 cout << "\t" << outcome << endl;

 bus->shutdown(true);
 }
 catch (const IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 74: Callback Client Main Function
 235

CHAPTER 6 | Callbacks
CallbackImpl servant class Example 75 shows the implementation of the CallbackImpl servant class,
which is responsible for receiving the CallbackImpl::ServerSayHi() callback
from the server. The implementation of this servant class is trivial. It follows the
usual pattern for a servant class implementation and the ServerSayHi()
function simply prints out its string argument.

Example 75: CallbackImpl Servant Class Implementation

#include "CallbackImpl.h"
#include <it_cal/cal.h>

IT_USING_NAMESPACE_STD
using namespace BasicCallback;

CallbackImpl::CallbackImpl(IT_Bus::Bus_ptr bus) :
CallbackServer(bus)

{
}

CallbackImpl::~CallbackImpl()
{
}

IT_Bus::Servant*
CallbackImpl::clone() const
{
 return new CallbackImpl(get_bus());
}

void
CallbackImpl::ServerSayHi(
 const IT_Bus::String &return_message,
 IT_Bus::String &the_return
) IT_THROW_DECL((IT_Bus::Exception))
{
 // User code goes in here
 cout <<"\t\tCallbackImpl::ServerSayHi() called"<<endl;
 cout << "\t\t" << return_message <<endl;
 cout <<"\t\tCallbackImpl::ServerSayHi() ended"<<endl;
 the_return = "The callback was successful";
}

236

Server Implementation
Server Implementation

Overview The implementation of the server in this callback example follows the usual
pattern for an Artix server. The server main function instantiates and registers a
servant object. A separate file contains the implementation of the servant class,
ServerImpl. The server implementation thus consists of two main parts, as
follows:

• Server main function.

• ServerPortType implementation.

Server main function Example 76 shows the code for the server main function, which instantiates and
registers a ServerImpl servant. The server then waits for the client to register a
callback using the RegisterCallback operation.

Example 76: Server Main Function

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_cal/iostream.h>

IT_USING_NAMESPACE_STD

#include "ServerImpl.h"

using namespace BasicCallback;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

1 ServerImpl servant(bus);

2 IT_Bus::QName service_name(
 "", "SOAPService", "http://www.iona/com/callback"
);
 237

CHAPTER 6 | Callbacks
The preceding code example can be explained as follows:

1. The ServerImpl servant class implements the ServerPortType port type,

which supports the RegisterCallback operation.

2. The service_qname refers to the <service name="SOAPService">

element in Example 73 on page 230.

3. Register the ServerImpl servant with the Bus, thereby activating the

SOAPService service.

4. Call the blocking IT_Bus::Bus::run() function to allow the server

application to process incoming requests.

ServerPortType implementation Example 77 shows the implementation of the ServerImpl servant class. There is
just one WSDL operation, RegisterCallback(), to implement in this class.

3 bus->register_servant(
 servant,
 "../../etc/basic_callback.wsdl",
 service_name
);

 cout << "Server Ready" << endl;

4 bus->run();
 }
 catch(IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.message() << endl;
 return -1;
 }
 return 0;
}

Example 76: Server Main Function

Example 77: ServerImpl Servant Class Implementation

#include "ServerImpl.h"
#include <it_cal/cal.h>
#include "CallbackClient.h"

using namespace WS_Addressing;
using namespace BasicCallback;
238

Server Implementation
IT_USING_NAMESPACE_STD

ServerImpl::ServerImpl(IT_Bus::Bus_ptr bus) : ServerServer(bus)
{
}

ServerImpl::~ServerImpl()
{
}

IT_Bus::Servant*
ServerImpl::clone() const
{
 return new ServerImpl(get_bus());
}

void
ServerImpl::RegisterCallback(

1 const BasicCallback::RegisterCallback &callback_object,
 IT_Bus::String &the_return
) IT_THROW_DECL((IT_Bus::Exception))
{
 try
 {
 // Extract reference from wrapper
 EndpointReferenceType callback_epr =
 callback_object.getreference();

 // Instantiate proxy with reference
2 CallbackClient cc(callback_epr);

 IT_Bus::String a_return;
3 cc.ServerSayHi("Server says Hi to the Client", a_return);

 cout << "\t\t" << a_return << endl;
 }
 catch (IT_Bus::Exception& e)
 {
 cout << "Caught Unexpected Exception "
 << e.message() << endl;
 }
 catch (...)
 {
 cout << "Unknown exception" << endl;
 }
 cout << "\tFinished invoking on Callback Object" << endl;

Example 77: ServerImpl Servant Class Implementation
 239

CHAPTER 6 | Callbacks
The preceding code example can be explained as follows:

1. The RegisterCallback() function takes an endpoint reference argument,

which should be a reference to a callback object.

2. This line creates a client proxy, cc, for the CallbackPortType port type

and initializes it with the callback reference, callback_object. The

reference, callback_object, encapsulates details of the

CallbackService service.

3. This line invokes the ServerSayHi() callback on the client.

This example, where the callback is invoked within the body of

RegisterCallback(), is a little bit artificial. In a more typical use case,

the server would cache an instance of the callback client proxy and then

call back later, in response to some event that is of interest to the client.

 cout << "\tServerImpl::RegisterCallback Returning" << endl;
 the_return = "The server processing was successful";
}

Example 77: ServerImpl Servant Class Implementation
240

Routing and Callbacks
Routing and Callbacks

Overview Callbacks are fully compatible with Artix routers. References that pass through a
router are automatically proxified, if necessary. Proxification means that the
router automatically creates a new route for the references that pass through it.

For example, consider the callback routing scenario shown in Figure 21. In this
scenario, a SOAP/HTTP Artix server replaces a legacy CORBA server. As part
of a migration strategy, legacy CORBA clients can continue to communicate
with the new server by interposing an Artix router to translate between the IIOP
and SOAP/HTTP protocols.

Note: Proxification is not necessary, if the transport protocols along the route
are the same. For same protocol routing, proxification is disabled by default.

Figure 21: Overview of a Callback Routing Scenario

ServerSayHi() ServerSayHi()

IDL

Callback IDL

Artix RouterCORBA Client

CORBA Ref

WSDL

Router Contract

Callback

WSDL

Target Contract

Artix Server

RegisterCallback(Ref)

SOAP Ref

SOAP Ref

RegisterCallback(Ref)

SvrSoapPort

RtrSoapPort

RtrCorbaPort

CltCorbaPort

Proxification
 241

CHAPTER 6 | Callbacks
Contracts The scenario depicted in Figure 21 requires three distinct, but related, contracts
as follows:

• Callback IDL.

• Target contract.

• Router contract.

Callback IDL The CORBA client uses a contract coded in OMG Interface Definition
Language (IDL). This IDL contract defines both the target interface
(implemented by the Artix server) and the callback interface (implemented by
the CORBA client).

Target contract In this scenario, the target contract is generated from the callback IDL using the
IDL-to-WSDL compiler. Hence, this WSDL contract contains both the target
interface and the callback interface as WSDL port types.

The target contract also contains a single WSDL service description, which
includes the SvrSoapPort port.

Router contract The router contract holds details about the CORBA side of the application as
well as the SOAP/HTTP side, including the following information:

• Target WSDL port type.

• Callback WSDL port type.

• CORBA WSDL binding for the target.

• SOAP/HTTP WSDL binding for the target.

• CORBA WSDL service, containing the RtrCorbaPort port.

• SOAP/HTTP WSDL service, containing the SvrSoapPort port.

• Template SOAP/HTTP WSDL service, needed for generating the transient

endpoint with RtrSoapPort port.

• Route information.

To specify the location of the generated router contract, you can set the
plugins:routing:wsdl_url configuration variable in the router scope of the
artix.cfg configuration file.
242

Routing and Callbacks
Routes As shown in Figure 21 on page 241, the following routes are created in this
scenario:

• Client-Router-Target route—this route is documented explicitly in the

router contract. The source port, RtrCorbaPort, and the destination port,

SvrSoapPort, are described in the router contract.

For example, when the client calls the RegisterCallback() operation, the

request travels initially to the RtrCorbaPort on the router (over IIOP) and

then on to the SvrSoapPort on the target server (over SOAP/HTTP).

• Target-Router-Client route (callback route)—the reverse route (for

callbacks) is not documented explicitly in the router contract. This route is

constructed at runtime to facilitate routing callback invocations.

For example, when the Artix server calls the ServerSayHi() callback

operation, the request travels to the RtrSoapPort on the router (over

SOAP/HTTP) and then on to the CltCorbaPort on the client (over IIOP).

Proxification Proxification refers to the process whereby a reference of a certain type (for
example, a CORBA reference) that passes through the router is automatically
converted to a reference of another type (for example, a SOAP reference).

The proxification process is of key importance to Artix callbacks. If the router in
Figure 21 on page 241 did not proxify RegisterCallback()’s reference
argument, it would be impossible for the server to call back on the client. The
server can call back only on SOAP/HTTP endpoints, not on IIOP endpoints.

In Figure 21 on page 241, the router proxifies the callback reference as follows:

1. When the RegisterCallback() operation is invoked, the router

recognizes that the reference argument must be converted into a

SOAP/HTTP-format reference.

2. The router dynamically creates a new service and port, RtrSoapPort, to

receive callback requests in SOAP/HTTP format. The new service is a

transient service cloned from a service in the router WSDL contract. The

router looks for a template service that satisfies the following criteria:

♦ Supports the same port type as the original reference.
 243

CHAPTER 6 | Callbacks
♦ Supports the same type of binding (for example, SOAP or CORBA)

as the target server.

3. The router creates a new SOAP/HTTP reference, encapsulating details of

the RtrSoapPort endpoint.

4. The router forwards the RegisterCallback() operation on to the target

server in SOAP format, with the proxified SOAP/HTTP reference as its

argument.

5. The router dynamically constructs a callback route, with source port,

RtrSoapPort, and destination port, CltCorbaPort.

Enabling proxification for same
protocol routing

The router can be used to redirect messages of the same protocol type (for
example, SOAP to SOAP). In this case, you can either enable or disable
proxification by setting the following variable in the router configuration:

plugins:router:use_pass_through = "Boolean";

If Boolean is true (the default), proxification is disabled for same-protocol
routing; if false, proxification is enabled for same-protocol routing.

When the router is used as a bridge between different protocols (for example
CORBA to SOAP), proxification is always enabled. It is not possible to disable
proxification in this case.

Note: Artix selects the first service in the WSDL contract that satisfies
these criteria. Hence, if more than one service matches the criteria, you
must ensure that the template service precedes the other services in the
contract file.
244

CHAPTER 7

Artix Contexts
Artix contexts are used for the following purposes: to configure
Artix transports, bindings and interceptors; and to send extra data
in request headers or reply headers.

In this chapter This chapter discusses the following topics:

Introduction to Contexts page 246

Reading and Writing Context Data page 258

Context Example page 273

SOAP Header Contexts page 284

CORBA Header Contexts page 303

Header Contexts in Three-Tier Systems page 321
 245

CHAPTER 7 | Artix Contexts
Introduction to Contexts

Overview This section provides a conceptual overview of Artix contexts, including a brief
look at the programming interface required for using contexts with different
binding types.

In this section This section contains the following subsections:

Request, Reply and Configuration Contexts page 247

Header Contexts page 250

Registering Contexts page 252
246

Introduction to Contexts
Request, Reply and Configuration Contexts

Overview Artix contexts provide a general purpose mechanism for configuring Artix
plug-ins. Contexts enable you to configure both the client-side settings and the
server-side settings.

Currently, contexts are used mainly to program transport settings (overriding the
settings that appear in the corresponding WSDL port element). Figure 22 gives
an overview of the context architecture, where the contexts can be used to
modify the attributes of a transport plug-in.

Figure 22: Overview of the Context Architecture

Thread X

Context A Context B
ContextContainer

for Requests
Context C Context D

ContextContainer
for Replies

ContextCurrent
for Thread X

request_contexts() reply_contexts()

set/get context data

set/get context data

Context E Context F
ContextContainer
for Configuration

ContextRegistry

get_configuration_context()

get_current()
 247

CHAPTER 7 | Artix Contexts
Thread affinity The threading properties of a context depend on the kind of context, as follows:

• Request and reply contexts—are held in thread-specific storage, so that

different threads can be programmed with different attributes. The root

object for obtaining thread-specific data is the IT_Bus::ContextCurrent

object.

• Configuration contexts—are not thread-specific.

Request contexts Request contexts are used to read or modify attributes as follows:

• On the client side—setting transport attributes and setting header contexts

for outgoing requests.

• On the server side—reading header contexts from incoming requests.

By calling the IT_Bus::ContextCurrent::request_contexts() function, you
can obtain a copy of an IT_Bus::ContextContainer object, which contains
references to all of the current request contexts.

Reply contexts Reply contexts are used to read or modify attributes as follows:

• On the client side—reading header contexts from incoming replies.

• On the server side—setting transport attributes and setting header contexts

for outgoing replies.

By calling the IT_Bus::ContextCurrent::reply_contexts() function, you
can obtain a copy of an IT_Bus::ContextContainer object, which contains
references to all of the current reply contexts.

Configuration contexts Configuration contexts are used to read and modify endpoint-specific context
data that can be set before a connection has initialized. Currently, Artix supports
just the following configuration context properties:

• HTTP endpoint URL,

• JMS broker connection security information,

• FTP connection settings.

By calling the IT_Bus::ContextRegistry::get_configuration_context()
function, you can obtain a copy of an IT_Bus::ContextContainer object,
which contains references to all of the configuration contexts.
248

Introduction to Contexts
Schema-based API The API for getting and setting the attributes of a particular context type is
generated from an XML schema. The code for a context type is generated by the
Artix WSDL-to-C++ compiler as part of the stub code. There are two ways of
getting hold of the context stub code, depending on whether the context is a
custom type or a built-in type, as follows:

• Custom context—for a context that you define yourself you can generate

the context stub code by running the WSDL-to-C++ compiler on the

context schema file, CustomContext.xsd. The stub code then consists of

the files CustomContext_xsdTypes.h, CustomContext_xsdTypes.cxx,

CustomContext_xsdTypesFactory.h and

CustomContext_xsdTypesFactory.cxx.

• Built-in context—for an Artix-defined context, the stub code is packaged in

the Artix library, it_context_attribute[.lib][.so][.sl].
 249

CHAPTER 7 | Artix Contexts
Header Contexts

Overview Artix header contexts provide a general purpose mechanism for embedding data
in message headers. Currently, you can embed context data in the following
types of protocol header:

• SOAP.

• CORBA.

SOAP When you register a context as a SOAP context (using the appropriate form of
the ContextRegistry::register_context() function), the corresponding
context data is embedded in a SOAP header, as shown in Figure 23.

The context data is sent in an Artix-specific SOAP header.

CORBA When you register a context as a CORBA context (using the appropriate form of
the ContextRegistry::register_context() function), the corresponding
context data is embedded within a CORBA header as a GIOP service context—
see Figure 24.

Figure 23: Inserting Context Data into a SOAP Header

SOAP Message SOAP Header

SOAP Context

Figure 24: Inserting Context Data into a GIOP Service Context

Context Data

GIOP Message GIOP Header

GIOP Service Context
250

Introduction to Contexts
In CORBA, the message formats are defined by the General Inter-ORB Protocol
(GIOP) specification. In particular, the GIOP request and reply message formats
allow you to include arbitrary header data in GIOP service contexts. Artix
creates one GIOP service context for each Artix context. The type of GIOP
service context is identified by an IOP context ID, which you specify when
registering the Artix context.
 251

CHAPTER 7 | Artix Contexts
Registering Contexts

Overview You register a context type by calling a register_context() function on a
context registry instance, passing the context name and context type as
arguments. The main effect of registering a context type is that the context
container adds a type factory reference to an internal table. This type factory
reference enables the context container to create context data instances
whenever they are needed.

Getting a context registry instance To get a reference to a context registry instance, you call the
IT_Bus::Bus::get_context_registry() function, shown in Example 78.

Registering a context In practice, you would seldom need to register a context unless you are
implementing your own Artix plug-in. All of the standard Artix contexts are
pre-registered (see “Getting and Setting Transport Attributes” on page 326).

You can register request, reply, and configuration contexts in either of the
following ways:

• Registering a serializable context.

• Registering a non-serializable context.

Note: This pre-supposes that the application is linked with the context
schema stub code, which creates static instances of the relevant type factories.
See “Schema-based API” on page 249.

Example 78: The IT_Bus::Bus::get_context_registry() Function

// C++
namespace IT_Bus {
 class IT_BUS_API Bus
 {
 public:
 virtual ContextRegistry*
 get_context_registry() = 0;
 ...
 };
};
252

Introduction to Contexts
Registering a serializable context A serializable context is a data type that inherits from the IT_Bus::AnyType
base class. Example 79 shows the signature of the register_context()
function in the IT_Bus::ContextRegistry class, which is used to register a
serializable context.

The preceding IT_Bus::ContextRegistry::register_context() function
takes the following arguments:

• context_name—the context name identifies the registered context. The

context names for the pre-registered contexts are given in “Getting and

Setting Transport Attributes” on page 326.

• context_type—the qualified name of the context data type or element.

which can be either of the following:

♦ The name of a schema type (that is, any type derived from

xsd:anyType), or

♦ The name of a schema element.

Example 79: The register_context() Function for Serializable Contexts

// C++
namespace IT_Bus
{
 class IT_BUS_API ContextRegistry
 {
 public:
 enum ContextType {
 TYPE,
 ELEMENT
 }

 virtual Boolean
 register_context(
 const QName& context_name,
 const QName& context_type,
 ContextType type = TYPE,
 Boolean is_header = false
) = 0;
 ...
 };
};
 253

CHAPTER 7 | Artix Contexts
• type—a flag that indicates whether the context_type parameter is the

name of a schema type (indicated by IT_Bus::ContextRegistry::TYPE)

or the name of a schema element (indicated by

IT_Bus::ContextRegistry::ELEMENT).

• is_header—for registering regular contexts (not headers), this flag should

not be supplied (defaults to false).

Registering a non-serializable
context

A non-serializable context can be any C++ type (that is, not necessarily
inheriting from IT_Bus::AnyType). Example 80 shows the signature of the
register_context_data() function in the IT_Bus::ContextRegistry class,
which is used to register a non-serializable context.

The preceding IT_Bus::ContextRegistry::register_context_data()
function takes the following argument:

• context_name—the name of a non-serializable context.

Registering header contexts You can register the following kinds of header context:

• Registering a SOAP header context.

• Registering a CORBA header context.

Example 80: The register_context_data() Function for Non-Serializable
Contexts

// C++
namespace IT_Bus
{
 class IT_BUS_API ContextRegistry
 {
 public:
 virtual Boolean
 register_context_data(
 const QName& context_name
) = 0;
 ...
 };
};
254

Introduction to Contexts
Registering a SOAP header
context

Example 81 shows the signature of the register_context() function and the
register_context_as_element() function in the IT_Bus::ContextRegistry
class, which are used to register a header context data type for the SOAP
protocol.

The IT_BUS::ContextRegistry::register_context() function takes the
following arguments:

• context_name—the context name identifies the registered context. A

context name is needed, because a context type could be registered more

than once (for example, if the same context type was used with different

protocols).

• context_type—the qualified name of the context data type. It can be any

schema type (that is, any type derived from xsd:anyType).

• message_name—this value corresponds to the message attribute in a

soap:header element. Currently, the message name is ignored, but it

should not clash with any existing message names.

Example 81: The register_context() Function for SOAP Contexts

// C++
namespace IT_Bus {
 class IT_BUS_API ContextRegistry
 {
 public:
 virtual Boolean
 register_context(
 const QName& context_name,
 const QName& context_type,
 const QName& message_name,
 const String& part_name
) = 0;

 virtual Boolean
 register_context_as_element(
 const QName& context_name,
 const QName& element_name,
 const QName& message_name,
 const String& part_name
) = 0;
 ...
 };
};
 255

CHAPTER 7 | Artix Contexts
• part_name—this value corresponds to the part attribute in a soap:header

element. Currently, the part name is ignored.

The IT_BUS::ContextRegistry::register_context_as_element() function
is a variant that enables you to base the context data on a specified XML
element, element_name, rather than on a particular XML type.

Registering a CORBA header
context

Example 82 shows the signature of the register_context() function in the
IT_Bus::ContextRegistry class, which is used to register a context data type
with the CORBA context container.

The IT_Bus::ContextRegistry::register_context() function takes the
following arguments:

• context_name—the context name identifies the registered context. A

context name is needed, because a context type could be registered more

than once (for example, if the same context type was used with different

protocols).

• context_type—the qualified name of the context data type. It can be any

schema type (that is, any type derived from xsd:anyType).

Example 82: The register_context() Function for CORBA Contexts

// C++
namespace IT_Bus {
 class IT_BUS_API ContextRegistry
 {
 public:
 virtual Boolean
 register_context(
 const QName& context_name,
 const QName& context_type
 const unsigned long context_id,
) = 0;
 };
};
256

Introduction to Contexts
• context_id—an ID that tags the GIOP service context containing the

Artix context. In CORBA, the context_id corresponds to a service

context ID of IOP::ServiceId type. For details of GIOP service contexts,

consult the OMG CORBA specification.

Note: Care should be exercised to avoid clashing with standard IDs
allocated by the OMG, which are reserved for use either by the OMG
itself or by particular ORB vendors. In particular, IDs in the range 0–
4095 are reserved for use by the OMG.
 257

CHAPTER 7 | Artix Contexts
Reading and Writing Context Data

Overview You can read and write a variety of different kinds of context data: basic types,
user-defined types, and instances of arbitrary C++ classes (custom types). This
section describes how to access and modify the various kinds of context data.

In this section This section contains the following subsections:

Getting a Context Instance page 259

Reading and Writing Basic Types page 265

Reading and Writing User-Defined Types page 267

Reading and Writing Custom Types page 269

Durability of Context Settings page 272
258

Reading and Writing Context Data
Getting a Context Instance

Overview Figure 25 shows an overview of how context data instances are accessed for
writing and reading in an Artix application.

Figure 25: Overview of Context Data and Context Containers

Thread X

Context A Context B
ContextContainer

for Requests
Context C Context D

ContextContainer
for Replies

ContextCurrent
for Thread X

request_contexts() reply_contexts()

set/get context data

set/get context data

Context E Context F
ContextContainer
for Configuration

ContextRegistry

get_configuration_context()

get_current()
 259

CHAPTER 7 | Artix Contexts
Context containers A context container is an object that holds a collection of contexts associated
with a particular thread. There are three kinds of context container:

• Request context container—contains thread-specific context data that can

be used for the following purposes:

♦ Setting transport attributes on the client side that can be set after a

connection has initialized,

♦ Sending header contexts in outgoing request messages,

♦ Receiving header contexts from incoming request messages.

• Reply context container—contains thread-specific context data that can be

used for the following purposes:

♦ Setting transport attributes on the server side that can be set after a

connection has initialized,

♦ Sending header contexts in outgoing reply messages,

♦ Receiving header contexts from incoming reply messages.

• Configuration context container—contains endpoint-specific (but

thread-independent) context data that can be set before a connection has

initialized. Currently, Artix supports just the following configuration

context properties:

♦ HTTP endpoint URL,

♦ JMS broker connection security information,

♦ FTP connection settings.

Getting a configuration context
container

To get a pointer to a configuration context container, call the
get_configuration_container() function on the ContextRegistry, as shown
in Example 83. The configuration context container is endpoint-specific, so you
must specify the service QName, service_name, and the port name, port_name,
260

Reading and Writing Context Data
of the relevant endpoint. Only the proxies and the servant objects associated with
the specified endpoint are affected by the settings in this configuration context
container.

Getting a ContextCurrent
instance

To get a reference to a context registry instance, call the
IT_Bus::ContextRegistry::get_current() function, as defined in
Example 84.

ContextCurrent class A context current is an object that holds references to thread-specific context
data. In particular, an IT_Bus::ContextCurrent instance provides access to
request contexts (through an IT_Bus::ContextContainer object) and reply
contexts (through an IT_Bus::ContextContainer object).

Example 83: Getting a Configuration ContextContainer Instance

// C++
namespace IT_Bus
{
 class IT_BUS_API ContextRegistry
 {
 virtual ContextContainer *
 get_configuration_context(
 const QName & service_name,
 const String & port_name,
 bool create_if_not_found = false
) = 0;
 ...
 };
};

Example 84: Getting a ContextCurrent Instance

// C++
namespace IT_Bus
{
 class IT_BUS_API ContextRegistry
 {
 virtual ContextCurrent& get_current() = 0;
 ...
 };
};
 261

CHAPTER 7 | Artix Contexts
Example 85 shows the declaration of the IT_Bus::ContextCurrent class,
which defines two functions: request_contexts(), which returns a reference to
the request context container, and reply_contexts(), which returns a reference
to the reply context container.

ContextContainer class Example 86 shows the declaration of the IT_Bus::ContextContainer class,
which defines member functions for getting and setting context objects.

Example 85: The IT_Bus::ContextCurrent Class

// C++
namespace IT_Bus
{
 class IT_BUS_API ContextCurrent
 {
 public:

 virtual ContextContainer*
 request_contexts() = 0;

 virtual ContextContainer*
 reply_contexts() = 0;
 };
}

Example 86: The IT_Bus::ContextContainer Class

// C++
namespace IT_Bus
{
 class IT_BUS_API ContextContainer
 {
 public:
 // Get a serializable context
 virtual AnyType*
 get_context(
 const QName& context_name,
 bool create_if_not_found = false
) = 0;

 virtual const AnyType*
 get_context(
 const QName& context_name
) const = 0;
262

Reading and Writing Context Data
Accessing and modifying
serializable contexts

The ContextContainer class defines the following member functions for
accessing and modifying serializable contexts:

• get_context()—returns a pointer to the context with the specified context

name, context_name, which must have been previously registered with the

context registry. The returned reference can be used either to read to or

write from a context. The create_if_not_found flag has the following

effect:

♦ If false and the context is not found, the returned pointer value is

NULL.

 // Add a serializable context
 virtual Boolean
 add_context(
 const QName& context_name,
 AnyType& context
) = 0;

 // Get a non-serializable context.
 virtual Context*
 get_context_data(const QName& context_name) = 0;

 virtual const Context*
 get_context_data(const QName& context_name) const = 0;

 // Add a non-serializable context.
 virtual Boolean
 add_context(
 const QName& context_name,
 Context& context
) = 0;

 // Miscellaneous context functions
 virtual bool
 contains(const QName& context_name) = 0;

 virtual Boolean
 remove_context(const QName& context_name) = 0;
 ...
 };
};

Example 86: The IT_Bus::ContextContainer Class
 263

CHAPTER 7 | Artix Contexts
♦ If true and the context is not found, the return value points at a newly

created context instance.

• add_context()—is a convenience function that lets you set a context from

an existing context instance. The context must have been previously

registered with the context registry.

Accessing and modifying
non-serializable contexts

The ContextContainer class defines the following member functions for
accessing and modifying non-serializable contexts:

• get_context_data()—returns a pointer to the context with the specified

context name, context_name, which must have been previously registered

with the context registry. The returned reference can be used either to read

to or write from a context.

• add_context()—is a convenience function that lets you set a context from

an existing context instance. The context parameter must be defined as an

IT_Bus::ContextT<DataType> type, which is used to wrap an instance of

DataType.
264

Reading and Writing Context Data
Reading and Writing Basic Types

Overview To insert and extract a basic type, BasicType, you must use its corresponding
BasicTypeHolder type. For example, to insert an IT_Bus::String type into a
context, you must first insert the string into an IT_Bus::StringHolder object.
This approach is necessary because the get_context() and add_context()
functions expect context data to be a type that derives from IT_Bus::AnyType.

For a complete list of Holder types, see “Holder Types” on page 461.

Registering a context for strings For example, to register a configuration context that holds string data, you could
use code like the following:

Where reg is a context registry (of IT_Bus::ContextRegistry type). The
IT_Bus::StringHolder() constructor creates a temporary instance of a
StringHolder object, which you can use to get the QName of the
StringHolder type.

Inserting a basic type into a
context

The following example shows how to insert an IT_Bus::StringHolder instance
into the test_ctx_name request context.

// C++
const IT_Bus::QName test_ctx_name(
 "", "TestString", "http://www.iona.com/test/context"
);

reg->register_context(
 test_ctx_name,
 IT_Bus::StringHolder().get_type()
};

// C++
IT_Bus::AnyType* any_string = request_contexts->get_context(
 test_ctx_name, // The name of the string context.
 true // The create_if_not_found flag
);

IT_Bus::StringHolder* str_holder =
dynamic_cast<IT_Bus::StringHolder*>(any_string);

str_holder->set("Hello World!");
 265

CHAPTER 7 | Artix Contexts
Extracting a basic type from a
context

The following example shows how to extract the IT_Bus::StringHolder
instance from the test_ctx_name request context.

// C++
IT_Bus::AnyType* any_string = request_contexts->get_context(
 test_ctx_name // The name of the string context.
);

IT_Bus::StringHolder* str_holder =
dynamic_cast<IT_Bus::StringHolder*>(any_string);

IT_Bus::String str = str_holder->get();
266

Reading and Writing Context Data
Reading and Writing User-Defined Types

Overview You can define a dedicated user-defined schema type to hold the context data.
You could include the context type definition directly in the application’s
WSDL contract; however, it is usually more convenient to define the context
type in a separate XML schema file.

For example, to define a complex context data type, ContextDataType, in the
namespace, ContextDataURI, you could define a context schema following the
outline shown in Example 87.

Generating stubs from a context
schema

To generate C++ stubs from a context schema file, ContextSchema.xsd, enter
the following command at the command line:

wsdltocpp ContextSchema.xsd

The WSDL-to-C++ compiler generates the following C++ stub files:

ContextSchema_wsdlTypes.h
ContextSchema_wsdlTypesFactory.h
ContextSchema_wsdlTypes.cxx
ContextSchema_wsdlTypesFactory.cxx

Example 87: Outline of a Context Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="ContextDataURI"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:complexType name="ContextDataType">
 ...
 </xs:complexType>

</xs:schema>
 267

CHAPTER 7 | Artix Contexts
Registering a context for a
user-defined type

For example, to register a configuration context that holds an instance of the
ContextDataType type, you could use code like the following:

Where reg is a context registry (of IT_Bus::ContextRegistry type).

Inserting a user-defined type into
a context

The following example shows how to insert a ContextDataType instance into the
userdata_ctx_name request context.

Extracting a user-defined type
from a context

The following example shows how to extract the ContextDataType instance
from the userdata_ctx_name request context.

// C++
const IT_Bus::QName userdata_ctx_name(
 "", "TestUserData", "http://www.iona.com/test/context"
);
const IT_Bus::QName userdata_ctx_type(
 "", "ContextDataType", "ContextDataURI"
);

reg->register_context(
 userdata_ctx_name,
 userdata_ctx_type
);

// C++
IT_Bus::AnyType* any_userdata = request_contexts->get_context(
 userdata_ctx_name, // The name of the UserData context.
 true // The create_if_not_found flag
);

ContextDataType* ctx_data =
dynamic_cast<ContextDataType*>(any_userdata);

ctx_data->set...() // Initialize the context data.

// C++
IT_Bus::AnyType* any_userdata = request_contexts->get_context(
 userdata_ctx_name // The name of the UserData context.
);

ContextDataType* ctx_data =
dynamic_cast<ContextDataType*>(any_userdata);

cout << ctx_data->get...() // Initialize the context data.
268

Reading and Writing Context Data
Reading and Writing Custom Types

Overview Sometimes it is necessary to store a custom data type in a context—that is, a data
type that does not inherit from IT_Bus::AnyType. Using a non-serializable
context, you can store instances of any class in a context.

ContextT template The ContextT<T> template class is used to hold a reference to an arbitrary C++
type. The ContextT<T> type is needed to wrap T instances before they can be
added to a context container.

Note: Non-serializable contexts are not streamable, however. You can only
set and get this kind of context locally, from within the same process.

Example 88: The ContextT Template Class

// C++
namespace IT_Bus {
 template<class T>
 class ContextT : public Context
 {
 public:
 ContextT(T& context) : m_context(context)
 {
 // complete
 }

 T& get_data() {
 return m_context;
 }

 private:
 T& m_context;
 };
};
 269

CHAPTER 7 | Artix Contexts
Inserting a custom type into a
context

Given a user-defined type, CustomClass, and a registered custom context name,
CUSTOM_CTX_NAME, the following example shows how to use the ContextT<>
template to store a CustomClass instance in a request context container.

Extracting a custom type from a
context

The following example shows how to extract a CustomClass instance from the
request context container. The code that extracts the context must be colocated
with the code that inserts it (in other words, this type of context cannot be sent in
a header).

// C++
using namespace IT_Bus;

typedef ContextT<CustomClass> CustomClassContext;

CustomClass data;
CustomClassContext ctx(data);
request_contexts->add_context(CUSTOM_CTX_NAME, ctx);

// C++
using namespace IT_Bus;

typedef ContextT<CustomClass> CustomClassContext;

Context * ctx =
request_contexts->get_context_data(CUSTOM_CTX_NAME);

CustomClassContext* custom_ctx =
dynamic_cast<CustomClassContext*>(result_ctx);

CustomClass& custom = custom_ctx->get_data();
270

Reading and Writing Context Data
Accessing the server operation
context

For a practical application of non-serializable contexts, consider Example 89
which shows you how to access an IT_Bus::ServerOperation instance in the
context of an invocation on the server side (in other words, this code could
appear in the body of a servant function).

Example 89: Accessing the Server Operation Context

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus/operation.h>

using namespace IT_Bus;
using namespace IT_ContextAttributes;

ContextRegistry* context_registry =
 bus->get_context_registry();

// Obtain a reference to the ContextCurrent.
ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the RequestContextContainer.
ContextContainer* context_container =
 context_current.request_contexts();

ServerOperation * operation = 0;

// Users can now access context derived from Context class.
Context* context_data =
 context_container->get_context_data(SERVER_OPERATION_CONTEXT);

// Need to cast to appropriate context type.
ServerOperationContext* operation =
 dynamic_cast<ServerOperationContext*>(context_data);

// ServerOperation is wrapped in a template ContextT class.
ServerOperation& server_op = operation->get_data();
 271

CHAPTER 7 | Artix Contexts
Durability of Context Settings

Overview When you set a context value using either get_context() or add_context(),
the context value is not valid indefinitely. The general rule is that a context value
is valid only for the duration of an invocation. There are two cases two consider,
as follows:

• Client side durability.

• Server side durability.

Client side durability On the client side, the general rule is that a context value affects only the next
invocation in the current thread. At the end of the invocation, Artix clears the
context value. Hence, it is generally necessary to reset the context value before
the making the next invocation.

An exception to this rule is demonstrated by the context types derived from the
http-conf schema (HTTP_CLIENT_OUTGOING_CONTEXTS and
HTTP_CLIENT_INCOMING_CONTEXTS). These context values are valid over
multiple invocations from the current thread.

Server side durability On the server side, the general rule is that context values are set at the start of an
operation invocation (when the server receives a request message) and cleared at
the end of the invocation. Context values are thus available to the servant code
only for the duration of the invocation.

An exception to this rule is the value of an endpoint URL, which can be
modified outside of an invocation context by calling the setURL() function on a
server configuration context. For details of how to do this, see “Setting a
Configuration Context on the Server Side” on page 281.
272

Context Example
Context Example

Overview This section shows how to modify the settings in a context, using the http-conf
schema as an example. The http-conf:clientType context type enables you to
modify the client port settings on a HTTP port and the http-conf:serverType
context type enables you to modify server endpoint settings.

In this section This section contains the following subsections:

HTTP-Conf Schema page 274

Setting a Request Context on the Client Side page 278

Setting a Configuration Context on the Server Side page 281
 273

CHAPTER 7 | Artix Contexts
HTTP-Conf Schema

Overview This subsection provides an overview of the http-conf schema, which provides
the definitions of the http-conf configuration context types. Using the
http-conf schema, you can configure the properties of a HTTP port either in a
WSDL contract or by programming. The C++ mapping of the http-conf
contexts are already generated for you—all that you need to do is include the
relevant header file in your code and link with the relevant library.

http-conf schema file The http-conf schema defines WSDL extension elements for configuring a
HTTP port in Artix. The http-conf schema is defined in the following file:

ArtixInstallDir/cxx_java/schemas/http-conf.xsd

http-conf:clientType XML
definition

Example 90 gives an extract from the http-conf schema, showing part of the
definition of the http-conf:clientType complex type.

Example 90: Definition of the http-conf:clientType Type

<xs:schema
targetNamespace="http://schemas.iona.com/transports/http/conf
iguration"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http-conf="http://schemas.iona.com/transports/http/conf
iguration"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:import namespace="http://schemas.xmlsoap.org/wsdl/"/>
 ...
 <xs:complexType name="clientType">
 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElement">
 <xs:attribute name="SendTimeout"
 type="http-conf:timeIntervalType"
 use="optional" default="30000"/>

 <xs:attribute name="ReceiveTimeout"
 type="http-conf:timeIntervalType"
 use="optional"
 default="30000"/>
274

Context Example
http-conf timeout attributes The http-conf:clientType type defines two timeout attributes, as follows:

• SendTimeout—(in milliseconds) the maximum amount of time a client

will spend attempting to contact a remote server.

• ReceiveTimeout—(in milliseconds) for synchronous calls, the maximum

amount of time a client will wait for a server response.

http-conf:clientType C++
mapping

The http-conf:clientType port type maps to the
IT_ContextAttributes::clientType C++ class, as shown in Example 91. The
SendTimeout and ReceiveTimeout attributes each map to get and set functions.
Because these are optional attributes, the get functions return a pointer. A NULL
return value indicates that the attribute is not set.

 ...
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 ...
</xs:schema>

Example 90: Definition of the http-conf:clientType Type

Example 91: C++ Mapping of http-conf:clientType Type

// C++
...
namespace IT_ContextAttributes
{
 class clientType
 : public IT_tExtensibilityElementData,
 public virtual IT_Bus::ComplexContentComplexType
 {
 public:
 ...
 IT_Bus::Int * getSendTimeout();
 const IT_Bus::Int * getSendTimeout() const;
 void setSendTimeout(const IT_Bus::Int * val);
 void setSendTimeout(const IT_Bus::Int & val);

 IT_Bus::Int * getReceiveTimeout();
 const IT_Bus::Int * getReceiveTimeout() const;
 void setReceiveTimeout(const IT_Bus::Int * val);
 void setReceiveTimeout(const IT_Bus::Int & val);
 275

CHAPTER 7 | Artix Contexts
http-conf:serverType C++
mapping

The http-conf:serverType port type maps to the
IT_ContextAttributes::serverType C++ class, as shown in Example 92.

In this example, we are only interested in the functions for setting and getting the
endpoint URL, setURL() and getURL(). Using these functions, you can
examine or modify the host and IP port where the server listens for incoming
client connections.

Header and library files One of the pre-requisites for programmatically modifying the http-conf port
configuration is to include the following header file in your C++ code:

it_bus_pdk/context_attrs/http_conf_xsdTypes.h

You must also link your client application with the following library file:

Windows

ArtixInstallDir/lib/it_context_attribute.lib

UNIX

ArtixInstallDir/lib/it_context_attribute.so

 ...
 };
};

Example 91: C++ Mapping of http-conf:clientType Type

Example 92: C++ Mapping of the http-conf:serverType Type

// C++
...
namespace IT_ContextAttributes {
 class IT_CONTEXT_ATTRIBUTE_API serverType
 : public IT_tExtensibilityElementData,
 public virtual IT_Bus::ComplexContentComplexType
 {
 public:
 ...
 IT_Bus::String * getURL();
 const IT_Bus::String * getURL() const;
 void setURL(const IT_Bus::String * val);
 void setURL(const IT_Bus::String & val);
 ...
 };
};
276

Context Example
ArtixInstallDir/lib/it_context_attribute.sl
ArtixInstallDir/lib/it_context_attribute.a

Pre-registered context type names The http-conf:clientType context type for outgoing data is pre-registered
with the context registry under the following QName constant:

IT_ContextAttributes::HTTP_CLIENT_OUTGOING_CONTEXTS

The http-conf:serverType context type for outgoing data is pre-registered
with the context registry under the following QName constant:

IT_ContextAttributes::HTTP_SERVER_OUTGOING_CONTEXTS
 277

CHAPTER 7 | Artix Contexts
Setting a Request Context on the Client Side

Overview This subsection describes how to set attributes on the http-conf:clientType
context (corresponds to the attributes settable on the <http-conf:client>
WSDL port extensor). The http-conf:clientType context configures
client-side attributes on the HTTP transport plug-in.

Client main function Example 93 shows sample code from a client main function, which shows how
to initialize http-conf:clientType context data in the current thread.

Example 93: Client Main Function Setting a Request Context

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
1 #include <it_bus_pdk/context.h>
2 #include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

3 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
4 ContextCurrent& context_current =

 context_registry->get_current();
278

Context Example
The preceding code example can be explained as follows:

1. The it_bus_pdk/context.h header file contains the declarations of the

following classes:

♦ IT_Bus::ContextRegistry,

♦ IT_Bus::ContextContainer,

♦ IT_Bus::ContextCurrent.

2. The http_conf_xsdTypes.h header declares the context data types

generated from the http-conf schema.

3. Obtain a reference to the IT_Bus::ContextRegistry object, which is used

to register contexts with the Bus.

 // Obtain a pointer to the Request ContextContainer
5 ContextContainer* context_container =

 context_current.request_contexts();

 // Obtain a reference to the context
6 AnyType* info = context_container->get_context(

 IT_ContextAttributes::HTTP_CLIENT_OUTGOING_CONTEXTS,
 true
);

 // Cast the context into a clientType object
7 clientType* http_client_config =

 dynamic_cast<clientType*> (info);

 // Modify the Send/Receive timeouts
8 http_client_config->setSendTimeout(2000);

 http_client_config->setReceiveTimeout(600000);
 ...
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 93: Client Main Function Setting a Request Context
 279

CHAPTER 7 | Artix Contexts
4. Call IT_Bus::ContextRegistry::get_current() to obtain a reference to

the IT_Bus::ContextCurrent object. The current object provides access

to the context objects associated with the current thread.

5. Call IT_Bus::ContextContainer::request_contexts() to obtain an

IT_Bus::ContextContainer object that contains all of the contexts for

requests originating from the current thread.

6. The IT_Bus::ContextContainer::get_context() function is called with

its second parameter set to true, indicating that a context with that name

should be created if none already exists.

7. The IT_Bus::AnyType class is the base type for all complex types in Artix.

In this case, you can cast the AnyType instance, info, to its derived type,

clientType.

8. You can now modify the send and receive timeouts on the client port using

setSendTimeout() and setReceiveTimeout(). These timeouts will be

applied to any subsequent calls issuing from the current thread.
280

Context Example
Setting a Configuration Context on the Server Side

Overview This subsection describes how to set attributes on the http-conf:serverType
context (corresponds to the attributes settable on the <http-conf:server>
WSDL port extensor). The http-conf:serverType context configures
server-side attributes on the HTTP transport plug-in.

Server main function Example 94 shows sample code from a server main function, which shows how
to initialize http-conf:serverType configuration context data.

Example 94: Server Main Function Setting a Configuration Context

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
1 #include <it_bus_pdk/context.h>
2 #include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

3 IT_Bus::QName service_name(
 "",
 "SOAPService",
 "http://www.iona.com/hello_world_soap_http"
);

4 ContextRegistry* context_registry =
 bus->get_context_registry();
 281

CHAPTER 7 | Artix Contexts
The preceding code example can be explained as follows:

1. The it_bus_pdk/context.h header file contains the declarations of the

following classes:

♦ IT_Bus::ContextRegistry,

♦ IT_Bus::ContextContainer,

♦ IT_Bus::ContextCurrent.

5 ContextContainer * context_container =
 context_registry->get_configuration_context(
 service_name,
 "SoapPort",
 true
);

 // Obtain a reference to the context
6 AnyType* info = context_container->get_context(

 IT_ContextAttributes::HTTP_SERVER_OUTGOING_CONTEXTS,
 true
);

 // Cast the context into a serverType object
7 serverType* http_server_config =

 dynamic_cast<serverType*> (info);

 // Modify the endpoint URL
8 http_server_config->setURL("http://localhost:63278");

 ...
 GreeterImpl servant(bus);
 bus->register_servant(
 servant,
 "../../etc/hello_world.wsdl",
 service_name
);
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 94: Server Main Function Setting a Configuration Context
282

Context Example
2. The http_conf_xsdTypes.h header declares the context data types

generated from the http-conf schema.

3. This service_name is the QName of the SOAP service featured in the

hello_world_soap_http demonstration (in

samples/basic/hello_world_soap_http).

4. Obtain a reference to the IT_Bus::ContextRegistry object, which is used

to register contexts with the Bus.

5. The IT_Bus::ContextContainer object returned by

get_configuration_context() holds configuration data that is used

exclusively by the specified endpoint (that is, the SoapPort port in the

SOAPService service).

6. The IT_Bus::ContextContainer::get_context() function is called with

its second parameter set to true, indicating that a context with that name

should be created if none already exists.

7. The IT_Bus::AnyType class is the base type for all complex types in Artix.

In this case, you can cast the AnyType instance, info, to its derived type,

serverType.

8. You can now modify the URL used by the SoapPort port by calling the

setURL() function.
 283

CHAPTER 7 | Artix Contexts
SOAP Header Contexts

Overview This section provides a detailed discussion of the custom SOAP header
demonstration, which shows you how to propagate context data in a SOAP
header.

In this section This section contains the following subsections:

Custom SOAP Header Demonstration page 285

SOAP Header Context Schema page 287

Declaring the SOAP Header Explicitly page 289

Client Main Function page 292

Server Main Function page 297

Service Implementation page 300
284

SOAP Header Contexts
Custom SOAP Header Demonstration

Overview The examples in this section are based on the custom SOAP header
demonstration, which is located in the following Artix directory:

ArtixInstallDir/samples/advanced/custom_soap_header

Figure 26 shows an overview of the custom SOAP header demonstration,
showing how the client piggybacks context data along with an invocation
request that is invoked on the sayHi operation.

Figure 26: Overview of the Custom SOAP Header Demonstration

WSDL

WSDL File

Artix Server

sayHi("...")

Artix Client

ServerImpl

1

2
3

4

5

Context Context

Context

WSDL

XSD File

HelloWorld
Contract

SOAPHeaderInfo
Schema

WSDL

XSD File

WSDL

WSDL File

HelloWorld
Contract

Register context

Initialize context data

Register context
 285

CHAPTER 7 | Artix Contexts
Transmission of context data As illustrated in Figure 26, SOAP context data is transmitted as follows:

1. The client registers the context type, SOAPHeaderInfo, with the Bus.

2. The client initializes the context data instance.

3. The client invokes the sayHi() operation on the server.

4. As the server starts up, it registers the SOAPHeaderInfo context type with

the Bus.

5. When the sayHi() operation request arrives on the server side, the

sayHi() operation implementation extracts the context data from the

request.

HelloWorld WSDL contract The HelloWorld WSDL contract defines the contract implemented by the server
in this demonstration. In particular, the HelloWorld contract defines the Greeter
port type containing the sayHi WSDL operation.

SOAPHeaderInfo schema The SOAPHeaderInfo schema (in the
samples/advanced/custom_soap_header/etc/contextTypes.xsd file)
defines the custom data type used as the context data type. This schema is
specific to the custom SOAP header demonstration.
286

SOAP Header Contexts
SOAP Header Context Schema

Overview This subsection describes how to define an XML schema for a context type. In
this example, the SOAPHeaderInfo type is declared in an XML schema. The
SOAPHeaderInfo type is then used by the custom SOAP header demonstration to
send custom data in a SOAP header.

SOAPHeaderInfo XML
declaration

Example 95 shows the schema for the SOAPHeaderInfo type, which is defined
specifically for the custom SOAP header demonstration to carry some sample
data in a SOAP header. Note that Example 95 is a pure schema declaration, not a
WSDL declaration.

The SOAPHeaderInfo complex type defines two member elements, as follows:

• originator—holds an arbitrary client identifier.

• message—holds an arbitrary example message.

Target namespace You can use any target namespace for a context schema (as long as it does not
clash with an existing namespace). This demonstration uses the following target
namespace:

Example 95: XML Schema for the SOAPHeaderInfo Context Type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/types/context"
 elementFormDefault="qualified"

attributeFormDefault="unqualified">
 <xs:complexType name="SOAPHeaderInfo">
 <xs:annotation>
 <xs:documentation>
 Content to be added to a SOAP header
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="originator" type="xs:string"/>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>
 287

CHAPTER 7 | Artix Contexts
http://schemas.iona.com/types/context

Compiling the SOAPHeaderInfo
schema

To compile the SOAPHeaderInfo schema, invoke the wsdltocpp compiler utility
at the command line, as follows:

wsdltocpp contextTypes.xsd

Where contextTypes.xsd is a file containing the XML schema from
Example 95. This command generates the following C++ stub files:

contextTypes_xsdTypes.h
contextTypes_xsdTypesFactory.h
contextTypes_xsdTypes.cxx
contextTypes_xsdTypesFactory.cxx

SOAPHeaderInfo C++ mapping Example 96 shows how the schema from Example 95 on page 287 maps to C++,
to give the soap_interceptor::SOAPHeaderInfo C++ class.

Example 96: C++ Mapping of the SOAPHeaderInfo Context Type

// C++
...
namespace soap_interceptor
{
 ...
 class SOAPHeaderInfo : public IT_Bus::SequenceComplexType
 {
 public:
 static const IT_Bus::QName type_name;

 SOAPHeaderInfo();
 SOAPHeaderInfo(const SOAPHeaderInfo & copy);
 virtual ~SOAPHeaderInfo();
 ...
 IT_Bus::String & getoriginator();
 const IT_Bus::String & getoriginator() const;
 void setoriginator(const IT_Bus::String & val);

 IT_Bus::String & getmessage();
 const IT_Bus::String & getmessage() const;
 void setmessage(const IT_Bus::String & val);
 ...
 };
 ...
}

288

SOAP Header Contexts
Declaring the SOAP Header Explicitly

Overview There are two different approaches you can take with SOAP headers:

• Implicit SOAP header—(the approach taken in Example 95 on page 287)

in this case, you need only declare the schema type that holds the header

data. By registering the type as a SOAP header context, you enable an

Artix application to send and receive SOAP headers of this type.

• Explicit SOAP header—in this case, you must modify the original WSDL

contract and explicitly declare which operations can send and receive the

header. This approach might be useful for certain interoperability

scenarios.

This subsection briefly describes how to implement the second approach,
explicitly declaring the SOAP header.

Demonstration code The code for this demonstration is located in the following directory:

ArtixInstallDir/cxx_java/samples/advanced/soap_header_binding

SOAP header declaration Example 97 shows how to declare a SOAP header, of SOAPHeaderData type,
explicitly in a WSDL contract.

Note: The implicit approach is also consistent with the SOAP specification,
which does not require you to declare SOAP headers explicitly in WSDL.

Example 97: SOAP Header Declared in the WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorld"
 targetNamespace="http://www.iona.com/soap_header"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/soap_header"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <schema targetNamespace="http://www.iona.com/soap_header"
 289

CHAPTER 7 | Artix Contexts
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>

1 <complexType name="SOAPHeaderData">
 <sequence>
 <element name="originator" type="xsd:string"/>
 <element name="message" type="xsd:string"/>
 </sequence>
 </complexType>

2 <element name="SOAPHeaderInfo"
 type="tns:SOAPHeaderData"/>
 </schema>
 </types>

 <message name="sayHiRequest"/>
 <message name="sayHiResponse">
 <part element="tns:responseType" name="theResponse"/>
 </message>
 ...

3 <message name="header_message">
 <part element="tns:SOAPHeaderInfo" name="header_info"/>
 </message>
 <portType name="Greeter">
 <operation name="sayHi">
 <input message="tns:sayHiRequest"

name="sayHiRequest"/>
 <output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </operation>
 ...
 </portType>

 <binding name="Greeter_SOAPBinding" type="tns:Greeter">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>

4 <soap:header message="tns:header_message"
 part="header_info"
 use="literal"/>
 </input>
 <output name="sayHiResponse">

Example 97: SOAP Header Declared in the WSDL Contract
290

SOAP Header Contexts
The preceding WSDL contract can be explained as follows:

1. This example declares a header of type SOAPHeaderData (this example is

different from the header type declared in Example 95 on page 287). The

SOAPHeaderData type contains two string fields, originator and

message.

2. You must declare an element to contain the header data. In this case, the

header is transmitted as <SOAPHeaderInfo> ... </SOAPHeaderInfo>.

3. You must declare a message element for the header. In this case, the

message QName is tns:header_message and the part name is

header_info. These correspond to the values that would be passed to the

last two arguments of the

IT_Bus::ContextRegistry::register_context() function.

4. In the scope of the binding element, you should declare which operations

include the SOAPHeaderData header, as shown. The soap:header element

references the message QName, tns:header_message, and the part name,

header_info.

 <soap:body use="literal"/>
 <soap:header message="tns:header_message"
 part="header_info"
 use="literal"/>
 </output>
 </operation>
 ...
 </binding>
 ...
</definitions>

Example 97: SOAP Header Declared in the WSDL Contract
 291

CHAPTER 7 | Artix Contexts
Client Main Function

Overview This subsection discusses the client for the custom SOAP header demonstration.
This client is designed to send a custom header, of SOAPHeaderInfo type, every
time it invokes an operation on the Greeter port type.

To enable the sending of context data, the client performs two fundamental
tasks, as follows:

1. Register a context type with the context registry—registering the context

type is a prerequisite for sending context data in a request. By registering

the context type with the Bus, you give the Bus instance the capability to

marshal and unmarshal context data of that type.

2. Initialize the context data in the ContextCurrent object—before invoking

any operations, the client obtains an instance of the header context data

from an IT_Bus::ContextCurrent object. After initializing the header

context data, any operations invoked from the current thread will include

the header context data.

Client main function Example 98 shows sample code from the client main function, which shows how
to register a context type and initialize header context data for the current thread.

Example 98: Client Main Function Setting a SOAP Context

// C++
// GreeterClientSample.cxx File

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
1 #include <it_bus_pdk/context.h>

// Include header files representing the soap header content
2 #include "contextTypes_xsdTypes.h"

#include "contextTypes_xsdTypesFactory.h"

#include "GreeterClient.h"

IT_USING_NAMESPACE_STD
292

SOAP Header Contexts
using namespace soap_interceptor;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);
 GreeterClient client;

3 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Create QName objects needed to define a context
4 const QName principal_ctx_name(

 "",
 "SOAPHeaderInfo",
 ""
);

5 const QName principal_ctx_type(
 "",
 "SOAPHeaderInfo",
 "http://schemas.iona.com/types/context"
);

6 const QName principal_message_name(
 "soap_header",
 "header_content",
 "http://schemas.iona.com/custom_header"
);

7 const String principal_part_name("header_info");

 // Register the context with the ContextRegistry
8 context_registry->register_context(

 principal_ctx_name,
 principal_ctx_type,
 principal_message_name,
 principal_part_name
);

 // Obtain a reference to the ContextCurrent
9 ContextCurrent& context_current =

 context_registry->get_current();

Example 98: Client Main Function Setting a SOAP Context
 293

CHAPTER 7 | Artix Contexts
The preceding code example can be explained as follows:

1. The it_bus_pdk/context.h header file contains the declarations of the

following classes:

♦ IT_Bus::ContextRegistry,

♦ IT_Bus::ContextContainer,

 // Obtain a pointer to the RequestContextContainer
10 ContextContainer* context_container =

 context_current.request_contexts();

 // Obtain a reference to the context
11 AnyType* info = context_container->get_context(

 principal_ctx_name,
 true
);

 // Cast the context into a SOAPHeaderInfo object
12 SOAPHeaderInfo* header_info =

 dynamic_cast<SOAPHeaderInfo*> (info);

 // Create the content to be added to the header
 const String originator("Progress Software");
 const String message("Artix is Powerful!");

 // Add the header content
 header_info->setoriginator(originator);
 header_info->setmessage(message);

 // Invoke the Web service business methods
 String theResponse;

13 client.sayHi(theResponse);
 cout << "sayHi response: " << theResponse << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 98: Client Main Function Setting a SOAP Context
294

SOAP Header Contexts
♦ IT_Bus::ContextCurrent.

2. The contextTypes_xsdTypes.h local header file contains the declaration

of the SOAPHeaderInfo class, which has been generated from the context

schema (see Example 95 on page 287).

3. Obtain a reference to the IT_Bus::ContextRegistry object, which is used

to register contexts with the Bus.

4. The QName with local name, SOAPHeaderInfo, is a context name that

identifies the context uniquely. Although the context name is specified as a

QName, it does not refer to an XML element. You can choose any unique

QName as the context name.

5. The QName with namespace URI,

http://schemas.iona.com/types/context, and local part,

SOAPHeaderInfo, identifies the context type from Example 95 on

page 287.

6. The QName with namespace URI,

http://schemas.iona.com/custom_header, and local part,

header_content, corresponds to the message attribute of a soap:header

element. The value is currently ignored (but should not clash with any

existing message QNames).

7. The header_info string value identifies the part of the SOAP header that

holds the context data. It corresponds to the part attribute of a

soap:header element. The value is currently ignored.

8. The call to register_context() tells the Artix Bus that the

SOAPHeaderInfo type will be used to send context data in SOAP headers.

After you have registered the context, the Bus is prepared to marshal the

context data (if any) into a SOAP header.

9. Call IT_Bus::ContextRegistry::get_current() to obtain a reference to

the IT_Bus::ContextCurrent object. The current object provides access

to all context objects associated with the current thread.

10. Call IT_Bus::ContextContainer::request_contexts() to obtain an

IT_Bus::ContextContainer object that contains all of the contexts for

requests originating from the current thread.

11. The IT_Bus::ContextContainer::get_context() function is called with

its second parameter set to true, indicating that a context with that name

should be created if none already exists.
 295

CHAPTER 7 | Artix Contexts
12. The IT_Bus::AnyType class is the base type for all complex types in Artix.

In this case, you can cast the AnyType instance, info, to its derived type,

SOAPHeaderInfo.

By setting the originator and message elements of this SOAPHeaderInfo

object, you are effectively fixing the context data for all operations invoked

from this thread.

13. When you invoke the sayHi() operation, the context data is included in the

SOAP header. From this point on, any WSDL operation invoked from the

current thread will include the SOAPHeaderInfo context data in its SOAP

header.
296

SOAP Header Contexts
Server Main Function

Overview This subsection discusses the main function for the server in the custom SOAP
header demonstration. In addition to the usual boilerplate code for an Artix
server (that is, registering a servant and calling IT_Bus::run()), this server also
registers a context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the
capability to unmarshal context data of that type. This unmarshalling capability
is then exploited in the implementation of the sayHi() operation (see
Example 100 on page 300).

Server main function Example 99 shows sample code from the server main function, which registers
the SOAPHeaderInfo context type and then creates and registers a GreeterImpl
servant object.

Example 99: Server Main Function Registering a SOAP Context

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_cal/iostream.h>

1 #include <it_bus_pdk/context.h>

#include "GreeterImpl.h"

IT_USING_NAMESPACE_STD

using namespace soap_interceptor;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

2 ContextRegistry* context_registry =
 bus->get_context_registry();
 297

CHAPTER 7 | Artix Contexts

3 const QName principal_ctx_name(

 "",
 "SOAPHeaderInfo",
 ""
);

4 const QName principal_ctx_type(
 "",
 "SOAPHeaderInfo",
 "http://schemas.iona.com/types/context"
);

5 const QName principal_message_name(
 "soap_header",
 "header_content",
 "http://schemas.iona.com/custom_header"
);

6 const String principal_part_name("header_info");

7 context_registry->register_context(
 principal_ctx_name,
 principal_ctx_type,
 principal_message_name,
 principal_part_name
);

 GreeterImpl servant(bus);

 IT_Bus::QName service_name("", "SOAPService",

"http://www.iona.com/custom_soap_interceptor");

 bus->register_servant(
 servant,
 "../../etc/hello_world.wsdl",
 service_name
);

 IT_Bus::run();
 }
 catch(IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.message() << endl;
 return -1;
 }
 return 0;
}

Example 99: Server Main Function Registering a SOAP Context
298

SOAP Header Contexts
The preceding code example can be explained as follows:

1. The it_bus_pdk/context.h header file contains the declarations of the

following classes:

♦ IT_Bus::ContextRegistry,

♦ IT_Bus::ContextContainer,

♦ IT_Bus::ContextCurrent.

2. Obtain a reference to the IT_Bus::ContextRegistry object, which is used

to register contexts with the Bus.

3. The QName with local name, SOAPHeaderInfo, is a context name that

identifies the context uniquely. Although the context name is specified as a

QName, it does not refer to an XML element. You can choose any unique

QName as the context name.

4. The QName with namespace URI,

http://schemas.iona.com/types/context, and local part,

SOAPHeaderInfo, identifies the context type from Example 95 on

page 287.

5. The QName with namespace URI,

http://schemas.iona.com/custom_header, and local part,

header_content, corresponds to the message attribute of a soap:header

element. The value is currently ignored (but should not clash with any

existing message QNames).

6. The header_info string value identifies the part of the SOAP header that

holds the context data. It corresponds to the part attribute of a

<soap:header> attribute. The value is currently ignored.

7. The call to register_context() tells the Artix Bus that the

SOAPHeaderInfo type will be used to send context data in SOAP headers.

After you have registered the context, the Bus is prepared to marshal the

context data (if any) into a SOAP header.
 299

CHAPTER 7 | Artix Contexts
Service Implementation

Overview This subsection discusses the implementation of the Greeter port type, which
maps to the GreeterImpl servant class in C++.

In the custom SOAP header demonstration, the GreeterImpl::sayHi()
operation is modified to peek at the context data accompanying the invocation.
To access the context data, you need to get access to a context current object,
which encapsulates all of the context data received from the client.

Implementation of the sayHi
operation

Example 100 shows the implementation of the sayHi() operation from the
GreeterImpl servant class. The sayHi() operation implementation uses the
context API to access the context data received from the client.

Example 100: sayHi Operation Accessing a SOAP Context

// C++
...
void
GreeterImpl::sayHi(
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "sayHi invoked" << endl;
 theResponse = "Hello from Artix";

 // Obtain a pointer to the bus
 Bus_var bus = Bus::create_reference();

1 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Create QName objects needed to define a context

2 const QName principal_ctx_name(
 "",
 "SOAPHeaderInfo",
 ""
);

 // Obtain a reference to the ContextCurrent

3 ContextCurrent& context_current =
 context_registry->get_current();

300

SOAP Header Contexts
The preceding code example can be explained as follows:

1. The IT_Bus::ContextRegistry object, context_registry, provides

access to all of the objects associated with contexts.

2. The QName with local name, SOAPHeaderInfo, is the name of the context

to be extracted from the incoming request message.

3. Call IT_Bus::ContextRegistry::get_current() to obtain the

IT_Bus::ContextCurrent object for the current thread.

4. Call IT_Bus::ContextCurrent::request_contexts() to obtain the

IT_Bus::ContextContainer object containing all of the incoming request

contexts.

5. To retrieve a specific context from the request context container, pass the

context’s name into the IT_Bus::ContextContainer::get_context()

function.

 // Obtain a pointer to the RequestContextContainer
4 ContextContainer* context_container =

 context_current.request_contexts();

 // Obtain a reference to the context

5 AnyType* info = context_container->get_context(
 principal_ctx_name
);

 // Cast the context into a SOAPHeaderInfo object

6 SOAPHeaderInfo* header_info =
 dynamic_cast<SOAPHeaderInfo*> (info);

 // Extract the application specific SOAP header information
7 String& originator = header_info->getoriginator();

 String& message = header_info->getmessage();

 cout << "SOAP Header originator = " << originator.c_str() <<
endl;

 cout << "SOAP Header message = " << message.c_str() << endl;
}

Example 100: sayHi Operation Accessing a SOAP Context

Note: This is the same object that is used on the client side to hold all of
the outgoing request contexts.
 301

CHAPTER 7 | Artix Contexts
6. The IT_Bus::AnyType class is the base type for all types in Artix. In this

example, you can cast the AnyType instance, info, to its derived type,

SOAPHeaderInfo.

7. You can now access the context data by calling the accessors for the

originator and message elements, getoriginator() and getmessage().
302

CORBA Header Contexts
CORBA Header Contexts

Overview This section describes how to propagate context data in a CORBA header,
giving code examples for a consumer and a service provider.

In this section This section contains the following subsections:

Custom CORBA Header Scenario page 304

CORBA Service Contexts page 306

Configuration Prerequisites page 309

Client Main Function page 311

Server Main Function page 315

Service Implementation page 318
 303

CHAPTER 7 | Artix Contexts
Custom CORBA Header Scenario

Overview Figure 27 shows an overview of the custom CORBA header scenario, showing
how the client piggybacks context data along with an invocation request that is
invoked on the sayHi operation.

Transmission of context data As illustrated in Figure 27, CORBA context data is transmitted as follows:

1. The client registers the context type, PrincipalInfo, with the Bus.

2. The client initializes the context data instance.

3. The client invokes the sayHi() operation on the server.

4. As the server starts up, it registers the PrincipalInfo context type with

the Bus.

5. When the sayHi() operation request arrives on the server side, the

sayHi() operation implementation extracts the context data from the

request.

Figure 27: Overview of the Custom CORBA Header Scenario

WSDL

WSDL File

Artix Server

sayHi("...")

Artix Client

ServerImpl

1

2
3

4

5

Context Context

Context

HelloWorld
Contract

WSDL

WSDL File

HelloWorld
Contract

Register context

Initialize context data

Register context

idltowsdlidltowsdl

IDL

IDL File
304

CORBA Header Contexts
HelloWorld IDL contract Because this client-server application uses the CORBA binding, the HelloWorld
IDL contract is originally written in OMG IDL, not WSDL. The following
entities are defined in the IDL contract:

• HelloWorld interface—defines the interface to the service implemented on

the server side (defining the IDL operations: sayHi and greetMe).

• PrincipalInfo struct—is used as the context data type. At runtime, an

instance of PrincipalInfo type is transmitted in the CORBA header (in a

GIOP service context). See Example 101 on page 307 for details.

HelloWorld WSDL contract The HelloWorld WSDL contract is generated from the OMG IDL contract by
invoking the Artix idltowsdl command-line tool.

Request and reply contexts Artix supports the sending of context data both in request messages and in reply
messages. The example scenario described here, however, only demonstrates
how to send context data in CORBA requests.
 305

CHAPTER 7 | Artix Contexts
CORBA Service Contexts

Overview In the CORBA standard, the mechanism for sending header data is defined by
the General Inter-ORB Protocol (GIOP). You can send custom header data in a
GIOP header by encapsulating your data inside a GIOP service context. A GIOP
service context consists of the following parts:

• Service context ID—a 32-bit integer ID that uniquely identifies the header

type.

• Service context data—the custom data that you want to send. Formally, the

service context data is an opaque block of binary data (preceded by a 32-bit

integer, which gives the length of the block). In practice, however, it is

usual to encode the data in this block using the Common Data

Representation (CDR), which is part of the GIOP standard.

Selecting a service context ID You must exercise care when selecting a service context ID, to ensure that it
does not clash with the IDs defined by the OMG or other organizations. To
avoid clashing IDs, the OMG allocates ID ranges in tranches of length 4096. The
lowest range of IDs, 0–4095, is reserved for use by the OMG. To select a service
context ID that is guaranteed not to clash with IDs used by other organizations,
proceed as follows:

1. Apply to the OMG (www.omg.org), requesting them to allocate a tranch of

4096 service context IDs. The OMG will allocate you a 20-bit vendor

service context codeset ID (VSCID), which defines the 20 high-order bits

of the 32-bit service context ID.

For example, Progress has the VSCID, 0x49545xxx.

2. The low-order 12 bits define the rest of the service context ID (giving a

maximum of 4096 distinct IDs). You are responsible for allocating the

low-order bits of the ID within your organzation.
306

www.omg.org

CORBA Header Contexts
Defining service context data Normally, you define a service context data type in the OMG IDL language.
This is the logical approach to use, because service contexts are conventionally
encoded using CDR, which maps OMG IDL data types to binary format.

For example, in the custom CORBA header scenario, the service context data
type, PrincipalInfo, is defined in OMG IDL as follows:

Where the OMG IDL struct type is analogous to an XML schema sequence
type.

Converting the service context
data type to WSDL

In order to manipulate the service context data from within an Artix program, it
is necessary to convert the service context data type (which is defined in OMG
IDL) to WSDL.

To perform the IDL-to-WSDL conversion, invoke the Artix idltowsdl
command-line utility as follows:

Where the HelloWorld.idl file contains the definition of the PrincipalInfo
struct type (along with definitions of other IDL data types and interfaces). After
performing the conversion, the output file, HelloWorld.wsdl, contains the
following definitions:

Example 101: PrincipalInfo Data Type Defined in OMG IDL

// OMG IDL
struct PrincipalInfo
{
 string username;
 string password;
};

idltowsdl HelloWorld.idl

<?xml version="1.0" encoding="UTF-8"?>
<!-- Generated by <idltowsdl> Tool. Version 4.2.0 -->
<definitions name="HeaderType"
 targetNamespace="http://schemas.iona.com/idl/HeaderType.idl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/HeaderType.idl"
 xmlns:tns="http://schemas.iona.com/idl/HeaderType.idl"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 307

CHAPTER 7 | Artix Contexts
 xmlns:xsd1="http://schemas.iona.com/idltypes/HeaderType.idl">
 <types>
 <schema targetNamespace="http://schemas.iona.com/idltypes/HeaderType.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="PrincipalInfo">
 <sequence>
 <element name="username" type="string"/>
 <element name="password" type="string"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <corba:typeMapping
 targetNamespace="http://schemas.iona.com/typemap/corba/HeaderType.idl">
 <corba:struct name="PrincipalInfo" repositoryID="IDL:PrincipalInfo:1.0"
 type="xsd1:PrincipalInfo">
 <corba:member idltype="corba:string" name="username"/>
 <corba:member idltype="corba:string" name="password"/>
 </corba:struct>
 </corba:typeMapping>
</definitions>
308

CORBA Header Contexts
Configuration Prerequisites

Overview To enable the propagation of context data in a CORBA header, it is a
prerequisite to include the CORBA_CONTEXT interceptor in the
binding:client_binding_list and binding:server_binding_list settings
in your Artix configuration file.

Client binding list Example 102 shows how to configure the client binding list to make GIOP
headers accessible to Artix clients. You can apply this setting at the root scope of
the Artix configuration file (for example, in artix.cfg).

Note: The CORBA_CONTEXT interceptor is an ART interceptor (a type of
interceptor specific to the CORBA binding), not a regular Artix interceptor.
The role of this interceptor is to move header data back and forth between the
CORBA binding layer and the Artix service context layer.

Example 102: Client Configuration Required for Using CORBA Headers

Artix Configuration File
...
binding:client_binding_list =

["OTS+CORBA_CONTEXT+TLS_Coloc+POA_Coloc",
"CORBA_CONTEXT+TLS_Coloc+POA_Coloc",
"OTS+CORBA_CONTEXT+POA_Coloc", "CORBA_CONTEXT+POA_Coloc",
"CSI+OTS+CORBA_CONTEXT+GIOP+IIOP_TLS",
"OTS+CORBA_CONTEXT+GIOP+IIOP_TLS",
"CSI+CORBA_CONTEXT+GIOP+IIOP_TLS",
"CORBA_CONTEXT+GIOP+IIOP_TLS",
"CSI+OTS+CORBA_CONTEXT+GIOP+IIOP",
"OTS+CORBA_CONTEXT+GIOP+IIOP", "CSI+CORBA_CONTEXT+GIOP+IIOP",
"CORBA_CONTEXT+GIOP+IIOP"];
 309

CHAPTER 7 | Artix Contexts
Server binding list Example 103 shows how to configure the server binding list to GIOP headers
accessible to Artix servers.

Example 103: Server Configuration Required for Using CORBA Headers

Artix Configuration File
...
binding:server_binding_list = ["OTS+CORBA_CONTEXT", "OTS",""];
310

CORBA Header Contexts
Client Main Function

Overview This subsection discusses the client for the custom CORBA header scenario.
This client is designed to send a custom header, of PrincipalInfo type, every
time it invokes an operation on the HelloWorld port type.

To enable the sending of context data, the client performs two fundamental
tasks, as follows:

1. Register a context type with the context registry—registering the context

type is a prerequisite for sending context data in a request. By registering

the context type with the Bus, you give the Bus instance the capability to

marshal and unmarshal context data of that type.

2. Initialize the context data in the ContextCurrent object—before invoking

any operations, the client obtains an instance of the header context data

from an IT_Bus::ContextCurrent object. After initializing the header

context data, any operations invoked from the current thread will include

the header context data.

Client main function Example 104 shows sample code from the client main function, which shows
how to register a context type and initialize header context data for the current
thread.

Example 104: Client Main Function Setting a CORBA Context

// C++
// HelloWorldClientSample.cxx File

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to Artix contexts
1 #include <it_bus_pdk/context.h>

// Include header files representing the CORBA header content
2 #include "HelloWorld_wsdlTypes.h"

#include "HelloWorld_wsdlTypesFactory.h"
#include "HelloWorldClient.h"

IT_USING_NAMESPACE_STD
 311

CHAPTER 7 | Artix Contexts
using namespace IT_Bus;
using namespace IT_WS_ORB;
using namespace IT_ContextAttributes;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);
 HelloWorldClient client;

3 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Create QName objects needed to define a context
4 const QName ctx_name(

 "",
 "PrincipalInfo",
 ""
);

5 const QName ctx_type(
 "",
 "PrincipalInfo",
 "http://schemas.iona.com/idltypes/HelloWorld.idl"
);

6 const unsigned long ctx_id = 12288;

 // Register the context with the ContextRegistry
7 context_registry->register_context(

 ctx_name,
 ctx_type,
 ctx_id
);

 // Obtain a reference to the ContextCurrent
8 ContextCurrent& context_current =

 context_registry->get_current();

 // Obtain a pointer to the RequestContextContainer
9 ContextContainer* context_container =

 context_current.request_contexts();

 // Obtain a reference to the context

Example 104: Client Main Function Setting a CORBA Context
312

CORBA Header Contexts
The preceding code example can be explained as follows:

1. The it_bus_pdk/context.h header file contains the declarations of the

following classes:

♦ IT_Bus::ContextRegistry,

♦ IT_Bus::ContextContainer,

♦ IT_Bus::ContextCurrent.

2. The HelloWorld_wsdlTypes.h local header file contains the declaration of

the PrincipalInfo class, which has been generated from the context

schema (see Example 95 on page 287).

3. Obtain a reference to the IT_Bus::ContextRegistry object, which is used

to register contexts with the Bus.

10 AnyType* info = context_container->get_context(
 ctx_name,
 true
);

 // Cast the context into a PrincipalInfo object
11 PrincipalInfo* header_info =

 dynamic_cast<PrincipalInfo*> (info);

 // Add the header content
 header_info->setusername("Bill");
 header_info->setpassword("Rendezvous");

 // Invoke the Web service business methods
 String theResponse;

12 client.sayHi(theResponse);
 cout << "sayHi response: " << theResponse << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 104: Client Main Function Setting a CORBA Context
 313

CHAPTER 7 | Artix Contexts
4. The QName with local name, PrincipalInfo, is a context name that

identifies the context uniquely. Although the context name is specified as a

QName, it does not refer to an XML element. You can choose any unique

QName as the context name.

5. The QName with namespace URI,

http://schemas.iona.com/idltypes/HelloWorld.idl, and local part,

PrincipalInfo, identifies the context type from Example 95 on page 287.

6. The ctx_id specifies the ID of the GIOP service context that will hold the

context data. For more details about GIOP service contexts, see “CORBA

Service Contexts” on page 306.

7. The call to register_context() tells the Artix Bus that the

PrincipalInfo type will be used to send context data in a GIOP service

context. After you have registered the context, the Bus is prepared to

marshal the context data (if any) into a CORBA header.

8. Call IT_Bus::ContextRegistry::get_current() to obtain a reference to

the IT_Bus::ContextCurrent object. The current object provides access

to all context objects associated with the current thread.

9. Call IT_Bus::ContextContainer::request_contexts() to obtain an

IT_Bus::ContextContainer object that contains all of the contexts for

requests originating from the current thread.

10. The IT_Bus::ContextContainer::get_context() function is called with

its second parameter set to true, indicating that a context with that name

should be created if none already exists.

11. The IT_Bus::AnyType class is the base type for all complex types in Artix.

In this case, you can cast the AnyType instance, info, to its derived type,

PrincipalInfo*.

By setting the username and password elements of this PrincipalInfo

object, you are effectively fixing the context data for all operations invoked

from this thread.

12. When you invoke the sayHi() operation, the context data is included in the

CORBA header. From this point on, any WSDL operation invoked from

the current thread will include the PrincipalInfo context data in its

CORBA header.
314

CORBA Header Contexts
Server Main Function

Overview This subsection discusses the main function for the server in the custom CORBA
header scenario. In addition to the usual boilerplate code for an Artix server (that
is, registering a servant and calling IT_Bus::run()), this server also registers a
context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the
capability to unmarshal context data of that type. This unmarshalling capability
is then exploited in the implementation of the sayHi() operation (see
Example 106 on page 318).

Server main function Example 105 shows sample code from the server main function, which registers
the PrincipalInfo context type and then creates and registers a
HelloWorldImpl servant object.

Example 105: Server Main Function Registering a CORBA Context

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_cal/iostream.h>

1 #include <it_bus_pdk/context.h>

#include "HelloWorldImpl.h"

IT_USING_NAMESPACE_STD

using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

2 ContextRegistry* context_registry =
 bus->get_context_registry();

 315

CHAPTER 7 | Artix Contexts
3 const QName ctx_name(
 "",
 "PrincipalInfo",
 ""
);

4 const QName ctx_type(
 "",
 "PrincipalInfo",
 "http://schemas.iona.com/idltypes/HelloWorld.idl"
);

5 const unsigned long ctx_id = 12288;

6 context_registry->register_context(
 ctx_name,
 ctx_type,
 ctx_id
);

 HelloWorldImpl servant(bus);

 IT_Bus::QName service_name("", "HelloWorldCORBAService",

"http://schemas.iona.com/idl/HelloWorld.idl");

 bus->register_servant(
 servant,
 "../../etc/hello_world.wsdl",
 service_name
);

 IT_Bus::run();
 }
 catch(IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.message() << endl;
 return -1;
 }
 return 0;
}

Example 105: Server Main Function Registering a CORBA Context
316

CORBA Header Contexts
The preceding code example can be explained as follows:

1. The it_bus_pdk/context.h header file contains the declarations of the

following classes:

♦ IT_Bus::ContextRegistry,

♦ IT_Bus::ContextContainer,

♦ IT_Bus::ContextCurrent.

2. Obtain a reference to the IT_Bus::ContextRegistry object, which is used

to register contexts with the Bus.

3. The QName with local name, PrincipalInfo, is a context name that

identifies the context uniquely. Although the context name is specified as a

QName, it does not refer to an XML element. You can choose any unique

QName as the context name.

4. The QName with namespace URI,

http://schemas.iona.com/idltypes/HelloWorld.idl, and local part,

PrincipalInfo, identifies the context type from Example 101 on

page 307.

5. The ctx_id specifies the ID of the GIOP service context that holds the

context data. For more details about GIOP service contexts, see “CORBA

Service Contexts” on page 306.

6. The call to register_context() tells the Artix Bus that the

PrincipalInfo type will be used to send context data in CORBA headers.

After you have registered the context, the Bus is prepared to marshal the

context data (if any) into a CORBA header.
 317

CHAPTER 7 | Artix Contexts
Service Implementation

Overview This subsection discusses the implementation of the HelloWorld port type,
which maps to the HelloWorldImpl servant class in C++.

In the custom CORBA header scenario, the HelloWorldImpl::sayHi()
operation is modified to peek at the context data accompanying the invocation.
To access the context data, you need to get access to a context current object,
which encapsulates all of the context data received from the client.

Implementation of the sayHi
operation

Example 106 shows the implementation of the sayHi() operation from the
HelloWorldImpl servant class. The sayHi() operation implementation uses the
context API to access the context data received from the client.

Example 106: sayHi Operation Accessing a CORBA Context

// C++
...
void
GreeterImpl::sayHi(
 IT_Bus::String &theResponse
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "sayHi invoked" << endl;
 theResponse = "Hello from Artix";

 // Obtain a pointer to the bus
 Bus_var bus = Bus::create_reference();

1 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Create QName objects needed to define a context

2 const QName ctx_name(
 "",
 "PrincipalInfo",
 ""
);

 // Obtain a reference to the ContextCurrent

3 ContextCurrent& context_current =
 context_registry->get_current();

318

CORBA Header Contexts
The preceding code example can be explained as follows:

1. The IT_Bus::ContextRegistry object, context_registry, provides

access to all of the objects associated with contexts.

2. The QName with local name, PrincipalInfo, is the name of the context to

be extracted from the incoming request message.

3. Call IT_Bus::ContextRegistry::get_current() to obtain the

IT_Bus::ContextCurrent object for the current thread.

4. Call IT_Bus::ContextCurrent::request_contexts() to obtain the

IT_Bus::ContextContainer object containing all of the incoming request

contexts.

5. To retrieve a specific context from the request context container, pass the

context’s name into the IT_Bus::ContextContainer::get_context()

function.

 // Obtain a pointer to the Request ContextContainer
4 ContextContainer* context_container =

 context_current.request_contexts();

 // Obtain a reference to the context

5 AnyType* info = context_container->get_context(
 ctx_name
);

 // Cast the context into a PrincipalInfo object

6 PrincipalInfo* header_info =
 dynamic_cast<PrincipalInfo*> (info);

 // Extract the application specific CORBA header information
7 String& username = header_info->getusername();

 String& password = header_info->getpassword();

 cout << "CORBA Header username = "
 << originator.c_str() << endl;
 cout << "CORBA Header password = "
 << message.c_str() << endl;
}

Example 106: sayHi Operation Accessing a CORBA Context

Note: This is the same object that is used on the client side to hold all of
the outgoing request contexts.
 319

CHAPTER 7 | Artix Contexts
6. The IT_Bus::AnyType class is the base type for all types in Artix. In this

example, you can cast the AnyType instance, info, to its derived type,

PrincipalInfo*.

7. You can now access the context data by calling the accessors for the

username and password elements, getusername() and getpassword().
320

Header Contexts in Three-Tier Systems
Header Contexts in Three-Tier Systems

Overview This section considers how Artix header contexts are propagated in a three-tier
system. The Artix context model makes no distinction between incoming request
contexts and outgoing request contexts. Similarly, Artix makes no distinction
between incoming reply contexts and outgoing reply contexts. An implicit
consequence of this model is that request contexts and reply contexts are
automatically propagated across multiple application tiers.

Request context propagation Figure 28 shows an example of a three-tier system where a request context is
propagated automatically from tier to tier.

Figure 28: Propagation of a Request Context in a Three-Tier System

Mid-Tier Server

firstCall("...")

Artix Client

21

Context Context

Context

Request context

Target Server

secondCall("...")

3 4

Context

Context

Request context Request context
 321

CHAPTER 7 | Artix Contexts
Context propagation steps In Figure 28, the request context is propagated through the three-tier system as
follows:

1. In the Artix client, a header context is added to the request context

container. When the client makes an invocation, firstCall(), on the

mid-tier, the context is inserted into the request message header.

2. When the request arrives at the mid-tier, it is automatically marshalled into

a request context. The context data is now accessible using the request

context container object.

3. If the mid-tier makes a follow-on invocation, secondCall(), the Artix

runtime inserts the received request context into the outgoing request

message. Hence, the client’s request context is automatically forwarded on

to the next tier.

4. When the request arrives at the target, it is automatically marshalled into a

request context. The client context data is now accessible through the

request context container object.
322

CHAPTER 8

Working with
Transport
Attributes
Using the Artix context mechanism, you can set many of the the
transport attributes at runtime.

In this chapter This chapter discusses the following topics:

How Artix Stores Transport Attributes page 324

Getting and Setting Transport Attributes page 326

Getting IP Attributes page 336

Setting HTTP Attributes page 339

Setting CORBA Attributes page 368

Setting WebSphere MQ Attributes page 369

Setting FTP Attributes page 386

Setting i18n Attributes page 395

Setting WS-A and WS-RM Attributes page 398
 323

CHAPTER 8 | Working with Transport Attributes
How Artix Stores Transport Attributes

Overview Artix uses the context mechanism described in “Artix Contexts” on page 245 to
store the properties used to configure the transport layer and populate any
headers used by the selected transport. Most of the properties are stored in the
request and reply context containers. However, some properties that are used in
initializing the transport layer at start-up are stored in a special context container,
the configuration context container.

Initialization properties Some transport attributes, such as JMS broker sign-on values or a server’s HTTP
endpoint URL, are used by Artix when it is initializing the transport layer.
Therefore, they need to be specified before Artix initializes the transport layer
for a service or a service proxy. These attributes are stored in a configuration
context container. When the bus initializes the transport layer, it will check the
configuration context container for any initialization properties.

Global transport attributes For most transport properties such as HTTP keep-alive, WebSphere MQ
AccessMode, and Tib/RV callbackLevel, the context objects containing the
transport’s properties are stored in the Artix request context container and the
Artix reply context container. Once you have retrieved the context object from
the proper context container, you can inspect the values of transport headers and
other transport related properties such as codeset conversion. You can also
dynamically set many of the values for outgoing messages using the context
APIs. For a full listing of all the possible port attributes for each transport see the
Artix WSDL Reference.

Transport specific Transport attributes are stored in built-in contexts. These contexts are
preregistered with the context container when the transport layer is initialized.
They are specific to the different transports. For example, if you request the
context for the HTTP port attributes from the context container, the returned
context will have methods for setting and examining HTTP specific attributes.
However, if the application is using another transport, WebSphere MQ for
example, the HTTP configuration context will not be registered and you will be
unable to get the HTTP configuration context from the container.
324

How Artix Stores Transport Attributes
Default values All of the transport attributes have default values that are specified in either the
service’s contract or in the service’s configuration. If you do not use the contexts
for overriding transport attributes, these defaults are used when sending
messages.

When are the attribute contexts
populated

Whether or not an attribute context is populated when you access it depends on
whether the context was taken from an outgoing message or an incoming
message, as follows:

• Outgoing messages—when you get the transport attributes for an outgoing

message, the context is empty. You need to create an instance of the

context and set the values you want to override in the context yourself.

• Incoming messages—when a message is received by the transport layer,

the transport populates the context with the attributes of the message it

receives.

For example, if you are using HTTP, the values of the incoming message’s

HTTP header are used to populate the context. The context can then be

inspected at any point in the application’s code.
 325

CHAPTER 8 | Working with Transport Attributes
Getting and Setting Transport Attributes

Overview The contexts for holding transport attributes are handled using either the
standard context mechanism or the configuration context mechanism. To get a
transport attribute context do the following:

1. Make sure you include the requisite header file for the transport attribute

context.

2. Use the context API to obtain either a request context container, a reply

context container, or a configuration context container, as appropriate.

3. Call get_context() on the context container, passing in the QName of the

transport attribute context.

4. Cast the returned context data to the appropriate type.

Once you have the context data you can inspect it and set new values for any of
its properties.

Schemas directory The schemas for the Artix configuration contexts are located in the following
directory:

ArtixInstallDir/schemas

Header files The header files for the Artix configuration contexts are located in the following
directory:

ArtixInstallDir/include/it_bus_pdk/context_attrs

Library To gain access to the context stubs, you should link with the following library:

Windows

ArtixInstallDir/lib/it_context_attribute.lib

UNIX

ArtixInstallDir/lib/it_context_attribute.so
ArtixInstallDir/lib/it_context_attribute.sl
326

Getting and Setting Transport Attributes
Headers and types for the
pre-registered contexts

The following list gives the context name, data type and header file for each of
the pre-registered contexts. The name of each context is a C++ constant of
IT_Bus::QName type, defined in the IT_ContextAttributes namespace (for
example, IT_ContextAttributes::HTTP_CLIENT_OUTGOING_CONTEXTS). You
can pass the context name as a parameter to the
IT_Bus::ContextContainer::get_context() function to obtain a pointer to
the context data.

HTTP client outgoing attributes This context enables you to specify HTTP context data for inclusion with the
next outgoing client request. Table 2 shows the relevant details for accessing this
context.

HTTP client incoming attributes This context enables you to read context data received with the last HTTP reply
on the client side. Table 3 shows the relevant details for accessing this context.

Table 2: Details for HTTP Client Outgoing Context

Description Value

Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

Kind of context container Request

Context QName IT_ContextAttributes::HTTP_CLIENT_OUTGOING_CONTEXTS

Type of context data IT_ContextAttributes::clientType

Table 3: Details for HTTP Client Incoming Context

Description Value

Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

Kind of context container Reply

Context QName IT_ContextAttributes::HTTP_CLIENT_INCOMING_CONTEXTS

Type of context data IT_ContextAttributes::clientType
 327

CHAPTER 8 | Working with Transport Attributes
HTTP server outgoing attributes This context enables you to specify HTTP context data for inclusion with the
server’s reply. Table 4 shows the relevant details for accessing this context.

HTTP server incoming attributes This context enables you to read context data received with the current HTTP
request on the server side. Table 5 shows the relevant details for accessing this
context.

Table 4: Details for HTTP Server Outgoing Context

Description Value

Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

Kind of context container Reply

Context QName IT_ContextAttributes::HTTP_SERVER_OUTGOING_CONTEXTS

Type of context data IT_ContextAttributes::serverType

Table 5: Details for HTTP Server Incoming Context

Description Value

Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

Kind of context container Request

Context QName IT_ContextAttributes::HTTP_SERVER_INCOMING_CONTEXTS

Type of context data IT_ContextAttributes::serverType
328

Getting and Setting Transport Attributes
CORBA transport attributes This context can be used to access and modify the CORBA Principal. Table 6
shows the relevant details for accessing this context.

Principal attribute Calling get_context() returns the Principal as an IT_Bus::StringHolder
instance. Table 7 shows the relevant details for accessing this context.

Table 6: Details for CORBA Transport Context

Description Value

Header file <it_bus_pdk/context_attrs/corba_xsdTypes.h>

Kind of context container Request, Reply

Context QName IT_ContextAttributes::CORBA_CONTEXT_ATTRIBUTES

Type of context data IT_ContextAttributes::CORBAAttributesType

Table 7: Details for Principal Context

Description Value

Header file <it_bus_pdk/context_attrs/context_types.h>

Kind of context container Request, Reply

Context QName IT_ContextAttributes::PRINCIPAL_CONTEXT_ATTRIBUTE

Type of context data IT_Bus::StringHolder
 329

CHAPTER 8 | Working with Transport Attributes
MQ connection attributes This context is used to set MQ connection attributes on the client side of a
connection. After each invocation, the connection attributes are changed back to
the defaults specified in the WSDL contract. Table 8 shows the relevant details
for accessing this context.

MQ outgoing message attributes For a client, this context enables you to set the MQ message attributes on the
next outgoing request. For a server, this context enables you to set the MQ
message attributes on the next outgoing reply. Table 9 shows the relevant details
for accessing this context.

Table 8: Details for MQ Connection Attributes Context

Description Value

Header file <it_bus_pdk/context_attrs/mq_xsdTypes.h>

Kind of context container Request

Context QName IT_ContextAttributes::MQ_CONNECTION_ATTRIBUTES

Type of context data IT_ContextAttributes::MQConnectionAttributesType

Table 9: Details for MQ Outgoing Message Attributes Context

Description Value

Header file <it_bus_pdk/context_attrs/mq_xsdTypes.h>

Kind of context container Request, Reply

Context QName IT_ContextAttributes::MQ_OUTGOING_MESSAGE_ATTRIBUTES

Type of context data IT_ContextAttributes::MQMessageAttributesType
330

Getting and Setting Transport Attributes
MQ incoming message attributes For a client, this context enables you to read the MQ message attributes received
from the last reply. For a server, this context enables you to read the MQ
message received with the current request. Table 10 shows the relevant details
for accessing this context.

FTP connection policy For clients and servers, you can set all of the FTP connection policies in a
configuration context. For a client, you can additionally set the scan interval
policy and the receive timeout policy in a request context. Table 11 shows the
relevant details for accessing this context.

Table 10: Details for MQ Incoming Message Attributes Context

Description Value

Header file <it_bus_pdk/context_attrs/mq_xsdTypes.h>

Kind of context container Request, Reply

Context QName IT_ContextAttributes::MQ_INCOMING_MESSAGE_ATTRIBUTES

Type of context data IT_ContextAttributes::MQMessageAttributesType

Table 11: Details for FTP Connection Policy Context

Description Value

Header file <it_bus_pdk/context_attrs/ftp_context_xsdTypes.h>

Kind of context container Configuration, Request

Context QName IT_ContextAttributes::FTP_CONNECTION_POLICY

Type of context data IT_ContextAttributes::ConnectionPolicyType
 331

CHAPTER 8 | Working with Transport Attributes
FTP connection credentials For clients and servers, the FTP connection credentials context enables you to
set username and password for opening a connection to the FTP daemon.
Table 12 shows the relevant details for accessing this context.

FTP client naming policy The FTP client naming policy enables you to register a class that generates the
names of the files created to store messages in the FTP file system. Because this
class must be a Java class, it is only possible to use this feature from an Artix
Java application. See Developing Artix Applications in Java for details.

FTP server naming policy The FTP server naming policy enables you to register a class that generates the
names of the files created to store messages in the FTP file system. Because this
class must be a Java class, it is only possible to use this feature from an Artix
Java application. See Developing Artix Applications in Java for details.

i18n server attributes For a server, the i18n server attributes context enables you to set the local
codeset and the server outbound codeset in the reply context. Table 13 shows the
relevant details for accessing this context.

Table 12: Details for FTP Connection Credentials Context

Description Value

Header file <it_bus_pdk/context_attrs/ftp_context_xsdTypes.h>

Kind of context container Configuration

Context QName IT_ContextAttributes::FTP_CREDENTIALS

Type of context data IT_ContextAttributes::CredentialsType

Table 13: Details for I18N Server Attributes Context

Description Value

Header file <it_bus_pdk/context_attrs/i18n_context_xsdTypes.h>

Kind of context container Reply

Context QName IT_ContextAttributes::I18N_INTERCEPTOR_SERVER_QNAME

Type of context data IT_ContextAttributes::ServerConfiguration
332

Getting and Setting Transport Attributes
i18n client attributes For a server, the i18n client attributes context enables you to set the local codeset
and the client outbound codeset in the request context. Table 14 shows the
relevant details for accessing this context.

Bus security attributes For clients and servers, enables you to set security attributes programmatically.
Table 15 shows the relevant details for accessing this context.

Table 14: Details for I18N Client Attributes Context

Description Value

Header file <it_bus_pdk/context_attrs/i18n_context_xsdTypes.h>

Kind of context container Request

Context QName IT_ContextAttributes::I18N_INTERCEPTOR_CLIENT_QNAME

Type of context data IT_ContextAttributes::ClientConfiguration

Table 15: Details for Bus Security Attributes Context

Description Value

Header file <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>

Kind of context container Request, Reply

Context QName IT_ContextAttributes::SECURITY_SERVER_CONTEXT

Type of context data IT_ContextAttributes::BusSecurity
 333

CHAPTER 8 | Working with Transport Attributes
HTTP endpoint URL attribute For clients, this attribute enables you to specify the URL that will be used by the
next proxy to open a HTTP connection. The context value is cleared after the
proxy connection is opened. Table 16 shows the relevant details for accessing
this context.

Server address context attributes For servers, this context is set only when you have registered a default servant
(see “Default Servants” on page 677). By reading this context from the request
context container, the server can determine the identity of the target service.
Table 17 shows the relevant details for accessing this context.

Server operation attribute This context is a non-serializable context that can be used to get a reference to an
IT_Bus::ServerOperation object during an invocation on the server side. In
other words, you can access this context type from the body of a servant
function. See “Reading and Writing Custom Types” on page 269 for more
details about non-serializable contexts.

Table 16: Details for HTTP Endpoint URL Context

Description Value

Header file <it_bus_pdk/context_attrs/context_types.h>

Kind of context container Request

Context QName IT_ContextAttributes::HTTP_ENDPOINT_URL

Type of context data IT_Bus::StringHolder

Table 17: Details for Server Address Context

Description Value

Header file <it_bus_pdk/context_attrs/address_context.h>

Kind of context container Request

Context QName IT_ContextAttributes::SERVER_ADDRESS_CONTEXT

Type of context data IT_ContextAttributes::AddressContext
334

Getting and Setting Transport Attributes
Table 18: Details for Server Operation Context

Description Value

Header file <it_bus_pdk/context_attrs/context_types.h>

Kind of context container Request

Context QName IT_ContextAttributes::SERVER_OPERATION_CONTEXT

Type of context data IT_Bus::ServerOperationContext
 335

CHAPTER 8 | Working with Transport Attributes
Getting IP Attributes

Overview Artix provides a context that enables you to access data from the IP socket layer.
Currently, the only supported IP attribute is the client IP address, which is
accessible through the client address context.

Client address context The client address context is a server-side request context that contains the IP
address (or hostname) of the requesting client. This context can be useful if you
want a simple way of identifying clients—for example, for the purposes of
logging requests on the server side.

Enabling the client address
context

To enable the client address context on the server side, insert the following
setting into the relevant scope of your server’s .cfg configuration file:

This setting causes the Bus to read the client’s IP address from the IP socket
layer each time the server receives a message from a client. The IP address is
then inserted into a client address context, which is accessible to the server
application code.

WARNING:The client address context is not a secure way to identify clients.
If you need to be certain of the client’s identity, use one of the authentication
techniques described in the Artix Security Guide.

Artix Configuration File
plugins:bus:register_client_context = "true";

Note: The default setting is false, thus disabling the client address context.
This is to avoid any unnecessary performance overhead when this feature is
not needed.
336

Getting IP Attributes
Getting the client address on the
server side

The context containing the client’s IP address, CLIENT_ADDRESS_CONTEXT, is
available in the server’s request context container, after a request from the client
is received by the transport layer. To access the client’s IP address on the server
side, use the code fragment shown in Example 107.

Example 107: Reading the Client IP Address on the Server Side

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/context_constants.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

// Obtain a reference to the context
3 AnyType* info = context_container->get_context(

 IT_ContextAttributes::CLIENT_ADDRESS_CONTEXT,
 false
);

4 IT_Bus::StringHolder * str_holder =
 dynamic_cast<StringHolder *>(info);
IT_Bus::String * client_ip_address;
if(0 != str_holder)
{
 client_ip_address = &(str_holder->get());
}

 337

CHAPTER 8 | Working with Transport Attributes
The preceding code can be explained as follows:

1. Include header file for the general context classes and for the context

constants.

2. Obtain a reference to a context container, context_container, that

contains the server’s request contexts.

3. Extract the client address context (identified by the constant,

CLIENT_ADDRESS_CONTEXT) from the list of server request contexts.

4. Cast the returned context object to IT_Bus::StringHolder type and

extract the client’s IP address from the string holder.
338

Setting HTTP Attributes
Setting HTTP Attributes

Overview Artix uses four contexts to support the HTTP transport. Two contexts support
the server-side HTTP information. The server-side contexts are of
IT_ContextAttributes::serverType type. The other two contexts support the
client-side HTTP information. The client-side contexts are of
IT_ContextAttributes::clientType type.

The information stored in the HTTP transport attribute contexts correlates to the
values passed in an HTTP header.

In this section This section discusses the following topics:

Client-side Configuration page 340

Server-side Configuration page 351

Setting the Server’s Endpoint URL page 364
 339

CHAPTER 8 | Working with Transport Attributes
Client-side Configuration

Overview HTTP clients have access to both the values being passed in the HTTP header of
the outgoing request and the values received in the HTTP header of the response.
The information for each header is stored in a separate context.

Outgoing header information On the client-side, the outgoing context, HTTP_CLIENT_OUTGOING_CONTEXTS, is
available in the client’s request context. Any changes made to values in the
outgoing context are placed in the request’s HTTP header and propagated to the
server. For example, if you want to allow requests to be automatically redirected
you could set the AutoRedirect attribute to true in the client’s outgoing
context. Example 108 shows the code for setting the AutoRedirect property for
a client.

Example 108: Setting a Client’s AutoRedirect Property

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::HTTP_CLIENT_OUTGOING_CONTEXTS,
 true
);
340

Setting HTTP Attributes
The code in Example 108 does the following:

1. Includes the header files for the general context classes and for the HTTP

client context type.

2. Gets the client’s context registry.

3. Gets the client’s outgoing HTTP context from the request context

container.

4. Sets the value of the AutoRedirect property to true.

Outgoing client attributes Table 19 shows the attributes that are valid in the outgoing HTTP client context.

// Cast the context into a clientType object
clientType* http_client_config =
 dynamic_cast<clientType*> (info);

4 http_client_config->setAutoRedirect(true);

// make proxy invocations
...

Example 108: Setting a Client’s AutoRedirect Property

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description

Accept String* getAccept()
const String* getAccept() const

void setAccept(const String* val)
void setAccept(const String& val)

Specifies the MIME types the client
can handle in a response.

Accept-Encoding String* getAcceptEncoding()
const String* getAcceptEncoding()

const

void setAcceptEncoding(
 const String* val)
void setAcceptEncoding(
 const String& val)

Specifies the types of content
encoding the client can handle in a
response. This property typically
refers to compression mechanisms.
 341

CHAPTER 8 | Working with Transport Attributes
Accept-Language String* getAcceptLanguage()
const String* getAcceptLanguage()

const

void setAcceptLanguage(
 const String* val)
void setAcceptLanguage(
 const String& val)

Specifies the language the client
prefers. Valid language tags
combine an ISO language code and
an ISO country code separated by a
hyphen. For example, en-US.

Authorization String* getAuthorization()
const String* getAuthorization()

const

void setAuthorization(
 const String* val)
void setAuthorization(
 const String& val)

Specifies the credentials that will be
used by the server to authorize
requests from the client.

AuthorizationType String* getAuthorizationType()
const String* getAuthorizationType()

const

void setAuthorizationType(
 const String* val)
void setAuthorizationType(
 const String& val)

Specifies the name of the
authentication scheme in use.

AutoRedirect Boolean* getAutoRedirect()
const Boolean* getAutoRedirect()

const

void setAutoRedirect(
 const Boolean* val)
void setAutoRedirect(
 const Boolean& val)

Specifies whether a request should
be automatically redirected by the
server. The default is false to
specify that requests are not to be
automatically redirected.

BrowserType String* getBrowserType()
const String* getBrowserType() const

void setBrowserType(
 const String* val)
void setBrowserType(
 const String& val)

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
342

Setting HTTP Attributes
Cache-Control String* getCacheControl()
const String* getCacheControl()

const

void setCacheControl(
 const String* val)
void setCacheControl(
 const String& val)

Specifies directives to caches along
the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fields are given, the
restriction applies only to those
header fields.

no-store: caches must not store
any part of a request or its response.

max-age: the max age, in seconds,
of an acceptible response.

max-stale: the client will accept
expired messages. If a value is
given, it specifies the how many
seconds after a response expires
that the it is still acceptable. If no
value is given, all stale responses
are acceptable.

min-fresh: the response must stay
fresh for the given number of
seconds.

no-transform: caches must not
modify the media type or the
content location of a response.

only-if-cached: caches should
return only cached responses.

ClientCertificate String* getClientCertificate()
const String* getClientCertificate()

const

void setClientCertificate(
 const String* val)
void setClientCertificate(
 const String& val)

Specifies the full path to the
PKCS12-encoded X509 certificate
issued by the certificate authority
for the client.

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
 343

CHAPTER 8 | Working with Transport Attributes
ClientCertificateChain String* getClientCertificateChain()
const String*
 getClientCertificateChain() const

void setClientCertificateChain(
 const String* val)
void setClientCertificateChain(
 const String& val)

Specifies the full path to the file
containing all of the certificates in
the chain.

ClientPrivateKey String* getClientPrivateKey()
const String* getClientPrivateKey()

const

void setClientPrivateKey(
 const String* val)
void setClientPrivateKey(
 const String& val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ClientCertificate.

ClientPrivateKeyPassword String*
 getClientPrivateKeyPassword()
const String*
 getClientPrivateKeyPassword() const

void setClientPrivateKeyPassword(
 const String* val)
void setClientPrivateKeyPassword(
 const String& val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Connection String* getConnection()
const String* getConnection() const

void setConnection(
 const String* val)
void setConnection(
 const String& val)

Specifies whether a connection is to
be kept open after each
request/response transaction.

Valid values are:

close: the connection is closed
after each transaction.

Keep-Alive: the client would like
the conneciton to remain open.
Servers do not have to honor this
request.

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
344

Setting HTTP Attributes
Cookie String* getCookie()
const String* getCookie() const

void setCookie(const String* val)
void setCookie(const String& val)

Specifies a static cookie that is sent
along with a request.

Note: According to the HTTP 1.1
specification, HTTP cookies must
contain US-ASCII characters.

Expires String* getExpires()
const String* getExpires() const

void setExpires(const String* val)
void setExpires(const String& val)

Specifies the date after which
responses are considered stale.

Host String* getHost()
const String* getHost() const

void setHost(const String* val)
void setHost(const String& val)

Specifies the Internet host and port
number of the service for which the
request is targeted.

Password String* getPassword()
const String* getPassword() const

void setPassword(const String* val)
void setPassword(const String& val)

Specifies the password to use in
username/password authentication.

Pragma String* getPragma()
const String* getPragma() const

void setPragma(const String* val)
void setPragma(const String& val)

Specifies implementation-specific
directives that might apply to any
recipient along the request/response
chain.

Proxy-Authorization String* getProxyAuthorization()
const String*

getProxyAuthorization() const

void setProxyAuthorization(
 const String* val)
void setProxyAuthorization(
 const String& val)

Specifies the credentials used to
perform validation at a proxy server
along the request/response chain. If
the proxy uses username/password
validation, this value is not used.

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
 345

CHAPTER 8 | Working with Transport Attributes
ProxyAuthorizationType String* getProxyAuthorizationType()
String& getProxyAuthorizationType()

void setProxyAuthorizationType(
 const String* val)
void setProxyAuthorizationType(
 const String& val)

Specifies the type of authentication
used by proxy servers along the
request/response chain.

ProxyPassword String* getProxyPassword()
const String* getProxyPassword()

const

void setProxyPassword(
 const String* val)
void setProxyPassword(
 const String& val)

Specifies the password used by
proxy servers for authentication if
username/password authentication
is in use.

ProxyServer String* getProxyServer()
const String* getProxyServer() const

void setProxyServer(
 const String* val)
void setProxyServer(
 const String& val)

Specifies the URL of the proxy
server, if one exists, along the
request/response chain.

Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.

ProxyUserName String* getProxyUserName()
const String* getProxyUserName()

const

void setProxyUserName(String val)

Specifies the username used by
proxy servers for authentication if
username/password authentication
is in use.

ReceiveTimeout Int* getReceiveTimeout()
const Int* getReceiveTimeout() const

void setReceiveTimeout(
 const Int* val)
void setReceiveTimeout(
 const Int& val)

Specifies the number of
milliseconds the client will wait to
receive a response from a server
before timing out. The default is
3000.

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
346

Setting HTTP Attributes
Referer String* getReferer()
const String* getReferer() const

void setReferer(const String* val)
void setReferer(const String& val)

Specifies the entity that referred the
client to the target server.

Send-Timeout Int* getSendTimeout()
const Int* getSendTimeout() const

void setSendTimeout(const Int* val)
void setSendTimeout(const Int& val)

Specifies the number of
milliseconds the client will continue
trying to send a request to the server
before timing out.

ServerDate String* getServerDate()
const String* getServerDate() const

void setServerDate(
 const String* val)
void setServerDate(
 const String& val)

Specifies the time setting for the
server. When this value is set, the
client will use it as the base time
from which to calculate message
expiration. The client defaults to
using its internal system clock.

Trusted Root Certificate String* getTrustedRootCertificates()
const String*
 getTrustedRootCertificates() const

void setTrustedRootCertificates(
 const String* val)
void setTrustedRootCertificates(
 const String& val)

Specifies the full path to the
PKCS12-encoded X509 certificate
for the certificate authority.

UserName String* getUserName()
const String* getUserName() const

void setUserName(const String* val)
void setUserName(const String& val)

Specifies the username used for
authentication when the server uses
username/password authentication.

Use Secure Sockets Boolean* getUseSecureSockets()
const Boolean* getUseSecureSockets()

const

void setUseSecureSockets(
 const Boolean* val)
void setUseSecureSockets(
 const Boolean& val)

Specifies the client wants to use a
secure connection. Secure HTTP
connections are also referred to as
HTTPS.

Valid values are true and false.

Note: If the contract specifies
HTTPS, this value is always true.

Table 19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
 347

CHAPTER 8 | Working with Transport Attributes
Incoming header The client’s incoming context, HTTP_CLIENT_INCOMING_CONTEXTS, is available
in the client’s reply context after a response from the server has been received by
the transport layer. The values stored in this context are for informational
purposes only. For example, if you need to check the MIME type of the data
returned in the request, you would read it from the client’s incoming context as
shown in Example 109.

Example 109: Reading the Content Type in an HTTP Client

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 // make proxy invocation
...

3 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.reply_contexts();

4 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::HTTP_CLIENT_INCOMING_CONTEXTS,
 true
);

// Cast the context into a clientType object
clientType* http_client_config =
 dynamic_cast<clientType*> (info);

5 IT_Bus::String* content = http_client_config->getContentType();
348

Setting HTTP Attributes
The code in Example 109 does the following:

1. Includes the header files for the general context classes and for the HTTP

client context type.

2. Makes an invocation on the proxy.

3. Gets the client’s context registry.

4. Gets the client’s incoming HTTP context from the reply context container.

5. Gets the value of the ContentType property.

Incoming client attributes Table 20 shows the attributes that are valid in the incoming HTTP client context.

Table 20: Incoming HTTP Client Attributes

HTTP Attribute Artix APIs Description

Content-Encoding String* getContentEncoding()
const String* getContentEncoding()

const

Specifies the type of special
encoding, if any, the server used to
package the response.

Content-Language String* getContentLanguage()
const String* getContentLanguage()

const

Specifies the language the server
used in writing the response. Valid
language tags combine an ISO
language code and an ISO country
code separated by a hyphen. For
example, en-US.

Content-Location String* getContentLocation()
const String* getContentLocation()

const

Specifies the URL where the
resource being sent in a response is
located.

Content-Type String* getContentType()
const String* getContentType() const

Specifies the MIME type of the data
in the response.

ETag String* getETag()
const String* getETag() const

Specifies the entity tag in the
response header.

HTTPReply String* getHTTPReply()
const String* getHTTPReply() const

Specifies the type of reply being
sent back by the server. For
example, if a request is fulfilled a
server will reply with OK.
 349

CHAPTER 8 | Working with Transport Attributes
HTTPReplyCode Int* getHTTPReplyCode()
const Int* getHTTPReplyCode() const

Specifies an integer code associated
with the server’s reply. For
example, 200 means OK and 404
means Not Found.

Last-Modified String* getLastModified()
const String* getLastModified()

const

Specifies the date and time at which
the server believes a resource was
last modified.

Proxy-Authenticate String* getProxyAuthenticate()
const String* getProxyAuthenticate()

const

Specifies a challenge that indicates
the authentication scheme and
parameters applicable to the proxy
for this Request-URI.

RedirectURL String* getRedirectURL()
const String* getRedirectURL() const

Specifies the URL to which client
requests should be redirected. This
is issued by a server when it is not
appropriate for the request.

ServerType String* getServerType()
const String* getServerType() const

Specifies the type of server
responded to the client. Values take
the form program-name/version.

WWW-Authenticate String* getWWWAuthenticate()
const String* getWWWAuthenticate()

const

Specifies at least one challenge that
indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

Table 20: Incoming HTTP Client Attributes

HTTP Attribute Artix APIs Description
350

Setting HTTP Attributes
Server-side Configuration

Overview HTTP servers have access to both the values being passed in the HTTP header of
the outgoing response and the values received in the HTTP header of the request.
The information for each header is stored in a separate context.

Outgoing header On the server-side, the outgoing context, HTTP_SERVER_OUTGOING_CONTEXTS, is
available in the server’s reply context container. Any changes made to values in
the outgoing context are placed in the reply’s HTTP header and propagated to
the client. For example, if you want to inform the client that it needs to redirect
it’s request to a different server, you could set the RedirectURL attribute in the
server’s outgoing context to the URL of an appropriate server. Example 110
shows the code for setting the RedirectURL attribute for a server.

Example 110: Setting a Server’s RedirectURL Attribute

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.reply_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::HTTP_SERVER_OUTGOING_CONTEXTS,
 true
);
 351

CHAPTER 8 | Working with Transport Attributes
The code in Example 110 does the following:

1. Includes the header files for the general context classes and for the HTTP

server context type.

2. Gets the server’s context registry.

3. Gets the server’s outgoing HTTP context from the reply context container.

4. Sets the value of the RedirectURL property to the URL of the server that

can satisfy the request.

// Cast the context into a serverType object
serverType* http_server_config =
 dynamic_cast<serverType*> (info);

4 http_server_config->setRedirectURL("http://www.notme.org/askthis
guy");

Example 110: Setting a Server’s RedirectURL Attribute
352

Setting HTTP Attributes
Outgoing server attributes Table 21 shows the attributes that are valid in the outgoing HTTP server context.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description

Cache-Control String* getCacheControl()
const String* getCacheControl()

const

void setCacheControl(
 const String* val)
void setCacheControl(
 const String& val)

Specifies directives to caches along
the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fields are given, the
restriction applies only to those
header fields.

public: any cache can store the
response.

private: public caches cannot store
the response. If response header
fields are given, the restriction
applies only to those header fields.

no-store: caches must not store
any part of the response or the
request.

no-transform: caches must not
modify the media type or the
content location of a response.
 353

CHAPTER 8 | Working with Transport Attributes
must-revalidate: caches must
revalidate responses that have
expired with the server before the
response can be used.

proxy-revalidate: means the
same as must-revalidate, but it
can only be enforced on shared
caches. You must set the public
directive when using this directive.

max-age: the max age, in seconds,
of an acceptible response.

s-maxage: means the same as
max-age, but it can only be
enforced on shared caches. When
set it overides the value of max-age.
You must use the
proxy-revalidate directive when
using this directive.

Content-Encoding String* getContentEncoding()
const String* getContentEncoding()

const

void setContextEncoding(
 const String* val)
void setContextEncoding(
 const String& val)

Specifies the type of special
encoding, if any, the server uses to
package a response.

Content-Language String* getContentLanguage()
const String* getContentLanguage()

const

void setContentLanguage(
 const String* val)
void setContentLanguage(
 const String& val)

Specifies the language used to write
a response. Valid language tags
combine an ISO language code and
an ISO country code separated by a
hyphen. For example, en-US.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
354

Setting HTTP Attributes
Content-Location String* getContentLocation()
const String* getContentLocation()

const

void setContentLocation(
 const String* val)
void setContentLocation(
 const String& val)

Specifies the URL where the
resource being sent in a response is
located.

Content-Type String* getContentType()
const String* getContentType() const

void setContentType(
 const String* val)
void setContentType(
 const String& val)

Specifies the MIME type of the data
in the response.

ETag String* getETag()
const String* getETag() const

void setETag(const String* val)
void setETag(const String& val)

Specifies the entity tag in the
response header.

Expires String* getExpires()
String& getExpires()

void setExpires(const String* val)
void setExpires(const String& val)

Specifies the date after which the
response is considered stale.

HonorKeepAlive Boolean* getHonorKeepAlive()
const Boolean* getHonorKeepAlive()

const

void setHonorKeepAlive(
 const Boolean* val)
void setHonorKeepAlive(
 const Boolean& val)

Specifies if the server is going to
honor a client’s keep-alive request.

HTTPReply String* getHTTPReply()
const String* getHTTPReply() const

void setHTTPReply(const String* val)
void setHTTPReply(const String& val)

Specifies the type of response the
server is issuing. For example, if the
request is fulfilled the server will
reply with OK.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
 355

CHAPTER 8 | Working with Transport Attributes
HTTPReplyCode Int* getHTTPReplyCode()
const Int* getHTTPReplyCode() const

void setHTTPReplyCode(
 const Int* val)
void setHTTPReplyCode(
 const Int& val)

Specifies an integer code associated
with the response. For example, 200
means OK and 404 means Not
Found.

Last-Modified String* getLastModified()
const String* getLastModified()

const

void setLastModified(
 const String* val)
void setLastModified(
 const String& val)

Specifies the date and time at which
the server believes a resource was
last modified.

Pragma String* getPragma()
const String* getPragma() const

void setPragma(const String* val)
void setPragma(const String& val)

Specifies implementation-specific
directives that might apply to any
recipient along the request/response
chain.

Proxy-Authorization String* getProxyAuthorization()
const String*
 getProxyAuthorization() const

void setProxyAuthorization(
 const String* val)
void setProxyAuthorization(
 const String& val)

Specifies the credentials used to
perform validation at a proxy server
along the request/response chain. If
the proxy uses username/password
validation, this value is not used.

ProxyAuthorizationType String* getProxyAuthorizationType()
const String*
 getProxyAuthorizationType() const

void setProxyAuthorizationType(
 const String* val)
void setProxyAuthorizationType(
 const String& val)

Specifies the type of authentication
used by proxy servers along the
request/response chain.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
356

Setting HTTP Attributes
ProxyPassword String* getProxyPassword()
const String* getProxyPassword()

const

void setProxyPassword(
 const String* val)
void setProxyPassword(
 const String& val)

Specifies the password used by
proxy servers for authentication if
username/password authentication
is in use.

ProxyServer String* getProxyServer()
const String* getProxyServer() const

void setProxyServer(
 const String* val)
void setProxyServer(
 const String& val)

Specifies the URL of the proxy
server, if one exists, along the
request/response chain.

Note: Artix does not support the
existence of more than one proxy
server along the request/response
chain.

ProxyUserName String* getProxyUserName()
const String* getProxyUserName()

const

void setProxyUserName(
 const String* val)
void setProxyUserName(
 const String& val)

Specifies the username used by
proxy servers for authentication if
username/password authentication
is in use.

Recieve-Timeout Int* getRecieveTimeout()
const Int* getRecieveTimeout() const

void setRecieveTimeout(
 const Int* val)
void setRecieveTimeout(
 const Int& val)

Specifies the number of
milliseconds the server will wait to
receive a request before timing out.
The default is 3000.

RedirectURL String* getRedirectURL()
const String* getRedirectURL() const

void setRedirectURL(
 const String* val)
void setRedirectURL(
 const String& val)

Specifies the URL to which the
request should be redirected.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
 357

CHAPTER 8 | Working with Transport Attributes
Send-Timeout Int* getSendTimeout()
const Int* getSendTimeout() const

void setSendTimeout(const Int* val)
void setSendTimeout(const Int& val)

Specifies the number of
milliseconds the server will
continue trying to send a response
before timing out. The default is
3000.

ServerCertificate String* getServerCertificate()
const String* getServerCertificate()

const

void setServerCertificate(
 const String* val)
void setServerCertificate(
 const String& val)

Specifies the full path to the X509
certificate issued by the certificate
authority for the server.

ServerCertificateChain String* getServerCertificateChain()
const String*
 getServerCertificateChain() const

void setServerCertificateChain(
 const String* val)
void setServerCertificateChain(
 const String& val)

Specifies the full path to the file
containing all of the certificates in
the chain.

Server Type String* getServerType()
const String* getServerType() const

void setServerType(
 const String* val)
void setServerType(
 const String& val)

Specifies the type of server
responded to the client. Values take
the form program-name/version.

ServerPrivateKey String* getServerPrivateKey()
const String* getServerPrivateKey()

const

void setServerPrivateKey(
 const String* val)
void setServerPrivateKey(
 const String& val)

Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ServerCertificate.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
358

Setting HTTP Attributes
ServerPrivateKeyPassword String*
 getServerPrivateKeyPassword()
const String*
 getServerPrivateKeyPassword() const

void getServerPrivateKeyPassword(
 const String* val)
void getServerPrivateKeyPassword(
 const String& val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Trusted Root Certificate String* getTrustedRootCertificates()
const String*
 getTrustedRootCertificates() const

void setTrustedRootCertificates(
 const String* val)
void setTrustedRootCertificates(
 const String& val)

Specifies the full path to the
PKCS12-encoded X509 certificate
for the certificate authority.

UseSecureSockets Boolean* getUseSecureSockets()
const Boolean* getUseSecureSockets()

const

void setUseSecureSockets(
 const Boolean* val)
void setUseSecureSockets(
 const Boolean& val)

Specifies the server wants to use a
secure connection. Secure HTTP
connections are also referred to as
HTTPS.

Note: If the contract specifies
HTTPS, this value is always true.

WWW-Authenticate String* getWWWAuthenticate()
const String* getWWWAuthenticate()

const

void setWWWAunthenticate(
 const String* val)
void setWWWAunthenticate(
 const String& val)

Specifies at least one challenge that
indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

Table 21: Outgoing HTTP Server Attributes

HTTP Attribute Artix APIs Description
 359

CHAPTER 8 | Working with Transport Attributes
Incoming header The server’s incoming context, HTTP_SERVER_INCOMING_CONTEXTS, is available
in the server’s request context container after a request from client has been
received by the transport layer. The values stored in this context are for
informational purposes only. For example, if you need to check the MIME type
of the data the client can accept in the response, you would read it from the
server’s incoming context as shown in Example 111.

Example 111: Reading the Accept Attribute in an HTTP Server

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::HTTP_SERVER_INCOMING_CONTEXTS,
 true
);

// Cast the context into a serverType object
serverType* http_server_config =
 dynamic_cast<serverType*> (info);

4 IT_Bus::String* content = http_server_config->getAccept();
360

Setting HTTP Attributes
The code in Example 111 does the following:

1. Includes the header files for the general context classes and for the HTTP

server context type.

2. Gets the server’s context registry.

3. Gets the server’s incoming HTTP context from the request context

container.

4. Gets the value of the Accept property.

Incoming server attributes Table 22 shows the attributes that are valid in the incoming HTTP server
context.

Table 22: Incoming HTTP Server Attributes

HTTP Attribute Artix APIs Description

Accept String* getAccept()
const String* getAccept() const

Specifies the MIME types the client
can handle in a response.

Accept-Encoding String* getAcceptEncoding()
const String* getAcceptEncoding()

const

Specifies the types of content
encoding the client can handle in a
response. This property typically
refers to compression mechanisms.

Accept-Language String* getAcceptLanguage()
const String* getAcceptLanguage()

const

Specifies the language preferred by
the client. Valid language tags
combine an ISO language code and
an ISO country code separated by a
hyphen. For example, en-US.

Authorization String* getAuthorization()
const String* getAuthorization()

const

Specifies the credentials that will be
used by the server to authorize
requests from the client.

AuthorizationType String* getAuthorizationType()
const String* getAuthorizationType()

const

Specifies the name of the
authentication scheme in use.

AutoRedirect Boolean* getAutoRedirect()
const Boolean* getAutoRedirect()

const

Specifies whether the server should
automatically redirect the request.
 361

CHAPTER 8 | Working with Transport Attributes
BrowserType String* getBrowserType()
const String* getBrowserType() const

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Certificate Issuer String* getCertificateIssuer()
const String* getCertificateIssuer()

const

Specifies the value stored in the
Issuer field of the client’s X509
certificate.

Certificate Key Size Int* getCertificateKeySize()
const Int* getCertificateKeySize()

const

Specifies the size, in bytes, of the
public key included in the client’s
x509 certificate.

Certificate Valid Not
After

String* getCertificateNotAfter()
const String*

getCertificateNotAfter() const

Specifies the date and time after
which the client’s X509 certificate
is invalid.

Certificate Valid Not
Before

String* getCertificateNotBefore()
const String*

getCertificateNotBefore() const

Specifies the date and time before
which the client’s X509 certificate
is invalid.

Certificate Subject String* getCertificateSubject()
const String*

getCertificateSubject() const

Specifies the value of the Subject
field in the client’s X509 certificate.

Connection String* getConnection()
const String* getConnection() const

Specifies whether a connection is to
be kept open after each
request/response transaction.

Cookie String* getCookie()
const String* getCookie() const

Specifies a static cookie that is sent
along with a request.

Note: According to the HTTP 1.1
specification, HTTP cookies must
contain US-ASCII characters.

Host String* getHost()
const String* getHost() const

Specifies the Internet host and port
number of the resource being
requested.

Table 22: Incoming HTTP Server Attributes

HTTP Attribute Artix APIs Description
362

Setting HTTP Attributes
HTTPVersion String* getHTTPVersion()
const String* getHTTPVersion() const

Specifies the version of the HTTP
transport in use. Currently, this is
always set to 1.1.

If-Modified-Since String* getIfModifiedSince()
const String* getIfModifiedSince()

const

If the requested resource has not
been modified since the time
specified, the server should issue a
304 (not modified) response
without any message body.

Method String* getMethod()
const String* getMethod() const

Specifies the value of the METHOD
token sent in the request. Valid
values and their meanings are given
in the HTTP 1.1 specification.

Passwrod String* getPassword()
const String* getPassword() const

Specifies the password the client
wishes to use for authentication.

Proxy-Authenticate String* getProxyAuthenticate()
const String* getProxyAuthenticate()

const

Specifies a challenge that indicates
the authentication scheme and
parameters applicable to the proxy
for this Request-URI.

Referer String* getReferer()
const String* getReferer() const

Specifies the entity that referred the
client.

URL String* getURL()
const String* getURL() const

Specifies the value of the
Request-URI sent in the request.
The valid values for this property
are described in the HTTP 1.1
specification.

Username String* getUserName()
const String* getUserName() const

Specifies the username the client
wishes to use for authentication.

Table 22: Incoming HTTP Server Attributes

HTTP Attribute Artix APIs Description
 363

CHAPTER 8 | Working with Transport Attributes
Setting the Server’s Endpoint URL

Overview Because the server’s endpoint URL must be known before the transport layer is
initialized by the bus, you must use the specialized configuration context to set
it. For more information on using the configuration context see “Getting a
Context Instance” on page 259.

Side affects A side affect of setting the server’s endpoint URL using contexts is that the
following configuration variables:

Are ignored. The endpoint addresses advertised by the WSDL publish service
will reflect the values set in the configuration context, not the values set in the
configuration file.

Getting the property To access the HTTP endpoint URL property for an HTTP server, obtain a
configuration context container (using get_configuration_context()) and
then get the HTTP_SERVER_OUTGOING_CONTEXTS context. You are returned an
IT_ContextAttributes::serverType object that has two relevant methods:

• setURL() sets a String representing the URL of the server.

• getURL() returns a String representing the URL of the server.

Server main function Example 112 shows sample code from a server main function, which shows how
to initialize http-conf:serverType configuration context data.

Artix Configuration File
policies:soap:server_address_mode_policy:publish_hostname
policies:at_http:server_address_mode_policy:publish_hostname

Example 112: Server Main Function Setting a Configuration Context

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
1 #include <it_bus_pdk/context.h>
364

Setting HTTP Attributes
2 #include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

3 IT_Bus::QName service_name(
 "",
 "SOAPService",
 "http://www.iona.com/hello_world_soap_http"
);

4 ContextRegistry* context_registry =
 bus->get_context_registry();

5 ContextContainer * context_container =
 context_registry->get_configuration_context(
 service_name,
 "SoapPort",
 true
);

 // Obtain a reference to the context
6 AnyType* info = context_container->get_context(

 IT_ContextAttributes::HTTP_SERVER_OUTGOING_CONTEXTS,
 true
);

 // Cast the context into a serverType object
7 serverType* http_server_config =

 dynamic_cast<serverType*> (info);

 // Modify the endpoint URL
8 http_server_config->setURL("http://localhost:63278");

 ...
 GreeterImpl servant(bus);

Example 112: Server Main Function Setting a Configuration Context
 365

CHAPTER 8 | Working with Transport Attributes
The preceding code example can be explained as follows:

1. The it_bus_pdk/context.h header file contains the declarations of the

following classes:

♦ IT_Bus::ContextRegistry,

♦ IT_Bus::ContextContainer,

♦ IT_Bus::ContextCurrent.

2. The http_conf_xsdTypes.h header declares the context data types

generated from the http-conf schema.

3. This service_name is the QName of the SOAP service featured in the

hello_world_soap_http demonstration (in

samples/basic/hello_world_soap_http).

4. Obtain a reference to the IT_Bus::ContextRegistry object, which is used

to register contexts with the Bus.

5. The IT_Bus::ContextContainer object returned by

get_configuration_context() holds configuration data that is used

exclusively by the specified endpoint (that is, the SoapPort port in the

SOAPService service).

6. The IT_Bus::ContextContainer::get_context() function is called with

its second parameter set to true, indicating that a context with that name

should be created if none already exists.

 bus->register_servant(
 servant,
 "../../etc/hello_world.wsdl",
 service_name
);
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 112: Server Main Function Setting a Configuration Context
366

Setting HTTP Attributes
7. The IT_Bus::AnyType class is the base type for all complex types in Artix.

In this case, you can cast the AnyType instance, info, to its derived type,

serverType.

8. You can now modify the URL used by the SoapPort port by calling the

setURL() function.
 367

CHAPTER 8 | Working with Transport Attributes
Setting CORBA Attributes

Overview The CORBA transport does not support programmatic configuration, nor does it
provide access to any of the settings that are used to establish the connection.
Artix does, however, provide access to the CORBA principal by way of the
context mechanism. The CORBA principal is manipulated as a String by the
contexts.

For details of how to use the CORBA principal in Artix, consult the Artix
Security Guide.
368

Setting WebSphere MQ Attributes
Setting WebSphere MQ Attributes

Overview When working with WebSphere MQ, your applications can access information
about the WebSphere MQ connection that is in use and information contained in
the WebSphere MQ message descriptor. The MQ connection attributes context
contains information about the queues and queue managers that your application
uses for sending and receiving messages. On the client-side, you can set this
information on a per-invocation basis. The MQ message attributes context
allows you to inspect and set a number of the properties stored in the WebSphere
MQ message descriptor.

In this section This section discusses the following topics:

Working with Connection Attributes page 370

Working with MQ Message Descriptor Attributes page 375
 369

CHAPTER 8 | Working with Transport Attributes
Working with Connection Attributes

Overview The WebSphere MQ transport provides information about the queues to which
your application send and receives messages. This information is stored in the
MQ connection attributes context and is accessed using the
MQ_CONNECTION_ATTRIBUTES constant. The data is returned in an
MQConnectionAttributesType object. Table 23 describes the attributes stored
in the MQ connection attributes context.

Table 23: MQ Connection Attributes Context Properties

Attribute Artix APIs Description

AliasQueueName String* getAliasQueueName()
const String* getAliasQueueName() const

void setAliasQueueName(const String* val)
void setAliasQueueName(const String& val)

Specifies the remote queue to
which a server will put replies if its
queue manager is not on the same
host as the client’s local queue
manager.

ConnectionName String* getConnectionName()
const String* getConnectionName() const

void setConnecitonName(const String* val)
void setConnecitonName(const String& val)

Specifies the name of the
connection by which the adapter
connects to the queue.

ModelQueueName String* getModelQueueName()
const String* getModelQueueName() const

void setModelQueueName(const String* val)
void setModelQueueName(const String& val)

Specifies the name of the queue to
be used as a model for creating
dynamic queues.

QueueManager String* getQueueManager()
const String* getQueueManager() const

void setQueueManager(const String* val)
void setQueueManager(const String& val)

Specifies the name of the queue
manager.

QueueName String* getQueueName()
const String* getQueueName() const

void setQueueName(const String* val)
void setQueueName(const String& val)

Specifies the name of the message
queue.
370

Setting WebSphere MQ Attributes
On the client-side you can control the connection to which requests are directed
by setting the MQ connection attributes in the client’s request context before
each invocation. The connection attributes are returned to the defaults specified
in the client’s contract after each invocation.

Example Example 113 shows code for specifying the queue and queue manager to use
when making a request.

ReplyQueueManager String* getReplyQueueManager()
const String* getReplyQueueManager() const

void setReplyQueueManager(
 const String* val)
void setReplyQueueManager(
 const String& val)

Specifies the name of the reply
queue manager. This setting is
ignored by WebSphere MQ servers
when the client specifies the
ReplyToQMgr in the request
message’s message descriptor.

ReplyQueueName String* getReplyQueueName()
const String* getReplyQueueName() const

void setReplyQueueName(const String* val)
void setReplyQueueName(const String& val)

Specifies the name of the queue
where response messages are
received. This setting is ignored by
WebSphere MQ servers when the
client specifies the ReplyToQ in the
request message’s message
descriptor.

Transactional TransactionType* getTransactional()
const TransactionType* getTransactional()

const

void setTransactional(
 const TransactionType* val)
void setTransactional(
 const TransactionType& val)

Specifies how messages participate
in transactions and what role
WebSphere MQ plays in the
transactions. For information on
setting Transactional see “Setting
the Transactional attribute” on
page 373.

Table 23: MQ Connection Attributes Context Properties

Attribute Artix APIs Description

Example 113: Setting the Client’s QueueManager and QueueName

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/mq_xsdTypes.h>
...
 371

CHAPTER 8 | Working with Transport Attributes
The code in Example 113 does the following:

1. Includes the header files for the general context classes and for the MQ

connection attributes context type.

2. Gets the client’s context registry.

3. Gets the client’s MQ connection attributes context from the request context

container.

4. Sets the queue manager attribute and the queue name attribute.

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::MQ_CONNECTION_ATTRIBUTES,
 true
);

// Cast the context into a MQConnectionAttributesType object
MQConnectionAttributesType* mq_client_config =
 dynamic_cast<MQConnectionAttributesType*> (info);

4 mq_client_config->setQueueManager("Bloggy");
mq_client_config->setQueueName("TalkBack");

// make proxy invocations
...

Example 113: Setting the Client’s QueueManager and QueueName

Note: On the server-side you cannot change any of the connection attributes
programmatically.
372

Setting WebSphere MQ Attributes
Setting the Transactional attribute The transactional attribute is set using a transactionType object.
transactionType is a WSDL enumeration whose values are described in
Table 24.

Example 114 shows code for setting a client’s connection to use XA style
transactionality for a request.

Table 24: MQ Transactional Values

Value Artix API for Setting Description

none setTransactional(transactionType::none) The messages are not part of
a transaction. No rollback
actions will be taken if errors
occur.

internal setTransactional(transactionType::internal) The messages are part of a
transaction with WebSphere
MQ serving as the transaction
manager.

xa setTransactional(transactionType::xa) The messages are part of a
transaction with WebSphere
MQ serving as the resource
manager.

Example 114: Setting the Client’s Transactionality Attribute

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/mq_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();
 373

CHAPTER 8 | Working with Transport Attributes
The code in Example 113 does the following:

1. Includes the header files for the general context classes and for the MQ

connection attributes context type.

2. Gets the client’s context registry.

3. Gets the client’s MQ connection attributes context from the request context

container.

4. Sets the MQ transaction type to XA.

For more information about working with Artix enumerated types, see “Deriving
Simple Types by Restriction” on page 451.

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::MQ_CONNECTION_ATTRIBUTES,
 true
);

// Cast the context into a MQConnectionAttributesType object
MQConnectionAttributesType* mq_client_config =
 dynamic_cast<MQConnectionAttributesType*> (info);

4 mq_client_config->setTransactional(transactionType::xa);

// make proxy invocations
...

Example 114: Setting the Client’s Transactionality Attribute
374

Setting WebSphere MQ Attributes
Working with MQ Message Descriptor Attributes

Overview The Artix WebSphere MQ transport splits its MQ message descriptor attributes
between two contexts, as follows:

• MQ incoming message attributes.

• MQ outgoing message attributes.

MQ incoming message attributes One context, accessed using the MQ_INCOMING_MESSAGE_ATTRIBUTES constant,
contains the MQ message descriptor attributes for the last message received by
the application. For a client, this means that it contains the attributes for the last
response received from the server and the context is accessed through the
client’s reply context container. For a server, this means that the incoming
message attributes context contains the descriptor attributes for the request being
processed and it is accessed through the server’s request context container. The
incoming message properties can be read at any point in the processing of the
message once the transport layer has passed it to the messaging chain.

MQ outgoing message attributes The second context, accessed using MQ_OUTGOING_MESSAGE_ATTRIBUTES, allows
you to set the values of the attributes in the MQ message descriptor for the next
message being sent across the wire. For clients, this means that it affects the
values of the next request being made and the context is accessed through the
client’s request context. For server’s, this means that the outgoing message
attributes context affects the values of the current response’s MQ message
descriptor and it is accessed through the server’s reply context container. You
can set the values of the outgoing message attributes at any point in an
application’s message chain before it the message is handed off to the transport
layer.
 375

CHAPTER 8 | Working with Transport Attributes
MQ message attributes Both the incoming message attributes context and the outgoing message
attributes context are returned using as an MQMessageAttributesType object.
Table 25 describes the attributes stored in the MQ message attributes context.

Table 25: MQ Message Attributes Context Properties

Attribute Artix APIs Description

AccountingToken String* getAccountingToken()
const String* getAccountingToken() const

void setAccountingToken(const String* val)
void setAccountingToken(const String& val)

Specifies the value for the MQ
message decscriptor’s
AccountingToken field.

ApplicationData String* getApplicationData()
const String* getApplicationData() const

void setApplicationData(const String* val)
void setApplicationData(const String& val)

Specifies any application-specific
information that needs to be set in
the message descriptor.

ApplicationIdData String* getApplicationIdData()
const String* getApplicationIdData() const

void setApplicationIdData(
 const String* val)
void setApplicationIdData(
 const String& val)

Specifies the value of the MQ
message descriptor’s
ApplIdentityData field. It is
only valid for MQ clients.

ApplicationOriginData String* getApplicationOriginData()
const String* getApplicationOriginData()

const

void setApplicationOriginData(
 const String* val)
void setApplicationOriginData(
 const String& val)

Specifies the value of the MQ
message descriptor’s
ApplOriginData field.

BackoutCount Int* getBackoutCount()
const Int* getBackoutCount() const

Returns the number of times the
message has been previously
returned by the MQGET call as part
of a unit of work, and
subsequently backed out.
376

Setting WebSphere MQ Attributes
Convert Boolean* isConvert()
const Boolean* isConvert() const

void setConvert(const Boolean* val)
void setConvert(const Boolean& val)

Specifies if the messages in the
queue needs to be converted to
the system’s native encoding.

CorrelationID Base64Binary* getCorrelationID()
const Base64Binary* getCorrelationID()

const

void setCorrelationID(
 const Base64Binary* val)
void setCorrelationID(
 const Base64Binary& val)

Specifies the value for the MQ
message descriptor’s CorrelId
field.

CorrelationStyle correlationStyleType*
 getCorrelationStyle()
const correlationStyleType*
 getCorrelationStyle() const

void setCorrelationStyle(
 const correlationStyleType* val)
void setCorrelationStyle(
 const correlationStyleType& val)

Specifies how WebSphere MQ
matches both the message
identifier and the correlation
identifier to select a particular
message to be retrieved from the
queue. For information on how to
set CorrelationStyle, see “Setting
the CorrelationStyle attribute” on
page 378.

Delivery deliveryType* getDelivery()
const deliveryType* getDelivery() const

void setDelivery(const deliveryType* val)
void setDelivery(const deliveryType& val)

Specifies the value of the MQ
message descriptor’s
Persistence field. For
information on setting Delivery,
see “Setting the Delivery
attribute” on page 380.

Format formatType* getFormat()
const formatType* getFormat() const

void setFormat(const formatType* val)
void setFormat(const formatType& val)

Specifies the value of the MQ
message descriptor’s Format
field. For information on setting
Format, see “Setting the Format
attribute” on page 381.

Table 25: MQ Message Attributes Context Properties

Attribute Artix APIs Description
 377

CHAPTER 8 | Working with Transport Attributes
Setting the CorrelationStyle
attribute

The CorrelationStyle attribute is set using a correlationStyleType object.
correlationStyleType is a WSDL enumeration whose values are described in
Table 26.

MessageID String* getMessageID()
const String* getMessageID() const

void setMessageID(const String* val)
void setMessageID(const String& val)

Specifies the value for the MQ
message descriptor’s MsgId field.

ReportOption reportOptionType* getReportOption()
const reportOptionType* getReportOption()

const

void setReportOption(
 const reportOptionType* val)
void setReportOption(
 const reportOptionType& val)

Specifies the value of the MQ
message descriptor’s Report
field. For information on setting
ReportOption, see “Setting the
ReportOption attribute” on
page 383.

UserIdentifier String* getUserIdentifier()
const String* getUserIdentifier() const

void setUserIdentifier(const String* val)
void setUserIdentifier(const String& val)

Specifies the value for the MQ
message descriptor’s
UserIdentifier field.

Table 25: MQ Message Attributes Context Properties

Attribute Artix APIs Description

Table 26: CorrelationStyle Values

Value Artix API for Setting Description

messageId correlationStyleType cs("messageId");
context->setCorrelationStyle(cs);

Use the message ID as the
value for the message’s
CorrelId.

correlationId correlationStyleType cs("correlationId");
context->setCorrelationStyle(cs);

Use the message’s
CorrelationId as the value
for the message’s
CorrelId.

messageId copy correlationStyleType cs("messageId copy");
context->setCorrelationStyle(cs);

Use the message ID as the
value for the message’s
MsgId.
378

Setting WebSphere MQ Attributes
Example 115 shows code for setting a request message descriptor’s
CorrelationStyle message Id.

The code in Example 115 does the following:

1. Includes the header files for the general context classes and for the MQ

message attributes context type.

2. Gets the client’s context registry.

Example 115: Setting the Client’s CorrelationStyle Attribute

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/mq_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::MQ_OUTGOING_MESSAGE_ATTRIBUTES,
 true
);

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mq_msg_config =
 dynamic_cast<MQMessageAttributesType*> (info);

4 correlationStyleType cs("messageId");
mq_msg_config->setCorrelationStyle(cs);

// make proxy invocations
...
 379

CHAPTER 8 | Working with Transport Attributes
3. Gets the client’s MQ outgoing message attributes context from the request

context container.

4. Sets the correlation style to messageId.

Setting the Delivery attribute The Delivery attribute is set using a deliveryType object. deliveryType is a
WSDL enumeration whose values are described in Table 27.

Example 116 shows code for setting a request message descriptor’s
Persistence field to MQPER_PERSISTENT.

Table 27: Delivery Values

Value Artix API for Setting Description

persistent deliveryType delivery_t("persistent");
context->setDelivery(delivery_t)

Sets the Persistence field to
MQPER_PERSISTENT.

not persistent deliveryType delivery_t("not persistent");
context->setDelivery(delivery_t);

Sets the Persistence field to
MQPER_NOT_PERSISTENT.

Example 116: Setting the Client’s Delivery Attribute

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/mq_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();
380

Setting WebSphere MQ Attributes
The code in Example 116 does the following:

1. Includes the header files for the general context classes and for the MQ

message attributes context type.

2. Gets the client’s context registry.

3. Gets the client’s MQ outgoing message attributes context from the request

context container.

4. Sets the delivery type to persistent.

Setting the Format attribute The Format attribute is set using a formatType object. formatType is a WSDL
enumeration whose values are described in Table 28.

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::MQ_OUTGOING_MESSAGE_ATTRIBUTES,
 true
);

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mq_msg_config =
 dynamic_cast<MQMessageAttributesType*> (info);

4 deliveryType delivery_t("persistent");
mq_msg_config->setDelivery(delivery_t);

// make proxy invocations
...

Example 116: Setting the Client’s Delivery Attribute

Table 28: Format Values

Value Artix API for Setting Description

none formatType format("none");
context->setFormat(format);

Sets the Format field to
MQFMT_NONE.

string formatType format("string");
context->setFormat(format);

Sets the Format field to
MQFMT_STRING.

unicode formatType format("unicode");
context->setFormat(format);

Sets the Format field to
MQFMT_STRING.
 381

CHAPTER 8 | Working with Transport Attributes
Example 117 shows code for setting a request message descriptor’s Format field
to MQFMT_STRING.

event formatType format("event");
context->setFormat(format);

Sets the Format field to
MQFMT_EVENT.

programmable
command

formatType format("programmable command");
context->setFormat(format);

Sets the Format field to
MQFMT_PCF.

ims formatType format("ims");
context->setFormat(format);

Sets the Format field to
MQFMT_IMS.

ims_var_string formatType format("ims_var_string");
context->setFormat(format);

Sets the Format field to
MQFMT_IMS_VAR_STRING.

Table 28: Format Values

Value Artix API for Setting Description

Example 117: Setting the Client’s Format Attribute

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/mq_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::MQ_OUTGOING_MESSAGE_ATTRIBUTES,
 true
);
382

Setting WebSphere MQ Attributes
The code in Example 117 does the following:

1. Includes the header files for the general context classes and for the MQ

message attributes context type.

2. Gets the client’s context registry.

3. Gets the client’s MQ outgoing message attributes context from the request

context container.

4. Sets the message format to string.

Setting the ReportOption
attribute

The ReportOption attribute is set using a reportOptionType object.
ReportOptionType is a WSDL enumeration whose values are described in
Table 29.

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mq_msg_config =
 dynamic_cast<MQMessageAttributesType*> (info);

4 formatType format("string");
mq_msg_config->setFormat(format);

// make proxy invocations
...

Example 117: Setting the Client’s Format Attribute

Table 29: ReportOption Values

Value Artix API for Setting Description

coa reportOptionType report_option("coa");
context->setReportOption(report_option)

Set the message descriptor’s
Report field to MQRO_COA.

cod reportOptionType report_option("cod");
context->setReportOption(report_option)

Set the message descriptor’s
Report field to MQRO_COD.

exception reportOptionType report_option("exception");
context->setReportOption(report_option)

Set the message descriptor’s
Report field to
MQRO_EXCEPTION.

expiration reportOptionType report_option("expiration");
context->setReportOption(report_option)

Set the message descriptor’s
Report field to
MQRO_EXPIRATION.
 383

CHAPTER 8 | Working with Transport Attributes
Example 118 shows code for setting a request message descriptor’s Report field
to MQRO_DISCARD_MSG.

discard reportOptionType report_option("discard");
context->setReportOption(report_option)

Set the message descriptor’s
Report field to
MQRO_DISCARD_MSG.

Table 29: ReportOption Values

Value Artix API for Setting Description

Example 118: Setting the Client’s ReportOption Attribute

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/mq_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

ContextCurrent& context_current =
 context_registry->get_current();

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
 context_current.request_contexts();

3 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::MQ_OUTGOING_MESSAGE_ATTRIBUTES,
 true
);

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mq_msg_config =
 dynamic_cast<MQMessageAttributesType*> (info);

4 reportOptionType report_option("discard");
mq_msg_config->setReportOption(report_option)
384

Setting WebSphere MQ Attributes
The code in Example 118 does the following:

1. Includes the header files for the general context classes and for the MQ

message attributes context type.

2. Gets the client’s context registry.

3. Gets the client’s MQ outgoing message attributes context from the request

context container.

4. Sets the report option to discard.

// make proxy invocations
...

Example 118: Setting the Client’s ReportOption Attribute
 385

CHAPTER 8 | Working with Transport Attributes
Setting FTP Attributes

Overview The attributes used to configure an FTP connection are split into four contexts:

• one for setting the policies used to connect to the FTP daemon.

• one for setting the credentials to use when connecting to the FTP daemon.

• one for setting the naming scheme implementation to use for Artix clients.

• one for setting the naming scheme implementation to use for Artix servers.

These settings are all controlled through the special configuration context that is
made available before Artix registers any user level code with the bus. For more
information on using the configuration context see “Getting a Context Instance”
on page 259.

Artix clients can dynamically set the scan interval used by the FTP transport.
and can dynamically adjust the length of time they will wait for a response
before timing out.

In this section This section discusses the following topics:

Setting FTP Connection Policies page 387

Setting the Connection Credentials page 391

Setting the Naming Policies page 394
386

Setting FTP Attributes
Setting FTP Connection Policies

Overview When setting the FTP connection policies you access them using the
FTP_CONNECTION_POLICY tag. The FTP connection policy context information is
returned as a IT_ContextAttributes::ConnectionPolicyType object. All of
the connection policies are valid when set in the configuration context. In
addition, Artix clients can set the scan interval policy and the receive timeout
policy in their request contexts.

Setting the connection mode The FTP connection mode is set using a ConnectModeType object.
ConnectModeType is an enumeration whose values are described in Table 30.

Example 119 shows code for setting the connection mode to passive.

Table 30: ConnectionMode Values

Value Artix API for Setting Description

active ConnectModeType connect_mode("active");
context->setconnectMode(connect_mode);

Specifies that Artix controls the
connection to the FTPD.

passive ConnectModeType connect_mode("passive");
context->setconnectMode(connect_mode);

Specifies that the FTPD controls
the connection.

Example 119: Setting the FTP Connection Mode

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/ftp_context_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();

3 QName service_qname

 = new QName("http://www.iona.com/ftp_example", "FTPService");
 387

CHAPTER 8 | Working with Transport Attributes
The code in Example 119 does the following:

1. Includes the header files for the general context classes and for the FTP

connection policy type.

2. Gets the client’s context registry.

3. Set the name of an FTP service defined in the WSDL contract. For

example, you might define an FTP service like the following:

4 ContextContainer* context_container =

 context_registry.get_configuration_context(

 service_qname,

 "FTPPort",

 true

);

5 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::FTP_CONNECTION_POLICY,
 true
);

// Cast the context into a ConnectionPolicyType object
ConnectionPolicyType* ftp_config =
 dynamic_cast<ConnectionPolicyType*> (info);

6 ConnectModeType connect_mode("passive");
ftp_config->setconnectMode(connect_mode);

// make proxy invocations
...

Example 119: Setting the FTP Connection Mode

<wsdl:definitions name="HelloWorld"
 targetNamespace="http://www.iona.com/ftp_example" ... >
 ...
 <wsdl:service name="FTPService">
 <wsdl:port binding="tns:Greeter_FTPBinding"
 name="FTPPort">
 <ftp:port host="FTPHost" port="3210" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>
388

Setting FTP Attributes
4. The configuration context is specific to the endpoint defined by the service,

FTPService, and the port, FTPPort.

5. Gets the client’s FTP connection policy context from the configuration

context container.

6. Sets the FTP connection mode to passive.

Setting the connection timeout The FTP connection time out determines the number of seconds Artix will spend
in attempting to connect to the FTPD before timing out. It is set using
setconnectTimeout(). The value is specified as an integer as shown in
Example 120.

Setting the scan interval The scan interval determines the number of seconds that Artix waits before
rescaning the remote message repository for new messages. In addition to being
settable in the configuration context, the scan interval can also be set by Artix
clients using the request context.

It is set using setscanInterval(). The value is specified as an integer, as
shown in Example 121.

Example 120: Setting the Connection Timeout Policy

// C++
AnyType* info = context_container->get_context(
 IT_ContextAttributes::FTP_CONNECTION_POLICY,
 true
);
ConnectionPolicyType* ftp_config =
 dynamic_cast<ConnectionPolicyType*> (info);

ftp_config.setconnectTimeout(10);

Example 121: Setting the Scan Interval in a Client

// C++
AnyType* info = context_container->get_context(
 IT_ContextAttributes::FTP_CONNECTION_POLICY,
 true
);
ConnectionPolicyType* ftp_config =
 dynamic_cast<ConnectionPolicyType*> (info);
 389

CHAPTER 8 | Working with Transport Attributes
Setting the receive timeout The receive timeout determines the number of seconds that an Artix client waits
for a response before throwing a timeout exception. In addition to being settable
in the configuration context, the receive timeout can also be set by Artix clients
using the request context.

It is set using setrecieveTimeout(). The value is specified as an integer as
shown in Example 122.

ftp_config.setscanInterval(3);

// Make invocation on proxy

Example 121: Setting the Scan Interval in a Client

Example 122: Setting the Receive Timeout in a Client

// C++
AnyType* info = context_container->get_context(
 IT_ContextAttributes::FTP_CONNECTION_POLICY,
 true
);
ConnectionPolicyType* ftp_config =
 dynamic_cast<ConnectionPolicyType*> (info);

ftp_config.setreceiveTimeout(60);

// Make invocation on proxy
390

Setting FTP Attributes
Setting the Connection Credentials

Overview FTP servers require you to connect using a username and password. These are
set using the FTP connection credentials property.

Because the username and password used to connect to the FTP server must be
known before the transport is initialized, you need to set the property in the
special configuration context that is made available before Artix registers any
user level code with the bus. For more information on using the configuration
context see “Getting a Context Instance” on page 259.

Setting the FTP connection
credentials

To set the FTP connection credentials property, use the FTP_CREDENTIALS tag.
You are returned a CredentialsType object that has four member functions:

• setname() sets a String representing the username used when connecting

to the FTP server.

• getname() returns a String representing the username used when

connecting to the FTP server.

• setpassword() sets a String representing the password used when

connecting to the FTP server.

• getpassword() returns a String representing the password used when

connecting to the FTP server.

Example Example 123 shows how to set the FTP connection credentials properties on an
Artix FTP client.

Example 123: Setting the FTP Connection Mode

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/ftp_context_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 ContextRegistry* context_registry =
 bus->get_context_registry();
 391

CHAPTER 8 | Working with Transport Attributes
The code in Example 123 does the following:

1. Includes the header files for the general context classes and for the FTP

credentials policy type.

2. Gets the client’s context registry.

3 QName service_qname

 = new QName("http://www.iona.com/ftp_example", "FTPService");

4 ContextContainer* context_container =

 context_registry.get_configuration_context(

 service_qname,

 "FTPPort",

 true

);

5 // Obtain a reference to the context
AnyType* info = context_container->get_context(
 IT_ContextAttributes::FTP_CREDENTIALS,
 true
);

// Cast the context into a CredentialsType object
CredentialsType* creds =
 dynamic_cast<CredentialsType*> (info);

6 creds->setname("george");
creds->setpassword("bosco");

// make proxy invocations
...

Example 123: Setting the FTP Connection Mode
392

Setting FTP Attributes
3. Set the name of an FTP service defined in the WSDL contract. For

example, you might define an FTP service like the following:

4. The configuration context is specific to the endpoint defined by the service,

FTPService, and the port, FTPPort.

5. Gets the client’s FTP credentials policy context from the configuration

context container.

6. Sets the username and password for the FTP connection.

<wsdl:definitions name="HelloWorld"
 targetNamespace="http://www.iona.com/ftp_example" ... >
 ...
 <wsdl:service name="FTPService">
 <wsdl:port binding="tns:Greeter_FTPBinding"
 name="FTPPort">
 <ftp:port host="FTPHost" port="3210" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>
 393

CHAPTER 8 | Working with Transport Attributes
Setting the Naming Policies

Overview The FTP naming policies determine how Artix names the files created for the
messages sent over the FTP transport and how Artix cleans up files on the
remote datastore. These behaviors are controlled by a set of Java classes that you
can implement to meet specific needs. Artix also provides default
implementations.

For details, see the "Using FTP" section in the "Transports" chapter of Bindings
and Transports,C++ Runtime guide.
394

Setting i18n Attributes
Setting i18n Attributes

Overview Artix has two contexts to configure codeset conversion when using the i18n
interceptor. One context configures the client and the other configures the
server. The i18n interceptor is used when working in an environment where
codeset conversion is required, but the transports in use do not support it. It is a
message-level interceptor and is invoked just before the transport layer is handed
the message.

The i18n interceptor can also be set up using port extensors in your application’s
contract. For information on setting up the i18n interceptor using port extensors
see the chapter on services in Designing Artix Solutions.

Configuring Artix to use the i18n
interceptor

Before your application can use the i18n interceptor for code conversion you
must configure the Artix bus to load the required plug-ins and add the
interceptor to the appropriate message interceptor lists. To configure your
application to use the i18n interceptor do the following:

1. If your application includes a service proxy that needs to use codeset

conversion, add "I18nInterceptorFactory" to the

binding:artix:client_message_interceptor_list variable for your

application.

2. If your application includes a service that needs to use codeset conversion,

add "I18nInterceptorFactory" to the

binding:artix:server_message_interceptor_list variable for your

application.

3. Add "i18n_interceptor" to the list of plug-ins to load in the

orb_plugins variable for your application.

For more information on configuring Artix see Configuring and Deploying Artix
Solutions.

Setting up i18n on a client In a client the only attributes in the i18n context that alter how the i18n
interceptor works are the client local codeset and the client outbound codeset in
the client’s request context. The client inbound codeset defaults to the value of
the outbound codeset and the client-side interceptor does not read its value from
the context.
 395

http://www.iona.com/support/docs/artix/3.0/design/index.htm

CHAPTER 8 | Working with Transport Attributes
To configure a client for codeset conversion using the i18n interceptor do the
following:

1. Get the client’s message context.

2. Get the i18n client request context.

3. Set the local codeset property.

4. Set the outbound codeset property.

Example 124 shows the code for configuring a client for codeset conversion.

Setting up i18n on a server In a server the only attributes in the i18n context that alter how the i18n
interceptor works are the server local codeset and the server outbound codeset in
the server’s reply context. The server-side interceptor does not read the server
inbound codeset from the context.

Example 124: Client i18n Properties

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/i18n_context_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

1 ContextRegistry* context_registry =
 bus->get_context_registry();
ContextCurrent& context_current =
 context_registry->get_current();
ContextContainer* context_container =
 context_current.request_contexts();

2 AnyType* info = context_container->get_context(
 IT_ContextAttributes::I18N_INTERCEPTOR_CLIENT_QNAME,
 true
);
ClientConfiguration* i18n_config =
 dynamic_cast<ClientConfiguration*> (info);

3 i18n_config->setLocalCodeSet("Latin-1");
4 i18n_config->setOutboundCodeSet("UTF-16");
396

Setting i18n Attributes
To configure a server for codeset conversion using the i18n interceptor do the
following:

1. Get the server’s message context.

2. Get the i18n server reply context.

3. Set the local codeset property.

4. Set the outbound codeset property.

Example 125 shows the code for configuring a server for codeset conversion.

Example 125: Server i18n Properties

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/i18n_context_xsdTypes.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

1 ContextRegistry* context_registry =
 bus->get_context_registry();
ContextCurrent& context_current =
 context_registry->get_current();
ContextContainer* context_container =
 context_current.request_contexts();

2 AnyType* info = context_container->get_context(
 IT_ContextAttributes::I18N_INTERCEPTOR_SERVER_QNAME,
 true
);
ServerConfiguration* i18n_config_srvr =
 dynamic_cast<ServerConfiguration*> (info);

3 i18n_config_srvr->setLocalCodeSet("Latin-1");
4 i18n_config_srvr->setOutboundCodeSet("UTF-16");
 397

CHAPTER 8 | Working with Transport Attributes
Setting WS-A and WS-RM Attributes

Overview The WS-ReliableMessaging (WS-RM) specification describes an interoperable
protocol that provides message delivery guarantees between a source and a
destination. The protocol is layered above SOAP.

In addition to supporting oneway and synchronous two-way calls, the WS-RM
protocol can also work with message sequences. Delivery guarantees can be
applied to message sequences—for example, you can require that every message
in a message sequence gets delivered to its destination.

Enabling reliable messaging In order to enable reliable messaging, you must update the Artix configuration
file. For details of how to configure WS-RM, see Configuring and Deploying
Artix Solutions.

Demonstration code A demonstration of the WS-ReliableMessaging feature is provided in the
following directory:

ArtixInstallDir/samples/advanced/wsrm

In this section This section contains the following subsections:

Setting the WS-A ReplyTo Endpoint page 399

Setting WS-RM Attributes page 402
398

Setting WS-A and WS-RM Attributes
Setting the WS-A ReplyTo Endpoint

Overview The WS-Addressing (WS-A) message exchange pattern is a basic pre-requisite
for WS-ReliableMessaging. Essentially, the message exchange pattern provides
the basic infrastructure for setting up a two-way stream of messages between a
source and a destination. When this pattern is enabled, Artix sends a SOAP
header that contains a wsa:To element and a wsa:ReplyTo element to the server.
The Artix core then sends request messages to the endpoint specified in the
wsa:To element and receives reply messages asynchronously at the endpoint
specified in the wsa:ReplyTo element.

The IT_Bus::WSAConfigurationContext context enables you to specify the
wsa:ReplyTo URI programmatically on the client side.

WS-A configuration context scope When you register a WS-A configuration context instance, it is valid for one
proxy and one proxy only. The first proxy on which you invoke an operation
will adopt the programmed settings. The settings will not apply to any proxies
that you create subsequently.

Setting the ReplyTo endpoint for a
client proxy

Example 126 shows how to set the WS-Addressing ReplyTo endpoint on a client
proxy.

Example 126: Setting the WS-A ReplyTo Endpoint on a Client Proxy

// C++
1 #include <it_bus_pdk/context_attrs/context_constants.h>

#include <it_bus_pdk/context_attrs/wsa_config_context.h>

2 ContextContainer* request_container =
m_bus->get_pdk_bus()->get_context_registry()->get_current().requ

est_contexts();

ClientProxy proxy;

3 WSAConfigurationContext* wsa_config_context
 = new WSAConfigurationContext();

4 wsa_config_context->set_wsa_replyto_uri(
 "http://localhost:0/WSAContextClient/ContextReplyTo"
);

5 request_container->add_context(
 399

CHAPTER 8 | Working with Transport Attributes
The preceding code example can be explained as follows:

1. Includes the header files for the general context classes and the

WS-Addressing configuration context type.

2. Gets the request context container.

3. Create an IT_Bus::WSAConfigurationContext instance to hold the

WS-RM attributes.

4. Call the set_wsa_replyto_uri() function to specify the ReplyTo URI.

The address in this URI can be set as follows:

♦ Fixed host and port—where you specify the name of the client host

explicitly and you choose an explicit IP port number (non-zero).

♦ Dynamically allocated address—where you specify the placeholder

address, localhost:0, and leave it up to the operating system to

allocate an IP port number. Artix replaces localhost with the name

of the client host. The client then transmits the dynamically allocated

address to the server inside a SOAP header (using the wsa:replyTo

element).

5. When you have finished adding WS-Addressing attributes on the

WS-Addressing configuration context instance, add the context to the

request context container.

6. The first proxy on which you invoke an operation adopts the

WS-Addressing settings and clears the context again. The settings then

apply to all subsequent operation calls made using this proxy. Other proxy

instances are not affected by the WS-Addressing settings.

 IT_ContextAttributes::WSA_CONFIGURATION_CONTEXT,
 *wsa_config_context
);

6 proxy.hello_world();

Example 126: Setting the WS-A ReplyTo Endpoint on a Client Proxy
400

Setting WS-A and WS-RM Attributes
Alternative way to set the ReplyTo
endpoint

An alternative way of setting the ReplyTo endpoint is by setting the value of the
endpoint reference explicitly. Example 127 shows how to set the
WS-Addressing ReplyTo endpoint on a client proxy, using the
IT_Bus::WSAConfigurationContext::set_wsa_2005_replyto_epr()
function.

The preceding code example can be explained as follows:

1. Pass the URL address to the WS_Addressing::EndpointReferenceType

constructor. Instead of setting the endpoint address directly as an URL

string, you must first wrap the URL address in an endpoint reference type.

2. Set the ReplyTo endpoint by calling the

EndpointReferenceType::set_wsa_2005_replyto_epr() function.

Example 127: Alternative Way to Set the WS-A ReplyTo Endpoint

// C++
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/wsa_config_context.h>

ContextContainer* request_container =

m_bus->get_pdk_bus()->get_context_registry()->get_current().r
equest_contexts();

ClientProxy proxy;

WSAConfigurationContext* wsa_config_context = new
WSAConfigurationContext();

WS_Addressing::EndpointReferenceType reply_to_epr;
1 reply_to_epr.setAddress("http://localhost:0/WSAContextClient/Con

textReplyTo");
2 wsa_config_context->set_wsa_2005_replyto_epr(reply_to_epr);

request_container->add_context(
 IT_ContextAttributes::WSA_CONFIGURATION_CONTEXT,
 *wsa_config_context
);

proxy.hello_world();
 401

CHAPTER 8 | Working with Transport Attributes
Setting WS-RM Attributes

Overview The basic settings for enabling WS-RM must be specified in the Artix
configuration file (see Configuring and Deploying Artix Solutions). It is
possible, however, to override some of the settings by programming the WS-RM
configuration context, as described here.

RM sources and RM destinations The reliable messaging protocol is based on the concept of an RM channel,
which transmits messages in one direction only. Each channel consists of an RM
source (where messages originate) and an RM destination (where messages
arrive).

For each client-server association, there are two basic ways of organizing RM
channels, as follows:

• One-way association—sends oneway messages from a client to a server.

The association consists of a single channel, with an RM source on the

client side and an RM destination on the server side.

• Two-way association—sends messages in both directions, between a client

and a server. This association consists of two channels, where the client

and the server each have an RM source and an RM destination.

WS-RM configuration context
scope

When you register a WS-RM configuration context instance, it is valid for one
proxy and one proxy only. The first proxy on which you invoke an operation
will adopt the programmed settings. The settings will not apply to any proxies
that you create subsequently.

Moreover, WS-RM attributes are by definition applicable either to an RM source
or to an RM destination (either of which can occur in a client or in a server). This
contrasts with other kinds of transport attribute, which are applicable either to a
client or to a server.
402

Setting WS-A and WS-RM Attributes
Setting WS-RM attributes on a
client proxy

Example 128 shows the general approach to setting WS-RM attributes that
affect a particulary client proxy instance, proxy.

The preceding code example can be explained as follows:

1. Includes the header files for the general context classes and the WS-RM

configuration context type.

2. Gets the request context container.

3. Create an IT_Bus::WSRMConfigurationContext instance to hold the

WS-RM attributes.

4. You can set any of the client-side WS-RM attributes at this point in the

code (not shown).

Example 128: Setting WS-RM Attributes on a Client Proxy

// C++
1 #include <it_bus_pdk/context_attrs/context_constants.h>

#include <it_bus_pdk/context_attrs/wsrm_config_context.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...
ContextContainer* request_container =

2 m_bus->get_pdk_bus()->get_context_registry()->get_current().requ
est_contexts();

ClientProxy proxy;

3 WSRMConfigurationContext* wsrm_config_context
 = new WSRMConfigurationContext();

4 // Set WS-RM attributes here!
...

5 request_container->add_context(
 IT_ContextAttributes::WSRM_CONFIGURATION_CONTEXT,
 *wsrm_config_context
);

6 proxy.hello_world();
 403

CHAPTER 8 | Working with Transport Attributes
5. When you have finished adding WS-RM attributes on the WS-RM

configuration context instance, add the context to the request context

container.

6. The first proxy on which you invoke an operation adopts the WS-RM

settings and clears the context again. The settings then apply to all

subsequent operation calls made using this proxy. Other proxy instances

are not affected by the WS-RM settings.

Setting WS-RM attributes in a
servant

On the server side, you can set RM source attributes by modifying the attributes
in a WS-RM reply context before the service sends its first reply message to a
particular client. RM destination attributes, on the other hand, cannot be
modified by programming on the server side.

Example 129 shows the general approach to setting WS-RM attributes in a
servant (that is, in the implementation of an operation).

Example 129: Setting WS-RM Attributes in a Servant

// C++
1 #include <it_bus_pdk/context_attrs/context_constants.h>

#include <it_bus_pdk/context_attrs/wsrm_config_context.h>
...
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;
...

2 // Obtain a pointer to the reply ContextContainer
ContextContainer* reply_container =
m_bus->get_context_registry()->get_current().reply_contexts();

3 WSRMConfigurationContext* wsrm_config_context
 = new WSRMConfigurationContext();

4 // Set WS-RM source attributes here!
...

5 reply_container->add_context(
 IT_ContextAttributes::WSRM_CONFIGURATION_CONTEXT,
 *wsrm_config_context
);
404

Setting WS-A and WS-RM Attributes
The preceding code example can be explained as follows:

1. Includes the header files for the general context classes and the WS-RM

configuration context type.

2. Gets the reply context container.

3. Create an IT_Bus::WSRMConfigurationContext instance to hold the

server-side WS-RM attributes.

4. You can set RM source attributes at this point in the code (not shown).

5. When you have finished adding WS-RM attributes on the WS-RM

configuration context instance, add the context to the request context

container.

Programmable WS-RM source
attributes

You can set the following WS-RM source attributes programmatically:

• WS-RM acknowledgement URI.

• Base re-transmission interval.

• Disable exponential backoff.

• Max unacknowledged messages threshold.

• Maximum retransmission attempts.

• Maximum messages per sequence.

• Per-thread sequence scope.

WS-RM acknowledgement URI The WS-RM acknowledgement URI specifies the endpoint where the WS-RM
source receives acknowledgement messages. In a SOAP header, this attribute is
represented by the wsrm:AcksTo element. The default is the standard WS-A
anonymous URI:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
 405

CHAPTER 8 | Working with Transport Attributes
There are three alternative methods for specifying the WS-RM
acknowledgement URI, as follows:

• You can set the WS-RM acknowledgement URI explicitly by inserting the

following code fragment into Example 128 on page 403 or into

Example 129 on page 404:

• A proxy that is used to make two-way invocations can be configured so

that its decoupled reply-to endpoint, wsa:replyTo (which receives

application responses), also receives WS-RM acknowledgements. For

example:

• A service that is used to make two-way invocations can be configured so

that the server endpoint (which receives application requests) can also be

used to receive WS-RM acknowledgements (in other words, acts as a

wsrm:acksTo endpoint for the reverse WS-RM channel). For example:

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();

AnyURI acksto_url(
 "http://localhost:0/WSASource/DemoContextAcksTo"
);
WS_Addressing_2004::AttributedURI acks_to_uri(acksto_url);

wsrm_config_context->set_wsrm_acknowledgement_uri(
 acks_to_uri
);

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();

wsrm_config_context->use_wsa_replyto_endpoint_for_wsrm_ackn
owledgement();

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();

wsrm_config_context->use_server_endpoint_for_wsrm_acknowled
gement();
406

Setting WS-A and WS-RM Attributes
The order of preference for choosing a wsrm:acksTo endpoint is as follows:

1. If the WS-RM source endpoint is explicitly configured (through the Artix

configuration file or by programming) to use a non-anonymous

wsrm:acksTo endpoint, then use it.

2. The second preference depends on whether the setting is being made on the

client side or on the server side, as follows:

♦ On the client side, you can configure the WS-RM source endpoint to

use the wsa:replyTo endpoint as the wsrm:acksTo endpoint.

♦ On the server side, you can configure the WS-RM source endpoint to

use the server endpoint as the wsrm:acksTo endpoint.

3. If neither 1 or 2 is specified, use an anonymous wsrm:acksTo endpoint.

Base re-transmission interval The base re-transmission interval specifies the interval at which a WS-RM
source re-transmits a message that has not yet been acknowledged. The default is
2000 milliseconds.

You can set the base re-transmission interval by inserting the following code
fragment into Example 128 on page 403 or into Example 129 on page 404:

Disable exponential backoff This attribute specifies whether or not successive re-transmission attempts for an
unacknowledged message are done at exponential time intervals. If true, the
re-transmission is done at the base re-transmission interval; if false, the
re-transmission is exponentially backed off. The default is false.

You can disable the exponential backoff algorithm by inserting the following
code fragment into Example 128 on page 403 or into Example 129 on page 404

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->set_base_retransmission_interval(3000);

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->disable_exponential_backoff();
 407

CHAPTER 8 | Working with Transport Attributes
Max unacknowledged messages
threshold

The maximum unacknowledged messages threshold specifies the maximum
number of unacknowledged messages tolerated at the WS-RM source. When the
threshold is exceeded, the WS-RM source ceases sending messages (and the
application thread remains blocked) until the number of unacknowledged
messages falls below the threshold again. The default is -1 (which represents no
limit on the number of unacknowledged messages). You can set the maximum
unacknowledged messages threshold by inserting the following code fragment
into Example 128 on page 403 or into Example 129 on page 404:

Maximum retransmission
attempts

The maximum retransmission attempts specifies the maximum number of times
a WS-RM source will attempt to retransmit an unacknowledged message. If the
number of retransmission attempts reaches this threshold, the WS-RM source
sends a wsrm:SequenceTerminated fault to the peer WS-RM destination, and
then closes the session. Any subsequent attempt to send message on this session
will result in an IT_Bus::Exception being thrown. The default is -1 (which
represents no limit on the number of retransmission attempts).

You can set the maximum retransmission attempts threshold by inserting the
following code fragment into Example 128 on page 403 or into Example 129 on
page 404:

Maximum messages per sequence The maximum messages per sequence determines the maximum number of user
messages allowed in a WS-RM sequence. The default is unlimited, which is
appropriate for most cases.

If a limit is set using this property, the RM source creates a new sequence
whenever the specified limit is reached and all acknowledgements for the
previously sent messages have been received.

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->set_max_unacked_messages_threshold(50);

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->set_max_retransmission_attempts(8);
408

Setting WS-A and WS-RM Attributes
You can set the maximum number of messages per sequence by inserting the
following code fragment into Example 128 on page 403 or into Example 129 on
page 404:

Per-thread sequence scope When a WS-RM source is invoked concurrently, the WS-RM session is
normally shared by all threads (this is the default). When the per-thread
sequence scope policy is enabled, however, the WS-RM source endpoint
transparently creates a distinct WS-RM sequence session for each invoking
thread. This eliminates the possibility of message IDs being allocated to
messages indeterminately in the presence of multiple threads. In other words, all
the messages sent by a particular thread would be allocated message IDs in
increasing order. When the WS-RM source closes, it closes all of the open
WS-RM sequence sessions.

The default value of this policy is false (disabled).

You can enable the per-thread sequence scope policy by inserting the following
code fragment into Example 128 on page 403 or into Example 129 on page 404:

Programmable WS-RM
destination attributes

You can set the following WS-RM destination attribute programmatically:

• Acknowledgement interval.

• Delivery assurance policies.

Acknowledgement interval The acknowledgement interval specifies the time interval at which the WS-RM
destination sends asynchronous acknowledgements. The default is 3000
milliseconds.

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->set_max_messages_per_sequence(1);

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->enable_per_thread_sequence_scope();
 409

CHAPTER 8 | Working with Transport Attributes
You can set the acknowledgement interval by inserting the following code
fragment into Example 128 on page 403:

Delivery assurance policies A WS-RM destination can be configured to have the following kinds of delivery
assurance policies:

• ExactlyOnceInOrder—the WS-RM destination delivers the messages to

the application destination exactly once, in increasing order of the WS-RM

message ID. Calls to the application destination are, therefore, serialized.

This is the default policy value.

• ExactlyOnceConcurrent—the WS-RM destination delivers the messages

to the application destination exactly once, but not in order. Instead of a

serialized delivery of the messages, as in the case of ExactlyOnceInOrder,

the WS-RM destination delivers the messages in the context of the

WS-RM workqueue threads, so the ordering is not guaranteed. What is

guaranteed, however, is that for a message, n, being delivered, all messages

in the range 1 to n are received and acknowledged by the WS-RM

destination.

• ExactlyOnceReceivedOrder—the WS-RM destination delivers messages

to the application destination exactly-once, as soon as they are received

from the underlying transport. The WS-RM destination makes no attempt

to ensure either that the messages are delivered in the order of message ID

or that all the previous messages have been received/acknowledged. The

benefit of this policy is that it avoids a context-switch during dispatch in

the RM layer and also the messages are not stored in the in-memory

undelivered messages map.

The default value of this policy is ExactlyOnceInOrder.

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->set_acknowledgement_interval(2500);

Note: It is not possible to set the acknowledgement interval
programmatically on the server side. On the server side, the acknowledgement
interval can be set only in configuration.
410

Setting WS-A and WS-RM Attributes
You can set the delivery assurance policy by inserting the following code
fragment into Example 128 on page 403:

// C++
WSRMConfigurationContext* wsrm_config_context = new

WSRMConfigurationContext();
wsrm_config_context->set_acknowledgement_interval(2500);
 411

CHAPTER 8 | Working with Transport Attributes
412

CHAPTER 9

Artix Data Types
This chapter presents the XML schema data types supported by
Artix and describes how these data types map to C++. The Artix
WSDL-to-C++ mapping conforms to the official OMG
specification, http://www.omg.org/cgi-bin/doc?mars/06-06-38.

In this chapter This chapter discusses the following topics:

Including and Importing Schema Definitions page 414

Simple Types page 416

Complex Types page 464

Binary Types and MTOM page 509

Wildcarding Types page 521

Occurrence Constraints page 541

Nillable Types page 560

Substitution Groups page 581

SOAP Arrays page 590

IT_Vector Template Class page 602

IT_HashMap Template Class page 609

Unsupported XML Schema Constructs in Artix page 614
 413

http://www.omg.org/cgi-bin/doc?mars/06-06-38

CHAPTER 9 | Artix Data Types
Including and Importing Schema Definitions

Overview Artix supports the including and importing of schema definitions, using the
<include/> and <import/> schema tags. These tags enable you to insert
definitions from external files or resources into the scope of a schema element.
The essential difference including and importing is this:

• Including brings in definitions that belong to the same target namespace as

the enclosing schema element, whereas

• Importing brings in definitions that belong to a different target namespace

from the enclosing schema element.

xsd:include syntax The include directive has the following syntax:

<include
 schemaLocation = "anyURI"
/>

The referenced schema, given by anyURI, must either belong to the same target
namespace as the enclosing schema or not belong to any target namespace at all.
If the referenced schema does not belong to any target namespace, it is
automatically adopted into the enclosing schema’s namespace when it is
included.

xsd:import syntax The import directive has the following syntax:

<import
 namespace = "namespaceAnyURI"
 schemaLocation = "schemaAnyURI"
/>

The imported definitions must belong to the namespaceAnyURI target
namespace. If namespaceAnyURI is blank or remains unspecified, the imported
schema definitions are unqualified.
414

Including and Importing Schema Definitions
Example Example 130 shows an example of an XML schema that includes another XML
schema.

Example 131 shows the contents of the included schema file, included.xsd.

Example 130: Example of a Schema that Includes Another Schema

<definitions
targetNamespace="http://schemas.iona.com/tests/schema_parser"

 xmlns:tns="http://schemas.iona.com/tests/schema_parser"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema
 targetNamespace="http://schemas.iona.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <include schemaLocation="included.xsd"/>

 <complexType name="IncludingSequence">
 <sequence>
 <element
 name="includedSeq"
 type="tns:IncludedSequence"/>
 </sequence>
 </complexType>

 </schema>
 </types>
<...>

Example 131: Example of an Included Schema

<schema
 targetNamespace="http://schemas.iona.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>
 415

CHAPTER 9 | Artix Data Types
Simple Types

Overview This section describes the WSDL-to-C++ mapping for simple types. Simple
types are defined within an XML schema and they are subject to the restriction
that they cannot contain elements and they cannot carry any attributes.

In this section This section contains the following subsections:

Atomic Types page 417

String Type page 419

NormalizedString and Token Types page 424

QName Type page 428

Date and Time Types page 430

Duration Type page 432

Decimal Type page 438

Integer Types page 440

Binary Types page 443

Deriving Simple Types by Restriction page 451

List Type page 454

Union Type page 456

Holder Types page 461

Unsupported Simple Types page 463
416

Simple Types
Atomic Types

Overview For unambiguous, portable type resolution, a number of data types are defined in
the Artix foundation classes, specified in it_bus/types.h.

Table of atomic types The atomic types are:

Table 31: Simple Schema Type to Simple Bus Type Mapping

Schema Type Bus Type

xsd:boolean IT_Bus::Boolean

xsd:byte IT_Bus::Byte

xsd:unsignedByte IT_Bus::UByte

xsd:short IT_Bus::Short

xsd:unsignedShort IT_Bus::UShort

xsd:int IT_Bus::Int

xsd:unsignedInt IT_Bus::UInt

xsd:long IT_Bus::Long

xsd:unsignedLong IT_Bus::ULong

xsd:float IT_Bus::Float

xsd:double IT_Bus::Double

xsd:string IT_Bus::String

xsd:normalizedString IT_Bus::NormalizedString

xsd:token IT_Bus::Token

xsd:language IT_Bus::Language

xsd:NMTOKEN IT_Bus::NMToken

xsd:NMTOKENS IT_Bus::NMTokens
 417

CHAPTER 9 | Artix Data Types
xsd:Name IT_Bus::Name

xsd:NCName IT_Bus::NCName

xsd:ID IT_Bus::ID

xsd:QName IT_Bus::QName (SOAP only)

xsd:duration IT_Bus::Duration

xsd:dateTime IT_Bus::DateTime

xsd:date IT_Bus::Date

xsd:time IT_Bus::Time

xsd:gDay IT_Bus::GDay

xsd:gMonth IT_Bus::GMonth

xsd:gMonthDay IT_Bus::GMonthDay

xsd:gYear IT_Bus::GYear

xsd:gYearMonth IT_Bus::GYearMonth

xsd:decimal IT_Bus::Decimal

xsd:integer IT_Bus::Integer

xsd:positiveInteger IT_Bus::PositiveInteger

xsd:negativeInteger IT_Bus::NegativeInteger

xsd:nonPositiveInteger IT_Bus::NonPositiveInteger

xsd:nonNegativeInteger IT_Bus::NonNegativeInteger

xsd:base64Binary IT_Bus::BinaryBuffer

xsd:hexBinary IT_Bus::BinaryBuffer

Table 31: Simple Schema Type to Simple Bus Type Mapping

Schema Type Bus Type
418

Simple Types
String Type

Overview The xsd:string type maps to IT_Bus::String, which is typedef’ed in
it_bus/ustring.h to IT_Bus::IT_UString class. For a full definition of
IT_Bus::String, see it_bus/ustring.h.

IT_Bus::String class The IT_Bus::String class is modelled on the standard ANSI string class.
Hence, the IT_Bus::String class overloads the + and += operators for
concatenation, the [] operator for indexing characters, and the ==, !=, >, <, >=,
<= operators for comparisons.

String iterator class The corresponding string iterator class is IT_Bus::String::iterator.

C++ example The following C++ example shows how to perform some basic string
manipulation with IT_Bus::String:

Internationalization The IT_Bus::String class supports the use of international characters. When
using international characters, you should configure your Artix application to
use a particular code set by editing the Artix domain configuration file,
artix.cfg. The configuration details depend on the type of Artix binding, as
follows:

• SOAP binding—set the plugins:soap:encoding configuration variable.

• CORBA binding—set the plugins:codeset:char:ncs,

plugins:codeset:char:ccs, plugins:codeset:wchar:ncs, and

plugins:codeset:wchar:ccs configuration variables.

For more details about configuring internationalization, see the “Using Artix
with International Codesets” chapter of the Configuring and Deploying Artix
Solutions document.

// C++
IT_Bus::String s = "A C++ ANSI string."
s += " And here is some string concatenation."

// Now convert to a C style string.
// (Note: s retains ownership of the memory)
const char *p = s.c_str();
 419

CHAPTER 9 | Artix Data Types
Encoding arguments Some of the IT_Bus::String functions take an optional string argument,
encoding, that lets you specify a character set encoding for the string.

The encoding argument must be a standard IANA character set name. For
example, Table 32 shows some of commonly used IANA character set names:

Artix supports all of the character sets defined in International Components for
Unicode (ICU) 2.6. For a full listing of supported character sets, see
http://www-124.ibm.com/icu/index.html (part of the IBM open source project
http://oss.software.ibm.com).

Table 32: IANA Character Set Names

IANA Name Description

US-ASCII 7-bit ASCII for US English.

ISO-8859-1 Western European languages.

UTF-8 Byte oriented transformation of Unicode.

UTF-16 Double-byte oriented transformation of 4-byte Unicode.

Shift_JIS Japanese DOS & Windows.

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX.

EUC-CN Chinese adaptation of generic EUC scheme, used in
UNIX.

ISO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme.

ISO-2022-CN Chinese adaptation of generic ISO 2022 encoding
scheme.

BIG5 Big Five is a character set developed by a consortium of
five companies in Taiwan in 1984.
420

http://oss.software.ibm.com
http://www-124.ibm.com/icu/index.html

Simple Types
Constructors The IT_Bus::String class defines a default constructor and non-default
constructors to initialize a string using narrow and wide characters, as follows:

• Narrow character constructors.

• 16-bit character constructor.

• wchar_t character constructor.

Narrow character constructors Example 132 shows three different constructors that can be used to initialize an
IT_UString with a narrow character string.

The constructor signatures are similar to the standard ANSI string constructors,
except for the additional encoding argument. A null encoding argument,
encoding=0, implies the constructor uses the local character set.

Example 132: Narrow Character Constructors

IT_UString(
 const char* str,
 size_t n = npos,
 const char* encoding = 0,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);
IT_UString(
 size_t n,
 char c,
 const char* encoding = 0,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);
IT_UString(
 const IT_String& s,
 size_t pos = 0,
 size_t n = npos,
 const char* encoding = 0,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);
 421

CHAPTER 9 | Artix Data Types
16-bit character constructor Example 133 shows the constructor that can be used to initialize an IT_UString
with an array of 16-bit characters (represented by unsigned short*).

wchar_t character constructor Example 134 shows the constructor that can be used to initialize an IT_UString
with an array of wchar_t characters.

String conversion functions The member functions shown in Example 135 are used to convert an
IT_Bus::String to an ordinary C-style string, a UTF-16 format string and a
wchar_t format string:

Example 133: 16-Bit Character Constructor

IT_UString(
 const unsigned short* sb,
 const IT_String& encoding,
 size_t n = npos,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

Example 134: wchar_t Character Constructor

IT_UString(
 const wchar_t* wb,
 size_t n = npos,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

Example 135: String Conversion Functions

// C++
const char* c_str(
 const char* encoding = 0
) const; // has NUL character at end

const unsigned short* utf16_str() const;

const wchar_t* wchar_t_str() const;
422

Simple Types
If you want to copy the return value from a string conversion function, you also
need to know the dimension of the relevant array. For this, you can use the
IT_Bus::String::length() function:

The IT_Bus::String::length() function returns the number of underlying
characters in a string, irrespective of how many bytes it takes to represent each
character. Hence, the size of the array required to hold a copy of a converted
string equals length()+1 (an extra array element is required for the NUL
character).

String conversion examples Example 136 shows you how to convert and copy a string, s, into a C-style
string, a UTF-16 format string and a wchar_t format string.

Reference For more details about C++ ANSI strings, see The C++ Programming
Language, third edition, by Bjarne Stroustrup.

For more details about internationalization in Artix, see the “Using Artix with
International Codesets” chapter of the Configuring and Deploying Artix
Solutions document.

// C++
size_t length() const;

Example 136: String Conversion Examples

// C++
// Copy 's' into a plain 'char *' string:
char *s_copy = new char[s.length()+1];
strcpy(s_copy, s.c_str());

// Copy 's' into a UTF-16 string:
unsigned short* utf16_copy = new unsigned short[s.length()+1];
const unsigned short* utf16_p = s.utf16_str();
for (i=0; i<s.length()+1; i++) {
 utf16_copy[i] = utf16_p[i];
}

// Copy 's' into a wchar_t string:
wchar_t* wchar_t_copy = new wchar_t[s.length()+1];
const wchar_t* wchar_t_p = s.wchar_t_str();
for (i=0; i<s.length()+1; i++) {
 wchar_t_copy[i] = wchar_t_p[i];
}

 423

CHAPTER 9 | Artix Data Types
NormalizedString and Token Types

Overview This subsection describes the syntax and C++ mapping for the
xsd:normalizedString type, the xsd:token type, and all of the types deriving
from xsd:token.

normalizedString type A normalized string is a string that does not contain the return (0x0D), line feed
(0x0A) or tab (0x09) characters. Spaces (0x20) are allowed, however.

token types The token type and the types derived from token are described in Table 33.

Table 33: Description of token and Types Derived from token

XML Schema
Type

Sample Value Description of Value

xsd:token Only single spaces; no

leading or trailing!
Like an xsd:normalizedString type, except that there can be
no sequences of two or more spaces (0x20) and no leading or
trailing spaces.

xsd:language en-US Any language identification tag as specified in RFC 3066
(http://www.ietf.org/rfc/rfc3066.txt).

xsd:NMTOKEN NoSpacesAllowed Like an xsd:token type, except that spaces (0x20) are
disallowed (see “Formal definitions” on page 425).

xsd:NMTOKENS Tok01 Tok02 Tok03 A list of xsd:NMTOKEN items, using the space character as a
delimiter.

xsd:Name RestrictFirstChar Like an xsd:token type, except that the first character is
restricted to be one of Letter, ’_’, or ’:’ (see “Formal
definitions” on page 425).

xsd:NCName NoColonsAllowed Like an xsd:Name type, except that colons, ’:’, are
disallowed (a non-colonized name). See “Formal definitions”
on page 425.

This type is useful for constructing identifiers that use the
colon, ’:’, as a delimiter. For example, the NCName type is
used both for the prefix and the local part of an xsd:QName.
424

http://www.ietf.org/rfc/rfc3066.txt

Simple Types
Formal definitions The Name, NCName, NMTOKEN, and NMTOKENS types are formally defined as
follows:

The Name, NMTOKEN, and NMTOKENS types are defined in the Extensible Markup
Language (XML) 1.0 (Second Edition) document
(http://www.w3.org/TR/2000/WD-xml-2e-20000814). The NCName type is
defined in the Namespaces in XML document
(http://www.w3.org/TR/1999/REC-xml-names-19990114/).

The terms, CombiningChar and Extender, are defined in the Unicode Character
Database (http://www.unicode.org/Public/UNIDATA/UCD.html). A combining
character is a character that combines with a preceding base character—for
example, accents, diacritics, Hebrew points, Arab vowel signs and Indic matras.
An extender is a character that extends the value or shape of a preceding
alphabetic character—for example, the Catalan middle dot.

C++ mapping for all token types
except xsd:NMTOKENS

The token type and its derived types map to C++ as shown in Table 31 on
page 417. All of the token types, except for IT_Bus::NMTokens, provide two
constructors:

xsd:ID LikeNCName Like an xsd:NCName type.

The xsd:ID type is a legacy from early XML specifications,
where it can provide a unique ID for an XML element. The
element can then be cross-referenced using the ID value.

Table 33: Description of token and Types Derived from token

XML Schema
Type

Sample Value Description of Value

[1] NameChar ::= Letter | Digit | '.' | '-' | '_' | ':'
| CombiningChar | Extender

[2] Name ::= (Letter | '_' | ':') (NameChar)*
[3] Names ::= Name (#x20 Name)*

[4] NMTOKEN ::= (NameChar)+
[5] NMTOKENS ::= NMTOKEN (#x20 NMTOKEN)*

[6] NCNameChar ::= Letter | Digit | '.' | '-' | '_' |
CombiningChar | Extender

[7] NCName ::= (Letter | '_') (NCNameChar)*
 425

http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.unicode.org/Public/UNIDATA/UCD.html

CHAPTER 9 | Artix Data Types
• A no-argument constructor, and

• A constructor that takes a const IT_Bus::String& argument.

For setting and getting a token value, the following functions are provided
(inherited from IT_Bus::NormalizedString):

Validity testing functions In addition to the functions inherited from IT_Bus::NormalizedString, each of
the derived token types has a validity testing function, as shown in Table 34.

// C++
const String&
get_value() const IT_THROW_DECL(());

void
set_value(const String& value)

IT_THROW_DECL((IT_Bus::Exception));

Table 34: Validity Testing Functions for Normalized Strings and Tokens

XML Schema Type Validity Testing Function

xsd:normalizedString static bool
IT_Bus::NormalizedString::is_valid_normalized_string(
 const String& value
)

xsd:token static bool

IT_Bus::Token::is_valid_token(const String& value)

xsd:language static bool

IT_Bus::Language::is_valid_language(const String& value)

xsd:NMTOKEN static bool

IT_Bus::NMToken::is_valid_nmtoken(const String& value)

xsd:Name static bool

IT_Bus::Name::is_valid_name(const String& value)

xsd:NCName static bool

IT_Bus::NCName:is_valid_ncname(const String& value)

xsd:ID static bool

IT_Bus::ID::is_valid_id(const String& value)
426

Simple Types
C++ mapping of NMTOKENS The xsd:NMTOKENS type maps to the C++ class, IT_Bus::NMTokens. The
IT_Bus::NMTokens class inherits from SimpleTypesListT<IT_Bus::NMToken>,
which in turn inherits from IT_Vector<IT_Bus::NMToken>.

The IT_Bus::NMTokens type is thus effectively a vector, where the element type
is IT_Bus::NMToken. You can use the indexing operator, [], to access individual
elements and, in addition, the SimpleTypesList base class provides
set_size() and get_size() functions.

For more details about IT_Vector<T> types, see “IT_Vector Template Class” on
page 602.

C++ example The following example shows how to initialize an xsd:token instance in C++.

// C++

// Test and set an xsd:token value.
IT_Bus::String tok_string = "0123 A token with spaces";
IT_Bus::Token tok;

if (IT_Bus::Token::is_valid_token(tok_string)) {
 tok.set_value(tok_string);
}

 427

CHAPTER 9 | Artix Data Types
QName Type

Overview xsd:QName maps to IT_Bus::QName. A qualified name, or QName, is the unique
name of a tag appearing in an XML document, consisting of a namespace URI
and a local part.

QName constructor The usual way to construct an IT_Bus::QName object is by calling the following
constructor:

// C++
QName::QName(
 const String & namespace_prefix,
 const String & local_part,
 const String & namespace_uri
)

Because the namespace prefix is relatively unimportant, you can leave it blank.
For example, to create a QName for the soap:address element:

QName member functions The IT_Bus::QName class has the following public member functions:

const IT_Bus::String &
get_namespace_prefix() const;

const IT_Bus::String &
get_local_part() const;

const IT_Bus::String &
get_namespace_uri() const;

const IT_Bus::String get_raw_name() const;
const IT_Bus::String to_string() const;

Note: In Artix 1.2.1, the mapping from xsd:QName to IT_Bus::QName is
supported only for the SOAP binding.

// C++
IT_Bus::QName soap_address = new IT_Bus::QName(
 "",
 "address",
 "http://schemas.xmlsoap.org/wsdl/soap"
);
428

Simple Types
bool has_unresolved_prefix() const;
size_t get_hash_code() const;

QName equality The == operator can be used to test for equality of IT_Bus::QName objects.
QNames are tested for equality as follows:

1. Assuming that a namespace URI is defined for the QNames, the QNames

are equal if their namespace URIs match and the local part of their element

names match.

2. If one of the QNames lacks a namespace URI (empty string), the QNames

are equal if their namespace prefixes match and the local part of their

element names match.
 429

CHAPTER 9 | Artix Data Types
Date and Time Types

Overview The xsd:dateTime maps to IT_Bus::DateTime, which is declared in
<it_bus/date_time.h>. DateTime has the following fields:

Table 35: Member Fields of IT_Bus::DateTime

Field Datatype Accessor Methods

4 digit year short short getYear()
void setYear(short wYear)

2 digit month short short getMonth()
void setMonth(short wMonth)

2 digit day short short getDay()
void setDay(short wDay)

hours in military
time

short short getHour()
void setHour(short wHour)

minutes short short getMinute()
void setMinute(short wMinute)

seconds short short getSecond()
void setSecond(short wSecond)

milliseconds short short getMilliseconds()
void setMilliseconds(short wMilliseconds)

local time zone flag void setLocalTimeZone()

bool haveUTCTimeZoneOffset() const

hour offset from
GMT

short void setUTCTimeZoneOffset(

 short hour_offset,

 short minute_offset)
void getUTCTimeZoneOffset(

 short & hour_offset,

 short & minute_offset)

minute offset from
GMT

short
430

Simple Types
IT_Bus::DateTime constructor The default constructor takes no parameters, initializing the year, month, and
day fields to 1 and the other fields to 0. An alternative constructor is provided,
which accepts all of the individual date/time fields, as follows:

Other date and time types Artix supports a variety of other date and time types, as shown in Table 36. Each
of these types—for example, xsd:time and xsd:day—support a subset of the
fields from xsd:dateTime. Table 36 shows which fields are supported for each
date and time type; the accessors for each field are given by Table 35.

IT_DateTime(short wYear, short wMonth, short wDay,
 short wHour = 0, short wMinute = 0,
 short wSecond = 0, short wMilliseconds = 0)

Table 36: Member Fields Supported by Other Date and Time Types

Date/Time Type C++ Class Supported Fields

xsd:date IT_Bus::Date year, month, day,
local time zone flag, hour and minute offset from GMT.

xsd:time IT_Bus::Time hours, minutes, seconds, milliseconds,
local time zone flag, hour and minute offset from GMT.

xsd:gDay IT_Bus::GDay day,
local time zone flag, hour and minute offset from GMT.

xsd:gMonth IT_Bus::GMonth month,
local time zone flag, hour and minute offset from GMT.

xsd:gMonthDay IT_Bus::GMonthDay month, day,
local time zone flag, hour and minute offset from GMT.

xsd:gYear IT_Bus::GYear year,
local time zone flag, hour and minute offset from GMT.

xsd:gYearMonth IT_Bus::GYearMonth year, month,
local time zone flag, hour and minute offset from GMT.
 431

CHAPTER 9 | Artix Data Types
Duration Type

Overview The xsd:duration type maps to IT_Bus::Duration, which is declared in
<it_bus/duration.h>. A duration represents an interval of time measured in
years, months, days, hours, minutes, and seconds. This type is needed for
representing the sort of time intervals that commonly appear in business and
legal documents.

Despite its practicality, the duration type is a fairly peculiar way of representing
a time interval, because it is an indeterminate quantity. Both the number of days
in a month and the number of days in a year can vary, depending on what you
choose as the starting date of the duration.

Lexical representation The lexical representation of a positive time duration is as follows:

P<years>Y<months>M<days>DT<hours>H<minutes>M<seconds>S

Where <years>, <months>, <days>, <hours>, and <minutes> are non-negative
integers and <seconds> is a non-negative decimal. The <seconds> field can
have an arbitrary number of decimal digits, but Artix considers the digits only up
to millisecond precision. The P, Y, M, D, T, H, M, and S separator characters must
all be upper case. The T is the date/time seperator. To represent a negative time
duration, you can add a minus sign, -, in front of the P character.

Here are some examples:

P2Y6M10DT12H20M15S
-P1Y0M0DT0H0M0.001S

You can abbreviate the duration string by omitting any fields that are equal to
zero. You must omit the date/time seperator, T, if and only if all of the time fields
are absent. For example, P1Y would represent one year.

Unsupported facets The following facets are unsupported by the xsd:duration element:

• pattern

• whiteSpace

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive
432

Simple Types
Supported facets The following facets are supported and checked at runtime:

• enumeration

Duration constructors The IT_Bus::Duration class supports the constructors shown in Example 137.

These constructors enable you to specify each of the six fields of the duration:
years, months, days, hours, minutes and seconds (where the seconds field is split
into two arguments, seconds and milliseconds). The last two constructors enable
you to initialize the duration from a lexical string. For example, a period of 1
year, 12 hours and 30 minutes can be initialized as follows:

Example 137: IT_Bus::Duration Constructors

// C++
Duration() IT_THROW_DECL(());

Duration(
 bool isNegative,
 IT_Bus::Long years,
 IT_Bus::Long months,
 IT_Bus::Long days,
 IT_Bus::Long hours,
 IT_Bus::Long minutes,
 IT_Bus::Long seconds,
 IT_Bus::Long milliseconds
) IT_THROW_DECL((Exception));

Duration(
 const char* value
) IT_THROW_DECL((Exception));

Duration(
 const IT_Bus::String& value
) IT_THROW_DECL((Exception));

// C++
IT_Bus::Duration period("P1Y0M0DT12H30M0S");
 433

CHAPTER 9 | Artix Data Types
In the second constructor, you can leave a particular field unset by supplying a
negative integer argument. For example, to represent a duration of 1 year 6
months, with the remaining fields left unset:

This is equivalent to calling the string value constructor as follows:

Duration accessors and modifiers The accessor and modifier functions for each of the IT_Bus::Duration time
fields are shown in Example 37.

// C++
IT_Bus::Duration year_month(false, 1, 6, -1, -1, -1, -1, -1);

// C++
IT_Bus::Duration year_month("P1Y6M");

Table 37: Accessors and Modifier Functions for Duration Class

Field Accessor/Modifier

Sign bool is_negative()

void set_is_negative(bool is_negative)

Years IT_Bus::Long get_years()

void set_years(IT_Bus::Long years)

Months IT_Bus::Long get_months()

void set_months(IT_Bus::Long months)

Days IT_Bus::Long get_days()

void set_days(IT_Bus::Long days)

Hours IT_Bus::Long get_hours()

void set_hours(IT_Bus::Long hours)

Minutes IT_Bus::Long get_minutes()

void set_minutes(IT_Bus::Long minutes)
434

Simple Types
If you pass a negative integer to a modifier function (for example,
set_years(-1)), the corresponding time field becomes unset. If you try to
access a field that is not set (for example, get_years()), the accessor returns
zero.

In most respects, an unset time field is equivalent to a zero value. Whether or not
a field is set or unset, however, does effect string conversion. See “String
conversions” on page 436.

Duration equality The Duration class provides equality testing operators, == and !=. For the
purposes of equality testing, any unset field is treated as zero. The comparison
algorithm works as follows:

1. Compute the number of months represented by the years and months items

for each duration. If the computed values are different, the durations are

not equal.

2. Compute the number of milliseconds represented by the days, hours,

minutes and seconds (including fractional part) items for each duration. If

the computed values are different, the durations are not equal.

3. Otherwise the durations are equal.

Seconds and
milliseconds

IT_Bus::Long get_seconds()

IT_Bus::Long get_seconds_fraction()

void set_seconds(

 IT_Bus::Long seconds,

 IT_Bus::Long milliseconds

)

Table 37: Accessors and Modifier Functions for Duration Class

Field Accessor/Modifier
 435

CHAPTER 9 | Artix Data Types
String conversions The following member functions are provided to convert a Duration object to
and from a string:

When generating a string from a Duration using to_string(), only the fields
that are actually set will generate any output. See Table 38 for some examples of
durations and their corresponding strings.

The example in the last row converts to a string with a single field, 0D, although
all of the fields were specified as unset. The XML schema specification requires
that at least one field must be present in a duration string.

Adding a duration to a duration You can add and subtract durations from each other using the + and - operators.

Adding a duration to a dateTime The algorithm for adding a duration to a dateTime value is somewhat
complicated, because durations involving years and months are inherently
ambiguous (for example, a year might last 365 days or 366 days; a month might
last 28, 29, 30, or 31 days).

The addition algorithm adopted by the XML specification tries to be as natural
as possible. For example, if you add one month, P1M, to March 31, 2006, this
cannot give April 31, 2006, because there is no such date. The addition
algorithm therefore changes this result to April 30, 2006.

For full details of the addition algorithm, consult the XML schema specification:

http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes

// C++
IT_Bus::String
to_string() const IT_THROW_DECL(());

void
from_string(const String& str) IT_THROW_DECL((Exception));

Table 38: Examples of Duration String Conversion

Duration to Convert Output String

Duration(false, 1, -1, -1, 0, 0, 0, -1) P1YT0H0M0S

Duration(false, 1, -1, -1, 0, 0, 0, 0) P1YT0H0M0.000S

Duration(false, -1, -1, -1, -1, -1, -1, -1) P0D
436

http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes

Simple Types
Adding a duration to other time
types

You can also add a duration to other time and date types:

xsd:date
xsd:time
xsd:gYearMonth
xsd:gYear
xsd:gMonthDay
xsd:gMonth
xsd:gDay

Adding a duration to one of these types is performed as follows:

1. Convert the time type to a dateTime type.

2. Add the duration to the dateTime type.

3. Convert the dateTime type back to the original time type by discarding the

fields that do not belong in the original time type.
 437

CHAPTER 9 | Artix Data Types
Decimal Type

Overview xsd:decimal maps to IT_Bus::Decimal, which is implemented by the IONA
foundation class IT_FixedPoint, defined in <it_dsa/fixed_point.h>.
IT_FixedPoint provides full fixed point decimal calculation logic using the
standard C++ operators.

IT_Bus::Decimal operators The IT_Bus::Decimal type supports a full complement of arithmetical
operators. See Table 39 for a list of supported operators.

IT_Bus::Decimal member
functions

The following member functions are supported by IT_Bus::Decimal:

// C++
IT_Bus::Decimal round(unsigned short scale) const;

IT_Bus::Decimal truncate(unsigned short scale) const;

unsigned short number_of_digits() const;

unsigned short scale() const;

IT_Bool is_negative() const;

int compare(const IT_FixedPoint& val) const;

IT_Bus::Decimal::DigitIterator left_most_digit() const;
IT_Bus::Decimal::DigitIterator past_right_most_digit() const;

Note: Although the XML schema specifies that xsd:decimal has unlimited
precision, the IT_FixedPoint type can have at most 31 digit precision.

Table 39: Operators Supported by IT_Bus::Decimal

Description Operators

Arithmetical operators +, -, *, /, ++, --

Assignment operators =, +=, -=, *=, /=

Comparison operators ==, !=, >, <, >=, <=
438

Simple Types
IT_Bus::Decimal::DigitIterator The IT_Bus::Decimal::DigitIterator type is an ANSI-style iterator class
that iterates over all the digits in a fixed point decimal instance.

C++ example The following C++ example shows how to perform some elementary arithmetic
using the IT_Bus::Decimal type.

// C++
IT_Bus::Decimal d1 = "123.456";
IT_Bus::Decimal d2 = "87654.321";

IT_Bus::Decimal d3 = d1+d2;
d3 *= d1;
if (d3 > 100000) {
 cout << "d3 = " << d3;
}

 439

CHAPTER 9 | Artix Data Types
Integer Types

Overview The XML schema defines the following unlimited precision integer types, as
shown in Table 40.

In C++, IT_Bus::Integer serves as the base class for
IT_Bus::PositiveInteger, IT_Bus::NegativeInteger,
IT_Bus::NonPositiveInteger, and IT_Bus::NegativeInteger. The lexical
representation of an integer is a decimal integer with optional sign (+ or -) and
optional leading zeroes.

Maximum precision In practice the precision of the integer types in Artix is not unlimited, because
their internal representation uses IT_FixedPoint, which is limited to 31-digits.

Integer operators The integer types supports a full complement of arithmetical operators. See
Table 41 for a list of supported operators.

Table 40: Unlimited Precision Integer Types

XML Schema Type C++ Type

xsd:integer IT_Bus::Integer

xsd:positiveInteger IT_Bus::PositiveInteger

xsd:negativeInteger IT_Bus::NegativeInteger

xsd:nonPositiveInteger IT_Bus::NonPositiveInteger

xsd:nonNegativeInteger IT_Bus::NonNegativeInteger

Table 41: Operators Supported by the Integer Types

Description Operators

Arithmetical operators +, -, *, /, ++, --

Assignment operators =, +=, -=, *=, /=

Comparison operators ==, !=, >, <, >=, <=
440

Simple Types
Constructors The Artix integer classes define constructors for the following built-in integer
types: short, unsigned short, int, unsigned int, long, unsigned long, and
decimal.

Alternatively, you can initialize an Artix integer from a string, using either of the
following string types: char* and IT_Bus::String.

Integer member functions The following member functions are supported by the integer types:

// C++
// Get value as a Decimal type
const IT_Bus::Decimal& get_value() const IT_THROW_DECL(());

// Set value as a Decimal type.
// Passing a true value for the ’truncate’ parameter causes the
// constructor to truncate ’value’ at the decimal point.
void set_value(
 const IT_Bus::Decimal& value,
 bool truncate = false
) IT_THROW_DECL((IT_Bus::Exception));

// Return true if integer value is less than zero
IT_Bus::IT_Bool is_negative() const;

// Return true if integer value is greater than zero
IT_Bus::IT_Bool is_positive() const;

// Return true if integer value is greater than or equal to zero
IT_Bus::IT_Bool is_non_negative() const;

// Return true if integer value is less than or equal to zero
IT_Bus::IT_Bool is_non_positive() const;

// Return true if the decimal ’value’ has no fractional part
static bool is_valid_integer(const IT_Bus::Decimal& value) const;

// Return 1, if this instance is greater than ’other’.
// Return 0, if this instance is equal to ’other’.
// Return -1, if this instance is smaller than ’other’.
int compare(const Integer& other) const;

// Convert to IT_Bus::String
const IT_Bus::String to_string() const;
 441

CHAPTER 9 | Artix Data Types
C++ example The following C++ example shows how to perform some elementary arithmetic
using the IT_Bus::Integer type.

Mixed arithmetic You can mix different integer types in an arithmetic expression, but the result is
always of IT_Bus::Integer type. For example, you could mix the
IT_Bus::PositiveInteger and IT_Bus::NegativeInteger types in an
arithmetic expression as follows:

// C++
IT_Bus::Integer i1 = "321";
IT_Bus::Integer i2 = "87654";

IT_Bus::Integer i3 = i1 + i2;
i3 *= i1;
if (i3 > 100000) {
 cout << "i3 = " << i3.to_string() << endl;
}

// C++
IT_Bus::PositiveInteger p1(+100), p2(+200);
IT_Bus::NegativeInteger n1(-500);

IT_Bus::Integer = (p1 + n1) * p2;
442

Simple Types
Binary Types

Overview The WSDL binary types map to C++ as shown in Table 42:

Regular encodings The difference between HexBinary and Base64Binary is the way they are
encoded for transmission. The Base64Binary encoding is more compact
because it uses a larger set of symbols in the encoding. The encodings can be
compared as follows:

• HexBinary—the hex encoding uses a set of 16 symbols [0-9a-fA-F],

ignoring case, and each character can encode 4 bits. Hence, two characters

represent 1 byte (8 bits).

• Base64Binary—the base 64 encoding uses a set of 64 symbols and each

character can encode 6 bits. Hence, four characters represent 3 bytes (24

bits).

XMIME encodings The XMimeBase64Binary and XMimeHexBinary types are meant to be used in
conjunction with the MTOM transmission optimization. For details, see “Binary
Types and MTOM” on page 509.

Table 42: Schema to Bus Mapping for the Binary Types

Schema Type Bus Type

xsd:base64Binary IT_Bus::Base64Binary

xsd:hexBinary IT_Bus::HexBinary

xmime:base64Binary IT_Bus::XMimeBase64Binary

xmime:hexBinary IT_Bus::XMimeHexBinary
 443

CHAPTER 9 | Artix Data Types
IT_Bus::Base64Binary and
IT_Bus::HexBinary

Both the IT_Bus::Base64Binary and the IT_Bus::HexBinary classes expose
the following member functions to access the buffer value:

The first form of get_buffer() returns a read-only reference to the binary
buffer. The second form of get_buffer() returns a modifiable reference to the
binary buffer.

IT_Bus::XMimeBase64Binary
and IT_Bus::XMimeHexBinary

Both the IT_Bus::XMimeBase64Binary and the IT_Bus::XMimeHexBinary
classes expose the following member functions:

In addition to the buffer acessors and modifiers, these types provide functions to
access and modify the data’s MIME content type.

IT_Bus::BinaryBuffer class You can perform buffer manipulation by invoking the member functions of the
IT_Bus::BinaryBuffer class. A binary buffer instance is a contiguous data
buffer that encapsulates the following information:

// C++
virtual const BinaryBuffer &
get_buffer() const;

virtual BinaryBuffer &
get_buffer();

// C++
String &
get_content_type();

const String &
get_content_type() const;

void
set_content_type(const String & val);

virtual const BinaryBuffer &
get_buffer() const;

virtual BinaryBuffer &
get_buffer();
444

Simple Types
• Null-terminated string—internally, a binary buffer is represented as a

null-terminated string (C style string). The terminating NULL character is

not counted in the buffer size.

• Borrowing flag—internally, the binary buffer keeps track of whether it

owns the buffer memory (in which case the binary buffer is responsible for

deleting it) or whether the binary buffer merely borrows the buffer

memory (in which case the binary buffer is not responsible for deleting it).

Allocating and deallocating binary
buffers

Example 138 shows the signatures of the binary buffer functions for allocating
and deallocating binary buffers.

The preceding binary buffer functions can be described as follows:

• BinaryBuffer constructors—you can construct a binary buffer either by

passing in an IT_Bus::String instance or a pointer to a const char *. In

both cases, the binary buffer makes its own copy of the data.

• BinaryBuffer destructor—if the borrowing flag is false, the destructor

deletes the memory for the buffer data.

• allocate() function—allocates a new buffer of the specified size.

• resize() function—an optimized allocation function that attempts to

reuse the existing buffer, if possible. This function throws an

IT_Bus::Exception, if it is called on a borrowed buffer.

• clear() function—resets the binary buffer to an empty buffer. If the

buffer data is not borrowed, it deletes the old memory.

Example 138: Functions for Allocating and Deallocating Binary Buffers

// C++
BinaryBuffer()

BinaryBuffer(IT_Bus::String rhs);

BinaryBuffer(const char * data, long size = -1);

virtual ~BinaryBuffer();

void allocate(long size);

void resize(long size);

void clear();
 445

CHAPTER 9 | Artix Data Types
Assigning and copying binary
buffers

Example 139 shows the signatures of the binary buffer functions for assigning
and copying binary buffers.

The copying assignment functions can be described as follows:

• operator=() operator—you can assign another BinaryBuffer instance,

an IT_Bus::String instance, or a const char * string to a binary buffer

using operator=(). In each of these cases, the binary buffer makes its own

copy of the data and sets the borrowing flag to false.

• assign() function—similar to operator=(), except that you can specify

the size of the string to copy. If the specified size, n, is less than the actual

size of the string, the copied string is truncated to include only the first n

characters.

• copy() function—the same as the assign() function, except that copy()

returns the void type, instead of BinaryBuffer&.

The non-copying assignment functions can be described as follows:

Example 139: Functions for Assigning and Copying Binary Buffers

// C++
// Copying assignments
void operator=(const BinaryBuffer& rhs);
void operator=(IT_Bus::String rhs);
void operator=(const char* rhs);

BinaryBuffer& assign(const String & rhs, size_t n);
BinaryBuffer& assign(const char* rhs, size_t n);

void copy(const char* p, long size = -1);

// Non-copying assignments
void attach(BinaryBuffer& attach_buffer);

void attach_external(char* p, long size, bool borrow = true);

void borrow(const BinaryBuffer& borrow_buffer);
void borrow(const char* borrow_data, long size = -1);
446

Simple Types
• attach() function—sets this binary buffer’s data pointer to point at the

data in the attach_buffer binary buffer, taking ownership of the data if

possible (in other words, this binary buffer’s borrowing flag is set equal to

the attach_buffer’s borrowing flag). The attach_buffer binary buffer

is cleared.

• attach_external() function—sets the binary buffer’s data pointer equal

to the char * argument, p, but does not attempt to take ownership of the

data by default. However, if you explicitly specify the borrow argument to

be false, the binary buffer does take ownership of the data.

• borrow() function—sets this binary buffer’s data pointer to point at the

data in the borrow_buffer binary buffer (or borrow_data string, as the

case may be), but does not take ownership of the data (in other words, this

binary buffer’s borrowing flag is set to true in all cases).

Accessing binary buffer data Example 140 shows the signatures of the binary buffer functions for accessing
binary buffer data.

The preceding binary buffer functions can be described as follows:

• operator[]() operator—accesses the character at position lIndex. The

index must lie in the range [0, get_size()], where the last accessible

character is the terminating NULL character. If the index is out of range, an

IT_Bus::Exception is thrown.

Example 140: Functions for Accessing Binary Buffer Data

// C++
char operator[](long lIndex);

char* at(long lIndex);

char* get_pointer();

const char* get_const_pointer() const;

long get_size() const;

IT_String get_it_string() const;

String get_string() const;
 447

CHAPTER 9 | Artix Data Types
• at() function—similar to operator[](), except that a pointer to char is

returned.

• get_pointer() function—returns a pointer to the first character of the

buffer for reading and writing (equivalent to at(0)).

• get_const_pointer() function—returns a pointer to the first character of

the buffer, for read-only operations.

• get_size() function—returns the size of the buffer (not including the

terminating NULL character).

• get_it_string() function—converts the buffer data to an IT_String

type.

• get_string() function—converts the buffer data to an IT_Bus::String

type.

Searching and comparing binary
buffers

Example 141 shows the signatures of the binary buffer functions for searching
and comparing binary buffers.

The preceding binary buffer functions can be described as follows:

• instr() function—returns a pointer to the first occurrence of the

character, c, in the buffer, where the search begins at the specified index

value, lIndex.

• substr() function—returns a sub-string from the buffer, starting at the

index, lIndex, and continuing for size characters (the defaulted size

value, -1, selects up to the end of the buffer)

Example 141: Functions for Searching and Comparing Binary Buffers

// C++
char* instr(char c, long lIndex = 0);

String substr(long lIndex, long size = -1) const;

long find(const char* s, long lIndex = 0) const;

long find_binary_buffer(long& dwFindIdx, long dwFindMaxIdx,
BinaryBuffer& vvPacketTerminator) const;

bool operator==(const BinaryBuffer & rhs) const;
448

Simple Types
• find() function—returns the position of the first occurrence of the string,

s, inside the buffer. The lIndex parameter can be used to specify the point

in the buffer from which the search begins.

• find_binary_buffer() function—returns the position of the first

occurrence of the vvPacketTerminator buffer within the specified buffer

sub-range, [dwFindIdx, dwFindMaxIdx]. At the end of the search, the

dwFindIdx parameter is equal to the found position.

• operator==() operator—comparison is true, if the compared buffers are

of the same length and have identical contents; otherwise, false.

Concatenating binary buffers Example 142 shows the signatures of the binary buffer functions for
concatenating binary buffers.

The preceding binary buffer function can be described as follows:

• concat() function—adds the string, szThisString, to the end of the

buffer. You can specify the size parameter to limit the number of

characters from szThisString that are concatenated (the default is to

concatenate the whole string).

C++ example Consider a port type that defines an echoHexBinary operation. The
echoHexBinary operation takes an IT_Bus::HexBinary type as an in parameter
and then echoes this value in the response. Example 143 shows how a server
might implement the echoHexBinary operation.

Example 142: Functions for Concatenating Binary Buffers

// C++
char* concat(const char* szThisString, long size = -1);

Example 143: C++ Implementation of an echoHexBinary Operation

// C++
using namespace IT_Bus;
...
void BaseImpl::echoHexBinary(
 const IT_Bus::HexBinaryInParam & inputHexBinary,
 IT_Bus::HexBinaryOutParam& Response
)
 IT_THROW_DECL((IT_Bus::Exception))
{

 449

CHAPTER 9 | Artix Data Types
 // Copy the input buffer to the output buffer.
 Response.get_buffer() = inputHexBinary.get_buffer();
}

Note: The IT_Bus::HexBinaryInParam and IT_Bus::HexBinaryOutParam
types are both essentially equivalent to IT_Bus::HexBinary. These extra types
help the compiler to distinguish between in parameters and out parameters.
They are only used in operation signatures.

Likewise, the IT_Bus::Base64BinaryInParam and
IT_Bus::Base64BinaryOutParam types are both essentially equivalent to
IT_Bus::Base64Binary.

Example 143: C++ Implementation of an echoHexBinary Operation
450

Simple Types
Deriving Simple Types by Restriction

Overview Artix currently has limited support for the derivation of simple types by
restriction. You can define a restricted simple type using any of the standard
facets, but in most cases the restrictions are not checked at runtime.

Unchecked facets The following facets can be used, but are not checked at runtime:

• whiteSpace

Checked facets The following facets are supported and checked at runtime:

• enumeration

• length

• maxLength

• minLength

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

• pattern

• totalDigits

• fractionDigits

C++ mapping In general, a restricted simple type, RestrictedType, obtained by restriction from
a base type, BaseType, maps to a C++ class, RestrictedType, with the following
public member functions:

// C++
const IT_Bus::QName & get_type() const;

void set_value(const BaseType & value);
BaseType get_value() const;
 451

CHAPTER 9 | Artix Data Types
Restriction with an enumeration
facet

Artix supports the restriction of simple types using the enumeration facet. The
base simple type can be any simple type except xsd:boolean.

When an enumeration type is mapped to C++, the C++ implementation of the
type ensures that instances of this type can only be set to one of the enumerated
values. If set_value() is called with an illegal value, it throws an
IT_Bus::Exception exception.

WSDL example of enumeration
facet

Example 144 shows an example of a ColorEnum type, which is defined by
restriction from the xsd:string type using the enumeration facet. When defined
in this way, the ColorEnum restricted type is only allowed to take on one of the
string values RED, GREEN, or BLUE.

Example 144: WSDL Example of Derivation with the Enumeration Facet

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <simpleType name="ColorEnum">
 <restriction base="xsd:string">
 <enumeration value="RED"/>
 <enumeration value="GREEN"/>
 <enumeration value="BLUE"/>
 </restriction>
 </simpleType>
 ...
</definitions>
452

Simple Types
C++ mapping of enumeration
facet

The WSDL-to-C++ compiler maps the ColorEnum restricted type to the
ColorEnum C++ class, as shown in Example 145. The only values that can
legally be set using the set_value() member function are the strings RED,
GREEN, or BLUE.

Example 145: C++ Mapping of ColorEnum Restricted Type

// C++
class ColorEnum : public IT_Bus::AnySimpleType
{
 ...
 public:
 ColorEnum();
 ColorEnum(const IT_Bus::String & value);
 ...

 ColorEnum& operator= (const ColorEnum& assign);
 IT_Bus::Boolean operator== (const ColorEnum& copy);

 virtual const IT_Bus::QName & get_type() const;
 void set_value(const IT_Bus::String & value);
 IT_Bus::String get_value() const;
};
 453

CHAPTER 9 | Artix Data Types
List Type

Overview The xsd:list schema type is a simple type that enables you to define
space-separated lists. For example, if the numberList element is defined to be a
list of floating point numbers, an instance of a numberList element could look
like the following:

<numberList>1.234 2.345 5.432 1001</numberList>

XML schema supports two distinct ways of defining a list type, as follows:

• Defining list types with the itemType attribute.

• Defining list types by derivation.

Defining list types with the
itemType attribute

The first way to define a list type is by specifying the list item type using the
itemType attribute. For example, you could define the list type,
StringListType, as a list of xsd:string items, with the following syntax:

An instance of a stringList element, which is defined to be of
StringListType type, could look like the following:

<simpleType name="StringListType">
 <list itemType="xsd:string"/>
</simpleType>

<element name="stringList" type="StringListType"/>

<stringList>wool cotton linen</stringList>
454

Simple Types
Defining list types by derivation The second way to define a list type is to use simple derivation. For example,
you could define the list type, IntListType, as a list of xsd:int items, with the
following syntax:

An instance of an intList element, which is defined to be of IntListType type,
could look like the following:

C++ mapping In C++, lists are represented by an IT_Vector<T> template type. Hence, C++ list
classes support the operator[], to access individual items, and the get_size()
function, to get the length of the list.

For example, the StringListType type defined previously would map to the
StringListType C++ class, which inherits from IT_Vector<IT_Bus::String>.

Example Given an instance of StringListType type, you could print out its contents as
follows:

<simpleType name="IntListType">
 <list>
 <simpleType>
 <restriction base="xsd:int"/>
 </simpleType>
 </list>
</simpleType>

<element name="intList" type="IntListType"/>

<intList>1 2 3 5 8 13 21 34 55</intList>

// C++
StringListType s_list = ... // Initialize list

for (int i=0; i < s_list.get_size(); i++)
{
 cout << s_list[i] << endl;
}

 455

CHAPTER 9 | Artix Data Types
Union Type

Overview The xsd:union schema type enables you to define an element whose type can be
any of the simple types listed in the union definition. In general, the syntax for
defining a union, UnionType, is as follows:

Where Type01, Type02, and so on are the names of simple types that the union
could contain. The simpleType elements appearing within the union element
define anonymous simple types (defined by derivation) that the union could
contain.

XML schema supports the following ways of defining a union type:

• Defining union types with the memberTypes attribute.

• Defining union types by derivation.

Defining union types with the
memberTypes attribute

The first way to define a union type is by specifying the list of allowable
member types using the memberTypes attribute. For example, you could define a
UnionOfIntAndFloat union type to contain either an xsd:int or an xsd:float,
as follows:

Some sample instances of the u2 element could look like the following:

<simpleType name="UnionType">
 <union memberTypes="Type01 Type02 ...">
 <simpleType> ... </simpleType>
 <simpleType> ... </simpleType>
 ...
 </union>
</simpleType>

<xsd:simpleType name="UnionOfIntAndFloat">
 <xsd:union memberTypes="xsd:int xsd:float"/>
</xsd:simpleType>

<xsd:element name="u1" type="UnionOfIntAndFloat"/>

<u1>500</u1>
<u1>1.234e06</u1>
456

Simple Types
Defining union types by derivation The second way to define a union type is by adding one or more anonymous
simpleType elements to the union body. For example, you could define the
UnionByDerivation type to contain either a member derived from a
xsd:string or a member derived from an xsd:int, as follows:

Some sample instances of the u2 element could look like the following:

WSDL example Example 146 shows an example of a union type, Union2, which can contain
either a Union1 type or an enumerated string.

<xsd:simpleType name="UnionByDerivation">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <enumeration value="Bill"/>
 <enumeration value="Ben"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <maxInclusive value="1000"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

<xsd:element name="u2" type="UnionByDerivation"/>

<u2>Bill</u2>
<u2>999</u2>

Example 146: Definition of a Union Type in WSDL

// C++
<xsd:simpleType name="Union1">
 <xsd:union memberTypes="xsd:int xsd:float"/>
</xsd:simpleType>

<xsd:simpleType name="Union2">
 <xsd:union memberTypes="tns:Union1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <enumeration value="Tweedledum"/>
 457

CHAPTER 9 | Artix Data Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 146 on
page 457) to the Union2 C++ class. An outline of this class is shown in
Example 147.

 <enumeration value="Tweedledee"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

Example 146: Definition of a Union Type in WSDL

Example 147: Mapping of Union2 to C++

// C++
class Union2 : public IT_Bus::SimpleTypeUnion
{
 public:

 Union2();
 Union2(const Union2 & copy);
 virtual ~Union2();

 // ...

 virtual const IT_Bus::QName & get_type() const;

 Union2 & operator=(const Union2 & rhs);

 IT_Bus::Boolean
 operator==(const Union2 & rhs) const IT_THROW_DECL(())

 IT_Bus::Boolean
 operator!=(const Union2 & rhs) const IT_THROW_DECL(());

 enum Union2Discriminator
 {
 var_Union1_enum,
 var_string_enum,
 Union2_MAXLONG=-1
 } m_discriminator;

 Union2Discriminator
 get_discriminator() const IT_THROW_DECL(())
 {
458

Simple Types
The C++ mapping defines a pair of accessor and modifier functions,
getMemberType() and setMemberType(), for each union member type,
MemberType. The name of the accessor and modifier functions are determined
as follows:

• If the union member is an atomic type (for example, int or string), the

functions are defined as getAtomicType() and setAtomicType() (for

example, getint() and setint()).

• If the union member is a user-defined type, UserType, the functions are

defined as getUserType() and setUserType().

• If the union member is defined by derivation (that is, using a simpleType

element in the scope of the <union> tag), the accessor and modifier

functions are named after the base type, BaseType, to yield getBaseType()

and setBaseType().

C++ example Consider a port type that defines an echoUnion operation. The echoUnion
operation takes a Union2 type as an in parameter and then echoes this value in
the response. Example 148 shows how a client could use a proxy instance, bc, to
invoke the echoUnion operation.

 return m_discriminator;
 }

 IT_Bus::UInt
 get_discriminator_as_uint() const IT_THROW_DECL(())
 {
 return m_discriminator;
 }

 Union1 & getUnion1();
 const Union1 & getUnion1() const;
 void setUnion1(const Union1 & val);

 Union2String & getstring();
 const Union2String & getstring() const;
 void setstring(const Union2String & val);
 // ...
};

Example 147: Mapping of Union2 to C++
 459

CHAPTER 9 | Artix Data Types
Example 148: Printing a Union2 Type Returned from an Operation

// C++
Union2 uIn, uOut;

// Initialize uIn with the value "Tweedledum"
uIn.setstring("Tweedledum");

try {
 bc.echoUnion(uIn, uOut);

 switch (uOut.get_discriminator()) {
 case Union2::var_Union1_enum :
 switch (uOut.getUnion1().get_discriminator()) {
 case Union1::var_int_enum :
 cout << "Result = (int) "
 << uOut.getUnion1().getint() << endl;
 case Union1::var_float_enum :
 cout << "Result = (float) "
 << uOut.getUnion1().getfloat() << endl;
 break;
 }
 break;
 case Union2::var_string_enum :
 cout << "Result = (string) "
 << uOut.getstring().get_value().c_str() << endl;
 break;
 }
} catch (IT_Bus::FaultException &ex)
{
 // Handle exception (not shown) ...
}

460

Simple Types
Holder Types

Overview There are some general-purpose functions in Artix (for example, some functions
in the context API) that take parameters of IT_Bus::AnyType type, which allows
you to pass any Artix data type. You can pass most Artix data types directly to
such functions, because the data types derive from the AnyType class. However,
not all Artix data types derive from AnyType. Some types, such as IT_Bus::Int
and IT_Bus::Short, are simply typedefs of C++ built-in types. Other simple
types—for example, IT_Bus::String and IT_Bus::QName—also do not inherit
from AnyType.

To facilitate the passing of simple types, Artix defines Holder types. For
example, the IT_Bus::StringHolder type can hold an IT_Bus::String
instance. In contrast to the original Simple type, the SimpleHolder type derives
from IT_Bus::AnyType. Accessor and modifier functions are used to insert and
extract the Simple type from the SimpleHolder type.

Holder type member functions A holder type, for data of type T, supports the following accessor and modifier
member functions:

Example The following example shows how to use the IT_Bus::StringHolder type to
set the HTTP_ENDPOINT_URL context value.

// C++
const T& get() const;

T& get();

void set(const T& data);

// C++
IT_Bus::AnyType* any_string = request_contexts->get_context(
 IT_ContextAttributes::HTTP_ENDPOINT_URL,
 true
);

IT_Bus::StringHolder* str_holder =
dynamic_cast<IT_Bus::StringHolder*>(any_string);

str_holder->set("http://localhost:1234");
 461

CHAPTER 9 | Artix Data Types
List of holder types Table 43 shows the list of Holder types provided by Artix.

Table 43: List of Artix Holder Types

Built-In Type Holder Type

IT_Bus::Boolean IT_Bus::BooleanHolder

IT_Bus::Byte IT_Bus::ByteHolder

IT_Bus::Short IT_Bus::ShortHolder

IT_Bus::Int IT_Bus::IntHolder

IT_Bus::Long IT_Bus::LongHolder

IT_Bus::String IT_Bus::StringHolder

IT_Bus::Float IT_Bus::FloatHolder

IT_Bus::Double IT_Bus::DoubleHolder

IT_Bus::UByte IT_Bus::UByteHolder

IT_Bus::UShort IT_Bus::UShortHolder

IT_Bus::UInt IT_Bus::UIntHolder

IT_Bus::ULong IT_Bus::ULongHolder

IT_Bus::Decimal IT_Bus::DecimalHolder

IT_Bus::QName IT_Bus::QNameHolder

IT_Bus::DateTime IT_Bus::DateTimeHolder

IT_Bus::HexBinary IT_Bus::HexBinaryHolder

IT_Bus::Base64Binary IT_Bus::Base64BinaryHolder
462

Simple Types
Unsupported Simple Types

List of unsupported simple types The following WSDL simple types are currently not supported by the
WSDL-to-C++ compiler:

Atomic Simple Types

xsd:ENTITY
xsd:ENTITIES
xsd:NOTATION
xsd:IDREF
xsd:IDREFS
 463

CHAPTER 9 | Artix Data Types
Complex Types

Overview This section describes the WSDL-to-C++ mapping for complex types. Complex
types are defined within an XML schema. In contrast to simple types, complex
types can contain elements and carry attributes.

In this section This section contains the following subsections:

Sequence Complex Types page 465

Choice Complex Types page 468

All Complex Types page 472

Attributes page 475

Attribute Groups page 479

Nesting Complex Types page 482

Deriving a Complex Type from a Simple Type page 486

Deriving a Complex Type from a Complex Type page 489

Arrays page 499

Model Group Definitions page 504
464

Complex Types
Sequence Complex Types

Overview XML schema sequence complex types are mapped to a generated C++ class,
which inherits from IT_Bus::SequenceComplexType. The mapped C++ class is
defined in the generated PortTypeNameTypes.h and PortTypeNameTypes.cxx
files.

The WSDL-to-C++ mapping defines accessor and modifier functions for each
element in the sequence complex type.

Occurrence constraints Occurrence constraints, which are specified using the minOccurs and maxOccurs
attributes, are supported for sequence complex types. See “Sequence Occurrence
Constraints” on page 547.

WSDL example Example 149 shows an example of a sequence, SequenceType, with three
elements.

Example 149: Definition of a Sequence Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
</schema>
 465

CHAPTER 9 | Artix Data Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 149) to the
SequenceType C++ class. An outline of this class is shown in Example 150.

Each ElementName element declared in the sequence complex type is mapped to
a pair of accessor/modifier functions, getElementName() and
setElementName().

Example 150: Mapping of SequenceType to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 SequenceType(const SequenceType& copy);
 virtual ~SequenceType();
 ...
 virtual const IT_Bus::QName & get_type() const;

 SequenceType& operator= (const SequenceType& assign);

 const IT_Bus::Float & getvarFloat() const;
 IT_Bus::Float & getvarFloat();
 void setvarFloat(const IT_Bus::Float & val);

 const IT_Bus::Int & getvarInt() const;
 IT_Bus::Int & getvarInt();
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String &

val);

 private:
 ...
};
466

Complex Types
C++ example Consider a port type that defines an echoSequence operation. The
echoSequence operation takes a SequenceType type as an in parameter and then
echoes this value in the response. Example 151 shows how a client could use a
proxy instance, bc, to invoke the echoSequence operation.

Example 151: Client Invoking an echoSequence Operation

// C++
SequenceType seqIn, seqResult;
seqIn.setvarFloat(3.14159);
seqIn.setvarInt(54321);
seqIn.setvarString("You can use a string constant here.");

try {
 bc.echoSequence(seqIn, seqResult);

 if((seqResult.getvarInt() != seqIn.getvarInt()) ||
 (seqResult.getvarFloat() != seqIn.getvarFloat()) ||
 (seqResult.getvarString().compare(seqIn.getvarString()) !=

0))
 {
 cout << endl << "echoSequence FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

 467

CHAPTER 9 | Artix Data Types
Choice Complex Types

Overview XML schema choice complex types are mapped to a generated C++ class, which
inherits from IT_Bus::ChoiceComplexType. The mapped C++ class is defined
in the generated PortTypeNameTypes.h and PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for each
element in the choice complex type. The choice complex type is effectively
equivalent to a C++ union, so only one of the elements is accessible at a time.
The C++ implementation defines a discriminator, which tells you which of the
elements is currently selected.

Occurrence constraints Occurrence constraints, which are specified using the minOccurs and maxOccurs
attributes, are supported for choice complex types. See “Choice Occurrence
Constraints” on page 551.

WSDL example Example 152 shows an example of a choice complex type, ChoiceType, with
three elements.

Example 152: Definition of a Choice Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="ChoiceType">
 <choice>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </choice>
 </complexType>

 ...
</schema>
468

Complex Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 152) to the
SequenceType C++ class. An outline of this class is shown in Example 153.

Example 153: Mapping of ChoiceType to C++

// C++
class ChoiceType : public IT_Bus::ChoiceComplexType
{
 public:
 ChoiceType();
 ChoiceType(const ChoiceType& copy);
 virtual ~ChoiceType();

 ...
 virtual const IT_Bus::QName & get_type() const ;

 ChoiceType& operator= (const ChoiceType& assign);

 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float& val);

 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int& val);

 const IT_Bus::String& getvarString() const;
 void setvarString(const IT_Bus::String& val);

 ChoiceTypeDiscriminator get_discriminator() const
 {
 return m_discriminator;
 }

 IT_Bus::UInt get_discriminator_as_uint() const
 {
 return m_discriminator;
 }

 enum ChoiceTypeDiscriminator
 {
 varFloat_enum,
 varInt_enum,
 varString_enum,
 ChoiceType_MAXLONG=-1L
 } m_discriminator;

 private:
 469

CHAPTER 9 | Artix Data Types
Each ElementName element declared in the sequence complex type is mapped to
a pair of accessor/modifier functions, getElementName() and
setElementName().

The member functions have the following effects:

• setElementName()—select the ElementName element, setting the

discriminator to the ElementName label and initializing the value of

ElementName.

• getElementName()—get the value of the ElementName element. You

should always check the discriminator before calling the

getElementName() accessor. If ElementName is not currently selected,

the value returned by getElementName() is undefined.

• get_discriminator()—returns the value of the discriminator.

C++ example Consider a port type that defines an echoChoice operation. The echoChoice
operation takes a ChoiceType type as an in parameter and then echoes this value
in the response. Example 154 shows how a client could use a proxy instance, bc,
to invoke the echoChoice operation.

 ...
};

Example 153: Mapping of ChoiceType to C++

Example 154: Client Invoking an echoChoice Operation

// C++
ChoiceType cIn, cResult;
// Initialize and select the ChoiceType::varString label.
cIn.setvarString("You can use a string constant here.");

try {
 bc.echoChoice(cIn, cResult);
470

Complex Types
 bool fail = IT_TRUE;
 if (cIn.get_discriminator()==cResult.get_discriminator()) {
 switch (cIn.get_discriminator()) {
 case ChoiceType::varFloat_enum:
 fail =(cIn.getvarFloat()!=cResult.getvarFloat());
 break;
 case ChoiceType::varInt_enum:
 fail =(cIn.getvarInt()!=cResult.getvarInt());
 break;
 case ChoiceType::varString_enum:
 fail =
 (cIn.getvarString()!=cResult.getvarString());
 break;
 }
 }

 if (fail) {
 cout << endl << "echoChoice FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

Example 154: Client Invoking an echoChoice Operation
 471

CHAPTER 9 | Artix Data Types
All Complex Types

Overview XML schema all complex types are mapped to a generated C++ class, which
inherits from IT_Bus::AllComplexType. The mapped C++ class is defined in
the generated PortTypeNameTypes.h and PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for each
element in the all complex type. With an all complex type, the order in which the
elements are transmitted is immaterial.

Occurrence constraints Occurrence constraints are supported for the elements of XML schema all
complex types.

WSDL example Example 155 shows an example of an all complex type, AllType, with three
elements.

Note: An all complex type can only be declared as the outermost group of a
complex type. Hence, you cannot nest an all model group, <all>, directly
inside other model groups, <all>, <sequence>, or <choice>. You may,
however, define an all complex type and then declare an element of that type
within the scope of another model group.

Example 155: Definition of an All Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="AllType">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 </complexType>
 ...
</schema>
472

Complex Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 155) to the
AllType C++ class. An outline of this class is shown in Example 156.

Each ElementName element declared in the sequence complex type is mapped to
a pair of accessor/modifier functions, getElementName() and
setElementName().

Example 156: Mapping of AllType to C++

// C++
class AllType : public IT_Bus::AllComplexType
{
 public:
 AllType();
 AllType(const AllType& copy);
 virtual ~AllType();

 virtual const IT_Bus::QName & get_type() const;

 AllType& operator= (const AllType& assign);

 const IT_Bus::Float & getvarFloat() const;
 IT_Bus::Float & getvarFloat();
 void setvarFloat(const IT_Bus::Float & val);

 const IT_Bus::Int & getvarInt() const;
 IT_Bus::Int & getvarInt();
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String & val);

 private:
 ...
};
 473

CHAPTER 9 | Artix Data Types
C++ example Consider a port type that defines an echoAll operation. The echoAll operation
takes an AllType type as an in parameter and then echoes this value in the
response. Example 157 shows how a client could use a proxy instance, bc, to
invoke the echoAll operation.

Example 157: Client Invoking an echoAll Operation

// C++
AllType allIn, allResult;
allIn.setvarFloat(3.14159);
allIn.setvarInt(54321);
allIn.setvarString("You can use a string constant here.");

try {
 bc.echoAll(allIn, allResult);

 if((allResult.getvarInt() != allIn.getvarInt()) ||
 (allResult.getvarFloat() != allIn.getvarFloat()) ||
 (allResult.getvarString().compare(allIn.getvarString()) !=

0))
 {
 cout << endl << "echoAll FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

474

Complex Types
Attributes

Overview Artix supports the use of <attribute> declarations within the scope of a
<complexType> definition. For example, you can include attributes in the
definitions of an all complex type, sequence complex type, and choice complex
type. The declaration of an attribute in a complex type has the following syntax:

<attribute name="AttrName" type="AttrType"
use="[optional|required|prohibited]"/>

Attribute use When declaring an attribute, the use can have one of the following values:

• optional—(default) the attribute can either be set or unset.

• required—the attribute must be set.

• prohibited—the attribute must be unset (cannot be used).

On-the-wire optimization Artix optimizes the transmission of attributes by distinguishing between set and
unset attributes. Only set attributes are transmitted (on bindings that support this
optimization).

C++ mapping overview There are two different styles of C++ mapping for attributes, depending on the
use value in the attribute declaration:

• Optional attributes—if an attribute is declared with use="optional" (or if

the use setting is omitted altogether), the generated getAttribute()

function returns a pointer, instead of a reference, to the attribute value. This

enables you to test whether the attribute is set or not by testing the pointer

for nilness (whether it equals 0).

• Required attributes—if an attribute is declared with use="required", the

generated getAttribute() function returns a reference to the attribute value.

Note: The CORBA binding does not support this optimization.
 475

CHAPTER 9 | Artix Data Types
Optional attribute example Example 158 shows how to define a sequence type with a single optional
attribute, prop, of xsd:string type (attributes are optional by default).

C++ mapping for an optional
attribute

Example 159 shows an outline of the C++ SequenceType class generated from
Example 158, which defines accessor and modifier functions for the optional
prop attribute.

The preceding C++ mapping can be explained as follows:

1. If the attribute is set, returns a pointer to its value; if not, returns 0.

2. If val != 0, sets the attribute to *val (makes a copy); if val == 0, unsets

the attribute.

3. Sets the attribute to val (makes a copy). This is a convenience function

that enables you to set the attribute without using a pointer.

Example 158: Definition of a Sequence Type with an Optional Attribute

<complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 <attribute name="prop" type="xsd:string"/>
</complexType>

Example 159: Mapping an Optional Attribute to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 ...

1 const IT_Bus::String * getprop() const;
 IT_Bus::String * getprop();

2 void setprop(const IT_Bus::String * val);
3 void setprop(const IT_Bus::String & val);

};
476

Complex Types
Required attribute example Example 160 shows how to define a sequence type with a single required
attribute, prop, of xsd:string type.

C++ mapping for a required
attribute

Example 161 shows an outline of the C++ SequenceType class generated from
Example 160 on page 477, which defines accessor and modifier functions for the
required prop attribute.

In this case, the getprop() accessor function returns a reference to a string (that
is, IT_Bus::String&), rather than a pointer to a string.

Example 160: Definition of a Sequence Type with a Required Attribute

<complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 <attribute name="prop" type="xsd:string" use="required"/>
</complexType>

Example 161: Mapping a Required Attribute to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 ...
 const IT_Bus::String & getprop() const;
 IT_Bus::String & getprop();

 void setprop(const IT_Bus::String & val);
};
 477

CHAPTER 9 | Artix Data Types
Limitations The following attribute types are not supported:

• xsd:IDREFS

• xsd:ENTITY

• xsd:ENTITIES

• xsd:NOTATION

• xsd:NMTOKEN

• xsd:NMTOKENS
478

Complex Types
Attribute Groups

Overview An attribute group, which is defined using the attributeGroup element, is a
convenient shortcut that enables you to reference a group of attributes in
user-defined complex types. The attributeGroup element is used in two
distinct ways: for defining an attribute group and for referencing an existing
attribute group.

To define a new attribute group (which should be done within the scope of a
schema element), use the following syntax:

<attributeGroup
 name="AttrGroup_NCName">
 <attribute ... > ... </attribute>
 ...
 <attributeGroup ref="..." ... > ... </attributeGroup>
 ...
</attributeGroup>

To reference an existing attribute from within a complex type definition, use the
following syntax:

<attributeGroup ref="AttrGroup_QName" />

Simple attribute groups Example 162 shows how to define an attribute group, DimAttrGroup, which
contains three attributes, length, breadth, and height, and is referenced by the
complex type, Package.

Note: Attribute groups are currently supported only by the SOAP binding.

Example 162: Example of Defining a Simple Attribute Group

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/attr_example"
 targetNamespace="http://schemas.iona.com/attr_example">

 <attributeGroup name="DimAttrGroup">
 <attribute name="length" type="xsd:int"/>
 <attribute name="breadth" type="xsd:int"/>
 <attribute name="height" type="xsd:int"/>
 </attributeGroup
 479

CHAPTER 9 | Artix Data Types
The preceding Package type defined in Example 162 on page 479 is exactly
equivalent to the Package type defined in Example 163. In other words,
referencing an attribute group has essentially the same effect as defining the
attributes directly within the type.

Nested attribute groups It is also possible to nest attribute groups by referencing an attribute group
within another attribute group definition. Example 164 shows how to define an
attribute group, DimAndColor, which recursively references another attribute
group, DimAttrGroup.

 <complexType name="Package">
 <sequence> ... </sequence>
 <attributeGroup ref="tns:DimAttrGroup" />
 </complexType>

</schema>

Example 162: Example of Defining a Simple Attribute Group

Example 163: Equivalent Type Using Attributes instead of Attribute Group

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/attr_example"
 targetNamespace="http://schemas.iona.com/attr_example">

 <complexType name="Package">
 <sequence> ... </sequence>
 <attribute name="length" type="xsd:int"/>
 <attribute name="breadth" type="xsd:int"/>
 <attribute name="height" type="xsd:int"/>
 </complexType>

</schema>

Example 164: Example of Defining a Nested Attribute Group

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/attr_example"
 targetNamespace="http://schemas.iona.com/attr_example">
480

Complex Types
C++ mapping The C++ mapping for a type that references an attribute group is precisely the
same as if the attributes were defined directly within the type. In other words, all
of the attribute groups are recursively unwrapped and the attributes are inserted
directly into the type definition. The type is then mapped to C++ according to
the usual mapping rules.

For details of the C++ mapping of attributes, see “Attributes” on page 475.

 <attributeGroup name="DimAttrGroup">
 <attribute name="length" type="xsd:int"/>
 <attribute name="breadth" type="xsd:int"/>
 <attribute name="height" type="xsd:int"/>
 </attributeGroup

 <attributeGroup name="DimAndColor">
 <attributeGroup ref="tns:DimAttrGroup"/>
 <attribute name="Color" type="xsd:string"/>
 </attributeGroup>

</schema>

Example 164: Example of Defining a Nested Attribute Group
 481

CHAPTER 9 | Artix Data Types
Nesting Complex Types

Overview It is possible to nest complex types within each other. When mapped to C++, the
nested complex types map to a nested hierarchy of classes, where each instance
of a nested type is stored in a member variable of its containing class.

Avoiding anonymous types In general, it is a good idea to name types that are nested inside other types,
instead of using anonymous types. This results in simpler code when the types
are mapped to C++.

For an example of the recommended style of declaration, with a named nested
type, see Example 165.

WSDL example Example 165 shows an example of a nested complex type, which features a
choice complex type, NestedChoiceType, nested inside a sequence complex
type, SeqOfChoiceType.

Example 165: Definition of Nested Complex Type

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="NestedChoiceType">
 <choice>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 </choice>
 </complexType>
 <complexType name="SeqOfChoiceType">
 <sequence>
 <element name="varString" type="xsd:string"/>
 <element name="varChoice" type="xsd1:NestedChoiceType"/>
 </sequence>
 </complexType>
 ...
</schema>
482

Complex Types
C++ mapping of
NestedChoiceType

The XML schema choice complex type, NestedChoiceType, is a simple choice
complex type, which is mapped to C++ in the standard way. Example 166 shows
an outline of the generated C++ NestedChoiceType class.

C++ mapping of
SeqOfChoiceType

The XML schema sequence complex type, SeqOfChoiceType, has the
NestedChoiceType nested inside it. Example 167 shows an outline of the
generated C++ SeqOfChoiceType class, which shows how the nested complex
type is mapped within a sequence complex type.

Example 166: Mapping of NestedChoiceType to C++

// C++
class NestedChoiceType : public IT_Bus::ChoiceComplexType
{
 ...
 public:
 NestedChoiceType();
 NestedChoiceType(const NestedChoiceType& copy);
 virtual ~NestedChoiceType();

 virtual const IT_Bus::QName & get_type() const ;

 NestedChoiceType& operator= (const NestedChoiceType& assign);

 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float& val);

 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int& val);

 IT_Bus::UInt get_discriminator() const;

 private:
 ...
};

Example 167: Mapping of SeqOfChoiceType to C++

// C++
class SeqOfChoiceType : public IT_Bus::SequenceComplexType
{
 ...
 public:
 483

CHAPTER 9 | Artix Data Types
The nested type, NestedChoiceType, can be accessed and modified using the
getvarChoice() and setvarChoice() functions respectively.

C++ example Consider a port type that defines an echoSeqOfChoice operation. The
echoSeqOfChoice operation takes a SeqOfChoiceType type as an in parameter
and then echoes this value in the response. Example 157 shows how a client
could use a proxy instance, bc, to invoke the echoSeqOfChoice operation.

 SeqOfChoiceType();
 SeqOfChoiceType(const SeqOfChoiceType& copy);
 virtual ~SeqOfChoiceType();
 ...
 virtual const IT_Bus::QName & get_type() const;

 SeqOfChoiceType& operator= (const SeqOfChoiceType& assign);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String & val);

 const NestedChoiceType & getvarChoice() const;
 NestedChoiceType & getvarChoice();
 void setvarChoice(const NestedChoiceType & val);

 private:
 ...
};

Example 167: Mapping of SeqOfChoiceType to C++

Example 168: Client Invoking an echoSeqOfChoice Operation

// C++
NestedChoiceType nested;
nested.setvarFloat(3.14159);

SeqOfChoiceType seqIn, seqResult;
seqIn.setvarChoice(nested);
seqIn.setvarString("You can use a string constant here.");
try {
 bc.echoSeqOfChoice(seqIn, seqResult);

 if(
 (seqResult.getvarString().compare(seqIn.getvarString()) != 0)

||
484

Complex Types
 (seqResult.getvarChoice().get_discriminator()
 !=seqIn.getvarChoice().get_discriminator()))
 {
 cout << endl << "echoSeqOfChoice FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

Example 168: Client Invoking an echoSeqOfChoice Operation
 485

CHAPTER 9 | Artix Data Types
Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type, for which the
following kinds of derivation are supported:

• Derivation by restriction.

• Derivation by extension.

A simple type has, by definition, neither sub-elements nor attributes. Hence, one
of the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type (derivation by extension).

Derivation by restriction Example 169 shows an example of a complex type, orderNumber, derived by
restriction from the xsd:decimal simple type. The new type is restricted to have
values less than 1,000,000.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <restriction> tag defines the derivation by restriction
from xsd:decimal.

Example 169: Deriving a Complex Type from a Simple Type by Restriction

<xsd:complexType name="orderNumber">
 <xsd:simpleContent>
 <xsd:restriction base="xsd:decimal">
 <xsd:maxExclusive value="1000000"/>
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>
486

Complex Types
Derivation by extension Example 170 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type. The new type is
extended to include a currency attribute.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <extension> tag defines the derivation by extension from
xsd:decimal.

C++ mapping Example 171 shows an outline of the C++ internationalPrice class generated
from Example 170 on page 487.

Example 170: Deriving a Complex Type from a Simple Type by Extension

<xsd:complexType name="internationalPrice">
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Example 171: Mapping the internationalPrice Type to C++

// C++
class internationalPrice : public

IT_Bus::SimpleContentComplexType
{
 ...
 public:
 internationalPrice();
 internationalPrice(const internationalPrice& copy);
 virtual ~internationalPrice();

 ...
 virtual const IT_Bus::QName & get_type() const;

 internationalPrice& operator= (const internationalPrice&
assign);

 const IT_Bus::String & getcurrency() const;
 IT_Bus::String & getcurrency();
 void setcurrency(const IT_Bus::String & val);
 487

CHAPTER 9 | Artix Data Types
The value of the currency attribute, which is added by extension, can be
accessed and modified using the getcurrency() and setcurrency() member
functions. The simple type value (that is, the value enclosed between the
<internationalPrice> and </internationalPrice> tags) can be accessed
and modified by the get_simpleTypeValue() and set_simpleTypeValue()
member functions.

 const IT_Bus::Decimal & get_simpleTypeValue() const;
 IT_Bus::Decimal & get_simpleTypeValue();
 void set_simpleTypeValue(const IT_Bus::Decimal & val);
 ...
};

Example 171: Mapping the internationalPrice Type to C++
488

Complex Types
Deriving a Complex Type from a Complex Type

Overview Artix supports derivation of a complex type from a complex type, for which the
following kinds of derivation are possible:

• Derivation by restriction.

• Derivation by extension.

This subsection describes the C++ mapping for complex types derived from
complex types and, in particular, describes the coding pattern for calling a
function either with base type arguments or with derived type arguments.

Allowed inheritance relationships Figure 29 shows the inheritance relationships allowed between complex types.
As well as inheriting between the same kind of complex type (sequence from
sequence, choice from choice, and all from all), derivation by extension also
supports cross-inheritance. For example, a sequence can derive from a choice, a
choice from an all, an all from a choice, and so on.

Figure 29: Allowed Inheritance Relationships for Complex Types

Sequence Choice All

Sequence Choice All
 489

CHAPTER 9 | Artix Data Types
Derivation by restriction Example 172 shows an example of deriving a sequence from a sequence by
restriction. In this example, RestrictedStruct is derived from SimpleStruct
by restriction. The standard tag used to declare inheritance by restriction is
<restriction base="BaseComplexType"/>.

The preceding type definition can be explained as follows:

1. This <complexType> tag introduces the definition of the derived sequence

type, RestrictedStruct.

2. The <restriction> tag indicates that this type derives by restriction from

the SimpleStruct type.

3. Elements that appear in the SimpleStruct base type must be duplicated

here, if they are to be included in the derived type, but they can also have

extra restrictions imposed on them.

4. The varString element is restricted here to have the fixed value,

Restricted.

Example 172: Example of Deriving a Sequence by Restriction

// C++
<complexType name="SimpleStruct">
 <sequence>
 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 <attribute name="varAttrString" type="string"/>
</complexType>
...

1 <complexType name="RestrictedStruct">
 <complexContent>

2 <restriction base="tns:SimpleStruct">
3 <sequence>

 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>

4 <element name="varString" type="string"
 fixed="Restricted"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
490

Complex Types
Derivation by extension Example 173 shows an example of deriving a sequence from a sequence by
extension. In this example, DerivedStruct_BaseStruct is derived from
SimpleStruct by extension. The standard tag used to declare inheritance by
extension is <extension base="BaseComplexType"/>.

The preceding type definition can be explained as follows:

1. This <complexType> tag introduces the definition of the derived sequence

type, DerivedStruct_BaseStruct.

2. The <complexContent> tag indicates that what follows is a declaration of

contained tags. The mixed="false" setting indicates that the type can

contain only tags, not text.

3. The <extension> tag indicates that this type derives by extension from the

SimpleStruct type.

4. The <sequence> tag defines extra type members that are specific to the

derived type, DerivedStruct_BaseStruct.

5. You can also declare attributes specific to the derived type.

Example 173: Example of Deriving a Sequence by Extension

<complexType name="SimpleStruct">
 <sequence>
 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 <attribute name="varAttrString" type="string"/>
</complexType>
...

1 <complexType name="DerivedStruct_BaseStruct">
2 <complexContent mixed="false">
3 <extension base="tns:SimpleStruct">
4 <sequence>

 <element name="varStringExt" type="string"/>
 <element name="varFloatExt" type="float"/>
 </sequence>

5 <attribute name="attrString1" type="string"/>
 </extension>
 </complexContent>
</complexType>
 491

CHAPTER 9 | Artix Data Types
C++ mapping for derivation by
restriction

The C++ mapping for derivation by restriction is essentially the same as the C++
mapping for derivation by extension.

In the case of derivation by restriction, however, Artix does not enforce all of the
restrictions at runtime. To ensure interoperability, therefore, your service should
enforce the restrictions declared in the WSDL contract.

C++ mapping for derivation by
extension

The sequence types defined in Example 173 on page 491, SimpleStruct and
DerivedStruct_BaseStruct, map to C++ as shown in Example 174.

Example 174: C++ Mapping of a Derived Sequence Type

// C++
class SimpleStruct : public IT_Bus::SequenceComplexType
{
 public:
 static const IT_Bus::QName type_name;

 SimpleStruct();
 ...
 IT_Bus::AnyType &
 operator=(const IT_Bus::AnyType & rhs);

 SimpleStruct &
 operator=(const SimpleStruct & rhs);

 const SimpleStruct * get_derived() const;
 virtual IT_Bus::AnyType::Kind get_kind() const;
 virtual const IT_Bus::QName & get_type() const;
 ...
 IT_Bus::Float getvarFloat();
 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float val);

 IT_Bus::Int getvarInt();
 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int val);

 IT_Bus::String & getvarString();
 const IT_Bus::String & getvarString() const;
 void setvarString(const IT_Bus::String & val);

 IT_Bus::String & getvarAttrString();
 const IT_Bus::String & getvarAttrString() const;
 void setvarAttrString(const IT_Bus::String & val);
492

Complex Types
The C++ DerivedStruct_BaseStruct class derives directly from the C++
SimpleStruct class. Hence, all of the accessors and modifiers declared in the
base class, SimpleStruct, are also available to the derived class,
DerivedStruct_BaseStruct.

 private:
 ...
};

typedef IT_AutoPtr<SimpleStruct> SimpleStructPtr;

...
class IT_TEST_WSDL_API DerivedStruct_BaseStruct : public

SimpleStruct , public virtual
IT_Bus::ComplexContentComplexType

{
 public:
 static const IT_Bus::QName type_name;

 DerivedStruct_BaseStruct();
 DerivedStruct_BaseStruct(const DerivedStruct_BaseStruct &

copy);
 virtual ~DerivedStruct_BaseStruct();
 ...
 IT_Bus::String & getvarStringExt();
 const IT_Bus::String & getvarStringExt() const;
 void setvarStringExt(const IT_Bus::String & val);

 IT_Bus::Float getvarFloatExt();
 const IT_Bus::Float getvarFloatExt() const;
 void setvarFloatExt(const IT_Bus::Float val);

 IT_Bus::String & getattrString1();
 const IT_Bus::String & getattrString1() const;
 void setattrString1(const IT_Bus::String & val);

 private:
 ...
};

Example 174: C++ Mapping of a Derived Sequence Type
 493

CHAPTER 9 | Artix Data Types
Using a base type as a holder The SimpleStruct type declared in Example 174 on page 492 is really a
dual-purpose type. That is, a SimpleStruct instance can be used in one of the
following different ways:

• As a SimpleStruct data type (base type)—member data is accessed by

invoking getElementName() and setElementName() functions directly

on the SimpleStruct instance.

• As a holder type (derived type holder)—in this usage pattern, the

SimpleStruct instance is used to hold a reference to a more derived type

(for example, DerivedStruct_BaseStruct).

Holder type functions If you are using SimpleStruct as a holder type, the following member functions
are relevant:

• SimpleStruct(const SimpleStruct & copy)—the SimpleStruct copy

constructor is used to initialize the reference held by the SimpleStruct

holder object. The type passed to the copy constructor can be any type

derived from SimpleStruct.

• SimpleStruct & operator=(const SimpleStruct & rhs)—

alternatively, if you already have a SimpleStruct object, you can change

the reference held by making an assignment to the SimpleStruct holder.

• const SimpleStruct * get_derived() const—if you want to access

the derived type held by a SimpleStruct holder object, call the

get_derived() member function and then dynamically cast the return

value to the appropriate type.

• const IT_Bus::QName & get_type() const—call get_type() to get the

QName of the derived type held by a SimpleStruct holder object.

Polymorphism When a WSDL operation is defined to take arguments of a base class type (for
example, SimpleStruct), it is also possible to send and receive arguments of a
type derived from that base class (for example, DerivedStruct_BaseStruct).

For reasons of backward compatibility, however, the C++ code required for
calling an operation with derived type arguments is different from the C++ code
required for calling an operation with base type arguments.
494

Complex Types
Sample WSDL operation For example, consider the definition of the following WSDL operation,
test_SimpleStruct, that takes an in argument of SimpleStruct type and
returns an out argument of SimpleStruct type.

The preceding test_SimpleStruct WSDL operation maps to the following
C++ function (in the TypeTestClient client proxy class).

To call the preceding test_SimpleStruct() function in C++, use one of the
following programming patterns, depending on the type of arguments passed:

• Base or derived type arguments.

• Base type arguments only (for legacy code).

Example 175: The test_SimpleStruct Operation with Base Type Arguments

...
<message name="test_SimpleStruct">
 <part name="x" element="tns:SimpleStruct_x"/>
</message>
<message name="test_SimpleStruct_response">
 <part name="return" element="tns:SimpleStruct_return"/>
</message>
...
<operation name="test_SimpleStruct">
 <input name="test_SimpleStruct"
 message="tns:test_SimpleStruct"/>
 <output name="test_SimpleStruct_response"
 message="tns:test_SimpleStruct_response"/>
</operation>

// C++
virtual void
test_SimpleStruct(
 const SimpleStruct &x,
 SimpleStruct &_return,
) IT_THROW_DECL((IT_Bus::Exception));
 495

CHAPTER 9 | Artix Data Types
Base or derived type arguments Example 176 shows you how to call the test_SimpleStruct() function with
derived type arguments (of DerivedStruct_BaseStruct type). Generally, this
coding pattern can be used to pass either base type or derived type arguments.

The preceding C++ code can be explained as follows:

1. The in parameter, x, of the test_SimpleStruct() function is declared to

be of derived type, DerivedStruct_BaseStruct.

2. Both the base members and the derived members of the in parameter, x, are

initialized here.

3. The derived type, x, is wrapped by a base type instance, x_holder. In this

case, the SimpleStruct object, x_holder, is used purely as a holder type;

x_holder does not directly represent a SimpleStruct type argument.

4. The return type, ret_holder, is declared to be of SimpleStruct type. Here

also, ret_holder is treated as a holder type.

Example 176: Calling test_SimpleStruct() with Derived Type Arguments

// C++
1 DerivedStruct_BaseStruct x;

// Base members
2 x.setvarFloat((IT_Bus::Float) 3.14);

x.setvarInt((IT_Bus::Int) 42);
x.setvarString((IT_Bus::String) "BaseStruct-x");
x.setvarAttrString((IT_Bus::String) "BaseStructAttr-x");
// Derived members
x.setvarFloatExt((IT_Bus::Float) -3.14f);
x.setvarStringExt((IT_Bus::String) "DerivedStruct-x");
x.setattrString1((IT_Bus::String) "DerivedAttr-x");

3 SimpleStruct x_holder(x);
4 SimpleStruct ret_holder;

5 proxy->test_SimpleStruct(x_holder, ret_holder);

6 const DerivedStruct_BaseStruct* ret_derived
 = dynamic_cast<const DerivedStruct_BaseStruct*>(
 ret_holder.get_derived()
);

// Use ret_derived type value...
...
496

Complex Types
5. Call the remote test_SimpleStruct() function, passing in the two holder

instances, x_holder and ret_holder.

6. To obtain a pointer to the derived type return value, call

SimpleStruct::get_derived(). This function returns a pointer to the

derived type contained in the ret_holder object. You can then cast the

returned pointer to the appropriate type using the dynamic_cast<>

operator.

If necessary, you can call the SimpleStruct::get_type() function to

discover the QName of the returned type before attempting to cast the

return value.

Base type arguments only (for
legacy code)

Example 177 shows you how to call the test_SimpleStruct() function with
base type arguments (of SimpleStruct type). This coding pattern is supported
for reasons of backward compatibility.

The preceding C++ code can be explained as follows:

1. The in parameter, x, of the test_SimpleStruct() function is declared to

be of base type, SimpleStruct.

2. The members of the SimpleStruct in parameter, x, are initialized.

Example 177: Calling test_SimpleStruct() with Base Type Arguments

// C++
1 SimpleStruct x;

// Base members
2 x.setvarFloat((IT_Bus::Float) 3.14);

x.setvarInt((IT_Bus::Int) 42);
x.setvarString((IT_Bus::String) "BaseStruct-x");
x.setvarAttrString((IT_Bus::String) "BaseStructAttr-x");

3 SimpleStruct ret;

4 proxy->test_SimpleStruct(x, ret);

// Use ret value...
cout << ret.getvarFloat();
...
 497

CHAPTER 9 | Artix Data Types
3. The return value, ret, of the test_SimpleStruct() function is declared to

be of base type, SimpleStruct.

4. This line calls the remote test_SimpleStruct() function with in

parameter, x, and return parameter, ret.

Note: The return value must be allocated before calling the
test_SimpleStruct() function.

Note: In this example, it is assumed that the return value is of base type,
SimpleStruct. In general, however, the return type might be of derived
type (see “Base or derived type arguments” on page 496).
498

Complex Types
Arrays

Overview This subsection describes how to define and use basic Artix array types. In
addition to these basic array types, Artix also supports SOAP arrays, which are
discussed in “SOAP Arrays” on page 590.

Array definition syntax An array is a sequence complex type that satisfies the following special
conditions:

• The sequence complex type schema defines a single element only.

• The element definition has a maxOccurs attribute with a value greater than

1.

Hence, an Artix array definition has the following general syntax:

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to UpperBound.

Mapping to IT_Bus::ArrayT When a sequence complex type declaration satisfies the special conditions to be
an array, it is mapped to C++ differently from a regular sequence complex type.
Instead of mapping to IT_Bus::SequenceComplexType, the array maps to the
IT_Bus::ArrayT<ElementType> template type. Effectively, the C++ array
template class can be treated like a vector.

For example, the mapped C++ array class supports the size() member function
and individual elements can be accessed using the [] operator.

Note: All elements implicitly have minOccurs=1 and maxOccurs=1, unless
specified otherwise.

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>
 499

CHAPTER 9 | Artix Data Types
WSDL array example Example 178 shows how to define a one-dimensional string array,
ArrayOfString, whose size can lie anywhere in the range 0 to unbounded.

C++ mapping Example 179 shows how the ArrayOfString string array (from Example 178 on
page 500) maps to C++.

Example 178: Definition of an Array of Strings

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <complexType name="ArrayOfString">
 <sequence>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 179: Mapping of ArrayOfString to C++

// C++
class ArrayOfString : public IT_Bus::ArrayT<IT_Bus::String>
{
 public:
 ArrayOfString();
 ArrayOfString(size_t dimension0);
 ArrayOfString(const ArrayOfString& copy);
 virtual ~ArrayOfString();

 virtual const IT_Bus::QName & get_type() const;

 ArrayOfString& operator= (const IT_Vector<IT_Bus::String>&
assign);

 const IT_Bus::ElementListT<IT_Bus::String> & getvarString()
const;

 IT_Bus::ElementListT<IT_Bus::String> & getvarString();
500

Complex Types
Notice that the C++ array class provides accessor functions, getvarString()
and setvarString(), just like any other sequence complex type with
occurrence constraints (see “Sequence Occurrence Constraints” on page 547).
The accessor functions are superfluous, however, because the array’s elements
are more easily accessed by invoking vector operations directly on the
ArrayOfString class.

C++ example Example 180 shows an example of how to allocate and initialize an
ArrayOfString instance, by treating it like a vector (for a complete list of vector
operations, see “Summary of IT_Vector Operations” on page 606).

Multi-dimensional arrays You can define multi-dimensional arrays by nesting array definitions (see
“Nesting Complex Types” on page 482 for a discussion of nested types).
Example 181 shows an example of how to define a two-dimensional string
array, ArrayOfArrayOfString.

 void setvarString(const IT_Bus::ElementListT<IT_Bus::String>
& val);

};

typedef IT_AutoPtr<ArrayOfString> ArrayOfStringPtr;

Example 179: Mapping of ArrayOfString to C++

Example 180: C++ Example for a One-Dimensional Array

// C++
// Array of String
ArrayOfString a(4);

a[0] = "One";
a[1] = "Two";
a[2] = "Three";
a[3] = "Four";

Example 181: Definition of a Multi-Dimensional String Array

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 501

CHAPTER 9 | Artix Data Types
Both the nested array type, ArrayOfArrayOfString, and the sub-array type,
ArrayOfString, must conform to the standard array definition syntax.
Multi-dimensional arrays can be nested to an arbitrary degree, but each
sub-array must be a named type (that is, anonymous nested array types are not
supported).

C++ example for
multidimensional array

Example 182 shows an example of how to allocate and initialize a
multi-dimensional array, of ArrayOfArrayOfString type.

 <complexType name="ArrayOfString">
 <sequence>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfArrayOfString">
 <sequence>
 <element name="nestArray"
 type="xsd1:ArrayOfString"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 181: Definition of a Multi-Dimensional String Array

Example 182: C++ Example for a Multi-Dimensional Array

// C++
// Array of array of String
ArrayOfArrayOfString a2(2);

for (int i = 0 ; i < a2.size(); i++) {
 a2[i].set_size(2);
}

a2[0][0] = "ZeroZero";
a2[0][1] = "ZeroOne";
a2[1][0] = "OneZero";
a2[1][1] = "OneOne";
502

Complex Types
The set_size() function enables you to set the dimension of each sub-array
individually. If you choose different sizes for the sub-arrays, you can create a2
as a ragged two-dimensional array.

Automatic conversion to
IT_Vector

In general, a multi-dimensional array can automatically convert to a vector of
IT_Vector<SubArray> type, where SubArray is the array element type.

Example 183 shows how an instance, a2, of ArrayOfArrayOfString type
converts to an instance of IT_Vector<ArrayOfString> type by assignment.

References For more details about vector types see:

• The “IT_Vector Template Class” on page 602.

• The section on C++ ANSI vectors in The C++ Programming Language,

third edition, by Bjarne Stroustrup.

Example 183: Converting a Multi-Dimensional Array to IT_Vector Type

// Array of array of String
ArrayOfArrayOfString a2(2);

for (int i = 0 ; i < a2.size(); i++) {
 a2[i].set_size(2);
}
...
// Obtain reference to the underlying IT_Vector type
IT_Vector<ArrayOfString>& v_a2 = a2;

cout << v_a2[0][0] << " " << v_a2[0][1] << " "
 << v_a2[1][0] << " " << v_a2[1][1] << endl;
cout << "v_a2.size() = " << v_a2.size() << endl;
 503

CHAPTER 9 | Artix Data Types
Model Group Definitions

Overview A model group definition is a convenient shortcut that enables you to reference a
group of elements from a user-defined complex type.

• To define a new model group (which should be done within the scope of a

schema element), use the following syntax:

<group
 name="Group_NCName">
 [<sequence> | <choice>]
 ...
 [</sequence> | </choice>]
</group>

• To reference an existing model group from within a complex type

definition or from within another model group definition, use the following

syntax:

<group ref="Group_QName"/>

Group of sequence Example 184 shows how to define a model group, PassengerName, which
contains a sequence of elements.

Note: Model groups are currently supported only by the SOAP binding.

Example 184: Model Group Definition Containing a Sequence

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/group"
 targetNamespace="http://schemas.iona.com/group">

 <group name="PassengerName">
 <sequence>
 <element name="FirstName" type="xsd:string"/>
 <element name="SecondName" type="xsd:string"/>
 </sequence>
 </group>

</schema>
504

Complex Types
When the preceding XSD schema is mapped to C++, the PassengerName model
group is mapped to its own C++ class, PassengerName, as shown in
Example 185.

Group of choice Example 186 shows how to define a model group, PassengerID, which contains
a choice of elements.

Example 185: PassengerName Model Group Mapping to C++

// C++
class PassengerName : public IT_Bus::SequenceComplexType
{
 public:
 ...
 PassengerName();
 PassengerName(const PassengerName & copy);
 virtual ~PassengerName();
 ...
 IT_Bus::String & getFirstName();
 const IT_Bus::String & getFirstName() const;
 void setFirstName(const IT_Bus::String & val);

 IT_Bus::String & getSecondName();
 const IT_Bus::String & getSecondName() const;
 void setSecondName(const IT_Bus::String & val);

 private:
 ...
};

Example 186: Model Group Definition Containing a Choice

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/group"
 targetNamespace="http://schemas.iona.com/group">

 <group name="PassengerID">
 <choice>
 <element name="PassportNo" type="xsd:integer"/>
 <element name="IDCardNo" type="xsd:integer"/>
 </choice>
 </group>

</schema>
 505

CHAPTER 9 | Artix Data Types
When the preceding XSD schema is mapped to C++, the PassengerID model
group is mapped to a C++ class, PassengerID, in just the same way as a regular
choice complex type (see, for example, “Choice Complex Types” on page 468).

Recursive group references Example 187 shows how to define a model group, Hop, which recursively
references another model group definition, PassengerName.

When the preceding XSD schema is mapped to C++, the Hop model group maps
to a C++ class, Hop, like a regular sequence complex type. In particular, the
recursive reference to another model group, tns:PassengerName, is mapped to a
pair of accessor and modifier functions, getPassengerName() and
setPassengerName(), as shown in Example 188.

Example 187: Model Group Definition with Recursive Reference

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/group"
 targetNamespace="http://schemas.iona.com/group">

 <group name="PassengerName">
 <sequence>
 <element name="FirstName" type="xsd:string"/>
 <element name="SecondName" type="xsd:string"/>
 </sequence>
 </group>

 <group name="Hop">
 <sequence>
 <group ref="tns:PassengerName"/>
 <element name="origin" type="xsd:string"/>
 <element name="destination" type="xsd:string"/>
 </sequence>
 </group>

</schema>

Example 188: Hop Model Group Mapping to C++

// C++
class Hop : public IT_Bus::SequenceComplexType
{
 public:
 ...
506

Complex Types
Repeated group references Example 189 shows how to define a model group, TwoHops, which references
the Hop model group twice.

 Hop();
 Hop(const Hop & copy);
 virtual ~Hop();
 ...
 PassengerName & getPassengerName();
 const PassengerName & getPassengerName() const;
 void setPassengerName(const PassengerName & val);

 IT_Bus::String & getorigin();
 const IT_Bus::String & getorigin() const;
 void setorigin(const IT_Bus::String & val);

 IT_Bus::String & getdestination();
 const IT_Bus::String & getdestination() const;
 void setdestination(const IT_Bus::String & val);

 private:
 ...
};

Example 188: Hop Model Group Mapping to C++

Example 189: Model Group Definition with Repeated References

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/group"
 targetNamespace="http://schemas.iona.com/group">

 <group name="TwoHops">
 <sequence>
 <group ref="tns:Hop"/>
 <group ref="tns:Hop"/>
 </sequence>
 </group>

</schema>
 507

CHAPTER 9 | Artix Data Types
When the preceding XSD schema is mapped to C++, the TwoHops model group
maps to a C++ class, TwoHops, as shown in Example 190.

Two sets of accessors and modifiers are generated: the first model group
reference maps to the functions, getHop() and setHop(); the second model
group reference maps to the functions, getHop_1() and setHop_1().

In general, an N+1th repetition of a model group reference would generate a pair
of functions, getHop_N() and setHop_N().

Example 190: TwoHops Model Group Mapping to C++

// C++
class TwoHops : public IT_Bus::SequenceComplexType
{
 public:
 ...
 TwoHops();
 TwoHops(const TwoHops & copy);
 virtual ~TwoHops();
 ...
 Hop & getHop();
 const Hop & getHop() const;
 void setHop(const Hop & val);

 Hop & getHop_1();
 const Hop & getHop_1() const;
 void setHop_1(const Hop & val);

 private:
 ...
};
508

Binary Types and MTOM
Binary Types and MTOM

Overview This section describes how to use the schema binary types, xs:base64Binary
and xs:hexBinary, in the context of the MTOM protocol.

In this section This section contains the following subsections:

Introduction to MTOM page 510

Default XOP Encoding page 512

Specifying the MIME Content Type page 515

Restricting the MIME Content Type page 519
 509

CHAPTER 9 | Artix Data Types
Introduction to MTOM

Overview The Message Transmission Optimization Mechanism (MTOM) is a protocol
designed to optimize the transmission of binary data within SOAP 1.2 messages.
When MTOM is enabled, it converts SOAP messages into MIME
multipart/related messages, where the binary data from the SOAP message is
transmitted as a series of MIME attachments.

Advantages of MTOM MTOM offers the following advantages:

• Optimization—raw binary data can be written directly into the MIME

multipart/related message, skipping the conversion of raw binary to

base-64 encoding (or raw binary to hexadecimal encoding). This leads to

faster marshalling and smaller message sizes.

• MIME content type—a MIME content type can be associated with the

binary data and the content type can be accessed from the application code.

• Ease-of-use—MTOM is easy to enable (particularly in comparison to the

SOAP-with-Attachments standard).

Specifications The following W3 specifications are relevant to MTOM:

• SOAP Message Transmission Optimization Mechanism (MTOM).

• XML-binary Optimized Packaging (XOP).

• Describing Media Content of Binary Data in XML (XMIME).

Note: MTOM is incompatible with certain WS-Security features, so it is
recommended that you disable MTOM when security is enabled.
510

http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/xml-media-types/

Binary Types and MTOM
Enabling MTOM The MTOM optimization is supported only by SOAP 1.2. You can enable the
optimization as follows:

• Client side—to enable MTOM on the client side, add the following setting

to your application’s scope in the Artix configuration file:

• Server side—MTOM is always enabled on the server side. If a server

detects that an incoming SOAP message conforms to MTOM, it will

automatically apply MTOM to decode the message.

plugins:soap12:enable_mtom_serialization = "true";
 511

CHAPTER 9 | Artix Data Types
Default XOP Encoding

Overview The simplest approach to using MTOM is where you enable MTOM on the
client side and leave the WSDL contract unchanged. In this case, MTOM
automatically chooses the default XOP encoding for any binary types that it
encounters in the WSDL (that is, xs:base64Binary, xs:hexBinary, and any
types derived from them).

WSDL example Example 191 shows the definition of a data schema element that contains two
elements, photo and sig, of xs:base64Binary type. This is a standard schema
example—there are no MTOM-specific details in it..

Plain SOAP message Example 192 shows an example of a plain, non-MTOM SOAP message
containing binary data (using the data element defined in Example 191). Both
the m:photo element and the m:sig element contain binary data encoded using
base-64 encoding and embedded directly in the elements themselves.

Example 191: WSDL Example for Default XOP Encoding

<wsdl:types>
 <xs:schema targetNamespace="http://example.og/stuff"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="photo" type="xs:base64Binary"/>
 <xs:element name="sig" type="xs:base64Binary"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...
 </xs:schema>
</wsdl:types>

Example 192: Plain SOAP Message Containing Binary Data

<soap:Envelope
 xmlns:soap='http://www.w3.org/2003/05/soap-envelope'
 xmlns:xmlmime='http://www.w3.org/2004/11/xmlmime'>
 <soap:Body>
512

Binary Types and MTOM
XOP-encoded SOAP message Example 193 shows an example of a XOP-encoded (that is, MTOM) SOAP
message, which you would obtain when MTOM is enabled on the client side
(see “Enabling MTOM” on page 511). Contrast this with the plain example from
Example 192.

 <m:data xmlns:m='http://example.org/stuff'>
 <m:photo>/aWKKapGGyQ=</m:photo>
 <m:sig>Faa7vROi2VQ=</m:sig>
 </m:data>
 </soap:Body>
</soap:Envelope>

Example 192: Plain SOAP Message Containing Binary Data

Example 193: XOP-Encoded SOAP Message

MIME-Version: 1.0
Content-Type: Multipart/Related;boundary=MIME_boundary;
 type="application/xop+xml";
 start="<mymessage.xml@example.org>";
 startinfo="application/soap+xml; action=\"ProcessData\""
Content-Description: A SOAP message with my pic and sig in it

--MIME_boundary
Content-Type: application/xop+xml;
 charset=UTF-8;
 type="application/soap+xml; action=\"ProcessData\""
Content-Transfer-Encoding: 8bit
Content-ID: <mymessage.xml@example.org>

<soap:Envelope
 xmlns:soap='http://www.w3.org/2003/05/soap-envelope'>
 <soap:Body>
 <m:data xmlns:m='http://example.org/stuff'>
 <m:photo><xop:Include
 xmlns:xop='http://www.w3.org/2004/08/xop/include'
 href='cid:http://example.org/me.png'/></m:photo>
 <m:sig><xop:Include
 xmlns:xop='http://www.w3.org/2004/08/xop/include'
 href='cid:http://example.org/my.hsh'/></m:sig>
 </m:data>
 </soap:Body>
</soap:Envelope>

--MIME_boundary
 513

CHAPTER 9 | Artix Data Types
Where, in this case, the SOAP message is encoded as a MIME multipart/related
message, including a MIME header and three parts:

1. The first part contains the SOAP message itself. The binary content is no

longer embedded directly in the m:photo and m:sig elements, however.

The m:photo element contains a xop:Include element that references the

second message part, using the content ID, http://example.org/me.png.

The m:sig element contains a xop:Include element that references the

third message part, using the content ID, http://example.org/my.hsh.

2. The second part contains the raw binary content of the m:photo element.

That is, the binary content is not base-64 encoded. This enables the binary

content to be sent more efficiently and compactly.

The content of this part is labelled by the http://example.org/me.png

content ID and the MIME content type is set to

application/octet-stream by default.

3. The third part contains the raw binary content of the m:sig element.

The content of this part is labelled by the http://example.org/my.hsh

content ID and the MIME content type is set to

application/octet-stream by default.

Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/me.png>

// binary octets for png

--MIME_boundary
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/my.hsh>

// binary octets for signature

--MIME_boundary--

Example 193: XOP-Encoded SOAP Message
514

Binary Types and MTOM
Specifying the MIME Content Type

Overview When binary data is sent in an attachment, it is usual to declare the data format,
using a Multipurpose Internet Mail Extensions (MIME) content type descriptor.
In the context of MTOM, the XMIME specification describes how to declare the
MIME content type of data transmitted in a multi-part MTOM message.

The advantage of declaring the MIME content type is that servers can optionally
implement MIME content handlers to optimize the processing of the binary data.

xmime:base64Binary with
xmime:contentType attribute

The XMIME schema defines the type, xmime:base64Binary, which includes the
xmime:contentType attribute. Example 194 shows how to use the
xmime:base64Binary type in a WSDL file.

xmime:hexBinary with
xmime:contentType attribute

The XMIME schema defines the type, xmime:hexBinary, which includes the
xmime:contentType attribute. Use this type in place of xs:hexBinary, if you
want to be able to specify the MIME content type of the binary data.

Example 194: XMIME Base-64 Type with xmime:contentType Attribute

<wsdl:types>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.og/stuff"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
 targetNamespace="http://example.og/stuff">

<xs:import namespace="http://www.w3.org/2005/05/xmlmime"
 schemaLocation="http://www.w3.org/2005/05/xmlmime"/>
 <xs:element name="data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="photo" type="xmime:base64Binary"/>
 <xs:element name="sig" type="xmime:base64Binary"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...
 </xs:schema>
</wsdl:types>
 515

http://www.w3.org/TR/xml-media-types/

CHAPTER 9 | Artix Data Types
C++ mapping The WSDL-to-C++ compiler treats the custom binary types specially:

• The xmime:base64Binary type and any custom xs:base64Binary type

that provides the xmime:contentType attribute are mapped to the

IT_Bus::XMimeBase64Binary C++ type.

• The xmime:hexBinary type and any custom xs:hexBinary type that

provides the xmime:contentType attribute are mapped to the

IT_Bus::XMimeHexBinary C++ type.

Setting the MIME content type You can set the MIME content type on the client side, using the
set_content_type() member function, as shown in Example 195.

Plain SOAP message Example 196 shows an example of a plain, non-MTOM SOAP message
containing base-64 binary data, where the binary elements include the MIME
content type attribute. Both the m:photo element and the m:sig element include
an xmlmime:contentType setting.

Example 195: Setting the MIME Content Type

// C++
IT_Bus::XMimeBase64Binary data1(origin_data);
data1.set_content_type("image/png");

Example 196: Plain SOAP Message with MIME Content Type

<soap:Envelope
 xmlns:soap='http://www.w3.org/2003/05/soap-envelope'
 xmlns:xmlmime='http://www.w3.org/2004/11/xmlmime'>
 <soap:Body>
 <m:data xmlns:m='http://example.org/stuff'>
<m:photo
xmlmime:contentType='image/png'>/aWKKapGGyQ=</m:photo>
<m:sig
xmlmime:contentType='application/pkcs7-signature'>Faa7vROi2VQ=</

m:sig>

 </m:data>
 </soap:Body>
</soap:Envelope>
516

Binary Types and MTOM
XOP-encoded SOAP message Example 197 shows the equivalent XOP-encoded SOAP message which you
would obtain when MTOM is enabled. Contrast this with the plain example from
Example 196.

Example 197: XOP-Encoded SOAP Message with MIME Content Type

MIME-Version: 1.0
Content-Type: Multipart/Related;boundary=MIME_boundary;
 type="application/xop+xml";
 start="<mymessage.xml@example.org>";
 startinfo="application/soap+xml; action=\"ProcessData\""
Content-Description: A SOAP message with my pic and sig in it

--MIME_boundary
Content-Type: application/xop+xml;
 charset=UTF-8;
 type="application/soap+xml; action=\"ProcessData\""
Content-Transfer-Encoding: 8bit
Content-ID: <mymessage.xml@example.org>

<soap:Envelope
 xmlns:soap='http://www.w3.org/2003/05/soap-envelope'
 xmlns:xmlmime='http://www.w3.org/2004/11/xmlmime'>
 <soap:Body>
 <m:data xmlns:m='http://example.org/stuff'>
 <m:photo
 xmlmime:contentType='image/png'><xop:Include
 xmlns:xop='http://www.w3.org/2004/08/xop/include'
 href='cid:http://example.org/me.png'/></m:photo>
 <m:sig
 xmlmime:contentType='application/pkcs7-signature'><xop:Include
 xmlns:xop='http://www.w3.org/2004/08/xop/include'
 href='cid:http://example.org/my.hsh'/></m:sig>
 </m:data>
 </soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/png
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/me.png>

// binary octets for png

--MIME_boundary
 517

CHAPTER 9 | Artix Data Types
Content-Type: application/pkcs7-signature
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/my.hsh>

// binary octets for signature

--MIME_boundary--

Example 197: XOP-Encoded SOAP Message with MIME Content Type
518

Binary Types and MTOM
Restricting the MIME Content Type

Overview XMIME allows you to annotate your element definitions to restrict the range of
MIME types that can be sent in the binary data type. Currently, Artix does not
enforce these restrictions, but nevertheless allows you to set the relevant
attribute (that is, xmime:expectedContentType) for the sake of interoperability.

Annotating elements with
xmime:expectedContentType

To declare the MIME content type (or types) that an element is expected to
contain, set the xmime:expectedContentType attribute on the element definition
in the schema.

For example, to specify that the photo element can contain only image/png
content and the sig element can contain only application/pkcs7-signature
content, define the elements as shown in Example 198.

Example 198: Elements with xmime:expectedContentType Annotation

<wsdl:types>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.og/stuff"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
 targetNamespace="http://example.og/stuff">

<xs:import namespace="http://www.w3.org/2005/05/xmlmime"
 schemaLocation="http://www.w3.org/2005/05/xmlmime"/>
 <xs:element name="data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="photo"
 type="xmime:base64Binary"
 xmime:expectedContentType="image/png"/>
 <xs:element name="sig"
 type="xmime:base64Binary"
 xmime:expectedContentType="application/pkcs7-signature"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...
 </xs:schema>
</wsdl:types>
 519

CHAPTER 9 | Artix Data Types
Note the contrasting roles played by the xmime:contentType attribute and the
xmime:expectedContentType attribute:

• The xmime:contentType attribute is set on the xmime:base64Binary

element. Its value is defined by the client, at run time.

• The xmime:expectedContentType attribute is set on the xs:element

element. Its value is defined in the WSDL contract.

C++ mapping Under normal circumstances, the xmime:expectedContentType setting is
applied to an element whose type provides an xmime:contentType attribute.
Hence, when this element’s type is mapped to C++, it is mapped to
IT_Bus::XMimeBase64Binary or as IT_Bus::XMimeHexBinary, as described in
“C++ mapping” on page 516.

A special case arises, however, when the xmime:expectedContentType setting
is applied to an element whose type does not provide an xmime:contentType
attribute (that is, the xmime:expectedContentType is used on its own). This
case only makes sense, if the xmime:expectedContentType setting specifies a
single expected content type, in which case the MIME content type is implicit.

Syntax of expected content type The xmime:expectedContentType attribute is normally set to a
comma-separated list of MIME types. For example, to restrict the content type
of the photo element to image/jpeg or image/png, you could define it as
follows:

For full details of the expected content type syntax, see section 14.1 of
RFC-2616. Although supported by RFC-2616, the XMIME specification
recommends that you do not use wildcard expressions (for example, image/*) in
your expected content type expressions. Wildcard expressions could potentially
lead to interoperability problems.

<xs:element name="photo"
 type="xmime:base64Binary"
 xmime:expectedContentType="image/jpeg, image/png"/>

Note: The value of the xmime:expectedContentType attribute provides a
hint to the Artix WSDL-to-Java compiler to generate the special MIME binary
types. Otherwise, this attribute has no effect. In particular, the implied
restriction on the value of the xmime:contentType attribute is not enforced.
520

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1

Wildcarding Types
Wildcarding Types

Overview The XML schema wildcarding types enable you to define XML types with
loosely defined characteristics. The following features of an XML element can
be wildcarded:

• Attribute wildcard, xsd:anyAttribute—matches any attribute. For

example, you could use an attribute wildcard to define an element that can

have arbitrary attributes.

• URI wildcard, xsd:anyURI—matches any URI. For example, you could

specify xsd:anyURI as the type of an attribute that can be initialized with a

URI.

• Contents wildcard, xsd:anyType—matches any XML type for the element

contents. For example, you can specify type="xsd:anyType" in an

element definition to indicate that the element contents may be of any type.

• Element wildcard, xsd:any—matches any XML element. For example,

you could use an element wildcard to define a complex type containing an

arbitrary element or elements.

In this section This section contains the following subsections:

anyAttribute Type page 522

anyURI Type page 526

anyType Type page 528

any Type page 533
 521

CHAPTER 9 | Artix Data Types
anyAttribute Type

Overview If you include the <xsd:anyAttribute/> tag in a complex type definition, it
enables you to associate arbitrary attributes with that complex type. The
anyAttribute element matches any number of attributes by default.

anyAttribute syntax To declare an <xsd:anyAttribute> attribute wildcard, use the following
syntax:

<xsd:anyAttribute
 id="ID"
 namespace="NamespaceList"
 processContents="(lax | skip | strict)" />

Namespace constraint You can use a namespace constraint to restrict the matching attributes to belong
to a particular namespace or namespaces. The following values can be specified
in the namespace attribute:

Note: Artix does not enforce the id, namespace, or processContents
settings that appear in the anyAttribute definition.

##any (Default) Matches attributes in any namespace.

##local Matches an unqualified attribute (no namespace
prefix appearing in the attribute name).

##targetNamespace Matches attributes in the current targetNamespace.

##other Matches attributes in any namespace apart from the
current targetNamespace.

Namespace Matches attributes in the literal Namespace.

List of namespaces A space-separated list of namespaces. The list can
include literal namespaces, ##targetNamespace, or
##local.
522

Wildcarding Types
Process contents The processContents attribute is an instruction to the XML parser indicating
how strictly it should check the syntax of the matched attributes. Sometimes it
can be useful to disable syntax checking, because the XML schema for the
matched attributes might not be readily available. The processContents
attribute can have one of the following values:

WSDL any example Example 199 shows the definition of a complex type, SeqAnyAttributes, which
can include arbitrary attributes.

strict (Default) A schema definition for the attribute must
be available and the attribute must conform to this
definition.

lax The parser checks the attribute only if a schema
definition is available.

skip No checking is done against a schema.

Example 199: Definition of a Sequence with Any Attributes

<schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <complexType name="SeqAnyAttributes">
 <sequence>
 <element name="stringEl" type="string"/>
 <element name="intEl" type="int"/>
 </sequence>
 <attribute name="stringAt" type="string"/>
 <anyAttribute/>
 </complexType>
 ...
</schema>
 523

CHAPTER 9 | Artix Data Types
C++ mapping When the SeqAnyAttributes type maps to C++, the presence of the
<anyAttribute/> tag prompts the WSDL-to-C++ compiler to generate
additional member functions, as shown in Example 200.

The additional attributes are accessible in the form of an
IT_Bus::QNameHashMap<IT_Bus::String> instance, which is a hash map that
associates the name of each attribute with a string value. You can use an
attribute’s QName to access its string value.

IT_Bus::QNameHashMap
template class

Example 201 shows how the IT_Bus::QNameHashMap template class is defined
in terms of the proprietary IT_HashMap template class. This definition states
essentially that the IT_Bus::QName type is used as the hash key.

Example 200: C++ Mapping of a Sequence with Any Attributes

// C++
class SeqAnyAttributes : public IT_Bus::SequenceComplexType
{
 public:
 ...
 IT_Bus::QNameHashMap<IT_Bus::String> &
 getotherAttributes();

 const IT_Bus::QNameHashMap<IT_Bus::String> &
 getotherAttributes() const;

 void setotherAttributes(
 const IT_Bus::QNameHashMap<IT_Bus::String> & val
);
};

Example 201: IT_Bus::QNameHashMap Template Class

// C++
#include <it_dsa/hash_map.h>

namespace IT_Bus
{
 template <class T>
 class QNameHashMap
 : public IT_HashMap<QName, T, QNameHash, QNameEq>
 {
 };
524

Wildcarding Types
The IT_HashMap template class is closely modelled on the std::map class from
the C++ Standard Template Library. For details of the functions and operations
provided by the IT_HashMap class, see “IT_HashMap Template Class” on
page 609.

C++ example Example 202 shows you how to initialize an instance of the SeqAnyAttributes
type defined in Example 199 on page 523. This example uses the anyAttribute
mechanism to set two additional attributes: boolAt, an attribute with a boolean
value, and floatAt, an attribute with a float value. The additional attributes both
belong to the http://test.iona.com namespace.

};

Example 201: IT_Bus::QNameHashMap Template Class

Example 202: C++ Setting Any Attributes

// C++
SeqAnyAttributes x;

x.setstringEl("Hello");
x.setintEl(1000);
x.setstringAt("Hello Attribute");

IT_Bus::QNameHashMap<IT_Bus::String> attMap;
IT_Bus::QName at1_qname("", "boolAt", "http://test.iona.com/");
IT_Bus::QName at2_qname("", "floatAt", "http://test.iona.com/");
attMap.insert(
 IT_Bus::QNameHashMap<IT_Bus::String>::value_type(
 at1_qname,
 "true"
)
);
attMap.insert(
 IT_Bus::QNameHashMap<IT_Bus::String>::value_type(
 at2_qname,
 "3.14"
)
);
x.setotherAttributes(attMap);
 525

CHAPTER 9 | Artix Data Types
anyURI Type

Overview You can specify the xsd:anyURI type for any data that is intended to be used as
a URI.

anyURI syntax The xsd:anyURI type can be used to define an attribute that holds a URI value or
an element that contains a URI value.

To define an attribute with a URI value, use the following syntax:

<attribute name="AttrName" type="xsd:anyURI"/>

To define an element with URI content, use the following syntax.

<element name="ElemName" type="xsd:anyURI"/>

C++ mapping Example 203 shows the most important member functions from the
IT_Bus::AnyURI class, which is the C++ mapping of xsd:anyURI.

Example 203: The IT_Bus::AnyURI Class

// C++
namespace IT_Bus
{
 class IT_AFC_API AnyURI : public AnySimpleType
 {
 public:
 ...
 AnyURI() IT_THROW_DECL(());
 AnyURI(
 const String & uri
) IT_THROW_DECL((IT_Bus::Exception));
 ...
 void set_uri(
 const String & uri
) IT_THROW_DECL((IT_Bus::Exception));
 const String& get_uri() const IT_THROW_DECL(());

 static bool is_valid_uri(
 const String & uri
) IT_THROW_DECL(());
 ...
 };
526

Wildcarding Types
If you attempt to set the URI to an invalid value, using either the AnyURI
constructor or the set_uri() function, a system exception is thrown.

WSDL example Example 204 shows an example of a WSDL type, DocReference, that includes
an attribute of xsd:anyURI type.

C++ example The following example code shows how to create an instance of the
DocReference type defined in the preceding Example 204. The location
attribute is initialized with a URI value.

 bool operator==(const AnyURI& lhs, const AnyURI& rhs) const;
 bool operator!=(const AnyURI& lhs, const AnyURI& rhs) const;
};

Example 203: The IT_Bus::AnyURI Class

Example 204: Definition of an Attribute Using an anyURI

<schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <complexType name="DocReference">
 <attribute name="doc_type" type="xsd:string"/>
 <attribute name="location" type="xsd:anyURI"/>
 </complexType>
 ...
</schema>

// C++
DocReference dr;

dr.setdoc_type("PDF");
dr.setlocation(
 new IT_Bus::AnyURI("http://www.iona.com/docs/dummy.pdf")
);
 527

CHAPTER 9 | Artix Data Types
anyType Type

Overview In an XML schema, the xsd:anyType is the base type from which other simple
and complex types are derived. Hence, an element declared to be of
xsd:anyType type can contain any XML type.

Prerequisite for using anyType A prerequisite for using the xsd:anyType is that your application must be built
with the WSDLFileName_wsdlTypesFactory.cxx source file. This file is
generated automatically by the WSDL-to-C++ compiler utility.

anyType syntax To declare an xsd:anyType element, use the following syntax:

<element name="ElementName" [type="xsd:anyType"]>

The attribute setting, type="xsd:anyType", is optional. If the type attribute is
missing, the XML schema assumes that the element is of xsd:anyType by
default.

C++ mapping The WSDL-to-C++ compiler maps the xsd:anyType type to the
IT_Bus::AnyHolder class in C++.

The IT_Bus::AnyHolder class provides member functions to insert and extract
data values, as follows:

• Inserting and extracting atomic types.

• Inserting and extracting user-defined types.

Note: The xsd:anyType is currently supported only by the CORBA, SOAP
and XML bindings. Certain bindings—for example, Fixed, Tagged, TibMsg,
and FML—do not support the use of xsd:anyType because they lack a
corresponding construct.

Note: It is currently not possible to nest an IT_Bus::AnyHolder instance
directly inside another IT_Bus::AnyHolder instance.
528

Wildcarding Types
Inserting and extracting atomic
types

To insert and extract atomic types to and from an IT_Bus::AnyHolder, use the
member functions of the following form:

For a complete list of the functions for the basic atomic types, see “AnyHolder
API” on page 531.

For example, you can insert and extract an xsd:short integer to and from an
IT_Bus::AnyHolder as follows:

Inserting and extracting
user-defined types

To insert and extract user-defined types from an IT_Bus::AnyHolder, use the
following functions:

Note that all user-defined types inherit from IT_Bus::AnyType. There are no
type-specific insertion or extraction functions generated for user-defined types.

Memory management for these functions is handled as follows:

• The set_any_type() function copies the inserted data.

• The get_any_type() functions do not copy the return value, rather they

return either a writable (non-const) or read-only (const) reference to the

data inside the IT_Bus::AnyHolder.

void set_AtomicTypeFunc(const AtomicTypeName&);
AtomicTypeName& get_AtomicTypeFunc();
const AtomicTypeName& get_AtomicTypeFunc();

// C++
// Insert an xsd:short value into an xsd:anyType.
IT_Bus::AnyHolder aH;
aH.set_short(1234);
...
// Extract an xsd:short value from an xsd:anyType.
IT_Bus::Short sh = aH.get_short();

void set_any_type(const IT_Bus::AnyType &);
IT_Bus::AnyType& get_any_type();
const IT_Bus::AnyType& get_any_type();
 529

CHAPTER 9 | Artix Data Types
For example, given a user-defined sequence type, SequenceType (see the
declaration in Example 149 on page 465), you can insert a SequenceType
instance into an IT_Bus::AnyHolder as follows:

To extract the SequenceType instance from the IT_Bus::AnyHolder, you need
to perform a C++ dynamic cast:

Accessing the type information You can find out what type of data is contained in an IT_Bus::AnyHolder
instance by calling the following member function:

const IT_Bus::QName & get_type() const;

Type information is set whenever an IT_Bus::AnyHolder instance is initialized.
For example, if you initialize an IT_Bus::AnyHolder by calling
set_boolean(), the type is set to be xsd:boolean. If you call set_any_type()
with an argument of SequenceType, the type would be set to
xsd1:SequenceType.

// C++
// Create an instance of SequenceType type.
SequenceType seq;
seq.setvarFloat(3.14);
seq.setvarInt(1234);
seq.setvarString("This is a sample SequenceType.");

// Insert the SequenceType value into an xsd:anyType.
IT_Bus::AnyHolder aH;
aH.set_any_type(seq);

// C++
...
// Extract the SequenceType value from the IT_Bus::AnyHolder.
IT_Bus::AnyType& base_extract = aH.get_any_type();

// Cast the extracted value to the appropriate type:
SequenceType& seq_extract
 = dynamic_cast<SequenceType&>(base_extract);

Note: Because the XML representation of xsd:anyType is not
self-describing, some type information could be lost when an anyType is sent
across the wire. In the case of a CORBA binding, however, there is no loss of
type information, because CORBA anys are fully self-describing.
530

Wildcarding Types
AnyHolder API Example 205 shows the public API from the IT_Bus::AnyHolder class,
including all of the function for inserting and extracting data values.

Example 205: The IT_Bus::AnyHolder Class

// C++
namespace IT_Bus
{
 class IT_BUS_API AnyHolder : public AnyType
 {
 public:
 AnyHolder();
 virtual ~AnyHolder() ;
 ...
 virtual const QName & get_type() const ;
 ...
 //Set Methods
 void set_boolean(const IT_Bus::Boolean &);
 void set_byte(const IT_Bus::Byte &);
 void set_short(const IT_Bus::Short &);
 void set_int(const IT_Bus::Int &);
 void set_long(const IT_Bus::Long &);
 void set_string(const IT_Bus::String &);
 void set_float(const IT_Bus::Float &);
 void set_double(const IT_Bus::Double &);
 void set_ubyte(const IT_Bus::UByte &);
 void set_ushort(const IT_Bus::UShort &);
 void set_uint(const IT_Bus::UInt &);
 void set_ulong(const IT_Bus::ULong &);
 void set_decimal(const IT_Bus::Decimal &);

 void set_any_type(const AnyType&);

 //GET METHODS
 IT_Bus::Boolean & get_boolean();
 IT_Bus::Byte & get_byte();
 IT_Bus::Short & get_short();
 IT_Bus::Int & get_int();
 IT_Bus::Long & get_long();
 IT_Bus::String & get_string();
 IT_Bus::Float & get_float();
 IT_Bus::Double & get_double();
 IT_Bus::UByte & get_ubyte() ;
 IT_Bus::UShort & set_ushort();
 IT_Bus::UInt & get_uint();
 IT_Bus::ULong & set_ulong();
 531

CHAPTER 9 | Artix Data Types
 IT_Bus::Decimal & get_decimal();

 AnyType& get_any_type();

 //CONST GET METHODS
 const IT_Bus::Boolean & get_boolean() const;
 const IT_Bus::Byte & get_byte() const;
 const IT_Bus::Short & get_short() const;
 const IT_Bus::Int & get_int() const;
 const IT_Bus::Long & get_long() const;
 const IT_Bus::String & get_string() const;
 const IT_Bus::Float & get_float() const;
 const IT_Bus::Double & get_double() const;
 const IT_Bus::UByte & get_ubyte() const;
 const IT_Bus::UShort & get_ushort() const;
 const IT_Bus::UInt & get_uint() const;
 const IT_Bus::ULong & get_ulong() const;
 const IT_Bus::Decimal & get_decimal() const;

 const AnyType& get_any_type() const;
 ...
 };
};

Example 205: The IT_Bus::AnyHolder Class
532

Wildcarding Types
any Type

Overview In an XML schema, the xsd:any is a wildcard element that matches any element
(or multiple elements, if occurrence constraints are set), subject to certain
constraints.

any syntax To declare an xsd:any element, use the following syntax:

<xsd:any
 minOccurs="LowerBound"
 maxOccurs="UpperBound"
 namespace="NamespaceList"
 processContents="(lax | skip | strict)" />

Occurrence constraints You can use occurrence constraints to specify how many elements can be
matched by the xsd:any element wildcard:

• minOccurs specifies the minimum number of elements to match (default

1).

• maxOccurs specifies the maximum number of elements to match (default

1).

For more details about implementing anys with occurrence constraints, see “Any
Occurrence Constraints” on page 555.

Target namespace An xsd:any element is implicitly associated with a particular target namespace
(specified by the targetNamespace attribute in one of the elements enclosing
the <xsd:any> definition).

Namespace constraint You can use a namespace constraint to restrict the matching elements to belong
to a particular namespace or namespaces. The following values can be specified
in the namespace attribute:

##any (Default) Matches elements in any namespace,
including unqualified elements.

##local Matches an unqualified element (no namespace prefix
appearing in the element name).

##targetNamespace Matches elements in the current targetNamespace.
 533

CHAPTER 9 | Artix Data Types
Process contents The processContents attribute is an instruction to the XML parser indicating
how strictly it should check the syntax of the matched elements. Sometimes it
can be useful to disable syntax checking, because the XML schema for the
matched elements might not be readily available. The processContents
attribute can have one of the following values:

WSDL any example Example 206 shows the definition of a complex type, SequenceAny, which can
contain a single element tag from the local schema. That is, the <any> tag is
constrained to match only the tags belonging to the local namespace.

##other Matches elements in any namespace apart from the
current targetNamespace.

Namespace Matches elements in the literal Namespace.

List of namespaces A space-separated list of namespaces. The list can
include literal namespaces, ##targetNamespace, or
##local.

strict (Default) A schema definition for the element type
must be available and the element must conform to
this definition.

lax The parser checks only those parts of the element for
which a schema definition is available.

skip No checking is done against a schema; the element
must simply be well-formed XML.

Example 206: Definition of a Sequence with an Any Element

<schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <complexType name="SequenceAny">
 <sequence>
 <any namespace="##local"
 processContents="skip"/>
 </sequence>
 </complexType>
 ...
</schema>
534

Wildcarding Types
C++ mapping The XML SequenceAny type defined in Example 206 on page 534 maps to the
C++ SequenceAny class shown in Example 207. The most important functions
in SequenceAny are the getany() and setany() members, which access or
modify the any element in the sequence.

Example XML element Example 208 shows the definition of a sample foo element, which can be
inserted in place of an any element.

Example 207: C++ Mapping of a Sequence with an Any Element

// C++
class SequenceAny : public IT_Bus::SequenceComplexType
{
 public:
 ...
 SequenceAny();
 SequenceAny(const SequenceAny & copy);
 virtual ~SequenceAny();

 IT_Bus::AnyType & copy(const IT_Bus::AnyType & rhs);
 SequenceAny & operator=(const SequenceAny & rhs);

 IT_Bus::Any & getany();
 const IT_Bus::Any & getany() const;
 void setany(const IT_Bus::Any & val);
 ...
};

Example 208: Definition of fooType Type and foo Element

// C++
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/test"
 xmlns:tns="http://schemas.iona.com/test"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 535

CHAPTER 9 | Artix Data Types
C++ example There are two alternative approaches to initializing an IT_Bus::Any value.

The first approach to initializing IT_Bus::Any is to call the set_any_type()
function, as shown in the following example:

The second approach to initializing IT_Bus::Any is to call the
set_string_data() function, as shown in the following example:

 <xs:complexType name="fooType">
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
 <xs:attribute name="bar" type="xs:string"/>
 </xs:complexType>
 <xs:element name="foo" type="tns:fooType"/>
</xs:schema>

Example 208: Definition of fooType Type and foo Element

// C++
fooType foo_element;
foo_element.setvalue("Hello World!");
foo_element.setbar("bar attribute value");

IT_Bus::QName
element_name("","foo","http://schemas.iona.com/test");

SequenceAny seq_any;
seq_any.getany().set_any_type(foo_element, element_name);

// C++
SequenceAny seq_any;
seq_any.getany().set_string_data(
 "<foo bar=\"bar attribute value\">Hello World!</foo>"
);
536

Wildcarding Types
Any API Example 209 shows the public API from the IT_Bus::Any class.

Example 209: The IT_Bus::Any Class

// C++
namespace IT_Bus
{
 typedef IT_Vector<String> NamespaceConstraints;

 class IT_AFC_API Any : public AnyType
 {
 public :
 Any();

 Any(const char* process_contents,
 const NamespaceConstraints& namespace_constraints,
 const char* any_namespace
);
 ...
 // Set the any element’s attributes.
 void set_process_contents(const String& pc);
 void set_namespace_constraints(
 const NamespaceConstraints& ns
);
 void set_any_namespace(const String& ns);

 // Get the any element’s attributes.
 String& get_process_contents() const;
 const NamespaceConstraints&
 get_namespace_constraints() const;
 String& get_any_namespace() const;

 // Set the any’s contents.
 void set_boolean(
 const Boolean& value,
 const QName& element_name
);
 void set_byte(
 const Byte& value,
 const QName& element_name
);
 void set_short(
 const Short& value,
 const QName& element_name
);
 void set_int(
 537

CHAPTER 9 | Artix Data Types
 const Int& value,
 const QName& element_name
);
 void set_long(
 const Long& value,
 const QName& element_name
);
 void set_string(
 const String& value,
 const QName& element_name
);
 void set_float(
 const Float& value,
 const QName& element_name
);
 void set_double(
 const Double& value,
 const QName& element_name
);
 void set_ubyte(
 const UByte& value,
 const QName& element_name
) ;
 void set_ushort(
 const UShort& value,
 const QName& element_name
);
 void set_uint(
 const UInt& value,
 const QName& element_name
);
 void set_ulong(
 const ULong& value,
 const QName& element_name
);
 void set_decimal(
 const Decimal& value,
 const QName& element_name
);

 void set_any_type(
 const AnyType& value,
 const QName& element_name
);

Example 209: The IT_Bus::Any Class
538

Wildcarding Types
Accessing namespace constraints The following IT_Bus::Any member functions are relevant to namespace
constraints:

// C++

 // Get the type of the any’s contents.
 // (returns QName::EMPTY_QNAME if empty)
 const QName& get_type() const;

 // Get the any’s contents.
 QName get_element_name() const;

 Boolean get_boolean() const;
 Byte get_byte() const;
 Short get_short() const;
 Int get_int() const;
 Long get_long() const;
 String get_string() const;
 Float get_float() const;
 Double get_double() const;
 UByte get_ubyte() const;
 UShort get_ushort() const;
 UInt get_uint() const;
 ULong get_ulong() const;
 Decimal get_decimal() const;

 const AnyType* get_any_type() const;

 // Set the any’s contents as an XML string
 // (the element_name parameter defaults to the
 // element name in the XML string).
 void set_string_data(
 const String& value,
 const QName& element_name = QName::EMPTY_QNAME
);

 // Get the any’s contents as an XML string.
 String get_string_data() const;

 // Validation functions.
 virtual bool validate_contents() const;
 virtual bool validate_namespace() const;
 };
};

Example 209: The IT_Bus::Any Class
 539

CHAPTER 9 | Artix Data Types
const IT_Bus::String& get_any_namespace() const;

const IT_Bus::NamespaceConstraints&
get_namespace_constraints() const;

Given an IT_Bus::Any instance, sampleAny, you can access its namespace
constraints as follows:

Accessing process contents The following IT_Bus::Any member function returns the processContents
attribute value:

const IT_Bus::String& get_process_contents() const;

This function returns one of the following strings: lax, skip, or strict.

// C++
sampleAny = ... ; // Initialize IT_Bus::Any
cout << "any’s target namespace = "
 << sampleAny.get_any_namespace() << endl;

const IT_Bus::NamespaceConstraints& constraints =
sampleAny.get_namespace_constraints();

cout << "any’s namespace constraints =" << endl;
for (size_t k; k < constraints.size(); k++) {
 cout << "\t" << constraints[k] << endl;
}

540

Occurrence Constraints
Occurrence Constraints

Overview Certain XML schema tags—for example, <element>, <sequence>, <choice>
and <any>—can be declared to occur multiple times using occurrence
constraints. The occurrence constraints are specified by assigning integer values
(or the special value unbounded) to the minOccurs and maxOccurs attributes.

In this section This section contains the following subsections:

Element Occurrence Constraints page 542

Sequence Occurrence Constraints page 547

Choice Occurrence Constraints page 551

Any Occurrence Constraints page 555
 541

CHAPTER 9 | Artix Data Types
Element Occurrence Constraints

Overview You define occurrence constraints on a schema element by setting the
minOccurs and maxOccurs attributes for the element. Hence, the definition of an
element with occurrence constraints in an XML schema element has the
following form:

Limitations In the current version of Artix, element occurrence constraints can be used only
within the following complex types:

• all complex types,

• sequence complex types.

Element occurrence constraints are not supported within the scope of the
following:

• choice complex types.

Element lists Lists of elements appearing within a sequence complex type are represented in
C++ by the IT_Bus::ElementListT template, which inherits from IT_Vector
(see “IT_Vector Template Class” on page 602).

In addition to the standard member functions and operators defined by
IT_Vector, the element list types support the following member functions:

<element name="ElemName" type="ElemType" minOccurs="LowerBound"
maxOccurs="UpperBound"/>

Note: When a sequence schema contains a single element definition and this
element defines occurrence constraints, it is treated as an array. See “Arrays”
on page 499.

// C++
size_t get_min_occurs() const;
void set_min_occurs(size_t min_occurs)

size_t get_max_occurs() const;
void set_max_occurs(size_t max_occurs)

void set_size(size_t new_size);
542

Occurrence Constraints
Element list constructor The following constructor can be used to create a new ElementListT instance:

It is recommended that you call only the form of constructor with defaulted
arguments (the element list size can be specified subsequently by calling
set_size()). For example, a new element list of integers could be created as
follows:

When the element list is subsequently passed as a parameter or return value, the
stub code takes responsibility for filling in the correct values of min_occurs,
max_occurs, and item_name.

size_t get_size() const;

const QName & get_item_name() const;
void set_item_name(const QName& item_name)

ElementListT(
 const size_t min_occurs = 0,
 const size_t max_occurs = 1,
 const size_t list_size = 0,
 const QName& item_name = QName::EMPTY_QNAME
);

IT_Bus::ElementListT<IT_Bus::Int> int_elist;
int_elist.set_size(100);
...
 543

CHAPTER 9 | Artix Data Types
WSDL example Example 210 shows the definition of a sequence type, SequenceType, which
contains a list of integer elements followed by a list of string elements.

C++ mapping Example 211 shows an outline of the C++ SequenceType class generated from
Example 210 on page 544, which defines accessor and modifier functions for the
varInt and varString elements.

Example 210: Sequence Type with Element Occurrence Constraints

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <complexType name="SequenceType">
 <sequence>
 <element name="varInt" type="xsd:int"
 minOccurs="1" maxOccurs="100"/>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 211: Mapping of SequenceType to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 ...
 virtual const IT_Bus::QName &
 get_type() const;

 SequenceType& operator= (const SequenceType& assign);

 const IT_Bus::ElementListT<IT_Bus::Int> & getvarInt() const;

 IT_Bus::ElementListT<IT_Bus::Int> & getvarInt();

 void setvarInt(const IT_Bus::ElementListT<IT_Bus::Int> & val);
544

Occurrence Constraints
C++ example The following code fragment shows how to allocate and initialize an instance of
SequenceType type containing two varInt elements and two varString
elements:

Note how the set_size() function and [] operator are invoked directly on the
member vectors, which are accessed by getvarInt() and getvarString()
respectively. This is more efficient than creating a vector and passing it to
setvarInt() or setvarString(), because it avoids creating unnecessary
temporary vectors.

 const IT_Bus::ElementListT<IT_Bus::String> & getvarString()
const;

 IT_Bus::ElementListT<IT_Bus::String> & getvarString();

 void setvarString(const IT_Bus::ElementListT<IT_Bus::String> &
val);

 private:
 ...
};

Example 211: Mapping of SequenceType to C++

// C++
SequenceType seq;

seq.getvarInt().set_size(2);
seq.getvarInt()[0] = 10;
seq.getvarInt()[1] = 20;
seq.getvarString().set_size(2);
seq.getvarString()[0] = "Zero";
seq.getvarString()[1] = "One";
 545

CHAPTER 9 | Artix Data Types
Alternatively, you could assign the member vectors, seq.getvarInt() and
seq.getvarString(), to references of ElementListT type and manipulate the
references, v1 and v2, instead. This is shown in the following code example:

In this example, the vectors are initialized using the push_back() stack
operation (adds an element to the end of the vector).

References For more details about vector types see:

• The “IT_Vector Template Class” on page 602.

• The section on C++ ANSI vectors in The C++ Programming Language,

third edition, by Bjarne Stroustrup.

// C++
SequenceType seq;

// Make a shallow copy of the vectors
IT_Bus::ElementListT<IT_Bus::Int>& v1 = seq.getvarInt();
IT_Bus::ElementListT<IT_Bus::String>& v2 = seq.getvarString();

v1.push_back(10);
v1.push_back(20);
v2.push_back("Zero");
v2.push_back("One");
546

Occurrence Constraints
Sequence Occurrence Constraints

Overview A sequence type can also be defined with occurrence constraints, in which case
it is defined with the following syntax:

<sequence
 minOccurs="LowerBound"
 maxOccurs="UpperBound">
 ...
</sequence>

WSDL example Example 212 shows the definition of a sequence type, CultureInfo, with
sequence occurrence constraints. The sequence overall can be repeated 0 to 2
times. The Name element within the sequence can also be repeated a variable
number of times, from 0 to 1 times.

Note: A sequence with occurrence constraints is currently supported only by
the SOAP binding.

Example 212: Sequence Occurrence Constraints

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <complexType name="CultureInfo">
 <sequence minOccurs="0" maxoccurs="2">
 <element minOccurs="0" maxOccurs="1" name="Name"
 type="string"/>
 <element minOccurs="1" maxOccurs="1" name="Lcid"
 type="int"/>
 </sequence>
 <attribute name="varAttrib" type="string"/>
 </complexType>
 ...
 ...
</definitions>
 547

CHAPTER 9 | Artix Data Types
C++ mapping Example 213 shows an outline of the C++ CultureInfo class generated from
Example 212 on page 547, which defines accessor and modifier functions for the
Name and Lcid elements.

Example 213: Mapping CultureInfo to C++

// C++
class CultureInfo : public IT_Bus::SequenceComplexType
{
 public:
 static const IT_Bus::QName& get_static_type();

 CultureInfo();
 CultureInfo(const CultureInfo & copy);
 virtual ~CultureInfo();
 ...
 virtual const IT_Bus::QName & get_type() const;

 size_t get_min_occurs() const;
 size_t get_max_occurs() const;

 void set_size(size_t new_size);
 size_t get_size() const;
 ...
 IT_Bus::ElementListT<IT_Bus::String> &
 getName(size_t seq_index = 0);

 const IT_Bus::ElementListT<IT_Bus::String> &
 getName(size_t seq_index = 0) const;

 void
 setName(
 const IT_Vector<IT_Bus::String> & val,
 size_t seq_index = 0
);

 IT_Bus::Int getLcid(size_t seq_index = 0);

 const IT_Bus::Int getLcid(size_t seq_index = 0) const;

 void setLcid(const IT_Bus::Int val, size_t seq_index = 0);
 ...
 IT_Bus::String& getvarAttrib() const;
 const IT_Bus::String& getvarAttrib();
 void setvarAttrib(const IT_Bus::String& val);
548

Occurrence Constraints
Member functions The occurrence constraints on the sequence element can be accessed by calling
the get_min_occurs() and the get_max_occurs() member functions.

The number of occurrences of the sequence element can be modified and
accessed by calling the set_size() function and the get_size() function,
respectively. The default size is 0; hence, you always need to call set_size() to
pre-allocate the sequence element occurrences.

The functions for getting and setting member elements—for example,
getName(), setName(), getLcid(), and getLcid()—take an extra final
parameter, seq_index, that specifies which occurrence is being accessed or
modified (the parameter defaults to 0).

The functions for accessing and modifying an attribute—for example,
getvarAttrib() and setvarAttrib()—do not take a seq_index parameter.
Attributes are always single valued.

Backward compatibility The mapping to C++ of a sequence type with multiple occurrences is designed to
be backward compatible with the default case (minOccurs="1",
maxOccurs="1").

For example, it doesn’t matter whether the CultureInfo type is defined with
minOccurs="1", maxOccurs="1" or some other value of occurrence constraints;
in both cases, the CultureInfo XML type maps to a CultureInfo C++ class. In
the signatures of the element accessors/modifiers, the sequence index defaults to
0, which is compatible with the default (single occurrence) case.

};

Example 213: Mapping CultureInfo to C++

Note: With non-default occurrence constraints, however, it is necessary to
add a line of code to allocate occurrences using set_size(), because in this
case the default size is 0.
 549

CHAPTER 9 | Artix Data Types
C++ example The following code fragment shows how to allocate and initialize a
CultureInfo type containing two sequence occurrences, each of which contains
one Name element and one Lcid element:

Notice that the attribute, varAttrib, is valid for all occurrences of the sequence
element. Hence, there is no need for a sequence index in the call to
setvarAttrib().

// C++
CultureInfo seq;

// Pre-allocate 2 <sequence> occurrences.
seq.set_size(2);

// First <sequence> occurrence
seq.getName(0).set_size(1);
seq.getName(0)[0] = "First <sequence> occurrence";
seq.setLcid(123, 0);

// Second <sequence> occurrence
seq.getName(1).set_size(1);
seq.getName(1)[0] = "Second <sequence> occurrence";
seq.setLcid(234, 1);

// Set attribute
seq.setvarAttrib("Valid for all <sequence> occurrences.");
550

Occurrence Constraints
Choice Occurrence Constraints

Overview A choice type can also be defined with occurrence constraints, in which case it
is defined with the following syntax:

<choice
 minOccurs="LowerBound"
 maxOccurs="UpperBound">
 ...
</choice>

WSDL example Example 214 shows the definition of a choice type, ClubEvent, with choice
occurrence constraints. The choice type overall can be repeated 0 to unbounded
times.

Note: A choice with occurrence constraints is currently supported only by
the SOAP binding.

Example 214: Choice Occurrence Constraints

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/choice_example">

 <complexType name="ClubEvent">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="MemberName" type="xsd:string"/>
 <element name="GuestName" type="xsd:string"/>
 </choice>
 </complexType>

</schema>
 551

CHAPTER 9 | Artix Data Types
C++ mapping Example 215 shows an outline of the C++ ClubEvent class generated from
Example 214 on page 551, which defines accessor and modifier functions for the
MemberName and GuestName elements.

Example 215: Mapping ClubEvent to C++

// C++
class ClubEvent : public IT_Bus::ChoiceComplexType
{
 public:
 static const IT_Bus::QName& get_static_type();

 ClubEvent();
 ClubEvent(const ClubEvent & copy);
 ClubEvent(size_t size);

 virtual ~ClubEvent();

 ...

 size_t get_min_occurs() const { ... }
 size_t get_max_occurs() const { ... }

 size_t get_size() const { ... }
 void set_size(size_t new_size) { ... }

 ...

 IT_ClubEventChoice::IT_ClubEventChoiceDiscriminator
 get_discriminator(size_t index) const { ... }

 IT_Bus::UInt
 get_discriminator_as_uint(size_t index) const { ... }

 IT_ClubEventChoice::IT_ClubEventChoiceDiscriminator
 get_discriminator() const { ... }

 IT_Bus::UInt
 get_discriminator_as_uint() const { ... }

 IT_Bus::String &
 getMemberName(size_t seq_index = 0);

 const IT_Bus::String &
 getMemberName(size_t seq_index = 0) const;
552

Occurrence Constraints
Member functions The occurrence constraints on the choice element can be accessed by calling the
get_min_occurs() and the get_max_occurs() member functions.

The number of occurrences of the choice element can be modified and accessed
by calling the set_size() function and the get_size() function, respectively.
The default size is 0; hence, you always need to call set_size() to pre-allocate
the choice element occurrences.

To access the discriminator value—using get_discriminator() or
get_discriminator_as_uint()—you must supply an index parameter to
select the relevant occurrence of the choice data.

The functions for getting and setting member elements—for example,
getMemberName(), setMemberName(), getGuestName(), and
setGuestName()—take an extra final parameter, seq_index, that specifies
which occurrence is being accessed or modified (the parameter defaults to 0).

 void
 setMemberName(
 const IT_Bus::String & val,
 size_t seq_index = 0
);

 IT_Bus::String &
 getGuestName(size_t seq_index = 0);

 const IT_Bus::String &
 getGuestName(size_t seq_index = 0) const;

 void
 setGuestName(
 const IT_Bus::String & val,
 size_t seq_index = 0
);

 private:
 ...
};

Example 215: Mapping ClubEvent to C++

Note: For any attributes are defined on the choice type, the attribute
accessors and modifiers do not take a seq_index parameter. Attributes are
always single valued.
 553

CHAPTER 9 | Artix Data Types
Backward compatibility The mapping to C++ of a choice type with multiple occurrences is designed to
be backward compatible with the default case (minOccurs="1",
maxOccurs="1").

For example, it doesn’t matter whether the ClubEvent type is defined with
minOccurs="1", maxOccurs="1" or some other value of occurrence constraints;
in all cases, the ClubEvent XML type maps to a ClubEvent C++ class. In the
signatures of the element accessors/modifiers, the sequence index defaults to 0,
which is compatible with the default (single occurrence) case.

C++ example The following code fragment shows how to allocate and initialize a ClubEvent
type containing two choice occurrences:

Note: With non-default occurrence constraints, however, it is necessary to
add a line of code to allocate occurrences using set_size(), because in this
case the default size is 0.

// C++
ClubEvent list;

// Pre-allocate 2 <choice> occurrences.
list.set_size(2);

// First <choice> occurrence
list.setMemberName("Fred Flintstone", 0);

// Second <choice> occurrence
list.setGuestName("Wilma Flintstone", 1);
554

Occurrence Constraints
Any Occurrence Constraints

Overview An xsd:any element can also be defined with occurrence constraints, in which
case it is defined with the following syntax:

<xsd:any
 minOccurs="LowerBound"
 maxOccurs="UpperBound"
 namespace="NamespaceList"
 processContents="(lax | skip | strict)" />

WSDL example Example 216 shows the definition of a complex type, SequenceAnyList, which
is a sequence containing multiple occurrences of an <xsd:any> tag. The <any>
tag is constrained to match only the tags belonging to the local namespace.

Example 216: Definition of a Multiply-Occurring Any Element

<schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <complexType name="SequenceAnyList">
 <sequence>
 <any namespace="##local"
 minOccurs="1" maxOccurs="unbounded"
 processContents="skip"/>
 </sequence>
 </complexType>
 ...
</schema>
 555

CHAPTER 9 | Artix Data Types
C++ mapping The XML SequenceAnyList type defined in Example 216 on page 555 maps to
the C++ SequenceAnyList class shown in Example 217. Because the
SequenceAnyList type allows multiple occurrences, the getany() member
function returns IT_Bus::AnyList instead of IT_Bus::Any, and the setany()
function takes an IT_Vector<IT_Bus::Any> type argument instead of an
IT_Bus::Any argument.

The IT_Bus::AnyList type The IT_Bus::AnyList class has IT_Vector<IT_Bus::Any> as one of its base
classes. Hence, the IT_Bus::AnyList class is effectively a vector of
IT_Bus::Any objects. As with any IT_Vector type, IT_Bus::AnyList supports
a size() function, which gives the number of elements in the list, and a
subscripting operator[], which accesses individual elements in the list.

For full details of the IT_Vector<T> template, see “IT_Vector Template Class”
on page 602.

Example 217: C++ Mapping of a Multiply-Occurring Any Element

// C++
class SequenceAnyList : public IT_Bus::SequenceComplexType
{
 public:
 ...
 SequenceAnyList();
 SequenceAnyList(const SequenceAnyList & copy);
 virtual ~SequenceAnyList();
 ...
 IT_Bus::AnyList & getany();
 const IT_Bus::AnyList & getany() const;
 void setany(const IT_Vector<IT_Bus::Any> & val);
 ...
};
556

Occurrence Constraints
C++ example The following example shows how initialize the SequenceAnyList type with a
list of three foo elements (for the schema definition of <foo>, see Example 208
on page 535).

IT_Bus::AnyList class Example 218 shows the public API for the IT_Bus::AnyList class. Typically,
you would rarely need to use any of the constructors in this class, because an
AnyList object is usually obtained by calling the getany() function on an
enclosing type.

// C++
SequenceAnyList seq_any;
IT_Bus::AnyList& any_list = seq_any.getany();
any_list.set_size(3);
any_list[0].set_string_data(
 "<foo bar=\"first bar\">Hello World!</foo>"
);
any_list[1].set_string_data(
 "<foo bar=\"second bar\">Hello World Again!</foo>"
);
any_list[2].set_string_data(
 "<foo bar=\"third bar\">Hello World Yet Again!</foo>"
);

Example 218: The IT_Bus::AnyList Class

// C++
class IT_AFC_API AnyList :
 public TypeListT<Any>
{
 public:
 AnyList(
 const size_t min_occurs,
 const size_t max_occurs,
 const size_t list_size = 0
);

 AnyList(
 const Any & elem,
 const size_t min_occurs,
 const size_t max_occurs,
 const size_t list_size = 0
);
 557

CHAPTER 9 | Artix Data Types
 AnyList(
 const size_t min_occurs,
 const size_t max_occurs,
 const char* process_contents,
 const NamespaceConstraints& namespace_constraints,
 const char* any_tns
);

 AnyList(
 const size_t min_occurs,
 const size_t max_occurs,
 const size_t list_size,
 const char* process_contents,
 const NamespaceConstraints& namespace_constraints,
 const char* any_tns
);

 AnyList(
 const Any & elem,
 const size_t min_occurs,
 const size_t max_occurs,
 const char* process_contents,
 const NamespaceConstraints& namespace_constraints,
 const char* any_tns
);

 AnyList(
 const Any & elem,
 const size_t min_occurs,
 const size_t max_occurs,
 const size_t list_size,
 const char* process_contents,
 const NamespaceConstraints& namespace_constraints,
 const char* any_tns
);

 virtual ~AnyList() {}

 const String& get_process_contents() const;
 const NamespaceConstraints& get_namespace_constraints()

const;
 const String& get_any_namespace() const;

 void set_process_contents(const String &);
 void set_namespace_constraints(const NamespaceConstraints&);

Example 218: The IT_Bus::AnyList Class
558

Occurrence Constraints
 void set_any_namespace(const String &);

 virtual Kind get_kind() const;
 virtual const QName & get_type() const;

 virtual AnyType& copy(const AnyType & rhs);

 virtual void set_size(size_t new_size);
 ...
};

Example 218: The IT_Bus::AnyList Class
 559

CHAPTER 9 | Artix Data Types
Nillable Types

Overview This section describes how to define and use nillable types; that is, XML
elements defined with xsd:nillable="true".

In this section This section contains the following subsections:

Introduction to Nillable Types page 561

Nillable Atomic Types page 563

Nillable User-Defined Types page 567

Nested Atomic Type Nillable Elements page 570

Nested User-Defined Nillable Elements page 574

Nillable Elements of an Array page 578
560

Nillable Types
Introduction to Nillable Types

Overview An element in an XML schema may be declared as nillable by setting the
nillable attribute equal to true. This is useful in cases where you would like to
have the option of transmitting no value for a type (for example, if you would
like to define an operation with optional parameters).

Nillable syntax To declare an element as nillable, use the following syntax:

<element name="ElementName" type="ElementType" nillable="true"/>

The nillable="true" setting indicates that this as a nillable element. If the
nillable attribute is missing, the default is value is false.

On-the-wire format On the wire, a nil value for an ElementName element is represented by the
following XML fragment:

<ElementName xsi:nil="true"></ElementName>

Where the xsi: prefix represents the XML schema instance namespace,
http://www.w3.org/2001/XMLSchema-instance.

C++ API for nillable types Example 219 shows the public member functions of the
IT_Bus::NillableValueBase class, which provides the C++ API for nillable
types.

Example 219: C++ API for Nillable Types

// C++
namespace IT_Bus
{
 template <class T>
 class NillableValueBase : public Nillable
 {
 public:
 virtual ~NillableValueBase();
 virtual AnyType& operator=(const AnyType& other);

 virtual Boolean is_nil() const;
 virtual void set_nil();
 ...
 virtual const T&
 561

CHAPTER 9 | Artix Data Types
 get() const IT_THROW_DECL((NoDataException));

 virtual T&
 get() IT_THROW_DECL((NoDataException));

 // Set the data value, make is_nil() false.
 virtual void set(const T& data);

 // data != 0 ==> set the data value, make is_nil() false.
 // data == 0 ==> make is_nil() true.
 virtual void set(const T *data);

 // Reset to nil, makes is_nil() true.
 virtual void reset();

 protected:
 ...
};

Example 219: C++ API for Nillable Types
562

Nillable Types
Nillable Atomic Types

Overview This subsection describes how to define and use XML schema nillable atomic
types. In C++, every atomic type, AtomicTypeName, has a nillable counterpart,
AtomicTypeNameNillable. For example, IT_Bus::Short has
IT_Bus::ShortNillable as its nillable counterpart.

You can modify or access the value of an atomic nillable type, T, using the
T.set() and T.get() member functions, respectively. For full details of the API
for nillable types see “C++ API for nillable types” on page 561.

Table of nillable atomic types Table 44 shows how the XML schema atomic types map to C++ when the
xsd:nillable flag is set to true.

Table 44: Nillable Atomic Types

Schema Type Nillable C++ Type

xsd:anyType Not supported as nillable

xsd:boolean IT_Bus::BooleanNillable

xsd:byte IT_Bus::ByteNillable

xsd:unsignedByte IT_Bus::UByteNillable

xsd:short IT_Bus::ShortNillable

xsd:unsignedShort IT_Bus::UShortNillable

xsd:int IT_Bus::IntNillable

xsd:unsignedInt IT_Bus::UIntNillable

xsd:long IT_Bus::LongNillable

xsd:unsignedLong IT_Bus::ULongNillable

xsd:float IT_Bus::FloatNillable

xsd:double IT_Bus::DoubleNillable

xsd:string IT_Bus::StringNillable

xsd:QName IT_Bus::QNameNillable
 563

CHAPTER 9 | Artix Data Types
WSDL example Example 220 defines four elements, test_string_x, test_short_y,
test_int_return, and test_float_z, of nillable atomic type. This example
shows how to use the nillable atomic types as the parameters of an operation,
send_receive_nil_part.

xsd:dateTime IT_Bus::DateTimeNillable

xsd:date IT_Bus::DateNillable

xsd:time IT_Bus::TimeNillable

xsd:gDay IT_Bus::GDayNillable

xsd:gMonth IT_Bus::GMonthNillable

xsd:gMonthDay IT_Bus::GMonthDayNillable

xsd:gYear IT_Bus::GYearNillable

xsd:gYearMonth IT_Bus::GYearMonthNillable

xsd:decimal IT_Bus::DecimalNillable

xsd:integer IT_Bus::IntegerNillable

xsd:positiveInteger IT_Bus::PositiveIntegerNillable

xsd:negativeInteger IT_Bus::NegativeIntegerNillable

xsd:nonPositiveInteger IT_Bus::NonPositiveIntegerNillable

xsd:nonNegativeInteger IT_Bus::NonNegativeIntegerNillable

xsd:base64Binary IT_Bus::BinaryBufferNillable

xsd:hexBinary IT_Bus::BinaryBufferNillable

Table 44: Nillable Atomic Types

Schema Type Nillable C++ Type

Example 220: WSDL Example Showing Some Nillable Atomic Types

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 ...
564

Nillable Types
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="test_string_x" nillable="true"
 type="xsd:string"/>
 <element name="test_short_y" nillable="true"
 type="xsd:short"/>
 <element name="test_int_return" nillable="true"
 type="xsd:int"/>
 <element name="test_float_z" nillable="true"
 type="xsd:float"/>
 </schema>
 </types>
 ...
 <message name="NilPartRequest">
 <part name="x" element="xsd1:test_string_x"/>
 <part name="y" element="xsd1:test_short_y"/>
 </message>
 <message name="NilPartResponse">
 <part name="return" element="xsd1:test_int_return"/>
 <part name="y" element="xsd1:test_short_y"/>
 <part name="z" element="xsd1:test_float_z"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="send_receive_nil_part">
 <input name="doclit_nil_part_request"
 message="tns:NilPartRequest"/>
 <output name="doclit_nil_part_response"
 message="tns:NilPartResponse"/>
 </operation>
 </portType>
 ...

Example 220: WSDL Example Showing Some Nillable Atomic Types
 565

CHAPTER 9 | Artix Data Types
C++ example Example 221 shows how to use nillable atomic types,
IT_Bus::StringNillable, IT_Bus::ShortNillable, IT_Bus::IntNillable,
and IT_Bus::FloatNillable, in a simple C++ example.

The value of a nillable atomic type, T, can be initialized using either a
constructor, T(), or the T.set() member function.

Before attempting to read the value of a nillable atomic type using T.get(), you
should check that the value is non-nil using the T.is_nil() member function.

Example 221: Using Nillable Atomic Types as Operation Parameters

// C++
IT_Bus::StringNillable x("String for sending");
IT_Bus::ShortNillable y(321);
IT_Bus::IntNillable var_return;
IT_Bus::FloatNillable z;

try {
 // bc is a client proxy for the BasePortType port type.
 bc.send_receive_nil_part(x, y, var_return, z);
}
catch (IT_Bus::FaultException &ex) {
 // ... deal with the exception (not shown)
}

if (! y.is_nil()) { cout << "y = " << y.get() << endl; }
if (! z.is_nil()) { cout << "z = " << z.get() << endl; }

if (! var_return.is_nil()) {
 cout << "var_return = " << var_return.get() << endl;
}

566

Nillable Types
Nillable User-Defined Types

Overview This subsection describes how to define and use nillable user-defined types. In
C++, every user-defined type, UserTypeName, has a nillable counterpart,
UserTypeNameNillable.

You can modify or access the value of a user-defined nillable type, T, using the
T.set() and T.get() member functions, respectively. For full details of the API
for nillable types see “C++ API for nillable types” on page 561.

WSDL example Example 222 shows the definition of an XML schema all complex type, named
SOAPStruct. This is a complex type with ordinary (that is, non-nillable) member
elements.

Example 222: WSDL Example of an All Complex Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SOAPStruct">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 </complexType>
 ...
 </schema>
 </types>
 ...
 567

CHAPTER 9 | Artix Data Types
C++ mapping Example 223 shows how the SOAPStruct type maps to C++. In addition to the
regular mapping, which produces the C++ SOAPStruct and SOAPStructPtr
classes, the WSDL-to-C++ compiler also generates a nillable type,
SOAPStructNillable, and an associated smart pointer type,
SOAPStructNillablePtr.

The API for the SOAPStructNillable type is defined in “C++ API for nillable
types” on page 561.

C++ example The following C++ example shows how to initialize an instance of
SOAPStructNillable type, s_nillable. The nillable type is created in two
steps: first of all, a SOAPStruct instance, s, is initialized; then the SOAPStruct
instance is used to initialize a SOAPStructNillable instance.

Example 223: C++ Mapping of the SOAPStruct All Complex Type

// C++
namespace INTEROP
{
 class SOAPStruct : public IT_Bus::AllComplexType { ... }
 typedef IT_AutoPtr<SOAPStruct> SOAPStructPtr;

 typedef IT_Bus::NillableValue<SOAPStruct>
 SOAPStructNillable;
 typedef IT_Bus::NillablePtr<SOAPStruct>
 SOAPStructNillablePtr;
};

// C++
// Initialize a SOAPStruct instance.
INTEROP::SOAPStruct s;
s.setvarFloat(3.14);
s.setvarInt(1234);
s.setvarString("Hello world!");

// Initialize a SOAPStructNillable instance.
INTEROP::SOAPStructNillable s_nillable;
s_nillable.set(s);
568

Nillable Types
The next C++ example shows how to access the contents of the
SOAPStructNillable type. Note that before attempting to access the value of
the SOAPStructNillable using get(), you should check that the value is not nil
using is_nil().

// C++
if (! s_nillable.is_nil()) {
 cout << "varFloat = " << s_nillable.get().getvarFloat()
 << endl;
 cout << "varInt = " << s_nillable.get().getvarInt()
 << endl;
 cout << "varString = " << s_nillable.get().getvarString()
 << endl;
}

 569

CHAPTER 9 | Artix Data Types
Nested Atomic Type Nillable Elements

Overview This subsection describes how to define and use complex types (except arrays)
that have some nillable member elements. That is, the type as a whole is not
nillable, although some of its elements are.

The WSDL-to-C++ compiler treats a type with nillable elements as a special
case. If a member element, ElementName, is defined with xsd:nillable equal
to true, the element’s C++ modifiers and accessors are then primarily pointer
based.

For example, given that a member element ElementName is of AtomicType type,
the accessors and modifier would have the following signatures:

const AtomicType * getElementName() const;
AtomicType * getElementName();
void setElementName(const AtomicType * val);

And an additional convenience function that allows you to set an element value
using pass-by-reference:

void setElementName(const AtomicType & val);

WSDL example Example 224 defines a sequence complex type, Nil_SOAPStruct, which has
some nillable elements, varInt, varFloat, and varString.

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 578.

Example 224: WSDL Example of a Sequence Type with Nillable Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"
 targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
570

Nillable Types
C++ mapping Example 225 shows how the Nil_SOAPStruct sequence complex type is
mapped to C++. Note how the accessors for the nillable member elements,
getElementName(), return a pointer instead of a value; and how the modifiers
for the nillable member elements, setElementName(), take either a pointer
argument or a reference argument. For example, the getvarInt() function
returns a pointer to an IT_Bus::Int rather an IT_Bus::Int value.

 <complexType name="Nil_SOAPStruct">
 <sequence>
 <element name="varInt" nillable="true"
 type="xsd:int"/>
 <element name="varFloat" nillable="true"
 type="xsd:float"/>
 <element name="varString" nillable="true"
 type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 ...

Example 224: WSDL Example of a Sequence Type with Nillable Elements

Example 225: C++ Mapping of the Nil_SOAPStruct Sequence Type

// C++
namespace INTEROP {
 class Nil_SOAPStruct : public IT_Bus::SequenceComplexType
 {
 public:
 Nil_SOAPStruct();
 Nil_SOAPStruct(const Nil_SOAPStruct& copy);
 virtual ~Nil_SOAPStruct();
 ...
 const IT_Bus::Int * getvarInt() const;
 IT_Bus::Int * getvarInt();
 void setvarInt(const IT_Bus::Int * val);
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::Float * getvarFloat() const;
 IT_Bus::Float * getvarFloat();
 void setvarFloat(const IT_Bus::Float * val);
 void setvarFloat(const IT_Bus::Float & val);
 571

CHAPTER 9 | Artix Data Types
C++ example The following C++ example shows how to create and initialize a
Nil_SOAPStruct instance. Notice, for example, how the setvarInt(const
IT_Bus::Int&) convenience function allows you to pass the integer argument as
a reference, i, instead of a pointer.

 const IT_Bus::String * getvarString() const;
 IT_Bus::String * getvarString();
 void setvarString(const IT_Bus::String * val);
 void setvarString(const IT_Bus::String & val);

 virtual const IT_Bus::QName & get_type() const;
 ...
 };

 typedef IT_AutoPtr<Nil_SOAPStruct> Nil_SOAPStructPtr;

 typedef IT_Bus::NillableValue<Nil_SOAPStruct,
&Nil_SOAPStructQName> Nil_SOAPStructNillable;

 typedef IT_Bus::NillablePtr<Nil_SOAPStruct,
&Nil_SOAPStructQName> Nil_SOAPStructNillablePtr;

 ...
};

Example 225: C++ Mapping of the Nil_SOAPStruct Sequence Type

// C++
Nil_SOAPStruct nil_s;

IT_Bus::Float f = 3.14;
IT_Bus::Int i = 1234;
IT_Bus::String s = "A non-nil string.";

nil_s.setvarInt(i);
nil_s.setvarFloat(f);
nil_s.setvarString(s);
572

Nillable Types
The next C++ example shows how to read the nillable elements of the
Nil_SOAPStruct instance. Note how the elements are checked for nilness by
comparing the result of calling getElementName() with 0.

// C++
if (nil_s.getvarInt() != 0) {
 cout << "varInt = " << *nil_s.getvarInt() << endl;
}

if (nil_s.getvarFloat() != 0) {
 cout << "varFloat = " << *nil_s.getvarFloat() << endl;
}

if (nil_s.getvarString() != 0) {
 cout << "varString = " << *nil_s.getvarString() << endl;
}

 573

CHAPTER 9 | Artix Data Types
Nested User-Defined Nillable Elements

Overview This subsection describes how to define and use complex types that have nillable
member elements of user-defined type.

The WSDL-to-C++ compiler treats user-defined nillable elements as a special
case. As with nillable elements of atomic type, if a member element of
user-defined type, ElementName, is defined with xsd:nillable equal to true,
the element’s C++ modifiers and accessors are then primarily pointer based.

For example, given that a member element ElementName is of UserType type,
the accessors and modifier would have the following signatures:

const UserType * getElementName() const;
UserType * getElementName();
void setElementName(const UserType * val);
void setElementName(const UserType & val);

WSDL example Example 226 defines a sequence complex type, Nil_NestedSOAPStruct, which
includes a nillable element of SOAPStruct type, varSOAP.

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 578.

Example 226: WSDL Example of a Nillable All Type inside a Sequence Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SOAPStruct">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
574

Nillable Types
C++ mapping Example 227 shows how the Nil_NestedSOAPStruct sequence complex type is
mapped to C++. Note how the getvarSOAP() functions return a pointer to a
SOAPStruct rather than a SOAPStruct value.

 </all>
 </complexType>
 ...
 <complexType name="Nil_NestedSOAPStruct">
 <sequence>
 <element name="varInt" nillable="true"
 type="xsd:int"/>
 <element name="varSOAP" nillable="true"
 type="xsd1:SOAPStruct"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...

Example 226: WSDL Example of a Nillable All Type inside a Sequence Type

Example 227: C++ Mapping of the Nil_NestedSOAPStruct Type

// C++
class Nil_NestedSOAPStruct : public IT_Bus::SequenceComplexType
{
 public:
 Nil_NestedSOAPStruct();
 Nil_NestedSOAPStruct(const Nil_NestedSOAPStruct& copy);
 virtual ~Nil_NestedSOAPStruct();
 ...
 const IT_Bus::Int * getvarInt() const;
 IT_Bus::Int * getvarInt();
 void setvarInt(const IT_Bus::Int * val);
 void setvarInt(const IT_Bus::Int & val);

 const SOAPStruct * getvarSOAP() const;
 SOAPStruct * getvarSOAP();
 void setvarSOAP(const SOAPStruct * val);
 void setvarSOAP(const SOAPStruct & val);

 virtual const IT_Bus::QName & get_type() const;
 ...
};
 575

CHAPTER 9 | Artix Data Types
NillablePtr types To help you manage the memory associated with nillable elements of
user-defined type, UserType, the WSDL-to-C++ utility generates a nillable
smart pointer type, UserTypeNillablePtr. The NillablePtr template types are
similar to the std::auto_ptr<> template types from the Standard Template
Library—see “Smart Pointers” on page 173.

For example, the following extract from the generated
WSDLFileName_wsdlTypes.h header file defines a SOAPStructNillablePtr
type, which is used to represent SOAPStruct nillable pointers:

Example 228 shows the API for the NillablePtr template class. A
NillablePtr instance can be initialized using either a NillablePtr()
constructor, a set() member function, or an operator=() assignment operator.
The is_nil() member function tests the pointer for nilness.

// C++
typedef IT_Bus::NillablePtr<SOAPStruct, &SOAPStructQName>

SOAPStructNillablePtr;

Example 228: The NillablePtr Template Class

// C++
namespace IT_Bus
{
 /**
 * Template implementation of Nillable as an auto_ptr.
 * T is the C++ type of data, TYPE is the data type qname.
 */
 template <class T, const QName* TYPE>
 class NillablePtr : public Nillable, public IT_AutoPtr<T>
 {
 public:
 NillablePtr();
 NillablePtr(const NillablePtr& other);
 NillablePtr(T* data);
 virtual ~NillablePtr();
 ...
 void set(const T* data);

 virtual Boolean is_nil() const;

 virtual const QName& get_type() const;
 ...
 };
576

Nillable Types
C++ example The following C++ example shows how to create and initialize a
Nil_NestedSOAPStruct instance. Notice how the argument to setvarSOAP() is
passed as a pointer, &nillable_struct.

The next C++ example shows how to read the nillable elements of the
Nil_NestedSOAPStruct instance. Note how the varSOAP element is checked for
nilness by calling is_nil().

 ...
};

Example 228: The NillablePtr Template Class

// C++
// Construct a smart nillable pointer.
// The SOAPStruct memory is owned by the smart nillable pointer.
SOAPStruct nillable_struct;
nillable_struct.setvarFloat(3.14);
nillable_struct.setvarInt(4321);
nillable_struct.setvarString("Nillable struct element.");

// Construct a nested struct.
Nil_NestedSOAPStruct outer_struct;
IT_Bus::Int k = 4321
outer_struct.setvarInt(&k);

// MEMORY MANAGEMENT: The argument to setvarSOAP is deep copied.
outer_struct.setvarSOAP(&nillable_struct);

// C++
IT_Bus::Int * int_p = outer_struct.getvarInt();

// MEMORY MANAGEMENT: outer_struct owns the return value.
SOAPStruct * nillable_struct_p = outer_struct.getvarSOAP();

if (int_p != 0) {
 cout << "varInt = " << *int_p << endl;
}

if (!nillable_struct_p.is_nil()) {
 cout << "varSOAP = " << *nillable_struct_p << endl;
}

 577

CHAPTER 9 | Artix Data Types
Nillable Elements of an Array

Overview This subsection describes how to define and use array complex types with
nillable array elements. To define an array with nillable elements, add a
nillable="true" setting to the array element declaration.

An array with nillable elements has the following general syntax:

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType" nillable="true"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to UpperBound.

WSDL example Example 229 shows defines an array complex type, Nil_SOAPArray (the name
indicates that the type is used in a SOAP example, not that it is defined using
SOAP array syntax) which has nillable array elements, item.

Example 229: WSDL Example of an Array with Nillable Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://soapinterop.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
578

Nillable Types
C++ mapping Example 230 shows how the Nil_SOAPArray array complex type is mapped to
C++. Note that the array elements are of IT_Bus::ShortNillable type.

 <complexType name="Nil_SOAPArray">
 <sequence>
 <element name="item" nillable="true"
 type="xsd:short" minOccurs="10"
 maxOccurs="10"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...

Example 229: WSDL Example of an Array with Nillable Elements

Example 230: C++ Mapping of the Nil_SOAPArray Array Type

// C++
namespace INTEROP {
 class Nil_SOAPArray
 : public IT_Bus::ArrayT<IT_Bus::ShortNillable,

&Nil_SOAPArray_item_qname, 10, 10>
 {
 public:
 Nil_SOAPArray();
 Nil_SOAPArray(const Nil_SOAPArray& copy);
 Nil_SOAPArray(size_t dimensions[]);
 Nil_SOAPArray(size_t dimension0);
 virtual ~Nil_SOAPArray();

 ...
 const IT_Bus::ElementListT<IT_Bus::ShortNillable> &
 getitem() const;

 IT_Bus::ElementListT<IT_Bus::ShortNillable> &
 getitem();

 void
 setitem(const IT_Vector<IT_Bus::ShortNillable> & val);

 virtual const IT_Bus::QName &
 get_type() const;
 };
 579

CHAPTER 9 | Artix Data Types
C++ example The following C++ example shows how to create and initialize a
Nil_SOAPArray instance. Because each array element is of
IT_Bus::ShortNillable type, the array elements must be initialized using the
set() member function. Any elements not explicitly initialized are nil by
default.

The next C++ example shows how to access the nillable array elements. You
should check each of the array elements for nilness using the is_nil() member
function before attempting to read an array element value.

 typedef IT_AutoPtr<Nil_SOAPArray> Nil_SOAPArrayPtr;

 typedef IT_Bus::NillableValue<Nil_SOAPArray,
&Nil_SOAPArrayQName> Nil_SOAPArrayNillable;

 typedef IT_Bus::NillablePtr<Nil_SOAPArray,
&Nil_SOAPArrayQName> Nil_SOAPArrayNillablePtr;

};

Example 230: C++ Mapping of the Nil_SOAPArray Array Type

// C++
Nil_SOAPArray nil_s(10);
nil_s[0].set(10);
nil_s[1].set(20);
nil_s[2].set(30);
nil_s[3].set(40);
nil_s[4].set(50);
// The remaining five element values are left as nil.

// C++
for (size_t i=0; i<10; i++) {
 if (! nil_s[i].is_nil()) {
 cout << "Nil_SOAPArray[" << i << "] = "
 << nil_s[i].get() << endl;
 }
}

580

Substitution Groups
Substitution Groups

Overview The XML syntax for defining a substitution group enables you to define a
relationship between XML elements, which is analogous to the inheritance
relationship between XML data types.

For example, Figure 30 shows an inheritance tree of data types next to a parallel
inheritance tree of elements. The type inheritance tree consists of a base type,
BuildingType, and two derived (by extension) types, HouseType and
ApartmentBlockType. The element inheritance tree consists of a head element,
building, and two substitute elements, house and apartmentBlock.

Defining a substitution group You can define an XML substitution group as follows:

1. Define a head element (for example, xsd1:building) directly within a

<schema> scope. The head element plays a role analogous to that of a base

type in an inheritance tree—other elements can be defined to substitute the

head element.

2. Define one or more substitute elements (for example, xsd1:house and

xsd1:apartmentBlock) directly within a <schema> scope, setting the

substitutionGroup attribute to the head element’s QName—for example:

<element name="house" type="xsd1:HouseType"
 substitutionGroup="xsd1:building" />

Figure 30: Relationship Between Elements in a Substitution Group

Note: Substitution groups are currently supported only by the SOAP binding.

substitutes

<building>

<house> <apartmentBlock>

BuildingType

HouseType ApartmentBlockType

extends
 581

CHAPTER 9 | Artix Data Types
A substitute element plays a role analogous to that of a sub-type in an

inheritance tree—the substitute element can be used in place of the head

element.

3. Define a complex type (for example, a sequence group, all group, or choice

group) that includes a reference to the head element. To define an element

reference, use the ref attribute.

For example, the following PropertyType type includes a reference to the

building head element. In this case, the element with the ref attribute is

called a substitutable element.

XSD example Example 231 shows the definition of a sequence group, PropertyType, that
includes a single substitutable element, xsd1:building.

Note: A substitute element must be of the same type as or be derived
from the head element type.

<complexType name="PropertyType">
 <sequence>
 <element ref="xsd1:building"/>
 <element name="site" type="xsd1:SiteType"/>
 </sequence>
</complexType>

Note: Currently, Artix does not support substitutable elements in an
<all> complex type.

Example 231: Sequence Type Containing a Substitutable Element

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/realestate"
 targetNamespace="http://schemas.iona.com/realestate">

 <!-- Type definitions -->

 <complexType name="BuildingType">
 <sequence>
 <element name="squareMeters" type="xsd:int"/>
 </sequence>
 </complexType>
582

Substitution Groups
 <complexType name="HouseType">
 <complexContent>
 <extension base="xsd1:BuildingType">
 <sequence>
 <element name="houseKind" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ApartmentBlockType">
 <complexContent>
 <extension base="xsd1:BuildingType">
 <sequence>
 <element name="nApartments" type="xsd:int"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <!-- Global Elements -->

 <element name="building" type="xsd1:BuildingType"/>

 <element name="house"
 type="xsd1:HouseType"
 substitutionGroup="building"
 final="#all"/>

 <element name="apartmentBlock"
 type="xsd1:ApartmentBlockType"
 substitutionGroup="building"
 final="#all"/>

 <!-- More Types -->

 <complexType name="SiteType">
 <sequence>
 <element name="squareMeters" type="xsd:int"/>
 </sequence>
 </complexType>

 <complexType name="PropertyType">
 <sequence>

Example 231: Sequence Type Containing a Substitutable Element
 583

CHAPTER 9 | Artix Data Types
The substitution group consists of the following elements:

• The head element, xsd1:building, and

• The substitute elements, xsd1:house and xsd1:apartmentBlock.

Substitutable element appearing
in a sequence group

Example 232 shows how the PropertyType sequence group from Example 231
on page 582 maps to C++.

 <element ref="xsd1:building"/>
 <element name="site" type="xsd1:SiteType"/>
 </sequence>
 </complexType>

</schema>

Example 231: Sequence Type Containing a Substitutable Element

Example 232: C++ Mapping of PropertyType Sequence Type

// C++

namespace COM_IONA_SCHEMAS_REALESTATE
{
 class PropertyType
 : public IT_Bus::SequenceComplexType,
 public IT_Bus::ComplexTypeWithSubstitution
 {
 public:
 ...

 enum buildingDiscriminator
 {
 building_enum,
 house_enum,
 apartmentBlock_enum,
 building_MAXLONG=-1
 } var_buildingDiscriminator;

 buildingDiscriminator get_buildingDiscriminator() const
 {
 return var_buildingDiscriminator;
 }

 IT_Bus::UInt get_buildingDiscriminator_as_uint() const
 {
584

Substitution Groups
For each substitutable element appearing in a sequence group, the
WSDL-to-C++ compiler generates the following enumeration type and
discriminator functions:

 return var_buildingDiscriminator;
 }

 BuildingType & getbuilding();
 const BuildingType & getbuilding() const;
 void setbuilding(const BuildingType & val);

 HouseType & gethouse();
 const HouseType & gethouse() const;
 void sethouse(const HouseType & val);

 ApartmentBlockType & getapartmentBlock();
 const ApartmentBlockType & getapartmentBlock() const;
 void setapartmentBlock(const ApartmentBlockType & val);

 SiteType & getsite();
 const SiteType & getsite() const;
 void setsite(const SiteType & val);

 private:
 ...
 };
 ...
}

Example 232: C++ Mapping of PropertyType Sequence Type

// C++

enum HeadElementDiscriminator {
 ...
} var_HeadElementDiscriminator;

HeadElementDiscriminator get_HeadElementDiscriminator();

IT_Bus::UInt get_HeadElementDiscriminator();
 585

CHAPTER 9 | Artix Data Types
Where HeadElement is the local part of the head element QName. The value
returned by get_HeadElementDiscriminator() tells you what kind of element
is currently stored as the substitutable element. You must check the
discriminator value prior to calling getElementName() for an element
belonging to the HeadElement substitution group.

Substitutable element appearing
in a choice group

You can include a substitutable element in a choice group. The choice group
mapping is, however, different from the sequence group mapping. Because a
choice group already includes a discriminator when mapped to C++, the
substitution group enumerations are simply absorbed into the existing choice
enumeration.

For example, Example 233 redefines PropertyChoiceType as a choice group
that contains a single substitutable element, xsd1:building.

The PropertyChoiceType choice group defined in the preceding Example 233
maps to the C++ PropertyChoiceType class shown in Example 234.

Example 233: Choice Type Containing a Substitutable Element

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/realestate"
 targetNamespace="http://schemas.iona.com/realestate">

 ...

 <complexType name="PropertyChoiceType">
 <choice>
 <element ref="xsd1:building"/>
 <element name="site" type="xsd1:SiteType"/>
 </choice>
 </complexType>

</schema>

Example 234: C++ Mapping of the PropertyChoiceType Choice Group

// C++
namespace COM_IONA_SCHEMAS_REALESTATE
{
 class PropertyChoiceType : public IT_Bus::ChoiceComplexType
 {
 public:
586

Substitution Groups
For the PropertyChoiceType choice group, the WSDL-to-C++ compiler
generates a single enumeration type, PropertyChoiceTypeDiscriminator, and
discriminator functions, get_discriminator() and
get_discriminator_as_uint().

In general, when mapping a choice group, the alternatives for all of the
substitutable elements and all of the regular elements in the choice group are
consolidated into a single enumeration type.

 ...

 enum PropertyChoiceTypeDiscriminator
 {
 building_enum,
 house_enum,
 apartmentBlock_enum,
 site_enum,
 PropertyChoiceType_MAXLONG=-1
 } m_discriminator;

 PropertyChoiceTypeDiscriminator get_discriminator() const
 {
 return m_discriminator;
 }

 IT_Bus::UInt get_discriminator_as_uint() const
 {
 return m_discriminator;
 }

 // Get and Set functions (not shown)
 ...

 private:
 ...
 };
}

Example 234: C++ Mapping of the PropertyChoiceType Choice Group
 587

CHAPTER 9 | Artix Data Types
Substitutable element with
occurrence constraints

You can add occurrence constraints to a substitutable element. For example, the
MultiPropertyType defined in Example 235 contains an unbounded number of
building elements.

The array of substitutable elements appearing in MultiPropertyType need not
be all of one type; they can be mixed. For example, the following would be a
valid instance of <MultiProperty>:

The discriminator returned from get_buildingDiscriminator() is interpreted
as follows:

• MultiPropertyType::house_enum

Example 235: Substitutable Element with Occurrence Constraints

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/realestate"
 targetNamespace="http://schemas.iona.com/realestate">

 ...

 <complexType name="MultiPropertyType">
 <sequence>
 <element ref="xsd1:building"
 minOccurs="1" maxOccurs="unbounded" />
 <element name="site" type="xsd1:SiteType"/>
 </sequence>
 </complexType>

 <element name="MultiProperty"
 type="xsd1:MultiPropertyType"/>

</schema>

<MultiProperty>
 <house> ... </house>
 <apartmentBlock> ... </apartmentBlock>
 <house> ... </house>
 <apartmentBlock> ... </apartmentBlock>

 <site> ... </site>
</MultiProperty>
588

Substitution Groups
An array consisting exclusively of house elements. Use the gethouse()

function to obtain the element list, of

IT_Bus::ElementListT<HouseType> type.

• MultiPropertyType::apartmentBlock_enum

An array consists exclusively of apartmentBlock elements. Use the

getapartmentBlock() function to obtain the element list, of

IT_Bus::ElementListT<ApartmentBlockType> type.

• MultiPropertyType::building_enum

A mixed array. Use the getbuilding() function to obtain the element list,

of IT_Bus::ElementListT<BuildingType> type. To determine the actual

type of each array element, attempt to downcast to one of the types in the

substitution group (HouseType or ApartmentBlockType).

For more details about element lists, see “Element Occurrence Constraints” on
page 542.

Abstract head element You can define the head element to be abstract. An abstract head element is
analogous to an abstract base class—that is, it cannot be used directly, but serves
only as a basis for defining substitute elements. You can make a head element
abstract by setting the abstract attribute to true in the element definition.

For example, the xsd1:building head element from Example 231 on page 582
can be declared abstract as follows:

When this modified version of the XML schema is compiled into C++, the
generated PropertyType class omits the getbuilding() and setbuilding()
functions. The PropertyType::building_enum value is also omitted from the
buildingDiscriminator enumeration type. In other words, the only elements
you can use for the substitutable element in the PropertyType are the house or
apartmentBlock elements.

<element name="building" type="xsd1:BuildingType"
 abstract="true"/>

Note: An exception to this mapping rule occurs when a substitution element
is defined with occurrence constraints. For example, if building is declared
abstract, the MultiPropertyType would include the getbuilding() and
setbuilding() functions when mapped to C++. These functions are needed to
access and modify mixed arrays. It is still forbidden to include building
elements directly in the array, however.
 589

CHAPTER 9 | Artix Data Types
SOAP Arrays

Overview In addition to the basic array types described in “Arrays” on page 499, Artix also
provides support for SOAP arrays. SOAP arrays have a relatively rich feature
set, including support for sparse arrays and partially transmitted arrays.
Consequently, Artix implements a distinct C++ mapping specifically for SOAP
arrays, which is different from the C++ mapping described in the “Arrays”
section.

In this section This section contains the following subsections:

Introduction to SOAP Arrays page 591

Multi-Dimensional Arrays page 595

Sparse Arrays page 598

Partially Transmitted Arrays page 601
590

SOAP Arrays
Introduction to SOAP Arrays

Overview This section describes the syntax for defining SOAP arrays in WSDL and
discusses how to program a simple one-dimensional array of strings. The
following topics are discussed:

• Syntax.

• C++ mapping.

• Definition of a one-dimensional SOAP array.

• Sample encoding.

• C++ example.

Syntax In general, SOAP array types are defined by deriving from the SOAP-ENC:Array
base type (deriving by restriction). The type definition must conform to the
following syntax:

Where <SOAPArrayType> is the name of the newly-defined array type,
<ElementType> specifies the type of the array elements (for example, xsd:int,
xsd:string, or a user type), and <ArrayBounds> specifies the dimensions of
the array (for example, [], [,], [,,], [,][], [,,][], [,][][], and so on). The
SOAP-ENC namespace prefix maps to the
http://schemas.xmlsoap.org/soap/encoding/ namespace URI and the wsdl
namespace prefix maps to the http://schemas.xmlsoap.org/wsdl/
namespace URI.

<complexType name="<SOAPArrayType>">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="<ElementType><ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

Note: In the current version of Artix, the preceding syntax is the only case
where derivation from a complex type is supported. Definition of a SOAP
array is treated as a special case.
 591

CHAPTER 9 | Artix Data Types
C++ mapping A given SOAPArrayType array maps to a C++ class of the same name, which
inherits from the IT_Bus::SoapEncArrayT<> template class. The
SOAPArrayType C++ class overloads the [] operator to provide access to the
array elements. The size of the array is returned by the get_extents() member
function.

Definition of a one-dimensional
SOAP array

Example 236 shows how to define a one-dimensional array of strings,
ArrayOfSOAPString, as a SOAP array. The wsdl:arrayType attribute specifies
the type of the array elements, xsd:string, and the number of dimensions, []
implying one dimension.

Example 236: Definition of the ArrayOfSOAPString SOAP Array

<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://soapinterop.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="ArrayOfSOAPString">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 ...
</definitions>
592

SOAP Arrays
Sample encoding Example 237 shows the encoding of a sample ArrayOfSOAPString instance,
which is how the array instance might look when transmitted as part of a WSDL
operation.

The preceding WSDL fragment can be explained as follows:

1. The element type and the array size are specified by the

SOAP-ENC:arrayType attribute. Because ArrayOfSOAPString has been

derived by restriction, SOAP-ENC:arrayType can only have values of the

form xsd:string[ArraySize].

2. The XML elements that delimit the individual array values, for example

item, can have an arbitrary name. These element names are not significant.

C++ example Example 238 shows a C++ example of how to allocate and initialize an
ArrayOfSOAPString instance with four elements.

Example 237: Sample Encoding of ArrayOfSOAPString

1 <ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[2]">
2 <item>Hello</item>

 <item>world!</item>
</ArrayOfSOAPString>

Example 238: C++ Example of Initializing an ArrayOfSOAPString Instance

// C++
// Allocate SOAP array of String
const size_t extents[] = {4};

1 ArrayOfSOAPString a_str(extents);

2 a_str[0] = "Hello";
a_str[1] = "to";
a_str[2] = "the";
a_str[3] = "world!";
 593

CHAPTER 9 | Artix Data Types
The preceding C++ example can be explained as follows:

1. To specify the array’s size, you pass a list of extents (of size_t[] type) to

the ArrayOfSOAPString constructor. This style of constructor has the

advantage that it is easily extended to the case of multi-dimensional

arrays—see “Multi-Dimensional Arrays” on page 595.

2. The overloaded [] operator provides read/write access to individual array

elements.

Note: Be sure to initialize every element in the array, unless you want to
create a sparse array (see “Sparse Arrays” on page 598). There are no default
element values. Uninitialized elements are flagged as empty.
594

SOAP Arrays
Multi-Dimensional Arrays

Overview The syntax for SOAP arrays allows you to define the dimensions of a
multi-dimensional array using two slightly different syntaxes:

• A comma-separated list between square brackets, for example [,] and

[,,].

• Multiple square brackets, for example [][] and [][][].

Artix makes no distinction between the two styles of array definition. In both
cases, the array is flattened for transmission and the C++ mapping is the same.

Definition of multi-dimensional
SOAP array

Example 239 shows how to define a two-dimensional array of integers,
Array2OfInt, as a SOAP array. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:int, and the number of dimensions, [,]
implying an array of two dimensions.

Sample encoding of
multi-dimensional SOAP array

Example 240 shows the encoding of a sample Array2OfInt instance, which is
how the array instance might look when transmitted as part of a WSDL
operation.

Example 239: Definition of the Array2OfInt SOAP Array

<definitions ... >
 <types>
 <schema ... >
 <complexType name="Array2OfInt">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:int[,]"/>
 </restriction>
 </complexContent>
 </complexType>
 ...
</definitions>

Example 240: Sample Encoding of an Array2OfInt SOAP Array

<Array2OfInt SOAP-ENC:arrayType="xsd:int[2,3]">
 <i>1</i>
 595

CHAPTER 9 | Artix Data Types
The dimensions of this array instance are specified as [2,3], giving a total of six
elements. Notice that the encoded array is effectively flat, because no distinction
is made between rows and columns of the two-dimensional array.

Given an array instance with dimensions, [I_MAX,J_MAX], a particular position
in the array, [i,j], corresponds with the i*J_MAX+j element of the flattened
array. In other words, the right most index of [i,j,...,k] is the fastest
changing as you iterate over the elements of a flattened array.

C++ example of a
multi-dimensional SOAP array

Example 241 shows a C++ example of how to allocate and initialize an
Array2OfInt instance with dimensions, [2,3].

 <i>2</i>
 <i>3</i>
 <i>4</i>
 <i>5</i>
 <i>6</i>
</Array2OfInt>

Example 240: Sample Encoding of an Array2OfInt SOAP Array

Example 241: Initializing an Array2OfInt SOAP Array

// C++
1 const size_t extents2[] = {2, 3};

Array2OfInt a2_soap(extents2);

size_t position[2];
2 size_t i_max = a2_soap.get_extents()[0];

size_t j_max = a2_soap.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
 position[0] = i;
 for (size_t j=0; j<j_max; j++) {
 position[1] = j;

3 a2_soap[position] = (IT_Bus::Int) (i+1)*(j+1);
 }
}

596

SOAP Arrays
The preceding C++ example can be explained as follows:

1. The dimensions of this array instance are specified to be [2,3] by

initializing an array of extents, of size_t[] type, and passing this array to

the Array2OfInt constructor.

2. The dimensions of the a2_soap array can be retrieved by calling the

get_extents() function, which returns an extents array that converts to

size_t[] type.

3. The operator [] is overloaded on Array2OfInt to accept an argument of

size_t[] type, which contains a list of indices specifying a particular

array element.
 597

CHAPTER 9 | Artix Data Types
Sparse Arrays

Overview Sparse arrays are fully supported in Artix. Every SOAP array instance stores an
array of status flags, one flag for each array element. The status of each array
element is initially empty, flipping to non-empty the first time an array element
is accessed or initialized.

Sample encoding Example 242 shows the encoding of a sparse Array2OfInt instance, which is
how the array instance might look when transmitted as part of a WSDL
operation.

The array instance is defined to have the dimensions [10,10]. Out of a
maximum 100 elements, only four, that is [3,0], [2,1], [1,2], and [0,3], are
transmitted. When transmitting an array as a sparse array, the
SOAP-ENC:position attribute enables you to specify the indices of each
transmitted array element.

Note: Sparse arrays are not optimized for minimization of storage space.
Hence, a sparse array with dimensions [1000,1000] would always allocate
storage for one million elements, irrespective of how many elements in the
array are actually non-empty.

WARNING:Sparse arrays have been deprecated in the SOAP 1.2
specification. Hence, it is better to avoid using sparse arrays if possible.

Example 242: Sample Encoding of a Sparse Array2OfInt SOAP Array

<Array2OfInt SOAP-ENC:arrayType="xsd:int[10,10]">
 <item SOAP-ENC:position="[3,0]">30</item>
 <item SOAP-ENC:position="[2,1]">21</item>
 <item SOAP-ENC:position="[1,2]">12</item>
 <item SOAP-ENC:position="[0,3]">3</item>
</Array2OfInt>
598

SOAP Arrays
Initializing a sparse array Example 243 shows an example of how to initialize a sparse array of
Array2OfInt type.

This example does not differ much from the case of initializing an ordinary
non-sparse array (compare, for example, Example 241 on page 596). The only
significant difference is that the majority of array elements are not initialized,
hence they are flagged as empty by default.

Example 243: Initializing a Sparse Array2OfInt SOAP Array

// C++
const size_t extents2[] = {10, 10};
Array2OfInt a2_soap(extents2);

size_t position[2];

position[0] = 3;
position[1] = 0;
a2_soap[position] = 30;

position[0] = 2;
position[1] = 1;
a2_soap[position] = 21;

position[0] = 1;
position[1] = 2;
a2_soap[position] = 12;

position[0] = 0;
position[1] = 3;
a2_soap[position] = 3;

Note: The state of an array element flips from empty to non-empty the first
time it is accessed using the [] operator. Hence, attempting to read the value of
an uninitialized array element can have the unintended side effect of flipping
the array element status.
 599

CHAPTER 9 | Artix Data Types
Reading a sparse array Example 244 shows an example of how to read a sparse array of Array2OfInt
type.

The preceding C++ example can be explained as follows:

1. The get_extents() function returns the full dimensions of the array (as a

size_t[] array), irrespective of the actual number of non-empty elements

in the sparse array.

2. Before attempting to read the value of an element in the sparse array, you

should call the is_empty() function to check whether the particular array

element exists or not.

If you were to access all the elements of the array, irrespective of their

status, the empty array elements would all flip to the non-empty state.

Hence, you would lose the information about which elements were

transmitted in the sparse array.

Example 244: Reading a Sparse Array2OfInt SOAP Array

// C++
...
size_t p2[2];

1 size_t i_max = a2_out.get_extents()[0];
size_t j_max = a2_out.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
 p2[0] = i;
 for (size_t j=0; j<j_max; j++) {
 p2[1] = j;

2 if (!a2_out.is_empty(p2)) {
 cout << "a[" << i << "][" << j << "] = "
 << a2_out[p2] << endl;
 }
 }
}

600

SOAP Arrays
Partially Transmitted Arrays

Overview A partially transmitted array is essentially a special case of a sparse array, where
the transmitted array elements form one or more contiguous blocks within the
array. The start index and end index of each block can have any value.

The difference between a partially transmitted array and a sparse array is
significant only at the level of encoding. From the Artix programmer’s
perspective, there is no significant distinction between partially transmitted
arrays and sparse arrays.

Sample encoding Example 245 shows the encoding of a partially transmitted ArrayOfSOAPString
instance.

In this example, only the third, fourth, seventh, and eighth elements of a
ten-element string array are actually transmitted. The SOAP-ENC:offset
attribute is used to specify the index of the first transmitted array element. The
default value of SOAP-ENC:offset is [0]. The SOAP-ENC:position attribute
specifies the start of a new block within the array. If an item element does not
have a position attribute, it is assumed to represent the next element in the array.

Example 245: Sample Encoding of a Partially Transmitted
ArrayOfSOAPString Array

<ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[10]"
 SOAP-ENC:offset="[2]">
 <item>The third element</item>
 <item>The fourth element</item>
 <item SOAP-ENC:position="[6]">The seventh element</item>
 <item>The eighth element</item>
</ArrayOfSOAPString>
 601

CHAPTER 9 | Artix Data Types
IT_Vector Template Class

Overview The IT_Vector template class is an implementation of std::vector. Hence, the
functionality provided by IT_Vector should be familiar from the C++ Standard
Template Library.

In this section This section contains the following subsections:

Introduction to IT_Vector page 603

Summary of IT_Vector Operations page 606
602

IT_Vector Template Class
Introduction to IT_Vector

Overview This section provides a brief introduction to programming with the IT_Vector
template type, which is modelled on the std::vector template type from the
C++ Standard Template Library (STL).

Differences between IT_Vector
and std::vector

Although IT_Vector is modelled closely on the STL vector type, std::vector,
there are some differences. In particular, IT_Vector does not provide the
following types:

IT_Vector<T>::allocator_type

Where T is the vector’s element type. Hence, the IT_Vector type does not
support an allocator_type optional final argument in its constructors.

The IT_Vector type does not support the following operations:

The member functions listed in Table 45 are not defined in IT_Vector.

Although clear() is not defined, you can easily get the same effect for a vector,
v, by calling erase() as follows:

v.erase(v.begin(), v.end());

This has the effect of erasing all the elements in v, leaving an array of size 0.

!=, <

Table 45: Member Functions Not Defined in IT_Vector

Function Type of Operation

at() Element access (with range check)

clear() List operation

assign() Assignment

resize()
Size and capacity

max_size()
 603

CHAPTER 9 | Artix Data Types
Basic usage of IT_Vector The size() member function and the indexing operator [] is all that you need to
perform basic manipulation of vectors. Example 246 shows how to use these
basic vector operations to initialize an integer vector with the first one hundred
integer squares.

Iterators Instead of indexing vector elements using the operator [], you can use a vector
iterator. A vector iterator, of IT_Vector<T>::iterator type, gives you
pointer-style access to a vector’s elements. The following operations are
supported by IT_Vector<T>::iterator:

++, --, *, =, ==, !=

An iterator instance remembers its current position within the element list. The
iterator can advance to the next element using ++, step back to the previous
element using --, and access the current element using *.

The IT_Vector template also provides a reverse iterator, of
IT_Vector<T>::reverse_iterator type. The reverse iterator differs from the
regular iterator in that it starts at the end of the element list and traverses the list
backwards. That is the meanings of ++ and -- are reversed.

Example 246: Using Basic IT_Vector Operations to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT_Vector<IT_Bus::Int> v(100);

for (size_t k=0; k < v.size(); k++) {
 v[k] = (IT_Bus::Int) k*k;
}

604

IT_Vector Template Class
Example using iterators Example 246 on page 604 can be written in a more idiomatic style using vector
iterators, as shown in Example 247.

Example 247: Using Iterators to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT_Vector<IT_Bus::Int> v(100);

IT_Vector<IT_Bus::Int>::iterator p = v.begin();
IT_Bus k_int = 0;

while (p != v.end())
{
 *p = k_int*k_int;
 ++p;
 ++k_int;
}

 605

CHAPTER 9 | Artix Data Types
Summary of IT_Vector Operations

Overview This section provides a brief summary of the types and operations supported by
the IT_Vector template type. Note that the set of supported types and operations
differs slightly from std::vector. They are described in the following
categories:

• Member types.

• Iterators.

• Element access.

• Stack operations.

• List operations.

• Other operations.

Member types Table 46 lists the member types defined in IT_Vector<T>.

Table 46: Member Types Defined in IT_Vector<T>

Member Type Description

value_type Type of element.

size_type Type of subscripts.

difference_type Type of difference between iterators.

iterator Behaves like value_type*.

const_iterator Behaves like const value_type*.

reverse_iterator Iterates in reverse, like value_type*.

const_reverse_iterator Iterates in reverse, like const value_type*.

reference Behaves like value_type&.

const_reference Behaves like const value_type&.
606

IT_Vector Template Class
Iterators Table 47 lists the IT_Vector member functions returning iterators.

Element access Table 48 lists the IT_Vector element access operations.

Stack operations Table 49 lists the IT_Vector stack operations.

Table 47: Iterator Member Functions of IT_Vector<T>

Iterator Member Function Description

begin() Points to first element.

end() Points to last element.

rbegin() Points to first element of reverse sequence.

rend() Points to last element of reverse sequence.

Table 48: Element Access Operations for IT_Vector<T>

Element Access Operation Description

[] Subscripting, unchecked access.

front() First element.

back() Last element.

Table 49: Stack Operations for IT_Vector<T>

Stack Operation Description

push_back() Add to end.

pop_back() Remove last element.
 607

CHAPTER 9 | Artix Data Types
List operations Table 50 lists the IT_Vector list operations.

Other operations Table 51 lists the other operations supported by IT_Vector.

Table 50: List Operations for IT_Vector<T>

List Operations Description

insert(p,x) Add x before p.

insert(p,n,x) Add n copies of x before p.

insert(first,last) Add elements from [first:last[before p.

erase(p) Remove element at p.

erase(first,last) Erase [first:last[.

Table 51: Other Operations for IT_Vector<T>

Operation Description

size() Number of elements.

empty() Is the container empty?

capacity() Space allocated.

reserve() Reserve space for future expansion.

swap() Swap all the elements between two vectors.

== Test vectors for equality (member-wise).
608

IT_HashMap Template Class
IT_HashMap Template Class

Overview The IT_HashMap template class is an implementation of std::map. Hence, the
functionality provided by IT_HashMap should be familiar from the C++ Standard
Template Library.

In this section This section contains the following subsections:

Introduction to IT_HashMap page 610

Summary of IT_HashMap Operations page 611
 609

CHAPTER 9 | Artix Data Types
Introduction to IT_HashMap

Overview This section provides a brief introduction to programming with the IT_HashMap
template type, which is modelled on the std::map template type from the C++
Standard Template Library (STL).

Differences between IT_HashMap
and std::map

Although IT_HashMap is modelled closely on the STL map type, std::map,
there are some differences.

The member functions listed in Table 52 are not defined in IT_HashMap.

Although clear() is not defined, you can easily get the same effect for a map, v,
by calling erase() as follows:

m.erase(m.begin(), m.end());

This has the effect of erasing all the elements in m, leaving a map of size 0.

Table 52: Member Functions Not Defined in IT_Vector

Function Type of Operation

clear() List operation.

value_comp()
key_comp()

Comparison operations.

count()
upper_bound()
lower_bound()
equal_range()

Map operations

max_size() Size and capacity.
610

IT_HashMap Template Class
Summary of IT_HashMap Operations

Overview This section provides a brief summary of the types and operations supported by
the IT_HashMap template type. Note that the set of supported types and
operations differs slightly from std::map. They are described in the following
categories:

• Member types.

• Iterators.

• Element access.

• Map operations.

• List operations.

• Other operations.

Member types Table 53 lists the member types defined in IT_HashMap<T>.

Table 53: Member Types Defined in IT_HashMap<T>

Member Type Description

key_type Type of the hash key.

data_type Type of the hash value.

value_type Type of element—a (key, value) pair).

size_type Type of subscripts.

difference_type Type of difference between iterators.

iterator Behaves like value_type*.

const_iterator Behaves like const value_type*.

reference_type Behaves like value_type&.

const_reference_type Behaves like const value_type&.
 611

CHAPTER 9 | Artix Data Types
Iterators Table 54 lists the IT_HashMap member functions returning iterators.

Element access Table 55 lists the IT_HashMap element access operations.

Map operations Table 56 lists the IT_HashMap map operations.

List operations Table 57 lists the IT_HashMap list operations.

Table 54: Iterator Member Functions of IT_HashMap<T>

Iterator Member Function Description

begin() Points to first element.

end() Points to last element.

Table 55: Element Access Operations for IT_HashMap<T>

Element Access Operation Description

[] Subscripting. Use a hash key as the subscript.

Table 56: Map Operations for IT_HashMap<T>

Map Operation Description

find(k) Returns an iterator to the element with the key, k.

Table 57: List Operations for IT_HashMap<T>

List Operations Description

insert(v) Insert a (key, value) pair into the hash map.

insert(first,last) Insert (key, value) pairs from [first:last[from the given sequence.

erase(p) Remove element at p.

erase(k) Remove element identified by the key, k.

erase(first,last) Erase [first:last[.
612

IT_HashMap Template Class
Other operations Table 58 lists the other operations supported by IT_HashMap.

Table 58: Other Operations for IT_HashMap<T>

Operation Description

size() Number of elements.

empty() Is the container empty?

swap() Swap all the elements between two hash maps.

== Test hash maps for equality (member-wise).
 613

CHAPTER 9 | Artix Data Types
Unsupported XML Schema Constructs in
Artix

Overview The following XML schema constructs are currently not supported in Artix:

• Built-in types:

♦ xs:NOTATION

♦ xs:IDREF

♦ xs:IDREFS

♦ xs:ENTITY

♦ xs:ENTITIES

• id attribute on schema constructs, wherever it is applicable.

• xs:anyAttribute

♦ Supported only for SOAP binding.

♦ Not supported in xs:attributeGroup.

• xs:anySimpleType

• xs:attribute

♦ form attribute.

• xs:complexType

♦ mixed, final, and block attributes.

♦ simpleContent/restriction.

♦ complexContent/restriction.

• xs:element

♦ final, block, fixed, default and abstract attributes.

• xs:field

• xs:group

♦ minOccurs, maxOccurs on local groups.

♦ all inside a group.

• xs:key

• xs:keyref
614

Unsupported XML Schema Constructs in Artix
• xs:notation

• xs:redefine

• xs:selector

• xs:simpleType

♦ Some facet restrictions.

♦ final attribute.

• xs:unique
 615

CHAPTER 9 | Artix Data Types
616

CHAPTER 10

Artix IDL to C++
Mapping
This chapter describes how Artix maps IDL to C++; that is, the
mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to C++ (using the
WSDL-to-C++ compiler).

In this chapter This chapter discusses the following topics:

Introduction to IDL Mapping page 618

IDL Basic Type Mapping page 620

IDL Complex Type Mapping page 622

IDL Module and Interface Mapping page 631
 617

CHAPTER 10 | Artix IDL to C++ Mapping
Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-C++ mapping. Mapping IDL
to C++ in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you

could map a file, SampleIDL.idl, to a WSDL contract, SampleIDL.wsdl,

using the following command:

idl -wsdl SampleIDL.idl

2. Map the generated WSDL contract to C++ using the WSDL-to-C++

compiler. For example, you could generate C++ stub code from the

SampleIDL.wsdl file using the following command:

wsdltocpp SampleIDL.wsdl

For a detailed discussion of these command-line utilities, see the Artix User’s
Guide.

Alternative C++ mappings If you are already familiar with CORBA technology, you will know that there is
an existing standard for mapping IDL to C++ directly, which is defined by the
Object Management Group (OMG). Hence, two alternatives exist for mapping
IDL to C++, as follows:

• Artix IDL-to-C++ mapping—this is a two stage mapping, consisting of

IDL-to-WSDL and WSDL-to-C++. It is a Progress-proprietary mapping.

• CORBA IDL-to-C++ mapping—as specified in the OMG C++ Language

Mapping document (http://www.omg.org). This mapping is used, for

example, by the Progress’s Orbix.
618

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping
These alternative approaches are illustrated in Figure 31.

The advantage of using the Artix IDL-to-C++ mapping in an application is that it
removes the CORBA dependency from your source code. For example, a server
that implements an IDL interface using the Artix IDL-to-C++ mapping can also
interoperate with other Web service protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix C++ mapping:

• wchar.

• wstring.

• long double.

• Value types.

• Boxed values.

• Local interfaces.

• Abstract interfaces.

• forward-declared interfaces.

Figure 31: Artix and CORBA Alternatives for IDL to C++ Mapping

IDL File

WSDL
Contract

Artix
C++

Stubs

CORBA
C++

Stubs

Artix

CORBA

IDL-to-WSDL

IDL-to-C++

WSDL-to-C++
 619

CHAPTER 10 | Artix IDL to C++ Mapping
IDL Basic Type Mapping

Overview Table 59 shows how IDL basic types are mapped to WSDL and then to C++.

Table 59: Artix Mapping of IDL Basic Types to C++

IDL Type WSDL Schema Type C++ Type

any xsd:anyType IT_Bus::AnyHolder

boolean xsd:boolean IT_Bus::Boolean

char xsd:byte IT_Bus::Byte

string xsd:string IT_Bus::String

wchar xsd:string IT_Bus::String

wstring xsd:string IT_Bus::String

short xsd:short IT_Bus::Short

long xsd:int IT_Bus::Int

long long xsd:long IT_Bus::Long

unsigned short xsd:unsignedShort IT_Bus::UShort

unsigned long xsd:unsignedInt IT_Bus::UInt

unsigned long long xsd:unsignedLong IT_Bus::ULong

float xsd:float IT_Bus::Float

double xsd:double IT_Bus::Double

long double Not supported Not supported

octet xsd:unsignedByte IT_Bus::UByte

fixed xsd:decimal IT_Bus::Decimal

Object wsa:EndpointReferenceType WS_Addressing::EndpointRefere

nceType
620

IDL Basic Type Mapping
Mapping for string The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records the
original IDL type in the CORBA binding description (that is, within the scope of
the <wsdl:binding> </wsdl:binding> tags). Hence, whenever an xsd:string
is sent over a CORBA binding, it is automatically converted back to the original
IDL type (string, wchar, or wstring).
 621

CHAPTER 10 | Artix IDL to C++ Mapping
IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to WSDL
and then to C++:

• enum type.

• struct type.

• union type.

• sequence types.

• array types.

• exception types.

• typedef of a simple type.

• typedef of a complex type.

enum type Consider the following definition of an IDL enum type, SampleTypes::Shape:

The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to a WSDL
restricted simple type, SampleTypes.Shape, as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>
622

IDL Complex Type Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Shape type to a C++ class,
SampleTypes_Shape, as follows:

The value of the enumeration type can be accessed and modified using the
get_value() and set_value() member functions.

Programming with the Enumeration Type

For details of how to use the enumeration type in C++, see “Deriving Simple
Types by Restriction” on page 451.

union type Consider the following definition of an IDL union type, SampleTypes::Poly:

The IDL-to-WSDL compiler maps the SampleTypes::Poly union to an XML
schema choice complex type, SampleTypes.Poly, as follows:

class SampleTypes_Shape : public IT_Bus::AnySimpleType
{
 public:
 SampleTypes_Shape();
 SampleTypes_Shape(const IT_Bus::String & value);
 ...
 void set_value(const IT_Bus::String & value);
 const IT_Bus::String & get_value() const;
};

// IDL
module SampleTypes {
 union Poly switch(short) {
 case 1: short theShort;
 case 2: string theString;
 };
 ...
};

<xsd:complexType name="SampleTypes.Poly">
 <xsd:choice>
 <xsd:element name="theShort" type="xsd:short"/>
 <xsd:element name="theString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>
 623

CHAPTER 10 | Artix IDL to C++ Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Poly type to a C++ class,
SampleTypes_Poly, as follows:

The value of the union can be modified and accessed using the
getUnionMember() and setUnionMember() pairs of functions. The union
discriminator can be accessed through the get_discriminator() and
get_discriminator_as_uint() functions.

Programming with the Union Type

For details of how to use the union type in C++, see “Choice Complex Types”
on page 468.

// C++
class SampleTypes_Poly : public IT_Bus::ChoiceComplexType
{
 public:
 ...
 const IT_Bus::Short gettheShort() const;
 void settheShort(const IT_Bus::Short& val);

 const IT_Bus::String& gettheString() const;
 void settheString(const IT_Bus::String& val);

 enum PolyDiscriminator
 {
 theShort,
 theString,
 Poly_MAXLONG=-1L
 } m_discriminator;

 PolyDiscriminator get_discriminator() const { ... }
 IT_Bus::UInt get_discriminator_as_uint() const { ... }
 ...
};
624

IDL Complex Type Mapping
struct type Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

The WSDL-to-C++ compiler maps the SampleTypes.SampleStruct type to a
C++ class, SampleTypes_SampleStruct, as follows:

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
 ...
};

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SampleStruct : public
IT_Bus::SequenceComplexType

{
 public:
 SampleTypes_SampleStruct();
 SampleTypes_SampleStruct(const SampleTypes_SampleStruct&

copy);
 ...
 const IT_Bus::String & gettheString() const;
 IT_Bus::String & gettheString();
 void settheString(const IT_Bus::String & val);

 const IT_Bus::Int & gettheLong() const;
 IT_Bus::Int & gettheLong();
 void settheLong(const IT_Bus::Int & val);
};
 625

CHAPTER 10 | Artix IDL to C++ Mapping
The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of functions.

Programming with the Struct Type

For details of how to use the struct type in C++, see “Sequence Complex Types”
on page 465.

sequence types Consider the following definition of an IDL sequence type,
SampleTypes::SeqOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SeqOfStruct sequence to
a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.SeqOfStruct type to a
C++ class, SampleTypes_SeqOfStruct, as follows:

The SampleTypes_SeqOfStruct class is an Artix C++ array type (based on the
IT_Vector template). Hence, the array class has an API similar to the
std::vector type from the C++ Standard Template Library.

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SeqOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_SeqOfStruct_item_qname, 0, -1>

{
 public:
 ...
};
626

IDL Complex Type Mapping
Programming with Sequence Types

For details of how to use sequence types in C++, see “Arrays” on page 499 and
“IT_Vector Template Class” on page 602.

array types Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct array to a
WSDL sequence type with occurrence constraints, SampleTypes.ArrOfStruct,
as follows:

The WSDL-to-C++ compiler maps the SampleTypes.ArrOfStruct type to a
C++ class, SampleTypes_ArrOfStruct, as follows:

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the IT_Bus::ArrayT base class uses the bounds
specified in the IDL.

// IDL
module SampleTypes {
 typedef SampleStruct ArrOfStruct[10];
 ...
};

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_ArrOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_ArrOfStruct_item_qname, 10, 10>

{
 ...
};
 627

CHAPTER 10 | Artix IDL to C++ Mapping
The SampleTypes_ArrOfStruct class is an Artix C++ array type (based on the
IT_Vector template). The array class has an API similar to the std::vector
type from the C++ Standard Template Library, except that the size of the vector
is restricted to the specified array length, 10.

Programming with Array Types

For details of how to use array types in C++, see “Arrays” on page 499 and
“IT_Vector Template Class” on page 602.

exception types Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

The IDL-to-WSDL compiler maps the SampleTypes::GenericExc exception to
a WSDL sequence type, SampleTypes.GenericExc, and to a WSDL fault
message, _exception.SampleTypes.GenericExc, as follows:

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExc"/>
...
<message name="_exception.SampleTypes.GenericExc">
 <part name="exception"

element="xsd1:SampleTypes.GenericExc"/>
</message>
628

IDL Complex Type Mapping
The WSDL-to-C++ compiler maps the SampleTypes.GenericExc and
_exception.SampleTypes.GenericExc types to C++ classes,
SampleTypes_GenericExc and _exception_SampleTypes_GenericExc, as
follows:

Programming with Exceptions in Artix

For an example of how to initialize, throw and catch a WSDL fault exception,
see “User-Defined Exceptions” on page 160.

typedef of a simple type Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias:

The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias typedef
directory to the type, xsd:float.

// C++
class SampleTypes_GenericExc : public

IT_Bus::SequenceComplexType
{
 public:
 SampleTypes_GenericExc();
 ...
 const IT_Bus::String & getreason() const;
 IT_Bus::String & getreason();
 void setreason(const IT_Bus::String & val);
};
...
class _exception_SampleTypes_GenericExcException : public

IT_Bus::UserFaultException
{
 public:
 _exception_SampleTypes_GenericExcException();
 ...
 const SampleTypes_GenericExc & getexception() const;
 SampleTypes_GenericExc & getexception();
 void setexception(const SampleTypes_GenericExc & val);
 ...
};

// IDL
module SampleTypes {
 typedef float FloatAlias;
 ...
};
 629

CHAPTER 10 | Artix IDL to C++ Mapping
The WSDL-to-C++ compiler then maps the xsd:float type directly to the
IT_Bus::Float C++ type. Hence, no C++ typedef is generated for the float
type.

typedef of a complex type Consider the following IDL typedef that defines an alias of a struct,
SampleTypes::SampleStructAlias:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStructAlias
typedef directly to the plain, unaliased SampleTypes.SampleStruct type.

The WSDL-to-C++ compiler then maps the SampleTypes.SampleStruct
WSDL type directly to the SampleTypes::SampleStruct C++ type. Hence, no
C++ typedef is generated for this struct type. Instead of a typedef, the C++
mapping uses the original, unaliased type.

// IDL
module SampleTypes {
 typedef SampleStruct SampleStructAlias;
 ...
};

Note: The typedef of an IDL sequence or an IDL array is treated as a special
case, with a specific C++ class being generated to represent the sequence or
array type.
630

IDL Module and Interface Mapping
IDL Module and Interface Mapping

Overview This section describes the Artix C++ mapping for the following IDL constructs:

• Module mapping.

• Interface mapping.

• Object reference mapping.

• Operation mapping.

• Attribute mapping.

Module mapping An IDL identifier appearing within the scope of an IDL module,
ModuleName::Identifier, maps to a C++ identifier of the form
ModuleName_Identifier. That is, the IDL scoping operator, ::, maps to an
underscore, _, in C++.

Although IDL modules do not map to namespaces under the Artix C++
mapping, it is possible nevertheless to put generated C++ code into a namespace
using the -n switch to the WSDL-to-C++ compiler (see “Generating code from
the command line” on page 715). For example, if you pass a namespace, TEST,
to the WSDL-to-C++ -n switch, the ModuleName::Identifier IDL identifier
would map to TEST::ModuleName_Identifier.

Interface mapping An IDL interface, InterfaceName, maps to a C++ class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName::InterfaceName, the interface maps to the
ModuleName_InterfaceName C++ class.

If an IDL data type, TypeName, is defined within the scope of an IDL interface,
that is ModuleName::InterfaceName::TypeName, the type maps to the
ModuleName_InterfaceName_TypeName C++ class.
 631

CHAPTER 10 | Artix IDL to C++ Mapping
Object reference mapping When an IDL interface is used as an operation parameter or return type, it is
mapped to the WS_Addressing::EndpointReferenceType C++ type.

For example, consider an operation, get_foo(), that returns a reference to a Foo
interface as follows:

The get_foo() IDL operation then maps to the following C++ function:

Note that this mapping is very different from the OMG IDL-to-C++ mapping. In
the Artix mapping, the get_foo() operation does not return a pointer to a Foo
proxy object. Instead, you must construct the Foo proxy object in a separate step,
by passing the WS_Addressing::EndpointReferenceType object into the
FooClient constructor.

See “Endpoint References” on page 199 for more details.

// IDL
interface Foo {};

interface Bar {
 Foo get_foo();
};

// C++
void get_foo(
 WS_Addressing::EndpointReferenceType & var_return
) IT_THROW_DECL((IT_Bus::Exception));
632

IDL Module and Interface Mapping
Operation mapping Example 248 shows two IDL operations defined within the SampleTypes::Foo
interface. The first operation is a regular IDL operation, test_op(), and the
second operation is a oneway operation, test_oneway().

The operations from the preceding IDL, Example 248 on page 633, map to C++
as shown in Example 249,

Example 248: Example IDL Operations

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 SampleStruct test_op(
 in SampleStruct in_struct,
 inout SampleStruct inout_struct,
 out SampleStruct out_struct
) raises (GenericExc);

 oneway void test_oneway(in string in_str);
 };
};

Example 249: Mapping IDL Operations to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void test_op(
 const TEST::SampleTypes_SampleStruct & in_struct,
 TEST::SampleTypes_SampleStruct & inout_struct,
 TEST::SampleTypes_SampleStruct & var_return,
 TEST::SampleTypes_SampleStruct & out_struct
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void test_oneway(
 const IT_Bus::String & in_str
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
 633

CHAPTER 10 | Artix IDL to C++ Mapping
The preceding C++ operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type void. If

a return value is defined in IDL, it is mapped as an out parameter,

var_return.

The order of parameters in the C++ function signature, test_op(), is

determined as follows:

♦ First, the in and inout parameters appear in the same order as in IDL,

ignoring the out parameters.

♦ Next, the return value appears as the parameter, var_return (with

the same semantics as an out parameter).

♦ Finally, the out parameters appear in the same order as in IDL,

ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward, because

a oneway operation can have only in parameters and a void return type.

Attribute mapping Example 250 shows two IDL attributes defined within the SampleTypes::Foo
interface. The first attribute is readable and writable, str_attr, and the second
attribute is readonly, struct_attr.

The attributes from the preceding IDL, Example 250 on page 634, map to C++
as shown in Example 251,

Example 250: Example IDL Attributes

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 attribute string str_attr;
 readonly attribute SampleStruct struct_attr;
 };
};

Example 251: Mapping IDL Attributes to C++

// C++
class SampleTypes_Foo
{

634

IDL Module and Interface Mapping
The preceding C++ attribute signatures can be explained as follows:

1. A normal IDL attribute, AttributeName, maps to a pair of accessor and

modifier functions in C++, _get_AttributeName(),

_set_AttributeName().

2. An IDL readonly attribute, AttributeName, maps to a single accessor

function in C++, _get_AttributeName().

 public:
 ...

1 virtual void _get_str_attr(
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

 virtual void _set_str_attr(
 const IT_Bus::String & _arg
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void _get_struct_attr(
 TEST::SampleTypes_SampleStruct & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};

Example 251: Mapping IDL Attributes to C++
 635

CHAPTER 10 | Artix IDL to C++ Mapping
636

 CHAPTER 11

Reflection
Artix provides a reflection API which, analogously to Java
reflection, enables you to unravel the structure of an Artix data type
without having advance knowledge of it.

In this chapter This chapter discusses the following topics:

Introduction to Reflection page 638

The IT_Bus::Var Template Type page 641

Reflection API page 645

Reflection Example page 672
 637

CHAPTER 11 | Reflection
Introduction to Reflection

Overview Artix reflection provides you with a way of representing Artix data types such
that they are self-describing. Using the reflection API, you can employ recursive
descent parsing to process any data type (whether built-in or user-defined),
without knowing about the data type in advance.

The Artix reflection API is useful in those cases where you need to write
general-purpose code to process Artix data types. If you are familiar with Java or
CORBA, you probably recognize that Artix reflection offers functionality
similar to that of Java reflection and CORBA DynamicAny.

C++ reflection class In C++, reflection objects are represented by the IT_Reflect::Reflection base
class and all of the classes derived from it—see “Overview of the Reflection
API” on page 646 for more details.

Enabling reflection on generated
classes

To enable reflection support on the C++ classes generated from XML schema
types, you must pass the -reflect flag to the wsdltocpp utility.

Converting a user-defined type to
a Reflection

To convert any XML schema type to an IT_Bus::Reflection instance, call one
of the following IT_Bus::AnyType::get_reflection() functions:

User-defined types always inherit from IT_Bus::AnyType and therefore also
support the get_reflection() function.

// C++
IT_Reflect::Reflection* get_reflection()
 IT_THROW_DECL((IT_Reflect::ReflectException));

const IT_Reflect::Reflection* get_reflection() const
 IT_THROW_DECL((IT_Reflect::ReflectException));
638

Introduction to Reflection
Converting a built-in type to a
Reflection

To convert a built-in type (such as IT_Bus::Int) to an IT_Bus::Reflection
instance, construct an IT_Reflect::ValueRef<T> object (which inherits from
IT_Bus::Reflection). For example, you can convert an integer, IT_Bus::Int,
to a reflection object as follows:

Converting a Reflection to an
AnyType

To convert an IT_Bus::Reflection instance to an XML schema type
(represented by the IT_Bus::AnyType base type), call one of the following
IT_Reflect::Reflection::get_reflected() functions:

Type descriptions Currently, the Artix reflection API does not provide any data type that
completely encapsulates an XML type description. However, some type
information is implied in the structure of a Reflection object. In particular,
Reflection objects support the get_type_kind() function, which has the
following signature:

// C++
IT_Bus::AnyType::Kind get_type_kind() const

IT_THROW_DECL((ReflectException));

The IT_Bus::AnyType::Kind type is an enumeration, defined as follows:

// C++
IT_Bus::Int i = ...;
IT_Reflect::ValueRef<IT_Bus::Int> reflect_i(&i);

// C++
const IT_Bus::AnyType& get_reflected() const

IT_THROW_DECL((ReflectException));

IT_Bus::AnyType& get_reflected()
IT_THROW_DECL((ReflectException));

Example 252: Definition of the IT_Bus::AnyType::Kind Enumeration

// C++
namespace IT_Bus {
 class AnyType {
 public:
 enum Kind
 {
 NONE, // AnyType::get_kind() will never return this.
 BUILT_IN, // built-in type
 639

CHAPTER 11 | Reflection
Parsing reflection objects The Artix reflection API is designed to let you parse the C++ representation of
XML data types. Starting with an instance of a user-defined type in C++, you
can convert this instance into an IT_Bus::Reflection instance (by calling
get_reflection()) and use recursive descent parsing to process the returned
reflection instance.

For example, you could use this functionality to print out the contents of an
arbitrary Artix data type (see “Reflection Example” on page 672) or to convert
an Artix data type into another data format.

 SIMPLE, // simpleType restriction
 SEQUENCE,
 ALL,
 CHOICE,
 SIMPLE_CONTENT,
 ELEMENT_LIST,
 SOAP_ENC_ARRAY,
 COMPLEX_CONTENT,
 NILLABLE,
 ANY_HOLDER,
 ANY, // anyType restriction.
 ANY_LIST,
 SIMPLE_TYPE_LIST,
 SIMPLE_TYPE_UNION,
 TYPE_LIST,
 };
 ...
 };
};

Example 252: Definition of the IT_Bus::AnyType::Kind Enumeration
640

The IT_Bus::Var Template Type
The IT_Bus::Var Template Type

Overview The IT_Bus::Var<T> template class is a smart pointer type that can be used to
manage memory for reflection objects. Because functions in the reflection API
generally return pointers to objects (which the caller is responsible for deleting),
you have to exercise some care in order to avoid memory leaks.

The simplest way to manage memory for a reflection type, T, is to use the
IT_Bus::Var<T> smart pointer type to reference the objects of type T. The
IT_Bus::Var<T> type uses reference counting to manage the memory.

Reference counted objects Objects referenced by IT_Bus::Var<T> must be reference counted. A reference
counted object is an instance of a class that derives from
IT_Bus::RefCountedBase, having the following properties:

• The initial reference count is 1.

• The reference count is incremented by calling _add_ref().

• The reference count is decremented by calling _remove_ref().

• When the reference count reaches zero, the object is deleted.

Figure 32 illustrates how the reference count is affected by the _add_ref() and
_remove_ref() functions.

Figure 32: Reference Counted Object

Reference
counted object

1

2

0

_add_ref()

_remove_ref()
 641

CHAPTER 11 | Reflection
Var template class Table 60 shows the basic operations supported by the IT_Bus::Var<T> template
class.

Assigning a plain pointer to a Var When a plain pointer is assigned to a Var, the Var type takes ownership of one
reference count unit and leaves the reference count unchanged. For example,
suppose that Foo is a reference counted class (that is, Foo inherits from
IT_Bus::RefCountedBase). The following example shows what happens when
a plain pointer to Foo, plain_p, is assigned to a Var type, fV.

Table 60: Basic IT_Bus::Var<T> Operations

Operation Description

= The assignment operator distinguishes between the
following kinds of assignment:

• Assigning a plain pointer to a Var.

• Assigning a Var to a Var.

* Dereferences the Var (returning the referenced object).

-> Accesses the members of the referenced object.

T* get() Returns a plain pointer to the referenced object. The
reference count is unchanged.

T* release() Returns a plain pointer to the referenced object and gives
up ownership of the object (the Var resets to null). The
reference count is unchanged.

// C++
#include <it_bus/var.h>
...
{
 Foo* plain_p = new Foo(); // Initially, ref count = 1

 // Assign the plain pointer, plain_p, to the Var, f_v
 IT_Bus::Var<Foo> f_v = plain_p; // Ref count = 1

 // f_v automatically decreases ref count to 0 at end of scope
}

642

The IT_Bus::Var Template Type
There is no need to delete the plain_p pointer explicitly. The f_v destructor
automatically reduces the reference count by 1 when it comes to the end of the
current scope, resulting in the destruction of the original Foo object.

Figure 33 shows the state of the variables in the preceding example just after the
assignment to the Var, f_v.

Assigning a Var to a Var When a Var is assigned to a Var, the reference count is increased by one. For
example, suppose that Foo is a reference counted class (that is, Foo inherits from
IT_Bus::RefCountedBase). The following example shows what happens when
a Var pointer, f1_v, is copied twice, into f2_v and f3_v.

The use of Var types ensures that the original Foo object is deleted at the end of
the current scope (because the reference count goes to 0).

Figure 33: After Assigning a Plain Pointer to a Var

Note: You should never attempt to delete a reference counted object directly.
To ensure clean-up, you can either assign the reference counted object to a Var
or call _remove_ref().

1

plain_p

f_v

// C++
#include <it_bus/var.h>
...
{
 IT_Bus::Var<Foo> f1_v = new Foo(); // Initially, ref count =

1

 IT_Bus::Var<Foo> f2_v = f1_v; // Ref count = 2
 IT_Bus::Var<Foo> f3_v = f1_v; // Ref count = 3

 // Vars automatically decrease ref count to 0 at end of scope
}

 643

CHAPTER 11 | Reflection
Figure 34 shows the state of the variables in the preceding example just after the
assignment to the Var, f3_v.

Casting from a plain pointer to a
Var

To cast a plain pointer to a Var, use the standard C++ cast operators:
dynamic_cast<T>, static_cast<T>, and const_cast<T>.

Casting from a Var to a Var To cast a Var to a Var, Artix provides the following casting operators:

These operate analogously to the standard C++ cast operators,
dynamic_cast<T>, static_cast<T>, and const_cast<T>, with the additional
side effect that the reference count increases by one (the casting operators call
_add_ref() on the referenced object).

Examples of casting For some examples of using the IT_Bus::dynamic_cast_var<T> operator, see
“Reflection Example” on page 672.

Figure 34: A Reference Counted Object Referenced by Three Vars

3f2_v

f1_v

f3_v

// C++
IT_Bus::dynamic_cast_var<T>()
IT_Bus::static_cast_var<T>()
IT_Bus::const_cast_var<T>()
644

Reflection API
Reflection API

Overview This section briefly describes the Artix reflection API. The header files for the
classes described in this section are located in
ArtixInstallDir/include/it_bus/reflect.

In this section This section contains the following subsections:

Overview of the Reflection API page 646

IT_Reflect::Value<T> page 648

IT_Reflect::All page 652

IT_Reflect::Sequence page 655

IT_Reflect::Choice page 658

IT_Reflect::SimpleContent page 661

IT_Reflect::ComplexContent page 663

IT_Reflect::ElementList page 666

IT_Reflect::SimpleTypeList page 668

IT_Reflect::Nillable page 669
 645

CHAPTER 11 | Reflection
Overview of the Reflection API

Overview Artix provides a collection of reflection classes to parse the contents of XML
schema data objects. Figure 35 gives an overview of the inheritance hierarchy
for this C++ reflection API.

Figure 35: Reflection API Inheritance Hierarchy

IT_Reflect::Reflection

+get_type_name()
+get_type_kind()
+get_reflected()

IT_Reflect::ModelGroup

+get_element_count()
+get_element_name()
+get_element()
+use_element()

IT_Reflect::All

IT_Reflect::Sequence

IT_Reflect::Choice

+get_current_element()
+set_no_element()

IT_Reflect::ComplexType

+get_attribute_count()
+get_attribute_name()
+get_attribute_value()

IT_Reflect::SimpleContent

+get_value()
+use_value()

IT_Reflect::ComplexContent

+get_base()
+use_base()
+get_extension()
+use_extension()

IT_Reflect::SimpleType

IT_Reflect::Value<T>

+get_value()
+set_value()
+get_value_kind()

IT_Reflect::ElementList

+get_list_max_occurs()
+get_list_min_occurs()
+get_list_size()
+set_list_size()
+get_element()
+use_element()

IT_Reflect::Nillable

+get_is_nil()
+set_is_nil()
+get_value()
+use_value()

IT_Reflect::DerivedSimpleType

+get_base()
+use_base()

IT_Reflect::BuiltInType

+get_value_kind()
646

Reflection API
Base classes The following classes in Figure 35 on page 646 are used as base classes:

Leaf classes The following classes in Figure 35 on page 646 are the leaf classes for the
reflection API:

IT_Reflect::Reflection Base class for all reflection classes.

IT_Reflect::SimpleType Base class for all built-in and restricted
simple types.

IT_Reflect::BuiltInType Base class for all built-in types.

IT_Reflect::ComplexType Base class for all complex types (types with
attributes) except ComplexContent.

IT_Reflect::ModelGroup Base class for xsd:all, xsd:sequence and
xsd:choice types.

IT_Reflect::Value<T> Template class for built-in types.

IT_Reflect::DerivedSimpleType Reflection class for restricted simple types.

IT_Reflect::All Reflection class for the xsd:all type.

IT_Reflect::Sequence Reflection class for the xsd:sequence type.

IT_Reflect::Choice Reflection class for the xsd:choice type.

IT_Reflect::SimpleContent Reflection class for xsd:simpleContent
types.

IT_Reflect::ComplexContent Reflection class for xsd:complexContent
types.

IT_Reflect::ElementList Reflection class representing an element
declared with non-default minOccurs or
non-default maxOccurs properties.

IT_Reflect::Nillable Reflection class representing an element
declared with nillable="true".
 647

CHAPTER 11 | Reflection
IT_Reflect::Value<T>

Overview The IT_Reflect::Value<T> template class is used to represent built-in types.

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::Value<T> template class.

• IT_Reflect::Value<T> member functions.

• Example.

Sample schema Example 253 shows an example of schema element defined to be of simple type,
xsd:string.

IT_Reflect::Value<T> template
class

The IT_Reflect::Value<T> template class can be used to define a reflection
class for each of the standard built-in schema types. For example, you would
declare IT_Reflect::Value<IT_Bus::Boolean> to hold an xsd:boolean,
IT_Reflect::Value<IT_Bus::Short> to hold an xsd:short, and
IT_Reflect::Value<IT_Bus::String> to hold an xsd:string.

IT_Reflect::Value<T> member
functions

Example 254 shows the IT_Reflect::Value<T> member functions, which
enable you to read and modify the value of a simple type using the get_value()
and set_value() functions.

Example 253: Simple Type Example Element

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <element name="string_elem" type="xsd:string"/>
</schema>

Example 254: IT_Reflect::Value<T> Member Functions

// C++

// Member functions defined in IT_Reflect::Value<T>
648

Reflection API
const T& get_value() const IT_THROW_DECL(());

T& get_value() IT_THROW_DECL(());

void set_value(const T& value) IT_THROW_DECL(());

IT_Reflect::BuiltInType::ValueKind
get_value_kind() const IT_THROW_DECL(());

// Member functions inherited from IT_Reflect::BuiltInType
IT_Reflect::BuiltInType::ValueKind
get_value_kind() const IT_THROW_DECL(()) = 0;

void copy(const IT_Reflect::BuiltInType* other)
IT_THROW_DECL((IT_Reflect::ReflectException));

IT_Bus::Boolean equals(const IT_Reflect::BuiltInType* other)
const IT_THROW_DECL(());

// Member functions inherited from IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());

IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));

Example 254: IT_Reflect::Value<T> Member Functions
 649

CHAPTER 11 | Reflection
Identifying a built-in type The IT_Reflect::BuiltInType class (base class of IT_Reflect::Value<T>)
supports two functions that return type information, as follows:

When parsing a reflection object containing a built-in type, you can use the
preceding functions as follows:

get_type_kind()

This function returns the value, BUILT_IN, for all built-in types. Hence, it can be
used to determine that the reflection object is a built-in type, but it does not
identify exactly which kind of built-in type.

get_value_kind()

This function tells you the precise kind of built-in type. For example, it returns
FLOAT, if the reflection object is of xsd:float type, or ANY_HOLDER, if the
reflection object is of xsd:anyType type.

Atomic built-in types For a complete list of supported atomic types, see Table 31 on page 417.

Other built-in types For the list of supported non-atomic types, see Table 61.

//C++
IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

IT_Reflect::BuiltInType::ValueKind
get_value_kind() const IT_THROW_DECL(()) = 0;

Table 61: Non-Atomic Built-In Types Supported by Reflection

Value Kind Schema Type C++ Type

ANYURI xsd:anyURI IT_Bus::AnyURI

ANY xsd:any IT_Bus::Any

ANY_LIST xsd:any (multiply occurring) IT_Bus::AnyList

ANY_HOLDER xsd:anyType IT_Bus::AnyHolder

REFERENCE wsa:EndpointReferenceType WS_Addressing::EndpointRefere

nceType
650

Reflection API
Example You can access and modify an xsd:string basic type as follows:

// C++
IT_Reflect::Value<IT_Bus::String>& v_str = // ...

// Read the string value.
cout << "Element string value = " << v_str.get_value() << endl;

// Change the string value.
v_str.set_value("New string value here.");
 651

CHAPTER 11 | Reflection
IT_Reflect::All

Overview The IT_Reflect::All reflection class represents the xsd:all type. This class
supports functions to access an unordered group of elements and functions to
access and modify attributes.

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::All member functions.

Sample schema Example 255 shows a sample schema for an xsd:all type.

IT_Reflect::All member functions Example 256 shows the IT_Reflect::All member functions, which enable you
to access and modify the contents and attributes of an xsd:all type.

Example 255: All Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="SimpleAll">
 <all>
 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </all>
 <attribute name="varAttrString" type="string"/>
 </complexType>
</schema>

Example 256: IT_Reflect::All Member Functions

// C++
// Member functions inherited from IT_Reflect::ModelGroup
const IT_Bus::QName& get_element_name(size_t i) const

IT_THROW_DECL(());

size_t get_element_count() const IT_THROW_DECL(());
652

Reflection API
IT_Bus::QName get_element_name(size_t i) const
IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_element(size_t i) const IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_element(const IT_Bus::QName& element_name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_element(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_element(
 const IT_Bus::QName& element_name
) IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::ComplexType
const IT_Bus::QName& get_attribute_name(size_t i) const

IT_THROW_DECL(());

size_t get_attribute_count() const IT_THROW_DECL(());

const IT_Reflect::Reflection*
get_attribute_value(size_t i) const

IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_attribute_value(const IT_Bus::QName& name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(const IT_Bus::QName& name)

IT_THROW_DECL((ReflectException));
// Member functions inherited from IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());

IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

Example 256: IT_Reflect::All Member Functions
 653

CHAPTER 11 | Reflection
const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));

Example 256: IT_Reflect::All Member Functions
654

Reflection API
IT_Reflect::Sequence

Overview The IT_Reflect::Sequence reflection class represents the xsd:sequence type.
This class supports functions to access an ordered group of elements and
functions to access and modify attributes.

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::Sequence member functions.

Sample schema Example 257 shows a sample schema for an xsd:sequence type.

Example 257: Sequence Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="SimpleStruct">
 <sequence>
 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 <attribute name="varAttrString" type="string"/>
 </complexType>
</schema>
 655

CHAPTER 11 | Reflection
IT_Reflect::Sequence member
functions

Example 258 shows the IT_Reflect::Sequence member functions, which
enable you to access and modify the contents and attributes of an xsd:sequence
type.

Example 258: IT_Reflect::Sequence Member Functions

// C++
// Member functions defined in IT_Reflect::Sequence
IT_Reflect::Reflection& get_element_at(size_t index)

IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection& get_element_at(size_t index) const
IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::ModelGroup
const IT_Bus::QName& get_element_name(size_t i) const

IT_THROW_DECL(());

size_t get_element_count() const IT_THROW_DECL(());

IT_Bus::QName get_element_name(size_t i) const
IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_element(size_t i) const IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_element(const IT_Bus::QName& element_name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_element(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_element(
 const IT_Bus::QName& element_name
) IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::ComplexType
const IT_Bus::QName& get_attribute_name(size_t i) const

IT_THROW_DECL(());

size_t get_attribute_count() const IT_THROW_DECL(());

const IT_Reflect::Reflection*
656

Reflection API
get_attribute_value(size_t i) const
IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_attribute_value(const IT_Bus::QName& name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(const IT_Bus::QName& name)

IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());

IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));

Example 258: IT_Reflect::Sequence Member Functions
 657

CHAPTER 11 | Reflection
IT_Reflect::Choice

Overview The IT_Reflect::Choice reflection class represents the xsd:choice type. This
class supports functions to access the choice element and functions to access and
modify attributes.

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::Choice member functions.

Sample schema Example 259 shows a sample schema for an xsd:choice type.

IT_Reflect::Choice member
functions

Example 260 shows the IT_Reflect::Choice member functions, which enable
you to access and modify the contents and attributes of an xsd:choice type.

Example 259: Choice Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="SimpleChoice">
 <choice>
 <element name="varFloat" type="float"/>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </choice>
 </complexType>
</schema>

Example 260: IT_Reflect::Choice Member Functions

// C++
// Member functions defined in IT_Reflect::Choice
IT_Bus::QName
get_element_name() const IT_THROW_DECL(());

// Member functions inherited from IT_Reflect::ModelGroup
const IT_Bus::QName& get_element_name(size_t i) const

IT_THROW_DECL(());
658

Reflection API
size_t get_element_count() const IT_THROW_DECL(());

IT_Bus::QName get_element_name(size_t i) const
IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_element(size_t i) const IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_element(const IT_Bus::QName& element_name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_element(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_element(
 const IT_Bus::QName& element_name
) IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::ComplexType
const IT_Bus::QName& get_attribute_name(size_t i) const

IT_THROW_DECL(());

size_t get_attribute_count() const IT_THROW_DECL(());

const IT_Reflect::Reflection*
get_attribute_value(size_t i) const

IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_attribute_value(const IT_Bus::QName& name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(const IT_Bus::QName& name)

IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());

Example 260: IT_Reflect::Choice Member Functions
 659

CHAPTER 11 | Reflection
IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));

Example 260: IT_Reflect::Choice Member Functions
660

Reflection API
IT_Reflect::SimpleContent

Overview The IT_Reflect::SimpleContent reflection class represents types defined
using the <xsd:simpleContent> tag. This class supports functions to access the
type’s value and functions to access and modify attributes. Simple content types
can be derived either by restriction or by extension from existing simple types
(see “Deriving a Complex Type from a Simple Type” on page 486 for more
details).

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::SimpleContent member functions.

Sample schema Example 261 shows a sample schema for an xsd:simpleContent type.

IT_Reflect::SimpleContent
member functions

Example 262 shows the IT_Reflect::SimpleContent member functions,
which enable you to access and modify the contents and attributes of an
xsd:simpleContent type.

Example 261: SimpleContent Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="Document">
 <simpleContent>
 <extension base="string">
 <attribute name="ID" type="string"/>
 </extension>
 </simpleContent>
 </complexType>
</schema>
 661

CHAPTER 11 | Reflection
Example 262: IT_Reflect::SimpleContent Member Functions

// C++
// Member functions defined in IT_Reflect::SimpleContent
IT_Reflect::Reflection*
use_value() IT_THROW_DECL(());

const IT_Reflect::Reflection*
get_value() const IT_THROW_DECL(());

// Member functions inherited from IT_Reflect::ComplexType
const IT_Bus::QName& get_attribute_name(size_t i) const

IT_THROW_DECL(());

size_t get_attribute_count() const IT_THROW_DECL(());

const IT_Reflect::Reflection*
get_attribute_value(size_t i) const

IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_attribute_value(const IT_Bus::QName& name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(const IT_Bus::QName& name)

IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());

IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));
662

Reflection API
IT_Reflect::ComplexContent

Overview The IT_Reflect::ComplexContent reflection class represents types defined
using the <xsd:complexContent> tag. This class supports functions to access
the type’s base contents and derived contents, as well as functions to access and
modify attributes. Complex content types can be derived by extension from
existing types (see “Deriving a Complex Type from a Complex Type” on
page 489 for more details).

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::ComplexContent member functions.

Sample schema Example 263 shows a sample schema for an xsd:complexContent type.

Example 263: ComplexContent Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexContent mixed="false">
 <extension base="tns:SimpleStruct">
 <sequence>
 <element name="varStringExt" type="string"/>
 <element name="varFloatExt" type="float"/>
 </sequence>
 <attribute name="attrString1" type="string"/>
 </extension>
 </complexContent>
</schema>
 663

CHAPTER 11 | Reflection
IT_Reflect::ComplexContent
member functions

Example 264 shows the IT_Reflect::SimpleContent member functions,
which enable you to access and modify the contents and attributes of an
xsd:complexContent type.

Example 264: IT_Reflect::ComplexContent Member Functions

// C++
// Member functions defined in IT_Reflect::ComplexContent
const IT_Reflect::Reflection*
get_base() const IT_THROW_DECL((IT_Reflect::ReflectException));

IT_Reflect::Reflection*
use_base() IT_THROW_DECL((IT_Reflect::ReflectException));

const IT_Reflect::Reflection* get_extension() const
IT_THROW_DECL((IT_Reflect::ReflectException));

IT_Reflect::Reflection*
use_extension() IT_THROW_DECL((IT_Reflect::ReflectException));

// Member functions inherited from IT_Reflect::ComplexType
const IT_Bus::QName& get_attribute_name(size_t i) const

IT_THROW_DECL(());

size_t get_attribute_count() const IT_THROW_DECL(());

const IT_Reflect::Reflection*
get_attribute_value(size_t i) const

IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_attribute_value(const IT_Bus::QName& name) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(size_t i) IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_attribute_value(const IT_Bus::QName& name)

IT_THROW_DECL((ReflectException));

// Member functions inherited from IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());
664

Reflection API
Testing for an extension If the complex content data type does not have an extension part, the
get_extension() and use_extension() functions return 0 (NULL pointer).

IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));

Example 264: IT_Reflect::ComplexContent Member Functions
 665

CHAPTER 11 | Reflection
IT_Reflect::ElementList

Overview The IT_Reflect::ElementList reflection class represents an element declared
with non-default minOccurs or non-default maxOccurs properties. Specifically,
if you call a reflection function that accesses an element, there are two possible
return values from that function, depending on the values of minOccurs and
maxOccurs:

It makes no difference whether minOccurs and maxOccurs are set explicitly or
get their values by default.

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::ElementList member functions.

Sample schema Example 265 shows a sample schema for an Artix array, which is represented as
an element list.

IT_Reflect::ElementList member
functions

Example 266 shows the IT_Reflect::ElementList member functions, which
enable you to access and modify the contents of an Artix array type.

minOccurs="1" maxOccurs="1" Returns the element directly.

All other values Returns IT_Reflect::ElementList.

Example 265: Artix Array Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="ArrayOfString">
 <sequence>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
</schema>
666

Reflection API
Example 266: IT_Reflect::ElementList Member Functions

// C++
// Member functions defined in IT_Reflect::ElementList
size_t get_list_max_occurs() const IT_THROW_DECL(());

size_t get_list_min_occurs() const IT_THROW_DECL(());

size_t get_list_size() const IT_THROW_DECL(());

void set_list_size(size_t size)
IT_THROW_DECL((ReflectException));

const IT_Reflect::Reflection*
get_element(size_t index) const

IT_THROW_DECL((ReflectException));

IT_Reflect::Reflection*
use_element(size_t index) IT_THROW_DECL((ReflectException));

// Member functions defined in IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());

IT_Bus::AnyType::Kind
get_type_kind() const IT_THROW_DECL(());

const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));
 667

CHAPTER 11 | Reflection
IT_Reflect::SimpleTypeList

Overview The IT_Reflect::SimpleTypeList class is fairly similar to the
IT_Reflect::ElementList class, except that the values in the list are restricted
to be of IT_Bus::SimpleType type. The elements of an
IT_Reflect::SimpleTypeList instance are accessed using the following
functions:

Example 267: get_item() and use_item() Functions from SimpleTypeList

// C++
const IT_Bus::SimpleType*
get_item(
 size_t index
) const IT_THROW_DECL((IT_Reflect::ReflectException)) = 0;

IT_Bus::SimpleType*
use_item(
 size_t index
) IT_THROW_DECL((IT_Reflect::ReflectException)) = 0;
668

Reflection API
IT_Reflect::Nillable

Overview The IT_Reflect::Nillable reflection class represents an element declared
with nillable="true". Specifically, if you call a reflection function that
accesses an element, the return values from that function, depend on the value of
nillable and on the values of minOccurs and maxOccurs, as follows:

It makes no difference whether minOccurs and maxOccurs are set explicitly or
get their values by default.

This subsection discusses the following topics:

• Sample schema.

• IT_Reflect::Nillable member functions.

Table 62: Effect of nillable, minOccurs and maxOccurs Settings

nillable minOccurs/maxOccurs Return Value

nillable="false" minOccurs="1" maxOccurs="1" Returns the element directly.

nillable="false" All other values Returns IT_Reflect::ElementList.

nillable="true" minOccurs="1" maxOccurs="1" Returns IT_Reflect::Nillable containing an
element directly.

nillable="true" All other values Returns an IT_Reflect::ElementList containing
a list of IT_Reflect::Nillables.
 669

CHAPTER 11 | Reflection
Sample schema Example 268 shows a sample schema for a sequence type with nillable elements.

IT_Reflect::Nillable member
functions

Example 269 shows the IT_Reflect::Nillable member functions, which
enable you to access and modify the contents of a nillable type.

Example 268: Sequence Type with Nillable Elements Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.iona.com/example">
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <complexType name="StructWithNillables">
 <sequence>
 <element name="varFloat" nillable="true"
 type="float"/>
 <element name="varInt" nillable="true" type="int"/>
 <element name="varString" nillable="true"
 type="string"/>
 <element name="varStruct" nillable="true"
 type="tns:SimpleStruct"/>
 </sequence>
 </complexType>
</schema>

Example 269: IT_Reflect::Nillable Member Functions

// C++
// Member functions defined in IT_Reflect::Nillable
IT_Bus::Boolean get_is_nil() const IT_THROW_DECL(());

void set_is_nil() IT_THROW_DECL(());

const IT_Reflect::Reflection*
get_value() const IT_THROW_DECL((IT_Reflect::ReflectException));

IT_Reflect::Reflection*
use_value() IT_THROW_DECL((ReflectException));

// Member functions defined in IT_Reflect::Reflection
const IT_Bus::QName&
get_type_name() const IT_THROW_DECL(());

IT_Bus::AnyType::Kind
670

Reflection API
get_type_kind() const IT_THROW_DECL(());

const IT_Bus::AnyType&
get_reflected() const IT_THROW_DECL(());

IT_Bus::AnyType&
get_reflected() IT_THROW_DECL(());

IT_Bus::AnyType*
clone() const IT_THROW_DECL((ReflectException));

Example 269: IT_Reflect::Nillable Member Functions
 671

CHAPTER 11 | Reflection
Reflection Example

Overview As an example of Artix reflection, this section describes a program that is
capable of printing the contents of any Artix data type (including built-in and
user-defined types). The code examples in this section are taken from the
print_random demonstration.

In this section This section contains the following subsections:

Print an IT_Bus::AnyType page 673

Print Atomic and Simple Types page 678

Print Sequence, Choice, and All Types page 683

Print SimpleContent Types page 686

Print ComplexContent Types page 688

Print Multiple Occurrences page 691

Print Nillables page 693
672

Reflection Example
Print an IT_Bus::AnyType

Overview This subsection describes the main print() function for the Printer class,
which has the following signature:

void Printer::print(const IT_Bus::AnyType& any);

This function enables you to print out any XML type in Artix, including built-in
types and user-defined types (for built-in types, you have to insert the data into
an IT_Bus::AnyHolder instance before calling print()). All user-defined types
and the IT_Bus::AnyHolder type derive from IT_Bus::AnyType.

The print(const IT_Bus::AnyType&) function immediately calls
IT_Bus::AnyType::get_reflection() to convert the AnyType to an
IT_Reflect::Reflection instance. Parsing and printing of the Reflection
instance is then performed by the print(const IT_Reflect::Reflection*)
function.

Code extract Example 270 shows a code extract from the Printer class, which shows the
top-level functions for printing an IT_Bus::AnyType instance using the Artix
Reflection API.

Example 270: Code Example for Printing an IT_Bus::AnyType Instance

// C++
#include "printer.h"
#include <it_bus/any_type.h>
#include <it_bus/reflect/complex_content.h>
#include <it_bus/reflect/complex_type.h>
#include <it_bus/reflect/element_list.h>
#include <it_bus/reflect/choice.h>
#include <it_bus/reflect/nillable.h>
#include <it_bus/reflect/reflection.h>
#include <it_bus/reflect/simple_content.h>
#include <it_bus/reflect/simple_type.h>
#include <it_bus/reflect/derived_simple_type.h>
#include <it_bus/reflect/built_in_type.h>
#include <it_bus/reflect/value.h>
#include <it_cal/iostream.h>
IT_USING_NAMESPACE_STD;
using namespace IT_Bus;

1 class Indenter
 673

CHAPTER 11 | Reflection
{
 public:
 Indenter(Printer* p) : m_p(p) { m_p->indent(); }
 ~Indenter() { m_p->outdent(); }
 private:
 Printer* m_p;
};

IT_ostream&
Printer::start_line()
{
 for (int i = 0; i < m_indent; ++i)
 {
 cout << " ";
 }
 return cout;
}

void
Printer::indent()
{
 m_indent++;
}

void
Printer::outdent()
{
 m_indent--;
}

void
2 Printer::print(

 const AnyType& any,
 int indent
)
{

3 Var<const IT_Reflect::Reflection>
reflection(any.get_reflection());

 Printer printer;
 printer.m_indent = indent;

4 printer.print(reflection.get());
}

Example 270: Code Example for Printing an IT_Bus::AnyType Instance
674

Reflection Example
Printer::Printer()
 :
 m_indent(0),
 m_in_list(IT_FALSE)
{
}

Printer::~Printer()
{
}

void
5 Printer::print(

 const IT_Reflect::Reflection* reflection
)
{
 assert(reflection != 0);

6 switch (reflection->get_type_kind())
 {
 case AnyType::BUILT_IN:
 print(IT_DYNAMIC_CAST(const IT_Reflect::BuiltInType*,

reflection));
 break;
 case AnyType::SIMPLE:

7 print(IT_DYNAMIC_CAST(const
IT_Reflect::DerivedSimpleType*, reflection));

 break;
 case AnyType::SEQUENCE:
 case AnyType::ALL:
 print(IT_DYNAMIC_CAST(const IT_Reflect::ModelGroup*,

reflection));
 break;
 case AnyType::CHOICE:
 print(IT_DYNAMIC_CAST(const IT_Reflect::Choice*,

reflection));
 break;
 case AnyType::SIMPLE_CONTENT:
 print(IT_DYNAMIC_CAST(const IT_Reflect::SimpleContent*,

reflection));
 break;
 case AnyType::ELEMENT_LIST:
 print(IT_DYNAMIC_CAST(const IT_Reflect::ElementList*,

reflection));
 break;
 case AnyType::COMPLEX_CONTENT:

Example 270: Code Example for Printing an IT_Bus::AnyType Instance
 675

CHAPTER 11 | Reflection
The preceding extract from the Printer class implementation can be explained
as follows:

1. The Indenter class, together with the Printer::start_line(),

Printer::indent(), and Printer::outdent() functions, are used by the

Printer class to produce the output in a neatly indented format.

2. The Printer::print(const IT_Bus::AnyType&) function is a static

member function that prints XML schema data types that inherit from

xsd:anyType (effectively, any XML type). This print() function is the

most important function exposed by the Printer class and you can use it to

print any XML type, irrespective of whether stub code for the type is

available or not.

3. The IT_Bus::AnyType instance, any, is converted to an

IT_Reflect::Reflection instance by calling get_reflection(). The

IT_Bus::Var<T> template type is just a reference counting smart pointer

type. See “The IT_Bus::Var Template Type” on page 641 for more details.

4. The reflection.get() call returns a pointer of

const IT_Reflect::Reflection* type, which can then be passed as the

argument to Printer::print(const IT_Reflect::Reflection*).

5. The Printer::print(const IT_Reflect::Reflection*) function is the

root print function for printing reflection instances. This print function

recursively iterates over the contents of the reflection instance, printing all

of its data.

 print(IT_DYNAMIC_CAST(const IT_Reflect::ComplexContent*,
reflection));

 break;
 case AnyType::NILLABLE:
 print(IT_DYNAMIC_CAST(const IT_Reflect::Nillable*,

reflection));
 break;

 default:
 String message(
 "<Unsupported type:

"+reflection->get_type_name().to_string()+">");
 throw Exception(message);
 }
}

Example 270: Code Example for Printing an IT_Bus::AnyType Instance
676

Reflection Example
6. The switch statement determines structure of the reflection object, based

on its type. The IT_Reflect::Reflection::get_type_kind() function

returns an enumeration of IT_Bus::AnyType::Kind type.

7. Cast the IT_Reflection::Reflection object to the appropriate type,

based on its kind. The IT_DYNAMIC_CAST(A,B) preprocessor macro is

equivalent to a conventional C++ dynamic_cast<T> operator.
 677

CHAPTER 11 | Reflection
Print Atomic and Simple Types

Overview This subsection describes the print() functions for printing XML simple types.
These functions have the following signatures:

void Printer::print(const IT_Reflect::BuiltInType*);
void Printer::print(const IT_Reflect::DerivedSimpleType*);

The IT_Reflect::SimpleType class is the base class for all simple types and
the following classes derive from SimpleType:

• IT_Reflect::BuiltInType—the base class for the

IT_Reflect::Value<T> types that reflect an XML built-in type. For

example, the IT_Reflect::Value<IT_Bus::Int> reflection type derives

from BuiltInType.

• IT_Reflect::DerivedSimpleType—the class that reflects simple types

derived by restriction from built-in types.

This example makes extensive use of C++ templates to simplify the processing
of all the different XML built-in types.

Code extract Example 271 shows a code extract from the Printer class, which shows the
functions for printing XML atomic and simple types using the Artix Reflection
API.

Example 271: Code Example for Printing Atomic and Simple Types

// C++
template <class T>
void

1 print_atom(
 const T& value
)
{
 cout << value << endl;
}

template <>
void

2 print_atom(
 const QName& value
)
{

678

Reflection Example
 cout << value.to_string() << endl;
}

/** A template to print value reflections values. */
template <class T>
struct PrintValue
{
 static void

3 print_value(
 const IT_Reflect::SimpleType* data,
 Printer& printer
)
 {
 if (printer.is_in_list())
 {
 printer.start_line();
 }

4 const IT_Reflect::Value<T>* value =
 IT_DYNAMIC_CAST(const IT_Reflect::Value<T>*, data);
 assert(value != 0);
 print_atom(value->get_value());
 }
};

void
5 Printer::print(

 const IT_Reflect::DerivedSimpleType* data
)
{
 assert(data != 0);

6 Var<const IT_Reflect::SimpleType> base(data->get_base());
 print(base.get());
 return;
}

void
7 Printer::print(

 const IT_Reflect::BuiltInType* data
)
{
 assert(data != 0);

8 switch (data->get_value_kind())
 {

Example 271: Code Example for Printing Atomic and Simple Types
 679

CHAPTER 11 | Reflection
 case IT_Reflect::BuiltInType::BOOLEAN:
9 PrintValue<Boolean>::print_value(data, *this);

 return;
 case IT_Reflect::BuiltInType::FLOAT:
 PrintValue<Float>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::DOUBLE:
 PrintValue<Double>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::INT:
 PrintValue<Int>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::LONG:
 PrintValue<Long>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::SHORT:
 PrintValue<Short>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::UINT:
 PrintValue<UInt>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::ULONG:
 PrintValue<ULong>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::USHORT:
 PrintValue<UShort>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::BYTE:
 PrintValue<Byte>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::UBYTE:
 PrintValue<UByte>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::STRING:
 PrintValue<String>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::DECIMAL:
 PrintValue<Decimal>::print_value(data, *this);
 return;
 case IT_Reflect::BuiltInType::QNAME:
 PrintValue<QName>::print_value(data, *this);
 return;

 // Other types not implemented in this demo
 case IT_Reflect::BuiltInType::HEXBINARY:

Example 271: Code Example for Printing Atomic and Simple Types
680

Reflection Example
The preceding extract from the Printer class implementation can be explained
as follows:

1. The print_atom<T>() function template is a template for printing out

most simple types, such as IT_Bus::Boolean, IT_Bus::Int, and so on.

2. The print_atom<IT_Bus::QName> function is a specialization of the

print_atom<T> template for printing qualified names, of IT_Bus::QName

type.

3. The PrintValue<T>::print_value() function template is a simple

wrapper function that combines a dynamic type cast with a call to

print_atomic<T>().

4. The IT_DYNAMIC_CAST(A,B) preprocessor macro is equivalent to a

conventional C++ dynamic_cast<T> operator.

5. The Printer::print(const IT_Reflect::DerivedSimpleType*)

function prints derived simple types. See “Deriving Simple Types by

Restriction” on page 451 for details of a simple type derived by restriction.

6. This line accesses the value of the derived simple type by calling the

IT_Bus::DerivedSimpleType::get_base() function.

7. The Printer::print(const IT_Reflect::BuiltInType*) function

prints out all of the XML built-in types.

 case IT_Reflect::BuiltInType::BASE64BINARY:
 case IT_Reflect::BuiltInType::DATE:
 case IT_Reflect::BuiltInType::TIME:
 case IT_Reflect::BuiltInType::ANYURI:
 case IT_Reflect::BuiltInType::ID:
 case IT_Reflect::BuiltInType::DATETIME:
 case IT_Reflect::BuiltInType::ANY:
 case IT_Reflect::BuiltInType::ANY_LIST:
 case IT_Reflect::BuiltInType::ANY_HOLDER:
 case IT_Reflect::BuiltInType::REFERENCE:
 default:
 start_line() << "not implemented:" <<

data->get_type_name().to_string()
 << endl;
 }
}

Example 271: Code Example for Printing Atomic and Simple Types
 681

CHAPTER 11 | Reflection
8. The IT_Reflect::BuiltInType::get_value_kind() function returns an

enumeration of IT_Reflect::BuiltInType::ValueKind type.

9. The built-in types can be printed using the appropriate form of the

PrintValue<T>::print_value() template function.
682

Reflection Example
Print Sequence, Choice, and All Types

Overview This subsection describes the print() functions for printing XML sequence,
choice and all types (collectively known as the model group types in the XML
syntax).

The print() function for sequence and all types has the following signature:

void Printer::print(const IT_Reflect::ModelGroup*);

The print() function for choice types has the following signature:

void Printer::print(const IT_Reflect::Choice*);

Code extract for sequence and all Example 272 shows a code extract from the Printer class, which shows the
functions for printing XML sequence and all types using the Artix Reflection
API.

Example 272: Code Example for Printing Sequence and All Types

// C++
void

1 Printer::print(
 const IT_Reflect::ModelGroup* data
)
{
 assert(data != 0);
 cout << endl;
 start_line();

2 switch (data->get_type_kind())
 {
 case AnyType::SEQUENCE: cout << "Sequence "; break;
 case AnyType::ALL: cout << "All "; break;
 default: assert(0);
 }

3 cout << data->get_type_name().to_string() << ": " << endl;
4 print_attributes(data);

 start_line() << "Value" << endl;
 Indenter indent(this);

5 for (int i = 0; i < data->get_element_count(); ++i)
 {

6 Var<const IT_Reflect::Reflection>
 element(data->get_element(i));

7 start_line() << data->get_element_name(i).to_string() <<
": ";
 683

CHAPTER 11 | Reflection
The preceding extract from the Printer class implementation can be explained
as follows:

1. The Printer::print(const IT_Reflect::ModelGroup*) function prints

reflection instances that represent sequence or all types.

2. The IT_Reflect::Reflection::get_type_kind() function returns an

enumeration of IT_Bus::AnyType::Kind type.

3. The IT_Reflect::Reflection::get_type_name() function returns the

QName of the current type. The IT_Bus::QName type is converted to a

string using the to_string() function.

4. The attributes for this instance are printed out by calling the

Printer::print_attributes(const IT_Reflect::ComplexType*)

function. See “Print ComplexContent Types” on page 688 for a description

of this function.

5. Iterate over all the elements in the sequence or all.

6. The Var<const IT_Reflect::Reflection> type is used to construct a

reference counted smart pointer to an element instance, element. See “The

IT_Bus::Var Template Type” on page 641 for details.

7. The get_element_name() function returns a QName, which is converted

to a string using the to_string() function.

8. This line passes the element object to the generic reflection print function,

Printer::print(const IT_Reflect::Reflection*).

 Indenter indent(this);
8 print(element.get());

 }
}

Example 272: Code Example for Printing Sequence and All Types
684

Reflection Example
Code extract for choice Example 273 shows a code extract from the Printer class, which shows the
function for printing XML choice types using the Artix Reflection API.

The preceding extract from the Printer class implementation can be explained
as follows:

1. The Printer::print(const IT_Reflect::Choice*) function prints

reflection instances that represent choice types.

2. The IT_Reflect::Reflection::get_type_name() function returns the

QName of the current type.

3. The IT_Reflect::Choice::get_current_element() function returns the

index of the current element (or -1 if no element is selected).

4. The get() function converts the IT_Bus::Var<T> smart pointer into a

plain pointer—see “The IT_Bus::Var Template Type” on page 641. In this

case, the returned pointer is of IT_Reflect::Reflection* type.

Example 273: Code Example for Printing Choice Types

// C++
void

1 Printer::print(
 const IT_Reflect::Choice* data
)
{
 assert(data != 0);
 cout << endl;

2 start_line() << "Choice "
 << data->get_type_name().to_string() << endl;
 Indenter indent(this);
 print_attributes(data);
 start_line() << "Value:" << endl;
 Indenter indent2(this);

3 int i = data->get_current_element();
 if (i != -1)
 {
 Var<const IT_Reflect::Reflection>
 element(data->get_element(i));
 start_line() << data->get_element_name(i).to_string()
 << ": ";
 Indenter indent3(this);

4 print(element.get());
 }
}

 685

CHAPTER 11 | Reflection
Print SimpleContent Types

Overview This subsection describes the print() function for printing XML simple content
types (defined using the <xsd:simpleContent> tag). The simple content
print() function has the following signature:

void Printer::print(const IT_Reflect::SimpleContent*);

A simple content type is an XML schema complex type that can have attributes,
but contains no sub-elements.

Code extract Example 274 shows a code extract from the Printer class, which shows the
function for printing XML schema xsd:simpleContent types using the Artix
reflection API.

Example 274: Code Example for Printing SimpleContent Types

// C++
void

1 Printer::print(
 const IT_Reflect::SimpleContent* data
)
{
 assert(data != 0);
 cout << endl;
 start_line() << "simpleContentComplexType "
 << data->get_type_name().to_string() << ": " <<

endl;
2 print_attributes(data);

 start_line() << "Value: " << endl;
 Indenter indent(this);

3 Var<const IT_Reflect::SimpleType> value(data->get_value());
 print(value.get());
}

686

Reflection Example
The preceding extract from the Printer class implementation can be explained
as follows:

1. The Printer::print(const IT_Reflect::SimpleContent*) function

prints reflection instances that represent simple content types (that is,

complex types that can have attributes, but no subelements).

2. The attributes for this instance are printed out by calling the

Printer::print_attributes(const IT_Reflect::ComplexType*)

function. See “Print ComplexContent Types” on page 688 for a description

of this function.

3. The Var<const IT_Reflect::SimpleType> type is a reference counting

smart pointer. The value variable references the contents of the

SimpleContents type.
 687

CHAPTER 11 | Reflection
Print ComplexContent Types

Overview This subsection describes the print() function for printing XML complex
content types (defined using the <xsd:complexContent> tag). The complex
content print() function has the following signature:

void Printer::print(const IT_Reflect::ComplexContent*);

A complex content type can have attributes, can contain sub-elements and can be
used to define complex types that derive from other complex types (see
“Deriving a Complex Type from a Complex Type” on page 489).

Code extract Example 275 shows a code extract from the Printer class, which shows the
functions for printing XML schema xsd:complexContent types using the Artix
reflection API.

Example 275: Code Example for Printing ComplexContent Types

// C++
void

1 Printer::print(
 const IT_Reflect::ComplexContent* data
)
{
 assert(data != 0);
 cout << endl;

2 start_line() << "complexContentComplexType "
 << data->get_type_name().to_string() << ": "
 << endl;

3 Var<const IT_Reflect::Reflection> base(data->get_base());
 start_line() << "Base part: " << endl;
 {
 Indenter indent(this);
 print(base.get());
 }

4 Var<const IT_Reflect::Reflection>
 extension(data->get_extension());
 if (extension.get())
 {
 start_line() << "Extension part: " << endl;
 Indenter indent(this);
 print(extension.get());
 }
688

Reflection Example
The preceding extract from the Printer class implementation can be explained
as follows:

1. The Printer::print(const IT_Reflect::ComplexContent*) function

prints XML schema xsd:complexContent types (that is, complex types

that can have attributes and subelements).

2. The IT_Reflect::Reflection::get_type_name() function returns the

QName of the current complex content type.

}

void
5 Printer::print_attributes(

 const IT_Reflect::ComplexType* data
)
{
 assert(data != 0);
 start_line() << "Attributes: " << endl;
 Indenter indent(this);

6 for (size_t i = 0; i < data->get_attribute_count(); ++i)
 {

7 Var<const IT_Reflect::Reflection> value(
 data->get_attribute_value(
 data->get_attribute_name(i)
)
);
 start_line() << data->get_attribute_name(i).to_string()
 << " = ";
 if (value.get() == 0)
 {
 cout << "<missing>" << endl;
 }
 else
 {
 print(value.get());
 }
 }
 assert(data != 0);
}

Example 275: Code Example for Printing ComplexContent Types
 689

CHAPTER 11 | Reflection
3. Construct a Var<const IT_Reflect::Reflection> smart pointer type to

reference the base contents of the xsd:complexContent type. The base

contents will be non-empty, if the xsd:complexContent type is defined by

derivation—see “Deriving a Complex Type from a Complex Type” on

page 489 for details.

4. Construct a Var<const IT_Reflect::Reflection> smart pointer type to

reference the extended (that is, derived) contents of the

xsd:complexContent type.

5. The Printer::print_attributes(const IT_Reflect::ComplexType*)

function prints out the list of attributes for any complex type.

6. Iterate over all of the attributes associated with this element.

7. If an attribute is defined with use="optional" in the XML schema, for

example:

<attribute name="AttrName" type="AttrType" use="optional"/>

Then the value returned from the get_attribute_value() function could

be a NULL pointer (that is, 0), if the attribute is not set.
690

Reflection Example
Print Multiple Occurrences

Overview This subsection describes the print() function for printing element lists
(objects of IT_Reflect::ElementList type). The print() function for a
multiply-occurring element has the following signature:

void Printer::print(const IT_Reflect::ElementList*);

An IT_Reflect::ElementList object is used to represent elements defined
with non-default values of minOccurs and maxOccurs (that is, any values apart
from minOccus=1 and maxOccurs=1). Calling a get_element() function can
return an IT_Reflect::ElementList object instead of a single element, if the
element is multiply occurring.

Code extract Example 276 shows a code extract from the Printer class, which shows the
function for printing multiply occurring elements (represented by the
IT_Reflect::ElementList type) using the Artix reflection API.

Example 276: Code Example for Printing Multiple Occurrences

// C++
void

1 Printer::print(
 const IT_Reflect::ElementList* data
)
{
 assert(data != 0);
 m_in_list = true;
 cout << endl;

2 for (size_t i = 0; i < data->get_list_size(); ++i)
 {

3 Var<const IT_Reflect::Reflection>
 element(data->get_element(i));
 print(element.get());
 }
 m_in_list = false;
}

bool
Printer::is_in_list()
{
 return m_in_list;
}

 691

CHAPTER 11 | Reflection
The preceding extract from the Printer class implementation can be explained
as follows:

1. The Printer::print(const IT_Reflect::ElementList*) function

prints multiply occurring elements (that is, elements whose occurrence

constraints have any values except the defaults, minOccurs="1" and

maxOccurs="2").

2. The IT_Reflect::ElementList::get_size() function returns the

number of elements in the element list.

3. Construct a Var<const IT_Reflect::Reflection> smart pointer type to

reference the ith element in the list.
692

Reflection Example
Print Nillables

Overview This subsection describes the print() function for printing nillable elements
(objects of IT_Reflect::Nillable type). The print() function for a nillable
element has the following signature:

void Printer::print(const IT_Reflect::Nillable*);

An IT_Reflect::Nillable object is used to represent elements defined with
nillable="true". In this case, the value of the element might be absent
(IT_Reflect::Nillable::is_nil() equals true). If the element is non-nil, it
can be retrieved by calling IT_Reflect::Nillable::get_value().

Code extract Example 277 shows a code extract from the Printer class, which shows the
function for printing nillables using the Artix reflection API.

Example 277: Code Example for Printing Nillables

// C++
void

1 Printer::print(
 const IT_Reflect::Nillable* data
)
{
 assert(data != 0);

2 if (data->get_is_nil())
 {
 cout << "<nil>" << endl;
 }
 else
 {

3 Var<const IT_Reflect::Reflection>
 value(data->get_value());
 print(value.get());
 }
}

 693

CHAPTER 11 | Reflection
The preceding extract from the Printer class implementation can be explained
as follows:

1. The Printer::print(const IT_Reflect::Nillable*) function prints

nillable elements (that is, elements defined with the attribute

xsd:nillable="true" in the XML schema).

2. Test the nillable element for nilness using the

IT_Reflect::Nillable::is_nil() function before attempting to print

the element value.

3. Construct a Var<const IT_Reflect::Reflection> smart pointer type to

reference the value of the nillable.
694

CHAPTER 12

Persistent Maps
Artix provides a persistence mechanism, built on top of Berkeley
DB, which you can use to persist your Artix data types. You must
use this persistence mechanism, if you intend to integrate your
application with Artix high availability (HA).

In this chapter This chapter discusses the following topics:

Introduction to Persistent Maps page 696

Creating a Persistent Map page 699

Inserting, Extracting, and Removing Data page 702

Handling Exceptions page 706

Supporting High Availability page 709

Configuration Example page 712
 695

CHAPTER 12 | Persistent Maps
Introduction to Persistent Maps

Overview Artix persistent maps constitute a simple persistence mechanism, which is
tailored to work with Artix data types and is based on Berkeley DB.

The persistent map API is concerned solely with inserting and extracting records
to and from a persistent map. The details of setting up the Berkeley DB are taken
care of by configuration—see “Configuration Example” on page 712. Once you
have configured your application to use Berkeley DB, a new Berkeley DB
instance is automatically created when you start the application for the first time.
No programming is required in order to create the database or to connect to the
database.

Header files The following header file is always needed for the persistent map API:

it_bus_pdk/persistent_map.h

The following header files might also be needed, depending on your persistence
requirements:

it_bus_pdk/persistent_string_map.h
it_bus_pdk/qname_persistence_handler.h
it_bus_pdk/any_type_persistence_handler.h

DBConfig type An instance of IT_Bus::DBConfig type encapsulates all of the Berkeley DB
configuration details. Implicitly, when a DBConfig instance is created, it reads
the configuration details from the application’s configuration scope (in the
artix.cfg configuration file).

You do not need to call any of the DBConfig member functions. A DBConfig
instance is needed only for passing to a persistent map constructor.
696

Introduction to Persistent Maps
Persistent map templates The persistent map templates are used to construct hash tables that are stored
persistently in the Berkeley database. The hash table stores pairs of items: the
first item is a key, which can be of arbitrary type, and the second item is data,
which can also be of arbitrary type.

The following persistent map templates are provided:

• IT_Bus::PersistentStringMap<> template

A hash table that uses IT_String (which can implicitly convert to and

from IT_Bus::String) for the key and any atomic type (for example, char

or int) for the data. To use this type, you must include the

it_bus_pdk/persistent_string_map.h header.

• IT_Bus::PersistentMap<> template

A hash table that uses any atomic (for example, char or int) type for the

key and any atomic type for the data.

• IT_Bus::PersistentMapBase<> template

A hash table that uses any type (atomic or complex) for the key and any

type (atomic or complex) for the data.

Persistence handler types The persistence handler types are used internally by Artix to make data
persistent. You do not need to use persistence handler types directly; you
provide them as template arguments to the PersistentMapBase template.

The following handler types are provided:

• IT_Bus::PODPersistenceHandler

Used by Artix to make simple atomic types (such as char, int and so on)

persistent.

• IT_Bus::StringPersistenceHandler

Used by Artix to make the IT_String type (or IT_Bus::String type)

persistent. To use this type, you must include the

it_bus_pdk/persistent_string_map.h header.

• IT_Bus::QNamePersistenceHandler

Used by Artix to make the IT_Bus::QName type persistent. To use this

type, you must include the it_bus_pdk/qname_persistence_handler.h

header.
 697

CHAPTER 12 | Persistent Maps
• IT_Bus::AnyTypePersistenceHandler<> template

Used by Artix to make complex types persistent. Specifically, the

AnyTypePersistenceHandler can persist any type that inherits from

IT_Bus::AnyType, which includes any complex types generated from a

WSDL contract or an XML schema.

To use this type, you must include the

it_bus_pdk/any_type_persistence_handler.h header and link with the

it_bus_xml library.
698

Creating a Persistent Map
Creating a Persistent Map

Overview This section describes how to create persistent maps using the
PersistentStringMap<>, PersistentMap<>, and PersistentMapBase<>
templates.

Persistent map constructor In general, the constructor for a PersistentMapType persistent map has the
following signature:

// C++
PersistentMapType::PersistentMapType(
 const char* id,
 DBConfig* cfg
};

The constructor takes the following arguments:

• id—a unique string that identifies the persistent map instance in the

database. You can choose any string for the id, as long as it does not clash

with a pre-existing perstent map instance.

• cfg—a pointer to an IT_Bus::DBConfig instance.

Lifetime of DBConfig instance You can access the Berkeley DB only as long as the DBConfig instance
continues to exist. Therefore, you must avoid deleting this object prematurely.
Typically, you would create a DBConfig instance near the beginning of your
application’s main() function (just after initializing an IT_Bus::Bus instance)
and destroy the DBConfig instance near the end of the main() function.
 699

CHAPTER 12 | Persistent Maps
Creating a persistent string map An IT_Bus::PersistentStringMap<> template is a persistent map type that
uses an IT_String type or an IT_Bus::String type as its key and any atomic
type (such as char or int) as its data.

Example 278 shows you how to create a string persistent map, f_map, that uses
float as its data type.

Creating a persistent map for
atomic types

An IT_Bus::PersistentMap<> template is a persistent map type that uses any
atomic type as its key and any atomic type as its data.

Example 279 shows you how to create a persistent map, i_map, that uses char as
its key type and int as its data type.

Example 278: Creating a String Persistent Map

// C++
using namespace IT_Bus;

typedef IT_Bus::PersistentStringMap<float> FloatMap;
DBConfig cfg(bus); // bus is an initialized bus instance
FloatMap f_map("StringToFloat", &cfg);

Example 279: Creating a Persistent Map for Atomic Types

// C++
using namespace IT_Bus;

typedef IT_Bus::PersistentMap<char, int> IntMap;
DBConfig cfg(bus); // bus is an initialized bus instance
IntMap i_map("CharToInt", &cfg);
700

Creating a Persistent Map
Creating a persistent map for
complex types

To create a persistent map type, PersistentMapType, for complex data, define a
typedef of the IT_Bus::PersistentMapBase<> template as follows:

// C++
typedef IT_Bus::PersistentMapBase<
 KeyType,
 DataType,
 KeyPersistenceHandler,
 DataPersistenceHandler
 > PersistentMapType;

Where both the KeyType and the DataType types can either be a atomic type
(char, int and so on) or a complex type. The KeyPersistenceHandler and
DataPersistenceHandler types must be chosen to match the corresponding
KeyType and DataType types. See “Persistence handler types” on page 697 for
the complete list of persistence handler types.

Example 280 shows you how to create two persistent maps using the
PersistentMapBase template: the QtoRMap type maps QNames to
WS_Addressing::EndpointReferenceType instances and the ChartoWSDLMap
type maps chars to instances of a user complex type, MyWSDLType.

Example 280: Creating a Persistent Map for Complex Types

// C++
using namespace IT_Bus;

typedef IT_Bus::PersistentMapBase<
 IT_Bus::QName,
 WS_Addressing::EndpointReferenceType,
 IT_Bus::QNamePersistenceHandler,

IT_Bus::AnyTypePersistenceHandler<WS_Addressing::EndpointRefe
renceType>

 > QtoRMap;

typedef IT_Bus::PersistentMapBase<
 char,
 MyWSDLType,
 IT_Bus::PODPersistenceHandler,
 IT_Bus::AnyTypePersistenceHandler<MyWSDLType>
 > ChartoWSDLMap;
DBConfig cfg(bus);
QtoRMap map(“myRefMap”, &cfg);
ChartoWSDLMap myMap(“myDataMap”, &cfg);
 701

CHAPTER 12 | Persistent Maps
Inserting, Extracting, and Removing Data

Overview This section explains how to perform basic operations on persistent maps. The
following tasks are described here:

• Inserting data into a persistent map.

• Extracting data from a persistent map.

• Removing data from a persistent map.

• Avoiding deadlock with iterators.

Inserting data into a persistent
map

To insert data into a persistent map of PersistentMapType type, perform the
following steps:

1. Create a PersistentMapType::value_type object to hold the (key, data)

pair.

2. Insert the value type into the map using the

PersistentMapType::insert() function.

If insert() succeeds, the data is committed right away to the database. The
operation is an atomic transaction and you do not have control over the
transactionality of the operation.

Example of a simple insert

Given a persistent map instance, i_map, of IntMap type (see Example 279 on
page 700), you can insert a (key, data) pair as follows:

Example of an insert with overwriting

The insert() function takes a second optional parameter that determines
whether to over-write an existing record in the persistent map. A value of true
implies the data is over-written, if the key matches an existing record; a value of
false (the default) implies the data is not over-written.

// C++
IntMap::value_type val('a', 175);
i_map.insert(val);
702

Inserting, Extracting, and Removing Data
Given a persistent map instance, i_map, of IntMap type, you can over-write a
(key, data) pair as follows:

Example of an insert with error checking

The insert() function returns an IT_Pair containing an
PersistentMapType::iterator and an IT_Bool. Hence, you can optionally
define a pair object of IT_Pair<PersistentMapType::iterator, IT_Bool>
type to hold the return value from a PersistentMapType::insert() call.

If the insert succeeds in writing to the database, the returned iterator,
pair.first, is a valid pointer to the inserted record and the returned boolean,
pair.second, is true. If the insert cannot write the record (for example, a
record was already present and you did not specify overwriting) the iterator
points to the existing record and the boolean is false.

Given a persistent map instance, i_map, of IntMap type, you can check whether
a value insertions succeeds, as follows:

Extracting data from a persistent
map

To retrieve data from a persistent database, call the PersistentMapType::find()
function, passing the key value of the record you want to access. For example, if
a persistent map consists of (char, int) pairs, the find() function takes a char
argument.

The find() function returns a PersistentMapType::iterator object, which is
effectively a pointer to an IT_Pair object. Using the iterator, you can view the
value of the desired record and also iterate through the remaining entries in the
database. Unlike iterators for in-memory hash maps, however, you cannot alter
the values in the database using this iterator.

// C++
IntMap::value_type val('a', 190);
i_map.insert(val, true);

// C++
IntMap::value_type val('a', 200);
IT_Pair<IntMap::iterator, IT_Bool> pair;
pair = i_map.insert(val);
if (!pair.second)
{
 // handle the error
}

 703

CHAPTER 12 | Persistent Maps
Example of extracting data

To find a record keyed by the char value, 'a', from a persistent map, i_map, of
IntMap type, call find() as follows:

Removing data from a persistent
map

To remove a record from a persistent map, call the
PersistentMapType::erase() function, passing the key value of the record you
want to erase as the sole argument. Like insert(), the erase() function is
atomic: if it succeeds, the data on the disk is updated right away.

Example of removing a record

To erase a record keyed by the char value, 'a', from a persistent map, i_map, of
IntMap type, call erase() as follows:

// C++

// Restrict the scope of the iterator object
{
 IntMap::iterator iter = i_map.find('a');
 if (iter != i_map.end()) {
 // prints out the value of the int stored with key 'a'
 cout << (*iter).second << endl;
 }
}

WARNING:An iterator object holds a lock on the Berkeley DB and this lock
is not released until the iterator is destroyed. Hence, to avoid deadlock, it is
essential to delete the iterator object (or let it go out of scope) before making
any further calls that require a lock, such as insert() or erase().

// C++
// Removes the record with key 'a'
if (i_map.erase('a')) {
 cout << "Record successfully erased!" << endl;
}

704

Inserting, Extracting, and Removing Data
Avoiding deadlock with iterators Persistent map iterators are implemented using Berkeley DB cursors, which
acquire a read lock on the underlying database, and this lock is held until the
iterator is destroyed. It follows that you cannot perform any locking operations
(such as insert() or erase()) as long as an iterator object exists for the
persistent map.

The following example shows an incorrect code fragment using iterators that
leads to deadlock:

The correct way to implement this code is as follows:

// C++
IntMap::iterator iter = i_map.find('a');
if (iter == i_map.end())
{
 IntMap::value_type val('a', 123);
 i_map.insert(val); // DEADLOCK!
}

// C++
bool found = false;
{
 IntMap::iterator iter = i_map.find('a');
 found = (iter != i_map.end());
}
if (!found)
{
 IntMap::value_type val('a', 123);
 i_map.insert(val); // No deadlock, iterator is gone.
}

 705

CHAPTER 12 | Persistent Maps
Handling Exceptions

Overview Artix provides a specific type, IT_Bus::DBException, to represent the database
exceptions thrown by functions from the persistent map API. Database
exceptions should typically be handled on the server side (for example, by
writing the exception message to a server-side log).

Exception handling sample Example 281 shows how Artix database exceptions should be handled on the
server side for applications that use the persistent map API.

The preceding exception handling sample can be explained as follows:

1. In this example, foo() represents the implementation of a WSDL

operation (in other words, it is a member function of a servant class).

2. Persistent map operations can throw exceptions of IT_Bus::DBException

type, which inherits from the generic Artix exception class,

IT_Bus::Exception.

3. The DB exceptions should be handled locally, on the server side.

Example 281: Sample Operation with DB Exception Handling

// C++
#include <it_bus_pdk/db_exception.h>

void
1 foo() IT_THROW_DECL((IT_Bus::Exception))

{
 try
 {
 // Catch and process DBException explicitly
 m_persistent_map.find(...);
 ...
 }

2 catch (const IT_Bus::DBException& db_ex)
 {

3 // Handle DB error locally...
 ...
 }
}

706

Handling Exceptions
IT_Bus::DBException class Example 282 shows the signatures of the member functions from the
IT_Bus::DBException class.

The DBException class exposes the following member functions:

• error()

Returns an Artix database error code (see “Database minor exception

codes” on page 708). The code returned from this function is usually the

most convenient way to distinguish the type of error that occurred.

• error_as_string()

Returns the name of an Artix database error code.

• message()

Returns a descriptive error message string, which you could use for writing

the error to a log.

• native_error_code()

Returns a native Berkeley DB error code.

Example 282: The IT_Bus::DBException Class

// C++
namespace IT_Bus {
 class IT_BUS_API DBException :
 public Exception,
 public Rethrowable<DBException>
 {
 public:
 DBException(
 unsigned long exception_type,
 int native_error_code,
 const char* msg
);
 DBException(const DBException& rhs);
 virtual ~DBException();

 IT_ULong error() const;
 const char* error_as_string() const;
 const char* message() const;
 int native_error_code() const;
 ...
 };
}

 707

CHAPTER 12 | Persistent Maps
Database minor exception codes The following minor exception codes can be returned by the
IT_Bus::DBException::error() function.

Example 283: Database Exception Error Codes

// C++
// DBException error() codes.
IT_Bus::DB_EXCEPTION_CANNOT_WRITE_LOCK_FILE
IT_Bus::DB_EXCEPTION_FAILURE_DURING_GET
IT_Bus::DB_EXCEPTION_FAILURE_DURING_PUT
IT_Bus::DB_EXCEPTION_FAILURE_DURING_ERASE
IT_Bus::DB_EXCEPTION_FAILURE_DURING_GET_SIZE
IT_Bus::DB_EXCEPTION_COULD_NOT_CREATE_SHARED_DB_ENV
IT_Bus::DB_EXCEPTION_COULD_NOT_OPEN_SHARED_DB_ENV
IT_Bus::DB_EXCEPTION_COULD_NOT_CREATE_DB
IT_Bus::DB_EXCEPTION_COULD_NOT_OPEN_DB
IT_Bus::DB_EXCEPTION_NULL_POINTER
IT_Bus::DB_EXCEPTION_COULD_NOT_CREATE_CURSOR
IT_Bus::DB_EXCEPTION_COULD_NOT_DUP_CURSOR
IT_Bus::DB_EXCEPTION_FAILURE_DURING_GET_VALUE
IT_Bus::DB_EXCEPTION_COULD_NOT_INITIALIZE_REPLICATION
IT_Bus::DB_EXCEPTION_COULD_NOT_INIT_TXN
IT_Bus::DB_EXCEPTION_COULD_NOT_COMMIT_TXN
IT_Bus::DB_EXCEPTION_COULD_NOT_MKDIR_DB_HOME
IT_Bus::DB_EXCEPTION_BAD_CONFIGURATION
IT_Bus::DB_EXCEPTION_COULD_NOT_OPEN_SYNC_DB
IT_Bus::DB_EXCEPTION_COULD_NOT_CREATE_SYNC_DB
IT_Bus::DB_EXCEPTION_COULD_NOT_WRITE_TO_SYNC_DB
IT_Bus::DB_EXCEPTION_SYNC_DB_NOT_READY
IT_Bus::DB_EXCEPTION_COULD_NOT_PROMOTE
IT_Bus::DB_EXCEPTION_COULD_NOT_DEMOTE
IT_Bus::DB_EXCEPTION_SLAVE_CANNOT_UPDATE_DB
IT_Bus::DB_EXCEPTION_LICENSE_CHECK_FAILED
IT_Bus::DB_EXCEPTION_ENV_IN_USE
708

Supporting High Availability
Supporting High Availability

Overview If you are going to use persistent maps in conjunction with the high availability
features of Artix, it is necessary to perform some additional programming tasks
to support write-request forwarding. Essentially, you must write a few lines of
code to tell Artix which WSDL operations need to write to the database (using
the persistent map API).

Write-request forwarding The high availability model in Artix mirrors the high availability features of the
Berkeley DB. In this model, a replicated cluster consists of a master replica and
any number of slave replicas. The master replica can perform both read and
write operations to the database, but the slaves can perform only read operations.

What happens, though, if a client sends a write-request to one of the slave
replicas? In this case, the slave replica needs to have some way of forwarding the
write-request to the master replica. Artix supports this write-request forwarding
feature using the request_forwarder plug-in on the server side. To enable the
write-request forwarding feature, you must appropriately configure the server
replicas, as described in Configuring and Deploying Artix Solutions, and you
must perform some programming steps, as described here.

Write-request forwarding API The IT_Bus::DBConfig class provides the following member function to
support write-request forwarding:

Note: The write-request forwarding feature is currently (as of Artix 3.0.2) not
supported by the CORBA binding.

// C++
void
mark_as_write_operations(
 IT_Vector<IT_Bus::String> operations,
 const IT_Bus::QName& service,
 const IT_Bus::String& port,
 const IT_Bus::String& wsdl_url
) IT_THROW_DECL((DBException));
 709

CHAPTER 12 | Persistent Maps
After creating a DBConfig instance on the server side, you should call this
function to identify those WSDL operations that require a database write. The
mark_as_write_operations() function takes the following parameters:

• operations—the list of WSDL operation names that require a database

write (the names in this list are unqualified).

• service—the QName of the service whose operations are considered for

forwarding.

• port—the name of the port whose operations are considered for

forwarding.

• wsdl_url—the location of the WSDL contract.

Example code Example 284 is an example that shows you how to program write-request
forwarding. In this example, the add_employee and remove_employee
operations are designated as write operations.

Example 284: Write-Request Forwarding Example

// C++
using namespace IT_Bus;

// Typical Artix server mainline
1 QName service("", "SOAPService",

"http://www.iona.com/hello_world_soap_http");
String port_name = "Server2";
String wsdl_url = "hello_world.wsdl";
Bus_var bus = IT_Bus::init(...);
DBConfig db_cfg(bus);

2 IT_Vector<String> write_operations;
write_operations.push_back("add_employee");
write_operations.push_back("remove_employee");

3 db_cfg.mark_as_write_operations(
 write_operations,
 service,
 port_name,
 wsdl_url
);

// Now register servant as normal
4 bus->register_servant(

 servant,
710

Supporting High Availability
The preceding code can be described as follows:

1. The service, service, and port, port_name, defined here are used to

identify the port whose operations are considered for forwarding.

2. The list of write operations is constructed as a vector of strings,

IT_Vector<IT_Bus::String>, which is similar to the std::vector type

from the standard template library (see “IT_Vector Template Class” on

page 602).

3. Call the IT_Bus::DBConfig::mark_as_write_operations() function to

set the write operations from the given service and port, which are

considered for forwarding.

4. The servant registered by this line of code is the one whose operations are

considered for forwarding. The service and port name arguments used here

are identical to the service and port name arguments passed to the

mark_as_write_operations() function.

High availability demonstration A demonstration that illustrates the Artix high availability functionality is
available at the following location:

ArtixInstallDir/cxx_java/samples/advanced/high_availability_persiste
nt_servers

 wsdl_url,
 service,
 port_name
);

Example 284: Write-Request Forwarding Example
 711

CHAPTER 12 | Persistent Maps
Configuration Example

Overview Example 285 shows the minimal configuration that is required to configure
persistence based on the Berkeley DB.

The following configuration variables must be set:

Reference For more details about how to configure persistence, particularly for configuring
high availability features, see the relevant chapter on high availability in
Configuring and Deploying Artix Solutions.

Example 285: Configuration Required for Using Berkeley DB in Artix

Artix Configuration File
...
foo_service {
 plugins:artix:db:env_name = "myDB.env";
 plugins:artix:db:home = "/etc/dbs/foo_service";
};

plugins:artix:db:env_name Specifies the filename for the Berkeley
DB environment file. It can be any
string and can have any file extension
(for example, myDB.env).

plugins:artix:db:home Specifies the directory where Berkeley
DB stores all the files for the service
databases. Each service should have a
dedicated folder for its data stores.
This is especially important for
replicated services.
712

APPENDIX A

WSDL-to-C++
Compiler Utility
Use the wsdltocpp compiler utility to generate C++ stub code,
starting point code and makefiles from a WSDL contract. The Artix
WSDL-to-C++ mapping conforms to the official OMG
specification, http://www.omg.org/cgi-bin/doc?mars/06-06-38.

Overview This chapter discusses the following topics:

Generating Stubs and Starting Point Code page 714
 713

http://www.omg.org/cgi-bin/doc?mars/06-06-38

APPENDIX A | WSDL-to-C++ Compiler Utility
Generating Stubs and Starting Point Code

Overview The Artix development tools include a utility to generate server skeleton and
client stub code from an Artix contract. The generated code has the following
features:

• Artix generated code is compatible with a multitude of transports.

• Artix maps WSDL types to C++ using a proprietary WSDL-to-C++

mapping.

Generated files The Artix code generator produces a number of stub files from the Artix
contract. They are named according to the port type name, PortTypeName,
specified in the logical portion of the Artix contract. If the contract specifies
more than one port type, code will be generated for each one.

The following stub files are generated:

PortTypeName.h defines the superclass from which the client and server are
implemented. It represents the API used by the service defined in the contract.

PortTypeNameService.h and PortTypeNameService.cxx are the server-side
skeleton code to implement the service defined in the contract.

PortTypeNameClient.h and PortTypeNameClient.cxx are the client-side stubs
for implementing a client to use the service defined by the contract.

PortTypeName_wsdlTypes.h and PortTypeName_wsdlTypes.cxx define the
complex datatypes defined in the contract (if any).

PortTypeName_wsdlTypesFactory.h and
PortTypeName_wsdlTypesFactory.cxx define factory classes for the complex
datatypes defined in the contract (if any).
714

Generating Stubs and Starting Point Code
Generating code from the
command line

You can generate code at the command line using the command:

You must specify the location of a valid WSDL contract file, WSDL_URL, for the
code generator to work. You can also supply the following optional parameters:

wsdltocpp [options] { WSDL-URL | SCHEMA-URL }
[-e web_service_name[:port_list]] [-b binding_name]
[-i port_type]* [-d output-dir] [-n URI=C++namespace]*
[-nexclude URI[=C++namespace]]*
[-ninclude URI[=C++namespace]]*

 [-nimport C++namespace] [-impl] [-m {NMAKE |
UNIX}:[executable|library]] [-libv version] [-jp
plugin_class] [-f] [-server] [-client] [-sample]
[-plugin[:plugin_name]] [-deployable] [-global] [-v]
[-license] [-declspec declspec] [-all] [-?] [-flags]
[-upper|-lower|-minimal|-mapper class] [-verbose] [-reflect]

-i port_type Specifies the name of the port type for which the tool
will generate code. The default is to use the first port
type listed in the contract. This switch can appear
multiple times.

-e web_service_name
[:port_list]

Specifies the name of the service for which the tool will
generate code. The default is to use the first service
listed in the contract. You can optionally specify a
comma separated list of port names to activate. The
default is to activate all of the service’s ports.

-b binding_name Specifies the name of the binding to use when generating
code. The default is the first binding listed in the
contract.

-d output_dir Specifies the directory to which the generated code is
written. The default is the current working directory.

-n
 [URI=]C++namespace

Maps an XML namespace to a C++ namespace. The
C++ stub code generated from the XML namespace,
URI, is put into the specified C++ namespace,
C++namespace. This switch can appear multiple times.
 715

APPENDIX A | WSDL-to-C++ Compiler Utility
-nexclude
 URI[=C++namespace]

Do not generate C++ stub code for the specified XML
namespace, URI. You can optionally map the XML
namespace, URI, to a C++ namespace, C++namespace, in
case it is referenced by the rest of the XML
schema/WSDL contract. This switch can appear multiple
times.

-ninclude
 URI[=C++namespace]

Generates C++ stub code for the specified XML
namespace, URI. You can optionally map the XML
namespace, URI, to a C++ namespace, C++namespace.
This switch can appear multiple times.

-nimport
C++namespace

Specifies the C++ namespace to use for the code
generated from imported schema.

-impl Generates the skeleton code for implementing the server
defined by the contract.

-m {NMAKE | UNIX}
:[executable |
library]

Used in combination with -impl to generate a makefile
for the specified platform (NMAKE for Windows or UNIX
for UNIX). You can specify that the generated makefile
builds an executable, by appending :executable, or a
library, by appending :library. For example, the
options, -impl -m NMAKE:executable, would generate
a Windows makefile to build an executable.

-libv version Used in combination with either -m NAME:library or -m
UNIX:library to specify the version number of the
library built by the makefile. This version number is for
your own convenience, to help you keep track of your
own library versions.

-f Deprecated—No longer used (was needed to support
routing in earlier versions.

-server Generates stub code for a server (cannot be combined
with the -client switch).

-client Generates stub code for a client (cannot be combined
with the -server switch).

-sample Generates code for a sample implementation of a client
and a server, as follows: client stub code, server stub
code, a client main function and a server main function.

To generate a complete working sample application,
combine -sample with the -impl and the -m switches.
716

Generating Stubs and Starting Point Code
-plugin
[:plugin_name]

Generates a service plug-in. You can optionally specify
the plug-in name by appending :plugin_name to this
option. If no plug-in name is specified, the default name
is <ServiceName><PortTypeName>. The service name,
<ServiceName>, is specified by the -e option.

-deployable (Used with -plugin.) Generates a deployment descriptor
file, deploy<ServiceName>.xml, which is needed to
deploy a plug-in into the Artix container.

-global (Used with -plugin.) In the generated plug-in code,
instantiate the plug-in using a GlobalBusORBPlugIn
object instead of a BusORBPlugIn object.

A GlobalBusORBPlugIn initializes the plug-in
automatically, as soon as it is constructed (suitable
approach for plug-ins that are linked directly with
application code).

A BusORBPlugIn is not initialized unless the plug-in is
either listed in the orb_plugins list or deployed into an
Artix container (suitable approach for dynamically
loading plug-ins).

-v Displays the version of the tool.

-license Displays the currently available licenses.

-declspec declspec Creates Visual C++ declaration specifiers for dllexport
and dllimport. This option makes it easier to package
Artix stubs in a DLL library. See “Building Artix Stub
Libraries on Windows” on page 197 for details.

-all Generate stub code for all of the port types and the types
that they use. This option is useful when multiple port
types are defined in a WSDL contract.

-? Displays help on using the command line tool.

-flags Displays detailed information about the options.

-verbose Send extra diagnostic messages to the console while
wsdltocpp is running.

-reflect Enables reflection on generated data classes. See
“Reflection” on page 637 for details.
 717

APPENDIX A | WSDL-to-C++ Compiler Utility
-wrapped When used with document/literal wrapped style,
generates function signatures with wrapped parameters,
instead of unwrapping into separate parameters. See
“Document/Literal Wrapped Style” on page 149 for
details.

Note: When you generate code from WSDL that has multiple ports, multiple
services, multiple bindings, or multiple port types, without specifying which
port, service, binding, or port type to generate code for, the WSDL-to-C++
compiler prints a warning to the effect that it is only generating code for the
first one encountered.
718

 Index

Symbols
##any namespace constraint 533
##local namespace constraint 533
##other namespace constraint 534
##targetNamespace namespace constraint 533
<extension> tag 487
<fault> tag 161
<http-conf:client> port extensor 278
<http-conf:server> port extensor 281
<restriction> tag 486
<simpleContent> tag 486
<soap

header> element 255
<soap:header> element 295

Numerics
16-bit characters 422

A
abstract interface type 619
_add_ref() function 641
All class 652
all complex type

nillable example 567
AllComplexType class 472
all groups 472
anonymous types

avoiding 482
AnyHolder class 528

get_any_type() function 529
get_type() function 530
inserting and extracting atomic types 529
inserting and extracting user types 529
set_any_type() function 529

AnyType class 280, 283, 296, 314, 367, 529, 639
AnyType type

printing 673
anyType type 528

nillable 563
anyURI type 526
arithmetical operators

for integers 440

arrays
multi-dimensional native 501
native 499
SOAP 590

arrayType attribute 592
array types

nillable elements 578
artix.cfg file 185
Artix foundation classes 195
ART library 195
assign() 603
at() 603
atomic types 417

nillable example 564
nillable types 563

attributes
defining with anyURI 526
in extended types 491
mapping 475
optional 475
optional, C++ mapping 476
optional, example 476
prohibited 475
reflection of 690
required 475
required, C++ mapping 477
required, example 477

auto_ptr template 173

B
Base64Binary type 444
base64Binary type

nillable 564
binary types 443

Base64Binary type 443
HexBinary type 443

binding name
specifying to code generator 715

boolean type
nillable 563

bounded sequences 627
boxed value type 619
building Artix applications 528
 719

INDEX
BuiltInType class 647
BuiltInType type 678
Bus library 195
-BUSname command-line switch 185
byte type

nillable 563

C
C++ mapping

parameter order 147
parameters 146, 152

callbacks
and routing 241
client implementation 233
ClientImpl servant class 236
client main function 233
demonstration 228
example scenario 228
sample WSDL contract 230
server implementation 237
ServerImpl servant class 238
server main function 237

casting
from plain pointer to Var 644

checked facets 451
Choice class 658
choice complex type 482
ChoiceComplexType class 468
choice complex types 468
Choice type 683
clear() 603
client

developing 130
stub code, files 714

client stub code 714
clientType 339
clone() function 183
cloning

and transient servants 110
service for transient reference 208

cloning services 109
Code generation 714
code generation

from the command line 715
code generator

command-line 715
files generated 714

compare() 438, 441
compilation

-reflect flag 638
compiler requirements 195
compiling a context schema 288
ComplexContent class 663
complexContent tag 491
ComplexContent type 688
complex datatypes

generated files 714
complex type

deallocating 172
deriving from simple 486

ComplexType class 647
complex types 464

assignment operators 170
copying 170
deriving 489
nesting 482
recursive copying 171

complexType tag 490, 491
configuration context container 260
configuration contexts

example 273
header files 326
library 326
reply contexts 248
request contexts 248

ConnectionPolicyType 387
setconnectTimeout() 389
setRecieveTimeoutl() 390
setScanInterval() 389

ConnectModeType 387
const_cast_var casting operator 644
ContextContainer class 279, 282, 294, 313, 366
context containers

configuration context 260
reply context 260
request context 260

ContextCurrent class 261, 279, 280, 282, 295, 313,
314, 366

ContextCurrent type 248
context data

registering 295, 299, 314, 317
context names 295, 314
ContextRegistry class 253, 254, 279, 282, 294, 313,

366
ContextRegistry type 295, 313
contexts

client main function 278, 292, 311
context name 295, 314
720

INDEX
ContextRegistry type 295, 313
example 284, 303
get_context() function 263, 264
get_context_container() function 252
overview 246
overview of header contexts 250
protocols 250
register_context() function 252
reply_contexts() function 262
request_contexts() function 262
sample schema 287
scenario description 286, 304
schema, target namespace 287
server main function 281, 297, 315, 364
service implementation 300, 318
set_context() function 264
stub files, generating 267
type factories for 252
user-defined data 267

CORBA
abstract interface 619
any 620
basic types 620
boolean 620
boxed value 619
char 620
configuring internationalization 419
enum type 622
exception type 628
fixed 620
forward-declared interfaces 619
header context 250
local interface type 619
Object 620
registering a header context 256
sequence type 626
string 620
struct type 625
typedef 629
union type 623, 627
value type 619
wchar 620
wstring 620

CORBA headers
and contexts 250

CorrelationStyleType 378
CredentialsType 391

setName() 391
setPassword() 391

D
dateTime type

nillable 564
Date type 431
date type

nillable 564
decimal type

nillable 564
declaration specifiers 197
-declspec option 197
deliveryType 380
derivation

by extension 486
by restriction 486
complex type from complex type 489
get_derived() function 494
get_simpleTypeValue() 488
set_simpleTypeValue() 488

DerivedSimpleType type 678
dispatch() function 182
DLL

building stub libraries 197
DLL library

building Artix stubs in a 717
document/literal wrapped style

C++ default mapping 152
C++ mapping using -wrapped flag 153
declaring WSDL operations 150
overview 149
-wrapped flag 718

double type
nillable 563

dynamic_cast_var casting operator 644

E
ElementList class 666
ElementList type 691
elements

defining with anyURI 526
embedded mode

compiling 195
linking 195

encoding of SOAP array 595
endpoint reference 200
EndpointReferenceType class 201
ENTITIES 463
ENTITIES type 478
ENTITY 463
 721

INDEX
ENTITY type 478
enumeration facet 451
enum type 622
exception

raising a fault exception 163
exception handling

CORBA mapping 628
exception type 628
extension

attributes defined in 491
deriving complex types 491
get_derived() function 494
holder types 494

extension tag 491

F
facets 451

checked 451
fixed decimal

compare() 438
DigitIterator 439
is_negative() 438
left_most_digit() 438
number_of_digits() 438
past_right_most_digit() 438
round() 438
scale() 438
truncate() 438

float type
nillable 563

formatType 381
forward-declared interfaces 619
fractionDigits facet 451
FTP_CONNECTION_POLICY 387

G
GDay type 431
gDay type

nillable 564
get_any_namespace() function 540
get_any_type() function 529
get_attribute_value() function 690
get_base() function 681
get_context() function 263, 264, 295, 314
get_context_container() function 252
get_current() function 280, 295, 301, 314, 319
get_current_element() function 685
get_derived() function 494

get_discriminator() 624
get_discriminator_as_uint() 624
get_element_name() function 684
get_endpoint_reference() function 211, 214
get_extents() 592, 597, 600
get_item_name() 543
get_max_occurs() 542
get_max_occurs() function 549, 553
get_min_occurs() 542
get_min_occurs() function 549, 553
get_namespace_constraints() function 540
get_process_contents() function 540
get_reflected() function 639
get_reflection() function 638
get_simpleTypeValue() 488
get_size() 543
get_size() function 692
get_type() function 530
get_type_kind() function 639, 677, 684
get_type_name() function 684
get_value_kind() function 682
GIOP

and Artix contexts 251
service contexts 257

GMonthDay type 431
gMonthDay type

nillable 564
GMonth type 431
gMonth type

nillable 564
GYearMonth type 431
gYearMonth type

nillable 564
GYear type 431
gYear type

nillable 564

H
header contexts

CORBA, registering 256
example 284, 303
overview 250
sample schema type 287
SOAP, registering 255
three-tier systems 321

headers
<soap:header> element 295

HexBinary type 444
hexBinary type
722

INDEX
nillable 564
high water mark 185
high_water_mark configuration variable 186
holder types, and extension 494
http-conf:clientType type 275
http-conf schema 274

ReceiveTimeout 275
SendTimeout 275

I
IANA character set 420
IDL

bounded sequences 627
enum type 622
exception type 628
object references 632
oneway operations 634
sequence type 626
struct type 625
typedef 629
union type 623, 627

IDL attributes
mapping to C++ 634

IDL basic types 620
IDL interfaces

mapping to C++ 631
IDL modules

mapping to C++ 631
IDL operations

mapping to C++ 633
parameter order 634
return value 634

IDL readonly attribute 635
IDL-to-C++ mapping

Artix and CORBA 618
IDL types

unsupported 619
idl utility 618
IDREF 463
IDREFS 463
IDREFS type 478
imported schema

C++ namespace for 716
inheritance relationships

between complex types 489
init() function 131
initial_threads configuration variable 186
inout parameter ordering 148
inout parameters 634

in parameters 634
input message 145, 150
input parameters 145
instance namespace 561
integer

compare() 441
is_negative() 441
is_non_negative() 441
is_non_positive() 441
is_positive() 441
is_valid_integer() 441
to_string() 441

Integer type 440
integer type

nillable 564
integer types

arithmetical operators 440
Integer type 440
maximum precision 440
NegativeInteger type 440
NonNegativeInteger type 440
NonPositiveInteger type 440
PositiveInteger type 440

International Components for Unicode 420
internationalization

16-bit characters 422
configuring 419
IANA character set 420
International Components for Unicode 420
narrow characters 421
plugins:codeset:char:ccs configuration variable 419
plugins:codeset:char:ncs configuration variable 419
plugins:codeset:wchar:ccs configuration

variable 419
plugins:codeset:wchar:ncs configuration

variable 419
plugins:soap:encoding configuration variable 419
wchar_t characters 422

int type
nillable 563

IONA foundation classes 195
IOP

context ID 251
IOP::ServiceId type 257
IP ports

in cloned service 112
is_empty() 600
is_negative() 438, 441
is_nil() function 566, 569, 576, 694
 723

INDEX
is_non_negative() 441
is_non_positive() 441
is_positive() 441
is_valid_integer() 441
IT_AutoPtr template 173
IT_Bus::AllComplexType 472
IT_Bus::Any::get_any_namespace() function 540
IT_Bus::Any::get_namespace_constraints()

function 540
IT_Bus::Any::get_process_contents() function 540
IT_Bus::Any::set_any_data() function 536
IT_Bus::Any::set_string_data() function 536
IT_Bus::AnyList class 556
IT_Bus::AnyType::get_reflection() function 638
IT_Bus::AnyType::Kind type 639, 677
IT_Bus::AnyType class 280, 283, 296, 314, 367, 639
IT_Bus::AnyType type

printing 673
IT_Bus::Base64Binary 444
IT_Bus::Base64Binary type 443
IT_Bus::BinaryBuffer 418
IT_Bus::Boolean 417
IT_Bus::Byte 417
IT_Bus::ChoiceComplexType 468
IT_Bus::ContextContainer::get_context() function 295,

314
IT_Bus::ContextContainer::request_contexts()

function 295, 314
IT_Bus::ContextContainer class 279, 282, 294, 313,

366
IT_Bus::ContextCurrent::request_contexts()

function 301, 319
IT_Bus::ContextCurrent class 261, 279, 280, 282, 295,

313, 314, 366
IT_Bus::ContextRegistry::get_current() function 280,

295, 301, 314, 319
IT_Bus::ContextRegistry::register_context()

function 255, 256
IT_Bus::ContextRegistry class 253, 254, 279, 282,

294, 313, 366
IT_Bus::ContextRegistry type 295, 313
IT_Bus::Date 418
IT_Bus::DateTime 418, 430
IT_Bus::Date type 431
IT_Bus::Decimal 418, 438
IT_Bus::Decimal::DigitIterator 439
IT_Bus::DerivedSimpleType::get_base() function 681
IT_Bus::Double 417
IT_Bus::Duration 418

IT_Bus::Float 417
IT_Bus::GDay 418
IT_Bus::GDay type 431
IT_Bus::get_context_container() function 252
IT_Bus::GMonth 418
IT_Bus::GMonthDay 418
IT_Bus::GMonthDay type 431
IT_Bus::GMonth type 431
IT_Bus::GYear 418
IT_Bus::GYearMonth 418
IT_Bus::GYearMonth type 431
IT_Bus::GYear type 431
IT_Bus::HexBinary 418, 444
IT_Bus::HexBinary type 443
IT_Bus::ID 418
IT_Bus::init() 131
IT_Bus::Int 417
IT_Bus::Integer 418
IT_Bus::Integer type 440
IT_Bus::Language 417
IT_Bus::Long 417
IT_Bus::Name 418
IT_Bus::NCName 418
IT_Bus::NegativeInteger 418
IT_Bus::NegativeInteger type 440
IT_Bus::NMTOKEN 417
IT_Bus::NMTOKENS 417
IT_Bus::NonNegativeInteger 418
IT_Bus::NonNegativeInteger type 440
IT_Bus::NonPositiveInteger 418
IT_Bus::NonPositiveInteger type 440
IT_Bus::NormalizedString 417
IT_Bus::PositiveInteger 418
IT_Bus::PositiveInteger type 440
IT_Bus::QName 418
IT_Bus::QName type 428
IT_Bus::RefCountedBase class 641
IT_Bus::SequenceComplexType 465
IT_Bus::Service::get_endpoint_reference()

function 211, 214
IT_Bus::Service::register_servant() function

and transient servants 113
IT_Bus::Short 417
IT_Bus::SoapEncArrayT 592
IT_Bus::String 417, 419
IT_Bus::String::iterator 419
IT_Bus::Time 418
IT_Bus::Time type 431
IT_Bus::Token 417
724

INDEX
IT_Bus::UByte 417
IT_Bus::UInt 417
IT_Bus::ULong 417
IT_Bus::UserFaultException 160
IT_Bus::UShort 417
IT_Bus::Var template class 641
IT_Bus::XMimeBase64Binary type 443
IT_Bus::XMimeHexBinary type 443
iterators

in IT_Vector 604
IT_FixedPoint class 438
IT_HashMap class

differences from std::map 610
operations 611
overview 609

IT_Reflect::All class 652
IT_Reflect::BuiltInType::get_value_kind()

function 682
IT_Reflect::BuiltInType::ValueKind type 682
IT_Reflect::BuiltInType class 647
IT_Reflect::BuiltInType type 678
IT_Reflect::Choice::get_current_element()

function 685
IT_Reflect::Choice class 658
IT_Reflect::Choice type 683
IT_Reflect::ComplexContent class 663
IT_Reflect::ComplexContent type 688
IT_Reflect::ComplexType class 647
IT_Reflect::DerivedSimpleType type 678
IT_Reflect::ElementList::get_size() function 692
IT_Reflect::ElementList class 666
IT_Reflect::ElementList type 691
IT_Reflect::ModelGroup class 647
IT_Reflect::ModelGroup type 683
IT_Reflect::Nillable::is_nil() function 694
IT_Reflect::Nillable class 669
IT_Reflect::Nillable type 693
IT_Reflect::Reflection::get_reflected() function 639
IT_Reflect::Reflection::get_type_kind() function 677,

684
IT_Reflect::Reflection::get_type_name() function 684
IT_Reflect::Reflection class 638, 647
IT_Reflect::Sequence class 655
IT_Reflect::SimpleContent class 661
IT_Reflect::SimpleContent type 686
IT_Reflect::SimpleType class 647
IT_Reflect::ValueRef template type 639
IT_Reflect::Value template class 648
IT_UString class 419

IT_Vectof class
resize() 603

IT_Vector class
assign() 603
at() 603
clear() 603
converting to 503
differences from std::vector 603
iterators 604
operations 606
overview 602
resize() 603

IT_Vector template class
and AnyList type 556

K
Kind type 677

L
lax 534
leaks

avoiding 173
left_most_digit() 438
length() 423
length facet 451
libraries

Artix foundation classes 195
ART library 195
Bus 195
IONA foundation classes 195

license
display current 717

linker requirements 195
local interface type 619
logical contract

and servants 103
long type

nillable 563
low water mark 185
low_water_mark configuration variable 186

M
makefile

generating with wsdltocpp 64, 77, 716
mapping

IDL attributes 634
IDL interfaces 631
IDL modules 631
 725

INDEX
IDL operations 633
IDL to C++ 618

maxExclusive facet 451
maxInclusive facet 451
maxLength facet 451
maxOccurs 499, 542
max_size() 603
memory management 165

client side 167
copying and assignment 170
deallocating 172
reflection 641
rules 166
server side 168
smart pointers 173

message headers
and contexts 250

messages
input 145, 150
output 145, 151

minExclusive facet 451
minInclusive facet 451
minLength facet 451
minOccurs 542
ModelGroup class 647
ModelGroup type 683
MQConnetionAttributesContextType 370
MQ_INCOMING_MESSAGE_ATTRIBUTES 375
MQMessageAttributesType 376
MQ_OUTGOING_MESSAGE_ATTRIBUTES 375
multi-dimensional native arrays 501
multiple occurrences

printing with reflection 691
multi-threaded threading model 179
multi-threading

client side 178
server side 179

N
namespace

for generated C++ code 715
namespace constraints

accessing 539
xsd:any element 533

namespace prefix 428
namespace URI

and QName type 428
anyURI type 526
exclude from code generation 716

include in code generation 716
narrow characters 421
native arrays 499
NegativeInteger type 440
negativeInteger type

nillable 564
nesting complex types 482
nillable atomic member elements 570
Nillable class

and reflection 669
NillablePtr template class 576
Nillable type 693
nillable type

reflection 669
nillable types 570

atomic type, example 564
atomic types 563
IT_Bus::NillableValue 561
nillable array elements 578
NillablePtr template class 576
nillable user-defined member elements 574
overview 560
syntax 561
user-defined types 567
xsi:nil attribute 561

NillableValue class 561
nmake

generating makefile for 64, 77, 716
NMTOKENS type 478
NMTOKEN type 478
NonNegativeInteger type 440
nonNegativeInteger type

nillable 564
NonPositiveInteger type 440
nonPositiveInteger type

nillable 564
NOTATION 463
NOTATION type 478
number_of_digits() 438

O
object references

mapping to C++ 632
occurrence constraints 549, 553

and reflection 666
AnyList class 556
get_item_name() 543
get_max_occurs() 542
get_max_occurs() function 549, 553
726

INDEX
get_min_occurs() 542
get_size() 543
in all groups 472
in choice groups 468
in sequence groups 465
overview of 542
sequence 547, 551
set_size() 542
set_size() function 549, 553
xsd:any element 533
xsd:any type 555

offset attribute 601
oneway operations

in IDL 634
operations

declaring 145, 150
optional attributes 475
orb_plugins list 217
order of parameters 147
out parameters 634
output directory

specifying to code generator 715
output message 145, 151
output parameters 145

P
parameters

in IDL-to-C++ mapping 634
parsing

WSDL model 218
partially transmitted arrays 601
past_right_most_digit() 438
pattern facet 451
PerInvocation threading model 181

threading
PerInvocation threading model

183
per-port threading model 180, 182
PerThread threading model 181, 183
physical contract

and servants 103
plug-in

servant registration code 64, 717
plugins:codeset:char:ccs configuration variable 419
plugins:codeset:char:ncs configuration variable 419
plugins:codeset:wchar:ccs configuration variable 419
plugins:codeset:wchar:ncs configuration variable 419
plugins:soap:encoding configuration variable 419

port extensors
<http-conf:client> 278
<http-conf:server> 281

ports
activating with register_servant() 105

port type
specifying to code generator 64, 76, 715

PositiveInteger type 440
positiveInteger type

nillable 564
print_atom template function 681
Printer class 673
printing Choice type 683
printing DerivedSimpleType type 678
print_random demonstration 672
print_value() template function 681
processContents attribute 534

get_process_contents() function 540
lax 534
skip 534
strict 534

prohibited attributes 475
protocols

and contexts 250
proxification 241

definition 243
proxy

initializing from reference 215
proxy objects

constructor with reference argument 124

Q
QName type 428

equality testing 429
nillable 563

R
recursive copying 171
recursive deallocating 172
recursive descent parsing 638
RefCountedBase class 641
reference

C++ representation 201
contents 201
to an endpoint 200
XML schema for 200

reference counting 641
_add_ref() function 641
 727

INDEX
_remove_ref() function 641
Var assignment 642

references
and WSDL publish plug-in 219
cloning from a service 208
CORBA mapping 632
creating 210
get_endpoint_reference() function 214
programming with 209
proxy constructor 124, 215
register_transient_servant() function 213
WS_Addressing::EndpointReferenceType class 215
XML schema 200

-reflect flag 638, 717
reflection

All class 652
API overview 646
attributes 690
casting 644
Choice class 658
ComplexContent class 663
converting a built-in type 639
converting reflection to AnyType 639
ElementList class 666
example 672
get_attribute_value() function 690
get_base() function 681
get_current_element() function 685
get_element_name() function 684
get_size() function 692
get_type_kind() function 639, 677, 684
get_type_name() function 684
get_value_kind() function 682
is_nil() function 694
Kind type 639, 677
memory management 641
multiple occurrences 691
Nillable class 669
occurrence constraints 666
overview 638
print_atom template function 681
Printer class 673
printing BuiltInType type 678
printing ComplexContent type 688
printing ElementList type 691
printing ModelGroup type 683
printing Nillable type 693
printing SimpleContent type 686
print_value() template function 681

RefCountedBase class 641
-reflect flag 638, 717
Sequence class 655
SimpleContent class 661
simple types 648
type descriptions 639
ValueKind type 682
Value template class 648
Var template class 641

Reflection class 638, 647
register_context() function 250, 252, 253, 254, 255,

256, 295, 299, 314, 317
register_servant() function 105, 211

and transient servants 113
register_transient_servant() function 113, 213
_remove_ref() function 641
reply context container 260
reply contexts

and configuration contexts 248
reply_contexts() function 262
reply message

document/literal wrapped 150
reportOptionType 383
request context

propagating automatically 322
request context container 260
request contexts

and configuration contexts 248
request_contexts() function 248, 262, 295, 301, 314,

319
request message

document/literal wrapped 149
required attributes 475
resize() 603
restriction tag 490
round() 438
router contract 242
routing

and callbacks 241
proxification 243

S
sample context schema 287
scale() 438
schemas

context, example 287
for references 200
http-conf schema 274
pre-registered contexts, for 326
728

INDEX
Sequence class 655
sequence complex type 482
SequenceComplexType class 465
sequence complex types 465

and arrays 499
sequence type 626

get_max_occurs() function 549, 553
get_min_occurs() function 549, 553
occurrence constraints 547, 551
set_size() function 549, 553

Serialized threading model 183
serialized threading model 180
servant

and threading models 181
registration in plug-in 64, 717

servants
clone() function 183
dispatch() function 182
register_servant() function 105
static, registering 103
transient, registering 109
wrapper, registering 183
wrapper classes 182

server
skeleton code, files 714

server skeleton code 714
serverType 339
service

specifying on the client side 128
service contexts

and CORBA 251
context ID 257
IOP context ID 251

service name
specifying to code generator 64, 76, 715

services
cloning 109
cloning, IP ports 112

set_any_data() function 536
set_any_type() function 529
set_context() function 264
set_simpleTypeValue() 488
set_size() 542
set_size() function 549, 553
set_string_data() function 536
short type

nillable 563
SimpleContent class 661
SimpleContent type 686

SimpleType class 647
simple types

deriving by restriction 451
skeleton code

files 714
generating with wsdltocpp 716

skip 534
smart pointers 173

Var type 684
SOAP

header context 250
internationalization 419
registering a header context 255

SOAP arrays 590
encoding 595
get_extents() 592, 597
multi-dimensional 595
one-dimensional 592
partially transmitted 601
sparse 598
syntax 591

SOAP-ENC:Array type 591
SOAP-ENC:offset attribute 601
SoapEncArrayT class 592
SOAPHeaderInfo type 287
SOAP headers

and contexts 250
sparse arrays 598

get_extents() 600
initializing 599
is_empty() 600

static_cast_var casting operator 644
static servant

definition 103
static servants 103

register_servant() function 211
std::map class 609
std::vector class 602
strict 534
strings

iterator 419
IT_UString class 419
length() 423

String type
conversion functions 422

string type
nillable 563

Stroustrup, Bjarne 423
struct type 625
 729

INDEX
stub code
files 714

stub libraries
building on Windows 197

stubs
DLL library, packaging as 717

T
target namespace

for a context schema 287
threading

and configuration contexts 248
and ContextCurrent type 248
multi-threaded model 179
overview 177
PerInvocation threading model 181
per-port threading model 180, 182
PerThread threading model 181, 183
Serialized threading model 183
serialized threading model 180
work queue 181

threading model
default 179
default, for servants 116
default for servant 107

thread pool
configuration settings 185
initial threads 185

thread_pool:high_water_mark configuration
variable 186

thread_pool:initial_threads configuration variable 186
thread_pool:low_water_mark configuration

variable 186
time

Date type 431
GDay type 431
GMonthDay type 431
GMonth type 431
GYearMonth type 431
GYear type 431
Time type 431

time type
nillable 564

to_string() 441
totalDigits facet 451
transactionType 373
transient servants 109

registering 113
truncate() 438

typedef 629
type factories

and contexts 252

U
union type 623, 627
unsignedByte type

nillable 563
unsignedInt type

nillable 563
unsignedLong type

nillable 563
unsignedShort type

nillable 563
unsupported IDL types 619
user defined exceptions

propagation 160
user-defined types

nillable 567
UserFaultException type 160

V
ValueKind type 682
ValueRef template type 639
Value template class 648
value type 619
Var template class 641
Var type

assignment 642
casting, from plain pointer to Var 644
casting, from Var to Var 644
const_cast_var casting operator 644
dynamic_cast_var casting operator 644
static_cast_var casting operator 644

W
wchar_t characters 422
wchar type 619
whiteSpace facet 451
wildcarding types 521

anyURI type 526
xsd:any element 533

work queue 181
-wrapped flag 153, 718
wrapped parameters

-wrapped flag 718
wrapper servants 182, 183
wsa:EndpointReferenceType type 207
730

INDEX
WS_Addressing::EndpointReferenceType class 201,
215

WSDL
anyType syntax 528
atomic types 417
attributes 475
binary types 443
complex types 464
deriving by restriction 451

wsdl:arrayType attribute 592
WSDL contract

location of 129
WSDL facets 451
WSDL faults 628
WSDL model 218

and multiple Bus instances 221
WSDL publish plug-in 217

WSDL model 218
wsdl_publish plug-in 217
wsdltocpp

command-line options 715
command-line switches 715
files generated 714
XML schemas, generating from 267

wsdltocpp compiler 288
wsdltocpp utility 528, 618

-declspec option 197
-reflect flag 638
-wrapped flag 153

wstring type 619

X
XML schema

wildcarding types 521
xsd:any element 533

namespace constraint 533
occurrence constraints 533
process contents attribute 534

xsd:any type
AnyList class 556
occurrence constraints 555

xsd:anyURI type 526
xsd:boolean 452
xsd:dateTime type 430
xsd:day schema type 431
xsd:decimal type 438
xsd:ENTITIES 463, 478
xsd:ENTITY 463, 478
xsd:IDREF 463
xsd:IDREFS 463, 478
xsd:NMTOKEN 478
xsd:NMTOKENS 478
xsd:NOTATION 463, 478
xsd:time schema type 431
xsi:nil attribute 561
xsi namespace 561
 731

INDEX
732

	List of Tables
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Artix Documentation Library

	Getting Started with Artix Programming
	The Hello World Application
	Prerequisites
	Define a WSDL Contract
	Develop a Service Plug-In
	Develop a Client
	Run the Application
	Adding Configuration to the Application

	Server Programming
	Programming with the Container Model
	Container Architecture
	Multiple Services in a Container
	Service with Multiple Ports
	Implementing a Servant Class
	Implementing the Plug-In Class
	Implementing the Service Activator Class

	Programming with the Standalone Model
	Default Servants
	Introduction to Default Servants
	Functions Defined on IT_Bus::Service
	The Server Address Context
	Implementing a Factory
	Implementing a Default Servant

	Transient Servants
	How Services Locate WSDL Contracts
	Registering Static Servants
	Registering Default Servants
	Registering Transient Servants

	Client Programming
	Programming with Client Proxies
	What is a Client Proxy?
	Initializing Proxies from References
	Other Ways of Initializing Proxies

	Implementing a Client
	Programming with Initial References
	Obtaining Initial References
	Overriding a HTTP Address in a Client

	Artix Programming Considerations
	Operations and Parameters
	RPC/Literal Style
	Document/Literal Wrapped Style

	Exceptions
	System Exceptions
	User-Defined Exceptions

	Memory Management
	Managing Parameters
	Assignment and Copying
	Deallocating
	Smart Pointers

	Multi-Threading
	Client Threading Issues
	Servant Threading Models
	Setting the Servant Threading Model
	Thread Pool Configuration

	Converting with to_string() and from_string()
	Locating Services with UDDI
	Compiling and Linking an Artix Application
	Building Artix Stub Libraries on Windows

	Endpoint References
	Introduction to Endpoint References
	Using References in WSDL
	Programming with References
	Creating References
	Resolving References

	The WSDL Publish Plug-In
	Migration Scenarios

	Callbacks
	Overview of Artix Callbacks
	Callback WSDL Contract
	Client Implementation
	Server Implementation
	Routing and Callbacks

	Artix Contexts
	Introduction to Contexts
	Request, Reply and Configuration Contexts
	Header Contexts
	Registering Contexts

	Reading and Writing Context Data
	Getting a Context Instance
	Reading and Writing Basic Types
	Reading and Writing User-Defined Types
	Reading and Writing Custom Types
	Durability of Context Settings

	Context Example
	HTTP-Conf Schema
	Setting a Request Context on the Client Side
	Setting a Configuration Context on the Server Side

	SOAP Header Contexts
	Custom SOAP Header Demonstration
	SOAP Header Context Schema
	Declaring the SOAP Header Explicitly
	Client Main Function
	Server Main Function
	Service Implementation

	CORBA Header Contexts
	Custom CORBA Header Scenario
	CORBA Service Contexts
	Configuration Prerequisites
	Client Main Function
	Server Main Function
	Service Implementation

	Header Contexts in Three-Tier Systems

	Working with Transport Attributes
	How Artix Stores Transport Attributes
	Getting and Setting Transport Attributes
	Getting IP Attributes
	Setting HTTP Attributes
	Client-side Configuration
	Server-side Configuration
	Setting the Server’s Endpoint URL

	Setting CORBA Attributes
	Setting WebSphere MQ Attributes
	Working with Connection Attributes
	Working with MQ Message Descriptor Attributes

	Setting FTP Attributes
	Setting FTP Connection Policies
	Setting the Connection Credentials
	Setting the Naming Policies

	Setting i18n Attributes
	Setting WS-A and WS-RM Attributes
	Setting the WS-A ReplyTo Endpoint
	Setting WS-RM Attributes

	Artix Data Types
	Including and Importing Schema Definitions
	Simple Types
	Atomic Types
	String Type
	NormalizedString and Token Types
	QName Type
	Date and Time Types
	Duration Type
	Decimal Type
	Integer Types
	Binary Types
	Deriving Simple Types by Restriction
	List Type
	Union Type
	Holder Types
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Attribute Groups
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Arrays
	Model Group Definitions

	Binary Types and MTOM
	Introduction to MTOM
	Default XOP Encoding
	Specifying the MIME Content Type
	Restricting the MIME Content Type

	Wildcarding Types
	anyAttribute Type
	anyURI Type
	anyType Type
	any Type

	Occurrence Constraints
	Element Occurrence Constraints
	Sequence Occurrence Constraints
	Choice Occurrence Constraints
	Any Occurrence Constraints

	Nillable Types
	Introduction to Nillable Types
	Nillable Atomic Types
	Nillable User-Defined Types
	Nested Atomic Type Nillable Elements
	Nested User-Defined Nillable Elements
	Nillable Elements of an Array

	Substitution Groups
	SOAP Arrays
	Introduction to SOAP Arrays
	Multi-Dimensional Arrays
	Sparse Arrays
	Partially Transmitted Arrays

	IT_Vector Template Class
	Introduction to IT_Vector
	Summary of IT_Vector Operations

	IT_HashMap Template Class
	Introduction to IT_HashMap
	Summary of IT_HashMap Operations

	Unsupported XML Schema Constructs in Artix

	Artix IDL to C++ Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Reflection
	Introduction to Reflection
	The IT_Bus::Var Template Type
	Reflection API
	Overview of the Reflection API
	IT_Reflect::Value<T>
	IT_Reflect::All
	IT_Reflect::Sequence
	IT_Reflect::Choice
	IT_Reflect::SimpleContent
	IT_Reflect::ComplexContent
	IT_Reflect::ElementList
	IT_Reflect::SimpleTypeList
	IT_Reflect::Nillable

	Reflection Example
	Print an IT_Bus::AnyType
	Print Atomic and Simple Types
	Print Sequence, Choice, and All Types
	Print SimpleContent Types
	Print ComplexContent Types
	Print Multiple Occurrences
	Print Nillables

	Persistent Maps
	Introduction to Persistent Maps
	Creating a Persistent Map
	Inserting, Extracting, and Removing Data
	Handling Exceptions
	Supporting High Availability
	Configuration Example

	WSDL-to-C++ Compiler Utility
	Generating Stubs and Starting Point Code

	Index

