
™

PROGRESS
®

ARTIX
Router Guide, C++ Runtime

Version 5.6, December 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology–Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments:

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technologies from the Apache
Software Foundation (http://www.apache.org). Such Apache technologies are subject to the
following terms and conditions: The Apache Software License, Version 1.1. Copyright (C)
1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copy-
right notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3.
The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Ant", "Xerces," "Xalan," "Log 4J," and "Apache Software Foundation" must
not be used to: endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was
originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the
Apache Software Foundation ((http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

http://www.apache.org

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
International Business Machines, Inc., http://www.ibm.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1. - Copy-
right (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
Lotus Development Corporation., http://www.lotus.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 2000-2003 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgement may
appear in the software itself, if and wherever such third-party acknowledgements normally
appear.
 4. The names "The Jakarta Project", "Velocity", and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", "Velocity" nor may
"Apache" appear in their names without prior written permission of the Apache Group.
 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache
Software Foundation (http://www.apache.org). Such Apache technology is subject to the
following terms and conditions: The Apache Software License, Version 1.1 - Copyright (C)
1999 The Apache Software Foundation. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally
appear.
4. The names "log4j" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see <http://www.apache.org/>.
(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM.
Such technology is subject to the following terms and conditions: Copyright (C) 2000-2004
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
<request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we request (but
do not require) that you include in the end-user documentation provided with the redistribu-
tion and/or in the software itself an acknowledgement equivalent to the following: "This

product includes software developed by the JDOM Project (http://www.jdom.org/)." Alter-
natively, the acknowledgment may be graphical using the logos available at http://
www.jdom.org/images/logos. THIS SOFTWARE IS PROVIDED AS IS AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software
consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter_AT_jdom_DOT_org> and
Brett McLaughlin <brett_AT_jdom_DOT_org>. For more information on the JDOM
Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technol-
ogies from IBM. Such technologies are subject to the following terms and conditions: Cop-
yright (c) 1995-2003 International Business Machines Corporation and others All rights
reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, pub-
lish, distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation. THE SOFTWARE IS PRO-
VIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in adver-
tising or otherwise to promote the sale, use or other dealings in this Software without prior
written authorization of the copyright holder. All trademarks and registered trademarks
mentioned herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from
John Wilson. Such technology is subject to the following terms and conditions: Copyright
(c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. All
advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by John Wilson. The name of
John Wilson may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN
WILSON ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technol-
ogy from SourceForge and Networks Associates Technology, Inc. Such technology is sub-
ject to the following terms and conditions: Various copyrights apply to this package, listed
in various separate parts below. Please make sure that you read all the parts. Up until 2001,
the project was based at UC Davis, and the first part covers all code written during this time.
From 2001 onwards, the project has been based at SourceForge, and Networks Associates
Technology, Inc hold the copyright on behalf of the wider Net-SNMP community, covering
all derivative work done since then. An additional copyright section has been added as Part
3 below also under a BSD license for the work contributed by Cambridge Broadband Ltd. to
the project since 2001. An additional copyright section has been added as Part 4 below also
under a BSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the
THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like) ----- Copyright
1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000.
Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its documenta-
tion for any purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of CMU and The Regents of the
University of California not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. CMU AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR

IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ----
Part 2: Networks Associates Technology, Inc copyright notice (BSD) ----- Copyright (c)
2001-2003, Networks Associates Technology, Inc. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: *Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.* Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribu-
tion.* Neither the name of the Networks Associates Technology, Inc nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 3: Cambridge Broadband Ltd. copyright notice
(BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:*Redistributions of
source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.* The name of Cambridge Broadband Ltd. may not be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun
Microsystems, Inc. copyright notice (BSD) -----Copyright © 2003 Sun Microsystems, Inc.,
4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Use is
subject to license terms below. This distribution may include materials developed by third
parties. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-

lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.* Neither
the name of the Sun Microsystems, Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) -----Copy-
right (c) 2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met:* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.* Redistributions in binary form must repro-
duce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.* Neither the name of
Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 6: Cisco/BUPTNIC
copyright notice (BSD) ----- Copyright (c) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications. All rights reserved. Redis-
tribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. * Redistribu-
tions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunica-
tions, nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R&D Soft-
ware GmbH & Co KG copyright notice (BSD) ----- Copyright (c) Fabasoft R&D Software
GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. * The
name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or prod-
uct names may not be used to endorse or promote products derived from this software with-
out specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSLeay v0.9.8i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES ==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.
 OpenSSL License ---------------
/*
==
====

 Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
 Original SSLeay License -----------------------
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.
This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL. This library is free for
commercial and non-commercial use as long as the following conditions are aheared to.
The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright notices in
the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided with
the package. Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement: "This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from
the library being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement: "This product includes soft-
ware written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. The licence and distribution terms for any publically available ver-
sion or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technol-
ogy from the Legion Of The Bouncy Castle (http://www.bouncycastle.org). Such Bouncy-
castle 1.3.3 cryptographic technology is subject to the following terms and conditions:
Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycas-
tle.org). Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of
providing a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. Such technology is subject to the following terms and
conditions: PCRE LICENCE. PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those of the Perl 5 language. Release
7 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The doc-
umentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions. THE BASIC LIBRARY
FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright
(c) 1997-2008 University of Cambridge All rights reserved. THE C++ WRAPPER FUNC-
TIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc. All rights
reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. * Neither the name of the University
of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mcpp v2.6.4 from Kiyoshi Matsui. Such
technology is subject to the following terms and conditions: Copyright (c) 1998, 2002-2007
Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. This software including the files
in this directory is provided under the following license. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corpo-
ration 2010 (IBM 32-bit Runtime Environment for AIX, Java Technology Edition v 1.6.0
SR9 FP2).

Updated: December 5, 2011

Contents

List of Figures 19

List of Tables 21

Preface 23
What is Covered in this Book 23
Who Should Read this Book 23
How to Use this Book 23
The Artix Documentation Library 24

Chapter 1 Introduction 25
Features of the Routing Service 26
Routing Contracts 28
Router Deployment Patterns 30

Chapter 2 Compatibility of Ports and Operations 33

Chapter 3 Creating a Basic Route 37

Chapter 4 Adding Operation-Based Rules to a Route 41

Chapter 5 Adding Attribute-Based Rules to a Route 45

Chapter 6 Adding Content-Based Rules to a Route 49
Router’s Message Representation 51
Specifying Evaluation Expressions 55
Adding a Content-Based Rule to a Route 57

Chapter 7 Using Advanced Routing Features 59
Load Balancing 60
Message Broadcasting 61
 17

CONTENTS
Failover Routing 63

Chapter 8 Linking Routes 65

Chapter 9 Creating Routes Using Artix Tools 69
Creating Routes from the Command Line 70

Chapter 10 Deploying an Artix Router 73
Enabling Artix Routing 74
Configuring an Artix Router 76
Deploying a Router Using a Deployment Descriptor 79
Optimizing Router Performance 83

Chapter 11 Routing Messages Containing References 85
Endpoint References and the Router 86
Preventing Memory Bloat in the Router 88

Chapter 12 Error Handling 91

Index 93
18

List of Figures

Figure 1: Using Multiple Artix Routers for Single Routes 30

Figure 2: Using a Single Artix Router for Multiple Routes 31
 19

LIST OF FIGURES
 20

List of Tables

Table 1: Required Attributes for routing:source 38

Table 2: Required Attributes for routing:destination 38

Table 3: Required Attributes for Attribute Selection Elements 46

Table 4: Context QNames 46

Table 5: Required Attributes for routing:expression 55

Table 6: Context Names Used with wsdltorouting 71

Table 7: Conditions Used with wsdltorouting 71
 21

LIST OF TABLES
 22

Preface
What is Covered in this Book
This book discusses how to use the Artix ESB for C++ routing service. It covers
how the routing service directs message, the WSDL extensions used to define
routing rules, and how to deploy an instance of the routing service.

Who Should Read this Book
This book is intended for any user who needs to use the Artix routing service to
connect endpoints in a SOA. It is expected that the reader have a basic
understanding of Service Oriented design concepts and WSDL.

How to Use this Book
For an overview of the routing service, read Chapter 1, “Introduction.”

For information on writing routing rules, read:

• Chapter 2, “Compatibility of Ports and Operations.”

• Chapter 3, “Creating a Basic Route.”

• Chapter 4, “Adding Operation-Based Rules to a Route.”

• Chapter 5, “Adding Attribute-Based Rules to a Route.”

• Chapter 6, “Adding Content-Based Rules to a Route.”

• Chapter 8, “Linking Routes.”

• Chapter 9, “Creating Routes Using Artix Tools.”
 23

PREFACE
For information on configuring the routing service and optimizing its
performance, read:

• Chapter 10, “Deploying an Artix Router.”

• Chapter 11, “Routing Messages Containing References.”

For information on the advanced features of the router, read Chapter 7, “Using
Advanced Routing Features.”

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library.
 24

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

CHAPTER 1

Introduction
The Artix routing service provides message routing based on
operations, ports, message attributes, or message content.

In this chapter This chapter discusses the following topics:

Features of the Routing Service page 26

Routing Contracts page 28

Router Deployment Patterns page 30
 25

CHAPTER 1 | Introduction
Features of the Routing Service

Overview An Artix router redirects messages based on rules defined in an Artix contract.
The routing functionality is provided by an Artix plug-in and configuration. This
means that neither the client nor the server endpoints need to be modified, nor
are they are aware that routing is occurring. An Artix router is sometimes
referred to as an Artix switch.

Routes The most basic Artix routes are between two endpoints that are described by the
port element of a WSDL contract. You can refine your routes using the
following types of additional rules:

• Operation-based

• Attribute-based

• Content-based

Operation-based Operation-based rules allow you to refine a route by specifying a particular
operation on which the router will filter messages. By adding an operation-based
rule to a route, you direct the router to only act upon messages that originate due
to an invocation on a particular operation of the specified port. Messages are
routed between logical operations whose arguments are equivalent.

For more information see “Adding Operation-Based Rules to a Route” on
page 41.

Attribute-based Attribute-based routing rules allow you to refine a routing by specifying values
in the message header to be inspected. By adding attribute-based rules to a route,
you can direct the router to only redirect messages based on certain values
specified in the message header.

For more information see “Adding Attribute-Based Rules to a Route” on
page 45.
26

Features of the Routing Service
Content-based Content-based routing rules allow to refine a route by inspecting the contents a
message. Adding a content-based rule lets you route messages based on the
value of particular elements of a message. The routes are defined using simple
XPATH expressions that query the message content and select a destination
based on the result.

For more information see “Adding Content-Based Rules to a Route” on page 49.

Advanced features In addition, you can specify routes that give you the following advanced
capabilities:

• Failover

• Load balancing

• Message broadcasting (fanout)

For more information see “Using Advanced Routing Features” on page 59.
 27

CHAPTER 1 | Introduction
Routing Contracts

Overview A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect the source
endpoints to the destination endpoints. These routing rules is all that is required
to implement a route.

Routing contract requirements A contract for the routing service is very similar to a contract for any other Artix
service. It is a WSDL document that defines the types, interfaces, data
mappings, and networking information that defines an endpoint. Because the
routing service bridges two, or more endpoints, it requires that all of the
information for the endpoints it bridges are defined. In addition, a routing
service contract contains information specifying the routing rules for connecting
the defined endpoints.

A contract for the routing service must specify the following:

• all of the types passed between all of the endpoints being connected.

• all of the messages that can be passed between the endpoints being

connected.

• an interface definition for each of the endpoints being connected.

• a binding definition for each endpoint being connected.

• the connection information for all of the endpoints being connected.

• at least one set of routing rules to define how messages are routed between

the connected endpoints.

Note: A routing service contract may have only one interface definition
because multiple endpoints can share the same interface.
28

Routing Contracts
Routing namespace The WSDL extension used to specify routes in an Artix contract are defined in
the namespace http://schemas.iona.com/routing. When describing routes in
an Artix contract you must add the following to your contract’s definition
element:

Common routing extensions The most commonly used of the routing extensions are:

routing:route is the root element of any route defined in the contract.

routing:source specifies the port that acts as the source for messages that are to
be routed.

routing:destination specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be
aware that any routing is taking place.

<definitions ...
 xmlns:routing="http://schemas.iona.com/routing"
 ...>
 29

CHAPTER 1 | Introduction
Router Deployment Patterns

Overview An Artix router does not require that any Artix-specific code be compiled or
linked into existing applications. An Artix router is created by loading the Artix
routing plug-in into an Artix process. The recommended way to deploy a router
is to use the Artix container (see Deploying Artix Solutions).

Artix router can be deployed in a number of ways. Two common deployment
patterns are:

• Deploying multiple routers—each bridging between two applications.

• Deploying one router—it bridges between all applications in a domain.

Deploying multiple routers This approach simplifies designing integration solutions, and provides faster
processing of each message (shown in Figure 1). Using this approach, the Artix
contract describing the interaction of the applications is simpler. It contains only
the logical interfaces shared by the two applications, the bindings for each
payload format, and the routing rules.

Because most applications use only one network transport, the number of ports
is minimal and the routing rules are simple. Keeping the contract simple also
enhances the performance of each router because it has less processing to do. In
this approach, each router’s resource usage can be limited by tailoring its
configuration to optimize the router for the integration task that it is responsible
for.

Figure 1: Using Multiple Artix Routers for Single Routes
30

Router Deployment Patterns
Deploying one router This approach limits the number of external services required in your
deployment environment (shown in Figure 2). This can simplify monitoring and
installation of deployments. It also reduces the number of moving parts in an
integration solution.

Using this approach, you can use a single WSDL contract that includes all the
information for all routes. In this case, the contract information that describes the
interaction of the applications is more complex. It contains the logical interfaces
shared by multiple applications, the bindings for each payload format, and the
routing rules.

Alternatively, you can also specify that a single router uses multiple WSDL
files, each of which describes a single route, or a number of routes. These could
be the same WSDL contracts used in multiple router deployment, however, they
are all deployed in the same router process. The configuration that identifies the
WSDL file containing the routing details is specified using a list, which can
include a collection of multiple WSDL files. For more information, see
“Configuring an Artix Router” on page 76.

Figure 2: Using a Single Artix Router for Multiple Routes
 31

CHAPTER 1 | Introduction
32

CHAPTER 2

Compatibility of
Ports and
Operations
The source endpoint and destination endpoint of a route must be
able to consume the routed messages.

Overview The routing service can route messages between endpoints that expect similar
messages. The endpoints can use different message transports and different
payload formats, but the messages must be logically identical. For example, if
you have a baseball scoring service that is hosted on a mainframe, it might send
data using fixed record length fields over a WebSphere MQ queue. Using a
router, you can route the score data to a reporting service that consumes SOAP
messages over HTTP.

Using the most basic routing rules, the destination endpoint must have a
matching logical operation defined for each of the logical operations defined for
the source endpoint. If you add an operation-based rule, the restriction on the
endpoints is relaxed. The source endpoint and the destination endpoint must
have one logical operation that uses messages with the same logical description.
 33

CHAPTER 2 | Compatibility of Ports and Operations
Routing between endpoints Routing between endpoints is rough grained in that the routing rules are defined
on the port elements of an Artix contract and do not look at the individual
logical operations defined in the logical interface, defined by a portType
element, for which the port element defines an endpoint. Therefore, basic
routing rules require that the endpoints between which messages are routed must
have compatible logical interface descriptions.

For two endpoints to have compatible logical interfaces the following conditions
must be met:

• The portType element defining the destination’s logical interface must

contain a matching operation element for each operation element in the

portType element defining the source’s logical interface. Matching

operation elements must have the same value in their name attribute.

• Each of the matching operation elements must have the same number of

input, output, and fault elements.

• Each of the matching operation elements’ input elements must be

associated to a logical message, defined by a message element, whose

sequence of part elements have matching types.

• Each of the matching operation elements’ output elements must be

associated to a logical message whose sequence of part elements have

matching types.

• Each of the matching operation elements’ fault elements must be

associated to a logical message whose sequence of part elements have

matching types.

For example, given the two logical interfaces defined in Example 1 you could
construct a route from an endpoint bound to baseballScorePortType to an
endpoint bound to baseballGamePortType. However, you could not create a
route from an endpoint bound to finalScorePortType to an endpoint bound to
baseballGamePortType because the message types used for the getScore
operation do not match.
34

Example 1: Logical interface compatibility example

<message name="scoreRequest>
 <part name="gameNumber" type="xsd:int"/>
</message>
<message name="baseballScore">
 <part name="homeTeam" type="xsd:int"/>
 <part name="awayTeam" type="xsd:int"/>
 <part name="final" type="xsd:boolean"/>
</message>
<message name="finalScore">
 <part name="home" type="xsd:int"/>
 <part name="away" type="xsd:int"/>
 <part name="winningTeam" type="xsd:string"/>
</message>
<message name="winner">
 <part name="winningTeam" type="xsd:string"/>
</message>
<portType name="baseballGamePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getWinner">
 <input message="tns:scoreRequest" name="winnerRequest"/>
 <output message="tns:winner" name="winner"/>
 </operation>
</portType>
<portType name="baseballScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
</portType>
<portType name="finalScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
 35

CHAPTER 2 | Compatibility of Ports and Operations
Routing between operations Operation-based routing rules check for compatibility based on the operation
elements of an endpoint’s logical interface description. Therefore, messages can
be routed between any two compatible logical operations.

The following conditions must be met for operations to be compatible:

• The operations must have the same number of input, output, and fault

elements.

• The logical messages must have the same sequence of part types.

For example, if you added the logical interface in Example 2 to the interfaces in
Example 1 on page 35, you could specify a route from getFinalScore defined
in fullScorePortType to getScore defined in finalScorePortType. You
could also define a route from getScore defined in fullScorePortType to
getScore defined in baseballScorePortType.

Example 2: Operation-based routing interface

<portType name="fullScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getFinalScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
36

CHAPTER 3

Creating a Basic
Route
The simplest route directs messages between two endpoints without
any conditions.

Overview Basic routing rules simply specify the source endpoint, or endpoints, for the
messages and the destination endpoint to which messages are routed. All
messages received by the source endpoint are routed to the destination endpoint.

To describe a basic routing rule you use three elements:

• routing:route

• routing:source

• routing:destination

routing:route The routing:route element is the root element of each route you describe in
your contract. It takes one required attribute, name, that specifies a unique
identifier for the route. The routing:route element also has an optional
attribute, multiRoute, which is discussed in “Using Advanced Routing
Features” on page 59.

routing:source The routing:source element specifies the endpoint on which the route listens
for messages. A route can have several routing:source elements as long as
they all meet the compatibility rules discussed in “Routing between endpoints”
on page 34.
 37

CHAPTER 3 | Creating a Basic Route
The routing:source element requires two attributes described in Table 1.

routing:destination The routing:destination element specifies the endpoint to which the source
messages are routed. The destination endpoint must be compatible with the
source endpoint. For a discussion of the compatibility rules see “Routing
between endpoints” on page 34.

In standard routing only one destination is allowed per route. Multiple
destinations are allowed in conjunction with the routing:route element’s
multiRoute attribute that is discussed in “Using Advanced Routing Features”
on page 59.

The routing:destination element requires two attributes described in
Table 2..

Table 1: Required Attributes for routing:source

Attribute Description

service Specifies the name of the service element in which the
source endpoint is defined.

port Specifies the name of the port element defining the
source endpoint.

Table 2: Required Attributes for routing:destination

Attribute Description

service Specifies the name of the service element in which the
destination endpoint is defined.

port Specifies the name of the port element defining the
destination endpoint.
38

Example For example, to define a route from baseballScorePortType to
baseballGamePortType, defined in Example 1 on page 35, your Artix contract
would contain the elements in Example 3.

There are two sections to the contract fragment shown in Example 3:

1. The logical interfaces must be bound to physical ports in service elements

of the Artix contract.

2. The route, baseballRoute, is defined with the appropriate service and

port attributes.

Example 3: Port-based routing example

1 <service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <tibrv:port serverSubject="com.mycompany.baseball"/>
 </port>
</service>

2 <routing:route name="baseballRoute">
 <routing:source service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
</routing:route>
 39

CHAPTER 3 | Creating a Basic Route
40

CHAPTER 4

Adding
Operation-Based
Rules to a Route
Operation-based rules narrow the scope used to define the source
of the messages to a specific operation.

Overview Operation-based routing rules refine a route by narrowing the source of routed
messages to specific logical operation. Any message not related to the specified
logical operation will be unaffected by the route.
 41

CHAPTER 4 | Adding Operation-Based Rules to a Route
Adding an operation-based rule To specify an operation-based routing rule you need to specify one additional
element to your route description: routing:operation. The
routing:operation element takes one required attribute, name, that specifies
the value of the name attribute of an operation element in the source endpoint’s
logical interface. The specified operation element becomes the source of
messages that are routed. Messages corresponding to other logical operations
will not be routed.

The routing:operation element also has one optional attribute, target, that
specifies the value of the name attribute of an operation element in the
destination endpoint’s logical interface. The specified operation element
becomes the destination of messages redirected by the route. If a target is
specified, messages are routed between the two operations. If no target is
specified, the source operation’s name is used as the name of the target
operation. The source and target operations must meet the compatibility
requirements discussed in “Routing between operations” on page 36.

You can specify any number of routing:operation elements in a route. They
must be specified after all of the routing:source elements and before any
routing:destination elements.

How operation-based rules are
applied

Operation-based routing rules apply to all of the routing:source elements in
the route. Therefore, if an operation-based routing rule is specified, a message
will be routed if all of the following are true:

• The message is received from one of the endpoints specified in a

routing:source element.

• The operation name associated with the received message is specified in

one of the routing:operation elements.

If there are multiple operation-based rules in the route, the message will be
routed to the destination specified by the first the matching operation’s target
attribute.
42

Example For example, to route messages from the getFinalScore operation defined in
fullScorePortType, shown in Example 2 on page 36, to the getScore
operation defined in finalScorePortType, shown in Example 1 on page 35,
your Artix contract would contain the elements in Example 4.

There are two sections to the contract fragment shown in Example 4:

1. The logical interfaces must be bound to physical endpoints in service

elements of the Artix contract.

2. The route, scoreRoute, is defined using the routing:operation element.

Example 4: Operation to Operation Routing

1 <service name="fullScoreService">
 <port binding="tns:fullScoreBinding"
 name="fullScorePort">
 <mq:server QueueManager="BBQM"
 QueueName="MLBQueue"
 ReplyQueueManager="BBRQM"
 ReplyQueueName="MLBScoreQueue"/>
 </port>
</service>
<service name="finalScoreSerice">
 <port binding="tns:finalScoreBinding"
 name="finalScorePort">
 <soap:address location="http://artie.com/finalScoreServer"/>
 </port>
</service>

2 <routing:route name="scoreRoute">
 <routing:source service="tns:fullScoreService"
 port="tns:fullScorePort"/>
 <routing:operation name="getFinalScore" target="getScore"/>
 <routing:destination service="tns:finalScoreService"
 port="tns:finalScorePort"/>
</routing:route>
 43

CHAPTER 4 | Adding Operation-Based Rules to a Route
You could also create a route between the operation getScore, defined in
baseballGamePortType, and an endpoint bound to baseballScorePortType.
See Example 1 on page 35.The resulting contract would include the fragment
shown in Example 5.

Note that the routing:operation element only uses the name attribute. In this
case the logical interface bound to baseballScorePort,
baseballScorePortType, must contain an operation getScore that has
matching messages as discussed in “Routing between operations” on page 36.

Example 5: Operation to Port Routing Example

<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <iiop:address location="file:\\score.ref"/>
 </port>
</service>
<routing:route name="scoreRoute">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
</routing:route>
44

CHAPTER 5

Adding
Attribute-Based
Rules to a Route
Attribute-based rules refine a route by selecting the messages to be
routed based on the transport attributes set in a message’s header.

Overview Artix allows you to route messages based on the transport attributes set in a
message’s header when using HTTP or WebSphere MQ. You can also route
messages based on security settings and the CORBA principle.

Adding attribute-based rules Rules the select messages based on message header transport attributes are
defined in routing:transportAttribute elements in the route definition.
Transport attribute rules are defined after all of the operation-based routing rules
and before any destinations are listed.

The criteria for determining if a message meets an attribute-based rule are
specified in sub-elements of the routing:tranportAttribute element. A
message passes the rule if it meets each criterion specified in the listed
sub-element.
 45

CHAPTER 5 | Adding Attribute-Based Rules to a Route
Defining the attributes Each sub-element requires the two attributes defined in Table 3.

The contextName attribute is specified using the QName of the context in which
the attribute is defined. The contexts shipped with Artix are described in
Table 4.The contextAttributeName is also a QName and is relative to the
context specified. For example, UserName is a valid attribute name for any of the
HTTP contexts, but not for the MQ contexts.

Table 3: Required Attributes for Attribute Selection Elements

Attribute Description

contextName Specifies the context defining the transport
attribute being evaluated.

contextAttributeName Specifies the name of the transport attribute
being evaluated.

Table 4: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the attributes for
HTTP messages being
received by a service.

corba:corba_input_attributes Contains the data stored in
the CORBA principle.

mq:IncomingMessageAttributes Contains the attributes for
MQ messages being
received by a service.

bus-security Contains the attributes used
by the Artix security service
to secure your services.
46

Most sub-elements have a value attribute that can be tested. When dealing with
string comparisons all elements have an optional ignorecase attribute that can
have the values yes or no (no is the default). Each of the sub-elements can occur
zero or more times, in any order:

routing:equals applies to string or numeric attributes. For strings, the

ignorecase attribute may be used.

routing:greater applies only to numeric attributes and tests whether the
attribute is greater than the value.

routing:less applies only to numeric attributes and tests whether the attribute is
less than the value.

routing:startswith applies to string attributes and tests whether the attribute
starts with the specified value.

routing:endswith applies to string attributes and tests whether the attribute ends
with the specified value.

routing:contains applies to string or list attributes. For strings, it tests whether
the attribute contains the value. For lists, it tests whether the value is a member
of the list. The contains element accepts the optional ignorecase attribute for
both strings and lists.

routing:empty applies to string or list attributes. For lists, it tests whether the
list is empty. For strings, it tests for an empty string.

routing:nonempty applies to string or list attributes. For lists, it passes if the list
is not empty. For strings, it passes if the string is not empty.

For information on the transport attributes for HTTP and WebSphere MQ see
Binding and Transports, C++ Runtime.
 47

http://communities.progress.com/pcom/docs/DOC-106903

CHAPTER 5 | Adding Attribute-Based Rules to a Route
Example Example 6 shows a route using attribute-based rules based on HTTP header
attributes. Only messages sent to the server whose UserName is equal to JohnQ
will be passed through to the destination port.

Example 6: Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:transportAttributes>
 <routing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>
48

CHAPTER 6

Adding
Content-Based
Rules to a Route
Content-based routing rules evaluate the contents of a message and
routes it based on the results.

Procedure To create a content-based route rule in your contract you need to do the
following things:

1. Add an expression to select message content using a routing:expression

element.

2. Add a new route to you contract using a routing:route element.

3. Add a source endpoint to your route using a routing:source element.

4. Specify the expression to use as a routing criteria using a routing:query

element.

5. Add one or more routing:destination elements as children to the

routing:query element.

6. If you want to add a default destination endpoint, add a

routing:destination element as a child of the routing:route element.
 49

CHAPTER 6 | Adding Content-Based Rules to a Route
In this section This section discusses the following topics:

Router’s Message Representation page 51

Specifying Evaluation Expressions page 55

Adding a Content-Based Rule to a Route page 57
50

Router’s Message Representation
Router’s Message Representation

Overview The router receives messages in a number of wire formats. It uses the
information provided in the binding element of its contract to turn the raw
message into an XML message that can be evaluated. Before you can write an
expression to select content from a message passing through the router, you need
to understand how the router sees the message.

Doc-literal style contracts If your contract is constructed using the recommended doc-literal style, the
router sees the message as an instance of the element specified as the message
part. For example, if your service was defined by the WSDL fragment in
Example 7, the router would see a message with the root element ticket.

Example 7: Doc-literal WSDL Fragment

<definitions targetNamespace="vehicle.demo.example"
 xmlns:tns="vehicle.demo.example"
 ...>
 <types ...>
 ...
 <complexType name="vehicleType">
 <sequence>
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </sequence>
 </complexType>
 <complexType name="ticketType">
 <sequence>
 <element name="vehicle" type="vehicleType" />
 <element name="name" type="xsd:string" />
 <element name="parkTime" type="xsd:string" />
 </sequence>
 </complexType>
 <element name="ticket" type="ticketType" />
 ...
 </types>
...
<message name="ticketRequest">
 <part name="myTicket" element="xsd1:ticket" />
</message>
...
 51

CHAPTER 6 | Adding Content-Based Rules to a Route
Example 8 shows an example of the message that the router would process given
the WSDL in Example 7.

Non-standard contracts When you use non-standard messages in your contract, the router sees the
message as a virtual XML document that is reconstructed from the WSDL
definitions in the contract. The mapping is done as follows:

1. The name of the message’s root element is the QName of the message

element referred to by the operation’s input element.

2. Each part element of the message referenced by the input element is

mapped to an element derived from the name attribute of the part element.

3. If the part element is of a complex type, or an element of a complex type,

the type’s elements appear inside of the element corresponding to the part

element.

<portType name="parkingLotMeter">
 <operation name="register">
 <input name="parkedCar" message="tns:ticketRequest"/>
 ...
 </operation>
...
</portType>
...

Example 7: Doc-literal WSDL Fragment (Continued)

Example 8: Doc-literal Router Message

<ns1:parkedCar xmlns:ns1="vehicle.demo.example">
 <ticket>
 <vehicle>
 <VIN>0123456789</VIN>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
 <time>19:00</time>
 </ticket>
</ns1:parkedCar>
52

Router’s Message Representation
For example, if you had a service defined by the WSDL fragment in Example 9
and were going to route requests to the register operation, the router would scan
an XML document constructed using the message ticketRequest, which is the
input message.

Example 9: Non-standard WSDL Fragment

<definitions targetNamespace="vehicle.demo.example"
 xmlns:tns="vehicle.demo.example"
 ...>
 <types ...>
 ...
 <complexType name="vehicleType">
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </complexType>
 ...
 </types>
...
<message name="ticketRequest">
 <part name="vehicle" type="xsd1:vehicleType"/>
 <part name="name" type="xsd:string"/>
 <part name="parkTime" type="xsd:string" />
</message>
...
<portType name="parkingLotMeter">
 <operation name="register">
 <input name="parkedCar" message="tns:ticketRequest"/>
 ...
 </operation>
...
</portType>
...
 53

CHAPTER 6 | Adding Content-Based Rules to a Route
When the router reconstructs the message, it the input message’s name, given in
the input element, as the name of the XML document’s root element. It uses the
message parts and the schema types to recreate the remaining elements in the
XML document. The resulting XML document would look like Example 10.

Using element names You can configure the transformer to use the element name of the message parts
instead of the value of the part element’s name attribute. For more information
see Configuring and Deploying Artix Solutions, C++ Runtime.

Example 10: Router Message

<ns1:parkedCar xmlns:ns1="vehicle.demo.example">
 <vehicle>
 <VIN>0123456789</VIN>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
 <time>19:00</time>
</ns1:parkedCar>
54

http://communities.progress.com/pcom/docs/DOC-106903

Specifying Evaluation Expressions
Specifying Evaluation Expressions

Overview The router uses expressions to evaluate a message’s content and route it. These
expressions are written using the XPath grammar.

Writing XPath expressions XPath is a standard grammar for addressing the parts of an XML document. The
Artix router uses XPath expressions to extract the content of a message for
evaluation. For example, if you wanted to write an XPath expression to extract
the data stored in the model element of the XML document in Example 10 you
could use the XPath expression parkedCar\vehicle\model which translates
into select the model element whose parent is a vehicle element and has a
parkedCar element as a parent.

You could also use the XPath expression \\model which translates into select all
of the model elements that are a descendent of the root element. If there were
multiple model elements, the expression would select them all and return a string
representing the node set of model elements.

For more information on XPath see the specification at
http://www.w3.org/TR/xpath or see the tutorial at
http://www.w3schools.com/xpath.

Adding expressions to a contract You add an expression to your contract using a routing:expression element.
The routing:expression element requires the two attributes described in
Table 5.

Table 5: Required Attributes for routing:expression

Attribute Description

name Specifies a unique identifier by which the expression is
referred to when used in a route definition.

evaluator Specifies the type of expression being used to select the
content.

Note: XPath is the only supported grammar and is specified using the string
xpath.
 55

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

CHAPTER 6 | Adding Content-Based Rules to a Route
Example Example 11 shows an example of adding an expression to an Artix contract.

The expression selects the type child element of the widgetOrderForm element
in the message. The widgetOrderForm element is not the root element of the
message. It is generated from one of the part elements defined in the contract.

Example 11: Expression in an Artix Contract

<routing:expression name="widgetSize" evaluator="xpath">
 /*/widgetOrderform/type
</routing:expression>
56

Adding a Content-Based Rule to a Route
Adding a Content-Based Rule to a Route

Using expressions in a route To use the expression to route messages, you need to add it to the route. This is
done using the routing:query element. The routing:query element is a child
of the routing:route element and must follow a single routing:source
element. It has one attribute, expression, that specifies the name of the
expression used to select a destination endpoint.

Specifying destinations for a
content based routing rule

The destinations that can be selected by the expression are specified using
routing:destination elements that are children of the routing:query
element. When used in content-based routing rules, the routing:destination
elements use the value attribute. The value attribute specifies the value of the
expression that will select the destination endpoint.

For example, the route shown in Example 12 specifies a content-based routing
rule that uses the expressing defined in Example 11 and has three possible
destination endpoints.

If the value of the message’s type element is med, the message will be routed to
the endpoint defined by the contract’s service element whose name attribute
equals medService.

Example 12: Content-Based Routing Rule

<routing:route name="sizeRoute">
 <routing:source service="tns:orderService" />
 <routing:query expression="tns:widgetSize">
 <routing:destination value="small"
 service="tns:smallService" />
 <routing:destination value="med" service="tns:medService" />
 <routing:destination value="big" service="tns:bigService" />
 </routing:query>
</routing:route>
 57

CHAPTER 6 | Adding Content-Based Rules to a Route
Adding a default destination To add a default destination for a content based routing rule, you simply add a
routing:destination element after the routing:query element. If none of the
destination endpoints specified by the content-based routing rule are selected,
the first destination after the routing:query element is selected. Example 13
shows a content-based routing rule with a default destination endpoint.

Example 13: Content-Based Routing Rule with a Default Destination

<routing:route name="sizeRoute">
 <routing:source service="tns:orderService" />
 <routing:query expression="tns:widgetSize">
 <routing:destination value="small"
 service="tns:smallService" />
 <routing:destination value="med" service="tns:medService" />
 <routing:destination value="big" service="tns:bigService" />
 </routing:query>
 <routing:destination service="tns:miscService" />
</routing:route>
58

CHAPTER 7

Using Advanced
Routing Features
The router has a number of advanced features that use multiple
destinations.

Overview Artix routing also supports the following advanced routing capabilities:

• Load balancing between a number of endpoints.

• Broadcasting a message to a number of destinations.

• Specifying a failover service to which messages are routed.

All of these features use the optional multiRoute attribute on the
rotuing:route element.

In this chapter This chapter discusses the following topics:

Load Balancing page 60

Message Broadcasting page 61

Failover Routing page 63
 59

CHAPTER 7 | Using Advanced Routing Features
Load Balancing

Overview The router can load balance requests across a number of endpoints without
requiring any special configuration or programming. It uses a round-robin
algorithm to route requests, that match a routing rule, to one of the specified
destination endpoints.

Specifying router based load
balancing

Router-based load balancing rules are defined using the routing:route
element’s multiRoute attribute. To define a failover route you set the
multiRoute attribute to loadBalance. Within the route definition you define a
message source as you would for any other route. You also specify a number of
destination endpoints to which messages will be routed. Using a round-robin
algorithm the router will direct each request from the source endpoint to one of
the specified destination endpoints.

Example For example, if you had three endpoints that could process requests for baseball
scores and wanted to balance the request load among them, you could create a
route similar to the one shown in Example 14.

Using this route, each time a new request was received for the getScore
operation, the router would direct it to whichever endpoint was next in the
rotation. So, the first request would be routed to baseballScoreService1, the
second request would be routed to baseballScoreService2, the third request
would be routed baseballScoreService3, and so forth.

Example 14: Router Based Load Balancing

<routing:route name="scoreRoute" nultiRoute="loadBalance">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService1"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService2"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService3"
 port="tns:baseballScorePort"/>
</routing:route>
60

Message Broadcasting
Message Broadcasting

Overview Using the router, you can broadcast a message to multiple endpoints. For
example, you could deploy an endpoint whose function is to generate shutdown
warnings to all services deployed in a network. You could simplify the
development of this service by using an Artix router to intercept a single
warning message and broadcast it to the other services. In this way, you would
only need to change the router’s contract when you add or remove services.

Defining broadcasting rules You define rules by setting the multiRoute attribute in the routing:route
element to fanout in your route definition. This causes routed messages to be
transmitted to all of the endpoints specified by the route’s
routing:destination elements.

There are three restrictions to using the fanout method of message broadcasting:

• All of the source endpoints and destination endpoints must be oneways. In

other words, they cannot have any output messages.

• The source endpoints and destination endpoints cannot have any fault

messages.

• The input messages of the source endpoints and destination endpoints must

meet the compatibility requirements as described in “Compatibility of

Ports and Operations” on page 33.

Example Example 15 shows an Artix contract fragment describing a route for
broadcasting a message to a number of endpoints.

Example 15: Fanout Broadcasting

<message name="statusAlert">
 <part name="alertType" type="xsd:int"/>
 <part name="alertText" type="xsd:string"/>
</message>
<portType name="statusGenerator">
 <operation name="eventHappens">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
 61

CHAPTER 7 | Using Advanced Routing Features
<portType name="statusChecker">
 <operation name="eventChecker">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<service name="statusGeneratorService">
 <port binding="tns:statusGeneratorBinding"
 name="statusGeneratorPort">
 <soap:address location="http:\\localhost:8081"/>
 </port>
</service>
<service name="statusCheckerService">
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort1">
 <corba:address location="file:\\status1.ref"/>
 </port>
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort2">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService">
 <tuxedo:input operation="infoRequest"/>
 </tuxedo:service>
 </tuxedo:server>
 </port>
</service>
<routing:route name="statusBroadcast" multiRoute="fanout">
 <routing:source service="tns:statusGeneratorService"
 port="tns:statusGeneratorPort"/>
 <routing:operation name="eventHappens" target="eventChecker"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort1"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort2"/>
</routing:route>

Example 15: Fanout Broadcasting (Continued)
62

Failover Routing
Failover Routing

Overview The Artix router can provide a basic level of high-availability by allowing you to
create routes that define failover scenarios. The router will automatically redirect
messages to a new endpoint if the current destination fails. The router will
attempt to send a request to all the destinations in a route before throwing an
exception back to the client.

Defining the failover rules To define a failover route you set the routing:route element’s multiRoute
attribute to failover. When you designate a route as failover, the routed
message’s target is selected using a round-robin algorithm. If the first target in
the list is unable to receive the message, it is routed to the second target. The
route will traverse the destination list until either one of the target services can
receive the message or the end of the list is reached. On the next failure, the
router will start searching from the last position on the list. So if the message
was routed to the second entry on the list to deal with an initial failure, the router
will start directing requests to the third entry on the list to handle the second
failure. When the end of the list is reached, the router will start at the beginning
again. If the router is unsuccessful in delivering a message after trying each
service in the failover route once, the router will report that the message is
undeliverable.

Example Given the route shown in Example 16, the message will first be routed to
destinationPortA. If service on destinationPortA cannot receive the
message, it is routed to destinationPortB.

Example 16: Failover Route

<routing:route name="failoverRoute" multiRoute="failover">
 <routing:source service="tns:sourceService"
 port="tns:sourcePort"/>
 <routing:destination service="tns:destinationServiceA"
 port="tns:destinationPortA"/>
 <routing:destination service="tns:destinationServiceB"
 port="tns:destinationPortB"/>
 <routing:destination service="tns:destinationServiceC"
 port="tns:destinationPortC"/>
</routing:route>
 63

CHAPTER 7 | Using Advanced Routing Features
If destinationPortB fails at some future point, the messages are then routed to
destinationPortC. If destinationPortC cannot receive messages, the router
will then try destinationPortA. If destinationPortA is not available, the
router will try destinationPortB. If destinationPortB is unavailable, the
router will report that the message cannot be delivered.
64

CHAPTER 8

Linking Routes
It is possible to create complex routes by linking together several
types of routes.

Overview There are occasions, particularly when using content-based routing or using one
of the multi-endpoint routing features, when you need to link together a number
of routing criteria. Using the routing service you can do this by linking together
a number of routes. For example, you may want to route orders for customers in
Brazil to a local endpoint, but you also want the orders to automatically fail-over
to a alternative endpoint. You can do this by creating a content-based route that
specifies a fail-over route as a destination.

Specifying a route as a destination You link routes together by specifying one route as the destination of another
route. When the destination specifying the linked route is selected, the message
is passed through the second route to determine its destination. The second route
may also contain destinations that contain linked routes. The message will pass
through each linked route in order until a destination containing an endpoint is
selected.

To specify a linked route as a destination you replace the service attribute and
the port attribute in a routing:destination element with the route attribute.
The value of the route attribute must correspond to the name of another route in
the contract. The specified route becomes linked with the destination and any
message that selects this destination will be processed through it.
 65

CHAPTER 8 | Linking Routes
Example Imagine that your company had order processing centers in several cities and
you needed to route orders to the processing center closest to the delivery
address. You could implement this using a content-based route as shown in
Example 17.

If you needed to add a fail-over mechanism to ensure that the orders were
processed by a different processing center in the event of a failure, you could
simply add two linked routes for the destination of the content-based route as
shown in Example 18.

Example 17: Content-Based Route

<routing:expression name="zipCode" evaluator="xpath">
 tns:placeWidgetOrder/widgetOrderForm/shippingAddress/zipCode
</routing:expression>
<routing:route name="zipCodeRoute">
 <routing:source service="tns:widgetOrderService"
 port="tns:SOAPPort" />
 <routing:query expression="tns:zipCode">
 <routing:destination value="02452"
 service="tns:widgetOrderServiceEast"
 port="walthamPort" />
 <routing:destination value="91105"
 service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
 </routing:query>
</routing:route>

Example 18: Linked Routes

<routing:expression name="zipCode" evaluator="xpath">
 tns:placeWidgetOrder/widgetOrderForm/shippingAddress/zipCode
</routing:expression>
<routing:route name="walthamRoute" multiRoute="failover">
 <routing:destination service="tns:widgetOrderServiceEast"
 port="walthamPort" />
 <routing:destination service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
</routing:route>
66

Example 18 expands on Example 17 by adding two routes: walthamRoute and
passadenaRoute. Both of these routes will not perform any routing on their own
because they lack routing:source elements. They are instead used as
destinations for the content-based route called zipCodeRoute. In Example 17,
the content-based route simply routed to one endpoint for each destination. In
Example 18, the route’s destinations are linked routes. If the first destination is
selected, the message is routed through the fail-over route walthamRoute. If the
second destination is selected, the message is routed through the fail-over route
passadenaRoute.

<routing:route name="passadenaRoute" multiRoute="failover">
 <routing:destination service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
 <routing:destination service="tns:widgetOrderServiceEast"
 port="walthamPort" />
</routing:route>
<routing:route name="zipCodeRoute">
 <routing:source service="tns:widgetOrderService"
 port="tns:SOAPPort" />
 <routing:query expression="tns:zipCode">
 <routing:destination value="02452"
 route="tns:walthamRoute" />
 <routing:destination value="91105"
 route="tns:passadenaRoute" />
 </routing:query>
</routing:route>

Example 18: Linked Routes
 67

CHAPTER 8 | Linking Routes
68

CHAPTER 9

Creating Routes
Using Artix Tools
Artix provides both GUI and command-line tools for creating
routes.

In this chapter This chapter discusses the following topics:

Creating Routes from the Command Line page 70
 69

CHAPTER 9 | Creating Routes Using Artix Tools
Creating Routes from the Command Line

Overview The wsdltorouting command line tool can be used to add routes to contracts.
Wsdltorouting will import an existing contract and generate a new contract
containing the specified routing instructions. The imported contract must contain
the specified source endpoint and destination endpoint, otherwise the tool will
generate an error.

Usage To generate a route using the command line tool, use the following command.

wsdltorouting has the following options.

wsdltorouting [-rn name][-ssn service][-spn port]
 [-dsn service][-dpn port][-on operation]
 [-ta attribute] [-d dir][-o file]
 [-L file][-quiet][verbose][-h][-v] wsdlurl

-rn name Specifies the name of the generated route. If no name is
given a unique name will be generated for the route.

-ssn service Specifies the name of the service element to use as the
source of the route.

-spn port Specifies the name of the port element to use as the source
of the route.

-dsn service Specifies the name of the service element to use as the
destination of the route.

-dpn port Specifies the name of the port element to use as the
destination of the route.

-on operation Specifies the name of the operation to use for the route. If the
route is port-based, you do not need to use this flag.

-ta attribute Specifies a transport attribute to use in defining the route.
For details on how to specify the transport attributes, see
“Specifying transport attributes” on page 71.

-d dir Specifies the output directory for the generated contract.

-o file Specifies the filename of the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.
70

Creating Routes from the Command Line
Specifying transport attributes When using wsdltorouting, transport attributes are specified using four
comma-separated values. The first value specifies the name of the attribute’s
context. The second value specifies the name of the attribute. The third value is
the condition used to evaluate the attribute. The fourth value is the values against
which the attribute is evaluated.

Table 6 shows the valid context names to use in specifying a transport attribute.

For more information on the properties available in the contexts see either
Developing Artix Applications in C++.

Table 7 shows the valid condition entries used in specifying transport attributes
when using wsdltorouting.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.

Table 6: Context Names Used with wsdltorouting

Context Name Artix Context

HTTP_SERVER_INCOMING_CONTEXTS HTTP properties received as part of
a client request

CORBA_CONTEXT_ATTRIBUTES CORBA transport properties

SECURITY_SERVER_CONTEXT Properties used to configure security
settings

Table 7: Conditions Used with wsdltorouting

Condition WSDL Equivalent

equals routing:equals

startswith routing:startswith

endswith routing:endswith

contains routing:contains
 71

http://communities.progress.com/pcom/docs/DOC-106903

CHAPTER 9 | Creating Routes Using Artix Tools
Example If you had a contract that contained the services itchy and scratchy, both with
an equivalent operation gouge, you could use the command shown in
Example 19 to add a route to your contract.

The resulting route is shown in Example 20.

empty routing:empty

nonempty routing:nonempty

greater routing:greater

less routing:less

Table 7: Conditions Used with wsdltorouting (Continued)

Condition WSDL Equivalent

Example 19: Adding a Route with wsdltorouting

wsdltorouting -rn itchyGougeScratchy -ssn itchy -spn gougerPort
 -dsn scratchy -dpn gougedPort -on gouge
 -ta HTTP_SERVER_INCOMING_CONTEXTS,UserName,equals,Goering
 itchyscratchy.wsdl

Example 20: Route from wsdltorouting

<routing:route name="itchyGougeScratchy">
 <routing:source service="tns:itchy"
 port="tns:gougerPort"/>
 <routing:operation name="gouge"/>
 <routing:transportAttributes>
 <routing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="Goering"/>
 </routing:transportAttributes>
 <routing:destination service="tns:scratchy"
 port="gougedPort"/>
</routing:route>
72

CHAPTER 10

Deploying an Artix
Router
An instance of the Artix router can be deployed either as part of an
application’s configuration or directly into an Artix container.

In this chapter This chapter discusses the following topics:

Enabling Artix Routing page 74

Configuring an Artix Router page 76

Deploying a Router Using a Deployment Descriptor page 79

Optimizing Router Performance page 83
 73

CHAPTER 10 | Deploying an Artix Router
Enabling Artix Routing

Overview There are two approaches to enabling an Artix router:

• Using configuration variables.

• Using an Artix deployment descriptor.

Using configuration You can configure an Artix router by adding the routing plug-in to the
orb_plugins list, and specifying the location of the contract using the
plugins:routing:wsdl_url entry. See “Configuring an Artix Router” on
page 76 for full details.

This configuration-based approach can be used with an Artix container.
Alternatively, you can also deploy a router into any Artix process. For example,
this might be useful if you want to write CORBA clients and use Artix APIs.

You can also specify additional configuration variables to optimize
performance. See “Optimizing Router Performance” on page 83.

Using a deployment descriptor You can only use a deployment descriptor to define routes if you are using the
container to host the router. The advantage of this approach is that you do not
need a dedicated configuration scope.

Another advantage to this approach is that you can deploy additional routes into
the process without stopping and restarting the host process, which would be
necessary in the configuration approach.

When using the deployment descriptor approach, you must deploy each router
instance separately; whereas with the configuration approach, all router
instances are loaded automatically on startup. See “Deploying a Router Using a
Deployment Descriptor” on page 79 for full details.
74

Enabling Artix Routing
Selecting a host process Although any Artix process can be used for Artix routing, the preferred approach
is to use the Artix container as the host process.

When using the Artix container server process (it_container), you have the
option of using either the configuration approach, or the deployment descriptor
approach.

In addition, you can also use the container’s client application
(it_container_admin) to manage the deployed route.

Disabling a router To undeploy a router, you must stop and restart the process hosting the router.
This applies to both the configuration and deployment descriptor approach.

Using the configuration approach, you must edit the
plugins:routing:wsdl_url entry, removing the contract describing the routes
you wanted to undeploy.

Using the deployment descriptor approach, you would then either not redeploy
that particular contract, or you would remove its corresponding deployment
descriptor from the persistent deployment directory. See Configuring and
Deploying Artix Solutions, C++ Runtime for full details.

Note: If you use an Artix client or server process to host the routing plug-in,
you can only use configuration to specify routing details. You can not use a
deployment descriptor.
 75

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

CHAPTER 10 | Deploying an Artix Router
Configuring an Artix Router

Overview Because Artix’s routing functionality is implemented as an Artix plug-in, you
can make any Artix application a router by adding routing rules to its contract,
and by specifying configuration settings in an Artix configuration file.

This section explains how to configure the routing plug-in, and specify the
location of the router’s contract.

Setting the orb_plugins list Artix routers must include the routing plug-in name in its orb_plugins list, for
example:

Plug-ins related to bindings, and transports are not required. These are loaded
automatically when the routing plug-in parses the contract.

orb_plugins = ["xmlfile_log_stream", "soap", "at_http", ... ,
"routing"];

Note: You do not need to add the routing plug-in if you have defined routes
in a deployment descriptor (see “Deploying a Router Using a Deployment
Descriptor” on page 79).

Note: The routing plug-in must always be the last plug-in listed in the
orb_plugins list.
76

Configuring an Artix Router
Setting the WSDL contract You must configure the location of the contract, or contracts, that the router gets
its routing information from. You can do this using the
plugins:routing:wsdl_url variable. This variable specifies the contracts that
the router parses for routing rules. The following is a simple example:

The location of the contract is relative to the location from which the Artix
router is started.

The following example contains multiple routing contracts:

In this example, the router expects that route1.wsdl is located in the directory
that it was started in, and that route2.wsdl is located one directory level higher.

Defining a single route in
configuration

This is the simple approach used by the routing demos (for example,
routing\operation_based).

Run the host process under a dedicated configuration scope. In this scope,
include the routing plug-in name in the orb_plugins list, and use the
plugins:routing:wsdl_url variable to specify the location the contract
containing the routing rules.

The required configuration is illustrated in Example 21, where
demos.operation_based.router is the scope under which the host process
runs.

plugins:routing:wsdl_url="../../etc/router.wsdl";

plugins:routing:wsdl_url=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];

Example 21: Simple Router Configuration

demos {
 operation_based {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http"];

 router {
 #the routing plug-in implements the routing functionality
 orb_plugins = ["routing"];
 77

CHAPTER 10 | Deploying an Artix Router
This router can then be deployed in the container server using the following
command:

Defining multiple routes in
configuration

There are two approaches to using configuration to deploy multiple routes into
the same host process. The first is to specify multiple routes in a single contract.
Using this approach the configuration is the same as that shown in Example 21.
Using this approach sacrifices the modularity of your routes for ease of
configuration.

The second approach is to place your routes in multiple contracts. Using this
approach you must list multiple entries for the plugins:routing:wsdl_url
variable, as shown in the following example:

In this case, each contract may include one, or more, routes. When listing
multiple contracts, use the list format for specifying configuration variables

Further information For details of optional router configuration settings, see “Optimizing Router
Performance” on page 83.

For details of all the configuration options available for the routing plug-in, see
the Artix Configuration Reference.

 #the path to the WSDL file that includes the routing element
 plugins:routing:wsdl_url="../../etc/route.wsdl";
 };
 };
};

Example 21: Simple Router Configuration (Continued)

it_container -ORBname demos.operation_based.router
-ORBdomain_name operation_based -ORBconfig_domains_dir
../../etc -publish

plugins:routing:wsdl_url= ["../../etc/route1.wsdl",
"../../etc/route2.wsdl"];
78

http://communities.progress.com/pcom/docs/DOC-106903

Deploying a Router Using a Deployment Descriptor
Deploying a Router Using a Deployment
Descriptor

Overview This section explains how to deploy a router into an Artix container using a
deployment descriptor. This approach is illustrated in the
advanced\container\deploy_routes demo.

Defining multiple routes In the deploy_routes demo, the Artix container process starts under the global
configuration scope defined in the artix.cfg configuration file.

The extract shown in Example 22 is from one of the contracts used in the
advanced\container\deploy_routes demo.

Note: In this case, the routing plug-in is not loaded during startup because it
is not listed in the orb_plugins configuration entry.

Example 22: Deploy Routes Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"
 targetNamespace="http://www.iona.com/bus/demos/router"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.iona.com/bus/demos/router"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:routing="http://schemas.iona.com/routing">

 <portType name="GoodbyeServicePortType">
 <operation name="say_goodbye">
 <input message=… name=…/>
 <output message=… name=…/>
 </operation>
 </portType>
 79

CHAPTER 10 | Deploying an Artix Router
 <binding name="SOAPGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="say_goodbye">
 <soap:operation …/>
 …
 </operation>
 </binding>

 <binding name="CORBAGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <corba:binding repositoryID="IDL:GoodbyeServicePortType:1.0"/>
 <operation name="say_goodbye">
 …
 </operation>
 </binding>

 <service name="SOAPHTTPService">
 <port binding="tns:SOAPGoodbyeServiceBinding" name="SOAPHTTPPort">
 <soap:address location=…/>
 </port>
 </service>

 <service name="CORBASoapService">
 <port binding="tns:CORBAGoodbyeServiceBinding" name="CORBASoapPort">
 <corba:policy poaname=…/>
 <corba:address location=…/>
 </port>
 </service>

 <routing:route name="CorbaToSoap">
 <routing:source port="CORBASoapPort" service="tns:CORBASoapService"/>
 <routing:destination port="SOAPHTTPPort" service="tns:SOAPHTTPService"/>
 </routing:route>
</definitions>

Example 22: Deploy Routes Contract (Continued)
80

Deploying a Router Using a Deployment Descriptor
The corresponding deployment descriptor is shown in Example 23.

In the example deployment descriptor, the opening service element specifies
the targetNamespace as an attribute and the source service name as the element
value. This information links the deployment descriptor to a specific service.
The wsdl_location element provides the path to the contract that includes the
related route. The plugin element includes the information needed to load the
routing plug-in.

In the advanced\container\deploy_plugin demo, each contract includes only
one route. However, a contract can include multiple routes and be referenced in
the wsdl_location element in multiple deployment descriptors. In this scenario,
each deployment descriptor uniquely identifies a source service using the
content in the opening service element.

Example 23: Deploy Routes Deployment Descriptor

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">

 <service xmlns:servicens="http://www.iona.com/bus/demos/router"> servicens:CORBASoapService
 </service>

 <wsdl_location>
 ../../routes/soap_route.wsdl
 </wsdl_location>

 <plugin>
 <name>routing</name>
 <type>Cxx</type>
 <implementation>it_routing</implementation>
 <provider_namespace>
 http://schemas.iona.com/routing
 </provider_namespace>
 </plugin>
</m1:deploymentDescriptor>
 81

CHAPTER 10 | Deploying an Artix Router
Deploying multiple routes In the deploy_routes demo, the container client application
(it_container_admin) is used to deploy two routes, each of which is specified
in a dedicated deployment descriptor file. For example:

Each deployment descriptor describes a single router, which is identified by the
targetNamespace assigned to the contract that contains the route and the name
of the source service.

Specifying persistent deployment With the deployment descriptor approach, you can specify a persistent
deployment directory. When you initially deploy each contract, a copy of the
deployment descriptor is placed into this directory.

When you restart the container, it automatically redeploys all the contracts
identified in these deployment descriptors. In this case, the effect is the same as
the configuration approach (that is, all routes are deployed during the startup).

Further information For more details on the Artix container, deployment descriptors, and persistent
deployment, see Configuring and Deploying, C++ Runtime.

For working examples of the routing plug-in deployed in an Artix container,
see any of the demos in the following directory:

InstallDir\samples\routing

Alternatively, for a more advanced example, see:

InstallDir\samples\advanced\container\deploy_routes

it_container_admin -deploy -file
../../routes/deployCORBASoapService.xml

it_container_admin -deploy -file
../../routes/deployCORBAHTTPService.xml
82

Optimizing Router Performance
Optimizing Router Performance

Overview This section describes how to configure the following router optimizations in an
Artix configuration file:

• Setting router pass-through

• Setting CORBA bypass

Setting router pass-through By default a router instance to passes along messages without processing if the
source and destination of the route use the same binding. You can change this
behavior by setting plugins:routing:use_pass_through to false.

When the router passes a message in its default pass-through mode it copies the
message buffer directly from the source endpoint to the destination endpoint.
This has a number of implications:

• Reference proxification does not occur.

• Request level handlers are not called.

• Server-side message level handlers are not called.

• Authentication and authorization are skipped regardless of the security

settings.

If you want all messages to go through the router and be fully processed, set this
variable to false.

Setting CORBA bypass For CORBA integrations, you can use location forwarding to connect CORBA
clients directly to CORBA servers, and thus bypass the Artix routing plug-in
entirely.

Set the plugins:routing:use_bypass configuration variable to true to specify
that the router sends CORBA LocateReply messages back to the client. The
default is false.

Further information For more information on Artix router optimizations, see the Artix Configuration
Reference.
 83

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

CHAPTER 10 | Deploying an Artix Router
84

CHAPTER 11

Routing Messages
Containing
References
When routing messages containing endpoint references, Artix
creates client proxies for the referenced endpoint. This chapter
explains how to optimize router performance when routing
messages containing endpoint references.

In this chapter This chapter discusses the following topics:

Endpoint References and the Router page 86

Preventing Memory Bloat in the Router page 88
 85

CHAPTER 11 | Routing Messages Containing References
Endpoint References and the Router

Overview This section explains how the Artix router treats endpoint references when
routing to client systems. For example, you can use the router to expose a service
with a legacy payload and transport (CORBA/IIOP) to clients with a newer
payload and transport (SOAP/HTTP).

References, client proxies, and
transient servants

When endpoint references are passed across the router, a client proxy
representation of the reference is created for the client to invoke on. The router
forwards the client invocation to the server backend along with the client proxy
representation. The process of creating the client proxy from the endpoint
reference is called proxification. This process enables the router to translate
between different transports and protocols. A reference of a certain type (such as
CORBA) that passes through the router is automatically converted to a reference
of another type (such as SOAP).

For example, take the use case where a SOAP client invokes on a
SOAP/HTTP-to-CORBA router, which forwards it on to a CORBA backend. In
this scenario, a client call to MyBank::get_account() returns an Account
reference. The client proxy created for this reference represents a route to the
backend, and this is the key element in bridging the invocation. The part of the
router that invokes on this client proxy is essentially a service inside the router
and is represented by a servant.

The nature of the get_account() invocation means that many similar Account
references, client proxies, and servants are created in the router, thereby causing
unlimited memory bloat, depending on the number of Account references
passing through the router. The servant objects created in the router are also
called transient servants.
86

Endpoint References and the Router
Default servant model An alternative to using transient servants is a model called the default servant,
which maintains a template-based representation of the service and
automatically redirects to the correct client proxy.

In previous versions of Artix, the router followed the transient servant model for
get_account() style invocations. The router now uses the default servant
model, which makes it more efficient and more scalable. This also means that
you can manage memory issues in the router simply by setting the appropriate
router configuration variables. There are no changes required to application code
or WSDL contracts. For details, see “Preventing Memory Bloat in the Router”
on page 88.

Further information For information on developing applications using the default servant model and
transient servant model, see Developing Artix Applications in C++ and
Developing Artix Applications with JAX-RPC.

Note: Router proxification is available for the following bindings and
transports: CORBA, SOAP, HTTP, and IIOP Tunnel.
 87

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

CHAPTER 11 | Routing Messages Containing References
Preventing Memory Bloat in the Router

Overview Because the router creates a new client proxy for each endpoint reference that
passes through it, the router can suffer from memory bloating. To prevent this
bloating, you can specify the following in the router’s runtime configuration:

• maximum number of proxified references in the router

• maximum number of unproxified references in the router

Maximum proxified references You can specify the maximum number of proxified endpoint references in the
router using the plugins:routing:proxy_cache_size configuration variable.
This is the number of endpoint references that have already been converted into
a client proxy and are ready for invocation.

plugins:routing:proxy_cache_size works in conjunction with
plugins:routing:reference_cache_size. Having a smaller setting for
proxy_cache_size enables the router to conserve memory, while still being
ready for invocations. This is because proxified references use more resources
than unproxified references. The default setting is:

The router caches references on a least recently used basis in the order:
proxified, unproxified. A proxified reference is demoted to an unproxified
reference when the proxy_cache_size limit is reached. Unproxified references
are promoted to proxies upon invocation.

plugins:routing:proxy_cache_size=50;
88

Preventing Memory Bloat in the Router
Maximum unproxified references You can specify the maximum number of unproxified endpoint references in the
router using the plugins:routing:reference_cache_size configuration
variable. This refers to the number of references that must be proxified before
they can be invoked on.

plugins:routing:reference_cache_size works in conjunction with
plugins:routing:proxy_cache_size. Having a larger setting for
reference_cache_size enables the router to conserve memory, while still
being ready for invocations, because unproxified references use less resources
than proxies. The default setting is:

Example banking system For example, take a SOAP over HTTP client and CORBA server banking
system, with the router deployed between the client and the server. There are
1,500 accounts in this banking system.

By default, the 50 most recently used accounts are present in the router as
proxified references. The next 1000 most recently used are present as
unproxified references. While the remaining 450 do not exist in the router, but
can be created on-demand.

Further information For more information on these router configuration variables, see the Artix
Configuration Reference, C++ Runtime.

For more information about Artix configuration in general, see Configuring and
Deploying Artix Solutions, C++ Runtime.

plugins:routing:reference_cache_size="1000";
 89

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

CHAPTER 11 | Routing Messages Containing References
90

CHAPTER 12

Error Handling
The routing service reports errors back to the message originator.

Initialization errors Errors that can be detected when the routing service is initializing, such as
routing between incompatible endpoints and some kinds of route ambiguity, are
logged and an exception is raised. This exception aborts the initialization and
shuts down the service.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned to the
message originator; for example “no route” or “ambiguous routes”.

The destination endpoint does not receive any notification that a message failed
to be forwarded to it. If your endpoints require such notification, you need to
implement a mechanism to deliver the notification outside the scope of the
routed operation.
 91

CHAPTER 12 | Error Handling
92

Index

A
Artix switch 26
attribute-based routing rules 26, 45

B
broadcasting 61
bus-security 46

C
client proxy 86
content-based routing rules 27
corba:corba_input_attributes 46
CORBA/IIOP 86
CORBA bypass 83
CORBA LocateReply 83

D
default servant 87

E
endpoint references 86

F
failover 63
fanout 61

H
http-conf:HTTPServerIncomingContexts 46

I
ignorecase 47
it_container 75
it_container_admin 75

L
load balancing 60
LocateReply 83

M
mq:IncomingMessageAttributes 46

O
operation-based routing rules 26, 36, 41

P
pass-through 83
plugins:routing:proxy_cache_size 88
plugins:routing:reference_cache_size 89
plugins:routing:use_bypass 83
plugins:routing:use_pass_through 83
plugins:routing:wsdl_url 75, 77
port-based routing rules 34
proxification 86, 87
proxified references 88
proxy 86

R
router pass-through 83
router proxification 87
routing 30, 76
routing:contains 47
routing:destination 38, 57, 65

port 38
route 65
service 38
value 57

routing:empty 47
routing:endswith 47
routing:equals 47

contextAttributeName 46
contextName 46
value 47

routing:expression 55
evaluator attribute 55
name attribute 55

routing:greater 47
routing:less 47
routing:nonempty 47
routing:operation 42

name 42
 93

INDEX
target 42
routing:query 57

expression attribute 57
routing:route 37

multiRoute 60, 61, 63
failover 63
fanout 61
loadBalance 60

name 37
routing:source 37

port 38
service 38

routing:startswith 47
routing:transportAttribute 45
routing rules

basic 37

S
servants 86
SOAP/HTTP 86
switch 26

T
transient servants 86

U
unproxified references 88

X
XPath 55
94

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Introduction
	Features of the Routing Service
	Routing Contracts
	Router Deployment Patterns

	Compatibility of Ports and Operations
	Creating a Basic Route
	Adding Operation-Based Rules to a Route
	Adding Attribute-Based Rules to a Route
	Adding Content-Based Rules to a Route
	Router’s Message Representation
	Specifying Evaluation Expressions
	Adding a Content-Based Rule to a Route

	Using Advanced Routing Features
	Load Balancing
	Message Broadcasting
	Failover Routing

	Linking Routes
	Creating Routes Using Artix Tools
	Creating Routes from the Command Line

	Deploying an Artix Router
	Enabling Artix Routing
	Configuring an Artix Router
	Deploying a Router Using a Deployment Descriptor
	Optimizing Router Performance

	Routing Messages Containing References
	Endpoint References and the Router
	Preventing Memory Bloat in the Router

	Error Handling
	Index

