Progress. | Artix.

ARTIX

Developing Artix Applicationsin C++

Version 5.6, December 2011

susiness making procress” PROGRESS

software

© 2011 Progress Software Cor poration and/or itssubsidiaries or affiliates. All rights
reserved.

These materials and all Progre£s® software products are copyrighted and all rights are
reserved by Progress Software Corporation. Theinformation in these materialsis subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errorsthat may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, Sequelink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technol ogy—Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance I ntegration, ObjectStore | nspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliatesin the U.S. and other countries. Javaisaregistered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments:

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technol ogies from the Apache
Software Foundation (http://www.apache.org). Such Apache technologies are subject to the
following terms and conditions: The Apache Software License, Version 1.1. Copyright (C)
1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copy-
right notice, thislist of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, thislist of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3.
The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. Thenames"Ant", "Xerces," "Xaan," "Log 4J," and "Apache Software Foundation" must
not be used to: endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS|S' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was
originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software devel oped by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xerces' and "Apache Software Foundation” must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the
Apache Software Foundation ((http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributionsin binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software devel oped by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces' and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

http://www.apache.org

THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
International Business Machines, Inc., http://www.ibm.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1. - Copy-
right (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/).” Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names " Xaan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individual s on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,

L otus Development Corporation., http://www.lotus.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 2000-2003 The A pache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgement may
appear in the software itself, if and wherever such third-party acknowledgements normally
appear.

4, The names "The Jakarta Project”, "Velocity", and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, "Velocity" nor may
"Apache" appear in their names without prior written permission of the Apache Group.

THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache
Software Foundation (http://www.apache.org). Such Apache technology is subject to the
following terms and conditions. The Apache Software License, Version 1.1 - Copyright (C)
1999 The Apache Software Foundation. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally
appear.

4. The names "log4j" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
ORITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, ORTORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see <http://www.apache.org/>.

(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM.
Such technology is subject to the following terms and conditions. Copyright (C) 2000-2004
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and usein source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
<request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we request (but
do not require) that you include in the end-user documentation provided with the redistribu-
tion and/or in the software itself an acknowledgement equivalent to the following: "This

product includes software developed by the JIDOM Project (http://www.jdom.org/)." Alter-
natively, the acknowledgment may be graphical using the logos available at http://
www.jdom.org/images/logos. THIS SOFTWARE ISPROVIDED ASISAND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software
consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter AT jdom_DOT _org> and
Brett McLaughlin <brett_ AT_jdom_DOT_org>. For more information on the JDOM
Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technol -
ogies from IBM. Such technologies are subject to the following terms and conditions: Cop-
yright (c) 1995-2003 International Business Machines Corporation and others All rights
reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the " Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, pub-
lish, distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
wareis furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in al copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation. THE SOFTWARE 1S PRO-
VIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in adver-
tising or otherwise to promote the sale, use or other dealingsin this Software without prior
written authorization of the copyright holder. All trademarks and registered trademarks
mentioned herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from
John Wilson. Such technology is subject to the following terms and conditions: Copyright
(c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: Redistributions of source code must retain the above copyright

notice, thislist of conditions and the following disclaimer. Redistributionsin binary form
must reproduce the above copyright notice, thislist of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. All
advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by John Wilson. The name of
John Wilson may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN
WILSON “ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technol-
ogy from SourceForge and Networks Associates Technology, Inc. Such technology is sub-
ject to the following terms and conditions: Various copyrights apply to this package, listed
in various separate parts below. Please make surethat you read all the parts. Up until 2001,
the project was based at UC Davis, and thefirst part coversall code written during thistime.
From 2001 onwards, the project has been based at SourceForge, and Networks Associates
Technology, Inc hold the copyright on behalf of the wider Net-SNM P community, covering
all derivative work done since then. An additional copyright section has been added as Part
3 below also under aBSD license for the work contributed by Cambridge Broadband Ltd. to
the project since 2001. An additional copyright section has been added as Part 4 below also
under aBSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over theyearsit hasbeenin
development, and a full list of contributors can be found in the README file under the
THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like) ----- Copyright
1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000.
Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its documenta-
tion for any purpose and without fee is hereby granted, provided that the above copyright
notice appearsin all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of CMU and The Regents of the
University of Californianot be used in advertising or publicity pertaining to distribution of
the software without specific written permission. CMU AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIESWITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR

IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ----
Part 2: Networks Associates Technology, Inc copyright notice (BSD) ----- Copyright (c)
2001-2003, Networks A ssociates Technology, Inc. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: * Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer.* Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribu-
tion.* Neither the name of the Networks A ssociates Technology, Inc nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE |S PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS "ASIS' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 3: Cambridge Broadband Ltd. copyright notice
(BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:* Redistributions of
source code must retain the above copyright notice, thislist of conditions and the following
disclaimer.* Redistributionsin binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.* The name of Cambridge Broadband Ltd. may not be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER “ASIS"
AND ANY EXPRESSOR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun
Microsystems, Inc. copyright notice (BSD) ----- Copyright © 2003 Sun Microsystems, Inc.,
4150 Network Circle, Santa Clara, California 95054, U.S.A. All rightsreserved. Useis
subject to license terms below. This distribution may include materials developed by third
parties. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and usein
source and binary forms, with or without modification, are permitted provided that the fol-

lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, thislist of conditions and the following disclaimer.* Redistributionsin binary form
must reproduce the above copyright notice, thislist of conditions and the following dis-
claimer in the documentation and/or other material s provided with the distribution.* Neither
the name of the Sun Microsystems, Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) ----- Copy-
right (c) 2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met:* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.* Redistributionsin binary form must repro-
duce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.* Neither the name of
Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 6: Cisco/BUPTNIC
copyright notice (BSD) ----- Copyright (¢) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications. All rights reserved. Redis-
tribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, thislist of conditions and the following disclaimer. * Redistribu-
tions in binary form must reproduce the above copyright notice, thislist of conditions and
the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunica-
tions, nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS'AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R& D Soft-
ware GmbH & Co KG copyright notice (BSD) ----- Copyright (c) Fabasoft R&D Software
GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz. Redistribution and usein
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, thislist of conditions and the following disclaimer.* Redistributionsin binary form
must reproduce the above copyright notice, thislist of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. * The
name of Fabasoft R& D Software GmbH & Co KG or any of its subsidiaries, brand or prod-
uct names may not be used to endorse or promote products derived from this software with-
out specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDER "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSL eay v0.9.8i technology from
OpenSSL..org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES
The OpenSSL toolkit stays under adual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License ---------------
/*

Copyright (c) 1998-2008 The OpenSSL Project. All rightsreserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: "This product includes software developed by the OpenSSL
Project for usein the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project” must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openss-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software devel oped by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “ASIS' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES;, LOSS OF USE, DATA, OR PROFITS; OR BUSINESSINTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License
Copyright (C) 1995-1998 Eric Young (eay @cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay @cryptsoft.com). The
implementation was written so asto conform with Netscapes SSL. Thislibrary isfreefor
commercial and non-commercial use aslong as the following conditions are aheared to.
The following conditions apply to all code found in this distribution, be it the RC4, RSA,
Ihash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tih@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright noticesin
the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can bein the form of a
textual message at program startup or in documentation (online or textual) provided with
the package. Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, thislist of conditionsand
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement: "This product includes cryptographic software written by Eric
Young (eay @cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from
the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement: "This product includes soft-
ware written by Tim Hudson (tjh@cryptsoft.com)"

THISSOFTWARE ISPROVIDED BY ERIC YOUNG TASIS'AND ANY EXPRESSOR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. The licence and distribution terms for any publically available ver-
sion or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technol-
ogy from the Legion Of The Bouncy Castle (http://www.bouncycastle.org). Such Bouncy-
castle 1.3.3 cryptographic technology is subject to the following terms and conditions:
Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycas-
tle.org). Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the " Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit personsto whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall beincluded in al copies or substantial portions of the
Software. THE SOFTWARE ISPROVIDED "ASIS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERSBE LIABLE FOR ANY CLAIM, DAMAGESOR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of
providing a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. Such technology is subject to the following terms and
conditions: PCRE LICENCE. PCRE isalibrary of functionsto support regular expressions
whose syntax and semantics are as close as possible to those of the Perl 5 language. Release
7 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The doc-
umentation for PCRE, supplied inthe"doc" directory, isdistributed under the sameterms as
the software itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions. THE BASIC LIBRARY
FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright
(c) 1997-2008 University of Cambridge All rights reserved. THE C++ WRAPPER FUNC-
TIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc. All rights
reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, thislist of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. * Neither the name of the University
of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS"ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mecpp v2.6.4 from Kiyoshi Matsui. Such
technology is subject to the following termsand conditions: Copyright (c) 1998, 2002-2007
Kiyoshi Matsui kmatsui @t3.rim.or.jp All rights reserved. This software including the files
in this directory is provided under the following license. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE ISPROVIDED BY THE AUTHOR “ASIS' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corpo-
ration 2010 (IBM 32-bit Runtime Environment for AlX, Java Technology Edition v 1.6.0
SR9 FP2).

Updated: December 5, 2011

Contents

List of Tables

Preface
What is Covered in This Book
Who Should Read This Book
The Artix Documentation Library

Chapter 1 Getting Started with Artix Programming
TheHello World Application
Prerequisites
Definea WSDL Contract
Develop a Service Plug-In
Develop a Client
Run the Application
Adding Configuration to the Application

Chapter 2 Server Programming
Programming with the Container Model
Container Architecture
Multiple Servicesin a Container
Service with Multiple Ports
Implementing a Servant Class
Implementing the Plug-In Class
Implementing the Service Activator Class
Programming with the Standalone M odel
Default Servants
Introduction to Default Servants
Functions Defined on IT_Bus::Service
The Server Address Context
Implementing a Factory
Implementing a Default Servant
Transient Servants
How Services Locate WSDL Contracts

25

29
29
29
29

31
32
35
36
41

47

53
54
55
58
61
63
68
72
76
79
80
83
85
87
92
95
100

17

CONTENTS

Registering Static Servants
Registering Default Servants
Registering Transient Servants

Chapter 3 Client Programming

Programming with Client Proxies
What isa Client Proxy?
Initializing Proxies from References
Other Ways of Initializing Proxies
Implementing a Client
Programming with Initial References
Obtaining I nitial References
OverridingaHTTP Addressin a Client

Chapter 4 Artix Programming Considerations

Operationsand Parameters
RPC/Litera Style
Document/Literal Wrapped Style
Exceptions
System Exceptions
User-Defined Exceptions
Memory Management
Managing Parameters
Assignment and Copying
Deallocating
Smart Pointers
Multi-Threading
Client Threading Issues
Servant Threading Models
Setting the Servant Threading Model
Thread Pool Configuration
Converting with to_string() and from_string()
L ocating Serviceswith UDDI
Compiling and Linking an Artix Application
Building Artix Stub Libraries on Windows

Chapter 5 Endpoint References

18

Introduction to Endpoint References

103
108
109

117
118
119
124
128
130
134
137
140

143
144
145
149
154
155
160
165
166
170
172
173
177
178
179
182
185
188
193
195
197

199
200

CONTENTS

Using Referencesin WSDL 203
Programming with References 209
Creating References 210
Resolving References 215
TheWSDL Publish Plug-In 217
Migration Scenarios 222
Chapter 6 Callbacks 225
Overview of Artix Callbacks 226
Callback WSDL Contract 230
Client Implementation 233
Server Implementation 237
Routing and Callbacks 241
Chapter 7 Artix Contexts 245
Introduction to Contexts 246
Request, Reply and Configuration Contexts 247
Header Contexts 250
Registering Contexts 252
Reading and Writing Context Data 258
Getting a Context Instance 259
Reading and Writing Basic Types 265
Reading and Writing User-Defined Types 267
Reading and Writing Custom Types 269
Durability of Context Settings 272
Context Example 273
HTTP-Conf Schema 274
Setting a Request Context on the Client Side 278
Setting a Configuration Context on the Server Side 281
SOAP Header Contexts 284
Custom SOAP Header Demonstration 285
SOAP Header Context Schema 287
Declaring the SOAP Header Explicitly 289

Client Main Function 292
Server Main Function 297
Service Implementation 300
CORBA Header Contexts 303
Custom CORBA Header Scenario 304

19

CONTENTS

CORBA Service Contexts
Configuration Prerequisites
Client Main Function
Server Main Function
Service Implementation
Header Contextsin Three-Tier Systems

Chapter 8 Working with Transport Attributes

How Artix Stores Transport Attributes
Getting and Setting Transport Attributes
Getting | P Attributes
Setting HTTP Attributes
Client-side Configuration
Server-side Configuration
Setting the Server’s Endpoint URL
Setting CORBA Attributes
Setting WebSphere M Q Attributes
Working with Connection Attributes
Working with MQ Message Descriptor Attributes
Setting FTP Attributes
Setting FTP Connection Policies
Setting the Connection Credentials
Setting the Naming Policies
Setting i18n Attributes
Setting WS-A and WS-RM Attributes
Setting the WS-A ReplyTo Endpoint
Setting WS-RM Attributes

Chapter 9 Artix Data Types

20

Including and Importing Schema Definitions
Simple Types

Atomic Types

String Type

NormalizedString and Token Types

QName Type

Date and Time Types

Duration Type

Decimal Type

306
309
31
315
318
321

323
324
326
336
339
340
351
364
368
369
370
375
386
387
391
394
395
398
399
402

413
414
416
417
419
424
428
430
432
438

CONTENTS

Integer Types 440
Binary Types 443
Deriving Simple Types by Restriction 451
List Type 454
Union Type 456
Holder Types 461
Unsupported Simple Types 463
Complex Types 464
Sequence Complex Types 465
Choice Complex Types 468
All Complex Types 472
Attributes 475
Attribute Groups 479
Nesting Complex Types 482
Deriving a Complex Type from a Simple Type 486
Deriving a Complex Type from a Complex Type 489
Arrays 499
Model Group Definitions 504
Binary Typesand MTOM 509
Introduction to MTOM 510
Default XOP Encoding 512
Specifying the MIME Content Type 515
Restricting the MIME Content Type 519
Wildcarding Types 521
anyAttribute Type 522
anyURI Type 526
anyType Type 528
any Type 533
Occurrence Constraints 541
Element Occurrence Constraints 542
Sequence Occurrence Constraints 547
Choice Occurrence Constraints 551
Any Occurrence Constraints 555
Nillable Types 560
Introduction to Nillable Types 561
Nillable Atomic Types 563
Nillable User-Defined Types 567
Nested Atomic Type Nillable Elements 570
Nested User-Defined Nillable Elements 574

21

CONTENTS

Nillable Elements of an Array
Substitution Groups
SOAP Arrays

Introduction to SOAP Arrays

Multi-Dimensional Arrays

Sparse Arrays

Partialy Transmitted Arrays
IT_Vector Template Class

Introductionto IT_Vector

Summary of IT_Vector Operations
IT_HashMap Template Class

Introductionto IT_HashMap

Summary of IT_HashMap Operations
Unsupported XML Schema Constructsin Artix

Chapter 10 Artix IDL to C++ Mapping
Introduction to IDL Mapping
IDL Basic Type Mapping
IDL Complex Type Mapping
IDL Module and Interface Mapping

Chapter 11 Reflection
Introduction to Reflection
ThelT_Bus::Var Template Type
Reflection API
Overview of the Reflection AP
IT_Reflect::Vaue<T>
IT_Reflect::All
IT_Reflect:: Sequence
IT_Reflect::Choice
IT_Reflect:: SimpleContent
IT_Reflect:: ComplexContent
IT_Reflect::ElementList
IT_Reflect::SimpleTypeList
IT_Reflect::Nillable
Reflection Example
Print an IT_Bus::AnyType
Print Atomic and Simple Types

22

578
581
590
591
595
598
601
602
603
606
609
610
611
614

617
618
620
622
631

637
638
641
645
646
648
652
655
658
661
663
666
668
669
672
673
678

CONTENTS

Print Sequence, Choice, and All Types 683

Print SimpleContent Types 686

Print ComplexContent Types 688

Print Multiple Occurrences 691

Print Nillables 693

Chapter 12 Persistent Maps 695
Introduction to Persistent Maps 696
Creating a Persistent Map 699
Inserting, Extracting, and Removing Data 702
Handling Exceptions 706
Supporting High Availability 709
Configuration Example 712
Appendix A WSDL-to-C++ Compiler Utility 713
Generating Stubs and Starting Point Code 714

I ndex 719

23

CONTENTS

24

List of Tables

Table 1
Table 2:
Table 3:
Table 4:
Table5:
Table 6:
Table7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:

Artix Import Libraries for Linking with an Application
Details for HTTP Client Outgoing Context
Detailsfor HTTP Client Incoming Context

Details for HTTP Server Outgoing Context

Details for HTTP Server Incoming Context
Details for CORBA Transport Context

Details for Principal Context

Details for MQ Connection Attributes Context
Details for MQ Outgoing Message Attributes Context
Details for MQ Incoming Message Attributes Context
Details for FTP Connection Policy Context

Details for FTP Connection Credentials Context
Details for 18N Server Attributes Context
Detailsfor 118N Client Attributes Context

Details for Bus Security Attributes Context
Detailsfor HTTP Endpoint URL Context

Details for Server Address Context

Details for Server Operation Context

Outgoing HTTP Client Attributes

Incoming HTTP Client Attributes

Outgoing HTTP Server Attributes

Incoming HTTP Server Attributes

MQ Connection Attributes Context Properties

MQ Transactiona Values

MQ Message Attributes Context Properties
CorrelationStyle Vaues

195
327
327
328
328
329
329
330
330
331
331
332
332
333
333
334
334
335
341
349
353
361
370
373
376
378

25

LIST OF TABLES

Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:

26

Delivery Values

Format Values

ReportOption Values

ConnectionMode Values

Simple Schema Type to Simple Bus Type Mapping
IANA Character Set Names

Description of token and Types Derived from token
Validity Testing Functions for Normalized Strings and Tokens

Member Fields of IT_Bus.:DateTime

Member Fields Supported by Other Date and Time Types
Accessors and Modifier Functions for Duration Class

Examples of Duration String Conversion
Operators Supported by IT_Bus::Decimal
Unlimited Precision Integer Types

Operators Supported by the Integer Types
Schemato Bus Mapping for the Binary Types
List of Artix Holder Types

Nillable Atomic Types

Member Functions Not Defined in IT_Vector
Member Types Defined in IT_Vector<T>
Iterator Member Functions of IT_Vector<T>
Element Access Operationsfor IT_Vector<T>
Stack Operationsfor IT_Vector<T>

List Operationsfor IT_Vector<T>

Other Operationsfor IT_Vector<T>

Member Functions Not Defined in IT_Vector
Member Types Defined in IT_HashMap<T>
Iterator Member Functions of IT_HashMap<T>
Element Access Operations for IT_HashMap<T>

380
381
383
387
417
420
424
426
430
431
434
436
438

440
443
462
563
603
606
607
607
607
608
608
610
611
612
612

LIST OF TABLES

Table 56: Map Operations for IT_HashMap<T> 612
Table 57: List Operations for IT_HashMap<T> 612
Table 58: Other Operations for IT_HashMap<T> 613
Table 59: Artix Mapping of IDL Basic Typesto C++ 620
Table 60: Basic IT_Bus::Var<T> Operations 642
Table 61: Non-Atomic Built-In Types Supported by Reflection 650
Table 62: Effect of nillable, minOccurs and maxOccurs Settings 669

27

LIST OF TABLES

28

Preface

What is Covered in This Book

This book coverstheinformation needed to devel op applications using the Artix
C++ API.

Who Should Read This Book

Thisguideisintended for Artix C++ programmers. In addition to a knowledge
of C++, this guide assumes that the reader is familiar with WSDL and XML
schemas.

The Artix Documentation Library

For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library.

29

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

PREFACE

30

In this chapter

CHAPTER 1

Getting Started
with Artix
Programming

Thischapter showsyou howto rapidly build and deploy a compl ete
client/server application using the Artix command-line tools.

This chapter discusses the following topics:

The Hello World Application page 32
Prerequisites page 35
DefineaWSDL Contract page 36
Develop a Service Plug-In page 41
Develop aClient page 44
Run the Application page 47
Adding Configuration to the Application page 48

31

CHAPTER 1 | Getting Started with Artix Programming

TheHelloWorld Application

Overview Figure 1 provides a brief overview of the Hello World application, asimple
two-tier client/server application, on which the rest of this chapter is based. The
communication protocol for this example is SOAP over HTTP.

The server exposes a service, HelloWor1dSOAPService, Which listenson a
single HTTP port for incoming invocation requests.

The client obtains the connection details for the HelloWorldsoarservice by
reading alocal copy of the Hello World WSDL contract. The client then calls
the two operations, sayHi and greetMe, that are supported by the Hello World
service.

Figurel: TheHello World Application

Client Server
Container
Service Plug-In
Servant /
SOAP Service I s e
sayHi Request : HTTP Port \ \:
} + ! Hello
1 1
| | ° - Q ! World
sayHi Reply N e R S .

|
E
WSDL

32

WSDL contract

Server

TheHelloWorld Application

The Web Services Description Language (WSDL) contract provides the
foundation for the Hello World distributed application. The contract contains all
of the information needed by a Web services client, including a detailed
description of the Hello World Web service and details of the operations
supported by the service. The WSDL contract contains the following main
sections:
®* WSDL port type—describes the interface for the Hello World service,
including all of the WSDL operations supported by the service. The Hello
World port type is named Greeter and contains the following operations:

¢+ sayHi—requests the server to send a message of greeting (the
operation returns a string).

¢+ greetMe—Sendsthe user’ s name to the server and requests the server
to send a personalized greeting (the operation takes asingle string
argument and returns a string).

® WSDL binding—describes how operation request and reply messages are
to be encoded. For example, the Hello World application encodes
messages in a SOAP format.

Artix providestoolsto generate the WSDL binding automatically.

® WSDL service and port—provides connection data and properties for a
particular transport. For transports based on the Internet Protocol, you can
specify the service' s hostname and I P port. For example, the Hello World
service uses the HTTP transport and the connection dataiis specified in the
formof aHTTP URL.

The server provides the implementation of the Hello World Web service. In
particular, it provides a servant class that implements the sayti and greetie
WSDL operations.

The preferred approach for building and deploying an Artix server isto use the
container model. The Artix container model is based on the idea that the server
can be broken up into the following parts:

® Artix container.
®* Serviceplug-in.

33

CHAPTER 1 | Getting Started with Artix Programming

Artix container

Service plug-in

Client

34

The Artix container is an executable, it_container, that provides abasic
environment for Web servicesto run in. Service implementations are loaded into
the container as plug-ins. Artix exploits the dynamic loading capabilities of
modern operating systems to load service plug-ins as shared librariesor DLLSs.

A service plug-inisan Artix plug-in that contains the implementation of one or
more servant classes. Typically, a servant classis responsible for implementing
the operations from a single WSDL port type. Implementing a servant classin
C++ isequivaent to implementing a Web service.

The client is a standalone executable that invokes the sayti and greetMe
operations from the Hello World service.

The key artifact on the client side is the client proxy class, which provides an
interface mapped from the Greeter port type. By calling functions on a client
proxy object, a client can initiate remote procedure calls on the corresponding
operations in the remote Web service.

Prerequisites

Prerequisites

Overview

Basic environment variables

Path variable

Artix environment script

C++ compiler

Before attempting to build and run the Hello World application, check that the
following prerequisites are satisified:

® Basic environment variables.

° Path variable.

® Artix environment script.

® C++compiler.

Ensure that the following basic environment variables are set:

IT_PRODUCT DIR The absolute pathname of the Artix install directory.

IT_LICENSE_FILE The absolute pathname of the Artix licensefile,
licenses. txt.

JAVA_HOME Theroot directory of Sun’s J2SE Java platform (also
known as JDK). Check the Artix installation guide for
details of the correct J2SE version.

Make sure that the Javabin directory—sJava_HOME%\bin on Windows and
$JAVA_HOME/bin on UNIX—is on your path.

Artix providesascript, artix_env.bat OF artix_env.sh, in

ArtixInstalIDir /bin, that sets avariety of environment variables (not just the
basic ones mentioned here). If your user account is not configured to run this
script, you might have to run it manually.

Depending on what compiler you use and what platform you are running on, it
might be necessary to run the artix_env script with particular command-line
switches. For details, see the Artix Installation Guide.

Make sure that your environment is configured to use the correct version of C++
compiler. In generdl, it is necessary to use precisely the right compiler version,
as specified in the Artix Installation Guide.

35

CHAPTER 1 | Getting Started with Artix Programming

Definea WSDL Contract

Overview

Exampledirectories

Definethelogical contract

This section assumes that you already have the logical part of the contract (that
is, the WSDL port type and associated type definitions) and shows you how to
proceed to generate the rest of the contract (WSDL binding and WSDL service)
using the Artix command-line tools. In particular, this section describes how to
defineaWSDL contract for the Hello World application.

To define aHello World WSDL contract, perform the following steps:
1. Exampledirectories.

2. Definethelogical contract.

3. Add a SOAP binding to the contract.

4. Add aHTTP endpoint to the contract.

First of all, you need to create afew directories to hold the files associated with
the Hello World example. In a convenient location of your choosing, create the
following directories:

ArtixExampleDir

ArtixExampleDir /etc

ArtixExampleDir /client
ArtixExampleDir /server

Where ArtixExampleDir is the root of your example directory tree.

Thelogical part of aWSDL contract is the part that contains the WSDL port type
definitions, along with the requisite definitions of any associated message types
and XML schematypes.

If you are defining alogical contract from scratch, you can write the contract
directly (assuming you are sufficiently familiar with the syntax for XML
schemas and WSDL contracts). For the Hello World example, use the logical
contract from Example 1.

Example1l: Logical Contract for the Hello World Example

<?xml version="1.0" encoding="UTF-8"7?>
<wsdl :definitions name="HelloWorld" targetNamespace="http://www.iona.com/hello_world soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"

36

Definea WSDL Contract

Example1l: Logical Contract for the Hello World Example

xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/hello_world_soap_http"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl : types>
<schema targetNamespace="http://www.iona.com/hello_world soap_http"
xmlns="http://www.w3.0rg/2001/XMLSchema" >
<element name="responseType" type="xsd:string"/>
<element name="requestType" type="xsd:string"/>
</schema>
</wsdl:types>
<wsdl :message name="sayHiRequest"/>
<wsdl :message name="sayHiResponse">
<wsdl:part element="tns:responseType" name="theResponse" />
</wsdl :message>
<wsdl :message name="greetMeRequest">
<wsdl:part element="tns:requestType" name="me"/>
</wsdl :message>
<wsdl :message name="greetMeResponse">
<wsdl:part element="tns:responseType" name="theResponse" />
</wsdl :message>

<wsdl :portType name="Greeter">
<wsdl :operation name="sayHi">
<wsdl :input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl :output message="tns:sayHiResponse" name="sayHiResponse"/>
</wsdl :operation>
<wsdl :operation name="greetMe">
<wsdl :input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse" />
</wsdl : operation>
</wsdl:portType>
</wsdl:definitions>

Where the Hello World contract defines asingle port type, Greeter, having two
operations, sayHi () and greetMe (). The sayHi () operation returns a string.
The greetMe () Operation takes a single string argument and returns a string.

Using your favorite text editor, copy the WSDL contract from Example 1 on
page 36 into the following file:

ArtixExampleDir /etc/_hello_world.wsdl

37

CHAPTER 1 | Getting Started with Artix Programming

Add a SOAP binding to the The SOAP binding describes the encoding of request and reply messages in the

contract SOAP protocol. By adding a SOAP binding for the Greeter port type from
Example 1 on page 36, you make it possible to invoke Greeter’s operations
using a SOAP protocol. Note that the SOAP binding describes only how the
messages are encoded, it does not describe how to send the messages to and
from the remote service (that is the responsibility of the transport).

To add a SOAP binding to the contract, change directory to
ArtixExampleDir /etc and enter the following command:

wsdltosoap -i Greeter
-b GreeterSOAPBinding
_hello_world.wsdl

In this example, the wsd1tosoap command takes the following switches:

-i PortType WSDL port type for which to generate a binding.
-b Binding Name of the newly generated binding.

This command generates anew file, _hello_world-soap.wsdl, which contains
the SOAP binding shown in Example 2.

Example2: SOAP Binding for the Greeter Port Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >

<binding name="GreeterSOAPBinding" type="tns:Greeter">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sayHi">
<soap:operation soapAction="" style="document"/>
<input name="sayHiRequest">
<soap:body use="literal"/>
</input>
<output name="sayHiResponse">
<soap:body use="literal"/>
</output>
</operation>
<operation name="greetMe">
<soap:operation soapAction="" style="document"/>
<input name="greetMeRequest">
<soap:body use="literal"/>
</input>
<output name="greetMeResponse">

38

Definea WSDL Contract

Example2: SOAP Binding for the Greeter Port Type

<soap:body use="literal"/>

</output>
</operation>
</binding>
</definitions>

Add aHTTP endpoint to the
contract

To enable you to invoke Greeter’s operations over SOAP/HTTP, you must add
aHTTP endpoint to the contract. A typical HT TP endpoint consists of aservice
element containing asingle port element. In the port element, you can indicate
that the transport protocol is HTTP and you can provide the relevant properties

for the HTTP endpoint.

To add aHTTP endpoint to the contract, change directory to
ArtixExampleDir /etc and enter the following command:

wsdltoservice -b GreeterSOAPBinding
-e HelloWorldSOAPService
-t HTTPPort
—transport http
-a http://localhost:4444
-0 hello_world.wsdl
_hello_world-soap.wsdl

In this example, the wsdltoservice command takes the following switches:

-b Binding Binding for which an endpoint is to be generated.
-e ServiceName The name of the new WSDL service.

-t PortName The name of the new WSDL port.

-transport http Specifies that thisisaHTTP endpoint.

-a LocationURL The location URL for the new endpoaint.

-o OutputFile The name of the output file containing the updated

WSDL contract.

39

CHAPTER 1 | Getting Started with Artix Programming

This command generates anew file, hello_world.wsdl, which containsthe
HTTP endpoint shown in Example 3.

Example3: HTTP Endpoint for the Greeter Port Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >

<service name="HelloWorldSOAPService">
<port binding="tns:GreeterSOAPBinding" name="HTTPPort">
<http:address location="http://localhost:4444"/>
</port>
</service>
</definitions>

40

Develop a Service Plug-In

Develop a Service Plug-In

Overview

Generate service code from the
WSDL contract

To develop a service plug-in for the Hello World WSDL application, perform
the following steps:

1. Generate service code from the WSDL contract.
2. Edit the servant class.
3. Compilethe service plug-in.

Artix has a built-in code generator that can automatically generate most of the
code required for a simple service plug-in.

To generate service plug-in code from the Hello World WSDL contract, open a
command prompt, change directory to ArtixExampleDir /server, and enter the
following command (for your respective platform):

Windows

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-server
—impl
-m NMAKE:library
-plugin:it_hello_world
-deployable
..\etc\hello_world.wsdl

UNIX

wsdltocpp -i Greeter
-e HelloWorldSOAPService
-server
—impl
-m UNIX:library
-plugin:it_hello world
—-deployable
../etc/hello_world.wsdl

In this example, the wsdltocpp command takes the following switches:

-i PortType The port type for which code isto be generated.

41

CHAPTER 1 | Getting Started with Artix Programming

Edit the servant class

42

-e ServiceName The WSDL service associated with the port type.

-server Generate server skeleton code.

—impl Provide an outline implementation of the Greeter
servant class.

-m [NMAKE|UNIX] :1library Generate amakefile that builds the service plug-in
library (for Windows and UNIX respectively).

-plugin:LibName Generate the code required for a plug-in library,
using LibName as the root name of the library.

-deployable Generate a deployment descriptor file for the
service plug-in.

The preceding command generates all of the files needed to build and deploy the
Hello World service plug-in. The plug-in is packaged in the form of a shared
library or DLL.

The generated GreeterImpl Servant classisthe class that actually implements
the Greeter port type. In order to implement the Hello World service, al that
you need to do is to implement the relevant functionsin this class. An outline
implementation of the GreeterImpl classis provided in the GreeterTmpl . cxx
file.

To complete the implementation of the GreeterTmpl Servant class, open the
GreeterImpl .cxx file with your favorite text editor and edit the say#i () and
greetMe () functions as shown in Example 4.

Example4: Sample Implementations of sayHi() and greetMe()

// C++

void
GreeterImpl: :sayHi (
IT Bus::String &theResponse
) IT _THROW_DECL ((IT Bus: :Exception))
{
std::cout << "GreeterImpl::sayHi() called." << std::endl;
theResponse = "Greetings from the Artix HelloWorld service.";
}

void
GreeterImpl: :greetMe (

Develop a Service Plug-In

Example4: Sample Implementations of sayHi() and greetMe()

const IT Bus::String &me,
IT Bus::String &theResponse
) IT _THROW_DECL ((IT_Bus: :Exception))

{
std: :cout << "GreeterImpl::greetMe() called." << std::endl;

theResponse = "Hello " + me;
}

Edit the sayHi () and greetMe () functions, replacing the function bodies with
the lines of code highlighted in bold font.

Compilethe service plug-in To compile the service plug-in, enter the following at a command prompt:

Windows

nmake all

UNIX

make all

Note: Itisessential to specify al1 asthe make target, because the default
target does not generate the dependencies file.

43

CHAPTER 1 | Getting Started with Artix Programming

Develop a Client

Overview

Generateclient code from the
WSDL contract

To develop aclient for the Hello World WSDL application, perform the
following steps:

1. Generate client code from the WSDL contract.
2. Edit the client main() function.
3. Compiletheclient.

To generate client code from the Hello World WSDL contract, open a command
prompt, change directory to ArtixExampleDir /c1lient, and enter the following
command (for your respective platform):

Windows

wsdltocpp -1 Greeter
-e HelloWorldSOAPService
-client
—-sample
-m NMAKE:executable
..\etc\hello_world.wsdl

UNIX

wsdltocpp -1 Greeter
-e HelloWorldSOAPService
-client
—-sample
-m UNIX:executable
../etc/hello_world.wsdl

In this example, the wsdltocpp command takes the following switches:

-i PortType The port type for which code is to be generated.
-e ServiceName The WSDL service associated with the port type.
-client Generate client stub code.

-sample Provide an outline implementation of the client’s

main () function.

Edit the client main() function

Develop a Client

-m Generate amakefilethat buildsthe client executable
[NMAKE | UNIX] : executable(for Windows and UNIX respectively).

The preceding command generates all of the files needed to build a client of the
Hello World service. The client isimplemented as a standal one executable.

An outline implementation of the client main () functionisprovided in the
generated GreeterClientSample. cxx file.

To complete the implementation of the client, open the
GreeterClientSample.cxx file with your favorite text editor and edit the
main () function as shown in Example 5, adding the lines of code shown in bold
font.

Example5: Client main() function for Hello World Application
// C++
try
{
/*
* Create an instance of the web service client

=Y
IT Bus::init(argc, argv);

GreeterClient client;

IT Bus::String theResponse;

client.sayHi (theResponse) ;

cout << "sayHi() returned: \"" << theResponse << "\"" <<
endl;

IT Bus::String me = "YourName";
client.greetMe(me, theResponse);
cout << "greetMe() returned: \"" << theResponse << "\"" <<
endl;
}
catch (IT_Bus: :Exception& e)

45

CHAPTER 1 | Getting Started with Artix Programming

Compiletheclient

46

The additional lines of code invoke the saytii () and greetMe () operations on
the HelloWorldsoaPservice service. The client code performs the following

steps.
1.

Initialize an Artix Businstance—the call to IT_Bus::init () initidizesan
Artix Bus object (of IT_Bus: : Bus type), which provides the basic Artix
functionality.

Create a client proxy instance—a client proxy is an object that
encapsulates the information required to contact a remote WSDL service.
In this example, the Greeterclient classisthe proxy for the
HelloWorldSOAPService Service

If you call the default constructor (as here), the client proxy is constructed
with default values for the WSDL contract location, service name, and port
name (the defaults are hard-coded in the client stub file,
GreeterClient.cxx)

Invoke the sayHi () and greetMe () operations on the remote
HelloWorldSOAPService Service—you can invoke the remote Greeter
operations by calling the sayHi () and greetMe () oOperations on the client
proxy, client.

To compile the service plug-in, enter the following at a command prompt:

Windows

nmake all

UNIX

make all

Run the Application

Run the Application

Overview

Run the container and load the
service plug-in

Run theclient

To run the Hello World WSDL application, perform the following steps:
1. Runthe container and load the service plug-in.
2. Runtheclient.

To run the container and load the Hello World service plug-in, open acommand
prompt, change directory to ArtixExampleDir /server, and enter the following
command:

it_container -publish -deploy deployHelloWorldSOAPService.xml

After issuing this command, the Artix container starts up and the
HelloWorldSOAPService isactivated. Y ou should see the following output
logged to the console screen:

Progress it_container server starting
Progress it_container server ready

See Configuring and Deploying Artix Solutions for more details on running the
Artix container.

To run the sample client, open a command prompt, change directory to
ArtixExampleDir /client, and enter the following command:

GreeterClient
Y ou should see the following output logged to the console screen:

GreeterClient
sayHi () returned: "Greetings from the Artix HelloWorld service."
greetMe () returned: "Hello YourName"

47

CHAPTER 1 | Getting Started with Artix Programming

Adding Configuration to the Application

The Artix configuration file

Default configuration file

Sample configuration for Hello
World

48

The Artix configuration file, ArtixConfig.cfg, isalocal file that contains
configuration settings for Artix applications. It is primarily used for settings that
do not belong in aWSDL contract (although there is some overlap between
WSDL contract settings and Artix configuration file settings).

For more details about Artix configuration files, see Configuring and Deploying
Artix Solutions.

Artix provides default configuration files, which are located in the

ArtixInstalIDir /etc/domains directory. The default configuration files are, as

follows:

® artix.cfg—suitable for non-secure applications. Artix is configured to
use this configuration file by default.

® artix-secure.cfg—suitable for secure applications. Y ou need to
configure Artix explicitly to use this configuration file.

Example 6 shows an example of a configuration file that can be used for the
Hello World appliction.
Example6: Sample Configuration for the Hello World Application

Artix Configuration File
include "ArtixInstallDir\etc\domains\artix.cfg";

artix_example {

client {
orb_plugins = ["xmlfile_log_stream"];

137

server {
orb_plugins = ["xmlfile_log_stream"];
bus:initial_contract_dir = ["ArtixExampleDir\etc"];

e

Adding Configuration to the Application

The preceding configuration can be described as follows:

1. Theartix.cfgfileisthe default configuration file provided with Artix. It
contains many default configuration settings, which are needed by all Artix
applications.

Y ou should includethe artix.cfgfileinyour own Artix configuration file
by invoking the include directive, as shown. Y ou need to edit the
pathname from this example to match the actual location of artix.cfgin
your Artix installation.

2. Theconfiguration scope, artix_example.client, contains the settings
specific to the Hello World client.

3. Theorb_plugins list specifies the set of Artix plug-insto load at program
start-up time. Additional plug-ins can beloaded later on, if needed, through
the dynamic loading capability of the Artix plug-in framework.

In the current example, just the XML logging plug-in,
xmlfile_log_stream, iSloaded at program start-up time.

Note: The mgjority of Artix plug-ins are loaded dynamically, in the
course of parsing aWSDL contract.

For example, if aWSDL contract has a port that usesthe HT TP transport
protocol, Artix automatically loadsthe at_http plug-in to enable support
for HTTP.

4. The configuration scope, artix_example.server, contains the settings
specific to the Hello World service plug-in.

5. Thebus:initial contract_dir configuration variable givesthelocation
of adirectory containing WSDL contracts. Artix searchesthis directory to
locate the service plug-in's WSDL contract.

Artix provides avariety of other ways to specify the location of the
service' sWSDL contract—for more details, see “Options for providing
WSDL contracts’ on page 101.

Command-line switches for To run an Artix program with a configuration other than the default, you can
configuration supply the following command-line switches to the Artix executable:

-BUSconfig_domains_dir DomainDir Look for the Artix configuration filein
the directory, DomainDir.

49

CHAPTER 1 | Getting Started with Artix Programming

Running the application with
configuration switches

Environment variablesfor
configuration

50

-BUSdomain_name DomainName The name of the Artix configuration file
is DomainName. cfg.

-BUSname ConfigScope Initializethe Artix Businstance with the
settings from the ConfigScope
configuration scopein the
DomainName. cfg configuration file

These command-line switches can be supplied to the Artix container executable,
it_container, Or any standalone Artix executable (assuming themain ()
function was implemented to pass command-line arguments to the

IT Bus::init () function).

Using the preceding configuration command-line switches, you can customize

the configuration for the Hello World service plug-in and client.

For example, to run the Hello World application with a customized

configuration, do the following:

1. Copy the sample configuration from Example 6 on page 48 into the text
file, ArtixExampleDir /etc/hello_world.cfg,

2. Open acommand prompt, change directory to ArtixExampleDir /server,
and enter the following command:

it_container -BUSname artix_example.server
-BUSconfig_domains_dir ../etc
-BUSdomain_name hello_world
-publish -deploy deployHelloWorldSOAPService.xml

3. Open another command prompt, change directory to
ArtixExampleDir /client, and enter the following command:

GreeterClient -BUSname artix example.client
-BUSconfig_domains_dir ../etc
-BUSdomain_name hello_world

Instead of supplying the -Busconfig_domains_dir and the -Busdomain_name
switches at the command line, you can specify the Artix configuration file
location using the following environment variables:

IT_CONFIG_DOMAINS_DIR Environment variable that specifiesthe directory in
which the Artix configuration file is located.

Adding Configuration to the Application

IT_DOMAIN_NAME Environment variable that specifies the domain
name, DomainName, from which the name of the
Artix configuration file, DomainName. cfg, is
derived.

Thereis no environment variable corresponding to the -Busname command-line
switch. Hence, the -Busname command-line switch still needs to be supplied to
the command, even if the preceding environment variables are set.

See Configuring and Deploying Artix Solutions for more details on environment
variables.

51

CHAPTER 1 | Getting Started with Artix Programming

52

CHAPTER 2

Server
Programming

This chapter describes how to develop an Artix server, which can
be based either on the container model or on the standal onemode!.
In many cases, the bulk of the server code can be generated by the
Artix WSDL-to-C++ compiler, leaving the programmer to
implement just the servant classes.

In this chapter This chapter discusses the following topics:
Programming with the Container Model page 54
Programming with the Standalone Model page 76
Default Servants page 79
Transient Servants page 94
How Services Locate WSDL Contracts page 99
Registering Static Servants page 102
Registering Default Servants page 107
Registering Transient Servants page 108

53

CHAPTER 2 | Server Programming

Programming with the Container M odel

Overview

In this section

54

The Artix container model isaway of building and deploying Artix servers,
which is based on the idea that an Artix server can be divided into two pieces. a
container piece and a service plug-in (or plug-ins). The container pieceisa
standard executable, it_container, which isthe samefor al Artix servers. The
service plug-inisashared library or DLL, which must be implemented by an
Artix server programmer.

This section provides agenera overview of the container architecture and how it
affects server-side programming. In this model, the programmer can focus on
implementing service plug-ins instead of implementing standal one server
executables.

This section contains the following subsections:

Container Architecture page 55
Multiple Servicesin a Container page 58
Service with Multiple Ports page 61
Implementing a Servant Class page 63
Implementing the Plug-1n Class page 68
Implementing the Service Activator Class page 72

Programming with the Container Model

Container Architecture

Overview

Figure 2 shows an overview of the Artix container architecture, which shows
how a service plug-in fitsinto the container model. The server programmer is

responsible for implementing a service plug-in, which is deployed by loading it
into the Artix container.

Figure2: Architecture of the Artix Container

Container Service

Container

Service Plug-In
Servant /

B et

The basic e ements of the Artix container architecture are:

Container.

Artix configuration file.
Service plug-in.
Servant.

WSDL contract.

55

CHAPTER 2 | Server Programming

Container

Artix configuration file

56

The Artix container provides a convenient model for deploying Artix services,

removing the need for much of the boilerplate code that would otherwise appear

inthemain () function of atraditional stand-alone server. Asshown in Figure 2,

aWSDL service deployed using the container model, consists of the following

major components:

® Container executable—the container is an executable, it_container,
capable of loading service plug-ins.

® Serviceplug-ins—plug-ins are packaged either as shared librariesor DLLS,
depending on the platform. The plug-ins are loaded into the container using
the dynamic linking capabilities of the operating system.

An added benefit of deploying servicesin acontainer is that the container

supports elementary operations for administering services, asfollows:

* Deploy new servicesto the container.

° List al servicesin the container.

® Stop aspecified service.

®* Start aspecified service.

o Publish aURL, areference, or aWSDL contract for a specified service.

These operations are supported by a dedicated WSDL port which provides

access to the container service. To administer the container, Artix provides a

command-line utility, it_container_admin. For details, see Configuring and

Deploying Artix Solutions.

The Artix configuration file provides general -purpose configuration data for the
container process (see “ Adding Configuration to the Application” on page 48 for
details on configuration). Y ou can specify which configuration scope applies to
the container by passing the -Busname command-line switch when you launch
the container, where the argument to the -Busname switch isthe BusID.

Note: For each container process, it is possible to specify asingle Bus D and
only one Bus instance is created. That is, service plug-ins that load into a
container cannot be configured independently. In view of this limitation, only
related service plug-ins should be loaded into the same container instance. The
Artix container is not an application server.

Service plug-in

Servant

WSDL contract

Programming with the Container Model

A service plug-in is a component that contains the implementation of one or

more WSDL services. It consists of the following:

® Sharedlibrary or DLL—adynamically loadable library that contains the
code for the service plug-in.

® Shared library dependencies file—a dependencies file that lists the Artix
plug-ins on which this plug-in depends (can be empty).

® Deployment descriptor file—an XML file that is passed to the Artix
container in order to deploy the service plug-in.

® WSDL contract (or contracts)—the contract for the WSDL services
provided by the plug-in.

A servant is a C++ class that implements operations from aWSDL port type (or,
sometimes, from multiple port types).

It isimportant to understand that a servant is not identical to aservice. The
separation of the implementation from the service permits greater flexibility in
the way services areimplemented. For example, in some cases a service is
implemented by multiple servants; in other cases, multiple services are
implemented by a single servant.

A servant is not associated with a service until it is registered. See “Registering
Static Servants’ on page 102 and “Registering Transient Servants’ on page 108.

A service plug-in is always associated with aWSDL contract (in some cases,
with multiple WSDL contracts). The WSDL contract describes the interfaces
(WSDL port types) for all of the services deployed in the plug-in.

The WSDL contract must be made available to the container through one of the
mechanisms described in “How Services Locate WSDL Contracts’ on page 99.

57

CHAPTER 2 | Server Programming

Multiple Servicesin a Container

Overview

58

Container Service

Consider the case where you have two services, service A and service B, that
you want to deploy into the same container. Figure 3 shows two aternative
approaches to deploying these services. In thefirst approach (Figure 3 (a)), each
service is deployed separately in its own plug-in. In the second approach
(Figure 3 (b)), the services are deployed together in asingle plug-in. Generally,
if the services are closely related, it makes senseto deploy them in asingle
plug-in (as shown in Figure 3 (b)). Deploying the services asasingle plug-in
makes it easier for the two services to interact with each other and to share
common data.

Figure3: Multiple Servicesin Separate (a) or Common (b) Plug-In

(b)

Container Service

! Container Port E Container ! Container Port E Container
1 | | 1
o— o———
:\ : : ;
Service A Service A

E Port E _— i Port E

B ® | W s e @)

' ! \ H
TTTTTTTmTTTTTme [TToTTTTTTTToeees Tttt ‘Common
Service B Service B Plug-In

E Port E Bl i Port E

ug-in
0| | -0
' ' ! ;

Separ ate plug-insfor each service

Common plug-in for all services

Programming with the Container Model

Generating separate plug-ins for each serviceis the default model of
deployment, which you get if you use wsdltocpp to generate the service plug-in.

Example 7 shows the implementation of the bus_init () functionin aservice
plug-in, service_A_PlugTn, that registersjust asingle service, Service A. The
bus_init () function for the other service, Service B, isimplemented inasimilar
way in aseparate plug-in class, service_B_PlugIn.

Example7: One Service Registered in each Plug-In

// C++

void
Service A PlugIn::bus_init(
) IT _THROW_DECL ((Exception))
{

WSDLService* wsdl_service =

get_bus () ->get_service_contract (m_service A gname) ;

get_bus () ->register_ servant (
m servant A,
*wsdl_service A

)i

Typically amore efficient solution, if you want to deploy a number of closely
related services, isto combine the different servicesin asingle service plug-in.

Example 8 shows the implementation of the bus_init () function for acommon
plug-in, which combines the registration of both Service A and Service B.

59

60

CHAPTER 2 | Server Programming

Example8: Multiple Services Registered in a Plug-In

// C++
void
CommonPlugIn: :bus_init (
) IT _THROW_DECL ((Exception))
{
WSDLService* wsdl_service A =

get_bus () ->get_service_contract (m_service A _gname) ;

get_bus () ->register_servant (
m servant A,
*wsdl_service A

)i

WSDLService* wsdl_service B =

get_bus () ->get_service_contract (m_service B_gname) ;

get_bus () ->register_servant (
m_servant B,
*wsdl_service_ B

) g

Programming with the Container Model

Service with Multiple Ports

Overview

Container Service

Consider the case where a single service, service A, exposes two different
WSDL ports. For example, one of the ports might accept only insecure
connections while the other port accepts only secure connections.

Figure 4 shows two different approaches to activating the ports. In the first
approach (Figure 4 (a)), asingle servant object is registered against both ports,
so that request messages from both ports are directed to the same servant object.
In the second approach (Figure 4 (b)), each port is registered against a different
servant object. The second approach (servant for each port) is useful in cases
where you need to fine-tune the servant implementation for each of the WSDL
ports. For example, if one of the portsisinsecure, you might want to implement
a corresponding servant object that restricts access to sensitive resources.

Figure4: Multi-Port Service Registered against a Sngle Servant (a), or
Multiple Servants (b)

(@) (b)

Container Service

Container Port ‘: Container | Container Port i Container
O— 1 1 o— 1
' \ i
SeviceA | [E—— SeviceA | O I ——
Port H :I Port H
o N ! | © _’Q :
O | Plug-In ! | Plug-In
1 1
Port A i Port A
1 1
il -0
| H 1
S N I J

61

CHAPTER 2 | Server Programming

Activating all portstogether

Activating portsindividually

62

If you activate a service' s ports together, you associate all of the ports with a
single servant object. For details of how to program this approach, see “Activate
all portstogether” on page 104.

If you activate a service' s ports individually, you can optionally associate each
of the WSDL portswith a different servant object. For details of how to program
this approach, see “ Activate portsindividually” on page 105.

Programming with the Container Model

| mplementing a Servant Class

Overview

The main task required of an Artix server programmer is the implementation of
one or more servant classes. A servant class provides the implementation of a
WSDL service. Because the servant member functions are generated from a
particular WSDL port type, agiven servant class can implement only WSDL
services that have the same WSDL port type.

Figure 5 shows the class hierarchy for atypical servant implementation class,
PortTypeImpl.

Figure5: ClassHierarchy for the Servant Implementation Class

IT_Bus::Servant PortType

PortTypeServer

I

PortTypeImpl

The following classes appear in this hierarchy:

IT Bus::Servant Class—isthe base classfor all servant types. It declares
afew standard member functions.

PortType class—an abstract class generated from the WSDL port type
named PortType. This class contains a function corresponding to each of
the WSDL operations in the PortType port type.

PortTypeserver class—the server skeleton class, which is generated by
the wsdltocpp utility when the -server switch is supplied. The skeleton
classincludes code for dispatching the operations in the PortType port
type.

PortTypermp1 class—the servant class, which providestheimplementation
of the PortType port type.

Y ou must implement this class in order to implement aWSDL service.

63

CHAPTER 2 | Server Programming

Generating the servant class

64

To generate an outline implementation of the servant class, invoke the
wsdltocpp command as follows:

wsdltocpp -i port_type
-e Web_service_name

-server
-impl

-m [NMAKE |UNIX]:library
-plugin[:plugin_name]

—-deployable

WSDL ContractFile

In this example, the last item on the command line, WSDLContractFile, isthe
path name (or possibly URL) of the WSDL contract. The switches shown in the
preceding command have the following meaning:

-1 port_type

Specifies the name of the port type for which the tool
will generate code.

-e web_service_name Specifies the name of the service for which the tool will

[:port_list]

-server

—impl

-m {NMAKE | UNIX}
: [executable |
library]

-plugin
[:plugin_name]

-deployable

generate code.

Generates stub code for a server (cannot be combined
with the -client switch).

Generates an outline implementation of the servant
class.

Used in combination with -imp1 to generate a makefile
for the specified platform (xmaxe for Windows or uNIx
for UNIX). Y ou can specify that the generated makefile
builds an executable, by appending : executable, or a
library, by appending :1ibrary. For example, the
options, -impl -m NMAKE:executable, would generate
aWindows makefile to build an executable.

Generates a service plug-in. You can optionally specify
the plug-in name by appending : plugin_name to this
option. If no plug-in name is specified, the default name
IS <ServiceName><PortTypeName>. The service name,
<ServiceName>, IS specified by the -e option.

(Used with -p1ugin.) Generates a depl oyment descriptor
file, deploy<ServiceName>.xml, which is needed to
deploy aplug-ininto the Artix container.

I mplementing the constr uctor

Implementing WSDL operations

Programming with the Container Model

Y ou can implement any kind of constructor you like for the servant
implementation class. There is, however, one condition that must always be
fulfilled: one of the arguments to the PortTypeTmpl () constructor must be of
type IT_Bus: :Bus_ptr and the bus argument must be passed into the base
constructor, PortTypeserver ().

For example, you can implement a simple constructor for the Bank port type, as
follows:

// C++
BankImpl: :BankImpl (IT _Bus::Bus_ptr bus) : BankServer (bus)

{

}

For every operation belonging to a particular port type in the WSDL contract,
the wsdltocpp compiler generates a corresponding member function in the
servant class. The C++ function signatures are derived from the WSDL
operation definitions, as follows:

® First comethe parameters corresponding to the input messages,

®* Next come the parameters corresponding to the input/output messages
(messages sent both to and from a service),

* Andfinally come the parameters corresponding to the output messages.

None of the messages are represented as areturn value in C++. Hence, C++
functions corresponding to WSDL operations always return the void type. For
more details about mapping WSDL operations to C++ functions, see
“Operations and Parameters’ on page 144.

For example, the create_account operation in the Bank port type maps to the
following C++ member function:

// C++
void
BankImpl: :create_account (
const IT Bus::String &account_name,
WS_Addressing: : EndpointReferenceType &_ return
) IT_THROW_DECL ((IT_Bus: :Exception))
{

}

65

CHAPTER 2 | Server Programming

Implementing runtime callbacks

Calling BusAPIs

66

The account_name string parameter corresponds to an input message and the
_return parameter, of ws_Addressing: : EndpointReferenceType type,
corresponds to an output message. The

WS_Addressing: : EndpointReferenceType type enables areferenceto aWSDL
service to be transmitted over the wire. A reference encapsulates the location
information for aparticular WSDL service. For more details about references,
see “Endpoint References’ on page 199.

There are some standard functions that the servant class inherits from

IT Bus::Servant. YOU can optionally override these functionsto receive
callback notifications from the Artix runtime when certain events occur. The
following callback functions are inherited from IT_Bus: : Servant:

// C++
// Servant functions inherited from IT Bus::Servant.
void activated (IT Bus::Porté& port) ;

void deactivated (IT Bus::Port& port) ;

IT Bus::Servant* clone() const;

Whenever aWSDL port is activated or deactivated, Artix callsactivated() or
deactivated (), respectively, to notify the servant of thisevent. If you do not
implement these functions, the server skeleton code provides default
implementations, which do nothing. These functions are typically only needed
by advanced applications.

The clone () function gets called by the Artix runtime to create a new servant
instance. An implementation of the clone () function isrequired to support
certain threading policies on the server side. For more details see “ Servant
Threading Models’ on page 179.

The servant application code can also access avariety of Artix APIsthrough the
Bus object. The Bus object can be conveniently accessed by calling the
get_bus () member function, which isimplemented by the IT_Bus: : Servant
base class:

// C++
virtual Bus_ptr get bus() const;

Programming with the Container Model

One of the most common reasons for accessing the Bus instance, isin order to
writeto or read from an Artix context. Artix contexts provide a mechanism for
accessing data in message headers or for fine-tuning Artix behavior by setting
policies programatically. For more information about Artix contexts, see “ Artix
Contexts’ on page 245.

67

CHAPTER 2 | Server Programming

| mplementing the Plug-1n Class

Overview

Plug-in functions

Summary of container
programming

68

The service plug-in class provides the entry point for initializing and shutting
down the plug-in. For very simple applications, you can use the defaullt,
generated implementation of the plug-in class. For most applications, however,
you will probably need to make some modifications to the plug-in class.

The service plug-in class essentially provides a programmer with two hooks:
® bus_init()—afunction called asthe plug-in initializes.
® bus_shutdown ()—afunction called as the plug-in shuts down.

The primary purpose of the bus_init () function isto let you register servant
objects. By registering a servant object, you create an association between the
servant object and a particular WSDL service, such that requests received by the
WSDL service are invoked on the servant object. If you are using service
activators, however, you would typically delegate servant registration to the
service activators.

The bus_shutdown () function enables you to perform clean-up tasks as the Bus
and the plug-in are shutting down.

Thefollowing points summarize how to program an Artix server in the container

programming model:

® Thebus_init () and bus_shutdown () functionsin the plug-in class take
the place of amain () function.

® Theplug-inclassisprimarily used for registering service activators and for
registering and deregistering servants (in bus_init () and
bus_shutdown () respectively).

® Thereisno need to call either the IT_Bus: :init () function or the
IT Bus::Bus: :shutdown () function. The container looks after initializing
and shutting down the Bus object.

® Cadl get_bus() to get the IT_Bus: : Bus instance.

. Instead of hard-coding the location of aWSDL contract, you can find a
contract using the IT Bus: :Bus: :get_service _contract () function.

Generating the plug-in class

Plug-in constructor

Programming with the Container Model

To generate a default implementation of the service plug-in class, invoke the
wsdltocpp command as follows:

wsdltocpp -i port_type
-e Web_service_name
-server
—impl
-m [NMAKE |UNIX]:library
-plugin/:plugin name]
-deployable
WSDL ContractFile

In this example, the last item on the command line, WSDLContractFile, isthe
path name (or possibly URL) of the WSDL contract. The switches shown in the
preceding command are explained in “Generating the servant class’ on page 64.

The wsdltocpp Utility with the -plugin switch generates the following files
containing a default implementation of the service plug-in class:
<web_service_name><port_type>pPlugIn.h
<web_service_name><port_type>pPlugIn. cxx

Where <web_service_name> isthe WSDL service specified by the -e switch of
the wsdltocpp command and <port_type> isthe port type specified by the -1
switch.

The plug-in constructor is called as the plug-in isloaded. Thisis a convenient
place to create basic objects that the plug-in needs.

Example 9 shows an example of aconstructor for the Bankservice plug-in. This
constructor creates a service activator instance, m_service activator, that is
responsible for activating the Bankservice service and a QName instance,
m_service gname, that holds the name of the BankService service.

Example9: Sample Plug-In Constructor for the Bank Service Plug-In

// C++

BankServantBusPlugIn: :BankServantBusPlugIn (
Bus_ptr bus

) IT _THROW_DECL ((Exception))

BusPlugIn (bus),
m_service_activator (0),

m_service _gname("", "BankService",
"http://www.iona.com/bus/demos/bank")

69

CHAPTER 2 | Server Programming

bus_init() function

70

Example9: Sample Plug-In Constructor for the Bank Service Plug-In

// complete

Thebus_init () functioniscalled either during Bus initialization or just after
the plug-inisloaded. Thebus_init () function isthe place to put the code that
registers servants with the Bus. If the plug-in uses service activators, the
bus_init () function should register the service activators with the Bus and then
delegate servant registration to the service activators.

Example 10 shows an implementation of bus_init () that registersaservice
activator object against the Bankservice service. The code then explicitly calls
activate_service() onthe service activator instance, which has the effect of
registering a Bank servant with the Bus

Example 10: Sample Implementation of bus_init()

// C++
void
GreeterServantBusPlugIn: :bus_init (
) IT_THROW_DECL ((Exception))
{
try
{
m_service_activator
= new IT Bus_Services::ServiceActivatorImpl (get_bus());

if (0 == m_service activator.get())
{
String error ("Failed to initialize
ServiceActivator") ;
error += " for service, ";
error += m_service_gname.to_string() ;
throw Exception (error) ;
}

ServiceActivator: :register_sa(
get_bus (),
m_service_gname,
m_service_activator.get ()

)7

m_service_activator->activate service (m _service_gname) ;

bus_shutdown() function

Programming with the Container Model

Example 10: Sample Implementation of bus_init()

}

catch (const IT Bus::Exception & ex)

{
throw Exception (ex) ;

}

Thebus_shutdown () function is called when the Businstanceis shut down (that
is, when the container callS IT_Bus: :Bus: : shutdown ()).

Example 11 shows an implementation of bus_shutdown () that deactivates the
BankService service, which resultsin de-registration of the Bank servant.

Example 11: Sample Implementation of bus_shutdown()

// C++
void
GreeterServantBusPlugIn: : bus_shutdown (
) IT_THROW_DECL ((Exception))
{
m_service_activator->deactivate_service (
m_service_gname

)&

71

CHAPTER 2 | Server Programming

| mplementing the Service Activator Class

Overview The service activator class provides the entry point for creating, registering and
deregistering servants. In general, this classis used to manage the lifecycle of an
Artix service. If the relevant member functions of the service activator class are
properly implemented, it should be possible to deactivate and then re-activate a
service without needing to shut down the entire service plug-in.

Service activator functions The service plug-in class provides two functions that control the lifecycle of an
Artix service, asfollows:
N activate_service ()—afunction caled either from within bus_init ()
or whenever the it_container_admin -deploy command isexecuted.

The purpose of the activate_service () function isto perform all of the
housekeeping tasks necessary to start up an Artix service, including the
creation of a servant object and the registration of that servant object with
the Bus.

® deactivate_service()—afunction called either from within
bus_shutdown () Ofr whenever the it_container_admin -removeservice
command is executed.
The purpose of the deactivate_service() function isto perform al of
the housekeeping tasks necessary to shut down an Artix service, including
deregistration of the service and deletion of the associated servant object.

Related container administration Thelifecyclefunctions provided by the service activator class are closely related
commands to thefollowing it_container_admin commands:

. it_container admin -deploy—the effect of issuing this command
depends on whether thisis the first or subsequent deployment, as follows:
¢ First deployment—Iload and initialize the service plug-in. The

container callsbus_init (), which is normally programmed to call
activate service() for each of the WSDL services.

72

Generating the service activator
class

activate_service() function

Programming with the Container Model

¢ Subsequent deployment (re-deploy)—activate any inactive services.
The container calls activate_service () on each of the registered
service activators, but only if the serviceis currently inactive. The
container does not call bus_init () inthiscase.

Note: Artix does not currently provide an administration command that
re-activatesasingle service at atime. The -deploy command re-activates
al of the inactive services from the specified plug-in.

. it_container admin -removeservice—de-activate a specific service.
When you issue the -removeservice command, the container calls
deactivate service(), but only if the specified serviceis currently
active.

For more details about the it_container_admin command-line utility, see
Configuring and Deploying Artix Solutions.

The service activator classis generated by the wsdltocpp command at the same
time asthe plug-in class. For detail s of how to generate a default implementation
of the service activator class and the plug-in class, see “ Generating the plug-in
class’ on page 69.

Thewsdltocpp Utility generates the following files containing a default
implementation of the service activator class:

<port_type>_service_activator_impl.h
<port_type>_service_activator_impl.cxx

Where <port_type> is the port type specified to wsdltocpp by the -i switch.

The activate service() functionis caled either from the body of the
bus_init () function or whenever the it_container_ admin -deploy command
isissued. The activate_service () function isthe appropriate place to put the
code that creates and registers servants.

73

CHAPTER 2 | Server Programming

Example 12 shows an implementation of activate_service () that registersa
Bank servant, thereby associating it with the Bankservice WSDL service.

Example 12: Sample Implementation of activate_service()

// C++
void
ServiceActivatorImpl: :activate_service (
const IT Bus::QName& service_name
) IT _THROW_DECL((IT_Bus: :Exception))
{
if (m_impl==0) {
m_impl = new COM_IONA_BANK: : BankImpl (
m_bus.get ()
) g
}

IT _WSDL: :WSDLService* wsdl_service =
m_bus->get_service contract (service_name) ;

if (wsdl_service != 0)
{
m_bus->register_servant (
*m_impl,
*wsdl_service
)8

}

Inthisexample, it is assumed that the service activator instance was registered as
shown in Example 10 on page 70—that is, the service activator instance is
registered only against the Bankservice service. Hence, it follows that the
activate service() function shownin Example 12 will only be called when
service_name equals the BankService QName.

Advanced applications might choose to register a service activator instance
against several different services. In that case, you would need to examine the
service QName, service_name, in order to decide which servant to activate.

74

deactivate_service() function

Programming with the Container Model

The deactivate_service() function iscalled either from the body of the
bus_shutdown () function or whenever the

it_container admin -removeservice command isissued.

Example 13 shows an implementation of deactivate service() that
deregisters and deletes the Bank servant that was registered by

activate_service().

Example 13: Sample Implementation of deactivate service()

// C++

void

ServiceActivatorImpl: :deactivate service(
const IT Bus::QName& service_name

)
{

m_bus->remove_service (service_name) ;

delete m_impl;
m_impl = 0;

75

CHAPTER 2 | Server Programming

Programming with the Standalone M odel

Overview

Gener ating the standalone ser ver

76

If you prefer not to deploy your Artix server using the container model, you can
opt for the standalone model instead. In the standalone model, you are
responsible for writing the server' smain () function directly. Instead of building
aplug-in, the servant code and main () function are linked together and built asa
standal one executable.

The standalone model is simpler than the container model in some respects, but

it has the disadvantage that you cannot monitor a standalone executable using
the Artix management console.

To generate an outline implementation of a standalone server, invoke the
wsdltocpp command as follows:

wsdltocpp -i port_type
-e Web_service_name
—sample
—impl
-m [NMAKE |UNIX]:executable
WSDL ContractFile

In this example, the last item on the command line, WSDLContractFile, is the
path name (or possibly URL) of the WSDL contract. The switches shown in the
preceding command have the following meaning:

-i port_type Specifies the name of the port type for which the tool
will generate code.

-e web_service_name Specifies the name of the service for which the tool will
[:port_list] generate code.

-sample Generates code for a server main function and a client
main function.

-impl Generates an outline implementation of the servant
class.

Sample main() function

Programming with the Standalone M odel

-m {NMAKE | UNIX} Usedin combination with -imp1 to generate a makefile
: [executable | for the specified platform (xvake for Windows or unTx
library] for UNIX). Y ou can specify that the generated makefile

builds an executable, by appending : executable, oOr a
library, by appending :1ibrary. For example, the
options, -impl -m NMAKE:executable, Would generate
aWindows makefile to build an executable.

Example 14 shows the basic outline of a server main () function. In this
example, themain () function registers asingle GreeterImpl Servant against the
HelloWorl1dSOAPService SErvice.

Example 14: Sample main() Function for Standalone Server

// C++

#include <it_bus/bus.h>

#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_cal/iostream.h>

IT USING_NAMESPACE_STD
#include "GreeterImpl.h"

using namespace COM_IONA HELLO_WORLD_SOAP_HTTP;
using namespace IT Bus;

int main(int argc, char* argvl[])
{

cout << " Greeter service" << endl;

try
{
IT Bus::Bus_var bus = IT Bus::init(argc, argv);

GreeterImpl servant (bus) ;

IT Bus::QName service name 0("", "HelloWorldSOAPService",
"http://www.iona.com/hello_world_soap_http");

bus->register_servant (
servant,
"../etc/hello_world.wsdl",
service_name_0

7

CHAPTER 2 | Server Programming

Example 14: Sample main() Function for Sandalone Server
) g

3 bus->run() ;

}

catch (IT Bus: :Exception& e)

{
cout << "Error occurred: " << e.message() << endl;
return -1;

}

return 0;

}

The preceding code example can be explained as follows:

1. Whenwriting the server main () function, you need to initialize the Artix
Bus explicitly by calling the IT_Bus: :init () function.

It isimportant also to pass the command line arguments to the
IT Bus::init () function, otherwise the server would not respond to the
standard Artix command-line options.

2. Thisexample creates a single servant object, of Greetermpl type, and
registers this servant against the HelloWor1dSOAPService Service. Artix
supports many different options for registering servant options—for more
details, see “ Registering Static Servants’ on page 102 and “ Registering
Transient Servants’ on page 108.

3. Call IT_Bus::Bus::run() to send the main thread to sleep. This alows
the background threads to continue processing incoming request messages.

78

Default Servants

Default Servants

Overview A default servant enables you to implement a scalable factory pattern, enabling
you to replace multiple servants of the same type by a single servant.

In this section This section discusses the following topics:
Introduction to Default Servants page 80
Functions Defined on IT_Bus::Service page 83
The Server Address Context page 85
Implementing a Factory page 87
Implementing a Default Servant page 91

79

CHAPTER 2 | Server Programming

I ntroduction to Default Servants

Overview

80

A default servant enables you to implement multiple services of the same type,
using only a single servant instance. In many respects, the default servant
programming model is similar to the transient servant programming model (for
example, see “ Transient Servants’ on page 94), except that multiple servant
instances are now replaced by asingle default servant instance. The advantage of
the default servant model isits smaller footprint, in terms of memory and other
resources.

Figure 6 shows an example of how a default servant could be used in a bank
application. The Bank service creates and provides access to an unlimited
number of account instances. Each account is accessed through a unique service
(for example, john.doe). These account services are created dynamically.

Figure6: Default Servant Implementing Multiple Account Services

Container Service

‘
i Container Port
1
1
1

i Bank Port E Blug-I
1 1
Account - irmafiintstone ____ o
/]) N~
Account - fred.flintstone \
’ S | | —+>[irmaflintstone
[—
Account - john.doe — O fred.flintstone
ST Ty T john.doe
' Account Port E- - I
1
L -
Default
Servant

Factory pattern

ServicelD

Template service

Default Servants

A default servant istypically deployed in the context of afactory pattern. For

example, Figure 6 on page 80 shows a Bank service, which playstherole of a

factory object, and a collection of cloned Account services, which are created

and managed by the Bank service.

The role played by each of the servants, for Bank and Account services, can be

described as follows:

® Bank servant—the Bank servant is responsible for creating and finding
Account service instances. Because the accounts are implemented using a
default servant, the bank does not need to create and register individual
servants for every new account. Instead, the bank creates an account as
follows:

i. Createarecord to hold the account details (for example, by creating a
database record).

ii. Generate a unique endpoint reference for the account service
instance, based on a unique service ID.

In effect, each new service has a unique identity and an associated data
record, but anew servant is not created for the service.

® Default servant for accounts—a single default servant instance processes
incoming requests for al of the account services. Hence, during an
operation invocation, the default servant needs to have some way of
finding out the identify of the account service for which it isacting. The
current service ID can be obtained from the address context—see “ The
Server Address Context” on page 85 for details.

A service ID isaunique identifier for acloned service.

For example, in Figure 6, the account names, john.doe, fred.flintstone, and
irma.flintstone are service IDs.

To give you the ability to define an unlimited number of WSDL services, Artix
lets you define atemplate service in the WSDL contract. A template serviceis
defined using the same syntax as aregular service. The only additional condition
that atemplate service must obey isthat the endpoint address should conform to
aplaceholder format (for details, see“ SOAP template service” on page 110 and
“CORBA template service” on page 110).

81

CHAPTER 2 | Server Programming

For example, the following WSDL fragment shows a template service for
accounts services. In this case, the placeholder format for the HTTP addressis
http://localhost:0

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
.>

<service name="AccountService">
<port name="AccountPort" binding="tns:AccountBinding">
<soap:address location="http://localhost:0" />
<http-conf:server HonorKeepAlive="false"/>
<http-conf:client Connection="close"/>

</port>
</service>
</definitions>
Cloned services Whenever you generate a new reference using the default servant programming
model, you are implicitly creating a cloned service based on a template service.
Thisis similar to the concept of acloned service in the context of transient
servants—see “ Transient Servants’ on page 94.
For a default servant, you can create a cloned service by calling the
IT Bus::Service: :get_endpoint_reference with_id() function—see
“Service functions” on page 84.
Supported transports Default servants are supported by the following transports:

4 SOAP/HTTP,
4 CORBA/IIOP,
4 Tunnel.

82

Default Servants

Functions Defined on I T_Bus::Service

Overview

Server Service class

Generally, in order to activate aservicein Artix, you need to obtain a service
object, of IT_Bus: : Service type, and register one or more servant objects with
this service.

For the default servant programming model, you need two functions that you can
cal onthe IT_Bus: : Service class, asfollows:

* A function to register the default servant with the template service and,
® A function to clone new services from the template service.

These functions are, in fact, defined on the IT_Bus: : ServerService class,
whichisanaliasof IT Bus::Service.

The IT_Bus: :ServerService class, whichisan aliasof IT Bus::Service,
provides functions to support the default servant programming model, as shown
in Example 15.

Example 15: Some Member Functionsin IT_Bus:: Server Service

// C++
namespace IT Bus {

class IT BUS_API ServerService : public ServiceBase
{
public:

virtual void
register default_servant (

Servant & servant,
const String & port_to_register = IT BUS_ALL_ PORTS
) = 0;

virtual WS_Addressing: :EndpointReferenceType
get_endpoint_reference_ with id(

const String & instance_id,

const String & port_to_register = IT BUS_ALIL_PORTS
) = 0;

83

CHAPTER 2 | Server Programming

Service functions The member functions shown in Example 15 can be explained, as follows:

® register_default_servant ()—activatesthe given service and
associates the default servant, servant, with the service. If you use the
second argument, port_to_register, to specify a particular port, only
that port will be activated; otherwise, al of the service's ports are
activated.

L get_endpoint_reference_with_id()—returnsan endpoint referencetoa
newly-cloned service, which isidentified by the given service ID,
instance_id. The significance of the ID depends on the transport, as
follows:

¢ SOAP/HTTP—the URL address of the cloned serviceis obtained by
appending the ID, Referencel D, to the end of the template service's
URL.
For example, if the template service'sURL is
http://enghost : 2048 /Account, the cloned service’ s URL would be
http://enghost:2048/Account/Referencel D.

¢+ |IOP—the ID isused asthe CORBA Object ID, which is ultimately
embedded in a CORBA Interoperable Object Reference (IOR). The
IOR is then stored inside the endpoint reference.

¢ Tunnel—similarly to the IIOP transport, the tunnel transport uses the
ID asthe CORBA Object ID.

Note: The serverservice class (and the IT_Bus: : Service class, which is
an alias of it) also supports afunction, get_reference with_id(), that
returnsalegacy referencetype, IT Bus: :Reference. Thisfunctionisprovided
solely for backward compatibility reasons.

84

Default Servants

The Server Address Context

Overview

AddressContext class

In contrast to aregular servant, which implements a unique service instance, a
default servant implements an unlimited number of service instances. In the
course of an invocation, therefore, a default servant needs some way of finding
out which service it represents.

The mechanism that enables default servants to discover the current service
identity is by obtaining the value of the server address context. The address
context is a data type that can be retrieved during an invocation using the Artix
context mechanism.

Example 16 showsthe IT_Bus: :AddressContext class, whose instances can be
accessed from within a server invocation.

Example 16: ThelT_Bus::AddressContext Class
// C++
namespace IT Bus
{
class IT CONTEXT ATTRIBUTE API AddressContext
: public Context
{
public:

virtual const IT Bus::String&
get_context () const;

virtual const IT Bus::String&
get_full address() const;

protected:

Yi

85

CHAPTER 2 | Server Programming

AddressContext functions

Obtaining an AddressContext
instance

86

The addressContext classin Example 16 provides the following functions for

accessing the address context data:

® get_context () function—obtain an ID string that identifies the current
cloned service. The ID string returned from this function is the same as the
ID string that is passed to the
IT Bus::Service::get_endpoint_reference_with id() function—see
“Functions Defined on IT_Bus::Service” on page 83.

L get_full_address () function—obtain the full address of the current
cloned service. The return value from this function depends on the
transport, as follows:
¢ SOAP/HTTP—returns the URL address for the current cloned

service. For example, if the current service hasan ID of Referencel D,
atypical return value would be:
http://enghost:2048/Account/Referencel D

¢+ |IOP—returnsthe full IOR (with embedded Object ID) for the
current cloned service.

* Tunnel—same as |1 OP.

An addressContext instance can be obtained using the Artix context API, but it
isonly available during an operation invocation—that is, during an upcall on the
servant function that results from an incoming invocation request.

To obtain the address context data, first get a pointer to arequest context
container (of IT_Bus: :ContextContainer type) and then call
get_context_data (), passing in the string constant,

IT ContextAttributes::SERVER_ADDRESS_CONTEXT.

For more details on Artix contexts, see “ Artix Contexts’ on page 245.

Default Servants

| mplementing a Factory

Overview

Bank factory implementation

When using a default servant to implement a collection of Account services, the
associated factory service, of type Bank, plays acrucia role. The Bank member
functions that are responsible for creating and finding account objects must be
written to fit the default servant programming model. In particular, you must call
aspecial function, IT Bus::Service: :get_endpoint_reference_with_id()
in order to create each instance of acloned Account service.

Example 17 shows a sample implementation of the BankTmp1 servant class,
where the managed Account objects are implemented using a default servant.
The implementation of the constructor and two member functions,
create_account () and get_account (), a'e shown here.

Example 17: Bank Factory that Uses a Default Servant for Accounts

// C++

#include "BankImpl.h"
#include <it_cal/cal.h>
#include <it_cal/iostream.h>

using namespace IT_ Bank;
using namespace IT Bus;

IT USING_NAMESPACE_STD

const IT Bus::QName ACC_SERVICE_NAME (

"
1

"AccountService",
"http://www.iona.com/bus/demos/bank"
) g

BankImpl: :BankImpl (IT Bus: :Bus_ptr bus) : BankServer (bus)
{
IT WSDL: :WSDLService* wsdl_service =
get_bus () ->get_service_contract (ACC_SERVICE_NAME) ;

m_template service = get_bus()->add_service (*wsdl_service) ;

AccountImpl * default_servant = new AccountImpl (bus) ;

87

CHAPTER 2 | Server Programming

Example 17: Bank Factory that Uses a Default Servant for Accounts

4 m_template service->register default_servant (
default_servant

void
BankImpl: :create account (
const IT Bus::String &account_name,
WS_Addressing: :EndpointReferenceType & return
) IT _THROW_DECL((IT Bus: :Exception))
{

// Check whether account already exists.

5 if (/* Account does NOT already exist... */)
{
// Create a new account for the account_name account.
6 _return =
m_template service->get_endpoint_reference with_id(
account_name
)

7 // Create a new account record, update the database, etc.
//
// (not shown)
}
else {
// Account already exists - throw an exception!
// (not shown)
}
}
void

BankImpl: :get_account (
const IT Bus::String &account_name,
IT Bus::Reference &_return

) IT _THROW_DECL((IT_Bus: :Exception))

{
// Search for the account_name account.
// (not shown)
8 if (/* Account exists... */)
{
9 _return =

m_template service->get_endpoint_ reference with_id(
account_name

)&

88

Default Servants

Example 17: Bank Factory that Uses a Default Servant for Accounts

return;

}

// Account not found - throw an exception!
. // (not shown)

}

The preceding code example can be explained as follows:

1. TheAcc_SERVICE_NAME constant holds the QName of the Account
template service. The template service is used as a basis for cloning
Account service instances.

2. Theget_service contract () function locatesthe contract containing the
specified Account service. The returned IT_wSDL: :WSDLService Object
represents al of the data contained in the service element for the Account
service.

For more details, see “How Services Locate WSDL Contracts’ on page 99.

3. Them_template_service object, whichisof IT_Bus: : Service_var type,
is adata member of the BankImpl class. Artix usesan IT Bus: :Service
object to associate a service' s endpoints with a particular servant (or
servants).

4. Cal register_default_servant () to associate the template service,
m_template_service, With the default servant, of AccountImpl type.

5. Inthe body of the BankImpl: :create_account () function, thefirst think
you need to do is to check whether the requested account, account_name,
already exists or not. If the account already exists, you would need to
throw an exception.

6. Call get_endpoint_reference_with_id(), passing account_name asthe
ID, to create a new endpoint reference, of
WS_Addressing: : EndpointReferenceType type. This step effectively
clones a new service from the template service. The name of the cloned
serviceis derived by appending the specified ID (in this case,
account_name) t0 the Account service URL.
For example, if the Account service's URL is
http://enghost:2048/Account and the account name is john. doe, the

89

CHAPTER 2 | Server Programming

90

name of the cloned service would be
http://enghost:2048/Account/john.doe.

Y ou can use the account name as akey for creating a database record that
holds the account details.

In the body of the BankImpl: :get_account () function, you first need to
check whether the specified account exists. If not, you would throw an
exception.

Call the get_endpoint_reference with_id() function to generate an
endpoint reference with the specified ID.

Default Servants

| mplementing a Default Servant

Overview

Default servant class
implementation

This section describes how to implement a default servant class for a collection
of cloned Account services. A single default servant instance is sufficient to
provide an implementation for all of the Account services.

The key difference between aregular servant and a default servant is that the
default servant has multiple identities. Whereas aregular servant hasits identity
set at thetime it is constructed, a default servant assumes a new identity each
timeit isinvoked through the Artix call stack. A programmer is, therefore,
obliged to discover the default servant’s current identity by obtaining the
address context for the current invocation.

Example 18 shows a sample implementation of the Account template service,
using a default servant. The implementation of the get_balance operation
provides atypical example of how to implement aWSDL operation in a default
servant.

Example 18: Default Servant Class for Accounts

// C++

#include "AccountImpl.h"
#include <it_cal/cal.h>
#include <it_cal/iostream.h>

#include <it_bus/bus.h>

#include <it_bus/service.h>

#include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/address_context.h>

using namespace IT Bank;
IT _USING _NAMESPACE_STD

const IT Bus::QName AccountImpl: :SERVICE NAME("",
"AccountService", "http://www.iona.com/bus/demos/bank") ;

AccountImpl: :AccountImpl (
IT Bus::Bus_ptr bus

) : AccountServer (bus)

{

91

CHAPTER 2 | Server Programming

Example 18: Default Servant Class for Accounts

AccountImpl : : ~AccountImpl ()
{
}

IT Bus::Servant*
1 AccountImpl::clone() const

{
assert (0) ;
return 0;
}
void

2 AccountImpl::get_balance (
IT Bus::Float & balance
) IT_THROW_DECL ((IT Bus: :Exception))

{
IT Bus::ContextRegistry* context_ registry =
get_bus () ->get_context_registry () ;
IT Bus: :ContextCurrent& context current =
context_registry->get_current () ;
3 IT Bus::ContextContainer* context_container =
context_current.request_contexts() ;
4 IT Bus::Context* result =
context_container->get_context_data (
IT ContextAttributes: :SERVER_ADDRESS_CONTEXT
)7
5 IT Bus::AddressContext* address =
dynamic_cast<IT Bus: :AddressContext*> (result) ;
if (address)
{
// Get the account name from the address context.
6 IT Bus::String account_name = address->get_context () ;
// Consult the account_name record in the database to
// get account balance.
7 balance = ... // (not shown)
}
else {

92

Default Servants

Example 18: Default Servant Class for Accounts

// Could not access address context - throw an exception!
. // (not shown)

The preceding code example can be explained as follows:

1

The clone () function isrequired for certain Artix threading policies (see
“Servant Threading Models’ on page 179). It is not relevant to default
servants and is not used in this scenario.

The get_balance () function illustrates the basic principles of
implementing an operation in adefault servant. The function simply
returns the account balance for a particular account. Thereisjust one
difficulty: seeing as how the default servant can represent any account
instance, you have to figure out which particular account to access. To find
the name of the account, you must obtain the address context for this
invocation.

Obtain the context container for request contexts, context_container. On
the server side, contexts can be used to hold miscellaneous datarelevant to
the current invocation. For more details about programming with contexts,
see “Artix Contexts’ on page 245.

Call get_context_data () onthe request context container in order to
obtain the address context for the current invocation. The address context
isidentified by the IT ContextAttributes: : SERVER_ADDRESS_CONTEXT
string constant.

In order to use the address context, you must cast it first of all to the

IT Bus::AddressContext* type.

Retrieve the account name from the address context by calling
AddressContext: :get_context (). You know that the address context
contains the account name, because the account name was used as the
reference ID at the time the account was created (see “ Implementing a
Factory” on page 87).

Y ou can now use the account name to retrieve the account balance from a
database record.

93

CHAPTER 2 | Server Programming

Trangent Servants

Overview Artix allows you to generate an unlimited number of services from asingle
template by taking advantage of transient servants. This feature is useful for
those cases where Artix bridges into a technology domain that maps services to
object instances. Becauseit is usual to allow an unlimited number of objects of a
particular type, it follows that this kind of bridge can work only if Artix allows
an unlimited number of services of a particular type.

Note: For highly scalable applications, it is recommended that you choose
the default servant approach over the transient servant approach—see “ Defaullt
Servants’ on page 79.

Using the transient servant approach, thereisarisk that the number of transient
servants could become unmanageably large. But this problem does not arise
with the default servant approach, because you only need a single default
servant to process requests for an unlimited number of services.

94

Factory pattern

Transient Servants

Figure 7 shows an example of how transient servants could be used in a bank
application. The Bank service creates and provides access to an unlimited
number of account objects. Each account object is accessed through a unique
service (fOf exampl €, Accountl, Account2, and Accou.nt3). These account
services are created dynamically by registering servants as transient.

Figure7:

Transient Servants for an Account Service

Container Service

o)
o
>
3
g
>
[9]
2
T
o
=3

‘
! Account Port
1
1
1

t—1

| Transient
L— Servants

The need for transient servants commonly arises when implementing the factory
pattern, which is a common object-oriented design pattern. At amininum, the
factory pattern involves two interfaces, as follows:

Creator—an interface that provides operations for creating and finding
objects of aparticular type (the products). In the current example, the Bank
port type plays the role of a creator interface.
Product—an interface for the objects produced by the creator. In the
current example, the account port type plays the role of a product
interface.

95

CHAPTER 2 | Server Programming

The following WSDL fragment shows the outline of a Bank port type and an
Account port type, which together exemplify afactory design pattern:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

. >

<message name="create_account">

<part name="account_name" type="xsd:string"/>
</message>
<message name="create_accountResponse">

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

<portType name="Bank">
<operation name="create_account">
<input name="create_account" message="tns:create_account"/>
<output name="create_accountResponse" message="tns:create_ accountResponse" />
</operation>
</portType>
<portType name="Account'">

</portType>

</definitions>

The Bank port type exposes a create_account operation, which creates a new
account with a specified name and returns a reference to the newly created
Account object. The returned reference is represented by the

wsa: EndpointReferenceType type.

References An endpoint referenceisan XML schematype that encapsul ates the information

required to connect to an Artix service. Essentially, areference contains the
same information asis contained in aWSDL service element.

For more detail s about the endpoint reference type, see “Endpoint References’
on page 199.

Template service A noteworthy feature of the factory pattern isthat the creator (of Bank type) can

96

create an unlimited number of products (of account type). Because each account
instance needs to be represented by a WSDL service, thisimpliesthat Artix
needs the capability to generate an unlimited number of WSDL services for the

Transient Servants

accounts. This requirement, however, is at odds with the standard approach to
defining Web services, where a fixed number of WSDL services are defined
explicitly in the WSDL contract.

To give you the ability to define an unlimited number of WSDL services, Artix
lets you define atemplate service in the WSDL contract. A template serviceis
defined using the same syntax as aregular service. The only additional condition
that atemplate service must obey isthat the endpoint address should conform to
aplaceholder format (for details, see“ SOAP template service” on page 110 and
“CORBA template service” on page 110).

For example, the following WSDL fragment shows a template service for
accounts services. In this case, the placeholder format for the HTTP addressis
http://localhost:0

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

. >

<service name="AccountService">
<port name="AccountPort" binding="tns:AccountBinding">

</service>
</definitions>

Cloned services

<soap:address location="http://localhost:0" />
<http-conf:server HonorKeepAlive="false"/>
<http-conf:client Connection="close"/>

</port>

At runtime, Artix modifies the in-memory copy of thisWSDL service by
replacing the placeholder address, http: //localhost:0, witha URL that hasa
specific host and port. The server then listens for operation invocations on that
host and port.

When you register a servant object as atransient servant, Artix implicitly clones
anew service from the template service and associates the newly cloned service
with the transient servant. Artix generates a cloned service from the template
service by copying the template service and then making the following changes:
®* Theservice QNameisreplaced by a unique identifier (that is, unique for
every cloned service).
® Theplaceholder addressisreplaced by an active endpoint address that is
unique for every cloned service.
For example, in the case of aHTTP port, the placeholder address,
http://localhost:0, isreplaced by area |P address with a specific host

97

CHAPTER 2 | Server Programming

and port. A unique identifier is then appended to this URL to give the
address of the cloned endpoint.

98

How Services Locate WSDL Contracts

How Services Locate WSDL Contracts

Overview

Example of finding a WSDL
contract

For al but the simplest applications, it is recommended that you do not
hard-code the location of aWSDL contract into your service code. In place of
hard-coding the contract location, Artix supports a mechanism for locating
WSDL contracts based on the service QName. If you supply Artix with aservice
QName, Artix will then find and parse the corresponding WSDL contract.

This approach to locating WSDL contracts consists of two steps:

1. Intheapplication code, call IT Bus: :Bus: :get_service contract ()
with a service QName argument for the WSDL service that you want to
find.

2. Using the supported location mechanisms (see “Options for providing
WSDL contracts’ on page 100 for details), Artix searches the available
WSDL contracts to find one that contains the requested WSDL service.

Example 19 shows how to find aWSDL service element, soapservice, inthe
namespace, http: //www.iona.com/hello_world_soap_http, and register a
servant against it, given that the Bus has access to the WSDL contract containing
the service.

Example 19: Finding a WSDL Contract Using get_service_contract()

// C++
IT Bus::QName service_ gname (

", "SOAPService", "http://www.iona.com/hello_world_soap_http"
D g

// Find the WSDL contract

IT WSDL: :WSDLService* wsdl_service = bus->get_service contract (
service_gname

)

// Register the servant

bus->register_servant (
servant,
*wsdl_service

) g

99

CHAPTER 2 | Server Programming

Optionsfor providing WSDL Artix finds WSDL contracts from the following sources, in order of priority:

contracts 1

100

Contract specified on the command line—you can provide a WSDL
contract by specifying the location of the WSDL contract file on the
command line. For example:

it_container -BUSservice_contract ../../etc/hello_world.wsdl
-BUSname artix_example.server
-deploy deployHelloWorldSOAPService.xml

Contract specified in the configuration file—you can provide a WSDL
contract from the configuration file. For example:

Artix Configuration File

bus:gname_alias:hello_service =

"{http://www.iona.com/hello_world soap_http}HelloWorldSOAPS
ervice";

bus:initial contract:url:hello_ service =
"../../etc/hello.wsdl";

Thefirst line of this example associates a nickname, hello_service, with
the QName for the Hel1loWorldsoaPService service. The
bus:initial_contract:url:hello_service variablethen specifiesthe
location of the WSDL contract containing this service.

For more details, see Configuring and Deploying Artix Solutions.

Contract directory specified on the command line—you can provide a
WSDL contract by specifying a contract directory on the command line.
When Artix looks for a particular WSDL service, it searches al of the
WSDL filesin the specified directory. For example:

it_container -BUSservice_contract_dir ../../etc/
-BUSname artix_example.server
-deploy deployHelloWorldSOAPService.xml

For more details, see Configuring and Deploying Artix Solutions.
Contract directory specified in the configuration file—you can provide
WSDL contracts by specifying alist of contract directoriesin the
configuration file. For example:

Artix Configuration File
bus:initial contract dir = [".", "../../etc"];

How Services Locate WSDL Contracts

5. Sub WSDL shared library—Artix can retrieve WSDL that has been
embedded in a shared library.
Currently, this mechanism is not publicly supported. However, it is used
internally by the following Artix services. LocatorService,
SessionManager Service, PeerManager, and ContainerService.

References For more details about how to register servants, see “Registering Static
Servants’ on page 102 and “Registering Transient Servants’ on page 108.

101

CHAPTER 2 | Server Programming

Registering Static Servants

Overview Initially, when a servant object is created, it is associated with a particular
logical contract (that is, WSDL port type), but has no association with any
physical contract (that is, WSDL service). The link between a servant instance
and a physical contract must be established explicitly by registering the servant.

Figure 8 illustrates the effect of registering a static servant: registration
establishes an association between a servant instance and a part of the WSDL
model that represents a particular WSDL service.

Figure8: Relationship between a Static Servant and a WSDL Contract

WSDL Contract

<portType>
</portType>
.. — logical contract

static servant

<service>
<port>
“—> o — physical contract
</port>

</service>

N
IT_Bus::Servant IT_WSDL: :WSDLService
Static servant The defining characteristic of a static servant isthat, when registered, it is

associated with a service appearing explicitly in the original WSDL contract.
Thisimplies that a static servant isrestricted to using a service from the fixed
collection of services appearing in the WSDL contract.

102

IT_Bus::Busregistration
functions

Registering Static Servants

The IT_Bus: :Bus class defines the functions in Example 20 to manage the

registration of static servants:

Example20: ThelT_Bus::Bus Satic Servant Registration API

// C++
void
register_servant (
IT Bus::Servant & servant,
IT WSDL: :WSDLService & wsdl_service,

const IT Bus::String & port_name = IT BUS_ALL_PORTS

) IT_THROW_DECL ((IT Bus: :Exception)) = 0;

void

register_servant (
IT Bus::Servant & servant,
const IT Bus::String & wsdl_location,
const IT Bus::QName & service_name,

const IT Bus::String & port_name = IT BUS_ALL_PORTS

) IT THROW_DECL ((Exception)) = 0;

IT Bus::Service ptr
add_service(
IT WSDL: :WSDLService & wsdl_service
) IT _THROW_DECL ((IT Bus::Exception)) = 0;

IT Bus::Service_ptr

add_service(
const IT Bus::String & wsdl_location,
const IT Bus::QName & service name

) IT _THROW_DECL ((Exception)) = 0;

virtual IT WSDL: :WSDLService*
get_service_contract (

const QName& service name
) IT_THROW_DECL ((Exception)) = 0;

IT Bus::Service ptr
get_service (

const IT Bus::QName & service_ name
) g

void
remove_service (
const QName & service name

) g

103

CHAPTER 2 | Server Programming

IT_Bus::Serviceregistration
function

Activating a static servant

Activate all portstogether

104

In addition to the registration functionsin IT_Bus: :Bus, the IT Bus: :Service
class also supports a register_servant () function. The

IT Bus::Service::register_servant () function enablesyou to activate
portsindividualy.

Example21: ThelT_Bus::Serviceregister_servant() Function

// C++
void
register_servant (
IT Bus::Servant & servant,
const IT Bus::String & port_to_register
) g

There are different approaches to activating a static servant, depending on
whether you want to activate ports together or individually. The following
approaches are supported:

* Activate al portstogether.

* Activate portsindividualy.

To activate al ports together, registration is asingle step process. Y ou add the
service to the Bus and activate al of its ports by calling
IT_Bus::Bus::register_servant().FOfexanuﬂe

// C++

PlugInTImpl: : PlugInTmpl (
Bus_ptr bus

) IT_THROW_DECL ((Exception))

BusPlugIn (bus),
m_bank_servant (bus) ,
m_service_gname("", "BankService",
"http://www.iona.com/bus/demos/bank")
{
// complete
}

void

PlugInImpl: :bus_init (

) IT_THROW_DECL ((Exception))
{

Registering Static Servants

IT WSDL: :WSDLService* wsdl_service =
get_bus () ->get_service_contract (m_service gname) ;

bus->register servant (
m bank servant,
*wsdl_service

void

PlugInImpl: :bus_shutdown (

) IT_THROW_DECL ((Exception))
{

get_bus () ->remove_service (m_service_gname) ;

In this case, al the service' s ports dispatch their invocations to the same servant
object, m_bank_servant.

Activate portsindividually To activate ports individually, registration is a two-step process. First you add a
service to the Bus, then you activate individual ports. For example:

// C++
PlugInImpl: : PlugInImpl (
Bus_ptr bus

) IT _THROW_DECL ((Exception))

BusPlugIn (bus),

m_corba_servant (bus),

m_soap_servant (bus),

m_service_gname ("", "BankService",
"http://www.iona.com/bus/demos/bank")

// complete

void
PlugInImpl: :bus_init(
) IT THROW_DECL ((Exception))
{
IT WSDL: :WSDLService* wsdl_service =
get_bus () ->get_service_contract (m_service gname) ;

IT Bus::Service var bank service =
get_bus () ->add_service(*wsdl_service);

105

CHAPTER 2 | Server Programming

Default threading model

106

bank service->register servant (m corba servant, "CORBAPort");
bank service->register servant (m soap_servant, "SOAPPort");

}

void

PlugInImpl: :bus_shutdown (

) IT_THROW_DECL ((Exception))
{

get_bus () ->remove_service (m_service_gname) ;

}

In this case, each port can be programmed to dispatch invocations to distinct
servant objects. For example, invocations arriving at the corearort port are
dispatched to the corba_servant servant instance. Whereas, invocations
arriving at the soapport port are dispatched to the soap_servant servant
instance.

The default threading model for aregistered servant is multi-threaded. That is,
the servant is liable to have its operations invoked simultaneously by multiple
threads. With this model, it is essential to ensure that your servant codeis
reentrant and thread-safe. Alternatively, you can select another threading model
when registering the servant.

See “Servant Threading Models’ on page 179 for more information.

Registering Default Servants

Registering Default Servants

For information on registering default servants, in “Functions Defined on
IT_Bus:Service” on page 83, see the explanation of the
register_default_servant () member function.

107

CHAPTER 2 | Server Programming

Registering Transient Servants

Overview In contrast to a static servant, atransient servant is not limited to using services
that appear explicitly in the WSDL contract. A transient servant crestes a new
service every timeit is registered by cloning from an existing service (that is, a
template service) in the WSDL contract. This behavior is useful in cases where
you reguire an unlimited number of services of a particular kind.

For example, consider the WSDL contract for the
demos/servant_management/transient_servants demonstration, which hasa
Bank port type and an Account port type. In this case, you require an unlimited
number of Account Services to represent customer accounts.

Figure 9 illustrates the effect of registering a transient servant. Registration
establishes an association between a servant instance and a cloned service.

Figure9: Relationship between a Transient Servant and a WSDL Contract

WSDL Contract

<portType>
</portType>
.. logical contract

<service>
<port>
</port>

</service>

M

clone service

transient servant 7

<service>
<port>
<«—> ees physical contract
</port>

</service>

N

IT_Bus::Servant IT_WSDL: :WSDLService

108

Supported protocols

Template service

Transient servant registration

Examples of transient services

Registering Transient Servants

Artix currently supports transient servants for the following transports:
* HTTP

* CORBA

* Tunne

A prerequisitefor creating transient servicesisthat you define atemplate service
inthe WSDL contract. A template service is distinguished by having a port
address that is aplaceholder (otherwise, thetemplateislikean ordinary service
element).

For example, the placeholder for aHTTP port addressis any URL of the form
http://Hostname: Port (or https: //Hostname: Port for a secure service).

When atransient servant is registered, the following steps are implicitly
performed by the IT_Bus: : Bus instance (see Figure 9):

1. A new WSDL serviceis cloned from an existing service in the WSDL
contract. The cloned service has the following characteristics:

¢+ Thecloned service is based on an existing service element that
appearsin the WSDL contract.

+ Theclone's service QName is replaced by a dynamically generated,
unique service QName.

+ Theclone saddressing information is replaced such that each address
is unique per-clone and per-port.
2. Thetransient servant becomes associated with the newly cloned service.

Transient services are currently supported by the HTTP, CORBA and Tunnel
transports. For example, you could define the following kinds of template:

®* SOAPtemplate service.
® CORBA template service.

109

CHAPTER 2 | Server Programming

SOAP template service

CORBA template service

110

Example 22 shows an example of a SOAP service that could be used asa
template for cloning transient SOAP services.

Example 22: Example of a HTTP Template Service

<service name="ServiceName">
<port name="PortName" binding="BindingName">
<soap:address location="http://localhost:0" />

</port>
</service>

The SOAP template service has the following features:

®* The ServiceName and PortName are the same as the values passed to the
IT Bus::Bus::register_transient_servant () functioninthe
application code.

. The location attribute of <soap:address> must be initialized with a
placeholder URL, http: //Hostname: Port. If the URL has the special
form, http://localhost:0, Artix substitutes the actual host name and a
dynamically alocated IP port.

Example 23 shows an example of a CORBA service that could be used asa
template for cloning transient CORBA services.

Example 23: Example of a CORBA Template Service

<service name="ServiceName">
<port name="PortName" binding="BindingName">
<corba:address location="ior:" />

</port>
</service>
The CORBA template service has the following features:
® The ServiceName and PortName are the same as the values passed to the
IT Bus::Bus::register_ transient_ servant () functioninthe
application code.

® The location attribute of <corba:address> must be initialized with the
ior: placeholder IOR.

Reuse of IP ports

IT_Bus::Bustransient
registration functions

Registering Transient Servants

To avoid over-use of P ports, cloned services are designed to use the same |P

ports as the template service.

The 1T_Bus: :Bus class defines the functionsin Example 24 to manage the

registration of transient servants.

Example24: ThelT_Bus::Bus Transient Servant Registration API

// C++
IT Bus::Service_ptr
register_transient_ servant (
IT Bus::Servant & servant,
IT WSDL: :WSDLService & wsdl_service,

const IT Bus::String & port_name = IT BUS_ALL_PORTS

) IT _THROW_DECL ((IT Bus::Exception)) = 0;

IT Bus::Service ptr

register_transient_ servant (
IT Bus::Servant & servant,
const IT Bus::String & wsdl_location,
const IT Bus::QName & service_name,

const IT Bus::String & port_name = IT BUS_ALI, PORTS

) IT _THROW_DECL ((Exception)) = 0;

IT Bus::Service_ptr
add_transient_service (

IT WSDL: :WSDLService & wsdl_service
) IT_THROW_DECL ((IT Bus: :Exception)) = 0;

IT Bus::Service ptr
add_transient_service(
const IT Bus::String & wsdl_location,
const IT Bus::QName & service_name
) IT_THROW_DECL ((Exception)) = 0;

virtual IT WSDL: :WSDLService*
get_service_contract (

const QName& service_name
) IT THROW_DECL ((Exception)) = 0;

IT Bus::Service ptr
get_service(

const IT Bus::QName & service name
)i

111

CHAPTER 2 | Server Programming

IT_Bus::Serviceregistration
function

Activating a transient servant

Activate all portstogether

112

Example 24: ThelT_Bus::Bus Transient Servant Registration API

void
remove_service (

const IT Bus::QName & service_name
);

In addition to the registration functionsin IT_Bus: :Bus, the IT Bus: :Service
class also supports a register_servant () function. The

IT Bus::Service::register_servant () function enablesyou to activate
portsindividualy.

Example 25: ThelT_Bus::Serviceregister_servant() Function

// C++
void
register_servant (
IT Bus::Servant & servant,
const IT Bus::String & port_to_register
) g

There are severa different approaches to activating a transient servant,
depending on whether you want to activate ports together or individually and
depending on whether you want to specify the WSDL contract directly or usethe
get_service contract () function. The following approaches are supported:

* Activate al portstogether.
* Activate portsindividualy.

Registration isasingle step process. Y ou add the transient service to the Busand
activate al of itsportsby calling
IT Bus::Bus::register_transient_servant (). For example

Example 26: Activating All Ports Together for a Transient Servant

// C++

void

BankImpl: :create_account (
const IT Bus::String &account_name,
WS_Addressing: :EndpointReferenceType & return

Registering Transient Servants

Example 26: Activating All Ports Together for a Transient Servant

) IT THROW_DECL ((IT_Bus: :Exception))
{

// Find the account data for the account_name account and
// create a servant, account_servant, to represent it.
// (not shown)

// Register account_servant as a transient servant and
// return a reference to it.

IT Bus::QName template service name("", "AccountService",
"http://www.iona.com/bus/demos/bank") ;

IT WSDL: :WSDLService* wsdl_template_service =
get_bus () ->get_service_contract (template_service_name) ;

IT Bus::Service var cloned service =
get_bus()->register transient_servant (
account_servant,
*wsdl_ template_service

get_bus () ->populate_endpoint_reference (
cloned_service->get_wsdl_service(),
_return

)7

In this case, al the service' s ports dispatch their invocations to the same servant

object, account_servant.

Note that the IT_wsDL: :WSDLService object passed to
register_transient_service(), wsdl_template_service, representsthe
template service, whereas the IT_Bus: : Service object returned by

register transient service() representsthe cloned service. When
generating the endpoint reference for the transient service (by calling
populate_endpoint_reference ()), you must generate the reference from the
cloned service, not from the template service.

113

CHAPTER 2 | Server Programming

Activate portsindividually

114

Registration is a two-step process. First you add a transient service to the Bus
(thereby cloning the service), and then you activate individual ports. For
example:

Example 27: Activating Ports Individually for a Transient Servant

// C++
void
BankImpl: :create account (

const IT Bus::String &account_name,
WS_Addressing: : EndpointReferenceType &_return

) IT _THROW_DECL((IT Bus: :Exception))

{

// Find the account data for the account_name account and
// create two servants: corba_servant and soap_servant.
// These servants provide distinct implementations of the
// Account service, for the CORBA and SOAP protocols
// respectively.

// (not shown)

// Register account_servant as a transient servant and
// return a reference to it.

IT Bus::QName template service_name("", "AccountService",
"http://www.iona.com/bus/demos/bank") ;

IT WSDL: :WSDLService* wsdl_template service =
get_bus () ->get_service_contract (template_service_name) ;

IT Bus::Service var cloned service =
get_bus()->add_transient_ service(*wsdl template_ service);

cloned service->register_ servant (corba_ servant, "CORBAPort") ;

cloned_service->register servant (soap_servant, "SOAPPort");

get_bus () ->populate_endpoint_reference (
cloned_service->get_wsdl_service(),
_return

) g

Default threading model

Registering Transient Servants

In this case, each port can be programmed to dispatch invocations to distinct
servant objects. For example, invocations arriving at the corearort port are
dispatched to the corba_servant servant instance. Whereas, invocations
arriving at the soapport port are dispatched to the soap_servant servant
instance.

The default threading model for aregistered servant is multi-threaded. That is,
the servant is liable to have its operations invoked simultaneously by multiple
threads. With this model, it is essential to ensure that your servant codeis
reentrant and thread-safe. Alternatively, you can select another threading model
when registering the servant.

See“ Servant Threading Models’” on page 179 for more information.

115

CHAPTER 2 | Server Programming

116

In this chapter

CHAPTER 3

Client
Programming

This chapter describes how to develop an Artix client. The key
conceptsthat a client programmer needs to understand are
references, which encapsulatethelocation of aremote service, and
client proxies, which enable you to invoke WSDL operations.

This chapter discusses the following topics:

Programming with Client Proxies page 118
Implementing a Client page 130
Programming with Initial References page 134
Obtaining Initial References page 137
Overriding aHTTP Addressin aClient page 140

117

CHAPTER 3| Client Programming

Programming with Client Proxies

Overview Client proxies are the basic objects needed for Web services programming on
theclient side. A client proxy is a C++ object that provides a Remote Procedure
Call (RPC) interface to alocal or remote Web service. Each proxy instance
represents a connection to a particular service endpoint and the proxy’s member
functions provide programmeatic access to the service’'s WSDL operations.

In this section This section contains the following subsections:
What is a Client Proxy? page 119
Initializing Proxies from References page 124
Other Ways of Initializing Proxies page 128

118

Programming with Client Proxies

What isa Client Proxy?

Overview

Client proxy features

A client proxy isa C++ object that exposes member functions that correspond to
WSDL operations from a specific WSDL port type. By calling the C++
functions exposed by the proxy, aclient can invoke the corresponding operations
on aWeb service, either locally or remotely.

Figure 10 illustrates the role of aclient proxy in a distributed Web services
application. In this example, the client proxy represents a Greeter port type,
which supports the sayti WSDL operation. When the client callsthe sayHi ()
function on the proxy, the proxy convertsthis call into arequest message, which
istransmitted to the server port. The server then converts the request message to
asayHi () function call on a servant object. The return values from the sayHi ()
call are transmitted back to the client in areply message.

Figure 10: Roleof a Client Proxy in a Distributed Application

Client Server

Container

sayHi ()

l SOAP Service
sayHi Request
1

| HTIP Port i
| — ~(}
T 1
' '

T
sayHi Reply N e O I .

Proxy Object

Artix client proxies provide the following advantages to the client programmer:

. Location invariance—calls can be made either on local or remote services.
The syntax and semantics are the samein either case.

®* Protocol invariance—the syntax of client callsisindependent of the
underlying binding and transport protocol.

® Didtributed exception handling—exceptions raised in aremote server are
automatically propagated back to the client and raised as local exceptions.

119

CHAPTER 3| Client Programming

Greeter WSDL port type

Theinterface for aclient proxy is defined by a WSDL port type. The port type
defines a collection of operations which are mapped to C++ functions by the
WSDL-to-C++ compiler. For example, Example 28 shows the Greeter port
type, which defines two WSDL operations, sayHi and greetMe.

Example 28: Greeter WSDL Port Type

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="HelloWorld"

120

targetNamespace="http://www.iona.com/hello_world soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:tns="http://www.iona.com/hello_world_soap_ http"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema targetNamespace="http://www.iona.com/hello_world soap_http"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="responseType" type="xsd:string"/>
<element name="requestType" type="xsd:string"/>
</schema>
</types>
<message name="sayHiRequest"/>
<message name="sayHiResponse">
<part element="tns:responseType" name="theResponse" />
</message>
<message name="greetMeRequest">
<part element="tns:requestType" name="me" />
</message>
<message name="greetMeResponse">
<part element="tns:responseType" name="theResponse"/>
</message>

<portType name="Greeter">
<operation name="sayHi">
<input message="tns:sayHiRequest" name="sayHiRequest"/>
<output message="tns:sayHiResponse" name="sayHiResponse"/>
</operation>
<operation name="greetMe">
<input message="tns:greetMeRequest" name="greetMeRequest"/>
<output message="tns:greetMeResponse" name="greetMeResponse" />
</operation>

</portType>

</definitions>

Greeter proxy class

Programming with Client Proxies

Example28: Greeter WSDL Port Type

To generate a proxy class, run the WSDL-to-C++ compiler with the appropriate
options (see “Generating client stub code” on page 130 for details). The proxy
classimplementation is contained in the client stub files. For example, compiling
the Greeter port type generates the following stub files:

Greeter.h
GreeterClient.h
GreeterClient.cxx

The generated proxy class, GreetercClient, isshown in Example 29.
Example29: Generated GreeterClient Proxy Class

// C++

namespace COM_TIONA_HELLO_WORLD_SOAP_HTTP

{
class GreeterClient : public Greeter, public
IT Bus::ClientProxyBase
{

public:
// Constructors and Destructor
// (not shown)

virtual void
sayHi (
IT Bus::String &theResponse
) IT THROW_DECL((IT_Bus: :Exception)) ;

virtual void
greetMe (
const IT Bus::String &me,
IT Bus::String &theResponse
) IT THROW_DECL((IT_Bus: :Exception)) ;

121

CHAPTER 3| Client Programming

WSDL servicesfor the proxy

122

The preceding code example can be explained as follows:

1. By default, the C++ namespace enclosing the proxy classis derived from
the target namespace of the corresponding WSDL port type. For example,
the Greeter port type is defined with the target namespace,
http://www.iona.com/hello_world_soap_http, Which trandates to the
C++ namespace, COM_IONA_HELLO_WORLD_SOAP_HTTP. It isalso possibleto
override the default namespace name.

2. Ingeneral, aproxy class generated from the PortTypeName port type maps
to aC++ class, PortTypeNameciient. For example, the Greeter port type
maps to the C++ class, GreeterClient.

3. Ingeneral, you must specify the protocol and connection details when
initializing a client proxy instance. The proxy class itself is completely
protocol-independent.

The proxy constructors are not shown here—for a discussion of proxy
constructors, see “Initializing Proxies from References’ on page 124 and
“Other Ways of Initiadizing Proxies’” on page 128.

4. Theproxy classincludes C++ member functions that correspond to each of
the WSDL operations defined in the greeter port type.

Apart from representing aWSDL port type, each instance of a client proxy
encapsulates specific protocol and connection details, which correspond to the
information in aWSDL service element. Thus, aWSDL service element
effectively represents the state of a proxy object.

Example 30 shows a WSDL service with asingle port. In this case, the
HelloWorldSOAPService Service unambiguously represents a single endpoint.

Example 30: WSDL Service with Single Port

<definitions

targetNamespace="http://www.1iona.com/hello_world_soap_http"
.o>

<service name="HelloWorldSOAPService">
<port binding="tns:GreeterSOAPBinding" name="HTTPPort">
<http:address location="http://localhost:4444"/>
</port>
</service>
</definitions>

Programming with Client Proxies

Example 31 shows a WSDL service with multiple ports. In this case, the
MultiPortService Service represents two different endpoints. In order to
choose which endpoint to connect to, you must use aform of proxy constructor
that lets you specify the port name. See “Initializing Proxies from References’
on page 124 and “ Other Ways of Initializing Proxies’ on page 128 for details.

Example31: WSDL Service with Multiple Ports

<definitions
targetNamespace="http://www.iona.com/hello_world soap_http"

. >

<service name="MultiPortService">
<port binding="tns:GreeterSOAPBinding" name="HTTPPort">
<http:address location="http://localhost:3333"/>

</port>

<port binding="tns:GreeterGIOPBinding" name="IIOPPort">

<corba:address
location="file:../../hello_world service.ior"/>

</port>
</service>
</definitions>

123

CHAPTER 3| Client Programming

I nitializing Proxies from References

Overview

Proxy constructorswith a
reference argument

Constructor with areference
argument

Constructor with reference
argument and contract details

124

Typically, the cleanest way to initialize a client proxy is by constructing it from
an endpoint reference. A reference object encapsulates all of the information
needed to open a connection to a particular service. By using referencesin your
client program, it isrelatively easy to avoid hard-coding details such asthe
location of aWSDL contract file.

This subsection describes both how to use references to initialize proxies and
how to obtain the references themselves.

Toinitialize aproxy from areference, the Greeterclient class definesthe
constructors shown in Example 32.

Example 32: Proxy Constructors with a Reference Argument
GreeterClient (

const WS_Addressing: :EndpointReferenceType & epr_ref
);

GreeterClient (
const WS_Addressing: :EndpointReferenceType& epr_ref,
const IT Bus::String& wsdl_location,
const IT Bus: :QName& service_name,
const IT Bus::String& port_name

Thefirst constructor takes one argument representing an endpoint reference,
WS_Addressing: : EndpointReferenceType. The endpoint reference contains
compl ete service and port detail s, including addressing information, enabling the
client proxy to open a connection to aremote service. Thisform of constructor is
suitable for areference that contains details of just asingle WSDL port.

For adetailed discussion of endpoint references, see “ Endpoint References’ on
page 199.

The second constructor takes additional arguments—wsdl_location,
service_name, and port_name—that can provide additional information about
the endpoint. This constructor is useful in the following cases:

Obtaining areference

Initial reference mechanism

Programming with Client Proxies

* The endpoint reference contains multiple ports—in this case you can use
the port_name argument to specify which port the client connectsto, while
leaving the wsdl_location and service_name arguments empty.

For example, to initialize aproxy that connects to the corearort port from
themulti_port_epr endpoint reference:

// C++

AccountClient* proxy = new AccountClient (
multi_port_epr,
IT Bus::String: :EMPTY,
IT Bus::QName: : EMPTY_ ONAME,
"CORBAPort"

)5

® Theendpoint reference lacks metadata—when a reference originates from
anon-Artix service, sometimes it might contain just an URL (the endpoint
address) and provide no other details about the endpoint. In this case, you
can supply the missing endpoint details from aWSDL contract, by
specifying the WSDL contract location, wsdl_location, the service
QName, service_name, and port name, port_name, for the endpoint.

Y ou can obtain an endpoint reference from one of the following sources:
® Initia reference mechanism.

. Return value from a WSDL operation.

* Artix locator.

The Artix initial reference mechanism provides alayer of abstraction for
obtaining references. The client programmer requests a reference to a particular
WSDL service, by passing the service’s QName to the

IT Bus::Bus::resolve_initial_ references () function. The source of the
WSDL service description is determined independently of thisfunction call. For
example, the location of afile containing a WSDL service might be provided as
acommand-line argument to the client executable.

125

CHAPTER 3| Client Programming

The function for obtaining an initial reference has the following signature:

// C++
// In IT Bus::Bus
virtual IT Bus::Boolean resolve_initial reference (
const IT Bus::QName & service_name,
WS_Addressing: :EndpointReferenceType & endpoint_reference
) IT_THROW_DECL ((Exception)) = 0;

For more details, see “Programming with Initial References’ on page 134.

Return value from a WSDL Endpoint references can be passed as parametersin WSDL operations. Hence, a
operation common way of obtaining areferenceis as areturn value from aWSDL
operation.

For example, consider a Bank service that manages customer accounts. The
Bank service could provide aWSDL operation, get_account, that returns a
reference to an Account service. Y ou could define the get_account operation as
follows:

<definitions ... >

<message name="get_account">

<part name="account_name" type="xsd:string"/>
</message>
<message name="get_accountResponse">

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

<portType name="Bank">
<operation name="get_ account">
<input name="get_account" message="tns:get_account"/>
<output name="get_accountResponse" message="tns:get_accountResponse" />

</operation>

</portType>
</definitions>

126

Artix locator

Programming with Client Proxies

In the Bank proxy class, the get_account operation would map to a C++
function, get_account (), asfollows:

// C++
void get_account (
const IT Bus::String &account_name,
WS_Addressing: :EndpointReferenceType & return
) IT_THROW_DECL ((IT_Bus: :Exception)) ;

The return value from get_account () is represented by the
WS_Addressing: : EndpointReferenceType type. For more details, see
“Endpoint References’ on page 199.

The Artix locator is adedicated service for storing and retrieving references. The
mechanism for retrieving references from the locator consists essentially of
calling aWSDL operation that returns a reference. For more details about the
Artix locator service, see the Artix Locator Guide.

127

CHAPTER 3| Client Programming

Other Ways of I nitializing Proxies

Overview

Other proxy constructors

Constructor with no arguments

Constructor with WSDL URL
argument

128

Instead of initializing a proxy using an endpoint reference, you can specify the
proxy’s connection information explicitly: WSDL location URL, service
QName, and port name. Thisway of initializing aproxy is useful, if you need to
provide the proxy’s connection information in a customized manner.

Besides the constructors with reference arguments (see Example 32 on
page 124), the Greeterclient class defines the constructors shown in
Example 33.

Example 33: Other Proxy Constructors

GreeterClient () ;

GreeterClient (
const IT Bus::String & wsdl
)7

GreeterClient (
const IT Bus::String & wsdl,
const IT Bus::QName & service_name,
const IT Bus::String & port_name

)7

When using the constructor with no arguments, the client requires that the
contract defining its behavior be located in the same directory as the executable.
The client uses the service name specified at code generation time using the -e
flag.

If the specified service has multiple WSDL ports, the client proxy connects by
default to the first port in the wsdl : service element.

The second constructor takes one argument that allows you to specify the URL
of the contract defining the client’s behavior. The client uses the service
specified at code generation time using the -e flag.

In particular, the wsd1 argument could bea file: URL or auddi: URL (for
details of how to use UDDI, see “Locating Services with UDDI” on page 193).

Programming with Client Proxies

Constructor with WSDL URL, Thefourth constructor provides you with the most flexibility in determining how
service, and port arguments the client connectsto its server. It takes three arguments:
wsdl Specifies the URL of the contract defining the client’s
behavior.

service_name Specifies the QName of the service, defined in the contract
with a <service> tag, to use when connecting to the server.

port_name Specifies the name of the port, defined in the contract with a
<port> tag, to use when connecting to the server. The port
name given must be defined in the specified <service> tag.
If you don’t want to specify the port name, you can leave this
argument blank by passing IT_Bus: : String: :EMPTY. In this
case, the client proxy connectsto the first port in the
wsdl : service €lement.

The ability to specify the port name in the constructor is useful for WSDL
services that contain multiple ports—for example, see Example 31 on page 123.
This argument enables you to pick one of the ports explicitly, instead of
defaulting to thefirst port in the service element.

129

CHAPTER 3| Client Programming

| mplementing a Client

Overview

Generating client stub code

130

The stub code for a client implementation of the service defined by the contract
iscontained in thefiles PortTypeNameClient .h and PortTypeNameClient . cxx.
Y ou should never make any modifications to the generated code in these files.

To access the operations defined in the port type, the client initializes the Artix
bus, instantiates an object of the generated client proxy class,
PortTypeNameClient, and makesfunction calls on theobject. Whentheclientis
finished, it then shuts down the bus.

To generate client stub code from the Hello World WSDL contract,
hello_world.wsdl, enter the following command (for your respective
platform):

Windows

wsdltocpp -1 Greeter
-e HelloWorldSOAPService
-client
—-sample
-m NMAKE:executable
hello_world.wsdl

UNIX

wsdltocpp -1 Greeter
-e HelloWorldSOAPService
-client
—-sample
-m UNIX:executable
hello_world.wsdl

The -client switch ensuresthat client stub code is generated. For full details of
the wsdltocpp switches, see “ Generating code from the command line” on
page 715.

Initializing the Bus

Invoking the operations

Full client code

Implementing a Client

Client applicationsinitialize the Bus, by calling IT_Bus: :init (). You should
aways pass the command-line arguments from main () t0 IT Bus::init ().
This ensures that you can use standard Artix switches at the command-line (for
example, -Busname BuslD to specify the Bus ID at the command line).

To invoke the operations offered by the service, the client calls the member
functions of the client proxy object. The generated client proxy class contains
one member function for each operation defined in the contract. The generated
functions all return void. Any response messages are passed by reference asa
parameter to the function. For example, the greetMe operation defined in
Example 28 on page 120 generates a function with the following signature:

void greetMe (
const IT Bus::String & me,
IT Bus::String & var_return
) IT _THROW_DECL ((IT Bus::Exception)) ;

A client devel oped to access the service defined by the
HelloWorldSOAPService contract will look similar to Example 34.

Example 34: Sample Hello World Client

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

#include "GreeterClient.h"
IT USING_NAMESPACE_STD

using namespace COM_IONA HELLO_WORLD_SOAP_HTTP;
using namespace IT Bus;

int
main (

int argc,
char* argvl(]

cout << " GreeterClient" << endl;

131

CHAPTER 3| Client Programming

Example 34: Sample Hello World Client

try
{
/*
* Create an instance of the web service client
*/
4 IT Bus::init(argc, argv);
5 GreeterClient client;

// Sample invocation calls.
//
IT Bus::String theResponse;
6 client.sayHi (theResponse) ;
cout << "sayHi() returned: \"" << theResponse << "\""
<< endl;

IT Bus::String me = "YourName";
client.greetMe (me, theResponse) ;
cout << "greetMe() returned: \"" << theResponse << "\""

<< endl;
}
7 catch (IT Bus: :Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;
return -1;
}
return 0;

The preceding code can be explained as follows:

1. ThePortNameclient.h header includes the definitions for the client
proxy class.

2. The IT_USING NAMESPACE_STD Preprocessor macro expandsto the
following line of code:

// C++
using namespace std;

132

Implementing a Client

The std namespace scopes entities from the C++ Standard Template
Library. For example, using this namespace |ets you write cout and cin,
instead of std: :cout and std: :cin.

The coM_TONA_HELILO_WORLD_SOAP_HTTP hamespace contains the client
proxy class, creeterclient. See“Greeter proxy class’ on page 121.
The1IT_Bus::init () static function initializesthe bus. Y ou should always
pass in the command line arguments (argc and argv) t0 init ().

This line instantiates the proxy class using the no-argument form of the
proxy client constructor. When this client is deployed, a copy of the
contract defining its behavior must be deployed in the same directory as
the client executable.

In areal application, however, it would be better to initialize the client
proxy from an initial reference. See “ Programming with Initial
References’ on page 134.

Invoke the sayHi () operation on the client proxy.

Catch any exceptions thrown by the bus. It is essential to enclose remote
operation invocations within atry/catch block which catches the exception
types derived from IT_Bus: : Exception.

133

CHAPTER 3| Client Programming

Programming with Initial References

Overview Artix providesan API function, IT_Bus: :resolve_initial_references (), for
finding endpoint references based on the service QName.

The initial reference mechanism abstracts the procedure for obtaining endpoint
references. Using this approach, a programmer needs to know only the name of a
servicein order to create a proxy. The endpoint details could actually be
provided from configuration, from the command-line, by programming, or by
some other method. The client programmer does not have to worry about the
precise source of the endpoint reference.

Order of precedencefor initial Artix findsinitial references from the following sources, in order of priority:

reference sour ces 1. Colocated service—if the client code that calls
resolve_initial_reference () iscolocated with (that is, in the same
process as) the required service, the resolve_initial_reference()
function returns areference to the colocated service. This assumes that the
client and server code are using the same Bus instance.

2. Referencesregistered using register_initial_reference ()—YOU can
register areference explicitly by calling the
IT Bus::Bus::register_initial_reference () function on aBus
instance.

3. References specified on the command line—you can provide an initial
reference by specifying on the command line the location of afile
containing an endpoint reference. For example:

GreeterClient -BUSname BusiD
-BUSinitial_reference ../../etc/hello_ref.xml

4. References specified in the configuration file—you can provide an initial
reference from the configuration file, either by specifying the location of
an endpoint reference file or by specifying the literal value of an endpoint
reference.

For more details, see Configuring and Deploying Artix Solutions.

134

Example of programmingwith an
initial reference

Programming with Initial References

5. Serviceina WSDL contract—the service element inaWSDL contract
contains essentially the same data as an endpoint reference. Hence, if a
referenceis not specified using one of the other methods, Artix searches
any loaded WSDL contracts to find the specified service.

The sources of WSDL contracts are the same as on the server side. The
mechanism for finding references s, thus, effectively an extension of the
mechanism for finding WSDL contracts—see “How Services Locate
WSDL Contracts’ on page 99.

Given that the Bus has aready loaded and parsed the details of a service called
HelloWorldSOAPService in the namespace,
http://www.iona.com/hello_world_soap_http, you can initialize aclient
proxy, proxy, asfollows:

Example 35: Resolving an Initial Reference

// C++
IT Bus::QName service_ gname (
""", "HelloWorldSOAPService",
"http://www.iona.com/hello_world soap http"
) g
WS_Addressing: : EndpointReferenceType ref;

// Find the initial reference using the bootstrap service
bus->resolve_initial_ reference (

service_gname,

ref
) g

// Create a proxy and use it

GreeterClient proxy (ref);
proxy.sayHi () ;

135

CHAPTER 3| Client Programming

Abbreviated constructor for initial
references

136

To simplify the steps required to create a proxy from an initial reference, Artix
provides a special constructor that initializes a proxy from aservice QNamein a
single step. The constructor has the following form (for aGreeterclient

proxy):

GreeterClient (
const IT Bus: :QName service_name,
const IT Bus::String& port_name = IT Bus::String::EMPTY,
IT Bus::Bus_ptr bus = 0

) g

With this constructor, you can initialize a proxy from an initial reference using
the code fragment shown in Example 36.

Example 36: Resolving an Initial Reference with a Special Constructor

// C++
IT Bus::QName service_gname (
"', "HelloWorldSOAPService",
"http://www.iona.com/hello_world socap_ http"
)7

// Create a proxy and use it
GreeterClient proxy (service_ gname) ;
proxy.sayHi () ;

Where the proxy constructor implicitly looks up the initial reference based on
the specified service QName, service_gname.

Obtaining Initial References

Obtaining Initial References

Overview

Optionsfor obtaining initial
references

Access local WSDL contract

Given that you have programmed your client to useinitial references, as
described in the previous section, you then need provide those initial references
at runtime. This section describes how to obtain theinitial references needed by
the client and how to passtheinitial references to the client through its
command-line arguments.

Some of the possible options for obtaining initial references are, as follows:
® Accesslocal WSDL contract.

. Obtain reference from a container.

® Obtain WSDL contract from a container.

e Obtain WSDL location URL from a container.

If aWSDL service uses a statically allocated port (wherethe | P port is specified
explicitly in the original WSDL contract), the client can obtain the endpoint
reference from alocal copy of the WSDL contract. When using theinitial
references API, you can specify the location of the WSDL contract using the
command-line switch, -Busservice_contract WIDLFile, where WSDLFileis
aWSDL contract that providesinitia referencesfor the client. For example, you
can run the Greeter client asfollows:

GreeterClient -BUSname BusSID -BUSservice contract WSDLFile

137

CHAPTER 3| Client Programming

Obtain referencefrom acontainer

Obtain WSDL contract from a
container

138

Y ou can obtain an endpoint reference directly from an Artix container, after the
container has started up. Usethe it_container admin utility to retrieve the
endpoint reference and storeit in afile, asfollows:

it_container admin -container ContainerURLFile
-publishreference
-service {Namespace}LocalPart
-file ReferenceFile

Where ContainerURLFileis afile that contains the URL for the container
service (to get thisURL file, start it_container with the -publish option). The
service QName is specified by an open brace, {, followed by the target
namespace, Namespace, followed by a close brace, 3, followed by the local part
of the service’ s name, LocalPart. For example, the QName for the
HelloWorldSOAPService Service (see Example 30 on page 122) would be
specified as follows:

{http://www.iona.com/hello_world_soap_http}HelloWorldSOAPService

Given that the reference has been stored in thefile, ReferenceFile, and assuming
that the client has access to the file system where thisfile is stored, you can run
the Greeter client as follows:

GreeterClient -BUSname BuUSID -BUSinitial reference ReferenceFile

Y ou can obtain aWSDL contract directly from an Artix container, after the
container has started up. Usethe it_container_admin Uutility to retrieve the
WSDL contract and storeit in afile, asfollows:

it_container_admin -container ContainerURLFile
-publishwsdl
-service {Namespace}LocalPart
-file WSDLFile

Given that the WSDL contract has been stored in the file, WSDLFile, and
assuming that the client has access to the file system where thisfile is stored,
you can run the Greeter client asfollows:

GreeterClient -BUSname BuSID -BUSservice contract WSDLFile

Obtaining Initial References

Obtain WSDL location URL from You can provide the client with a URL from which the client can download an
acontainer

up-to-date copy of the WSDL contract. Usethe it_container admin utility to
retrieve the WSDL location URL and storeit in afile, asfollows:

it_container admin -container ContainerURLFile
-publishurl

-service {Namespace}LocalPart
-file WSDL_URLFile

Given that the URL has been stored in the file, WSDL_URLFile, and assuming

that the client has access to the file system where thisfile is stored, you can run
the Greeter client asfollows:

GreeterClient -BUSname BuUSID -BUSservice contract WSDL_URLFile

139

CHAPTER 3| Client Programming

Overridinga HTTP Addressin a Client

Overview Usually, client applications obtain the HTTP address for aremote Web service
by parsing the port element of aWSDL contract. Sometimes, however, you
might need to specify the HT TP address by programming, thereby overriding the
value from the WSDL port element.

This section describes how to program an Artix client to overridethe HTTP
address, by setting the HTTP_ENDPOINT URL context value.

HTTP addressin a WSDL Example 37 shows how to specify the HTTP addressin aWSDL contract for a

contract SOAP/HTTP service. The location attribute in the soap:address €element
specifies that the soapservice serviceisrunning on the localhost host and
listening on IP port 9000. By default, clients will use this address,
http://localhost:9000, to contact the remote soapservice. It ispossible,
however, to override this address by programming.

Example 37: HTTP Address Specified in a WSDL Contract

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.ilona.com/hello_world soap_http"
>
<wsdl :service name="SOAPService">
<wsdl :port binding="tns:Greeter_ SOAPBinding"
name="SoapPort">
<soap:address location="http://localhost:9000"/>
<http-conf:client/>
<http-conf:server/>
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

140

HTTP_ENDPOINT_URL context

How to overridetheHTTP
address

OverridingaHTTP Addressin a Client

Y ou can use the HTTP_ENDPOINT URL context to program the HT TP address that

aclient usesto contact a\Web service, thereby overriding the value configured in

the WSDL contract. The mechanism for setting the HTTP_ENDPOINT URL Valueis
based on Artix contexts (see “Artix Contexts’ on page 245). The programming
steps for overriding the HTTP address are as follows:

1. Obtain areference to arequest context container (of
IT_Bus: :ContextContainer type).

Use the request context container to set the HTTP_ENDPOINT_URL context.
Create a client proxy and invoke an operation on the proxy.

For the first invocation, Artix takes the address in the HTTP_ENDPOINT URL
context and uses it to establish a connection to the remote service.
Subseguent invocations on the proxy continue to send requests to the same
endpoint address.

4. After thefirst invocation on the proxy, Artix clears the
HTTP_ENDPOINT_URL context. Hence, subsequent client proxies created in
this thread revert to using the HTTP address configured in the WSDL
contract.

Example 38 shows how to override the HTTP address to contact a soapservice
service running on the host, yourhost, and IP port, 5432.

Example38: Using HTTP_ENDPOINT_URL to Overridea HTTP Address

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>

using namespace IT_ Bus;
using namespace IT ContextAttributes;

ContextRegistry* context_registry =
bus->get_context_registry () ;

ContextCurrent& context current =
context_registry->get_current () ;

ContextContainer* request contexts =
context_current.request_contexts() ;

141

CHAPTER 3| Client Programming

Example 38: Using HTTP_ENDPOINT_URL to Override a HTTP Address

IT Bus::AnyType* any string = request_contexts->get_context (
IT ContextAttributes: :HTTP_ENDPOINT URL,
true

) g

IT Bus::StringHolder* str_holder =
dynamic_cast<IT Bus::StringHolder*>(any_string) ;

str_holder->set ("http://yourhost:5432") ;
// Open a connection to the SOAPService service at yourhost:5432.
GreeterClient hw;

hw.sayHi ("Hello World!") ;

The stepsfor obtaining areference to arequest context follow a standard pattern.
For full details about how to program with contexts, see “ Artix Contexts’ on

page 245.

142

CHAPTER 4

Artix Programming
Considerations

Several areas must be considered when programming complex
Artix applications.

In this chapter This chapter discusses the following topics:
Operations and Parameters page 144
Exceptions page 154
Memory Management page 165
Multi-Threading page 177
Converting with to_string() and from_string() page 188
Locating Services with UDDI page 193
Compiling and Linking an Artix Application page 195
Building Artix Stub Libraries on Windows page 197

143

CHAPTER 4 | Artix Programming Consider ations

Operations and Parameters

Overview This section describes how to declare aWSDL operation and how the operation
and its parameters are mapped to C++ by the Artix WSDL -to-C++ compiler.

In this section This section contains the following subsections:
RPC/Literal Style page 145
Document/Literal Wrapped Style page 149

144

Operations and Parameters

RPC/Literal Style

Overview

Parameter direction in WSDL

How to declare WSDL operations
in RPCl/literal style

This subsection describes the RPC/literal style for defining WSDL operations
and parameters. The RPC binding style is distinguished by the fact that it uses
multi-part messages (one part for each parameter).

For example, the request message for an operation with three input parameters
might be defined as follows:

<message name="operationRequest">
<part name="X" type="X_Type"/>
<part name="Y" type="Y_Type"/>
<part name="Z" type="Z Type"/>
</message>

WSDL operation parameters can be sent either as input parameters (that is, in

the client-to-server direction or as output parameters (that is, in the

server-to-client direction). Hence, the following kinds of parameter can be

defined:

®* inparameter—declared as an input parameter, but not as an output
parameter.

® out parameter—declared as an output parameter, but not as an input
parameter.

® inout parameter—declared both as an input and as an output parameter.

Y ou can declare aWSDL operation in RPC/literal style asfollows:

1. Declare amulti-part input message, including all of the in and inout
parametersfor the new operation (for example, the testParams messagein
Example 39 on page 146).

2. Declare amulti-part output message, including all of the out and inout
parameters for the operation (for example, the testParamsResponse
message in Example 39 on page 146).

3. Within the scope of <portType>, declare asingle operation which includes
asingle input message and a single output message.

145

CHAPTER 4 | Artix Programming Consider ations

WSDL declaration of testParams Example 39 shows an example of a simple operation, testParams, Which takes
two input parameters, inInt and inoutInt, and two output parameters,
inoutInt and outFloat.

Example 39: WSDL Declaration of the testParams Operation

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>

<message name="testParams">
<part name="inInt" type="xsd:int"/>
<part name="inoutInt" type="xsd:int"/>
</message>
<message name="testParamsResponse">
<part name="inoutInt" type="xsd:int"/>
<part name="outFloat" type="xsd:float"/>
</message>

<portType name="BasePortType">
<operation name="testParams">
<input message="tns:testParams" name="testParams"/>
<output message="tns:testParamsResponse"
name="testParamsResponse" />
</operation>

</definitions>

C++ mapping of testParams Example 40 shows how the preceding WSDL testparams operation (from
Example 39 on page 146) mapsto C++.

Example 40: C++ Mapping of the testParams Operation

// C++
void testParams (
const IT Bus::Int inInt,
IT Bus::Int & inoutInt,
IT Bus::Float & outFloat
) IT_THROW_DECL ((IT Bus: :Exception)) ;

M apped parameters When the testParams WSDL operation maps to C++, the resulting
testParams () C++ function signature starts with the in and inout parameters,
followed by the out parameters. The parameters are mapped as follows:

146

WSDL declaration of
testRever seParams

C++ mapping of
testRever seParams

Operations and Parameters

®* inparameters—are passed by value and declared const.
® inout parameters—are passed by reference.
® out parameters—are passed by reference.

Example 41 shows an example of an operation, testReverseParams, Whose

parameters are listed in the opposite order to that of the preceding testParams
operation.

Example41: WSDL Declaration of the testReverseParams Operation

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>

<message name="testReverseParams">
<part name="inoutInt" type="xsd:int"/>
<part name="inInt" type="xsd:int"/>
</message>
<message name="testReverseParamsResponse">
<part name="outFloat" type="xsd:float"/>
<part name="inoutInt" type="xsd:int"/>
</message>

<portType name="BasePortType">
<operation name="testReverseParams">
<output message="tns:testReverseParamsResponse"
name="testReverseParamsResponse" />
<input message="tns:testReverseParams"
name="testReverseParams" />
</operation>

</definitions>

Example 42 shows how the preceding WSDL testReverseParams Operation
(from Example 41 on page 147) mapsto C++.

Example42: C++ Mapping of the testRever seParams Operation

// C++
void testReverseParams (
IT Bus::Int & inoutInt

const IT Bus::Int inInt,
IT Bus::Float & outFloat,
) IT _THROW_DECL ((IT Bus: :Exception)) ;

147

CHAPTER 4 | Artix Programming Consider ations

Order of in, inout and out In C++, the order of the in and inout parametersin the function signature isthe

parameters same as the order of the partsin the input message. The order of the out
parameters in the function signature is the same as the order of the partsin the
output message.

Note: The parameter order isnot affected by the relative order of the <input>
and <output> tags in the declaration of <operation>. In the mapped C++
signature, thein and inout parameters always appear before the out parameters.

148

Operations and Parameters

Document/Literal Wrapped Style

Overview This subsection describes the document/literal wrapped style for defining
WSDL operations and parameters. The document/literal wrapped styleis
distinguished by the fact that it uses single-part messages. The single part is
defined as a schema element which contains a sequence of elements, one for
each parameter.

Request message for mat The request message for an operation with three input parameters might be
defined as follows:

<types>
<schema>
<element name="OperationName">
<complexType>
<sequence>
<element name="X" type="X_Type"/>
<element name="Y" type="Y_Type"/>
<element name="Z" type="Z Type"/>
</sequence>
</complexType>
</element>
</schema>
</types>
<message name="operationRequest">
<part name="parameters" element="OperationName" />
</message>

The request message in document/literal wrapped style must obey the following
conventions:

®* Thesingle element that wraps the input parameters must have the same
name as the WSDL operation, OperationName.
L The single part must have the name, parameters.

149

CHAPTER 4 | Artix Programming Consider ations

Reply message for mat

How to declare WSDL operations
in document/literal wrapped style

150

The reply message for an operation with three output parameters might be
defined asfollows:

<types>
<schema>
<element name="OperationNameresult">
<complexType>
<sequence>
<element name="Z" type="Z Type"/>
<element name="A" type="A_Type"/>
<element name="B" type="B_Type"/>
</sequence>
</complexType>
</element>
</schema>
</types>
<message name="operationReply">
<part name="parameters" element=" Oper ationNameresult" />
</message>

The reply message in document/literal wrapped style must obey the following
conventions:

®* Thesingle element that wraps the output parameters must have the form,
OperationNameresult.

® Thesingle part must have the name, parameters.

Y ou can declare aWSDL operation in document/literal wrapped style as

follows:

1. Inthe <schema> section of the WSDL, define an element (the input part
wrapping element) as a sequence type containing elements for each of the
in and inout parameters (for example, the testparams element in
Example 43 on page 151).

2. Inthe <schema> section of the WSDL, define another element (the output
part wrapping element) as a sequence type containing elements for each of
theinout and out parameters (for example, the testParamsResult element
in Example 43 on page 151).

3. Declareasingle-part input message, including al of thein and inout
parametersfor the new operation (for example, the testParams messagein
Example 43 on page 151).

WSDL declaration of testParams
in document/literal wrapped style

Operations and Parameters

4, Declare asingle-part output message, including all of the out and inout
parametersfor the operation (for example, the testParamsResult message
in Example 43 on page 151).

5. Within the scope of <portType>, declare asingle operation which includes
asingle input message and a single output message.

Example 39 shows an example of asimple operation, testParams, Which takes
two input parameters, inInt and inoutInt, and two output parameters,
inoutInt and outFloat.

Example 43: testParams Operation in Document/Literal Wrapped Style

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
<wsdl: types>
<schema targetNamespace="..."
xmlns="http://www.w3.org/2001/XMLSchema">
<element name="testParams">
<complexType>
<sequence>
<element name="inInt" type="xsd:int"/>
<element name="inoutInt" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="testParamsResult">
<complexType>
<sequence>
<element name="inoutInt" type="xsd:int"/>
<element name="outFloat"
type="xsd:float" />
</sequence>
</complexType>
</element>
</schema>
</wsdl: types>
<message name="testParams">
<part name="parameters" element="tns:testParams"/>
</message>
<message name="testParamsResult">
<part name="parameters" element="tns:testParamsResult"/>
</message>
<wsdl :portType name="BasePortType">
<wsdl :operation name="testParams">

151

CHAPTER 4 | Artix Programming Consider ations

Example 43: testParams Operation in Document/Literal Wrapped Style

<wsdl:input message="tns:testParams"
name="testParams" />
<wsdl :output message="tns:testParamsResult"
name="testParamsResult" />
</wsdl : operation>
</wsdl :portType>

</definitions>

C++ default mapping of The Artix WSDL-to-C++ compiler automatically detects when you use
testParams document/literal wrapped style (as long as the WSDL obeys the conventions

described here). If document/literal wrapped style is detected, the
WSDL-to-C++ compiler (by default) unwraps the operation parameters to
generate anormal function signature in C++.

For example, Example 44 shows how the preceding WSDL testParams
operation (from Example 43 on page 151) mapsto C++.

Example 44: C++ Mapping of the testParams Operation

// C++
void testParams (
const IT Bus::Int inInt,
IT Bus::Int & inoutInt,
IT Bus::Float & outFloat
) IT _THROW_DECL((IT_Bus: :Exception)) ;

152

C++ mapping of testParamsusing
-wrapped flag

Operations and Parameters

If you want to disable the auto-unwrapping feature of the WSDL-to-C++
compiler, you can do so by running wsdltocpp with the -wrapped flag. For
example, assuming that the WSDL from Example 43 on page 151 isstored inthe
test_params.wsdl file, you can generate C++ without auto-unwrapping by
entering the following at the command line:

wsdltocpp -wrapped test_params.wsdl

Example 45 shows the result of mapping the WSDL testParams operation to
C++ with the ~wrapped flag:

Example45: C++ Mapping Using the -wrapped Flag

// C++

virtual void

testParams (
const testParams ¶meters,
testParamsResult ¶meters_1

) IT _THROW_DECL ((IT Bus: :Exception)) ;

153

CHAPTER 4 | Artix Programming Consider ations

Exceptions

Overview

In this section

154

Artix provides avariety of built-in exceptions, which can aert usersto problems
with network connectivity, parameter marshalling, and so on. In addition, Artix
allows usersto define their own exceptions, which can be propagated across the
network by declaring fault exceptionsin WSDL.

This section contains the following subsections:

System Exceptions page 155

User-Defined Exceptions page 160

Exceptions

System Exceptions

Overview

IT_Bus::FaultException
attributes

When an error occurs during an operation invocation, Artix throws an exception
of IT_Bus: :FaultException type (whichinheritsfromthe IT_Bus: : Exception
base class). The IT_Bus: : Faul tException member functions enable you to
access a considerable amount of information about the exception.

A FaultException instance has severa attributes that provided detailed
information about the exception. The following Faul tException attributes are

available:

® description—a human-readable string that summarizes the error.

* category—aformal category that indicates what kind of error occurred.
The following categories are supported:

IT Bus::
IT Bus::
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:

® S 6 6 6 6 6 6 O O O o o 2 o

IT Bus:

FaultCategory:
FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:
:FaultCategory:

:NO_PERMISSION
:CONNECTION_FAILURE
:MARSHAL_ERROR
:NOT_EXIST

: TRANSIENT

: UNKNOWN

: TIMEOUT
:VERSION_ERROR
:NOT_UNDERSTOOD

: MEMORY
:BAD_OPERATION

: INTERNAL

: INVALID_REFERENCE
:NOT_IMPLEMENTED
:LICENSE

d sour ce—indicates whether the error occurred on the client side or on the
server side. The following values are supported:

. IT Bus::FaultSource: :CLIENT

. IT Bus::FaultSource: : SERVER

3 IT Bus::FaultSource: : UNKNOWN

* completion status—indicates whether or not the operation completed its
work on the server side. The following values are supported:

155

CHAPTER 4 | Artix Programming Consider ations

IT_Bus::FaultException class

156

. IT_Bus::CompletionStatus: :YES
* IT _Bus::CompletionStatus: :NO

. IT_Bus::CompletionStatus: :MAYBE

Example 46 shows the definition of the IT_Bus: : FaultException class. Thisis
the class you must catch to handle an Artix system exception. Accessor and
modifier functions are provided for al of the FaultException attributes.

Example 46: The FaultException Class

// C++
namespace IT Bus
{
class IT BUS_API FaultException :
public SequenceComplexType,
public Exception,
public Rethrowable<FaultException>

public:
FaultException (
const FaultCategory::Category category,
const String & namespace_uri,
const String & code
)i

FaultException () ;

const FaultCategory & get_category() const;
FaultCategory & get_category() ;
void set_category(const FaultCategory & val);

const String & get_namespace_uri () const;
String & get_namespace uri () ;
void set_namespace_uri (const String & val);

const String & get_code() const;
String & get_code() ;
void set_code(const String & val);

const String & get_detail() const;
String & get_detail();
void set_detail (const String & val);

IT_Bus::FaultCategory class

Exceptions

Example 46: The FaultException Class

const FaultSource & get_source() const;
FaultSource & get_source() ;
void set_source(const FaultSource & val) ;

const FaultCompletionStatus & get_completion_status ()
const;
FaultCompletionStatus & get_completion_status() ;
void set_completion_status (
const FaultCompletionStatus & val
) g

const String & get_description() const;
String & get_description();

void set_description(const String & val);
const String & get_server_ id() const;
String & get_server_id();

void set_server_ id(const String & val) ;

private:

b7

Example 47 shows the definition of the IT_Bus: : FaultCategory class. This
class providesthe functions, get_value () and set_value(), t0 access or
modify the fault category.

Example47: The FaultCategory Class

// C++
namespace IT_ Bus
{
class IT BUS_API FaultCategory : public AnySimpleType
{
public:
enum Category
{
NO_PERMISSION,
CONNECTION_FAILURE,
MARSHAL,_FERROR,
NOT EXTST,
TRANSIENT,

157

CHAPTER 4 | Artix Programming Consider ations

IT_Bus:.:FaultSour ce class

158

Example 47: The FaultCategory Class

UNKNOWN,
TIMEOUT,
VERSION_ERROR,
NOT_UNDERSTOOD,
MEMORY,
BAD_OPERATION,
INTERNAL,
INVALID_REFERENCE,
NOT_IMPLEMENTED,
LICENSE

b8

FaultCategory () ;
FaultCategory (const Category value) ;

void set_value (const Category value) ;
Category get_value() const;

Example 48 shows the definition of the IT_Bus: :FaultSource class. This class
provides the functions, get_value () and set_value(), to access or modify the
fault source.

Example 48: The FaultSource Class

// C++
namespace IT_Bus
{
class IT BUS_API FaultSource : public AnySimpleType
{
public:
enum Source
{
CLIENT,
SERVER,
UNKNOWN
b g

FaultSource() ;
FaultSource (const Source value) ;

I T_Bus::FaultCompletionStatus
class

Exceptions

Example 48: The FaultSource Class

void set_value (const Source value) ;
Source get_value() const;

Example 49 shows the definition of the IT Bus: :FaultCompletionStatus
class. This class provides the functions, get_value () and set_value(), tO
access or modify the fault completion status.

Example 49: The FaultCompletionStatus Class

// C++
namespace IT_ Bus
{
class IT BUS_API FaultCompletionStatus : public AnySimpleType
{
public:
enum CompletionStatus
{
YES,
NO,
MAYBE
iy

FaultCompletionStatus() ;
FaultCompletionStatus (const CompletionStatus value) ;

void set_value(const CompletionStatus value) ;
CompletionStatus get_value() const;

159

CHAPTER 4 | Artix Programming Consider ations

User-Defined Exceptions

Overview Artix supports user-defined exceptions, which propagate from one Artix
application to another. To define a user exception, you must declare the
exception as afault in WSDL. The WSDL-to-C++ compiler then generates the
stub code that you need to raise and catch the exception.

FaultException class User exceptions are derived from the IT_Bus: :UserFaul tException class,
which isdefined in <it_bus /user_fault_exception.h>. The
IT Bus::UserFaultException class extends 1T Bus: :Exception.

Declaring a fault in WSDL Example 50 shows an example of aWSDL fault which can be raised on the
echoInteger operation. The format of the fault messageis specified by the
tns:SampleFault MesSsage.

Example 50: Declaration of the faultMessage Fault

<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace="http://www.iona.com/userfault"
xmlns="http://schemas.xmlsoap.org/wsdl/" ... >
<types>
<schema targetNamespace="http://www.iona.com/userfault"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="my exceptionElement"
type="tns:my exceptionType"/>
1 <complexType name="my exceptionType">
<sequence>
<element name="ErrorMsg" type="xsd:string"/>
<element name="ErrorID" type="xsd:int"/>
</sequence>
</complexType>
</schema>
</types>
<message name="requestMessage"/>
<message name="responseMessage" />
2 <message name="faultMessage">
<part element="tns:my exceptionElement"
name="my exceptionDetails"/>
</message>

160

C++ mapping of user fault

Exceptions

Example50: Declaration of the faultMessage Fault

<portType name="Receiver">
<operation name="pingMe">
<input message="tns:requestMessage"
name="pingMeRequest" />
<output message="tns:responseMessage"
name="pingMeResponse" />
<fault message="tns:faultMessage"
name="pingMeFault"/>
</operation>
</portType>

</definitions>

The preceding WSDL extract can be explained as follows:

1. If thefault isto hold more than one piece of data, you must declare a
complex type for the fault data (in this case, my_exceptionType holds an
error message string, ErrorMsg, and an error |D, ErrorID).

2. Declare amessage for the fault, containing just asingle part. The WSDL
specification allows only single-part messages in a fault—multi-part
messages are not allowed.

3. The<fault> tag must be added to the scope of the operation (or
operations) which can raise this particular type of fault.

Note: Thereisno limit to the number of <fault> tags that can be
included in an operation element.

When the user fault is mapped to C++, two classes are generated to represent the
exception.

Thefirst class, faultMessageException, represents the fault message,
faultMessage. Thisclass, which inherits from IT_Bus: :UserFaultException,
isthe class that you actually throw and catch as an exception in C++.

Example 51 shows the definition of the faultMessageException class.

Example51: The faultMessageException Class
// C++

namespace userfault

{

161

CHAPTER 4 | Artix Programming Consider ations

Example51: The faultMessageException Class

class faultMessageException
: public IT Bus::UserFaultException,
public
IT Bus::Rethrowable<userfault: :faultMessageException>
{
public:

faultMessageException () ;

virtual const IT Bus::QName &
get_message name () const;

my_exceptionType & getmy exceptionDetails();

const my_exceptionType & getmy exceptionDetails() const;

void setmy exceptionDetails (const my exceptionType &
val) ;

private:

g
7

The get_message_name () function returns the name of the user exception. The
faul tMessageException class declares functions, getPartName () and
setPartName (), for accessing and modifying the message part (thereis only
one part in the message). For example, the getmy_exceptionDetails ()
function returns areference to amy_exceptionType Object.

The second class, my_exceptionType, represents the exception data.
Example 52 shows the definition of the my_exceptionType class. This class
provides accessor and modifier functions for the ErrorMsg and ErrorID
exception members.

Example52: The my_exceptionType Class
// C++

namespace userfault

{
class my exceptionType : public IT Bus::SequenceComplexType

{
public:

162

Raising a fault exception in a
server

Exceptions

Example52: The my_exceptionType Class

my_exceptionType () ;

IT Bus::String & getErrorMsg () ;
const IT Bus::String & getErrorMsg() const;
void setErrorMsg(const IT Bus::String & val);

IT Bus::Int getErrorID() ;
const IT Bus::Int getErrorID() const;
void setErrorID(const IT Bus::Int val);

private:

b7
g

Example 53 shows how to raise the faultMessageException exception in the
server code. Thisimplementation of pingMe always throws the user exception,

faultMessageException.
Example53: Raising a faultMessageException in the Server

// C++
void
ReceiverImpl: :pingMe () IT THROW_DECL ((IT Bus::Exception))
{
// Initialize an instance of the my_exceptionType
my_exceptionType exception details;

// Set ErrorMsg and ErrorID
exception_details.setErrorMsg("pingMe: No implementation") ;
exception_details.setErrorID(555) ;

// Now set exception details into faultMessageException
faultMessageException the_exception;

the_exception.setmy exceptionDetails (exception_details) ;

// Throw the exception
throw the exception;

163

CHAPTER 4 | Artix Programming Consider ations

Catching a fault exception in a Example 54 shows how to catch the faul tMessageException exception on the
client client side. The client uses the proxy instance, client, to call the pingie
operation remotely.

Example 54: Catching faultMessageException in the Client

// C++

// Create an instance of the web service client
IT Bus::init(argc, argv);

try
{
ReceiverClient client;

client.pingMe ();
}
catch (const faultMessageException& ex)
{
my_exceptionType exception details
= ex.getmy exceptionDetails() ;

// Now display the details of the exception
cout << "Exception Message: "

<< exception_details.getErrorMsg() << endl;
cout << "Exception ID: "

<< exception_details.getErrorID() << endl;

164

Memory Management

Memory M anagement

Overview This section discusses the memory management rules for Artix types,
particularly for generated complex types.

In this section This section contains the following subsections:
Managing Parameters page 166
Assignment and Copying page 170
Deallocating page 172
Smart Pointers page 173

165

CHAPTER 4 | Artix Programming Consider ations

Managing Parameters

Overview

Memory management rules

WSDL example

166

This subsection discusses the guidelines for managing the memory for
parameters of complex type. In Artix, memory management of parametersis
relatively straightforward, because the Artix C++ mapping passes parameters by
reference.

Note: If you use pointer types to reference operation parameters, see “ Smart
Pointers” on page 173 for advice on memory management.

There are just two important memory management rules to remember when
writing an Artix client or server:

1. Theclient isresponsible for deallocating parameters.

2. If theserver needsto keep acopy of parameter data, it must make acopy of
the parameter. In general, parameters are deall ocated as soon as an
operation returns.

Example 55 shows an example of aWSDL operation, testSeqParams, with
three parameters, inseq, inoutSeq, and outSeq, Of sequence type,
xsdl : SequenceType.

Example 55: WSDL Example with in, inout and out Parameters

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="SequenceType">
<sequence>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</sequence>
</complexType>

</schema>

Memory Management

Example55: WSDL Example with in, inout and out Parameters
</types>

<message name="testSegParams">
<part name="inSeq" type="xsdl:SequenceType"/>
<part name="inoutSeq" type="xsdl:SequenceType"/>
</message>
<message name="testSegParamsResponse">
<part name="inoutSeq" type="xsdl:SequenceType"/>
<part name="outSeq" type="xsdl:SequenceType"/>
</message>

<portType name="BasePortType">
<operation name="testSegParams">
<input message="tns:testSegParams"
name="testSegParams" />
<output message="tns:testSegParamsResponse"
name="testSegParamsResponse" />
</operation>

</portType>

</definitions>

Client example Example 56 shows how to alocate, initialize, and deall ocate parameters when
caling the testSegParams operation.

Example56: Client Calling the testSeqParams Operation

// C++
try
{

IT Bus::init(argc, argv);
1 BaseClient bc;

2 // Allocate all parameters
SequenceType inSeq, inoutSeq, outSeq;

3 // Initialize in and inout parameters
inSeq.setvarFloat ((IT Bus::Float) 1.234);
inSeq.setvarInt (54321) ;
inSeq.setvarString ("One, two, three");
inoutSeq.setvarFloat ((IT_Bus::Float) 4.321);

167

CHAPTER 4 | Artix Programming Consider ations

Server example

168

Example56: Client Calling the testSeqParams Operation

inoutSeq.setvarInt (12345) ;
inoutSeq.setvarString ("Four, five, six");

// Call the 'testSegParams' operation
bc.testSegParams (inSeq, inoutSeq, outSeq) ;

// End of scope:
// Implicit deallocation of inSeq, inoutSeqg, and outSeq.
}
catch (IT _Bus: :Exception& e)
{
cout << endl << "Caught Unexpected Exception: "
<< endl << e.message ()
<< endl;
return -1;

}

The preceding client example can be explained as follows:

1. Thislinecreatesan instance of the client proxy, bc, which isused to invoke
the WSDL operations.

2. Youmust allocate memory for all kinds of parameter, in, inout, and out. In
this example, the parameters are created on the stack.

3. Youinitiaize only the in and inout parameters. The server will initialize
the out parameters.

4. Itistheresponsibility of the client to deallocate al kinds of parameter. In
this example, the parameters are all deallocated at the end of the current
scope, because they have been allocated on the stack.

Example 57 shows how the parameters are used on the server side, in the C++
implementation of the testSegParams oOperation.

Example57: Server Calling the testSeqParams Operation

// C++

void

BaseImpl: : testSeqgParams (
const SequenceType & inSeq,
SequenceType & inoutSeq,
SequenceType & outSeq

) IT _THROW_DECL((IT Bus: :Exception))

Memory Management

Example57: Server Calling the testSeqParams Operation

cout << "BaseImpl::testSegParams called" << endl;

// Print inSeq

cout << "inSeqg.varFloat = " << inSeq.getvarFloat() << endl;
cout << "inSeq.varInt = " << inSeq.getvarInt() << endl;
cout << "inSeq.varString = " << inSeq.getvarString() << endl;

// (Optionally) Copy in/inout parameters
//

// Print and change inoutSeq
cout << "inoutSeqg.varFloat = "
<< inoutSeq.getvarFloat () << endl;
cout << "inoutSeq.varInt =0

<< inoutSeq.getvarInt() << endl;
cout << "inoutSeq.varString = "

<< inoutSeq.getvarString() << endl;
inoutSeq. setvarFloat (2.0) ;
inoutSeq.setvarInt (2) ;
inoutSeq. setvarString ("Two") ;

// Initialize outSeq
outSeq.setvarFloat (3.0) ;
outSeq.setvarInt (3) ;
outSeq.setvarString ("Three") ;

The preceding server example can be explained as follows:

1

The server programmer has read-only access to the in parameters (they are
declared const in the operation signature).

If you want to access data from in or inout parameters after the operation
returns, you must copy them (deep copy). It would be an error to use the &
operator to obtain a pointer to the parameter data, because the Artix server
stub deallocates the parameters as soon as the operation returns.

See “Assignment and Copying” on page 170 for details of how to copy
Artix data types.

Y ou have read/write access to the inout parameters.

Y ou should initialize each of the out parameters (otherwise they will be
returned with default initial values).

169

CHAPTER 4 | Artix Programming Consider ations

Assignment and Copying

Overview

Copy constructor

Assignment operator

170

The WSDL-to-C++ compiler generates copy constructors and assignment
operators for all complex types.

The WSDL-to-C++ compiler generates a copy constructor for complex types.
For example, the sequenceType type declared in Example 55 on page 166 has
the following copy constructor:

// C++

SequenceType (const SequenceType& copy) ;

This enables you to initialize sequenceType data as follows:

// C++

SequenceType original;
original.setvarFloat (1.23);
original.setvarInt (321) ;
original.setvarString("One, two, three.");

SequenceType copy._1(original) ;
SequenceType copy 2 = original;

The WSDL-to-C++ compiler generates an assignment operator for complex
types. For example, the generated assignment operator enables you to assign a
SequenceType instance as follows:

// C++

SequenceType original;
original.setvarFloat (1.23);
original.setvarInt (321) ;
original.setvarString("One, two, three.");

SequenceType assign to;

assign_to = original;

Memory Management

Recur sive copying In WSDL, complex types can be nested inside each other to an arbitrary degree.
When such anested complex type is mapped to C++ by Artix, the copy
constructor and assignment operators are designed to copy the nested members
recursively (deep copy).

171

CHAPTER 4 | Artix Programming Consider ations

Deallocating

Using delete

Recursive deallocation

172

In C++, if you allocate a complex type on the heap (that is, using pointers and
new), you can generally delete the data instance using the delete operator. It is
usually better, however, to use smart pointersin this context—see “ Smart
Pointers’ on page 173.

The Artix C++ types are designed to support recursive deallocation.

That is, if you have an instance, T, of a complex type which has other complex
types nested inside it, the entire memory for the complex type including its
nested members would be deall ocated when you delete T. This works for
complex types nested to an arbitrary degree.

Memory Management

Smart Pointers

Overview

What isa smart pointer?

Artix smart pointers

Client example using simple
pointers

To help you avoid memory leaks when using pointers, the WSDL -to-C++
compiler generates a smart pointer class, ComplexTypertr, for every generated
complex type, ComplexType. The following aspects of smart pointers are
discussed here:

® What isasmart pointer?

® Artix smart pointers.

® Client example using simple pointers.
® Client example using smart pointers.

A smart pointer classis a C++ class that overloads the * (dereferencing) and ->
(member access) operators, in order to imitate the syntax of an ordinary C++
pointer.

Artix smart pointers are defined using atemplate class, IT_autoPtr<T>, which
has the same API as the standard auto pointer template, auto_ptr<t>, from the
C++ standard template library. If the standard library is supported on the
platform, IT_autoptr issimply atypedef of std: :auto_ptr.

For example, the sequenceTypePtr Smart pointer classis defined by the
following generated typedef:

// C++
typedef IT AutoPtr<SequenceType> SequenceTypePtr;

The key feature that makes this pointer type smart is that the destructor always
deletes the memory the pointer is pointing at. This feature ensures that you
cannot leak memory when it is referenced by a smart pointer.

Example 58 shows how to call the testsegParams operation using parameters
that are allocated on the heap and referenced by simple pointers

Example58: Client Calling testSegParams Using Smple Pointers

// C++
try

173

CHAPTER 4 | Artix Programming Consider ations

Example58: Client Calling testSeqParams Using Smple Pointers

IT Bus::init(argc, argv);

BaseClient bc;

1 // Allocate all parameters
SequenceType *inSeqgP = new SequenceType () ;
SequenceType *inoutSegP = new SequenceType () ;
SequenceType *outSegP = new SequenceType() ;

// Initialize in and inout parameters
inSegP->setvarFloat ((IT Bus::Float) 1.234);
inSegP->setvarInt (54321) ;
inSegP->setvarString ("One, two, three");
inoutSegP->setvarFloat ((IT Bus::Float) 4.321);
inoutSegP->setvarInt (12345) ;
inoutSegP->setvarString ("Four, five, six");

// Call the 'testSegParams' operation
bc. testSegParams (*inSegP, *inoutSegP, *outSegP) ;

2 // End of scope:
delete inSeqP;
delete inoutSeqP;
delete outSeqgP;
}
catch (IT _Bus: :Exception& e)
{

cout << endl << "Caught Unexpected Exception:
<< endl << e.message()
<< endl;

return -1;

The preceding client example can be explained as follows:
1. The parameters are allocated on the heap.

2. Beforeyou reach the end of the current scope, you must explicitly delete
the parameters or the memory will be leaked.

174

Memory Management

Client example using smart Example 59 shows how to call the testsegParams operation using parameters
pointers that are allocated on the heap and referenced by smart pointers

Example59: Client Calling testSegParams Using Smart Pointers

// C++

try

{

}

IT Bus::init(argc, argv);
BaseClient bc;

// Allocate all parameters

SequenceTypePtr inSeqP (new SequenceType()) ;
SequenceTypePtr inoutSegP (new SequenceType()) ;
SequenceTypePtr outSedP (new SequenceType()) ;

// Initialize in and inout parameters
inSegP->setvarFloat ((IT Bus::Float) 1.234);
inSegP->setvarInt (54321) ;
inSegP->setvarString ("One, two, three");
inoutSegP->setvarFloat ((IT Bus::Float) 4.321);
inoutSegP->setvarInt (12345) ;
inoutSegP->setvarString ("Four, five, six");

// Call the 'testSegParams' operation
bc . testSegParams (*inSegP, *inoutSegP, *outSegP) ;

// End of scope:
// Parameter data automatically deallocated by smart pointers

catch (IT Bus: :Exception& e)

{

cout << endl << "Caught Unexpected Exception: "
<< endl << e.message ()
<< endl;

return -1;

175

CHAPTER 4 | Artix Programming Consider ations

The preceding client example can be explained as follows:
1. Theparameters are allocated on the heap, using smart pointers of
SequenceTypePtr type.

2. Inthiscase, there is no need to deallocate the parameter data explicitly.
The smart pointers, inseqP, inoutSeqP, and outsegP, automatically delete
the memory they are pointing at when they go out of scope.

176

Multi-Threading

Multi-Threading

Overview This section provides an overview of threading in Artix and describes the issues
affecting multi-threaded clients and serversin Artix.

In this section This section contains the following subsections:
Client Threading Issues page 178
Servant Threading Models page 179
Setting the Servant Threading Model page 182
Thread Pool Configuration page 185

177

CHAPTER 4 | Artix Programming Consider ations

Client Threading I ssues

Client threading

178

Theruntimelibrary isthread-safe, in that multi-threaded applications may safely
use the library from multiple threads simultaneously.

Moreover, the client stub code is thread-safe by default. That is, you can safely
share asingle proxy instance amongst multiple threads. The Artix stub code uses
mutex locks to protect the proxy instance from concurrent access by multiple
threads.

Note: Versionsof Artix prior to 4.0 are not thread-safe by default. In these
older Artix versions, it was possible to enable thread-safe proxies by calling
the IT Bus: :Port: :set_threading model () function. For backward
compatibility reasons, the set_threading model () function is till available
in Artix 4.0, but it has no effect.

Multi-Threading

Servant Threading Models

Overview

Default threading model

Multi-threaded

[ma—

Artix supports avariety of different threading models on the server side. The
threading model that appliesto a particular service can be specified by
programming (see “ Setting the Servant Threading Model” on page 182). This
subsection provides an overview of each of the servant threading modelsin
Artix, asfollows:

* Multi-threaded.

* Sealized.
* Per-port.
* PerThread.

. PerInvocation.

The default threading model is multi-threaded.

The multi-threaded threading model impliesthat asingleinstanceis created and
shared on multiple threads. The servant object must expect to be called from
multiple threads simultaneously.
Figure 11 shows an outline of the multi-threaded threading model. In this case,
the threads all share the same servant instance.
Figure11: Ouitline of the Multi-Threaded Threading Model
Work Queue 1 Thread pool for port 1
o—— Portl |— | RL|R2|R3| .. |RN |7
\Servant
Service
Work Queue 2 Thread pool for port 2
o—— Port2 |— | RL|R2|R3| .. |RN [~ /

179

CHAPTER 4 | Artix Programming Consider ations

Serialized

The serialized threading model implies that accessto the servant is serialized
(implemented using mutex locks). The servant object can be called from no
more than one thread at atime.

Figure 12 shows an outline of the serialized threading model. In this case, the
threads all share the same servant instance, but access is serialized.

Figure 12: Outline of the Serialized Threading Model

Work Queue 1 Thread pool for port 1

o—— Portl

— |RL|R2|R3| .. | RN |7

o— Service

Work Queue 2 Thread pool for port 2

o—— Port2

— | RL|R2|R3| .. |[RN \W\/\/

Per-port

The per-port threading model implies that a servant instance is created per port.
Each servant object must expect to be called from multiple threads
simultaneously, because each port has an associated thread pool.

Figure 13 shows an outline of the perprort threading model. In this case, the
threads in athread pool share the same servant instance.

Figure13: Outline of the Per-Port Threading Model

Work Queue 1 Thread pool for port 1 Servant

o0—— Portl

W\L
—» | RL|R2|R3| .. | RN |7 O

NSNS

o Service

Work Queue 2 Thread pool for port 2

o—— Port 2

—|R1|R2|R3| .. |RN \W\J\»O

180

NSNS

PerThread

Multi-Threading

The perThread threading model implies that a servant instance is created per
thread. Thisallowsthe servant objectsto use thread-local storage, resourceswith
thread affinity (like MQ), and reduces synchronization overhead.

Figure 14 shows an outline of the perThread threading model. An Artix service
can have multiple ports, and each of the portsis served by awork queue that
stores the incoming requests. A pool of threads is reserved for each port, and
each thread in the pooal is associated with a distinct servant instance.

Figure 14: Ouitline of the PerThread Threading Model

Servant

Work Queue 1 Thread pool for port 1 O

o—— Portl

O— Service

— | RL|[R2|[R3| .. |RN /'/W

o—— Port 2

Work Queue 2 Thread pool for port 2 O

—|RL|R2|R3| .. |RN \W

Pernvocation

The perInvocation threading model implies that a servant instance is created
for every invocation. In this case, the servant implementation does not need to be
thread-safe, because a servant can be called from no more than one thread at a
time.

The relationship between threads and servantsis similar to the case of the
PerThread threading model (see Figure 14 on page 181). Thereisadifferencein
servant lifecycle management, however. Each thread is associated with a servant
for the duration of an operation invocation. At the end of the invocation, the
servant instance is destroyed.

181

CHAPTER 4 | Artix Programming Consider ations

Setting the Servant Threading M odel

Overview Some of the servant threading models are implemented using wrapper servant
classes, which work by overriding the default behavior of aservant's
dispatch () function. Exceptionsto this pattern are the default multi-threaded
model and the per-port threading model. This section describes how to program
the various servant threading models.

How to set a per-port threading The per-port threading model can be enabled by employing the two-step style of

model servant registration (see “ Activating astatic servant” on page 104 or “Activating
atransient servant” on page 112). For example, you could register distinct
servants, corba_servant and soap_servant, against distinct ports, cCorRBaPort
and soapport, using the following code example:

// C++
IT Bus::QName service_name("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

IT Bus::Service var bank_service =

bus->add_service ("bank.wsdl", service_name) ;
bank_service->register_ servant (corba_servant, "CORBAPort");
bank_service->register_servant (soap_servant, "SOAPPort");

Wrapper servants The only wrapper servant function that you need is a constructor. Example 60
shows the constructors for each of the wrapper servant classes.

Example 60: Constructors for the Wrapper Servant Classes

// C++
IT Bus::SerializedServant (IT Bus::Servant& servant) ;

IT Bus: :PerThreadServant (IT_Bus::Servant& servant) ;

IT Bus::PerInvocationServant (IT _Bus::Servant& servant) ;

182

Howtoset athreadingmodel using
wrapper servants

Step 1—Implement the servant
clone() function (if required)

Step 2—Register the wrapper
servant

Multi-Threading

To register aservant with a serialized, PerThread Of PerInvocation
threading model, perform the following steps:

* Step 1—Implement the servant clone() function (if required).
® Step 2—Register the wrapper servant.

If you intend to Use a PerThread O PerInvocation threading model, you must
implement the clone () function in your servant class. The clone () function
will be called automatically whenever the threading model demands a new
servant instance. Example 61 shows the default implementation of the clone ()
function for the servant class, PortTypeTmpl.

Example61: Default Implementation of the clone() Function

// C++
IT Bus::Servant*
PortTypermpl: :clone() const
{
return new PortTypermpl (get_bus()) ;
}

To register awrapper servant, you must pass the original servant object to a
wrapper servant constructor and then pass the wrapper servant to the
register_servant () function (or the register_transient_servant ()
function in the case of transient servants).

For example, Example 62 shows how the main function of the bank server
example can be modified to register the BankImpl Servant with a PerThread
threading model.

Example 62: Registering a Servant with a PerThread Threading Model
// C++
try {

IT Bus::Bus_var bus = IT Bus::init(argc, (char **)argv);

BankImpl my_ bank (bus) ;
IT Bus::PerThreadServant per thread bank (my bank) ;

QName service_name("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

183

CHAPTER 4 | Artix Programming Consider ations

Example 62: Registering a Servant with a PerThread Threading Model

}

bus->register servant (
per_thread bank,
"../wsdl/bank.wsdl",
service name

);

IT Bus::run();

bus->remove_service (service_name) ;

catch (IT Bus::Exception& e) { ... }

The preceding C++ code can be described as follows:

1

184

In this step, the BankImp1 servant is wrapped by anew

IT Bus::PerThreadServant instance.

When it comes to registering, you must register the wrapper servant,
per_thread_bank, instead of the original servant, my_bank.

Multi-Threading

Thread Pool Configuration

Thread pool settings

Thread pool configuration levels

The thread pool for each port is controlled by the following parameters (which

can be set in the configuration):

° Initial threads—the number of threads initially created for each port.

* Low water mark—the size of the dynamically allocated pool of threads
will not fall below thislevel.

® Highwater mark—the size of the dynamically allocated pool of threads
will not rise above thislevel.

Thread pools are configured by adding to or editing the settings in the
ArtixinstalIDir /etc/domains/artix.cfg configuration file. In the following
examples, it is assumed that the Artix application specifies its configuration
scope to be sample_config.

Note: You can specify the configuration scope at the command line by
passing the switch -Busname ConfigScopeName to the Artix executable.
Command-line arguments are normally passed to IT_Bus: :init ().

Thread pools can be configured at several levels, where the more specific
configuration settings take precedence over the less specific, asfollows:

. Global level.
® Servicenamelevel.
. Qualified service name level.

185

CHAPTER 4 | Artix Programming Consider ations

Global level The variables shown in Example 63 can be used to configure thread pools at the
global level; that is, these settings would apply to all services by default.

Example 63: Thread Pool Settings at the Global Level
Artix configuration file
sample_config {

Thread pool settings at global level
thread_pool:initial_ threads = "3";
thread_pool:low water mark = "5";
thread_pool:high water mark = "10";

iy

The default settings are as follows:

thread_pool:initial_threads = "2";
thread_pool:low_water mark = "5";
thread_pool :high_water mark = "25";

Service name level To configure thread pools at the service name level (that is, overriding the global
settings for a specific service only), set the following configuration variables:

thread pool:initial_threads:ServiceName
thread_pool:low_water_mark:ServiceName
thread pool :high water mark:ServiceName

Where ServiceName is the name of the particular service to configure, asit
appearsinthe WSDL <service name="ServiceName"> tag.

For example, the settings in Example 64 show how to configure the thread pool
for aservice named sessionManager.

Example 64: Thread Pool Settings at the Service Name Level
Artix configuration file
sample_config {

Thread pool settings at Service name level
thread_pool:initial threads:SessionManager = "1";

thread_pool:low water mark:SessionManager = "5";
thread_pool:high water_mark:SessionManager = "10";

186

Qualified service namelevel

Multi-Threading

Occasionally, if the service names from two different namespaces clash, it might
be necessary to identify a service by its fully-qualified service name. To
configure thread pools at the qualified service name level, set the following
configuration variables:

thread pool:initial_threads:NamespaceURI : ServiceName

thread_pool : low_water_mark: NamespaceURI : ServiceName
thread_pool :high water_mark:NamespaceURI : ServiceName

Where NamespaceURI is the namespace URI in which ServiceName is defined.

For example, the settings in Example 65 show how to configure the thread pool
for a service named sessionManager inthe http: //my. tns1/ namespace URI.

Example 65: Thread Pool Settings at the Qualified Service Name Level
Artix configuration file
sample_config {

Thread pool settings at Service name level
thread_pool:initial_threads:http://my.tnsl/:SessionManager =
|llll;

thread _pool:low water_mark:http://my.tnsl/:SessionManager =
ngu,

thread_pool:high water_mark:http://my.tnsl/:SessionManager =
"10";

¥

187

CHAPTER 4 | Artix Programming Consider ations

Converting with to_string() and from_string()

Overview

Header files

Library

Demonstration

Example struct

188

This section describes how you can use the << operator, the
IT Bus::to_string() function and the IT Bus::from string() functionto
convert Artix data types to and from a string format.

The following header files must be included in your source code to access the
string conversion APIs:

L4 <it_bus/to_string.h>

hd <it_bus/from_string.h>

To use the string conversion functions and operators, link your application with
the following library:

N it_bus_xml.1lib, on Windows platforms,
o libit_bus_xml[.al[.so], on UNIX platforms.

The following demonstration gives an example of how to use the Artix string
conversion functions, to_string () and from string():

ArtixinstallDir /cxx_java/samples/basic/to_string

Example 66 shows the definition of an XML schematype, simplestruct,
which is used by the string conversion examplesin this section.

Example 66: Schema Definition of a SmpleSruct Type

<?xml version="1.0" encoding="UTF-8"?>
<schema
targetNamespace="http://schemas.iona.com/tests/type_test"
xmlns="http://www.w3.0org/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/tests/type test">

<complexType name="SimpleStruct">
<sequence>
<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>

Converting with to_string() and from_string()

Example 66: Schema Definition of a SmpleStruct Type

</sequence>
<attribute name="varAttrString" type="string"/>
</complexType>
</schema>
operator<<() By including the <it_bus/to_string.h> header file and linking with the

it_bus_xml library, you can use the << operator to print out any Artix datatype
in astring format (assuming that the stub code for this datatypeisalready linked
with your application).

Example using << The following code example shows how to print asimple struct, first_struct,
asastring using the << stream operator:

// C++
#include <it_bus/to_string.h>

int main(int argc, char** argv)
{
SimpleStruct first_ struct;
first struct.setvarString ("goodbye") ;
first struct.setvarInt (121);
first struct.setvarFloat (3.14);

cout << endl << "Print using operator<<"
<< endl << first_struct << endl;

The preceding code produces the following output:

Print using operator<<

<?xml version='1.0' encoding='utf-8'?><to_string
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"><varFloat>3.1400
00105e0</varFloat><varInt>121</varInt><varString>goodbye</var
String></to_string>

In the stringified output, the element name defaults to <to_string>.

189

CHAPTER 4 | Artix Programming Consider ations

to_string() Example 67 shows the signature of the IT_Bus: :to_string () function, as
defined in the <it_bus/to_string.h> header.

Example 67: Signature of the IT_Bus::to_string() Function

// C++
namespace IT Bus
{
String IT BUS XML_API
to_string(
const AnyType& data,
const QName& element_name=default_to_string element_name
) g
}

Y ou can convert any Artix datatypeto astring, IT_Bus: : String, by passing it
asthefirst argument in to_string() (IT_Bus: :AnyType iSthe base classfor al
Artix datatypes). The resulting string has the following general format:

<?xml version='1.0' encoding='utf-8'?>

<ElementName
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

</El érhéntName>

Where the ElementName has one of the following values:

. If the second parameter of to_string () isdefaulted, the ElementName is
to_string.

® If the second parameter of to_string () isasimple string, say foo, the
ElementName s foo.

. If the second parameter of to_string() iSan IT_Bus: :OName, SaY
QOName ("", "foo", "http://xml.iona.com/IDD/test"), the
ElementName ism1 : foo, wherem1 is the prefix associated with the
http://xml.iona.com/IDD/test Namespace URI.

Example using to_string() The following code example shows how to convert a simple struct,
second_struct, to astring using the to_string () function:

// C++

190

Converting with to_string() and from_string()

#include <it_bus/to_string.h>

int main(int argc, char** argv)

{
SimpleStruct first struct;
second_struct.setvarString ("hello") ;
second_struct.setvarInt (2) ;
second_struct.setvarFloat (1.1);
String resulting xml = IT Bus::to_string(
second_struct,
QName ("", "foo", "http://xml.iona.com/IDD/test")
)&
cout << endl << "Resulting XML String:"
<< endl << resulting xml.c_str() << endl;
}

The preceding code produces the following output:

Resulting XML String:

<?xml version='1.0' encoding='utf-8'?><ml:foo
xmlns:ml="http://xml.iona.com/IDD/test"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"><varFloat>1.1000

00024e0</varFloat><varInt>2</varInt><varString>hello</varStri
ng></ml: foo>

In the stringified output, the element name is defined asm1 : foo.

from_string() Example 68 shows the signature of the IT_Bus: : from_string () function, as
defined in the <it_bus/from_string.h> header.

Example 68: Sgnature of the IT_Bus::from_string() Function

// C++
namespace IT Bus
{
void IT BUS_XMI, API
from_string (
const String & data,
AnyType & result,
const QName &
element_name=default_from string element_name

191

CHAPTER 4 | Artix Programming Consider ations

Example using from_string()

192

Example 68: Signature of the IT_Bus::from_string() Function

You can initialize an Artix data type from an XML element in string format
using the from string () conversion function. Pass the XML string as the first
argument, data, and the data type to initialize as the second parameter, result.

The following code example shows how to convert an XML string,
original_xml, to asimple struct, simple_struct, using the from_string()
function:

// C++
#include <it_bus/from string.h>

int main(int argc, char** argv)
{

String original_xml = "<?xml version='1.0"
encoding="'utf-8'?><to_string
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:xsd=\"http: //www.w3.0rg/2001/XMLSchema\ "><varFloat>1.10
0000024e0</varFloat><varInt>2</varInt><varString>hello</varSt
ring></to_string>";

SimpleStruct simple struct;
IT Bus::from string(original_xml, simple struct) ;

cout << endl << "Output values of SimpleStruct C++ type using
accessor methods."

<< endl << " SimpleStruct populated with the following
values:"

<< endl << " SimpleStruct: :varString = " <<
simple_struct.getvarString() .c_str()

<< endl << " SimpleStruct::varInt = " <<
simple_struct.getvarInt ()

<< endl << " SimpleStruct: :varFloat = " <<
simple_struct.getvarFloat () << endl;

L ocating Serviceswith UDDI

L ocating Services with UDDI

Overview A Universal Description, Discovery and Integration (UDDI) registry isaform of
database that enables you to store and retrieve Web services endpoints. It is
particularly useful as a means of making Web services available on the Internet.
Instead of making your WSDL contract available to clientsin the form of afile,
you can publish the WSDL contract to a UDDI registry. Clients can then query
the UDDI registry and retrieve the WSDL contract at runtime.

Publishing WSDL to UDDI Y ou can publish your WSDL contract either to alocal UDDI registry or to a
public UDDI registry, such ashttp: //uddi . ibm.com from IBM or
http://uddi.microsoft.com/ from Microsoft. To publish your WSDL
contract, navigate to one of the public UDDI Web sites and follow the
instructions there.

A list of public UDDI registriesis available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html).

UDDI URL format Artix uses UDDI query strings that take the form of a URL:

uddi : <UDDIRegistryEndpointURL>?<QueryString>

The UDDI URL is built up from the following components:

4 UDDIRegistryEndpointURI—the endpoint address of a UDDI registry.
This could either be alocal UDDI registry (for example,
http://localhost:9000/services/uddi/inquiry) or a public UDDI
registry on the Internet (for example,
http://uddi.ibm.com/ubr/inquiryapi for IBM’s UDDI registry).

® guerystring—acombination of attributes that is used to query the UDDI
database for the Web service endpoint data. Currently, Artix only supports
the tmodelname attribute. An example of aquery stringis:

tmodelname=helloworld

Within a query component, the characters ;, /, 2, :, @, &, =, +, ,,and s are
reserved.

193

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html

CHAPTER 4 | Artix Programming Consider ations

Initializing a client proxy with
uDDI

// C++

Examples of valid UDDI URLs

uddi :http://localhost:9000/services/uddi/inquiry?tmodelname=hello
world
uddi :http://uddi.ibm.com/ubr/inquiryapi?tmodelname=helloworld

Toinitialize aclient proxy with UDDI, passavalid UDDI URL string to the
proxy constructor. For example, if you have alocal UDDI registry,
http://localhost:9000/services/uddi/inquiry, Wwhereyou have registered
the WSDL contract from the Hel1loworld demonstration (this contract isin
InstallDir/cxx_java/samples/basic/hello_world_soap_http/etc), you
can initialize the Greeterclient proxy asfollows:

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

// Instantiate an instance of the proxy
GreeterClient hw("uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld") ;

String string_ out;

// Invoke sayHi operation
hw.sayHi (string_out) ;

Configuration

194

To configure an Artix client to support UDDI, you must add uddi_proxy to the
application’s orb_plugins list (for the C++ plug-in). For example:

Artix Configuration File

my_application_scope {
orb_plugins = [..., "uddi proxy"]:;

Compiling and Linking an Artix Application

Compiling and Linking an Artix Application

Compiler Requirements

Linker Requirements

An application built using Artix requires a number of Progress-supplied C++
header filesin order to compile. The directory containing these include files
must be added to the include path for the compiler, so that when the compiler
processes the generated files, it is able to find the necessary included
infrastructure header files.

The following include path directives should be given to the compiler:

-I"$(IT_PRODUCT DIR)\artix\$ (IT_PRODUCT_VER) \include"

A number of Artix libraries are required to link with an application built using
Artix. The following directives should be given to the linker:

-L"$ (IT_PRODUCT DIR)\artix\$ (IT_PRODUCT VER)\lib" it _bus.lib it _afc.lib it_art.lib it ifc.1lib

Table 1 showsthe libraries that are required for linking an Artix application and

their function.

Tablel: Artix Import Librariesfor Linking with an Application

Windows Libraries

UNIX Libraries

Description

it_bus.lib libit_bus.so The Bus library provides the functionality required to access
libit_bus.sl the Artix bus. Required for all applications that use Artix
libit_bus.a functionality.

it_afc.lib libit_afc.so The Artix foundation classes provide Artix specific datatype
libit_afc.sl extensions such as IT_Bus: : Float, etc. Required for all
libit_afc.a applications that use Artix functionality.

it_ifc.lib libit_ifc.so The IONA foundation classes provide Progress proprietary
libit_ifc.sl data types and exceptions.
libit_ifc.a

it_art.lib libit_art.so The ART library provides advanced programming

libit_art.sl
libit_art.a

functionality that requires access to the Artix infrastructure
and the underlying ORB.

195

CHAPTER 4 | Artix Programming Consider ations

Runtime Requirements

196

The following directories need to be in the path, either by copying them into a
location aready in the path, or by adding their locations to the path. The
following lists the required libraries and their location in the distribution files
(al paths are relative to the root directory of the distribution):

"S (IT_PRODUCT DIR) \bin"

On some UNIX platforms you also have to update the sHLTB_PATH Of
LD_LIBRARY_PATH variablesto include the Artix shared library directory.

Building Artix Stub Librarieson Windows

Building Artix Stub Libraries on Windows

Overview

Generating stubswith declaration
specifiers

Compiling stubswith declaration
specifiers

The Artix WSDL-to-C++ compiler features an option, -declspec, that
simplifies the process of building Dynamic Linking Libraries (DLLs) on the
Windows platform. The -declspec option defines a macro that automatically
inserts export declarations into the stub header files.

To generate Artix stubs with declaration specifiers, use the -dec1spec option to
the WSDL-to-C++ compiler, asfollows:

wsdltocpp -declspec MY_DECL_SPEC BaseService.wsdl

In this example, the -dec1spec option would add the following preprocessor
macro definition to the top of the generated header files:

#if !defined(MY_DECL_SPEC)

#if defined(MY_DECL_SPEC_EXPORT)

#define MY DECL_SPEC IT_DECLSPEC_EXPORT

#else

#define MY_DECIL,_SPEC IT DECLSPEC_IMPORT

#endif

#endif

Where the IT_DECLSPEC_EXPORT macro is defined as _declspec (dllexport)
and the IT_DECLSPEC_IMPORT Macro iS_declspec (dllimport).

Each classin the header file is declared as follows:

class MY_DECL_SPEC ClassName { ... };

If you are about to package your stubsin aDLL library, compile your C++ stub
files, StubFile. cxx, with acommand like the following:

cl -DMY_DECLSPEC_EXPORT ... SUbFile.cxx

By setting the My DECLSPEC_EXPORT macro on the command line,

_declspec (dllexport) declarations are inserted in front of the public class
declarationsin the stub. This ensures that applications will be able to import the
public definitions from the stub DLL.

197

CHAPTER 4 | Artix Programming Consider ations

198

In this chapter

CHAPTER 5

Endpoint
References

References providea convenient and flexibleway of identifying and
locating specific services.

This chapter discusses the following topics:

Introduction to Endpoint References page 200
Using Referencesin WSDL page 203
Programming with References page 209
The WSDL Publish Plug-In page 217
Migration Scenarios page 222

199

CHAPTER 5 | Endpoint References

Introduction to Endpoint References

Overview An endpoint referenceis an object that encapsul ates addressing information for a
particular WSDL service. Essentialy, a reference encapsulates all of the
information that is required to open a connection to an endpoint. References
have the following features:

* A reference encapsulates the data from awsdl : service €element.

* References can be sent across the wire as parameters of or as return values
from operations.

* References can be passed to client proxy constructors, enabling aclient to
open a connection to a remote endpoint.

* References are protocol and transport neutral.

Note: From Artix 4.1 onwards, the on-the-wire format of endpoint references
has changed, in order to comply with the Web Services Addressing 1.0 -
WSDL Binding specification. This might give rise to some interoperability
issues, if you require Artix 4.1 programs to interact with older Artix versions.
For details, please consult Configuring and Managing Artix Solutions.

Note: Inversionsof Artix prior to 4.0, references were represented by the
proprietary type, IT_Bus: :Reference. Since version 4.0, however, Artix
complieswith the WS-Addressing standard for endpoint references. For details
of migration issues around references, see “Migration Scenarios’ on page 222.

Note: Y ou cannot use references with rpc-encoded bindings, because
references contain attributes, which are not compatible with rpc-encoding.

XML representation of areference An endpoint reference is represented by the wsa : EndpointReferenceType type
from the following WS-Addressing schema:

ArtixInstalIDir /schemas /wsaddressing.xsd
The WS-Addressing schemais also available online at:
http://www.w3.0rg/2005/08/addressi ng/ws-addr.xsd

The XML representation is used when marshaling or unmarshaling a reference
asaWSDL operation parameter.

200

http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/2005/08/addressing/ws-addr.xsd

C++ representation of areference

Empty endpoint reference

Contents of an endpoint reference

Introduction to Endpoint References

In C++, an endpoint reference is represented by an instance of the
WS_Addressing: : EndpointReferenceType Class.

An endpoint reference containing the following address:
http://www.w3.0rg/2005/08/addressing/none

represents an empty endpoint reference (also called anull endpoint reference).
Y ou cannot send any messages to such an endpoint reference.

Generally, the on-the-wire XML representation of an endpoint reference has the
following form (where wsa: EndpointReference is an element of
wsa : EndpointReferenceType type):

<wsa:EndpointReference>
<wsa :Address>xs :anyURI</wsa:Address>
<wsa:ReferenceParameters>xs:any*</wsa:ReferenceParameters> ?
<wsa:Metadata>xs:any*</wsa:Metadata> ?
</wsa:EndpointReference>

An endpoint reference encapsul ates the following data:

® wsa:Address—(givesthe URI of the endpoint, in whichever format is
appropriate for the transport in question. This element must be present.

Note: Because Artix supports references with multiple endpoints (that
is, WSDL ports), the wsa: address element, which supports only one
endpoint, is often superceded by the wsa :Metadata element, which
supports multiple endpoints. If both are present, the wsa : Metatdata
element takes precedence.

® wsa:ReferenceParameters—an optional list of additional parameters that
might be needed for establishing a connection to the endpoint (or
endpoints).
® wsa:Metadata—according to the Web Services Addressing 1.0 - WSDL
Binding specification, either or both of the following kinds of metadata can
be included in this element:
¢+ Areferenceto WSDL metadata—this metadata identifies an endpoint
whose details are contained either in thiswsa : Metadata section or in
an external WSDL file.

201

http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/
http://www.w3.org/TR/2006/WD-ws-addr-wsdl-20060216/

CHAPTER 5 | Endpoint References

The Bank example

Client

+ Embedded WSDL metadata—consists either of aWSDL 2.0
description element or aWSDL 1.1 definitions element. This
element contains a fragment from the WSDL contract describing an
endpoint (or endpoints).

Figure 15 shows an overview of the Bank example, illustrating how the Bank
service uses references to give a client access to a specific account.

Figure 15: Using Bank to Obtain a Reference to an Account

Bank proxy

Account proxy

Reference

®

Server
@ get_account () Bank servant
O_
Account servant
@ get_balance () -
0—
- Account DB

202

The preceding Bank example can be explained as follows:

1

The client calls get_account () on the BankService serviceto obtain a
reference to a particular account, AccName.

The Bankservice creates a reference to the AccName account and returns
this reference in the response to get_account ().

The client uses the returned reference to initialize an AccountClient
proxy.

The client invokes operations on the account service through the
AccountClient Proxy.

Using Referencesin WSDL

Using Referencesin WSDL

Overview

The WS-Adressing XML schema

WS-Addressing namespace URI

Endpoint referencetype

To use endpoint references in WSDL—that is, to declare operation parameters

or return values to be endpoint references—perform the following steps:

1. Define thewsa namespace prefix in the <definitions> tag at the start of
the contract—for example, by setting
xmlns:wsa="http://www.w3.0rg/2005/08/addressing".

Import the WS-Addressing schema using an xsd: import €lement.
Declare the relevant parameters and return values to be of
wsa : EndpointReferenceType type.

The WS-Addressing schemais stored in the following file:
ArtixInstallDir /schemas /wsaddressing.xsd

The schemais also available online at:
http://www.w3.0rg/2005/08/addressi ng/ws-addr.xsd

The endpoint reference type is defined in the following target namespace:
http://www.w3.0org/2005/08/addressing

To access the WS-Addressing typesin aWSDL contract file, you should
introduce a namespace prefix in the <definitions> tag, asfollows:

<definitions xmlns="..."
xmlns :wsa="http://www.w3.0rg/2005/08/addressing"
. >

The WS-Addressing schema defines an endpoint reference type for use within
WSDL contracts. The endpoint reference typeis, as follows:

WSAPr efix: EndpointReferenceType

Where WSAPrefix is associated with the
http://www.w3.org/2005/08/addressing namespace URI:

203

http://www.w3.org/2005/08/addressing/ws-addr.xsd

CHAPTER 5 | Endpoint References

The Bank WSDL contract

204

Example 69 showsthe WSDL contract for the Bank example that is described in

this section. There are two port typesin this contract, Bank and Account. For
each of the two port types there is a SOAP binding, BankBinding and

AccountBinding.
Example 69: Bank WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/bus/demos/bank"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd"
xmlns:stub="http://schemas.iona.com/transports/stub"
xmlns:http="http://schemas.iona.com/transports/http"

xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
xmlns: fixed="http://schemas.iona.com/bindings/fixed"
xmlns:iiop="http://schemas.iona.com/transports/iiop_tunnel"
xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:nsl="http://www.iona.com/corba/typemap/BasePortType.idl

xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:mg="http://schemas.iona.com/transports/mg"
xmlns:routing="http://schemas.iona.com/routing"
xmlns:msg="http: //schemas.iona.com/port/messaging"
xmlns:bank="http://www.iona.com/bus/demos/bank"
targetNamespace="http: //www.iona.com/bus/demos/bank"
name="BaseService" >

<types>

<xsd:import schemalocation="/schemas/wsaddressing.xsd"

namespace="http://www.w3.0rg/2005/08/addressing" />
<schema elementFormDefault="cqualified"

targetNamespace="http: //www.iona.com/bus/demos/bank"

xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="AccountNames">
<sequence>

<element maxOccurs="unbounded" minOccurs="0"

name="name" type="xsd:string"/>
</sequence>
</complexType>
</schema>
</types>

Using Referencesin WSDL

Example 69: Bank WSDL Contract

<message name="list_accounts" />
<message name="list_accountsResponse">

<part name="return" type="bank:AccountNames"/>
</message>

<message name="create_ account">

<part name="account_name" type="xsd:string"/>
</message>
<message name="create_accountResponse">

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

<message name="get_account">

<part name="account_name" type="xsd:string"/>
</message>
<message name="get_accountResponse">

<part name="return" type="wsa:EndpointReferenceType"/>
</message>

<message name="delete_account">

<part name="account_name" type="xsd:string"/>
</message>
<message name="delete_accountResponse" />

<message name="get_ balance"/>
<message name="get_balanceResponse">

<part name="balance" type="xsd:float"/>
</message>

<message name="deposit">
<part name="addition" type="xsd:float"/>
</message>

<message name="depositResponse" />

<portType name="Bank">
<operation name="list_accounts">
<input name="list_accounts"
message="tns:create_account"/>
<output name="list_accountsResponse"
message="tns:1list_accountsResponse"/>
</operation>

<operation name="create_account">

205

CHAPTER 5 | Endpoint References

Example 69: Bank WSDL Contract

<input name="create_ account"
message="tns:create_account"/>
<output name="create_ accountResponse"
message="tns:create_accountResponse"/>
</operation>

6 <operation name="get account">
<input name="get_ account" message="tns:get_account"/>
<output name="get_ accountResponse"
message="tns:get_accountResponse"/>
</operation>

<operation name="delete_account">
<input name="delete_ account"
message="tns:delete_account"/>
<output name="delete_accountResponse"
message="tns:delete_accountResponse" />
</operation>
</portType>

<portType name="Account">
<operation name="get_ balance">
<input name="get_balance" message="tns:get_balance" />
<output name="get_balanceResponse"
message="tns:get_balanceResponse" />
</operation>
<operation name="deposit">
<input name="deposit" message="tns:deposit"/>
<output name="depositResponse"
message="tns:depositResponse" />
</operation>
</portType>

<binding name="BankBinding" type="tns:Bank">

</binding>
<binding name="AccountBinding" type="tns:Account">

</binding>

7 <service name="BankService">
<port name="BankPort" binding="tns:BankBinding">
<soap:address
location="http://localhost:0/BankService/BankPort/"/>
</port>

206

Using Referencesin WSDL

Example 69: Bank WSDL Contract

</service>
<service name="BankServiceRouter">
<port name="BankPort" binding="tns:BankBinding">
<soap:address

location="http://localhost:0/BankService/BankPort/"/>

</port>

</service>

<service name="AccountService">
<port name="AccountPort" binding="tns:AccountBinding">

<soap:address location="http://localhost:0" />

</port>

</service>

</definitions>

The preceding WSDL contract can be described as follows:

1

The <definitions> tag associates the wsa prefix with the
http://www.w3 .org/2005/08/addressing namespace URI. This means
that the reference typeisidentified aswsa: EndpointReferenceType.
Thexsd: import importsthewsa : EndpointReferenceType type definition
from the WS-Adressing schema, wsaddressing.xsd. You must edit this
lineif the references schemais stored at a different location relative to the
bank WSDL file. Artix stores the WS-Addressing schema at
ArtixinstallDir / schemas /wsaddressing . xsd.

Note: Alternatively, you could cut and paste the references schema
directly into the WSDL contract at this point, replacing the xsd: import
element.

The create_accountResponse message (which isthe out parameter of the
create_account operation) is defined to be of

wsa :EndpointReferenceType type.

The get_accountResponse message (which isthe out parameter of the
get_account operation) is defined to be of wsa: EndpointReferenceType
type.

The create_account operation defined on the Bank port type is defined to
return awsa: EndpointReferenceType type.

207

CHAPTER 5 | Endpoint References

208

The get_account operation defined on the Bank port type is defined to
return awsa: EndpointReferenceType type.

The information contained in this <service name="BankService">
element is approximately the same as the information that isheldin a
BankService reference, apart from the addressing information in the
soap:address €lement.

The Bankservice reference generated at runtime replaces the
http://localhost:0/BankService/BankPort/ SOAP address with
http://host_name:|P_port/BankService/BankPort/ Where host_name
and IP_port are substituted with the port address that the server is actually
listening on (dynamic port allocation).

Note: If the IP port in the WSDL contract is non-zero, Artix uses the
specified port instead of performing dynamic port allocation. The
hostname would still be substituted, however.

The information contained in this <service name="AccountService">
element serves as a prototype for generating AccountService references.

Because the account objects are registered as transient servants, the
corresponding AccountService references are cloned from the
AccountService Service at runtime by altering the following data:

¢+ Theservice QNameisreplaced by atransient service QName, which
consists of accountService concatenated with a unique ID code.

¢ Thehttp://localhost:0 SOAP addressis replaced by
http://host_name:|P_port,/TransientURLSuffix, where host_name
and |P_port are set to the port address that the server islistening on
and TransientURLSUffix is a suffix that is unique for each transient
reference.

Programming with References

Programming with References

Overview

In thissection

This section explains how to program with endpoint references, using asimple
bank application as a source of examples. The bank server supports a
create_account () operation and aget_account () operation, which return
references to account objects.

To program with references, you need to know how to generate references on the
server side and how to resolve references on the client side.

This section contains the following subsections:

Creating References page 210

Resolving References page 215

209

CHAPTER 5 | Endpoint References

Creating References

Overview

Factory pattern

Creating areferencefrom a static
servant

210

This subsection describes how to create endpoint references, which can be
generated on the server side in order to advertise the location of a service to
clients.

The following topics are discussed in this section:

® Factory pattern.

® Creating areference from a static servant.

® Creating areference from atransient servant.
® Creating areference from aWSDL contract.

® Creating an empty reference.

References are usually created in the context of afactory pattern. This pattern
involves at least two kinds of object:

®* The product—that is, the type of object to which the references refer.
® Thefactory—which generates references to the first type of object.

For example, the Bank is afactory that generates references to Accounts.

Example 70 shows how to create a BankService reference from a static servant,
BankImpl.

Example 70: Creating a Reference from a Satic Servant
// C++
try {
IT Bus::Bus_var bus = IT Bus::init(argc, (char **)argv);
IT Bus::QName service_name (
""", "BankService", "http://www.iona.com/bus/demos/bank"
D g

BankImpl my_bank (bus) ;

IT WSDL: :WSDLService* wsdl_service =
get_bus () ->get_service_contract (service_name) ;

Programming with References

Example 70: Creating a Reference froma Static Servant

}

bus->register_servant (
my._bank,
*wsdl_service

)7
IT Bus::Service var service = bus->get_service(service_name) ;

WS_Addressing: : EndpointReferenceType bank_reference;
service->get_endpoint_reference (bank_ reference) ;

The preceding C++ code can be described as follows:

1

Thisline creates aBankImpl Servant instance, which implements the Bank
port type.

Cadll the IT_Bus: :Bus: :get_service_contract () function to find details
of the service_name Service amongst the known WSDL contracts. This
function returns a parsed WSDL service element, of

IT_WSDL: :WSDLService type.

The register_servant () function registers a static servant instance,
taking the following arguments:

¢+ Servant instance.

. Parsed WSDL service element.

Note: The preceding example activates all of the ports associated with
the Bank service. If you want to activate ports individually, see “Activate
portsindividually” on page 105.

Thereturn valueisan IT_Bus: : Service object, which references the
original BankService WSDL service.

Call IT_Bus: :Bus: :get_service() t0 get apointer to the service object.

The get_endpoint_reference () function populates an endpoint
reference, based on the state of the service object, service.

Note: Inversions of Artix prior to 4.0, the equivalent functionality (a
function that returns an IT Bus: :Reference type) was provided by the
get_reference () function.

211

CHAPTER 5 | Endpoint References

Creating areferencefrom a
transient servant

212

Example 71 gives the implementation of the BankTImpl: : create_account (),
function which shows how to create an AccountService reference from a
transient servant, Account Impl.

Example 71: Creating a Reference from a Transient Servant

// C++
void
BankImpl: :create account (

const IT Bus::String &account_name,

WS_Addressing: : EndpointReferenceType &account_reference
) IT _THROW_DECL((IT Bus: :Exception))
{

AccountMap: :iterator account_iter = m_account_map.find(

account_name
D g
if (account_iter == m_account_map.end())
{
cout << "Creating new account: "

<< account_name.c_str() << endl;

AccountImpl * new_account = new AccountImpl (
get_bus (), account_name, 0
)7

IT WSDL: :WSDLService* wsdl_template service =
get_bus () ->get_service_contract (
AccountImpl : : SERVICE_NAME
) g

IT Bus::Service var cloned_service =
get_bus () ->register_ transient_servant (
*new_account,
*wsdl_template_service

) g

// Now put the details for the account into the map so
// we can retrieve it later.

//

AccountDetails details;

details.m service = cloned service.release() ;
details.m_account = new_account;

Programming with References

Example 71: Creating a Reference froma Transient Servant

}

account_iter = m_account_map.insert (
AccountMap: :value_type (account_name, details)
) .first;

}

(*account_iter) .second.m_service->get_endpoint_reference (
account_reference

)

The preceding C++ code can be described as follows:

1

This line creates an Account Impl servant instance, which implements the
Account port type.

Call the IT_Bus: :Bus: :get_service_contract () function to find details
of the Account Impl : : SERVICE_NAME Service amongst the known WSDL
contracts. This function returns a parsed WSDL service element, of
IT_WSDL: :WSDLService type.

The register_transient_servant () function registers atransient
servant instance, taking the following arguments:

¢ Servant instance.

. Parsed WSDL service element.

Note: The preceding example activates all of the ports associated with
the Bank service. If you want to activate portsindividually, see“Activate
portsindividually” on page 114.

Thereturnvalueisan IT_Bus: : Service object, which referencesaWSDL
service cloned from the accountService template service.

The release() function is part of the Artix smart pointer APl—it tellsthe
smart pointer, cloned_service, Not to delete the referenced

IT_Bus: : Service object oncethe cloned_service smart pointer goes out
of scope.

213

CHAPTER 5 | Endpoint References

5. The get_endpoint_reference () function populates an endpoint
reference, based on the state of the account service object.

Note: Inversions of Artix prior to 4.0, the equivalent functionality (a
function that returns an IT_Bus: :Reference type) was provided by the
get_reference () function

Y ou can create areference directly from an IT_wsDL: :WSDLService object,
which isthe Artix representation of a parsed wsdl : service element. Call the
IT Bus::Bus::populate_endpoint_reference () function asfollows:

Creating areferencefrom a
WSDL contract

// C++
IT Bus::QName service gname("", ..., ...);

const WSDLService * wsdl_service =
bus->get_service_contract (service_gname) ;

WS_Addressing: : EndpointReferenceType result;
bus->populate_endpoint_reference (

*wsdl_service,
result

Asthis example shows, you can create an endpoint reference without ever
registering a servant.

Creating an empty reference Y ou can create an empty or null reference as follows:

// C++
WS_Addressing: : EndpointReferenceType null_reference;

null_reference.getAddress () .getvalue () .set_uri (
"http://www.w3.0rg/2005/08/addressing/none"

) g

214

Programming with References

Resolving References

Overview

Initializing a client proxy with a
reference

To aclient, an ws_aAddressing: : EndpointReferenceType Object isjust an
opague token that can be used to open a connection to a particular Artix service.
The basic usage pattern on the client side, therefore, is for the client to obtain a
reference from somewhere and then use the reference to initialize a proxy object.

Client proxiesinclude specia constructors to initialize the proxy from an
WS_Addressing: : EndpointReferenceType Object. For example, the
AccountClient proxy classincludes the following constructors:

// C++

AccountClient (
const WS_Addressing: :EndpointReferenceType & epr_ref,
IT Bus::Bus_ptr bus = 0

)

AccountClient (
const WS_Addressing: :EndpointReferenceType& epr_ref,
const IT Bus::String& wsdl_location,
const IT Bus::QNameé& service_name,
const IT Bus::String& port_name,

IT Bus::Bus_ptr bus = 0
) g

Thefirst form of constructor connects to the first port in the reference.

The second form of constructor isuseful, if the reference contains multiple ports.
Y ou can use the port_name argument to specify which port the client connects
to, while leaving the wsdl_location and service name arguments empty. For
example, to initialize a proxy that connects to the coreaport port from the
multi_port_epr endpoint reference, call the constructor asfollows:

// C++

AccountClient* proxy = new AccountClient (
multi_port_epr,
IT Bus::String: :EMPTY,
IT Bus: :QName: : EMPTY QNAME,
"CORBAPort"

215

CHAPTER 5 | Endpoint References

Client example

216

The second form of constructor is also useful for interoperability purposes,
where an endpoint reference originates from anon-Artix application. The
WS-Addressing specification does not require an endpoint reference to
encapsulate metadata for the endpoint. Hence, sometimes the endpoint reference
might contain just an URL (the endpoint address) and provide no other details
about the endpoint. In this case, you can supply the missing endpoint details
directly from aWSDL contract. The second form of constructor enables you to
specify the WSDL contract location, wsdl_location, the service QName,
service_name, and port name, port_name, for the endpoint.

Example 72 shows some sampl e code from a client that obtains areferenceto an
Account and then uses this reference to initialize an AccountClient proxy
object.

Example 72: Client Using an Account Reference

// C++

ééﬁkclient bankclient;

// 1. Retrieve an account reference from the remote Bank object.
WS_Addressing: : EndpointReferenceType account_reference;

bankclient.get_account ("A. N. Other", account_reference);

// 2. Resolve the account reference.
AccountClient account (account reference);

IT Bus::Float balance;
account.get_balance (balance) ;

The WSDL Publish Plug-In

The WSDL Publish Plug-In

Overview

Loading the WSDL publish
plug-in

It is recommended that you activate the WSDL publish plug-in for any

applications that generate and export references. To use references, the client

must have access to the WSDL contract referred to by the reference. The

simplest way to accomplish thisisto use thewsdl_publish plug-in.

By default, areference’s WSDL location URL would reference alocal file on

the server system. This suffers from the following drawbacks:

° Clients are not able to accessthe server’ sWSDL file, unlessthey happen to
share the same file system.

® Endpoint information (the physical contract) might be inaccurate or
incomplete, because the server updates transport properties at runtime.

In both of these cases, the client needs to have away of obtaining the
dynamically-updated WSDL contract directly from the remote server. The
simplest way to achieve thisisto configure the server to load the WSDL publish
plug-in. The WSDL publish plug-in automatically opensa HTTP port, from
which clients can download a copy of the server’sin-memory WSDL model.

To load the WSDL publish plug-in, edit the artix.cfg configuration file and
add wsdl_publish to the orb_plugins list in your application’s configuration
scope. For example, if your application’s configuration scope is demos . server,
you might use the following orb_plugins list:

Artix Configuration File

demos {
server
{
orb_plugins = ["xmlfile_log_stream", "wsdl_publish"];
plugins:wsdl_publish:prerequisite plugins = ["at_http"];

217

CHAPTER 5 | Endpoint References

Generatingreferenceswithout the Figure 16 gives an overview of how areference is generated when the WSDL
WSDL publish plug-in publish plug-in is not |oaded.

Figure 16: Generating References without the WSDL Publish Plug-In

Artix Server

IT_Bus::Bus

Reference
\ 4
WSDL WSDL
———— K Readand parse |———
WSDL Model WSDL File

In this case, references generated by the 1T_Bus:: : Bus object would, by defaullt,
have their WSDL location set to point at the local WSDL file.

The Artix server reads and parsesthe WSDL file asit starts up, creating a
WSDL model in memory. Because the WSDL model can be updated
dynamically by the server, there may be some significant differences between
the WSDL model and the WSDL file.

WSDL model When an Artix server starts up, it reads the WSDL files needed by the registered
services—for example, in Figure 16, asingle WSDL fileisread and parsed.
After parsing, the WSDL definitions exist in memory in the form of aWSDL
model. The WSDL model isan XML parse tree containing all the WSDL
definitionsimported into aparticular IT_Bus:: : Bus instance at runtime. Different
IT Bus: :Bus instances have distinct WSDL models.

The WSDL model isdynamically updated by the Artix server to reflect changes
in the physical contract at runtime. For example, if the server dynamically
allocates an IP port for a particular port on aWSDL service, the port’s
addressing information is updated in the WSDL model.

218

Generating referenceswith the
WSDL publish plug-in

Artix Client

The WSDL Publish Plug-In

When the WSDL publish plug-in is loaded, the Artix server opensa HTTP port
which it usesto publish the in-memory WSDL model. Figure 17 gives an
overview of how an Artix reference is generated when the WSDL publish
plug-inisloaded.

Figure 17: Generating References with the WSDL Publish Plug-In

Artix Server

IT Bus::Bus

Reference

l Reference

1
1
WSDL publish port WSDL 1} WSDL

»O0——+ L Read and parse

PN —

WSDL File

Specifyingthe WSDL publish port

wsdl_publish plu —|n
_publish plug-in’ |

In this case, references generated by the 1T_Bus:: : Bus object have their WSDL
location set to the following URL:
http://host_name:WSDL_publish_port/QueryString

Where host_name is the server host, WSDL_publish_port is an |P port used
specifically for the purpose of serving up WSDL contracts, and QueryString isa
string that requests a particular WSDL contract (see “ Querying the WSDL
publish port” on page 220).

If aclient accesses the WSDL location URL, the server will convert the WSDL
model to XML on the fly and return the resulting WSDL contractinaHTTP
message.

If you need to specify the WSDL publish port explicitly, set the
plugins:wsdl_publish:publish port variablein the Artix configuration file.

219

CHAPTER 5 | Endpoint References

Querying the WSDL publish port

Usefulnessof thepublished WSDL
model

220

It is possible to query the WSDL publish port to obtain various kinds of
metadata for the services currently running in the server. Details of this query
protocol are provided in Configuring and Deploying Artix Solutions.

In most cases, clients do not need to download the published WSDL model at
all. Published WSDL is primarily useful for dynamic clientsthat try to invoke an
operation on the fly. Because dynamic clients are not compiled with Artix stub
code, the only way they can obtain the logical contract is by downloading the
published WSDL model.

Whether or not you can use the physical part of the WSDL model depends on

how the corresponding servant is registered on the server side:

. If registered as static, the physical contract is available from the WSDL
model.

. If registered as transient, the physical contract is available only from the
reference, not from the WSDL model. The associated reference
encapsulates a cloned service which is generated at runtime and is not
included in the WSDL model. See“Registering Transient Servants’ on
page 108.

Multiple Businstances

The WSDL Publish Plug-In

Occasionally, you might need to create an Artix server with more than one
IT Bus: :Bus instance. In this case, you should be aware that separate WSDL
models are created for each Businstance and separate HTTP ports are also
opened to publish the WSDL models—see Figure 18.

Figure 18: WSDL Publish Plug-In and Multiple Bus Instances

Artix Server

IT_Bus::Bus

WSDL publish port
O

IT_Bus::Bus

WSDL publish port
e

V dl_publish plug-i
wsdl_publish plug-in
_p plug d

221

CHAPTER 5 | Endpoint References

Migration Scenarios

Overview

Retaining proprietary references

Migrating to WS-Addressing
references

222

With the release of Artix 4.0, Artix switched from using a proprietary reference
format to using the standard WS-Addressing endpoint reference format. If you
have existing applications that use the old proprietary reference format, you
might want to consider migrating those applications to the WS-Addressing
standard.

The following migration scenarios are considered here:

® Retaning proprietary references.

® Migrating to WS-Addressing references.

® Mixing new and old references.

The simplest option for existing applications that are being migrated to Artix 4.0

is to continue using the old Artix proprietary references. Artix 4.0 maintains

complete backwards compatibility with the IT_Bus: :Reference type.

Specifically, the backwards compatibility enables you to leave the following

aspects of your application untouched:

® WSDL contracts—continueto usethe references :Reference type, where
the references namespace prefix is associated with the
http://schemas.iona.com/references Namespace URI.

® C++ source code—continue to usethe IT Bus: :Reference type.

® On-the-wire format—remains the same as Artix 3.0.

If you have an existing application that you want to migrate to Artix 4.0, you can
switch to the WS-Addressing standard by changing the following aspects of
your application:
b WSDL contracts—replace the references :Reference type by the
wsa: EndpointReferenceType type, where the wsa namespace prefix is
associated with the http: / /www.w3 .org/2005/08/addressing
namespace URI.

Migration Scenarios

Modify the xsd: import element for references so that it imports the new
WS-Addressing schema instead of the old Artix references schema. For
example:

<definitions xmlns="..."
xmlns :wsa="http://www.w3.0rg/2005/08/addressing"
o =
<types>
<xsd:import schemal.ocation="/schemas/wsaddressing.xsd"
namespace="http://www.w3.0rg/2005/08/addressing" />

</types>
</definitions>

C++ source code—besides regenerating Artix stub code from the updated

WSDL contracts, two changes are required:

+ Replacethe IT_Bus: :Reference type by the
WS_Addressing: : EndpointReferenceType type.

. Repl ace any occurrence of IT _Bus::Service: :get_reference()
With IT Bus::Service: :get_endpoint_reference(), where
get_endpoint_reference () populates an endpoint reference
argument instead of returning an endpoint reference.

On-the-wire format—the endpoint reference is formatted as a

wsa: EndpointReference €l ement (which is of

wsa: EndpointReferenceType type).

Mixing new and old references It is possible to mix the new and old reference types in asingle program.

Using new and old references in the same program—you can mix new and
old style references freely in the same program. Parameters declared to be
of wsa:EndpointReferenceType typein WSDL will map to the
WS_Addressing: : EndpointReferenceType C++ type and parameters
declared to be of references:Reference typein WSDL will map to the
IT_Bus: :Reference C++ type.

223

CHAPTER 5 | Endpoint References

224

In this chapter

CHAPTER 6

Cadllbacks

An Artix callbackisa pattern, wheretheclient implementsa WSDL
service. This chapter explains the basic concept of a callback and
describes how to implement a simple example.

This chapter discusses the following topics:

Overview of Artix Callbacks page 226
Callback WSDL Contract page 230
Client Implementation page 233
Server Implementation page 237
Routing and Callbacks page 241

225

CHAPTER 6 | Callbacks

Overview of Artix Callbacks

What isa callback?

Stock monitor scenario

A callback is a pattern, where a client implements a service whose operations
can be called by a server (the server calls back on the client). In other words, the
usual direction of the operation invocation is reversed in this case.

Figure 19 shows an example of a scenario where the callback patternisused. On
the client side, a GUI application is running that is used to monitor and trade

stocks and shares. One of the services accessibleto the clientsisa Stock Monitor
Service that tracks the price of stocksin real time.

Figure 19: Callback Pattern Illusted by a Sock Monitor Scenario

Client register ()
Janet \
Stock
Monitor
Service
Client
John .
register ()
(@)

Scenario description

226

Client
Janet

price("FOO",9)
\ | “Stock 1 Price |
e S S
Stock ! |

Client
John

i
. ' Foo | %9 1
Monitor k-1 " [!
Service | ! !)
\ BAR |, $151 :
| I U |
(b)

The stock monitor scenario shown in Figure 19 can be described as follows:

o Two stockbrokers, Janet and John, want to monitor the current price of two
stocks, Foo and BaRr. Janet has ordersto sell Foo, if it dips below $10, and
John has ordersto sdll Bar, if it dips below $100.

®* When Janet and John log on in the morning, they use the stockbroking
application on their PCs to set up price triggers for the respective stocks.
Asshownin Figure 19 (a), the client application sets up the price trigger by
calling the remote register () operation on the Stock Monitor Service.

Characteristics of the callback

pattern

Overview of Artix Callbacks

Later that afternoon, when the stock price of Foo drops to $9, the Stock
Monitor Service sends a callback notification to Janet’s client application,
aerting her to the fact that the price has just dropped below $10—see
Figure 19 (b).

Callback scenarios typically have the following characteristics:

Clients must implement a callback service—the callback serviceis
required, so that clients can receive notifications from the server side. One
consequence of thisisthat implementing a callback client is rather like
implementing a server.

IP port for callback serviceisdynamically allocated—typically, on aclient
host, it is not possible to allocate afixed | P port. In most cases, therefore, it
is necessary to use a dynamically allocated IP port for the callback service.
Clients must register interest in receiving callbacks—the server must be
notified explicitly that the client is available and interested in receiving
certain events. In particular, the server needs to acquire the address of the
client’s callback service.

Callbacks typically occur asynchronously—usually, the server is
constantly monitoring some state and must be ready at any timeto send a
notification to the registered clients. This normally requiresthe server to be
multi-threaded.

Likewise, the client must be ready to receive a callback at any time from
the server. This normally requires the client to be multi-threaded.

227

CHAPTER 6 | Callbacks

Callback demonstration

Demonstration scenario

Callback steps

228

The callback example described in this section is based on the Artix callback
demonstration, which islocated in the following directory:

ArtixInstal|Dir /samples/callbacks/basic_callback

Callbacks rely, essentially, on endpoint references. Using references, the client
can encapsulate the details of its callback service and pass on these detailsto the
server in areference parameter. Figure 20 illustrates how this process works.

Figure 20: Overview of the Callback Demonstration

Artix Client

D (e

®

RegisterCallback (Ref)

Artix Server

)

Callbackimpl |«

®

ServerSayHi("...")

»{ Serverimpl

3
@
g
=)

=
2]
[}
9
ul
5

=
%
o
9

=
[%2]
=)
9
u}
>

Figure 20 on page 228 shows the callback proceeding according to the following

steps.

1. After thebasicinitialization steps, including registration of the
CallbackImpl Servant and callbackService Service, the client generates
areference for the callback service.

The client callback serviceis activated and capable of receiving incoming
invocations as soon as it is registered.

Overview of Artix Callbacks

The client callsregistercallback () on the remote server, passing the
reference generated in the previous step.

When the server receives the callback reference, it immediately calls back
on the callbackImpl servant by invoking serverSayHi ().

Note: Inamorerealistic application, it islikely that the server would
cache a copy of the callback reference and call back on the client at a
later time, instead of calling back immediately.

229

CHAPTER 6 | Callbacks

Callback WSDL Contract

Overview

WSDL contract

230

This subsection describes the WSDL contract that defines the interaction
between the client and the server in the callback demonstration. This WSDL
contract is somewhat unusual in that it defines port types both for the client and
for the server applications.

Example 73 shows the WSDL contract used for the callback demonstration.
Example 73: Example Callback WSDL Contract

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="basic_callback"
targetNamespace="http://www.iona/com/callback"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:nsl="http://www.iona/com/callback/corba/typemap/"
xmlns:ns2="http://schemas.iona.com/routing"
xmlns:addressing="http://www.w3.0rg/2005/08/addressing"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona/com/callback"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
<types>
<schema targetNamespace="http://www.iona/com/callback"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<import
namespace="http://www.w3.org/2005/08/addressing"
schemaLocation="../../../../schemas/wsaddressing.xsd"/>

<element name="callback message" type="xsd:string"/>
<element name="RegisterCallback">
<complexType>
<sequence>
<element name="reference"
type="addressing:EndpointReferenceType" />
</sequence>
</complexType>
</element>
<element name="returnType" type="xsd:string"/>
</schema>

Callback WSDL Contract

Example 73: Example Callback WSDL Contract
</types>

<message name="server_sayHi">
<part element="tns:callback message"
name="return_message" />
</message>
<message name="register_callback">
<part element="tns:RegisterCallback"
name="callback_object" />
</message>
<message name="returnMessage">
<part element="tns:returnType" name="the_ return"/>
</message>

<portType name="CallbackPortType">
<operation name="ServerSayHi">
<input message="tns:server_ sayHi"
name="ServerSayHiRequest" />
<output message="tns:returnMessage"
name="ServerSayHiResponse" />
</operation>
</portType>

<portType name="ServerPortType">
<operation name="RegisterCallback">
<input message="tns:register_callback"
name="RegisterCallbackRequest" />
<output message="tns:returnMessage"
name="RegisterCallbackResponse" />
</operation>
</portType>

<service name="CallbackService">
<port binding="tns:CallbackPortType SOAPBinding"
name="CallbackPort">
<soap:address location="http://localhost:0"/>
</port>
</service>

<service name="SOAPService">
<port binding="tns:ServerPortType SOAPBinding"
name="SOAPPort">
<soap:address location="http://localhost:9000"/>
</port>
</service>

231

CHAPTER 6 | Callbacks

232

Example 73: Example Callback WSDL Contract

</definitions>

The preceding WSDL contract can be described as follows:

1

The callbackPortType port typeisimplemented on the client side and
supports asingle WSDL operation:

¢+ ServerSayHi operation—takes a single string argument. The server
calls back on this operation after it has received areference to the
client’s service.

The serverPortType port type isimplemented on the server side and
supports asingle WSDL operation:

¢ RegisterCallback operation—takes a single endpoint reference
argument, which is used to pass a reference to the client callback
object.

The client callback address should be specified ashttp: //localhost:0,

which acts as a placeholder for the address generated dynamically at

runtime. When the callback servant is activated, Artix modifies the

address, replacing 1ocalhost by the client’ s hostname and replacing o by a

randomly allocated IP port number.

Note: Do not add aterminating / character at the end of the address—
for example, http: //localhost:0/. Artix does not accept addresses
terminated with aforward slash.

The server’s address, http: //SvrHost : SvrPort, should be specified
explicitly, where SurHost is the host where the server is running and
SvrPort isafixed IP port. In this example, the client obtains the server’s
address directly from the WSDL contract file.

Client Implementation

Client Implementation

Overview

Client main function

In acallback scenario, the client plays ahybrid role: part client, part server.
Hence, the implementation of the callback client includes coding steps you
would normally associate with a server, including an implementation of a
servant class. The callback client implementation consists of two main parts, as
follows:

® Client main function.
e Callbacklmpl servant class.

Example 74 shows the code for the callback client main function, which
instantiates and registers acallbackImpl Servant before calling on the remote
server to register the callback.

Example 74: Callback Client Main Function

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

#include "ServerClient.h"
#include "CallbackImpl.h"

IT_USING_NAMESPACE_STD

using namespace BasicCallback;
using namespace IT_Bus;
using namespace WS_Addressing;

int
main (int argc, char* argvl[])
{
try
{
// Need to retain reference to Bus
//
Bus_var bus = IT Bus::init(argc, argv);

233

CHAPTER 6 | Callbacks

Example 74: Callback Client Main Function

QName soap_service_gname (
"SOAPService",
"http://www.iona/com/callback"

) g

ServerClient client (
"../../etc/basic_callback.wsdl",
soap_service_gname,

"SOAPPort",
bus
);
1 CallbackImpl servant (bus);
2 QName service_gname (
"CallbackService",

"http://www.iona/com/callback"
) g

// Use Bus reference to register and activate servant

//
3 Service_var service =
bus->register_transient_servant (
servant,

"../../etc/basic_callback.wsdl",
service_gname
)i

EndpointReferenceType callback_reference;
4 service->get_endpoint_reference (callback_reference) ;

String outcome;

// Create instance of wrapper class
//

RegisterCallback callback_object;
// Set reference into wrapper

//

callback _object.setreference (callback_reference) ;

5 client.RegisterCallback (callback_object, outcome) ;

234

Client Implementation

Example 74: Callback Client Main Function

}

// Display return message from RegisterCallback operation
//
cout << "\t" << outcome << endl;

bus->shutdown (true) ;
}
catch (const IT Bus::Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message()
<< endl;
return -1;
}

return 0;

The preceding code example can be explained as follows:

1

The callbackImpl servant classimplementsthe callbackPortType port
type. The callbackImpl instance created on thisline isthe client callback
object.

The service_gname specifiesthe WSDL service to be activated on the
client side. This QName refers to the <service
name="CallbackService"> element in Example 73 on page 230.

Register the callback servant with the Bus, thereby activating the
CallbackService service. From this point on, the callbackService
serviceis active and able to process incoming callback requestsin a
background thread.

A reference to the callback serviceis generated by calling

IT Bus::Service::get_endpoint_reference().

Thislineinvokesthe Registercallback () operation onthe remote server,
passing in the reference to the client callback object. Before this operation
returns, the server calls back on the serversayHi () operation of the
CallbackImpl Servant.

235

CHAPTER 6 | Callbacks

Callbackl mpl servant class

236

Example 75 shows the implementation of the callbackImpl Servant class,
which is responsible for receiving the callbackImpl: : ServerSayHi () callback
from the server. Theimplementation of this servant classistrivial. It followsthe
usual pattern for a servant class implementation and the serversayHi ()
function simply prints out its string argument.

Example 75: Callbackimpl Servant Class Implementation

#include "CallbackImpl.h"
#include <it_cal/cal.h>

IT USING _NAMESPACE_STD
using namespace BasicCallback;

CallbackImpl: :CallbackImpl (IT Bus::Bus_ptr bus)
CallbackServer (bus)

CallbackImpl: :~CallbackImpl ()
{
}

IT Bus::Servant*
CallbackImpl::clone() const
{
return new CallbackImpl (get_bus()) ;

void
CallbackImpl: :ServerSayHi (
const IT Bus::String &return message,
IT Bus::String &the return
) IT_THROW_DECL ((IT_Bus: :Exception))
{
// User code goes in here
cout <<"\t\tCallbackImpl::ServerSayHi () called"<<endl;
cout << "\t\t" << return_message <<endl;
cout <<"\t\tCallbackImpl::ServerSayHi () ended"<<endl;
the_return = "The callback was successful";

Server Implementation

Server Implementation

Overview

Server main function

The implementation of the server in this callback example follows the usual
pattern for an Artix server. The server main function instantiates and registers a
servant object. A separate file contains the implementation of the servant class,
ServerImpl. The server implementation thus consists of two main parts, as
follows:

® Server main function.
® ServerPortType implementation.

Example 76 shows the code for the server main function, which instantiates and
registers a serverImpl servant. The server then waits for the client to register a
callback using the Registercallback operation.

Example 76: Server Main Function

#include <it_bus/bus.h>

#include <it_bus/exception.h>
#include <it_bus/fault_exception.h>
#include <it_cal/iostream.h>

IT USING NAMESPACE_STD
#include "ServerImpl.h"

using namespace BasicCallback;
using namespace IT_Bus;

int
main(int argc, char* argv(])
{
try
{
IT Bus::Bus_var bus = IT Bus::init(argc, argv);

ServerImpl servant (bus) ;
IT Bus::QName service_name (

", "SOAPService", "http://www.iona/com/callback"
) g

237

CHAPTER 6 | Callbacks

Example 76; Server Main Function

3 bus->register_servant (
servant,
"../../etc/basic_callback.wsdl",
service_name

)i
cout << "Server Ready" << endl;

4 bus->run() ;
}
catch (IT _Bus: :Exception& e)
{
cout << "Error occurred: " << e.message() << endl;
return -1;

}

return 0;

The preceding code example can be explained as follows:

1. TheserverImpl servant classimplements the serverprortType port type,
which supports the Registercallback operation.

2. Theservice_gname refersto the <service name="SOAPService">
element in Example 73 on page 230.

3. Register the serverImpl Servant with the Bus, thereby activating the
SOAPService Service.

4. Cadl theblocking IT_Bus: :Bus: :run() function to allow the server
application to process incoming requests.

Server PortType implementation Example 77 shows the implementation of the serverTmpl servant class. Thereis
just one WSDL operation, Registercallback (), to implement in this class.

Example 77: Serverlmpl Servant Class Implementation
#include "ServerImpl.h"
#include <it_cal/cal.h>

#include "CallbackClient.h"

using namespace WS_Addressing;
using namespace BasicCallback;

238

Server Implementation

Example 77: Serverlmpl Servant Class Implementation

IT_USING_NAMESPACE_STD

ServerImpl: :ServerImpl (IT Bus::Bus_ptr bus) : ServerServer (bus)
{
}

ServerImpl: :~ServerImpl ()
{
}

IT Bus::Servant*
ServerImpl::clone() const
{

return new ServerImpl (get_bus()) ;

void
ServerImpl: :RegisterCallback (
const BasicCallback: :RegisterCallback &callback object,
IT Bus::String &the return
) IT THROW_DECL ((IT_Bus: :Exception))
{
try
{
// Extract reference from wrapper
EndpointReferenceType callback_epr =
callback_object.getreference() ;

// Instantiate proxy with reference
CallbackClient cc(callback_epr) ;
IT Bus::String a_return;
cc.ServerSayHi ("Server says Hi to the Client", a_return);
cout << "\t\t" << a_return << endl;
}
catch (IT Bus::Exception& e)

{
cout << "Caught Unexpected Exception "
<< e.message() << endl;
}
catch (...)
{

cout << "Unknown exception" << endl;
}
cout << "\tFinished invoking on Callback Object" << endl;

239

CHAPTER 6 | Callbacks

Example 77: Serverlmpl Servant Class Implementation

cout << "\tServerImpl::RegisterCallback Returning" << endl;
the return = "The server processing was successful";

}

The preceding code example can be explained as follows:

1. Theregistercallback() function takes an endpoint reference argument,
which should be a reference to a callback object.

2. Thislinecreatesaclient proxy, cc, for the callbackPortType port type
and initializes it with the callback reference, callback_object. The
reference, callback_object, encapsulates details of the
CallbackService Service.

3. Thislineinvokesthe serversayHi () callback on the client.

This example, where the callback isinvoked within the body of

RegisterCallback (), isalittle bit artificial. In amore typical use case,
the server would cache an instance of the callback client proxy and then
call back later, in response to some event that is of interest to the client.

240

Routing and Callbacks

Routing and Callbacks

Overview

CORBA Client

Callbacks arefully compatible with Artix routers. References that pass through a
router are automatically proxified, if necessary. Proxification means that the
router automatically creates anew route for the references that pass through it.

Note: Proxification isnot necessary, if the transport protocols along the route
are the same. For same protocol routing, proxification is disabled by defaullt.

For example, consider the callback routing scenario shown in Figure 21. In this
scenario, a SOAP/HTTP Artix server replaces alegacy CORBA server. As part
of amigration strategy, legacy CORBA clients can continue to communicate

with the new server by interposing an Artix router to translate between the 11OP
and SOAP/HTTP protocols.

Figure 21: Overview of a Callback Routing Scenario

RtrCorbaPort

Artix Router

SvrSoapPort

RegisterCallback (Ref) V

—o0
A

Callback IDL

» O

ServerSayHi ()
]

Proxification

RegisterCallback (Ref)

*—

= [CORBA Ref] ——>[SOAP Ref |

— <

/

-

/

ServerSayHi ()N SOAP Ref

O <«

v

o—

Artix Server

O

A

CltCorbaPort

WSDL

Router Contract

RtrSdapPort

WSDL

Target Contract

241

CHAPTER 6 | Callbacks

Contracts

Callback IDL

Target contract

Router contract

242

The scenario depicted in Figure 21 requires three distinct, but related, contracts
asfollows:

M Callback IDL.
® Target contract.
i Router contract.

The CORBA client uses a contract coded in OMG Interface Definition
Language (IDL). ThisIDL contract defines both the target interface
(implemented by the Artix server) and the callback interface (implemented by
the CORBA client).

In this scenario, the target contract is generated from the callback IDL using the
IDL-to-WSDL compiler. Hence, this WSDL contract contains both the target
interface and the callback interface as WSDL port types.

The target contract also contains asingle WSDL service description, which
includes the svrsoapPort port.

The router contract holds details about the CORBA side of the application as
well asthe SOAP/HTTP side, including the following information:

®* Target WSDL port type.

e Cdlback WSDL port type.

® CORBA WSDL hinding for the target.

¢ SOAP/HTTPWSDL binding for the target.

® CORBA WSDL service, containing the Rercorbaport port.

® SOAP/HTTP WSDL service, containing the svrsoapport port.

¢ Template SOAP/HTTP WSDL service, needed for generating the transient
endpoint with RtrSoapPort port.

® Routeinformation.

To specify the location of the generated router contract, you can set the

plugins:routing:wsdl_url configuration variable in the router scope of the
artix.cfg configuration file.

Routes

Proxification

Routing and Callbacks

Asshown in Figure 21 on page 241, the following routes are created in this
scenario:

Client-Router-Target route—this route is documented explicitly in the
router contract. The source port, RtrcorbapPort, and the destination port,
SvrSoapPort, are described in the router contract.

For example, when the client callsthe Registercallback () operation, the
request travelsinitially to the Rtrcorbarort on the router (over 110P) and
then on to the svrsocapprort on the target server (over SOAP/HTTP).
Target-Router-Client route (callback route)—the reverse route (for
callbacks) is not documented explicitly in the router contract. Thisrouteis
constructed at runtime to facilitate routing callback invocations.

For example, when the Artix server calls the serversayHi () callback
operation, the request travelsto the RtrsoapPort on the router (over
SOAP/HTTP) and then on to the c1tcorbaPort on the client (over 11OP).

Proxification refers to the process whereby areference of a certain type (for
example, a CORBA reference) that passes through the router is automatically
converted to areference of another type (for example, a SOAP reference).

The proxification processis of key importance to Artix callbacks. If therouter in
Figure 21 on page 241 did not proxify Registercallback()’sreference
argument, it would be impossible for the server to call back on the client. The
server can call back only on SOAP/HTTP endpoints, not on 11OP endpoints.

In Figure 21 on page 241, the router proxifies the callback reference as follows:

1

When the Registercallback () operation isinvoked, the router
recognizes that the reference argument must be converted into a
SOAP/HTTP-format reference.

The router dynamically creates a new service and port, RtrSoapPort, t0
receive callback requestsin SOAP/HTTP format. The new serviceisa
transient service cloned from a service in the router WSDL contract. The
router looks for atemplate service that satisfies the following criteria:

+ Supportsthe same port type as the original reference.

243

CHAPTER 6 | Callbacks

Enabling proxification for same
protocol routing

244

+ Supportsthe same type of binding (for example, SOAP or CORBA)
asthe target server.

Note: Artix selectsthe first servicein the WSDL contract that satisfies
these criteria. Hence, if more than one service matches the criteria, you
must ensure that the template service precedes the other servicesin the
contract file.

3. Therouter creates anew SOAP/HTTP reference, encapsulating details of
the RtrSoapPort endpoint.

4. Therouter forwards the Registercallback () operation on to the target
server in SOAP format, with the proxified SOAP/HTTP reference asits
argument.

5. Therouter dynamically constructs a callback route, with source port,
RtrSoapPort, and destination port, cltCorbaPort.

The router can be used to redirect messages of the same protocol type (for
example, SOAP to SOAP). In this case, you can either enable or disable
proxification by setting the following variable in the router configuration:
plugins:router:use_pass_through = " Boolean" ;

If Boolean is true (the default), proxification is disabled for same-protocol
routing; if false, proxification isenabled for same-protocol routing.

When the router is used as a bridge between different protocols (for example
CORBA to SOAP), proxification is always enabled. It is not possible to disable
proxification in this case.

In this chapter

CHAPTER 7

Artix Contexts

Artix contexts are used for the following purposes:. to configure
Artix transports, bindingsand interceptors; and to send extra data

in request headers or reply headers.

This chapter discusses the following topics:

Introduction to Contexts page 246
Reading and Writing Context Data page 258
Context Example page 273
SOAP Header Contexts page 284
CORBA Header Contexts page 303
Header Contextsin Three-Tier Systems page 321

245

CHAPTER 7 | Artix Contexts

| ntr oduction to Contexts

Overview

In this section

246

This section provides a conceptual overview of Artix contexts, including a brief
look at the programming interface required for using contexts with different
binding types.

This section contains the following subsections:

Request, Reply and Configuration Contexts page 247
Header Contexts page 250
Registering Contexts page 252

Introduction to Contexts

Request, Reply and Configuration Contexts

Overview Artix contexts provide a general purpose mechanism for configuring Artix
plug-ins. Contexts enable you to configure both the client-side settings and the
server-side settings.

Currently, contexts are used mainly to program transport settings (overriding the
settings that appear in the corresponding WSDL port element). Figure 22 gives
an overview of the context architecture, where the contexts can be used to
modify the attributes of a transport plug-in.

Figure 22: Overview of the Context Architecture

ContextRegistry

get_configuration_context ()

ContextContainer

set/get context data

set/get context data

get_current () for Configuration
Thread X
e e I
| v |
1 1
1 1
, ContextCurrent i
E for Thread X E
! !
1 1
1 1
1 1
1 1
E request_contexts () reply_contexts() E
i i
| |
1 H i 1
H ContextContainer L Context A Context B | 1 ContextCoqtamer L Context C ContextD | 1 H
) for Requests ! ! for Replies ! ! |
i [a— A _____ A ____. e S
1
i
1
1
1
1
1
1
1

247

CHAPTER 7 | Artix Contexts

Thread affinity

Request contexts

Reply contexts

Configuration contexts

248

The threading properties of a context depend on the kind of context, as follows:

® Request and reply contexts—are held in thread-specific storage, so that
different threads can be programmed with different attributes. The root
object for obtaining thread-specific dataisthe IT_Bus: :ContextCurrent
object.

® Configuration contexts—are not thread-specific.

Request contexts are used to read or modify attributes as follows:

®* Ontheclient side—setting transport attributes and setting header contexts
for outgoing requests.

® Ontheserver side—reading header contexts from incoming requests.

By calling the IT_Bus: : ContextCurrent: : request_contexts () function, you

can obtain acopy of an IT_Bus: : ContextContainer object, which contains
referencesto all of the current request contexts.

Reply contexts are used to read or modify attributes as follows:

® Ontheclient side—reading header contexts from incoming replies.

®* Ontheserver side—setting transport attributes and setting header contexts
for outgoing replies.

By calling the IT_Bus: :ContextCurrent : : reply_contexts () function, you

can obtain acopy of an IT_Bus: : ContextContainer object, which contains
referencesto all of the current reply contexts.

Configuration contexts are used to read and modify endpoint-specific context
datathat can be set before a connection has initialized. Currently, Artix supports
just the following configuration context properties:

o HTTP endpoint URL,

L JMS broker connection security information,

® FTP connection settings.

By calling the IT_Bus: :ContextRegistry: :get_configuration_context ()
function, you can obtain acopy of an IT_Bus: : ContextContainer object,
which contains references to all of the configuration contexts.

Introduction to Contexts

Schema-based API The API for getting and setting the attributes of a particular context typeis
generated from an XML schema. The code for a context type is generated by the
Artix WSDL-to-C++ compiler as part of the stub code. There are two ways of
getting hold of the context stub code, depending on whether the context is a
custom type or a built-in type, as follows:
®* Custom context—for a context that you define yourself you can generate
the context stub code by running the WSDL -to-C++ compiler on the
context schemafile, customcontext.xsd. The stub code then consists of
thefiles customcontext_xsdTypes.h, CustomContext_xsdTypes.Ccxx,
CustomContext_xsdTypesFactory.h and
CustomContext_xsdTypesFactory.cxx.

® Built-in context—for an Artix-defined context, the stub codeis packaged in
the Artix library, it_context_attribute[.1ib][.so][.s1].

249

CHAPTER 7 | Artix Contexts

Header Contexts

Overview

SOAP

CORBA

250

Artix header contexts provide agenera purpose mechanism for embedding data
in message headers. Currently, you can embed context datain the following
types of protocol header:

e SOAP.
* CORBA.

When you register a context as a SOAP context (using the appropriate form of
the ContextRegistry: :register_context () function), the corresponding
context datais embedded in a SOAP header, as shown in Figure 23.

Figure 23: Inserting Context Data into a SOAP Header

SOAP Context

SOAP Message SOAP Header

The context datais sent in an Artix-specific SOAP header.

When you register acontext asa CORBA context (using the appropriate form of
the ContextRegistry: :register_context () function), the corresponding
context datais embedded within a CORBA header as a GIOP service context—
see Figure 24.

Figure 24: Inserting Context Data into a GIOP Service Context

Context Data

| GIOP Service Context

GIOP Message GIOP Header

Introduction to Contexts

In CORBA, the message formats are defined by the General Inter-ORB Protocol
(GIOP) specification. In particular, the GIOP request and reply message formats
alow you to include arbitrary header datain GIOP service contexts. Artix
creates one GIOP service context for each Artix context. The type of GIOP
service context isidentified by an IOP context ID, which you specify when
registering the Artix context.

251

CHAPTER 7 | Artix Contexts

Registering Contexts

Overview

Getting a context registry instance

Registering a context

252

Y ou register a context type by calling aregister_context () functionona
context registry instance, passing the context name and context type as
arguments. The main effect of registering a context typeis that the context
container adds a type factory reference to an internal table. This type factory
reference enables the context container to create context data instances
whenever they are needed.

Note: This pre-supposes that the application is linked with the context
schema stub code, which creates static instances of the relevant type factories.
See “ Schema-based API” on page 249.

To get areference to a context registry instance, you call the
IT _Bus::Bus::get_context_registry () function, shown in Example 78.

Example 78: ThelT_Bus::Bus::get_context_registry() Function

// C++
namespace IT Bus {
class IT BUS_API Bus
{
public:
virtual ContextRegistry*
get_context_registry() = 0;

In practice, you would seldom need to register a context unless you are
implementing your own Artix plug-in. All of the standard Artix contexts are
pre-registered (see “Getting and Setting Transport Attributes’ on page 326).

Y ou can register request, reply, and configuration contexts in either of the
following ways:

® Registering a seriaizable context.

®* Registering anon-serializable context.

Registering a serializable context

Introduction to Contexts

A serializable context is a data type that inherits from the IT_Bus: : AnyType
base class. Example 79 shows the signature of the register context ()
function inthe IT_Bus: : ContextRegistry class, which is used to register a

serializable context.

Example 79: Theregister_context() Function for Serializable Contexts

// C++
namespace IT Bus
{
class IT BUS_API ContextRegistry
{
public:
enum ContextType {
TYPE,
ELEMENT
}

virtual Boolean

register_ context (
const QName& context_name,
const QName& context_type,
ContextType type = TYPE,
Boolean 1is_header = false

) = 0;

b
g

The preceding IT_Bus: :ContextRegistry: :register context () function

takes the following arguments:

® context_name—the context name identifies the registered context. The
context names for the pre-registered contexts are given in “Getting and

Setting Transport Attributes’ on page 326.

® context_type—the qualified name of the context data type or element.

which can be either of the following:

+ Thename of aschematype (that is, any type derived from

xsd: anyType), O
+ Thename of aschema element.

253

CHAPTER 7 | Artix Contexts

Registering a non-serializable
context

Registering header contexts

254

L type—aflag that indicates whether the context_type parameter isthe
name of aschematype (indicated by IT Bus: :ContextRegistry: : TYPE)
or the name of a schema element (indicated by
IT Bus::ContextRegistry: : ELEMENT).

® is_header—for registering regular contexts (not headers), thisflag should
not be supplied (defaults to false).

A non-serializable context can be any C++ type (that is, not necessarily
inheriting from IT_Bus: : AnyType). Example 80 shows the signature of the
register_context_data () functioninthe IT Bus::ContextRegistry Class,
which is used to register a non-serializable context.

Example 80: Theregister_context_data() Function for Non-Serializable
Contexts

// C++
namespace IT Bus
{
class IT BUS_API ContextRegistry
{
public:
virtual Boolean
register_context_data(
const QName& context name
) = 0;

g
b5

The[mfneding IT Bus::ContextRegistry::register_ context_datal()
function takes the following argument:

i context_name—the name of a non-serializable context.

Y ou can register the following kinds of header context:
®* Registering a SOAP header context.
®* Registering a CORBA header context.

Introduction to Contexts

Registering a SOAP header Example 81 shows the signature of the register_context () function and the

context register context_as_element () functioninthe IT_Bus::ContextRegistry
class, which are used to register a header context data type for the SOAP
protocol.

Example81: Theregister_context() Function for SOAP Contexts

// C++
namespace IT Bus {
class IT BUS_API ContextRegistry
{
public:
virtual Boolean
register_ context (
const QName& context_name,
const QName& context type,
const QName& message name,
const String& part_name
) = 0;

virtual Boolean

register_context_as_element (
const QName& context_ name,
const QName& element name,
const QName& message_name,
const String& part_name

) = 0;

5o
e

The IT_BUS: :ContextRegistry: :register_context () function takes the

following arguments:

® context_name—the context name identifies the registered context. A
context name is needed, because a context type could be registered more
than once (for example, if the same context type was used with different
protocals).

®* context_type—the qualified name of the context datatype. It can be any
schemartype (that is, any type derived from xsd: anyType).

® nmessage_name—thisvalue corresponds to the message attribute in a
soap:header €element. Currently, the message name isignored, but it
should not clash with any existing message names.

255

CHAPTER 7 | Artix Contexts

Registering a CORBA header
context

256

L part_name—thisvalue corresponds to the part attributein a soap: header
element. Currently, the part name is ignored.
TheIT_BUS::ContextRegistry::register_context_as_element()funCﬁon

isavariant that enables you to base the context data on a specified XML
element, element_name, rather than on aparticular XML type.

Example 82 shows the signature of the register_context () functionin the
IT Bus::ContextRegistry class, whichis used to register a context datatype
with the CORBA context container.

Example 82: Theregister_context() Function for CORBA Contexts

// C++
namespace IT Bus {
class IT BUS_API ContextRegistry
{
public:
virtual Boolean
register_context (
const QNameé& context_name,
const QNameé& context_type
const unsigned long context_id,
) = 0;
g
be

The IT Bus::ContextRegistry: :register_context () function takesthe

following arguments:

® context_name—the context name identifies the registered context. A
context name is needed, because a context type could be registered more
than once (for example, if the same context type was used with different
protocoals).

® context_type—the qualified name of the context data type. It can be any
schematype (that is, any type derived from xsd: anyType).

Introduction to Contexts

context_id—an ID that tags the GIOP service context containing the
Artix context. In CORBA, the context_id corresponds to a service

context 1D of Top: : serviceId type. For details of GIOP service contexts,

consult the OMG CORBA specification.

Note: Care should be exercised to avoid clashing with standard IDs
allocated by the OMG, which are reserved for use either by the OMG
itself or by particular ORB vendors. In particular, IDs in the range 0—
40095 are reserved for use by the OMG.

257

CHAPTER 7 | Artix Contexts

Reading and Writing Context Data

Overview You can read and write avariety of different kinds of context data: basic types,
user-defined types, and instances of arbitrary C++ classes (custom types). This
section describes how to access and modify the various kinds of context data.

In this section This section contains the following subsections:
Getting a Context Instance page 259
Reading and Writing Basic Types page 265
Reading and Writing User-Defined Types page 267
Reading and Writing Custom Types page 269
Durability of Context Settings page 272

258

Reading and Writing Context Data

Getting a Context Instance

Overview Figure 25 shows an overview of how context data instances are accessed for
writing and reading in an Artix application.

Figure 25: Overview of Context Data and Context Containers

ContextRegistry

get_configuration_context ()

o oTTmmmm IS
. 1 1
ContextContainer| | | oo Context F | 1
get_current () for Configuration | | !
LS PO
Thread X
ContextCurrent
for Thread X
request_contexts () reply_contexts ()

ContextContainer
for Replies

ContextContainer
for Requests

set/get context data

set/get context data

259

CHAPTER 7 | Artix Contexts

Context containers

Getting a configuration context
container

260

A context container is an object that holds a collection of contexts associated
with a particular thread. There are three kinds of context container:

® Request context contai ner—contains thread-specific context data that can
be used for the following purposes:

+ Setting transport attributes on the client side that can be set after a
connection has initialized,

¢ Sending header contexts in outgoing request messages,
+ Receiving header contexts from incoming request messages.

®* Reply context container—contains thread-specific context data that can be
used for the following purposes:

¢ Setting transport attributes on the server side that can be set after a
connection has initialized,

+ Sending header contextsin outgoing reply messages,
¢+ Receiving header contexts from incoming reply messages.

® Configuration context contai ner—contains endpoint-specific (but
thread-independent) context data that can be set before a connection has
initialized. Currently, Artix supports just the following configuration
context properties:
. HTTP endpoint URL,
¢+ JMShbroker connection security information,
+ FTP connection settings.

To get apointer to a configuration context container, call the

get_configuration_container () function onthecontextRegistry, asshown
in Example 83. The configuration context container is endpoint-specific, so you
must specify the service QName, service_name, and the port name, port_name,

Getting a ContextCurrent
instance

ContextCurrent class

Reading and Writing Context Data

of the relevant endpoint. Only the proxies and the servant objects associated with

the specified endpoint are affected by the settings in this configuration context
container.

Example 83: Getting a Configuration ContextContainer Instance

// C++
namespace IT_ Bus
{
class IT BUS_API ContextRegistry
{
virtual ContextContainer *
get_configuration context (
const QName & service_name,
const String & port_name,

bool create_if_not_found = false
) = 0;

To get areference to a context registry instance, call the

IT Bus::ContextRegistry::get_current () function, asdefinedin
Example 84.

Example 84: Getting a ContextCurrent Instance

// C++
namespace IT Bus

{

class IT BUS_API ContextRegistry
{

virtual ContextCurrent& get_current() = 0;

A context current is an object that holds references to thread-specific context
data. In particular, an IT_Bus: : ContextCurrent instance provides access to
request contexts (through an IT_Bus: : ContextContainer object) and reply
contexts (through an IT_Bus: : ContextContainer Object).

261

CHAPTER 7 | Artix Contexts

Example 85 shows the declaration of the IT_Bus: : ContextCurrent class,
which defines two functions; request_contexts (), which returns areferenceto
the request context container, and reply._contexts (), Which returns areference
to the reply context container.

Example 85: ThelT_Bus::ContextCurrent Class

// C++
namespace IT Bus
{
class IT BUS_API ContextCurrent

{
public:

virtual ContextContainer*
request_contexts() = 0;

virtual ContextContainer*
reply contexts() = 0;

ContextContainer class Example 86 shows the declaration of the IT_Bus: : ContextContainer class,
which defines member functions for getting and setting context objects.

Example 86: ThelT_Bus::ContextContainer Class

// C++
namespace IT Bus
{
class IT BUS_API ContextContainer
{
public:
// Get a serializable context
virtual AnyType*
get_context (
const QName& context name,
bool create_if_not_found = false
) = 0;

virtual const AnyType*
get_context (

const QName& context name
) const = 0;

262

Reading and Writing Context Data

Example 86: ThelT_Bus::ContextContainer Class

// Add a serializable context
virtual Boolean
add_context (
const QName& context_ name,
AnyType& context
) = 0;

// Get a non-serializable context.
virtual Context*
get_context_data (const QName& context_name) = 0;

virtual const Context*
get_context_data(const QName& context_name) const = 0;

// Add a non-serializable context.
virtual Boolean
add_context (
const QName& context_ name,
Contexté& context
) = 0;

// Miscellaneous context functions
virtual bool
contains (const QName& context_name) = 0;

virtual Boolean
remove_ context (const QName& context_name) = 0;

Accessing and modifying
serializable contexts

*

The contextContainer class defines the following member functions for
accessing and modifying serializable contexts:

get_context ()—returnsapointer to the context with the specified context
name, context_name, Which must have been previously registered with the
context registry. The returned reference can be used either to read to or
write from acontext. The create_if_not_found flag has the following
effect:

If false and the context is not found, the returned pointer valueis
NULL.

263

CHAPTER 7 | Artix Contexts

Accessing and modifying
non-serializable contexts

264

s If true and the context is not found, the return value points at anewly
created context instance.

add_context ()—isaconvenience function that lets you set a context from

an existing context instance. The context must have been previously

registered with the context registry.

The contextContainer class defines the following member functions for
accessing and modifying non-serializable contexts:

get_context_data ()—returns a pointer to the context with the specified
context name, context_name, Which must have been previously registered
with the context registry. The returned reference can be used either to read
to or write from a context.

add_context ()—isaconvenience function that lets you set a context from
an existing context instance. The context parameter must be defined asan
IT Bus::ContextT<DataType> type, which isused to wrap an instance of
DataType.

Reading and Writing Context Data

Reading and Writing Basic Types

Overview

Registering a context for strings

Inserting a basic typeinto a
context

To insert and extract a basic type, BasicType, you must use its corresponding
BasicTypeHolder type. For example, to insert an IT_Bus: :String typeinto a
context, you must first insert the string into an IT_Bus: : StringHolder object.
This approach is necessary because the get_context () and add_context ()
functions expect context data to be a type that derives from IT_Bus: : AnyType.

For acomplete list of Holder types, see“Holder Types’ on page 461.

For example, to register a configuration context that holds string data, you could
use code like the following:

// C++
const IT Bus::QName test ctx name (
", "TestString", "http://www.iona.com/test/context"

) g

reg->register_context (

test_ctx_name,

IT Bus::StringHolder () .get_type()
};

Where reg is acontext registry (of IT_Bus: :ContextRegistry type). The
IT Bus::StringHolder () constructor creates atemporary instance of a
StringHolder object, which you can useto get the QName of the
StringHolder type

Thefollowing example shows how to insert an IT_Bus: : StringHolder instance
into the test_ctx_name request context.

// C++

IT Bus::AnyType* any string = request_ contexts->get_ context (
test_ctx name, // The name of the string context.
true // The create_if not_found flag

) g

IT Bus::StringHolder* str holder =
dynamic_cast<IT Bus::StringHolder*>(any_string) ;

str_holder->set ("Hello World!") ;

265

CHAPTER 7 | Artix Contexts

Extracting a basic type from a The following example shows how to extract the IT_Bus: : StringHolder
context instance from the test_ctx_name request context.
// C++
IT Bus::AnyType* any string = request_contexts->get_context (
test_ctx_name // The name of the string context.

)7

IT Bus::StringHolder* str_holder =
dynamic_cast<IT Bus::StringHolder*> (any_string) ;

IT Bus::String str = str_holder->get () ;

266

Reading and Writing Context Data

Reading and Writing User-Defined Types

Overview

Generating stubs from a context
schema

Y ou can define a dedicated user-defined schema type to hold the context data.
Y ou could include the context type definition directly in the application’s
WSDL contract; however, it is usually more convenient to define the context
typein a separate XML schemafile.

For example, to define a complex context data type, ContextDataType, in the
namespace, ContextDataURI, you could define a context schema following the
outline shown in Example 87.

Example 87: Outline of a Context Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="ContextDataURI "
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:complexType name="ContextDataType">
</xs:complexType>

</xs:schema>

To generate C++ stubs from a context schema file, ContextSchema. xsd, enter
the following command at the command line:

wsdltocpp ContextSchema.xsd
The WSDL-to-C++ compiler generates the following C++ stub files:

ContextSchema_wsdlTypes.h
ContextSchema_wsdlTypesFactory.h
ContextSchema_wsdlTypes . cxx
ContextSchema_wsdlTypesFactory . cxx

267

CHAPTER 7 | Artix Contexts

Registering a context for a
user-defined type

Inserting a user-defined type into
a context

Extracting a user-defined type
from a context

268

For example, to register a configuration context that holds an instance of the
ContextDataType type, you could use code like the following:

// C++
const IT Bus::QName userdata_ctx name (
"n "TestUserData", "http://www.iona.com/test/context"
)7
const IT Bus::QName userdata_ctx type(

v, "ContextDataType", "ContextDataURI "
)7

reg->register_context (
userdata_ctx_name,
userdata_ctx type

) g

Where reg is acontext registry (of IT_Bus: :ContextRegistry type).

Thefollowing example shows how to insert a ContextDataType instance into the
userdata_ctx_name request context.

// C++

IT Bus::AnyType* any_ userdata = request_contexts->get_context (
userdata_ctx_name, // The name of the UserData context.
true // The create_if not_ found flag

) g

ContextDataType* ctx_data =
dynamic_cast<ContextDataType*> (any_userdata) ;
ctx_data->set... () // Initialize the context data.

The following example shows how to extract the ContextDataType instance
from the userdata_ctx_name request context.

// C++
IT Bus::AnyType* any userdata = request_contexts->get_context (
userdata_ctx_name // The name of the UserData context.

) g

ContextDataType* ctx_data =
dynamic_cast<ContextDataType*> (any_userdata) ;
cout << ctx _data->get... () // Initialize the context data.

Reading and Writing Context Data

Reading and Writing Custom Types

Overview Sometimesit is necessary to store a custom datatypein acontext—that is, adata
type that does not inherit from IT_Bus: : AsnyType. Using a non-serializable
context, you can store instances of any classin a context.

Note: Non-serializable contexts are not streamable, however. Y ou can only
set and get thiskind of context locally, from within the same process.

ContextT template The contextT<T> template classis used to hold areference to an arbitrary C++
type. The contextT<T> type is needed to wrap T instances before they can be
added to a context container.

Example 88: The ContextT Template Class

// C++
namespace IT Bus {
template<class T>
class ContextT : public Context
{
public:
ContextT (T& context) : m_context (context)
{
// complete
}

T& get_data() {
return m context;

}

private:
T& m context;
5o
197

269

CHAPTER 7 | Artix Contexts

Inserting a custom typeinto a Given a user-defined type, customClass, and aregistered custom context name,
context CUSTOM_CTX_NAME, the following example shows how to use the contextT<>
template to store a customClass instance in arequest context container.

// C++
using namespace IT Bus;

typedef ContextT<CustomClass> CustomClassContext;

CustomClass data;
CustomClassContext ctx(data) ;
request_contexts->add_context (CUSTOM _CTX NAME, ctx);

Extracting a custom type from a The following example shows how to extract a customClass instance from the

context request context container. The code that extracts the context must be colocated
with the code that insertsit (in other words, thistype of context cannot be sent in
a header).

// C++
using namespace IT Bus;

typedef ContextT<CustomClass> CustomClassContext;

Context * ctx =
request_contexts->get_context_data (CUSTOM_CTX_NAME) ;

CustomClassContext* custom ctx =
dynamic_cast<CustomClassContext*> (result_ctx) ;

CustomClass& custom = custom ctx->get_datal() ;

270

Reading and Writing Context Data

Accessing the server operation For a practical application of non-serializable contexts, consider Example 89

context which shows you how to access an IT_Bus: : ServerOperation instance in the
context of an invocation on the server side (in other words, this code could
appear in the body of a servant function).

Example 89: Accessing the Server Operation Context

// C++

#include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus/operation.h>

using namespace IT Bus;
using namespace IT ContextAttributes;

ContextRegistry* context_registry =
bus->get_context_registry();

// Obtain a reference to the ContextCurrent.
ContextCurrent& context_current =
context_registry->get_current () ;

// Obtain a pointer to the RequestContextContainer.
ContextContainer* context container =
context_current.request_contexts() ;

ServerOperation * operation = 0;
// Users can now access context derived from Context class.
Context* context_data =

context_container->get_context_data (SERVER_OPERATION_CONTEXT) ;
// Need to cast to appropriate context type.
ServerOperationContext* operation =

dynamic_cast<ServerOperationContext*> (context_data) ;

// ServerOperation is wrapped in a template ContextT class.
ServerOperation& server_op = operation->get_datal();

271

CHAPTER 7 | Artix Contexts

Durability of Context Settings

Overview

Client side durability

Server side durability

272

When you set a context value using either get_context () Or add_context (),
the context valueis not valid indefinitely. The general rule isthat acontext value
isvalid only for the duration of an invocation. There are two cases two consider,
asfollows:

® Client side durability.

® Server side durability.

Ontheclient side, the general ruleisthat a context value affects only the next
invocation in the current thread. At the end of theinvocation, Artix clears the
context value. Hence, it is generally necessary to reset the context value before
the making the next invocation.

An exception to thisrule is demonstrated by the context types derived from the
http-conf sthema (HTTP_CLIENT OUTGOING_CONTEXTS and
HTTP_CLIENT_INCOMING_CONTEXTS). These context values are valid over
multiple invocations from the current thread.

On the server side, the general ruleisthat context values are set at the start of an
operation invocation (when the server receives arequest message) and cleared at
the end of the invocation. Context values are thus available to the servant code
only for the duration of the invocation.

An exception to thisruleis the value of an endpoint URL, which can be
modified outside of an invocation context by calling the seturw () function on a
server configuration context. For details of how to do this, see “ Setting a
Configuration Context on the Server Side” on page 281.

Context Example

Context Example

Overview This section shows how to modify the settingsin a context, using the http-conf
schema as an example. The http-conf : clientType context type enablesyou to
modify the client port settings on aHTTP port and the http-conf : serverType
context type enables you to modify server endpoint settings.

In this section This section contains the following subsections:
HTTP-Conf Schema page 274
Setting a Request Context on the Client Side page 278
Setting a Configuration Context on the Server Side page 281

273

CHAPTER 7 | Artix Contexts

HTTP-Conf Schema

Overview

http-conf schemafile

This subsection provides an overview of the http-conf schema, which provides
the definitions of the http-conf configuration context types. Using the
http-conf schema, you can configure the properties of aHTTP port either in a
WSDL contract or by programming. The C++ mapping of the http-conf
contexts are already generated for you—all that you need to do isinclude the
relevant header filein your code and link with the relevant library.

The http-conf schemadefines WSDL extension elements for configuring a
HTTP port in Artix. The http-conf schemais defined in the following file:

ArtixInstall Dir /cxx_java/schemas/http-conf .xsd

http-conf:clientType XML
definition

274

Example 90 gives an extract from the http-conf schema, showing part of the
definition of the http-conf:clientType complex type.

Example 90: Definition of the http-conf:clientType Type

<xs:schema
targetNamespace="http://schemas.iona.com/transports/http/conf
iguration"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http-conf="http://schemas.iona.com/transports/http/conf
iguration"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import namespace="http://schemas.xmlsoap.org/wsdl/"/>

<xs:complexType name="clientType">
<Xs:complexContent>
<xs:extension base="wsdl:tExtensibilityElement">
<xs:attribute name="SendTimeout"
type="http-conf:timeIntervalType"
use="optional" default="30000"/>

<xs:attribute name="ReceiveTimeout"
type="http-conf:timeIntervalType"
use="optional"
default="30000"/>

http-conf timeout attributes

http-conf:clientType C++
mapping

Context Example

Example 90: Definition of the http-conf: clientType Type

</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:schema>

The http-conf:clientType type defines two timeout attributes, as follows:

® sendTimeout—(in milliseconds) the maximum amount of time aclient
will spend attempting to contact a remote server.

® ReceiveTimeout—(in milliseconds) for synchronous cals, the maximum
amount of time aclient will wait for a server response.

The http-conf:clientType port type mapsto the

IT ContextAttributes::clientType C++ class, asshownin Example 91. The
SendTimeout and ReceiveTimeout attributes each map to get and set functions.
Because these are optional attributes, the get functions return a pointer. A NULL
return value indicates that the attribute is not set.

Example91: C++ Mapping of http-conf:clientType Type
// C++

namespace IT ContextAttributes
{
class clientType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType
{
public:

IT Bus::Int * getSendTimeout () ;

const IT Bus::Int * getSendTimeout () const;
void setSendTimeout (const IT Bus::Int * val);
void setSendTimeout (const IT Bus::Int & val);

IT Bus::Int * getReceiveTimeout () ;

const IT Bus::Int * getReceiveTimeout () const;
void setReceiveTimeout (const IT Bus::Int * val);
void setReceiveTimeout (const IT Bus::Int & val);

275

CHAPTER 7 | Artix Contexts

Example 91: C++ Mapping of http-conf:clientType Type

http-conf:server Type C++ The http-conf : serverType port type maps to the
mapping IT ContextAttributes: :serverType C++ class, as shown in Example 92.

In thisexample, we are only interested in the functions for setting and getting the
endpoint URL, setURL () and getURL (). Using these functions, you can
examine or modify the host and IP port where the server listens for incoming
client connections.

Example 92: C++ Mapping of the http-conf: server Type Type

// C++

namespace IT ContextAttributes {
class IT CONTEXT ATTRIBUTE_API serverType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType
{
public:

IT Bus::String * getURL() ;

const IT Bus::String * getURL() const;
void setURL(const IT Bus::String * val);
void setURL(const IT Bus::String & val);

Header and library files One of the pre-requisites for programmatically modifying the http-conf port
configuration isto include the following header filein your C++ code:

it_bus_pdk/context_attrs/http_conf_ xsdTypes.h
Y ou must also link your client application with the following library file:

Windows
ArtixInstallDir /1ib/it_context_attribute.lib

UNIX
ArtixInstallDir /1ib/it_context_attribute.so

276

Pre-registered context type names

Context Example

ArtixInstalIDir /1ib/it_context_attribute.sl
ArtixInstalIDir /1ib/it_context_attribute.a

The http-conf:clientType context type for outgoing datais pre-registered
with the context registry under the following QName constant:

IT_ContextAttributes: :HTTP_CLIENT OUTGOING_CONTEXTS

The http-conf: serverType context type for outgoing data is pre-registered
with the context registry under the following QName constant:

IT_ContextAttributes: :HTTP_SERVER OUTGOING_CONTEXTS

277

CHAPTER 7 | Artix Contexts

Setting a Request Context on the Client Side

Overview This subsection describes how to set attributes on the ht tp-conf: clientType
context (corresponds to the attributes settable on the <http-conf:client>
WSDL port extensor). The http-conf:clientType context configures
client-side attributes on the HT TP transport plug-in.

Client main function Example 93 shows sample code from a client main function, which shows how
to initialize http-conf: clientType context datain the current thread.

Example 93: Client Main Function Setting a Request Context

// C++

#include <it_bus/bus.h>
#include <it_ bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
1 #include <it_bus_pdk/context.h>
2 #include <it_bus_pdk/context_attrs/http conf_ xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

int
main (int argc, char* argvl[])
{

try

{

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

3 ContextRegistry* context_ registry =
bus->get_context_registry();

// Obtain a reference to the ContextCurrent

4 ContextCurrent& context_current =
context_registry->get_current () ;

278

Context Example

Example 93: Client Main Function Setting a Request Context

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes::HTTP_CLIENT OUTGOING_CONTEXTS,
true

)7

// Cast the context into a clientType object
clientType* http_client_config =
dynamic_cast<clientType*> (info) ;

// Modify the Send/Receive timeouts
http_client_config->setSendTimeout (2000) ;
http_client_config->setReceiveTimeout (600000) ;

}
catch(IT Bus::Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message()
<< endl;
return -1;

}

return 0;

The preceding code example can be explained as follows:

1. Theit_bus_pdk/context.h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry,
. IT Bus::ContextContainer,
* IT Bus::ContextCurrent.

2. Thenttp_conf_xsdTypes.h header declares the context data types
generated from the http-conf schema.

3. Obtainareferencetothe IT_Bus: : ContextRegistry object, which isused
to register contexts with the Bus.

279

CHAPTER 7 | Artix Contexts

280

Call IT_Bus: :ContextRegistry: :get_current () to obtain areferenceto
the IT_Bus: :ContextCurrent object. The current object provides access
to the context objects associated with the current thread.

Call IT Bus::ContextContainer: :request_contexts () to obtain an

IT Bus::ContextContainer object that contains all of the contexts for
requests originating from the current thread.

TheIT Bus::ContextContainer: :get_context () functioniscalled with
its second parameter set to true, indicating that a context with that name
should be created if none already exists.

The IT_Bus: : AnyType classisthe base typefor all complex typesin Artix.
In this case, you can cast the anyType instance, info, to its derived type,
clientType.

Y ou can now modify the send and receive timeouts on the client port using
setSendTimeout () and setReceiveTimeout (). These timeoutswill be
applied to any subsequent calls issuing from the current thread.

Context Example

Setting a Configuration Context on the Server Side

Overview This subsection describes how to set attributes on the ht tp-conf : serverType
context (corresponds to the attributes settable on the <http-conf: server>
WSDL port extensor). The http-conf: serverType context configures
server-side attributes on the HTTP transport plug-in.

Server main function Example 94 shows sample code from a server main function, which shows how
toinitialize http-conf : serverType configuration context data.

Example 94: Server Main Function Setting a Configuration Context

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
1 #include <it_bus_pdk/context.h>
2 #include <it_bus_pdk/context_attrs/http_ conf_ xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

int
main(int argc, char* argvl[])
{

try

{

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

3 IT Bus::QName service_name (

"SOAPService",
"http://www.iona.com/hello_world soap_ http"

) g

4 ContextRegistry* context_registry =
bus->get_context_registry() ;

281

CHAPTER 7 | Artix Contexts

Example 94: Server Main Function Setting a Configuration Context

5 ContextContainer * context_container =
context_registry->get_configuration context (
service_name,
"SoapPort",
true

// Obtain a reference to the context

6 AnyType* info = context_container->get_context (
IT ContextAttributes: :HTTP_SERVER OUTGOING_CONTEXTS,
true

)i

// Cast the context into a serverType object
7 serverType* http_server_config =
dynamic_cast<serverType*> (info) ;

// Modify the endpoint URL
8 http_server config->setURL ("http://localhost:63278") ;

GreeterImpl servant (bus) ;
bus->register_servant (
servant,
"../../etc/hello_world.wsdl",
service_name
);
}
catch (IT Bus: :Exception& e)
{

cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;

return -1;

}

return 0;

The preceding code example can be explained as follows:
1. Theit_bus_pdk/context.h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry,
* IT_Bus::ContextContainer,

. IT Bus::ContextCurrent.

282

Context Example

The http_conf_xsdTypes . h header declares the context data types
generated from the http-conf schema.

This service_name isthe QName of the SOAP service featured in the
hello_world_soap_http demonstration (in

samples/basic /hello_world_soap_http) .

Obtain areferencetothe IT_Bus: : ContextRegistry object, whichisused
to register contexts with the Bus.

The IT Bus: :ContextContainer Object returned by

get_configuration context () holds configuration datathat is used
exclusively by the specified endpoint (that is, the soapport port in the
SOAPService Service).

TheIT Bus::ContextContainer: :get_context () functioniscalled with
its second parameter set to true, indicating that a context with that name
should be created if none already exists.

The IT_Bus: : AnyType classisthe base typefor al complex typesin Artix.
In this case, you can cast the anyType instance, info, to its derived type,
serverType.

Y ou can now modify the URL used by the soapport port by calling the
setURL () function.

283

CHAPTER 7 | Artix Contexts

SOAP Header Contexts

Overview

In this section

284

This section provides a detailed discussion of the custom SOAP header
demonstration, which shows you how to propagate context datain a SOAP
header.

This section contains the following subsections:

Custom SOAP Header Demonstration page 285
SOAP Header Context Schema page 287
Declaring the SOAP Header Explicitly page 289
Client Main Function page 292
Server Main Function page 297
Service Implementation page 300

SOAP Header Contexts

Custom SOAP Header Demonstration

Overview

The examples in this section are based on the custom SOAP header
demonstration, which islocated in the following Artix directory:

ArtixInstalIDir /samples/advanced/custom_soap_header
Figure 26 shows an overview of the custom SOAP header demonstration,
showing how the client piggybacks context data along with an invocation
request that isinvoked on the sayHi operation.

Figure 26: Overview of the Custom SOAP Header Demonstration

Artix Client

@ Register context

@ Initialize context data

@ sayHi("...")

Artix Server

@ Register context

B
Context
. .
1 1
1 1
L, L,
! | |
Helloworld WSDL 1| wsbL i
Contract — | 1
[— 1 1
S 1 1
' '
1
WSDL File ! XSDFile |
1 1

[[Context |

SOAPHeaderInfo

e Schema ~a

» Serverimpl

®
™ oo

WSDL

Helloworld

Contract
e

WSDL File

285

CHAPTER 7 | Artix Contexts

Transmission of context data

Helloworld WSDL contract

SOAPHeader I nfo schema

286

Asillustrated in Figure 26, SOAP context datais transmitted as follows:

1

2.
3.
4

The client registers the context type, soaPHeaderInfo, with the Bus.
The client initializes the context data instance.
The client invokes the sayHi () operation on the server.

Asthe server starts up, it registers the soapHeaderInfo context type with
the Bus.

When the say#i () operation request arrives on the server side, the
sayHi () operation implementation extracts the context data from the
request.

The Helloworld WSDL contract defines the contract implemented by the server
inthisdemonstration. In particular, the Helloworld contract definesthe Greeter
port type containing the saytii WSDL operation.

The soarHeaderInfo schema (in the
samples/advanced/custom_soap_header/etc/contextTypes . xsd fil e)
defines the custom data type used as the context data type. This schemais
specific to the custom SOAP header demonstration.

SOAP Header Contexts

SOAP Header Context Schema

Overview

SOAPHeaderInfo XML
declaration

Target namespace

This subsection describes how to define an XML schemafor a context type. In
this example, the soarHeaderInfo type isdeclared in an XML schema. The
SoaPHeaderInfo typeisthen used by the custom SOAP header demonstration to
send custom data in a SOAP header.

Example 95 shows the schema for the soarHeaderInfo type, which is defined
specifically for the custom SOAP header demonstration to carry some sample
datain a SOAP header. Note that Example 95 is a pure schemadeclaration, not a
WSDL declaration.

Example 95: XML Schema for the SOAPHeaderInfo Context Type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
targetNamespace="http://schemas.iona.com/types/context"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:complexType name="SOAPHeaderInfo">
<xs:annotation>
<xs :documentation>
Content to be added to a SOAP header
</xs:documentation>
</xs:annotation>
<Xs:sequence>
<xs:element name="originator" type="xs:string"/>
<xs:element name="message" type="xs:string"/>
</xXs:sequence>
</xs:complexType>
</xs:schema>

The soapHeaderInfo complex type defines two member elements, as follows:
® originator—holds an arbitrary client identifier.
®* message—holdsan arbitrary example message.

Y ou can use any target namespace for a context schema (as long as it does not
clash with an existing namespace). This demonstration uses the following target
namespace:

287

CHAPTER 7 | Artix Contexts

Compiling the SOAPHeader I nfo
schema

SOAPHeaderInfo C++ mapping

288

http://schemas.iona.com/types/context

To compilethe soarHeaderInfo schema, invoke the wsdltocpp compiler utility
at the command line, as follows:

wsdltocpp contextTypes.xsd

Where contextTypes . xsd is afile containing the XML schemafrom
Example 95. This command generates the following C++ stub files:

contextTypes_xsdTypes.h
contextTypes_xsdTypesFactory.h
contextTypes_xsdTypes .CcxXx
contextTypes_xsdTypesFactory.cxx

Example 96 shows how the schema from Example 95 on page 287 mapsto C++,
to give the soap_interceptor: : SOAPHeaderInfo C++ class.

Example 96: C++ Mapping of the SOAPHeaderInfo Context Type

// C++

namespace soap_interceptor

{

class SOAPHeaderInfo : public IT Bus::SequenceComplexType
{
public:
static const IT Bus::QName type_name;

SOAPHeaderInfo() ;
SOAPHeaderInfo (const SOAPHeaderInfo & copy) ;
virtual ~SOAPHeaderInfo();

IT Bus::String & getoriginator();
const IT Bus::String & getoriginator() const;
void setoriginator(const IT Bus::String & val);

IT Bus::String & getmessage() ;
const IT Bus::String & getmessage() const;
void setmessage(const IT Bus::String & val);

SOAP Header Contexts

Declaring the SOAP Header Explicitly

Overview

Demonstration code

SOAP header declaration

There are two different approaches you can take with SOAP headers:

° Implicit SOAP header—(the approach taken in Example 95 on page 287)
in this case, you need only declare the schema type that holds the header
data. By registering the type as a SOAP header context, you enable an
Artix application to send and receive SOAP headers of thistype.

* Explicit SOAP header—in this case, you must modify the original WSDL
contract and explicitly declare which operations can send and receive the
header. This approach might be useful for certain interoperability
scenarios.

This subsection briefly describes how to implement the second approach,
explicitly declaring the SOAP header.

Note: Theimplicit approach is also consistent with the SOAP specification,
which does not require you to declare SOAP headers explicitly in WSDL.

The code for this demonstration is located in the following directory:

ArtixInstallDir/cxx_Jjava/samples/advanced/soap_header_binding

Example 97 shows how to declare a SOAP header, of SOAPHeaderData type,
explicitly inaWSDL contract.

Example 97: SOAP Header Declared in the WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorld"
targetNamespace="http://www.iona.com/soap_header"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:tns="http://www.iona.com/soap_header"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<types>
<schema targetNamespace="http://www.iona.com/soap_header"

289

CHAPTER 7 | Artix Contexts

Example 97: SOAP Header Declared in the WSDL Contract

xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="responseType" type="xsd:string"/>
<element name="requestType" type="xsd:string"/>
1 <complexType name="SOAPHeaderData">
<sequence>
<element name="originator" type="xsd:string"/>
<element name="message" type="xsd:string"/>
</sequence>
</complexType>
2 <element name="SOAPHeaderInfo"
type="tns:SOAPHeaderData"/>
</schema>
</types>

<message name="sayHiRequest"/>
<message name="sayHiResponse">
<part element="tns:responseType" name="theResponse"/>

</message>
3 <message name="header message">
<part element="tns:SOAPHeaderInfo" name="header_ info"/>
</message>

<portType name="Greeter">
<operation name="sayHi">
<input message="tns:sayHiRequest"
name="sayHiRequest" />
<output message="tns:sayHiResponse"
name="sayHiResponse" />
</operation>
</portType>
<binding name="Greeter_ SOAPBinding" type="tns:Greeter">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="sayHi">
<soap:operation soapAction="" style="document"/>
<input name="sayHiRequest">
<soap:body use="literal"/>
4 <soap:header message="tns:header message"
part="header_info"
use="literal"/>
</input>
<output name="sayHiResponse">

290

SOAP Header Contexts

Example 97: SOAP Header Declared in the WSDL Contract

<soap:body use="literal"/>
<soap:header message="tns:header message"
part="header_info"
use="literal"/>
</output>
</operation>

</binding>

</definitions>

The preceding WSDL contract can be explained as follows:

1

This example declares a header of type soaPHeaderData (thisexampleis
different from the header type declared in Example 95 on page 287). The
SOAPHeaderData type contains two string fields, originator and
message.

Y ou must declare an element to contain the header data. In this case, the
header is transmitted as <soAPHeaderInfo> ... </SOAPHeaderInfo>.

Y ou must declare amessage element for the header. In this case, the
message QName is tns :header_message and the part nameis
header_info. These correspond to the values that would be passed to the
last two arguments of the

IT Bus::ContextRegistry::register context () function.

In the scope of the binding element, you should declare which operations
include the soaPHeaderData header, as shown. The soap:header element
references the message QName, tns:header_message, and the part name,

header_info.

291

CHAPTER 7 | Artix Contexts

Client Main Function

Overview

Client main function

292

This subsection discusses the client for the custom SOAP header demonstration.
Thisclient is designed to send a custom header, of soarHeaderInfo type, every
time it invokes an operation on the Greeter port type.

To enable the sending of context data, the client performs two fundamental

tasks, asfollows:

1. Register a context type with the context registry—registering the context
typeisaprerequisite for sending context datain arequest. By registering
the context type with the Bus, you give the Bus instance the capability to
marshal and unmarshal context data of that type.

2. Initialize the context data in the ContextCurrent object—before invoking
any operations, the client obtains an instance of the header context data
from an IT_Bus: :ContextCurrent object. After initializing the header
context data, any operations invoked from the current thread will include
the header context data.

Example 98 shows sampl e code from the client main function, which shows how
to register a context type and initialize header context datafor the current thread.

Example 98: Client Main Function Setting a SOAP Context

// C++
// GreeterClientSample.cxx File

#include <it_bus/bus.h>
#include <it_bus/exception.h>

#include <it_cal/iostream.h>

// Include header files related to the soap context
#include <it_bus_pdk/context.h>

// Include header files representing the soap header content
#include "contextTypes_xsdTypes.h"
#include "contextTypes_xsdTypesFactory.h"

#include "GreeterClient.h"

IT_USING_NAMESPACE_STD

SOAP Header Contexts

Example 98: Client Main Function Setting a SOAP Context

using namespace soap_interceptor;
using namespace IT Bus;

int
main(int argc, char* argvl[])
{
try
{
IT Bus::Bus_var bus = IT Bus::init(argc, argv);
GreeterClient client;

ContextRegistry* context_ registry =
bus->get_context_registry();

// Create QName objects needed to define a context
const QName principal_ctx_name (

nn
’

"SOAPHeaderInfo",

);

const QName principal_ctx type (
"SOAPHeaderInfo",
"http://schemas.iona.com/types/context"

) g

const QName principal_message name (
"soap_header",
"header_ content",
"http://schemas.iona.com/custom_header"

) g

const String principal_part_name ("header_info") ;

// Register the context with the ContextRegistry
context_registry->register_ context (
principal_ctx_name,
principal_ctx_type,
principal_message_name,
principal_part_name
) g

// Obtain a reference to the ContextCurrent

ContextCurrent& context current =
context_registry->get_current () ;

293

CHAPTER 7 | Artix Contexts

Example 98: Client Main Function Setting a SOAP Context

// Obtain a pointer to the RequestContextContainer
10 ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context
1 AnyType* info = context_container->get_context (
principal_ctx_name,
true

)i

// Cast the context into a SOAPHeaderInfo object
12 SOAPHeaderInfo* header info =
dynamic_cast<SOAPHeaderInfo*> (info) ;

// Create the content to be added to the header
const String originator ("Progress Software") ;
const String message ("Artix is Powerful!");

// Add the header content
header_info->setoriginator (originator) ;
header_info->setmessage (message) ;

// Invoke the Web service business methods
String theResponse;

13 client.sayHi (theResponse) ;
cout << "sayHi response: " << theResponse << endl;
}
catch (IT Bus: :Exception& e)
{

cout << endl << "Error : Unexpected error occured!"
<< endl << e.message()
<< endl;

return -1;

}

return 0;

The preceding code example can be explained as follows:

1. Theit_bus_pdk/context.h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry,

. IT Bus::ContextContainer,

294

10.

11.

SOAP Header Contexts

3 IT Bus: :ContextCurrent.

The contextTypes_xsdTypes.h loca header file contains the declaration
of the soaPHeaderInfo class, which has been generated from the context
schema (see Example 95 on page 287).

Obtain areferencetothe IT_Bus: : ContextRegistry object, whichisused
to register contexts with the Bus.

The QName with local name, soaPHeaderInfo, iSacontext name that
identifies the context uniquely. Although the context nameis specified asa
QName, it does not refer to an XML element. Y ou can choose any unique
QName as the context name.

The QName with namespace URI,
http://schemas.iona.com/types/context, and loca part,
SoaPHeaderInfo, identifies the context type from Example 95 on
page 287.

The QName with namespace URI,

http://schemas.iona.com/custom header, and loca part,
header_content, corresponds to the message attribute of a soap:header
element. The valueis currently ignored (but should not clash with any
existing message QNames).

The header_info string value identifies the part of the SOAP header that
holds the context data. It corresponds to the part attribute of a
soap:header element. The valueis currently ignored.

Thecall to register_context () tellsthe Artix Bus that the
SoAaPHeaderInfo type will be used to send context datain SOAP headers.
After you have registered the context, the Busis prepared to marshal the
context data (if any) into a SOAP header.

Call IT_Bus: :ContextRegistry: :get_current () to obtain areferenceto
the IT Bus: :ContextCurrent object. The current object provides access
to all context objects associated with the current thread.

Call IT_Bus: :ContextContainer: :request_contexts () t0 obtain an

IT Bus::ContextContainer object that containsal of the contexts for
requests originating from the current thread.

TheIT Bus::ContextContainer: :get_context () functioniscalled with
its second parameter set to true, indicating that a context with that name
should be created if none already exists.

295

CHAPTER 7 | Artix Contexts

296

12. The1T_Bus: :AnyType classisthe base typefor all complex typesin Artix.

13.

In this case, you can cast the anyType instance, info, to its derived type,
SOAPHeaderInfo.

By setting the originator and message elements of this soaPHeaderInfo
object, you are effectively fixing the context datafor all operationsinvoked
from this thread.

When you invokethe sayHi () operation, the context dataisincluded in the
SOAP header. From this point on, any WSDL operation invoked from the
current thread will include the soapHeaderInfo context datain its SOAP
header.

SOAP Header Contexts

Server Main Function

Overview

Server main function

This subsection discusses the main function for the server in the custom SOAP
header demonstration. In addition to the usual boilerplate code for an Artix
server (that is, registering aservant and calling IT_Bus: :run()), thisserver also
registers a context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the
capability to unmarshal context data of that type. This unmarshalling capability
is then exploited in the implementation of the sayHi () operation (see

Example 100 on page 300).

Example 99 shows sample code from the server main function, which registers
the soaPHeaderInfo context type and then creates and registers a GreeterImpl
servant object.

Example 99: Server Main Function Registering a SOAP Context

// C++

#include <it_bus/bus.h>

#include <it_bus/exception.h>
#include <it_bus/fault_ exception.h>
#include <it_cal/iostream.h>

#include <it_bus_pdk/context.h>
#include "GreeterImpl.h"
IT USING_NAMESPACE_STD

using namespace soap_interceptor;
using namespace IT_Bus;

int
main(int argc, char* argv(])
{

try

{

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

ContextRegistry* context_registry =
bus->get_context_registry();

297

CHAPTER 7 | Artix Contexts

Example 99: Server Main Function Registering a SOAP Context

3 const QName principal_ctx_name (
"SOAPHeaderInfo",
)i
4 const QName principal_ctx type (
"SéAPHeaderInfo",

"http://schemas.iona.com/types/context"
) g
5 const QName principal_message name (
"soap_header",
"header_ content",
"http://schemas.iona.com/custom_header"
)7
6 const String principal_part_name ("header_info") ;

7 context_registry->register context (
principal_ctx name,
principal_ctx_type,
principal_message_name,
principal_part_name

);
GreeterImpl servant (bus) ;

IT Bus::QName service_name("", "SOAPService",
"http://www.iona.com/custom_soap_interceptor") ;

bus->register_servant (
servant,
"../../etc/hello_world.wsdl",
service_name

¥

IT Bus::run();

}

catch (IT Bus: :Exception& e)

{
cout << "Error occurred: " << e.message() << endl;
return -1;

}

return 0;

298

SOAP Header Contexts

The preceding code example can be explained as follows:

1

The it_bus_pdk/context .h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry,
. IT Bus::ContextContainer,
3 IT Bus::ContextCurrent.

Obtain areferenceto the IT_Bus: : ContextRegistry object, which isused
to register contexts with the Bus.

The QName with local name, soaPHeaderInfo, iSa context name that
identifies the context uniquely. Although the context name s specified asa
QName, it does not refer to an XML element. Y ou can choose any unique
QName as the context name.

The QName with namespace URI,
http://schemas.iona.com/types/context, and loca part,
SoAPHeaderInfo, identifies the context type from Example 95 on

page 287.

The QName with namespace URI,

http://schemas.iona.com/custom header, and loca part,
header_content, corresponds to the message attribute of a soap:header
element. Thevalueis currently ignored (but should not clash with any
existing message QNames).

Theheader_info string value identifies the part of the SOAP header that
holds the context data. It corresponds to the part attribute of a
<soap:header> attribute. The value is currently ignored.

Thecall to register_context () tellsthe Artix Bus that the
SoAPHeaderInfo type will be used to send context datain SOAP headers.
After you have registered the context, the Busis prepared to marshal the
context data (if any) into a SOAP header.

299

CHAPTER 7 | Artix Contexts

Service | mplementation

Overview

Implementation of the sayHi
operation

300

This subsection discusses the implementation of the Greeter port type, which
maps to the GreeterImpl Sservant classin C++.

In the custom SOAP header demonstration, the GreeterImpl: : sayHi ()
operation is modified to peek at the context data accompanying the invocation.
To access the context data, you need to get access to a context current object,
which encapsulates al of the context data received from the client.

Example 100 shows the implementation of the sayHi () operation from the
GreeterImpl Servant class. The sayHi () operation implementation uses the
context APl to access the context data received from the client.

Example 100: sayHi Operation Accessing a SOAP Context

// C++

void
GreeterImpl: :sayHi (
IT Bus::String &theResponse
) IT _THROW_DECL((IT_Bus: :Exception))
{
cout << "sayHi invoked" << endl;
theResponse = "Hello from Artix";

// Obtain a pointer to the bus
Bus_var bus = Bus::create_reference() ;

ContextRegistry* context_registry =
bus->get_context_registry () ;

// Create QName objects needed to define a context
const QName principal_ctx name (

o
’

"SOAPHeaderInfo",

) g

// Obtain a reference to the ContextCurrent
ContextCurrent& context_ current =
context_registry->get_current () ;

SOAP Header Contexts

Example 100: sayHi Operation Accessing a SOAP Context

// Obtain a pointer to the RequestContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
principal_ctx_name

):

// Cast the context into a SOAPHeaderInfo object
SOAPHeaderInfo* header_info =
dynamic_cast<SOAPHeaderInfo*> (info) ;

// Extract the application specific SOAP header information
String& originator = header_ info->getoriginator();
String& message = header_info->getmessage() ;

cout << "SOAP Header originator = " << originator.c_str() <<
endl;
cout << "SOAP Header message = " << message.c_str() << endl;

The preceding code example can be explained as follows:

1. TheIT Bus::ContextRegistry Object, context registry, provides
accessto all of the objects associated with contexts.

2. The QName with local hame, soaPHeaderInfo, isthe name of the context
to be extracted from the incoming request message.

3. Call IT_Bus: :ContextRegistry: :get_current () to obtain the
IT_Bus: :ContextCurrent object for the current thread.

4. Cdl IT_Bus: :ContextCurrent: :request_contexts () to obtain the
IT Bus::ContextContainer Object containing all of theincoming request
contexts.

Note: Thisisthe same object that is used on the client side to hold all of
the outgoing request contexts.

5. Toretrieve a specific context from the request context container, pass the
context’s name into the IT_Bus: :ContextContainer: :get_context ()
function.

301

CHAPTER 7 | Artix Contexts

6. The1T_Bus::AnyType classisthe basetypefor all typesin Artix. Inthis
example, you can cast the anyType instance, info, to its derived type,
SOAPHeaderInfo.

7. You can now access the context data by calling the accessors for the
originator and message €lements, getoriginator () and getmessage ().

302

CORBA Header Contexts

CORBA Header Contexts

Overview This section describes how to propagate context datain a CORBA header,
giving code examples for a consumer and a service provider.

In this section This section contains the following subsections:
Custom CORBA Header Scenario page 304
CORBA Service Contexts page 306
Configuration Prerequisites page 309
Client Main Function page 311
Server Main Function page 315
Service Implementation page 318

303

CHAPTER 7 | Artix Contexts

Custom CORBA Header Scenario

Overview

Transmission of context data

304

Figure 27 shows an overview of the custom CORBA header scenario, showing
how the client piggybacks context data along with an invocation request that is
invoked on the sayHi operation.

Figure 27: Overview of the Custom CORBA Header Scenario

Artix Client Artix Server
@ Register context @ Register context
@ Initialize context data @
ayHil) » Serverimpl
[[Context |
v ®
e
i i
1 1
1 1
| |
Helloworld WSDL IDL WSDL HelloWorld
Contract ~ = idltowsdl : idltowsdl | == /Contract
WSDL File IDL File WSDL File

2
3.
4

Asillustrated in Figure 27, CORBA context datais transmitted as follows:
1.

The client registers the context type, PrincipalInfo, with the Bus.
The client initializes the context data instance.
The client invokes the sayHi () operation on the server.

Asthe server starts up, it registersthe principalInfo context type with
the Bus.

When the sayHi () operation request arrives on the server side, the
sayHi () operation implementation extracts the context data from the
request.

CORBA Header Contexts

Helloworld IDL contract Because this client-server application uses the CORBA binding, the Helloworld
IDL contract is originally written in OMG IDL, not WSDL. The following
entities are defined in the IDL contract:
®* Helloworldinterface—definestheinterfaceto the serviceimplemented on
the server side (defining the IDL operations: sayHi and greetMe).

. PrincipalInfo Struct—is used as the context data type. At runtime, an
instance of principalInfo typeistransmitted in the CORBA header (ina
GIOP service context). See Example 101 on page 307 for details.

Helloworld WSDL contract The HelloWorld WSDL contract is generated from the OMG IDL contract by
invoking the Artix idltowsdl command-line tool.

Request and reply contexts Artix supports the sending of context data both in request messages and in reply
messages. The example scenario described here, however, only demonstrates
how to send context datain CORBA requests.

305

CHAPTER 7 | Artix Contexts

CORBA Service Contexts

Overview

Selecting a service context 1D

306

In the CORBA standard, the mechanism for sending header datais defined by

the Genera Inter-ORB Protocol (GIOP). Y ou can send custom header datain a

GIOP header by encapsulating your datainside a GIOP service context. A GIOP

service context consists of the following parts:

® Servicecontext ID—a 32-bit integer ID that uniquely identifies the header
type.

® Service context data—the custom data that you want to send. Formally, the
service context datais an opague block of binary data (preceded by a 32-bit
integer, which gives the length of the block). In practice, however, itis
usua to encode the datain this block using the Common Data
Representation (CDR), which is part of the GIOP standard.

Y ou must exercise care when selecting a service context ID, to ensure that it
does not clash with the I Ds defined by the OMG or other organizations. To
avoid clashing I Ds, the OMG allocates I D rangesin tranches of length 4096. The
lowest range of 1Ds, 0-4095, isreserved for use by the OMG. To select aservice
context ID that is guaranteed not to clash with IDs used by other organizations,
proceed as follows:

1. Apply tothe OMG (www.omg.org), requesting them to allocate atranch of
4096 service context IDs. The OMG will allocate you a 20-bit vendor
service context codeset ID (V SCID), which defines the 20 high-order bits
of the 32-bit service context ID.

For example, Progress has the VSCID, 0x49545xxx.

2. Thelow-order 12 hits define the rest of the service context ID (giving a
maximum of 4096 distinct IDs). Y ou are responsible for allocating the
low-order bits of the ID within your organzation.

www.omg.org

Defining service context data

Converting the service context
datatypeto WSDL

CORBA Header Contexts

Normally, you define a service context data type in the OMG IDL language.
Thisisthe logical approach to use, because service contexts are conventionally
encoded using CDR, which maps OMG IDL data types to binary format.

For example, in the custom CORBA header scenario, the service context data
type, PrincipalInfo, isdefined in OMG IDL asfollows:

Example 101: Principallnfo Data Type Defined in OMG IDL

// OMG IDL
struct PrincipalInfo
{
string username;
string password;

¥

Where the OMG IDL struct typeisanalogousto an XML schema sequence
type.

In order to manipulate the service context data from within an Artix program, it
is necessary to convert the service context data type (which is defined in OMG
IDL) to WSDL.

To perform the IDL-to-WSDL conversion, invoke the Artix idltowsdl
command-line utility as follows:

idltowsdl HelloWorld.idl

Where the HelloWorld. idl file contains the definition of the principalinfo
struct type (along with definitions of other IDL data types and interfaces). After
performing the conversion, the output file, Helloworld.wsdl, containsthe
following definitions:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Generated by <idltowsdl> Tool. Version 4.2.0 -->

<definitions name="HeaderType"

targetNamespace="http://schemas.iona.com/idl/HeaderType.idl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/typemap/corba/HeaderType.idl"
xmlns:tns="http://schemas.iona.com/idl/HeaderType.idl"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

307

CHAPTER 7 | Artix Contexts

xmlns:xsdl="http://schemas.iona.com/idltypes/HeaderType.idl">
<types>
<schema targetNamespace="http://schemas.iona.com/idltypes/HeaderType.idl"
xmlns="http://www.w3.0org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="PrincipalInfo">
<sequence>
<element name="username" type="string"/>
<element name="password" type="string"/>
</sequence>
</complexType>
</schema>
</types>
<corba: typeMapping
targetNamespace="http: //schemas.iona.com/typemap/corba/HeaderType.idl">
<corba:struct name="PrincipalInfo" repositoryID="IDL:PrincipalInfo:1.0"
type="xsdl:PrincipalInfo">
<corba:member idltype="corba:string" name="username"/>
<corba:member idltype="corba:string" name="password"/>
</corba:struct>
</corba: typeMapping>
</definitions>

308

CORBA Header Contexts

Configuration Prerequisites

To enable the propagation of context datain a CORBA header, itisa
prerequisite to include the corea_coNTEXT interceptor in the
binding:client_binding list and binding:server_binding_list Settings
inyour Artix configuration file.

Overview

Note: The corea_coNTEXT interceptor is an ART interceptor (atype of
interceptor specific to the CORBA binding), not aregular Artix interceptor.
Therole of thisinterceptor isto move header data back and forth between the
CORBA binding layer and the Artix service context layer.

Example 102 shows how to configure the client binding list to make GIOP
headers accessibleto Artix clients. Y ou can apply this setting at the root scope of
the Artix configuration file (for example, in artix.cfg).

Client binding list

Example 102: Client Configuration Required for Using CORBA Headers

Artix Configuration File

binding:client_binding list =
["OTS+CORBA_CONTEXT+TLS_Coloc+POA_Coloc",
"CORBA_CONTEXT+TLS_Coloc+POA _Coloc",
"OTS+CORBA_CONTEXT+POA_Coloc", "CORBA_CONTEXT+POA Coloc",
"CSI+OTS+CORBA CONTEXT+GIOP+IIOP_TLS",
"OTS+CORBA_CONTEXT+GIOP+IIOP_TLS",
"CSI+CORBA_CONTEXT+GIOP+IIOP_TLS",
"CORBA._CONTEXT+GIOP+IIOP_TLS",
"CSI+OTS+CORBA CONTEXT+GIOP+IIOP",
"OTS+CORBA_CONTEXT+GIOP+IIOP", "CSI+CORBA CONTEXT+GIOP+IIOP",

"CORBA_CONTEXT+GIOP+IIOP"] ;

309

CHAPTER 7 | Artix Contexts

Server binding list Example 103 shows how to configure the server binding list to GIOP headers
accessible to Artix servers.

Example 103: Server Configuration Required for Using CORBA Headers

Artix Configuration File

binding:server binding list = ["OTS+CORBA_CONTEXT", "OTS",""];

310

CORBA Header Contexts

Client Main Function

Overview

Client main function

This subsection discusses the client for the custom CORBA header scenario.
Thisclient is designed to send a custom header, of PrincipalInfo type, every
time it invokes an operation on the Helloworld port type.

To enable the sending of context data, the client performs two fundamental

tasks, asfollows:

1. Register a context type with the context registry—registering the context
typeisaprerequisite for sending context datain arequest. By registering
the context type with the Bus, you give the Bus instance the capability to
marshal and unmarshal context data of that type.

2. Initialize the context data in the ContextCurrent object—before invoking
any operations, the client obtains an instance of the header context data
from an IT_Bus: :ContextCurrent object. After initializing the header
context data, any operations invoked from the current thread will include
the header context data.

Example 104 shows sample code from the client main function, which shows
how to register a context type and initialize header context data for the current
thread.

Example 104: Client Main Function Setting a CORBA Context

// C++
// HelloWorldClientSample.cxx File

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to Artix contexts
#include <it_bus_pdk/context.h>

// Include header files representing the CORBA header content
#include "HelloWorld wsdlTypes.h"

#include "HelloWorld wsdlTypesFactory.h"

#include "HelloWorldClient.h"

IT_USING_NAMESPACE_STD

311

CHAPTER 7 | Artix Contexts

Example 104: Client Main Function Setting a CORBA Context

using namespace IT_Bus;
using namespace IT_WS_ORB;
using namespace IT ContextAttributes;

int
main (int argc, char* argvl[])
{
try
{
IT Bus::Bus_var bus = IT Bus::init(argc, argv);
HelloWorldClient client;
3 ContextRegistry* context_registry =
bus->get_context_registry() ;
// Create QName objects needed to define a context
4 const QName ctx_name (
"PrincipalInfo",
)7
5 const QName ctx type (
"PrincipalInfo",
"http://schemas.iona.com/idltypes/HelloWorld.idl"
);
6 const unsigned long ctx_id = 12288;
// Register the context with the ContextRegistry
7 context_registry->register context (
ctx_name,
ctx_type,
ctx_id

¥
// Obtain a reference to the ContextCurrent
8 ContextCurrent& context_current =
context_registry->get_current () ;
// Obtain a pointer to the RequestContextContainer
9 ContextContainer* context_ container =

context_current.request_contexts() ;

// Obtain a reference to the context

312

10

12

CORBA Header Contexts

Example 104: Client Main Function Setting a CORBA Context

AnyType* info = context_container->get_context (
ctx_name,
true

) g

// Cast the context into a PrincipalInfo object
PrincipalInfo* header info =
dynamic_cast<PrincipalInfo*> (info);

// Add the header content
header_info->setusername ("Bill") ;
header_info->setpassword ("Rendezvous") ;

// Invoke the Web service business methods
String theResponse;

client.sayHi (theResponse) ;
cout << "sayHi response: " << theResponse << endl;
}
catch(IT Bus::Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message()
<< endl;
return -1;
}

return 0;

The preceding code example can be explained as follows:

1

The it_bus_pdk/context . h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry,
. IT Bus::ContextContainer,
* IT Bus::ContextCurrent.

TheHelloworld_wsdlTypes.hloca header file containsthe declaration of
the PrincipalInfo class, which has been generated from the context
schema (see Example 95 on page 287).

Obtain areferenceto the IT_Bus: : ContextRegistry Object, which isused
to register contexts with the Bus.

313

CHAPTER 7 | Artix Contexts

314

10.

11.

12.

The QName with local name, pPrincipalInfo, isacontext name that
identifies the context uniquely. Although the context nameis specified asa
QName, it does not refer to an XML element. Y ou can choose any unique
QName as the context name.

The QName with namespace URI,
http://schemas.iona.com/idltypes/HelloWorld.idl, and local part,
principalInfo, identifies the context type from Example 95 on page 287.

The ctx_id specifiesthe ID of the GIOP service context that will hold the
context data. For more details about GIOP service contexts, see “CORBA
Service Contexts’ on page 306.

Thecall to register_context () tellsthe Artix Busthat the
PrincipalInfo typewill be used to send context datain a GIOP service
context. After you have registered the context, the Busis prepared to
marshal the context data (if any) into a CORBA header.

Call 1T_Bus: :ContextRegistry: :get_current () to obtain areferenceto
the IT_Bus: : ContextCurrent object. The current object provides access
to all context objects associated with the current thread.

Call IT Bus::ContextContainer: :request_contexts () to obtain an
IT Bus: :ContextContainer object that contains all of the contexts for
requests originating from the current thread.

TheIT _Bus::ContextContainer: :get_context () functioniscalled with
its second parameter set to true, indicating that a context with that name
should be created if none already exists.

The IT_Bus: : AnyType classisthe base typefor al complex typesin Artix.
In this case, you can cast the anyType instance, info, to its derived type,

PrincipalInfo*.

By setting the username and password elements of this PrincipalInfo
object, you are effectively fixing the context datafor all operationsinvoked
from this thread.

When you invoke the sayHi () operation, the context dataisincluded in the
CORBA header. From this point on, any WSDL operation invoked from
the current thread will include the principalInfo context datain its
CORBA header.

CORBA Header Contexts

Server Main Function

Overview

Server main function

This subsection discusses the main function for the server in the custom CORBA
header scenario. In addition to the usual boilerplate code for an Artix server (that
is, registering aservant and calling IT_Bus: : run()), this server also registers a
context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the

capability to unmarshal context data of that type. This unmarshalling capability

is then exploited in the implementation of the sayHi () operation (see

Example 106 on page 318).

Example 105 shows sample code from the server main function, which registers
the PrincipalInfo context type and then creates and registers a
HelloWorldImpl Servant object.

Example 105: Server Main Function Registering a CORBA Context

// C++

#include
#include
#include
#include

#include

#include

<it_bus/bus.h>
<it_bus/exception.h>
<it_bus/fault_exception.h>
<it_cal/iostream.h>

<it_bus_pdk/context.h>

"HelloWorldImpl.h"

IT USING_NAMESPACE_STD

using namespace IT Bus;

int
main (int
{
try
{

argc, char* argvl[])

IT Bus::Bus_var bus = IT Bus::init (argc,

ContextRegistry* context_ registry =
bus->get_context_registry();

argv) ;

315

CHAPTER 7 | Artix Contexts

Example 105: Server Main Function Registering a CORBA Context

3 const QName ctx_name (
W
"P;incipallnfo",

) g

4 const QName ctx type (

"P;incipallnfo“,

"http://schemas.iona.com/idltypes/HelloWorld.idl"
)7

5 const unsigned long ctx_id = 12288;
6 context_registry->register context (
ctx_name,
ctx_type,
ctx_id

) g
HelloWorldImpl servant (bus) ;

IT _Bus::QName service_name("", "HelloWorldCORBAService",
"http://schemas.iona.com/idl/HelloWorld.idl") ;

bus->register_servant (
servant,
"../../etc/hello_world.wsdl",
service_name

)7

IT Bus::runf() ;

}

catch (IT Bus: :Exception& e)

{
cout << "Error occurred: " << e.message() << endl;
return -1;

}

return 0;

316

CORBA Header Contexts

The preceding code example can be explained as follows:

1

The it_bus_pdk/context .h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry,
. IT Bus::ContextContainer,
3 IT Bus::ContextCurrent.

Obtain areferenceto the IT_Bus: : ContextRegistry object, which isused
to register contexts with the Bus.

The QName with local name, PrincipalInfo, iSacontext name that
identifies the context uniquely. Although the context nameis specified asa
QName, it does not refer to an XML element. Y ou can choose any unique
QName as the context name.

The QName with namespace URI,
http://schemas.iona.com/idltypes/HelloWorld.idl, and loca part,
PrincipalInfo, identifies the context type from Example 101 on

page 307.

The ctx_id specifiesthe ID of the GIOP service context that holds the
context data. For more details about GIOP service contexts, see “CORBA
Service Contexts’ on page 306.

Thecall to register_context () tellsthe Artix Bus that the
PrincipalInfo typewill be used to send context datain CORBA headers.
After you have registered the context, the Busis prepared to marshal the
context data (if any) into a CORBA header.

317

CHAPTER 7 | Artix Contexts

Service | mplementation

Overview

Implementation of the sayHi
operation

318

This subsection discusses the implementation of the Hel1lowor1d port type,
which maps to the HelloWorldImpl Servant classin C++.

In the custom CORBA header scenario, the HelloworldImpl: :sayHi ()
operation is modified to peek at the context data accompanying the invocation.
To access the context data, you need to get access to a context current object,
which encapsulates al of the context data received from the client.

Example 106 shows the implementation of the sayHi () operation from the
HelloWorldImpl Servant class. The sayHi () operation implementation uses the
context APl to access the context data received from the client.

Example 106: sayHi Operation Accessing a CORBA Context
// C++

void
GreeterImpl: :sayHi (
IT Bus::String &theResponse
) IT _THROW_DECL((IT_Bus: :Exception))
{
cout << "sayHi invoked" << endl;
theResponse = "Hello from Artix";

// Obtain a pointer to the bus
Bus_var bus = Bus::create_reference() ;

ContextRegistry* context_registry =
bus->get_context_registry () ;

// Create QName objects needed to define a context
const QName ctx name (

o
’

"PrincipalInfo",

) g

// Obtain a reference to the ContextCurrent
ContextCurrent& context_ current =
context_registry->get_current () ;

CORBA Header Contexts

Example 106: sayHi Operation Accessing a CORBA Context

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
ctx_name

):

// Cast the context into a PrincipalInfo object
PrincipalInfo* header_info =
dynamic_cast<PrincipalInfo*> (info) ;

// Extract the application specific CORBA header information

String& username = header info->getusername() ;
String& password = header_ info->getpassword() ;

cout << "CORBA Header username = "
<< originator.c_str() << endl;

cout << "CORBA Header password = "
<< message.c_str() << endl;

The preceding code example can be explained as follows:

1

The IT_Bus: :ContextRegistry Object, context_registry, provides

access to al of the objects associated with contexts.

The QName with local name, principalInfo, isthe name of the context to

be extracted from the incoming request message.

Call IT Bus: :ContextRegistry: :get_current () to obtain the

IT Bus::ContextCurrent object for the current thread.

Call IT Bus: :ContextCurrent: :request_contexts () to obtain the

IT_Bus: :ContextContainer object containing all of theincoming request

contexts.

Note: Thisisthe same object that is used on the client side to hold all of

the outgoing request contexts.

To retrieve a specific context from the request context container, pass the
context’s name into the IT Bus: :ContextContainer: :get_context ()

function.

319

CHAPTER 7 | Artix Contexts

6. The1T_Bus::AnyType classisthe basetypefor all typesin Artix. Inthis
example, you can cast the anyType instance, info, to its derived type,

PrincipalInfo*.

7. You can now access the context data by calling the accessors for the
username and password elements, getusername () and getpassword ().

320

Header Contextsin Three-Tier Systems

Header Contextsin Three-Tier Systems

Overview

Request context propagation

This section considers how Artix header contexts are propagated in a three-tier
system. The Artix context model makes no distinction between incoming request
contexts and outgoing request contexts. Similarly, Artix makes no distinction
between incoming reply contexts and outgoing reply contexts. An implicit
consequence of this model isthat request contexts and reply contexts are
automatically propagated across multiple application tiers.

Figure 28 shows an example of athree-tier system where arequest context is
propagated automatically from tier to tier.

Figure 28: Propagation of a Request Context in a Three-Tier System

Artix Client Mid-Tier Server Target Server
firstCall("...") ‘m secondCall("...") ‘O
Context | \—/ [Context |
@] @ ® |y @
e e
Request context Request context Request context

321

CHAPTER 7 | Artix Contexts

Context propagation steps In Figure 28, the request context is propagated through the three-tier system as
follows:

1. IntheArtix client, aheader context is added to the request context
container. When the client makes an invocation, firstcall (), onthe
mid-tier, the context is inserted into the request message header.

2. Whentherequest arrives at the mid-tier, it is automatically marshalled into
arequest context. The context datais now accessible using the request
context container object.

3. If the mid-tier makes afollow-on invocation, secondcall (), the Artix
runtime inserts the received request context into the outgoing request
message. Hence, the client’ srequest context is automatically forwarded on
to the next tier.

4. When therequest arrives at the target, it is automatically marshalled into a
request context. The client context datais now accessible through the
request context container object.

322

CHAPTER 8

Working with
Transport
Attributes

Using the Artix context mechanism, you can set many of the the
transport attributes at runtime.

In this chapter This chapter discusses the following topics:
How Artix Stores Transport Attributes page 324
Getting and Setting Transport Attributes page 326
Getting |P Attributes page 336
Setting HTTP Attributes page 339
Setting CORBA Attributes page 368
Setting WebSphere MQ Attributes page 369
Setting FTP Attributes page 386
Setting 118n Attributes page 395
Setting WS-A and WS-RM Attributes page 398

323

CHAPTER 8| Working with Transport Attributes

How Artix Stores Transport Attributes

Overview

Initialization properties

Global transport attributes

Transport specific

324

Artix uses the context mechanism described in “ Artix Contexts’ on page 245 to
store the properties used to configure the transport layer and popul ate any
headers used by the selected transport. Most of the properties are stored in the
request and reply context containers. However, some properties that are used in
initializing the transport layer at start-up are stored in aspecial context container,
the configuration context container.

Some transport attributes, such as IM S broker sign-on valuesor aserver' sHTTP
endpoint URL, are used by Artix when it isinitializing the transport layer.
Therefore, they need to be specified before Artix initializes the transport layer
for a service or a service proxy. These attributes are stored in a configuration
context container. When the bus initializes the transport layer, it will check the
configuration context container for any initialization properties.

For most transport properties such as HTTP keep-alive, WebSphere MQ
AccessMode, and Tib/RV callbackLevel, the context objects containing the
transport’ s properties are stored in the Artix request context container and the
Artix reply context container. Once you have retrieved the context object from
the proper context container, you can inspect the values of transport headers and
other transport related properties such as codeset conversion. Y ou can aso
dynamically set many of the values for outgoing messages using the context
APIs. For afull listing of all the possible port attributes for each transport see the
Artix WSDL Reference.

Transport attributes are stored in built-in contexts. These contexts are
preregistered with the context container when the transport layer isinitialized.
They are specific to the different transports. For example, if you request the
context for the HTTP port attributes from the context container, the returned
context will have methods for setting and examining HTTP specific attributes.
However, if the application is using another transport, WebSphere MQ for
example, the HTTP configuration context will not be registered and you will be
unable to get the HTTP configuration context from the container.

Default values

When arethe attribute contexts
populated

How Artix Stores Transport Attributes

All of the transport attributes have default values that are specified in either the
service' scontract or in the service' s configuration. If you do not use the contexts
for overriding transport attributes, these defaults are used when sending

messages.

Whether or not an attribute context is populated when you access it depends on
whether the context was taken from an outgoing message or an incoming
message, as follows:

* QOutgoing messages—when you get the transport attributes for an outgoing
message, the context is empty. Y ou need to create an instance of the
context and set the values you want to override in the context yourself.

i Incoming messages—when a message is received by the transport layer,
the transport populates the context with the attributes of the message it
receives.

For example, if you areusing HTTP, the values of the incoming message's
HTTP header are used to populate the context. The context can then be
inspected at any point in the application’s code.

325

CHAPTER 8| Working with Transport Attributes

Getting and Setting Transport Attributes

Overview

Schemasdirectory

Header files

Library

326

The contexts for holding transport attributes are handled using either the

standard context mechanism or the configuration context mechanism. To get a

transport attribute context do the following:

1. Make sureyou include the requisite header file for the transport attribute
context.

2. Usethe context API to obtain either arequest context container, areply
context container, or a configuration context container, as appropriate.

3. Cadll get_context () onthe context container, passing in the QName of the
transport attribute context.

4. Cast thereturned context data to the appropriate type.

Once you have the context data you can inspect it and set new values for any of
its properties.

The schemas for the Artix configuration contexts are located in the following
directory:

ArtixInstallDir/schemas

The header filesfor the Artix configuration contexts are located in the following
directory:

ArtixInstallDir/include/it_bus_pdk/context attrs

To gain access to the context stubs, you should link with the following library:

Windows
ArtixInstallDir/lib/it_context_attribute.lib

UNIX

ArtixInstallDir/lib/it_context_attribute.so
ArtixInstallDir/lib/it_context_attribute.sl

Headersand typesfor the
pre-registered contexts

HTTP client outgoing attributes

Getting and Setting Transport Attributes

The following list gives the context name, data type and header file for each of
the pre-registered contexts. The nhame of each context isa C++ constant of

IT Bus: :QName type, defined in the IT_Contextattributes namespace (for
example, IT ContextAttributes: :HTTP_CLIENT OUTGOING_CONTEXTS). YOU
can pass the context name as a parameter to the

IT Bus::ContextContainer: :get_context () function to obtain a pointer to
the context data.

This context enables you to specify HTTP context data for inclusion with the
next outgoing client request. Table 2 showsthe relevant details for accessing this
context.

Table2: Detailsfor HTTP Client Outgoing Context

Description

Value

Header file

<it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

Kind of context container

Request

Context QName

IT_ContextAttributes: :HTTP_CLIENT OUTGOING_CONTEXTS

Type of context data

IT ContextAttributes::clientType

HTTP client incoming attributes

This context enables you to read context data received with the last HTTP reply
on theclient side. Table 3 shows the relevant details for accessing this context.

Table3: Detailsfor HTTP Client Incoming Context

Description

Value

Header file

<it_bus_pdk/context_attrs/http_conf xsdTypes.h>

Kind of context container

Reply

Context QName

IT_ContextAttributes: :HTTP_CLIENT INCOMING_CONTEXTS

Type of context data

IT ContextAttributes::clientType

327

CHAPTER 8| Working with Transport Attributes

HTTP server outgoing attributes ~ This context enables you to specify HTTP context data for inclusion with the
server'sreply. Table 4 shows the relevant details for accessing this context.

Table4: Detailsfor HTTP Server Outgoing Context

Description Value
Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>
Kind of context container Reply
Context QName IT_ContextAttributes: :HTTP_SERVER_OUTGOING_CONTEXTS
Type of context data IT ContextAttributes::serverType

HTTP server incoming attributes This context enables you to read context data received with the current HTTP
request on the server side. Table 5 shows the relevant details for accessing this
context.

Table5: Detailsfor HTTP Server Incoming Context

Description Value
Header file <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>
Kind of context container Request
Context QName IT_ContextAttributes: :HTTP_SERVER_INCOMING_CONTEXTS
Type of context data IT ContextAttributes::serverType

328

CORBA transport attributes

Getting and Setting Transport Attributes

This context can be used to access and modify the CORBA Principal. Table 6
shows the relevant details for accessing this context.

Table6: Detailsfor CORBA Transport Context

Description

Value

Header file

<it_bus_pdk/context_attrs/corba_xsdTypes.h>

Kind of context container

Request, Reply

Context QName

IT ContextAttributes::CORBA_CONTEXT ATTRIBUTES

Type of context data

IT_ContextAttributes::CORBAAttributesType

Principal attribute

Calling get_context () returnsthe Principal asan IT_Bus: : StringHolder
instance. Table 7 shows the relevant details for accessing this context.

Table7: Detailsfor Principal Context

Description

Value

Header file

<it_bus_pdk/context_attrs/context_types.h>

Kind of context container

Request, Reply

Context QName

IT_ContextAttributes::PRINCIPAL_ CONTEXT_ATTRIBUTE

Type of context data

IT _Bus::StringHolder

329

CHAPTER 8| Working with Transport Attributes

M Q connection attributes

This context is used to set MQ connection attributes on the client side of a
connection. After each invocation, the connection attributes are changed back to
the defaults specified in the WSDL contract. Table 8 shows the relevant details
for accessing this context.

Table 8: Details for MQ Connection Attributes Context

Description

Value

Header file

<it_bus_pdk/context_attrs/mg xsdTypes.h>

Kind of context container

Request

Context QName

IT ContextAttributes::MQ CONNECTION_ATTRIBUTES

Type of context data

IT ContextAttributes::MQConnectionAttributesType

M Q outgoing message attributes

For aclient, this context enables you to set the MQ message attributes on the
next outgoing request. For a server, this context enables you to set the MQ
message attributes on the next outgoing reply. Table 9 showsthe relevant details
for accessing this context.

Table9: Detailsfor MQ Outgoing Message Attributes Context

Description

Value

Header file

<it_bus_pdk/context_attrs/mg xsdTypes.h>

Kind of context container

Request, Reply

Context QName

IT_ContextAttributes::MQ OUTGOING_MESSAGE_ATTRIBUTES

Type of context data

IT ContextAttributes: :MQMessageAttributesType

330

M Q incoming message attributes

Getting and Setting Transport Attributes

For aclient, this context enables you to read the M Q message attributes received
from the last reply. For a server, this context enables you to read the MQ
message received with the current request. Table 10 shows the relevant details
for accessing this context.

Table10: Detailsfor MQ Incoming Message Attributes Context

Description

Value

Header file

<it_bus_pdk/context_attrs/mg xsdTypes.h>

Kind of context container

Request, Reply

Context QName

IT ContextAttributes::MQ INCOMING_MESSAGE ATTRIBUTES

Type of context data

IT_ContextAttributes: :MQMessageAttributesType

FTP connection policy

For clients and servers, you can set all of the FTP connection policiesin a
configuration context. For aclient, you can additionally set the scan interval
policy and the receive timeout policy in arequest context. Table 11 shows the
relevant details for accessing this context.

Table11l: Detailsfor FTP Connection Policy Context

Description

Value

Header file

<it_bus_pdk/context_attrs/ftp context_xsdTypes.h>

Kind of context container

Configuration, Request

Context QName

IT ContextAttributes: :FTP_CONNECTION_POLICY

Type of context data

IT _ContextAttributes: :ConnectionPolicyType

331

CHAPTER 8| Working with Transport Attributes

FTP connection credentials

For clients and servers, the FTP connection credentials context enables you to
set username and password for opening a connection to the FTP daemon.
Table 12 shows the relevant details for accessing this context.

Table12: Detailsfor FTP Connection Credentials Context

Description

Value

Header file

<it_bus_pdk/context_attrs/ftp_context_xsdTypes.h>

Kind of context container

Configuration

Context QName

IT ContextAttributes::FTP_CREDENTTIALS

Type of context data

IT ContextAttributes::CredentialsType

FTP client naming policy

FTP server naming policy

i18n server attributes

The FTP client naming policy enablesyou to register a class that generates the
names of the files created to store messages in the FTP file system. Because this
class must be a Javaclass, it is only possible to use this feature from an Artix
Java application. See Developing Artix Applicationsin Java for details.

The FTP server naming policy enables you to register a class that generates the
names of the files created to store messages in the FTP file system. Because this
class must be a Javaclass, it is only possible to use this feature from an Artix
Java application. See Developing Artix Applicationsin Java for details.

For a server, thei18n server attributes context enables you to set the local
codeset and the server outbound codeset in the reply context. Table 13 showsthe
relevant details for accessing this context.

Table13: Detailsfor 118N Server Attributes Context

Description

Value

Header file

<it_bus_pdk/context_attrs/il8n_context_xsdTypes.h>

Kind of context container

Reply

Context QName

IT ContextAttributes::I18N_INTERCEPTOR_SERVER QNAME

Type of context data

IT ContextAttributes::ServerConfiguration

332

Getting and Setting Transport Attributes

i18n client attributes For aserver, theil8n client attributes context enables you to set the local codeset
and the client outbound codeset in the request context. Table 14 shows the
relevant details for accessing this context.

Table14: Detailsfor 118N Client Attributes Context

Description Value
Header file <it_bus_pdk/context_attrs/il18n_context_xsdTypes.h>
Kind of context container Request
Context QName IT_ContextAttributes::I18N_INTERCEPTOR_CLIENT QNAME
Type of context data IT ContextAttributes::ClientConfiguration
Bus security attributes For clients and servers, enables you to set security attributes programmatically.

Table 15 shows the relevant details for accessing this context.

Table15: Detailsfor Bus Security Attributes Context

Description Value
Header file <it_bus_pdk/context_attrs/bus_security xsdTypes.h>
Kind of context container Request, Reply
Context QName IT_ContextAttributes: : SECURITY_SERVER_CONTEXT
Type of context data IT ContextAttributes::BusSecurity

333

CHAPTER 8| Working with Transport Attributes

HTTP endpoint URL attribute

For clients, this attribute enables you to specify the URL that will be used by the
next proxy to open aHTTP connection. The context valueis cleared after the
proxy connection is opened. Table 16 shows the relevant details for accessing
this context.

Table16: Detailsfor HTTP Endpoint URL Context

Description

Value

Header file

<it_bus_pdk/context_attrs/context_types.h>

Kind of context container

Request

Context QName

IT ContextAttributes::HTTP_ENDPOINT URL

Type of context data

IT Bus::StringHolder

Server address context attributes

For servers, this context is set only when you have registered a default servant
(see “ Default Servants’ on page 677). By reading this context from the request
context container, the server can determine the identity of the target service.
Table 17 shows the relevant details for accessing this context.

Table17: Detailsfor Server Address Context

Description

Value

Header file

<it_bus_pdk/context_attrs/address_context.h>

Kind of context container

Request

Context QName

IT ContextAttributes: :SERVER_ADDRESS_CONTEXT

Type of context data

IT ContextAttributes: :AddressContext

Server operation attribute

334

This context isanon-serializable context that can be used to get areferenceto an
IT_Bus: :ServerOperation Object during an invocation on the server side. In
other words, you can access this context type from the body of a servant
function. See “Reading and Writing Custom Types’ on page 269 for more
details about non-serializable contexts.

Getting and Setting Transport Attributes

Table 18: Detailsfor Server Operation Context

Description

Value

Header file

<it_bus_pdk/context_attrs/context_types.h>

Kind of context container

Request

Context QName

IT_ContextAttributes::SERVER_OPERATION_CONTEXT

Type of context data

IT_Bus: :ServerOperationContext

335

CHAPTER 8| Working with Transport Attributes

Getting | P Attributes

Overview

Client address context

Enabling the client address
context

336

Artix provides a context that enables you to access data from the | P socket layer.
Currently, the only supported IP attribute is the client |P address, which is
accessible through the client address context.

The client address context is a server-side request context that contains the |P
address (or hostname) of the requesting client. This context can be useful if you
want asimple way of identifying clients—for example, for the purposes of
logging requests on the server side.

WARNING: The client address context is not a secure way to identify clients.
If you need to be certain of the client’ sidentity, use one of the authentication
techniques described in the Artix Security Guide.

To enable the client address context on the server side, insert the following
setting into the relevant scope of your server's . cfg configuration file:

Artix Configuration File
plugins:bus:register_client_context = "true";

This setting causes the Bus to read the client’s IP address from the | P socket
layer each time the server receives a message from aclient. The IP addressis
then inserted into a client address context, which is accessible to the server
application code.

Note: The default setting is false, thus disabling the client address context.
Thisisto avoid any unnecessary performance overhead when this feature is
not needed.

Getting the client addresson the
server side

Getting I P Attributes

The context containing the client’s | P address, CLTENT ADDRESS_CONTEXT, IS
availablein the server’srequest context container, after arequest from the client
isreceived by the transport layer. To access the client’ s |P address on the server
side, use the code fragment shown in Example 107.

Example 107: Reading the Client |P Address on the Server Sde

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

ContextRegistry* context_registry =
bus->get_context_registry () ;

ContextCurrent& context current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes: :CLIENT ADDRESS CONTEXT,
false

) g

IT Bus::StringHolder * str_holder =
dynamic_cast<StringHolder *>(info) ;

IT Bus::String * client_ip_address;

if (0 != str_holder)

{
client_ip address = &(str_holder->get());

337

CHAPTER 8| Working with Transport Attributes

338

The preceding code can be explained as follows:

1

Include header file for the general context classes and for the context
constants.

Obtain areference to a context container, context_container, that
contains the server’s request contexts.

Extract the client address context (identified by the constant,
CLIENT_ADDRESS_CONTEXT) from the list of server request contexts.
Cast the returned context object to IT_Bus: : StringHolder type and
extract the client’s | P address from the string holder.

Setting HTTP Attributes

Setting HT TP Attributes

Overview

In thissection

Artix uses four contexts to support the HT TP transport. Two contexts support
the server-side HTTP information. The server-side contexts are of

IT ContextAttributes::serverType type. The other two contexts support the
client-side HTTP information. The client-side contexts are of

IT ContextAttributes::clientType type.

Theinformation stored in the HTTP transport attribute contexts correlates to the
values passed in an HTTP header.

This section discusses the following topics:

Client-side Configuration page 340
Server-side Configuration page 351
Setting the Server’s Endpoint URL page 364

339

CHAPTER 8| Working with Transport Attributes

Client-side Configuration

Overview

Outgoing header information

340

HTTP clients have access to both the values being passed in the HT TP header of
the outgoing request and the values received in the HT TP header of the response.

The information for each header is stored in a separate context.

On the client-side, the outgoing context, HTTP_CLIENT OUTGOING_CONTEXTS, IS
availablein the client’s request context. Any changes made to valuesin the
outgoing context are placed in the request’sHTTP header and propagated to the
server. For example, if you want to allow requests to be automatically redirected
you could set the autoredirect attribute to true in the client’s outgoing
context. Example 108 shows the code for setting the autoredirect property for

aclient.
Example 108: Setting a Client’s AutoRedirect Property

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

ContextRegistry* context registry =
bus->get_context_registry () ;

ContextCurrent& context current =
context_registry->get_current() ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes::HTTP_CLIENT OUTGOING_CONTEXTS,
true

);

Outgoing client attributes

Setting HTTP Attributes

Example 108: Setting a Client’s AutoRedirect Property

// Cast the context into a clientType object

clientType* http_client_config =

dynamic_cast<clientType*> (info) ;

4 http_client_config->setAutoRedirect (true) ;

// make proxy invocations

The code in Example 108 does the following:

1. Includesthe header filesfor the general context classes and for the HTTP

client context type.
Gets the client’s context registry.

Gets the client’s outgoing HT TP context from the request context

container.

4. Setsthe value of the autoRedirect property to true.

Table 19 shows the attributes that are valid in the outgoing HTTP client context.

Table19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Accept

String* getAccept ()
const String* getAccept () const

void setAccept (const String* val)
void setAccept (const String& val)

Specifiesthe MIME typesthe client

can handle in aresponse.

Accept-Encoding

String* getAcceptEncoding ()
const String* getAcceptEncoding ()
const

void setAcceptEncoding (

const String* val)
void setAcceptEncoding (

const String& val)

Specifies the types of content

encoding the client can handlein a

response. This property typically

refers to compression mechanisms.

341

CHAPTER 8| Working with Transport Attributes

Table19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Accept-Language

String* getAcceptLanguage ()
const String* getAcceptLanguage ()
const

void setAcceptLanguage (

const String* val)
void setAcceptLanguage (

const String& val)

Specifies the language the client
prefers. Valid language tags
combine an 1SO language code and
an | SO country code separated by a
hyphen. For example, en-us.

Authorization String* getAuthorization() Specifiesthe credentialsthat will be
const String* getAuthorization() used by the server to authorize
const requests from the client.
void setAuthorization (
const String* val)
void setAuthorization (
const String& val)
AuthorizationType String* getAuthorizationType () Specifies the name of the
const String* getAuthorizationType () authentication schemein use.
const
void setAuthorizationType (
const String* val)
void setAuthorizationType (
const String& val)
AutoRedirect Boolean* getAutoRedirect () Specifies whether a request should
const Boolean* getAutoRedirect () be automatically redirected by the
const server. The default is false to
g @ specify that requests are not to be
void setAutoRedirect (automatically redirected.
const Boolean* val)
void setAutoRedirect (
const Boolean& val)
BrowserType String* getBrowserType () Specifies information about the

const String* getBrowserType() const

void setBrowserType (

const String* val)
void setBrowserType (

const String& val)

browser from which the request
originates. This property isaso
know as the user-agent.

342

Setting HTTP Attributes

Table19: Outgoing HTTP Client Attributes

HTTP Attribute Artix APIs Description
Cache-Control String* getCacheControl () Specifies directives to caches along
const String* getCacheControl () the request/response path.
const

Valid values are:

void setCacheControl (no-cache: caches must revalidate
const String* val) | responseswith the server. If
void setCachecontrol (response header fieldsare given, the
const String& val) eSp. -) 9 !
restriction applies only to those
header fields.

no-store: caches must not store
any part of arequest or its response.

max-age: the max age, in seconds,
of an acceptible response.

max-stale: the client will accept
expired messages. If avalueis
given, it specifies the how many
seconds after a response expires
that theit is still acceptable. If no
valueisgiven, al stale responses
are acceptable.

min-fresh: the response must stay
fresh for the given number of
seconds.

no-transform: caches must not
modify the mediatype or the
content location of aresponse.
only-if-cached: caches should
return only cached responses.

ClientCertificate String* getClientCertificate() Specifies the full path to the
const String* getClientCertificate() PK CS12-encoded X509 certificate
const issued by the certificate authority
for theclient.

void setClientCertificate(

const String* val)
void setClientCertificate(

const String& val)

343

CHAPTER 8| Working with Transport Attributes

Table19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

ClientCertificateChain

String* getClientCertificateChain()
const String*
getClientCertificateChain() const

void setClientCertificateChain (
const String* val)

void setClientCertificateChain (
const String& val)

Specifies the full path to the file
containing all of the certificatesin
the chain.

ClientPrivateKey

String* getClientPrivateKey ()
const String* getClientPrivateKey ()
const

void setClientPrivateKey (

const String* val)
void setClientPrivateKey (

const String& val)

Specifies the full path to the

PK CS12-encoded private key that
corresponds to the X509 certificate
specified by clientcertificate.

ClientPrivateKeyPassword

String*
getClientPrivateKeyPassword ()
const String*
getClientPrivateKeyPassword() const
void setClientPrivateKeyPassword (
const String* val)
void setClientPrivateKeyPassword (
const String& val)

Specifies the password used to
decrypt the PKCS12-encoded
private key.

Connection

String* getConnection()
const String* getConnection() const

void setConnection (

const String* val)
void setConnection (

const String& val)

Specifieswhether aconnectionisto
be kept open after each
reguest/response transaction.

Valid values are:

close: the connection is closed
after each transaction.

Keep-Alive: the client would like
the conneciton to remain open.
Servers do not have to honor this
request.

344

Setting HTTP Attributes

Table19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Cookie String* getCookie() Specifies a static cookie that is sent
const String* getCookie() const along with a request.
void setCookie(const String* val) NOt?:. A.CCOTdI ngtothe HTTP 11
void setCookie(const String& val) SpeCIf.ICGIIOI’], HTTP cookies must

contain US-ASCI| characters.

Expires String* getExpires() Specifies the date after which
const String* getExpires() const responses are considered stale.
void setExpires(const String* val)
void setExpires(const String& val)

Host String* getHost () Specifies the Internet host and port
const String* getHost() const number of the service for which the

request is targeted.
void setHost (const String* val)
void setHost (const String& val)

Password String* getPassword() Specifies the password to use in
const String* getPassword() const username/password authentication.
void setPassword(const String* val)
void setPassword(const String& val)

Pragma String* getPragma () Specifies implementation-specific

const String* getPragma() const

void setPragma (const String* val)
void setPragma (const String& val)

directives that might apply to any
recipient along the request/response
chain.

Proxy-Authorization

String* getProxyAuthorization/()
const String*
getProxyAuthorization() const

void setProxyAuthorization (

const String* val)
void setProxyAuthorization (

const String& val)

Specifies the credentials used to
perform validation at aproxy server
aong the request/response chain. If
the proxy uses username/password
vaidation, this valueis not used.

345

CHAPTER 8| Working with Transport Attributes

Table19: Outgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

ProxyAuthorizationType

String* getProxyAuthorizationType ()

Specifies the type of authentication

String& getProxyAuthorizationType () used by proxy servers along the
request/response chain.
void setProxyAuthorizationType (
const String* val)
void setProxyAuthorizationType (
const String& val)
ProxyPassword String* getProxyPassword () Specifies the password used by
const String* getProxyPassword () proxy servers for authentication if
const username/password authentication
isinuse.
void setProxyPassword (
const String* val)
void setProxyPassword (
const String& val)
ProxyServer String* getProxyServer () Specifies the URL of the proxy
const String* getProxyServer () const | server, if one exists, along the
request/response chain.
void setProxyServer (.
const String* val) | Not& Artix does not support the
void setProxyServer (existence of more than one proxy
const String& val) | Server along the request/response
chain.
ProxyUserName String* getProxyUserName () Specifies the username used by
const String* getProxyUserName () proxy servers for authentication if
const username/password authentication
isinuse.
void setProxyUserName (String val)
ReceiveTimeout Int* getReceiveTimeout () Specifies the number of

const Int* getReceiveTimeout () const

void setReceiveTimeout (

const Int* val)
void setReceiveTimeout (

const Int& val)

milliseconds the client will wait to
receive aresponse from a server
before timing out. The default is
3000.

346

Table 19:

Setting HTTP Attributes

QOutgoing HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Referer

String* getReferer ()
const String* getReferer() const

void setReferer (const String* wval)
void setReferer (const String& val)

Specifiesthe entity that referred the
client to the target server.

Send-Timeout

Int* getSendTimeout ()
const Int* getSendTimeout () const

void setSendTimeout (const Int* val)
void setSendTimeout (const Int& val)

Specifies the number of
millisecondsthe client will continue
trying to send arequest to the server
before timing out.

ServerDate

String* getServerDate ()
const String* getServerDate() const
void setServerDate (

const String* val)
void setServerDate (

const String& val)

Specifies the time setting for the
server. When thisvalueis set, the
client will useit asthe basetime
from which to calculate message
expiration. The client defaults to
using itsinternal system clock.

Trusted Root Certificate

String* getTrustedRootCertificates|()
const String*
getTrustedRootCertificates () const

void setTrustedRootCertificates(
const String* val)

void setTrustedRootCertificates (
const String& val)

Specifies the full path to the
PKCS12-encoded X509 certificate
for the certificate authority.

UserName

String* getUserName ()
const String* getUserName () const

void setUserName (const String* val)
void setUserName (const String& val)

Specifies the username used for
authentication when the server uses
username/password authentication.

Use Secure Sockets

Boolean* getUseSecureSockets ()
const Boolean* getUseSecureSockets ()
const

void setUseSecureSockets (

const Boolean* val)
void setUseSecureSockets (

const Boolean& val)

Specifies the client wantsto use a
secure connection. Secure HTTP
connections are also referred to as
HTTPS.

Valid values are true and false.

Note: If the contract specifies
HTTPS, thisvalue is aways true.

347

CHAPTER 8| Working with Transport Attributes

Incoming header The client’ sincoming context, HTTP_CLIENT INCOMING CONTEXTS, IS available
inthe client’ sreply context after aresponse from the server has been received by
the transport layer. The values stored in this context are for informational
purposes only. For example, if you need to check the MIME type of the data
returned in the request, you would read it from the client’ sincoming context as
shown in Example 109.

Example 109: Reading the Content Typein an HTTP Client

// C++
1 #include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/http_conf xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

2 // make proxy invocation

3 ContextRegistry* context_ registry =
bus->get_context_registry();

ContextCurrent& context current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.reply contexts() ;

4 // Obtain a reference to the context
AnyType* info = context_container->get_context (
IT ContextAttributes::HTTP_CLIENT INCOMING_CONTEXTS,
true
) g
// Cast the context into a clientType object
clientType* http_client_config =

dynamic_cast<clientType*> (info) ;

5 IT Bus::String* content = http_client_ config->getContentType () ;

348

Incoming client attributes

Setting HTTP Attributes

The code in Example 109 does the following:

Includes the header files for the general context classes and for the HTTP

Gets the client’ sincoming HTTP context from the reply context container.

1
client context type.
2. Makesan invocation on the proxy.
3. Getstheclient’'s context registry.
4.
5. Getsthe value of the contentType property.

Table 20 shows the attributes that are valid in the incoming HTTP client context.

Table 20:

Incoming HTTP Client Attributes

HTTP Attribute

Artix APls

Description

Content-Encoding

String* getContentEncoding ()
const String* getContentEncoding ()
const

Specifies the type of specia
encoding, if any, the server used to
package the response.

Content-Language

String* getContentLanguage ()
const String* getContentLanguage ()
const

Specifies the language the server
used in writing the response. Valid
language tags combine an SO
language code and an 1SO country
code separated by a hyphen. For
example, en-Us.

Content-Location

String* getContentLocation ()
const String* getContentLocation()
const

Specifies the URL where the
resource being sent in aresponse is
located.

Content-Type

String* getContentType ()
const String* getContentType() const

Specifiesthe MIME type of the data
in the response.

ETag String* getETag () Specifies the entity tag in the
const String* getETag() const response header.
HTTPReply String* getHTTPReply () Specifies the type of reply being

const String* getHTTPReply () const

sent back by the server. For
example, if arequest isfulfilled a
server will reply with ox.

349

CHAPTER 8| Working with Transport Attributes

Table 20:

Incoming HTTP Client Attributes

HTTP Attribute

Artix APls

Description

HTTPReplyCode

Int* getHTTPReplyCode ()
const Int* getHTTPReplyCode() const

Specifies an integer code associated
with the server’s reply. For
example, 200 means ok and 404
means Not Found.

Last-Modified

String* getLastModified()
const String* getLastModified()
const

Specifiesthe date and time at which
the server believes aresource was
last modified.

Proxy-Authenticate

String* getProxyAuthenticate()
const String* getProxyAuthenticate()
const

Specifies a challenge that indicates
the authentication scheme and
parameters applicable to the proxy
for this Request-URI.

RedirectURL String* getRedirectURL() Specifies the URL to which client
const String* getRedirectURL() const | requestsshould be redirected. This
isissued by a server when it is not
appropriate for the request.
ServerType String* getServerType () Specifies the type of server

const String* getServerType () const

responded to the client. Values take

the form program-name/version.

WWW-Authenticate

String* getWWWAuthenticate ()
const String* getWWWAuthenticate()
const

Specifies at least one challenge that
indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

350

Setting HTTP Attributes

Server-side Configuration

Overview

Outgoing header

HTTP servers have access to both the values being passed in the HT TP header of
the outgoing response and the values received in the HTTP header of the request.
Theinformation for each header is stored in a separate context.

On the server-side, the outgoing context, HTTP_SERVER_OUTGOING_CONTEXTS, iS
availablein the server’ s reply context container. Any changes made to valuesin
the outgoing context are placed in the reply’s HTTP header and propagated to
the client. For example, if you want to inform the client that it needs to redirect
it'srequest to adifferent server, you could set the RedirectURL attribute in the
server's outgoing context to the URL of an appropriate server. Example 110
shows the code for setting the Redi rectURL attribute for a server.

Example 110: Setting a Server’s RedirectURL Attribute

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/http_conf_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

ContextRegistry* context_registry =
bus->get_context_registry () ;

ContextCurrent& context current =
context_registry->get_current() ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.reply contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes: :HTTP_SERVER OUTGOING_CONTEXTS,
true

)

351

CHAPTER 8| Working with Transport Attributes

Example 110: Setting a Server’s RedirectURL Attribute

// Cast the context into a serverType object
serverType* http_server_config =
dynamic_cast<serverType*> (info) ;

4 http_server_ config->setRedirectURL ("http://www.notme.org/askthis
quy") ;

The code in Example 110 does the following:

1. Includesthe header files for the general context classes and for the HTTP
server context type.
Gets the server’s context registry.
Getsthe server’s outgoing HTTP context from the reply context container.
Sets the value of the RedirectURL property to the URL of the server that
can satisfy the request.

352

Outgoing server attributes

Setting HTTP Attributes

Table 21 shows the attributes that are valid in the outgoing HTTP server context.

Table21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Cache-Control

String* getCacheControl ()
const String* getCacheControl ()
const

void setCacheControl (

const String* val)
void setCacheControl (

const String& val)

Specifies directives to caches along
the request/response path.

Valid values are:

no-cache: caches must revalidate
responses with the server. If
response header fieldsare given, the
restriction applies only to those
header fields.

public: any cache can store the
response.

private: public caches cannot store
the response. If response header
fields are given, the restriction
applies only to those header fields.

no-store: caches must not store
any part of the response or the
request.

no-transform: caches must not

modify the mediatype or the
content location of aresponse.

353

CHAPTER 8| Working with Transport Attributes

Table 21:

Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

must-revalidate: caches must
revalidate responses that have
expired with the server before the
response can be used.

proxy-revalidate: meansthe
same asmust-revalidate, but it
can only be enforced on shared
caches. Y ou must set the public
directive when using this directive.

max-age: the max age, in seconds,
of an acceptible response.

s-maxage. means the same as
max-age, but it can only be
enforced on shared caches. When
set it overidesthe value of max-age.
Y ou must use the
proxy-revalidate directive when
using this directive.

Content-Encoding

String* getContentEncoding ()
const String* getContentEncoding()
const

void setContextEncoding (

const String* val)
void setContextEncoding (

const String& val)

Specifies the type of special
encoding, if any, the server usesto
package a response.

Content-Language

String* getContentLanguage ()
const String* getContentLanguage ()
const

void setContentLanguage (

const String* val)
void setContentLanguage (

const String& val)

Specifiesthe language used to write
aresponse. Valid language tags
combine an |SO language code and
an | SO country code separated by a
hyphen. For example, en-us.

354

Table 21:

Setting HTTP Attributes

Qutgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Content-Location

String* getContentLocation()
const String* getContentLocation ()
const

void setContentLocation (

const String* val)
void setContentLocation (

const String& val)

Specifies the URL where the
resource being sent in aresponse is
located.

Content-Type

String* getContentType ()
const String* getContentType() const

void setContentType (

const String* val)
void setContentType (

const String& val)

Specifiesthe MIME type of the data
in the response.

ETag String* getETag () Specifies the entity tag in the
const String* getETag() const response header.
void setETag (const String* val)
void setETag(const String& val)
Expires String* getExpires () Specifies the date after which the
String& getExpires() response is considered stale.
void setExpires(const String* val)
void setExpires(const String& val)
HonorKeepAlive Boolean* getHonorKeepAlive () Specifiesif the server isgoing to
const Boolean* getHonorKeepAlive () honor aclient’s keep-alive request.
const
void setHonorKeepAlive (
const Boolean* val)
void setHonorKeepAlive (
const Boolean& val)
HTTPReply String* getHTTPReply () Specifies the type of response the

const String* getHTTPReply () const

void setHTTPReply (const String* val)
void setHTTPReply (const String& val)

server isissuing. For example, if the
reguest isfulfilled the server will
reply with ox.

355

CHAPTER 8| Working with Transport Attributes

Table 21:

Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

HTTPReplyCode

Int* getHTTPReplyCode ()
const Int* getHTTPReplyCode() const

void setHTTPReplyCode (

const Int* val)
void setHTTPReplyCode (

const Int& val)

Specifies an integer code associated
with theresponse. For example, 200
means ok and 404 Means Not
Found

Last-Modified

String* getLastModified()
const String* getLastModified()
const

void setLastModified(

const String* val)
void setLastModified(

const String& val)

Specifiesthe date and time at which
the server believes aresource was
last modified.

Pragma

String* getPragma ()
const String* getPragma() const

void setPragma (const String* val)
void setPragma (const String& val)

Specifies implementation-specific
directives that might apply to any
recipient along the request/response
chain.

Proxy-Authorization

String* getProxyAuthorization()
const String*
getProxyAuthorization() const

void setProxyAuthorization (

const String* val)
void setProxyAuthorization (

const String& val)

Specifies the credentials used to
perform validation at aproxy server
aong the request/response chain. If
the proxy uses username/password
validation, thisvalueis not used.

ProxyAuthorizationType

String* getProxyAuthorizationType ()
const String*
getProxyAuthorizationType () const

void setProxyAuthorizationType (
const String* val)

void setProxyAuthorizationType (
const String& val)

Specifies the type of authentication
used by proxy servers along the
request/response chain.

356

Table 21:

Setting HTTP Attributes

Qutgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

ProxyPassword String* getProxyPassword () Specifies the password used by
const String* getProxyPassword() proxy servers for authentication if
const username/password authentication
isin use.
void setProxyPassword (
const String* val)
void setProxyPassword (
const String& val)
ProxyServer String* getProxyServer () Specifies the URL of the proxy
const String* getProxyServer() const | server, if one exists, along the
reguest/response chain.
void setProxyServer (
const String* val) | Note Artix does not support the
void setProxyServer (existence of more than one proxy
const Strings& val) | Server aong the request/response
chain.
ProxyUserName String* getProxyUserName () Specifies the username used by

const String* getProxyUserName ()
const

void setProxyUserName (

const String* val)
void setProxyUserName (

const String& val)

proxy servers for authentication if
username/password authentication
isinuse.

Recieve-Timeout

Int* getRecieveTimeout ()
const Int* getRecieveTimeout () const

void setRecieveTimeout (

const Int* val)
void setRecieveTimeout (

const Inté& val)

Specifies the number of
milliseconds the server will wait to
receive arequest before timing out.
The default is 3000.

RedirectURL

String* getRedirectURL()
const String* getRedirectURL() const

void setRedirectURL (

const String* val)
void setRedirectURL (

const String& val)

Specifies the URL to which the
reguest should be redirected.

357

CHAPTER 8| Working with Transport Attributes

Table 21:

Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Send-Timeout

Int* getSendTimeout ()
const Int* getSendTimeout () const

void setSendTimeout (const Int* val)
void setSendTimeout (const Int& val)

Specifies the number of
milliseconds the server will
continue trying to send a response
before timing out. The default is
3000.

ServerCertificate

String* getServerCertificate()
const String* getServerCertificate()
const

void setServerCertificate(

const String* val)
void setServerCertificate(

const String& val)

Specifies the full path to the X509
certificate issued by the certificate
authority for the server.

ServerCertificateChain

String* getServerCertificateChain()
const String*
getServerCertificateChain() const

void setServerCertificateChain (
const String* val)

void setServerCertificateChain (
const String& val)

Specifies the full path to thefile
containing all of the certificatesin
the chain.

Server Type String* getServerType () Specifies the type of server
const String* getServerType() const responded to the client. Valuestake
the form program-name/version.
void setServerType (
const String* val)
void setServerType (
const String& val)
ServerPrivateKey String* getServerPrivateKey () Specifies the full path to the

const String* getServerPrivateKey ()
const

void setServerPrivateKey (

const String* val)
void setServerPrivateKey (

const String& val)

PKCS12-encoded private key that
corresponds to the X509 certificate
specified by servercertificate.

358

Setting HTTP Attributes

Table21: Outgoing HTTP Server Attributes

HTTP Attribute

Artix APls

Description

ServerPrivateKeyPassword

String*
getServerPrivateKeyPassword ()

const String*
getServerPrivateKeyPassword() const

void getServerPrivateKeyPassword (
const String* val)

void getServerPrivateKeyPassword (
const String& val)

Specifies the password used to
decrypt the PK CS12-encoded
private key.

Trusted Root Certificate

String* getTrustedRootCertificates|()
const String*
getTrustedRootCertificates() const

void setTrustedRootCertificates(
const String* val)

void setTrustedRootCertificates (
const String& val)

Specifies the full path to the
PK CS12-encoded X509 certificate
for the certificate authority.

UseSecureSockets

Boolean* getUseSecureSockets ()
const Boolean* getUseSecureSockets ()
const

void setUseSecureSockets (

const Boolean* val)
void setUseSecureSockets (

const Boolean& val)

Specifies the server wantsto use a
secure connection. Secure HTTP
connections are also referred to as
HTTPS.

Note: If the contract specifies
HTTPS, thisvalue is aways true.

WWwW-Authenticate

String* getWWWAuthenticate ()
const String* getWWWAuthenticate()
const

void setWWWAunthenticate (

const String* val)
void setWWWAunthenticate (

const String& val)

Specifies at least one challenge that
indicates the authentication
scheme(s) and parameters
applicable to the Request-URI.

359

CHAPTER 8| Working with Transport Attributes

Incoming header

360

The server’ sincoming context, HTTP_SERVER_INCOMING_CONTEXTS, iS available
in the server’s request context container after a request from client has been
received by the transport layer. The values stored in this context are for
informational purposes only. For example, if you need to check the MIME type
of the data the client can accept in the response, you would read it from the
server’sincoming context as shown in Example 111.

Example 111: Reading the Accept Attribute inan HTTP Server

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/http_conf xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

ContextRegistry* context_registry =
bus->get_context_registry () ;

ContextCurrent& context current =
context_registry->get_current() ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_ container->get_context (
IT ContextAttributes::HTTP_SERVER_INCOMING_CONTEXTS,
true

) g

// Cast the context into a serverType object
serverType* http_server config =

dynamic_cast<serverType*> (info);

IT Bus::String* content = http server config->getAccept() ;

Incoming server attributes

Setting HTTP Attributes

The code in Example 111 does the following:

1. Includesthe header filesfor the general context classes and for the HTTP

server context type.

Gets the server’s context registry.

Gets the server’sincoming HT TP context from the request context

container.

4. Getsthevaue of the accept property.

Table 22 shows the attributes that are valid in the incoming HTTP server

context.

Table22: Incoming HTTP Server Attributes

HTTP Attribute

Artix APls

Description

Accept

String* getAccept ()
const String* getAccept() const

Specifiesthe MIME typesthe client
can handle in aresponse.

Accept-Encoding

String* getAcceptEncoding ()
const String* getAcceptEncoding ()
const

Specifies the types of content
encoding the client can handlein a
response. This property typically
refers to compression mechanisms.

Accept-Language

String* getAcceptLanguage ()
const String* getAcceptLanguage ()
const

Specifies the language preferred by
the client. Valid language tags
combine an 1SO language code and
an 1SO country code separated by a
hyphen. For example, en-Us.

Authorization String* getAuthorization() Specifiesthe credentialsthat will be
const String* getAuthorization() used by the server to authorize
const requests from the client.
AuthorizationType String* getAuthorizationType () Specifies the name of the
const String* getAuthorizationType () authentication scheme in use.
const
AutoRedirect Boolean* getAutoRedirect () Specifies whether the server should

const Boolean* getAutoRedirect ()
const

automatically redirect the request.

361

CHAPTER 8| Working with Transport Attributes

Table 22:

Incoming HTTP Server Attributes

HTTP Attribute

Artix APls

Description

BrowserType

String* getBrowserType ()
const String* getBrowserType() const

Specifies information about the
browser from which the request
originates. This property is also
know as the user-agent.

Certificate Issuer

String* getCertificatelIssuer ()
const String* getCertificatelIssuer ()
const

Specifies the value stored in the
Issuer field of the client’s X509
certificate.

Certificate Key Size

Int* getCertificateKeySize()
const Int* getCertificateKeySize()
const

Specifies the size, in bytes, of the
public key included in the client’s
x509 certificate.

Certificate valid Not
After

String* getCertificateNotAfter ()
const String*
getCertificateNotAfter () const

Specifies the date and time after
which the client’s X509 certificate
isinvalid.

Certificate Vvalid Not
Before

String* getCertificateNotBefore ()
const String*
getCertificateNotBefore() const

Specifies the date and time before
which the client’s X509 certificate
isinvalid.

Certificate Subject

String* getCertificateSubject ()
const String*
getCertificateSubject () const

Specifies the value of the subject
field in the client’s X509 certificate.

const String* getHost () const

Connection String* getConnection () Specifieswhether aconnectionisto
const String* getConnection() const be kept open after each
request/response transaction.
Cookie String* getCookie () Specifies a static cookie that is sent
const String* getCookie() const along with arequest.
Note: AccordingtotheHTTP 1.1
specification, HTTP cookies must
contain US-ASCI| characters.
Host String* getHost () Specifies the Internet host and port

number of the resource being
requested.

362

Table 22:

Setting HTTP Attributes

Incoming HTTP Server Attributes

HTTP Attribute

Artix APls

Description

HTTPVersion

String* getHTTPVersion()
const String* getHTTPVersion() const

Specifies the version of the HTTP
transport in use. Currently, thisis
alwayssetto 1.1.

If-Modified-Since

String* getIfModifiedSince ()
const String* getIfModifiedSince()
const

If the requested resource has not
been modified since the time
specified, the server should issue a
304 (not modified) response

without any message body.
Method String* getMethod() Specifies the value of the METHOD
const String* getMethod() const token sent in the request. Valid
values and their meanings are given
inthe HTTP 1.1 specification.
Passwrod String* getPassword () Specifies the password the client

const String* getPassword() const

wishes to use for authentication.

Proxy-Authenticate

String* getProxyAuthenticate()
const String* getProxyAuthenticate ()
const

Specifies a challenge that indicates
the authentication scheme and
parameters applicable to the proxy
for this Request-URI.

Referer String* getReferer () Specifies the entity that referred the
const String* getReferer() const client.
URL String* getURL() Specifies the value of the
const String* getURL() const Request-URI sent in the request.
The valid values for this property
are described in the HTTP 1.1
specification.
Username String* getUserName () Specifies the username the client

const String* getUserName () const

wishes to use for authentication.

363

CHAPTER 8| Working with Transport Attributes

Setting the Server’s Endpoint URL

Overview

Side affects

Getting the property

Server main function

364

Because the server’s endpoint URL must be known before the transport layer is
initialized by the bus, you must use the specialized configuration context to set
it. For more information on using the configuration context see “Getting a
Context Instance” on page 259.

A side affect of setting the server’s endpoint URL using contextsis that the
following configuration variables:

Artix Configuration File
policies:soap:server_address_mode_policy:publish hostname
policies:at_http:server_ address_mode policy:publish_hostname

Areignored. The endpoint addresses advertised by the WSDL publish service
will reflect the values set in the configuration context, not the values set in the
configuration file.

To accessthe HTTP endpoint URL property for an HTTP server, obtain a
configuration context container (uUsing get_configuration_context ()) and
then get the HTTP_SERVER OUTGOING_CONTEXTS context. Y ou are returned an
IT_ContextAttributes: :serverType Object that hastwo relevant methods:
® setURL() Setsastring representing the URL of the server.

® getURL() returnsa string representing the URL of the server.

Example 112 shows sample code from a server main function, which shows how
to initialize http-conf : serverType configuration context data.

Example 112: Server Main Function Setting a Configuration Context

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the soap context
#include <it_bus_pdk/context.h>

Setting HTTP Attributes

Example 112: Server Main Function Setting a Configuration Context
2 #include <it_bus_pdk/context_attrs/http_conf_ xsdTypes.h>
IT USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

int
main(int argc, char* argvl[])
{
try
{
IT Bus::Bus_var bus = IT Bus::init(argc, argv);
3 IT Bus::QName service_name (
"SOAPService",
"http://www.iona.com/hello_world soap_ http"
) g
4 ContextRegistry* context_registry =
bus->get_context_registry() ;
5 ContextContainer * context_container =
context_registry->get configuration context (
service name,
"SoapPort",
true
);:
// Obtain a reference to the context
6 AnyType* info = context_container->get_context (
IT ContextAttributes: :HTTP_SERVER OUTGOING_CONTEXTS,
true

);
// Cast the context into a serverType object
7 serverType* http_server_config =

dynamic_cast<serverType*> (info) ;

// Modify the endpoint URL
8 http_server config->setURL ("http://localhost:63278") ;

GreeterImpl servant (bus) ;

365

CHAPTER 8| Working with Transport Attributes

366

Example 112: Server Main Function Setting a Configuration Context

bus->register_servant (
servant,
"../../etc/hello_world.wsdl",
service_name
);
}
catch (IT Bus: :Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;
return -1;
}

return 0;

The preceding code example can be explained as follows:

1

The it_bus_pdk/context .h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry,

* IT_Bus::ContextContainer,

. IT Bus::ContextCurrent.

Thehttp_conf xsdTypes.h header declares the context data types
generated from the ht tp-conf schema.

This service_name isthe QName of the SOAP service featured in the
hello_world_soap_http demonstration (in

samples /basic/hello_world_soap_http).

Obtain areferencetothe IT_Bus: : ContextRegistry object, which isused
to register contexts with the Bus.

The IT_Bus: :ContextContainer object returned by
get_configuration_context () holds configuration datathat is used
exclusively by the specified endpoint (that is, the soapPort port in the
SOAPService SErvice).

TheIT Bus::ContextContainer: :get_context () functioniscalled with
its second parameter set to true, indicating that a context with that name
should be created if none already exists.

Setting HTTP Attributes

The IT_Bus: : AnyType classisthe base typefor al complex typesin Artix.
In this case, you can cast the anyType instance, info, to its derived type,

serverType.

Y ou can now modify the URL used by the soapport port by calling the
setURL () function.

367

CHAPTER 8| Working with Transport Attributes

Setting CORBA Attributes

Overview

368

The CORBA transport does not support programmatic configuration, nor does it
provide access to any of the settings that are used to establish the connection.
Artix does, however, provide access to the CORBA principal by way of the
context mechanism. The CORBA principal is manipulated as a string by the
contexts.

For details of how to use the CORBA principal in Artix, consult the Artix
Security Guide.

Setting WebSphere MQ Attributes

Setting WebSphere MQ Attributes

Overview

In thissection

When working with WebSphere MQ, your applications can access information
about the WebSphere MQ connection that isin use and information contained in
the WebSphere MQ message descriptor. The MQ connection attributes context
containsinformation about the queues and queue managers that your application
uses for sending and receiving messages. On the client-side, you can set this
information on a per-invocation basis. The MQ message attributes context
alowsyou to inspect and set a number of the properties stored in the WebSphere
MQ message descriptor.

This section discusses the following topics:

Working with Connection Attributes page 370

Working with MQ Message Descriptor Attributes page 375

369

CHAPTER 8| Working with Transport Attributes

Working with Connection Attributes

Overview The WebSphere MQ transport provides information about the queues to which
your application send and receives messages. Thisinformation is stored in the
MQ connection attributes context and is accessed using the
MQ_CONNECTION_ATTRIBUTES constant. The dataisreturnedin an
MQConnectionAttributesType Object. Table 23 describes the attributes stored
in the MQ connection attributes context.

Table23: MQ Connection Attributes Context Properties

Attribute Artix APIs Description
AliasQueueName String* getAliasQueueName () Specifies the remote queue to
const String* getAliasQueueName() const which aserver will put repliesif its
gueue manager is not on the same
void setAliasQueueName (const String* val) host as the client' s local queue
void setAliasQueueName (const String& val) manager
ConnectionName String* getConnectionName () Specifies the name of the
const String* getConnectionName () const connection by which the adapter
connects to the queue.
void setConnecitonName (const String* val)
void setConnecitonName (const String& val)
M odelQueueName String* getModelQueueName () Specifies the name of the queue to
const String* getModelQueueName () const be used as amode for creating

dynamic queues.
void setModelQueueName (const String* val)

void setModelQueueName (const String& val)

QueueManager String* getQueueManager () Specifies the name of the queue
const String* getQueueManager () const manager.

void setQueueManager (const String* val)
void setQueueManager (const String& val)

QueueName String* getQueueName () Specifies the name of the message
const String* getQueueName () const queue.

void setQueueName (const String* val)
void setQueueName (const String& val)

370

Setting WebSphere MQ Attributes

Table23: MQ Connection Attributes Context Properties
Attribute Artix APls Description
ReplyQueueManager | String* getReplyQueueManager () Specifies the name of the reply
const String* getReplyQueueManager () const queue manager. This Setting is
ignored by WebSphere MQ servers
void setReplyQueueManager (when the client specifies the
. const String* val) ReplyToQMgr iNn the request
void setReplyQueueManager (X descriptor
const String& val) MEesSage S message ptor.
ReplyQueueName String* getReplyQueueName () Specifies the name of the queue
const String* getReplyQueueName () const where response messages are
received. This setting isignored by
void setReplyQueueName (const String* val) WebSphere MQ servers when the
void setReplyQueueName (const String& val) client specifiesthe ReplyToo in the
request message' s message
descriptor.
Transactional TransactionType* getTransactional () Specifieshow messages participate
const TransactionType* getTransactional () in transactions and what role
const WebSphere MQ playsin the
void setTransactional (trar@ctlons. Fo.r information Qn
const TransactionType* val) | Seiting Transactional see " Setting
void setTransactional (the Transactional attribute” on
const TransactionType& val) page373
On the client-side you can control the connection to which requests are directed
by setting the MQ connection attributes in the client’ s request context before
each invocation. The connection attributes are returned to the defaults specified
in the client’ s contract after each invocation.
Example Example 113 shows code for specifying the queue and queue manager to use

when making a request.

Example 113: Setting the Client’s QueueManager and QueueName

// C++
1 #include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/mg xsdTypes.h>

371

CHAPTER 8| Working with Transport Attributes

Example 113: Setting the Client’s QueueManager and QueueName

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

2 ContextRegistry* context_registry =
bus->get_context_registry () ;

ContextCurrent& context_ current =
context_registry->get_current() ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

3 // Obtain a reference to the context
AnyType* info = context_container->get_context (
IT ContextAttributes::MQ CONNECTION_ATTRIBUTES,
true
);

// Cast the context into a MQConnectionAttributesType object
MQConnectionAttributesType* mg client_config =
dynamic_cast<MQConnectionAttributesType*> (info) ;

4 mg client_config->setQueueManager ("Bloggy") ;
mg client_config->setQueueName ("TalkBack") ;

// make proxy invocations

The code in Example 113 does the following:

1. Includesthe header files for the general context classes and for the MQ
connection attributes context type.

Getsthe client’s context registry.

Getsthe client’sMQ connection attributes context from the request context
container.

4. Setsthe queue manager attribute and the queue name attribute.

Note: On the server-side you cannot change any of the connection attributes
programmatically.

372

Setting WebSphere MQ Attributes

SettingtheTransactional attribute Thetransactiona attribute is set using a transactionType Object.
transactionType iSaWSDL enumeration whose values are described in
Table 24.

Table24: MQ Transactional Values

Value Artix API for Setting Description

none setTransactional (transactionType: :none) The messages are not part of
atransaction. No rollback
actions will be taken if errors
occur.

internal setTransactional (transactionType: :internal) The messages are part of a
transaction with WebSphere
MQ serving asthetransaction
manager.

xa setTransactional (transactionType: :xa) The messages are part of a
transaction with WebSphere
MQ serving as the resource
manager.

Example 114 shows code for setting a client’ s connection to use XA style
transactionality for arequest.

Example 114: Setting the Client’s Transactionality Attribute
// C++
1 #include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/mg xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT_ Bus;

2 ContextRegistry* context registry =
bus->get_context_registry () ;

ContextCurrent& context_current =
context_registry->get_current () ;

373

CHAPTER 8| Working with Transport Attributes

374

3

Example 114: Setting the Client’s Transactionality Attribute

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context
AnyType* info = context_container->get_context (
IT ContextAttributes::MQ CONNECTION_ATTRIBUTES,

true
)7

// Cast the context into a MQConnectionAttributesType object
MQConnectionAttributesType* mg client_config =
dynamic_cast<MQConnectionAttributesType*> (info) ;

mg _client_config->setTransactional (transactionType: :xa) ;

// make proxy invocations

The code in Example 113 does the following:
1. Includesthe header files for the general context classes and for the MQ
connection attributes context type.
Getsthe client’s context registry.
Getsthe client’sMQ connection attributes context from the request context
container.
4, Setsthe MQ transaction type to XA.
For more information about working with Artix enumerated types, see “ Deriving
Simple Types by Restriction” on page 451.

Setting WebSphere MQ Attributes

Working with MQ Message Descriptor Attributes

Overview

MQ incoming message attributes

M Q outgoing message attributes

The Artix WebSphere MQ transport splits its MQ message descriptor attributes
between two contexts, as follows:

° MQ incoming message attributes.
®* MQ outgoing message attributes.

One context, accessed using theMo_INCOMING_MESSAGE_ATTRIBUTES constant,
contains the MQ message descriptor attributes for the last message received by
the application. For aclient, this means that it contains the attributes for the last
response received from the server and the context is accessed through the
client’ s reply context container. For a server, this means that the incoming
message attributes context contains the descriptor attributesfor the request being
processed and it is accessed through the server’ s request context container. The
incoming message properties can be read at any point in the processing of the
message once the transport layer has passed it to the messaging chain.

The second context, accessed using MQ_OUTGOING_MESSAGE_ATTRIBUTES, allows
you to set the values of the attributes in the MQ message descriptor for the next
message being sent across the wire. For clients, this means that it affects the
values of the next request being made and the context is accessed through the
client’ srequest context. For server’s, this means that the outgoing message
attributes context affects the values of the current response’s MQ message
descriptor and it is accessed through the server’ sreply context container. You
can set the values of the outgoing message attributes at any point in an
application’s message chain before it the message is handed off to the transport

layer.

375

CHAPTER 8| Working with Transport Attributes

M Q message attributes

Both the incoming message attributes context and the outgoing message
attributes context are returned using as an MQMessageAttributesType Object.
Table 25 describes the attributes stored in the MQ message attributes context.

Table 25:

MQ Message Attributes Context Properties

Attribute

Artix APls

Description

AccountingToken

String* getAccountingToken ()
const String* getAccountingToken() const

void setAccountingToken (const String* val)
void setAccountingToken (const String& val)

Specifies the value for the MQ
message decscriptor’s
AccountingToken field.

ApplicationData

String* getApplicationData ()
const String* getApplicationData() const

void setApplicationData (const String* wval)
void setApplicationData (const String& val)

Specifiesany application-specific
information that needsto be setin
the message descriptor.

ApplicationldData

String* getApplicationIdData ()
const String* getApplicationIdData() const

void setApplicationIdData (

const String* wval)
void setApplicationIdData (

const String& val)

Specifies the value of the MQ
message descriptor’s
ApplIdentityData field. Itis
only valid for MQ clients.

ApplicationOriginData

String* getApplicationOriginData ()
const String* getApplicationOriginData ()
const

void setApplicationOriginData (

const String* val)
void setApplicationOriginData (

const String& val)

Specifies the value of the MQ
message descriptor’s
ApplOriginbData field.

BackoutCount

Int* getBackoutCount ()
const Int* getBackoutCount () const

Returns the number of timesthe
message has been previously
returned by the MoceT call as part
of aunit of work, and
subsequently backed out.

376

Setting WebSphere MQ Attributes

Table25: MQ Message Attributes Context Properties

Attribute Artix APIs Description
Convert Boolean* isConvert () Specifiesif the messagesin the
const Boolean* isConvert () const gueue needs to be converted to
the system’ s native encoding.
void setConvert (const Boolean* val)
void setConvert (const Boolean& val)
CorrelationlD Base64Binary* getCorrelationID() Specifies the value for the MQ
const Base64Binary* getCorrelationID() message descriptor’s CorrelTd
const field.
void setCorrelationID(
const Base64Binary* val)
void setCorrelationID(
const Base64Binary& val)
CorrelationStyle correlationStyleType* Specifies how WebSphere MQ
getCorrelationStyle () matches both the message
const correlationStyleType* identifier and the correlation
getCorrelationStyle() const . . i
identifier to select a particular
void setCorrelationStyle (message to be retrieved from the
const correlationStyleType* val) gueue. For information on how to
void setCorrelationStyle (set CorrelationSter see” Setting
const correlationStyleType& val) the Correl ati onSter attribute’ on
page 378.
Delivery deliveryType* getDelivery () Specifies the value of the MQ
const deliveryType* getDelivery () const message descriptor's
))) Persistence field. For
void setDelivery(const deliveryType* val) . . .
void setDelivery (const deliveryType& val) |nf0rmat|.on on setti r]g De very,
see “ Setting the Delivery
attribute” on page 380.
Format formatType* getFormat () Specifies the value of the MQ

const formatType* getFormat () const

void setFormat (const formatType* val)
void setFormat (const formatType& val)

message descriptor’s Format
field. For information on setting
Format, see “ Setting the Format
attribute” on page 381.

377

CHAPTER 8| Working with Transport Attributes

Table25: MQ Message Attributes Context Properties
Attribute Artix APIs Description
Messagel D String* getMessageID() Specifies the value for the MQ
const String* getMessageID() const message deﬂ:riptor’ SMsgId field.
void setMessageID(const String* val)
void setMessagelID(const String& val)
ReportOption reportOptionType* getReportOption () Specifies the value of the MQ
const reportOptionType* getReportOption/() message descriptor’ s Report
const field. For information on setting
void setReportOption (Reportoption’ See_“ Setting the
const reportOptionType* val) Reportoptlon attribute” on
void setReportOption (page 383.
const reportOptionType& val)
Userldentifier String* getUserIdentifier() Specifies the value for the MQ

const String* getUserIdentifier() const

void setUserIdentifier (const String* val)
void setUserIdentifier (const String& val)

message descriptor’s
UserIdentifier field.

Setting the CorrelationStyle

The CorrelationStyle attribute is set using a correlationStyleType Object.

attribute correlationStyleType iSaWSDL enumeration whose values are described in
Table 26.
Table26: CorrelationStyle Values
Value Artix API for Setting Description
messageld correlationStyleType cs ("messageId") ; Use the message ID asthe
context->setCorrelationStyle(cs) ; valuefor the message's
CorrelId.
correlationId correlationStyleType cs("correlationId"); Usethe message’ S
context->setCorrelationStyle(cs) ; Correlationld as the value
for the message's
CorrelId.

messageld copy

correlationStyleType cs ("messageId copy") ;
context->setCorrelationStyle(cs) ;

Use the message ID asthe
value for the message's
MsgId.

378

Setting WebSphere MQ Attributes

Example 115 shows code for setting a request message descriptor’'s
CorrelationStyle message Id.

Example 115: Setting the Client’s CorrelationStyle Attribute

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/mg xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

ContextRegistry* context_registry =
bus->get_context_registry () ;

ContextCurrent& context current =
context_registry->get_current() ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes::MQ OUTGOING_MESSAGE_ATTRIBUTES,
true

) g

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mg msg_config =
dynamic_cast<MQMessageAttributesType*> (info) ;

correlationStyleType cs("messageId");
mg _msg_config->setCorrelationStyle(cs) ;

// make proxy invocations

The code in Example 115 does the following:

1. Includesthe header filesfor the general context classes and for the MQ
message attributes context type.

2. Getstheclient’'s context registry.

379

CHAPTER 8| Working with Transport Attributes

3. Getsthe client's MQ outgoing message attributes context from the request
context container.

4. Setsthe correlation style to messageId.

Setting the Delivery attribute The Delivery attribute is set using a deliveryType Object. deliveryType iSa
WSDL enumeration whose values are described in Table 27.

Table27: Delivery Values

Value Artix API for Setting Description
persistent deliveryType delivery t("persistent"); Setsthe persistencefieldto
context->setDelivery (delivery. t) MQPER_PERSISTENT
not persistent deliveryType delivery t("not persistent"); Setsthe persistence field to
context->setDelivery (delivery t); MQPER_NOT PERSISTENT.

Example 116 shows code for setting a request message descriptor’s
Persistence field tO MOPER PERSISTENT.

Example 116: Setting the Client’s Delivery Attribute

// C++
1 #include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/mg xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

2 ContextRegistry* context_ registry =
bus->get_context_registry () ;

ContextCurrent& context current =
context_registry->get_ current() ;

// Obtain a pointer to the Request ContextContainer

ContextContainer* context container =
context_current.request_contexts() ;

380

Setting the Format attribute

Setting WebSphere MQ Attributes

Example 116: Setting the Client’s Delivery Attribute

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes::MQ OUTGOING MESSAGE_ATTRIBUTES,
true

)

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mg msg_config =
dynamic_cast<MQMessageAttributesType*> (info) ;

deliveryType delivery_t ("persistent");
mg _msg_config->setDelivery (delivery. t) ;

// make proxy invocations

The code in Example 116 does the following:

1. Includesthe header files for the general context classes and for the MQ
message attributes context type.

Getsthe client’s context registry.

Gets the client’s MQ outgoing message attributes context from the request
context container.

4, Setsthedelivery typeto persistent.

The Format attributeis set using a formatType Object. formatType isaWSDL
enumeration whose values are described in Table 28.

Table28: Format Values

Value Artix API for Setting Description
none formatType format ("none"); Setsthe Format field to
context->setFormat (format) ; MQFMT_NONE.
string formatType format ("string"); Sets the Format field to
context->setFormat (format) ; MQFMT_STRING.
unicode formatType format ("unicode"); Setsthe Format field to
context->setFormat (format) ; MQFMT_STRING.

381

CHAPTER 8| Working with Transport Attributes

Table28: Format Values

context->setFormat (format) ;

Value Artix API for Setting Description
event formatType format ("event"); Sets the Format field to
context->setFormat (format) ; MQFMT_EVENT
programmable formatType format ("programmable command") ; Sets the Format field to
command context->setFormat (format) ; MQFMT_PCF
ims formatType format ("ims"); Setsthe Format field to

MQFMT_TMS.

ims_var_string formatType format ("ims_var_ string");
context->setFormat (format) ;

Setsthe Format field to
MQFMT_IMS VAR_STRING.

382

Example 117 shows code for setting arequest message descriptor’ s Format field
10 MQFMT_STRING.

Example 117: Setting the Client’s Format Attribute

// Ct++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/mg xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT_Bus;

ContextRegistry* context_registry =
bus->get_context_registry();

ContextCurrent& context_ current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes::MQ OUTGOING MESSAGE_ATTRIBUTES,
true

) g

Setting the ReportOption
attribute

Setting WebSphere MQ Attributes

Example 117: Setting the Client’s Format Attribute

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mg msg_config =
dynamic_cast<MQMessageAttributesType*> (info) ;

formatType format ("string");
mg _msg_config->setFormat (format) ;

// make proxy invocations

The code in Example 117 does the following:

1. Includesthe header files for the general context classes and for the MQ
message attributes context type.

Getsthe client’s context registry.

Gets the client’s MQ outgoing message attributes context from the request
context container.

4, Setsthe message format to string.

The ReportOption attribute is set using a reportOptionType Object.
ReportOptionType isaWSDL enumeration whose values are described in
Table 29.

Table29: ReportOption Values

Value Artix API for Setting Description
coa reportOptionType report_option("coa"); Set the message descriptor’s
context->setReportOption (report_option) Report field to MORO_COA.
cod reportOptionType report_option("cod"); Set the message descriptor’s
context->setReportOption (report_option) Report field to MORO_coD.
exception reportOptionType report_option ("exception"); Set the message descriptor’s
context->setReportOption (report_option) Report field to
MQRO_EXCEPTION.
expiration reportOptionType report_option("expiration"); Set the message descriptor’s
context->setReportOption (report_option) Report field to
MQORO_EXPIRATTON.

383

CHAPTER 8| Working with Transport Attributes

Table29: ReportOption Values

Value Artix API for Setting Description
discard reportOptionType report_option("discard") ; Set the message descri ptor’ S
context->setReportOption (report_option) Report field to
MQRO_DISCARD_MSG.

384

Example 118 shows code for setting a request message descriptor’ SReport field
{0 MORO_DISCARD_MSG.

Example 118: Setting the Client’s ReportOption Attribute

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/mg xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT_Bus;

ContextRegistry* context_ registry =
bus->get_context_registry();

ContextCurrent& context current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes::MQ OUTGOING MESSAGE_ATTRIBUTES,
true

)7

// Cast the context into a MQMessageAttributesType object
MQMessageAttributesType* mg msg_config =
dynamic_cast<MQMessageAttributesType*> (info) ;

reportOptionType report_option ("discard") ;
mg msg_config->setReportOption (report_option)

Setting WebSphere MQ Attributes

Example 118: Setting the Client’s ReportOption Attribute

// make proxy invocations

The code in Example 118 does the following:

1. Includesthe header filesfor the general context classes and for the MQ
message attributes context type.
Gets the client’s context registry.
Gets the client’s MQ outgoing message attributes context from the request
context container.

4. Setsthe report option to discard.

385

CHAPTER 8| Working with Transport Attributes

Setting FTP Attributes

Overview The attributes used to configure an FTP connection are split into four contexts:
* onefor setting the policies used to connect to the FTP daemon.
* onefor setting the credential s to use when connecting to the FTP daemon.
* onefor setting the naming scheme implementation to use for Artix clients.
* onefor setting the naming scheme implementation to use for Artix servers.
These settings are al controlled through the special configuration context that is
made available before Artix registers any user level code with the bus. For more

information on using the configuration context see “ Getting a Context | nstance”
on page 259.

Artix clients can dynamically set the scan interval used by the FTP transport.
and can dynamically adjust the length of time they will wait for aresponse
before timing out.

In this section This section discusses the following topics:
Setting FTP Connection Policies page 387
Setting the Connection Credentials page 391
Setting the Naming Policies page 394

386

Setting FTP Attributes

Setting FTP Connection Policies

Overview When setting the FTP connection policies you access them using the
FTP_CONNECTION_POLICY tag. The FTP connection policy context informationis
returned asa IT_ContextAttributes: :ConnectionPolicyType Object. All of
the connection policies are valid when set in the configuration context. In
addition, Artix clients can set the scan interval policy and the receive timeout
policy in their request contexts.

Setting the connection mode The FTP connection mode is set using a connectModeType Object.
ConnectModeType IS an enumeration whose values are described in Table 30.

Table30: ConnectionMode Values

Value Artix API for Setting Description
active ConnectModeType connect_mode ("active"); Specifies that Artix controlsthe
context->setconnectMode (connect_mode) ; connection to the FTPD.
passive ConnectModeType connect_mode ("passive") ; Specifiesthat the FTPD controls
context->setconnectMode (connect_mode) ; the connection.

Example 119 shows code for setting the connection mode to passive.
Example 119: Setting the FTP Connection Mode

// C++

1 #include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/ftp_context_ xsdTypes.h>
IT USING NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

2 ContextRegistry* context_ registry =
bus->get_context_registry () ;

3 QName service_gname
= new QName ("http://www.iona.com/ftp_example", "FTPService") ;

387

CHAPTER 8| Working with Transport Attributes

Example 119: Setting the FTP Connection Mode

4 ContextContainer* context_container =
context_registry.get_configuration_context (
service_gname,
"FTPPort",
true
);

5 // Obtain a reference to the context
AnyType* info = context_container->get_context (
IT ContextAttributes: :FTP_CONNECTION_POLICY,
true
);

// Cast the context into a ConnectionPolicyType object
ConnectionPolicyType* ftp config =
dynamic_cast<ConnectionPolicyType*> (info) ;

6 ConnectModeType connect_mode ("passive") ;
ftp_config->setconnectMode (connect_mode) ;

// make proxy invocations

The code in Example 119 does the following:

1. Includesthe header files for the general context classes and for the FTP
connection policy type.
Getsthe client’s context registry.

Set the name of an FTP service defined in the WSDL contract. For
example, you might define an FTP service like the following:

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/ftp_ example"

<wsdl:service name="FTPService">
<wsdl:port binding="tns:Greeter_ FTPBinding"
name="FTPPort">
<ftp:port host="FTPHost" port="3210" />
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

388

Setting the connection timeout

Setting the scan interval

Setting FTP Attributes

4. Theconfiguration context is specific to the endpoint defined by the service,
FTPService, and the port, FTPPort.

5. Getstheclient's FTP connection policy context from the configuration
context container.

6. Setsthe FTP connection mode to passive.

The FTP connection time out determines the number of seconds Artix will spend
in attempting to connect to the FTPD before timing out. It is set using

setconnectTimeout (). The valueis specified as an integer as shown in
Example 120.

Example 120: Setting the Connection Timeout Policy

// C++
AnyType* info = context_container->get_context (

IT ContextAttributes: :FTP_CONNECTION_POLICY,
true

) g
ConnectionPolicyType* ftp_config =
dynamic_cast<ConnectionPolicyType*> (info) ;

ftp_config.setconnectTimeout (10) ;

The scan interval determines the number of seconds that Artix waits before
rescaning the remote message repository for new messages. In addition to being
settable in the configuration context, the scan interval can also be set by Artix
clients using the request context.

Itisset using setscanInterval (). Thevalueis specified as an integer, as
shown in Example 121.

Example 121: Setting the Scan Interval in a Client

// C++
AnyType* info = context_container->get_context (

IT ContextAttributes: :FTP_CONNECTION_POLICY,
true

)
ConnectionPolicyType* ftp config =
dynamic_cast<ConnectionPolicyType*> (info) ;

389

CHAPTER 8| Working with Transport Attributes

Setting the receive timeout

390

Example 121: Setting the Scan Interval in a Client

ftp_config.setscanInterval (3) ;

// Make invocation on proxy

The receive timeout determines the number of seconds that an Artix client waits
for aresponse before throwing atimeout exception. In addition to being settable
in the configuration context, the receive timeout can also be set by Artix clients
using the request context.

Itisset using setrecieveTimeout (). The valueis specified as an integer as
shown in Example 122.

Example 122: Setting the Receive Timeout in a Client

// C++

AnyType* info = context_container->get_context (
IT ContextAttributes::FTP_CONNECTION POLICY,
true

) g

ConnectionPolicyType* ftp config =
dynamic_cast<ConnectionPolicyType*> (info);

ftp_config.setreceiveTimeout (60) ;

// Make invocation on proxy

Setting FTP Attributes

Setting the Connection Credentials

Overview

Setting the FTP connection
credentials

Example

FTP servers require you to connect using a username and password. These are
set using the FTP connection credentials property.

Because the username and password used to connect to the FTP server must be
known before the transport is initialized, you need to set the property in the
specia configuration context that is made available before Artix registers any
user level code with the bus. For more information on using the configuration
context see “ Getting a Context Instance” on page 259.

To set the FTP connection credentials property, use the FTP_CREDENTIALS tag.

You are returned a credentialsType Object that has four member functions:

® setname() SetSastring representing the username used when connecting
to the FTP server.

® getname() returnsastring representing the username used when
connecting to the FTP server.

® setpassword() SefSa String representing the password used when
connecting to the FTP server.

® getpassword() returnsastring representing the password used when
connecting to the FTP server.

Example 123 shows how to set the FTP connection credentials properties on an
Artix FTP client.

Example 123: Setting the FTP Connection Mode

// C++

#include <it_bus_pdk/context.h>

#include <it_bus_pdk/context_attrs/ftp_context_ xsdTypes.h>
IT USING _NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

ContextRegistry* context_registry =
bus->get_context_registry () ;

391

CHAPTER 8| Working with Transport Attributes

392

Example 123; Setting the FTP Connection Mode

QName service_gname

= new QName ("http://www.iona.com/ftp example",

ContextContainer* context_container =
context_registry.get_configuration_context (
service_gname,
"FTPPort",
true

) g

// Obtain a reference to the context
AnyType* info = context_container->get_context (
IT ContextAttributes::FTP_CREDENTIALS,
true
) g
// Cast the context into a CredentialsType object
CredentialsType* creds =

dynamic_cast<CredentialsType*> (info) ;

creds->setname ("george") ;
creds->setpassword ("bosco") ;

// make proxy invocations

The code in Example 123 does the following:
1.

credentials policy type.

2. Getstheclient’'s context registry.

"FTPService") ;

Includes the header files for the general context classes and for the FTP

3.

Setting FTP Attributes

Set the name of an FTP service defined in the WSDL contract. For
example, you might define an FTP service like the following:

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/ftp example" ... >

<wsdl:service name="FTPService">
<wsdl :port binding="tns:Greeter_ FTPBinding"
name="FTPPort">
<ftp:port host="FTPHost" port="3210" />
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

The configuration context is specific to the endpoint defined by the service,
FTPService, and the port, FTPPort.

Getsthe client’s FTP credentials policy context from the configuration
context container.

Sets the username and password for the FTP connection.

393

CHAPTER 8| Working with Transport Attributes

Setting the Naming Policies

Overview

394

The FTP naming policies determine how Artix names the files created for the
messages sent over the FTP transport and how Artix cleans up files on the
remote datastore. These behaviors are controlled by a set of Java classesthat you
can implement to meet specific needs. Artix also provides default
implementations.

For details, seethe "Using FTP" section in the "Transports" chapter of Bindings
and Transports,C++ Runtime guide.

Setting i18n Attributes

Setting 118n Attributes

Overview

Configuring Artix to use theil8n
inter ceptor

Setting up i18n on aclient

Artix has two contexts to configure codeset conversion when using theil8n
interceptor. One context configures the client and the other configuresthe
server. Theil8n interceptor is used when working in an environment where
codeset conversion is required, but the transportsin use do not support it. It isa
message-level interceptor and isinvoked just before the transport layer is handed
the message.

Theil18n interceptor can also be set up using port extensorsin your application’s
contract. For information on setting up the i18n interceptor using port extensors
see the chapter on servicesin Designing Artix Solutions.

Before your application can use the i18n interceptor for code conversion you
must configure the Artix busto load the required plug-ins and add the
interceptor to the appropriate message interceptor lists. To configure your
application to use the i18n interceptor do the following:

1. If your application includes a service proxy that needs to use codeset
conversion, add "I18nInterceptorFactory" tothe
binding:artix:client_message_interceptor list variable for your
application.

2. If your application includes a service that needs to use codeset conversion,
add "I18nInterceptorFactory" tothe
binding:artix:server message_interceptor list variablefor your
application.

3. Add "i18n_interceptor" tothelist of plug-instoloadin the
orb_plugins variable for your application.

For more information on configuring Artix see Configuring and Deploying Artix

Solutions.

In aclient the only attributes in the i18n context that alter how theil8n
interceptor works are the client local codeset and the client outbound codeset in
the client’s request context. The client inbound codeset defaults to the value of
the outbound codeset and the client-side interceptor does not read its value from
the context.

395

http://www.iona.com/support/docs/artix/3.0/design/index.htm

CHAPTER 8| Working with Transport Attributes

To configure aclient for codeset conversion using the i18n interceptor do the
following:

1. Gettheclient’s message context.

2. Gettheil8n client request context.
3. Setthelocal codeset property.

4. Set the outbound codeset property.

Example 124 shows the code for configuring a client for codeset conversion.
Example 124: Client i18n Properties

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/il18n_context_ xsdTypes.h>

IT USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT_Bus;

1 ContextRegistry* context_registry =
bus->get_context_registry();
ContextCurrent& context current =
context_registry->get_current() ;
ContextContainer* context_container =
context_current.request_contexts() ;

2 AnyType* info = context container->get_context (
IT ContextAttributes::I18N_INTERCEPTOR_CLIENT ONAME,
true
);
ClientConfiguration* i18n_config =
dynamic_cast<ClientConfiguration*> (info) ;

3 1i18n_config->setLocalCodeSet ("Latin-1") ;
4 i18n_config->setOutboundCodeSet ("UTF-16") ;

Setting up i18n on a server In aserver the only attributesin the i18n context that alter how the i18n
interceptor works are the server local codeset and the server outbound codeset in
the server’sreply context. The server-side interceptor does not read the server
inbound codeset from the context.

396

Setting i18n Attributes

To configure a server for codeset conversion using the i18n interceptor do the
following:

1. Getthe server’ s message context.
2. Gettheil8n server reply context.
3. Setthelocal codeset property.

4, Set the outbound codeset property.

Example 125 shows the code for configuring a server for codeset conversion.
Example 125: Server i18n Properties

// C++
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/il18n_context xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT_Bus;

ContextRegistry* context_registry =
bus->get_context_registry();

ContextCurrent& context current =
context_registry->get_current () ;

ContextContainer* context_container =
context_current.request_contexts() ;

AnyType* info = context_container->get_context (
IT ContextAttributes: :I18N_INTERCEPTOR_SERVER_QNAME,
true

) g

ServerConfiguration* il1l8n_config srvr =
dynamic_cast<ServerConfiguration*> (info) ;

118n_config_srvr->setLocalCodeSet ("Latin-1") ;
118n_config_srvr->setOutboundCodeSet ("UTF-16") ;

397

CHAPTER 8| Working with Transport Attributes

Setting WS-A and WS-RM Attributes

Overview The WS-ReliableMessaging (WS-RM) specification describes an interoperable
protocol that provides message delivery guarantees between a source and a
destination. The protocol is layered above SOAP.

In addition to supporting oneway and synchronous two-way calls, the WS-RM
protocol can also work with message sequences. Delivery guarantees can be
applied to message sequences—for example, you can require that every message
in amessage sequence gets delivered to its destination.

Enabling reliable messaging In order to enable reliable messaging, you must update the Artix configuration
file. For details of how to configure WS-RM, see Configuring and Deploying
Artix Solutions.

Demonstration code A demonstration of the WS-ReliableM essaging feature is provided in the
following directory:

ArtixInstal Dir /samples/advanced/wsrm

In this section This section contains the following subsections:
Setting the WS-A ReplyTo Endpoint page 399
Setting WS-RM Attributes page 402

398

Setting WS-A and WS-RM Attributes

Setting the WS-A ReplyTo Endpoint

Overview

WS-A configuration context scope

SettingtheReplyToendpoint for a
client proxy

The WS-Addressing (WS-A) message exchange pattern is abasic pre-requisite
for WS-ReliableMessaging. Essentially, the message exchange pattern provides
the basic infrastructure for setting up atwo-way stream of messages between a
source and a destination. When this pattern is enabled, Artix sends a SOAP
header that contains awsa : To element and awsa: ReplyTo € ement to the server.
The Artix core then sends request messages to the endpoint specified in the
wsa: To element and receives reply messages asynchronously at the endpoint
specified in the wsa: ReplyTo element.

The IT Bus: :WSAConfigurationContext context enablesyou to specify the
wsa:ReplyTo URI programmatically on the client side.

When you register aWS-A configuration context instance, it isvalid for one
proxy and one proxy only. The first proxy on which you invoke an operation
will adopt the programmed settings. The settings will not apply to any proxies
that you create subsequently.

Example 126 shows how to set the WS-Addressing ReplyTo endpoint on aclient
proxy.

Example 126: Setting the WS-A ReplyTo Endpoint on a Client Proxy

// C++
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/wsa_config_context.h>

ContextContainer* request_container =
m_bus->get_pdk_bus () ->get_context_registry ()->get_current () .requ
est_contexts () ;

ClientProxy proxy;
WSAConfigurationContext* wsa_config context
= new WSAConfigurationContext () ;
wsa_config_context->set_wsa_replyto_uri (
"http://localhost:0/WSAContextClient/ContextReplyTo"
D g

request_container->add_context (

399

CHAPTER 8| Working with Transport Attributes

400

Example 126: Setting the WS-A ReplyTo Endpoint on a Client Proxy

)7

IT ContextAttributes: :WSA CONFIGURATION_CONTEXT,
*wsa_config_context

proxy.hello_world() ;

The preceding code example can be explained as follows:

1

Includes the header files for the general context classes and the
WS-Addressing configuration context type.

Gets the request context container.

Create an IT_Bus: :WSAConfigurationContext instance to hold the
WS-RM attributes.

Call the set_wsa_replyto_uri () function to specify the ReplyTo URI.
The address in this URI can be set as follows:

+ Fixed host and port—where you specify the name of the client host
explicitly and you choose an explicit | P port number (non-zero).

+ Dynamically allocated address—where you specify the placeholder
address, 1ocalhost: 0, and leave it up to the operating system to
dlocate an IP port number. Artix replaces 1ocalhost with the name
of the client host. The client then transmits the dynamically allocated
address to the server inside a SOAP header (using the wsa: replyTo
element).

When you have finished adding WS-Addressing attributes on the

WS-Addressing configuration context instance, add the context to the

request context container.

The first proxy on which you invoke an operation adopts the

WS-Addressing settings and clears the context again. The settings then

apply to all subsequent operation calls made using this proxy. Other proxy

instances are not affected by the WS-Addressing settings.

Alternativeway toset theReplyTo
endpoint

Setting WS-A and WS-RM Attributes

An alternative way of setting the ReplyTo endpoint is by setting the value of the
endpoint reference explicitly. Example 127 shows how to set the
WS-Addressing ReplyTo endpoint on aclient proxy, using the

IT _Bus::WSAConfigurationContext: :set_wsa_2005_replyto_epr ()
function.

Example 127: Alternative Way to Set the WS-A ReplyTo Endpoint

// C++
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/wsa_config context.h>

ContextContainer* request_container =

m_bus->get_pdk_bus () ->get_context_registry()->get_current().r
equest_contexts() ;

ClientProxy proxy;

WSAConfigurationContext* wsa_config context = new
WSAConfigurationContext () ;

WS_Addressing: : EndpointReferenceType reply_ to_epr;

reply to_epr.setAddress ("http://localhost:0/WSAContextClient/Con
textReplyTo") ;

wsa_config context->set_wsa_2005_replyto_epr (reply to_epr) ;

request_container->add_context (
IT ContextAttributes: :WSA CONFIGURATION CONTEXT,
*wsa_config_context

)i
proxy.hello_world() ;

The preceding code example can be explained as follows:

1. Passthe URL addressto thews_addressing: : EndpointReferenceType
constructor. Instead of setting the endpoint address directly asan URL
string, you must first wrap the URL address in an endpoint reference type.

2. Setthe ReplyTo endpoint by calling the
EndpointReferenceType: : set_wsa_2005_replyto_epr () function.

401

CHAPTER 8| Working with Transport Attributes

Setting WS-RM Attributes

Overview

RM sourcesand RM destinations

WS-RM configuration context
scope

402

The basic settings for enabling WS-RM must be specified in the Artix
configuration file (see Configuring and Deploying Artix Solutions). It is
possible, however, to override some of the settings by programming the WS-RM
configuration context, as described here.

The reliable messaging protocol is based on the concept of an RM channel,

which transmits messages in one direction only. Each channd consists of an RM

source (where messages originate) and an RM destination (where messages

arrive).

For each client-server association, there are two basic ways of organizing RM

channels, asfollows:

®* One-way association—sends oneway messages from aclient to a server.
The association consists of a single channel, with an RM source on the
client side and an RM destination on the server side.

* Two-way association—sends messages in both directions, between aclient
and a server. This association consists of two channels, where the client
and the server each have an RM source and an RM destination.

When you register aWS-RM configuration context instance, it isvalid for one
proxy and one proxy only. The first proxy on which you invoke an operation
will adopt the programmed settings. The settings will not apply to any proxies
that you create subsequently.

Moreover, WS-RM attributes are by definition applicable either to an RM source
or to an RM destination (either of which can occur inaclient or in aserver). This
contrasts with other kinds of transport attribute, which are applicable either to a
client or to aserver.

Setting WS-A and WS-RM Attributes

Setting WS-RM attributeson a Example 128 shows the general approach to setting WS-RM attributes that
client proxy affect aparticulary client proxy instance, proxy.

Example 128: Setting WS-RM Attributes on a Client Proxy

// C++
1 #include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/wsrm config context.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

ContextContainer* request_container =
2 m bus->get_pdk_bus () ->get_context_registry()->get_current () .requ
est_contexts () ;

ClientProxy proxy;

3 WSRMConfigurationContext* wsrm config context
= new WSRMConfigurationContext () ;

4 // Set WS-RM attributes here!

oo

5 request_container->add_context (
IT ContextAttributes::WSRM_CONFIGURATION_CONTEXT,
*wsrm_config_ context
)

6 proxy.hello_world() ;

The preceding code example can be explained as follows:

1. Includesthe header filesfor the general context classes and the WS-RM
configuration context type.

Gets the request context container.

Create an IT_Bus: :WSRMConfigurationContext instance to hold the
WS-RM attributes.

4. You can set any of the client-side WS-RM attributes at this point in the
code (not shown).

403

CHAPTER 8| Working with Transport Attributes

Setting WS-RM attributesin a
servant

404

5. When you have finished adding WS-RM attributes on the WS-RM
configuration context instance, add the context to the request context
container.

6. Thefirst proxy on which you invoke an operation adopts the WS-RM
settings and clears the context again. The settings then apply to all
subsequent operation calls made using this proxy. Other proxy instances
are not affected by the WS-RM settings.

On the server side, you can set RM source attributes by modifying the attributes
inaWS-RM reply context before the service sendsits first reply messageto a
particular client. RM destination attributes, on the other hand, cannot be
modified by programming on the server side.

Example 129 shows the general approach to setting WS-RM attributesin a
servant (that is, in the implementation of an operation).

Example 129: Setting WS-RM Attributesin a Servant

// C++
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/wsrm config context.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

// Obtain a pointer to the reply ContextContainer
ContextContainer* reply container =
m _bus->get_context_registry()->get_current () .reply contexts() ;

WSRMConfigurationContext* wsrm config_ context
= new WSRMConfigurationContext () ;

// Set WS-RM source attributes here!

reply_container->add_context (
IT ContextAttributes::WSRM CONFIGURATION CONTEXT,
*wsrm_config_context

) g

Programmable WS-RM sour ce
attributes

WS-RM acknowledgement URI

Setting WS-A and WS-RM Attributes

The preceding code example can be explained as follows:

1. Includesthe header filesfor the general context classes and the WS-RM
configuration context type.

N

Gets the reply context container.

w

Create an IT_Bus: :WSRMConfigurationContext instance to hold the
server-side WS-RM attributes.

4. You can set RM source attributes at this point in the code (not shown).
When you have finished adding WS-RM attributes on the WS-RM

configuration context instance, add the context to the request context
container.

o

Y ou can set the following WS-RM source attributes programmatically:
* WS-RM acknowledgement URI.

. Base re-transmission interval.

* Disable exponential backoff.

® Max unacknowledged messages threshold.

® Maximum retransmission attempts.

. Maximum messages per sequence.

® Per-thread sequence scope.

The WS-RM acknowledgement URI specifies the endpoint where the WS-RM
source receives acknowledgement messages. In a SOAP header, this attribute is
represented by the wsrm: acksTo element. The default is the standard WS-A
anonymous URI:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

405

406

CHAPTER 8| Working with Transport Attributes

There are three aternative methods for specifying the WS-RM
acknowledgement URI, asfollows:

Y ou can set the WS-RM acknowledgement URI explicitly by inserting the

following code fragment into Example 128 on page 403 or into
Example 129 on page 404:

// C++

WSRMConfigurationContext* wsrm_config context

= new
WSRMConfigurationContext () ;

AnyURI acksto_url (

"http://localhost:0/WSASource/DemoContextAcksTo"
);

WS_Addressing_2004: :AttributedURI acks_to_uri (acksto_url) ;

wsrm_config_context->set_wsrm_acknowledgement_uri (
acks_to_uri
)7

A proxy that is used to make two-way invocations can be configured so
that its decoupled reply-to endpoint, wsa: replyTo (Which receives

application responses), also receives WS-RM acknowledgements. For
example:

// C++

WSRMConfigurationContext* wsrm_config context
WSRMConfigurationContext () ;

= new

wsrm_config context->use wsa_replyto_endpoint_for wsrm ackn
owledgement () ;

A service that is used to make two-way invocations can be configured so
that the server endpoint (which receives application requests) can aso be
used to receive WS-RM acknowledgements (in other words, actsas a
wsrm: acksTo endpoint for the reverse WS-RM channel). For example:

// C++

WSRMConfigurationContext* wsrm_config context

= new
WSRMConfigurationContext () ;

wsrm_config context->use_ server endpoint_for_wsrm acknowled

gement () ;

Basere-transmission interval

Disable exponential backoff

Setting WS-A and WS-RM Attributes

The order of preference for choosing a wsrm: acksTo endpoint is as follows:

1. If the WS-RM source endpoint is explicitly configured (through the Artix
configuration file or by programming) to use a non-anonymous
wsrm:acksTo endpoint, then useit.

2. Thesecond preference depends on whether the setting is being made on the
client side or on the server side, asfollows:

+ Ontheclient side, you can configure the WS-RM source endpoint to
use the wsa: replyTo endpoint as the wsrm: acksTo endpoint.

+ Ontheserver side, you can configure the WS-RM source endpoint to
use the server endpoint as the wsrm: acksTo endpoint.

3. If neither 1 or 2 is specified, use an anonymous wsrm: acksTo endpoint.

The base re-transmission interval specifiesthe interval at whichaWS-RM
source re-transmits amessage that has not yet been acknowledged. The defaultis
2000 milliseconds.

Y ou can set the base re-transmission interval by inserting the following code
fragment into Example 128 on page 403 or into Example 129 on page 404:

// C++

WSRMConfigurationContext* wsrm_config_ context = new
WSRMConfigurationContext () ;

wsrm _config context->set_base retransmission_interval (3000) ;

This attribute specifies whether or not successive re-transmission attemptsfor an
unacknowledged message are done at exponential timeintervals. If true, the
re-transmission is done at the base re-transmission interval; if false, the
re-transmission is exponentially backed off. The default is false.

Y ou can disable the exponential backoff algorithm by inserting the following
code fragment into Example 128 on page 403 or into Example 129 on page 404

// C++

WSRMConfigurationContext* wsrm config context = new
WSRMConfigurationContext () ;

wsrm _config_context->disable_exponential backoff () ;

407

CHAPTER 8| Working with Transport Attributes

M ax unacknowledged messages
threshold

Maximum retransmission
attempts

M aximum messages per sequence

408

The maximum unacknowl edged messages threshold specifies the maximum
number of unacknowledged messages tolerated at the WS-RM source. When the
threshold is exceeded, the WS-RM source ceases sending messages (and the
application thread remains blocked) until the number of unacknowledged
messages falls below the threshold again. The default is -1 (which represents no
limit on the number of unacknowledged messages). Y ou can set the maximum
unacknowledged messages threshold by inserting the following code fragment
into Example 128 on page 403 or into Example 129 on page 404:

// C++

WSRMConfigurationContext* wsrm config context = new
WSRMConfigurationContext () ;

wsrm_config context->set_max_unacked _messages_threshold(50) ;

The maximum retransmission attempts specifies the maximum number of times
aWS-RM source will attempt to retransmit an unacknowledged message. If the
number of retransmission attempts reaches this threshold, the WS-RM source
sends a wsrm: SequenceTerminated fault to the peer WS-RM destination, and
then closes the session. Any subsequent attempt to send message on this session
will result in an IT_Bus: : Exception being thrown. The defaultis-1 (which
represents no limit on the number of retransmission attempts).

Y ou can set the maximum retransmission attempts threshold by inserting the
following code fragment into Example 128 on page 403 or into Example 129 on
page 404:

// C++

WSRMConfigurationContext* wsrm config_context = new
WSRMConfigurationContext () ;

wsrm_config context->set_max_retransmission_attempts(8) ;

The maximum messages per sequence determines the maximum number of user
messages allowed in aWS-RM sequence. The default is unlimited, which is
appropriate for most cases.

If alimit is set using this property, the RM source creates a new sequence
whenever the specified limit is reached and all acknowledgements for the
previously sent messages have been received.

Per-thread sequence scope

Programmable WS-RM
destination attributes

Acknowledgement interval

Setting WS-A and WS-RM Attributes

Y ou can set the maximum number of messages per sequence by inserting the
following code fragment into Example 128 on page 403 or into Example 129 on
page 404:

// C++

WSRMConfigurationContext* wsrm config context = new
WSRMConfigurationContext () ;

wsrm _config context->set_max_messages_per_sequence(l) ;

When aWS-RM source isinvoked concurrently, the WS-RM session is
normally shared by all threads (thisis the default). When the per-thread
sequence scope policy is enabled, however, the WS-RM source endpoint
transparently creates a distinct WS-RM sequence session for each invoking
thread. This eliminates the possibility of message IDs being allocated to
messages indeterminately in the presence of multiple threads. In other words, all
the messages sent by a particular thread would be allocated message IDsin
increasing order. When the WS-RM source closes, it closes al of the open
WS-RM sequence sessions.

The default value of this policy is false (disabled).

Y ou can enabl e the per-thread sequence scope policy by inserting the following
code fragment into Example 128 on page 403 or into Example 129 on page 404:

// C++

WSRMConfigurationContext* wsrm_config_context = new
WSRMConfigurationContext () ;

wsrm_config_context->enable_per_thread_sequence_ scope () ;

Y ou can set the following WS-RM destination attribute programmatically:
®* Acknowledgement interval.
® Delivery assurance policies.

The acknowledgement interval specifiesthe timeinterval at which the WS-RM
destination sends asynchronous acknowledgements. The default is 3000
milliseconds.

409

CHAPTER 8| Working with Transport Attributes

Delivery assurance policies

410

Y ou can set the acknowledgement interval by inserting the following code
fragment into Example 128 on page 403:

// C++
WSRMConfigurationContext* wsrm config_context = new

WSRMConfigurationContext () ;

wsrm_config context->set_acknowledgement_interval (2500) ;

Note: Itisnot possible to set the acknowledgement interval
programmatically on the server side. On the server side, the acknowledgement
interval can be set only in configuration.

A WS-RM destination can be configured to have the following kinds of delivery
assurance policies:

ExactlyOnceInOrder—the WS-RM destination delivers the messagesto
the application destination exactly once, in increasing order of the WS-RM
message ID. Callsto the application destination are, therefore, serialized.
Thisisthe default policy value.

ExactlyOnceConcurrent—the WS-RM destination delivers the messages
to the application destination exactly once, but not in order. Instead of a
serialized delivery of the messages, asin the case of ExactlyOnceInOrder,
the WS-RM destination delivers the messages in the context of the
WS-RM workqueue threads, so the ordering is not guaranteed. What is
guaranteed, however, isthat for amessage, n, being delivered, all messages
in the range 1 to n are received and acknowledged by the WS-RM
destination.

ExactlyOnceReceivedorder—the WS-RM destination delivers messages
to the application destination exactly-once, as soon as they are received
from the underlying transport. The WS-RM destination makes no attempt
to ensure either that the messages are delivered in the order of message ID
or that al the previous messages have been received/acknowledged. The
benefit of this policy isthat it avoids a context-switch during dispatch in
the RM layer and also the messages are not stored in the in-memory
undelivered messages map.

The default value of this policy is ExactlyOnceInOrder.

Setting WS-A and WS-RM Attributes

Y ou can set the delivery assurance policy by inserting the following code
fragment into Example 128 on page 403:

// C++

WSRMConfigurationContext* wsrm config context = new
WSRMConfigurationContext () ;

wsrm _config context->set_acknowledgement_ interval (2500) ;

411

CHAPTER 8| Working with Transport Attributes

412

In this chapter

CHAPTER 9

Artix Data Types

This chapter presents the XML schema data types supported by
Artix and describes how these data types map to C++. The Artix
WSDL-to-C++ mapping conformsto the official OMG
specification, http://www.omg.org/cgi-bin/doc?mars/06-06-38.

This chapter discusses the following topics:

Including and Importing Schema Definitions page 414
Simple Types page 416
Complex Types page 464
Binary Typesand MTOM page 509
Wildcarding Types page 521
Occurrence Constraints page 541
Nillable Types page 560
Substitution Groups page 581
SOAP Arrays page 590
IT_Vector Template Class page 602
IT_HashMap Template Class page 609
Unsupported XML Schema Constructs in Artix page 614

413

http://www.omg.org/cgi-bin/doc?mars/06-06-38

CHAPTER 9| Artix Data Types

Including and Importing Schema Definitions

Overview Artix supports the including and importing of schema definitions, using the
<include/> and <import /> schematags. These tags enable you to insert
definitions from external files or resources into the scope of a schema element.
The essentia difference including and importing is this:

. Including brings in definitions that belong to the same target namespace as
the enclosing schema €lement, whereas

° Importing brings in definitions that belong to a different target namespace
from the enclosing schema €lement.

xsd:include syntax The include directive has the following syntax:
<include
schemaLocation = "anyURI"
/>

The referenced schema, given by anyURI, must either belong to the same target
namespace as the enclosing schema or not belong to any target namespace at all.
If the referenced schema does not belong to any target namespace, it is
automatically adopted into the enclosing schema’ s namespace wheniitis
included.

xsd:import syntax The import directive has the following syntax:

<import

namespace = "nhamespaceAnyURI"

schemaLocation = "schemaAnyURI "
/>
The imported definitions must belong to the namespaceAnyURI target
namespace. If namespaceAnyURI is blank or remains unspecified, the imported
schema definitions are unqualified.

414

Including and Importing Schema Definitions

Example Example 130 shows an example of an XML schema that includes another XML
schema.

Example 130: Example of a Schema that Includes Another Schema

<definitions
targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns:tns="http://schemas.iona.com/tests/schema_parser"
xmlns:xsd="http: //www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema
targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns="http://www.w3.0org/2001/XMLSchema">

<include schemal.ocation="included.xsd"/>

<complexType name="IncludingSequence">
<sequence>
<element
name="includedSeq"
type="tns: IncludedSequence" />

</sequence>
</complexType>
</schema>
</types>
<...>

Example 131 shows the contents of the included schemafile, included.xsd.
Example 131: Example of an Included Schema
<schema

targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns="http://www.w3.0org/2001/XMLSchema" >

<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>

<element name="varInt" type="int"/>
<element name="varString" type="string"/>
</sequence>
</complexType>
</schema>

415

CHAPTER 9| Artix Data Types

Simple Types

Overview This section describes the WSDL-to-C++ mapping for simple types. Simple
types are defined within an XML schema and they are subject to the restriction
that they cannot contain elements and they cannot carry any attributes.

In this section This section contains the following subsections:
Atomic Types page 417
String Type page 419
NormalizedString and Token Types page 424
QName Type page 428
Date and Time Types page 430
Duration Type page 432
Decimal Type page 438
Integer Types page 440
Binary Types page 443
Deriving Simple Types by Restriction page 451
List Type page 454
Union Type page 456
Holder Types page 461
Unsupported Simple Types page 463

416

Simple Types

Atomic Types

Overview

Table of atomic types

For unambiguous, portable type resolution, anumber of datatypesare defined in
the Artix foundation classes, specified in it_bus/types.h.

The atomic types are:

Table31: Smple Schema Type to Smple Bus Type Mapping
Schema Type Bus Type

xsd:boolean IT Bus: :Boolean
xsd:byte IT Bus: :Byte
xsd:unsignedByte IT Bus: :UByte
xsd:short IT Bus: :Short
xsd:unsignedShort IT Bus::UShort
xsd:int IT Bus::Int
xsd:unsignedInt IT Bus::UInt
xsd: long IT Bus::Long
xsd:unsignedLong IT _Bus: :ULong
xsd: float IT Bus::Float
xsd:double IT Bus: :Double
xsd:string IT Bus::String
xsd:normalizedString IT Bus: :NormalizedString
xsd: token IT Bus::Token
xsd: language IT Bus::Language
xsd: NMTOKEN IT Bus::NMToken
xsd :NMTOKENS IT Bus::NMTokens

417

CHAPTER 9| Artix Data Types

418

Table31l: Smple Schema Type to Smple Bus Type Mapping

Schema Type Bus Type

xsd: Name IT Bus: :Name

xsd:NCName IT_Bus: :NCName

xsd:ID IT Bus::ID

xsd: QName IT Bus: :QName (SOAP only)

xsd:duration IT_Bus::Duration

xsd:dateTime IT_Bus: :DateTime

xsd:date IT_Bus: :Date

xsd:time IT Bus::Time

xsd:gDay IT Bus::GDay

xsd:gMonth IT Bus::GMonth

xsd: gMonthDay IT Bus: :GMonthDay

xsd:gYear IT_Bus::GYear

xsd:gYearMonth IT_Bus: :GYearMonth

xsd:decimal IT Bus::Decimal

xsd:integer IT_Bus::Integer

xsd:positiveInteger IT_Bus::Positivelnteger

xsd:negativeInteger IT Bus::NegativeInteger

xsd:nonPositiveInteger IT Bus: :NonPositiveInteger

xsd:nonNegativeInteger IT Bus: :NonNegativeInteger

xsd:base64Binary IT_Bus::BinaryBuffer

xsd:hexBinary IT _Bus::BinaryBuffer

Simple Types

String Type

Overview The xsd: string type mapsto IT Bus: :String, Which istypedef’ed in
it_bus/ustring.htO IT Bus::IT UString class. For afull definition of
IT Bus::String, Se€ it_bus/ustring.h.

IT_Bus.:String class The IT_Bus: : String classis modelled on the standard ANSI string class.
Hence, the IT_Bus: : String class overloads the + and += operators for
concatenation, the []1 operator for indexing characters, and the ==, 1=, >, <, >=,
<= operators for comparisons.

String iterator class The corresponding string iterator classiSIT Bus::String::iterator.

C++ example The following C++ example shows how to perform some basic string
manipulation with IT_Bus: : String:

// C++
IT Bus::String s = "A C++ ANSI string."
s += " And here is some string concatenation."

// Now convert to a C style string.
// (Note: s retains ownership of the memory)
const char *p = s.c_str();

I nternationalization The IT_Bus: : String class supports the use of international characters. When
using international characters, you should configure your Artix application to
use a particular code set by editing the Artix domain configuration file,
artix.cfg. The configuration details depend on the type of Artix binding, as
follows:

d SOAP binding—set the plugins: soap: encoding configuration variable.
4 CORBA binding—set the plugins: codeset : char:ncs,
plugins:codeset:char:ccs, plugins:codeset :wchar:ncs, and

plugins:codeset :wchar: ccs configuration variables.

For more details about configuring internationalization, see the “Using Artix
with International Codesets” chapter of the Configuring and Deploying Artix
Solutions document.

419

CHAPTER 9| Artix Data Types

Encoding arguments Some of the IT_Bus: : String functions take an optional string argument,
encoding, that lets you specify a character set encoding for the string.

The encoding argument must be a standard IANA character set name. For
example, Table 32 shows some of commonly used IANA character set names:

Table32: 1ANA Character Set Names

IANA Name Description

US-ASCII 7-bit ASCII for US English.

1SO-8859-1 Western European languages.

UTF-8 Byte oriented transformation of Unicode.

UTF-16 Double-byte oriented transformation of 4-byte Unicode.

Shift_JIS Japanese DOS & Windows.

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX.

EUC-CN Chinese adaptation of generic EUC scheme, used in
UNIX.

1S0O-2022-JP Japanese adaptation of generic 1SO 2022 encoding
scheme.

1SO-2022-CN Chinese adaptation of generic SO 2022 encoding
scheme.

BIG5 Big Fiveisacharacter set devel oped by a consortium of
five companiesin Taiwan in 1984.

Artix supports all of the character sets defined in International Components for
Unicode (ICU) 2.6. For afull listing of supported character sets, see
http://www-124.ibm.com/icu/index.html (part of the IBM open source project
http://oss.software.ibm.com).

420

http://oss.software.ibm.com
http://www-124.ibm.com/icu/index.html

Congtructors

Narrow character constructors

Simple Types

The IT_Bus: : String class defines a default constructor and non-default
constructors to initialize a string using narrow and wide characters, as follows:

® Narrow character constructors.
° 16-bit character constructor.
® wchar_t character constructor.

Example 132 shows three different constructors that can be used to initialize an
IT_UString With anarrow character string.

Example 132: Narrow Character Constructors

IT _UString (
const char* str,
size t n = npos,

const char* encoding = 0,
IT ExceptionHandler& eh = IT EXCEPTION_HANDLER
)

IT _UString (
size_t n,
char c,

const char* encoding = 0,
IT ExceptionHandler& eh = IT EXCEPTION_HANDLER
)

IT _UString (
const IT_ String& s,
size t pos = 0,
size t n = npos,

const char* encoding = 0,
IT ExceptionHandler& eh = IT EXCEPTION_ HANDLER
)i

The constructor signatures are similar to the standard ANSI string constructors,
except for the additional encoding argument. A null encoding argument,
encoding=0, implies the constructor uses the local character set.

421

CHAPTER 9| Artix Data Types

16-bit character constructor Example 133 shows the constructor that can be used to initialize an IT_uString
with an array of 16-bit characters (represented by unsigned short*).

Example 133: 16-Bit Character Constructor

IT _UString (
const unsigned short* sb,
const IT String& encoding,
size t n = npos,

IT ExceptionHandler& eh = IT EXCEPTION_HANDLER

wchar _t character constructor Example 134 shows the constructor that can be used to initialize an IT_ustring
with an array of wchar_t characters.

Example 134: wchar_t Character Constructor

IT _UString (
const wchar_t* wb,
size_ t n = npos,

IT ExceptionHandler& eh = IT EXCEPTION HANDLER
) g

String conver sion functions The member functions shown in Example 135 are used to convert an
IT Bus::String to anordinary C-style string, a UTF-16 format string and a
wchar_t format string:

Example 135: String Conversion Functions
// C++
const char* c_str(
const char* encoding = 0
) const; // has NUL character at end

const unsigned short* utfl6_str() const;

const wchar_t* wchar_t_str() const;

422

String conversion examples

Reference

Simple Types

If you want to copy the return value from a string conversion function, you also
need to know the dimension of the relevant array. For this, you can use the
IT Bus::String: :length() function:

// C++
size_t length() const;

The IT_Bus::String::length() function returnsthe number of underlying
charactersin astring, irrespective of how many bytes it takes to represent each
character. Hence, the size of the array required to hold a copy of a converted
string equals 1ength () +1 (an extraarray element isrequired for the NnuL
character).

Example 136 shows you how to convert and copy astring, s, into a C-style
string, aUTF-16 format string and awchar_t format string.

Example 136: String Conversion Examples

// C++

// Copy 's' into a plain 'char *' string:
char *s_copy = new char[s.length()+1];
strcpy (s_copy, s.c_str());

// Copy 's' into a UTF-16 string:
unsigned short* utfl6_copy = new unsigned short[s.length()+1];
const unsigned short* utfl6_p = s.utfl6_str();
for (i=0; i<s.length()+1; i++) {
utfl6_copyli] = utfl6_pl[il;
}

// Copy 's' into a wchar_t string:
wchar_t* wchar_t_copy = new wchar_t[s.length()+1];
const wchar_t* wchar_t_p = s.wchar t_str();
for (i=0; i<s.length()+1; i++) {
wchar_t_copy[i] = wchar_t_plil;
}

For more details about C++ ANSI strings, see The C++ Programming
Language, third edition, by Bjarne Stroustrup.

For more details about internationalization in Artix, see the “Using Artix with
International Codesets’ chapter of the Configuring and Deploying Artix
Solutions document.

423

CHAPTER 9| Artix Data Types

NormalizedString and Token Types

Overview This subsection describes the syntax and C++ mapping for the
xsd:normalizedString type, the xsd: token type, and all of the types deriving
from xsd: token.

normalizedString type A normalized string is a string that does not contain the return (0x0p), line feed
(0x0n) or tab (0x09) characters. Spaces (0x20) are allowed, however.

token types The token type and the types derived from token are described in Table 33.

Table33: Description of token and Types Derived from token

XML Schema Sample Value Description of Value
Type
xsd: token only single spaces; no Likean xsd:normalizedstring type, except that there can be
leading or trailing! no sequences of two or more spaces (0x20) and no leading or

trailing spaces.

xsd: language en-US Any language identification tag as specified in RFC 3066
(http://www.ietf.org/rfc/rfc3066.txt).

xsd : NMTOKEN NoSpacesAllowed Like an xsd: token type, except that spaces (0x20) are
disallowed (see “Formal definitions’ on page 425).

xsd : NMTOKENS Tok01 Tok02 Tok03 A list of xsd:NMTOKEN items, using the space character asa
delimiter.

xsd:Name RestrictFirstChar Like an xsd: token type, except that the first character is
restricted to be one of Letter, '_’, 0r :* (See“Formal

definitions” on page 425).

xsd: NCName NoColonsAllowed Like an xsd:Name type, except that colons, ' : 7, are
disallowed (a non-colonized name). See “Formal definitions”
on page 425.

Thistypeisuseful for constructing identifiers that use the
colon, ' :, asadelimiter. For example, the NCName typeis
used both for the prefix and the local part of an xsd: QName.

424

http://www.ietf.org/rfc/rfc3066.txt

Simple Types

Table33: Description of token and Types Derived from token

XML Schema Sample Value Description of Value
Type
xsd:ID LikeNCName Like an xsd:NCName type.

The xsd: 1D type is alegacy from early XML specifications,
where it can provide aunique ID for an XML element. The
element can then be cross-referenced using the ID value.

Formal definitions

C++ mapping for all token types
except xsd:NMTOKENS

The Name, NCName, NMTOKEN, and NMTOKENS types are formally defined as
follows:

[1] NameChar 28= Letter | Digit | '.' | '=' | '_* | ':"
| CombiningChar | Extender

[2] Name o= (Letter | '_' | ':') (NameChar)*

[3] Names = Name (#x20 Name) *

[4] NMTOKEN = (NameChar) +

[5] NMTOKENS = NMTOKEN (#x20 NMTOKEN) *

[6] NCNameChar ::= Letter | Digit | '.' | '=' | '_'
CombiningChar | Extender

[7] NCName ::= (Letter | '_') (NCNameChar)*

The Name, NMTOKEN, and NMTOKENS types are defined in the Extensible Markup
Language (XML) 1.0 (Second Edition) document

(http://www.w3.0rg/ TR/2000/WD-xml-2e-20000814). The NCName typeis
defined in the Namespaces in XML document
(http://www.w3.0rg/TR/1999/REC-xml-names-19990114/).

Theterms, combiningChar and Extender, are defined in the Unicode Character
Database (http://www.unicode.org/Public/lUNIDATA/UCD.html). A combining
character is acharacter that combines with a preceding base character—for
example, accents, diacritics, Hebrew points, Arab vowel signs and Indic matras.
An extender is a character that extends the value or shape of a preceding

a phabetic character—for example, the Catalan middle dot.

The token type and its derived types map to C++ as shown in Table 31 on
page 417. All of the token types, except for IT_Bus: :NMTokens, provide two
constructors:

425

http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.unicode.org/Public/UNIDATA/UCD.html

CHAPTER 9| Artix Data Types

Validity testing functions

® A no-argument constructor, and
® A congtructor that takes a const IT_Bus::String& argument.

For setting and getting a token value, the following functions are provided
(inherited from IT_Bus: :NormalizedString):

// C++
const String&
get_value() const IT_THROW _DECL(());

void
set_value (const String& value)
IT THROW_DECL ((IT_Bus: :Exception)) ;

In addition to the functions inherited from IT_Bus: :NormalizedString, each of
the derived token types has a validity testing function, as shown in Table 34.

Table34: Validity Testing Functions for Normalized Strings and Tokens

XML Schema Type

Validity Testing Function

xsd:normalizedString

static bool
IT Bus::NormalizedString::is_valid normalized_string(
const String& value

)

xsd: token

static bool
IT Bus::Token::is_valid_token (const String& value)

xsd:language

static bool
IT Bus::Language::is_valid_language (const String& value)

xsd : NMTOKEN

static bool
IT Bus::NMToken::is_valid_nmtoken (const String& value)

xsd:Name static bool

IT Bus::Name::is_valid name (const String& value)
xsd :NCName static bool

IT Bus::NCName:is_valid_ncname (const String& value)
xsd:ID static bool

IT Bus::ID::is_valid_id(const String& value)

426

C++ mapping of NMTOKENS

C++ example

Simple Types

The xsd: NMTOKENS type maps to the C++ class, IT Bus: :NMTokens. The
IT Bus::NMTokens classinheritsfrom simpleTypesListT<IT Bus: :NMToken>,
which in turn inherits from IT_vector<IT Bus: :NMToken>.

The 1T_Bus: :NMTokens typeisthus effectively avector, where the element type
iSTIT_Bus: :NMToken. Y OU can use the indexing operator, [1, to accessindividual
elements and, in addition, the simpleTypesList base class provides
set_size() and get_size () functions.

For moredetailsabout IT_vector<T>types, see”|T_Vector Template Class’ on
page 602.

The following example shows how to initialize an xsd: token instance in C++.
// C++

// Test and set an xsd:token value.

IT Bus::String tok_string = "0123 A token with spaces";

IT Bus::Token tok;

if (IT _Bus::Token::is_valid_token (tok_string)) {
tok.set_value (tok_string) ;

427

CHAPTER 9| Artix Data Types

QName Type

Overview

QName constructor

QName member functions

428

xsd:QName MapSto IT Bus: :QName. A qualified name, or QName, isthe unique
name of atag appearing in an XML document, consisting of a namespace URI
and alocal part.

Note: InArtix 1.2.1, the mapping from xsd: OName t0 IT Bus: : OName iS
supported only for the SOAP binding.

The usual way to construct an IT_Bus : : QName Object is by calling the following
constructor:

// C++

QName : : QName (
const String & namespace_prefix,
const String & local_part,
const String & namespace_uri

)

Because the namespace prefix is relatively unimportant, you can leave it blank.
For example, to create a QName for the soap:address element:

// C++

IT Bus::QName soap_address = new IT Bus: :QName (
"address",
"http://schemas.xmlsoap.org/wsdl/soap"

)7

The IT_Bus: : OName class has the following public member functions:

const IT Bus::String &
get_namespace_prefix() const;

const IT Bus::String &
get_local_part () const;

const IT Bus::String &
get_namespace_uri () const;

const IT Bus::String get_raw name() const;
const IT Bus::String to_string() const;

QName equality

Simple Types

bool has_unresolved_prefix() const;
size t get_hash_code() const;

The == operator can be used to test for equality of IT_Bus: : OName Objects.

QNames are tested for