IONA

Artix:

Artix Connect User's Guide
Version 3.0, June 2005

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies
PLC makes no warranty of any kind to this material including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. IONA shall not
be liable for errors contained herein, or for incidental or consequential damages in con-
nection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 15-Jun-2005

Contents

List of Figures
Preface

Chapter 1 Introduction to Artix Connect
Artix Connect Overview
Artix Connect System Components
Artix Connect Usage Scenarios
.NET Client Invoking on Web service using SOAP over HTTP
.NET Client Invoking on a CORBA Server using I|IOP

Chapter 2 Getting Started
Introduction
Running the Hello World Demo
Background Information

Chapter 3 Developing .NET Clients
Prerequisites
Developing .NET Clients
Generating .NET Metadata from a WSDL file Using the GUI
Writing a C# Client
Building and Running the Client

Chapter 4 Client Callbacks
Introduction to Callbacks
Implementing Callbacks

Callback Demonstration
Callback WSDL Contract
Implementing the Client in C#
Implementing the Server

Chapter 5 Development Support Tools

27
28
29
30
38
41

45
46
47
48
50
54
57

59

CONTENTS

Artix Connect Wizard
wsdltodotnet Command-line Utility

Chapter 6 Deploying an Artix Connect Application
Deployment Model
Deployment Steps

Chapter 7 Introduction to WSDL
WSDL Basics
Abstract Data Type Definitions
Abstract Message Definitions
Abstract Interface Definitions
Mapping to the Concrete Details

Chapter 8 WSDL to .NET Mapping
Mapping a WSDL Contract to CTS
Port Types
Operations
Messages
Document/Literal Wrapped Style
Simple Types
Atomic Types
Lists
Unsupported Simple Types
Complex Types
Sequence and All Complex Types
Arrays
Choice Complex Type
Attributes
Enumerations
Occurance Constraints
SOAP Arrays

Chapter 9 Configuration
Overview
Environment Variables

60
63

65
66
68

69
70
73
76
79
82

83
84
85
87
88
90
93
94
96
98
99

100
102
104
106
108
109
110

111
112
113

CONTENTS

Index 119

CONTENTS

vi

List of Figures

Figure 1: Artix Connect Overview
Figure 2: .NET client invoking on SOAP over HTTP Web Service
Figure 3: .NET client invoking on a CORBA server over I10P

Figure 4: Selecting Artix Connect Demos

Figure 5: Artix Connect Demos Loaded into Visual Studio .NET 2003
Figure 6: Building Demos from Visual Studio .NET 2003

Figure 7: Running the Hello World Server—Set as StartUp Project

Figure 8: Running the Hello World Server—Start Without Debugging

Figure 9: Running Hello World Client—Set as StartUp Project

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

Running the Hello World Client—Start Without Debugging
Creating a New Project

Starting a New Project

C# Project

Launching the Add New Item Dialog Box

Launching the Artix Connect Wizard

Selecting WSDL File Using Artix Connect Wizard
Required Files Added to Project by Artix Connect Wizard
Greeter.cs

Building the Client

Opening the Hello World Demo Solution

Opening Demo Solution

Running the Client

Callback in Progress

Artix Connect Wizard

Typical Deployment Scenario

Selecting My Computer

10
16
17
18
19
20
21
22
31
32
33
34
35
36
37
38
41
42
43
44
48
61
66
117

vii

LIST OF FIGURES

Figure 27: Setting Environment Variables Manually 118

viii

Preface

Artix Connect is a .NET custom remoting channel that enables transparent
communication between clients that are running in a Microsoft .NET
environment and servers using any of the transports and protocols supported
by Artix, including:

HTTP

IIOP

CORBA

BEA Tuxedo*

IBM WebSphere MQ (formerly MQSeries)*
TIBCO Rendezvous*

Java Messaging Service*

In addition, Artix Connect supports all of the bindings (marshalling schemes)
supported by Artix, including

SOAP

CORBA Common Data Representation (CDR)
Pure XML

Fixed record length (FRL)*

Tagged (variable record length)*

TibrvMsg (a TIBCO Rendevous format)*
Tuxedo Field Manipulation Language (FML)*

Note: To use any of the transports, protocols and bindings marked with
a *, you must have a license for Artix Advanced.

PREFACE

Artix Connect is designed to allow .NET programmers to use any .NET
language (for example, Visual Basic .NET, C#, J#, and so on) to easily
access services running in Windows, UNIX, or 0S/390 environments that
have been described in Artix WSDL contracts. It enables .NET programmers
to use the tools familiar to them to build heterogeneous systems that use
both .NET and any of the middleware platforms supported by Artix.

What is Covered in this Guide

This book describes how to use Artix Connect in a .NET environment.

Who Should Read this Guide

This guide is intended for .NET application programmers who want to use
Artix Connect to develop and deploy distributed applications that can
communicate with any of the middleware platforms supported by Artix.

This guide assumes that the reader already has a working knowledge of
.NET-based tools, such as Visual Basic .NET and C#.

The reader does not need an in-depth knowledge of Artix or WSDL concepts
to use Artix Connect. However, some knowledge would help, particularly
with more complex WSDL contracts. The following Artix guides are a good
place to start learning:

® Getting Started with Artix

® Designing Artix Solutions

In addition, the following may provide useful background information:

® Understanding Web Services: XML, WSDL, SOAP, and UDDI, written
by Eric Newcomer, published by Addison Wesley, ISBN
0-201-75081-3.

® Understanding SOA with Web Services, written by Eric Newcomer
and Greg Lomow, published by Addison Wesley, ISBN
0-321-18086-0.

® The W3C XML Schema page at: www.w3.org/XML/Schema.

® The W3C WSDL specification at: www.w3.org/TR/wsdl.

Required Versions

To use Artix Connect, you need at least Microsoft .NET Framework 1.1 and
Microsoft Visual Studio .NET 2003 installed on your machine.

http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
http://www.w3.org/XML/Schema
http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.w3.org/TR/wsdl

PREFACE

Organization of this Guide
This guide is divided as follows:

Chapter 1, “Introduction to Artix Connect”

This chapter introduces Artix Connect, its system components and some
usage models.

Chapter 2, “Getting Started”

This chapter gets you up and running quickly with Artix Connect by walking
you though a simple demo application.

Chapter 3, “Developing .NET Clients”

This chapter helps to get you up and running quickly with application
programming with Artix Connect. It explains the basics you need to know to
develop a simple .NET client, written in C#, which can invoke on an
existing Web service.

Chapter 4, “Client Callbacks”

.NET clients can implement some of the functionality associated with
servers, and all servers can act as clients. A callback invocation is a
programming technique that takes advantage of this. This chapter describes
how to implement client callbacks.

Chapter 5, “Development Support Tools”

This chapter describes the Artix Connect Web service wizard and the
wsdl t odot net command-line utility.

Chapter 6, “Deploying an Artix Connect Application”

This chapter provides an overview of the deployment model you can adopt
when deploying a distributed application with Artix Connect. It also
describes the steps you must follow to deploy a distributed Artix Connect
application.

Chapter 7, “Introduction to WSDL”

Although you do not need to understand WSDL in any great detail to use
Artix Connect, understanding the basics can help. This chapter introduces
basic WSDL concepts.

Chapter 8, “WSDL to .NET Mapping”

WSDL types are defined in XML, and .NET types are defined in Microsoft
Intermediate Language (MSIL). To allow interworking between .NET clients
and Web services, .NET clients must be presented with metadata that

Xi

PREFACE

Knowledge base

Update center

Support

Documentation feedback

Newsgroup

Xii

describes the interfaces exposed by the Web service. When using .NET
Remoting, the .NET types must use the .NET Common Type System (CTS).
This chapter outlines how Artix Connect maps WSDL-to-.NET CTS.

Chapter 9, “Configuration”

This chapter describes the environment variables that are specific to Artix
Connect, and their associated values.

Additional Resources

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about Artix
Connect and other IONA products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with Artix Connect or any other IONA product, contact
IONA at: support @ona. com

Comments on IONA documentation can be sent to:
docs- support @ona. com

The IONA newsgroup and discussion forums provide feedback and answers
to questions about IONA products:

http://ww. i ona. coni product s/ newsgr oups. ht m

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
mailto:docs-support@iona.com
http://www.iona.com/products/newsgroups.htm
mailto:support@iona.com

PREFACE

Typographical conventions
This book uses the following typographical and keying conventions:

Fi xed width

Fixed width italic

[talic

Bold

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the OCRBA: : (oj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Fixed width italic words or characters in code and
commands represent variable values that you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd / user s/ Your User Nane

Italic words in normal text represent emphasis and
new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes (for example, the User Preferences
dialog.)

xiii

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Xiv

In this chapter

CHAPTER 1

Introduction to
Artix Connect

Artix Connect is a custom .NET remoting channel that enables
transparent communication between clients that are running
in a Microsoft .NET environment and services deployed on any
of the middleware platforms supported by Artix.

This chapter discusses the following topics:

Artix Connect Overview page 2

Artix Connect System Components page b

Artix Connect Usage Scenarios page 6

CHAPTER 1 | Introduction to Artix Connect

Artix Connect Overview

Overview

In this section

What is Artix Connect?

This section provides an introductory overview of Artix Connect in terms of
how it facilitates communication between .NET clients and any of the
middleware platforms supported by Artix.

The following topics are discussed:

What is Artix Connect?

Graphical Overview of Role

WSDL contract

Supported Transports, Protocols, and Bindings

The Artix Connect is a custom .NET remoting channel, referred to as
Artix. Renot i ng. Its purpose is to support application integration across
network boundaries, different operating systems, and different programming
languages. Specifically, it provides a high performance bridge that enables
.NET clients to communicate with servers using any of the transports,
protocols, and bindings (marshalling schemes) supported by Artix.

Graphical Overview of Role

WSDL contract

Artix Connect Overview

Figure 1 provides a conceptual overview of how Artix Connect facilitates the
integration of .NET clients and the middleware platforms supported by Artix:

CORBA Server

nel Application

=N

w

ervice

] @ Web
Custom

Remoting
4 Channel SOAP/HTTP
.net Proxy Artix Connect™
Object

N

WebSphere
MQ Server

NN

WSDL Contract

Figure 1: Artix Connect Overview

To connect your .NET client to any of the middleware platforms supported
by Artix, all Artix Connect requires is the WSDL contract for that service.
Artix uses Web Services Description Language (WSDL) contracts to express
the logical interaction between services. With Artix, IONA has taken WSDL
beyond simple SOAP over HTTP Web services by extending the features of
WSDL to model diverse enterprise systems in a technology neutral way.

It separates the service from its underlying middleware mechanism, and
allows the service to be invoked over an optimized connection using existing
transport mechanisms such as WebSphere MQ (previously known as
MQSeries) and Tuxedo.

The main elements of an Artix WSDL contract are as follows:

® Port types—a port type defines remotely callable operations that have
parameters and return values.
® Types—user defined data types used to describe messages.

CHAPTER 1 | Introduction to Artix Connect

® Binding—a binding describes how to encode all of the operations and
data types associated with a particular port type. A binding is specific
to a particular protocol; for example, SOAP or CORBA.

® Port definitions—a port contains endpoint data that enables clients to
locate and connect to a remote server; for example, a CORBA port
might contain a stringified IOR.

For a basic introduction to WSDL, see “Introduction to WSDL"” on page 69.

For more information about Artix and WSDL, see the Artix 3.0
documentation, available online at:
http://www.iona.com/support/docs/artix/3.0/index.xml

Supported Transports, Protocols, A key feature of Artix Connect is that it supports all of the transports,

and Bindings protocols that Artix supports, including:
® HTTP
* |IOP
® CORBA

® BEA Tuxedo*

®* IBM WebSphere MQ (formerly MQSeries)*
¢ TIBCO Rendezvous*

® Java Messaging Service*

In addition, Artix Connect supports all of the bindings (marshalling schemes)
supported by Artix, including

® SOAP
® CORBA Common Data Representation (CDR)
® Pure XML

® Fixed record length (FRL)*

® Tagged (variable record length)*

® TibrvMsg (a TIBCO Rendevous format)*

® Tuxedo Field Manipulation Language (FML)*

The same binding can be used by multiple protocols or a binding can be
used by only one protocol.

Note: To use any of the transports, protocols and bindings marked with
a *, you must have a license for Artix Advanced.

http://www.iona.com/support/docs/artix/3.0/index.xml

Artix Connect System Components

Artix Connect System Components

Overview

Bridge

.NET client

Artix service

This section describes the various components that comprise an Artix
Connect system. The following topics are discussed:

® Bridge
® NET client
® Artix service

The bridge is a synonym for Artix Connect itself. It is implemented as a
custom .NET remoting channel, referred to as Arti x. Renoti ng. It is
implemented in a mixture of managed and unmanaged DLLs. This channel
uses a dynamic marshaller and the WSDL contract to formulate dynamic
requests that can be invoked on the service defined in the WSDL contract.
The bridge provides the mappings and performs the necessary translation
between .NET common type system (CTS) and WSDL types.

The bridge is used in conjunction with the Artix Connect Wizard, which
generates .NET metadata from a WSDL contract, from within the Microsoft
Visual Studio .NET 2003 development environment.

A .NET client can use Artix Connect to communicate with any service
described in an Artix WSDL contract. This client can be written in any
language compatible with .NET, including Visual Basic .NET, Visual C++,
C#, J#, and Jscript.

Any service that has been defined in an Artix WSDL contract can be
contacted by .NET clients, using Artix Connect.

CHAPTER 1 | Introduction to Artix Connect

Artix Connect Usage Scenarios

Overview Artix Connect can be used to connect .NET clients to any middleware
platform supported by Artix, once the back-end service is defined in a WSDL
contract.

In this section This section gives an overview of two such scenarios:

.NET Client Invoking on Web service using SOAP over HTTP page 7

.NET Client Invoking on a CORBA Server using I10P page 10

Artix Connect Usage Scenarios

.NET Client Invoking on Web service using SOAP over HTTP

Overview

Graphical overview

Web service

This subsection describes a scenario in which Artix Connect connects a
.NET client to a Web service using SOAP over HTTP. It discusses the
following topics:

Graphical overview

Web service

WSDL contract

.NET client and Artix Connect

Using a transport other than SOAP over HTTP
Demo

Figure 2 is a graphical overview of this usage model:

Net client Application Web Service

) N

Custom
Remaoting i
e
— Chamnel SOAP/HTTP H+— 4
Artix Connect™
Artix Target
Web Service
Reference

Web Service ‘

WSDL Contract

Figure 2: .NET client invoking on SOAP over HTTP Web Service

The Web service can be any SOAP over HTTP Web service. In this case, it is
implemented in C++, using Artix. The advantage of using Artix is that
clients can use the enhanced quality of services that it provides; for
example, callbacks.

CHAPTER 1 | Introduction to Artix Connect

WSDL contract

.NET client and Artix Connect

Using a transport other than SOAP
over HTTP

For more detail on using Artix to develop a SOAP over HTTP Web service,
see the Artix documentation on the IONA documentation website.

The types and protocols that can be used to contact the Web service are
contained in its WSDL contract. In this case, the Artix Designer, which is
part of the Artix product, is used to design the WSDL contract.

For more details on using Artix to design WSDL contracts, see the Designing
Artix Solutions guide.

Artix Connect provides a dynamic bridge for .NET in the form of a custom
remoting channel, referred to as Arti x. Renoti ng. The .NET client loads this
bridge in-process (that is, in the client’s address space). Artix Connect uses
the transport and protocol details contained in the WSDL file to
communicate between the .NET client machine and SOAP over HTTP Web
service. The WSDL file is the only thing required by Artix Connect to enable
the .NET client to successfully invoke on the Web service. No changes are
required on the server side.

The .NET client registers the Arti x. Renot i ng custom remoting channel. The
.NET client then creates a proxy for the remote service. The .NET client can
subsequently make calls on this proxy as if it were a local .NET object. The
proxy uses the Arti x. Renot i ng channel to make a corresponding call on the
target Web service.

Artix Connect provides a Web service wizard that generates .NET metadata
from the WSDL contract from within the Microsoft Visual Studio .NET 2003
development environment. The Arti x. Renot i ng channel exposes the
mapped .NET types as metadata contained in a .NET assembly, allowing
automatic mapping of .NET object references to the interfaces and object
references defined in the WSDL file at runtime.

The client does not need to know that the target object is, for example, a
SOAP over HTTP Web service. A .NET client can be written in Visual Basic,
C#, J#, C++ or any language that supported by .NET.

If required, the deployed .NET client can use different transports and
protocols; for example, if the SOAP over HTTP transport preforms too slowly
in a deployed system. You can simply change the WSDL file to reflect the
new transport details and Artix Connect takes care of the rest. You do not
need to make any changes to the client.

http://www.iona.com/support/docs/index.xml

Demo

Artix Connect Usage Scenarios

Artix Connect includes a demo that illustrates a .NET client invoking on a
SOAP over HTTP Web service. It is located in:

Arti xConnectInstall D r/artix/ Version/ denos/ dot net/ hel | o_wor | d

For details on how to run this demo, see the README. t xt file in the demo
directory.

CHAPTER 1 | Introduction to Artix Connect

.NET Client Invoking on a CORBA Server using IIOP

Overview

Graphical overview

CORBA server

10

This subsection describes a scenario in which Artix Connect connects a
.NET client to a CORBA server. It discusses the following topics:

® Graphical overview

¢ CORBA server

® WSDL contract

® .NET client and Artix Connect
® Demo

Figure 3 is a graphical overview of this usage model:

Nel client Application CORBA Server

1 ™
Custam
Remoting Channel

[T10F |
— — 1 IIOF I
i . .-—-‘-_\""'—\.
Artix Connect - . Target CORBA
.net Proxy CORBA Object Obiect
Object Reference |

WSDL Contract

Figure 3: .NET client invoking on a CORBA server over IIOP

The server can be any CORBA-compliant server. In this case it is
implemented in C++ using Orbix. No changes are required on the server
side.

For more detail on CORBA and Orbix, see the Orbix documentation,
available on the IONA documentation website.

http://www.iona.com/support/docs/index.xml

WSDL contract

.NET client and Artix Connect

Demo

Artix Connect Usage Scenarios

The CORBA server's interface is specified in a CORBA IDL file. The Artix
Designer, which is part of the Artix product, is used to generate an Artix
WSDL contract from the IDL file. The WSDL contract specifies that clients
should communicate with the server using IIOP. In addition, the WSDL
contract contains details of the CORBA server’s location (IOR, cor banare or
cor bal oc).

For more detail on how to use Artix to expose a CORBA service as a Web
service, see the Artix for CORBA guide.

Artix Connect provides a dynamic bridge for .NET in the form of a custom
remoting channel, referred to as Arti x. Renoti ng. The .NET client loads this
remoting channel in-process (that is, in the client’s address space). Artix
Connect uses the transport and protocol details contained in the WSDL
contract to communicate between the .NET client machine and the CORBA
server. The WSDL file is the only thing required by Artix Connect to enable
the .NET client to successfully invoke on the CORBA server. No changes are
required on the server side.

The .NET client registers the Arti x. Renot i ng custom remoting channel and
creates a proxy for the remote object. The .NET client can subsequently

make calls on this proxy as if it were a local .NET object. The proxy uses the
Artix. Renot i ng channel to make a corresponding call on the target object.

Artix Connect provides a Web service wizard that generates .NET metadata
from the WSDL contract from within the Microsoft Visual Studio .NET 2003
development environment. The Arti x. Renoti ng channel exposes the
mapped .NET types as metadata contained in a .NET assembly, allowing
automatic mapping of .NET object references to the interfaces and object
references defined in the WSDL file at runtime.

The client does not need to know that the target object is, for example, a
CORBA object. A .NET client can be written in Visual Basic, C#, J#, C++
or any language supported by .NET.

Artix Connect includes a demo that illustrates a .NET client invoking on a
CORBA server. It is located in:

Arti xConnectInstall D r/artix/ Version/ denos/ dot net/corba grid

11

http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm

CHAPTER 1 | Introduction to Artix Connect

For details on how to run this demo, see the README. t xt file in the demo
directory.

12

In this chapter

CHAPTER 2

Getting Started

This chapter focuses on getting started with Artix Connect. It
walks you through a simple Hello World demo that shows you
how a Web service can be invoked from a standard C# .NET

client using Artix Connect.

This chapter contains the following sections:

Introduction page 14
Running the Hello World Demo page 15
Background Information page 23

13

CHAPTER 2 | Getting Started

Introduction

Overview

In this section

Prerequisites

Demo location

Running from the command line

14

This chapter is based on running Artix Connect Hel | o Vor | d demo. It shows
how you use Artix Connect to connect a .NET client to a SOAP over HTTP
Artix Web service.

This section gives details of the prerequisites to running the demo and
provides some basic details. The following topics are covered:

® Prerequisites
® Demo location
® Running from the command line

The Artix Connect demos are designed to run on Windows only.

In addition, you must have Microsoft Visual Studio .NET 2003 installed into
the default location on your Windows system.

The demo can be found in:

Arti xConnect I nstal | D r\artix\ Versi on\ denos\ dot net\ hel | o_wor| d

This chapter details how you can build and run the demo from within the
Visual Studio .NET 2003 development environment. You can, however, also
build and run the demo from the command line. For details, see the
README. t xt file in the demo directory.

Running the Hello World Demo

Running the Hello World Demo

Overview To run the Hel I o World demo from within the Microsoft Visual Studio .NET
2003 development environment, complete the following steps:

Step Action

1 | Set Artix Connect environment

Select the Artix Connect Demos

Build the demo

2
3
4 | Run the server
5

Run the client

Set Artix Connect environment The Artix Connect installer sets the environment variables for you. If,
however, you chose not set the environment variables while installing the
product, you must set them manually before building and running the demo.
See “Configuration” on page 111 for more detail.

15

CHAPTER 2 | Getting Started

Select the Artix Connect Demos

16

From the Windows Start menu, select the Artix Connect 3.0 Demos, as
shown in Figure 4:

7 Internet
Internet Explore|
0 | E-mail
Ti] Microsoft Office
Oy
Rational Clear
. Adobe FrameMal
@ Adobe Acrobat
- Command Prom)
Notepad

Acrobat Distiler

Ka

WebWorks Publ
Professional Editj

All Programs ®

&2

Figure 4:

Network Associates

@ Roxio Easy CD Creator 5
I startup

@ WinZip

G) Windows Media Player |
il 10NA ,
"8 Broadcom Advanced Control Suite
¥ sroadcom ASF Configuration

82, Burn CD & DVDs with Roxio

&% Internet Explorer

Microsoft Access

IE Microsoft Excel

Microsoft PowerPoint

"} MSN Explorer

My Bluetooth Places

@ Outlook Express

Artix 3.0

- Remote Assistance

eest Solution Center

ﬂ Windows Messenger

Iy Adobe ,
[E] Acrobat Distiler 5.0

[} Adobe Acrobat 5.0

Remote Administrator v2.1 4
ﬂ Open Office Document

IONA Artix 3.0 L4

fiii Artix Connect3.0 »

3

Documentation
[%] vicense Instaler
% Uninstal Artix Connect 3.0

P¥, Demos

g’] Documentation
dummy

Selecting Artix Connect Demos

Running the Hello World Demo

The demos load into the Visual Studio .NET 2003 development
environment as shown in Figure 5. In the example shown the

READMVE _DOTNET. t xt file is selected. This is a high-level readme that comes
with the demos.

Solution Items - Microsoft Development Environ

Fle Edit View Project Buld Debug ClearCase Tools Window Help

A-a-c @@ ¥ BB » Debug -] T REERTEH
%5 README_DOTNET.txt | RS Soluton Explo lution Items
n HAKAAARRK A A KA A AR AR AR AR A AR A ARk ha ok
] <] B2
5 Zrtix Connect for .NET Demos [¥] AssemblyInfo.cs
ju B R R R R R L T e 2 2 corba_grd.idl
5/
o 1 corba_grid.wsdl
® The Artix Connect demos are written in the ECURBAC”E”‘-“S
s s README.bxt
following Development Environment:
» g e - [corbagridserver
. . . = [EF ctstypetestdlient
* Microsoft Visual Studio .NET 2003 % [References
App.\co
To open the demos inside the Visual Studio [¥] AssemblyInfo.cs
environment, select the "dotnet.sln" Demos t £ ts_typetest_sozp.wsdl
from the "Artix Connect 3.0" folder on the &) README bt
&1 type_testwsdl
Button. [¥] TypeTestClient.cs
ctstypetestsarver
Alternatively, double click on the following = [E¥ hellotestclient
= [References
%IT PRODUCT DIR%\artix\3.0\demos\dotnet\dc 7] AssemblyInfo.cs
- - £ hello_world.wsdl
. [%1 HelloTest.cs
The demos are structured as Client and Serve B README.bt

inside a visual Studio solution. 173 hellotestserver

=1 £ Solution Ttems
The Artix Connect Clients are written in C#. 2] ReroME_DOTHET b
has an associated Web Service Server, which " b Solution Explorer | 73 Class View | @ Search |
demonstration purposes is written in C++. 1T
could be implemented in any of the platforms
or protocols that Artix supports - the C# CI |README_DOTNET.txt ProjltemPraperties
only the WSDL file. X
4 »

®

Properties

Qutput ax

Figure 5: Artix Connect Demos Loaded into Visual Studio .NET 2003

17

CHAPTER 2 | Getting Started

Build the demo

18

To build the demos, select Build|Build Solution, as shown in Figure 6:

Edit View Proj Buid | Debug ClearCase~, Tool window Help
3-= i@ @ 5 (8 BuldSolton Cui=shityB g 3
Rebuild Solution
README_DOTNET.txt | Gt SN 4b
HHEH KK H KKK Buid [
Artix C Rebuid Al »
Kk kk kK h Kk kkk BagchBuwd *
Configuration Manager...

The Artix MIECT UEMUS arewrTTtren in the

following Development Environment:
* Microsoft Visual Studio .NET 2003

To open the demos inside the Visual Studio
environment, select the "dotnet.sln" Demos t
from the "Artix Connect 3.0" folder on the
Button.

Rlternatively, double click on the followinc
%IT_PRODUCT_DIR%\artix\3.0\demos\dotnet\dc

The demos are structured as Client and Serve
inside a Visual Studio solution.

The Artix Connect Clients are written in C#.
has an associated Web Service Server, which
demonstration purposes is written in C++. 1
could be implemented in any of the platforms
or protocols that Artix supports - the C# C1

only the WSDL file.
4 »

Output a

o - BEERE-
x olution Explorer - Solution Items

[% Solution 'dotnet’ (8 projects)
corbacallbackelient
(5] References
App.ico
[£] AssemblyInfo.cs
() callback.idl
&1 callback.wsdl
[#] Clientobjectimpl.cs
[corbacallBack.cs
(2] README.tt
3 corbacallbackserver
= B} corbagridclient
¥ 3] References
App.ico
[AssemblyInfo.cs
& corba_grid.idl
#1 corba_grid.wsdl
[corsAclient.cs
2] README. bt
¥ corbagridserver
=H ctstypetestclient
¥ [References
App.ico
[Assemblylnfo.cs

" & solution Explorer | 2 Class |

Properties

+

v | A Search

| README_DOTNET.txt ProjitemProperties

Figure 6: Building Demos from Visual Studio .NET 2003

Run the server

Running the Hello World Demo

To run the server, complete the following steps:

1. Right-click on the hel | ot est server icon and select Set as StartUp

Project, as shown in Figure 7:

| hellotestserver - Microsoft Visual C++ [design] - README_DOTNET.txt

le Edt Vew Project Buid Debug ClearCase Tools Window Help
p-ra-sldd » Debug Ml

|| README_DOTHET.txt |
KhkRFA T IR A IR IR KT A TR A I bk d bk hhkhd
a
Artix Connect for .NET Demos
EEAEEEIXEIIE AKX IXEIAK AKX XA

The Artix Connect demos are written in the
following Development Environment:

* Microsoft Visual Studio .NET 2003

To open the demos inside the Visual Studio
environment, select the "dotnet.sln" Demos t
from the "Artix Connect 3.0" folder on the
Button.

Alternatively, double click on the following
%IT_PRODUCT_DIR%\artix\3.0\demos\dotnet\dc

The demos are structured as Client and Serve
inside a Visual Studio solution.

The Artix Connect Clients are written in C#.
has an associated Web Service Server, which
demonstration purposes is written in C++. 1
could be implemented in any of the platforms
or protocols that Artix supports - the C# C1

only the WSDL file. 5
4 »

Output o X

[Buikd ~|

—————— Build started: Project: hellotestserver, Configurat:

Perfarming Makefile nroieer actinns

eEmRE-.

EEE| soiston Explorer - helotestserver

[#] AssemblyInfo.cs
& corba_grid.idl
&1 corba_grid.wsdl
[corsAClient.cs
(E) README.bt
corbagridserver
= B} cstypetestclient
¥ 3] References
App.ico
[%] AssemblyInfo.cs
&1 cts_typetest_soap.wsdl
(E) README.t
&1 type_test.wsdl
] TypeTestClient.cs
w [ctstypetestserver
= EH hellotestclient
¥ 3] References
[£] AssemblyInfo.cs
1 hello_world.wsdl
[HelloTest.cs
[E] README bt

=

#
5 & Solutief ¥ BuId

%] REA| Rebuid
& Solution £ Clean
Properties Project Only 3

yihellotestsen Project Dependencies...

Project Build Order...

Add 3
(Name) Add Reference...
Project Depd——TA VIEh Reference .|
~
Set as StartUp Project
B \ artUp Proj |

Policy File —Bebug_______ 7|

Figure 7: Running the Hello World Server—Set as StartUp Project

19

CHAPTER 2 | Getting Started

2. Select Debug|Start Without Debugging, as shown in Figure 8:

hellotestserver - Microsoft Visual C++ [design] - READMI
Fle Edt View Project Buld | Debug | ClearCase Tools Window Help

A-ta-sdd /JMDRW - REHERE
» Start FS >
£ README_DOTNET.txt Y Start Without Debugging CIr+F5 __ir'. | sy Explo elotestserver
% SxkxEREREEREEE %] BB DI =
S Brtix Conneq3 Exceptions... Ctr+Alt+E [Assemblyinfo.cs
%1 LR LS L LS o Steplnto F11 @ CDFbﬁigﬂd.\d‘
5 [= stepover Fio 1 corba_grid.wsdl
8 The Artix Conne = [£] CoRBACIient.cs
: New Breakpoint... Ctrl+B

following Devel b Lo a REA[_)ME'D“

» c corbagridserver
* Microsoft Visual Studio .NET 2003 T ,: (3 References
App.ico
To open the demos inside the Visual Studio [*] Assemblyinfo.cs

£ cts_typetest_soap.vesdl
] README.bt
1 type_testwsdl

environment, select the "dotnet.sln" Demos t
from the "Artix Connect 3.0" folder on the

Button. [F] TypeTestClient.cs
i ctstypetestserver
Alternatively, double click on the following = [E hellotestclient

% () References

[®] Assemblylnfo.cs

ty!

&1 hello_world.wsdl
. [®] HellaTest.cs
I.‘he.demos ..are struct!}red as C.leent and Serve 5| README. bt
inside a Visual Studioc solution. |2 [—
- %8 Solution tems

[Z) README_DOTNET .bxt

%IT_PRODUCT_DIR%\artix\3.0\demos\dotnet\dc

=

The Artix Connect Clients are written in C#.

Figure 8: Running the Hello World Server—Start Without Debugging

The server will open in a new DOS command window and output
Server Ready to the screen.

20

Run the client

Running the Hello World Demo

To run the client, complete the following steps:
1. Right-click on the hel I ot estcli ent icon and select Set as StartUp
Project, as shown in Figure 9:

[hellotestclient - Microsoft Visual C# .NET [design] - README_DOTNET.txt

fle Edt View Project Buid Debug ClearCase Tools Window Help

=R~ =N Debug T @ v BE =R,
g RLADMLDOmLT.Ixt\ R Solution Explorer - hellotestclient
) AAKAK A AR AR I AA KR A A A AR AR I AR A AR h ARk k& o zl)
Artix Connect for .NET Demos [F] AssemblyInfo.cs
IS 2SS S Rt at a RSy @corba gr’\d.\dl

1 corba_grid.wsdl
[] coreAClient.cs
JE] README bt

The Artix Connect demos are written in the
following Development Environment:

| e corbagridserver
. A . = 8 dstypetestclient
* Microsoft Visual Studioc .NET 2003 4. [3] References
App.\cu
To open the demos inside the Visual Studio [#] AssemblyInfo.cs

environment, select the "dotnet.sln" Demos t £ ets_typetest_soap.wsdl
E] README. bt

from the "Artix Connect 3.0" folder on the

&1 type_testwsdl
Button. @] TypeTestClient.cs
ctstypetestserver

&l hellotestcliant

+

Rlternatively, double click on the following

= (3 Refere
%IT_PRODUCT_DIR%\artix\3.0\demos\dotnet\dc g :S‘ﬁﬂ
ello
The demos are structured as Client and Serve %:3&‘:
inside a Visual Studio solutien. % [Z3 hellotest
= % Solution T add Y
The Artix Connect Clients are written in C#. 5] READI Add Reference...
has an associated Web Service Server, which " @ solution Expl =
demonstration purposes is written in C++. 1 . (‘ Set as StartUp Project]
could be implemented in any of the platforms floetes o

Figure 9: Running Hello World Client—Set as StartUp Project

21

CHAPTER 2 | Getting Started

22

2. Select Debug|Start Without Debugging, as shown in Figure 10:

2% hellotestclient - Microsoft Visual C# .NET [design] - README_DOTNET.£xt
Debug | ClearCase Tools Window Help

Windows

3

File Edit Vew Project Buid
-0

53| README_DOTNET.txt |

o FHR KK HEEKEHK
5 Artix Conne
m Kk kKKK A KKK
B

=

o The Artiz Conne

following Devel

%

Button.

Rlternatively,

N

Start Without Debugging ~ Ctrl+F5

Processes.”

* Microsoft Visual Studio

Exceptions... Ctrl+Alt+E

%= Step Into F11

= step Over F10

&f New Breakpoint... Ctrl+B
.NET 2003

To open the demos inside the Visual Studio
environment, select the "dotnet.sln" Demos t
from the "Artix Connect 3.0" folder on the

double click on the following

%IT_PRODUCT_DIR%\artix\3.0\demos\dotnet\dc

&)

&

&

=l

[1) AssemblyInfo.cs
& corba_grid.idl
&1 corba_grid.wsdl
] coreACient.cs
] README.bt

corbagridserver

E ctstypetestclient

+ 2] References
App.ico
[©) AssemblyInfo.cs
&1 cts_typetest_soap.wsdl
(8] README. bt
&1 type_testwsdl
[TypeTestClient.cs

ctstypetestserver

¥ 3] References
[£) AssemblyInfo.cs
hello_world.wsdl
[HelloTest.cs

&l

i}

Figure 10: Running the Hello World Client—Start Without Debugging

The client starts in a new DOS command window, invokes on the
server and outputs Hel | o . NET Connect or to the screen.

Background Information

Background Information

Overview

What happens when the demo
runs

Server

Client

This section describes what happens when the demo runs and provides
some background information on the Hel 1 o Wer 1 d demo files. The following
topics are covered:

® What happens when the demo runs
® Server

® Client

® WSDL contract

® Using other transports and protocols

When the Hel | o Wr | d server process starts, it starts to listen for SOAP over
HTTP requests and outputs Server Ready to the screen. When the Hel | o
Wr | d client application starts, it reads the hel | o_worl d. wsdl contract,
which is located in:

ArtixConnectInstall D r\artix\ Version\denos\ dot net\ hel | o_wor| d\
etc

The WSDL contract contains details of the types and protocols that can be
used by the client to contact the Web service, as well as details of the
location of the Web service.

The Web service is implemented in C++ and was developed using Artix.
For more information on Artix development, see the Artix 3.0 library.

The Artix Connect Web service wizard was used to generate the type
information required by the .NET client to invoke on the Web service. All it
required was the WSDL contract; in this case, hel | o_worl d. wsdl . It
generated a Geeter.dl | .NET assembly, which contains the type
information, and client starting point code in a G eeter. cs file. Application
logic was added to the Greeter. cs file.

For more information on developing .NET clients, see “Developing .NET
Clients” on page 27.

23

http://www.iona.com/support/docs/artix/3.0/index.xml

CHAPTER 2 | Getting Started

WSDL contract

Using other transports and
protocols

24

The hel 1 o_wor | d. wsdl contract contains all the information required by the
.NET C# client to invoke on the Web service successfully. It is located in:

ArtixConnectlnstall D r\artix\ Version\ denos\ dot net\ hel | o_wor | d\
etc

It was designed using the Artix Designer, which is a GUI that ships with
Artix. The WSDL file specifies that clients should communicate with the
server using SOAP/HTTP in the following XML fragment:

<wsdl : servi ce name="SOAPSer vi ce">
<wsdl : port bindi ng="t ns: & eet er _SOAPBi ndi ng" name="SoapPort">
<soap: address | ocati on="http://| ocal host:9000"/>
<http-conf:client/>
<ht t p- conf : server/>
</wsdl : port>
</wsdl : servi ce>

For more information on designing Artix WSDL contracts, see the Designing
Artix Solutions guide.

The .NET C# client can use any of the transports and protocols supported
by Artix, including:

o HTTP
* loP
* CORBA

®* BEA Tuxedo*

®* IBM WebSphere MQ (formerly MQSeries)*
® TIBCO Rendezvous*

® Java Messaging Service*

Note: To use any of the transports and protocols marked with a *, you
must have a valid Artix Advanced license.

The .NET client only requires the WSDL contract. Therefore, by simply
editing the contents of the WSDL file if, for example, the SOAP/HTTP
transport performed too slowly in a deployed system, or the enterprise
qualities of service features provided by a different transport are required

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm

Background Information

and it proves necessary to change the server, the transports and protocols
used by deployed C# clients can be changed by simply changing the
contents of the WSDL contract.

25

CHAPTER 2 | Getting Started

26

In this chapter

CHAPTER 3

Developing .NET
Clients

This chapter explains how to develop a simple .NET client,
written in C#, which can invoke on an existing Artix Web
service using SOAP over HTTP.

This chapter discusses the following topics:

Prerequisites page 28

Developing .NET Clients page 29

27

CHAPTER 3 | Developing .NET Clients

Prerequisites

Overview

Required versions

Client-side requirements

Server-side requirements

Adding Artix Connect to the Global
Assembly Cache

28

This section describes the prerequisites to starting application development
with Artix Connect. The following topics are discussed:

® Required versions

® (Client-side requirements

® Server-side requirements

® Adding Artix Connect to the Global Assembly Cache

To use the Artix Connect runtime, you need at least Microsoft .NET
Framework 1.1 installed on your machine. To use Artix Connect for
development, you need Microsoft Visual Studio .NET 2003 installed on your
machine.

Ensure that Artix Connect is installed and configured correctly. See the Artix
Connect Installation Guide for details.

Artix Connect requires no changes to existing services. All it needs is access
to the WSDL contract that defines the service.

This guide assumes that you do not have to design the WSDL contract. It is
assumed that the WSDL contract is provided for you. If, however, you need
to know how to design an Artix WSDL contract for a new or existing service,
see the Designing Artix Solutions guide.

Artix Connect is implemented as a custom remoting channel in managed
C++. This custom remoting channel is called Arti x. Renoti ng and is
contained in the Arti x. Renot i ng. dl | assembly. To use the Arti x. Renoti ng
channel, the .NET framework must be able to obtain and access the
Artix. Renoting. dl 1 assembly from either of the following:

® The directory from which the client program is run.
® The Global Assembly Cache (GAC).

By default, Arti x. Renot i ng is registered with the GAC during the
installation of Artix Connect.

http://www.iona.com/support/docs/artix/connect/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm

Developing .NET Clients

Developing .NET Clients

Overview

In this section

This section describes how to develop a .NET client that can invoke on Artix
service using Artix Connect. The Hel | o World demo is used as an example
application. The Hel | o Wr | d demo shows a C# .NET client invoking on an
Artix Web service, using SOAP over HTTP. It is located in:

ArtixConnectInstall D r/artix/ Version/denos/ dot net/hel | o_wor | d

This section discusses the steps that you must complete to develop a .NET
client that can connect to an Artix Web service. The steps are:

Generating .NET Metadata from a WSDL file Using the GUI page 30

Writing a C# Client page 38

Building and Running the Client page 41

29

CHAPTER 3 | Developing .NET Clients

Generating .NET Metadata from a WSDL file Using the GUI

Overview The first task in implementing a .NET client that can communicate with a
server that supports any of the transports and protocols supported by Artix,
is to generate the .NET metadata that describes the target service interface.
.NET metadata is required so that .NET applications that are to make
invocations on remote objects can be compiled, and to allow .NET to create
proxy objects.

Ordinarily, when .NET applications are communicating with each other, the
metadata for .NET objects can be found as part of the .NET assembly.
However, this is not the case for Artix services. Artix Connect includes a
GUI, the Artix Connect Wizard, which enables you to generate .NET
metadata and client starting point code from an Artix WSDL contract from
within the Microsoft Visual Studio .NET 2003 development environment.

In this section This section walks you through the steps to generating .NET metadata and
client starting point code from a WSDL contract using the Artix Connect
Wizard.

Note: This guide assumes that the WSDL contract already exists and that
you have been provided with it as a starting point.

For more information on using Artix to develop WSDL contracts, see the
Designing Artix Solutions guide.

30

http://www.iona.com/support/docs/artix/3.0/design/index.htm

Using the Artix Connect Wizard

Developing .NET Clients

To generate .NET metadata from within the Microsoft Visual Studio .NET
2003 development environment, using the Artix Connect Wizard, do the
following:

1. Select File | New | Project to start a new project as shown in
Figure 11:

>0 Microsoft Development Environment [design] - Start Page

- sl 2R o-o-8-B) - | g soktin]
Eile | Edit Wew ClearCase JTools Window _He
[tew VT egect. st

Open » (15T

Close 5 Blank Solution... lesources My Profile

Add Project »
13? Open Solution. ..
ﬁ Close Sokution Open an Existing Project

Save Selected Items As. .. ConsoleApplicationd 05/05/2005
@l saveal Ctr+-shift+5 ArtixConnectWizard 05/05/2005

Source Control » ArtixConnectWizard 04/05/2005
D Page Setup... ConsoleApplication3 04/05/2005
& Print... CtriP

Recent Files »

Figure 11: Creating a New Project

31

CHAPTER 3 | Developing .NET Clients

2. The New Project dialog box appears as shown in Figure 12. Select the
project type that you want to create—in this case, a Visual C# project
using the Empty Project template:

;g;:_Mi:;rospft Development Environment [design] - Start Page

fle Edt View CearCase Tools Window Help
- HE R - BB]
Start Page |

Projects My Profile

New Project

Onfine Resources

ettt J1'_ Nl 7]

Ope} Project Types: Templates:

T .: 2 Visual C# Projects

£ [(11 Visual C++ Projects
(21 Setup and Deployment Projects | Windows Serticg
My |m (0 Other Projects

Col {11 visual Studio Solutions

Co

Empty Web
Project

A 5

|An empty project for creating a local application

Empty Project|

Name:
nd Location: | C:\MyConsoleApplicationDirectory
""""" New Solution Name=._| Projectl v
outp] H
Build Project will be created at C:\MyCoi

&less oK I Cancel | Help |

Figure 12: Starting a New Project

Note: The Artix Connect GUI supports C# console projects only. For
projects that do not use the console or use other languages, you should
use the wsdl t odot net command-line utility to generate the .NET metadata
for you. See “wsdltodotnet Command-line Utility” on page 63 for more
detail.

3. Enter a name for your project and a directory into which you want your
project to be stored.

32

Developing .NET Clients

4. Click OK. The Visual Studio .NET 2003 Development Environment
creates a C# project, as shown in Figure 13:

#¥ Project1 - Microsoft Visual C# .NET [design] - Start Page

Ele Edt View Project Buid Debug ClearCase Tools Window Help

‘B-a-s@@ R oo F-E), Debug

T v @ o5
Start Pa e| RN <clition Expiorer - Prgjoct
8
[Solution 'Project1’ (1 project)
[CB = Project1

(3] References

Online Resources I My Pr]

xoqieol ¥| @

Open an Existing Project

e
CansoleApplication2
ConsoleApplicationl
MyConsaleApplication
ConsoleApplication1

‘ New Project ‘ ‘(_]peanject

Output o X
|

Build ~|

" 133 Solution Explorer | 2F Class view | Search |

| Properties

Figure 13: C# Project

33

CHAPTER 3 | Developing .NET Clients

5. Next you need to add the server WSDL file to the project. To do this
select File | Add New Item, as shown in Figure 14, to launch the Add
New Item dialog box:

% Projecti - Microsoft Visual C# .NET [design] - Start Page

R‘ Edt View Project Buid Debug ClearCase Tools wWindow Help

New v B » Debug v T REEHRE-
Qpen SRR .0 exporer progect: |
Close B a

Add New Ttem... [0 Solution 'Project’ (1 project)

ER=dprojecti]
@ (9] References

Ctri+Shift+A
alep an Sty
Add Project 3
Open Solution...

Close Solution

Save Projectl Ctri+s _
Save Projectl As...

Save Al Ctri+Shift+S
Source Control 3

@ I & s

Recent Fies +
Recent Projects 3
Exit

New Project | | Open Project |

Output a1 X
—

Figure 14: Launching the Add New ltem Dialog Box

34

Developing .NET Clients

6. The Add New Item dialog box appears as shown in Figure 15. Select
the IONA Artix Web Service wizard and click Open:

Add New Item - Projecti _

Categories: Templates:
+-23 Local Project ems e ~
Bitmap File Cursor File Icon File

Assembly
Resource File

2

Windows Script
Host

JScript File

VBScript File

Application Artix Web Service |5
A

configuration file

Name: Artix Web Servicel

Open |

Cancel Help

Figure 15: Launching the Artix Connect Wizard

35

CHAPTER 3 | Developing .NET Clients

Artix Connect Wizard

Artix Connect Import WSDL File Wizard s A
This wizard will generate starting point code and required metadata for = IOMA
WS
1_-

Arkiz Service WSDL

Select Artig Service WSDL

The Artix Connect Wizard appears as shown in Figure 16. Click the
Select button and browse for the WSDL contract associated with the
Artix service to which you want the client to connect. In this example,
select the hel I o_wor| d. wsdl file, located in

Artixlnstal I Dir\Artix\ Version\denos\dotnet\hell o world\etc

Filename:
iChAhsConnectharty

noshdotnefihelln . http:/ v iona.com/he. .

W Generate starting-pojht CH# client code

Service
S04PService

Target MameSpace

SoapPort Greeter

Cancel | Finish I

36

Figure 16: Selecting WSDL File Using Artix Connect Wizard

The Artix Connect Wizard fills in the Fi | enane, Target NaneSpace,
Servi ce, Port, and Port Type fields with values taken from the WSDL
contract. You should verify that the service selected is the one you
want. The Generate starting-point C# client code check box is
selected by default.

Click Finish to import the WSDL file and generate client starting point
code for this service.

Developing .NET Clients

The Artix Connect Wizard adds three required items to the client
project, as shown in Figure 17):

@ Project1 - Microsoft Visual C# .NET [design] - Greeter.cs

Fle Edit View Project Buid Debug ClearCase Tools Window Help

F-a-s@@ B » Debug v =
B%Ri s |FE A% %%

S| StartPage Greeter.cs| 4 b % || solution Explorer - Project1

? 72 = = 2@

g [Solution 'Projectl’ (1 project)

81
i)

115

=] f/ KEEERKKKKKK KK KKK KRR KRR KRR R KR K

xogjoo

// This file has been automatically gener
// Please add your client's application 1

-3 Artix.Remoting
-0 Greeter
Greeter.cs

[Fusing System;

using System.Diagnostics;

using System.Runtime.Remoting.Channels;
using IONA.Remoting;

using GreeterNameSpace;

/ <summary>
Summa description for thi
/ </summary>

w
2]
b

]
w
0

[Cpublic class GreeterTest

Output o X

[Build =]

Figure 17: Required Files Added to Project by Artix Connect Wizard

It adds the following references:

. The Arti x. Renot i ng assembly, which is required at runtime by
all Artix Connect clients.

¢+ The Port Type_Nane. dl | metadata assembly, which has been
generated by the wsdl t odot net command-line tool, and contains
the type information for the server. In this example, the file in
called Geeter.dll.

And the following file:

. Client starting point code in a . cs file—in this case, G eeter. cs.
This is where you add your client application code.

37

CHAPTER 3 | Developing .NET Clients

Writing a C# Client

Overview

38

The next task in implementing a .NET client that can communicate with an
Artix Web service is to write the C# client. As shown in the previous
subsection, the Artix Connect Wizard generates a client mainline with
starting point code. In this example, the file is called G eeter. cs and is
shown in Figure 18. You simply uncomment the relevant line of client
application code and add the client logic.

?% Project1 - Microsoft Visual C# .NET [design] - Greeter.cs*

Ele Edt Vew Project Buld Debug ClearCase Tools Window Help

G-to-Ed % B © - &- » Debug Ml v REERE-
E %l e Z2 A%% K.
B StartPage Greeter.cs® | 4 b x || splution Explor
P [%¢creeterTest | |59 main(string[] args) - =E 5 &
g using IONA.Remoting; = QE;\:NM_\ ‘Prj
g using GreeterNameSpace; kg é‘g‘:ﬁ:ﬁ
o3 Ar
(=] -0 6r
\‘ '/ ription for this class 1 Greets
Epublic class GreeterTest
{
] static void Main(string[] args)
{
try
{
// step -1-
// Regilster the Artix Channel wi .NET 1.1 Remoting
// Framework. Thi
// rather than pro
ChannelServices.RegisterChannel (new ArtixClientChannel());
// Step -2-
// Create the Remote Proxy by passing the WSDL file L
// Web Service to the standard .NET Remoting GetObject() call. [Solution Bxp
Greeter greeterQbj = (Grester) Properties
Activator.GetObject (typeof (Greeter),
"artixref:C:\\BETA2\\artix\\3.0\\demos\\dotnet\\hello world\\¢
// Step -3-
ote Proxy as one would a standard Remoting Ob—}
// Uncomment the line b&%qy this and complete the invocation
greeterobi.|.
} 4 Equals
catch (Except <@ GetHashCode
! =¥ GetType _’Iﬂ

hl & greetMe

Output ~E 1 x
@ ToString

[Build ~1

Figure 18: Greeter.cs

In this subsection

Registers the remoting channel

Creates a remote proxy

Developing .NET Clients

This subsection walks you through the code, which:
1. Registers the remoting channel
2. Creates a remote proxy

3. Invokes on remote proxy

The following line registers the remoting channel that the client wants to
use. The custom remoting channel should be registered in the same way as
any other .NET remoting channel.

/1 G
Channel Servi ces. Regi st er Channel (new Arti xd i ent Channel ());

The preceding code tells the .NET application that when it is attempting to
access an object outside of its application domain, it should use the
Artixdient Channel remoting channel.

Note: If you use the wsdl t odot net command-line utility to generate the
.NET metadata, you must add the Arti x. Renoti ng. dl | and the

Port Type_Nane. dl | metadata assembly, which contains the type
information for the server, to your project. You can do this by right-clicking
on your project and selecting the Add References option. Select the
Artix. Renoting. di I from the list that appears and select the generated
Port Type_Nare. dl | by browsing to the location where you have it stored.

The following code creates a proxy instance of the remote target object in
the client’s address space:

Example 1: Creating a remote proxy

/1 G#

[/ GetChject() call.

Geeter greeterj = (Qeeter),
Acti vat or . Get (hj ect (typeof (G eeter),
"artixref: C\\ProgramFiles\\artix\\3.0\\
denos\\ dot net\\ hel | o_worl d\\etc\\hell o worl d. wsdl
http://wmv i ona. conihel l o_worl d_soap http
SQOAPSer vi ce SoapPort");

39

CHAPTER 3 | Developing .NET Clients

Invokes on remote proxy

40

The call to Get oj ect () specifies the .NET type that corresponds to
the name of the target object to which the client wants to connect (in
this case, G eet er).

It also specifies an Artix reference, which points the client to the WSDL
contract that defines the service that it wants to connect to. It is made
up of four parts, each separated by a space and all specified on one
line. The parts are:

The location and name of the WSDL contract—in this example,
the hel I o_worl d. wsdl , which is located in

Artixlnstal | Dir\artix\ Version\ denos\ dot net\ hel | o_wor | d\
etc.

The target namespace—in this example,

http://ww i ona. coni hel 1 o_wor | d_soap_http. This is taken
from the WSDL contract.

The name of the service that the client wants to use—in this
example, SOAPSer vi ce. This is taken from the WSDL contract.
The name of the port that the client wants to use—in this
example, G eet er. This is taken from the WSDL contract.

/1 C#

To complete the client you need to uncomment the code that invokes on the
remote proxy—in this case, gr eet er Cbj —and add the client logic. For
example, you can have the client invoke on the remote proxy gr eet Me()
operation and have the client print the response to the screen by adding the
code shown below:

String response;
response = greeter(hj.greet Me(". NET Connector");
Consol e. Wi t eLi ne(response) ;

Developing .NET Clients

Building and Running the Client

Overview

Building the client

This subsection describes how to build the client that you wrote in the

previous subsection.

To build the client, select Build | Build Solution, as shown in Figure 19:

#& Projecti - Microsoft Visual C# .NET [design] - Greeter.cs*

s Debug ClearCase ToOl indow Help
B BukSouton Cul:shit:B) =l
Rebuid Solution
5 Buid Projectl

v REERE-

4 b X || Solution Explor

2 [°g GreeterTest Rebuid Project1 |~ [s®Main(string[] args)

=5 T
5 Lusu‘q TONB. Batch Buid...

using Greet| Corfiguration Manager...

B /// <summary>
/// Summary description for this class
[/ </summary>

[Fpublic class GreeterTest
{
static void Main(string[] args)
{
try
{
// Step -1-
// Register the Artix Channel
// Framework. This can be spec
// rather than programatically, if

required.

// step -2-
// Create the Remote Proxy by passing the WSDL file

Figure 19: Building the Client

th the .NET 1.1 Remoting
ied in a .config file

ChannelServices.RegisterChannel (new ArtixClientChannel());

-2 &4«
@ Solution 'Prc
= & projects

= (& Refer
3 Ar
2 Gr

[Greet

41

CHAPTER 3 | Developing .NET Clients

Running the client To run the client successfully, you must:

1. Start the server. In this case you can use the server that is provided
with the Hel I o Wor| d demo. To open the demo solution, from the File
menu select Open Solution, as shown in Figure 20:

Fie | Edt View Project Buid Debug ClearCase Tools Window Help

New vhog@- } Debug) rBE=RG-,
Qpen PR
Close

4 b x| Solution Explorer
| [s®main(stringT] args) ~l 2|z a
can be speci 3 a .config file = 16 Solution 'Projec

Add New Ttem... Cur+Shift+A
Add Existing Item... Shift+Alt+A

ramatically, ed. = [Project1
Jbrvices.RegisterChannel (new ArtixClientChannel()); B e
= m
[E save Greeter.cs ks [2-
Save Greeter.cs A... the Remote Proxy by passing the WSDL file

vice to the standard .NET Remoting GetObject() call.

ter greeterObj = (Greeter)

ator.GetObject (typeof (Greeter) ,
fxref:C:\\BETAZ2\\artix\\3.0\\demos\\dotnet\\hello world\\etc\\h

Advanced Save Options...
@ saveal Ctri+Shift+S
Source Control

@ Page Setup...
& print... Crl+P - . .
£ on the Remote Proxy as one would a standard Remoting Object.
Recent Files 11 N - N N . -
ent the line below this and complete the invocation
Recent Projects * tsponse;
Exit

= greeterObj.greetMe (".NET Connector");
Console.WriteLine (response) ;

}
catch (Exception ex)
{
Console.Error.WriteLine ("Exception: " + ex.ToString()):

}

Figure 20: Opening the Hello World Demo Solution

42

Developing .NET Clients

2. The Open Solution dialog box appears as shown in Figure 21:

Open Solution g

Look in: [dotnet e > 5 E v Tools~
[corba_calback
J| (3 corba_grid
History (D)cts_typetest
(2 hello_world
o “
My Projects
@)
Desktop
]
Favorites
=
ars
My Network

Places

File name: ‘ ﬂ Open |
Files of type: ‘Solut\on Files j Cancel

Figure 21: Opening Demo Solution

3. Select the dot not solution file, as shown in Figure 21, and click Open.
4. Follow the instructions for running the server in “Run the server” on
page 19.

43

CHAPTER 3 | Developing .NET Clients

44

5. Reopen your client project and run the client by selecting Debug| Start
Without Debugging, as shown in Figure 22:

Project1
le Edt Vew Project Buid | D
ArE-sE@ 4B
%, ==

Start Page Greeter.cs |

T REHRE-

! Start without Debugging CIri+F5

[% GreeterTest B i jain(string[] args) | 3@ e
77| Exceptons.. ClAE [pied in a .config file 15 Soltion Projectt (1 proje
s/ {2 Stephto Fil |if required. = EX project1
ChailE Stepouer FI0 |new ArtizClientChannel()): ¥ %‘Eﬁﬁ::f‘;s
il New Breakpoint... Ccul+B :
2
// ‘reste—tre—Remote—rroxy-Dy-pessing the WSDL file
// Web Service to the standard .NET Remoting GetObject() call.
Greeter greeterObj = (Greeter)

Activator.GetObject (typeof (Greeter),
"artixref:C:\\BETA2\\artix\\3.0\\demos\\dotnet\\hello_world\\etc\\h

// step -3-
// Invoke on the Remote Proxy as one would a standard Remoting Object.
// Uncomment the line below this and complete the invocation
String response;
response = greeterObj.greetMe (".NET Connector");
Console.WriteLine (response) ;
}
catch (Exception ex)
{
Console.Error.WriteLine ("Exception: " + ex.ToString()):

}
Properties

Figure 22: Running the Client

6. The client starts in a new DOS command window, invokes on the
server and prints Hel | o . NET Connect or to the screen.

4 » % || Solution Explorer - Project1

CHAPTER 4

Client Callbacks

.NET clients can implement some of the functionality
associated with servers, and all servers can act as clients. A
callback invocation is a programming technique that takes
advantage of this. This chapter describes how to implement
client callbacks.

In this chapter This chapter discusses the following topics:
Introduction to Callbacks page 46
Implementing Callbacks page 47

45

CHAPTER 4 | Client Callbacks

Introduction to Callbacks

Overview

What is a callback?

Typical use

46

This section introduces the concept of client callbacks. The following topics
are discussed:

® What is a callback?

® Typical use

A callback is an operation invocation made from a server to an object that is
implemented in a client. A callback allows a server to send information to
clients without forcing clients to explicitly request the information.

Callbacks are typically used to allow a server to notify a client to update
itself. For example, in a banking application, clients might maintain a local
cache to hold the balance of accounts for which they hold references. Each
client that uses the server's account object maintains a local copy of its
balance. If the client accesses the balance attribute, the local value is
returned if the cache is valid. If the cache is invalid, the remote balance is
accessed and returned to the client, and the local cache is updated.

When a client makes a deposit to, or withdrawal from, an account, it
invalidates the cached balance in the remaining clients that hold a reference
to that account. These clients must be informed that their cached value is
invalid. To do this, the real account object in the server must notify (that is,
call back) its clients whenever its balance changes.

Implementing Callbacks

Implementing Callbacks

Overview This section describes how to implement callbacks using Artix Connect.
Artix Connect supports callbacks on any of the middleware platforms
supported by Artix.

In this section This section discusses the following topics:
Callback Demonstration page 48
Callback WSDL Contract page 50
Implementing the Client in C# page 54
Implementing the Server page 57

47

CHAPTER 4 | Client Callbacks

Callback Demonstration

Overview

Graphical view

48

The callback example described in this section is based on the CORBA
Cal | back demonstration, which is located in:

Arti xConnectInstal | D r/artix/Versi on/ denos/ dot net/ cor ba_cal | back

For details on how to run this demo, see the README. t xt file in the demo
directory.

Example 23 illustrates how the callback proceeds:

Net client Application CORBA Server
~
CallBackDemoServer
Proxy — a CallBackDemoServer
Custom ™,
1 Remoting RegisterCallBackdbject (]}
9 [Channel _{ |_h _
tix Connect= e carmen L\
1
. : 6 'O
(4) ;
_ | |
ClientObj : 2 .
: :
i]
WSDL Contract IOR File

Figure 23: Callback in Progress

Implementing Callbacks

Example 23 can be explained as follows:

1.

When the CORBA server process starts, it creates a CORBA object,
Cal | BackDenoSer ver, and writes a reference to the object to a file,

cal | back_corba_servi ce.ior. It then starts to listen for
communications from the client over the Internet Inter-ORB Protocol
(lIOP).

When the client starts, it reads the WSDL contract. The WSDL contract
contains details of the types and protocols that can be used to contact
the CORBA server. It also contains details of the location of the

cal | back_corba_servi ce. i or file, which the client uses to locate the
server.

The client creates a proxy of the target CORBA server.

The client creates a native .NET object, cl i ent (bj , of type
aient Qoj ect | npl , which in turn inherits and implements the
dient Cal | backQbj ect interface.

The client calls Regi st er Cal | BackQvj ect () on the CORBA server and
passes it a reference to cl i ent (bj . This notifies the server of the
callback service.

When the server receives the callback reference, it calls back to the
client by invoking on the client’s cal I Me() operation.

49

CHAPTER 4 | Client Callbacks

Callback WSDL Contract

Overview

In this subsection

WSDL contract

50

The first step in implementing client callback functionality is to define the
client and server in a WSDL contract. The WSDL contract is the only thing
required by the .NET client to invoke on the CORBA server.

This subsection describes the WSDL contract that defines the interaction
between the client and the server in the QORBA Cal | back demonstration. It
was automatically generated from the CORBA server's IDL file using the
Artix Designer, which is available in Artix 3.0.

Note: This guide assumes that the WSDL contract already exists.

For more information on using Artix to develop WSDL contracts, see the
Designing Artix Solutions guide. For more information on using Artix to
expose CORBA servers as Web services, including generating WSDL from
IDL, see the Artix for CORBA guide.

Example 2 shows the WSDL contract, cal | back. wsdl , used in the CORBA
Cal | back demonstration. It is located in:

Artixlnstal I D r/artix/ Version/ denos/ dot net/ cor ba_cal | back/ et ¢
Example 2: Example Callback WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions
t ar get Nanespace="ht t p: // schenas. i ona. coni i dl / cal | back. i dl "
xm ns="htt p://schenmas. xm soap. or g/ wsdl / "
xm ns: tns="http://schenas.iona. coniidl/callback.idl"
xm ns: xsd="ht t p: / / www. W8. or g/ 2001/ XM-Schena"
xm ns: xsd1="htt p://schenas. i ona. com i dl t ypes/ cal | back. i dl "
xm ns: cor ba="htt p://schenas. i ona. coni bi ndi ngs/ cor ba"
xm ns: cor bat m=" ht t p: // schenas. i ona. con t ypenap/ cor ba/
cal | back.idl"
xm ns: ref erences="http://schenas. i ona. con r ef er ences" >
<t ypes>
<schena t ar get Nanespace=
“http://schenas. iona. confidltypes/call back.idl "
xm ns="ht t p: / / www. w3. or g/ 2001/ XM-Schena"

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm

Implementing Callbacks

Example 2: Example Callback WSDL Contract

xm ns: wsdl =" ht t p: // schenmas. xm soap. or g/ wsdl / " >
<xsd: i nport schemalocati on=
"http://schenas.iona. coniref erences/ ref erences. xsd"
nanespace="htt p: // schenas. i ona. coni r ef er ences"/ >
<xsd: el ement nane="d i ent Cal | back(j ect . cal | M" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent name="s" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el errent >
<xsd: el enment
nanme="Cal | BackDenoSer ver . Regi st er Cal | Back(hj ect ">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="obj " type="references: Ref erence"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ schema>
</types>
<nmessage name="d i ent Cal | backbj ect . cal | Me">
<part name="par amet ers"
el ement ="xsd1: d i ent Cal | backChj ect . cal | Me"/ >
</ message>
<nessage nanme="Cal | BackDenoSer ver . Regi st er Cal | BackChj ect " >
<part nane="par aneters"
el ement =" xsd1: Cal | BackDenoSer ver . Regi st er Cal | BackChj ect "/ >
</ message>

<port Type name="d i ent Cal | backChj ect ">
<oper ati on name="cal | M&" >
<i nput nessage="tns:d i ent Cal | back(j ect . cal | Me"
name="cal | Me"/>
</ oper at i on>
</ port Type>
<port Type name="Cal | BackDenoSer ver" >
<oper ati on name="Regi st er Cal | Back(hj ect ">
<i nput nmessage=
"t ns: Cal | BackDenoSer ver . Regi st er Cal | Back(bj ect "
name="Regi st er Cal | Back(hj ect"/ >
</ oper at i on>
</ port Type>

51

CHAPTER 4 | Client Callbacks

Example 2: Example Callback WSDL Contract

<bi ndi ng name="d i ent Cal | backChj ect CORBABI ndi ng"
type="tns: di ent Cal | back(hj ect ">
<cor ba: bi ndi ng repositoryl D="1DL: A i ent Cal | backChj ect: 1. 0"/ >
<oper ati on name="cal | M&" >
<cor ba: operati on nanme="cal | ">
<cor ba: param nane="s" mode="in" idltype="corba:string"/>
</ cor ba: oper at i on>
<i nput/>
</ oper ati on>
</ bi ndi ng>
<bi ndi ng nane="Cal | BackDenoSer ver CORBABi ndi ng"
type="t ns: Cal | BackDenoSer ver ">
<cor ba: bi ndi ng reposi toryl D="| OL: Cal | BackDermoSer ver: 1. 0"/ >
<oper ati on name="Regi st er Cal | Back(hj ect ">
<cor ba: oper ati on name="Regi st er Cal | BackChj ect ">
<cor ba: param nane="obj " node="i n"
i dl type="corbatm Qi ent Cal | backChj ect"/ >
</ cor ba: oper at i on>
<i nput/>
</ oper at i on>
</ bi ndi ng>

3 <servi ce name="d i ent Cal | backChj ect CORBASer vi ce" >
<port name="d i ent Cal | backCbj ect CCRBAPort "
bi ndi ng="t ns: A i ent Cal | backCbj ect CORBABI ndi ng" >
<corba: address | ocation="ior:"/>
</ port>
</ servi ce>
4 <servi ce nanme="Cal | BackDenoSer ver CORBASer vi ce" >
<port name="Cal | BackDenoSer ver CORBAPor t "
bi ndi ng="t ns: Cal | BackDenoSer ver CCRBABI ndi ng" >

5 <cor ba: address | ocati on=
"file:..\..\etc\call back_corba_service.ior"/>
</ port>
</ servi ce>

<cor ba: t ypeMappi ng t ar get Namespace=
"http://schenmas. i ona. conl t ypenap/ cor ba/ cal | back. i dl ">
<cor ba: obj ect name="d i ent Cal | back(hj ect "

type="r ef er ences: Ref er ence"
reposi toryl D="1DL: A i ent Cal | backCbj ect : 1. 0"
bi ndi ng="t ns: A i ent Cal | backChj ect CORBABi ndi ng"/ >

</ cor ba: t ypeMappi ng>

</ defi ni ti ons>

52

Implementing Callbacks

The WSDL definitions shown in the preceding example, cal | back. wsdl , can
be explained as follows:

1.

The A i ent Cal | backQvj ect port type is implemented on the client
side. It contains a cal | Me operation that takes a single string argument.
The server calls back on this operation after it receives a reference to
the client’s service.

The Cal | BackDenoSer ver port type is implemented on the server side
and supports a single WSDL operation—Regi st er Cal | BackQbj ect .
The Regi st er Cal | BackQbj ect operation takes a single Artix reference
argument, which is used to pass a reference to the client callback
object.

Specifies that the client callback object receives messages via [IOP.
The client callback address, i or: , acts as a placeholder for the address
generated dynamically at runtime.

Specifies that clients should communicate with the server using IIOP.
When the CORBA server process starts, it creates a CORBA object and
writes a reference to the object to a file. The server’s address is
contained in that file—

file:..\..\etc\call back_corba_service.ior.

53

CHAPTER 4 | Client Callbacks

Implementing the Client in C#

Overview

Main client code

54

This subsection describes how to implement a client based on the WSDL
contract shown “Callback WSDL Contract” on page 50. The client is an
implementation of the A i ent Qbj ect port type. The following topics are
covered:

® Main client code.

¢ Client implementation code

Example 3 shows code contained in the Cor baCal | back. cs file. It contains
the C# mainline code that invokes on the server:

Example 3: CorbaCallback.cs

Channel Servi ces. Regi st er Channel (new Artixd i ent Channel ());

cal | BackSrvhj = (Cal | backDenmoNaneSpace. Cal | BackDenmoSer ver)
Acti vat or. Get bj ect (t ypeof (Cal | backDenoNaneSpace. Cal | BackDeno
Server), "artixref:../../etc/callback.wsdl

http://schemas. i ona. conii dl / cal | back. i dl

Cal | BackDenoSer ver CORBASer vi ce Cal | BackDenoSer ver CORBAPort) ;

/1 Test the callback, allow 30 secs for it to occur.
dient@jectinpl clientCj = new dientoject!npl();
Consol e. Wi teLi ne("Registering the Call back object");
cal | BackSrvQhj . Regi st er Cal | BackChj ect (cli ent (j) ;

Thr ead. Sl eep(1000) ;

int i =0;

while ((!clientQj.called) & (i < 30))

Thr ead. Sl eep(1000) ;
i ++;

Implementing Callbacks

The code shown in Example 3 can be explained as follows:

1. Registers the Artix remoting channel. This can be specified in an Artix
configuration file rather than programmatically.

2. Creates a proxy of the target object in the client’s address space.
Specifies an Artix reference, which is made up of four parts:

i. The location of the WSDL contract.

ii. The target namespace. Each Web service requires a unique
namespace that makes it possible for client applications to
differentiate between Web services that might use the same
method name. Although the namespace resembles a typical URL,
do not assume that it is viewable in a Web browser—it is merely
a unique identifier.

iii. The name of the service that the clients should use; in this case,
Cal | BackDenoSer ver CCRBASer vi ce.

iv. The name of the port that the client should use; in this case
Cal | BackDenoSer ver CCRBAPor t .

3. Creates an implementation object, cl i ent Qbj , of the A i ent (bj ect
type.

4. Calls the Regi st er Cal | BackQbj ect () operation on the cal | BackSr vQbj
server object, and passes it a reference to its implementation object,
cli ent Qoj . This allows the server to subsequently invoke operations on
the client callback object.

Client implementation code Example 4 shows code contained in the Qi ent (oj ect | npl . ¢s file. It
implements the .NET object that receives the server callback:

Example 4: ClientObjectimpl.cs

usi ng System

1 [System Wb. Servi ces. \bSer vi ce(Name=

"dient Cal | backChj ect CCRBASer vi ce",

Nanespace="htt p:// schenas. i ona. con i dl / cal | back.idl")]
2 public class dientject!lnpl

Cal | backDenoNaneSpace. d i ent Cal | backChj ect

{
3 publ i ¢ System Bool ean cal | ed;
public QientCbject!npl()

55

CHAPTER 4 | Client Callbacks

Example 4: ClientObjectimpl.cs

{

}
#region AientCal | backChj ect Menbers

called = fal se;

4 public void call Me(string s)

{
Consol e. WiteLine("AientChjectlnpl::callM(): called.");
Consol e. Wi teLi ne(" " +38);
Consol e. WiteLine("dientCjectlnpl::callM():
returning.");
called = true;

}

#endr egi on

1. Specifies Web service meta information for the class:

i. The Nanme property specifies the name of the service, as defined in
the WSDL contract.

ii. The Namespace property specifies a unique namespace for the
Web service, as defined in the WSDL contract.

Note: You do not need to include a Descri pti on property for the Web
service attribute if the client and server port types are defined in the same
WSDL contract. This is normally the case for callbacks. If, however, the
client port type is defined in a different WSDL contract from the server port
type, you must add a Descri pti on property that specifies the client WSDL
contract; for example, Description="../../etc/cal | back. wsdl "

2. Specifies the name of the client’s callback implementation class. You
can use any name for this, but you must specify that it inherits from
the Cal | backDenoNaneSpace. A i ent Cal | backQbj ect base class, which
is taken from the Port Type element in the WSDL contract.

3. ltis possible to add operations and properties to the client that are not
defined in the WSDL contract. These can only be used by the client.
Here, for example, the cal | ed property lets the client to know when
the server has called back.

4. Implements the cal | Me() operation defined in the WSDL contract.

56

Implementing Callbacks

Implementing the Server

Overview Artix Connect can communicate with any server that supports the transports
and protocols supported by Artix, including SOAP over HTTP, CORBA, II10P,
BEA Tuxedo, IBM WebSphere MQ (formerly MQSeries), TIBCO Rendezvous,
and the Java Messaging Service. To use Artix Connect, you do not have to
make any changes to such servers. All that Artix Connect requires is the
WSDL contract that defines the server.

In this subsection This section describes the CORBA server that is used in the CORBA Cal | back
demonstration. The steps used to implement it were:

® Step 1—Implementing the CallBackDemoServer port type
® Step 2—Invoking the callMe() operation on the client

Step 1—Implementing the An implementation class was provided for the Cal | BackDenoSer ver port
CallBackDemoServer port type type.

The implementation of the Regi st er Cal | Backbj ect () operation receives a
CORBA object reference from the client. When the client invokes the

Regi st er Cal | BackQbj ect () operation on the server, a CORBA proxy object
for the client’s Qi ent Cbj ect object is created in the Artix Connect bridge.
Artix Connect transforms the .NET object reference in the client code to a
CORBA object reference, which it passes to the CORBA servant.

The server uses the CORBA proxy object to call back to the client. The
implementation of the Regi st er Cal | BackQvj ect () operation stores the
reference to the CORBA proxy for this purpose.

Step 2—Invoking the callMe() After the CORBA proxy object for the client’s A i ent Qbj ect object has been
operation on the client created in the Artix Connect bridge, the server can then invoke the cal | Mg()
operation on this proxy object.

57

CHAPTER 4 | Client Callbacks

58

In this chapter

CHAPTER 5

Development
Support Tools

The first step in writing a .NET client that can communicate
with an Artix Web service is to obtain .NET metadata, which
describes the target service interfaces and types as .NET
interfaces and types. Artix Connect includes a Web service
wizard that generates the .NET metadata and client starting
point code for you, from within the Visual Studio .NET 2003
development environment. All it requires is the Web service
WSDL contract. In addition, Artix Connect includes a
wsdltodotnet command-line utility that you can use, as an
alternative to the wizard, to generate .NET metadata from a
WSDL contract.

This chapter discusses the following topics:

Artix Connect Wizard page 60

wsdltodotnet Command-line Utility page 63

59

CHAPTER 5 | Development Support Tools

Artix Connect Wizard

Overview

In this section

60

Artix Connect provides Web service wizard, Artix Connect Wizard, which
you can use to generate .NET metadata, which describes the target service
interfaces and types as .NET interfaces and types. You can use the wizard
from within the Microsoft Visual Studio .NET 2003 development
environment. It enables you to select the WSDL contract for the service to
which you want the client to connect and, as well as producing the .NET
metadata from the WSDL contract, the wizard produces client starting point
code that you can use to develop your client application. The .NET
metadata assembly is stored in a DLL file that is generated, behind the
scenes, by the wsdl t odot net command-line utility.

This section describes the Artix Connect Wizard and points you to an
example of using the wizard. The following topics are covered:

® Main screen
® Fields
® Example of using the Artix Connect Wizard

Main screen

Artix Connect Wizard

Artix Connect Import WSDL File Wizard T A
This wizard will generate starting point code and required metadata For = IONA
Artix Service WSDL 1W5 |

Select Artix Service WSDL

Artix Connect Wizard

Figure 24 shows the Artix Connect Wizard main screen:

Filenarne:

| Target MameSpace | Service | Port | PortT ype |

¥ Generate starting-point C#f client code

Cahcel I Finish

Fields

Figure 24: Artix Connect Wizard

The Artix Connect Wizard fields are described below. They are populated
automatically when you select the WSDL contract for the service to which

you want your client to connect. The values are taken directly from the
WSDL contract

Fi | enane The WSDL filename and location.

Target NanmeSpace Specifies the target namespace.

Servi ce Specifies the name of the service that the client wants
to use.

Por t Specifies the name of the port that the client wants to
use.

Por t Type Specifies the port type of the server that the client

wants to connect to.

61

CHAPTER 5 | Development Support Tools

Note: If the WSDL contract contains more than one service, the wizard
selects the first service. If you want to select a different service, you must
change the values in the generated starting point code. You cannot change

the values in the wizard.

For an example of using the Artix Connect Wizard, see “Developing .NET

Example of using the Artix
Clients” on page 27.

Connect Wizard

62

wsdltodotnet Command-line Utility

wsdltodotnet Command-line Utility

Overview

Generating metadata

Artix Connect provides an wsdl t odot net command-line utility that you can
use to map WSDL types to .NET types. The .NET metadata assembly is
stored in a DLL file that is generated by the wsdl t odot net utility. The

wsdl t odot net command-line utility is provided as an alternative to using the
Artix Connect Wizard and is useful if you want to view the C# files that are
used to generate the type DLL file.

Note: If you use the wsdl t odot net command-line utility to generate the
.NET metadata, you must add the Arti x. Renoti ng. dl | and the

Port Type_Nane. dl | metadata assembly, which contains the type
information for the server, to your project. You can do this by right-clicking
on your project and selecting the Add References option. Select the
Artix. Renoting. dl | from the list that appears and select the generated
Port Type_Nane. dl | by browsing to the location where you have it stored.

You can generate metadata at the command line using the following
command:

wsdl t odot net . exe [-source] [-quiet] [-verbose]
[-namespace <C# NameSpace>] [-name <C# Assenbly Name> |
[-v] [-?] [<wsdlurl>]

You must specify the location of a valid WSDL contract file, wsdl ur 1, for the
wsdl t odot net metadata generator to work. You can also supply the
following optional parameters:

-source Outputs C# source code as well as an assembly
containing .NET metadata. This is not generated by
default and is not required to build and run the demos. It
is useful if you want to examine the type mapping.

- qui et Specifies quiet mode.

-ver bose Specifies verbose mode.

-namespace <G# Specifies the namespace to use for the generated code. If

NameSpace> not specified the namespace defaults to
[<Fi r st Port Typei nWBDLf i | e>NanmeSpace]

63

CHAPTER 5 | Development Support Tools

Usage examples

64

-nane <C# Specifies the name of the assembly containing the .NET
Assenbly metadata. If not specified, the names defaults to
Nane> [<Fi r st Port Typei nWBDLf i | e>] .

-v Displays the version of the tool.

-? Displays the wsdl t odot net 's usage message.

Example 1

The following command generates a .NET metadata assembly within a
Geeter.dl | file, based on the G eet er port type described in the

hel 1 o_wor | d. wsdl file in the Artix Connect Hel | o Wr | d demo. In this case,
the command is being run from the directory in which the WSDL file exists;
that is:

ArtixConnectlnstall D r\artix\Version\dermos\ dot net\ hel | o_worl d\ et c:

wsdl t odot net hel | o_wor | d. wsdl

Example 2

The following command generates a .NET metadata assembly called
Test Q eet er and the C# source file, G eet er. cs. Again, the command is
being run from the directory in which the WSDL file is stored:

wsdl t odot net -source -nane Test G eeter hello_world. wsdl

In This Chapter

CHAPTER 6

Deploying an Artix
Connect
Application

This chapter provides an overview of the deployment model
you can adopt when deploying a distributed application with
Artix Connect. It also describes the steps you must follow to
deploy a distributed Artix Connect application.

This chapter discusses the following topics:

Deployment Model page 66

Deployment Steps page 68

65

CHAPTER 6 | Deploying an Artix Connect Application

Deployment Model

Overview Figure 25 provides a graphical overview of a typical deployment scenario.
Although WebSphere MQ Server is chosen as the server in this example, any
server that uses the transports and protocols supported by Artix can be
used, including SOAP over HTTP, CORBA, IIOP, BEA Tuxedo, TIBCO
Rendezvous, and Java Messaging Service.

. (Windows XP or 2003 Server)

I:J' _'.net Client Machine 1

' ﬂé‘[Client P\r'oce‘ss

et ociiiots WebSphere MQ Server
as:&rtn.bl\r
a

Client Program
' (Visual Basic .net,
| Visual C++ 7, C#, J#
and so on)

"

9/
2~ (Windows, UNIX,

08
w;gg? 05/390 and so on)

Client Program
(Visual Basic .net,
Visual C++ 7, CH#, J#
and so on)

assembly

\\Ifatl

“Nnet Client Process

1:\ "I net client Machine 2
===

(Windows XP or 2003 Server),

Figure 25: Typical Deployment Scenario

66

Explanation

Deployment Model

The deployment scenario overview in Figure 25 can be outlined as follows:

® Each .NET client machine must be running on Windows 2000, NT, XP
or 2003 Server.

® The Artix Connect bridge (that is, Arti x. Renot i ng custom remoting
channel) always runs in-process (that is, within the client process).

® The .NET metadata DLL file is also exposed within the client process.

® Each client machine uses the protocol specified in the WSDL file to
communicate with the back-end server—in this case WebSphere MQ.

® The back-end server process can be running on any platform that is
supported by Artix.

67

CHAPTER 6 | Deploying an Artix Connect Application

Deployment Steps

Overview

Required components

Steps

68

This section describes the steps involved in deploying an Artix Connect
application.

Four components are required for successful deployment of an Artix Connect
client:

The .NET client executable.

The .NET metadata assembly DLL.
Artix Connect runtime installation.
WSDL contract.

These must be copied from the development host to every deployment host.

The steps to deploy an Artix Connect client application are:

1.

4.

Install the Artix Connect runtime on the deployment host. The

Arti x. Renot i ng assembly must be in the client directory or in the GAC
of the client machine. The Artix Connect installer places the

Artix. Renoti ng assembly in the GAC by default.

Configure Artix Connect. The installer allows you to set the
environment variables that Artix Connect requires during installation. If
you choose not to set them during installation, you can either run the
artix_env. bat script or set them manually later. See “Configuration”
on page 111 for more details.

Copy the client executable and the .NET metadata DLL to the
deployment host.

Copy the WSDL contract for the service to which you want to connect.

Repeat these steps as necessary for each deployment host on your system.

In this chapter

CHAPTER 7

Introduction to
WSDL

Artix uses WSDL documents to describe services and the data
they use.

This chapter discusses the following topics:

WSDL Basics page 70
Abstract Data Type Definitions page 73
Abstract Message Definitions page 76
Abstract Interface Definitions page 79
Mapping to the Concrete Details page 82

Note: This chapter is taken from the Getting Started with Artix guide. For
more information, please refer to that guide.

69

http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm

CHAPTER 7 | Introduction to WSDL

WSDL Basics

Overview

Abstract operations

Port types

Concrete details

Namespaces and imported
descriptions

70

Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website, www.w3.org.

The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Or, one WSDL document could be used to define several services
that use the same abstract messages.

A portType is a collection of abstract operations that define the actions
provided by an endpoint. When a port type is mapped to a concrete data
format, the result is a concrete representation of the abstract definition, in
the form of an endpoint or service access point.

The mapping of a particular port type to a concrete data format results in a
reusable binding. A port is defined by associating a network address with a
reusable binding, and a collection of ports define a service.

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix WSDL contracts bind operations
to several data formats and describe the details for a number of network
protocols.

WSDL supports the use of XML namespaces defined in the defi ni ti on
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

http://www.w3.org/TR/wsdl

Elements of a WSDL document

Example

WSDL Basics

A WSDL document is made up of the following elements:

i mpor t —allows you to import another WSDL or XSD file

t ypes—the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an XML
Schema (XSD).

message—the abstract definition of the data being communicated.
oper at i on—the abstract description of an action.

por t Type—the set of operations representing an absract endpoint.
bi ndi ng—the concrete data format specification for a port type.
por t —the endpoint defined by a binding and a physical address.
ser vi ce—a set of ports.

Example 5 shows a simple WSDL document. It defines a SOAP over HTTP
service access point that returns the date.

Example 5: Simple WSDL

<?xm version="1.0"?>
<defi ni ti ons name="Dat eSer vi ce"

t ar get Namespace="ur n: dat eser vi ce"
xm ns="htt p: //schemas. xm soap. or g/ wsdl /"
xm ns: SOAP- ENC="ht t p: / / schenas. xni soap. or g/ soap/ encodi ng/ "
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: t ns="ur n: dat eser vi ce"
xm ns: xsd="htt p: / / www. W3. or g/ 2001/ XM_Schena"
xm ns: xsd1="http://i ona. coni dat es/ schemas" >
<t ypes>
<schera t ar get Namespace="htt p: //i ona. coni dat es/ schenas"
xm ns="ht t p: / / waw. w3. or g/ 2000/ 10/ XM_Scherma" >
<el enent name="dat eType" >
<conpl exType>
<al | >
<el enent name="day" type="xsd:int"/>
<el enent name="nont h* type="xsd:int"/>
<el ement name="year" type="xsd:int"/>
</all>
</ conpl exType>
<el ement >
</ schema>
</ types>

71

CHAPTER 7 | Introduction to WSDL

Example 5: Simple WSDL (Continued)

<message hamne="Dat eResponse" >
<part name="date" el enent="xsd1: dat eType"/>
</ message>
<port Type nane="Dat ePort Type" >
<oper ati on name="sendDat e" >
<out put message="t ns: Dat eResponse" nane="sendDat e"/>
</ oper ati on>
</ por t Type>
<bi ndi ng name="Dat ePor t Bi ndi ng" type="t ns: Dat ePort Type" >
<soap: bi ndi ng styl e="rpc"
transport="htt p://schemas. xnl soap. or g/ soap/ htt p"/>
<oper ati on name="sendDat e">
<soap: oper ati on soapAction="" style="rpc"/>
<out put name="sendDat e" >
<soap: body
encodi ngStyl e="ht t p: // schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="ur n: dat eser vi ce" use="encoded"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="Dat eServi ce">
<port bi ndi ng="t ns: Dat ePort Bi ndi ng" name=""Dat ePort" >
<soap: address | ocati on="http://ww i ona. corm Dat ePort/"/>
</ port>
</ servi ce>
</ defini ti ons>

72

Abstract Data Type Definitions

Abstract Data Type Definitions

Overview Applications typically use data types that are more complex than the
primitive types, like i nt, defined by most programming languages. WSDL
documents represent these complex data types using a combination of
schema types defined in referenced external XML schema documents and
complex types described in t ypes elements.

Complex type definitions Complex data types are described in a t ypes element. The W3C
specification states the XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire and not concrete descriptions, there are a few guidelines on using
XSD schemas to represent them:

® Use elements, not attributes.
® Do not use protocol-specific types as base types.
® Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personal I nf o, defined in Example 6, contains a string, an
int, and an enum The string and the i nt both have equivalent XSD types
and do not require special type mapping. The enumerated type
hai r Col or Type, however, does need to be described in XSD.

Example 6: personalinfo

enum hai r Col or Type {red, brunette, bl onde};

struct personal | nfo

{

string nane;

int age;

hai r Col or Type hai r Col or;
}

73

CHAPTER 7 | Introduction to WSDL

Example 7 shows one mapping of personal I nf o into XSD. This mapping is
a direct representation of the data types defined in Example 6.

hai r Col or Type is described using a named si npl eType because it does not
have any child elements. per sonal I nf o is defined as an el enent so that it
can be used in messages later in the contract.

Example 7: XSD type definition for personallnfo

<t ypes>
<xsd: schena t ar get Namespace="htt p: //i ona. coni per sonal / schema"
xm ns: xsd1="htt p://i ona. con per sonal / schena"
xm ns="htt p: // waw. W3. or g/ 2000/ 10/ XM_Schena" >
<si npl eType nane="hai r Col or Type" >
<restriction base="xsd: string">
<enuneration val ue="red"/>
<enuneration val ue="brunette"/>
<enuneration val ue="bl onde"/ >
</restriction>
</ si npl eType>
<el enent name="personal | nf 0" >
<conpl exType>
<el enent name="nanme" type="xsd:string"/>
<el enent name="age" type="xsd:int"/>
<el ement nanme="hai r Col or" type="xsd1: hai r Col or Type"/ >
</ conpl exType>
</ el enent >
</ scherma>
</ types>

Another way to map personallnfo is to describe hai r Col or Type in-line as
shown in Example 8. WIth this mapping, however, you cannot reuse the
description of hai r Col or Type.

Example 8: Alternate XSD mapping for personallnfo

<t ypes>
<xsd: schenma t ar get Nanespace="htt p: //i ona. coni per sonal / schema"
xm ns: xsd1="http://i ona. conl per sonal / schena"
xm ns="ht t p: / / waw. W3. or g/ 2000/ 10/ XM_Schena" >
<el ement name="personal | nf 0" >
<conpl exType>
<el enent nanme="nane" type="xsd:string"/>
<el ement nane="age" type="xsd:int"/>

74

Abstract Data Type Definitions

Example 8: Alternate XSD mapping for personalinfo (Continued)

<el enent name="hai r Col or ">
<si npl eType>
<restriction base="xsd: string">
<enuner ation val ue="red"/>
<enuneration val ue="brunette"/>
<enuner ati on val ue="bl onde"/ >
</restriction>
</ si npl eType>
</ el ement >
</ conpl exType>
</ el erent >
</ schema>
</ types>

75

CHAPTER 7 | Introduction to WSDL

Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network. It
describes data that is exchanged between two endpoints in terms of abstract
messages described in message elements. Each abstract message consists of
one or more parts, defined in part elements. These abstract messages
represent the parameters passed by the operations defined by the WSDL
document and are mapped to concrete data formats in the WSDL
document’s bi ndi ng elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and one output message, the representation of the data returned by the
operation.

In the abstract message definition, you cannot directly describe a message
that represents an operation's return value, therefore any return value must
be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of part elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation’s return value, would be mapped to another message.

Example For example, imagine a server that stored personal information as defined in
Example 6 on page 73 and provided a method that returned an employee’s
data based on an employee ID number. The method signature for looking up
the data would look similar to Example 9.

Example 9: personalinfo lookup method

personal | nf o | ookup(l ong enpl d)

76

Message naming

Message parts

Abstract Message Definitions

This method signature could be mapped to the WSDL fragment shown in

Example 10.
Example 10: WSDL Message Definitions

<nessage name="per sonal LookupRequest ">
<part name="enpld" type="xsd:int" />
</ message>
<nessage nane="per sonal LookupResponse>
<part name="return" el ement="xsd1l: personal | nfo" />
</ message>

Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that you name messages in a way that
shows whether they are input messages (requests) or output messages
(responses).

Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 1

Table 1: Part Data Type Attributes

Attribute Description

type="t ype_nane" The datatype of the part is defined by a
si npl eType or conpl exType called t ype_nane

el enent ="el em name" | The datatype of the part is defined by an
el enent called el em nane.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, f oo, which is passed by reference or is an in/out, it can be a part
in both the request message and the response message as shown in
Example 11.

Example 11: Reused part
<nessage nane="f ooRequest ">

<part name="foo" type="xsd:int"/>
</ message>

77

CHAPTER 7 | Introduction to WSDL

Example 11: Reused part (Continued)
<message name="f ooRepl y" >

<part name="foo0" type="xsd:int"/>
</ message>

78

Abstract Interface Definitions

Abstract Interface Definitions

Overview

Port types

Operations

Elements of an operation

WSDL port Type elements define, in an abstract way, the operations offered
by a service. The operations defined in a port type list the input, output, and
any fault messages used by the service to complete the transaction the
operation describes.

A port Type can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the port Type element in a WSDL document.
Each port type in a WSDL document must have a unique name, specified
using the nane attribute, and is made up of a collection of operations,
described in operati on elements. A WSDL document can describe any
number of port types.

Operations, described in oper ati on elements in a WSDL document are an

abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the nare attribute. The nane attribute is required to define an operation.

Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 2.

Table 2: Operation Message Elements

Element Description
i nput Specifies a message that is received from another
endpoint. This element can occur at most once for each
operation.

79

CHAPTER 7 | Introduction to WSDL

Return values

80

Table 2: Operation Message Elements

Element Description

out put Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

faul t Specifies a message used to communicate an error
condition between the endpoints. This element is not
required and can occur an unlimited number of times.

An operation is required to have at least one i nput or out put element. The
elements are defined by two attributes listed inTable 3.

Table 3: Attributes of the Input and Output Elements

Attribute Description

nane Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

nmessage Specifies the abstract message that describes the data
being sent or received. The value of the nessage attribute
must correspond to the nane attribute of one of the abstract
messages defined in the WSDL document.

It is not necessary to specify the nane attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an i nput and an out put
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Because the port type is an abstract definition of the data passed during an
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value it will be mapped into the out put
message as the last part of that message. The concrete details of how the
message parts are mapped into a physical representation are described in
the binding section.

Example

Abstract Interface Definitions

For example, in implementing a server that stored personal information in
the structure defined in Example 6 on page 73, you might use an interface
similar to the one shown in Example 12.

Example 12: personallnfo lookup interface

i nterface personal | nf oLookup

{
per sonal | nfo | ookup(in int enplD)
rai ses(i dN\ot Found) ;

}

This interface could be mapped to the port type in Example 13.
Example 13: personalinfo lookup port type

<t ypes>

<el enent name="i dNot Found" type="i dN\ot FoundType" >
<conpl exType nane="i d\Not FoundType" >
<sequence>
<el enent name="Error Msg" type="xsd:string"/>
<el enent name="Error| D' type="xsd:int"/>
</ sequence>
</ conpl exType>
</ types>
<nmessage nane="per sonal LookupRequest ">
<part name="enpld" type="xsd:int" />
</ message>
<message name="per sonal LookupResponse" >
<part name="return" el ement="xsd1l: personal | nfo" />
</ message>
<message name="i dN\ot FoundExcepti on">
<part name="exception" el enent="xsd1l:i dNot Found" />
</ message>
<port Type nane="per sonal | nf oLookup" >
<oper ati on nane="| ookup">
<i nput nane="enpl D' nessage="per sonal LookupRequest" />
<out put name="return" nessage="personal LookupResponse" />
<faul t name="exception" nessage="i dN\Not FoundException" />
</ oper ati on>
</ por t Type>

81

CHAPTER 7 | Introduction to WSDL

Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions need
to be mapped to concrete representations of the data passed between the
applications and the details of the network protocols need to be added.

This is done by the WSDL bindings and ports. WSDL binding and port
syntax is not tightly specified by W3C. While there is a specification defining
the mechanism for defining the syntaxes, the syntaxes for bindings other
than SOAP and network transports other than HTTP are not bound to a
W3C specification.

Bindings To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in bi ndi ng elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

Services The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a port element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within servi ce elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.

82

In this chapter

CHAPTER 8

WSDL to .NET
Mapping

To enable interworking between .NET clients and services
described in WSDL contracts, .NET clients must be presented
with metadata that describes the interfaces exposed by the
WSDL contract. When using .NET Remoting, the .NET types
must use the .NET Common Type System (CTS). This chapter
describes how Artix Connect maps WSDL types to .NET CTS

types.

This chapter discusses the following topics:

Mapping a WSDL Contract to CTS page 84
Simple Types page 93
Complex Types page 99
Occurance Constraints page 109
SOAP Arrays page 110

83

CHAPTER 8 | WSDL to .NET Mapping

Mapping a WSDL Contract to CTS

Overview Artix Connect maps WSDL contracts into C# using the mapping described
in this section.

In this section This section contains the following subsections:
Port Types page 85
Operations page 87
Messages page 88
Document/Literal Wrapped Style page 90

84

Mapping a WSDL Contract to CTS

Port Types

Overview

WSDL contract example

A C# interface is generated for each port Type element in an Artix WSDL
contract. The name of the generated interface is taken from the name
attribute of the port Type element.

For example, the WSDL contract shown in Example 14 generates a C#
interface called sport sCent er Port Type. which contains one operation,
called updat e. (see Example 15)

Example 14: Segment of Sports Center WSDL Contract

<message nane="scor eRequest ">
<part name="t eanNane" type="xsd:string" />
</ message>
<nessage nane="scor eRepl y">
<part name="score" type="xsd:int" />
</ message>
<port Type nane="sportsCent er Port Type">
<oper ati on nane="updat e">
<i nput nessage="scor eRequest" nane="request" />
<ouput nessage="scoreRepl y" name="reply" />
</ oper ati on>
</ por t Type>
<bi ndi ng name="scor eBi ndi ng" type="t ns: sport sCent er Port Type">

<servi ce nanme="sportsService">
<port name="sportsCenterPort" bindi ng="t ns: scor eBi ndi ng" >

85

86

CHAPTER 8 | WSDL to .NET Mapping

CTS mapping

Example 15 shows how the preceding WSDL contract maps to a C#
interface defined using the Common Type System:

Example 15: C# Mapping for Sports Center WSDL Contract

/1 CH#
public interface sportsCenterPort Type
{

System I nt 32 updat e(System String t eaniNane) ;
}

Mapping a WSDL Contract to CTS

Operations
Overview Every oper ati on element contained in a WSDL contract generates a C#
method within the interface defined for the operati on element's port Type.
The generated method's name is taken from the oper ati on element's name
attribute.
WSDL contract example Example 16 shows a WSDL contract that contains an operation called
gr eet Me:
Example 16: WSDL Contract containing greetMe Operation
<wsdl : port Type nanme="Q eeter">
<wsdl : oper ati on nane="sayH ">
<wsdl : i nput nessage="t ns: sayH Request" name="sayH Request"/>
<wsdl : out put nmessage="t ns: sayH Response"
name="sayH Response"/ >
</ wsdl : oper ati on>
<wsdl : operati on nane="greet ">
<wsdl : i nput nessage="t ns: gr eet MRequest "
name="gr eet MeRequest "/ >
<wsdl : out put message="t ns: gr eet MeResponse"
name="gr eet MeResponse"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>
CTS mapping The WSDL contract shown in Example 16 maps to a C# interface defined

using the Common Type System as follows:

public interface Geeter {

System String sayH ();

System String greet Me(System String ne);
}

87

CHAPTER 8 | WSDL to .NET Mapping

Messages

Overview

WSDL contract example

88

The message parts of an operation’s input and output elements are mapped
as parameters in the generated method'’s signature. The parameter names
are taken from the name attribute of the part element.

The order of the mapped parameters is based on the order in which they
appear in the WSDL contract.

Input message parts are listed before output message parts. Message parts
that are listed in both the input and output messages are considered i nout
parameters and are listed according to their position in the input message.

The first part in output messages are mapped to a return types. For the
remaining message parts, each part is mapped to either ref parameter or an
out parameter. If the message part is listed in both the input and output
message, it is mapped to a ref parameter. If the message part is only listed
in the output message, it is mapped to an out parameter.

For example, the WSDL contract fragment shown in Example 17 maps to a
Si npl eTest Port Type interface that contains a t est _short operation, which
has a return type of String and a parameter list that contains two input
parameters and two output parameters.

Example 17: Segment of WSDL Contract

<nessage name="test_short">
<part name="x" el ement="s:short_x"/>
<part name="y" el enent="s:short_y"/>
</ message>
<nessage nane="t est_short_response">
<part name="return" el ement="s:short_return"/>
<part name="y" el enent="s:short_y"/>
<part name="z" el ement="s:short_z"/>
</ message>
<port Type nane="Si npl eTest Port Type">
<operation nane="test_short">
<i nput name="t est_short" message="tns:test_short"/>
<out put nane="test_short_response"
nmessage="t ns: test _short_response"/>
</ oper ati on>
</ port Type>

CTS mapping

Mapping a WSDL Contract to CTS

Example 18 shows how the preceding WSDL contract maps to a C#
interface defined using the Common Type System:

Example 18: C# Mapping of SimpleTestPortType

/] C#
public interface S npl eTestPort Type
{

System I nt16 test_short(SystemlInt16 X,

ref SystemInt1l6 y, out
SystemInt16 z);
}

89

CHAPTER 8 | WSDL to .NET Mapping

Document/Literal Wrapped Style

Overview This subsection describes the document/literal wrapped style for defining
WSDL operations and parameters. The document/literal wrapped style is
distinguished by the fact that it uses single-part messages. The single part is
defined as a schema element that contains a sequence of elements, one for
each parameter.

Request message The request message in document/literal wrapped style must obey the
following conventions:

® The single element that wraps the input parameters must have the
same name as the WSDL operation, Qper at i onNarre.
® The single part must have the name, par anet er s.

Reply message The reply message in document/literal wrapped style must obey the

following conventions:

® The single element that wraps the output parameters must have the
form, Qper ati onNaneResul t .

® The single part must have the name, par anet er s.

You can declare a WSDL operation in document/literal wrapped style as

follows:

® In the schena section of the WSDL contract, define an el enent (the
input part wrapping element) as a sequence type containing elements
for each of the in and inout parameters.

® |n the schema section of the WSDL contract, define another el enent
(the output part wrapping element) as a sequence type containing
elements for each of the inout and out parameters.

® Declare a single-part input message, including all of the in and inout
parameters for the new operation.

® Declare a single-part output message, including all of the out and inout
parameters for the operation.

® Within the scope of port Type, declare a single operation that includes
a single i nput message and a single out put message.

90

WSDL contract example

Mapping a WSDL Contract to CTS

Artix Connect automatically detects that document/literal wrapped style is
being used, as long as the WSDL contract obeys the conventions outlined
above. If document/literal wrapped style is detected, Artix Connect unwraps
the operation parameters to generate a normal function signature in C#.

Example 19: Segment of Sports Final WSDL Contract using
Document/Literal Style

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions ...
<wsdl : t ypes>
<schena t ar get Namespace="..."

xm ns="ht t p: // waw. w8. or g/ 2001/ XM_Schena" >

>

<el ement nane="final ">
<conpl exType>
<sequence>

Example 19 shows how the WSDL contract shown in Example 17 could be
expressed in WSDL using the document/literal style:

<el enent name="t eanl" type="xsd:string"/>
<el enent name="t ean?" type="xsd:string"/>

</ sequence>
</ conpl exType>
</ el ement >
<el ement nane="fi nal Resul t ">
<conpl exType>
<sequence>
<el enent name="w nTeant
type="xsd: string"/>
<el enent name="t eaniscore"
type="xsd:int"/>
<el enent name="t ean®scor e"
type="xsd:int"/>
</ sequence>
</ conpl exType>
</ el ement >

</ schenma>
</wsdl : t ypes>
<nessage name="final ">

<part name="paraneters" el ement="tns:final"/>
</ message>
<nessage nane="fi nal Resul t ">

<part name="paraneters" el enent="tns:final Result"/>
</ message>

91

CHAPTER 8 | WSDL to .NET Mapping

Example 19: Segment of Sports Final WSDL Contract using
Document/Literal Style

<wsdl : port Type name="sport sFi nal Port Type" >
<wsdl : operati on nane="final ">
<wsdl :input nessage="tns:final"
nanme="final "/ >
<wsdl : out put nessage="tns: final Resul t"
nanme="fi nal Resul t"/>
</ wsdl : oper ati on>
</wsdl : port Type>

<bi ndi ng nane="scor eBi ndi ng" type="tns: sportsFi nal Port Type">

<servi ce name="sportsService">
<port name="sportsFinal Port" bindi ng="tns: scor eBi ndi ng">

</ defini tions>

Example 20 shows how the preceding WSDL contract maps, for example, to

CTS mapping
a C# interface defined using the Common Type System:

Example 20: C# Mapping for Sports Final WSDL Contract that uses
Document/Literal style

/1 Gt
public interface sportsFinal

{
System String final (System String teanl, System String tean®,

out System|nt32 teanlscore,
out System|nt32 teanRscore);

92

Simple Types

Simple Types

Overview This section describes the mapping of simple WSDL types to CTS.

In this section This section includes the following subsections:
Atomic Types page 94
Lists page 96
Unsupported Simple Types page 98

93

CHAPTER 8 | WSDL to .NET Mapping

Atomic Types

Table of atomic types Table 4 shows how the XSD schema atomic types map to .NET CTS types:

Table 4: XSD Schema Simple Types Mapping to .NET CTS Types

XSD Schema Type CTS Type
xsd: anySi npl eType System String
xsd: anyUR System String
xsd: base64Bi nary System Byt e[]
xsd: bool ean Syst em Bool ean
xsd: byt e System SByt e
xsd: unsi gnedByt e System Byte
xsd: dat eTi me Syst em Dat eTi e
xsd: doubl e Syst em Doubl e
xsd: deci nal Syst em Deci nmal
xsd: f| oat System Singl e
xsd: gDay System String
xsd: ghont h System String
xsd: ghont hDay System String
xsd: gYear System String
xsd: gYear Mont h System String
xsd: hexBi nary System Byt e[]
xsd: | D System String
xsd: i nt System I nt 32
xsd: unsi gnedl nt System U nt 32
xsd: i nt eger System String

94

Simple Types

Table 4: XSD Schema Simple Types Mapping to .NET CTS Types

XSD Schema Type CTS Type
xsd: | ong System | nt 64
xsd: unsi gnedLong System U nt 64
xsd: negat i vel nt eger System String
xsd: nonPosi ti vel nt eger System String
xsd: nonNegat i vel nt eger System String
xsd: posi ti vel nt eger System String
xsd: Q\ane System Xm . Xml Qual i fi edName
xsd: short System I nt 16
xsd: unsi gnedshort System U nt 16
xsd: string System String
xsd: tinme Syst em Dat eTi e

95

CHAPTER 8 | WSDL to .NET Mapping

Lists

Overview XML schema supports a mechanism for defining data types that are a list of
space separated simple types. Artix Connect maps these lists onto .NET
arrays.

WSDL contract example Example 21 shows a WSDL definition for a list of strings:

Example 21: WSDL for List of Strings
<t ypes>

<si npl eType nanme="Stri ngLi st">
<list itenType="xsd:string"/>
</ si npl eType>
<el enent name="Stri ngLi st_x" type="tns: StringList"/>
<el ement name="StringList_y" type="tns: StringList"/>
<el ement name="Stri ngLi st_z" type="tns: StringList"/>
<el enent name="StringLi st_return" type="tns: StringList"/>
</ types>
<nessage nane="test_StringList">
<part el enent="tns: StringLi st_x" nane="x"/>
<part el ement="tns: StringList_y" nane="y"/>
</ message>
<nessage name="t est _Stri ngLi st _response" >
<part elenment="tns:StringList_return" nane="return"/>
<part elenent="tns: StringList_y" nane="y"/>
<part el enent="tns: StringList_z" nane="z"/>
</ message>
<port Type nane="TypeTest Port Type" >
<operation name="test_StringList">
<i nput nessage="tns:test_StringList"
name="test_StringList"/>
<out put message="tns:test_StringList_response"
name="t est _StringLi st_response"/>
</ oper ati on>
</ port Type>

96

Simple Types

CTS mapping

The WSDL contract shown in Example 21 maps to a .NET array as shown
in Example 22:

Example 22: C# Mapping for StringlList

/IC#:

System String[] test_StringList(SystemString[] x, ref
System String[] y, out SystemString[] z);

97

CHAPTER 8 | WSDL to .NET Mapping

Unsupported Simple Types

Overview The following simple types are not supported:
® xsd:duration
xsd:NOTATION

® xsd:IDREF
® xsd:IDREFS
¢ xsd:ENTITY

® xsd:ENTITIES
® xsd:anySimpleType
® xsd:simpleType/xs:union

98

Complex Types

Complex Types

Overview

In this section

This section describes the mapping of complex WSDL types to .NET CTS

types.

This section contains the following subsections:

Sequence and All Complex Types page 100
Arrays page 102
Choice Complex Type page 104
Attributes page 106
Enumerations page 108

929

CHAPTER 8 | WSDL to .NET Mapping

Sequence and All Complex Types

Overview

Difference between sequence and
all

Mapping

WSDL contract example

100

Complex types often describe basic structures that contain a number of
fields or elements. XML schema provides two mechanisms for describing a
structure. One method is to describe the structure inside of a sequence
element. The other is to describe the structure inside of an al | element.
Both methods of describing a structure result in the same generated C#
classes.

The difference between using a sequence and an al | is in how the elements
of the structure are passed on the wire. When a structure is described using
a sequence, the elements are passed on the wire in the exact order that they
are specified in the WSDL contract. When the structure is described using
an al | element, the elements of the structure can be passed on the wire in
any order.

Artix Connect maps WSDL sequence and al | complex types to CTS classes
with properties that represent each element.

Example 23 shows an XSD sequence type with three simple elements:
Example 23: WSDL Definition for a Sequence Complex Type

<schena t ar get Namespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: / / waw. w3. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType nane="SequenceType">
<sequence>
<el enent name="varFl oat" type="xsd:float"/>
<el enent name="varlnt" type="xsd:int"/>
<el ement nane="var String" type="xsd:string"/>
</ sequence>
</ conpl exType>

</ schena>

Complex Types

CTS mapping Example 24 shows the result of mapping the SequenceType type (from the
preceding Example 23) to C# defined using CTS:

Example 24: C# Mapping for SequenceType

/| C#
[System Seri al i zabl e()]
public class SequenceType {

private System Single _varFl oat;
private SystemInt32 _varlnt;
private System String _varString;

public virtual System Single varFl oat {

get {

return this._varFl oat;
}
set {

this._varFl oat = val ue;
}

}

public virtual SystemInt32 varlnt {

get {

return this. _varlnt;
}
set {

this._varlnt = val ue;
}

}

public virtual System String varString {

get {

return this._varString;
}
set {

this. _varString = val ue;
}

101

CHAPTER 8 | WSDL to .NET Mapping

Arrays

Overview If a sequence only includes one element and this element has m nQccurs
and maxQceur s attributes, then Artix Connect generates a class for this
sequence, which includes the array properties. Unlike the other mappings
listed in this chapter, this differs from the .NET WBDL. exe data mapping tool.
The WeDL. exe tool will not generate a class for this sequence—it directly
maps it to an array parameter in the method.

See also SOAP Arrays and Occurance Constraints.

WSDL contract example Example 25 shows an example of such a sequence:

Example 25: WSDL Definition for Sequence with one Element containing
minOccurs and maxQccurs Attributes

<conpl exType name="UnboundedArray" >

<sequence>

<el enent maxCccur s="unbounded" m nCccurs="0" name="itent
type="xsd: string"/>
</ sequence>

</ conpl exType>
<el ement nane="UnboundedArray_x" type="s: UnhboundedArray"/>
<el enent nane="UnboundedArray_y" type="s: UnhboundedArray"/>
<el enent nane="UnboundedArray_z" type="s: UnboundedArray"/>
<el ement nane="UnboundedArray_return" type="s: UnboundedArray"/>

<nessage nane="t est _UnboundedArray" >
<part el enent="s: UnboundedArray_x" nane="x"/>
<part el enent="s: ULhboundedArray_y" nanme="y"/>
</ message>
<nessage nane="t est _UnboundedArray_response" >
<part el enent="s: ULhboundedArray return" name="return"/>
<part el ement="s: ULhboundedArray_y" name="y"/>
<part el enent="s: UnboundedArray_z" nane="z"/>
</ message>
<por t Type nane="TypeTest Port Type" >
<oper ati on nane="t est _UnboundedArray" >
<i nput nessage="tns:test_UnboundedArray"
nanme="t est _UnboundedArray"/ >
<out put nessage="tns: t est _UnboundedArray_response"
name="t est _UnboundedArray_response"/>
</ oper ati on>

102

CTS mapping

Complex Types

Example 25: WSDL Definition for Sequence with one Element containing
minOccurs and maxQOccurs Attributes

</ por t Type>

Artix Connect maps the WSDL contract shown in Example 25 to C# as
shown in Example 26:

Example 26: Artix Connect C# Mapping for Sequence with one Element
containing minOccurs and maxQOccurs Attributes

/1 C#
UnboundedArray test_UnboundedArray(UnboundedArray x, ref
UnboundedArray y, out UnboundedArray z);

public class UnboundedArray {
private System String[] _item
public virtual SystemString[] item {

get {

return this. item
}
set {

this. _item= val ue;
}

}

The .NET WsDL. exe tool maps the WSDL contract shown in Example 25 to
C# as shown below:

public string[] test_UnboundedArray(string[] UnboundedArray_x,
ref string[] UnboundedArray y, out string[] UnboundedArray_z)

103

CHAPTER 8 | WSDL to .NET Mapping

Choice Complex Type

Overview The .NET CTS has no concept of a choi ce or uni on type. As a result, Artix
Connect maps XML schema choice complex types to a generated C# class.
Accessor and modifier functions are defined for each element in the choice
complex type. The choice complex type is equivalent to a C++ union.
Therefore, only one of the elements is accessible at a time.

WSDL contract example Example 27 shows an XSD choice type with three elements:
Example 27: WSDL Definition for a Choice Complex Type

<schera t ar get Namespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="htt p: // waw w8. or g/ 2001/ XM_Schena"
xm ns: wsdl =" ht t p: // schemas. xm soap. or g/ wsdl /" >
<conpl exType nane="Choi ceType" >
<choi ce>
<el enent name="varFl oat" type="xsd:float"/>
<el ement nane="varlnt" type="xsd:int"/>
<el enent name="var String" type="xsd:string"/>
</ choi ce>
</ conpl exType>

</ schena>

CTS mapping Example 28 shows the result of mapping the thoi ceType (from the
preceding Example 27) to C#:

Example 28: C# Mapping of ChoiceType

/I C#

public class Choi ceType

{
[System Xni . Seri al i zati on. Xm B enent ("var Fl oat ",
Type=t ypeof (System Si ngl), DataType="float")]
[System Xni . Seri al i zati on. Xm B enent ("varlnt",
Type=t ypeof (System I nt 32), DataType="int")]
[System Xni . Seri al i zati on. Xm B erment ("var Stri ng",
Type=t ypeof (System String), DataType="string")]
private object _Item

104

Example 28: C# Mapping of ChoiceType

public virtual object |tem {

get {

return this. _ltem
}
set {

this. _Item= val ue;
}

Complex Types

105

CHAPTER 8 | WSDL to .NET Mapping

Attributes

Overview An attribute is mapped to a field by Artix Connect.

WSDL contract example Example 29 shows a segment of a WSDL contract that includes an
attribute, called "varAttrString":

Example 29: WSDL Definition including an Attribute

<conpl exType nane="Si npl eSt ruct ">
<sequence>
<el enent name="var Fl oat" type="xsd:float"/>
<el enent name="varlnt" type="xsd:int"/>
<el enent name="var String" type="xsd:string"/>
</ sequence>
<attribute nane="varAttrString" type="xsd:string"/>
</ conpl exType>

CTS mapping The WSDL segment shown in Example 29 maps to C# as shown in
Example 30:

Example 30: C# Mapping for Attribute varAttrString

public class SinpleStruct {

private System S ngle _varFl oat;
private SystemInt32 _varlnt;

private System String _varString;
public System String varAttrString;
public virtual System Single varFloat {

get {
return this. _varF oat;
}
set {
this._varFl oat = val ue;
}
}
public virtual SystemInt32 varlnt {
get {
return this._varlnt;
}

106

Example 30: C# Mapping for Attribute varAttrString

set {
this. _varlnt = val ue;
}
}
public virtual System String varString {
get {
return this._varString;
}
set {
this. varString = val ue;
}

}
}

Complex Types

107

CHAPTER 8 | WSDL to .NET Mapping

Enumerations

Overview Artix Connect maps enumerations defined in WSDL onto .NET
enumerations.

WSDL contract example Example 31 shows a WSDL definition for an enumeration, Deci nmal Enum
Example 31: WSDL Definition of Enumeration

<si npl eType name="Deci mal Enun' >
<restriction base="xsd: deci nal ">
<enuner ation val ue="-10. 34"/ >
<enuner ati on val ue="11. 22"/ >
<enuner ati on val ue="14.55"/>
</restriction>
</ si npl eType>

CTS mapping This maps to a .NET enumeration as shown in Example 32
Example 32: C# Mapping of DecimalEnum
Il GH
[System Seri al i zabl e()]

publ i ¢ enum Deci nal Enum {

[System Xmi . Seri al i zati on. Xm Enun{ Nane="- 10. 34")]
It enl034,

[System Xni . Seri al i zati on. Xm Enun{ Nane="11. 22")]
Itenl122,

[System Xni . Seri al i zat i on. Xm Enun{ Nane="14. 55")]
I t eml455,

108

Occurance Constraints

Occurance Constraints

Overview

WSDL contract example

CTS mapping

Certain XML schema tags—for example, el enent , sequence, choi ce, and
any—can be declared to occur multiple times using occurrence constraints.
The occurrence constraints are specified by assigning integer values (or the
special value unbounded) to the m nQccurs and maxCccur s attributes.

Currently, m nCccur s and maxCeceur s are only supported in sequence
elements. If an element in a sequence has ni nCccur s and maxCeceur s
attributes, Artix Connect generates an array for that element.

Example 33 shows a WSDL sequence element with m nQccur s and
maxQceur s constraints:

Example 33: WSDL Sequence with Occurrence Constraints

<complexType name="FixedArray">
<sequence>
el enent nmaxQccur s="3" m nQccur s="3" nanme="it enf
type="xsd:int"/>
</ sequence>
</ conpl exType>

Example 33 maps to C# as follows:}
Example 34: C# Mapping of WSDL Sequence with Occurrence Constraints

/1 C#
public class FixedArray {
private SystemInt32 _item
public virtual System|Int32 item{

get {

return this. item
}
set {

this._item= val ue;
}

109

CHAPTER 8 | WSDL to .NET Mapping

SOAP Arrays

Overview SOAP arrays have a relatively rich feature set, including support for sparse
arrays and partially transmitted arrays. SOAP arrays map to .NET arrays.

WSDL contract example Example 35 shows a WSDL definition of a SOAP array:
Example 35: SOAP Array defined in WSDL

<conpl exType name="ArrayCf I nt">
<conpl exCont ent >
<restriction base="soap-enc: Array">
<attribute ref="soap-enc:arrayType" wsdl:arrayType="int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

<nessage nane="echol nt ArrayFaul t Request ">
<part nanme="paran' type="ns2: ArrayCfInt"/>
</ message>

<port Type nane="Si npl eRpcEncPor t Type" >
<oper ati on nane="echol nt ArrayFaul t" paranet er O der =" par ant >
<i nput message="t ns: echol nt ArrayFaul t Request "/ >
<out put nessage="t ns: echoFaul t Response"/ >
</ oper at i on>
</ port Type>

CTS mapping The WSDL shown in Example 35 maps to C# as follows:

/] Gt
voi d echol nt ArrayFaul t (System I nt 32[] paran);

110

CHAPTER 9

Configuration

This chapter describes the configuration variables that are
specific to the Artix Connect, and their associated values.

In this chapter This chapter discusses the following topics:
Overview page 112
Environment Variables page 113

111

CHAPTER 9 | Configuration

Overview

Configuration domains

More information

112

Artix Connect configuration variables are stored in a configuration domain.
An Artix Connect configuration domain is a collection of configuration
information in an Artix Connect runtime environment. This information
consists of configuration variables and their values. When you install Artix
Connect, you are provided with a default configuration. The default Artix
Connect configuration domain file is located in:

ArtixConnectInstall D r/artix/Version/etc/domins/artix.cfg

See the Deploying and Managaing Artix Solutions guide for more detail on
configuring Artix.

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm

Environment Variables

Environment Variables

Overview

In this section

The Artix Connect installer automatically sets the environment variables that
are required by Artix Connect. If, however, you chose not to set the variables

during installation, you must either run the arti x_env. bat script or set the
the variables manually.

This section gives details of the variables and how to set them if you have

not already set them while installing the product. The following topics are
covered:

® Artix Connect Environment variables

Running the artix_env.bat script
® Setting manually

113

CHAPTER 9 | Configuration

Artix Connect Environment
variables

114

This section describes the environment variables used by Artix Connect.
They include:

| T_PRCDUCT DI R

I T_LI CENSE FI LE

I T_OCONFI G DOVAINS DR

| T_DOVAI N_NAME

* PATH

* JETVMPROP

Note: You do not have to manually set your environment variables. You
can configure them during installation, or set them later by running the
provided arti x_env. bat script.

The environment variables are explained in Table 5:

Table 5:Artix Connect Environment Variables

Variable Description

| T_PRODUCT DR | T_PRCDUCT_DI R points to the top level of your
Artix Connect installation. For example, if you
install Artix Connect into the C\ Program

Fi | es\ | GNAdirectory, | T_PRCDUCT_Di Rshould
be set to that directory.

Note: If you have other IONA products
installed and you choose not to install them
into the same directory tree, you must reset
| T_PRCDUCT_DI Reach time you switch IONA
products.

I T_LI CENSE_FI LE | T_LI CENSE_FI LE specifies the location of
your Artix Connect license file. The default
value is
ArtixConnectinstallDr\etc\licenses.txt

Environment Variables

Table 5:Artix Connect Environment Variables

Variable

Description

| T_DOVAI N_NAMVE

| T_DOVAI N_NAME specifies the name of the
configuration domain used by Artix Connect to
locate its configuration. This variable also
specifies the name of the file in which the
configuration is stored.

It should be set to arti x.

| T_CONFI G DOVAI NS DI R

| T_CONFI G_DOVAI NS_DI R specifies the
directory where Artix Connect searches for its
configuration file, arti x. cf g. It should be set
to:

ArtixConnectlnstall Dr\artix\Version

\ et ¢\ domai ns

For example:

C\iona\ Arti xConnect\artix\3.0\etc

\ donai ns

PATH The Artix bi n directories are added to the
PATH variable to ensure that the proper
configuration files, libraries, and utility
programs are used.

The default bi n directories are:
% T_PRCDUCT_DI Rdarti x\ Ver si on\ bi n
and
% T_PRCDUCT_Dl R% bi n
JETVMPRCP JETVMPRCP specifies where the Artix Connect

license file is stored. It is required for the Artix
Connect wsdl t odot net metadata generator to
work. The default value is:

-Dcomiona. arti x. Li censeFi | e=
ArtixConnectlnstal I Dr\etc\licenses.txt

For example:

-Dcomiona. arti x. Li censeFi | e=
C\iona\ArtixConnect\etc\licenses.txt

115

CHAPTER 9 | Configuration

Running the artix_env.bat script The Artix Connect installation process creates a script named
artix_env. bat , which captures the information required to set your host’s
environment variables. Running this script configures your system to use
Artix Connect. The script is located in the Artix Connect bi n directory:

ArtixConnectlnstall D r\artix\ Version\bin

The arti x_env. bat script takes the following arguments. You must specify
-conpi | er vc71. The rest of the arguments described are optional:

Table 6: Options to artix_env Script

Option Description

-conpi l er vec71 Enables support for Microsoft Visual Studio
.NET 2003. You must specify this option.

- preserve Preserves the settings of any environment
variables that have already been set. When
this argument is specified, arti x_env. bat
does not overwrite the values of variables
that are already set. This option applies to
the following environment variables:

I T_PRODUCT DI R

I T_LI CENSE_FI LE

| T_CONFI G DOVAI NS DI R

| T_DOVAI N_NAVE

CLASSPATH

PATH

JETVMPRCP

For more detailed information, see “Artix
Connect Environment variables” on
page 114.

Note: Before using the - preser ve option,
always ensure that the existing environment
variable values are set correctly.

-ver bose artix_env. bat outputs an audit trail of all
its actions to st dout .

116

Environment Variables

Setting manually To set the environment variables manually:

1. Right-click on the Windows My Computer desktop icon and select
View system information. The System Properties dialog box appears
as shown in Figure 26:

wi My Computer

Fle Edi

Qe - O -3 ,OSearch [Folders | [11] >

Hard Disk Drives

System Properties z Zl
&5 Add or remave programs [System Restore | Automatic Updates | Remote
B change a setting | General | ComputerName | Hardware | Advanced

You mustbe logged on as an Administrator to make most of these changes
Other Places

Performance
&3 My Network Places

&) My Documents
@ Control Panel

Visual effacts. processor scheduling. memory usage. and virtual memory

Details User Profiles

by Copens Deskiop seftings related to your logon
System Folder

Startup and Recovery

System startup. system failure. and debugging information

i

Figure 26: Selecting My Computer

117

CHAPTER 9 | Configuration

2. Select the Advanced tab and cick Environment Variables, as shown in
Figure 26. The Environment Variables dialog box appears as shown in
Figure 27:

Environment Variables

User variables for ofitz

Variable Value ke

CATALINA_HOME C:\Program Files\Apache Software Fou...

INCLUDE C:\Program Files\Microsoft Visual Studi...

JAVA_HOME C:\j2sdk1.4.2_05 L

LIB C:\Program Files\Microsoft Visual Studi...

PATH CAIONA\bIn; C:AIONA\artix\3.00bin; CP... »
[MNewr] [Edit I [Delete

System variables

___,_..—-'-"'_'_'_'_'_'_'—‘-‘--—..____

};riaﬁa, Value

IT_CONFIG_DOQ... C:\IONA\artix\3.0\etc\domains
IT_DOMAIN_NAME artix
IT_LICENCE_FILE C:\IOMA\etc\licenses. bt
IT_PRODUCT_DIR C:\IOMA

C:\Program Files\Microsoft Visual 5t

o EmEm s
e —

Figure 27: Setting Environment Variables Manually

3. Add each of the environment variables, including the correct value for
your installation, as described in “Artix Connect Environment
variables”.

Note: The variables must be set at a system level for IIS.

118

Index

Symbols

.NET clients
building and running 41
implementing in C# 38
introduction to 5

.NET metadata

generating from WSDL using GUI 30

-2 64

A
all complex types
WSDL-to.NET mapping 100
arrays
WSDL-to-.NET mapping 102
artix.cfg 112
Artix Connect Wizard 60, 61
fields 61
artix_env.bat script 116
-compiler ve71 116
-preserve 116
-verbose 116
atomic types
WSDL-to.NET mapping 94
attributes
WSDL-to.NET mapping 106

B
bindings 70, 82
supported 4
bridge
introduction to 5

C
C#
writing clients in 38
callbacks 45-57
demonstration 48
implementing 47
implementing the client in C# 54
implementing the server 57
introduction to 46
typical use case 46

WSDL contract 50
choice complex types
WSDL-to.NET mapping 104
clients. See .NET clients
-compiler ve71 116
complex types
WSDL-to-.NET mapping 99
configuration domain 112

D

deployment
required components 68
steps 68
typical scenario 66
document/literal wrapped style
WSDL-to-.NET mapping 90

E
enumerations
WSDL-to.NET mapping 108
environment variables 111-118
IT_CONFIG_DOMAINS DIR 115
IT_DOMAIN_NAME 115
IT_LICENSE FILE 114
IT_ PRODUCT DIR 114
JETVMPROP 115
PATH 115
setting 113
setting manually 117

F

Filename 61

G

graphical overview 3

H

Hello World demo
background information 23
building and running 15
client 23

119

INDEX

location of 14 Q
server 23 -quiet 63
WSDL file 24
S
| sequence types
IT_CONFIG_DOMAINS DIR 115 WSDL-to.NET mapping 100
IT_ DOMAIN_NAME 115 servers
IT_LICENSE_FILE 114 implementing for client callbacks 57
IT_PRODUCT DIR 114 Service 61
services 82
J simple types
JETVMPROP 115 WSDL-to-.NET mapping 93
SOAP arrays
L WSDL-to.NET mapping 110
ks -source 63
WSDL-to.NET mapping 96 system components 5
M T
. Target NameSpace 61
main screen 61 transports
marshalling schemes su b orted 4
supported 4 PP
messages
WSDL-to.NET mapping 88 U .
unsupported simple types
N WSDL-to.NET mapping 98
name 64 usage scenarios 6
-namespace 63
P v
0 -v 64

-verbose 63, 116

occurance contraints Visual Studio .NET 2003 116

WSDL-to.NET mapping 109
operations 79

WSDL-to-.NET mapping 87 w

W3C 70

P Web Services Description Language, see WSDL
World Wide Web Consortium, see W3C

PATH 115 WSDL 69-82

Port 61 WSDL contract

gg:ﬁ_yég 61 introduction to 3

PortTypes WSDL-to-.NET mapping 83-110

WSDL-to-.NET mapping 85
portTypes 70, 79
-preserve 116
protocols

supported 4

120

all complex types 100

arrays 102

atomic types 94

attributes 106

choice complex types 104
complex types 99
document/literal wrapped style 90

INDEX

enumerations 108

lists 96

massages 88

occurance constraints 109

operations 87

PortTypes 85

sequence types 100

simple types 93

SOAP arrays 110

unsupported simple types 98
wsdltodotnet

arguments 63

examples if using 64

using 63

X
Xsb 71,73

121

INDEX

122

	List of Figures
	Preface
	Introduction to Artix Connect
	Artix Connect Overview
	Artix Connect System Components
	Artix Connect Usage Scenarios
	.NET Client Invoking on Web service using SOAP over HTTP
	.NET Client Invoking on a CORBA Server using IIOP

	Getting Started
	Introduction
	Running the Hello World Demo
	Background Information

	Developing .NET Clients
	Prerequisites
	Developing .NET Clients
	Generating .NET Metadata from a WSDL file Using the GUI
	Writing a C# Client
	Building and Running the Client

	Client Callbacks
	Introduction to Callbacks
	Implementing Callbacks
	Callback Demonstration
	Callback WSDL Contract
	Implementing the Client in C#
	Implementing the Server

	Development Support Tools
	Artix Connect Wizard
	wsdltodotnet Command-line Utility

	Deploying an Artix Connect Application
	Deployment Model
	Deployment Steps

	Introduction to WSDL
	WSDL Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	WSDL to .NET Mapping
	Mapping a WSDL Contract to CTS
	Port Types
	Operations
	Messages
	Document/Literal Wrapped Style

	Simple Types
	Atomic Types
	Lists
	Unsupported Simple Types

	Complex Types
	Sequence and All Complex Types
	Arrays
	Choice Complex Type
	Attributes
	Enumerations

	Occurance Constraints
	SOAP Arrays

	Configuration
	Overview
	Environment Variables

	Index

