

Publication date 05 Dec 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect (and design), DataDirect Connect,
DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing
Architecture, Empowerment Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IONA,
Making Software Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making Progress, Progress Software
Developers Network, Progress Sonic, ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic
ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design),
and Your Software, Our Technology–Experience the Connection are registered trademarks of Progress Software Corporation or
one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager,
Apama Event Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High Performance
Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress
Arcade, Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Responsive Cloud, Progress Responsive Process
Management, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation,
Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration
Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service,
Sonic Workbench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service
marks of Progress Software Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered
trademark of Oracle and/or its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technologies from the Apache Software Foundation
(http://www.apache.org). Such Apache technologies are subject to the following terms and conditions: The Apache Software
License, Version 1.1. Copyright (C) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names “Ant”, “Xerces,” “Xalan,” “Log 4J,” and "Apache Software
Foundation" must not be used to: endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be called “Apache”, nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was originally based on software copyright
(c) 1999, International Business Machines, Inc., http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the Apache Software Foundation
((http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation and was originally based on software
copyright (c) 1999, International Business Machines, Inc., http://www.ibm.com. For more information on the Apache Software
Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1. - Copyright (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation and was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. For more information on the Apache Software
Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (c) 2000-2003 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgement: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgement may appear in the software itself, if and wherever such third-party acknowledgements normally appear.

4. The names "The Jakarta Project", "Velocity", and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", "Velocity" nor may "Apache" appear in their names without

prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (C) 1999 The Apache Software Foundation. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "log4j" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM. Such technology is subject to the following
terms and conditions: Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution. 3. The name "JDOM" must not be
used to endorse or promote products derived from this software without prior written permission. For written permission, please
contact <request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <request_AT_jdom_DOT_org>.
In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution
and/or in the software itself an acknowledgement equivalent to the following: "This product includes software developed by the
JDOM Project (http://www.jdom.org/)." Alternatively, the acknowledgment may be graphical using the logos available at
http://www.jdom.org/images/logos. THIS SOFTWARE IS PROVIDED AS IS AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by many individuals
on behalf of the JDOM Project and was originally created by Jason Hunter <jhunter_AT_jdom_DOT_org> and Brett McLaughlin
<brett_AT_jdom_DOT_org>. For more information on the JDOM Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technologies from IBM. Such technologies
are subject to the following terms and conditions: Copyright (c) 1995-2003 International Business Machines Corporation and
others All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in this
notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks mentioned
herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from John Wilson. Such technology is subject
to the following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. All advertising materials mentioning features or use of
this software must display the following acknowledgement: This product includes software developed by John Wilson. The

name of John Wilson may not be used to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technology from SourceForge and Networks
Associates Technology, Inc. Such technology is subject to the following terms and conditions: Various copyrights apply to this
package, listed in various separate parts below. Please make sure that you read all the parts. Up until 2001, the project was
based at UC Davis, and the first part covers all code written during this time. From 2001 onwards, the project has been based
at SourceForge, and Networks Associates Technology, Inc hold the copyright on behalf of the wider Net-SNMP community,
covering all derivative work done since then. An additional copyright section has been added as Part 3 below also under a BSD
license for the work contributed by Cambridge Broadband Ltd. to the project since 2001. An additional copyright section has
been added as Part 4 below also under a BSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over the years it has been in development, and a full list of
contributors can be found in the README file under the THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like)
----- Copyright 1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000. Copyright 1996,
1998-2000 The Regents of the University of California. All Rights Reserved. Permission to use, copy, modify and distribute this
software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice
appears in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and
that the name of CMU and The Regents of the University of California not be used in advertising or publicity pertaining to
distribution of the software without specific written permission. CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ---- Part 2: Networks
Associates Technology, Inc copyright notice (BSD) ----- Copyright (c) 2001-2003, Networks Associates Technology, Inc. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: *Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.* Neither the name of the Networks
Associates Technology, Inc nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 3: Cambridge
Broadband Ltd. copyright notice (BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd. All
rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:*Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.* The name of Cambridge

Broadband Ltd. may not be used to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun Microsystems, Inc. copyright notice (BSD) -----Copyright © 2003 Sun
Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Use is subject to license
terms below. This distribution may include materials developed by third parties. Sun, Sun Microsystems, the Sun logo and Solaris
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions are met:* Redistributions
of source code must retain the above copyright notice, this list of conditions and the following disclaimer.* Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.* Neither the name of the Sun Microsystems, Inc. nor the names of its
contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) -----Copyright (c)
2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution.* Neither the name of Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---- Part 6: Cisco/BUPTNIC copyright notice (BSD) ----- Copyright (c) 2004, Cisco, Inc and Information Network Center of Beijing
University of Posts and Telecommunications. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunications, nor the names of
their contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R&D Software GmbH & Co KG copyright
notice (BSD) ----- Copyright (c) Fabasoft R&D Software GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. * The name of Fabasoft R&D Software
GmbH & Co KG or any of its subsidiaries, brand or product names may not be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSLeay v0.9.8i technology from OpenSSL.org. Such Technology is
subject to the following terms and conditions: LICENSE ISSUES ============== The OpenSSL toolkit stays under
a dual license, i.e. both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below
for the actual license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to
OpenSSL please contact openssl-core@openssl.org. OpenSSL License --------------- /*
==

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment: "This product
includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)".

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior
written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product includes software developed
by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE
OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written
by Tim Hudson (tjh@cryptsoft.com). Original SSLeay License ----------------------- Copyright (C) 1995-1998 Eric Young
(eay@cryptsoft.com) All rights reserved. This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL. This library is free for commercial and non-commercial use
as long as the following conditions are aheared to. The following conditions apply to all code found in this distribution, be it the
RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered
by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's, and as
such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given
attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in
documentation (online or textual) provided with the package. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: "This product
includes cryptographic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines
from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include
an acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code
cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technology from the Legion Of The Bouncy
Castle (http://www.bouncycastle.org). Such Bouncycastle 1.3.3 cryptographic technology is subject to the following terms and
conditions: Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycastle.org). Permission is hereby
granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of providing a set of functions that implement
regular expression pattern matching using the same syntax and semantics as Perl 5. Such technology is subject to the following
terms and conditions: PCRE LICENCE. PCRE is a library of functions to support regular expressions whose syntax and semantics
are as close as possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the "BSD" licence,
as specified below. The documentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as the
software itself. The basic library functions are written in C and are freestanding. Also included in the distribution is a set of C++
wrapper functions. THE BASIC LIBRARY FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright (c) 1997-2008 University of Cambridge
All rights reserved. THE C++ WRAPPER FUNCTIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc.
All rights reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. *
Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED
BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mcpp v2.6.4 from Kiyoshi Matsui . Such technology is subject to the following
terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. This software
including the files in this directory is provided under the following license. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corporation 2010 (IBM 32-bit Runtime
Environment for AIX, Java Technology Edition v 1.6.0 SR9 FP2).

Table of Contents
Preface ... 17

What is Covered in This Book ... 18
Who Should Read This Book .. 19
How to Use This Book .. 20
The Artix ESB Documentation Library ... 21

Service Oriented Architecture ... 23
What is Service Oriented Architecture? .. 24
What is an ESB? ... 28
What is a Smart Endpoint? ... 31

Artix ESB Enables SOA ... 35
Overview of Artix ESB ... 36
Artix ESB C++ Runtime ... 39
Artix ESB Java Runtime ... 41
Artix ESB in Endpoints .. 43

Artix ESB in a Service Provider .. 44
Artix ESB in a Consumer ... 48
Artix ESB in an Intermediary ... 52

Artix ESB for C++ Services ... 55
The Artix ESB C++ Runtime Container ... 56
The Router ... 58
Security ... 60
The Locator .. 62
The Session Manager .. 65

Extending Artix ESB ... 67
Artix ESB Management Integration ... 68

Index .. 71

13

14

List of Figures
1. Billing System SOA with an ESB .. 29
2. Distributed Nature of an ESB .. 32
3. Artix ESB and the Virtual Bus ... 37
4. High-level View of a Service Provider .. 45
5. High-level View of a Consumer .. 49
6. High-level View of an Intermediary ... 53
7. Overview of the Artix Router ... 58
8. Overview of the Locator ... 62

15

16

Preface
What is Covered in This Book ... 18
Who Should Read This Book .. 19
How to Use This Book .. 20
The Artix ESB Documentation Library ... 21

17

What is Covered in This Book
This book discusses the advantages of SOA to integration, what makes a
service oriented architecture (SOA), and how Artix ESB facilitates the
deployment of an enterprise quality SOA. It illuminates the value of a SOA.
It shows how an ESB such as Artix plays a key role in developing a SOA and
how Artix, in particular, provides the features required to build a distributed,
robust collection of services.

The book then goes on to provide a detailed look at the distributed, extensible
architecture of Artix. It discusses how Artix endpoints implement services.
This discussion includes a discussion of how the plug-in architecture makes
it easy to add functionality to an endpoint. It also provides a detailed
discussion of many of the internal components of the Artix ESB runtime.

18

Who Should Read This Book
While this book does contain some highly technical discussions, much of the
book is geared toward a novice reader. A basic knowledge of distributed
computing concepts is assumed.

19

How to Use This Book
This book is organized into the following chapters:

Service Oriented Architecture on page 23 provides a general description of
service-oriented architectures and how enterprise service buses make them
possible.

Artix ESB Enables SOA on page 35 provides a high-level description of Artix
ESB's architecture and how it implements its ESB features. It looks at how
Artix ESB connects endpoints to a network using its pluggable messaging
stack.

Extending Artix ESB on page 67 describes ways of extending Artix ESB's
functionality through the use of other products in the Artix suite.

20

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library1.

1 http://communities.progress.com/pcom/docs/DOC-105909

21

http://communities.progress.com/pcom/docs/DOC-105909
http://communities.progress.com/pcom/docs/DOC-105909
http://communities.progress.com/pcom/docs/DOC-105909

22

Service Oriented Architecture
Service oriented architecture is an architectural style focused on reusing existing applications and designing
reusability into new applications. This is accomplished by designing your systems based on loosely-coupled,
coarse grained atomic units of functionality called services. The key technology used in building a service oriented
architecture is an enterprise service bus that is built using smart endpoints.

What is Service Oriented Architecture? .. 24
What is an ESB? ... 28
What is a Smart Endpoint? ... 31

23

What is Service Oriented Architecture?

Overview Service oriented architecture(SOA) is an architectural paradigm emphasizing
the reusability of applications in a distributed environment and the alignment
of software functionality with business processes. In technical terms SOA
means designing applications around a collection of loosely coupled units of
functionality with coarse-grained interfaces that are wired together using a
common messaging protocol. The units of functionality are exposed by
implementation agnostic interfaces that describe the operations exposed by
a unit and what messages the unit accepts.

SOA principles can be applied to integrating existing applications as well as
to building new applications. First you design a coarse-grained, implementation
agnostic facade for the application you wish to integrate. Then you expose
the legacy application to the network through the new facade using a common
data format/wire protocol combination. The legacy application is now
accessible to applications that do not use a proprietary messaging system.

Services The central concept in SOA is the service. A service is the basic unit of
functionality in SOA. Like an object in object-oriented programming, a service
is an atomic unit of functionality that performs a well-defined and closely
related set of operations. They also do not rely on other services to perform
the operations they perform. Unlike objects, services are defined by an
implementation and language agnostic interface.

A service’s interface should be as coarse-grained as possible and provide only
the information needed to invoke its operations. The interface is defined as
a group of operations. In order to make the interface as coarse-grained as
possible, the number of operations should be kept to a minimum. This will
help ensure that the amount of detail needed to invoke on a service
implementing the interface is kept to a minimum.

The operations that make up the interface are defined by the messages
exchanged when the operation is invoked. Messages are typically defined
using XML Schema and do not necessarily match the argument list of any
implementation of the operation. Ideally, the messages should be
coarse-grained. One way of ensuring this is to design messages so that all of
the data needed is represented as a single XML document.

Instantiated services are endpoints. When instantiated, endpoints add
information to the service’s interface. The added information includes all of
the details needed to access the service. This includes details about what

24

Service Oriented Architecture

kind of messages (SOAP, fixed, tagged, etc.) the endpoint accepts and the
transport over which the endpoint can be accessed.

Service design Interoperability and reusability are two of the reasons for using SOA. The
following guidelines help ensure that services are as interoperable and reusable
as possible:

• A service should perform a specific task.

Services, like objects, are the building blocks of an application. Each block
should perform a discreet task so that it can be reused by many
applications.

Because one of the other goals of using SOA is to make it easier to align
IT assets with business processes, the task performed by a service should
be a business task. For example a service could process a credit card
payment.

• A service should not depend on other services.

A service should, like a toaster, be able to perform its work without any
needing to invoke on other services. This does not mean that you cannot
design a service that is a composite of other services. A composite service
looks and acts like an atomic service to its consumers.

• A service should be stateless.

When state is shared between two applications there is usually an implicit
requirement that each application has some knowledge of the other’s
implementation. A service that requires its consumers to have an
understanding of how it is implemented is not loosely coupled and more
difficult to reuse.

• A service uses document style messages.

Document style messages, as opposed to RPC style messages, promote
the use of coarse-grained interfaces. Service interfaces should be designed
to take generic documents as opposed to a specific set of inputs. For
example, a loan approval service should be designed to accept a document
containing all of the possible pieces of information that could be needed
to process a loan request as opposed to the subset that the current
implementation requires. Doing so insulates the applications accessing the
service from changes in its implementation. Adding a required piece of
information to the list of required parameters does not require you to

25

What is Service Oriented Architecture?

upgrade all of the applications access the service because they will already
be sending a properly formed request.

• A service cannot assume that its consumers are operating in the same
environment.

To ensure maximum reusability and maximum interoperability, a service
should not require its consumers to be operating in a particular environment.
For example, a consumer running on a Windows system in Europe should
be able to make requests on a service endpoint running on a Z-OS system
running in the United States. The service should be completely
implementation agnostic.

Reuse and integration Companies have millions of dollars invested in their existing IT systems and
one of the main drivers for adopting a new development model is to get the
most out those existing systems. Another main driver is the desire to break
out of the vendor lock-in. They are looking for a solution that allows them to
reuse what they already have in new ways and ensure that future systems
will have the same, if not more flexibility to be resused.

Reusability is one of the central goals of using SOA This goes beyond simply
creating new services so that they are reusable and flexible enough to be
recombined into new applications when needed. SOA embraces the idea that
legacy systems also need to be reused and integrated with other systems to
create new applications.

To achieve this reusability, you need to model your existing systems as services
using the tooling provided with a SOA development platform. You may find
that it is hard to model your legacy systems using coarse-grained interfaces
that strictly adhere to SOA principles. This can be overcome using other
features of your SOA infrastructure that can allow you further abstract the
interface from your legacy system’s fine-grained interfaces.

Once a legacy system is wrapped in a service interface, it will be accessible
just like any other service deployed in the SOA infrastructure. Because
consumers will only see the legacy system through the service interface, they
will not need to be aware of how the functionality is provided. All the consumer

26

Service Oriented Architecture

knows is that it sends request messages to an endpoint and reply messages
are returned from the endpoint.

Standards One of the ways that SOA achieves its goals is through the use of standardized
technologies. Chief among these standards is XML. It provides the underlying
grammars that SOA uses as building blocks.

One of the fundamental building blocks used in SOA is Web Service Definition
Language (WSDL). WSDL is an XML based grammar that is used to define
service interfaces. It breaks the definition of a service into its logical interface
and the physical details used to instantiate endpoints. For more information
on WSDL see Writing Artix Contracts.

Another fundamental building block used in SOA is XML Schema. XML Schema
provides the type system used in defining service interfaces. It is used to
define the abstract representation of the messages that define a service’s
operations. These abstract representations can then be mapped into concrete
messages using WSDL.

In addition to WSDL and XML Schema, SOA takes advantage of a number of
other standards that are grouped together into what is know as the WS*
family of specifications. These specifications include:

• WS-AtomicTransactions

• WS-ReliableMessaging

• WS-Addressing

• WS-Security

• WS-Policy

These standards are all maintained by the W3C and provide a common
framework on which SOA builds QoS. They were all designed around the idea
that information would be passed using SOAP/HTTP, but they can be leveraged
by a number of different messaging protocols. They were also designed so
that services could be easily shared and accessed over the Web. Therefore,
they are built to be maximally interoperable.

27

What is Service Oriented Architecture?

What is an ESB?

Overview An enterprise service bus (ESB) is the layer of technology that makes SOA
possible. It creates the necessary abstractions by translating the messages
which define services into data that can be manipulated by a physical process
implementing a service. An ESB also provides some QoS to the services and
provides a messaging layer for services to use.

From service to endpoint An ESB takes the concrete details defined in the WSDL contract and uses it
to create an endpoint that implements a service. This information includes
details on how the abstract messages are mapped into data that can be
manipulated and transmitted by the service’s implementation. It also includes
information about the how the service’s implementation is to be exposed to
the physical world. The endpoint is the physical representation of the abstract
service defined in a WSDL contract.

As shown in Figure 1 on page 29, the ESB sits between the service’s
implementation and any consumers that want to access the service. The ESB
handles functions such as:

• publishing the endpoint’s WSDL contract.

• translating the received messages into data the service’s implementation
can use.

• assuring that consumers have the required credentials to make requests
on the service.

• directing the request to the appropriate implementation of the service.

• returning the response to the consumer.

28

Service Oriented Architecture

Figure 1. Billing System SOA with an ESB

29

What is an ESB?

Not EAI
A brief description of an ESB may trigger nightmares about EAIs. While the
concern is warranted, ESBs have several key differences from past integration
layers including EAIs:

• ESBs use industry standard WSDL contracts to define the endpoints they
connect.

• ESBs use XML as a native type system.

• ESBs are deployed in a distributed manner.

• ESBs do not require the use of proprietary infrastructure.

• ESBs do not require the use of proprietary adapters.

• ESBs implement QoS based on industry standard interfaces.

The use of standardized WSDL for the interface definition language and the
use of XML as a native type system make an ESB future-proof and flexible.
As discussed in the previous section, both are platform and implementation
neutral which avoids vendor lock-in.

30

Service Oriented Architecture

What is a Smart Endpoint?

Overview The most significant differentiator between ESBs and legacy EAI systems is
an ESB’s distributed nature. EAI systems were designed as a hub-and-spoke
system. ESBs, on the other hand, are intended to be as distributed as the
components they are integrating. In Artix this is accomplished by implementing
the ESB as a series of smart endpoints.

A smart endpoint is an endpoint that is capable of performing a number of
the features of an ESB. Smart endpoints make an ESB distributed by moving
its functionality out of a centralized server and putting that functionality where
it is needed.

Distributing the ESB As shown in Figure 2 on page 32, an ESB distributes the work of data
translation, routing, and other QoS tasks to the endpoints themselves. Because
the endpoints are only responsible for translating messages that are directed
to them, they can be more efficient. It also means that they can adapt to new
connectivity requirements without effecting other endpoints. The fact that
routing, security, and other QoS are also distributed means that you can
choose not to deploy them if they are not needed.

31

What is a Smart Endpoint?

Figure 2. Distributed Nature of an ESB

The distributed nature of an ESB also means that you are not forced to drop
all of your existing infrastructure in one big bang. You can start with a very
targeted project such as service enabling a single system so that it can interact
with a new AJAX based interface. As you become more comfortable with the
technology, or as requirements demand, you can add services without
disrupting the services already deployed. As you do so, you may not even
need to change any of your existing implementations because the ESB’s
translation capabilities allow you to plug-in legacy implementations.

ESB functionality The major responsibilities of the ESB that are assumed by smart endpoints
include:

32

Service Oriented Architecture

• translation of requests and responses into usable data.

• publication of a service’s WSDL.

• interactions with the transports.

• message reliability.

• transactions.

The rest of the ESB’s responsibilities are distributed across several discreet
services that are also exposed as individual smart endpoints.

Benefits Smart endpoints provide several benefits. These include:

• the flexibility to rapidly change your messaging infrastructure without
reimplementing functionality.

• the ability to scale the number of endpoints implementing a service to meet
demand.

• the ability to incrementally deploy services into your infrastructure without
disrupting your existing systems.

• the flexibility to spread the load across your existing hardware as you need.

Legacy endpoints It may seem impossible to expose a legacy application as a smart endpoint
without reimplementing it. While it is true that legacy systems tend to be tied
to a fixed messaging system, you can use a smart endpoint to expose the
legacy system’s functionality. This is done by using a smart endpoint to
intercept requests directed at the legacy system. The endpoint will then
translate the request into the appropriate format for the legacy application
and pass the request over the appropriate transport.

Your legacy application will appear to be a smart endpoint to the rest of your
infrastructure. This makes it easier to reuse the functionality of the legacy
application. It also makes it easier to replace the legacy application with new
technology when the time comes.

33

What is a Smart Endpoint?

34

Artix ESB Enables SOA
Artix ESB is a fully distributed ESB. It is built around the concept that all of the endpoints in your SOA are smart.
Artix ESB accomplishes this by building the ESB functionality into the runtime libraries that are loaded by
deployed endpoints. Artix ESB also provides a number of services that provide features such as location
independence, security, and routing.

Overview of Artix ESB ... 36
Artix ESB C++ Runtime ... 39
Artix ESB Java Runtime ... 41
Artix ESB in Endpoints .. 43

Artix ESB in a Service Provider .. 44
Artix ESB in a Consumer ... 48
Artix ESB in an Intermediary ... 52

Artix ESB for C++ Services ... 55
The Artix ESB C++ Runtime Container ... 56
The Router ... 58
Security ... 60
The Locator .. 62
The Session Manager .. 65

35

Overview of Artix ESB

Overview The Artix ESB products, Artix ESB for Java, and Artix ESB for C++, provide
the following functionality:

• data and transport abstraction

• C++ runtime

• Java runtime

• message routing

• security

• transactions

• reliable messaging

• location resolution

• high availability

• design time tooling

In addition, Artix ESB can be supplemented to include robust orchestration
tools and mainframe connectivity.

ESB architecture Because Artix ESB is an enterprise service bus, it is easy to picture it as a
pipe, or wire, that transports data between endpoints. While there are a
number of ESB implementations that are designed like a data pipe, Artix ESB
is designed as a set of caps that allow the endpoints to connect to a number
of different pipes. In essence, it turns whatever messaging infrastructure you
have deployed into a virtual ESB.

As shown in Figure 3 on page 37, the Artix ESB runtime components are
embedded into the endpoints deployed as part of your SOA. Artix ESB enabled
endpoints are smart and are capable of handling all of the data and transport
abstraction needed to connect to the network, regardless of the messaging
infrastructure in use. Because of the pluggable nature of the Artix ESB runtime
components, the endpoints only load the pieces of the runtime needed to
connect to the specified messaging infrastructure.

36

Artix ESB Enables SOA

Figure 3. Artix ESB and the Virtual Bus

Because the endpoints do the work of negotiating the transport and message
format details independent of each other, the ESB functionality is distributed
across your entire deployment. The endpoints also have some of the logic
needed for transaction management, security, and location resolution
embedded into them.

Features like routing, transaction management, security, location resolution,
and high-availability use components that are also deployed as smart
endpoints. They can be spread across resources as needed.

The Artix ESB bus Artix ESB does have a bus, but it is internal. The bus coordinates the passage
of data from the user implemented business logic to the networking system.
Internally, Artix ESB consists of the bus and a number of objects that take
the data that the business logic manipulates and transforms it into a message
that is sent on the network. There are also a number of objects that Artix ESB
uses to provide other features such as security and session management.

37

Overview of Artix ESB

The bus is capable of coordinating and managing the messages for multiple
services or service consumers. It is also responsible for loading and unloading
the plug-ins used by Artix ESB. The details of how the bus coordinates
messages for each type of endpoint and what components are loaded are
discussed in the remaining sections of this chapter.

Capitalizing on the existing
infrastructure

Artix ESB ensures that the addressing information and formats are compatible
with the network infrastructure onto which the messages are placed. The
network then ensures that the messages are delivered to the proper endpoints.
Because Artix ESB uses the existing network infrastructure to deliver messages,
it can capitalize on any QoS offered by the network. For example, Artix ESB
can use the reliable messaging mechanisms offered by a JMS queue to ensure
that messages are delivered.

38

Artix ESB Enables SOA

Artix ESB C++ Runtime

Overview Artix ESB C++ Runtime provides developers with a C++ API with which to
implement services. It is built on top of Progress' patented ART runtime. Artix
ESB C++ Runtime has a C++ core that provides a fast and stable platform
for building applications.

Bindings Artix ESB C++ Runtime supports the following message format bindings:

• SOAP (1.1 and 1.2)

• CORBA

• Pure XML

• Fixed length records

• Tagged data

• Tibco Rendezvous messages

• FML buffers

Transports Artix ESB C++ Runtime supports the following transports:

• HTTP

• JMS

• IIOP

• FTP

• WebSphere MQ

• Tuxedo

QoS features Artix ESB C++ Runtime supports the following QoS features:

• message routing

39

Artix ESB C++ Runtime

• security

• transactions

• reliable messaging

• high-availability

• load balancing

• location resolution

• statefullness

40

Artix ESB Enables SOA

Artix ESB Java Runtime

Overview Artix ESB Java Runtime provides the developer with both a JAX-WS 2.0 API
and a JavaScript API with which to implement services. It is based on Apache
CXF and provides a fast, modular, and extensible platform for implementing
services that is built purely in Java.

Bindings Artix ESB Java Runtime supports the following message format bindings:

• SOAP (1.1 and 1.2)

• MTOM/XOP

• RESTful

• CORBA

• Pure XML

Transports Artix ESB Java Runtime supports the following transports:

• HTTP

• JMS

• FTP

• WebSphere MQ

QoS features Artix ESB Java Runtime supports the following QoS features:

• message routing

• security

• reliable messaging

• high-availability

• load balancing

41

Artix ESB Java Runtime

• location resolution

42

Artix ESB Enables SOA

Artix ESB in Endpoints
Artix ESB in a Service Provider .. 44
Artix ESB in a Consumer ... 48
Artix ESB in an Intermediary ... 52

Artix ESB can be used to implement three types of endpoints in a SOA:

• Service providers are endpoints that implement the operations defined in
a service contract. They are similar to servers.

• Consumers are endpoints that make requests on services. They are similar
to clients.

• Intermediaries are endpoints that processes messages in a value-added
way, such as converting them from one data format to another, or routing
them to another service. An intermediary has characteristics of both a
service provider and a consumer.

43

Artix ESB in Endpoints

Artix ESB in a Service Provider

Overview A service provider is an endpoint that implements the business logic defined
in a WSDL document. Using skeleton code produced by running a WSDL
document through the Artix ESB code generators, you can create a service
endpoint that uses Artix to connect to the network. Artix ESB can load any
components needed to provide the desired features.

What makes up a service
endpoint

As shown in Figure 4 on page 45, a service provider built with Artix ESB has
the following pieces:

• a service implementation

• a binding layer

• a transport layer

In addition, a service provider can have any number of request-level and
message-level interceptors that provide added functionality. These interceptors,
which are independent of the service provider’s contract, have access to
requests before the service implementation. They also have access to the
response after the service implementation generates it. They can be used to
perform functions such as encryption, validation, or header processing.

44

Artix ESB Enables SOA

Figure 4. High-level View of a Service Provider

Service implementation The service implementation in Artix ESB for C++ can be created using either
C++. The service implementation in Artix ESB for Java can be created using
Java and is based on code generated from the logical portion of the service
endpoint’s contract. Artix ESB loads the object that contains the logic for the
service and creates a servant that wraps the implementation so that it can
be managed by the runtime.

45

Artix ESB in a Service Provider

The implementation does not have direct access to the request messages. It
receives messages from the Artix ESB runtime as parameters to the operations
specified in the contract from which it was generated. Similarly, it returns
any responses to the bus as a return value. The marshaling of the data is
handled by the binding plug-in. The service implementation has no knowledge
of how the messages are packaged.

Exceptions thrown in the implementation object are also passed to the
messaging chain. The lower layers of the messaging chain will handle the
exception as a fault message. How the exception is returned to the consumer
depends on how the service is defined in the contract. For example, services
that use CORBA will use the CORBA exception mechanism for reporting
remote exceptions and services the use SOAP/HTTP will respond with a SOAP
fault containing information about the exception.

Request-level interceptors Request-level interceptors sit between the binding and the service
implementation. They have access to the message data when it is in between
the bits received off of the wire and the objects manipulated by the service
implementation, so they can access the header values of the message. For
example, the WS-Security specification requires that a SOAP header holding
the security token be included with all requests. A request-level handler could
remove this header and authorize the consumer before the request is passed
to the implementation.

Request-level interceptors can also inspect and change the parameters of the
operation that fulfils the request. For example, if a payment being passed to
a make_payment() operation is specified in Euros and the service endpoint
process values in US dollars, a request-level handler can do the conversion
before the data is passed to the implementation. Return values can also be
inspected and changed.

Exceptions thrown in request-level handlers cause the message to be
immediately dispatched to the binding. They are labeled as fault messages.
Requests will not be passed onto the service implementation.

Binding The binding is responsible for converting messages between the binary types
used by the service implementation and the data format used on the wire.
The mapping is determined by the WSDL binding element. Artix will load
the appropriate binding based on the binding elements in the contract
defining the endpoint.

46

Artix ESB Enables SOA

Exceptions thrown in the binding are sent back down the messaging chain
as a fault message. Requests will not be passed to the request-level
interceptors.

Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request comes in, message-level interceptors have access to the binary
stream holding the message pulled off the wire. At this point, they can perform
actions such as decompression or decryption. When a response is being
returned, interceptors have access to the binary stream holding the newly
packaged message. At this point they can perform actions such as compression
or encryption.

Warning
Exceptions in message-level handlers result in unpredictable behavior.
It is recommended that your code does not throw exceptions at this
level.

Transport The transport is responsible for pulling requests off of the network and placing
responses back on the network. The transport to be loaded and their
configuration are determined by the WSDL port elements included in the
contract defining the endpoint.

47

Artix ESB in a Service Provider

Artix ESB in a Consumer

Overview A consumer is an endpoint that makes requests on a service provider. Using
stub code produced by running a contract through the Artix ESB code
generators, you can create a consumer that uses Artix ESB to load a service
proxy for the service defined by the contract and connect to one of the service
providers implementing that service. The bus can also load any components
needed to provide the features you desire.

What makes up a consumer As shown in Figure 5 on page 49, a consumer built with Artix ESB has the
following pieces:

• the consumer implementation

• a service proxy

• a binding

• a transport

In addition, a consumer endpoint can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors, which are independent of the WSDL document defining
the service’s interface, have access to requests after the service proxy. They
also have access to the response before the service proxy. They can be used
to perform functions such as encryption, validation, or header processing.

48

Artix ESB Enables SOA

Figure 5. High-level View of a Consumer

49

Artix ESB in a Consumer

Consumer implementation
The consumer implementation provides the business logic for the consumer.
As part of the consumer implementation you need to instantiate and register
service proxies for any service endpoint upon which the consumer will make
requests.

Service proxy The service proxy is a stub generated from the logical portion of a contract
defining the service upon which the consumer will make requests. It allows
a consumer to invoke the operations offered by a service provider.

When instantiated, a service proxy provides a connection to a service provider
that implements the service defined in the contract from which it was
generated. As part of their instantiation, service proxies are registered with
the runtime so that the invocations made on the service proxy can be properly
delivered to the desired service provider.

Request-level interceptors Request-level interceptors sit between the service proxy and the binding. They
have access to the parameters of the invoked operation. They can inspect the
parameters and take action based on their values. They can also alter the
value of any of the parameters.

While they can change the values of the operation’s parameters, request-level
handlers cannot add or remove parameters to the operation. For example,
you could not use a request-level interceptor to split a single parameter that
contains the user’s full name into two parameters: one for the first name and
one for the last name.

Request-level handlers also have access to the message headers that are
included with the message. When requests are made, they can add a SOAP
header to the message. For example, you could write a request-level handler
to add a WS-Security header to all out-going requests. When a response is
received, request-level handlers can inspect the message headers before the
message is passed back into the consumer implementation.

Exceptions generated in a request-level interceptor are immediately returned
to the consumer implementation. If the exception is thrown while processing
a request, the request is not sent. The consumer implementation is responsible
for properly handling the exception.

Binding The binding is responsible for converting messages between the binary types
used by the consumer implementation and the data format used on the wire.
The mapping is determined by the WSDL binding element. Artix loads the

50

Artix ESB Enables SOA

appropriate bindings based on the binding elements in the contract defining
the service to which the client is making requests.

Exceptions in the binding are sent back up the messaging chain as a fault
message. Requests will not be passed to the message-level interceptors.

Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request is made, they have access to the binary data stream that contains
the newly packaged message before it is placed onto the wire. At this point
they can perform actions such as compression or encryption of the outgoing
request. When a response is received, the interceptors have access to the
binary stream that represents the message pulled off of the wire. At this point,
they can perform operations such as decompress the data or decrypt it.

Message level interceptors return exceptions directly to the consumer
implementation. If the exception is thrown wile processing a request, the
request is not sent. If the exception is thrown when processing a response,
the message is not passed to the rest of the messaging chain.

Transport The transport is responsible for placing requests on the network and pulling
responses back off of the network. The transports and their configuration are
determined by the WSDL port elements in the contract defining the service
endpoint on which the consumer endpoint is invoking.

51

Artix ESB in a Consumer

Artix ESB in an Intermediary

Overview An intermediary is a special case of a service provider. It is a service provider
whose primary function is intercept messages, perform some value-added
processing, and possibly pass the message on to its intended destination.
Intermediaries have some of the characteristics of a service provider and some
of the characteristics of a consumer. They are typically defined by a contract
defining all of the interfaces required by the intermediary and that has been
extended to contain the rules for how the intermediary is to process messages.
Using the extended contract, you can generate skeleton code and stub code
for the endpoints with which the intermediary will interact. Alternatively,
intermediaries can use generic interfaces that are created at runtime based
on the information provided in the contract. Artix ESB will use the information
in the contract to load the components needed to connect the intermediary
to the network.

Artix ESB uses an intermediary to service-enable legacy systems by performing
transport and binding switching. Other uses of intermediaries are message
routing and message transformation. For more information about the
intermediaries provided with Artix see The Router on page 58 .

What makes up an intermediary As shown in Figure 6 on page 53, an intermediary built using Artix ESB has
the following pieces:

• a service-side transport

• a service-side binding

• a service implementation

• a service proxy

• a consumer-side binding

• a consumer-side transport

In addition, an intermediary can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors can be used to perform functions such as encryption,
validation, or header processing.

52

Artix ESB Enables SOA

Figure 6. High-level View of an Intermediary

Service-side messaging chain An intermediary's service-side messaging chain functions identically to the
messaging chain of a service provider. It is made up of a transport,
message-level handlers, a binding, and request-level handlers. The binding
and transport are specified by the part of the intermediary's contract that
defines the service(s) that the intermediary can interact with. The handlers
in the chain are specified in the intermediary's configuration.

For more information see Artix ESB in a Service Provider on page 44.

Service implementation An intermediary's service implementation determines the functionality of the
intermediary. For example, it may inspect the account number of a payee
and use it to route the request to a regional payment center.

The only requirement for an intermediary's service implementation is that it
continues the invocation chain for the messages it receives. For example, if

53

Artix ESB in an Intermediary

the intermediary is placed in front of a teller service, the intermediary must
pass along all incoming requests to an instance of the teller service for which
the request was intended.

Service proxies An intermediary has a service proxy for any service to which it must pass
messages. In some cases this may be a single service, but an intermediary
can also pass messages along to a number of services. For example, the Artix
ESB router can redirect a message to any number of services.

Consumer-side messaging chain An intermediary's consumer-side messaging chain functions identically to the
messaging chain of a consumer. It is made up of request-level handlers, a
binding, message-level handlers, and a transport. The binding and transport
are specified by the part of the intermediary's contract that defines the
service(s) that the intermediary can interact with. The handlers in the chain
are specified in the intermediary's configuration.

For more information see Artix ESB in a Consumer on page 48.

54

Artix ESB Enables SOA

Artix ESB for C++ Services
The Artix ESB C++ Runtime Container ... 56
The Router ... 58
Security ... 60
The Locator .. 62
The Session Manager .. 65

Features such as location independence, message routing, and security require
functionality that cannot be built into a smart endpoint. To address this Artix
ESB provides a number of service providers that you deploy into your SOA.

55

Artix ESB for C++ Services

The Artix ESB C++ Runtime Container

Overview One of the key features of SOA is that its endpoints are highly dynamic. The
Artix ESB C++ Runtime container provides a number of features that make
endpoints more dynamic including:

• remote deployment

• suspension of an endpoint

• automatic reloading of an endpoint

• dynamic endpoint configuration

• monitoring of endpoint performance metrics

The container does this by hosting a light-weight administrative service along
side the endpoints hosted in the container.

Container server The container server is a light weight process that can host a number of Artix
enabled endpoints. It instantiates service implementation objects, loads the
bindings and transports specified in the contracts of the endpoints the
container is hosting, and exposes the endpoints to the network. The container
coordinates the flow of messages so that messages are delivered to the
appropriate service implementations.

In addition to the endpoints you deploy into a container, Artix ESB C++
Runtime containers always load an instance of the container administrative
service.

Administrative service The container’s administrative service allows you to manage the endpoints
deployed in a container. Like all services in SOA, the administrative service
is defined by a contract. By default the administrative service is exposed as
a SOAP/HTTP endpoint and can be accessed by any consumer endpoint that
instantiates an administrative service proxy. You can alter the networking
properties of an administrative service endpoint such that it uses any of the
binding/transport combinations supported by Artix ESB C++ Runtime.

The administrative service provides the following operations:

• List all endpoints deployed in the container

• Stop a running endpoint

56

Artix ESB Enables SOA

• Start a dormant endpoint

• Remove an endpoint

• Deploy a new endpoint

• Get a reference to an endpoint

• Get the contract for an endpoint

• Get the URL to an endpoint's contract document

• Retrieve performance metrics for an endpoint

• Shut down the container

57

The Artix ESB C++ Runtime Container

The Router

Overview The router is an intermediary whose primary role is to redirect messages based
on rules defined in its contract. As shown in Figure 7 on page 58, a router
has a service-side interface that receives requests from consumer endpoints.
It also has one or more consumer-side service proxies that forward the request
to service implementations on the backend of the router.

Figure 7. Overview of the Artix Router

The service-side messaging chain and consumer-side messaging chain are
defined by separate parts of the router’s contract. They do not necessarily
share a common binding or transport.

Features A router provides a number of features:

• message routing

• payload format translation

• transport switching

• load balancing

• message broadcasting

58

Artix ESB Enables SOA

• service provider fail-over

Service-side The service-side of a router looks like a service provider to the other endpoints
on your network. It is responsible for receiving requests from consumers that
make requests on the service provider, or service providers, behind the router.
Its interface and messaging chain is determined by a service definition in the
router’s contract.

Consumer-side The consumer-side of a router looks like a consumer to the rest of the
endpoints on your network. It consists of one or more service proxies and
their associated message chains and is responsible for forwarding requests
to the service providers on the backend of the router. The proxies, and their
messaging chains, are defined in the router’s contract. However, they are not
instantiated until they are needed by the router. So, if one of the destinations
in the router’s contract never receives a message, no consumer-side artifacts
will be created for it.

The consumer-side proxies can all have a different combination of bindings
and transports in its messaging chains. They also can have a different
combination from the service-side of the router.

More information For more information about the router see Artix Router Guide1.

1 ../routing/index.htm

59

The Router

../routing/index.htm
../routing/index.htm

Security

Overview Artix ESB's security architecture is designed to be easily deployable and easily
connected to any existing security infrastructure already in use. It consists of
two main components:

• the security plug-in

• the Artix security service

Security plug-in The security plug-in is deployed into the message chain of any service provider
that uses the Artix security service. It checks incoming requests for security
credentials. Before allowing the request to be forwarded to the service
implementation, it checks with the Artix security server to validate the user
and ensure that they are authorized to access the service. The security plug-in
uses mutually authenticated and encrypted channel to communicate with the
security service.

For optimization, the security plug-in has a token cache that holds on to
authorization tokens from the security server. Before sending the credentials
to the security server, the plug-in will check its cache for a valid token that
matches the credentials from the request. If a valid token is stored in the
plug-in’s cache, the plug-in will use it. If not, it will request one from the
security service.

Security service The Artix security service provides the authentication and authorization
functionality for Artix service providers. It is designed to use pluggable adapters
that connect to a variety of credential datastores. For example, if you are
already using LDAP on your systems, the Artix security server can leverage
that data to perform its functions.

The Artix security server has the following enterprise features:

• high-availability through clustering

60

Artix ESB Enables SOA

• token federation

More information For more information about Artix security see the Artix Security Guide2.

2 http://communities.progress.com/pcom/docs/DOC-106903

61

Security

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

The Locator

Overview The locator is a lightweight registry of deployed service endpoints. Service
endpoints register with a locator instance and consumer endpoints can use
a locator instance to get references to an endpoint that implements a given
service. It uses WS-Addressing compliant endpoint references to provide
addressing information to consumers.

As shown in Figure 8 on page 62, the locator consists of three components:

• the locator service

• the locator endpoint plug-in

• the locator client plug-in

Figure 8. Overview of the Locator

Features The locator has the following features:

62

Artix ESB Enables SOA

• look up of references to deployed service endpoints

• load balancing among endpoints that implement the same service

• high availability

Locator service The locator service, like all services, is defined by a WSDL document. Artix
ESB contains a service implementation using skeleton code generated from
this contract. You can deploy an instance of the locator service into an Artix
container to create a locator service provider that can respond to the following
types of requests:

• service registration

• service deregistration

• service endpoint look-up

• service endpoint query

The locator contract defines a locator service endpoint using SOAP/HTTP.
You should not modify this because the peer manager that is used to interact
with the locator cannot work with other transports.

Because the locator service is defined by a standard contract and deployed
as a SOAP/HTTP endpoint, it can be used by any endpoint in your SOA that
communicates using SOAP/HTTP. For instance if you have .NET clients that
want to use the locator to find service instances, it is not a problem. You
could also register Axis based services with an instance of the locator service.
All a non-Artix ESB client needs to do is generate a service proxy for making
requests against the locator service.

Locator endpoint plug-in The locator endpoint plug-in is loaded into the process space of a service
provider that wants to register with an instance of the locator. The plug-in is
responsible for registering the service with a locator instance when the service
provider starts up. It is also responsible for loading a peer manager that is
responsible for monitoring the health of the locator instance with which it is
registered. If the associated locator instance goes down, the peer manager

63

The Locator

reregisters the service provider when it returns. If the service provider goes
down, the locator instance unregisters it.

Locator client plug-in The locator client plug-in is loaded into the process space of an Artix ESB
enabled consumer that wants to use the locator to get addressing information
when creating a service proxy. When it is loaded, a consumer will
automatically perform look-ups on a locator instance without creating a service
proxy for the locator. The plug-in has its own locator service proxy that is
used by the Artix ESB initial reference resolving mechanism. The plug-in does
not, however, support service provider queries.

More information For more information on the locator see the Artix Locator Guide3.

3 http://communities.progress.com/pcom/docs/DOC-106903

64

Artix ESB Enables SOA

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

The Session Manager

Overview The session manager is a versatile service that provides the following features:

• Limiting the amount of time a consumer endpoint can access a service
endpoint

• Limiting the number of concurrent consumer connections to a service
endpoint

• Stateful service endpoints

Components The session manager is implemented in a modular fashion. It consists of the
following components:

• the session manager service

• a policy plug-in that is collocated with each instance of the service

• an endpoint manager plug-in that is collocated with all managed service
providers

• a session token interceptor that sits in the messaging chain of all managed
service providers

Session manager service The session manager service is defined by a WSDL document and is
implemented by a library shipped with Artix ESB. You deploy instances of
the session manager service implementation into an Artix ESB C++ Runtime
container to create session manager service providers. These service providers
can be accessed by any consumer that can instantiate a proxy for the session
manager service and communicate using SOAP/HTTP.

In general, consumers will request lists of registered service groups from the
session manager. The consumer will then invoke on the session manager to
request a session for one of the returned service groups. In addition, consumers
can request extensions to their sessions and request that a session be ended.
The other session manager components also have specific operations that

65

The Session Manager

they invoke on the session manager service to provide the service-side
functionality.

Policy plug-in The session policy plug-in is deployed into the same process space as a
session manager service instance. It is responsible for defining rules about
the duration of sessions, rules about the number of concurrent sessions allowed
per group, and other rules about how sessions are granted. Before the session
manager grants a session to a consumer, it checks with the policy plug-in.

Artix ESB includes with a default policy plug-in called sm_simple_policy.
This plug-in uses information from the session manager's configuration file to
determine length of sessions and the maximum number of concurrent sessions
allowed. If you need more detailed session rules, you can write your own
policy plug-in.

Endpoint manager The endpoint manager plug-in is loaded into the process space of an Artix
service providers that wants to register with a session manager instance. The
endpoint managers are in constant communication with the session manager
instance to report on the endpoint’s health, to receive information on new
sessions that have been granted to the managed service providers, and to
check on the health of the session manager instance.

Session token interceptor The session token interceptor is placed in a service provider's messaging chain
when it is configured to use managed sessions. It looks for the session token
that is attached to a request. If no session token is found, the interceptor
rejects the request. If the session token is found, the token is sent to the
endpoint manager for verification. If the session token is invalid, the interceptor
rejects the request. If the session is valid, the request is passed up the
message chain.

More information For more information on the session manager see the Session Manager4.

4 http://communities.progress.com/pcom/docs/DOC-106903

66

Artix ESB Enables SOA

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

Extending Artix ESB
In addition to Artix ESB, you can add other packages from the Artix suite to extend your SOA infrastructure.
These packages offer features like mainframe connectivity, orchestration, .NET integration, and repository
functionality.

Artix ESB Management Integration ... 68

67

Artix ESB Management Integration

Overview Artix ESB enables you to use integrate Artix ESB C++ Runtime and Artix
ESB Java Runtime services with a number of enterprise management systems.
These include:

• Actional

• AmberPoint

• BMC Patrol

• Java Management Extensions(JMX)

Actional Integration between Artix ESB and Actional enables Artix ESB services to be
monitored by Actional SOA management products. For example, you can use
Actional SOA management tools to perform monitoring, auditing, and reporting
on Artix ESB services. You can also correlate and track messages through
your network to perform dependency mapping and root cause analysis.

The Artix–Actional integration is deployed on Artix ESB service endpoints to
enable reporting of management data back to the Actional server. The data
reported back to Actional includes system administration metrics such as
response time, fault location, auditing, and alerts based on policies and rules.

The integration relies on two components to monitor your services and report
the data back to the Actional SOA management tools:

Actional Agents
An Actional agent is run on each service endpoint that you wish to
manage. Actional agents are used to provide instrumentation data back
to the Actional server. Actional agents are provisioned from the Actional
server to establish initial contact and send configuration to the Actional
agent. There is one Actional agent per service endpoint.

Artix ESB Interceptors
Interceptors are added to an endpoint's messaging chain that send the
instrumentation data to the Actional agent using an Actional-specific
API. These interceptors essentially push events to the Actional agent.
The data is analyzed and stored in the Actional agent for retrieval later

68

Extending Artix ESB

by the Actional server. However, any alerts triggered at the Actional agent
are sent immediately to the Actional server.

AmberPoint The Artix ESB AmberPoint Agent can be deployed with Artix ESB endpoints
that use SOAP over HTTP to enable reporting of performance metrics back
to AmberPoint.

The agent enables the use of the following AmberPoint features:

• Dynamic discovery of Artix ESB clients and services using SOAP over HTTP.

• Monitoring of Artix ESB client and service invocations, and reporting them
back to AmberPoint.

• Mapping Qualities of Service to customer Service Level Agreements (SLAs).

• Monitoring of Artix ESB invocation flow dependencies, which enables
AmberPoint to draw Web service dependency diagrams.

• Centralized logging and performance statistics.

BMC Patrol The Artix ESB BMC Patrol integration performs the following key enterprise
management tasks:

• Posting an event when a server crashes. This enables programmed recovery
actions to be taken.

• Tracking key server metrics (for example, server response times). Alarms
are triggered when these go out of bounds.

The server metrics tracked by the BMC Patrol integration include the number
of invocations received, and the average, maximum and minimum response
times. The BMC Patrol integration also enables you to track these metrics for
individual operations. Events can be generated when any of these parameters
go out of bounds. You can also perform a number of actions on servers
including stopping, starting and restarting.

In the BMC Patrol integration, key server metrics are logged by performance
logging plugins. The BMC Patrol integration provides Artix ESB Knowledge
Modules, which conform to standard BMC Knowledge Module design and

69

Artix ESB Management Integration

operation. These modules tell the BMC Patrol console how to interpret the
logging data

JMX Artix ESB endpoints are instrumented to allow runtime components to be
exposed as JMX Managed Beans (MBeans). This enables an endpoint to be
monitored and managed either in process or remotely with the help of the
JMX Remote API. In addition to providing instrumented runtime components,
Artix ESB allows you to build and register custom MBeans so you can monitor
metrics that are specific to an application.

For Artix ESB C++ Runtime endpoints you can monitor the following runtime
components out of the box:

• Bus

• Service

• Port

For Artix ESB Java Runtime endpoints you can monitor the following runtime
components out of the box:

• bus

• Service endpoint

70

Extending Artix ESB

Index
A
Artix ESB C++ Runtime container, 56

C
consumer, 48

E
endpoint, 24, 28
endpoint manager plug-in, 66
enterprise service bus, 28
ESB, 28

I
intermediary, 52

L
locator, 62
locator endpoint, 63
locator service, 63

P
plug-in

endpoint manager, 66
session policy, 66

R
router, 58

S
security plug-in, 60
security service, 60
service, 24
service oriented architecture, 24
service provider, 44
session manager, 65
session policy plug-in, 66

smart endpoint, 31
SOA, 24

W
Web Service Definition Language, 27
WSDL, 27

X
XML Schema, 27

71

72

	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Service Oriented Architecture
	What is Service Oriented Architecture?
	What is an ESB?
	What is a Smart Endpoint?

	Artix ESB Enables SOA
	Overview of Artix ESB
	Artix ESB C++ Runtime
	Artix ESB Java Runtime
	Artix ESB in Endpoints
	Artix ESB in a Service Provider
	Artix ESB in a Consumer
	Artix ESB in an Intermediary

	Artix ESB for C++ Services
	The Artix ESB C++ Runtime Container
	The Router
	Security
	The Locator
	The Session Manager

	Extending Artix ESB
	Artix ESB Management Integration

	Index

