
™

PROGRESS
®

ARTIX
Transactions Guide, C++

Version 5.6, December 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology–Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments:

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technologies from the Apache
Software Foundation (http://www.apache.org). Such Apache technologies are subject to the
following terms and conditions: The Apache Software License, Version 1.1. Copyright (C)
1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copy-
right notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3.
The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Ant", "Xerces," "Xalan," "Log 4J," and "Apache Software Foundation" must
not be used to: endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was
originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the
Apache Software Foundation ((http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

http://www.apache.org

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
International Business Machines, Inc., http://www.ibm.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1. - Copy-
right (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
Lotus Development Corporation., http://www.lotus.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 2000-2003 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgement may
appear in the software itself, if and wherever such third-party acknowledgements normally
appear.
 4. The names "The Jakarta Project", "Velocity", and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", "Velocity" nor may
"Apache" appear in their names without prior written permission of the Apache Group.
 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache
Software Foundation (http://www.apache.org). Such Apache technology is subject to the
following terms and conditions: The Apache Software License, Version 1.1 - Copyright (C)
1999 The Apache Software Foundation. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally
appear.
4. The names "log4j" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see <http://www.apache.org/>.
(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM.
Such technology is subject to the following terms and conditions: Copyright (C) 2000-2004
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
<request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we request (but
do not require) that you include in the end-user documentation provided with the redistribu-
tion and/or in the software itself an acknowledgement equivalent to the following: "This

product includes software developed by the JDOM Project (http://www.jdom.org/)." Alter-
natively, the acknowledgment may be graphical using the logos available at http://
www.jdom.org/images/logos. THIS SOFTWARE IS PROVIDED AS IS AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software
consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter_AT_jdom_DOT_org> and
Brett McLaughlin <brett_AT_jdom_DOT_org>. For more information on the JDOM
Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technol-
ogies from IBM. Such technologies are subject to the following terms and conditions: Cop-
yright (c) 1995-2003 International Business Machines Corporation and others All rights
reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, pub-
lish, distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation. THE SOFTWARE IS PRO-
VIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in adver-
tising or otherwise to promote the sale, use or other dealings in this Software without prior
written authorization of the copyright holder. All trademarks and registered trademarks
mentioned herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from
John Wilson. Such technology is subject to the following terms and conditions: Copyright
(c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. All
advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by John Wilson. The name of
John Wilson may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN
WILSON ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technol-
ogy from SourceForge and Networks Associates Technology, Inc. Such technology is sub-
ject to the following terms and conditions: Various copyrights apply to this package, listed
in various separate parts below. Please make sure that you read all the parts. Up until 2001,
the project was based at UC Davis, and the first part covers all code written during this time.
From 2001 onwards, the project has been based at SourceForge, and Networks Associates
Technology, Inc hold the copyright on behalf of the wider Net-SNMP community, covering
all derivative work done since then. An additional copyright section has been added as Part
3 below also under a BSD license for the work contributed by Cambridge Broadband Ltd. to
the project since 2001. An additional copyright section has been added as Part 4 below also
under a BSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the
THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like) ----- Copyright
1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000.
Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its documenta-
tion for any purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of CMU and The Regents of the
University of California not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. CMU AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR

IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ----
Part 2: Networks Associates Technology, Inc copyright notice (BSD) ----- Copyright (c)
2001-2003, Networks Associates Technology, Inc. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: *Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.* Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribu-
tion.* Neither the name of the Networks Associates Technology, Inc nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 3: Cambridge Broadband Ltd. copyright notice
(BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:*Redistributions of
source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.* The name of Cambridge Broadband Ltd. may not be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun
Microsystems, Inc. copyright notice (BSD) -----Copyright © 2003 Sun Microsystems, Inc.,
4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Use is
subject to license terms below. This distribution may include materials developed by third
parties. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-

lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.* Neither
the name of the Sun Microsystems, Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) -----Copy-
right (c) 2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met:* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.* Redistributions in binary form must repro-
duce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.* Neither the name of
Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 6: Cisco/BUPTNIC
copyright notice (BSD) ----- Copyright (c) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications. All rights reserved. Redis-
tribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. * Redistribu-
tions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunica-
tions, nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R&D Soft-
ware GmbH & Co KG copyright notice (BSD) ----- Copyright (c) Fabasoft R&D Software
GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. * The
name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or prod-
uct names may not be used to endorse or promote products derived from this software with-
out specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSLeay v0.9.8i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES ==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.
 OpenSSL License ---------------
/*
==
====

 Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
 Original SSLeay License -----------------------
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.
This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL. This library is free for
commercial and non-commercial use as long as the following conditions are aheared to.
The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright notices in
the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided with
the package. Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement: "This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from
the library being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement: "This product includes soft-
ware written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. The licence and distribution terms for any publically available ver-
sion or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technol-
ogy from the Legion Of The Bouncy Castle (http://www.bouncycastle.org). Such Bouncy-
castle 1.3.3 cryptographic technology is subject to the following terms and conditions:
Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycas-
tle.org). Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of
providing a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. Such technology is subject to the following terms and
conditions: PCRE LICENCE. PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those of the Perl 5 language. Release
7 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The doc-
umentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions. THE BASIC LIBRARY
FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright
(c) 1997-2008 University of Cambridge All rights reserved. THE C++ WRAPPER FUNC-
TIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc. All rights
reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. * Neither the name of the University
of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mcpp v2.6.4 from Kiyoshi Matsui. Such
technology is subject to the following terms and conditions: Copyright (c) 1998, 2002-2007
Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. This software including the files
in this directory is provided under the following license. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corpo-
ration 2010 (IBM 32-bit Runtime Environment for AIX, Java Technology Edition v 1.6.0
SR9 FP2).

Updated: December 5, 2011

Contents

List of Tables 21

List of Figures 23

Preface 25

Chapter 1 Introduction to Transactions 27
Basic Transaction Concepts 28
Artix Transaction Features 30
X/Open Distributed Transaction Processing 35

X/Open DTP Architecture 36
X/Open XA Interface 39

Chapter 2 Getting Started with Transactions 43
Sample Scenario 44
Client Example 50
Server Example 53
Configuration 61

Chapter 3 Selecting a Transaction System 65
Configuring OTS Lite 66
Configuring OTS Encina 69
Configuring Non-Recoverable WS-AT 73
Configuring Recoverable WS-AT 77

Chapter 4 Basic Transaction Programming 81
Artix Transaction Interfaces 82
Beginning and Ending Transactions 85
Server Programming 88

Registering an XA Resource 89
Dynamic Registration Optimization 96
Writing a Custom Resource 103
 17

CONTENTS
Server-Side Programming Model 104

Chapter 5 Transaction Propagation 107
Transaction Propagation and Interposition 108

Chapter 6 Threading 113
Client Threading 114
Threading and XA Resources 118

Chapter 7 Transaction Recovery 123
Transactions Systems and Recovery 124
Transaction Recovery Scenarios 126

Server Crash before or during Prepare Phase 127
Server Crash after Prepare Phase 129
Transaction Coordinator Crash 131

Chapter 8 Recoverable Resources 133
Transaction Participants 134
Interposition 140

Chapter 9 Notification Handlers 141
Introduction to Notification Handlers 142

Chapter 10 Exposing Artix as an XA Resource 145
Introduction to the Artix XA Resource Manager 146
Obtaining an Artix XA Resource Manager 150

Obtaining the XA Switch from a Global Function 151
Obtaining the XA Switch from a Bus Instance 152
Obtaining the XA Switch from a Switch Load File 153

Artix XA Open and Close Strings 155
Configuring the Artix XA Resource Manager 157

Chapter 11 MQ Transactions 161
Reliable Messaging with MQ Transactions 162
Oneway Invocations 163
Synchronous Invocations 166
Router Propagating MQ Transactions 171
18

CONTENTS
Index 173
 19

CONTENTS
20

List of Tables

Table 1: Sample Mechanisms for Obtaining XA Switches 90

Table 2: Examples of Open Strings for Some XA Resource Managers 91

Table 3: Examples of Close Strings for Some XA Resource Managers 91

Table 4: Transaction Systems and Recoverability 124

Table 5: Default Switch Load File for Artix on Various Platforms 153
 21

LIST OF TABLES
 22

List of Figures

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS Server 31

Figure 2: One-Phase Commit Protocol 32

Figure 3: Two-Phase Commit Protocol 33

Figure 4: The X/Open DTP Architecture 36

Figure 5: Bank Scenario with Transactions 44

Figure 6: Overview of a Client-Server System that Uses OTS Lite 66

Figure 7: Overview of a Client-Server System that Uses OTS Encina 69

Figure 8: Client-Server System that Uses Non-Recoverable WS-AT 73

Figure 9: Client-Server System that Uses Recoverable WS-AT 77

Figure 10: Overview of the Artix Transaction API 82

Figure 11: Invocation Dispatch for a Normally Registered RM 97

Figure 12: Invocation Dispatch for a Dynamically Registered RM 99

Figure 13: Overview of Different Kinds of Transaction Propagation 110

Figure 14: Limitation of Transaction Propagation Using OTS Lite 111

Figure 15: Default Client Threading Model 114

Figure 16: Detaching and Re-Attaching a Transaction to a Thread 116

Figure 17: Attaching a Transaction to Multiple Threads 116

Figure 18: Transferring a Transaction from One Thread to Another 117

Figure 19: Auto-Association with a Single Registered Resource 118

Figure 20: Auto-Association with Multiple Registered Resources 120

Figure 21: Database Resource Operating in Multi-Threaded Mode 121

Figure 22: Threading for a Dynamically Registered Resource 122

Figure 23: Server Crash before or during the Prepare Phase 127

Figure 24: Server Crash after the Prepare Phase 129

Figure 25: Transaction Participants in a 2-Phase Commit Protocol 134

Figure 26: Artix XA Resource Manager Manages a Local Resource 147
 23

LIST OF FIGURES
Figure 27: Artix XA Resource Manager Manages a Remote Resource 148

Figure 28: Oneway Operation Invoked Over an MQ Transport with MQ Transactions Enabled 163

Figure 29: Synchronous Operation Invoked Over the MQ Transport with MQ Transactions Enabled 166

Figure 30: Router Propagating an MQ Transaction 171
 24

Preface
What is Covered in this Book
This book explains how to program and configure Artix transactions in Java,
where the program is written using the JAX-RPC API and the Artix C++
runtime.

Who Should Read this Book
This guide is intended for Artix Java programmers. This guide assumes that the
reader is familiar with WSDL and XML schemas.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library.
 25

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

PREFACE
 26

CHAPTER 1

Introduction to
Transactions
This chapter provides an introduction to transaction concepts and
to the transaction features supported by Artix.

In this chapter This chapter discusses the following topics:

Basic Transaction Concepts page 28

Artix Transaction Features page 30

X/Open Distributed Transaction Processing page 35
 27

CHAPTER 1 | Introduction to Transactions
Basic Transaction Concepts

What is a transaction? Artix gives separate software objects the power to interact freely even if they are
on different platforms or written in different languages. Artix adds to this power
by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The most
common example is a bank fund transfer: imagine a failed software call that
debited one account but failed to credit another. A transactional process, on the
other hand, is secure and reliable as it is guaranteed to succeed or fail in a
completely controlled way.

Example The classical illustration of a transaction is that of funds transfer in a banking
application. This involves two operations: a debit of one account and a credit of
another (perhaps after extracting an appropriate fee). To combine these
operations into a single unit of work, the following properties are required:

• If the debit operation fails, the credit operation should fail, and vice-versa;

that is, they should both work or both fail.

• The system goes through an inconsistent state during the process (between

the debit and the credit). This inconsistent state should be hidden from

other parts of the application.

• It is implicit that committed results of the whole operation are permanently

stored.
28

Basic Transaction Concepts
Properties of transactions The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one persistent,
consistent state to another.

Atomic A transaction is an all or nothing procedure –
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results are
hidden from other entities accessing the transaction.

Durable The results of a transaction are persistent.
 29

CHAPTER 1 | Introduction to Transactions
Artix Transaction Features

Overview This section gives a short overview of the main features supported by Artix
transactions. The Artix transaction API is designed to be compatible with a
variety of different underlying transaction systems. Generally, you can access
the transaction system using a technology-neutral API, but the
technology-specific APIs are also available, in case you need to access more
advanced functionality.

The main features of Artix transactions are as follows:

• Supported protocols

• Client-side transaction support.

• Server-side transaction support.

• Compatibility with Orbix.

• Pluggable transaction system.

• One-phase commit.

• Two-phase commit.

• Transaction propagation.

Supported protocols Artix supports distributed transactions using the following protocols:

• CORBA binding over IIOP.

• SOAP binding over any compatible transport.

Client-side transaction support Transaction demarcation functions (begin_transaction(),
commit_transaction() and rollback_transaction()) can be used on the
client side to initiate and terminate a transaction. While the transaction is active,
all of the operations called from the current thread are included in the transaction
(that is, the operations’ request headers include a transaction context).

Server-side transaction support On the server side, an API is provided that enables you to implement transaction
participants (sometimes referred to as transactional resources). Using
transaction participants, you can implement servers that participate in a
distributed transaction with the ACID transaction properties (Atomicity,
Consistency, Integrity, and Durability).
30

Artix Transaction Features
Artix supports several different approaches to implementing a transaction
participant, depending on what kind of transaction system is loaded into your
application. For example, you might take a technology-neutral approach by
implementing the IT_Bus::TransactionParticipant class, or you might
decide to exploit the special features of a particular transaction system instead.

Compatibility with Orbix The Artix transaction facility is fully compatible with CORBA OTS in Orbix.
Hence, if you already have a transactional server implemented with Orbix ASP,
you can easily integrate this with an Artix client, as shown in Figure 1.

Pluggable transaction system The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported by Artix:

• OTS Lite.

• OTS Encina.

• WS-AtomicTransactions.

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

CORBA
Server

Transaction
Factory

Resource

Orbix Domain
begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client
 31

CHAPTER 1 | Introduction to Transactions
One-phase commit Artix supports the one-phase commit (1PC) protocol for transactions. This
protocol can be used if there is only one resource participating in the transaction.
The 1PC protocol essentially delegates the transaction completion to the single
resource manager. Figure 2 shows a schematic overview of the 1PC protocol for
a simple client-server system.

The 1PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations on

the remote server. The WSDL operations are transactional, requiring

updates to a persistent resource.

3. The client calls commit_transaction() to make permanent any changes

caused during the transaction (alternatively, the client could call

rollback_transaction() to abort the transaction).

4. The transaction system performs the commit phase by sending a

notification to the server that it should perform a 1PC commit.

Two-phase commit The two-phase commit (2PC) protocol enables multiple resources to participate
in a transaction. In order to preserve the essential properties of a transaction
involving multiple distributed resources, it is necessary to use a more elaborate
algorithm. The 2PC algorithm consists of the following two phases:

• Prepare phase—the transaction system notifies all of the participants to

prepare the transaction. The participants prepare the transaction by saving

the information that would be required to redo or undo the changes made

during the transaction. At the end of this phase, the participants vote

whether to commit or roll back the transaction.

Figure 2: One-Phase Commit Protocol

Artix Server

Transaction
System

Resource

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

2

3
4

32

Artix Transaction Features
• Commit (or rollback) phase—if all of the participants vote to commit the

transaction, the transaction system notifies the participants to commit the

changes. On the other hand, if one or more participants vote to roll back the

transaction, the transaction system notifies the participants to roll back the

changes.

Figure 3 shows a schematic overview of the 2PC protocol for a client and two
remote servers.

The 2PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations on

both of the remote servers.

3. The client calls commit_transaction() to make permanent any changes

caused during the transaction (alternatively, the client could call

rollback_transaction() to abort the transaction).

4. The transaction system performs the prepare phase by polling all of the

remote transaction participants (the first phase of a two-phase commit).

Figure 3: Two-Phase Commit Protocol

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare

commit
 33

CHAPTER 1 | Introduction to Transactions
5. The transaction system performs the commit or rollback phase by sending

a notification to all of the remote transaction participants (the second phase

of a two-phase commit).

Transaction propagation If you have a section of code executing within a transaction context, Artix
automatically propagates a transaction context with the request message,
whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a transaction,
invokes an operation on server 1, and then server 1 makes a further call on server
2. In this scenario, Artix automatically propagates the transaction to server 2.
The transaction is propagated, even if the protocol between the client and server
1 differs from the protocol used between server 1 and server 2.
34

X/Open Distributed Transaction Processing
X/Open Distributed Transaction Processing

Overview The X/Open Distributed Transaction Processing (DTP) architecture is a
technical standard published by the Open Group. The X/Open DTP architecture
enables you to integrate resources relatively easily into a distributed transaction
system.

In this section This section contains the following subsections:

X/Open DTP Architecture page 36

X/Open XA Interface page 39
 35

CHAPTER 1 | Introduction to Transactions
X/Open DTP Architecture

Overview This subsection provides a brief overview of the X/Open Distributed
Transaction Processing (DTP) architecture, also known as the XA specification.
For a complete description of the X/Open DTP standard, you can download the
XA specification from the following Web page:

http://www.opengroup.org/bookstore/catalog/c193.htm

DTP model Figure 4 shows an overview of the X/Open DTP model, showing the basic
components and the interfaces between them. The key idea of the X/Open
architecture is that responsibility for managing transactions in a distributed
system must be divided between two components: a transaction manager and a
resource manager. This division would be unnecessary for local transactions,
which could be managed happily by a resource manager alone, but it is essential
for distributed transactions, where the mechanisms for coordinating global
transactions (that is, starting, committing, and rolling back) are implemented
separately from the resource manager.

Figure 4: The X/Open DTP Architecture

{
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
}

Application
Program

Resource

XA Resource
Manager

XA Transaction
Manager

XA Interface

AX Interface

T
X

 I
nt

er
fa

ce
36

http://www.opengroup.org/bookstore/catalog/c193.htm

X/Open Distributed Transaction Processing
Resource A resource is any part of the system that could undergo a persistent change. In
most cases, a resource represents some form of persistent storage (such as a
database), but it could also represent, for example, the mechanism in an
Automated Teller Machine that tenders cash to customers.

Resource manager A resource manager manages part of a computer’s shared resources. In
particular, the resource manager must be capable of grouping resource
operations into transactions and either committing or rolling back those
transactions in response to calls from the transaction manager (mediated by the
XA interface).

For example, the Oracle DB with an XA switch is an XA-compliant resource
manager.

Transaction manager A transaction manager is responsible for coordinating transactions across a
distributed system. The transaction manager coordinates decisions to commit or
roll back a global transaction and is also responsible for coordinating failure
recovery.

For example, the OTS Encina transaction manager implements the 2-phase
commit protocol for global transactions.

Global transaction A global transaction is a transaction that spans multiple processes and multiple
resources in a distributed system. To manage a global transaction properly, it is
necessary to ensure that the updates made to different resources in different
processes can be committed atomically (or rolled back) at the end of the
transaction.

Transaction branch Because a global transaction is spread over a distributed system, work can be
done on the global transaction in different processes. Moreover, within each
process, work can be done in different resource managers (for example, you
might have an Oracle XA resource manager and an MQ-Series resource
manager both registered within the same process). Hence, it is useful to
introduce the concept of a transaction branch, which identifies the work done on
a global transaction by each resource manager in each process. The total work
done on a global transaction is, therefore, equal to the sum of the work done in
all of its branches.
 37

CHAPTER 1 | Introduction to Transactions
XA interfaces The XA architecture defines a suite of interfaces that mediate the interaction
between the various components of the XA DTP model, as follows:

• XA interface—a collection of functions that the transaction manager can

call on a resource manager in order to coordinate local and distributed

transactions. This interface is fully supported by Artix, both in the role of

transaction manager (where Artix manages foreign resource managers

through the XA interface) and in the role of resource manager (where Artix

is controlled by a foreign transaction manager).

• AX interface—a collection of functions that the resource manager can call

back on the transaction manager. This interface is used internally by Artix

to implement the dynamic registration optimization. See “Dynamic

Registration Optimization” on page 96 for more details.

• TX interface—a collection of functions that perform transaction

demarcation (beginning, committing and rolling back transactions) by

calling on the transaction manager. Artix does not implement the TX

interface; you use the demarcation functions provided on the

IT_Bus::TransactionSystem class instead.
38

X/Open Distributed Transaction Processing
X/Open XA Interface

Overview The X/Open XA interface is the interface that a transaction manager uses to
control the committing or rolling back of a transaction branch in a resource
manager. The great convenience of the XA interface is that it provides a simple
mechanism for integrating a resource into a distributed transaction system. The
XA interface effectively enables you to plug in a resource manager into a
distributed transaction system.

For example, if you want to integrate an Oracle DB into the OTS Encina
distributed transaction system (which is one of the transaction systems supported
by Artix), you would simply register Oracle’s XA switch with Artix. This
requires no more than two or three lines of code in your application program.
Once you have registered the Oracle XA switch, the Oracle DB is able to partake
in distributed transactions managed by OTS Encina.

XA switch type XA defines a set of C-function pointers, and a C-struct that holds these function
pointers, xa_switch_t (see orbix_sys/xa.h) as shown in Example 1.

Example 1: The XA Switch Type, xa_switch_t

/* C */
struct xa_switch_t
{
 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */
 int (*xa_open_entry) /* xa_open function pointer */
 (char *, int, long);
 int (*xa_close_entry) /* xa_close function pointer */
 (char *, int, long);
 int (*xa_start_entry) /* xa_start function pointer */
 (XID *, int, long);
 int (*xa_end_entry) /* xa_end function pointer */
 (XID *, int, long);
 int (*xa_rollback_entry) /* xa_rollback function pointer */
 (XID *, int, long);
 int (*xa_prepare_entry) /* xa_prepare function pointer */
 (XID *, int, long);
 int (*xa_commit_entry) /* xa_commit function pointer */
 (XID *, int, long);
 int (*xa_recover_entry) /* xa_recover function pointer */
 39

CHAPTER 1 | Introduction to Transactions
Function pointers The function pointers provided by the xa_switch_t struct point to the following
XA functions:

• xa_open() and xa_close()—the xa_open() function opens a connection

to the resource. For example, in a single-threaded application, the

transaction manager would usually call xa_open() as it starts up.

The xa_close() function closes the connection to the resource. For

example, the transaction manager would usually call xa_close() as it

shuts down.

• xa_start() and xa_end()—the transaction manager calls xa_start()

before doing any work on a transaction branch. At the end of the work, the

transaction manager calls xa_end().

The xa_start() and xa_end() functions are closely related to the XA

threading model (see “Threading and XA Resources” on page 118). The

xa_start() function creates an association between the current thread and

a transaction branch, and the xa_end() function ends the association. By

passing in the appropriate flag, it is also possible for xa_end() to

temporarily suspend the association between the current thread and the

transaction branch and for xa_start() to resume the association.

• xa_prepare(), xa_commit(), and xa_rollback()—the transaction

manager calls these functions in the course of the 1-phase and 2-phase

commit protocols.

• xa_recover() and xa_forget()—the transaction manager can call these

functions to recover after a system crash. Typically, a transaction manager

provides a recovery tool to manage the recovery process.

 (XID *, long, int, long);
 int (*xa_forget_entry) /* xa_forget function pointer */
 (XID *, int, long);
 int (*xa_complete_entry) /* xa_complete function pointer */
 (int *, int *, int, long);
};

Example 1: The XA Switch Type, xa_switch_t
40

X/Open Distributed Transaction Processing
Providing an XA switch instance Each XA resource manager must provide a global instance of the xa_switch_t
type. For example, this might be provided either as a global xa_switch_t struct
or as the return value from a global function. The mechanism for obtaining an
xa_switch_t instance is not standardised and varies from product to product.

For example, Oracle provides a global xa_switch_t instance called xaosw.
 41

CHAPTER 1 | Introduction to Transactions
42

 CHAPTER 2

Getting Started
with Transactions
This chapter discusses a simple demonstration scenario involving
a client and two remote servers. The servers enlist XA resources,
which are responsible for integrating the servers’ persistent
storage with the Artix transaction system.

In this chapter This chapter discusses the following topics:

Sample Scenario page 44

Client Example page 50

Server Example page 53

Configuration page 61
 43

CHAPTER 2 | Getting Started with Transactions
Sample Scenario

Overview This section describes a sample scenario involving a funds transfer between two
different bank servers, where each bank server is a transactional resource. This
scenario is used as the basis for the examples discussed in the rest of this
chapter.

Bank example Figure 5 shows the outline of a scenario involving a funds transfer between two
bank accounts, which are located on different servers, Bank Server 1 and Bank
Server 2. This scenario assumes that the application is using the OTS transaction
system. In particular, the client loads the OTS Encina plug-in, which is
responsible for coordinating the global transactions.

Figure 5: Bank Scenario with Transactions

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

4

Bank Server 1

OTS

Resource

Bank Server 2

OTS

Resource

OTS

OTS Encina

make_withdrawal()

make_deposit()

3

2

44

Sample Scenario
Funds transfer The scenario shown in Figure 5 can be described as follows:

1. The client initiates a transaction by calling the

IT_Bus::TransactionSystem::begin_transaction() function.

2. Within the scope of the transaction, the client invokes the

make_withdrawal() operation on an account in Bank Server 1, in order to

withdraw a sum of money. The operation request is accompanied by a

transaction context.

3. The client invokes the make_deposit() operation on another account in

Bank Server 2, in order to deposit the sum of money.

4. The client calls the

IT_Bus::TransactionSystem::commit_transaction() to commit the

transaction. The Artix transaction manager then uses a two-phase commit

protocol to commit the changes to Bank Server 1 and Bank Server 2.

Bank WSDL contract Example 2 shows the WSDL contract for the Bank example that is described in
this section. There are two port types in this contract, Bank and Account. For
each of the two port types there is a SOAP binding, BankBinding and
AccountBinding.

Example 2: Bank WSDL Contract

<definitions targetNamespace="http://www.iona.com/demos/transactions/bank"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bank="http://schemas.iona.com/demos/transactions/bank"
 xmlns:wsa="http://www.w3.org/2005/03/addressing"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/demos/transactions/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://schemas.iona.com/demos/transactions/bank"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <import namespace="http://www.w3.org/2005/03/addressing"/>
 <complexType name="AccountIDsType">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="name"
 type="xsd:string"/>
 </sequence>
 </complexType>
 45

CHAPTER 2 | Getting Started with Transactions
 <complexType name="list_accountsInputData">
 <sequence/>
 </complexType>
 <complexType name="list_accountsOutputData">
 <sequence>
 <element name="return" type="bank:AccountIDsType"/>
 </sequence>
 </complexType>
 <element name="list_accounts" type="bank:list_accountsInputData"/>
 <element name="list_accountsResponse" type="bank:list_accountsOutputData"/>
 <complexType name="create_accountInputData">
 <sequence>
 <element name="account_id" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="create_accountOutputData">
 <sequence>
 <element name="return" type="wsa:EndpointReferenceType"/>
 </sequence>
 </complexType>
 <element name="create_account" type="bank:create_accountInputData"/>
 <element name="create_accountResponse" type="bank:create_accountOutputData"/>
 <complexType name="get_accountInputData">
 <sequence>
 <element name="account_id" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="get_accountOutputData">
 <sequence>
 <element name="return" type="wsa:EndpointReferenceType"/>
 </sequence>
 </complexType>
 <element name="get_account" type="bank:get_accountInputData"/>
 <element name="get_accountResponse" type="bank:get_accountOutputData"/>
 <complexType name="delete_accountInputData">
 <sequence>
 <element name="account_id" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="delete_accountOutputData">
 <sequence/>
 </complexType>
 <element name="delete_account" type="bank:delete_accountInputData"/>
 <element name="delete_accountResponse" type="bank:delete_accountOutputData"/>
 <complexType name="get_balanceInputData">

Example 2: Bank WSDL Contract
46

Sample Scenario
 <sequence/>
 </complexType>
 <complexType name="get_balanceOutputData">
 <sequence>
 <element name="return" type="xsd:double"/>
 </sequence>
 </complexType>
 <element name="get_balance" type="bank:get_balanceInputData"/>
 <element name="get_balanceResponse" type="bank:get_balanceOutputData"/>
 <complexType name="make_depositInputData">
 <sequence>
 <element name="amount" type="xsd:double"/>
 </sequence>
 </complexType>
 <complexType name="make_depositOutputData">
 <sequence/>
 </complexType>
 <element name="make_deposit" type="bank:make_depositInputData"/>
 <element name="make_depositResponse" type="bank:make_depositOutputData"/>
 <complexType name="make_withdrawlInputData">
 <sequence>
 <element name="amount" type="xsd:double"/>
 </sequence>
 </complexType>
 <complexType name="make_withdrawlOutputData">
 <sequence/>
 </complexType>
 <element name="make_withdrawl" type="bank:make_withdrawlInputData"/>
 <element name="make_withdrawlResponse" type="bank:make_withdrawlOutputData"/>
 </schema>
 </types>
 <message name="list_accounts">
 <part element="bank:list_accounts" name="parameters"/>
 </message>
 <message name="list_accountsResponse">
 <part element="bank:list_accountsResponse" name="parameters"/>
 </message>
 <message name="create_account">
 <part element="bank:create_account" name="parameters"/>
 </message>
 <message name="create_accountResponse">
 <part element="bank:create_accountResponse" name="parameters"/>
 </message>
 <message name="get_account">
 <part element="bank:get_account" name="parameters"/>

Example 2: Bank WSDL Contract
 47

CHAPTER 2 | Getting Started with Transactions
 </message>
 <message name="get_accountResponse">
 <part element="bank:get_accountResponse" name="parameters"/>
 </message>
 <message name="delete_account">
 <part element="bank:delete_account" name="parameters"/>
 </message>
 <message name="delete_accountResponse">
 <part element="bank:delete_accountResponse" name="parameters"/>
 </message>
 <message name="get_balance">
 <part element="bank:get_balance" name="parameters"/>
 </message>
 <message name="get_balanceResponse">
 <part element="bank:get_balanceResponse" name="parameters"/>
 </message>
 <message name="make_deposit">
 <part element="bank:make_deposit" name="parameters"/>
 </message>
 <message name="make_depositResponse">
 <part element="bank:make_depositResponse" name="parameters"/>
 </message>
 <message name="make_withdrawl">
 <part element="bank:make_withdrawl" name="parameters"/>
 </message>
 <message name="make_withdrawlResponse">
 <part element="bank:make_withdrawlResponse" name="parameters"/>
 </message>
 <portType name="Bank">
 <operation name="list_accounts">
 <input message="tns:list_accounts" name="list_accounts"/>
 <output message="tns:list_accountsResponse" name="list_accountsResponse"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse" name="create_accountResponse"/>
 </operation>
 <operation name="get_account">
 <input message="tns:get_account" name="get_account"/>
 <output message="tns:get_accountResponse" name="get_accountResponse"/>
 </operation>
 <operation name="delete_account">
 <input message="tns:delete_account" name="delete_account"/>
 <output message="tns:delete_accountResponse" name="delete_accountResponse"/>
 </operation>

Example 2: Bank WSDL Contract
48

Sample Scenario
 </portType>

 <portType name="Account">
 <operation name="get_balance">
 <input message="tns:get_balance" name="get_balance"/>
 <output message="tns:get_balanceResponse" name="get_balanceResponse"/>
 </operation>
 <operation name="make_deposit">
 <input message="tns:make_deposit" name="make_deposit"/>
 <output message="tns:make_depositResponse" name="make_depositResponse"/>
 </operation>
 <operation name="make_withdrawl">
 <input message="tns:make_withdrawl" name="make_withdrawl"/>
 <output message="tns:make_withdrawlResponse" name="make_withdrawlResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 2: Bank WSDL Contract
 49

CHAPTER 2 | Getting Started with Transactions
Client Example

Overview This section describes a transactional Artix client that connects to two remote
transactional Artix servers, server A and server B. The client uses the Artix
transaction demarcation API to delimit the transaction. The client must also be
configured to load a transaction system plug-in (see “Selecting a Transaction
System” on page 65).

C++ demonstration code The bank client demonstration code is located in the following directory:

ArtixInstallDir/samples/transactions/common/src
/clients/cxx_bank_client

C++ example Example 3 shows how to use the transaction demarcation functions in an Artix
client. Two remote servers, bank server A and bank server B, participate in the
transaction. Hence, this example requires a two-phase commit protocol.

Example 3: C++ Bank Client Example

// C++
1 BankClient * bank_1_proxy = /* Obtain 1st bank proxy */ ;

BankClient * bank_2_proxy = /* Obtain 2nd bank proxy */ ;

AccountClient * acc_1;
AccountClient * acc_2;

try {
2 WS_Addressing::EndpointReferenceType acc_1_ref;

 bank_1_proxy->get_account("account_1", acc_1_ref);
 acc_1 = new AccountClient(acc_1_ref, bus);

3 WS_Addressing::EndpointReferenceType acc_2_ref;
 bank_2_proxy->get_account("account_2", acc_2_ref);
 acc_2 = new AccountClient(acc_2_ref, bus);
}
catch (const IT_Bus::Exception & access_balance_ex)
{
 String err_msg("ERROR - account balance access failure! : ");
 err_msg += access_balance_ex.message();
 throw IT_Bus::Exception(err_msg);
}

50

Client Example
The preceding code example can be explained as follows:

1. The bank proxies, bank_1_proxy and bank_2_proxy, provide the initial

connections to bank server A and bank server B, respectively.

In the demonstration code (not shown here), each bank server writes a

reference to a file which is then read by the client (this presupposes that the

clients and servers can both access the same file system).

2. Obtain a proxy to an account in bank server A by calling get_account()

on bank_1_proxy. The endpoint reference, acc_1_ref, returned from

get_account() is used to initialize an account proxy object, acc_1.

3. Likewise, obtain a proxy to an account in bank server B, acc_2.

4. You should always enclose a transaction in a try block, because it might

be necessary to catch an exception and roll back the transaction.

5. The IT_Bus::TransactionSystem::begin_transaction() call initiates

the transaction.

4 try {
5 bus->transactions().begin_transaction();

 acc_1->make_withdrawl(2000.00);
 acc_2->make_deposit(2000.00);

6 bus->transactions().commit_transaction(true);

 display_balances(acc_1, bank_1_id, acc_2, bank_2_id);
}

7 catch (const IT_Bus::Exception & transfer_ex)
{
 String err_msg("ERROR - funds transfer failure! : ");
 err_msg += transfer_ex.message();

8 if (bus->transactions().within_transaction())
 {

9 bus->transactions().rollback_transaction();
 }
 throw IT_Bus::Exception(err_msg);
}

Example 3: C++ Bank Client Example
 51

CHAPTER 2 | Getting Started with Transactions
6. The IT_Bus::TransactionSystem::commit_transaction() call

attempts to commit the changes made to server A and server B. The

boolean argument is the report_heuristics flag, which can take the

following values:

♦ true—specifies that heuristic decisions should be reported during the

commit protocol (if supported by the underlying transaction system).

♦ false—specifies that heuristic decisions should not be reported.

7. It is essential to catch and handle any exceptions that might be thrown

during a transaction.

8. The within_transaction() call is needed at this point, because the

rollback_transaction() function must only be called from within a

transaction. If rollback_transaction() is called outside a transaction, it

raises an exception.

9. If an exception is thrown, the transaction must be aborted by calling

IT_Bus::TransactionSystem::rollback_transaction().
52

Server Example
Server Example

Overview This section describes a transactional Artix server that implements a bank
service and an unlimited number of account services (each account service
representing a single account). The server uses a transactional resource—an
Oracle database—to store the account records. This transactional resource is
integrated with the Artix transaction manager using an XA interface (which is an
X/Open standard, supported both by Artix and by Oracle).

C++ demonstration code The bank server demonstration code is located in the following directory:

ArtixInstallDir/samples/transactions/common/src
/servers/cxx_xa_http_soap_wsat

Servant classes The bank server implements two servant classes, as follows:

• BankImpl class.

• AccountImpl class.

BankImpl class The BankImpl servant class implements the operations from the Bank port type.
The BankImpl class has the characteristics of a typical account factory class: that
is, it provides operations for creating, finding and deleting account objects.
Clients that use the bank server would initially connect to the BankService
service and then call the Bank operations to obtain a reference to an account
object.

Because the BankImpl class does not participate in any transaction (that is, it
does not access any transactional resources), it is of no relevance to transactional
programming and is not discussed here in detail.

AccountImpl class The AccountImpl servant class implements the operations from the Account
port type. The AccountImpl class is responsible for accessing and updating
account details stored in an Oracle database. Because the Oracle XA switch is
registered with the Artix transaction manager, any database updates must be
coordinated by the Artix transaction manager. When writing the AccountImpl
class, therefore, you should be aware that its operations are participating in a
global transaction and that this affects the way you access the database.
 53

CHAPTER 2 | Getting Started with Transactions
Integration with Oracle database In the bank server demonstration, the Oracle database is treated as a resource
whose transactions are to be coordinated by the Artix transaction manager. In
order to integrate the Oracle database with the Artix transaction manager, you
must do the following:

1. Register the Oracle XA switch—to subordinate Oracle transactions to the

Artix transaction manager, register an Oracle XA switch object with the

Artix transaction manager. See “Registering an XA Resource” on page 89

for a detailed discussion.

2. Modify code that interacts with the database—when the XA interface is

enabled, you must observe the following programming restrictions:

♦ Do not open or close any database connections—connections are

now managed automatically through the XA interface.

♦ Do not use embedded SQL or native database API to demarcate

transactions—for example, you must not call the embedded SQL

commands, EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC SQL

ROLLBACK.

3. Link the server with the relevant Oracle libraries.

C++ registering the Oracle XA
switch

Example 4 shows how to register an Oracle XA switch with the Artix transaction
manager. Registration must occur before the server processes any incoming
requests. You would normally register the XA switch during initialization of the
server program.

Example 4: C++ Registering an Oracle XA Switch

// C++
1 #include <sqlca.h>

2 extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaosw;
extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaoswd;
...

3 xa_switch_t* database_switch = &xaosw;

IT_Bus::TransactionManager & tx_mgr =
 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_TYPE
);

4 IT_Bus::XATransactionManager& xa_tx_mgr =
54

Server Example
The preceding code fragment can be explained as follows:

1. The sqlca.h header file is an Oracle header file that defines two instances

of xa_switch_t type: xaosw, for a normal XA switch, and xaoswd, for a

dynamically registering XA switch.

2. Declare xaosw to be an external C type (the xa_switch_t type is declared

in C, not C++).

3. The XA switch used in this example, database_switch, is simply a

pointer to an ordinary Oracle XA switch object, xaosw.

4. The XA transaction manager, xa_tx_mgr, is an object that is used to

integrate XA resources with the Artix transaction manager.

5. Call register_xa_resource() on the IT_Bus::XATransactionManager

instance to register the Oracle XA switch, xaosw, with the Artix XA

transaction manager.

In this example, the open string and the close string are read from an Artix

configuration file. This is flagged by passing an empty string, "", as the

open string. The identifier, db_resource_id, is then used as a prefix string

to identify the relevant variables in the configuration file. See

“Configuration” on page 61 for details.

 dynamic_cast<IT_Bus::XATransactionManager&>(tx_mgr);

IT_Bus::String db_resource_id("oracle_bank");
db_resource_id += bank_id;

5 bool succeeded = xa_tx_mgr.register_xa_resource(
 database_switch,
 IT_Bus::String::EMPTY, // open_string - ""
 IT_Bus::String::EMPTY, // close_string - ""
 db_resource_id, // configuration prefix
 false, // don't use dynamic_registration_optimization
 false // not single-threaded
);

if (!succeeded)
{
 throw IT_Bus::Exception(
 "Failed to register Oracle database as an XA resource"
);
}

Example 4: C++ Registering an Oracle XA Switch
 55

CHAPTER 2 | Getting Started with Transactions
C++ AccountImpl class Example 5 shows the implementation of the AccountImpl servant class. The
operations implemented by this class are all intended to execute in the context of
a global transaction. This has an effect on the way you program the database
access: in particular, you must avoid starting a local transaction.

Example 5: C++ AccountImpl Servant Class

// C++
...
void

1 AccountImpl::get_balance(
 IT_Bus::Double &_return
) IT_THROW_DECL((IT_Bus::Exception))
{

2 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();
 double return_balance = 0;

3 ::get_balance_from_db(id_str, return_balance);

 _return = return_balance;
}

void
4 AccountImpl::make_deposit(

 const IT_Bus::Double amount
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();

 IT_Bus::Double balance;
 get_balance(balance);
 balance += amount;

 ::set_balance_in_db(id_str, balance);

 cout << "Made deposit of $" << amount << " to account \'" <<
id << endl;

}

void
AccountImpl::make_withdrawl(
 const IT_Bus::Double amount
) IT_THROW_DECL((IT_Bus::Exception))
56

Server Example
The preceding class implementation can be explained as follows:

1. The get_balance() function provides the implementation of the account

service’s get_balance WSDL operation.

2. The get_instance_id() function returns the identity of the account that is

being accessed. The implementation of the get_instance_id() function

depends on the approach used to implement the account servant class, as

follows:

♦ Transient servant—in this approach, a distinct servant object is

created for each account instance. The account identity would be

passed to the servant object at creation time and stored in a member

variable. The get_instance_id() function simply returns the stored

identity in this case.

{
 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();

 IT_Bus::Double balance;
 get_balance(balance);

 if (balance < amount)
 {
 throw IT_Bus::Exception("Not enough funds to faciliate

withdrawl");
 }

 balance -= amount;

 ::set_balance_in_db(id_str, balance);

 cout << "Made withdrawl of $" << amount << " from account \'"
<< id << endl;

}

AccountIDsType
AccountImpl::list_all()
{
 AccountIDsType account_ids;
 account_ids = ::list_all_accounts();
 return account_ids;
}

Example 5: C++ AccountImpl Servant Class
 57

CHAPTER 2 | Getting Started with Transactions
♦ Default servant—in this approach, a single servant object services

requests for all account instances. The account identity, therefore,

cannot be stored in a member variable. The get_instance_id()

function obtains the account identity by querying the current address

context in this case. For details of how this works, see the discussion

of default servants in Developing Artix Application in C++.

3. The get_balance_from_db() function uses embedded SQL calls to

retrieve the account balance from an Oracle database. This database access

is integrated into the global transaction.

See Example 6 for a detailed description of this function.

4. The following make_deposit(), make_withdrawl() and list_all()

functions are implementations of WSDL operations, which follow a

pattern similar to the get_balance() function.

C++ database code Example 6 shows some of the functions that the bank server uses to access the
Oracle database (taken from the oracle_db_fns.pc file). This file contains
embedded SQL statements, which will ultimately be converted into C++ by the
Oracle pre-compiler.

Example 6: C++ Database Code for Accessing Account Data

// For Pro/C++ compiler (C++ with embedded SQL)

void
1 get_balance_from_db(

 const char * the_account_id,
 double& return_balance
)
{
 // local Oracle variables

 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR acc_id[20];
 double balance=0.0;
 EXEC SQL END DECLARE SECTION;

 acc_id.len = strlen(the_account_id);
 strncpy((char*)&acc_id.arr[0], the_account_id, 19);
 return_balance = (double)0.0;

 // get the balance from the database table
58

Server Example
 bool foundit=false;
 EXEC SQL WHENEVER NOT FOUND DO break;
 for (;;)
 {
 EXEC SQL SELECT CURRENT_BALANCE
 INTO :balance
 FROM ARTIX_ACCOUNTS
 WHERE ACCOUNT_ID = :acc_id;

 foundit = true;
 break;
 }
 if (foundit)
 {
 return_balance = balance;
 }
}

void
2 set_balance_in_db(

 const char * the_account_id,
 double new_balance
)
{
 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR acc_id[20];
 double balance;
 EXEC SQL END DECLARE SECTION;

 acc_id.len = strlen(the_account_id);
 strncpy((char*)&acc_id.arr[0], the_account_id, 19);
 balance = new_balance;

 bool foundit=false;
 EXEC SQL WHENEVER NOT FOUND DO break;
 for (;;)
 {
 EXEC SQL UPDATE ARTIX_ACCOUNTS
 SET CURRENT_BALANCE = :balance
 WHERE ACCOUNT_ID = :acc_id;

 foundit=true;
 break;
 }
}

Example 6: C++ Database Code for Accessing Account Data
 59

CHAPTER 2 | Getting Started with Transactions
The preceding database code can be explained as follows:

1. The get_balance_from_db() function uses conventional embedded SQL

calls to access the ARTIX_ACCOUNTS table, selecting the CURRENT_BALANCE

field from the row indexed by ACCOUNT_ID.

From a transaction viewpoint, it is worth noting that transaction

demarcation statements (EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC SQL

ROLLBACK) do not appear anywhere in this function. When an XA switch is

registered, the Artix transaction manager is responsible for transaction

demarcation.

2. The set_balance_in_db() function uses conventional embedded SQL

calls to update the ARTIX_ACCOUNTS table, setting the CURRENT_BALANCE

field in the row indexed by ACCOUNT_ID.

Once again, note the absence of any transaction demarcation statements

(EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC SQL ROLLBACK).
60

Configuration
Configuration

Overview To use Artix transactions, it is necessary to load and configure the relevant
transaction system (Artix supports multiple transaction systems). Artix does not
load a transaction system by default. Hence, you must include transaction
plug-ins explicitly in the orb_plugins list.

For a more detailed discussion of transaction configuration, see “Selecting a
Transaction System” on page 65.

Configuration file location The tx_demo.cfg configuration file is located in the following directory:

ArtixInstallDir/samples/transactions/common/etc

Client configuration Example 7 shows the configuration settings for the bank client, which uses the
artix.demos.tx_demo.wsat_coordinated Bus ID (which can be specified, for
example, by the -BUSname command-line switch). In this example, the client is
configured to use the WS-AT transaction manager.

Example 7: Client Configuration Using the WS-AT Transaction Manager

Artix Configuration File

Global configuration settings
...

Transaction demonstrations settings
artix
{
 demos
 {
 tx_demo
 {
 ...
 wsat_coordinated
 {
 orb_plugins = ["local_log_stream", "ws_coordination_service"];
 plugins:bus:default_tx_provider:plugin="wsat_tx_provider";
 };
 };
 };
 61

CHAPTER 2 | Getting Started with Transactions
The following configuration settings are relevant to transactions in the client:

• orb_plugins—the client is configured to load the

ws_coordination_service plug-in, which implements a transaction

manager on the pattern of the WS-Coordination standard. Implicitly, the

client also loads the wsat_protocol plug-in, which provides the capability

to send WS-AtomicTransaction transaction contexts over SOAP.

• plugins:bus:default_tx_provider:plugin—because Artix can support

several different transaction systems (for example, WS-AT and OTS

Encina), you need to specify explicitly which transaction system the client

uses when it initiates a transaction. In this example, the client is configured

to use the WS-AT transaction system by default.

Server configuration

};

Example 7: Client Configuration Using the WS-AT Transaction Manager

Example 8: Server Configuration with Oracle XA Resource

Artix Configuration File

Global configuration settings
...

Transaction demonstrations settings
artix
{
 demos
 {
 tx_demo
 {
 ...
 wsat_server
 {
 orb_plugins = ["local_log_stream", "wsat_protocol", "coordinator_stub_wsdl"];
 plugins:bus:default_tx_provider:plugin="wsat_tx_provider";

 oracle_xa
 {
 policies:http:trace_requests:enabled="true";
62

Configuration
The following configuration settings are relevant to transactions in the server:

• orb_plugins—the server is configured to load the wsat_protocol

plug-in, which provides the capability to send WS-AtomicTransaction

transaction contexts over SOAP, and the coordinator_stub_wsdl plug-in,

which enables the server to call back on the transaction coordinator object

in the client.

• oracle_bankA:open_string—if the programmer passes a blank open

string when registering an XA switch, Artix reads the open string from

configuration instead. The prefix, oracle_bankA, is set by the programmer

at registration time (see “C++ registering the Oracle XA switch” on

page 54).

• oracle_bankA:close_string—if the programmer passes a blank open

string when registering an XA switch, Artix reads the close string from

configuration instead. In this example, the close string is a blank, because

Oracle does not use the close string.

 # Configuration settings for the Oracle Databases
 #
 oracle_bankA:open_string="Oracle_XA+Acc=P/scott/tiger+SesTm=60+threads=true";
 oracle_bankA:close_string="";
 poa:oracle_bankA:direct_persistent="true";
 poa:oracle_bankA:well_known_address:host="0.0.0.0"; # all network adapters
 poa:oracle_bankA:well_known_address:port="13003"; # unique port

 oracle_bankB:open_string="Oracle_XA+Acc=P/scott/tiger+SesTm=60+threads=true";
 oracle_bankB:close_string="";
 poa:oracle_bankB:direct_persistent="true";
 poa:oracle_bankB:well_known_address:host="0.0.0.0"; # all network adapters
 poa:oracle_bankB:well_known_address:port="13004"; # unique port
 };
 };
 };
 };
};

Example 8: Server Configuration with Oracle XA Resource
 63

CHAPTER 2 | Getting Started with Transactions
64

CHAPTER 3

Selecting a
Transaction System
Using the Artix plug-in architecture, you can choose between a
number of different transaction system implementations. Because
the Artix transaction API is designed to be independent of the
underlying transaction system, it is possible to select a particular
transaction system at runtime. Typically, you would choose the
transaction system that provides the best match for your services.
For example, if the majority of your services are SOAP-based, you
would select the WS-AT transaction system.

In this chapter This chapter discusses the following topics:

Configuring OTS Lite page 66

Configuring OTS Encina page 69

Configuring Non-Recoverable WS-AT page 73

Configuring Recoverable WS-AT page 77
 65

CHAPTER 3 | Selecting a Transaction System
Configuring OTS Lite

Overview The OTS Lite plug-in is a lightweight transaction manager, which is subject to
the following restrictions: it supports the 1PC protocol only and it lets you
register only one resource. This plug-in allows applications that only access a
single transactional resource to use the OTS APIs without incurring a large
overhead, but allows them to migrate easily to the more powerful 2PC protocol
by switching to a different transaction manager. Figure 6 shows a client-server
deployment that uses the OTS Lite plug-in.

OTS Lite and interposition If you plan to use OTS Lite in an application that needs to propagate transactions
between different transaction systems, you should be aware that OTS Lite is
subject to certain limitations in the context of interposition. See “Limitation of
using OTS Lite with propagation” on page 111 for details.

Default transaction provider The following variable specifies the default transaction system used by an Artix
client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx_provider.

Figure 6: Overview of a Client-Server System that Uses OTS Lite

Artix Client Artix Server

OTS

Resource

OTS

OTS Lite
66

Configuring OTS Lite
Loading the OTS plug-in In order to use the CORBA OTS transaction system, the OTS plug-in must be
loaded both by the client and by the server. To load the OTS plug-in, include the
ots plug-in name in the orb_plugins list. For example:

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can be
loaded on the client side, but it is not usually needed on the server side. You can
load the OTS Lite plug-in in one of the following ways:

• Dynamic loading—configure Artix to load the ots_lite plug-in

dynamically, if it is required. For this approach, you need to configure the

initial_references:TransactionFactory:plugin variable as follows:

This style of configuration has the advantage that the OTS Lite plug-in is

loaded only if it is actually needed.

• Explicit loading—load the ots_lite plug-in by adding it to the list of

orb_plugins, as follows:

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_lite"];
 ...
};
 67

CHAPTER 3 | Selecting a Transaction System
Sample configuration The following example shows a sample configuration for using the OTS Lite
transaction manager:

Artix Configuration File

Basic configuration for transaction plug-ins (shared library
names and so on) included in the global configuration scope.
... (not shown)

ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
};
68

Configuring OTS Encina
Configuring OTS Encina

Overview The Encina OTS Transaction Manager provides full recoverable 2PC transaction
coordination implemented on top of the industry proven Encina Toolkit from
IBM/Transarc. Encina supports both 1PC and 2PC protocols and allows you to
register multiple resources. Figure 7 shows a client/server deployment that uses
the OTS Encina plug-in.

Default transaction provider The following variable specifies the default transaction system used by an Artix
client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx_provider.

Figure 7: Overview of a Client-Server System that Uses OTS Encina

Artix Client

OTS

OTS Encina

Artix Server

OTS

Resource

Artix Server

OTS

Resource
 69

CHAPTER 3 | Selecting a Transaction System
Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS plug-in
must be loaded both by the client and by the server. To load the OTS plug-in,
include the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC
transactions, can be loaded on the client side, but it is not usually needed on the
server side. You can load the OTS Encina plug-in in one of the following ways:

• Dynamic loading—configure Artix to load the ots_encina plug-in

dynamically, if it is required. For this approach, you need to configure the

initial_references:TransactionFactory:plugin variable as follows:

This style of configuration has the advantage that the OTS Encina plug-in

is loaded only if it is actually needed.

• Explicit loading—load the ots_encina plug-in by adding it to the list of

orb_plugins, as follows:

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin="ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin="ots_encina";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_encina"];
 ...
};
70

Configuring OTS Encina
Sample configuration Example 9 shows a complete configuration for using the OTS Encina transaction
manager:

The preceding configuration can be described as follows:

1. These two lines configure Artix to use the CORBA OTS transaction

system and load the OTS plug-in.

2. This line configures Artix to load the ots_encina plug-in dynamically, if it

is needed by the application (typically needed on the client side).

3. Configuring Encina to use direct persistence means that the Encina

transaction manager service listens on a fixed IP port. The port on which

the transaction manager listens is specified by the

plugins:ots_encina:iiop:port variable.

Example 9: Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots_encina_client_or_server {

1 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];

2 initial_references:TransactionFactory:plugin = "ots_encina";

3 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";

4 plugins:ots_encina:initial_disk = "../../log/encina.log";
5 plugins:ots_encina:initial_disk_size = "1";
6 plugins:ots_encina:restart_file =

"../../log/encina_restart";
7 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)

8 plugins:ots_encina:shlib_name = "it_ots_encina";
 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
};
 71

CHAPTER 3 | Selecting a Transaction System
4. The plugins:ots_encina:initial_disk variable specifies the path for

the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

5. The plugins:ots_encina:initial_disk_size variable specifies the size

of the initial file used by the Encina OTS for its transaction logs. Defaults

to 2.

6. The plugins:ots_encina:restart_file variable specifies the path for

the restart file, which Encina OTS uses to locate its transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

7. The plugins:ots_encina:backup_restart_file variable specifies the

path for the backup restart file, which Encina OTS uses to locate its

transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

8. The settings in the next few lines specify the basic configuration of the

OTS Encina plug-in. It should not be necessary ever to change the values

of these configuration settings.
72

Configuring Non-Recoverable WS-AT
Configuring Non-Recoverable WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP headers
to transmit transaction contexts between the participants in a transaction. The
lightweight WS-AT transaction system supports the 2PC protocol and allows
you to register multiple resources; unlike OTS Encina, however, it does not
support recovery. Figure 8 shows a client/server deployment that uses the
lightweight WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an Artix
client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this configuration
variable with the value, wsat_tx_provider.

Figure 8: Client-Server System that Uses Non-Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource
 73

CHAPTER 3 | Selecting a Transaction System
Disabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by default
(by layering itself over OTS Encina). Hence, to use the lightweight,
non-recoverable version of WS-AT in your application, you need to explicitly
disable recovery by setting the following configuration variable to true:

plugins:ws_coordination_service:disable_tx_recovery = "true";

Plug-ins for WS-AT The division of the WS-AT transaction system into separate plug-ins reflects the
fact that the WS-AT specification has two distinct parts:
WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction system:

• wsat_protocol plug-in—implements WS-AtomicTransactions. It is

required by all services and clients that use WS-AT transactions. This

plug-in enables an Artix executable to receive and transmit WS-AT

transaction contexts.

• ws_coordination_service plug-in—implements WS-Coordination. Only

one instance of this plug-in is required (typically, loaded into a client). This

plug-in coordinates the two-phase commit protocol.

Sample configuration Example 10 shows a complete configuration for using the non-recoverable
WS-AT transaction manager:

Example 10: Sample Configuration for Non-Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";
3 plugins:ws_coordination_service:disable_tx_recovery ="true";

 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

 plugins:ws_coordination_service:disable_tx_recovery ="true";
5 // No need to specify default_tx_provider here.
74

Configuring Non-Recoverable WS-AT
The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client side.

Artix does not support auto-loading of this plug-in; you must explicitly

include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the

wsat_protocol plug-in as well. Hence, it is unnecessary to include

wsat_protocol plug-in in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This

implies that whenever a client initiates a transaction (for example, by

calling begin_transaction()), Artix creates a new WS-AT transaction by

default.

3. This line specifies that transaction recovery is disabled. The effect of this

setting is that the transaction system relies on a lightweight,

non-recoverable implementation of WS-AT.

4. The server needs to load the wsat_protocol plug-in, in order to process

incoming atomic transactions coordination contexts and to propagate

transaction contexts. The coordinator_stub_wsdl plug-in enables the

server to talk to the WS-Coordination service on the client side.

5. Strictly speaking, it is unnecessary to specify a default transaction provider

on the server side. On the server side, the transaction provider is

automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be

appropriate to set the default transaction provider here also.

 };
};

Example 10: Sample Configuration for Non-Recoverable WS-AT
 75

CHAPTER 3 | Selecting a Transaction System
References The specifications for WS-AtomicTransactions and WS-Coordination are
available at the following locations:

• WS-AtomicTransactions

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTra

nsaction.pdf).

• WS-Coordination

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordinati

on.pdf).
76

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Configuring Recoverable WS-AT
Configuring Recoverable WS-AT

Overview In order to provide enterprise-level transaction management using the WS-AT
protocols, Artix supports an option to layer WS-AT over the OTS Encina
transaction manager. With this configuration, WS-AT becomes a fully
recoverable transaction system. Figure 9 shows a client/server deployment that
uses the recoverable WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an Artix
client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this configuration
variable with the value, wsat_tx_provider.

Figure 9: Client-Server System that Uses Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource

OTS

OTS Encina

OTS

OTS
 77

CHAPTER 3 | Selecting a Transaction System
Enabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by default.
Hence, to use the recoverable version of WS-AT in your application, you can
either omit the plugins:ws_coordination_service:disable_tx_recovery
variable from your Artix configuration file or set it to false, as follows:

Loading WS-AT and OTS Encina
plug-ins

The configuration for the recoverable WS-AT transaction system is essentially a
combination of the WS-AT configuration and the OTS Encina configuration. It
is only necessary to load the WS-AT plug-ins explicitly—if recovery is enabled,
Artix implicitly loads the OTS and OTS Encina plug-ins.

Sample configuration Example 10 shows a complete configuration for using the recoverable WS-AT
transaction manager:

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Example 11: Sample Configuration for Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";

3 # OTS Encina Configuration
 initial_references:TransactionFactory:plugin =

"ots_encina";
 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";
 plugins:ots_encina:initial_disk = "../../log/encina.log";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file =

"../../log/encina_restart";
 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)
 plugins:ots_encina:shlib_name = "it_ots_encina";
 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
78

Configuring Recoverable WS-AT
The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client side.

Artix does not support auto-loading of this plug-in; you must explicitly

include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the

wsat_protocol, ots, and ots_encina plug-ins as well. Hence, it is

unnecessary to include the wsat_protocol, ots, and ots_encina plug-ins

in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This

implies that whenever a client initiates a transaction (for example, by

calling begin_transaction()), Artix creates a new WS-AT transaction by

default.

3. From this line up to the end of the client scope shows the OTS Encina

configuraion settings. For detailed descriptions of the OTS Encina settings,

see “Sample configuration” on page 71.

4. The server needs to load the wsat_protocol plug-in, in order to process

incoming WS-AT coordination contexts and to propagate transaction

contexts. The coordinator_stub_wsdl plug-in enables the server to talk

to the WS-Coordination service on the client side.

5. Strictly speaking, it is unnecessary to specify a default transaction provider

on the server side. On the server side, the transaction provider is

automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be

appropriate to set the default transaction provider here also.

 plugins:ots_encina_adm:grammar_db =
"ots_encina_adm_grammar.txt";

 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

5 // No need to specify default_tx_provider here.
 };
};

Example 11: Sample Configuration for Recoverable WS-AT
 79

CHAPTER 3 | Selecting a Transaction System
80

CHAPTER 4

Basic Transaction
Programming
This chapter covers the basics of programming transactional
clients and servers. For simple applications, this probably covers
all you need to know about transaction programming.

In this chapter This chapter discusses the following topics:

Artix Transaction Interfaces page 82

Beginning and Ending Transactions page 85

Server Programming page 88
 81

CHAPTER 4 | Basic Transaction Programming
Artix Transaction Interfaces

Overview Figure 10 shows an overview of the main classes that make up the Artix
transaction API. The Artix transaction API is designed to function as a generic
wrapper for a wide variety of specific transaction systems. As long as your code
is restricted to using the generic classes, you will be able to switch between any
of the transaction systems supported by Artix.

On the server side it is likely that you will need to access advanced functionality,
which is available only from technology-specific transaction manager classes,
such as OTSTransactionManager, WSATTransactionManager, or
XATransactionManager.

Figure 10: Overview of the Artix Transaction API

XATransactionManager

WSATTransactionManager

OTSTransactionManager

TransactionSystemIT_Bus::Bus

transactions()

dynamic_cast<...>

TransactionManager

TransactionParticipant

TransactionNotificationHandler

get_transaction_manager()
82

Artix Transaction Interfaces
Accessing the transaction system To access the Artix transaction system, call the transactions() function on the
Bus. The returned IT_Bus::TransactionSystem reference provides the starting
point for accessing all aspects of Artix transactions.

The IT_Bus::Bus::transactions() function has the following signature:

IT_Bus::TransactionSystem&
transactions() IT_THROW_DECL((IT_Bus::Exception));

TransactionSystem class The IT_Bus::TransactionSystem class provides the basic functions needed for
transaction demarcation on the client side (begin_transaction(),
commit_transaction() and rollback_transaction()). For more details see
“Beginning and Ending Transactions” on page 85.

To access server-side functions and advanced client-side functions, you must
call IT_Bus::TransactionSystem::get_transaction_manager() to obtain an
IT_Bus::TransactionManager instance.

TransactionManager class The IT_Bus::TransactionManager class provides server-side functions and
advanced transaction functionality. For the server side, the most important
member function is IT_Bus::TransactionManager::enlist(), which enables
you to implement a transactional resource by enlisting a transaction participant
object.

In order to support multiple transaction systems, the TransactionManager class
is designed as a facade, which is layered above a specific implementation. In
some cases, if the functionality provided by the generic TransactionManager is
not sufficient, you might need to downcast the TransactionManager reference
to one of the following types:

• OTSTransactionManager class.

• WSATTransactionManager class.

OTSTransactionManager class The IT_Bus::OTSTransactionManager class provides access to an underlying
CORBA OTS implementation of the transaction system. Using this class, you
can access the CosTransactions::Coordinator and the
CosTransactions::Current objects for this transaction.

A discussion of the CORBA OTS is beyond the scope of this guide. For more
details, see the CORBA OTS Guide
(http://communities.progress.com/pcom/docs/DOC-105909), which is available
from the Orbix documentation suite.
 83

http://communities.progress.com/pcom/docs/DOC-105909
http://communities.progress.com/pcom/docs/DOC-105909

CHAPTER 4 | Basic Transaction Programming
WSATTransactionManager class The IT_Bus::WSATTransactionManager class provides access to an underlying
WS-AT implementation of the transaction system. Currently, the
WSATTransactionManager class provides access to the WS-AT context, which
is included in a SOAP header with every transactional operation call.

TransactionParticipant base class If you want to implement a transactional resource on the server side, you can
define and implement a class that inherits from the
IT_Bus::TransactionParticipant base class. The TransactionParticipant
class receives callbacks from the transaction manager that are used to coordinate
the commit or rollback steps with other transaction participants. For more
details, see “Recoverable Resources” on page 133.

There are alternative ways of implementing a transactional resource, which do
not require you to implement a TransactionParticipant class. Some
transaction managers (for example, OTSTransactionManager) support
alternative approaches.

TransactionNotificationHandler
base class

If you want to synchronize certain actions with the committing or rolling back of
a transaction, you can define and implement a class that inherits from the
IT_Bus::TransactionNotificationHandler base class. The
IT_Bus::TransactionNotificationHandler class receives notification
callbacks from the transaction manager whenever a transaction is either
committed or rolled back.
84

Beginning and Ending Transactions
Beginning and Ending Transactions

Overview On the client side, the functions for beginning and committing (or rolling back) a
transaction are collectively referred to as transaction demarcation functions.
Within a given thread, any Artix operations invoked after the transaction begin
and before the transaction commit (or rollback) are implicitly associated with the
transaction. The transaction demarcation functions are typically the only
functions that you need on the client side.

TransactionSystem member
functions

Example 12 shows the public member functions of the
IT_Bus::TransactionSystem class.

Example 12: The IT_Bus::TransactionSystem Class

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionSystem
 : public virtual RefCountedBase
 {
 public:
 virtual ~TransactionSystem();

 virtual void
 begin_transaction() IT_THROW_DECL((Exception)) = 0;

 virtual Boolean
 commit_transaction(
 Boolean report_heuristics
) IT_THROW_DECL((Exception)) = 0;

 virtual void
 rollback_transaction() IT_THROW_DECL((Exception)) = 0;

 virtual TransactionManager&
 get_transaction_manager(
 const String&

tx_manager_type=DEFAULT_TRANSACTION_TYPE
) IT_THROW_DECL((Exception)) = 0;

 virtual Boolean
 85

CHAPTER 4 | Basic Transaction Programming
Client transaction functions The following functions are used to demarcate transactions on the client side:

• begin_transaction()—creates a new transaction on the client side and

associates it with the current thread. This function takes no arguments and

has no return value.

This function can throw the following exceptions:

♦ TransactionAlreadyActiveException is thrown if

begin_transaction() is called inside an already active transaction.

♦ TransactionSystemUnavailableException is thrown if the

transaction system cannot be loaded. This usually points to a

configuration problem.

• commit_transaction()—ends the transaction normally, making any

changes permanent. This function takes a single boolean argument,

report_heuristics, and returns true, if the transaction is commited

successfully.

This function can throw the following exception:

♦ NoActiveTransactionException is thrown if there is there is no

transaction associated with the current thread.

• rollback_transaction()—aborts the transaction, rolling back any

changes.

This function can throw the following exception:

 within_transaction() = 0;
 ...
 // String constants for transaction manager types
 static const String DEFAULT_TRANSACTION_TYPE;
 static const String WSAT_TRANSACTION_TYPE;
 static const String OTS_TRANSACTION_TYPE;
 static const String XA_TRANSACTION_TYPE;
 ...
 };

 typedef Var<TransactionSystem> TransactionSystem_var;
 typedef TransactionSystem* TransactionSystem_ptr;
};

Example 12: The IT_Bus::TransactionSystem Class
86

Beginning and Ending Transactions
♦ NoActiveTransactionException is thrown if there is there is no

transaction associated with the current thread.

Other transaction functions In addition to the preceding demarcation functions, which are intended for use
on the client side, the TransactionSystem class also provides the following
functions, which can be used both on the client side and on the server side:

• within_transaction()—returns true if the current thread is associated

with a transaction; otherwise, false.

• get_transaction_manager()—returns a reference to a

TransactionManager object, which provides access to advanced

transaction features.

Typically, a TransactionManager object is needed on the server side in

order to enlist participants in a transaction (for example, see “Recoverable

Resources” on page 133). For advanced applications, you can also

downcast the TransactionManager reference to get a particular

implementation of the transaction system (for example, an

IT_Bus::OTSTransactionManager object or an

IT_Bus::WSATTransactionManager object).

This function can throw the following exception:

♦ TransactionSystemUnavailableException is thrown if the

transaction system cannot be loaded.
 87

CHAPTER 4 | Basic Transaction Programming
Server Programming

Overview On the server side, the main transactions-related programming task is the
integration of resources with the Artix transaction system. The purpose of this
integration step is to enable the Artix transaction manager to control the
resource’s transactions.

By far the simplest and most common method of integrating resources into the
Artix transaction system is to use the XA standard, which is supported by most
modern databases. An XA-compliant resource provides a special data structure,
the XA switch, which you can then register with Artix in order to integrate the
resource with the Artix transaction system.

In this section This section contains the following subsections:

Registering an XA Resource page 89

Dynamic Registration Optimization page 96

Writing a Custom Resource page 103

Server-Side Programming Model page 104
88

Server Programming
Registering an XA Resource

Overview The simplest way to integrate a third-party resource (such as a database) into the
Artix transaction system is to use the XA interface. If the third-party resource
supports the XA interface, all that you need to do to integrate the resource with
the Artix transaction system is to register a particular type of object, an XA
switch, with the Artix transaction manager. This puts the Artix transaction
manager in charge of beginning, committing and rolling back transactions
associated with the XA resource. This also implies that the resource can now
participate in distributed transactions, since these are supported by the Artix
transaction manager.

When to register an XA resource You should register an XA resource in the main() function as your application
program is performing initialization and before you attempt to access the
resource for the first time.

register_xa_resource() function The register_xa_resource() function, which is a member of the
IT_Bus::XATransactionManager class, is used to register third-party XA
resource managers with the Artix transaction manager. Example 13 gives the
signature of the register_xa_resource() function.

Example 13: The register_xa_resource() Function

// C++
// In IT_Bus::XATransactionManager
IT_Bus::Boolean
register_xa_resource(
 xa_switch_t* xa_switch,
 IT_Bus::String open_string,
 IT_Bus::String close_string,
 IT_Bus::String resource_manager_identifier,
 IT_Bus::Boolean use_dynamic_registration_optimization,
 IT_Bus::Boolean is_single_threaded_resource
)=0;
 89

CHAPTER 4 | Basic Transaction Programming
register_xa_resource() arguments The IT_Bus::XATransactionManager::register_xa_resource() function
takes the following arguments:

• xa_switch,

• open_string,

• close_string,

• resource_manager_identifier,

• use_dynamic_registration_optimization,

• is_single_threaded_resource.

xa_switch The xa_switch argument is a pointer to an xa_switch_t instance, which is
provided by the third-party XA resource manager. The xa_switch_t type is
declared in the <orbix_sys/xa.h> header, which you need to include in any file
that references the xa_switch_t type.

Each XA resource manager defines a specific XA switch instance, which is
essentially a global struct variable. Table 1 gives the identifier names for some
common XA resource managers.

Table 1: Sample Mechanisms for Obtaining XA Switches

XA Resource
Manager

XA Switch Instance

Oracle DB Two XA switches are defined as global instances
in the Oracle sqlca.h header file:

• xaosw—normal Oracle XA switch.

• xaoswd—Oracle XA switch that supports

dynamic registration.

Sybase DB sybase_xa_switch

DB2 db2xa_switch (UNIX), or

*db2xa_switch (Windows)
90

Server Programming
open_string The open_string argument specifies the string that the Artix XA transaction
manager passes to xa_open() when it opens a connection to the XA resource
manager. The form of the open string is not defined by Artix; it is defined by the
particular third-party XA resource manager being registered. The XA standard
intends that the open string be used as a general mechanism for passing
initialization parameters to the XA resource manager.

Examples of open strings for some common XA resource managers are provided
in Table 2.

close_string The close_string argument specifies the string that the Artix XA transaction
manager passes to xa_close() when it closes a connection to the XA resource
manager.

Examples of close strings for some common XA resource managers are
provided in Table 3. Some XA resource managers (for example, Oracle DB)
ignore the close string, in which case you can pass an empty string, "".

Table 2: Examples of Open Strings for Some XA Resource Managers

XA Resource
Manager

Example Open String

Oracle DB Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+thre

ads=true

Sybase DB -U<Username> -P<Password> -N<DB_Name>

-T<LoggingType> -L<LogFile>

DB2 <DB_Name>,<Username>,<Password>

Note: An empty open string, "", is treated as a special case. In this case, Artix
assumes that the open string is specified in the Artix configuration file. The
name of the configuration variable that specifies the open string is determined
by the resource_manager_identifier argument.

Table 3: Examples of Close Strings for Some XA Resource Managers

XA Resource
Manager

Example Close String

Oracle DB None
 91

CHAPTER 4 | Basic Transaction Programming
resource_manager_identifier The resource_manager_identifier argument specifies a string that serves as a
name prefix for certain configuration variables in the Artix configuration file.
These configuration variables can then be used to configure the resource
manager registration.

In particular, if you pass an empty string, "", as the open_string argument,
Artix assumes that you want to specify the value of the open string in
configuration instead of passing it as an argument. In this case, Artix looks for a
configuration variable called ResourceManagerPrefix:open_string, where
ResourceManagerPrefix is the string passed as the
resource_manager_identifier argument.

For example, if you specify the open_string argument to be an empty string,
"", and the resource_manager_identifier argument to be
xa_resource_managers:oracle, you can then specify the open string in the
Artix configuration file as follows:

Where the Artix Bus has been initialized with the configuration scope,
oracle_xa_example.

Sybase DB None

DB2 None

Table 3: Examples of Close Strings for Some XA Resource Managers

XA Resource
Manager

Example Close String

Artix Configuration File
oracle_xa_example {
 xa_resource_managers:oracle:open_string =
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60";
 xa_resource_managers:oracle:close_string="";

 poa:xa_resource_managers:oracle:direct_persistent="true";
 poa:xa_resource_managers:oracle:well_known_address:host
 ="0.0.0.0"; # all network adapters
 poa:xa_resource_managers:oracle:well_known_address:port
 ="13003"; # unique port
 ...
};
92

Server Programming
use_dynamic_registration_optimi
zation

The use_dynamic_registration_optimization argument is a boolean flag
that informs the Artix XA transaction manager whether or not the resource
manager has enabled the dynamic registration optimization. Consult the
documentation for your third-party XA resource manager to discover whether or
not this optimization is supported. If the optimization is supported, you can
enable it as follows:

1. Follow the instructions in the third-party XA resource manager

documentation to enable the dynamic registration optimization.

2. Pass the value, true, to the use_dynamic_registration_optimization

argument.

It is important to ensure that both the transaction manager and the resource
manager are aware of the dynamic registration optimization, because this
optimization changes the nature of their interaction through the XA interface.
For more details, see “Dynamic Registration Optimization” on page 96.

is_single_threaded_resource The is_single_threaded_resource argument is a boolean flag that selects the
XA threading model in the transaction manager as follows:

• false—the XA threading model is multi-threaded (each thread maps to a

resource connection),

• true—the XA threading model is single-threaded (a process maps to a

single resource connection).

You must also ensure that the third-party XA resource manager is configured to
use the same threading model as the transaction manager.

For example, if you want to use the multi-threaded model with the Oracle XA
switch, you must include the setting, threads=true, in the Oracle XA open
string.

For more details see “Threading and XA Resources” on page 118.

Example Example 14 shows an example of how to register an Oracle XA switch with the
Artix XA transaction manager.

Example 14: Example of Registering an Oracle XA Switch

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
 93

CHAPTER 4 | Basic Transaction Programming
The preceding code fragment can be explained as follows:

1. The Artix orbix_sys/xa.h header file contains the standard declaration of

the xa_switch_t struct type, as defined in the The XA Specification.

Include this header in any file that refers to the xa_switch_t type.

2. The sqlca.h header file is an Oracle header file that defines two instances

of xa_switch_t type: xaosw, for a normal XA switch, and xaoswd, for a

dynamically registering XA switch.

3. Declare xaosw to be an external C type (the xa_switch_t type is declared

in C, not C++).

4. From the Bus instance, obtain an IT_Bus::XATransactionManager

instance.

5. Call register_xa_resource() on the XATransactionManager instance to

register the Oracle XA switch, xaosw, with the Artix XA transaction

manager. In this example, the open string is provided explicitly in the

#include <it_bus_pdk/xa_transaction_manager.h>
1 #include <orbix_sys/xa.h>

2 #include <sqlca.h>
3 extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaosw;

IT_Bus::Bus_var bus = ...
...

4 IT_Bus::XATransactionManager& xa_tx_mgr = dynamic_cast
<IT_Bus::XATransactionManager&>(
 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_TYPE
)
);

5 xa_tx_mgr->register_xa_resource(
 &xaosw, // Oracle XA switch
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=true",
 // Oracle open string
 "", // Oracle close string
 "", // resource manager identifier
 false, // dynamic registration?
 true // multi-threaded?
);

Example 14: Example of Registering an Oracle XA Switch
94

Server Programming
second parameter; the resource manager identifier is not used (empty

string); the dynamic registration optimization is not used; and the threading

model is multi-threaded.
 95

CHAPTER 4 | Basic Transaction Programming
Dynamic Registration Optimization

Overview The dynamic registration optimization is a variation of the usual protocol that
governs interactions between an XA transaction manager and an XA resource
manager. Typically, it results in more efficient access to the resource. For
example, if the resource is a database, this optimization causes the database
tables to be locked less often, thereby improving concurrency. Hence, it is
usually a good idea to enable this optimization.

If you just want to know how to enable this feature, skip ahead to “Enabling
dynamic registration” on page 100 for details. For advanced users, this
subsection also provides background information on the dynamic registration
optimization, so that you can understand how this protocol works. A key
difference between dynamic registration and normal registration is that dynamic
registration exploits the AX interface.

AX interface Example 15 shows the signatures of the two functions, ax_reg() and
ax_unreg(), that constitute the AX interface. These functions enable an XA
resource manager to call back on an XA transaction manager (that is, reversing
the usual direction of control, where the transaction manager calls the resource
manager).

The AX functions can be explained as follows:

• ax_reg() function—is called by the resource manager to inform the

transaction manager that work is about to begin on a transaction in the

current thread. For example, in the case of a database, the ax_reg() call

would be triggered, when the application code attempts to perform a

database update.

Example 15: Functions in the AX Interface

/* C */
int ax_reg(int rmid, XID *xid, long flags)

int ax_unreg(int rmid, long flags)
96

Server Programming
• ax_unreg() function—is needed only for the special case where an

application makes some database updates outside the context of a global

transaction. The resource manager then calls ax_unreg() to inform the

transaction manager that the work has ended and, therefore, the current

thread is free once more to participate in a global transaction.

Normal registration Figure 11 shows the outline of an Artix transactional server that has a normally
registered resource manager, where FooImpl::op() is the implementation of the
WSDL operation, op().

The server is divided up into the following parts:

• The Application Code—showing the implementation of the WSDL

operation, op(), and

• The Transaction Manager—showing the calls made by the Artix

transaction manager,

• The Resource Manager—showing a database resource and its associated

XA resource manager.

The shaded area shows the scope of the association between the current thread
and a transaction branch in the resource manager. The association begins with
xa_start() and ends with xa_end().

Figure 11: Invocation Dispatch for a Normally Registered RM

FooImpl::op()
{
 .
 .
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
 .
 .
}

1
2

3

4

5

Application
Code

Transaction
Manager

Resource
Manager

xa_start()

xa_end()

Oracle DB

Upcall

Return

Transaction Branch Scope
 97

CHAPTER 4 | Basic Transaction Programming
Steps in normal registration In this scenario, the Artix server accesses an XA resource which is registered
normally. When the server receives a client request with transactional context,
the invocation dispatch proceeds as follows:

1. Before dispatching the invocation, the Artix transaction manager (TM)

obtains a list of all the registered XA resource managers (RMs). In this

case, there is only one RM, which is registered normally. The TM calls

xa_start() on the RM, thereby creating an association between the

current thread and a transaction branch in the RM.

2. The Artix runtime makes an upcall to the FooImpl::op() function, which

implements the WSDL operation, op().

3. In the body of the op() function, the application code makes updates to the

resource—for example, through some embedded SQL calls such as EXEC

SQL UPDATE. These updates are governed by the current transaction.

4. The FooImpl::op() upcall returns.

5. The Artix TM calls xa_end() on the RM, thereby ending the association

between the current thread and the transaction branch in the RM.

Note: The xa_start() call typically imposes some overheads on the
resource. For example, a mutex lock might be set on the database
connection.
98

Server Programming
Dynamic registration Figure 12 shows the outline of an Artix transactional server that has a
dynamically registered resource manager, where FooImpl::op() is the
implementation of the WSDL operation, op().

The shaded area shows the scope of the association between the current thread
and a transaction branch in the resource manager. The association begins when
the RM calls ax_reg() and ends when the TM calls xa_end().

Steps in dynamic registration In this scenario, the Artix server accesses an XA resource which is registered
dynamically. When the server receives a client request with transactional
context, the invocation dispatch proceeds as follows:

1. Before dispatching the invocation, the Artix TM obtains a list of all the

registered XA RMs. In this case, there is one dynamically registered RM.

The TM does not call xa_start() on the dynamically registered RM.

2. The Artix runtime makes an upcall to the FooImpl::op() function, which

implements the WSDL operation, op().

3. In the body of the op() function, the application code makes updates to the

resource—for example, through some embedded SQL calls such as EXEC

SQL UPDATE. The very first update triggers the RM to make an ax_reg()

callback on the TM. This callback initiates an association between the

current thread and a transaction branch in the RM.

4. The FooImpl::op() upcall returns.

Figure 12: Invocation Dispatch for a Dynamically Registered RM

FooImpl::op()
{
 .
 .
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
 .
 .
}

1
2

3

4

5

Application
Code

Transaction
Manager

Resource
Manager

ax_reg()

xa_end()
Oracle DB

Upcall

Return

Transaction Branch Scope
 99

CHAPTER 4 | Basic Transaction Programming
5. The Artix TM calls xa_end() on the dynamically registered RM, thereby

ending the association between the current thread and the transaction

branch in the RM.

Enabling dynamic registration To enable dynamic registration for a particular XA resource, perform the
following steps:

1. Follow the instructions in the third-party XA resource manager

documentation to enable the dynamic registration optimization.

2. In particular, you must ensure that the Artix library containing the

implementation of the AX interface (ax_reg() and ax_unreg() functions)

is accessible to the third-party XA resource manager. The Artix library

containing the AX interface implementation is, as follows:

♦ Windows platforms—it_xa.lib.

♦ UNIX platforms—libit_xa.so or libit_xa.sl.

3. Pass the value, true, to the use_dynamic_registration_optimization

argument of the

IT_Bus::XATransactionManager::register_xa_resource() function

when you are registering the resource manager’s XA switch.

It is important to ensure that both the transaction manager and the resource
manager are aware of the dynamic registration optimization, because this
optimization changes the nature of their interaction through the XA interface.

The following examples explain how to enable dynamic registration for certain
third-party XA resource managers:

• Enabling dynamic registration for Oracle.

• Enabling dynamic registration for DB2.

Enabling dynamic registration for
Oracle

In Oracle, dynamic registration is enabled by registering a special XA switch
instance, xaoswd, instead of the normal XA switch instance, xaosw. You must
also set the dynamic registration flag in the register_xa_resource() call to
true. Sample code for registering an Oracle XA switch with dynamic
registration enabled is shown in Example 16.

Example 16: Dynamic Registration for the Oracle XA Resource Manager

// C++
#include <it_bus/bus.h>
100

Server Programming
To make the Artix implementation of the AX interface available to Oracle, you
must also ensure that the it_xa.lib (Windows) or libit_xa[.so][.sl]
(UNIX) library is placed in the link line before the Oracle client library.

Enabling dynamic registration for
DB2

In DB2, dynamic registration is enabled by updating the DB2 configuration with
the name of the Artix library that implements the AX interface. Enter the
following db2 command:

db2 update dbm cfg using TP_MON_NAME <AX_LibNameRoot>

Where <AX_LibNameRoot> is the name of the relevant Artix library less the
filename suffix—that is, it_xa (Windows) or libit_xa.so, libit_xa.sl
(UNIX). The Artix library must also be made accessible to DB2 (by including it
in the library path, or whatever is appropriate for your platform). You need to
restart DB2 after issuing this command.

You must also set the dynamic registration flag in the
register_xa_resource() call to true. Sample code for registering a DB2 XA
switch with dynamic registration enabled is shown in Example 17.

#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>
#include <orbix_sys/xa.h>

#include <sqlca.h>
extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaoswd;
...
xa_tx_mgr->register_xa_resource(
 &xaoswd, // Oracle XA dynamic switch
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=true",
 // Oracle open string
 "", // Oracle close string
 "", // resource manager identifier
 true, // dynamic registration = true
 false // single-threaded = false
);

Example 16: Dynamic Registration for the Oracle XA Resource Manager

Example 17: Dynamic Registration for the DB2 XA Resource Manager

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>
 101

CHAPTER 4 | Basic Transaction Programming
#include <orbix_sys/xa.h>

#ifdef WIN32
#define db2xa_switch (*db2xa_switch)
#endif
extern "C" IT_DECLSPEC_IMPORT xa_switch_t db2xa_switch;
...
xa_tx_mgr->register_xa_resource(
 &db2xa_switch, // DB2 XA switch
 "<DB_Name>,<Username>,<Password>",
 // DB2 open string
 "", // DB2 close string
 "", // resource manager identifier
 true, // dynamic registration = true
 false // single-threaded = false
);

Example 17: Dynamic Registration for the DB2 XA Resource Manager
102

Server Programming
Writing a Custom Resource

When do you need a custom
resource?

Occasionally, it might be necessary to integrate a resource with the Artix
transaction manager, where that resource does not support the XA standard. That
is, the resource does not provide an XA switch that can be registered with a
transaction manager.

Implementing a custom resource In this case, you would have to write a custom resource by implementing a class
that derives from the Artix IT_Bus::TransactionParticipant base class. This
custom resource would implement the same functionality as a resource manager.
Writing the custom resource is a fairly complex task that requires a good
understanding of transaction systems.

Reference For an introduction to some of the programming issues involved in writing a
custom resource, see “Recoverable Resources” on page 133.
 103

CHAPTER 4 | Basic Transaction Programming
Server-Side Programming Model

Overview When you register an XA resource with Artix, this typically has an impact on the
way you program the XA resource itself. You should consult the documentation
for the third-party resource in order to get a detailed overview of the resource’s
programming model under XA.

Although the programming model under XA is specific to a particular resource
implementation, it is possible to make a few general observations on the
programming model, as follows:

• Restrictions on connecting to and disconnecting from a resource.

• Transaction demarcation restrictions.

• Demarcation models under XA.

Restrictions on connecting to and
disconnecting from a resource

Typically, an XA switch is implemented in such a way that xa_open() is
responsible for opening a connection to the XA resource and xa_close() is
responsible for closing the connection to the XA resource. In this case the Artix
transaction manager, through calls to xa_open() and xa_close(), is responsible
for opening and closing connections to the resource. Typically, this implies that
you must avoid making any explicit calls (using the resource API) to open or
close connections to the resource.

For example, when you register an XA switch for the Oracle database, the
xa_open() and xa_close() calls are responsible for opening and closing
connections to the database. When an XA switch is registered, Oracle forbids
you from opening or closing a database connection explicitly.

Transaction demarcation
restrictions

If your third-party resource has a native demarcation API—that is, a native API
for beginning, committing and rolling back transactions—you must not use this
native demarcation API when you have registered the resource’s XA switch.

For example, if the resource is a database supporting embedded SQL, you must
avoid using any embedded SQL statements that demarcate a transaction
(whether explicitly or implicitly). At a minimum, you must avoid using the EXEC
SQL BEGIN, EXEC SQL COMMIT, and EXEC SQL ROLLBACK commands.
104

Server Programming
Demarcation models under XA When a resource’s transactions are under the control of the Artix XA transaction
manager, the programming model for transaction demarcation changes
fundamentally. When implementing a WSDL operation in Artix, there are
essentially three different cases to consider:

• Operation participating in a global transaction.

• Operation not participating in a global transaction.

• Operation sometimes participating in a global transaction.

Operation participating in a global
transaction

If you are writing database code in the body of an operation which always
participates in a global transaction (that is, incoming requests always include a
transaction context), you should observe the following coding guidelines when
accessing the database:

• Do not open or close any database connections—that is the responsibility

of the transaction manager.

• Do not use any embedded SQL commands that demaracate transactions.

For example, avoid using EXEC SQL BEGIN, EXEC SQL COMMIT, and EXEC

SQL ROLLBACK.

• Do not use any native database APIs that demarcate transactions.

• Do not use the Artix begin_transaction(), commit_transaction(), and

rollback_transaction() functions (defined on the

IT_Bus::TransactionSystem object). A thread can only associate with

one transaction at a time and the operation’s thread is already associated

with a global transaction.

Operation not participating in a
global transaction

If you are writing database code in the body of an operation which never
participates in a global transaction (that is, incoming requests never include a
transaction context), you should observe the following coding guidelines when
accessing the database:

• Do not open or close any database connections—that is the responsibility

of the transaction manager.

• You can demarcate transactions, but you must not do so using embedded

SQL commands or the native database API. Instead, use the demarcation

functions provided by the Artix IT_Bus::TransactionSystem class—that

is, begin_transaction(), commit_transaction(), and

rollback_transaction().
 105

CHAPTER 4 | Basic Transaction Programming
Operation sometimes
participating in a global
transaction

If you are writing database code in the body of an operation which sometimes
participates in a global transaction (that is, incoming requests may include a
transaction context), you should observe the following coding guidelines when
accessing the database:

• Do not open or close any database connections—that is the responsibility

of the transaction manager.

• Use the TransactionSystem::within_transaction() function to

determine whether the operation is being called in the context of a global

transaction or not.

• If within_transaction() returns true, do not attempt to demarcate a new

transaction, as any database operations would be executed in the context of

the global transaction.

• If you wish to demarcate a new transaction, separate to the global

transaction, you must first disassociate the global transaction from the

current thread using the TransactionManager::detach_thread()

function. Once the global transaction has been detached, you can

demarcate a new transaction using the demarcation functions provided by

the Artix IT_Bus::TransactionSystem class—that is,

begin_transaction(), commit_transaction(), and

rollback_transaction().

• If you have detached a transaction from the current thread it is imperative

that it be re-attached before the operation exits, using the

TransactionManager::attach_thread() operation.
106

CHAPTER 5

Transaction
Propagation
Transaction propagation refers to the implicit propagation of
transaction context data in message headers.

In this chapter This chapter discusses the following topics:

Transaction Propagation and Interposition page 108
 107

CHAPTER 5 | Transaction Propagation
Transaction Propagation and Interposition

Overview In a multi-tier application, Artix automatically propagates transactions from tier
to tier. This ensures that all of the processes that are relevant to the outcome of a
transaction can participate in the transaction. You do not have to do anything
special to switch on transaction propagation; it is enabled by default. However,
the receiver of a transaction context must have a transaction plug-in loaded,
otherwise the transaction context would be ignored.

Transaction contexts A transaction context is a data structure that is transmitted to a remote server and
used to recreate the transaction at a remote location. The type of transaction
context that is transmitted depends on the middleware protocol. Artix supports
the following kinds of transaction context:

• OTS transaction context—a transaction context that is sent in a GIOP

header (part of the CORBA standard).

• WS-AT transaction context—a transaction context that is embedded in a

SOAP header.

Propagation scenario The propagation scenario shown in Figure 13 shows two different kinds of
transaction propagation, as follows:

• Transaction propagation within a single middleware technology—the

OTS transaction context, which propagates across the top half of

Figure 13, illustrates a simple kind of propagation, where the client and the

servers all use the same CORBA OTS transaction technology.

• Transaction propagation across middleware technologies—the WS-AT

transaction context, which propagates across the bottom half of Figure 13,

illustrates a kind of propagation, where the transaction crosses technology
108

Transaction Propagation and Interposition
domains. While the client uses OTS Encina to manage the transaction, it

must generate a WS-AT transaction context to send to the server. The

ability to transform transaction contexts is known as interposition.

Scenario steps The propagation scenario shown in Figure 13 can be described as follows:

Figure 13: Overview of Different Kinds of Transaction Propagation

Artix Client

OTS

OTS Encina

Artix Server
CORBA

OTS

Resource

Artix Server
SOAP/HTTP

WS-AT

Resource

Artix Server
CORBA

OTS1

2 3

4

5

WS-AT
Tx Context

OTS
Tx Context

OTS
Tx Context

Stage Description

1 The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the
beginTransaction() method. The client then invokes a remote
operation, which results in a request message being sent over an
IIOP connection.

2 The request received by the server includes an OTS transaction
context embedded in a GIOP header. Although this server does not
participate directly in the transaction (it registers no resources), it
is capable of propagating the transaction context to the next tier in
the application.
 109

CHAPTER 5 | Transaction Propagation
Limitation of using OTS Lite with
propagation

Figure 14 shows an interposition scenario where the client, which uses an OTS
transaction system, connects to a SOAP/HTTP server, which uses the WS-AT
transaction system.

Because there is only one explicitly registered resource in this scenario (the
database connected to the server), it would seem that the client could use an OTS
Lite transaction manager for this scenario. In reality, however, the client must
use the OTS Encina transaction manager. The reason for this is that Artix
implicitly registers an interposition resource to bridge the OTS-to-WS-AT
middleware boundary. Therefore, there are really two resources in this scenario.

3 The third tier of the application receives a request containing an
OTS transaction context. This server participates in the transaction
by registering a database resource with the OTS transaction
manager.

4 The client invokes a remote operation, which results in a request
message being sent over a SOAP/HTTP connection.

5 In this case, Artix automatically translates the OTS transaction into
a WS-AT transaction context, which is suitable for transmission in
the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Stage Description

Figure 14: Limitation of Transaction Propagation Using OTS Lite

Artix Client

OTS

OTS Encina

Artix Server
SOAP/HTTP

WS-AT

Resource

WS-AT
Tx Context
110

Transaction Propagation and Interposition
In summary, interposition requires additional resources as follows:

• OTS-to-WS-AT middleware boundary—one interposition resource is

registered automatically. Applications with one explicitly registered

resource must use OTS Encina.

• WS-AT-to-OTS middleware boundary—no interposition resource required.

Applications with one explicitly registered resource may use OTS Lite.

Suppressing propagation Once you have selected a transaction system (for example, the application loads
an OTS plug-in or a WS-AT plug-in), transaction contexts are propagated by
default.

It is possible, however, to suppress transaction propagation selectively using the
detachThread() and attachThread() methods. After calling detachThread(),
subsequent operation invocations do not participate in the transaction and,
therefore, do not propagate any transaction context. You can re-establish an
association with a transaction by calling attachThread().

For more details on these functions, see “Threading” on page 113.
 111

CHAPTER 5 | Transaction Propagation
112

CHAPTER 6

Threading
This chapter discusses the thread affinity of transactions and how
you can modify thread affinities using the Artix transaction API.

In this chapter This chapter discusses the following topics:

Client Threading page 114

Threading and XA Resources page 118
 113

CHAPTER 6 | Threading
Client Threading

Overview Artix supports a threading API that enables you to change the thread affinity of a
given transaction. Using the attachThread() and detachThread() methods,
you can flexibly re-assign threads to a transaction (subject to the limitations
imposed by the underlying transaction system).

Default client threading model Figure 15 shows the default threading model for transaction on the client side.
When you call beginTransaction(), Artix creates a new transaction and
attaches it to the current thread. So long as the transaction remains attached, any
WSDL operations called from the current thread become part of the transaction.
When you call commitTransaction() (or rollbackTransaction(), if the
transaction must be aborted), the transaction is deleted.

Transaction identifiers A transaction identifier is an opaque identifier of type
com.iona.jbus.transaction.TransactionIdentifier that uniquely
identifies a transaction.

Figure 15: Default Client Threading Model

Thread X

beginTransaction()

Transaction Scope

commitTransaction()
114

Client Threading
Controlling thread affinity On the client side, thread affinity is controlled by the following
TransactionManager methods:

These functions can be explained as follows:

• detatchThread()

Detach the transaction from the current thread. After the call to

detatchThread(), WSDL operations called from the current thread do not

participate in the transaction. The returned transaction identifier can be

used to re-attach the transaction to the current thread at a later stage.

• attachThread()

Attach the transaction, specified by the transactionIdentifier

argument, to the current thread.

• getTransactionIdentifier()

Return the identifier of the transaction that is attached to the current thread.

If no transaction is attached, return null.

Example 18: Functions for Controlling Thread Affinity

public class TransactionManager
{
 public TransactionIdentifier detachThread();

 public boolean attachThread(TransactionIdentifier
transactionIdentifier)

 throws InvalidTransactionIdentifierException

 public TransactionIdentifier getTransactionIdentifier()
...

}

 115

CHAPTER 6 | Threading
Detaching and re-attaching a
transaction to a thread

Figure 16 shows how to use the detachThread() and attachThread() methods
to suspend temporarily the association between a transaction and a thread. This
can be useful if, in the midst of a transaction, you need to perform some
non-transactional tasks.

Attaching a transaction to
multiple threads

Figure 17 shows how to use the getTransactionIdentifier() and
attachThread() methods to associate a transaction with multiple threads. The
getTransactionIdentifier() method is called from within the thread that
initiated the transaction. The transaction ID can then be passed to the other
threads, Y and Z, enabling them to attach the transaction.

Figure 16: Detaching and Re-Attaching a Transaction to a Thread

Thread X

beginTransaction()

Transaction Scope

commitTransaction()detachThread() attachThread()

Figure 17: Attaching a Transaction to Multiple Threads

Thread X

beginTransaction()

Transaction Scope

commitTransaction()id = getTransactionIdentifier()

attachThread(id)

Thread Y

Thread Z

attachThread(id)
116

Client Threading
Transferring a transaction from
one thread to another

Figure 18 shows how to use the detachThread() and attachThread() methods
to transfer a transaction from thread X to thread Y. The transaction ID returned
from the detachThread() call must be passed to thread Y, enabling it to attach
the transaction.

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attachThread() call fails (returning
false), if you attempt to attach a second thread to the transaction.

Figure 18: Transferring a Transaction from One Thread to Another

Note: Some transaction systems do not allow you to transfer a transaction
from one thread to another. In this case, an attachThread() call fails
(returning false), unless you are re-attaching the original thread to the
transaction.

Thread X

beginTransaction()

Transaction Scope

commitTransaction()

id = detachThread()

Thread Y

attachThread(id)
 117

CHAPTER 6 | Threading
Threading and XA Resources

Overview This section discusses the following threading models for XA resources:

• Auto-association.

• Multiple registered resources.

• Multi-threaded resource connections.

• Dynamic registration.

Auto-association When an Artix server receives a transactional request (that is, a request
accompanied by a transaction context), Artix automatically creates an
association between the current thread and locally registered resources. For each
registered resource, the Artix transaction manager creates a transaction branch,
which participates in the global transaction.

Figure 19 shows the sequence of events that occur when a transactional request
arrives at an Artix server that has one registered resource.

Figure 19: Auto-Association with a Single Registered Resource

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource

Upcall Return

Receive request Send reply
1

2

3 4

5

6

Resource
Connection
118

Threading and XA Resources
The sequence of events shown in Figure 19 on page 118 can be explained as
follows:

1. Request is received—an operation request is received, which contains a

transaction context.

2. Artix calls xa_start()—to create a temporary association between the

current thread and the local resource. The resource creates a new

transaction branch, which performs work on behalf of the global

transaction.

3. Artix calls servant function—control is passed to the servant function that

implements the WSDL operation. Any interactions and updates you make

to the resource are now governed implicitly by the global transaction.

4. Servant function returns—control passes back to the Artix runtime.

5. Artix calls xa_end()—to end the association between the current thread

and the resource. Effectively, the local transaction branch is terminated

(but the global transaction is still active).

6. Reply is sent—and the thread becomes available to process another

request.
 119

CHAPTER 6 | Threading
Multiple registered resources Figure 20 shows how auto-association works with multiple registered resources.
When the Artix server receives a transactional request, it obtains a list of all
registered resources. Artix then creates a new transaction branch for each
resource, before making an upcall to the relevant servant function.

After the upcall, any application code in the servant function that interacts with
one of the resources (either resource R1 or resource R2) is implicitly governed
by a global transaction, where the global transaction ID has been obtained from
the received transaction context.

Figure 20: Auto-Association with Multiple Registered Resources

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource R1

Upcall Return

Resource R2
120

Threading and XA Resources
Multi-threaded resource
connections

Most modern databases offer the option of running in a multi-threaded mode.
What this means is that instead of having a single connection to the database,
which must be shared between all threads in the server, the database allows the
transaction manager to open a dedicated connection for each server thread. This
has the advantage of reducing contention between the server threads.

Figure 21 shows an example of a resource configured to use multi-threaded
mode, where the server threads each open an independent connection to the
resource. This enables the threads to access the resource concurrently.

To use the multi-threaded resource mode, both the resource manager and the
Artix transaction manager must be configured appropriately.

Figure 21: Database Resource Operating in Multi-Threaded Mode

xa_start()

Transaction Branch Scope

xa_end()

Resource

Resource
Connections

Thread Y

Thread X

Transaction Branch Scope
 121

CHAPTER 6 | Threading
Dynamic registration As shown in Figure 22, some XA resources support an alternative algorithm,
dynamic registration, for associating a global transaction with a locally
registered resource.

When dynamic registration is enabled, the transaction manager does not
automatically create a transaction branch for an incoming request (that is, the
transaction manager does not call xa_start()). Instead, the transaction manager
waits until it receives a callback, ax_reg(), from the resource manager. This
callback indicates to the transaction manager that the application code has
attempted to update the resource in some way (for example, by calling EXEC SQL
UPDATE). The transaction manager responds to this by creating a new transaction
branch, which it associates with a global transaction (assuming the incoming
request has a transaction context).

The advantage of this algorithm is that the transaction branch is created only
when necessary. In some cases, if the application code does not make any
resource updates, it might not be necessary to create a transaction branch at all.

Figure 22: Threading for a Dynamically Registered Resource

Thread X
Transaction Branch Scope

xa_end()

Resource

Upcall Return

Resource
Connection

ax_reg()
122

CHAPTER 7

Transaction
Recovery
Transaction recovery is an enterprise-level feature that ensures a
transaction system can cope with any kind of crash or system
failure, without losing data or getting into an inconsistent state. In
Artix, transaction recovery is implemented by the Encina
transaction engine.

In this chapter This chapter discusses the following topics:

Transactions Systems and Recovery page 124

Transaction Recovery Scenarios page 126
 123

CHAPTER 7 | Transaction Recovery
Transactions Systems and Recovery

Overview Not all of the Artix transaction systems support recovery. It is important to
distinguish between the lightweight transactions systems, which are
non-recoverable, and the enterprise-level transactions systems, which are
recoverable. Table 4 summarizes the characteristics of the various Artix
transaction systems.

OTS Lite OTS Lite is a lightweight transaction system, whose programming interface is
based on the CORBA OTS standard. The OTS Lite system can manage a single
resource only and is not recoverable.

OTS Encina OTS Encina is a complete, enterprise-level transaction system, whose
programming interface is based on the CORBA OTS standard. The OTS Encina
system can manage multiple resources and is recoverable.

Recoverability is the key property that distinguishes an enterprise-level
transaction systems from lightweight transaction systems. Recoverability
ensures that the system can always be brought back into a consistent state,
irrespective of when or how a transaction participant fails.

Non-recoverable WS-AT The non-recoverable WS-AT transaction system is a lightweight transaction
system based on the WS-AtomicTransactions and WS-Coordination standards.
The non-recoverable WS-AT transaction system (in contrast to OTS Lite) can
manage multiple resources.

Table 4: Transaction Systems and Recoverability

Transaction System Single or Multiple
Resources?

Recoverable?

OTS Lite Single No

OTS Encina Multiple Yes

Non-recoverable WS-AT Multiple No

Recoverable WS-AT Multiple Yes
124

Transactions Systems and Recovery
Recoverable WS-AT The recoverable WS-AT transaction system is layered on top of the OTS Encina
transaction engine to give enterprise-level transaction support. From Artix 4.0
onwards, WS-AT is layered over OTS by default and the relevant OTS plug-ins
are automatically loaded when WS-AT is enabled. If the
plugins:ws_coordination_service:disable_tx_recovery variable appears
in your Artix configuration file, it must be set as follows to ensure
recoverability:

When WS-AT is layered over Encina, the initiation of a transaction in
WS-Coordination effectively initiates an OTS transaction. The coordination
context returned from the WS-Coordination service (and subsequently
propagated on SOAP calls) includes an identifier indicating that it is OTS based
and also includes an encoded form of the relevant OTS propagation context.
That is, all transactions, including WS-AT initiated ones, are always OTS
transactions. If a participant enlistment is required then the WS-AT system will
completely bypass the WS-AT protocols and enlist the participant directly with
OTS. This means that at completion time, OTS is aware of, and in control of, all
resources in the system, be they native OTS resources, WSAT Participants, XA
resources and so on.

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Note: It is also possible to layer WS-AT over OTS Lite, but there is no
benefit in doing so, because OTS Lite is more limited than plain WS-AT.
 125

CHAPTER 7 | Transaction Recovery
Transaction Recovery Scenarios

Overview The whole point of transaction recovery is that it enables a transaction system to
recover to a consistent state, irrespective of what kind of system failures occur.
This section discusses a variety of different failure scenarios in order to illustrate
how Encina recovers the transactional system.

In this section This section contains the following subsections:

Server Crash before or during Prepare Phase page 127

Server Crash after Prepare Phase page 129

Transaction Coordinator Crash page 131
126

Transaction Recovery Scenarios
Server Crash before or during Prepare Phase

Overview Figure 23 shows a scenario involving two transactional resources, one attached
to server 1 and another attached to server 2, and a client, which initiates a
transaction involving server 1 and server 2. This scenario uses the OTS Encina
transaction system, where the OTS Encina transaction coordinator is loaded into
the client and the two servers participate in the transaction.

The mode of failure described in this scenario involves server 1 crashing either
before or during the prepare phase of the two-phase commit protocol.

Steps leading to crash As shown in Figure 23, the steps leading to a server crash before or during the
prepare phase of a two-phase commit can be described as follows:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations on

both of the remote servers.

3. The client calls commit_transaction() to make permanent any changes

caused during the transaction.

Figure 23: Server Crash before or during the Prepare Phase

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2
4

4

prepare

OTS

OTS Encina

4 Crash!!
 127

CHAPTER 7 | Transaction Recovery
4. The transaction coordinator initiates the prepare phase of the two-phase

commit. At some point either before or during the prepare phase, server 1

crashes. That is, the transaction coordinator never receives a vote commit

or vote rollback from server 1.

Transaction system recovery If the transaction coordinator does not receive a reply from the prepare call on
server 1 (for example, the connection to server 1 breaks or the transaction times
out), the transaction coordinator will presume that the transaction is to be rolled
back (this rule is called presumed rollback).

The transaction system also rolls back the transaction on all of the other
transaction participants.

Server 1 recovery The manner in which server 1 recovers depends on whether it wrote anything
into its log during the prepare phase. When server 1 re-starts after crashing, the
transaction is recovered in one of the following ways:

• No record of prepare phase in log—in this case, server 1 knows that a

transaction was begun (this is recorded in its log) and that the transaction

was interrupted before the prepare phase. Server 1 automatically rolls back

the transaction (presumed rollback), bringing it back to a state that is

consistent with the rest of the system.

• Prepare phase recorded in log—in this case, it is possible that the prepare

phase had completed successfully. Server 1, therefore, needs to contact the

transaction coordinator to discover the outcome of the transaction. From its

log, it can retrieve a recovery coordinator reference, which it uses to query

the transaction state. Depending on the reply, it will either commit or roll

back the transaction (in the scenario shown in Figure 23, it will be a

rollback).
128

Transaction Recovery Scenarios
Server Crash after Prepare Phase

Overview Figure 24 shows a scenario involving two transactional resources, one attached
to server 1 and another attached to server 2, and a client, which initiates a
transaction involving server 1 and server 2. This scenario uses the OTS Encina
transaction system.

The mode of failure described in this scenario involves server 1 crashing after
the prepare phase of the two-phase commit protocol.

Steps leading to crash As shown in Figure 24, the steps leading to a server crash after the prepare phase
of a two-phase commit can be described as follows:

1. The client calls commit_transaction() to make permanent any changes

caused during the transaction.

2. The transaction system performs the prepare phase by polling all of the

remote transaction participants.

Figure 24: Server Crash after the Prepare Phase

begin_transaction()
...
...
...
commit_transaction()

Artix
Client

1

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2

prepare

OTS

OTS Encina

3 Crash!!

prepare

4

commit
 129

CHAPTER 7 | Transaction Recovery
3. After replying to the prepare call, but before receiving the commit call,

server 1 crashes. For this scenario, it is assumed that server 1 replied to the

prepare call with a vote commit.

4. Assuming that the other transaction participants all reply to the prepare

phase with a vote commit, the transaction coordinator decides to commit

the transaction and sends a commit notification to the participants.

Transaction system recovery If the prepare phase has completed successfully (that is, the prepare call returned
from all of the transaction participants), the transaction coordinator determines
the outcome of the transaction to be either commit or rollback. In the present
scenario, it is assumed that the outcome is commit.

When the transaction coordinator attempts to send a commit notification to
server 1, it discovers that server 1 has crashed. The transaction coordinator
reacts to this situation by retrying the commit call forever.

Server 1 recovery When server 1 is restarted, it knows from its own log that a transaction was
prepared but not commited. Therefore, it expects to receive either a commit or a
rollback call from the transaction coordinator. Because the transaction
coordinator retries the commit call forever, server 1 is bound to receive a commit
call shortly after it starts up, thereby resolving the transaction.
130

Transaction Recovery Scenarios
Transaction Coordinator Crash

Overview Another mode of failure can occur where the process hosting the transaction
coordinator crashes (for example, in Figure 24 this would be the client process).
The transaction coordinator has its own log, which it uses as the basis for
recovery.

Encina logs To enable the transaction coordinator to recover gracefully after a crash, it writes
whatever information would be needed for recovery into a log file or partition as
it goes along.

Transaction system recovery After a transaction coordinator crash, the possible recovery scenarios can be
reduced essentially to two cases, as follows:

• The coordinator determined the transaction outcome before crashing—

upon restarting, the transaction coordinator will try forever to notify the

participants of the transaction outcome (commit or rollback).

• The coordinator did not determine the transaction outcome before

crashing—the presumed rollback rule is used here. Transaction

participants that were not prepared will simply presume a rollback, after a

timeout has elapsed. Prepared participants will use the coordinator

reference to contact the transaction coordinator and query the outcome of

the transaction.
 131

CHAPTER 7 | Transaction Recovery
132

CHAPTER 8

Recoverable
Resources
This section describes those aspects of server side programming
which enable you to update a persistent resource transactionally.

In this chapter This chapter discusses the following topics:

Transaction Participants page 134

Interposition page 140
 133

CHAPTER 8 | Recoverable Resources
Transaction Participants

Overview When Artix uses a persistent resource, the easiest way to integrate that resource
within the Artix transaction system is to enlist the resource’s XA switch. If the
resource does not support the XA standard, however, you need to implement a
transaction participant instead. A transaction participant is an object usually on
the server side that interfaces between the Artix transaction manager and a
persistent resource. The role of the transaction participant is to receive callbacks
from the transaction manager, which tell the participant whether to make
pending changes permanent or whether to abort the current transaction and
return the resource to its previous consistent state.

Participants in a 2-phase commit Figure 25 shows an example of a two-phase commit involving two transaction
participant instances. Any operations meant to be transactional should start by
creating a transaction participant object and enlisting it with the transaction
manager.

Figure 25: Transaction Participants in a 2-Phase Commit Protocol

beginTransaction()
 invoke
 ...
 invoke
commitTransaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare

commit

enlist

TransactionParticipant

delete6

enlist

TransactionParticipant

delete6
134

Transaction Participants
Participants in a 2-phase commit As shown in Figure 25, the transaction participants participate in a two-phase
commit as follows:

Implementing a transaction
participant

To create a transaction participant, define a class that implements the
com.iona.jbus.transaction.TransactionParticipant interface.

Stage Description

1 The client calls beginTransaction() to initiate a distributed
transaction.

2 Within the transaction, the client calls transactional operations on
Server A and on Server B. In order to participate in the distributed
transaction, the servant code creates a new transaction participant
and enlists it with the transaction manager.

3 The client calls commitTransaction() to make permanent any
changes caused during the transaction.

4 The transaction system performs the prepare phase by calling
prepare() on all of the transaction participants. Each participant
can vote either to commit or to rollback the current transaction by
returning a flag from the prepare() function.

5 The transaction system performs the commit or rollback phase by
calling commit() or rollback() on all of the transaction
participants.

6 When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant
instances.
 135

CHAPTER 8 | Recoverable Resources
TransactionParticipant methods Example 19 shows the public member functions of the TransactionParticipant
interface.

1PC callback method The following method is called during a one-phase commit:

• commitOnePhase()—this method should make permanent any changes

associated with the current transaction.

2PC callback functions The following methods are called during a two-phase commit:

• prepare()—called during phase one of a two-phase commit. Before

returning, this method should write a recovery log to persistent storage.

The recovery log should contain whatever data would be necessary to

restore the system to a consistent state, in the event that the server crashes

before the transaction is finished.

Example 19: The TransactionParticipant Interface

// Java
package com.iona.jbus.transaction;

import com.iona.jbus.BusException;

public interface TransactionParticipant
{
 void commitOnePhase() throws BusException;

 VoteOutcome prepare();

 void commit();

 void rollback();

 void setTransactionManager(TransactionManager txManager);

 String preferredTransactionManager();
}

Note: In some transaction systems, such as OTS Encina, the transaction
manager will not call prepare() if it knows that transaction will be
rolled back.
136

Transaction Participants
The prepare() function also votes on whether to commit or roll back the

transaction overall, by returning one of the following vote outcomes:

♦ VoteOutcome.VOTE_COMMIT—vote to commit the transaction.

♦ VoteOutcome.VOTE_ROLLBACK—vote to roll back the transaction. For

example, you would return VOTE_ROLLBACK, if an error occurred

while attempting to write the recovery log.

♦ VoteOutcome.VOTE_READONLY—explicitly request not to be included

in the commit phase of the 2PC protocol.

• commit()—called during phase two of a two-phase commit, if the

transaction outcome was successful overall. The implementation of this

method should make permanent any changes associated with the current

transaction.

• rollback()—called during phase two of a two-phase commit, if the

transaction must be aborted. The implementation of this method should

undo any changes associated with the current transaction, returning the

system to the state it was in before.

Getting the transaction manager After the transaction participant is enlisted by a transaction manager instance,
the transaction system calls back to pass a transaction manager to the participant.
The following methods are relevant to this callback behavior:

• preferredTransactionManager()—called just after the participant is

enlisted. The return value is a string that tells the transaction system what

type of transaction manager the participant requires. The following return

strings are supported:

♦ DEFAULT_TRANSACTION_TYPE—no preference; use the current

default.

♦ OTS_TRANSACTION_TYPE—prefer the OTSTransactionManager

interface (manager for CORBA OTS transactions).

♦ WSAT_TRANSACTION_TYPE—prefer the WSATTransactionManager

interface (manager for WS-AtomicTransactions).
 137

CHAPTER 8 | Recoverable Resources
• setTransactionManager()—called after the

preferredTransactionManager() call. The transaction system calls

setTransactionManager() to pass a transaction manager of the preferred

type to the participant. If the type of transaction manager requested by the

participant differs from the one currently in use, Artix uses interposition to

simulate the preferred transaction manager type.

For more details about interposition, see “Interposition” on page 140.

Enlisting a transaction participant Example 20 shows an example of how to enlist a participant instance in a
transaction. You must enlist a participant at the start of any transactional WSDL
operation. Example 20 shows a sample implementation of an operation,
write(), which is called in the context of a transaction.

Example 20: Example of Enlisting a Transactional Participant

public void write(int value) throws Exception
{
 Bus bus = DispatchLocals.getCurrentBus();

 TransactionSystem txSystem = bus.getTransactionSystem();

 if (txSystem.withinTransaction())
 {
 TxParticipant participant = new TxParticipant(this);

 TransactionManager txManager =
txSystem.getTransactionManager(TransactionSystem.DEFAULT_TRAN
SACTION_TYPE);

 txManager.enlist(participant, true);

 m_value = value;
 }
 else
 {
 System.out.println("No transaction");
 throw new BusException("Invocation not in transaction");
 }
}

138

Transaction Participants
The preceding code example can be explained as follows:

1. DispatchLocals.getCurrentBus() is a standard function that returns a

reference to the current thread’s bus instance.

2. write() requires a transaction. If it is not called in the context of a

transaction, it raises an exception back to the client.

3. The TXParticipant class is an implementation of the

TransactionParticipant interface.

4. The participant is enlisted in the transaction, ensuring that the participant

receives callbacks either to commit or rollback any changes.

The second parameter is a boolean flag that specifies the kind of

participant:

♦ true indicates a durable participant, which participates in all phases

of the transaction.

♦ false indicates a volatile participant, which is only guaranteed to

participate in the prepare phase of the 2PC protocol. There is no

guarantee that a volatile participant will participate in the commit

phase.
 139

CHAPTER 8 | Recoverable Resources
Interposition

What is interposition? Sometimes, there can be a mismatch between the transaction API used by the
application code and the type of the underlying transaction system. For example,
imagine that you have a legacy CORBA server that manages transactions with
CORBA OTS. If you migrate this server code to a WS-AT-based Artix service,
you would obtain a mismatch between the transaction API used by the
application code (which is CORBA OTS-based) and the underlying transaction
system (which is WS-AT).

To bridge this API mismatch, Artix uses interposition. With interposition, the
Artix runtime provides the application code with an object of the preferred type
(for example, an OTSTransactionManager object), but the object is merely a
facade, whose calls are ultimately translated into a form suitable for the
underlying transaction system (for example, WS-AT).

Interposition matrix Artix supports interposition between every permutation of transaction systems.
Internally, Artix converts calls made on a specific transaction API into a
technology-neutral API. The calls are then converted from the
technology-neutral API into one of the supported transaction APIs.
140

CHAPTER 9

Notification
Handlers
A notification handler is an object that receives callbacks to inform
it about the outcome of a transaction.

In this chapter This chapter discusses the following topics:

Introduction to Notification Handlers page 142
 141

CHAPTER 9 | Notification Handlers
Introduction to Notification Handlers

Overview A notification handler is an object that records the outcome of a transaction. It
can be used both on the server side and on the client side. For example, you
might use a notification handler to log transaction outcomes or to synchronize
other events with a transaction.

Implementing a notification
handler

To implement a notification handler, implement the
com.iona.jbus.transaction.TransactionNotificationHandler interface.

TransactionNotificationHandler
interface

Example 21 shows the TransactionNotificationHandler interface. These
methods will only be called if an appropriate notification mechanism is available
in the underlying transaction system.

Notification callback functions The following notification handler functions receive callbacks from the
transaction manager:

• commitInitiated()—informs the handler that a commit has been

initiated. This method is called before any participants are prepared.

• committed()—informs the handler that the transaction completed

successfully.

Example 21: The TransactionNotificationHandler Interface

// Java
package com.iona.jbus.transaction;

public interface TransactionNotificationHandler
{
 void commitInitiated(TransactionIdentifier transactionId);

 void committed();

 void aborted();
}

Note: WS-AT does not support this notification point.
142

Introduction to Notification Handlers
• aborted()—informs the handler that the transaction did not complete

successfully and was aborted.

Enlisting a notification handler To use a notification handler, you must enlist it with a TransactionManager
object while there is a current transaction. You can enlist a notification handler
at any time prior to the termination of the transaction.

Example 22 shows how to enlist a sample notification handler,
NotificationHandlerImpl.

Example 22: Example of Enlisting a Notification Handler

// Java
Bus bus = DispatchLocals.getCurrentBus();
TransactionSystem txSystem = bus.getTransactionSystem();

if (txSystem.withinTransaction())
{
 NotificationHandlerImpl notHandler = new

NotificationHandlerImpl;

 TransactionManager txManager =
txSystem.getTransactionManager(TransactionSystem.DEFAULT_TRAN
SACTION_TYPE);

 txManager.enlistForNotification(notHandler);
}

 143

CHAPTER 9 | Notification Handlers
144

CHAPTER 10

Exposing Artix as
an XA Resource
You can expose Artix as an XA resource manager by registering
the Artix XA switch with a third-party XA transaction manager.

In this chapter This chapter discusses the following topics:

Introduction to the Artix XA Resource Manager page 146

Obtaining an Artix XA Resource Manager page 150

Artix XA Open and Close Strings page 155

Configuring the Artix XA Resource Manager page 157
 145

CHAPTER 10 | Exposing Artix as an XA Resource
Introduction to the Artix XA Resource
Manager

Overview The most common use case for XA in Artix is where you register a third-party
resource manager (such as an Oracle DB) with Artix and Artix is responsible for
coordinating the transactions.

It is possible, however, to reverse these roles, so that Artix assumes the role of
an XA resource manager and a foreign transaction manager is responsible for
coordinating the transactions in Artix. To support this use case, Artix provides
an XA switch, which can be registered with the foreign transaction manager.
Although this use case is much less common than the former, there are two
possible scenarios where you might want to expose Artix as an XA resource
manager, as follows:

• Scenario 1 - local resource.

• Scenario 2 - remote resource.
146

Introduction to the Artix XA Resource Manager
Scenario 1 - local resource In the scenario shown in Figure 26, the Artix XA resource manager is registered
with the Microsoft DTC transaction manager and has responsibility for
managing a local resource. This scenario could arise, for example, if you have
already implemented a recoverable resource using the Artix transaction API and
you now want to integrate the resource with a third party transaction manager
(such as Microsoft DTC).

Of course, it is unlikely that you would implement an Artix recoverable resource
just for this purpose. But if you already have such an implementation, the Artix
XA switch enables you to integrate it rapidly with a third-party transaction
manager.

Figure 26: Artix XA Resource Manager Manages a Local Resource

Application Program

Resource

Artix
Tx Manager

Microsoft DTC
Tx Manager

XA Interface

enlist()
 147

CHAPTER 10 | Exposing Artix as an XA Resource
Scenario 2 - remote resource In the scenario shown in Figure 27, the Artix XA resource manager is registered
with the Microsoft DTC transaction manager, but the managed resource (or
resources) belongs to a remote server. In this case, the Artix Bus is effectively
being used as a transport stack to facilitate interoperability with a remote server
that manages a transactional resource. Artix uses the IIOP protocol to
communicate with the CORBA server and the OTS standard is used to
coordinate the distributed CORBA transactions.

To program this example, you would demarcate the transactions using the
relevant API from Microsoft DTC. To access the operations supported by the
remote CORBA server, use the Artix programming API (the relevant function
signatures for the operations are provided in the Artix stub code).

How to use the Artix XA switch To use the Artix XA switch with a third-party transaction manager, perform the
following steps:

1. Obtain the Artix XA switch—you need to obtain a pointer to a struct of

xa_switch_t type (as specified by the XA standard). Artix provides a

number of ways of obtaining the Artix XA switch instance. See “Obtaining

an Artix XA Resource Manager” on page 150 for details.

2. Register the Artix XA switch—after obtaining a pointer to the Artix XA

switch, you must register the switch instance with your third-party

transaction manager. Typically, the registration step consists of a single

Figure 27: Artix XA Resource Manager Manages a Remote Resource

Application Program

Resource

Artix
Tx Manager

Microsoft DTC
Tx Manager

XA Interface OTS

CORBA
Server

IIOP/TLS
148

Introduction to the Artix XA Resource Manager
function call that requires you to provide an open string and a close string

(for details of the Artix-specific open and close strings, see “Artix XA

Open and Close Strings” on page 155).

For details of how to register the XA switch, consult the documentation for

your third-party transaction manager.

3. Configure the Artix XA resource manager—the Artix XA resource

manager needs to be configured as described in “Configuring the Artix XA

Resource Manager” on page 157.

4. Observe the usual XA programming conventions—according to the usual

XA programming conventions, once you have registered the Artix XA

switch, the third-party transaction manager, and not the Artix transaction

system, is responsible for transaction demarcation. This implies that you

should not use the begin_transaction(), commit_transaction(), and

rollback_transaction() functions from the TransactionSystem class

to demarcate transactions.
 149

CHAPTER 10 | Exposing Artix as an XA Resource
Obtaining an Artix XA Resource Manager

Overview Artix supports several different ways of obtaining an XA resource manager.
Essentially, this involves providing a pointer to the xa_switch_t struct. The
different approaches to obtaining the XA switch are described in the following
subsections.

In this section This section contains the following subsections:

Obtaining the XA Switch from a Global Function page 151

Obtaining the XA Switch from a Bus Instance page 152

Obtaining the XA Switch from a Switch Load File page 153
150

Obtaining an Artix XA Resource Manager
Obtaining the XA Switch from a Global Function

Overview In this scenario, you obtain a pointer to the Artix xa_switch_t instance by
calling a global function. Use this approach when the external transaction
manager provides an API function to enlist the XA switch and you do not have
an instance of an Artix Bus.

GetXaSwitch() function To obtain a pointer to the Artix XA switch, call the GetXaSwitch() function,
which is a C function defined in the global scope. The GetXaSwitch() function
takes no arguments and has a return type of xa_switch_t *.

Example Example 23 shows how to obtain an Artix XA switch using the GetXaSwitch()
function. Remember to include the it_bus/xa_switch.h header file.

Required library You need to link your code with the Artix it_xa_switch library.

Example 23: Obtaining the Artix XA Switch Using GetXaSwitch()

// C++
#include <it_bus/xa_switch.h>
....
xa_switch_t* artix_xa_switch = ::GetXaSwitch();
....
 151

CHAPTER 10 | Exposing Artix as an XA Resource
Obtaining the XA Switch from a Bus Instance

Overview In this scenario, you obtain a pointer to the Artix xa_switch_t instance through
an IT_Bus::XATransactionManager object, which you can obtain from the
Artix Bus. Use this approach when the external transaction manager provides an
API function to enlist the XA switch and you do have an instance of an Artix
Bus.

get_xa_switch() function To obtain a pointer to the Artix XA switch, call the get_xa_switch() function,
which is a member of the IT_Bus::XATransactionManager class. The
get_xa_switch() function takes no arguments and has a return type of
xa_switch_t *.

Example Example 24 shows how to obtain an Artix XA switch from the Bus instance, by
calling the IT_Bus::XATransactionManager::get_xa_switch() function.

Required library You need to link your code with the Artix it_bus library.

Example 24: Obtaining the Artix XA Switch from a Bus Instance

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>

IT_Bus::Bus_var bus = ...
...
IT_Bus::XATransactionManager& xa_tx_mgr = dynamic_cast
<
 IT_Bus::XATransactionManager,
 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_TYPE
)
>;
xa_switch_t* artix_xa_switch = xa_tx_mgr->get_xa_switch();
152

Obtaining an Artix XA Resource Manager
Obtaining the XA Switch from a Switch Load File

Overview In this scenario, the third-party transaction manager obtains the Artix XA switch
by loading a shared library file (the switch load file). Use this approach when the
external transaction manager does not provide an API function to enlist the XA
switch, but does support switch load files.

Using a switch load file To use a switch load file, you supply the third-party transaction manager (TM)
with the name and location of the relevant shared library or DLL. When the TM
loads the switch load library file, it calls a particular function to obtain the XA
switch instance. The mechanisms that are used to load the switch file and obtain
the XA switch instance are specific to the particular TM. Refer to your
third-party TM documentation for details.

Default switch load file Artix provides a default switch load file: the it_xa_switch library. The precise
name of the default switch load file depends on the platform, as shown in
Table 5.

The default switch load file exposes the C functions shown in Example 25.

Table 5: Default Switch Load File for Artix on Various Platforms

Platform Link Library Shared Library or DLL

Windows VC++ 6.0 it_xa_switch.lib it_xa_switch5_vc60.dll

Windows VC++ 7.1 it_xa_switch.lib it_xa_switch5_vc71.dll

Solaris libit_xa_switch.so libit_xa_switch_sc53.so.5

HP-UX libit_xa_switch.sl libit_xa_switch_acca0331.5

AIX libit_xa_switch.a libit_xa_switch5_xlc60.so

Example 25: Functions in the Default Artix Switch Load File

/* C */
xa_switch_t* GetXaSwitch() /* for use by Microsoft DTC */
xa_switch_t* MQStart() /* for use by MQSeries */
 153

CHAPTER 10 | Exposing Artix as an XA Resource
Example of using a switch load file
with Microsoft DTC

For example, if you are writing a COM+ application on the Windows platform,
you can use Microsoft DTC to load a switch load file. Microsoft DTC provides
the following function to load a switch load file:

The argument, pszDSN, is used as the open string for the XA switch; the
argument, pszClientDllName, is the name of the switch load file; and the
argument, pdwRMCookie, is a cookie used to identify the resource manager
loaded by this call. See Opening an XA Connection in the Microsoft
documentation for more details.

Creating a custom switch load file You can create your own custom switch load file, as follows. Implement the
global function required by your third-party TM (usually a simple wrapper
function around the Artix GetXaSwitch() function). Then compile this code as a
shared library or DLL, as appropriate for the platform you are working on.

For example, the following code shows the implementation of a load switch file
for use with MQ-Series:

The header, cmqc.h, is an MQ-Series header file that defines the signature of the
MQStart() function. The MQSeries() function is called automatically by
MQ-Series after it loads the switch file.

// In IDtcToXaMapper

HRESULT RequestNewResourceManager(
 CHAR * pszDSN,
 CHAR * pszClientDllName,
 DWORD * pdwRMCookie
);

// C++
#include <cmqc.h>
#include<it_bus/xa_switch.h>

struct xa_switch_t * MQENTRY MQStart(void)
{
 return ::GetXaSwitch();
}

Note: You do not actually have to implement the MQStart() function,
because it is already defined in the default switch load file.
154

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/html/bfd5de9b-1863-49db-9762-a8e0fbdb6c15.asp

Artix XA Open and Close Strings
Artix XA Open and Close Strings

Overview When registering the Artix XA switch with a third-party transaction manager
(TM), the TM usually requires you to supply an open string and a close string.
These strings are used as follows:

• The TM passes the open string to the xa_open() function, when it opens a

connection to the Artix resource manager,

• The TM passes the close string to the xa_close() function, when it closes

the connection to the Artix resource manager.

The format of the open and close strings is specific to an XA switch
implementation. Therefore, just as Oracle and Sybase have their own proprietary
formats for their open and close strings, the Artix XA switch defines proprietary
open string and close string formats, as described here.

Specifying open and close strings The mechanism for specifying the open and close strings is defined by the
third-party TM implementation. See your TM documentation for details.

Open string For the Artix XA switch, the open string must be an Artix Bus ID. In practice,
the Bus ID is equivalent to the name of an Artix configuration scope.

For example, if you choose a Bus ID equal to xa_bus.ots_lite_coordinated,
Artix will initialize a Bus object that takes its configuration from the
xa_bus.ots_lite_coordinated scope in the Artix configuration file (for
example, see the configuration scope in Example 26).
 155

CHAPTER 10 | Exposing Artix as an XA Resource
Close string For the Artix XA switch, there are two cases to consider for the close string:

• If the Artix XA switch is obtained either from a global function (see

“Obtaining the XA Switch from a Global Function” on page 151) or from a

switch load file (see “Obtaining the XA Switch from a Switch Load File”

on page 153), the close string should usually be shutdown=true. This

close string tells the Bus to call IT_Bus::Bus::shutdown(true) when

xa_close() is called by the TM.

• If the Artix XA switch is obtained from a Bus instance (see “Obtaining the

XA Switch from a Bus Instance” on page 152), the close string should be

empty, "", implying that the caller will take care of calling

bus->shutdown().
156

Configuring the Artix XA Resource Manager
Configuring the Artix XA Resource Manager

Overview When Artix is exposed as an XA resource manager, it has the same
configuration requirements as an Artix application that uses the OTS transaction
coordinator. Two alternative configurations can be used:

• Configuration for a single resource.

• Configuration for multiple resources.

Configuration for a single
resource

Example 26 shows the configuration, xa_bus.ots_lite_coordinated, which is
suitable for an Artix XA resource manager that manages a single resource. This
type of configuration is suitable for the scenario shown in Figure 26 on
page 147.

The presence of the ots plug-in is required in the list of ORB plug-ins. The
default_tx_provider setting ensures that the xa_transaction_provider
plug-in is loaded by default. Strictly speaking, the latter setting is unnecessary.
Whenever a third-party transaction manager attempts to obtain a reference to the
Artix XA switch, the xa_transaction_provider plug-in is loaded
automatically.

To use this configuration with the Artix XA switch, pass
xa_bus.ots_lite_coordinated as the open string.

Example 26: Resource Manager Configuration for a Single Resource

Artix Configuration File
xa_bus
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 plugins:ots:default_ots_policy="adapts";
 plugins:bus:default_tx_provider:plugin=

"xa_transaction_provider";

 ots_lite_coordinated
 {
 initial_references:TransactionFactory:plugin ="ots_lite";
 };
};
 157

CHAPTER 10 | Exposing Artix as an XA Resource
Configuration for multiple
resources

Example 27 shows the configuration, xa_bus.ots_encina_coordinated,
which is suitable for an Artix XA resource manager that manages multiple
resources. This type of configuration is suitable for the scenario shown in
Figure 27 on page 148.

The presence of the ots plug-in is required in the list of ORB plug-ins.

To use this configuration with the Artix XA switch, pass
xa_bus.ots_encina_coordinated as the open string.

Example 27: Resource Manager Configuration for Multiple Resources

Artix Configuration File
xa_bus
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 plugins:ots:default_ots_policy="adapts";
 plugins:bus:default_tx_provider:plugin=

"xa_transaction_provider";

 ots_encina_coordinated
 {
 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:shlib_name = "it_ots_encina";
 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db =

"ots_encina_adm_help.txt";
 initial_references:TransactionFactory:plugin =

"ots_encina";
 plugins:ots_encina:initial_disk = "encina.log";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file = "encina_restart";
 plugins:ots_encina:backup_restart_file =

"encina_restart.bak";
 };
};

Note: There might be more resources registered than you think. In certain
cases, Artix automatically registers extra resources to support interposition.
See “Limitation of using OTS Lite with propagation” on page 110.
158

Configuring the Artix XA Resource Manager
Interoperating with WS-AT
transactions

The Artix XA resource manager can also interoperate over SOAP with
applications that require WS-AT transactions. This requires no special
configuration. Artix automatically loads the required WS-AT plug-ins, if they
are needed.
 159

CHAPTER 10 | Exposing Artix as an XA Resource
160

CHAPTER 11

MQ Transactions
This chapter describes how transactions are integrated with the
Artix MQ transport, which integrates with the IBM MQ-Series
product to provide a reliable message-oriented transport.

In this chapter This chapter discusses the following topics:

Reliable Messaging with MQ Transactions page 162

Oneway Invocations page 163

Synchronous Invocations page 166

Router Propagating MQ Transactions page 171
 161

CHAPTER 11 | MQ Transactions
Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ transactions in
your Artix applications. MQ transactions differ in several important respects
from ordinary Artix transactions, in particular:

• MQ transactions are managed by a transaction manager that is internal to

the MQ-Series product.

• MQ transactions are enabled by setting the relevant attributes of a WSDL

port in the WSDL contract.

• You can not initiate and terminate MQ transactions on the client side using

the Artix transaction API (for example, the functions in

IT_Bus::TransactionSystem are not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from
Artix transactions. On the server side, however, the MQ transaction is integrated
with an Artix transaction, so that an incoming message is considered to have
been processed, only if the Artix transaction completes successfully on the
server side.
162

Oneway Invocations
Oneway Invocations

Oneway invocation scenario Figure 28 shows a oneway invocation scenario, where an Artix client invokes
oneway operations on an Artix server over the MQ transport with MQ
transactions enabled. Because the WSDL operations are oneway (that is,
consisting only of output messages), the MQ transport does not require a reply
queue in this scenario.

Description of oneway invocation The oneway operation invocation shown in Figure 28 is executed in the
following stages:

Figure 28: Oneway Operation Invoked Over an MQ Transport with MQ
Transactions Enabled

receiveArtix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQ
send

RequestQueue
propagation. . .

Transaction
Scope

1
2

3 4

5

Transaction Scope

Stage Description

1 When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed onto
the client side of the MQ request queue, the MQ transaction is
committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server side
of the MQ transport.
 163

CHAPTER 11 | MQ Transactions
Oneway client configuration To enable transactional semantics for a client that invokes oneway operations
over the MQ transport, you should define a WSDL port as shown in
Example 28.

3 When the server pulls the request message off the incoming queue,
an Artix transaction is initiated before dispatching the request to
the relevant Artix servant.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction context
(for example, a WS-AT context) and enable the remote servers to
participate in the transaction.

5 If the operation completes its work successfully, the transaction is
committed and the request message permanently disappears from
the queue.

On the other hand, if the operation is unsuccessful, the transaction
is rolled back and the request message is pushed back onto the
queue. The request message is immediately reprocessed (the
maximum number of times the message can be processed is
determined by the queue’s backout threshold—see “Configuring
the backout threshold” on page 169).

Stage Description

Example 28: WSDL Port Configuration for Oneway Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 ...
 </wsdl:port>
</wsdl:service>
164

Oneway Invocations
Because the invocation is oneway, there is no need to specify a reply queue
manager. To enable transactions, you must set the Transactional attribute to
internal and the Delivery attribute to persistent.

Oneway server configuration On the server side, you must configure both the WSDL contract and the Artix
configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway invocations
over the MQ transport, you should define a WSDL port as shown in
Example 29.

To enable transactions, you must set the Transactional attribute to internal
and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a request
message from the MQ transport. Because this transaction is managed by an Artix
transaction manager, you must load and configure one of the Artix transaction
systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a Transaction
System” on page 65.

Example 29: WSDL Port Configuration for Oneway Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="receive"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 </wsdl:port>
</wsdl:service>
 165

CHAPTER 11 | MQ Transactions
Synchronous Invocations

Synchronous invocation scenario Figure 29 shows a synchronous invocation scenario, where an Artix client
invokes normal operations on an Artix server over the MQ transport with MQ
transactions enabled. Because the WSDL operations are synchronous (that is,
consisting of output messages and input messages), the MQ transport requires a
reply queue.

Description of synchronous
invocation

The synchronous operation invocation shown in Figure 29 is executed in the
following stages:

Figure 29: Synchronous Operation Invoked Over the MQ Transport with MQ
Transactions Enabled

receive

Artix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQRequestQueue

propagation. . .

1 2 3

4

5

Transaction Scope

MQ MQReplyQueue

6

send

7
receive send

Stage Description

1 When the client invokes a synchronous operation over MQ, an MQ
transaction is initiated.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server side
of the MQ transport.
166

Synchronous Invocations
3 When the server pulls the request message off the incoming queue,
an Artix transaction is initiated before dispatching the request to
the relevant Artix servant.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction context
(for example, a WS-AT context) and enable the remote servers to
participate in the transaction.

5 If the operation completes its work successfully, the transaction is
committed, the request message permanently disappears from the
request queue, and a reply message gets pushed onto the reply
queue.

On the other hand, if the operation is unsuccessful, the transaction
is rolled back. No reply message is sent and the request message is
pushed back onto the request queue. The request message is
immediately reprocessed (the maximum number of times the
message can be processed is determined by the request queue’s
backout threshold—see “Configuring the backout threshold” on
page 169).

6 MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client side
of the MQ transport.

7 When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side transaction,
however, it is not possible for the client code to receive a rollback
exception from the server.

It is possible to manage blocked calls by defining the Timeout
attribute on the mq:client element in the WSDL contract. If the
timeout is exceeded, an exception will be thrown.

Stage Description
 167

CHAPTER 11 | MQ Transactions
Synchronous client configuration To enable transactional semantics for a client that invokes synchronous
operations over the MQ transport, you should define a WSDL port as shown in
Example 30.

To enable transactions, you must set the Transactional attribute to internal
and the Delivery attribute to persistent.

Synchronous server configuration On the server side, you must configure both the WSDL contract and the Artix
configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous
invocations over the MQ transport, define a WSDL port as shown in
Example 31.

Example 30: WSDL Port Configuration for Synchronous Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 ...
 </wsdl:port>
</wsdl:service>

Example 31: WSDL Port Configuration for Synchronous Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
168

Synchronous Invocations
To enable transactions, you must set the Transactional attribute to internal
and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a request
message from the MQ transport. Because this transaction is managed by an Artix
transaction manager, you must load and configure one of the Artix transaction
systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a Transaction
System” on page 65.

Configuring the backout threshold You can configure the backout threshold using the runmqsc command-line tool,
which is provided as part of the MQ-Series product. To configure a queue to use
backouts, set the following MQ attributes:

• BOTHRESH—the backout threshold, which defines the maximum number of

times a message can be pushed back onto the queue.

• BOQNAME—the backout queue name. If the current backout count equals the

backout threshold, Artix puts the message onto the backout queue whose

name is given by BOQNAME.

Hence, the BOQNAME queue would contain all of the messages that have been
rolled back more than BOTHRESH times. The administrator can then manually
examine the messages stored in the BOQNAME queue and take appropriate
remedial action.

For more details about how to set MQ attributes, see your MQ-Series user
documentation.

 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 </wsdl:port>
</wsdl:service>

Example 31: WSDL Port Configuration for Synchronous Server Over MQ
 169

CHAPTER 11 | MQ Transactions
Accessing the backout count On the server side, you can obtain the backout count for the current message
using Artix contexts. To access the current backout count, perform the following
steps:

1. Retrieve the server context identified by the

IT_ContextAttributes::MQ_INCOMING_MESSAGE_ATTRIBUTES QName.

2. Cast the returned context instance to the

IT_ContextAttributes::MQMessageAttributesType type.

3. Invoke the getBackoutCount() function to access the current backout

count.

For more details about programming with Artix contexts, see the JAX-RPC
Programmer’s Guide.
170

Router Propagating MQ Transactions
Router Propagating MQ Transactions

Router scenario Figure 30 shows a router scenario, where a message propagates through the
router with MQ transactions enabled. In this particular scenario, both the
router’s source endpoint and the router’s destination endpoint are configured to
use the MQ transport. It would also be feasible, however, to configure the
router’s destination endpoint to use a different transport—for example, a
transactional SOAP/HTTP transport.

Description of router invocation The router invocation shown in Figure 30 is executed in the following stages:

Figure 30: Router Propagating an MQ Transaction

Artix Client
MQ

Artix Router
MQ

WS-AT

WS-Coordination

MQ MQ

1
2

3 4 6

MQ
Artix Server

MQ

WS-AT

MQ

5

WS-Coordination

Stage Description

1 When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed onto
the client side of the MQ request queue, the MQ transaction is
committed.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the router side
of the MQ transport.

3 When the router pulls the request message off the incoming queue,
an Artix transaction is initiated.
 171

CHAPTER 11 | MQ Transactions
Router configuration The router must be configured to load a transaction coordinator, because the
router is responsible for initiating Artix transactions whenever it receives an MQ
request message. That is, you need to add one of the following plug-ins to the
orb_plugins list in the Artix configuration (depending on your preferred
transaction system): ws_coordination_service, ots_lite, or ots_encina.

For details of how to select a transaction system, see “Selecting a Transaction
System” on page 65.

Target server configuration In this particular scenario (where the destination endpoint is an MQ endpoint), it
is also necessary to configure the target server to load a transaction coordinator
plug-in.

On the other hand, if the destination endpoint was configured to use a different
transport—for example, SOAP/HTTP—it would not be necessary to load a
transaction coordinator and you could configure the target server in the same
way as the server examples described in “Selecting a Transaction System” on
page 65. In this case, the target server could participate directly in the transaction
initiated in the router and the router’s transaction coordinator would be
responsible for coordinating the transaction.

4 The router routes the request message to the appropriate
destination endpoint. In this example, the destination endpoint uses
the MQ transport.

5 MQ-Series is responsible for reliably transmitting the request
message from the router side of the MQ transport to the target
server side of the MQ transport.

6 When the target server pulls the request message off the incoming
queue, an Artix transaction is initiated.

Stage Description
172

Index

A
attach_thread() function

and suppressing propagation 112

B
backout count 170
backout threshold 164, 167

configuring 169
BOQNAME attribute 169
BOTHRESH attribute 169

D
Delivery attribute 165
detach_thread() function

and suppressing propagation 112

G
getBackoutCount() function 170

I
interoperability

transaction propagation 108
interposition

resource for 111

M
MQ-Series

BOQNAME attribute 169
BOTHRESH attribute 169
runmqsc command-line tool 169

MQ transactions 162
backout count 170
backout threshold 164, 167, 169
Delivery attribute 165

synchronous invocation 166
Transactional attribute 165

O
oneway invocations

and MQ transactions 163
OTS Lite

limitations on using 111

R
reliable messaging

and transactions 162
runmqsc command-line tool 169

S
synchronous invocation

and MQ transactions 166

T
Transactional attribute 165
TransactionAlreadyActiveException 86
transaction contexts 108
TransactionParticipant 135
transaction propagation 108

suppressing, how to 112
transactions 28

compatibility with CORBA OTS 31
example 28
properties 29

TransactionSystemUnavailableException 86

U
UsageStyle attribute 168
 173

INDEX
174

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Documentation Library

	Introduction to Transactions
	Basic Transaction Concepts
	Artix Transaction Features
	X/Open Distributed Transaction Processing
	X/Open DTP Architecture
	X/Open XA Interface

	Getting Started with Transactions
	Sample Scenario
	Client Example
	Server Example
	Configuration

	Selecting a Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring Non-Recoverable WS-AT
	Configuring Recoverable WS-AT

	Basic Transaction Programming
	Artix Transaction Interfaces
	Beginning and Ending Transactions
	Server Programming
	Registering an XA Resource
	Dynamic Registration Optimization
	Writing a Custom Resource
	Server-Side Programming Model

	Transaction Propagation
	Transaction Propagation and Interposition

	Threading
	Client Threading
	Threading and XA Resources

	Transaction Recovery
	Transactions Systems and Recovery
	Transaction Recovery Scenarios
	Server Crash before or during Prepare Phase
	Server Crash after Prepare Phase
	Transaction Coordinator Crash

	Recoverable Resources
	Transaction Participants
	Interposition

	Notification Handlers
	Introduction to Notification Handlers

	Exposing Artix as an XA Resource
	Introduction to the Artix XA Resource Manager
	Obtaining an Artix XA Resource Manager
	Obtaining the XA Switch from a Global Function
	Obtaining the XA Switch from a Bus Instance
	Obtaining the XA Switch from a Switch Load File

	Artix XA Open and Close Strings
	Configuring the Artix XA Resource Manager

	MQ Transactions
	Reliable Messaging with MQ Transactions
	Oneway Invocations
	Synchronous Invocations
	Router Propagating MQ Transactions

	Index

