
QALoad
Script Development Guide

Release 05.01

ii
Please direct questions about QALoad
or comments on this document to:

QALoad Customer Support
Compuware Corporation

One Campus Martius
Detroit, MI 48226-5099

1-800-538-7822

Outside the USA and Canada, please contact
your local Compuware office or agent.

RESTRICTED RIGHTS NOTICE. SHORT FORM (JUNE 1987)

Use, reproduction, or disclosure is subject to restrictions set forth in
Contract No. _____________________________with Compuware Corporation.

Use, duplication, or disclosure by the Government is subject to the
 restrictions as set forth in subparagraph(c)(1)(ii) of the rights in
Technical Data and Computer Software clause at 52.227-7013.

Copyright © 1997-2004 by Compuware Corporation.

All rights reserved. No part of this document covered by the copyright hereon may be copied or reproduced by
any means�graphic, electronic, or mechanical, including photocopying, recording, taping, or in information
storage and retrieval systems�without written permission from the publisher.

NOTICE: The accompanying software product is confidential and proprietary to Compuware Corporation.
No use or disclosure is permitted other than as expressly set forth by written license with Compuware Corporation.

Compuware, QACenter, QALoad, QARun, QADirector, EcoTOOLS, Interval, ActiveAnalysis, and ActiveData
are trademarks or registered trademarks of Compuware Corporation.

Acrobat® Reader copyright © 1987-1998 Adobe Systems Incorporated. All rights reserved. Adobe, Acrobat, and
Acrobat Reader are trademarks of Adobe Systems Incorporated.

This product contains a genuine RSA encryption engine.

This product includes cryptographic software written by Eric Young and Tim Hudson.

ACE�, TAO� © Washington University and University of California, Irvine 1993-2001. All rights reserved.

All other company or product names are trademarks of their respective owners.

Doc. CWQLRX510
April 06, 2004

 iii
Table of Contents
Introduction ... vii

Who Should Read This Guide? ... vii
Product Enhancements ... viii
Related Publications ... viii
Typographical Conventions ... viii
World Wide Web Information ... ix

FrontLine Support Web Site ... ix
Getting Help ... ix

Part 1:
Getting Started
Chapter 1. Overview.. 1-1

Accessing the QALoad Script Development Workbench .. 1-2
The QALoad Script Development Workbench Main Window .. 1-2

Part 2:
Developing a Test Script
Chapter 2. Before You Begin ... 2-1

Configuring the QALoad Script Development Workbench ... 2-2
Setting Recording Options ... 2-5
Setting Conversion Options.. 2-6
WWW/SSL: Preparing to Record SSL Requests ... 2-7

Disabling TLS Security in Internet Explorer 5.0 .. 2-8
Preparing SSL Certificates .. 2-8

Tuxedo: Setting Environment Variables .. 2-12
SAP: Preparing to Record a Script ... 2-12

Chapter 3. Recording a Test Script ... 3-1
Overview .. 3-1
Recording a Script .. 3-2

Recording Using Manual Application Startup.. 3-4
Where to Go Next... 3-5

iv QALoad Script Development Guide
Part 3:
Customizing a Test Script
Chapter 4. General Advanced Scripting Techniques .. 4-1

Defining Transaction Loops... 4-1
Defining Checkpoints... 4-2
Simulating User-Entered Data.. 4-2

Creating a Datapool File .. 4-2
Modifying a Datapool File .. 4-3
Using a Central Datapool File in a Script ... 4-3
Using Local Datapool Files in a Script ... 4-4
Inserting Variable Data with ActiveData Substitution.. 4-6

Chapter 5. Advanced Scripting Techniques for WWW.. 5-1
Simulating Variable IP Addresses.. 5-2

Modifying a Script to Use Variable IP Addresses .. 5-2
Creating a Datapool of IP Addresses .. 5-2

Handling Error Messages from the Web Server .. 5-3
Handling Error Messages with Response Codes .. 5-3
Handling Error Messages Returned in an HTML Page .. 5-4

Simulating CGI Requests ... 5-5
CGI Parameter Encoding .. 5-5
Get Requests.. 5-6
Post Requests .. 5-7
CGI Forms... 5-9

Simulating JavaScript... 5-12
Supported Objects ... 5-13
Supported Properties ... 5-13

Executing a Visual Basic Script ... 5-15
Executing a Java Applet ... 5-15
Simulating Frames.. 5-18
Simulating Cookies .. 5-19
Simulating Browser Caching.. 5-22
Requesting Password-Protected Directories .. 5-22
Using the WWW Convert Options Dialog Box ... 5-24

WWW Convert Options Dialog Box .. 5-24
WWW Advanced Convert Options Dialog Box ... 5-58
Traffic Filters Dialog Box ... 5-105

Chapter 6. Advanced Scripting Techniques for Tuxedo ... 6-1
Managing Tuxedo Application Data Flow... 6-1

Managing Tuxedo Buffers .. 6-1
Passing Data Between Tuxedo Commands... 6-2
Encoding String Data in Scripts .. 6-4

Chapter 7. Advanced Scripting Techniques for Winsock ... 7-1

 v
Understanding Data Representation in the Script .. 7-1
Handling Winsock Application Data Flow .. 7-4
Modifying QALoad�s Functions to Incorporate Dynamic Data .. 7-8
Saving Server Replies .. 7-9
Parsing Server Replies for Values.. 7-11

Chapter 8. Advanced Scripting Techniques for SQL Server .. 8-1
Variablizing SQL Server Scripts .. 8-1

Capturing a select Value from a Stored Procedure ... 8-1
Using a Retrieved Value as a Parameter to a Stored Procedure ... 8-3
Capturing an OUTPUT Parameter Value from a Stored Procedure Call.. 8-3

Chapter 9. Advanced Scripting Techniques for SAP... 9-1
Required Commands .. 9-1
Error Handling and Reporting.. 9-2
Handling Multiple Logons ... 9-6
Checking the SAP Status Bar ... 9-7
Object Life Span... 9-8

Chapter 10. Advanced Scripting Techniques for Citrix... 10-1
Handling Dynamic Windows ... 10-1
Using the WaitForScreenUpdate Command .. 10-2
Handling Dynamic Window Titles... 10-2
Handling Dynamic Windows That Require User Action... 10-4
Moving the Citrix Connect and Disconnect Outside the Transaction Loop .. 10-5
Handling Citrix Server Farms .. 10-6

Index ... 1

vi QALoad Script Development Guide

 vii
Introduction
This guide is divided into the following parts:

• Part 1: Getting Started � This section provides overview and introductory mate-
rial about the QALoad Script Development Workbench and the script development
process.

• Part 2: Developing a Test Script � This section includes important information
you may need to know before recording a script, describes the procedure for record-
ing a test script, and explains the basic components of a QALoad test script.

• Part 3: Customizing a Test Script � This section details the various methods you
can use to customize a test script to account for special situations at playback, such
as variable data.

Who Should Read This Guide?
The QALoad Script Development Guide is intended to provide procedural information for
creating test scripts for your application. It is designed to guide you through the prepa-
ration of a test script, including recording a transaction, converting it to a reusable test
script, and modifying the code to accommodate variable information and other special
circumstances. This guide does not contain product overview information or procedures
outside the realm of script preparation, such as setting up a test or analyzing test results.
For overview information and general test procedures, refer to your QALoad Testing
User�s Guide.

If you have not yet reviewed the QALoad Testing User�s Guide, we recommend you do
so before using this guide to create a test script. The QALoad Testing User�s Guide can
familiarize you with the product and assist you in preparing for a load test.

When you are comfortable with the QALoad testing process, use this QALoad Script
Development Guide to prepare your test script(s).

viii QALoad Script Development Guide
Product Enhancements
For a detailed listing of product enhancements made in this release, refer to the Release
Notes.

Related Publications
In addition to this guide, the QALoad documentation set includes the following related
publications:

• QALoad Testing User�s Guide introduces you to the load testing process and pro-
vides procedures for running and analyzing tests. It also provides reference informa-
tion for the product�s UNIX Player utilities.

• QALoad�s online help facilities provide field-level and overview information for the
QALoad product screens. The online help also includes the QALoad Language Ref-
erence, which provides syntax definitions, parameter descriptions, and examples for
all commands that are available for use in QALoad scripts.

• The QACenter Installation and Configuration Guide includes system requirements
and instructions for installing QACenter products.

• The Distributed License Management Installation Guide includes instructions for
licensing your QACenter products.

• Release Notes details system requirements for using QALoad, enhancements made
to the product for this release, technical information that may affect how you use the
product, any known issues related to using the product, and customer support con-
tact information.

Typographical Conventions
The QALoad documentation set uses the following typographical conventions:

Description Examples

Window controls (buttons, menu items,
etc.) are shown in bold type.

Click OK.
Select File>New.

A fixed pitch font is used for script exam-
ples and error messages.

BEGIN_TRANSACTION();

Items in angle brackets indicate place-
holders for information you supply.

<userid>, <password>

Introduction ix
World Wide Web Information
To access Compuware Corporation�s site on the Internet World Wide Web, point your
browser at http://www.compuware.com. The Compuware site provides a variety of
product and support information.

FrontLine Support Web Site
You can access online technical support for Compuware products via our FrontLine
support Web site. FrontLine provides you with fast access to critical information about
your QACenter product. You can read or download documentation, frequently-asked
questions, and product fixes, or directly e-mail Compuware with questions or comments.

In order to access FrontLine, you must first register and obtain a password. To register,
point your browser at http://frontline.compuware.com.

Getting Help
At Compuware, we strive to make our products and documentation the best in the
industry. Feedback from our customers helps us maintain our quality standards. If you
need support services, please obtain the following information before calling
Compuware�s 24-hour product support hotline:

• The release (version), and build number of your QALoad product. This information
is displayed when you select the About command from the Help menu. The name
and release are also on the covers of the product documentation.

• Installation information, including installed options and whether it is installed in the
default directories.

• Environment information, such as the operating system and release on which the
product is installed, memory, hardware/network specifications, and the names and
releases of other applications that were running.

• The location of the problem in the QALoad product software, and the actions taken
before the problem occurred.

• The exact product error message, if any.

• The exact application, licensing, or operating system error messages, if any.

• Your Compuware client, office, or site number, if available.

http://www.compuware.com
http://www.compuware.com
http://frontline.compuware.com
http://frontline.compuware.com

x QALoad Script Development Guide
 QALoad Technical Support
 Compuware Corporation
 One Campus Martius
 Detroit, MI 48226-5099

 1-800-538-7822

Part 1:
Getting Started

 1-1
Chapter 1. Overview
This chapter contains the following sections:

• Accessing the QALoad Script Development Workbench � Directions for
accessing the QALoad script development facilities.

• The QALoad Script Development Workbench Main Window � Description of
the QALoad Script Development Workbench main window and the purpose of each
pane.

1-2 QALoad Script Development Guide
Accessing the QALoad Script Development Workbench
1. Click the Start button and point to Programs>Compuware>QALoad from the

Start menu. Then, select the Script Development Workbench icon.

2. Start your appropriate middleware or protocol session by selecting it from the
Session menu.

3. If this is your first time accessing the QALoad Script Development Workbench, the
Default Session Prompt opens. Set the following options:

a. To make the open middleware session the default session every time you open
the QALoad Script Development Workbench, select the Make this my default
Session check box.

b. When the Enable default Session checking check box is selected, every time
you open the QALoad Script Development Workbench it will do one of the fol-
lowing:

� automatically open the middleware session that was previously designated
as the default session

� or, if you did not previously designate a default session, open the Default
Session Prompt so you can designate a default middleware session.

If you do not want to designate a default middleware session, clear the Enable
default Session check box.

4. Click OK.

The QALoad Script Development Workbench Main Window
The QALoad Script Development Workbench main window is divided into dynamic
panes that you can hide or show as needed by selecting commands from the View menu.
Each pane is described below:

Overview 1-3
Workspace Pane: Lists the scripts, capture files, datapool files, timing files, .rip files,
and log files available for the open middleware or protocol session. To access a file, click
on the appropriately named tab (for example, Scripts). Then double-click the file you
wish to open. The file opens in the Workbook Pane. To access a popup menu of
commands available from the Workspace pane, highlight a file and right-click anywhere
in the pane.

Workbook Pane: Displays the currently open file. You can modify scripts, datapool files,
and capture files in this pane. To access a popup menu of commands available from this
pane, right-click anywhere in the pane.

Output Pane: Displays debug and error messages. To access a popup menu of commands
available from this pane, right-click anywhere in the pane.

ActiveData Pane: Interprets and displays data types as you highlight data in the
Workbook Pane. Note that, by default, this pane is hidden. To view the ActiveData pane,
select View>ActiveData from the menu.

Function Wizard: Lists all functions that are valid to use in the open script. Functions are
grouped in logical sections within the top window of the wizard. When you highlight a
function in the top window of the wizard, the lower window will list a description of that
function and it�s parameters. The Function Wizard has drag-and-drop functionality to
make scipt editing a breeze. The Function Wizard opens automatically when you open a

Workbook Pane

Workspace Pane

Function Wizard

ActiveData Pane

Output Pane

1-4 QALoad Script Development Guide
script it is compatible with. For more details about using the Function Wizard, refer to the
QALoad Script Development Workbench online help when you are working in a script.

For a description of the toolbar buttons available from the QALoad Script Development
Workbench, refer to the online help.

Part 2:
Developing a Test Script

 2-1
Chapter 2. Before You Begin
This chapter details steps you should take to prepare QALoad and the application under
test to record a test script. You must set options in the QALoad Script Development
Workbench to determine the behavior of QALoad and, depending upon the middleware
application or protocol you are testing, you may also need to perform additional steps to
prepare your application or environment for testing.

The topics included in this chapter are listed below. Please read this list carefully to
determine which topics apply in your testing situation. Topics that only apply to a specific
middleware or protocol list that middleware or protocol in the topic title. If you are not
testing the specified middleware or protocol, you can ignore those topics. If a topic does
not specify a middleware or protocol in the title, it applies to all testing situations and you
should follow the directions in the procedure before attempting to record a test script.

• Configuring the QALoad Script Development Workbench � Steps you should
take to determine the behavior of the QALoad Script Development Workbench the
first time you use it.

• Setting Recording Options � Steps you should take to determine behavior spe-
cific to recording from your application.

• Setting Conversion Options � Steps you should take to set options to determine
how the QALoad Script Development Workbench should convert your recorded
transaction into a script for load testing.

• WWW/SSL: Preparing to Record SSL Requests � Steps you should take to con-
figure your Web browser and prepare certificates before recording SSL requests
from Web sites requiring a client certificate.

• Tuxedo: Setting Environment Variables � Environment variables you must set
before you can successfully record a Tuxedo-based script.

• SAP: Preparing to Record a Script � Option you must select before you can suc-
cessfully record a SAP-based script.

2-2 QALoad Script Development Guide
Configuring the QALoad Script Development Workbench
The first time you use the QALoad Script Development Workbench you should set
options to determine a working directory QALoad can use for temporary files, compiler
settings, and other general options related to the behavior of the QALoad Script Devel-
opment Workbench. For more detailed descriptions of the fields in this procedure, press
F1 from the Configure Script Development Workbench dialog box.

1. In the QALoad Script Development Workbench, open the appropriate middleware
or Universal session.

2. From the Options menu, select Workbench to open the Configure QALoad Script
Development Workbench dialog box.

3. On the Workbench Configuration tab, set the following options:

a. In the Directory for Temporary Files field, enter or browse for a directory
QALoad can use as a working directory for temporary files, as necessary.

b. In the Session Window area, determine the length of messages appearing in the
Output Pane while you are recording. If you choode to limit the length, select
the Limit Session Window... option and then enter the maximum number of
characters to display per message. If you notice a delay in your application,
Compuware recommends limiting the number of characters sent to the session
window.

c. The initialization phase is the time between when the application starts and
when the first window displays. Select the Capture Initialization Phase check

Before You Begin 2-3
box to record database login commands in the initialization phase of applica-
tions created by PowerBuilder and similar applications.

You must have administrative access to use this feature. This option works with
the User Started recording option. (It has no affect if you use the Automatic
startup option.) You must use Windows NT (NT requires rebooting in order for
changes to this option to take effect), Windows 2000 or XP Enterprise edition.

d. Determine whether to send trace messages back to the QALoad Script Develop-
ment Workbench while recording. If you don�t wish to send trace messages,
clear the Send Trace Messages check box.

e. Select the Use Capture Dialog check box to enable a floating toolbar, while
recording, that you can use to control the recording process.

f. Select the Automatically Convert Capture check box for QALoad to auto-
matically convert your completed capture file to a C-based script immediately
after you stop recording.

If you do not select this check box, you will have to manually convert your
scripts using the instructions in the QALoad Script Development Workbench
online help.

g. Select the Automatically Compile Scripts check box for QALoad to automati-
cally compile your scripts on the selected compiler immediately after conver-
sion.

If you do not select this check box, you will have to manually compile your
scripts using the instructions in QALoad Script Development Workbench
online help.

h. Select the Enable default session checking check box for QALoad to prompt
you to set a default session the next time you start the QALoad Script Develop-
ment Workbench.

4. On the Script Validation tab, set the following options for validating scripts. You
can change these options at any time:

a. Select the Automatically Recompile check box for the QALoad Script Devel-
opment Workbench to compile the script before running it.

b. (Java scripts only) Select the Ask for Automatic.... check box to be prompted
to validate a Java script after compiling it.

c. Select the Only Display Player Output on Script Failure check box to dis-
play Player messages when the script fails, but not when it runs successfully.

2-4 QALoad Script Development Guide
d. In the Wait up to field, type a value in seconds the QALoad Script Develop-
ment Workbench can wait for the script to begin before timing out.

e. .Select the Abort on Error check box to stop script execution upon encounter-
ing an error.

f. Select the Debug Data check box to see a debug message displaying each com-
mand as it executes.

g. In the Run As area, choose whether to run the script as thread- or process-
based.

h. In the Number of users field, type how many virtual users to assign to validate
a script.

i. In the Transactions field, type the number of transactions to run.

j. In the Sleep Factor % field, type the percentage of each DO_SLEEP (pause in
the script) to maintain for validation. The value can be a percentage between 0
and 100. The default is 0.

5. On the Compiler Settings tab, set options related to script compilation:

a. Select the Automatically Recompile check box for the QALoad Script Devel-
opment Workbench to automatically recompile your script before running it.

b. Select the Prompt before overwriting script check box to be prompted if you
attempt to overwrite a script with a script of the same name.

c. Select the Verify Checkpoints check box to automatically verify the syntax of
checkpoints in your script every time your script is compiled. Note that you can
also verify checkpoints manually at any time while your script is open in the
editor by choosing the menu command Session>Verify Checkpoints.

d. In the Compile Timeout field, type the length of the compile timeout in this
field. Normally, you would accept the default (120 seconds); however, you may
need to increase this time if your scripts frequently fail to compile.

e. In the C/C++ area, choose the compiler you wish to use to compile your
scripts.

f. (Java scripts only) In the JAVA_HOME field, navigate to the root directory of
your JDK. This is where the QALoad Script Development Workbench will look
for Java resources.

Note

Note for SAP and Citrix: Due to the time required to logon to the server, you may need
to increase the timeout value to 100 seconds or more, depending on your particular
setup. Set the timeout value to 100 seconds or to the length of the capture (in seconds),
whichever is greater.

Before You Begin 2-5
g. (Java scripts only) The JVM.DLL field displays the directory where the
JVM.DLL is located. If more than one is listed, select the appropriate one for
theQALoad Script Development Workbench to use when validating scripts.

h. (Java scripts only) The Workbench Classpath field lists the part of the class-
path that is common to all QALoad Script Development Workbench sessions
that use Java. Each session, the Workbench appends required classes and JAR
files to this classpath. The default is
<QALoad>\Scripts;<QALoad>>\Classes;<QALoad>\Classes\qaloadbase-
script.jar, explained as follows:

� \Scripts � The default direcotry where the script JAR files will be placed.
When you compile a script, class files will be placed in or under this direc-
tory. This is also the default working directory where the JVM is started.
Resources using relative paths should be placed in or under this directory.

� \Classes � This is where class and JAR files used by QALoad are located.
� qaloadbasescript.jar � If you compile outside of the QALoad Script

Development Workbench, this file must be included in the classpath.

6. Click OK to save your settings or Cancel close without making any changes.

Setting Recording Options
Before you begin to record using the QALoad Script Development Workbench, set
recording options to determine behavior specific to recording from your application.

1. From the QALoad Script Development Workbench Session menu, select your mid-
dleware or protocol to start the appropriate session, or select Universal to start a
Universal session.

2. From the Options menu, select Record. The Record Options wizard opens.

3. The Middleware Selection area shows your selected middleware. A tab opens for
each selected middleware to the right of the Middleware Selection area (see the
example that follows).

2-6 QALoad Script Development Guide
4. On the middleware tab, set the appropriate recording options. For a description of
each option, press F1 or click the Help button to access online help for the wizard.

5. When you are finished, click OK.

These options will remain in effect until you change them.

Setting Conversion Options
Use the following procedure to set options for converting a capture file recorded from the
QALoad Script Development Workbench into a C- , C++, or Java-based script for load
testing.

1. From the QALoad Script Development Workbench Session menu, select your mid-
dleware or protocol to start the appropriate session, or select Universal to start a
Universal session.

2. From the Options menu, select Convert. The Convert Options wizard opens.

3. The Middleware Selection area shows your selected middleware. For each selected
middleware, a tab opens behind the General Convert tab to the right of the
Middleware Selection area (see the example that follows)

Before You Begin 2-7
.

4. On the middleware tab, set the appropriate conversion options. For a description of
each option, press F1 or click the Help button to access online help for the wizard.

5. When you are finished, click OK.

These options will remain in effect until you change them.

WWW/SSL: Preparing to Record SSL Requests
Before you can use EasyScript for Secure WWW to record SSL requests from a Web site
requiring a client certificate, you may need to perform following tasks:

• disable your browser�s TLS security (Internet Explorer 5.0). See �Disabling TLS
Security in Internet Explorer 5.0� on page 2-8.

• prepare a client certificate. See �Preparing SSL Certificates� on page 2-8.

2-8 QALoad Script Development Guide
Disabling TLS Security in Internet Explorer 5.0
If you will be recording SSL requests using Internet Explorer 5.0, do the following to
ensure that TLS 1.0 is not enabled in your browser:

1. From the Internet Explorer Tools menu, select Internet Options.

2. On the Advanced tab, scroll to the Security section.

3. Make sure that the option Use TLS 1.0 is not selected.

4. Click OK.

Preparing SSL Certificates
You can prepare a client certificate for SSL testing two ways:

• export a client certificate from the Web browser to QALoad and convert it to a for-
mat that QALoad accepts. See �Exporting Client Certificates from the Browser� on
page 2-8 for instructions.

• use QALoad to create a client certificate. See �Creating a QALoad Client Certifi-
cate� on page 2-11 for instructions.

Exporting Client Certificates from the Browser
Export a client certificate for each virtual user that will run the script. This setup facili-
tates a one-to-one ratio of client certificates to virtual users, which more realistically
simulates your testing environment.

1. Start the Web browser.

2. Locate the client certificate for the Web site you plan to visit.

3. Using your browser�s capabilities, export the client certificate (.p12 file) placing the
file in a directory where you can access it using the QALoad Script Development
Workbench.

4. When the browser prompts you to enter a password, do not enter a password. If you
enter a password, QALoad cannot process the file.

5. Start a WWW Session in the QALoad Script Development Workbench by clicking
the WWW Session button on the toolbar or choosing WWW from the Session
menu.

Before You Begin 2-9
6. From the Tools menu, choose Maintain Certificates to open the SSL Certificate
Maintenance dialog box.

7. On the client certificates tab, click the Browse button to browse for the client
certificate you exported. The Select the Exported client certificate to Convert dialog
box opens.

2-10 QALoad Script Development Guide
8. Make sure the Files of Type field specifies P12 files (*.p12).

9. Select the appropriate client certificate and click the Open button. The path and file
name of the selected client certificate appears in the Enter Certificate to Convert
field on the client certificates tab.

10. On the client certificates tab, click the Convert button to convert the selected
client certificate to a format that QALoad can recognize.

� If a message appears indicating a successful convert, click OK to close the
message and go to Step 11.

� If a message appears indicating the client certificate did not convert success-
fully, one of the following scenarios is likely:

� The client certificate you exported from the browser is not in the correct
.p12 format.

� When you exported the client certificate, you entered a password (see Step
4).

Click OK to close the message. Then, repeat this procedure, making the neces-
sary corrections.

11. Click the Close button to exit the SSL Certificate Maintenance dialog box.

After you export and convert a client certificate, you can record SSL requests from a site
that requires a client certificate. For instructions, see Chapter 3, �Recording a Test
Script�.

Before You Begin 2-11
Creating a QALoad Client Certificate
If you are running a load test with a WWW script containing SSL requests, you should
create or export a QALoad client certificate for each virtual user that runs the script. This
setup facilitates a one-to-one ratio of client certificates to virtual users, which more realis-
tically simulates your testing environment.

To use QALoad client certificates, the QALoad Certificate Authority and Server Certif-
icate must be valid. If the Certificate Authority or Server Certificate expires, you must
create a new one. Refer to the �How Do I?� topics in the QALoad Script Development
Workbench�s online help for instructions on how to create the Certificate Authority or
Server Certificate.

1. In the QALoad Script Development Workbench, open a WWW Session.

2. From the Tools menu, choose Maintain Certificates to open the SSL Certificate
Maintenance dialog box.

3. On the Client Certificates tab in the Create QALoad Client Certificates area,
type a name for the QALoad client certificate in the Name field.

4. Type a one (1) in the Quantity field to create one QALoad client certificate. If you
need to create additional client certificates before running a load test, you can
increase this value.

5. Click the Create button to create the QALoad client certificate. QALoad stores it in
the QAload\workbench directory.

After you create a QALoad client certificate, you must configure your Web server to
accept QALoad as the Certificate Authority. Refer to your Web server for more infor-
mation. After you configure your Web server, you can capture SSL requests from a site
that requires a client certificate. For instructions, see Chapter 3, �Recording a Test
Script�.

Creating a QALoad Server Certificate
1. In the QALoad Script Development Workbench, start a WWW session.

2. From the Tools menu, select Maintain Certificates.

3. Click the Server Certificate tab.

4. Click the Create button to create a new server certificate, named qakey.pem, with
the expiration date shown on the Server Certificate tab. The file is automatically
saved in the directory Compuware\QALoad\Workbench.

5. Install the newly created server certificate on your server.

2-12 QALoad Script Development Guide
Executing SSL Scripts that use Client Certificates
If you are executing SSL scripts that use client certificates, you must manually copy the
client certificates in use to the Player machine(s) executing the script(s).

Manually copy the client certificates from the QALoad default directory \Program
Files\Compuware\QALoad to the same default directory on the Player machine.

Tuxedo: Setting Environment Variables
Before you can successfully record from a Tuxedo-based application, you need to set the
following environment variables. If you aren�t sure how to set or edit an environment
variable on your operating system, refer to your operating system help or documentation.

Enter these values carefully. If QALoad cannot find the TUXDIR environment variable,
the environment variable contains an invalid value, or QALoad cannot find
%TUXDIR%\bin in the PATH in your environment space, you will receive an error
message. Follow the instructions in the error message to correct the appropriate issue. If
you do not, QALoad may not be able to convert, compile, or play back your script at the
appropriate point in your test

1. Define an environment variable called TUXDIR that points to the directory in which
the Tuxedo client software is installed. For example, c:\Tuxedo.

2. Add the following to your PATH environment variable: %TUXDIR%\bin. For
example, PATH=C:\;C:\Windows;%TUXDIR%\bin.

SAP: Preparing to Record a Script
Before you can successfully record transactions from an SAP-based application, you
must select the Dialog (modal) option under Help>Settings>F4 Help tab in the SAP appli-
cation. You must do this for the user you are recording. This option must also be selected
for playback of SAP scripts.

 3-1
Chapter 3. Recording a Test Script
This chapter contains the following topics:

• Overview � Describes, briefly, the process for recording a script using the
QALoad Script Development Workbench.

• Recording a Script � Details how to record a test script using the QALoad Script
Development Workbench.

• Where to Go Next � Provides information to help you determine what your next
step is after recording a test script.

Overview
You create a test script in QALoad by recording transactions from the application under
test using the QALoad Script Development Workbench. The QALoad Script Devel-
opment Workbench contains all the components you need to record a transaction from
your application, convert the transaction to a script (C-, C++-, or Java-based, depending
on the middleware) that QALoad can play back, and compile the script using your own
compiler. Essentially, the QALoad Script Development Workbench �listens in� on the
conversations between your application and the database, Web, or application server. It
records those exchanges into a file called the capture file (.cap). The QALoad Script
Development Workbench then converts the exchanges in your capture file into a C-, C++-
, or Java-based script � languages you are probably familiar with � that you can easily
modify and compile.

Whatever your middleware, the QALoad Script Development Workbench produces test
scripts that are consistent from run to run, and are easy to read and modify. QALoad�s own
command set includes equivalents of many functions common to your middleware.

Successful creation of a test script requires four steps:

1. Setting configuration options.

2. Recording a transaction.

3-2 QALoad Script Development Guide
3. Converting the recorded transaction to a C-, C++-, or Java-based script, depending
on the middleware that was recorded.

4. Compiling the script.

QALoad provides configuration options to automate some of these steps. For example,
the QALoad Script Development Workbench includes options to automatically convert
your capture files to scripts and then automatically compile the scripts. You may have
already set these options if you completed the procedure �Configuring the QALoad Script
Development Workbench� on page 2-2.

If not, Compuware recommends that you set those options now, before you begin
recording a script. If you choose not to, instructions for converting and compiling
manually can be found in the QALoad Script Development Workbench online help.

Recording a Script
Use the following procedure to record a test script using the QALoad Script Development
Workbench.

1. Open an appropriate middleware session in the QALoad Script Development Work-
bench.

2. If you haven�t already set recording options, select Options>Record to open the
Record Options wizard. Options available for your middleware session are
displayed. For a description of each option, press F1 or click the Help button to
access online help for the wizard.

Set any appropriate recording options and click OK.

4. Run the desired user operations using your application.

5. (WWW only) If you are capturing SSL requests using EasyScript for Secure
WWW, the browser generates one or more prompts indicating the following:

� It does not recognize the authority who signed the server certificate.

Caution
While you are recording, timing information is saved for every call recorded. For any
recorded time interval greater than one second, QALoad inserts a sleep (DO_SLEEP) in
the script for that number of seconds.
Take caution not to accidentally introduce unwanted sleeps while recording. For
instance, if you leave your workstation while recording and return 30 minutes later,
QALoad will generate a DO_SLEEP command for 30 minutes.

3. From the toolbar, click the Start Record button. QALoad launches your application
and any proxies, if necessary, and begins recording any calls.

Recording a Test Script 3-3
� The server certificate presented by the Web site does not contain the correct site
name.

When you receive these prompts, click the browser�s Next or Continue button so
you can connect to and exchange information with the desired Web site.

6. (Optional) At any time during the recording process, you can insert any necessary
commands or comments into the capture file using the following procedure:

a. Choose Session>Insert>Command to open the Insert Command dialog box.

b. Select the command you want to enter into your capture file. If you select the
default, Comment, type your comment in the Description field (for example,
login).

c. Click the Insert button.

d. When you finish, click the Close button to close the Insert Command dialog
box.

7. When you have recorded your complete transaction, stop the application from
which you are recording.

If you previously configured the QALoad Script Development Workbench to auto-
matically convert and compile your capture file, as recommended in �Configuring
the QALoad Script Development Workbench� on page 2-2, your capture file will be
converted to a script and then compiled. The results will display in the Output pane,
Session tab.

8. After stopping your application, click the Stop Record button or choose
Session>Record>Stop. You will be prompted to save your capture file. By default,
capture files (.cap) are saved in the directory QALoad\Middle-
wares\<middleware_name>\Captures.

3-4 QALoad Script Development Guide
9. When you are finished, see �Where to Go Next� on page 3-5 to determine your next
step.

Recording Using Manual Application Startup
(IIOP, Tuxedo, Winsock, and SAP only) Use the following procedure only if QALoad
fails to record from your application using the recommended method detailed in
�Recording a Script� on page 3-2.

The following procedure assumes you have already set recording options. If you have not,
see �Setting Recording Options� on page 2-5 before beginning this procedure.

1. With the appropriate session open in the QALoad Script Development Workbench,
select Options>Record to open the Record Options wizard.

2. In the Program Startup area, select the option User Started. Click OK.

5. (SAP only) Connect to your application server.

6. Run the desired user operations. As you execute them, QALoad records your activ-
ities in a capture file.

7. (Optional) At any time during the recording process, you can insert any necessary
commands or comments into the capture file using the following procedure:

a. Choose Session>Insert>Command to open the Insert Command dialog box.

Note

(IIOP, Tuxedo, Winsock, and SAP only) If QALoad fails to record from your application
using the method outlined in this procedure, use the procedure �Recording Using Manual
Application Startup� on page 3-4.

3. Click the Start Record button on the toolbar or select Session>Record>Start from
the menu.

4. Start your application or (SAP only) start QALSAP.EXE, which is located in the
\QALoad directory.

Recording a Test Script 3-5
b. Select the command you want to enter into your capture file. If you select the
default, Comment, type your comment in the Description field (for example,
login).

c. Click the Insert button. When you finish, click the Close button to close the
Insert Command dialog box.

If you previously configured the QALoad Script Development Workbench to auto-
matically convert and compile your capture file, as recommended in �Configuring
the QALoad Script Development Workbench� on page 2-2, your capture file will be
converted to a script and then compiled. The results will display in the Output pane,
Session tab.

9. When you are finished, see �Where to Go Next� on page 3-5 to determine your next
step.

Where to Go Next
At this point, you should have a reusable QALoad test script containing a complete user
transaction. Your script development process should have created the following files:

8. When you finish recording the desired operations, click the Stop Record button on
the toolbar or select Session>Record>Stop from the menu. QALoad prompts you to
save your capture file. By default, capture files are saved in the directory
QALoad\Middlewares\<middleware_name>\Captures.

Table 3-1. QALoad files created during the script development process.

File Description

<script_name>.cap A QALoad capture file by the name you desig-
nated. Capture files are saved in the directory
\QALoad\Middlewares
\<middleware_name> \Captures.

<script_name>.c
<script_name>.cpp
or <script_name>.java

A C-, C++-, or Java-based test script by the name
you designated. Script files are saved in the direc-
tory \QALoad\Middlewares
\<middleware_name> \Scripts.

<script_name>.dll (C-/C++-
based)
or <script_name>.class (Java-
based)

An executable version of the script file used in load
tests. This file will automatically be downloaded to
the appropriate Players at test time. C- and C++-
based files are saved in the directory
\QALoad\Scripts. Java-based script files are
saved in the directory \QALoad\Classes.

3-6 QALoad Script Development Guide
Capture files and scripts are listed in the QALoad Script Development Workbench�s
Workspace pane, in the Captures and Scripts tabs as shown in Figure 3-1 on page 3-6.

Figure 3-1. Capture files and scripts are listed on the Captures and Scripts tabs.

Look for your capture file and script file on the appropriate tabs. You have several
options:

• If you cannot locate your script on the Scripts tab, chances are your capture file was
not converted to a script automatically. Press F1 to access the QALoad Script Devel-
opment Workbench online help, and follow the instructions in the �How To...� topic
titled �Convert capture files into scripts�.

• If your converted script was not compiled automatically during the recording pro-
cess, you need to compile it manually. Press F1 to access the QALoad Script Devel-
opment Workbench online help, and follow the instructions in the �How To...� topic
titled �Compile a script�.

• If you would like to learn more about a QALoad test script, see Chapter 5, �Under-
standing a QALoad Test Script�.

<filename>.rfd
<filename>.vistree
<filename>.VisHtml
<filename>.VisXml

(WWW scripts only) Files related to Visual Script-
ing, if you converted your script as a Visual Script.
For more details, refer to the QALoad Script Devel-
opment Workbench online help.

Table 3-1. QALoad files created during the script development process.

File Description

Scripts tab

Captures tab

Recording a Test Script 3-7
• If you need to modify your test script to account for special circumstances, such as
variable data or authentication, see �Part 3: Customizing a Test Script�.

• If you are ready to set up a test, refer to the QALoad Testing User�s Guide.

3-8 QALoad Script Development Guide

Part 3:
Customizing a Test Script

 4-1
Chapter 4. General Advanced Scripting Techniques
After you convert your capture file into a script, you may want to modify it to achieve
various performance testing goals. This chapter describes the following scripting
techniques to assist you in modifying the script:

• Defining Transaction Loops � Provides information about defining transaction
loops in the script.

• Defining Checkpoints � Provides information about inserting checkpoints into
the script to collect timings.

• Simulating User-Entered Data � Describes how to modify the script to use vari-
able data from a datapool.

Defining Transaction Loops
If you did not insert begin-and end-transaction commands into your capture file,
QALoad�s Convert facility automatically places begin-and end-transaction commands at
the start and end of the recorded sequence. QALoad scripts execute the code between the
begin-and end-transaction commands in a loop according to the number of times you
specify in the QALoad Conductor when setting up a test.

Depending on how you completed your recording, you may want to move one or both of
these transaction commands to another place in the script to more accurately define the
transaction that runs during the load test.

For example, let�s say during the recording process you log in and log out as part of the
procedure. However, during the load test you do not want to log in and log out as part of
every transaction. To avoid a login and logout with every procedure, move the begin-and

Note

If you converted a WWW script as a Visual Script, the procedures in this chapter do not
apply to you. Details about moving the transaction loop, inserting script items, and using
datapools and variables with a Visual Script are provided in the QALoad online help.

4-2 QALoad Script Development Guide
end-transaction commands so the login and logout commands are outside of the trans-
action loop.

Defining Checkpoints
Checkpoint statements collect timings of events, such as the execution of SQL state-
ments. If you manually insert checkpoint statements into your capture file during the
recording process, or if you select the Include Default Checkpoint Statements conversion
option before converting a script, your script will include checkpoints. Otherwise, you
will need to manually insert checkpoints in your script(s) to collect timings.

Simulating User-Entered Data
When you create a script, you will probably have some constant data embedded in the
script that automatically enters your application�s input fields while recording (for
example, an employee number). If you run a load test using this script, the script uses the
same data for each transaction. To run a realistic test, you can modify the script to use
variable data from a datapool file. By varying the data input over the course of a test, the
behavior more realistically emulates the behavior of multiple users. You can use the
QALoad Script Development Workbench to create, maintain, and use datapool files (.dat)
to insert variable data into your scripts.

A datapool can be defined as either central or local:

• A central datapool is a datapool that resides on the same workstation as the QALoad
Conductor, and is available to any Player system on the network that requests it
from the QALoad Conductor. A central datapool is controlled by the QALoad Con-
ductor, and you use the QALoad Conductor to set any options relating to a central
datapool.

• A local datapool is a datapool that resides on a Player workstation, and is only
available to that Player. Because a local datapool resides locally and is only avail-
able to the local Player, it does not generate any network traffic. You use the
QALoad Script Development Workbench to insert local datapools into a script.

The following sections describe how to create and use central and local datapools.

Creating a Datapool File
To create a datapool file using the QALoad Script Development Workbench:

1. Open a middleware session in the QALoad Script Development Workbench.

2. From the File menu, select New.

General Advanced Scripting Techniques 4-3
3. On the New dialog box that opens, select New from the Datapools tree item.

4. In the Filename field, type a unique name for your datapool file.

5. In the Rows: and Cols: fields, type the number of rows and columns your new
datapool should have.

6. Click OK.

7. Enter your datapool records in the grid that opens in the Workbook Pane.

8. When you are finished entering datapool records, select File>Save As to name your
datapool file.

9. Click OK to save the file. QALoad saves the file in your \QALoad\Datapools
directory.

Modifying a Datapool File
Complete the following steps to modify a datapool file from the QALoad Script Devel-
opment Workbench.

1. In the Workspace Pane, click the Datapools tab.

2. Double-click the datapool file you want to modify. The datapool file opens in the
Workbook Pane.

3. Make the appropriate changes and save the file.

Using a Central Datapool File in a Script
You assign a central datapool file to a specific script by selecting the datapool file and
setting any appropriate options using the Conductor. Each script can use a single central
datapool. The central datapool is available to all Player workstations running the test. The
following procedures describe how to assign and extract data from a central datapool.
These procedures assume you have already created the datapool file as described in
�Creating a Datapool File� on page 4-2.

Assigning a Central Datapool File

1. With a session ID file open in the QALoad Conductor, click the Script Assignment
tab.

2. In the External Data column for the selected script, click the Browse button.

3. In the External Data dialog box, navigate to the datapool you wish to use. Select it
and click Open.

4. If you wish to re-use the datapool records when the script reaches the end of the file,
select Rewind. To only use each record once, and then discard it, select Strip.

4-4 QALoad Script Development Guide
5. When you are done, click OK.

Using Data Records from a Central Datapool File

To use data from a central datapool in your load test, you will have to modify your script.
Typically, you will read one record per transaction. Do the following to add datapool
statements to your script:

1. With your script open in the QALoad Script Development Workbench, navigate to
the place where you want to insert a datapool variable and highlight the text to
replace.

2. From the menu, choose Session>Insert>Datapool. The Insert New Datapool dialog
box opens.

3. Select a datapool from the list and click OK, or click the Add button to open the
Select Datapool dialog box where you can choose a datapool file to add to your test.

4. When you are finished, the QALoad Script Development Workbench places several
datapool functions into your script, denoting them with markers so you can easily
identify them.

Using Local Datapool Files in a Script
You assign a local datapool file to a specific script by selecting the datapool file and
setting any appropriate options using the QALoad Script Development Workbench. Each
script can use up to sixty-four local datapools. Use the following procedures to assign and
extract data from a local datapool file. These procedures assume you have created a
datapool as described in �Creating a Datapool File� on page 4-2.

Assigning a Local Datapool

1. Open a session in the QALoad Script Development Workbench.

2. In the Workspace Pane, click the Scripts tab.

3. On the Scripts tab, double-click on the appropriate script name to open it in the
Workbook Pane.

4. From the Session menu, select Insert>Datapool. The Insert Datapool Commands
dialog box appears.

5. On the Insert Datapool Commands dialog box, click the Add button. The Select
Datapool dialog box opens.

6. In the Type field, select Local.

Note that you can also choose to insert a central datapool from this dialog box. If
you choose to insert a central datapool from here, the QALoad Script Development
Workbench places the Conductor command GET_DATA into the script just after the

General Advanced Scripting Techniques 4-5
BEGIN_TRANSACTION command, bookmarks the command in the margin of the
script, and uses any options set for the specified datapool in the QALoad Conductor.

7. In the ID field, give the datapool a unique identifier. The name can contain alphanu-
meric characters only. Use underscores (_) for spaces. This ID will help you
identify the datapool in your script, for example �ACCOUNT_NUMS�.

8. In the Filename field, type (or browse for) the fully qualified path of your datapool
file. For example:

c:\Program Files\Compuware\QALoad\Work-
bench\<middleware_name>\Scripts\datapool.dat

9. If you wish to re-use the datapool records when the script reaches the end of the file,
select Rewind at End of File. To only use each record once, and then discard it,
deselect this option.

10. When you are finished, click OK. The selected datapool is displayed on the Insert
New Datapool dialog box.

11. Click OK.

The QALoad Script Development Workbench will place a #define statement iden-
tifying the datapool file near the beginning of your script, and place the datapool
commands OPEN_DATA_POOL, READ_DATA_RECORD, and
CLOSE_DATA_POOL at the default locations in the script. These statements will
be bookmarked in the margin for easy identification.

12. When you are finished modifying the script, save any changes.

For detailed information about any of these commands, refer to the Language Reference
section of the QALoad online help.

Using Data Records from a Local Datapool File

To use data from a local datapool file you will have to modify your script to read data
records and fields at the appropriate place in the script. Datapool files should typically be
opened with the statement OPEN_DATA_POOL just before the
BEGIN_TRANSACTION statement, then datapool fields can be called into the script to
replace variable strings. The OPEN_DATA_POOL statement is automatically inserted
into your script when you use the QALoad Script Development Workbench to insert your
datapool.

1. Read a record from the datapool file using the following command, which reads a
single record from the local datapool file you specify:

READ_DATA_RECORD(<LOCAL DATAPOOL ID>);

2. To access the fields of this record, substitute
GET_DATA_FIELD(ACCOUNT_NUMS,n) expressions in place of variable strings.

4-6 QALoad Script Development Guide
3. After the END_TRANSACTION statement, close the local datapool file by using the
following statement:

CLOSE_DATA_POOL(LOCAL DATAPOOL ID);

Note that this statement is added automatically if you use theQALoad Script Devel-
opment Workbench to insert your datapool.

For detailed information about any of these commands, refer to the Language Reference
section of the QALoad online help.

Inserting Variable Data with ActiveData Substitution
The QALoad Script Development Workbench allows you to transform string data from
quoted constants or substrings into variables. ActiveData variable substitution lets you
identify and right-click on a string to declare the selected string a variable within the
QALoad script. This facility also lets you select or edit datapool entries more dynami-
cally, making script development easier and more efficient. Use the procedure that
follows to substitute a datapool value or a variable in place of a selected string in your
script.

1. Start the appropriate session in the QALoad Script Development Workbench.

2. In the Workspace Pane, click the Scripts tab.

3. On the Script tab, double-click the script you wish to open. The script opens in the
Workbook Pane.

4. In the script, highlight the string you wish to replace.

5. Right-click anywhere in the highlighted string.

� To substitute a value from a datapool:

� Select ActiveData>Datapool Substitution from the popup menu that
opens. The ActiveData Datapool Substitution dialog box opens.

� In the Datapool(s) area, highlight the datapool to use. The contents of the
datapool file display below. If the datapool you want to use is not listed,
click the Add button to add it to the list of available datapools.

� In the Field: ID field, type the field number of the specific value to use
from the datapool.

� When you are finished, click OK. The QALoad Script Development Work-
bench will place a #define statement identifying the datapool file at the
beginning of your script. It will also insert the datapool commands
OPEN_DATA_POOL, READ_DATA_RECORD, GET_DATA_FIELD
and CLOSE_DATA_POOL at the default locations in the script, and book-
mark them in the margin for easy identification. Refer to the Language
Reference section of the QALoad online help for detailed information
about any of those commands.

General Advanced Scripting Techniques 4-7
� To substitute a variable:

� Select ActiveData>Variable Substitution from the popup menu that
opens. The ActiveData Variable Substitution dialog box opens.

� Assign a variable name for the selected string in the Variable Name field.
� Click OK. The QALoad Script Development Workbench will declare the

variable at the beginning of your script and substitute the named variable
for the selected string. It will also bookmark both locations for easy identi-
fication.

6. When you are finished, save your script changes. Compuware recommends that you
also compile your script to check for any errors.

4-8 QALoad Script Development Guide

 5-1
Chapter 5. Advanced Scripting Techniques for WWW
After you convert your capture file into a script, you may want to modify it to achieve
various performance testing goals. This chapter describes the following scripting
techniques to assist you in modifying the script:

• Simulating Variable IP Addresses � Describes how to modify the script to use
different source IP addresses from a datapool.

• Handling Error Messages from the Web Server � Describes how to handle error
messages from the Web server.

• Simulating CGI Requests � Describes how QALoad simulates CGI Get requests,
CGI Post requests, and CGI forms.

• Simulating JavaScript � Describes how QALoad simulates JavaScript.

• Executing a Visual Basic Script � Describes how QALoad simulates a Visual
Basic script.

• Executing a Java Applet � Describes how QALoad simulates Java Applets.

• Simulating Frames � Describes how QALoad simulates frames.

• Simulating Cookies � Describes how QALoad simulates cookies.

• Simulating Browser Caching � Describes how QALoad simulates browser cach-
ing.

• Requesting Password-Protected Directories � Describes how QALoad simulates
password-protected directories.

• Using the WWW Convert Options Dialog Box � Describes and provides a script
example for each conversion option.

5-2 QALoad Script Development Guide
Simulating Variable IP Addresses
While QALoad can simulate multiple virtual users from a single system, it generally does
so using a single source IP address. In most testing situations this isn�t a problem, but with
a small set of HTTP-based applications, it may not be the best way to simulate real-life
activity. For QALoad Player machines with more than one static IP address, QALoad can
direct each virtual user to use a different source IP address. To accomplish this, a local
datapool file containing a list of local static IP addresses must be created on each QALoad
Player machine. When you enable IP spoofing in the QALoad Conductor, the QALoad
Conductor instructs each QALoad Player to create the appropriate datapool file at run
time. The QALoad Player will utilize these addresses for connections to HTTP and SSL
servers. Each virtual user will receive one address for use with all its connections. If there
are more virtual users than addresses, IP addresses will be re-used starting from the
beginning of the datapool file.

Modifying a Script to Use Variable IP Addresses
QALoad uses the DO_IPSpoofEnable command to insert IP addresses from the datapool
into the script. When this command is executed, the script opens the datapool file located
on the QALoad Player, reads the first available data record, and stores that record for use
on all subsequent DO_Http and DO_Https calls. If there are more virtual users than IP
addresses in the datapool file, IP addresses are reused.

You can automatically generate the DO_IPSpoofEnable command in your script during
conversion by selecting the IP Spoofing option from the QALoad Script Development
Workbench�s WWW Advanced dialog box. Access this dialog box from the Convert
Options wizard�s WWW tab by clicking the Advanced button. This option inserts the
DO_IPSpoofEnable command directly in the script during conversion, before the first
DO_Http or DO_Https command. For more information about the IP Spoofing option,
see �IP Spoofing� on page 5-91.

Creating a Datapool of IP Addresses
Use the following procedure to create a datapool of valid IP addresses from the QALoad
Conductor. This file is automatically created on the QALoad Player workstations
(Windows and UNIX) at run time.

1. From the QALoad program group, open the QALoad Conductor.

2. Click Tools>Options. The Options dialog box appears.

3. Click the Machines tab.

4. In the General Options area, select Generate IP Spoofing Data.

Advanced Scripting Techniques for WWW 5-3
At run time, the QALoad Conductor sends a command to each QALoad Player Agent to
create the datapool file of IP addresses, and then script is sent to the server using the
different IP addresses.

The Generate IP Spoofing Data check box is valid only for WWW scripts.

Handling Error Messages from the Web Server
When a server returns an error message, it returns it in one of two ways. It either returns
an error message with a response code (for example, 404 Not Found) or returns an HTML
page that contains an error message. The following sections provide examples of code
that you can use in your script to handle errors that the Web server returns to the browser.

Handling Error Messages with Response Codes
The example below demonstrates how to write code to handle error messages that include
response codes that the Web server returns to the browser. The code performs the
following actions:

• Checks for an error code using the DO_GetLastHttpError command
• Aborts or continues script execution, based on the WWW_FATAL_ERROR state-

ment

Example
int error;

char errorString[30];

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

if((error = DO_GetLastHttpError()) > 399)

{

sprintf(errorString, "Error in response: %d\n", error);

WWW_FATAL_ERROR("Request-host", errorString);

}

Note

The machine on which the QALoad Conductor resides must have static IP addresses
assigned to it. If no static IP addresses are found, the QALoad Conductor displays a
warning and the datapool file is not generated. The datapool file is named ipspoof.dat,
and is saved in the directory \Compuware\QALoad\Datapools.

5-4 QALoad Script Development Guide
Handling Error Messages Returned in an HTML Page
The examples below demonstrate how to write code to handle error messages that the
Web server returns to the browser in an HTML page.

Using DO_VerifyDocTitle to Verify Page Requests
By inserting the DO_VerifyDocTitle command into your script, you can compare the
HTML document titles in your load test script with the document titles you originally
captured. The code performs the following actions:

• Calls DO_Http to request an HTML page from the Web server
• Calls DO_VerifyDocTitle with the original HTML document title. If the titles do

not match, DO_VerifyDocTitle exits the script

Example
DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

Searching Response Text for Error Messages
In some scripts, error messages are displayed as text in an HTML page. The following
example demonstrates how to detect these messages in a script. The code performs the
following actions:

• Searches for errors returned as HTML from the Web server
• Branches to error handling code

Example
int response;

response = DO_Http("GET http://www.host.com/ HTTP/"
 "1.0\r\n\r\n");

if (strstr (response, "200 OK") == NULL)

WWW_FATAL_ERROR("host", "Response did not have 200 OK");

Advanced Scripting Techniques for WWW 5-5
Simulating CGI Requests
This section describes CGI parameter encoding, CGI Get requests, CGI Post requests,
and CGI forms.

CGI Parameter Encoding
CGI (Common Gateway Interface) is widely used on World Wide Web sites to provide
the ability to run server-side scripts that can take variable input from a Web browser.
QALoad recognizes when the browser has communicated to a CGI site and will automat-
ically create variables for parameters whenever necessary. For example, many CGI
submission forms contain hidden parameters that the user cannot modify, but are always
sent in the WWW request. Because these values can contain variable data, QALoad
inserts statements into the script to store these hidden parameters in variables and append
them automatically to CGI requests.

CGI requests also include parameters that the browser has allowed the user to modify. For
example, a CGI form might require a user to enter a name and address and click a Submit
button to continue. QALoad does not automatically store these types of parameters in
variables, but instead provides an easy way to modify the content of the parameters that
are being sent in the CGI request via the DO_SetValue command. For more information
about the DO_SetValue command, refer to the QALoad Language Reference section of
the QALoad online help.

When you modify parameters that are passed into a QALoad CGI request, ensure that all
CGI parameters that contain characters that are not alphanumeric (a-Z, 0-9) are encoded
prior to being sent to the server. CGI encoding entails inserting the ASCII value of a
character, prefixed with the �%� character, into the parameter. QALoad automatically
CGI-encodes any values that it detects during the recording and conversion process;
however, to manually add or modify any CGI parameter strings after your script is
created, you must manually encode special characters to ensure that the CGI parameter
data is sent to the Web server properly.

For example, to insert the �=� character into a CGI parameter, first determine its ASCII
hexadecimal value (3D), and insert that value into the CGI parameter prefixed with �%�.
In the CGI parameter string, �%3D� would replace �=�. All CGI parameter encoding is
handled by this method, except for spaces. Blank spaces must be specified in the encoded
CGI string by the character �+�, rather than the ASCII value.

QALoad provides an automatic way of performing this encoding via the
DO_EncodeString command. For more information about the DO_EncodeString
command, refer to the Language Reference section of the QALoad online help.

5-6 QALoad Script Development Guide
Get Requests
Get requests are handled by the following process.

1. The browser makes a request to a server for a URL that contains a call to a CGI pro-
gram.

2. The server calls the CGI program, which usually returns a Web page. The returned
page is referred to as a dynamic page because it is created by the CGI program.

3. The browser accepts the resulting dynamic page and displays it.

Example Web Page
The following Web page contains an anchor (link) that references a CGI program. The
reference results in a CGI Get request.

The anchor calls the CGI program named perl_1.pl with some parameters. In
perl_1.pl?name=FRANK, the question mark (?) denotes the start of parameters that need
to be passed to the program. The name/value pair being passed to the perl_1.pl program
is name=FRANK.

When you click the anchor text (dynamic HTML page), the browser makes a CGI Get
request. A Get request, when executed by the server, passes parameters in an environment
variable to the CGI program. This type of parameter handling is limited to 255 characters.

<HTML>

<HEAD>

<TITLE>QALoad WWW Capture Examples</TITLE>

</HEAD>

<BODY>

Dynamic HTML Page</
A>

</BODY>

</HTML>

Example Script
QALoad automatically generates all constructs that are necessary for a CGI Get request.

The following script uses a DO_Http call for the CGI Get request.

How It Works: The script processes a CGI Get request in the same way as it processes
URL links to a page. In the example script below, note that the parameters passed to the
Web server on the CGI call are recorded unchanged. The parameters do not change unless
the page is dynamically generated.

char *Anchor[1];

Advanced Scripting Techniques for WWW 5-7
for(i=0;i<1;i++)

Anchor[i]=NULL;

DO_InitHttp(s_info);

SYNCHRONIZE();

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

/*

 * Anchor 'http://www.host.com/cgi-bin/perl_1.pl?name=FRANK'

 * 'Dynamic HTML Page'

 */

DO_GetAnchorHREF("Dynamic HTML Page", &Anchor[0]);

DO_SetValue("Anchor000", Anchor[0]);

DO_Http("GET {*Anchor000} HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Perl Example Page", TITLE);

...

...

for(i=0; i<1; i++)

{

free(Anchor[i]);

Anchor[i]=NULL;

}

END_TRANSACTION();

Post Requests
Post requests are handled by the following process.

1. The browser makes a request to a server for an HTML page that contains a form that
uses an action statement with a Post call to a CGI program.

2. When you click the Submit button on a CGI form, the browser makes a Post request
and the server returns a Web page.

5-8 QALoad Script Development Guide
3. The browser accepts the dynamic page and displays it. Because it is a CGI Post
request, the browser passes the parameters of the program to the CGI script as
command line options.

Example Web Page

The following Web page contains a form that calls a CGI script with a Post Request.

<html>

<head><title>QALoad's Perl Example Page</title>

</head><

body><center>QALoad's Perl Example Page</center>

<form name = myform method = POST action = perl_1.pl>

<input type = text name = yourname size = 50>

<input type = submit value = "Submit Request">

<input type = reset>

</form>

</body></html>

Example Script

QALoad automatically generates all the constructs that are necessary for a CGI Post
request. The following script features a DO_HTTP request that executes a CGI Post
request :

char *ActionURL[1];

...

...

for(i=0;i<1;i++)

ActionURL[i]=NULL;

...

...

BEGIN_TRANSACTION();

/* Request: 1 */

DO_SetValue("name", "FRANK");

DO_Http("GET http://www.host.com/cgi-bin/perl_1.pl?{name} "

 "HTTP/1.0\r\n\r\n");

Advanced Scripting Techniques for WWW 5-9
DO_VerifyDocTitle("QALoad's Perl Example Page", TITLE);

/* ActionURL[0]="http://www.host.com/cgi-bin/perl_1.pl" */

DO_GetFormActionStatement(FORM(1), &ActionURL[0]);

…

…

/* Request: 2 From: QALoad's Perl Example Page */

DO_SetValue("action_statement0", ActionURL[0]);

DO_SetValue("yourname", "PostFrank");

DO_SetValue("function", "View the log of previous”
 "visitors.");

DO_Http("POST {*action_statement0} HTTP/1.0\r\n"

 "Content-Type: application/x-www-form-urlencoded\r\n"

 "Content-Length: {*content-length}\r\n\r\n"

 "{yourname}&{function}");

DO_VerifyDocTitle("QALoad's Perl Example Page", TITLE);

…

…

for(i=0; i<1; i++)

{

free(ActionURL[i]);

ActionURL[i]=NULL;

}

END_TRANSACTION();

CGI Forms
CGI forms are handled by the following process.

1. The browser requests a page that contains a CGI form. It displays the page and pro-
vides the interaction for input fields that the CGI form specifies.

2. A user enters data into the CGI form and clicks the Submit button. This action
causes the browser to process the CGI form�s action statement.

3. By processing the action statement, the browser gathers all input fields as name
value pairs and passes them to a CGI call that the action statement contains.

5-10 QALoad Script Development Guide
Example Web Page
The following Web page contains a CGI form with:

• An action statement
• Input fields
• Hidden fields

<HTML>

<HEAD><TITLE>Forms Example</TITLE>

</HEAD>

<BODY>

<FORM ACTION="http://www.host.com/cgi-bin/perl_9.pl"
method=post>

<TABLE>

<TR>

<TD>Name:

<TD><INPUT NAME="name" SIZE="20" MAXLENGTH=20>

<TR>

<TD>Password:

<TD><INPUT TYPE =password NAME="password" SIZE="20"
MAXLENGTH=20>

There is a hidden field containing data here: <INPUT
TYPE=hidden NAME="hidden" VALUE="This rocks!">

Here is another hidden field: <INPUT TYPE=hidden
NAME="hidden1" VALUE="Web testing is fun">

</FORM>

</BODY>

</HTML>

Example Script
QALoad automatically generates all the constructs that are necessary to make a CGI form
request.

The example script features the following:

• A DO_Http call to retrieve the forms page.
• Commented description of the input fields on the page.
• GetFormValueByName commands to retrieve the values of the hidden fields from

the form.

Advanced Scripting Techniques for WWW 5-11
• DO_SetValue calls to store the field names and their user-entered values.
• A DO_Http call for the CGI get request.

char *Field[2];

char *ActionURL[1];

…

…

for(i=0;i<2;i++)

Field[i]=NULL;

for(i=0;i<1;i++)

ActionURL[i]=NULL;

…

…

BEGIN_TRANSACTION();

…

…

/* Request: 1 */

DO_Http("GET http://www.host.com/forms.htm HTTP/”
 “1.0\r\n\r\n");

DO_VerifyDocTitle("Forms Example", TITLE);

/* ActionURL[0]="http://www.host.com/cgi-bin/perl_9.pl" */

DO_GetFormActionStatement(FORM(1), &ActionURL[0]);

/* Form:1 text Name: name, Value: , Desc: */

/* Form:1 text Name: password, Value: , Desc: */

/* Form:1 hidden Name: hidden, Value: This rocks! */

DO_GetFormValueByName(FORM(1), "hidden", "hidden", 1,
 &Field[0]);

/* Form:1 hidden Name: hidden1, Value: Web testing is fun */

DO_GetFormValueByName(FORM(1), "hidden", "hidden1", 1,
 &Field[1]);

/* Request: 2 From: Forms Example */

DO_SetValue("action_statement0", ActionURL[0]);

DO_SetValue("name", "form-name");

5-12 QALoad Script Development Guide
DO_SetValue("password", "form-password");

DO_SetValue("hidden", Field[0]);

DO_SetValue("hidden1", Field[1]);

DO_Http("POST {*action_statement0} HTTP/1.0\r\n"

 "Content-Type: application/x-www-form-urlencoded\r\n"

 "Content-Length: {*content-length}\r\n\r\n"

 "{name}&{password}");

DO_VerifyDocTitle("Forms Example - Results", TITLE);

…

…

for(i=0; i<2; i++)

{

free(Field[i]);

Field[i]=NULL;

}

for(i=0; i<1; i++)

{

free(ActionURL[i]);

ActionURL[i]=NULL;

}

END_TRANSACTION();

Simulating JavaScript
JavaScript is handled by the following process.

1. The browser makes a page request to a server for a page that contains JavaScript.

2. Because JavaScript is simply uncompiled code, the browser downloads and
immediately executes this code upon receipt of the page.

Advanced Scripting Techniques for WWW 5-13
Supported Objects
QALoad supports the built-in JavaScript objects (global, object, function, array, string,
boolean, number, math, date, regexp, and error), document objects, and image objects.

Supported Properties
The only document properties that QALoad supports are cookies, title, and the images
array. The only image property that QALoad supports is src.

Evaluation Errors
If an object, property, or function used within a block of JavaScript code is not defined,
it will cause a JavaScript exception. The exception stops evaluation of that block.

Example Web Page
The following Web page contains the JavaScript function and an onLoad tag that calls the
scrollit function. The onLoad tag tells the browser to execute the JavaScript immediately
after loading the page. The scrollit function displays a scrolling banner region on the Web
page.

<HTML>

<HEAD>

<TITLE>Java Script Example</TITLE></HEAD>

<SCRIPT LANGUAGE="JavaScript" src="js_do_nothing.js">

function scrollit_r2l(seed)

{

var m1 = " Welcome to Compuware's QALoad homepeage.";

var m2 = " Glad to see you.";

var m3 = " Thanks for coming. ";

var msg = m1 + m2 + m3;

var out = " ";

var c = 1;

if (seed > 100) {

seed--;

var cmd="scrollit_r2l(" + seed + ")";

timerTwo=window.setTimeout(cmd,100);

}

5-14 QALoad Script Development Guide
else if (seed <= 100 && seed > 0) {

for (c=0 ; c < seed ; c++) {

out+=" ";

}

out+=msg;

seed--;

var cmd="scrollit_r2l(" + seed + ")";

window.status=out;

timerTwo=window.setTimeout(cmd,100);

}

else if (seed <= 0) {

if (-seed < msg.length) {

out+=msg.substring(-seed,msg.length);

seed--;

var cmd="scrollit_r2l(" + seed + ")";

window.status=out;

timerTwo=window.setTimeout(cmd,100);

}

else {

window.status=" ";

timerTwo = window.setTimeout(

"scrollit_r2l(100)", 75);

}

}

}

</script>

<BODY
onLoad="timerONE=window.setTimeout('scrollit_r2l(100)',500);
">

<!-- End scrolltext -->

<center><h2>Java Script Example</h2><hr>Check out the
browser's scrolling status bar.

</center>

</BODY></HTML>

Advanced Scripting Techniques for WWW 5-15
Example Script
The following script features a DO_Http call to retrieve the JavaScript page.

How It Works: QALoad evaluates the JavaScript in the context of script blocks, onLoad
tags, and src and then executes them.

DO_InitHttp(s_info);

…

…

BEGIN_TRANSACTION();

DO_AutomaticSubRequests(TRUE);

…

…

DO_Http("GET http://www.host.com/js.htm HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Java Script Example", TITLE);

…

…

END_TRANSACTION();

Executing a Visual Basic Script
QALoad does not evaluate a Visual Basic script. However, any Visual Basic script request
that occurs is inserted into the script as a main request.

Executing a Java Applet
Java applets are handled by the following process.

1. The browser makes a request to a Web server for an HTML document that contains
embedded Java applets.

2. The browser downloads the Java applets, in the order in which they appear on the
Web page, and immediately executes them.

Example Web Page
The following Web page contains two sections that reference Java applets. Notice the
parameters that follow the applet. The browser passes these parameters when invoking an
applet.

5-16 QALoad Script Development Guide
<HTML>

<HEAD>

<TITLE>Java Example</TITLE></HEAD>

<BODY>

<center><h2>Java Applet Example</h2><hr>

<applet code="LScrollText.class" width="500" height="20" >

<PARAM NAME="MESSAGE" VALUE="Scrolling Text created by Java
Applet... >>Click here to Download<< Use it FREE">

<PARAM NAME="FONTHEIGHT" VALUE="14">

<PARAM NAME="SPEED" VALUE="2">

<PARAM NAME="PIXELS" VALUE="1">

<PARAM NAME="FONTCOLOR" VALUE="0000FF">

<PARAM NAME="BACKCOLOR" VALUE="FFFF00">

<PARAM NAME="TARGET" VALUE="lscrolltext.zip">

</applet>

A scrolling message, with custom colors, font size, speed, and
target URL.

The source (.ZIP) file can be downloaded by clicking the
associated area in text window.

<hr>

<APPLET CODE="imagefader.class" WIDTH=80 HEIGHT=107>

<PARAM name="demicron" value="www.demicron.se">

<PARAM name="reg" value="A00012">

<PARAM name="maxitems" value="3">

<PARAM name="width" value="80">

<PARAM name="height" value="107">

<PARAM name="bitmap0" value="anibal.jpg">

<PARAM name="bitmap1" value="jak.jpg">

<PARAM name="bitmap2" value="jan.jpg">

<PARAM name="url0" value=" ">

<PARAM name="url1" value=" ">

<PARAM name="url2" value=" ">

<PARAM name="step" value="0.05">

<PARAM name="delay" value="20">

<PARAM name="sleeptime" value="2000">

Advanced Scripting Techniques for WWW 5-17
</APPLET>

This applet is a very popular image fader that displays a
series of images, and allows URLs to be associated with each
image.

<hr>

</center>

</BODY></HTML>

Example Script
QALoad does not evaluate Java applets. They appear as main requests.

The example script features the following elements:

• A DO_Http call to retrieve the main page.
• A DO_Http call to retrieve the scrolling text class.
• A DO_Http call to retrieve the image fader class Java applet.

How It Works: QALoad interacts with the Web server without execution of the Java applet
program within the virtual browser. The browser accepts the pages that contain Java
applets, but does not execute the applet as part of the load test. The Java applets are not
evaluated by QALoad and appear as main requests in the script.

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/java.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Java Example", TITLE);

/* Request: 2 */

DO_Http("GET http://www.host.com/LScrollText.class HTTP/"
 "1.0\r\n\r\n");

/* Request: 3 */

DO_Http("GET http://www.host.com/imagefader.class HTTP/"
 "1.0\r\n\r\n");

5-18 QALoad Script Development Guide
DO_Http("GET http://www.host.com/jak.jpg HTTP/1.0\r\n"
 "\r\n");

...

...

END_TRANSACTION();

Simulating Frames
Frames are handled by the following process.

1. The browser makes a main page request to a Web server for a page that contains
frames.

2. The browser parses the frame pages and places them in sub-windows within the
browser, each of which displays the frame content.

Example Web Page
The following Web page contains four frames.

<HTML>

<HEAD>

 <TITLE>FRAME Example</TITLE>

</HEAD>

<! -- Here is the FRAME information for browsers with frames
-->

<FRAMESET Rows="*,*"><!-- Two rows, each equal height -->

 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->

 <FRAME Src="findex.htm" Name="ul-frame">

 <FRAME Src="findex.htm" Name="ur-frame">

 </FRAMESET>

 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->

 <FRAME Src="findex.htm" Name="ll-frame">

 <FRAME Src="findex.htm" Name="lr-frame">

 </FRAMESET>

</FRAMESET>

</HTML>

Advanced Scripting Techniques for WWW 5-19
Example Script
QALoad automatically generates all constructs necessary to request frames.

The example script features the following element:

• A DO_Http call to retrieve the main page.

How It Works: The frames are treated as sub-requests and are evaluated and requested by
QALoad.

BEGIN_TRANSACTION();

DO_AutomaticSubRequests(TRUE);

…

…

DO_Http("GET http://www.host.com/frameset.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("FRAME Example", TITLE);

...

...

END_TRANSACTION();

Simulating Cookies
This section describes how QALoad handles cookies. Cookies are handled by the
following process.

1. The browser makes a CGI request to a server for a dynamic page.

2. When the server sends the page back to the browser, the page includes a cookie in
the header. The browser saves the cookie along with information that ties it to the
Web server.

3. On all subsequent requests to that Web server, the browser passes the cookie along
with the request.

Example Web Page
The following CGI Perl script generates a Set-Cookie header as a part of subsequent
HTTP requests.

Set-Cookie: SaneID=172.22.24.180-4728804960004

Set-Cookie: SITESERVER=ID=f0544199a6c5970a7d087775f83b23af

5-20 QALoad Script Development Guide
<html>

…

The cookies for this site are:

SaneID=172.22.24.180-4728804960004;
SITESERVER=ID=f0544199a6c5970a7d087775f83b23af

<P>

Next cookie for this URL will be : 1

RELOAD PAGE TO INCREMENT COUNTER

<A HREF=http://
www.host.com/index.htm>Return to previous homepage.

Example Script when Dynamic Cookie Handling is turned on
This is the default method by which QALoad handles cookies. The example script
features the following elements:

• Two CGI requests that return dynamic pages
• Cookies are handled by the replay engine
BEGIN_TRANSACTION();

DO_DynamicCookieHandling(TRUE);

…

…

/* Request: 1 */

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n\r\n");

/* Request: 2 */

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n\r\n");

…

…

END_TRANSACTION();

Example Script when Dynamic Cookie Handling is turned off
The example script features the following elements:

• A CGI request that returns a dynamic page
• Two DO_GetCookieFromReply calls to retrieve the cookie from reply
• Two DO_SetValue calls to set the cookie
• A free cookie

Advanced Scripting Techniques for WWW 5-21
How It Works: For cookies that are set with CGI scripts, the script stores incoming cookies
in a variable and passes them back to the Web browser in the reply from the CGI script.
The script handles these cookies by executing a DO_GetCookieFromReply command
after the CGI request. DO_GetCookieFromReply stores the cookie values in variables,
which the script then passes back to subsequent CGI requests using the DO_SetValue
command.

int i;

char *Cookie[4];

...

...

for(i=0;i<4;i++)

Cookie[i]=NULL;

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();

DO_DynamicCookieHandling(FALSE);

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n\r\n");

/*Set-Cookie: NUM=1 */

DO_GetCookieFromReplyEx("NUM", &Cookie[0], '*');

/*Set-Cookie: SQUARE=1 */

DO_GetCookieFromReplyEx("SQUARE", &Cookie[1], '*');

/* Request: 2 */

DO_SetValue("cookie000", Cookie[0]); /* NUM=1 */

DO_SetValue("cookie001", Cookie[1]); /* SQUARE=1 */

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl "

 "HTTP/1.0\r\n"

 "Cookie: {*cookie000}; {*cookie001}\r\n\r\n");

...

...

5-22 QALoad Script Development Guide
DO_HttpCleanup();

for(i=0; i<4; i++)

{

free(Cookie[i]);

Cookie[i]=NULL;

}

END_TRANSACTION();

Simulating Browser Caching
Browser caching is handled by the following process.

1. When the browser makes a request for static HTML pages, it may include an option
to retrieve the page only if it is newer than the one held in the browser�s cache.

2. If browser caching is enabled, the server returns only newer versions of the page. If
browser caching is not enabled, the server always returns the page.

How It Works: The QALoad Script Development Workbench disables browser caching
while recording, which means a page is always retrieved. For more information about
disabled browser caching, see the Script Development Workbench section of the QALoad
online help.

Requesting Password-Protected Directories
Web developers use password-protected directories to protect access to some pages.
When the browser requests a page in a password-protected directory, the server returns a
special response that specifies the page is password-protected. When the browser
receives this type of reply, it gathers the user ID and password, encrypts them, and passes
them back to the server in a subsequent request.

Example Script
QALoad automatically generates all the constructs that are necessary to execute a request
of a password-protected directory.

The example script features the following elements:

• DO_BasicAuthorization, which takes the user ID and password as parameters

Advanced Scripting Techniques for WWW 5-23
• DO_Http request to the password-protected directory

BEGIN_TRANSACTION();

DO_BasicAuthorization("frank", "~encr~557A2549474E57444A");

...

...

DO_Http("GET http://www.host.com/access_controlled/"
 "secure.htm HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Successful Test of a Secured Page",
TITLE);

...

...

END_TRANSACTION();

Example Script
QALoad also handles Windows Domain Authentication (NTLM).

The example script features the following elements:

• A DO_NTLMAuthorization call, which takes the domain, user ID, and password as
parameters

• DO_Http request to the NTLM protected directory

BEGIN_TRANSACTION();

DO_NTLMAuthorization("dom1\\frank",
 "~encr~557A2549474E57444A");

...

...

DO_Http("GET http://www.host.com/ntlm_controlled/"
 "secure.htm HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Successful Test of a NTLM Page", TITLE);

...

...

END_TRANSACTION();

5-24 QALoad Script Development Guide
Using the WWW Convert Options Dialog Box
This section provides script examples and tips for each conversion option that is available
on the WWW Convert Options dialog box.

WWW Convert Options Dialog Box
The WWW Convert Options dialog box contains settings for WWW conversions. It can
be accessed by clicking Options>Convert while a WWW session is open.

Figure 5-1. WWW Convert Options Dialog Box

Form field as comments
When this option is selected, all forms and their fields are placed in comment blocks in
the script.

Example Web Page
<!DOCTYPE HTML PUBLIC "-//AdvaSoft//DTD HTML 3.2 extended
961018//EN">

<HTML>

<HEAD>

 <TITLE>Forms Example</TITLE>

Advanced Scripting Techniques for WWW 5-25
</HEAD>

<BODY BGCOLOR="#7093DB">

<H2 ALIGN=center>Example of HTTP Forms</H2>

<FORM ACTION="/cgi-bin/perl_9.pl" method=post>

<TABLE>

<TR>

<TD>Name:

<TD><INPUT NAME="name" SIZE="20" MAXLENGTH=20>

<TR>

<TD>Password:

<TD><INPUT TYPE =password NAME="password" SIZE="20"
MAXLENGTH=20>

<TR>

<TD>E-Mail Address:

<TD><INPUT NAME= "e-mail" SIZE = "40" MAXLENGTH=80>

<TR>

<TD>Address:

<TD><INPUT TYPE = text NAME = "Address" SIZE = "40"
MAXLENGTH=40>

<TR>

<TD>City:

<TD><INPUT NAME="city" SIZE="40" MAXLENGTH=40>

<TD ALIGN=left>State:

<TD ALIGN=left><INPUT NAME="state" SIZE="2" MAXLENGTH=2
ALIGN=left>

<TD ALIGN=left>Zip:

<TD ALIGN=left><INPUT NAME="zip" SIZE="5" MAXLENGTH=5>

<TR>

<TD VALIGN=top>Favorite Color:

<TD><SELECT NAME="options">

<OPTION>Red

<OPTION>Orange

<OPTION>Yellow

<OPTION>Green

<OPTION selected=on>Blue

<OPTION>Indigo</OPTION>

<OPTION>Violet</OPTION>

5-26 QALoad Script Development Guide
</SELECT>

<TR>

<TR>

<TD VALIGN=top>Color of your money:

<TD><SELECT NAME="dates" multiple="multiple">

<OPTION selected=on>Red

<OPTION>Blue

<OPTION>Green</OPTION>

<OPTION>Beige</OPTION>

</SELECT>

<TR>

<TD VALIGN=top>Comments:

<TD><TEXTAREA NAME="comments" COLS=40 ROWS=5></TEXTAREA>

</TABLE>

<INPUT TYPE=checkbox CHECKED NAME="echo">Echo a copy of
the result HTML Page to E-mail

<P>

<TABLE>

<TR>

<TD VALIGN=top>Testing:

<TD><INPUT TYPE=radio CHECKED NAME="test"
VALUE="capture">Capture

 <INPUT TYPE=radio NAME="test" VALUE="replay">Replay

 <INPUT TYPE=radio NAME="test"
VALUE="loadtest">Loadtest

<TR>

<TR>

<TD>Web page to append to reply:

<TD><INPUT TYPE=file NAME="web page">

</TABLE>

There is a hidden field containing data here: <INPUT
TYPE=hidden NAME="hidden" VALUE="This rocks!">

Here is another hidden field: <INPUT TYPE=hidden
NAME="hidden1" VALUE="Web testing is fun">

Advanced Scripting Techniques for WWW 5-27
<TABLE ALIGN=center>

<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="colors.gif" width="200"
height="100">

</TABLE>

<TABLE ALIGN=center>

<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="eye.gif" width="80" height="60">

</TABLE>

<TABLE ALIGN=center>

<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="devplatform.gif" width="48"
height="43">

</TABLE>

<TABLE ALIGN=center>

<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="enterprise_sm.gif" width="42"
height="41">

</TABLE>

<TABLE ALIGN=center>

<TR>

<TD><INPUT TYPE=submit NAME="submit">

<TD><INPUT TYPE=reset>

</TABLE>

</FORM>

</BODY>

</HTML>

5-28 QALoad Script Development Guide
Form field as comments � Yes

The following example has the Form field as comments option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : Yes

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

/* Declare Variables */

int i;

char *Field[2];

char *ActionURL[1];

Advanced Scripting Techniques for WWW 5-29
...

...

for(i=0;i<2;i++)

Field[i]=NULL;

for(i=0;i<1;i++)

ActionURL[i]=NULL;

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/forms.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Forms Example", TITLE);

/* ActionURL[0]="http://www.host.com/cgi-bin/perl_9.pl" */

DO_GetFormActionStatement(FORM(1), &ActionURL[0]);

/* Form:1 text Name: name, Value: */

/* Form:1 text Name: password, Value: */

/* Form:1 text Name: e-mail, Value: */

/* Form:1 text Name: Address, Value: */

/* Form:1 text Name: city, Value: */

/* Form:1 text Name: state, Value: */

/* Form:1 text Name: zip, Value: */

/* Form:1 select Name: options, Value: */

/* Form:1 select Name: options, Value: */

/* Form:1 select Name: options, Value: */

/* Form:1 select Name: options, Value: */

/* Form:1 select Name: options, Value: */

/* Form:1 select Name: options, Value: */

/* Form:1 select Name: options, Value: */

/* Form:1 select Name: dates, Value: */

/* Form:1 select Name: dates, Value: */

/* Form:1 select Name: dates, Value: */

/* Form:1 select Name: dates, Value: */

/* Form:1 text Name: comments, Value: */

/* Form:1 checkbox Name: echo, Value: */

/* Form:1 radio Name: test, Value: capture, */

/* Form:1 radio Name: test, Value: replay, */

5-30 QALoad Script Development Guide
/* Form:1 radio Name: test, Value: loadtest, */

/* Form:1 *unknown* Name: web page, Value: , */

/* Form:1 hidden Name: hidden, Value: This rocks!, */

DO_GetFormValueByName(FORM(1), "hidden", "hidden", 1,
 &Field[0]);

/* Form:1 hidden Name: hidden1, Value: Web testing is fun */

DO_GetFormValueByName(FORM(1), "hidden", "hidden1", 1,

 &Field[1]);

/* Form:1 *unknown* Name: , Value: */

/* Form:1 *unknown* Name: , Value: */

/* Form:1 *unknown* Name: , Value: */

/* Form:1 *unknown* Name: , Value: */

/* Form:1 submit Name: submit, Value: */

/* Form:1 *unknown* Name: , Value: */

/* Request: 2 From: Forms Example */

DO_SetValue("action_statement0", ActionURL[0]);

DO_SetValue("name", "joe");

DO_SetValue("password", "");

DO_SetValue("e-mail", "");

DO_SetValue("Address", "");

DO_SetValue("city", "");

DO_SetValue("state", "");

DO_SetValue("zip", "");

DO_SetValue("options", "Blue");

DO_SetValue("dates", "Red");

DO_SetValue("comments", "");

DO_SetValue("echo", "on");

DO_SetValue("test", "capture");

DO_SetValue("web+page", "");

DO_SetValue("hidden", Field[0]);

DO_SetValue("hidden1", Field[1]);

DO_SetValue("submit", "Submit Query");

DO_Http("POST {*action_statement0} HTTP/1.0\r\n"

 "Content-Type: application/x-www-form-urlencoded\r\n"

 "Content-Length: {*content-length}\r\n\r\n"

 "{name}&{password}&{e-mail}&{Address}&{city}&{state}&"

Advanced Scripting Techniques for WWW 5-31
 "{zip}&{options}&{dates}&{comments}&{echo}&{test}&"

 "{web+page}&{hidden}&{hidden1}&{submit}");

...

...

Form field as comments � No

The following example has the Form field as comments option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

5-32 QALoad Script Development Guide
 */

...

...

/* Declare Variables */

int i;

char *Field[2];

char *ActionURL[1];

...

...

for(i=0;i<2;i++)

Field[i]=NULL;

for(i=0;i<1;i++)

ActionURL[i]=NULL;

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/forms.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Forms Example", TITLE);

DO_GetFormActionStatement(FORM(1), &ActionURL[0]);

DO_GetFormValueByName(FORM(1), "hidden", "hidden", 1,
 &Field[0]);

DO_GetFormValueByName(FORM(1), "hidden", "hidden1", 1,
 &Field[1]);

/* Request: 2 From: Forms Example */

DO_SetValue("action_statement0", ActionURL[0]);

DO_SetValue("name", "joe");

DO_SetValue("password", "");

DO_SetValue("e-mail", "");

DO_SetValue("Address", "");

DO_SetValue("city", "");

DO_SetValue("state", "");

DO_SetValue("zip", "");

DO_SetValue("options", "Blue");

DO_SetValue("dates", "Red");

Advanced Scripting Techniques for WWW 5-33
DO_SetValue("comments", "");

DO_SetValue("echo", "on");

DO_SetValue("test", "capture");

DO_SetValue("web+page", "");

DO_SetValue("hidden", Field[0]);

DO_SetValue("hidden1", Field[1]);

DO_SetValue("submit", "Submit Query");

DO_Http("POST {*action_statement0} HTTP/1.0\r\n"

 "Content-Type: application/x-www-form-urlencoded\r\n"

 "Content-Length: {*content-length}\r\n\r\n"

 "{name}&{password}&{e-mail}&{Address}&{city}&{state}"

 "&{zip}&{options}&{dates}&{comments}&{echo}&{test}"

 "&{web+page}&{hidden}&{hidden1}&{submit}");

...

...

for(i=0; i<2; i++)

{

free(Field[i]);

Field[i]=NULL;

}

for(i=0; i<1; i++)

{

free(ActionURL[i]);

ActionURL[i]=NULL;

}

...

...

Anchors as comments
When this option is checked, all anchors are placed in comment blocks in the script.

Example Web Page
<HTML>

<HEAD>

<TITLE>QALoad WWW Capture Examples</TITLE>

</HEAD>

5-34 QALoad Script Development Guide
<BODY>

<HR>

<CENTER><H2>QALoad WWW Capture Examples</H2>

<h3>Return to welcome homepage.</h3></
A>

</CENTER><HR>

<CENTER>

<TABLE CELLSPACING="10">

<TR>

<TH ALIGN=left>LINK:

<TH ALIGN=left>DESCRIPTION:

<TR>

<TD>Standard HTML Homepage</
TD>

<TD>Static page w/ images (.GIF 87a, 89a), sound files (.WAV),
and assorted links</TD>

<TR>

<TD>Multiple Inline Images Page</
TD>

<TD>Static page with 16 inline images</TD>

</TABLE>

</CENTER>

</BODY>

</HTML>

Advanced Scripting Techniques for WWW 5-35
Anchors as comments � Yes

The following example has the Anchors as comments option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : Yes

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

/* Declare Variables */

int i;

char *Anchor[1];

...

5-36 QALoad Script Development Guide
...

for(i=0;i<1;i++)

Anchor[i]=NULL;

...

...

BEGIN_TRANSACTION();

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

/* Anchors 'http://www.host.com/default.htm' 'Return to
welcome homepage.' */

/* Anchors 'http://www.host.com/standard.htm' 'Standard HTML
Homepage' */

DO_GetAnchorHREF("Standard HTML Homepage", &Anchor[0]);

/* Anchors 'http://www.host.com/subs.htm' 'Multiple Inline
Images Page' */

/* Request: 2 To: Standard HTML Homepage From: QALoad WWW

 Capture Examples */

/* Variable: Anchor000 links to: Standard HTML Homepage on

 page: QALoad WWW Capture Examples */

DO_SetValue("Anchor000", Anchor[0]);

DO_Http("GET {*Anchor000} HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("\"Standard HTML Example\"", TITLE);

...

...

for(i=0; i<1; i++)

{

free(Anchor[i]);

Anchor[i]=NULL;

}

Advanced Scripting Techniques for WWW 5-37
Anchors as comments � No

The following example has the Anchors as comments option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

/* Declare Variables */

int i;

char *Anchor[1];

...

5-38 QALoad Script Development Guide
...

for(i=0;i<1;i++)

Anchor[i]=NULL;

...

...

BEGIN_TRANSACTION();

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

DO_GetAnchorHREF("Standard HTML Homepage", &Anchor[0]);

/* Request: 2 To: Standard HTML Homepage From: QALoad WWW

 Capture Examples */

/* Variable: Anchor000 links to: Standard HTML Homepage on

 page: QALoad WWW Capture Examples */

DO_SetValue("Anchor000", Anchor[0]);

DO_Http("GET {*Anchor000} HTTP/1.0\r\n\r\n");

...

...

for(i=0; i<1; i++)

{

free(Anchor[i]);

Anchor[i]=NULL;

}

Client Image Maps as Comments
When this option is selected, all client image maps are placed within comment blocks in
the script.

Example Web Page
<html><head></head><body>

<center><h2>Client-side version of clickable imagemap</h2>

Advanced Scripting Techniques for WWW 5-39
Click on one of the fields contained in the image to access
the associated link.

<MAP NAME="title">

<AREA SHAPE="rect" COORDS="1,108,115,124" HREF="sup.htm"></
AREA>

<AREA SHAPE="rect" COORDS="119,107,234,124"
HREF="reg.htm"></AREA>

<AREA SHAPE="rect" COORDS="235,107,352,124"
HREF="fea.htm"></AREA>

<AREA SHAPE="rect" COORDS="353,107,466,124"
HREF="tech.htm"></AREA>

<AREA SHAPE="rect" COORDS="0,127,156,144"
HREF="htmlsam.htm"></AREA>

<AREA SHAPE="rect" COORDS="157,127,312,144"
HREF="exampro.htm"></AREA>

<AREA SHAPE="rect" COORDS="313,127,466,144"
HREF="feedback.htm"></AREA>

<AREA SHAPE="rect" COORDS="0,0,466,143"
HREF="invalid.htm"></AREA>

</MAP>

<P>

<IMG SRC="title.gif" BORDER="0" ALT="[Netscape FastTrack
Server 2.0]" USEMAP="#title" width="468" height="145">

</center>

</body></html>

Client Image Maps as Comments � Yes

The following example has the Client Image Maps as Comments option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

5-40 QALoad Script Development Guide
 * Client Maps as Comments : Yes

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

for(i=0;i<1;i++)

ClientMapURL[i]=NULL;

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/ismap.htm HTTP/"
 "1.0\r\n\r\n");

/* Client Map:1 Region:1 HREF: http://www.host.com/sup.htm */

/* Client Map:1 Region:2 HREF: http://www.host.com/reg.htm */

DO_GetClientMapHREF(MAP(1), REGION(2), &ClientMapURL[0]);

/* Client Map:1 Region:3 HREF: http://www.host.com/fea.htm */

/* Client Map:1 Region:4 HREF: http://www.host.com/tech.htm
*/

Advanced Scripting Techniques for WWW 5-41
/* Client Map:1 Region:5 HREF: http://www.host.com/
 htmlsam.htm */

/* Client Map:1 Region:6 HREF: http://www.host.com/
 exampro.htm */

/* Client Map:1 Region:7 HREF: http://www.host.com/
 feedback.htm*/

/* Client Map:1 Region:8 HREF: http://www.host.com/
 invalid.htm */

/* Request: 2 */

DO_SetValue("ClientMap000", ClientMapURL[0]);

DO_Http("GET {*ClientMap000} HTTP/1.0\r\n\r\n");

...

...

for(i=0; i<1; i++)

{

free(ClientMapURL[i]);

ClientMapURL[i]=NULL;

}

END_TRANSACTION();

...

...

Client Image Maps as Comments � No

The following example has the Client Image Maps as Comments option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

5-42 QALoad Script Development Guide
 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

for(i=0;i<1;i++)

ClientMapURL[i]=NULL;

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/ismap.htm HTTP/"
 "1.0\r\n\r\n");

DO_GetClientMapHREF(MAP(1), REGION(2), &ClientMapURL[0]);

/* Request: 2 */

DO_SetValue("ClientMap000", ClientMapURL[0]);

DO_Http("GET {*ClientMap000} HTTP/1.0\r\n\r\n");

...

...

for(i=0; i<1; i++)

{

Advanced Scripting Techniques for WWW 5-43
free(ClientMapURL[i]);

ClientMapURL[i]=NULL;

}

END_TRANSACTION();

...

...

Debug comments
When this option is selected, some items, such as received replies are placed in comment
blocks in the script.

Debug comments � Yes

The following example has the Debug Comments option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : Yes

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

5-44 QALoad Script Development Guide
 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

/* Received reply: <QALoad WWW Capture Examples> */

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

...

...

Debug Comments � No
The following example has the Debug Comments option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

Advanced Scripting Techniques for WWW 5-45
 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

...

...

Document Title Verification
There are three supported methods for verifying a document title, which are shown in the
following sections. Document title verification can be a good tool for detecting and
handling error messages that are returned in an HTML page.

Example Web Page
<HTML>

 <HEAD>

 <title>Welcome to The Main Page</title>

 </head>

 <body>

 <p>

 WWW Capture Examples (relative
link)

 </p>

</body>

</HTML>

5-46 QALoad Script Development Guide
Document Title Verification - Yes

The following example has the Document Title Verification option selected and
compares by the entire document title.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

Advanced Scripting Techniques for WWW 5-47
DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

...

...

Prefix (Characters to match - 5)
/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Prefix

 * Characters To Match : 5

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

5-48 QALoad Script Development Guide
DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Welco", PREFIX);

DO_SetTransactionCleanup();

...

...

Suffix (Characters to match - 4)
/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Suffix

 * Characters To Match : 4

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

Advanced Scripting Techniques for WWW 5-49
 */

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Page", SUFFIX);

DO_SetTransactionCleanup();

...

...

Document Title Verification � No

The following example has the Document Title Verification option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : No

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

5-50 QALoad Script Development Guide
 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_SetTransactionCleanup();

...

...

Baud Rate
This option is used to simulate slower connections to a Web server, such as 56 Kbps
modem or DSL. Specify a baud rate when enabling baud rate emulation in the Convert
Options dialog box.

The DO_SetBaudRate command is inserted in the script with the specified baud rate as
its only parameter. If baud rate emulation must be asymmetric (upload rate is different
than the download rate), use the DO_SetBaudRateEx command. DO_SetBaudRateEx
takes two parameters: the upload baud rate and the download baud rate. For more infor-
mation about the DO_SetBaudRateEx command, refer to the Language Reference section
of the QALoad online help.

Baud Rate (57600) � Yes

The following example has the Baud Rate option selected and set to 57600.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

Advanced Scripting Techniques for WWW 5-51
 * Baud Rate Emulation : Yes

 * Baud Rate : 57600

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_SetTransactionStart();

DO_SetBaudRate(57600);

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

...

...

Baud Rate Emulation � No

The following example has the Baud Rate Emulation option cleared.

/* Converted using the following options:

 * General:

5-52 QALoad Script Development Guide
 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_SetTransactionStart();

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

...

...

Advanced Scripting Techniques for WWW 5-53
END_TRANSACTION();

...

...

Refresh Timeout
When this option is selected, the time value that you specify in the seconds field is
compared to a Web page�s META Refresh value (e.g. <META HTTP-EQUIV=Refresh
CONTENT=�10�; URL=�http://www.compuware.com�>). If the META Refresh tag�s
CONTENT field value is less than the time value you specify, the page is treated as a
redirected page. If the CONTENT field value is greater than the time you specify, the
page is treated as a regular page.

This option is useful for avoiding infinite loops in the script. Infinite loops can occur if a
page refreshes periodically to update data.

Example Web Page
<html>

<head>

 <title>Just Wait</title>

 <meta http_equiv=refresh content=”5;url=/path/to/
realpage.pl”>

</head>

<body>

 <h2>Loading the real page</h2>

</body>

</html>

Refresh Timeout � Yes

The following example has the Refresh Timeout option selected and is set to a value
greater than 5.

/* Converted using the following options:

...

...

 * Baud Rate Emulation : No

 * Enable Refresh Timeout : Yes

 * Refresh Timeout : 10

 * Encode DBCS Characters : No

...

5-54 QALoad Script Development Guide
...

 DO_SetTransactionStart();

 DO_SetRefreshTimeout(10);

 DO_SetMaxBrowserThreads(2);

...

...

/* Request: 1 */

DO_Http("GET http://host/path/to/page.pl HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("You have reached the final page!!",
TITLE);

Refresh Timeout � No

The following example has the Refresh Timeout option cleared. The example also
applies to having the option selected and set to a value less than 5.

/* Converted using the following options:

...

 * Baud Rate Emulation : No

 * Enable Refresh : No

 * Encode DBCS Characters : No

...

...

 BEGIN_TRANSACTION();

 DO_SetTransactionStart();

 DO_SetMaxBrowserThreads(2);

...

...

/* Request: 1 */

DO_Http("GET http://host/path/to/page.pl HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Just Wait", TITLE);

Advanced Scripting Techniques for WWW 5-55
DO_SLEEP(5);

/* Request: 2 */

DO_Http("GET http://host/path/to/realpage.pl HTTP/
1.0\r\n\r\n");

DO_VerifyDocTitle("You have reached the final page!!",
TITLE);

Encode DBCS Characters
When this option is selected, double-byte characters are converted into octal format. This
must be enabled for a capture with DBCS characters, so that the double-byte characters
can be viewed in a legible format.

Example Web Page
<html>

<head>

<title> </title>

<meta http-equiv="Content-type" content="text/html;
charset=euc-kr">

<meta http-equiv="Cache-Control" content="no-cache">

<meta http-equiv="Pragma" content="no-cache">

<meta http-equiv="Expires" content="Wed, 04 Jul 1973 16:00:00
GMT">

<!--CSS-->

<style type='text/css'>

</style>

<!--/CSS-->

</head>

<body onload="document.search.p.focus();" topmargin=8>

...

...

</body>

</html>

Encode DBCS Characters � Yes

The following example has the Encode DBCS Characters option selected.

/* Converted using the following options:

5-56 QALoad Script Development Guide
 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : Yes

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

/* Request: 1 */

DO_Http("GET http://kr.yahoo.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("\276\337\310\304!"
 "\304\332\270\256\276\306", TITLE);

...

...

Advanced Scripting Techniques for WWW 5-57
Encode DBCS Characters � No

The following example has the Encode DBCS Characters option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

/* Request: 1 */

DO_Http("GET http://kr.yahoo.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle(, TITLE);

5-58 QALoad Script Development Guide
...

...

Enable Visual Navigator
The Enable Visual Navigator option enables the Visual Navigator, which renders your
recorded C-based transaction in a tri-paned, browser-like environment similar to popular
visually-oriented development tools, with icons that represent all the elements of your
script.

Enable Visual Navigator � Yes
When the Enable Visual Navigator check box is selected, the following conversion
options are not available because they do not apply to Visual Navigator:

• Comment Options

� Form field as comments

� Anchors as comments

� Client Image Maps as comments

� Debug comments

• Dynamic Redirect Handling

• Dynamic Cookie Handling

• Automatically Process Sub-Requests

• ActiveData

• IP Spoofing

• Hostnames as IP Addresses

Enable Visual Navigator � No
If you do not select the Enable Visual Navigator option, QALoad generates a standard C
script. All normal and advanced conversion options apply to the script.

WWW Advanced Convert Options Dialog Box
The WWW Advanced dialog box contains advanced options for WWW conversions and
is accessed by the Advanced button on the WWW Convert Options dialog box.

Advanced Scripting Techniques for WWW 5-59
Figure 5-2. WWW Advanced Convert Options Dialog Box

Cache
When this option is enabled, requested images are cached at playback time. The image
cache is cleared by the next iteration of the DO_Clear command.

Cache � Yes

The following example has the Cache option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : Yes

5-60 QALoad Script Development Guide
 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_Cache(TRUE); /* Enable cache */

...

...

END_TRANSACTION();

...

...

Cache � No

The following example has the Cache option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

Advanced Scripting Techniques for WWW 5-61
 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_Cache(FALSE); /* Disable cache */

...

...

END_TRANSACTION();

...

...

Dynamic Redirect Handling
This is a playback option. When Dynamic redirect handling is enabled, playback
automatically handles the redirection.

Consider a Web page with a link to 'Redirected Webpage' (http://www.host.com/cgi-bin/
dynredir.exe). When this link is clicked, the server generates a 302 return value with a new
redirected location of http://172.22.24.39/cgi-bin/aperl_8.pl.

5-62 QALoad Script Development Guide
Dynamic Redirect Handling � Yes
When this option is selected, the script only contains the request for http://www.host.com/
cgi-bin/dynredir.exe and replay handles the 302 return value and calls http://
172.22.24.39/cgi-bin/aperl_8.pl automatically.

The following example has the Dynamic Redirect Handling option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : Yes

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

/* Declare Variables */

Advanced Scripting Techniques for WWW 5-63
int i;

char *Anchor[1];

...

...

for(i=0;i<1;i++)

Anchor[i]=NULL;

...

...

BEGIN_TRANSACTION();

...

...

DO_DynamicRedirectHandling(TRUE);

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

...

...

DO_GetAnchorHREF("Redirected Webpage", &Anchor[0]);

...

...

DO_SetValue("Anchor000", Anchor[0]);

DO_Http("GET {*Anchor000} HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Successful Test of Dynamic Redirect"
 "Sample",

 TITLE);

...

...

for(i=0; i<1; i++)

{

free(Anchor[i]);

Anchor[i]=NULL;

}

END_TRANSACTION();

5-64 QALoad Script Development Guide
...

...

Dynamic Redirect Handling � No
In this example, the script contains the request for http://www.host.com/cgi-bin/
dynredir.exe as well as http://172.22.24.39/cgi-bin/aperl_8.pl. The following example
has the Dynamic Redirect Handling option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : Yes

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : No

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

Advanced Scripting Techniques for WWW 5-65
/* Declare Variables */

int i;

char *Anchor[1];

...

...

for(i=0;i<1;i++)

Anchor[i]=NULL;

...

...

BEGIN_TRANSACTION();

DO_DynamicRedirectHandling(FALSE);

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

DO_GetAnchorHREF("Redirected Webpage", &Anchor[0]);

DO_SetValue("Anchor000", Anchor[0]);

DO_Http("GET {*Anchor000} HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Document Moved", TITLE);

DO_Http("GET http://www.host.com/redir/frm.pl HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Successful Test of Dynamic Redirect"
 "Sample",

 TITLE);

DO_SetTransactionCleanup();

/* Clear up some internal storage used for DO_SetValue() */

DO_HttpCleanup();

for(i=0; i<1; i++)

{

free(Anchor[i]);

Anchor[i]=NULL;

}

5-66 QALoad Script Development Guide
END_TRANSACTION();

...

...

Dynamic Cookie Handling
This is a playback option. When this option is selected, the script does not have any
cookie-specific information and playback deals with dynamic cookies at run time.

Example Web Page
The cookies for this site are:

Set-Cookie: SaneID=172.22.24.180-4728804960004

Set-Cookie: SITESERVER=ID=f0544199a6c5970a7d087775f83b23af

<html>

<head></head>

<body>

RELOAD PAGE TO INCREMENT COUNTER

</body>

</html>

Dynamic Cookie Handling � Yes

The following example has the Dynamic Cookie Handling option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

Advanced Scripting Techniques for WWW 5-67
 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_DynamicCookieHandling(TRUE);

...

...

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n\r\n");

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

...

...

Dynamic Cookie Handling � No

The following example has the Dynamic Cookie Handling option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

5-68 QALoad Script Development Guide
 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : No

 * Process Subrequests : No

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

char *Cookie[4];

...

...

for(i=0;i<2;i++)

Cookie[i]=NULL;

...

...

BEGIN_TRANSACTION();

DO_DynamicCookieHandling(FALSE);

...

Advanced Scripting Techniques for WWW 5-69
...

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n\r\n");

/*Set-Cookie: NUM=1 */

DO_GetCookieFromReplyEx("NUM", &Cookie[0], '*');

/*Set-Cookie: SQUARE=1 */

DO_GetCookieFromReplyEx("SQUARE", &Cookie[1], '*');

/* Request: 2 */

DO_SetValue("cookie000", Cookie[0]); /* NUM=1 */

DO_SetValue("cookie001", Cookie[1]); /* SQUARE=1 */

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n"

 "Cookie: {*cookie000}; {*cookie001}\r\n\r\n");

...

...

DO_HttpCleanup();

for(i=0; i<2; i++)

{

free(Cookie[i]);

Cookie[i]=NULL;

}

END_TRANSACTION();

...

...

Automatically Process SubRequests
This is a playback option. When this option is selected, subrequests (such as .jpg, .gif,
.css, and .js) are not included in the script during conversion, and playback makes the
requests at run time.

Example Web Page
<html>

<head>

5-70 QALoad Script Development Guide
<title>Page Of Subs</title>

</head>

<body>

<p>The page of subrequests</p>

<p>.<img border="0" src="win2000.gif" width="456"
height="124"><img border="0" src="APACHE.GIF" width="259"
height="32"><img border="0" src="banner.gif" width="470"
height="64"><img border="0" src="COLORS.GIF" width="200"
height="100"></p>

</body>

</html>

Automatically Process SubRequests � Yes

The following example has the Automatically Process SubRequests option selected.

/*

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

Advanced Scripting Techniques for WWW 5-71
 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_AutomaticSubRequests(TRUE);

...

...

DO_Http("GET http://www.host.com/subs.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Page Of Subs", TITLE);

...

...

END_TRANSACTION();

...

...

Automatically Process SubRequests - No

The following example has the Automatically Process SubRequests option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

5-72 QALoad Script Development Guide
 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : No

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

...

...

DO_AutomaticSubRequests(FALSE);

...

...

DO_Http("GET http://www.host.com/subs.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Page Of Subs", TITLE);

/* Request: 2 From: Page Of Subs */

DO_Http("GET http://www.host.com/win2000.gif HTTP/"
 "1.0\r\n\r\n");

/* Request: 3 From: Page Of Subs */

Advanced Scripting Techniques for WWW 5-73
DO_Http("GET http://www.host.com/web.gif HTTP/"
 "1.0\r\n"\r\n");

/* Request: 4 From: Page Of Subs */

DO_Http("GET http://www.host.com/APACHE.GIF HTTP/"
 "1.0\r\n\r\n");

/* Request: 5 From: Page Of Subs */

DO_Http("GET http://www.host.com/COLORS.GIF HTTP/"
 "1.0\r\n\r\n");

...

...

END_TRANSACTION();

...

...

Persistent Connections During Replay
This is an option placed in the script to be used at replay time. During replay, QALoad
attempts to keep the connection to the Web server open for each DO_Http request that is
sent to the server.

Persistent Connections During Replay � Yes

The following example has the Persistent connections during replay option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

5-74 QALoad Script Development Guide
 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_UsePersistentConnections(TRUE);

...

...

END_TRANSACTION();

...

...

Persistent Connections During Replay � No

The following example has the Persistent connections during replay option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

Advanced Scripting Techniques for WWW 5-75
 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : No

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_UsePersistentConnections(FALSE);

...

...

END_TRANSACTION();

...

...

Reuse SSL Session ID
This option is available only on an SSL installation of QALoad. By default, this option is
not selected and SSL session IDs are not re-used, which reflects standard browser
behavior. If your application re-uses SSL session IDs, consider selecting this option.

The Reuse SSL session ID option is used by the replay engine at replay time and the
current session�s ID is re-used for all the requests within the transaction.

5-76 QALoad Script Development Guide
Reuse SSL Session ID � Yes

The following example has the Reuse SSL session ID option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

SYNCHRONIZE();

/* Select following statement for reuse of Session ID with */

Advanced Scripting Techniques for WWW 5-77
/* SSL. If session ID needs only to be reused within */
/* a transaction insert after the BEGIN_TRANSACTION */
/* statement */

/* DO_SSLReuseSession(TRUE); */

BEGIN_TRANSACTION();

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/subs.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Page Of Subs", TITLE);

...

...

END_TRANSACTION();

...

...

Reuse SSL Session ID � No

The following example has the Reuse SSL session ID option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

5-78 QALoad Script Development Guide
 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

SYNCHRONIZE();

/* Select following statement for reuse of Session ID */
/* with SSL. If session ID needs only to be reused within */
/* a transaction, insert after the BEGIN_TRANSACTION */
/* statement */

/* DO_SSLReuseSession(FALSE); */

BEGIN_TRANSACTION();

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/subs.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Page Of Subs", TITLE);

...

...

END_TRANSACTION();

...

...

Advanced Scripting Techniques for WWW 5-79
Max Concurrent Connections
This field indicates the maximum number of connections that a DO_Http or DO_Https
command will open to the server at any time. These simultaneous connections are only
used if sub-requesting is enabled.

The following example has the Max Concurrent Connections field set at 4.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

5-80 QALoad Script Development Guide
BEGIN_TRANSACTION();

DO_SetTransactionStart();

DO_SetMaxBrowserThreads(4);

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Welcome to QAWEBSERV", TITLE);

...

...

END_TRANSACTION();

...

...

Max Connection Retries
This field specifies the number of times during replay that QALoad will attempt to
connect to the server after timing out. The following example has the Max Connection
Retries field set at 4.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

Advanced Scripting Techniques for WWW 5-81
 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

...

...

DO_SetMaximumRetries(4);

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Welcome to QAWEBSERV", TITLE);

...

...

Server Response Timeout
This field specifies, in seconds, the length of time during replay that QALoad will wait
for data from the server before timing out. The following example has the Server
Response Timeout field set at 120.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

5-82 QALoad Script Development Guide
 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_InitHttp(s_info);

DO_SetTimeout(120); /* Maximum time to wait for HTTP Reply */

...

...

BEGIN_TRANSACTION();

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Welcome to QAWEBSERV", TITLE);

...

...

Advanced Scripting Techniques for WWW 5-83
HTTP Version Detection
A WWW script can be set to 1.1, 1.0, or Auto. When set to 1.1, all requests and sub-
requests are sent as HTTP/1.1. When set to 1.0, all HTTP requests and subrequests are
sent as HTTP/1.0. When set to Auto, the individual DO_Http and DO_Https commands
determine the version of HTTP to use.

The default setting for this option is Auto, which is the best option for most scripts.
However, if your application requires HTTP version 1.1 or there are other special
scripting conditions, the script can be set to use a specific version of HTTP.

HTTP Version Detection: Auto/1.1/1.0

The following example has the HTTP Version Detection field set to Auto.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

5-84 QALoad Script Development Guide
 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

DO_HTTPVersion("Auto");

...

...

END_TRANSACTION();

...

...

ActiveData
When this option is enabled, the generated script will automatically be variablized.
Otherwise, all requests are not modified after the capture.

The following example shows a capture of a form, how it is variablized by the ActiveData
option, and not variablized when the ActiveData option is cleared.

Example Web Page
<!DOCTYPE HTML PUBLIC "-//AdvaSoft//DTD HTML 3.2 extended
961018//EN">

<HTML>

<HEAD>

 <TITLE>Forms Example</TITLE>

</HEAD>

<BODY BGCOLOR="#7093DB">

<H2 ALIGN=center>Example of HTTP Forms</H2>

<FORM ACTION="/cgi-bin/perl_9.pl" method=post>

<TABLE>

<TR>

<TD>Name:

<TD><INPUT NAME="name" SIZE="20" MAXLENGTH=20>

<TR>

<TD>Password:

<TD><INPUT TYPE =password NAME="password" SIZE="20"
MAXLENGTH=20>

Advanced Scripting Techniques for WWW 5-85
<TR>

<TD>E-Mail Address:

<TD><INPUT NAME= "e-mail" SIZE = "40" MAXLENGTH=80>

<TR>

<TD>Address:

<TD><INPUT TYPE = text NAME = "Address" SIZE = "40"
MAXLENGTH=40>

<TR>

<TD>City:

<TD><INPUT NAME="city" SIZE="40" MAXLENGTH=40>

<TD ALIGN=left>State:

<TD ALIGN=left><INPUT NAME="state" SIZE="2" MAXLENGTH=2
ALIGN=left>

<TD ALIGN=left>Zip:

<TD ALIGN=left><INPUT NAME="zip" SIZE="5" MAXLENGTH=5>

<TR>

<TD VALIGN=top>Favorite Color:

<TD><SELECT NAME="options">

<OPTION>Red

<OPTION>Orange

<OPTION>Yellow

<OPTION>Green

<OPTION selected=on>Blue

<OPTION>Indigo</OPTION>

<OPTION>Violet</OPTION>

</SELECT>

<TR>

<TR>

<TD VALIGN=top>Color of your money:

<TD><SELECT NAME="dates" multiple="multiple">

<OPTION selected=on>Red

<OPTION>Blue

<OPTION>Green</OPTION>

<OPTION>Beige</OPTION>

</SELECT>

<TR>

<TD VALIGN=top>Comments:

<TD><TEXTAREA NAME="comments" COLS=40 ROWS=5></TEXTAREA>

</TABLE>

5-86 QALoad Script Development Guide

<INPUT TYPE=checkbox CHECKED NAME="echo">Echo a copy of
the result HTML Page to E-mail

<P>

<TABLE>

<TR>

<TD VALIGN=top>Testing:

<TD><INPUT TYPE=radio CHECKED NAME="test"
VALUE="capture">Capture

 <INPUT TYPE=radio NAME="test" VALUE="replay">Replay

 <INPUT TYPE=radio NAME="test"
VALUE="loadtest">Loadtest

<TR>

<TR>

<TD>Web page to append to reply:

<TD><INPUT TYPE=file NAME="web page">

</TABLE>

There is a hidden field containing data here: <INPUT
TYPE=hidden NAME="hidden" VALUE="This rocks!">

Here is another hidden field: <INPUT TYPE=hidden
NAME="hidden1" VALUE="Web testing is fun">

<TABLE ALIGN=center>

<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="colors.gif" width="200"
height="100">

</TABLE>

<TABLE ALIGN=center>

<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="eye.gif" width="80" height="60">

</TABLE>

<TABLE ALIGN=center>

Advanced Scripting Techniques for WWW 5-87
<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="devplatform.gif" width="48"
height="43">

</TABLE>

<TABLE ALIGN=center>

<TR>

<TD ALIGN=center>Don't Click This

<TR>

<TD><INPUT TYPE=image SRC="enterprise_sm.gif" width="42"
height="41">

</TABLE>

<TABLE ALIGN=center>

<TR>

<TD><INPUT TYPE=submit NAME="submit">

<TD><INPUT TYPE=reset>

</TABLE>

</FORM>

</BODY>

</HTML>

ActiveData � Yes
When this option is enabled, variablizations are done in the script based on the settings of
other conversion options that become available. The following example has the
ActiveData option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

5-88 QALoad Script Development Guide
 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

/* Declare Variables */

int i;

char *Field[2];

char *ActionURL[1];

...

...

for(i=0;i<2;i++)

Field[i]=NULL;

for(i=0;i<1;i++)

ActionURL[i]=NULL;

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/forms.htm HTTP/"
 "1.0\r\n\r\n");

Advanced Scripting Techniques for WWW 5-89
DO_VerifyDocTitle("Forms Example", TITLE);

DO_GetFormActionStatement(FORM(1), &ActionURL[0]);

DO_GetFormValueByName(FORM(1), "hidden", "hidden", 1,
 &Field[0]);

DO_GetFormValueByName(FORM(1), "hidden", "hidden1", 1,

 &Field[1]);

/* Request: 2 From: Forms Example */

DO_SetValue("action_statement0", ActionURL[0]);

DO_SetValue("name", "joe");

DO_SetValue("password", "");

DO_SetValue("e-mail", "");

DO_SetValue("Address", "");

DO_SetValue("city", "");

DO_SetValue("state", "");

DO_SetValue("zip", "");

DO_SetValue("options", "Blue");

DO_SetValue("dates", "Red");

DO_SetValue("comments", "");

DO_SetValue("echo", "on");

DO_SetValue("test", "capture");

DO_SetValue("web+page", "");

DO_SetValue("hidden", Field[0]);

DO_SetValue("hidden1", Field[1]);

DO_SetValue("submit", "Submit Query");

DO_Http("POST {*action_statement0} HTTP/1.0\r\n"

 "Content-Type: application/x-www-form-urlencoded\r\n"

 "Content-Length: {*content-length}\r\n\r\n"

 "{name}&{password}&{e-mail}&{Address}&{city}&{state}&"

 "{zip}&{options}&{dates}&{comments}&{echo}&{test}&"

 "{web+page}&{hidden}&{hidden1}&{submit}");

...

...

for(i=0; i<2; i++)

{

free(Field[i]);

Field[i]=NULL;

}

5-90 QALoad Script Development Guide
for(i=0; i<1; i++)

{

free(ActionURL[i]);

ActionURL[i]=NULL;

}

...

...

ActiveData � No
When this option is not selected, variablizations are not done in the script regardless of
the other options. The following example has the ActiveData option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

Advanced Scripting Techniques for WWW 5-91
 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/forms.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("Forms Example", TITLE);

DO_Http("POST http://www.host.com/cgi-bin/perl_9.pl HTTP/"
 "1.0\r\n"

 "Content-Type: application/x-www-form-urlencoded\r\n"

 "Content-Length: {*content-length}\r\n\r\n"

 "name=joe&password=&e-mail=&Address=&city=&state=&zip=&"

 "options=Blue&dates=Red&comments=&echo=on&test=capture&"

 "web+page=&hidden=This+rocks%21&"

 "hidden1=Web+testing+is+fun&submit=Submit+Query");

DO_VerifyDocTitle("Forms Example - Results", TITLE);

...

...

END_TRANSACTION();

...

...

IP Spoofing
By default, QALoad searches for the file ipspoof.dat in the Datapools directory. You can
override this behavior by providing a different file name as the parameter to the
DO_IPSpoofEnable command in the converted script. For example:

DO_IPSpoofEnable("myaddresses.dat");

For more information about the DO_IPSpoofEnable command, refer to the Language
Reference section of the QALoad online help.

5-92 QALoad Script Development Guide
IP Spoofing � Yes

The following example has the IP Spoofing option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : Yes

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_InitHttp(s_info);

DO_IPSpoofEnable("");

Advanced Scripting Techniques for WWW 5-93
...

...

BEGIN_TRANSACTION();

...

...

END_TRANSACTION();

...

...

IP Spoofing � No

The following example has the IP Spoofing option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Max Concurrent Connection : 4

 * Max Connection Retries : 4

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : Yes

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

5-94 QALoad Script Development Guide
 * Strip All Cookies From Requests : No

 */

...

...

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();

...

...

END_TRANSACTION();

...

...

Streaming Media
QALoad supports two types of streaming media:

• RealOne Player
• Windows Media Player

When streaming media conversion is enabled and you record a transaction that calls
streaming media, an additional command is inserted into the script that requests the
media. You do not have to listen to or view the entire media you are requesting; just record
its URL and ensure that the appropriate media player is installed on the QALoad Player
machines that will execute playback of the script. At run time, the script invokes the
media player and requests the streaming media resource.

Advanced RealOne Player Media Options
void ShowMediaRP(BOOL displayAudio, BOOL displayVideo);

Enable/disable client audio and video for RealNetworks Streaming Media.

void EnableStatisticsRP(int statisticFlags, int interval,
BOOL traceOutput);

Enable client-side performance statistics for RealNetworks Streaming Media.

void DisableStatisticsRP(void);

Note

Streaming media is not supported through firewalls and across proxies.

Advanced Scripting Techniques for WWW 5-95
Disable client side performance statistics for RealNetworks Streaming Media.<|

Streaming Media � Yes

The following example has the Streaming Media option selected and uses RealOne
Player.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : Yes

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

#include "do_www.h"

5-96 QALoad Script Development Guide
#include "RPLayer.h"

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

DownloadMediaRP("http://rm.host.com:8099/ramgen/demo.rm",
 0);

...

...

END_TRANSACTION();

...

...

Windows Media Player Example
/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

Advanced Scripting Techniques for WWW 5-97
 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : Yes

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

#include "do_www.h"

#include "SMPLayer.h"

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/"
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

DO_Http("GET http://www.host.com/wmp-test.asx HTTP/
 "1.0\r\n\r\n");

DownloadMediaFromASX(0);

...

...

END_TRANSACTION();

...

...

5-98 QALoad Script Development Guide
Streaming Media � No

The following example has the Streaming Media option cleared and uses RealOne
Player.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

#include "do_www.h"

...

...

Advanced Scripting Techniques for WWW 5-99
BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

DO_Http("GET http://rm.host.com:8099/ramgen/demo.rm "

 "HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

...

...

Windows Media Player Example

The following example has the Streaming Media option cleared and uses Windows
Media Player.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

5-100 QALoad Script Development Guide
 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

#include "do_www.h"

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/index.htm HTTP/
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

DO_Http("GET http://www.host.com/wmp-test.asx HTTP/
 "1.0\r\n\r\n");

...

...

END_TRANSACTION();

...

...

Hostnames as IP Addresses
When this option is selected, DO_Http and DO_Https requests include IP addresses for
the requests instead of hostnames. This option only works if the hosts can be reached
directly. If a host must be reached through a proxy, the IP address cannot be determined.

Advanced Scripting Techniques for WWW 5-101
Hostnames as IP Addresses � Yes

The following example has the Hostnames as IP Addresses option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : Yes

 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://172.22.24.39/ HTTP/1.0\r\n\r\n");

5-102 QALoad Script Development Guide
DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

...

...

END_TRANSACTION();

...

...

Hostnames as IP Addresses � No

The following example has the Hostnames as IP Addresses option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

Advanced Scripting Techniques for WWW 5-103
 * Strip All Cookies From Requests : No

 */

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

...

...

END_TRANSACTION();

...

...

Strip All Cookies From Request
When this option is selected, no cookies will be sent in the DO_Http requests.

Strip All Cookies From Request � Yes

The following example has the Strip All Cookies From Request option selected.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

5-104 QALoad Script Development Guide
 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : Yes

 */

...

...

DO_Http("GET http://qawebserv.compuware.com/cgi-bin/
 "cookies5.pl HTTP/1.0\r\n\r\n");

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl "

 "HTTP/1.0\r\n\r\n");

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl "

 "HTTP/1.0\r\n\r\n");

...

...

Strip All Cookies From Request � No

The following example has the Strip All Cookies From Request option cleared.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

Advanced Scripting Techniques for WWW 5-105
 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"

 "HTTP/1.0\r\n"

 "Cookie: username=username\r\n\r\n");

...

...

Traffic Filters Dialog Box
The traffic filters dialog box enables you to determine which traffic should be included
or blocked from your script. This dialog box is accessed by the Traffic Filters button on
the WWW Advanced dialog box.

5-106 QALoad Script Development Guide
Figure 5-3. Traffic Filters Dialog Box

Filter Requests � Yes
In the following example, a traffic filter has been set to exclude requests with URLs that
contain the string �www.host.com�. Compare the following script to the script at �Filter
Requests � No� on page 5-107.

/* Converted using the following options:

 * General:

 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

Advanced Scripting Techniques for WWW 5-107
 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_InitHttp(s_info);

...

...

/* Exclude requests with URLs containing */

DO_BlockRequestsFrom("www.host.com;");

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://rm.host.com:8099/ramgen/realmp3.mp3 "

 "HTTP/1.0\r\n"

 "Referer: http://www.host.com/index.htm\r\n\r\n");

...

...

END_TRANSACTION();

...

...

Filter Requests � No

The following example does not use traffic filters.

/* Converted using the following options:

 * General:

5-108 QALoad Script Development Guide
 * Line Split : 80 characters

 * Sleep Seconds : 1

 * Auto Checkpoints : Yes

 * WWW

 * Form Field Comments : No

 * Anchors as Comments : No

 * Client Maps as Comments : No

 * Debug Comments : No

 * Doc Title Verification : Yes

 * Compare By : Entire Document Title

 * Baud Rate Emulation : No

 * Encode DBCS Characters : No

 * Cache : No

 * Dynamic Redirect : Yes

 * Dynamic Cookies : Yes

 * Process Subrequests : Yes

 * Persistent Connections : Yes

 * Reuse SSL Session ID : No

 * Max Concurrent Connection : 4

 * Max Connection Retries : 5

 * Server Response Timeout : 120

 * HTTP Version Detection : Auto

 * ActiveData : No

 * IPSpoofing : No

 * Streaming Media : No

 * Hostnames as IP Addresses : No

 * Strip All Cookies From Requests : No

 */

...

...

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

Advanced Scripting Techniques for WWW 5-109
DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

DO_Http("GET http://www.host.com/index.htm HTTP/
 "1.0\r\n\r\n");

DO_VerifyDocTitle("QALoad WWW Capture Examples", TITLE);

DO_Http("GET http://rm.host.com:8099/ramgen/realmp3.mp3 "

 "HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

...

...

5-110 QALoad Script Development Guide

 6-1
Chapter 6. Advanced Scripting Techniques for
Tuxedo

• Managing Tuxedo Application Data Flow � Describes how QALoad manages
Tuxedo buffers, how data passes from one QALoad Tuxedo command to another,
and how to include data in the script.

Managing Tuxedo Application Data Flow
To get the script to execute properly, you need to ensure that data flows through the script
as it would normally flow through your application. The following sections describe how
QALoad manages Tuxedo buffers, how data passes from one QALoad Tuxedo command
to another, and how to encode data in a script.

Managing Tuxedo Buffers
Tuxedo clients use typed buffers to transmit data between Tuxedo clients and servers. You
can create a typed buffer by using the tpalloc command and specifying the buffer type
and size. QALoad supports the following Tuxedo buffer types:

• FML
• FML32
• STRING
• CARRAY
• X_OCTET
• VIEW
• VIEW32

For example, to allocate a 4096 byte FML buffer on the client, use the following code:

char *buffer;

buffer = tpalloc("FML", "", 4096);

To place data into the buffer, use the following code:

6-2 QALoad Script Development Guide
FChg(buffer, fieldid, oc, "data", 4);

Where buffer is the Tuxedo-allocated (tpalloc) buffer, fieldid is the field value, and
oc is the field occurrence.

To simplify buffer management and provide more comprehensive error checking,
QALoad Tuxedo scripts automatically handle buffer management. Instead of having to
work with buffer pointers, QALoad�s Tuxedo commands hide the buffer pointers by
managing an array of buffers behind the scenes. The commands identify buffers using a
mnemonic name such as Buf1, which translates into the array index, rather than a buffer
pointer.

The following example shows how a Tuxedo script manages a buffer allocation for the
command Do_Tuxtpcall.

Do_Tuxtpalloc(Buf1 , "FML", 1024););

Do_TuxFinit(Buf1);

Do_TuxFMLData(test_carray, 1, "abcdefg");

Do_TuxFMLData(test_long, 1, "12345");

Do_Tuxtpcall("OPEN_TEST1", Buf1 , Buf2 , 0);

In the example above, the Do_Tuxtpalloc command allocates a buffer named Buf1.
Do_TuxFinit clears any previous contents of Buf1. The Do_TuxFMLData commands
load data into the most recent buffer that Do_TuxFinit clears; therefore, the
Do_TuxFMLData parameter list does not include Buf1.

Following the setup of the buffer, the Do_Tuxtpcall makes a service call to
OPEN_TEST1. The parameter list of the Do_Tuxtpcall includes an input and output
buffer. In the example above, the input buffer is Buf1 and the output buffer is Buf2. The
final parameter of zero indicates that special Tuxedo flags are not specified.

QALoad automatically determines if a buffer type is FML or FML32 and calls the appro-
priate Tuxedo API routines.

Note that a command is not available to free a previously allocated buffer. When the script
executes a Do_Tuxtpalloc command, QALoad checks to see whether the buffer
associated with a specified buffer index was previously allocated. If QALoad determines
that the buffer was previously allocated, it frees the buffer using Tuxedo�s tpfree prior to
allocating it.

Passing Data Between Tuxedo Commands
When a Tuxedo client application executes, it may pass data from one API call to another.
A script that needs to emulate an application needs to pass data in the same way the appli-
cation passes data. The following example shows how to use QALoad commands to pass
output data from one Do_Tuxtpcall as input to another Do_Tuxtpcall.

/* Declare Variables for Account ID and encode Account ID */

Advanced Scripting Techniques for Tuxedo 6-3
char AcctID[16];

char EncAcctID[32];

/* Set up input buffer with Account Name for retrieving
Account ID */

Do_Tuxtpalloc(Buf1 , "FML", 1024);

Do_Tuxtpalloc(Buf2 , "FML", 1024);

Do_TuxFinit(Buf1);

Do_TuxFMLData(ACCT_NAME, 0, "Gerard Plumbing");

/* Retrieve Account ID using the name */

Do_Tuxtpcall("getAcctIdFromName", Buf1 , Buf2 , 0);

/* Extract the Account id from the output buffer */

Do_TuxgetFMLData(Buf2 , ACCT_ID, 0, AcctID);

/* Account id may be special characters, so encode it */

Do_Tuxencode(EncAcctID, AcctID, strlen(AcctID));

/* Load up the buffer for the next call */

Do_TuxFinit(Buf1);

Do_TuxFMLData(ACCT_ID, 0, EncAcctID);

/* Call to get account detail */

Do_Tuxtpcall("getAcctDetail", Buf1 , Buf2 , 0);

In the example above, the first Do_Tuxtpcall retrieves an account ID from the account
name. The account name is placed into Buf1 (input buffer), and the account ID is placed
into Buf2 (output buffer).

The account ID is retreived from Buf2 using the Do_TuxgetFMLData command. The
Do_TuxgetFMLData command retrieves data from a typed buffer using the Tuxedo field
and occurrence identifiers.

When data is returned using the Do_TuxgetFMLData command, it is returned in its
internal form, without encoding. Yet, the Do_TuxFMLData command, which loads data
into the Tuxedo buffers, requires that special characters are encoded. Therefore, the

6-4 QALoad Script Development Guide
Do_Tuxencode command is used to encode the data before using it as input to the second
Do_Tuxtpcall.

You can also use the Do_TuxgetTuxBuffer command to work with data from a Tuxedo
buffer. The Do_TuxgetTuxBuffer command returns the actual address of a Tuxedo
buffer given a buffer name. Once you have the pointer to the buffer, you can use native
Tuxedo commands such as Fadd, FChg, etc. for FML or memcpy for CARRAY-type data
to input data into or retrieve data from a Tuxedo buffer.

VIEW and VIEW32 buffers are accessed using compiler macros automatically generated
in QALoad�s Convert facility. For example, a view called testVw16 is accessed using the
macro VW_testVw16(buffer _index) as shown in the sample below.

/* Allocate buffer space for testVw16 in buffer #2, */

/* and set values. */

Do_Tuxtpalloc(Buf2, "VIEW:testVw16", sizeof(struct testVw16)

);

VW_testVw16(Buf2)->tv16intneg = -1234;

Encoding String Data in Scripts
You may need to include data in the script so it can get placed into a buffer. A technique
called string encoding makes non-printable characters readable in the script. Note that
you can use encoded strings for data that QALoad�s Convert facility places in the script
or for data you place in the script.

The following QALoad commands use encoded strings as parameters:

• Do_TuxFMLData
• Do_Tuxcarray
• Do_Tuxxoctet
• Do_Tuxstring
• Do_Tuxtpinit
• Do_TuxSetViewData
• Do_TuxBuildBuffer
• Do_TuxAppendBuffer

A string is encoded using the following rules:

• all alpha and numeric characters (0-9, a-z, and A-Z) are preserved intact

Note

If you manipulate an encoded string, remember that all non-printable and some special
characters occupy three bytes in the array. Make sure you take this into account during
character substitution. Note that the EncAcctID variable, in the example above, is larger
than the AcctID variable.

Advanced Scripting Techniques for Tuxedo 6-5
• all non-alpha numeric characters within the range of ASCII 32 (space) to ASCII 125
(}) are preserved intact, except the following:

� backslash (\)

� ampersand (&)

� double quote (" ")

� pipe (|)

• null characters are encoded as a tilde (~)

• all other characters are encoded as a three-byte sequence of an ampersand (&) fol-
lowed by two lowercase hex digits representing the ASCII value of the character.

The following example illustrates encoding:

Original String: 0 1 2 A B C D a b c - & | (null)

Encoded String: 0 1 2 A B C D a b c - &26&7c~

6-6 QALoad Script Development Guide

 7-1
Chapter 7. Advanced Scripting Techniques for
Winsock

After you have converted your capture file into a script, you may want to modify it to
achieve a particular testing goal. This chapter describes the following scripting
techniques to assist you in modifying your script.

• Understanding Data Representation in the Script � Describes how QALoad
represents the data that was captured within the Winsock functions.

• Handling Winsock Application Data Flow � Describes how to modify the script
to include variables rather than hard-coded values.

• Modifying QALoad�s Functions to Incorporate Dynamic Data � Describes how
to substitute octal data in a Winsock script from a datapool file. Also describes how
to modify a DO_WSK_Send() command.

• Saving Server Replies � Describes how to save a received buffer by using the
DO_WSK_Recv() command instead of the DO_WSK_Expect() command.

• Parsing Server Replies for Values � Describes how to use the SkipExpr(),
ScanExpr(), ScanSkip(), and ScanString() commands to parse a value from a reply.

Understanding Data Representation in the Script
This section describes how data that is sent and received is displayed in a Winsock script.
Use this section as a reference when you examine a script.

During the conversion process, QALoad determines how to represent each character in
the script. This conversion process uses the following rules:

1. The character is compared to the �space� character in the ASCII table, which has a
decimal value of 32. If the character�s value is less than 32, the following steps are
taken:

a. If the character is �\r�, �\n�, �\t�, or �\f�, it is represented in the script as a nor-
mal C escape character.

7-2 QALoad Script Development Guide
b. If the character is either �^\� or �^^�, it is represented in the script as an octal
character. For example, the values would be �\034� and �\036�, respectively.

c. If the character�s value is less than 32 and it does not meet the descriptions in a)
and b) above, it is represented in the script as a control character. For example,
if the character is a null character, it is represented in the script as �^@�.

2. If the character�s decimal value is between 32 (the �space� character) and 126 (~), it
displays in the script as a standard readable ASCII character, with the following
exceptions:

� If the character is �\�, which has a decimal value of 92, it is represented as �\\�
in the script.

� If the character is ���, which has a decimal value of 34, it is represented as �\��
in the script.

� If the character is �^�, which has a decimal value of 94, it is represented as �^^�
in the script.

3. If the character has a decimal value of 127, which corresponds to Delete (DEL), it is
represented as �^� in the script.

The following table summarizes the results of rules 1-3.

Table 7-1. Character Encoding Table

Code Octal Decimal Char

^@ 000 0 NUL

^A 001 1 SOH

^B 002 2 STX

^C 003 3 ETX

^D 004 4 EOT

^E 005 5 ENQ

^F 006 6 ACK

^G 007 7 BEL

^H 010 8 BS

\t 011 9 HT

\n 012 10 LF

^K 013 11 VT

Advanced Scripting Techniques for Winsock 7-3
4. If the character is not included in the groups defined in steps 1-3, it is represented as
an octal character in the script. These characters are often referred to as high ASCII

\f 014 12 FF

\r 015 13 CR

^N 016 14 SO

^O 017 15 SI

^P 020 16 SLE

^Q 021 17 SC1

^R 022 18 DC2

^S 023 19 DC3

^T 024 20 DC4

^U 025 21 NAK

^V 026 22 SYN

^W 027 23 ETB

^X 030 24 CAN

^Y 031 25 EM

^Z 032 26 SIB

^[033 27 ESC

\034 034 28 FS

^] 035 29 GS

^_ 037 31 US

040 32 SP

\� 042 34 �

\\ 134 92 \

^^ 136 94 ^

^? 177 127 DEL

Table 7-1. Character Encoding Table

Code Octal Decimal Char

7-4 QALoad Script Development Guide
characters (those with a decimal value greater than 128), and are represented in the
script as �\OOO�, where OOO is the octal value for the ASCII character.

Handling Winsock Application Data Flow
Frequently, server programs return unique values (for example, a session ID) that vary
with each execution of the script and may be vital to the success of subsequent transac-
tions. To create scripts that include these values, you need to substitute the hardcoded
values returned by the server with variables. The following original and modified code
examples demonstrate this technique.

Original Code
In this script, the server sends a session ID in response to a connection by the client. This
session ID is required to successfully complete subsequent transactions.

/*
 * wsk-AdvancedTechniques_original.c
 *
 * This script contains support for the following
 * middlewares:
 * - Winsock
 */

/* Converted using the following options:
 * General:
 * Line Split : 80 characters
 * Sleep Seconds : 1
 * Auto Checkpoints : Yes
 */

#define SCRIPT_VER 0x00000005UL

#include <stdio.h>

#include "smacro.h"

#include "do_wsk.h"

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

/* Declare Variables */

SET_ABORT_FUNCTION(abort_function);

Advanced Scripting Techniques for Winsock 7-5
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each
expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

///

// The session id returned by the server is

// unique to each connection

///

* 21bytes: SessionID=jrt90847\r\n */

DO_WSK_Expect(S1, "\n");

//

// This unique id is then used for subsequent

// requests

//

/* 34 bytes */

DO_WSK_Send(S1,
"SessionID=jrt90847\r\n:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");

DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);

}

void abort_function(PLAYER_INFO *s_info)

{

RR__printf("Virtual User %i:ABORTED.", S_task_id);

EXIT();

}

7-6 QALoad Script Development Guide
Modified Code
If the original script (wsk-AdvancedTechniques_original.c shown above) is replayed, it
will fail because the session ID will not be unique; rather, it will be the session ID that is
coded in the script. To use the unique session ID received from the server, variable substi-
tution must be used.

/*
 * wsk-AdvancedTechniques_modified.c
 *
 * This script contains support for the following
* middlewares:
 * - Winsock
 */

/* Converted using the following options:
 * General:
 * Line Split : 80 characters
 * Sleep Seconds : 1
 * Auto Checkpoints : Yes
 */

#define SCRIPT_VER 0x00000005UL

#include <stdio.h>
#include "smacro.h"

#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL

#define NULL 0

#endif

int rhobot_script(s_info)

PLAYER_INFO *s_info;

{

/* Declare Variables */

char Buffer[64];

char SendBuffer[64];

int nBytesReceived = 0;

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each
expected pattern */

Advanced Scripting Techniques for Winsock 7-7
SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//

// The reply from the server is read into

// the Buffer variable. We will then have

// the unique Session ID for this connection.

// Also need to null-terminate the buffer

// after receiving.

//

DO_WSK_Recv(S1, Buffer, 64, 0, &nBytesReceived);

Buffer[nBytesRecieved] = '\0';

/* 21bytes: SessionID=jrt90847\r\n */

//DO_WSK_Expect(S1, "\n");

//

// Finally, substitute the Session ID received from

// the server with the one coded in the script.

//

sprintf(SendBuffer, "%s:^B^@^@^@^B^@^@^@^A^@^@^@",
Buffer);

DO_WSK_Send(S1, SendBuffer);

/* 34 bytes */

//DO_WSK_Send(S1,
"SessionID=jrt90847:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");

DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);

}

void abort_function(PLAYER_INFO *s_info)

{

RR__printf("Virtual User %i:ABORTED.", S_task_id);

EXIT();

}

7-8 QALoad Script Development Guide
Modifying QALoad�s Functions to Incorporate Dynamic
Data

If you need to use dynamic data with your scripts, you can modify some QALoad
functions to handle dynamic data. The two scenarios below describe specific situations in
which you might need dynamic data, and how to achieve that in the script.

Scenario 1:

One method of accessing dynamic data is by using a datapool file. However, you might
need to read in data that is not in the format of an ASCII string, which is required for
datapool files.

For example, if the string �\121\101\114\157\141\144� is read in from a datapool file with
one of the datapool functions, the output would be �\\121\\101\\114\\157\\141\\144�,
which is incorrect. To work around this problem, you can use the OctalToChar()
command to convert any octal sequences into their binary representation. The following
examples illustrates the use of the OctalToChar() command for this purpose:

Example
In this example, the string �\121\101\114\157\141\144� is read in from a central
datapool file and converted to its binary representation.

/* Declare variables */
char temp[40];

...

BEGIN_TRANSACTION();
GET_DATA();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT)
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
strcpy(temp,VARDATA(1));
OctalToChar(temp); //used to convert octal strings
 //to their binary format
DO_WSK_Send(S1,temp);
//DO_WSK_Send(S1,”\121\101\122\165\156”);
DO_WSK_Closesocket(S1);

The DO_WSK_Send() command above sends the string
�121\101\114\157\141\144� to the server. This string is the octal representation of
the the string �QALoad�.

Advanced Scripting Techniques for Winsock 7-9
Scenario 2:

You might find that your capture data is not the same data you need for running a test. For
example, you might need to change the value of a user ID during replay. One method of
changing the value is to change the value through the DO_WSK_Send() command, but
that results in the value being static only within the function. To substitute a different
value each time, create a dynamic variable, such as a datapool value, to replace the user
ID.

Example In this example, the script includes a DO_WSK_Send() command that sends
�name=Jim� to the server as the user ID. Then a variable is used to change the name
to �Mark�.

/* Declare variables */
char buffer[65];
char sendbuffer[65];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1,ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);
//original DO_WSK_Send(S1,"name=Jim");

strcpy(buffer, "Mark");
sprintf(sendbuffer, "name=%s", buffer);
DO_WSK_Send(S1, sendbuffer);

/* 2 bytes: ok */
DO_WSK_Expect(S1,"ok");
DO_WSK_Closesocket(S1);

The buffer before the DO_WSK_Send() command is modified and a new buffer is
passed as the second parameter of the DO_WSK_Send() command. This effectively
sends �name=Mark� to the server instead of �name=Jim�.

Saving Server Replies
There are two methods for saving the entire reply that a server sends back. The following
paragraphs describe each method.

Using the Response() and ResponseLength() Commands

The Response() command can be called directly after the DO_WSK_Expect() command.
It returns a pointer to the data that has been received by DO_WSK_Expect(). To also
receive the length of the replay, call the ResponseLength() command, which returns the

7-10 QALoad Script Development Guide
number of characters that were received. The following example uses the Response() and
ResponseLength() commands.

Example In this example, variables are declared to store the results from the two functions.
Both functions are also used to save the buffer that is received within the
DO_WSK_Expect() command.

/* Declare Variables */
int x = 0;
char *temp;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */
DO_WSK_Expect(S1, "d");

// Used to store the data that was received by the
// DO_WSK_Expect

temp = Response();

// Used to get the size of the response that was received
// so far

x = ResponseLength();

/*The line below will print the length of the response and
the actual response*/
RR__printf(“length = %d, and response= %s",x, temp);

DO_WSK_Closesocket(S1);

The message �length=21 response=You are now connected� displays in the Player
buffer window.

Using the DO_WSK_Recv() Command

To save a response based on its size instead of a unique character string that is used within
the DO_WSK_Expect() command, use the DO_WSK_Recv() command. This command
enables you to specify how much data to receive and where to store the data.

You can also use the DO_WSK_Recv() command to store the reply that is returned from
the server. This strategy is useful when you need to retrieve the buffer that is returned
from the server, even though the returned data is too dynamic and causes the
DO_WSK_Expect() command to fail every time.

Advanced Scripting Techniques for Winsock 7-11
Example In this example, the DO_WSK_Recv() command is used to save a server reply
based on size. Two variables are declared to store the results from the
DO_WSK_Recv() command.

/* Declare Variables */
int size = 0;
char temp[45];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */
memset(temp,'\0',45);

DO_WSK_Recv(S1,temp,45,0,&size);
RR__printf("size=%d string=%s",size,temp);
DO_WSK_Closesocket(S1);

The message �size=21 string=You are now connected� displays in the Player buffer
window.

Parsing Server Replies for Values
To parse a buffer for a particular value, you can write a parsing routine that searches the
entire buffer for the value. However, you can also use one of QALoad�s Winsock helper
commands. The following scenarios describe two situations in which you could use the
Winsock commands to solve a parsing problem.

Scenario 1:

To find a string in a server reply, you can use the SkipExpr() and ScanExpr() commands.
SkipExpr() searches for the first occurrence of a string in the internal buffer that contains
the response that was received within the DO_WSK_Expect() command. Then, use the
ScanExpr() command to search for another string. ScanExpr() saves the buffer from the
first occurrence of the string that was used with SkipExpr() up to and including the string
used within ScanExpr(). The first parameter of ScanExpr() is a UNIX-style regular
expression. The following table lists the most common expressions.

Note

Note: If you use this method as a substitute for the DO_WSK_Expect() command, ensure
that you receive the correct information prior to calling the next function in the script.

7-12 QALoad Script Development Guide
Example In this example, the buffer contains �sessionid=1234567890abc�, and the goal is to
retrieve everything after the �=�, up to and including �abc�.

/* Declare Variables */
char temp[35];
int size = 0;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 23 bytes: sessionid=1234567890abc */
DO_WSK_Expect(S1, "c");

SkipExpr("sessionid=");

size=ScanExpr(".*abc" , temp);

RR__printf("length = %d string = %s", size, temp);

DO_WSK_Closesocket(S1);

The message �length=13 string=1234567890abc� displays in the Player buffer win-
dow.

Scenario 2:

You may have data returned from the server that is too dynamic, that is, you are not able
to base parsing on actual characters. The solution is to base the parsing on character
positions instead.

For example, to save the characters 20 through 25, you could use the ScanSkip() and
ScanString() commands. ScanSkip() skips a specified number of characters in the interanl
buffer that stores the response that was received within the DO_WSK_Expect()
command. ScanString() scans a number of characters from the current position within the
buffer into a character string.

Table 7-2. Common UNIX-style regular expressions

Character Meaning

. Matches the end of a string.

* Matches any number of characters.

? Matches any one character.

Advanced Scripting Techniques for Winsock 7-13
Example In this example, a buffer containing �xxx123456789yyy� is returned from the
server. The value between �xxx� and �yyy� is returned.

/* Declare Variables */
char temp[15];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 16 bytes: xxx0123456789yyy */
memset(temp,'\0',15);

DO_WSK_Expect(S1, "yyy");

ScanSkip(3);
ScanString(10,temp);
RR__printf("string=%s",temp);

DO_WSK_Closesocket(S1);

The message �string=0123456789� displays in the Player buffer window.

7-14 QALoad Script Development Guide

 8-1
Chapter 8. Advanced Scripting Techniques for SQL
Server

After you convert your capture file into a script, you may want to modify it to process
variable data within SQL Server calls. This chapter describes scripting techniques to
assist you in modifying the script accordingly.

Variablizing SQL Server Scripts
This section describes the following techniques for variablizing SQL Server scripts:

• �Capturing a select Value from a Stored Procedure� on page 8-1

• �Using a Retrieved Value as a Parameter to a Stored Procedure� on page 8-3

• �Capturing an OUTPUT Parameter Value from a Stored Procedure Call� on page 8-
3.

Capturing a select Value from a Stored Procedure
In SQL Server, the select statement can be used to retrieve a value from the stored
procedure. These values can be retrieved in a QALoad script by adding the
addResultVar() and getResultVar() commands into the script. The
addResultVar() command will need to be added before the DO_getResults()
command for the stored procedure call. After the DO_getResults() call, a getRe-
sultVar() will return the value as a string for the parameter named in the
addResultVar() call.

In the following example, we retrieve a selected number value from a stored procedure
as a string and then convert it into an integer.

Example SQL Server Stored Procedure with select value
create procedure inc_test_sp

(

8-2 QALoad Script Development Guide
@first_param int

)

as

begin

select second_param = @first_param + 1

end

Example QALoad Script Code
strcpy(sql_statement, /* >> 1 << */

"execute inc_test_sp @sample_param ='{01}' ");

DO_substr(sql_statement, 1, "100");

BEGIN_CHECKPOINT(); /* #1: Stored Procedure */

DO_dbcmd(0, sql_statement);
DO_dbsqlexec(0);

while (DO_dbGetResults(0))

;

END_CHECKPOINT(25); /* #25: Stored Procedure */

Step 1: Add the
necessary
variable decla-
rations

To declare the following variables at the beginning of the QALoad script, locate the
following lines in the script:

int rhobot_script(s_info)

PLAYER_INFO *s_info;

{

Then add the bolded lines below after them, as shown:

int rhobot_script(s_info)

PLAYER_INFO *s_info;

{

char szSecondParam[20]; /* Assume number length < 20!! */

long iSecondParam;

Step 2: Alter the
script code that
calls the stored
procedure

Locate the code that calls the stored procedure and modify it to extract the return value
by adding the bolded lines as shown in the following example.

strcpy(sql_statement, /* >> 1 << */
"execute inc_test_sp @sample_param ='{01}' ");

DO_substr(sql_statement, 1, "100");

BEGIN_CHECKPOINT(); /* #1: Stored Procedure */

DO_dbcmd(0, sql_statement);
DO_dbsqlexec(0);

DO_addResultVar("second_param"); /* Add THIS line HERE !!!*/

Advanced Scripting Techniques for SQL Server 8-3
while (DO_dbGetResults(0))

;

END_CHECKPOINT(25); /* #1: Stored Procedure */

strcpy(szSecondParam, DO_getResultVar("second_param"));
iOutputReqID = atoi(szSecondParam);

RR__printf("Second Param (string): %s", szSecondParam);
RR__printf("Second Param (int): %d", iSecondParam);

Using a Retrieved Value as a Parameter to a Stored Procedure
Often, values retrieved from a stored procedure are used as input parameters to subse-
quent stored procedures while recording a SQL Server session. You can parameterize the
stored procedure calls in your QALoad script as shown in the following example.

Original QALoad Script Code
strcpy(sql_statement,/* >> 2 << */

"execute use_inc_value_sp @inc_value ={01}");

DO_substr(sql_statement, 1, "101");

BEGIN_CHECKPOINT(); /* #2: Stored Procedure */
DO_dbcmd(0, sql_statement);
DO_dbsqlexec(0);

while (DO_dbGetResults(0))

;

QALoad Script Code Modified to Use String Value
strcpy(sql_statement, /* >> 2 << */

"execute use_inc_value_sp @inc_value ={01}");

/* Note that szSecondParam was declared and received the
 value in the steps in Part 1 */

DO_substr(sql_statement, 1, szSecondParam);

BEGIN_CHECKPOINT(); /* #2: Stored Procedure */

DO_dbcmd(0, sql_statement);

DO_dbsqlexec(0);

while (DO_dbGetResults(0))

;

Capturing an OUTPUT Parameter Value from a Stored Procedure
Call

In SQL Server, the OUTPUT parameter can return a value from a stored procedure. These
values can be retrieved in a QALoad script by adding the addResultVar() and getRe-

8-4 QALoad Script Development Guide
sultVar() commands into the script. The addResultVar() command will need to be
added before the DO_getResults() command for the stored procedure call. After the
DO_getResults() call, a getResultVar() will return the value as a string for the
parameter named in the addResultVar() call.

In the following example, we retrieve an OUTPUT parameter number value from a stored
procedure as a string and then convert it into an integer.

Example SQL Server Stored Procedure with OUTPUT Parameter
create procedure output_ret_inc_test_sp

(

@input_param int,

@output_param int OUTPUT

)

as

begin

select @output_param = @input_param + 1

end

Original QALoad Script Code
strcpy(sql_statement, /* >> 1 << */

"execute output_ret_inc_test_sp @input_param ='{01}' ");

DO_substr(sql_statement, 1, "100");

BEGIN_CHECKPOINT(); /* #1: Stored Procedure */

DO_dbcmd(0, sql_statement);
DO_dbsqlexec(0);

while (DO_dbGetResults(0))

;

END_CHECKPOINT(25); /* #25: Stored Procedure */

Step 1: Add the
necessary
variable decla-
rations

To declare the following variables at the beginning of the QALoad script, locate the
following lines in the script:

int rhobot_script(s_info)

PLAYER_INFO *s_info;

{

Then add the bolded lines below after them, as shown:

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{

char szOutputParam[20]; /* Assume number length < 20!! */

Advanced Scripting Techniques for SQL Server 8-5
long iOutputParam;

Step 2: Alter the
script code that
calls the stored
procedure

Locate the code that calls the stored procedure and modify it to extract the return value
by adding the bolded lines as shown in the following example.

strcpy(sql_statement, /* >> 1 << */
"execute output_ret_inc_test_sp @input_param ='{01}' ");

DO_substr(sql_statement, 1, "100");

BEGIN_CHECKPOINT(); /* #1: Stored Procedure */

DO_dbcmd(0, sql_statement);
DO_dbsqlexec(0);

DO_addResultVar("@output_param"); /* Add THIS line HERE! */

while (DO_dbGetResults(0))

;

END_CHECKPOINT(25); /* #1: Stored Procedure */

strcpy(szOutputParam, DO_getResultVar("@output_param"));
iOutputReqID = atoi(szOutputParam);

RR__printf("Output Param (string): %s", szOutputParam);
RR__printf("Output Param (int): %d", iOutputParam);

8-6 QALoad Script Development Guide

 9-1
Chapter 9. Advanced Scripting Techniques for SAP
After you convert your capture file into a script, you may want to modify it to achieve
various performance testing goals. This chapter describes the following scripting
techniques to assist you in modifying the script:

• Required Commands � Describes commands that are required in an SAP script.

• Error Handling and Reporting � Describes how the SAP middleware handles
error handling and reporting.

• Handling Multiple Logons � Describes how to handle multiple user logons.

• Checking the SAP Status Bar � Describes how to set up tests that compare
against the messages that appear in the SAP status bar.

• Object Life Span � Describes the life span of objects in the SAP environment.

Required Commands
Certain commands must be present in an SAP script for it to run successfully. These
commands are created automatically during the conversion process. Most of the
commands exist before the BEGIN_TRANSACTION statement. The required
commands include:

SET_ABORT_FUNCTION(abort function);

DEFINE_TRANS_TYPE(“capture.cpp”);

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info, “ERROR initializing COM”);

SAPGuiSetCheckScreenWildcard(‘*’);

SYNCHRONIZE();

9-2 QALoad Script Development Guide
Error Handling and Reporting
A try/catch block is automatically generated for the commands between the
BEGIN_TRANSACTION and END_TRANSACTION statements. This construct
provides error handling and reporting from the script.

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");

 SAPGuiVerCheckStr("6204.119.32");

 //Set SapApplication = CreateObject(
 //"Sapgui.ScripingCtrl.1")
 //SapApplication.OpenConnection ("qacsapdb")
 //Set Session = SapApplication.Children(0).Children(0)

 DO_SLEEP(3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,83,24,false);

 DO_SLEEP(6);

 SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
 SAPGuiCmd1(GuiTextField,PutText,"qaload1");

 SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
 SAPGuiCmd1Pwd(GuiPasswordField,
 PutText,"~encr~1211616261");
 SAPGuiCmd0(GuiPasswordField,SetFocus);
 SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd1(GuiMainWindow,SendVKey,0);
 SAPGuiCheckScreen("S000","SAPMSYST","SAP");

 ...
 DO_SLEEP(10);

 SAPGuiPropIdStr("wnd[0]/usr/cntlIMAGE_CONTAINER/
 shellcont/shell/shellcont[0]/shell");
 SAPGuiCmd1(GuiCtrlTree, ExpandNode, "0000000003");
 SAPGuiCmd1(GuiCtrlTree, PutSelectedNode, "0000000004");
 SAPGuiCmd1(GuiCtrlTree, PutTopNode, "Favo");
 SAPGuiCmd1(GuiCtrlTree, DoubleClickNode, "0000000004");
 SAPGuiCheckScreen("SESSION_MANAGER",
 "SAPLSMTR_NAVIGATION",
 "SAP Easy Access");

 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

Advanced Scripting Techniques for SAP 9-3
catch (_com_error e){
 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for
 VU(%i)\n",e.Error(), (char *)e.Description(),
 S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

To include the log on within the transaction loop, move the SAPGuiConnect call inside
the try block as shown in the following example:

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)

 RR__FailedMsg(s_info,"ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");

 SAPGuiVerCheckStr("6204.119.32");

 ...

 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");

 SAPGuiCmd0(GuiButton,Press);

 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){

 char buffer[1024];

 sprintf(buffer," EXCEPTION 0x%x %s for
VU(%i)\n",e.Error(), (char *)e.Description(), S_task_id);

 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

9-4 QALoad Script Development Guide
To include the log on outside the transaction loop, move the log off section so that it
follows the END_TRANSACTION statement. However, ensure that the recording
within the transaction loop begins and ends in the same location in the menu system. For
example:

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)

 RR__FailedMsg(s_info,"ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

SAPGuiConnect(s_info,"qacsapdb2");

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");

SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");

SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~1211616261");

SAPGuiCmd0(GuiPasswordField,SetFocus);

SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[0]");

SAPGuiCmd1(GuiMainWindow,SendVKey,0);

SAPGuiCheckScreen("S000","SAPMSYST","SAP");

BEGIN_TRANSACTION();

try{

 SAPGuiVerCheckStr("6204.119.32");

 ...

} // end try

catch (_com_error e){

 char buffer[1024];

Advanced Scripting Techniques for SAP 9-5
 sprintf(buffer," EXCEPTION 0x%x %s for
 VU(%i)\n",e.Error(),
 (char *)e.Description(),
 S_task_id);

 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");

SAPGuiCmd0(GuiButton,Press);

SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

The following example adds custom counters to obtain and save the SAP Server infor-
mation that is available through the SAP Gui Scripting API.

Notice that SAPGuiSessionInfo is called before logging off , because the data is not
available after logging off.

int id1, id2, id3, id4;

long lRoundTrips,lFlushes;

// "Counter Group", "Counter Name", "Counter Units
// (Optional)", Data Type, Counter Type.

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative
RoundTrips", 0, DATA_LONG, COUNTER_CUMULATIVE);

id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative
Flushes", 0, DATA_LONG, COUNTER_CUMULATIVE);

id3 = DEFINE_COUNTER("Instance Group", "Instance RoundTrips",
0, DATA_LONG, COUNTER_INSTANCE);

id4 = DEFINE_COUNTER("Instance Group", "Instance Flushes", 0,
DATA_LONG, COUNTER_INSTANCE);

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");

 ...

 SAPGuiSessionInfo(GetRoundTrips,lRoundTrips);

 SAPGuiSessionInfo(GetFlushes,lFlushes);

 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");

9-6 QALoad Script Development Guide
 SAPGuiCmd0(GuiButton,Press);

 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSPO1",
 "Log Off");

 COUNTER_VALUE(id1,lRoundTrips);

 COUNTER_VALUE(id2,lFlushes);

 COUNTER_VALUE(id3,lRoundTrips);

 COUNTER_VALUE(id4,lFlushes);

} // end try

catch (_com_error e){

 char buffer[1024];

 sprintf(buffer,"SAP: EXCEPTION 0x%x %s for
 VU(%i)\n",e.Error(), (char *)e.Description(),
 S_task_id);

 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

Handling Multiple Logons
You may need to modify your script to handle multiple logins when the recording
scenario differs from the run-time scenario. For example, if when you record, no users are
logged on to the SAP environment and when you run the script, users are already logged
on, the script may fail. To work around this issue, you can use the
SAPGuiPropIdStrExists and SAPGuiPropIdStrExistsEnd commands to handle
either scenario. This technique works by checking for the multiple logon dialog box from
SAP and selecting the Continue option.

The following example demonstrates the usage of the SAPGuiPropIdStrExists and
SAPGuiPropIdStrExistsEnd commands to handle multiple logons:

...

SAPGuiCheckScreen("S000","SAPMSYST","SAP");

SAPGuiPropIdStrExists("wnd[1]/usr/radMULTI_LOGON_OPT2");

DO_SLEEP(24);

SAPGuiCmd0(GuiRadioButton,Select);
SAPGuiCmd0(GuiRadioButton,SetFocus);

SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");
SAPGuiCmd0(GuiButton,Press);

Advanced Scripting Techniques for SAP 9-7
SAPGuiCheckScreen("S000","SAPMSYST","License Information for
Multiple Logon");

SAPGuiPropIdStrExistsEnd("wnd[1]/usr/radMULTI_LOGON_OPT2");

...

Checking the SAP Status Bar
The SAP status bar displays error and status messages, as shown in the following figure.

You can use the SAPGuiCheckStatusbar command to test for certain status responses
in the SAP environment.

The SAPGuiCheckStatusbar command is used in the following script example:

...
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");

SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,94,24,false);

SAP status bar

9-8 QALoad Script Development Guide
//SAPGuiCheckStatusbar returns TRUE if the message is found
//and FALSE if not found
BOOL bRetSts = SAPGuiCheckStatusbar("wnd[0]/sbar","E: Make an
entry in all required fields");

if (bRetSts)
 RR__printf(" True\n");

else
 RR__printf(" False\n");
...

Object Life Span
Whenever a script is run, all objects on the SAP GUI window are deleted and re-created.
These objects, which are created in the SAP environment and can disappear without user
interaction, can cause script failure if the script references the objects after they have
disappeared.

For more troubleshooting information, refer to SAP�s publication titled �SAP GUI
Scripting API for the Windows and Java Platforms�.

 10-1
Chapter 10. Advanced Scripting Techniques for
Citrix

After you convert your capture file into a script, you may want to modify it to achieve
various performance testing goals. This chapter describes the following scripting
techniques to assist you in modifying the script:

• Handling Dynamic Windows � Describes how to modify the script to deal with
dynamic window creation.

• Using the WaitForScreenUpdate Command � Describes how to modify the
script to handle mouse click/window synchronization issues.

• Handling Dynamic Window Titles � Describes techniques to detect match pat-
terns for windows with dynamic title names, how to create a match string using
wildcards and substrings, and how to use the SetWindowMatchName command to
set the match pattern for the window prior to the WaitForWindowCreate com-
mand in the script.

• Handling Dynamic Windows That Require User Action � Describes how to
modify the script to handle windows that intermittently appear but, on occasions
where the window appears, requires some user action, such as a mouse click.

• Moving the Citrix Connect and Disconnect Outside the Transaction Loop �
Describes the steps required during recording and script development to allow for
Citrix logon and logoff actions to be moved outside the script transaction loop.

• Handling Citrix Server Farms � Describes how to modify the script to connect
to a Citrix server farm.

Handling Dynamic Windows
During conversion, WaitForWindowCreate calls are added to the script for each named
window creation event. During replay, some dynamic windows that were in the capture
may not appear, which causes the script to fail because a wait point times out. To avoid

10-2 QALoad Script Development Guide
script failure in this circumstance, comment out the WaitForWindowCreate commands
that may be referencing dynamic windows.

Using the WaitForScreenUpdate Command
In some situations, a window may vary in how long it takes to refresh on the screen. For
example, the Windows Start menu is an unnamed window that can take varying amounts
of time to appear, depending on system resource usage. To prevent playback problems in
which a mouse click does not synchronize with its intended window, insert the
WaitForScreenUpdate command in the script after the action that causes the window
to appear. The parameters for the WaitForScreenUpdate command correspond to the
X and Y coordinates and the width and height of the window. This command ensures that
the window has enough time to display before the mouse click.

For more information about the WaitForScreenUpdate command, refer to the QALoad
online help.

Handling Dynamic Window Titles
Some applications create windows whose titles vary depending on the state of the
window. For example, Microsoft Word creates a title based on the default document
name at the time of the window creation. During replay, this dynamic title can differ from
the window title that was recorded, and the window is not recognized. If this occurs, try
the following steps to modify the script:

1. Ensure that the Enable Wildcard Title Match check box is selected in the Cit-
rix conversion options prior to converting the recording. In the Window Verifi-
cation group of the Citrix Convert Options dialog box, ensure that the Enable
Wildcard Title Match check box is selected. This check box is selected by default.
If you are working with a previously converted script, ensure that a SetEna-
bleWildcardMatching command exists in the script prior to the
BEGIN_TRANSACTION command and that the parameter is set to TRUE.

2. Verify whether there is an issue with dynamic window titles. When a script fails
on validation because the run time window title is different than the expected
window title from the recording, it is likely that you are dealing with a dynamic title
issue that can be handled by this scripting technique. In this case, the script fails on
the WaitForWindowCreate call.

3. Identify a match �pattern� for the dynamic window title. Note the error message
that is returned during validation (or replay). The message indicates the expected
window title versus the window title from script playback. Examine the differences
in the window titles to create a �match pattern� that recognizes the window title,
while ignoring other windows. A match pattern can be a simple substring of the

Advanced Scripting Techniques for Citrix 10-3
window title or a pattern string using wildcard characters such as ? (to match any
single character) or * (to match any number of characters). The examples below
illustrate the different match patterns.

4. Insert a SetWindowMatchName command prior to the WaitForWindowCreate
call for the dynamic window. When adding the SetWindowMatchName
command, ensure that the first parameter contains the correct window object and the
second parameter contains the match string in double-quotes.

5. Validate the script to ensure the WaitForWindowCreate command recognizes
the dynamic window name. Run the revised script through validation to ensure
that the script succeeds. If the script does not validate successfully, go to step 3 to
determine if the match pattern is correct.

Example 1: Using a Substring Match

In this example, the Microsoft Word application generates a dynamic title when the
script is replayed. The dynamic name is a concatenation of the default document
that Word creates at application startup with the name of the application. The script
is altered to reflect the fact that the string �Microsoft Word� is always part of the
window title:

// Window CWI_13 ("Microsoft Word") created
SetWindowMatchTitle(CWI_13, “Microsoft Word”);
WaitForWindowCreate(CWI_13);

Example 2: Using a Wildcard Match with the * Character

In this example, the SampleClientApp application generates a dynamic title when
the script is replayed. The dynamic name is the name of the application followed by
the name of the user, beginning with the word �User�. The asterisk (*) wildcard is
substituted for a given username, reflecting the pattern of �SampleClientApp �
User:� as part of the window title followed by an arbitrary user name:

// Window CWI_13 ("SampleClientApp – User: John") created
SetWindowMatchTitle(CWI_13,“SampleClientApp – User: *”);
WaitForWindowCreate(CWI_13);

Example 3: Using a Wildcard Match with the ? Character

In this example, the RandomValue application generates a dynamic title when the
script is replayed. The dynamic name is the application followed by a random single
digit. The question mark character is substituted for the single digit to reflect the
pattern that begins �RandomValue: �, followed by single digit:

10-4 QALoad Script Development Guide
// Window CWI_13 ("RandomValue: 0") created
SetWindowMatchTitle(CWI_13, “Sample Application: ?”);
WaitForWindowCreate(CWI_13);

Handling Dynamic Windows That Require User Action
Some windows that require user action before normal script processing can proceed may
appear intermittently during replay. One example commonly encountered with Citrix is
the ICA Seamless Host Agent window. This window, if it appears, requires user action or
the script may fail. To work around this issue, follow these steps:

1. Capture a session in which the dynamic window appears and the user performs the
action to dismiss the window.

This may require multiple attempts to capture the window. Once this is captured in a
recording, save the script as a temporary script.

2. If the window did not appear in the primary script, extract the code snippet from the
temporary script that acts on the dynamic window and insert it into the real script.

The code usually consists of a Point command and a Click command for this
window. Insert the commands after the WaitForWindowCreate command for the
dynamic window. In addition, extract and insert the Citrix window information
object constructor call and delete call to the relevant parts of the script, changing the
object name to avoid conflicting with existing window objects. Ensure that the
additional code is not inserted between a Point command and a Click command
in the primary script.

3. Add a special SetWindowMatchTitle command immediately before the
WaitForWindowCreate command.

The first parameter of the SetWindowMatchTitle command should be the correct
window object. The second parameter contains a special wildcard match �*� that
enables the Click command to accept any window title, which ensures that even if
the matching window does not appear, the command still executes successfully.

4. If the window appears in the primary script, comment out the WaitForWin-
dowCreate command for the dynamic window.

Because the window itself may not appear, the WaitForWindowCreate command
should be commented out.

5. Validate the script. If the validation is not successful, ensure that steps 2-4 were
performed correctly.

In the following example�s scenario, the ICA Seamless Window Agent window does not
appear in the primary script, but appears intermittently when the primary script is
replayed, causing those replay sessions to fail. A second Citrix script, which includes the

Advanced Scripting Techniques for Citrix 10-5
window appearance, is recorded and the Point and Click commands are extracted from
this script and inserted into the primary script, with the window object changed to match
the object in the primary script. In addition, the Citrix window object constructor call and
delete call are added in the appropriate places in the script, and the Click command is
changed to refer to this object. In the following example, the text in bold represents code
that was manually inserted into the location in the primary script where the window
appears in the secondary script.

CtxWI *CWI_99 = new CtxWI(0x10052, "ICA Seamless Host Agent",
0, 0, 391, 224);
...
SetWindowMatchTitle(CWI_99, “*”);
Point(190, 203);
Click(CWI_99, 0, L_BUTTON, NONE);
Point(300, 400);
...

delete CWI_99; // "ICA Seamless Host Agent"

Moving the Citrix Connect and Disconnect Outside the
Transaction Loop

If your load testing requirements for Citrix include creating extended logon sessions, in
which the user remains connected to the Citrix server between transactions, review the
following tips for recording and script development.

Recording

Perform the following steps during the recording process in order to prepare for moving
the connect and disconnect actions outside the transaction loop:

1. Insert a comment such as �Logged in to Citrix� after the Citrix logon but before any
windows have been opened.

2. Ensure that all application windows are closed before disconnecting from the Citrix
session.

3. Insert a command such as �Ready to log off Citrix� before the Citrix logoff
sequence is initiated.

Ensure that the first comment is added after the user has logged on and closed all login-
related dialog boxes, but before any applications are started. Similarly, the second
comment must be placed after all applications have been closed, but before the user logs
off.

10-6 QALoad Script Development Guide
Scripting

Comment out the BEGIN_TRANSACTION and END_TRANSACTION calls and add new
BEGIN_TRANSACTION and END_TRANSACTION calls at the location where the comments
from steps 1 and 3 above were placed. Comment out the calls instead of deleting them so
that the original location of these commands can be determined for debugging purposes.

Handling Citrix Server Farms
Citrix servers can be grouped in farms. When load testing, you may want to connect to a
Citrix server farm rather than to a specific server. This type of setup load tests the server
farm and Citrix load balancing rather than a single server, which provides a more realistic
load test.

To record a script that connects to a farm, you must use an ICA file to connect. However,
when a capture takes place, a specific server (in the farm) must have a connection.
Specify the correct ICA file to connect to the server farm as well as a specific server
within that server farm. To verify that your script is connecting to a server farm and not
a specific server, assign the server name to one blank space when validating the script.

.

.

.

/* Declare Variables */

const char *CitrixServer = " ";

const char *CitrixUsername = "citrix";

const char *CitrixPassword = "~encr~657E06726F697206";

const char *CitrixDomain = "qacitrix2";

const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

.

.

.

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("Orders.cpp");

CitrixInit(4);

/* Citrix replay settings */

Advanced Scripting Techniques for Citrix 10-7
SetConnectTimeout(90);

SetDisconnectTimeout(90);

SetWindowTimeout(30);

SetPingTimeout(20);

SetWaitPointTimeout(30);

SetWindowVerification(TRUE);

SetDomainLoginInfo(CitrixUsername, CitrixPassword, Citrix-
Domain);

SetICAFile("PRD desktop.ica");

SetEnableCounters(TRUE);

SetWindowRetries(5, 5000);

SetEnableWildcardMatching(TRUE);

SYNCHRONIZE();

10-8 QALoad Script Development Guide

 I-1
Index
A
ActiveData, 4-6
ActiveData, WWW convert option, 5-84
addResultVar command, 8-1, 8-3
Anchors as comments, WWW convert option, 5-33
Automatically Process SubRequests, WWW convert

option, 5-69

B
Baud Rate, WWW convert option, 5-50
browser caching, 5-22
buffers, Tuxedo, 6-1

C
Cache, WWW convert option, 5-59
CGI

forms, 5-9
Get requests, 5-6
parameter encoding, 5-5
Post requests, 5-7

character conversion, Winsock scripts, 7-1
checkpoints, 4-2
client certificates

copying, 2-12
exporting, 2-8
QALoad, 2-11
SSL scripts, 2-12

Client Image Maps as comments, WWW convert op-
tion, 5-38

collecting timings, 4-2
conversion options, setting, 2-6
cookies, 5-19
creating

datapool file, 4-2
customizing a script

defining checkpoints, 4-2
defining transaction loops, 4-1

D
datapools

central, 4-3
creating a datapool file, 4-2
for IP spoofing, 5-2
local, 4-4
modifying a datapool file, 4-3

Debug comments, WWW convert option, 5-43
defining transaction loops, 4-1
DO_GetLastHttpError command, 5-3
DO_IPSpoofEnable command, 5-91
Do_TuxgetTuxBuffer command, 6-4
DO_VerifyDocTitle command, 5-4
DO_WSK_Recv command, 7-10
Document Title Verification, WWW convert option,

5-45
Dynamic Cookie Handling, WWW convert option,

5-66
dynamic data, Winsock, 7-8
Dynamic Redirect Handling, WWW convert option,

5-61
dynamic windows, Citrix scripts, 10-1, 10-2, 10-4

E
Enable Visual Navigator, WWW convert option, 5-

58
Encode DBCS Characters, WWW convert options,

5-55
error handling, SAP, 9-2

I-2 QALoad Script Development Guide
error messages
finding in response text, 5-4
on SAP status bar, 9-7
returned in an HTML page, 5-4
with response codes, 5-3

extended logon sessions, creating in Citrix scripts, 10-
5

F
Form field as comments, WWW convert option, 5-24
forms, CGI, 5-9
frames, 5-18

G
Get requests, 5-6
getResultVar command, 8-1, 8-3

H
Hostnames as IP Addresses, WWW convert option, 5-

100
HTTP Version Detection, WWW convert option, 5-83

I
ICA files, 10-6
inserting checkpoints, 4-2
IP addresses

variable, 5-2
IP Spoofing, WWW convert option, 5-91

J
Java applets, 5-15
JavaScript

supported objects, 5-13
supported properties, 5-13

L
load-balanced environments, Citrix, 10-6

M
manual application startup, 3-4
Max Concurrent Connections, WWW convert option,

5-79
Max Connection Retries, WWW convert option, 5-80
modifying

datapool files, 4-3

O
objects, SAP GUI, 9-8

P
password-protected directories, 5-22
pattern matching, Citrix scripts, 10-2
Persistent connections during replay, WWW convert

option, 5-73
Post requests, 5-7

R
RealOne Player, 5-94
recording options, setting, 2-5
Refresh Timeout, WWW convert option, 5-53
Response command, 7-9
ResponseLength command, 7-9
Reuse SSL session ID, WWW convert option, 5-75

S
SAP

Dialog (modal) option, 2-12
multiple logons, 9-6
object life span, 9-8
status bar, 9-7

SAP, required commands, 9-1
SAPGuiCheckStatusbar command, 9-7
SAPGuiPropIdStrExists command, 9-6
SAPGuiPropIdStrExistsEnd command, 9-6
ScanExpr command, 7-11
ScanSkip command, 7-12
ScanString command, 7-12
scripting techniques, general, 4-1
server certificates

QALoad, 2-11
server farms, Citrix, 10-6
server replies, 7-9, 7-11

parsing, 7-11
Server Response Timeout, WWW convert option, 5-81
SkipExpr command, 7-11
SSL certificates, 2-8
SSL scripts

client certificates, 2-12
preparing to record, 2-7

status bar, SAP, 9-7
stored procedures

capturing a SELECT return value, 8-1

Index I-3
capturing an OUTPUT parameter value, 8-3
in SQL Server scripts, 8-1
parameterizing, 8-3

Streaming Media, WWW convert option, 5-94
string encoding, 6-4
string substitution, 4-6
Strip All Cookies From Request, WWW convert op-

tion, 5-103

T
TLS security, 2-8
tpalloc command, 6-1
Traffic Filters dialog box, WWW convert option, 5-

105
transaction loop, 4-1
Tuxedo

buffers, 6-1
encoding data, 6-4
environment variables, 2-12

V
variables, 4-6
variablization, Winsock, 7-8
Visual Basic scripts, 5-15

W
WaitForScreenUpdate command, 10-2
WaitForWindowCreate command, 10-1
wildcards, using in Citrix scripts, 10-2
Windows Media Player, 5-96, 5-99
WWW convert options

ActiveData option, 5-84
Anchors as comments option, 5-33
Automatically Process SubRequests option, 5-69
Baud Rate option, 5-50
Cache option, 5-59
Client Image Maps as comments option, 5-38
Debug comments option, 5-43
Document Title Verification option, 5-45
Dynamic Cookie Handling option, 5-66
Dynamic Redirect Handling option, 5-61
Enable Visual Navigator option, 5-58
Encode DBCS Characters option, 5-55
Form field as comments option, 5-24
Hostnames as IP Addresses option, 5-100
HTTP Version Detection option, 5-83

IP Spoofing option, 5-91
Max Concurrent Connections option, 5-79
Max Connection Retries option, 5-80
Persistent connections during replay option, 5-73
Refresh Timeout option, 5-53
Reuse SSL session ID option, 5-75
Server Response Timeout option, 5-81
Streaming Media option, 5-94
Strip All Cookies From Request option, 5-103
Traffic Filters dialog box, 5-105

	Table of Contents
	Introduction
	Who Should Read This Guide?
	Product Enhancements
	Related Publications
	Typographical Conventions
	World Wide Web Information
	FrontLine Support Web Site

	Getting Help

	Part 1: Getting Started
	Chapter 1. Overview
	Accessing the QALoad Script Development Workbench
	The QALoad Script Development Workbench Main Window

	Part 2: Developing a Test Script
	Chapter 2. Before You Begin
	Configuring the QALoad Script Development Workbench
	Setting Recording Options
	Setting Conversion Options
	WWW/SSL: Preparing to Record SSL Requests
	Disabling TLS Security in Internet Explorer 5.0
	Preparing SSL Certificates

	Tuxedo: Setting Environment Variables
	SAP: Preparing to Record a Script

	Chapter 3. Recording a Test Script
	Overview
	Recording a Script
	Recording Using Manual Application Startup

	Where to Go Next

	Part 3: Customizing a Test Script
	Chapter 4. General Advanced Scripting Techniques
	Defining Transaction Loops
	Defining Checkpoints
	Simulating User-Entered Data
	Creating a Datapool File
	Modifying a Datapool File
	Using a Central Datapool File in a Script
	Using Local Datapool Files in a Script
	Inserting Variable Data with ActiveData Substitution

	Chapter 5. Advanced Scripting Techniques for WWW
	Simulating Variable IP Addresses
	Modifying a Script to Use Variable IP Addresses
	Creating a Datapool of IP Addresses

	Handling Error Messages from the Web Server
	Handling Error Messages with Response Codes
	Handling Error Messages Returned in an HTML Page

	Simulating CGI Requests
	CGI Parameter Encoding
	Get Requests
	Post Requests
	CGI Forms

	Simulating JavaScript
	Supported Objects
	Supported Properties

	Executing a Visual Basic Script
	Executing a Java Applet
	Simulating Frames
	Simulating Cookies
	Simulating Browser Caching
	Requesting Password-Protected Directories
	Using the WWW Convert Options Dialog Box
	WWW Convert Options Dialog Box
	WWW Advanced Convert Options Dialog Box
	Traffic Filters Dialog Box

	Chapter 6. Advanced Scripting Techniques for Tuxedo
	Managing Tuxedo Application Data Flow
	Managing Tuxedo Buffers
	Passing Data Between Tuxedo Commands
	Encoding String Data in Scripts

	Chapter 7. Advanced Scripting Techniques for Winsock
	Understanding Data Representation in the Script
	Handling Winsock Application Data Flow
	Modifying QALoad’s Functions to Incorporate Dynamic Data
	Saving Server Replies
	Parsing Server Replies for Values

	Chapter 8. Advanced Scripting Techniques for SQL Server
	Variablizing SQL Server Scripts
	Capturing a select Value from a Stored Procedure
	Using a Retrieved Value as a Parameter to a Stored Procedure
	Capturing an OUTPUT Parameter Value from a Stored Procedure Call

	Chapter 9. Advanced Scripting Techniques for SAP
	Required Commands
	Error Handling and Reporting
	Handling Multiple Logons
	Checking the SAP Status Bar
	Object Life Span

	Chapter 10. Advanced Scripting Techniques for Citrix
	Handling Dynamic Windows
	Using the WaitForScreenUpdate Command
	Handling Dynamic Window Titles
	Handling Dynamic Windows That Require User Action
	Moving the Citrix Connect and Disconnect Outside the Transaction Loop
	Handling Citrix Server Farms

	Index

