
Artix 5.6.3

Security Guide:
Java

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-24

Contents
Preface..v
Contacting Micro Focus ..v

Security for HTTP-Compatible Bindings1

Managing Certificates..7
What are X.509 Certificates? ..7
Certification Authorities..8

Commercial Certification Authorities ..9
Private Certification Authorities...9

Certificate Chaining ...10
PKCS#12 Files ..12
Special Requirements on HTTPS Certificates ...13
Creating Your Own Certificates..15
Prerequisites ..15

Set Up Your Own CA ...15
Use the CA to Create Signed Certificates in a Java Keystore..................19
Use the CA to Create Signed PKCS#12 Certificates21

Generating a Certificate Revocation List ...26

Configuring HTTPS and IIOP/TLS..29
Authentication Alternatives...29

Target-Only Authentication ..29
Mutual Authentication..32

Specifying Trusted CA Certificates ...34
Specifying Trusted CA Certificates for HTTPS35
Specifying Trusted CA Certificates for IIOP/TLS...................................36

Specifying an Application’s Own Certificate ...38
Deploying Own Certificate for HTTPS ...38
Deploying Own Certificate for IIOP/TLS..39

Specifying a Certificate Revocation List ..40

Configuring HTTPS Cipher Suites...43
Supported Cipher Suites ..43
Cipher Suite Filters..44
SSL/TLS Protocol Version ...47

The WS-Policy Framework...49

Message Protection ...57
Transport Layer Message Protection...57
SOAP Message Protection ...61

Introduction to SOAP Message Protection ...61
Basic Signing and Encryption Scenario ...63
Specifying an AsymmetricBinding Policy...64

Specifying a SymmetricBinding Policy ..70
Specifying Parts of Message to Encrypt and Sign74
Providing Encryption Keys and Signing Keys76
 Artix Security Guide Java i i i

Specifying the Algorithm Suite ..83

Authentication .. 89
Introduction to Authentication...89

Steps to set up authentication ..89
Specifying an Authentication Policy ..89
Providing Client Credentials ..95

Configuring client credentials in Spring XML..95
Authenticating Received Credentials...98

Appendix ASN.1 and Distinguished Names....................... 101
ASN.1..101
Distinguished Names ...102

Appendix OpenSSL Utilities.. 105
Using OpenSSL Utilities ..105

The x509 Utility ..106
The req Utility...107
The rsa Utility ...109
The ca Utility ..110
The s_client Utility...111
The s_server Utility ...113

The OpenSSL Configuration File...115
[req] Variables..116
[ca] Variables ...116
[policy] Variables ..117
Example openssl.cnf File ..119

Appendix License Issues.. 121
OpenSSL License...121

Index.. 125
iv Artix Security Guide Java

Preface

What is Covered in This Book
This book describes how to develop and configure secure Artix
solutions.

Who Should Read This Book
This book is aimed at the following kinds of reader: security
administrators and Java programmers who need to write security
code.

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
 Artix Security Guide Java v

https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

 vi Artix Security Guide Java

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Security for
HTTP-Compatible
Bindings
This chapter describes the security features supported by the Artix HTTP
transport. These security features are available to any Artix binding that
can be layered on top of the HTTP transport.

This section describes how to configure the HTTP transport to use
SSL/TLS security, a combination usually referred to as HTTPS. In
Artix ESB, HTTPS security is configured by specifying settings in
XML configuration files.

Generating X.509 certificates
A basic prerequisite for using SSL/TLS security is to have a
collection of X.509 certificates available to identify your server
applications and, optionally, your client applications. You can
generate X.509 certificates in one of the following ways:
• Use a commercial third-party to tool to generate and manage

your X.509 certificates.
• Use the free openssl utility (which can be downloaded from

http://www.openssl.org)—see “Use the CA to Create Signed
Certificates in a Java Keystore” for details of how to use it.

Enabling HTTPS
A prerequisite for enabling HTTPS on a WSDL endpoint is that the
endpoint address must be specified as a HTTPS URL. here are two
different locations where the endpoint address is set and both
must be modified to use a HTTPS URL:

HTTPS specified in the WSDL contract
Specify the endpoint address in the WSDL contract as an URL with
the https: prefix, as shown in Example 1.

Note: The HTTPS protocol mandates an URL integrity check,
which requires a certificate’s identity to match the hostname on
which the server is deployed. See “Special Requirements on
HTTPS Certificates” for details.
 Artix Security Guide Java 1

http://www.openssl.org

Example 1: Specifying HTTPS in the WSDL

Where the location attribute of the soap:address element is
configured to use a HTTPS URL. For bindings other than SOAP, you
would edit the URL appearing in the location attribute of the
http:address element.

HTTPS specified in the server code
Ensure that the URL published in the server code by calling
Endpoint.publish() is defined with a https: prefix, as shown in
Example 2.

Example 2: Specifying HTTPS in the Server Code

HTTPS client with no certificate
For example, consider the configuration for a secure HTTPS client
with no certificate, as shown in Example 3.

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.apache.org/hello_world_soap_http"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding"
 name="SoapPort">
 <soap:address location="https:9001/SoapContext/SoapPort>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

// Java
package demo.hw_https.server;

import javax.xml.ws.Endpoint;
public class Server {
 protected Server() throws Exception {
 Object implementor = new GreeterImpl();
 String address = "https://localhost:9001/SoapContext/SoapPort";
 Endpoint.publish(address, implementor);
 }
 ...
 }

Example 3: Sample HTTPS Client with No Certificate

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:jaxws="http://java.sun.com
xsi:schemaLocation="...">

1 <http:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
2 <http:tlsClientParameters>
3 <sec:trustManagers>

<sec:keyStore type="JKS" password="password"
 file="certs/truststore.jks"/>
 2 Artix Security Guide Java

The preceding client configuration is described as follows:
1. The TLS security settings are defined on a specific WSDL port.

In this example, the WSDL port being configured has the
QName, {http://apache.org/hello_world_soap_http}SoapPort.

2. The http:tlsClientParameters element contains all of the
client’s TLS configuration details.

3. The sec:trustManagers element is used to specify a list of
trusted CA certificates (the client uses this list to decide
whether or not to trust certificates received from the server
side).
The file attribute of the sec:keyStore element specifies a Java
keystore file, truststore.jks, containing one or more trusted
CA certificates. The password attribute specifies the password
required to access the keystore, truststore.jks. See “Special
Requirements on HTTPS Certificates”.

4. The sec:cipherSuitesFilter element can be used to narrow the
choice of cipher suites that the client is willing to use for a TLS
connection. See “Special Requirements on HTTPS Certificates”
for details.

</sec:trustManagers>
4 <sec:cipherSuitesFilter>

<sec:include>.*_WITH_3DES_.*</sec:include>
<sec:include>.*_WITH_DES_.*</sec:include>
<sec:exclude>.*_WITH_NULL_.*</sec:exclude>
<sec:exclude>.*_DH_anon_.*</sec:exclude>

</sec:cipherSuitesFilter>
</http:tlsClientParameters>

</http:conduit>

</beans>

Example 3: Sample HTTPS Client with No Certificate

Note: Instead of the file attribute, you can specify
the location of the keystore using either the resource
attribute or the url attribute. You must be extremely
careful not to load the truststore from an
untrustworthy source.
Artix Security Guide Java 3

HTTPS client with certificate
Consider a secure HTTPS client that is configured to have its own
certificate. Example 4 shows how to configure such a sample
client.

The preceding client configuration is described as follows:
1. The sec:keyManagers element is used to attach an X.509

certificate and a private key to the client. The password
specified by the keyPassword attribute is used to decrypt the
certificate’s private key.

2. The sec:keyStore element is used to specify an X.509
certificate and a private key that are stored in a Java
keystore. This sample declares that the keystore is in Java
Keystore format (JKS).
The file attribute specifies the location of the keystore file,
wibble.jks, that contains the client’s X.509 certificate chain
and private key in a key entry. The password attribute
specifies the keystore password which is required to access
the contents of the keystore. It is expected that the keystore
file contains just one key entry, so it is not necessary to
specify a key alias to identify the entry.

Example 4: Sample HTTPS Client with Certificate

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

<http:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
<http:tlsClientParameters>
 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"
 file="certs/truststore.jks"/>
 </sec:trustManagers>

1 <sec:keyManagers keyPassword="password">
2 <sec:keyStore type="JKS" password="password"

 file="certs/wibble.jks"/>
<sec:cipherSuitesFilter>

<sec:include>.*_WITH_3DES_.*</sec:include>
<sec:include>.*_WITH_DES_.*</sec:include>
<sec:exclude>.*_WITH_NULL_.*</sec:exclude>
<sec:exclude>.*_DH_anon_.*</sec:exclude>

</sec:cipherSuitesFilter>
</http:tlsClientParameters>

</http:conduit>

</beans>
 4 Artix Security Guide Java

For details of how to create such a keystore file, see “Use the
CA to Create Signed Certificates in a Java Keystore”.

HTTPS server configuration
Consider a secure HTTPS server that requires clients to present an
X.509 certificate. Example 5 shows how to configure such a
server.

The preceding server configuration can be described as follows:
1. On the server side, TLS is not configured for each WSDL port.

Instead of configuring each WSDL port, the TLS security
settings are applied to a specific IP port, which is 9001 in this
example. All of the WSDL ports that share this IP port are
therefore configured with the same TLS security settings.

2. The http:tlsServerParameters element contains all of the
server’s TLS configuration details.

Note: Instead of the file attribute, you can specify
the location of the keystore using either the resource
attribute or the url attribute. You must be extremely
careful not to load the truststore from an
untrustworthy source.

Example 5: Sample HTTPS Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

 <httpj:engine-factory bus="cxf">
1 <httpj:engine port="9001">
2 <httpj:tlsServerParameters>
3 <sec:keyManagers keyPassword="password">
4 <sec:keyStore type="JKS" password="password"

 file="certs/cherry.jks"/>
 </sec:keyManagers>

5 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"
 file="certs/truststore.jks"/>
 </sec:trustManagers>

7 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>

7 <sec:clientAuthentication want="true" required="true"/>
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>

 <!-- We need a bean named "cxf" -->
 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>
Artix Security Guide Java 5

3. The sec:keyManagers element is used to attach an X.509
certificate and a private key to the server. The password
specified by the keyPasswod attribute is used to decrypt the
certificate’s private key.

4. The sec:keyStore element is used to specify an X.509
certificate and a private key that are stored in a Java
keystore. This sample declares that the keystore is in Java
Keystore format (JKS).
The file attribute specifies the location of the keystore file,
cherry.jks, that contains the client’s X.509 certificate chain
and private key in a key entry. The password attribute
specifies the keystore password, which is needed to access
the contents of the keystore. It is expected that the keystore
file contains just one key entry, so there is no need to specify
a key alias.
For details of how to create such a keystore file, see “Use the
CA to Create Signed Certificates in a Java Keystore”.

5. The sec:trustManagers element is used to specify a list of
trusted CA certificates (the server uses this list to decide
whether or not to trust certificates presented by clients).
The file attribute of the sec.keyStore element specifies a Java
keystore file, truststore.jks, containing one or more trusted
CA certificates. The password attribute specifies the password
required to access the contents of the keystore
truststore.jks. See “Special Requirements on HTTPS
Certificates”.

6. The sec:cipherSuitesFilter element can be used to narrow
the choice of cipher suites that the server is willing to use for
a TLS connection. See “Configuring HTTPS Cipher Suites” for
details.

7. The sec:clientAuthentication element determines the server’s
disposition towards the presentation of client certificates. The
element has the following attributes:
♦ want attribute—If true (the default), the server requests

the client to present an X.509 certificate during the TLS
handshake; if false, the server does not request the client
to present an X.509 certificate.

♦ required attribute—If true, the server raises an exception
if a client fails to present an X.509 certificate during the
TLS handshake; if false (the default), the server does not
raise an exception if the client fails to present an X.509
certificate.
 6 Artix Security Guide Java

Managing Certificates
TLS authentication uses X.509 certificates—a common, secure and
reliable method of authenticating your application objects. This chapter
explains how you can create X.509 certificates that identify your Artix
applications.

What are X.509 Certificates?

Role of certificates
An X.509 certificate binds a name to a public key value. The role
of the certificate is to associate a public key with the identity
contained in the X.509 certificate.

Integrity of the public key
Authentication of a secure application depends on the integrity of
the public key value in the application’s certificate. If an impostor
replaced the public key with its own public key, it could
impersonate the true application and gain access to secure data.
To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms
the integrity of the public key value in a certificate.

Digital signatures
A CA signs a certificate by adding its digital signature to the
certificate. A digital signature is a message encoded with the CA’s
private key. The CA’s public key is made available to applications
by distributing a certificate for the CA. Applications verify that
certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.

WARNING: The demonstration certificates supplied with Artix
ESB are signed by the demonstration CA. This CA is completely
insecure because anyone can access its private key. To secure
your system, you must create new certificates signed by a
trusted CA. This chapter describes the set of certificates required
by an Artix ESB application and describes how to replace the
default certificates.
 Artix Security Guide Java 7

The contents of an X.509 certificate
An X.509 certificate contains information about the certificate
subject and the certificate issuer (the CA that issued the
certificate). A certificate is encoded in Abstract Syntax Notation
One (ASN.1), a standard syntax for describing messages that can
be sent or received on a network.
The role of a certificate is to associate an identity with a public key
value. In more detail, a certificate includes:
• X.509 version information.
• A serial number that uniquely identifies the certificate.
• A subject DN that identifies the certificate owner.
• The public key associated with the subject.
• An issuer DN that identifies the CA that issued the certificate.
• The digital signature of the issuer.
• Information about the algorithm used to sign the certificate.
• Some optional X.509 v.3 extensions. For example, an

extension exists that distinguishes between CA certificates
and end-entity certificates.

Distinguished names
A distinguished name (DN) is a general purpose X.500 identifier
that is often used in the context of security.
See “ASN.1 and Distinguished Names” for more details about DNs.

Certification Authorities

Choice of CAs
A CA consists of a set of tools for generating and managing
certificates and a database that contains all of the generated
certificates. When setting up an Artix ESB system, it is important
to choose a suitable CA that is sufficiently secure for your
requirements.
There are two types of CA you can use:
• A commercial CA is a company that signs certificates for many

systems.
• A private CA is a trusted node that you set up and use to sign

certificates for your system only.
 8 Artix Security Guide Java

Commercial Certification Authorities

Signing certificates
There are several commercial CAs available. The mechanism for
signing a certificate using a commercial CA depends on which CA
you choose.

Advantages of commercial CAs
An advantage of commercial CAs is that they are often trusted by
a large number of people. If your applications are designed to be
available to systems external to your organization, use a
commercial CA to sign your certificates. If your applications are
for use within an internal network, a private CA might be
appropriate.

Criteria for choosing a CA
Before choosing a CA, you should consider the following criteria:
• What are the certificate-signing policies of the commercial

CAs?
• Are your applications designed to be available on an internal

network only?
• What are the potential costs of setting up a private CA

compared with the costs of subscribing to a commercial CA?

Private Certification Authorities

Choosing a CA software package
If you wish to take responsibility for signing certificates for your
system, set up a private CA. To set up a private CA, you require
access to a software package that provides utilities for creating
and signing certificates. Several packages of this type are
available.

OpenSSL software package
One software package that allows you to set up a private CA is
OpenSSL, http://www.openssl.org. OpenSSL is derived from
SSLeay, an implementation of SSL developed by Eric Young
(eay@cryptsoft.com). Complete license information can be found
in “License Issues” on page 121. The OpenSSL package includes
basic command line utilities for generating and signing certificates
and these utilities are available with every installation of Artix.
Complete documentation for the OpenSSL command line utilities
is available from http://www.openssl.org/docs.
Artix Security Guide Java 9

Setting up a private CA using OpenSSL
For instructions on how to set up a private CA, see “Creating Your
Own Certificates” on page 15.

Choosing a host for a private certification
authority
Choosing a host is an important step in setting up a private CA.
The level of security associated with the CA host determines the
level of trust associated with certificates signed by the CA.
If you are setting up a CA for use in the development and testing
of Artix applications, use any host that the application developers
can access. However, when you create the CA certificate and
private key, do not make the CA private key available on hosts
where security-critical applications run.

Security precautions
If you are setting up a CA to sign certificates for applications that
you are going to deploy, make the CA host as secure as possible.
For example, take the following precautions to secure your CA:
• Do not connect the CA to a network.
• Restrict all access to the CA to a limited set of trusted users.
• Protect the CA from radio-frequency surveillance using an

RF-shield.

Certificate Chaining

Certificate chain
A certificate chain is a sequence of certificates, where each
certificate in the chain is signed by the subsequent certificate.

Self-signed certificate
The last certificate in the chain is normally a self-signed
certificate—a certificate that signs itself.
 10 Artix Security Guide Java

Example
Figure 1 shows an example of a simple certificate chain.

Chain of trust
The purpose of a certificate chain is to establish a chain of trust
from a peer certificate to a trusted CA certificate. The CA vouches
for the identity in the peer certificate by signing it. If the CA is one
that you trust (indicated by the presence of a copy of the CA
certificate in your root certificate directory), this implies you can
trust the signed peer certificate as well.

Certificates signed by multiple CAs
A CA certificate can be signed by another CA. For example, an
application certificate may be signed by the CA for the finance
department of Micro Focus, which in turn is signed by a self-signed
commercial CA. Figure 2 shows what this certificate chain looks
like.

Trusted CAs
An application can accept a peer certificate, provided it trusts at
least one of the CA certificates in the signing chain.

Figure 1: A Certificate Chain of Depth 2

CA
Certificate

Peer
Certificate

signs signs

Figure 2: A Certificate Chain of Depth 3

Finance
CA

Certificate

Peer
Certificate

signs signs Commercial
CA

Certificate

signs
Artix Security Guide Java 11

PKCS#12 Files
PKCS#12 is an industry-standard format for deploying certificates
and private keys as a file.
Figure 3 shows the typical elements in a PKCS#12 file.

Contents of a PKCS#12 file
A PKCS#12 file contains the following:
• An X.509 peer certificate (first in a chain).
• All the CA certificates in the certificate chain.
• A private key.
The file is encrypted with a pass phrase.

Creating a PKCS#12 file
To create a PKCS#12 file, see “Use the CA to Create Signed
Certificates in a Java Keystore” on page 19.

Viewing a PKCS#12 file
To view a PKCS#12 file, CertName.p12:

Figure 3: Elements in a PKCS#12 File

X.509

PKCS#12 File

Private Key

Certificate Chain

X.509
CA

Note: The same pass phrase is used both for the encryption of
the private key within the PKCS#12 file and for the encryption of
the PKCS#12 file overall. This condition (same pass phrase) is
not officially part of the PKCS#12 standard, but it is enforced by
most Web browsers and by Artix ESB.

openssl pkcs12 -in CertName.p12
 12 Artix Security Guide Java

Importing and exporting PKCS#12 files
The generated PKCS#12 files generated by OpenSSL can be
imported into browsers such as IE or Netscape. Exported
PKCS#12 files from these browsers can be used in Artix ESB.

Special Requirements on HTTPS Certificates
The HTTPS specification mandates that HTTPS clients should be
capable of verifying the identity of the server. This can potentially
affect how you generate your X.509 certificates. The mechanism
for verifying the server identity depends on the type of client.
Some clients might verify the server identity by accepting only
those server certificates signed by a particular trusted CA. In
addition, clients can inspect the contents of a server certificate
and accept only the certificates that satisfy specific constraints
(for example, in Artix you can specify a certificate constraints
mechanism).
In the absence of an application-specific mechanism, the HTTPS
specification defines a generic mechanism, known as the HTTPS
URL integrity check, for verifying the server identity. This is the
standard mechanism used by Web browsers.

HTTPS URL integrity check
The basic idea of the URL integrity check is that the server
certificate’s identity must match the server host name. This
integrity check has an important impact on how you generate
X.509 certificates for HTTPS: the certificate identity (usually the
certificate subject DN’s common name) must match the host
name on which the HTTPS server is to be deployed.
The URL integrity check is designed to prevent man-in-the-middle
attacks.

Reference
The HTTPS URL integrity check is specified by RFC 2818, published
by the Internet Engineering Task Force (IETF):
http://www.ietf.org/rfc/rfc2818.txt

How to specify the certificate identity
The certificate identity used in the URL integrity check can be
specified in one of the following ways:
• Using commonName.
• Using subjectAltName (multi-homed hosts).

Note: Artix does not implement the HTTPS URL integrity check.
You can use a mechanism such as certificate constraints instead.
Artix Security Guide Java 13

http://www.ietf.org/rfc/rfc2818.txt

Using commonName
The usual way to specify the certificate identity (for the purpose of
the URL integrity check) is to set the Common Name (CN) in the
subject DN of the certificate.
For example, if clients are meant to connect to the following
secure URL:

The server certificate could have a subject DN like the following:

Where the CN has been set to the host name, www.abigbank.com.
For details of how to set the subject DN in a new certificate, see
“Use the CA to Create Signed PKCS#12 Certificates” and “Use the
CA to Create Signed Certificates in a Java Keystore”.

Using subjectAltName (multi-homed
hosts)
Using the subject DN’s Common Name for the certificate identity
suffers from the disadvantage that only one host name can be
specified at a time. If you deploy a certificate on a multi-homed
host, however, you might find it is practical to allow the certificate
to be used with any of the multi-homed host names. In this case,
it is necessary to define a certificate with multiple, alternative
identities and this is only possible using the subjectAltName
certificate extension.
For example, if you have a multi-homed host that supports
connections to either of the following host names:

Then you can define a subjectAltName that explicitly lists both of
these DNS host names. If you generate your certificates using the
openssl utility, you would need to edit the relevant line of your
openssl.cnf configuration file to specify the value of the
subjectAltName extension, as follows:

Where the HTTPS protocol will match either of the DNS host
names listed in the subjectAltName (the subjectAltName takes
precedence over the Common Name).
The HTTPS protocol also supports the wildcard character, *, in
host names. For example, if you define the subjectAltName as
follows:

https://www.abigbank.com/secure

C=IE,ST=Co. Dublin,L=Dublin,O=ABigBank,
OU=System,CN=www.abigbank.com

www.abigbank.com
fusesource.com

subjectAltName=DNS:www.abigbank.com,DNS:fusesource.com

subjectAltName=DNS:*.abigbank.com
 14 Artix Security Guide Java

This certificate identity would match any three-component host
name in the domain abigbank.com. For example, the wildcarded
host name would match either www.abigbank.com or fusesource.com,
but does not match www.fusesource.com,.

For details of how to set up the openssl.cnf configuration file to
generate certificates with the subjectAltName certificate extension,
see “Use the CA to Create Signed PKCS#12 Certificates”.

Creating Your Own Certificates
This section describes the steps involved in setting up a CA and
signing certificates.

Prerequisites

OpenSSL utilities
The steps described in this section are based on the OpenSSL
command-line utilities from the OpenSSL project,
http://www.openssl.org—see “OpenSSL Utilities”. Further
documentation of the OpenSSL command-line utilities can be
obtained from http://www.openssl.org/docs.

Sample CA directory structure
For the purposes of illustration, the CA database is assumed to
have the following directory structure:

Where X509CA is the parent directory of the CA database.

Set Up Your Own CA

Substeps to perform
This section describes how to set up your own private CA. Before
setting up a CA for a real deployment, read the additional notes in
“Choosing a host for a private certification authority”.

WARNING: You must never use the wildcard character in the
domain name (and you must take care never to do this
accidentally by forgetting to type the dot, ., delimiter in front of
the domain name). For example, if you specified *bank.com, your
certificate could be used on any domain that ends in the letters
bank.

X509CA/ca
X509CA/certs
X509CA/newcerts

X509CA/crl
Artix Security Guide Java 15

http://www.openssl.org
http://www.openssl.org/docs

To set up your own CA, perform the following substeps:
1. Add the bin directory to your PATH
2. Create the CA directory hierarchy
3. Copy and edit the openssl.cnf file
4. Initialize the CA database
5. Create a self-signed CA certificate and private key

Add the bin directory to your PATH
On the secure CA host, add the OpenSSL bin directory to your
path:
Windows
> set PATH=OpenSSLDir\bin;%PATH%

UNIX
% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command
line.

Create the CA directory hierarchy
Create a new directory, X509CA, to hold the new CA. This directory
will be used to hold all of the files associated with the CA. Under
the X509CA directory, create the following hierarchy of directories:

Copy and edit the openssl.cnf file
Copy the sample openssl.cnf from your OpenSSL installation to
the X509CA directory.
Edit the openssl.cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.

X509CA/ca
X509CA/certs
X509CA/newcerts

X509CA/crl
 16 Artix Security Guide Java

Edit the [CA_default] section of the openssl.cnf file to make it look
like the following:

You might like to edit other details of the OpenSSL configuration
at this point—for more details, see “The OpenSSL Configuration
File”.

Initialize the CA database
In the X509CA directory, initialize two files, serial and index.txt.
Windows
> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows
Notepad at the command line in the X509CA directory, as follows:
> notepad index.txt

In response to the dialog box with the text, Cannot find the
text.txt file. Do you want to create a new file?, click Yes, and
close Notepad.
UNIX
% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of
certificate files.

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

Note: The index.txt file must initially be completely empty, not
even containing white space.
Artix Security Guide Java 17

Create a self-signed CA certificate and
private key
Create a new self-signed CA certificate and private key with the
following command:

The command prompts you for a pass phrase for the CA private
key and details of the CA distinguished name:

You must ensure that the file names and location of the CA
certificate and private key, new_ca.pem and new_ca_pk.pem, are the
same as the values specified in openssl.cnf (see the preceding
step).
You are now ready to sign certificates with your CA.

openssl req -x509 -new -config X509CA/openssl.cnf -days 365
-out X509CA/ca/new_ca.pem -keyout X509CA/ca/new_ca_pk.pem

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:ABigBank PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@abigbank.com

Note: The security of the CA depends on the security of the
private key file and private key pass phrase used in this step.
 18 Artix Security Guide Java

Use the CA to Create Signed Certificates in a Java Keystore

Substeps to perform
To create and sign a certificate in a Java keystore (JKS),
CertName.jks, perform the following substeps:
1. Add the Java bin directory to your PATH
2. Generate a certificate and private key pair
3. Create a certificate signing request
4. Sign the CSR
5. Convert to PEM format
6. Concatenate the files
7. Update keystore with the full certificate chain
8. Repeat steps as required

Add the Java bin directory to your PATH
If you have not already done so, add the Java bin directory to your
path:
Windows
> set PATH=JAVA_HOME\bin;%PATH%

UNIX
% PATH=JAVA_HOME/bin:$PATH; export PATH

This step makes the keytool utility available from the command
line.

Generate a certificate and private key
pair
Open a command prompt and change directory to KeystoreDir. Enter
the following command:

This keytool command, invoked with the -genkey option, generates
an X.509 certificate and a matching private key. The certificate
and key are both placed in a key entry in a newly created
keystore, CertName.jks. Because the specified keystore,
CertName.jks, did not exist before issuing the command, keytool
implicitly creates a new keystore.
The -dname and -validity flags define the contents of the newly
created X.509 certificate, specifying the subject DN and days
before expiration respectively. For more details about DN format,
see “ASN.1 and Distinguished Names”.

keytool -genkey -dname "CN=Alice, OU=Engineering, O=ABigBank,
ST=Co. Dublin, C=IE" -validity 365 -alias CertAlias -keypass
CertPassword -keystore CertName.jks -storepass CertPassword
Artix Security Guide Java 19

Some parts of the subject DN must match the values in the CA
certificate (specified in the CA Policy section of the openssl.cnf
file). The default openssl.cnf file requires the following entries to
match:
• Country Name (C)
• State or Province Name (ST)
• Organization Name (O)

Create a certificate signing request
Create a new certificate signing request (CSR) for the CertName.jks
certificate

This command exports a CSR to the file, CertName_csr.pem.

Sign the CSR
Sign the CSR using your CA, as follows:

To sign the certificate successfully, you must enter the CA private
key pass phrase (see “Set Up Your Own CA”).

Convert to PEM format
Convert the signed certificate, CertName.pem, to PEM only format:

Concatenate the files
Concatenate the CA certificate file and CertName.pem certificate file,
as follows:
Windows
copy CertName.pem + X509CA\ca\new_ca.pem CertName.chain

UNIX
cat CertName.pem X509CA/ca/new_ca.pem > CertName.chain

Note: If you do not observe these constraints, the OpenSSL CA
will refuse to sign the certificate (see “Sign the CSR”).

keytool -certreq -alias CertAlias -file CertName_csr.pem -keypass
CertPassword -keystore CertName.jks -storepass CertPassword

openssl ca -config X509CA/openssl.cnf -days 365 -in
CertName_csr.pem -out CertName.pem

Note: If you want to sign the CSR using a CA certificate other
than the default CA, use the -cert and -keyfile options to specify
the CA certificate and its private key file, respectively.

openssl x509 -in CertName.pem -out CertName.pem -outform PEM
 20 Artix Security Guide Java

Update keystore with the full certificate
chain
Update the keystore, CertName.jks, by importing the full certificate
chain for the certificate:

Repeat steps as required
Repeat steps 2 to 7, creating a complete set of certificates for your
system.

Use the CA to Create Signed PKCS#12 Certificates

Substeps to perform
If you have set up a private CA, as described in “Set Up Your Own
CA”, you are now ready to create and sign your own certificates.
To create and sign a certificate in PKCS#12 format, CertName.p12,
perform the following substeps:
1. Add the bin directory to your PATH.
2. (Optional) Configure the subjectAltName extension.
3. Create a certificate signing request.
4. Sign the CSR.
5. Concatenate the files.
6. Create a PKCS#12 file.
7. Repeat steps as required.
8. (Optional) Clear the subjectAltName extension.

Add the bin directory to your PATH
If you have not already done so, add the OpenSSL bin directory to
your path:
Windows
> set PATH=OpenSSLDir\bin;%PATH%

UNIX
% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command
line.

keytool -import -file CertName.chain -keypass CertPassword
-keystore CertName.jks -storepass CertPassword
Artix Security Guide Java 21

(Optional) Configure the subjectAltName
extension
Perform this step, if the certificate is intended for a HTTPS server
whose clients enforce an URL integrity check and if you plan to
deploy the server on a multi-homed host or a host with several
DNS name aliases (for example, if you are deploying the
certificate on a multi-homed Web server). In this case, the
certificate identity must match multiple host names and this can
be done only by adding a subjectAltName certificate extension (see
“Special Requirements on HTTPS Certificates”).
To configure the subjectAltName extension, edit your CA’s
openssl.cnf file as follows:
1. Add the following req_extensions setting to the [req] section

(if not already present in your openssl.cnf file):

2. Add the [v3_req] section header (if not already present in your
openssl.cnf file). Under the [v3_req] section, add or modify
the subjectAltName setting, setting it to the list of your DNS
host names. For example, if the server host supports the
alternative DNS names, www.abigbank.com and fusesource.com,
you would set the subjectAltName as follows:

3. Add a copy_extensions setting to the appropriate CA
configuration section. The CA configuration section used for
signing certificates is either:
♦ The section specified by the -name command-line option of

the openssl ca command, or
♦ The section specified by the default_ca setting under the

[ca] section (usually [CA_default]).
For example, if the appropriate CA configuration section is
[CA_default], set the copy_extensions property as follows:

This setting ensures that certificate extensions present in the
certificate signing request are copied into the signed
certificate.

openssl Configuration File
...
[req]
req_extensions=v3_req

openssl Configuration File
...
[v3_req]
subjectAltName=DNS:www.abigbank.com,DNS:fusesource.com

openssl Configuration File
...
[CA_default]
copy_extensions=copy
 22 Artix Security Guide Java

Create a certificate signing request
Create a new certificate signing request (CSR) for the CertName.p12
certificate:

This command prompts you for a pass phrase for the certificate’s
private key and information about the certificate’s distinguished
name.
Some of the entries in the CSR distinguished name must match
the values in the CA certificate (specified in the CA Policy section
of the openssl.cnf file). The default openssl.cnf file requires the
following entries to match:
• Country Name
• State or Province Name
• Organization Name
The certificate subject DN’s Common Name is the field that is
most often used to represent the certificate owner’s identity. The
Common Name must obey the following conditions:
• The Common Name must be distinct for every certificate

generated by the OpenSSL certificate authority.
• If your HTTPS clients implement the URL integrity check, you

must ensure that the Common Name is identical to the DNS
name of the host where the certificate is to be deployed—see
“Special Requirements on HTTPS Certificates”.

openssl req -new -config X509CA/openssl.cnf
-days 365 -out X509CA/certs/CertName_csr.pem -keyout
X509CA/certs/CertName_pk.pem

Note: For the purpose of the HTTPS URL integrity check, the
subjectAltName extension takes precedence over the Common
Name.
Artix Security Guide Java 23

Sign the CSR
Sign the CSR using your CA:

This command requires the pass phrase for the private key
associated with the new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to
 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:ABigBAnk
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix
Email Address []:info@abigbank.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:ABigBank

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'Micro Focus International PLC'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@abigbank.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT

(365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
 24 Artix Security Guide Java

To sign the certificate successfully, you must enter the CA private
key pass phrase—see “Set Up Your Own CA”.

Concatenate the files
Concatenate the CA certificate file, CertName.pem certificate file, and
CertName_pk.pem private key file as follows:
Windows
copy X509CA\ca\new_ca.pem +

X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX
cat X509CA/ca/new_ca.pem

X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Create a PKCS#12 file
Create a PKCS#12 file from the CertName_list.pem file as follows:
openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out

X509CA/certs/CertName.p12 -name "New cert"

You are prompted to enter a password to encrypt the PKCS#12
certificate. Normally this password should be the same as the CSR
password (this is required by many certificate repositories).

Repeat steps as required
Repeat steps 3 to 6, creating a complete set of certificates for your
system.

(Optional) Clear the subjectAltName
extension
After generating certificates for a particular host machine, it is
advisable to clear the subjectAltName setting in the openssl.cnf file
to avoid accidentally assigning the wrong DNS names to another
set of certificates.
In the openssl.cnf file, comment out the subjectAltName setting
(by adding a # character at the start of the line) and comment out
the copy_extensions setting.

Note: If you have not set copy_extensions=copy under the
[CA_default] section in the openssl.cnf file, the signed certificate
will not include any of the certificate extensions that were in the
original CSR.
Artix Security Guide Java 25

Generating a Certificate Revocation List
This section describes how to use an OpenSSL CA to generate a
certificate revocation list (CRL). A CRL is a list of X.509 certificates
that are no longer considered to be valid. You can deploy a CRL
file to a secure application, so that the application automatically
rejects certificates that appear in the list.
For details about how to deploy a CRL file, see “Specifying a
Certificate Revocation List”.

Relationship between a CA and a CRL
In order to generate a certificate revocation list, it is not sufficient
simply to assemble a list of certificates that you would like to
revoke. The CA, just as it is responsible for creating and signing
certificates, is also responsible for revoking certificates. When you
decide to revoke a certificate, you must inform the CA, which
records this fact in its database.
After revoking certificates, you can ask the CA to generate a
signed certificate revocation list.

Steps to revoke certificates
To generate a certificate revocation list, perform the following
steps:
• Add the OpenSSL bin directory to your path.
• Revoke certificates.
• Generate the CRL file.
• Check the CRL file.

Add the OpenSSL bin directory to your
path
On the secure CA host, add the OpenSSL bin directory to your
path:
Windows
> set PATH=OpenSSLDir\bin;%PATH%

UNIX
% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command
line.
 26 Artix Security Guide Java

Revoke certificates
To add a certificate, CertName.pem, to the revocation list, enter the
following command:

The command prompts you for the CA pass phrase and then
revokes the certificate:

Repeat this step as many times as necessary to add certificates to
the CA’s revocation list.

Generate the CRL file
To generate a PEM file, crl.pem, containing the CA’s complete
certificate revocation list, enter the following command:

The command prompts you for the CA pass phrase and then
generates the crl.pem file:

openssl ca -config X509CA/openssl.cnf -revoke
X509CA/certs/CertName.pem

Using configuration from openssl.cnf
Loading 'screen' into random state - done
Enter pass phrase for C:/temp/artix_40/X509CA/ca/new_ca_pk.pem:

DEBUG[load_index]: unique_subject = "yes"
Adding Entry with serial number 02 to DB for

/C=IE/ST=Dublin/O=MicroFocus/CN=bad_guy
Revoking Certificate 02.
Data Base Updated

Note: If you get the following error while attempting to revoke a
certificate:
unable to rename C:/temp/artix_40/X509CA/index.txt to

C:/temp/artix_40/X509CA/index.txt.old
reason: File exists

simply delete index.txt.old and then try the command again.

openssl ca -config X509CA/openssl.cnf -gencrl -out crl/crl.pem

Using configuration from openssl.cnf
Loading 'screen' into random state - done
Enter pass phrase for C:/temp/artix_40/X509CA/ca/new_ca_pk.pem:

DEBUG[load_index]: unique_subject = "yes"
Artix Security Guide Java 27

Check the CRL file
Check the contents of the CRL file by converting it to plain text
format, using the following command:

For a single revoked certificate with serial number 02 (that is, the
second certificate in the OpenSSL CA’s database), the output of
this command would look something like the following:

openssl crl -in crl/crl.pem -text

Certificate Revocation List (CRL):
 Version 1 (0x0)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: /C=IE/ST=Dublin/O=ABIGBANK/CN=CA_for_CRL
 Last Update: Feb 15 10:47:40 2006 GMT
 Next Update: Mar 15 10:47:40 2006 GMT
Revoked Certificates:
 Serial Number: 02
 Revocation Date: Feb 15 10:45:05 2006 GMT
 Signature Algorithm: md5WithRSAEncryption
 69:3e:55:8a:20:a0:57:d2:36:79:f0:34:bb:73:65:1e:1c:a9:
 40:35:8d:c4:e6:b9:77:fd:2b:1f:a8:26:0c:7a:fb:30:67:7f:
 6a:13:74:58:b9:e2:88:e7:ad:c5:d2:62:48:6b:1e:f6:10:0d:
 45:cc:11:cb:6b:48:28:e2:78:ad:f0:cf:fd:d6:57:78:f2:aa:
 19:8b:bc:62:79:9b:90:f7:18:ba:96:dc:7b:a5:b4:d5:bf:0f:
 e8:5e:71:89:4b:38:8c:f8:75:17:dd:ba:74:f1:01:e0:48:d0:
 e4:f4:dd:ea:47:32:8b:70:5e:1d:9a:4a:88:41:ba:bf:b2:39:
 ce:32
-----BEGIN X509 CRL-----
MIIBHTCBhzANBgkqhkiG9w0BAQQFADBCMQswCQYDVQQGEwJJRTEPMA0GA1UECBMG
RHVibGluMQ0wCwYDVQQKEwRJT05BMRMwEQYDVQQDFApDQV9mb3JfQ1JMFw0wNjAy
MTUxMDQ3NDBaFw0wNjAzMTUxMDQ3NDBaMBQwEgIBAhcNMDYwMjE1MTA0NTA1WjAN
BgkqhkiG9w0BAQQFAAOBgQBpPlWKIKBX0jZ58DS7c2UeHKlANY3E5rl3/SsfqCYM
evswZ39qE3RYueKI563F0mJIax72EA1FzBHLa0go4nit8M/91ld48qoZi7xieZuQ
9xi6ltx7pbTVvw/oXnGJSziM+HUX3bp08QHgSNDk9N3qRzKLcF4dmkqIQbq/sjnO
Mg==
-----END X509 CRL-----
 28 Artix Security Guide Java

Configuring HTTPS and
IIOP/TLS
This chapter describes how to configure HTTPS and IIOP/TLS endpoints.

Authentication Alternatives
This section discusses how to specify the kind of authentication
required, whether mutual or target-only.

Target-Only Authentication
When an application is configured for target-only authentication,
the target authenticates itself to the client but the client is not
authenticated to the target object, as shown in Figure 4.

Security handshake
Prior to running the application, the client and server should be set
up as follows:
• A certificate chain is associated with the server—the certificate

chain is provided in the form of a PKCS#12 file. See
“Specifying an Application’s Own Certificate”.

• One or more lists of trusted certification authorities (CA) are
made available to the client—see “Specifying Trusted CA
Certificates”.

During the security handshake, the server sends its certificate
chain to the client—see Figure 4. The client then searches its
trusted CA lists to find a CA certificate that matches one of the CA
certificates in the server’s certificate chain.

Figure 4: Target Authentication Only

Secure Association
Client Server

Cert file

Trusted CA Lists
Authenticate
CertificateCA Cert List 1

CA Cert List 2
 Artix Security Guide Java 29

HTTPS example
On the client side, there are no policy settings required for
target-only authentication. Simply configure your client without
associating an X.509 certificate with the HTTPS port. You must
provide the client with a list of trusted CA certificates, however
(see “Specifying Trusted CA Certificates”).
On the server side, in the server’s XML configuration file, make
sure that the sec:clientAuthentication element does not require
client authentication. This element can be omitted, in which case
the default policy is to not require client authentication. However,
if the sec:clientAuthentication element is present, it should be
configured as follows:

Where the want attribute is set to false (the default), specifying
that the server does not request an X.509 certificate from the
client during a TLS handshake. The required attribute is also set to
false (the default), specifying that the absence of a client
certificate does not trigger an exception during the TLS
handshake.

It is also necessary to associate an X.509 certificate with the
server’s HTTPS port (see “Specifying an Application’s Own
Certificate”) and to provide the server with a list of trusted CA
certificates (see “Specifying Trusted CA Certificates”).

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters>
 ...
 <sec:clientAuthentication want="false" required="false"/>
 </http:tlsServerParameters>
</http:destination>

Note: The want attribute can be set either to true or to false. If
set to true, the want setting causes the server to request a client
certificate during the TLS handshake, but no exception is raised
for clients lacking a certificate, so long as the required attribute
is set to false.

Note: The choice of cipher suite can potentially affect whether
or not target-only authentication is supported (see “Supported
Cipher Suites”).
 30 Artix Security Guide Java

IIOP/TLS example
The following extract from an artix.cfg configuration file shows
the target-only configuration of an Artix client application,
bank_client, and an Artix server application, bank_server, where
the transport type is IIOP/TLS.

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites = ["RSA_WITH_RC4_128_SHA",

"RSA_WITH_RC4_128_MD5"];

bank_server {
 // Specify server invocation policies
 policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality", "Integrity", "DetectReplay", "DetectMisordering"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
 // Specify server’s own certificate (not shown)
 ...
};

bank_client {
 // Specify client invocation policies
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
 // Specify client’s trusted CA certs (not shown)
 ...
};
Artix Security Guide Java 31

Mutual Authentication
When an application is configured for mutual authentication, the
target authenticates itself to the client and the client authenticates
itself to the target. This scenario is illustrated in Figure 5. In this
case, the server and the client each require an X.509 certificate
for the security handshake.

Security handshake
Prior to running the application, the client and server should be set
up as follows:
• Both client and server have an associated certificate chain

(see “Specifying an Application’s Own Certificate”).
• Both client and server are configured with lists of trusted

certification authorities (CA) (see “Specifying Trusted CA
Certificates”).

During the TLS handshake, the server sends its certificate chain to
the client, and the client sends its certificate chain to the server—
see Figure 4.

Figure 5: Mutual Authentication

Secure Association
Client Server

Trusted CA Lists
Authenticate

Target

Trusted CA Lists

Authenticate
Client

Cert file

CA Cert List 1

CA Cert List 2

Cert fileCA Cert List 1

CA Cert List 2
 32 Artix Security Guide Java

HTTPS example
On the client side, there are no policy settings required for mutual
authentication. Simply associate an X.509 certificate with the
client’s HTTPS port (see “Specifying an Application’s Own
Certificate”). You also need to provide the client with a list of
trusted CA certificates (see “Specifying Trusted CA Certificates”).
On the server side, in the server’s XML configuration file, make
sure that the sec:clientAuthentication element is configured to
require client authentication. For example:

Where the want attribute is set to true, specifying that the server
requests an X.509 certificate from the client during a TLS
handshake. The required attribute is also set to true, specifying
that the absence of a client certificate triggers an exception during
the TLS handshake.
It is also necessary to associate an X.509 certificate with the
server’s HTTPS port (see “Specifying an Application’s Own
Certificate”) and to provide the server with a list of trusted CA
certificates (see “Specifying Trusted CA Certificates”).

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters>
 ...
 <sec:clientAuthentication want="true" required="true"/>
 </http:tlsServerParameters>
</http:destination>

Note: The choice of cipher suite can potentially affect whether
or not mutual authentication is supported (see “Supported
Cipher Suites”).
Artix Security Guide Java 33

IIOP/TLS example
The following sample extract from an artix.cfg configuration file
shows the configuration for mutual authentication of a client
application, secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, where the transport type is
IIOP/TLS.

Specifying Trusted CA Certificates

When to Deploy Trusted CA Certificates
When an application receives an X.509 certificate during an
SSL/TLS handshake, the application decides whether or not to
trust the received certificate by checking whether the issuer CA is
one of a pre-defined set of trusted CA certificates. If the received

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 // Specify server invocation policies
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
 // Specify server’s own certificate (not shown)
 ...
 // Specify server’s trusted CA certs (not shown)
 ...
};

secure_client_with_cert
{
 // Specify client invocation policies
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
 // Specify client’s own certificate (not shown)
 ...
 // Specify client’s trusted CA certs (not shown)
 ...
};
 34 Artix Security Guide Java

X.509 certificate is validly signed by one of the application’s
trusted CA certificates, the certificate is deemed trustworthy;
otherwise, it is rejected.

Which applications need to specify
trusted CA certificates?
Any application that is likely to receive an X.509 certificate as part
of an HTTPS or IIOP/TLS handshake must specify a list of trusted
CA certificates. For example, this includes the following types of
application:
• All IIOP/TLS or HTTPS clients.
• Any IIOP/TLS or HTTPS servers that support mutual

authentication.

Specifying Trusted CA Certificates for HTTPS

CA certificate format
CA certificates must be provided in Java keystore format.

CA certificate deployment in the Artix
configuration file
To deploy one or more trusted root CAs for the HTTPS transport,
perform the following steps:
1. Assemble the collection of trusted CA certificates that you

want to deploy. The trusted CA certificates could be obtained
from public CAs or private CAs (for details of how to generate
your own CA certificates, see “Set Up Your Own CA”). The
trusted CA certificates should be in PEM format. All you need
are the certificates themselves—the private keys and
passwords are not required.

2. Given a CA certificate, cacert.pem, in PEM format, you can add
the certificate to a JKS truststore (or create a new truststore)
by entering the following command:

3. Repeat step 2 as necessary, to add all of the CA certificates to
the truststore file, truststore.jks.

4. Edit the relevant XML configuration files to specify the location
of the truststore file. You must include the sec:trustManagers
element in the configuration of the relevant HTTPS ports.

keytool -import -file cacert.pem -alias CAAlias -keystore
 truststore.jks -storepass StorePass
Artix Security Guide Java 35

For example, you can configure a client port as follows:

Where the type attribute specifies that the truststore uses the
JKS keystore implementation and StorePass is the password
needed to access the truststore.jks keystore.

5. Configure a server port as follows:

Specifying Trusted CA Certificates for IIOP/TLS

CA certificate format
CA certificates must be provided in Privacy Enhanced Mail (PEM)
format.

CA certificate deployment in the Artix
configuration file
To deploy one or more trusted root CAs for the IIOP/TLS
transport, perform the following steps (the procedure for client
and server applications is the same):
1. Assemble the collection of trusted CA certificates that you

want to deploy. The trusted CA certificates could be obtained
from public CAs or private CAs (for details of how to generate
your own CA certificates, see “Set Up Your Own CA”). The

<!-- Client port configuration -->
<http:conduit id="{Namespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:trustManagers>
 <sec:keyStore type="JKS"
 password="StorePass"
 file="certs/truststore.jks"/>
 </sec:trustManagers>
 ...
 </http:tlsClientParameters>
</http:conduit>

<!-- Server port configuration -->
<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters>
 ...
 <sec:trustManagers>
 <sec:keyStore type="JKS"
 password="StorePass"
 file="certs/truststore.jks"/>
 </sec:trustManagers>
 ...
 </http:tlsServerParameters>
</http:destination>

WARNING: The directory containing the truststores (for
example, X509Deploy/truststores/) should be a secure directory
(that is, writable only by the administrator).
 36 Artix Security Guide Java

trusted CA certificates should be in PEM format. All you need
are the certificates themselves—the private keys and
passwords are not required.

2. Organize the CA certificates into a collection of CA list files.
For example, you might create three CA list files as follows:

Each CA list file consists of a concatenated list of CA
certificates in PEM format. A CA list file can be created using a
simple file concatenation operation. For example, if you have
two CA certificate files, ca_cert01.pem and ca_cert02.pem, you
could combine them into a single CA list file, ca_list01.pem,
with the following command:

Windows

UNIX

The CA certificates are organized as lists as a convenient way
of grouping related CA certificates together.

3. Edit the Artix configuration file to specify the locations of the
CA list files to be used by your application. For example, the
default Artix configuration file is located in the following
directory:

To specify the CA list files, go to your application’s
configuration scope in the Artix configuration file and edit the
value of the policies:iiop_tls:trusted_ca_list_policy
configuration variable for the IIOP/TLS transport.
For example, if your application picks up its configuration from
the SecureAppScope configuration scope and you want to include
the CA certificates from the ca_list01.pem and ca_list02.pem
files, edit the Artix configuration file as follows:

X509Deploy/trusted_ca_lists/ca_list01.pem
X509Deploy/trusted_ca_lists/ca_list02.pem
X509Deploy/trusted_ca_lists/ca_list03.pem

copy X509CA\ca\ca_cert01.pem +
X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list01.pem

cat X509CA/ca/ca_cert01.pem X509CA/ca/ca_cert02.pem >>
X509Deploy/trusted_ca_lists/ca_list01.pem

ArtixInstallDir/etc/domains

Artix configuration file.
...
SecureAppScope {
 ...
 policies:iiop_tls:trusted_ca_list_policy =

["X509Deploy/trusted_ca_lists/ca_list01.pem",
"X509Deploy/trusted_ca_lists/ca_list02.pem"];

 ...
;

Artix Security Guide Java 37

The directory containing the trusted CA certificate lists (for
example, X509Deploy/trusted_ca_lists/) should be a secure
directory.

Specifying an Application’s Own Certificate

Deploying Own Certificate for HTTPS
When working with the HTTPS transport the application's
certificate is deployed using the XML configuration file.

Procedure
To deploy an application’s own certificate for the HTTPS transport,
perform the following steps:
1. Obtain an application certificate in Java keystore format,

CertName.jks.
For instructions on how to create a certificate in Java keystore
format, see “Use the CA to Create Signed Certificates in a
Java Keystore”.

2. Copy the certificate’s keystore, CertName.jks, to the
certificates directory on the deployment host; for example,
X509Deploy/certs.
The certificates directory should be a secure directory that is
writable only by administrators and other privileged users.

3. Edit the relevant XML configuration file to specify the location
of the certificate keystore, CertName.jks. You must include the
sec:keyManagers element in the configuration of the relevant
HTTPS ports.
For example, you can configure a client port as follows:

Note:If an application supports authentication of a peer,
that is a client supports EstablishTrustInTarget, then a file
containing trusted CA certificates must be provided. If not,
a NO_RESOURCES exception is raised.

Note: Some HTTPS clients (for example, Web browsers)
perform a URL integrity check, which requires a certificate’s
identity to match the hostname on which the server is deployed.
See “Special Requirements on HTTPS Certificates” for details.

<http:conduit id="{Namespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:keyManagers keyPassword="CertPassword">
 <sec:keyStore type="JKS"
 password="KeystorePassword"
 file="certs/CertName.jks"/>
 </sec:keyManagers>
 ...
 </http:tlsClientParameters>
</http:conduit>
 38 Artix Security Guide Java

Where the keyPassword attribute specifies the password
needed to decrypt the certificate’s private key (that is,
CertPassword), the type attribute specifies that the truststore
uses the JKS keystore implementation, and the password
attribute specifies the password required to access the
CertName.jks keystore (that is, KeystorePassword).
Configure a server port as follows:

Deploying Own Certificate for IIOP/TLS

Own certificate deployment in the Artix
configuration file
To deploy an Artix application’s own certificate, CertName.p12, for
the IIOP/TLS transport, perform the following steps:
1. Copy the application certificate, CertName.p12, to the

certificates directory—for example,
X509Deploy/certs/applications—on the deployment host.
The certificates directory should be a secure directory that is
accessible only to administrators and other privileged users.

2. Edit the Artix configuration file.

<http:destination id="{Namespace}PortName.http-destination">

 <http:tlsServerParameters>
 ...
 <sec:keyManagers keyPassword="CertPassword">
 <sec:keyStore type="JKS"
 password="KeystorePassword"
 file="certs/CertName.jks"/>
 </sec:keyManagers>
 ...
 </http:tlsServerParameters>
</http:destination>

WARNING: The directory containing the application certificates
(for example, X509Deploy/certs/) should be a secure directory
(that is, readable and writable only by the administrator).

WARNING: The directory containing the XML configuration file
should be a secure directory (that is, readable and writable only
by the administrator), because the configuration file contains
passwords in plain text.
Artix Security Guide Java 39

Given that your application picks up its configuration from the
SecureAppScope scope, change the principal sponsor
configuration to specify the CertName.p12 certificate, as follows:

3. By default, the application will prompt the user for the
certificate pass phrase as it starts up. Other alternatives for
supplying the certificate pass phrase are, as follows:
♦ In a password file—you can specify the location of a

password file that contains the certificate pass phrase by
setting the password_file option in the
principal_sponsor:auth_method_data configuration setting.
For example:

♦ Directly in configuration—you can specify the certificate
pass phrase directly in configuration by setting the
password option in the principal_sponsor:auth_method_data
configuration setting. For example:

Specifying a Certificate Revocation List
Occasionally, it can happen that the security of an X.509
certificate is compromised or you might want to invalidate a
certificate, because the owner of the certificate no longer enjoys
the same security privileges as before. In either of these cases, it
is useful to generate and deploy a certificate revocation list (CRL).

Artix configuration file
...
SecureAppScope {
 ...
 principal_sponsor:iiop_tls:use_principal_sponsor =

"true";
 principal_sponsor:iiop_tls:auth_method_id =

"pkcs12_file";
 principal_sponsor:iiop_tls:auth_method_data =

["filename=X509Deploy/certs/applications/CertName.p12"];
};

principal_sponsor:auth_method_data =
["filename=X509Deploy/certs/applications/CertName.p12",
"password_file=X509Deploy/certs/CertName.pwf"];

WARNING: Because the password file stores the pass
phrase in plain text, the password file should not be
readable by anyone except the administrator.

principal_sponsor:auth_method_data =
["filename=X509Deploy/certs/applications/CertName.p12",
"password=CertNamePass"];

WARNING: If the pass phrase is stored directly in
configuration, the Artix configuration file should not be
readable by anyone except the administrator.
 40 Artix Security Guide Java

A CRL is a list of X.509 certificates that are no longer valid. When
you deploy a CRL file to a secure application, the application
automatically rejects the certificates that appear in the list.

Revoking CA certificates
You can also revoke a CA certificate, in which case all of the
certificates signed by the CA are implicitly revoked as well.

Configuring certificate revocation
Example 6 shows how to configure an application to use a CRL file.

The preceding configuration can be explained as follows:
1. The configuration settings in the jaxws:endpoint element are

applied to the endpoint identified by the QName,
{http://apache.org/hello_world_soap_http}SoapPort.

2. The jaxws:inInterceptor element installs an interceptor to the
incoming handler chain. The referenced interceptor,
MyCRLTrustInterceptor, will intercept all incoming request
messages directed at the current endpoint.

3. The asec:crlTrustInterceptor element defines the bean that is
referenced from the jaxws:inInterceptors element.

4. The file attribute of the asec:crls element is used to specify
the location of the CRL file.

Format of the CRL file
The CRL file must be in a PEM format.

Example 6: Configuration of a CRL

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:asec="http://cxf.iona.com/security/rt/configuration"
xmlns:csec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/httpjetty/configuration"
xmlns:jaxws="http://cxf.apache.org/jaxws"
... >

...
1 <jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"

createdFromAPI="true"
2 <jaxws:inInterceptors>

 <ref bean="MyCRLTrustInterceptor"/>
 </jaxws:inInterceptors>
</jaxws:endpoint>
...

3 <asec:crlTrustInterceptor name="MyCRLTrustInterceptor">
4 <asec:crls file="certs/ca.crl"/>

</asec:crlTrustInterceptor>
...
</beans>
Artix Security Guide Java 41

Sources of CRL files
You can obtain a CRL file from one of the following sources:
• Commercial CAs.
• OpenSSL CA.

Commercial CAs
If you use a commercial CA to manage your certificates, simply
ask the CA to generate the CRL file for you.
It is unlikely, however, that the CA will provide the CRL file in the
requisite PEM format (the PEM format is proprietary to the
OpenSSL product). To convert a CRL file, crl.der, from DER
format to PEM format, use the following openssl command:

Where crl.pem is the converted PEM format file.

OpenSSL CA
If you use the OpenSSL product to manage a custom CA, you can
generate a CRL file by following the instructions in “Generating a
Certificate Revocation List”.

Creating an aggregate CRL file
If you need to revoke certificates from more than one CA, you can
create an aggregate CRL file simply by concatenating the CRL files
from each CA.
For example, if you have a CRL file generated by a commercial CA,
commercial_crl.pem, and another CRL file generated by a
home-grown OpenSSL CA, openssl_crl.pem, you can combine
these into a single CRL file as follows:

Windows

UNIX

openssl crl -inform DER -outform PEM -in crl.der -out crl.pem

copy commercial_crl.pem + openssl_crl.pem crl.pem

cat commercial_crl.pem openssl_crl.pem > crl.pem
 42 Artix Security Guide Java

Configuring HTTPS
Cipher Suites
This chapter explains how to specify the list of cipher suites that are made
available to client or server program for the purpose of establishing
HTTPS (Java runtime) connections. During a security handshake, the
client chooses a cipher suite that matches one of the cipher suites
available to the server.

Supported Cipher Suites
A cipher suite is a collection of security algorithms that determine
precisely how an SSL/TLS connection is implemented.
For example, the SSL/TLS protocol mandates that messages be
signed using a message digest algorithm. The choice of digest
algorithm, however, is determined by the particular cipher suite
being used for the connection. Typically, an application can choose
either the MD5 or the SHA digest algorithm.
The cipher suites available for SSL/TLS security in the Artix Java
runtime depend on the particular JSSE provider that is specified
on the endpoint.

JCE/JSSE and security providers
The Java Cryptography Extension (JCE) and the Java Secure
Socket Extension (JSSE) constitute a pluggable framework that
allows you to replace the Java security implementation with
arbitrary third-party toolkits, known as security providers.

SunJSSE provider
In practice, the security features of the Artix Java runtime have
been tested only with SUN’s JSSE provider, which is named
SunJSSE.
Hence, the SSL/TLS implementation and the list of available cipher
suites in the Artix Java runtime are effectively determined by what
is available from SUN’s JSSE provider.

Cipher suites supported by SunJSSE
The following cipher suites are supported by SUN’s JSSE provider
in the J2SE 1.5.0 Java development kit (see also Appendix A of
SUN’s JSSE Reference Guide):
• Null encryption, integrity-only ciphers:

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
 Artix Security Guide Java 43

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

• Standard ciphers:

JSSE reference guide
For more information about SUN’s JSSE framework, please consult
the JSSE Reference Guide at the following location:
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERef
Guide.htm

Cipher Suite Filters
In a typical application, you would usually want to restrict the list
of available cipher suites to a subset of the ciphers supported by
the JSSE provider.

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DH_anon_WITH_AES_128_CBC_SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA
TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
TLS_KRB5_EXPORT_WITH_RC4_40_MD5
TLS_KRB5_EXPORT_WITH_RC4_40_SHA
TLS_KRB5_WITH_3DES_EDE_CBC_MD5
TLS_KRB5_WITH_3DES_EDE_CBC_SHA
TLS_KRB5_WITH_DES_CBC_MD5
TLS_KRB5_WITH_DES_CBC_SHA
TLS_KRB5_WITH_RC4_128_MD5
TLS_KRB5_WITH_RC4_128_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
 44 Artix Security Guide Java

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Namespaces
Table 1 shows the XML namespaces that are referenced in this
section:

sec:cipherSuitesFilter element
You define a cipher suite filter using the sec:cipherSuitesFilter
element, which can be inserted either inside a
http:tlsClientParameters element or inside a
httpj:tlsServerParameters element. A typical
sec:cipherSuitesFilter element has the outline structure shown in
Example 7.

Semantics
The following semantic rules apply to the sec:cipherSuitesFilter
element:
1. If a sec:cipherSuitesFilter element does not appear in an

endpoint’s configuration (that is, it is absent from the relevant
http:conduit or httpj:engine-factory element), the following
default filter is used:

2. If the sec:cipherSuitesFilter element does appear in an
endpoint’s configuration, all cipher suites are excluded by
default.

Table 1: Namespaces Used for Configuring Cipher Suite Filters

Prefix Namespace URI

http http://cxf.apache.org/transports/http/configuration

httpj http://cxf.apache.org/transports/http-jetty/configuration

sec http://cxf.apache.org/configuration/security

Example 7: Structure of a sec:cipherSuitesFilter Element

<sec:cipherSuitesFilter>
 <sec:include>RegularExpression</sec:include>
 <sec:include>RegularExpression</sec:include>
 ...
 <sec:exclude>RegularExpression</sec:exclude>
 <sec:exclude>RegularExpression</sec:exclude>
 ...
</sec:cipherSuitesFilter>

<sec:cipherSuitesFilter>
 <sec:include>.*_EXPORT_.*</sec:include>
 <sec:include>.*_EXPORT1024.*</sec:include>
 <sec:include>.*_DES_.*</sec:include>
 <sec:include>.*_WITH_NULL_.*</sec:include>
</sec:cipherSuitesFilter>
Artix Security Guide Java 45

3. To include cipher suites, add a sec:include element to the
sec:cipherSuitesFilter element. The content of the
sec:include element is a regular expression that matches one
or more cipher suite names (for example, see the cipher suite
names in “Cipher suites supported by SunJSSE”).

4. To refine the selected set of cipher suites further, you can add
a sec:exclude element to the sec:cipherSuitesFilter element.
The content of the sec:exclude element is a regular expression
that matches zero or more cipher suite names from the
currently included set.

Regular expression matching
The grammar for the regular expressions that appear in the
sec:include and sec:exclude elements is defined by the Java
regular expression utility, java.util.regex.Pattern. For a detailed
description of the grammar, please consult the Java reference
guide,
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.
html.

Client conduit example
The following XML configuration shows an example of a client that
applies a cipher suite filter to the remote endpoint,
{WSDLPortNamespace}PortName. Whenever the client attempts to open
an SSL/TLS connection to this endpoint, it restricts the available
cipher suites to the set selected by the sec:cipherSuitesFilter
element.

Note: Sometimes it makes sense to explicitly exclude
cipher suites that are currently not included, in order
to future-proof against accidental inclusion of
undesired cipher suites.

<beans ... >
 <http:conduit

name="{WSDLPortNamespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:cipherSuitesFilter>

 <sec:include>.*_WITH_3DES_.*</sec:include>

 <sec:include>.*_WITH_DES_.*</sec:include>

 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>

 <sec:exclude>.*_DH_anon_.*</sec:exclude>

 </sec:cipherSuitesFilter>

 </http:tlsClientParameters>
 </http:conduit>

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>
 46 Artix Security Guide Java

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

SSL/TLS Protocol Version
The versions of the SSL/TLS protocol that are supported by the
Artix Java runtime depend on the particular JSSE provider
configured. By default, the JSSE provider is configured to be SUN’s
JSSE provider implementation.

SSL/TLS protocol versions supported by
SunJSSE
Table 2 shows the SSL/TLS protocol versions supported by SUN’s
JSSE provider.

Specifying the SSL/TLS protocol version
You can specify the preferred SSL/TLS protocol version as an
attribute on the http:tlsClientParameters element (client side) or
on the httpj:tlsServerParameters element (server side).

Client side SSL/TLS protocol version
You can specify the protocol to be TLS on the client side by setting
the secureSocketProtocol attribute as follows:

Table 2: SSL/TLS Protocols Supported by SUN’s JSSE Provider

Protocol Description

SSL Supports some version of SSL; may support
other versions

SSLv2 Supports SSL version 2 or higher

SSLv3 Supports SSL version 3; may support other
versions

TLS Supports some version of TLS; may support
other versions

TLSv1 Supports TLS version 1; may support other
versions

TLSv1.2 As of JDK 1.7, SunJSSE supports TLS v1.2

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <http:conduit name="{Namespace}PortName.http-conduit">
 ...
 <http:tlsClientParameters secureSocketProtocol="TLS">
 ...
 </http:tlsClientParameters>
 </http:conduit>
 ...
</beans>
Artix Security Guide Java 47

Server side SSL/TLS protocol version
You can specify the protocol to be TLS on the server side by
setting the secureSocketProtocol attribute as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <httpj:engine-factory bus="cxf">
 <httpj:engine port="9001">
 ...
 <httpj:tlsServerParameters secureSocketProtocol="TLS">
 ...
 </httpj:tlsClientParameters>
 </httpj:engine>
 </httpj:engine-factory>
 ...
</beans>
 48 Artix Security Guide Java

The WS-Policy
Framework
This chapter provides an introduction to the basic concepts of the
WS-Policy framework, defining policy subjects and policy assertions, and
explaining how policy assertions can be combined to make policy
expressions.

Introduction to WS-Policy
The WS-Policy specification (http://www.w3.org/TR/ws-policy/)
provides a general framework for applying policies that modify the
semantics of connections and communications at runtime in a Web
services application. Artix ESB security uses the WS-Policy
framework to configure message protection and authentication
requirements.

Policies and policy references
The simplest way to specify a policy is to embed it directly where
you want to apply it. For example, to associate a policy with a
specific port in the WSDL contract, you can specify it as follows:

An alternative way to specify a policy is to insert a policy reference
element, wsp:PolicyReference, at the point where you want to
apply the policy and then insert the policy element, wsp:Policy, at

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

... >
 ...
 <wsdl:service name="PingService10">
 <wsdl:port name="UserNameOverTransport_IPingService"

 binding="BindingName">
 <wsp:Policy>
 <!-- Policy expression comes here! -->
 </wsp:Policy>
 <soap:address location="SOAPAddress"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>
 Artix Security Guide Java 49

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/

some other point in the XML file. For example, to associate a
policy with a specific port using a policy reference, you could use a
configuration like the following:

Where the policy reference, wsp:PolicyReference, locates the
referenced policy using the ID, PolicyID (note the addition of the
prefix character in the URI attribute). The policy itself,
wsp:Policy, must be identified by adding the attribute,
wsu:Id="PolicyID".

Policy subjects
The entities with which policies are associated are called policy
subjects. For example, you can associate a policy with an
endpoint, in which case the endpoint is the policy subject. It is
possible to associate multiple policies with any given policy
subject. The WS-Policy framework supports the following kinds of
policy subject:
• Service policy subject
• Endpoint policy subject
• Operation policy subject
• Message policy subject

Service policy subject
To associate a policy with a service, insert either a <wsp:Policy>
element or a <wsp:PolicyReference> element as a sub-element of
the following WSDL 1.1 element:
• wsdl:service—apply the policy to all of the ports (endpoints)

offered by this service.

Endpoint policy subject
To associate a policy with an endpoint, insert either a <wsp:Policy>
element or a <wsp:PolicyReference> element as a sub-element of
any of the following WSDL 1.1 elements:

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

... >
 ...
 <wsdl:service name="PingService10">
 <wsdl:port name="UserNameOverTransport_IPingService"

 binding="BindingName">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:address location="SOAPAddress"/>
 </wsdl:port>
 </wsdl:service>
 ...
 <wsp:Policy wsu:Id="PolicyID">
 <!-- Policy expression comes here ... -->
 </wsp:Policy>
</wsdl:definitions>
 50 Artix Security Guide Java

• wsdl:portType—apply the policy to all of the ports (endpoints)
that use this port type.

• wsdl:binding—apply the policy to all of the ports that use this
binding.

• wsdl:port—apply the policy to this endpoint only.
For example, you can associate a policy with an endpoint binding
as follows (using a policy reference):

Operation policy subject
To associate a policy with an operation, insert either a
<wsp:Policy> element or a <wsp:PolicyReference> element as a
sub-element of any of the following WSDL 1.1 elements:
• wsdl:portType/wsdl:operation

• wsdl:binding/wsdl:operation

For example, you can associate a policy with an operation in a
binding as follows (using a policy reference):

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">
 <wsp:PolicyReference URI="#PolicyID"/>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">

 <wsdl:operation name="Ping">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:operation soapAction="http://xmlsoap.org/Ping"

style="document"/>
 <wsdl:input name="PingRequest"> ... </wsdl:input>
 <wsdl:output name="PingResponse"> ... </wsdl:output>
 </wsdl:operation>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>
Artix Security Guide Java 51

Message policy subject
To associate a policy with a message, insert either a <wsp:Policy>
element or a <wsp:PolicyReference> element as a sub-element of
any of the following WSDL 1.1 elements:
• wsdl:message

• wsdl:portType/wsdl:operation/wsdl:input

• wsdl:portType/wsdl:operation/wsdl:output

• wsdl:portType/wsdl:operation/wsdl:fault

• wsdl:binding/wsdl:operation/wsdl:input

• wsdl:binding/wsdl:operation/wsdl:output

• wsdl:binding/wsdl:operation/wsdl:fault

For example, you can associate a policy with a message in a
binding as follows (using a policy reference):

Policy Expressions
In general, a wsp:Policy element is composed of multiple different
policy settings (where individual policy settings are specified as
policy assertions). Hence, the policy defined by a wsp:Policy
element is really a composite object. The content of the wsp:Policy
element is called a policy expression, where the policy expression
consists of various logical combinations of the basic policy
assertions. By tailoring the syntax of the policy expression, you
can determine what combinations of policy assertions must be
satisfied at runtime in order to satisfy the policy overall.
This section describes the syntax and semantics of policy
expressions in detail.

<wsdl:definitions targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">

 <wsdl:operation name="Ping">
 <soap:operation soapAction="http://xmlsoap.org/Ping"

style="document"/>
 <wsdl:input name="PingRequest">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="PingResponse"> ... </wsdl:output>
 </wsdl:operation>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>
 52 Artix Security Guide Java

Policy assertions
Policy assertions are the basic building blocks that can be
combined in various ways to produce a policy. A policy assertion
has two key characteristics: it adds a basic unit of functionality to
the policy subject and it represents a boolean assertion to be
evaluated at runtime. For example, consider the following policy
assertion that requires a WS-Security username token to be
propagated with request messages:

When associated with an endpoint policy subject, this policy
assertion has the following effects:
• The Web service endpoint marshals/unmarshals the

UsernameToken credentials.
• At runtime, the policy assertion returns true, if

UsernameToken credentials are provided (on the client side)
or received in the incoming message (on the server side);
otherwise the policy assertion returns false.

Note that if a policy assertion returns false, this does not
necessarily result in an error. The net effect of a particular policy
assertion depends on how it is inserted into a policy and on how it
is combined with other policy assertions.

Policy alternatives
A policy is built up using policy assertions, which can additionally
be qualified using the wsp:Optional attribute, and various nested
combinations of the wsp:All and wsp:ExactlyOne elements. The net
effect of composing these elements is to produce a range of
acceptable policy alternatives. As long as one of these acceptable
policy alternatives is satisfied, the overall policy is also satisfied
(evaluates to true).

<sp:SupportingTokens
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
</sp:SupportingTokens>
Artix Security Guide Java 53

wsp:All element
When a list of policy assertions is wrapped by the wsp:All
element, all of the policy assertions in the list must evaluate to
true. For example, consider the following combination of
authentication and authorization policy assertions:

The preceding policy will be satisfied for a particular incoming
request, if the following conditions both hold:
• WS-Security UsernameToken credentials must be present;

and
• A SAML token must be present.

wsp:ExactlyOne element
When a list of policy assertions is wrapped by the wsp:ExactlyOne
element, at least one of the policy assertions in the list must
evaluate to true. The runtime goes through the list, evaluating
policy assertions until it finds a policy assertion that returns true.
At that point, the wsp:ExactlyOne expression is satisfied (returns
true) and any remaining policy assertions from the list will not be
evaluated. For example, consider the following combination of
authentication policy assertions:

<wsp:Policy
wsu:Id="AuthenticateAndAuthorizeWSSUsernameTokenPolicy">

 <wsp:All>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:All>
</wsp:Policy>

Note: The wsp:Policy element is semantically equivalent to
wsp:All. Hence, if you removed the wsp:All element from the
preceding example, you would obtain a semantically equivalent
example.

<wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
 <wsp:ExactlyOne>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:ExactlyOne>
</wsp:Policy>
 54 Artix Security Guide Java

The preceding policy will be satisfied for a particular incoming
request, if either of the following conditions hold:
• WS-Security UsernameToken credentials are present; or
• A SAML token is present.
Note, in particular, that if both credential types are present, the
policy would be satisfied after evaluating one of the assertions,
but no guarantees can be given as to which of the policy
assertions actually gets evaluated.

The Empty policy
A special case is the empty policy, an example of which is shown
in Example 8.

Where the empty policy alternative, <wsp:All/>, represents an
alternative for which no policy assertions need be satisfied. In
other words, it always returns true. When <wsp:All/> is available
as an alternative, the overall policy can be satisfied even when no
policy assertions are true.

The Null policy
A special case is the null policy, an example of which is shown in
Example 9.

Where the null policy alternative, <wsp:ExactlyOne/>, represents an
alternative that is never satisfied. In other words, it always
returns false.

Normal form
In practice, by nesting the <wsp:All> and <wsp:ExactlyOne>
elements, you can produce fairly complex policy expressions,
whose policy alternatives might be difficult to work out. To
facilitate the comparison of policy expressions, the WS-Policy
specification defines a canonical or normal form for policy
expressions, such that you can read off the list of policy
alternatives unambiguously. Every valid policy expression can be
reduced to the normal form.

Example 8: The Empty Policy

<wsp:Policy ... >
 <wsp:ExactlyOne>
 <wsp:All/>
 </wsp:ExactlyOne>
</wsp:Policy>

Example 9: The Null Policy

<wsp:Policy ... >
 <wsp:ExactlyOne/>
</wsp:Policy>
Artix Security Guide Java 55

In general, a normal form policy expression conforms to the
syntax shown in Example 10:

Where each line of the form, <wsp:All>...</wsp:All>, represents a
valid policy alternative. If one of these policy alternatives is
satisfied, the policy is satisfied overall.

Example 10: Normal Form Syntax

<wsp:Policy ... >
 <wsp:ExactlyOne/>
 <wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>
 <wsp:All> <Assertion .../> ... <Assertion .../>
</wsp:All>
 ...
 </wsp:ExactlyOne>
</wsp:Policy>
 56 Artix Security Guide Java

Message Protection
The following message protection mechanisms are described in this
chapter: protection against eavesdropping (by employing encryption
algorithms) and protection against message tampering (by employing
message digest algorithms). The protection can be applied at various
levels of granularity and to different protocol layers. At the transport
layer, you have the option of applying protection to the entire contents of
the message; while at the SOAP layer, you have the option of applying
protection to various parts of the message (bodies, headers, or
attachments).

Transport Layer Message Protection
Transport layer message protection refers to the message
protection (encryption and signing) that is provided by the
transport layer. For example, HTTPS provides encryption and
message signing features using SSL/TLS. In fact,
WS-SecurityPolicy does not add much to the HTTPS feature set,
because HTTPS is already fully configurable using Spring XML
configuration (see “Configuring HTTPS and IIOP/TLS”). An
advantage of specifying a transport binding policy for HTTPS,
however, is that it enables you to embed security requirements in
the WSDL contract. Hence, any client that obtains a copy of the
WSDL contract can discover what the transport layer security
requirements are for the endpoints in the WSDL contract.

Prerequisites
If you use WS-SecurityPolicy to configure the HTTPS transport,
you must also configure HTTPS security appropriately in the
Spring configuration.
Example 11 shows how to configure a client to use the HTTPS
transport protocol. The sec:keyManagers element specifies the
client's own certificate, alice.pfx, and the sec:trustManagers
element specifies the trusted CA list. Note how the http:conduit
 Artix Security Guide Java 57

element's name attribute uses wildcards to match the endpoint
address. For details of how to configure HTTPS on the client side,
see “Configuring HTTPS and IIOP/TLS”.

Example 12 shows how to configure a server to use the HTTPS
transport protocol. The sec:keyManagers element specifies the
server's own certificate, bob.pfx, and the sec:trustManagers
element specifies the trusted CA list. For details of how to
configure HTTPS on the server side, see “Configuring HTTPS and
IIOP/TLS”.

Example 11: Client HTTPS Configuration in Spring

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:sec="http://cxf.apache.org/configuration/security"

... >

 <http:conduit name="https://.*/UserNameOverTransport.*">
 <http:tlsClientParameters disableCNCheck="true">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="pkcs12" password="password"
 resource="certs/alice.pfx"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="pkcs12" password="password"
 resource="certs/bob.pfx"/>
 </sec:trustManagers>
 </http:tlsClientParameters>
 </http:conduit>
 ...
</beans>

Example 12: Server HTTPS Configuration in Spring

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:sec="http://cxf.apache.org/configuration/security"

... >

 <httpj:engine-factory id="tls-settings">
 <httpj:engine port="9001">
 <httpj:tlsServerParameters>
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="pkcs12" password="password"
 resource="certs/bob.pfx"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="pkcs12" password="password"
 resource="certs/alice.pfx"/>
 </sec:trustManagers>
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>
 ...
</beans>
 58 Artix Security Guide Java

Policy subject
A transport binding policy must be applied to an endpoint policy
subject (see “Endpoint policy subject”). For example, given the
transport binding policy with ID,
UserNameOverTransport_IPingService_policy, you could apply the
policy to an endpoint binding as follows:

Syntax
The TransportBinding element has the following syntax:

<wsdl:binding name="UserNameOverTransport_IPingService"
type="i0:IPingService">

 <wsp:PolicyReference
 URI="#UserNameOverTransport_IPingService_policy"/>

 ...
</wsdl:binding>

<sp:TransportBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 <sp:TransportToken ... >
 <wsp:Policy> ... </wsp:Policy>
 ...
 </sp:TransportToken>
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:TransportBinding>
Artix Security Guide Java 59

Sample policy
Example 13 shows an example of a transport binding that requires
confidentiality and integrity using the HTTPS transport (specified
by the sp:HttpsToken element) and a 256-bit algorithm suite
(specified by the sp:Basic256 element).

sp:TransportToken
This element has a two-fold effect: it requires a particular type of
security token and it indicates how the transport is secured. For
example, by specifying the sp:HttpsToken, you indicate that the
connection is secured by the HTTPS protocol and the security
tokens are X.509 certificates.

sp:AlgorithmSuite
This element specifies the suite of cryptographic algorithms to use
for signing and encryption. For details of the available algorithm
suites, see “Specifying the Algorithm Suite”.

Example 13: Example of a Transport Binding

<wsp:Policy wsu:Id="UserNameOverTransport_IPingService_policy">

 <wsp:ExactlyOne>
 <wsp:All>
 <sp:TransportBinding xmlns:sp=

"http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken RequireClientCertificate="false"/>

 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:Algorithm
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 </wsp:Policy>
 </sp:TransportBinding>
 ...
 <sp:Wss10 xmlns:sp=

"http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
 60 Artix Security Guide Java

sp:Layout
This element specifies whether to impose any conditions on the
order in which security headers are added to the SOAP message.
The sp:Lax element specifies that no conditions are imposed on
the order of security headers. The alternatives to sp:Lax are
sp:Strict, sp:LaxTimestampFirst, or sp:LaxTimestampLast.

sp:IncludeTimestamp
If this element is included in the policy, the runtime adds a
wsu:Timestamp element to the wsse:Security header. By default,
the timestamp is not included.

sp:MustSupportRefKeyIdentifier
This element specifies that the security runtime must be able to
process Key Identifier token references, as specified in the
WS-Security 1.0 specification.
A key identifier is a mechanism for identifying a key token, which
may be used inside signature or encryption elements. Artix ESB
requires this feature.

sp:MustSupportRefIssuerSerial
This element specifies that the security runtime must be able to
process Issuer and Serial Number token references, as specified in
the WS-Security 1.0 specification. An issuer and serial number is a
mechanism for identifying a key token, which may be used inside
signature or encryption elements. Artix ESB requires this feature.

SOAP Message Protection

Introduction to SOAP Message Protection
By applying message protection at the SOAP encoding layer,
instead of at the transport layer, you have access to a more
flexible range of protection policies. In particular, because the
SOAP layer is aware of the message structure, you can apply
protection at a finer level of granularity—for example, by
encrypting and signing only those headers that actually require
protection. This feature enables you to support more sophisticated
multi-tier architectures. For example, one plaintext header might
be aimed at an intermediate tier (located within a secure
intranet), while an encrypted header might be aimed at the final
destination (reached through an insecure public network).

Security bindings
As described in the WS-SecurityPolicy specification, one of the
following binding types can be used to protect SOAP messages:
• sp:TransportBinding—the transport binding refers to message

protection provided at the transport level (for example,
through HTTPS). This binding can be used to secure any
message type, not just SOAP, and it is described in detail in
the preceding section, “Transport Layer Message Protection”.
Artix Security Guide Java 61

• sp:AsymmetricBinding—the asymmetric binding refers to
message protection provided at the SOAP message encoding
layer, where the protection features are implemented using
asymmetric cryptography (also known as public key
cryptography).

• sp:SymmetricBinding—the symmetric binding refers to
message protection provided at the SOAP message encoding
layer, where the protection features are implemented using
symmetric cryptography. Examples of symmetric
cryptography are the tokens provided by
WS-SecureConversation and Kerberos tokens.

Message protection
The following qualities of protection can be applied to part or all of
a message:
• Encryption.
• Signing.
• Signing+encryption (sign before encrypting).
• Encryption+signing (encrypt before signing).
These qualities of protection can be arbitrarily combined in a
single message. Thus, some parts of a message can be just
encrypted, while other parts of the message are just signed, and
other parts of the message can be both signed and encrypted. It is
also possible to leave parts of the message unprotected.
The most flexible options for applying message protection are
available at the SOAP layer (sp:AsymmetricBinding or
sp:SymmetricBinding). The transport layer (sp:TransportBinding)
only gives you the option of applying protection to the whole
message.

Specifying parts of the message to
protect
Currently, Artix ESB enables you to sign or encrypt the following
parts of a SOAP message:
• Body—sign and/or encrypt the whole of the soap:BODY element

in a SOAP message.
• Header(s)—sign and/or encrypt one or more SOAP message

headers. You can specify the quality of protection for each
header individually.

• Attachments—sign and/or encrypt all of the attachments in a
SOAP message.

The WS-SecurityPolicy specification also defines policies for
applying protection to individual XML elements, but this is
currently not supported in Artix ESB.
 62 Artix Security Guide Java

Role of configuration
Not all of the details required for message protection are specified
using policies. The policies are primarily intended to provide a way
of specifying the quality of protection required for a service.
Supporting details, such as security tokens, passwords, and so on,
must be provided using a separate, product-specific mechanism.
In practice, this means that in Artix ESB, some supporting
configuration details must be provided in Spring XML configuration
files. For details, see “Providing Encryption Keys and Signing
Keys”.

Basic Signing and Encryption Scenario
The scenario described here is a client-server application, where
an asymmetric binding policy is set up to encrypt and sign the
SOAP body of messages that pass back and forth between the
client and the server.

Example scenario
Figure 6 shows an overview of the basic signing and encryption
scenario, which is specified by associating an asymmetric binding
policy with an endpoint in the WSDL contract.

Figure 6: Basic Signing and Encryption Scenario
Artix Security Guide Java 63

Scenario steps
When the client in Figure 6 invokes a synchronous operation on
the SoapPort endpoint, the request and reply message are
processed as follows:
1. As the outgoing request message passes through the

WS-SecurityPolicy handler, the handler processes the
message in accordance with the policies specified in the
client’s protection policy file. In this example, the handler
performs the following processing:
i. Encrypt the SOAP body of the message using Bob’s public

key.
ii. Sign the encrypted SOAP body using Alice’s private key.

2. As the incoming request message passes through the server’s
WS-SecurityPolicy handler, the handler processes the
message in accordance with the policies specified in the
server’s asymmetric binding policy. In this example, the
handler performs the following processing:
i. Verify the signature using Alice’s public key.
ii. Decrypt the SOAP body using Bob’s private key.

3. As the outgoing reply message passes back through the wss
server handler, the handler performs the following processing:
i. Encrypt the SOAP body of the message using Alice’s

public key.
ii. Sign the encrypted SOAP body using Bob’s private key.

4. As the incoming reply message passes back through the
server’s WS-SecurityPolicy handler, the handler performs the
following processing:
i. Verify the signature using Bob’s public key.
ii. Decrypt the SOAP body using Alice’s private key.

Specifying an AsymmetricBinding Policy
The asymmetric binding policy implements SOAP message
protection using asymmetric key algorithms (public/private key
combinations) and does so at the SOAP layer. The encryption and
signing algorithms used by the asymmetric binding are similar to
the encryption and signing algorithms used by SSL/TLS. A crucial
difference, however, is that SOAP message protection enables you
to select particular parts of a message to protect (for example,
individual headers, body, or attachments), whereas transport
layer security can operate only on the whole message.
 64 Artix Security Guide Java

Policy subject
An asymmetric binding policy must be applied to an endpoint
policy subject (see “Endpoint policy subject”). For example, given
the asymmetric binding policy with ID,
MutualCertificate10SignEncrypt_IPingService_policy, you could
apply the policy to an endpoint binding as follows:

Syntax
The AsymmetricBinding element has the following syntax:

<wsdl:binding
name="MutualCertificate10SignEncrypt_IPingService"
type="i0:IPingService">

 <wsp:PolicyReference
URI="#MutualCertificate10SignEncrypt_IPingService_policy"/>

 ...
</wsdl:binding>

<sp:AsymmetricBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:InitiatorToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorToken>
) | (
 <sp:InitiatorSignatureToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorSignatureToken>
 <sp:InitiatorEncryptionToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorEncryptionToken>
)(
 <sp:RecipientToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientToken>
) | (
 <sp:RecipientSignatureToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientSignatureToken>
 <sp:RecipientEncryptionToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientEncryptionToken>
)
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 <sp:EncryptBeforeSigning ... /> ?
 <sp:EncryptSignature ... /> ?
 <sp:ProtectTokens ... /> ?
 <sp:OnlySignEntireHeadersAndBody ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:AsymmetricBinding>
Artix Security Guide Java 65

Sample policy
Example 14 shows an example of an asymmetric binding that
supports message protection with signatures and encryption,
where the signing and encryption is done using pairs of
public/private keys (that is, using asymmetric cryptography). This
example does not specify which parts of the message should be
signed and encrypted, however. For details of how to do that, see
“Specifying Parts of Message to Encrypt and Sign”.
 66 Artix Security Guide Java

Example 14: Example of an Asymmetric Binding

<wsp:Policy
wsu:Id="MutualCertificate10SignEncrypt_IPingService_policy">

 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://schemas.xmlsoap.org/ws

/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://schemas.xmlsoap.org/ws/

2005/07/securitypolicy/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/

2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
Artix Security Guide Java 67

sp:InitiatorToken
The initiator token refers to the public/private key-pair owned by
the initiator. This token is used as follows:
• The token's private key signs messages sent from initiator to

recipient.
• The token's public key verifies signatures received by the

recipient.
• The token's public key encrypts messages sent from recipient

to initiator.
• The token's private key decrypts messages received by the

initiator.
Confusingly, this token is used both by the initiator and by the
recipient. However, only the initiator has access to the private key
so, in this sense, the token can be said to belong to the initiator.
In “Basic Signing and Encryption Scenario”, the initiator token is
the certificate, Alice.
This element should contain a nested wsp:Policy element and
sp:X509Token element as shown. The sp:IncludeToken attribute is set
to AlwaysToRecipient, which instructs the runtime to include Alice's
public key with every message sent to the recipient. This option is
useful, in case the recipient wants to use the initiator's certificate
to perform authentication.
The most deeply nested element, WssX509V3Token10 is optional.
It specifies what specification version the X.509 certificate should
conform to. The following alternatives (or none) can be specified
here:
sp:WssX509V3Token10

This optional element is a policy assertion that indicates that
an X509 Version 3 token should be used.

sp:WssX509Pkcs7Token10
This optional element is a policy assertion that indicates that
an X509 PKCS7 token should be used.

sp:WssX509PkiPathV1Token10
This optional element is a policy assertion that indicates that
an X509 PKI Path Version 1 token should be used.

sp:WssX509V1Token11
This optional element is a policy assertion that indicates that
an X509 Version 1 token should be used.

sp:WssX509V3Token11
This optional element is a policy assertion that indicates that
an X509 Version 3 token should be used.

sp:WssX509Pkcs7Token11
This optional element is a policy assertion that indicates that
an X509 PKCS7 token should be used.

sp:WssX509PkiPathV1Token11
This optional element is a policy assertion that indicates that
an X509 PKI Path Version 1 token should be used.
 68 Artix Security Guide Java

sp:RecipientToken
The recipient token refers to the public/private key-pair owned by
the recipient. This token is used as follows:
• The token's public key encrypts messages sent from initiator

to recipient.
• The token's private key decrypts messages received by the

recipient.
• The token's private key signs messages sent from recipient to

initiator.
• The token's public key verifies signatures received by the

initiator.
Confusingly, this token is used both by the recipient and by the
initiator. However, only the recipient has access to the private key
so, in this sense, the token can be said to belong to the recipient.
In the “Basic Signing and Encryption Scenario”, the recipient
token is the certificate, Bob.
This element should contain a nested wsp:Policy element and
sp:X509Token element as shown. The sp:IncludeToken attribute is
set to Never, because there is no need to include Bob's public key
in the reply messages.

sp:AlgorithmSuite
This element specifies the suite of cryptographic algorithms to use
for signing and encryption. For details of the available algorithm
suites, see “Specifying the Algorithm Suite”.

sp:Layout
This element specifies whether to impose any conditions on the
order in which security headers are added to the SOAP message.
The sp:Lax element specifies that no conditions are imposed on
the order of security headers. The Message Protection alternatives
to sp:Lax are sp:Strict, sp:LaxTimestampFirst, or
sp:LaxTimestampLast.

sp:IncludeTimestamp
If this element is included in the policy, the runtime adds a
wsu:Timestamp element to the wsse:Security header. By default, the
timestamp is not included.

Note: In Artix ESB, there is never a need to send Bob's or
Alice's token in a message, because both Bob's certificate and
Alice's certificate are provided at both ends of the connection—
see “Providing Encryption Keys and Signing Keys”.
Artix Security Guide Java 69

sp:EncryptBeforeSigning
If a message part is subject to both encryption and signing, it is
necessary to specify the order in which these operations are
performed. The default order is to sign before encrypting. But if
you include this element in your asymmetric policy, the order is
changed to encrypt before signing.

sp:EncryptSignature
This element specifies that the message signature must be
encrypted (by the encryption token, specified as described in
“Providing Encryption Keys and Signing Keys”). Default is false.

sp:ProtectTokens
This element specifies that signatures must cover the token used
to generate that signature. Default is false.

sp:OnlySignEntireHeadersAndBody
This element specifies that signatures can be applied only to an
entire body or to entire headers, not to sub-elements of the body
or sub-elements of a header. When this option is enabled, you are
effectively prevented from using the sp:SignedElements assertion
(see “Specifying Parts of Message to Encrypt and Sign”).

Specifying a SymmetricBinding Policy
The symmetric binding policy implements SOAP message
protection using symmetric key algorithms (shared secret key)
and does so at the SOAP layer. Examples of a symmetric binding
are the Kerberos protocol and the WS-SecureConversation
protocol.

Note: Implicitly, this element also affects the order of the
decryption and signature verification operations. For example, if
the sender of a message signs before encrypting, the receiver of
the message must decrypt before verifying the signature.

Note: The message signature is the signature obtained directly
by signing various parts of the message, such as message body,
message headers, or individual elements (see “Specifying Parts
of Message to Encrypt and Sign”). Sometimes the message
signature is referred to as the primary signature, because the
WS-SecurityPolicy specification also supports the concept of an
endorsing supporting token, which is used to sign the primary
signature. Hence, if an sp:EndorsingSupportingTokens element is
applied to an endpoint, you can have a chain of signatures: the
primary signature, which signs the message itself, and the
secondary signature, which signs the primary signature.
For more details about the various kinds of endorsing supporting
token, see “SupportingTokens assertions”.

Note: Currently, Artix ESB supports only WS-SecureConversation
tokens in a symmetric binding.
 70 Artix Security Guide Java

Policy subject
A symmetric binding policy must be applied to an endpoint policy
subject (see “Endpoint policy subject”). For example, given the
symmetric binding policy with ID
SecureConversation_MutualCertificate10SignEncrypt_IPingService_p
olicy, you could apply the policy to an endpoint binding as
follows:

Syntax
The SymmetricBinding element has the following syntax:

Sample policy
Example 15 shows an example of a symmetric binding that
supports message protection with signatures and encryption,
where the signing and encryption is done using a single symmetric
key (that is, using symmetric cryptography). This example does

<wsdl:binding name="SecureConversation_MutualCertific
ate10SignEncrypt_IPingService" type="i0:IPingService">

<wsp:PolicyReference URI="#SecureConversation_MutualCerti
ficate10SignEncrypt_IPingService_policy"/>
...
</wsdl:binding>

<sp:SymmetricBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:EncryptionToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:EncryptionToken>
 <sp:SignatureToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:SignatureToken>
) | (
 <sp:ProtectionToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:ProtectionToken>
)
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 <sp:EncryptBeforeSigning ... /> ?
 <sp:EncryptSignature ... /> ?
 <sp:ProtectTokens ... /> ?
 <sp:OnlySignEntireHeadersAndBody ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:SymmetricBinding>
Artix Security Guide Java 71

not specify which parts of the message should be signed and
encrypted, however. For details of how to do that, see “Specifying
Parts of Message to Encrypt and Sign”.

sp:ProtectionToken
This element specifies a symmetric token to use for both signing
and encrypting messages. For example, you could specify a
WS-SecureConversation token here.
If you want to use distinct tokens for signing and encrypting
operations, use the sp:SignatureToken element and the
sp:EncryptionToken element in place of this element.

Example 15: Example of a Symmetric Binding

<wsp:Policy
wsu:Id="SecureConversation_MutualCertificate10SignEncrypt_
IPingService_policy">

 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypoli
cy">

 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SecureConversationToken>
 ...
 </sp:SecureConversationToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss10

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy">

 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
 72 Artix Security Guide Java

sp:SignatureToken
This element specifies a symmetric token to use for signing
messages. It should be used in combination with the
sp:EncryptionToken element.

sp:EncryptionToken
This element specifies a symmetric token to use for encrypting
messages. It should be used in combination with the
sp:SignatureToken element.

sp:AlgorithmSuite
This element specifies the suite of cryptographic algorithms to use
for signing and encryption. For details of the available algorithm
suites, see “Specifying the Algorithm Suite”.

sp:Layout
This element specifies whether to impose any conditions on the
order in which security headers are added to the SOAP message.
The sp:Lax element specifies that no conditions are imposed on
the order of security headers. The alternatives to sp:Lax are
sp:Strict, sp:LaxTimestampFirst, or sp:LaxTimestampLast.

sp:IncludeTimestamp
If this element is included in the policy, the runtime adds a
wsu:Timestamp element to the wsse:Security header. By default,
the timestamp is not included.

sp:EncryptBeforeSigning
When a message part is subject to both encryption and signing, it
is necessary to specify the order in which these operations are
performed. The default order is to sign before encrypting. But if
you include this element in your symmetric policy, the order is
changed to encrypt before signing.

sp:EncryptSignature
This element specifies that the message signature must be
encrypted. Default is false.

sp:ProtectTokens
This element specifies that signatures must cover the token used
to generate that signature. Default is false.

sp:OnlySignEntireHeadersAndBody
This element specifies that signatures can be applied only to an
entire body or to entire headers, not to sub-elements of the body
or sub-elements of a header. When this option is enabled, you are
effectively prevented from using the sp:SignedElements assertion
(see “Specifying Parts of Message to Encrypt and Sign”).

Note: Implicitly, this element also affects the order of the
decryption and signature verification operations. For example, if
the sender of a message signs before encrypting, the receiver of
the message must decrypt before verifying the signature.
Artix Security Guide Java 73

Specifying Parts of Message to Encrypt and Sign
Encryption and signing provide two kinds of protection:
confidentiality and integrity, respectively. The WS-SecurityPolicy
protection assertions are used to specify which parts of a message
are subject to protection. Details of the protection mechanisms,
on the other hand, are specified separately in the relevant binding
policy (see “Specifying an AsymmetricBinding Policy”, “Specifying
a SymmetricBinding Policy”, and “Transport Layer Message
Protection”).
The protection assertions described here are really intended to be
used in combination with SOAP security, because they apply to
features of a SOAP message. Nonetheless, these policies can also
be satisfied by a transport binding (such as HTTPS), which applies
protection to the entire message, rather than to specific parts.

Policy subject
A protection assertion must be applied to a message policy subject
(see “Message policy subject”). In other words, it must be placed
inside a wsdl:input, wsdl:output, or wsdl:fault element in a WSDL
binding. For example, given the protection policy with ID
MutualCertificate10SignEncrypt_IPingService_header_Input_policy,
you could apply the policy to a wsdl:input message part as
follows:

Protection assertions
The following WS-SecurityPolicy protection assertions are
currently supported by Artix ESB:
• SignedParts

• EncryptedParts

The following WS-SecurityPolicy protection assertions are not
supported by Artix ESB:
• SignedElements

• EncryptedElements

• ContentEncryptedElements

• RequiredElements

<wsdl:operation name="header">
 <soap:operation

soapAction="http://InteropBaseAddress/interop/header"
style="document"/>

 <wsdl:input name="headerRequest">
 <wsp:PolicyReference

URI="#MutualCertificate10SignEncrypt_IPingService_header_Inp
ut_policy"/>

 <soap:header message="i0:headerRequest_Headers"
part="CustomHeader" use="literal"/>

 <soap:body use="literal"/>
 </wsdl:input>
 ...
</wsdl:operation>
 74 Artix Security Guide Java

• RequiredParts

Syntax
The SignedParts element has the following syntax:

The EncryptedParts element has the following syntax:

Sample policy
Example 16 on page 119 shows a policy that combines two
protection assertions: a signed parts assertion and an encrypted
parts assertion. When this policy is applied to a message part, the
affected message bodies are signed and encrypted. In addition,
the message header named CustomHeader is signed.

sp:Body
This element specifies that protection (encryption or signing) is
applied to the body of the message. The protection is applied to
the entire message body: that is, the soap:Body element, its
attributes, and its content.

<sp:SignedParts xmlns:sp="..." ... >
 <sp:Body />?
 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*
 <sp:Attachments />?
 ...
</sp:SignedParts>

<sp:EncryptedParts xmlns:sp="..." ... >
 <sp:Body/>?
 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*
 <sp:Attachments />?
...
</sp:EncryptedParts>

Example 16: Integrity and Encryption Policy Assertions

<wsp:Policy
wsu:Id="MutualCertificate10SignEncrypt_IPingService_header_Input_policy">

 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 <sp:Header Name="CustomHeader"

Namespace="http://InteropBaseAddress/interop"/>
 </sp:SignedParts>
 <sp:EncryptedParts

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
Artix Security Guide Java 75

sp:Header
This element specifies that protection is applied to the SOAP
header specified by the header's local name, using the Name
attribute, and namespace, using the Namespace attribute. The
protection is applied to the entire message header, including its
attributes and its content.

sp:Attachments
This element specifies that all SOAP with Attachments (SwA)
attachments are protected.

Providing Encryption Keys and Signing Keys
The standard WS-SecurityPolicy policies are designed to specify
security requirements in some detail: for example, security
protocols, security algorithms, token types, authentication
requirements, and so on, are all described. But the standard policy
assertions do not provide any mechanism for specifying associated
security data, such as keys and credentials. WS-SecurityPolicy
expects that the requisite security data is provided through a
proprietary mechanism. In Artix ESB, the associated security data
is provided through Spring XML configuration.

Configuring encryption keys and signing
keys
You can specify an application's encryption keys and signing keys
by setting properties on a client's request context or on an
endpoint context (see “Add encryption and signing properties to
Spring configuration”. The properties you can set are shown in
Table 3.

Table 3: Encryption and Signing Properties

Property Description

ws-security.signature.properties The WSS4J properties file/object
that contains the WSS4J
properties for configuring the
signature keystore (which is also
used for decrypting) and Crypto
objects.

ws-security.signature.username (Optional) The username or alias
of the key in the signature
keystore to use. If not specified,
the alias set in the properties file
is used. If that is also not set,
and the keystore only contains a
single key, that key will be used.
 76 Artix Security Guide Java

Add encryption and signing properties to
Spring configuration
Before you can use any WS-Policy policies in a Artix ESB
application, you must add the policies feature to the default CXF
bus. Add the p:policies element to the CXF bus, as shown in the
following Spring configuration fragment:

The following example shows how to add signature and encryption
properties to proxies of the specified service type (where the
service name is specified by the name attribute of the
jaxws:client element). The properties are stored in WSS4J

ws-security.encryption.properties The WSS4J properties file/object
that contains the WSS4J
properties for configuring the
encryption keystore (which is
also used for validating
signatures) and Crypto objects.

ws-security.encryption.username (Optional) The username or alias
of the key in the encryption
keystore to use. If not specified,
the alias set in the properties file
is used. If that is also not set,
and the keystore only contains a
single key, that key will be used.

Table 3: Encryption and Signing Properties

Property Description

Tip: The names of the preceding properties are not so well
chosen, because they do not accurately reflect what they are
used for. The key specified by ws-security.signature.properties
is actually used both for signing and decrypting. The key
specified by ws-security.encryption.properties is actually used
both for encrypting and for validating signatures.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:cxf="http://cxf.apache.org/core"
xmlns:p="http://cxf.apache.org/policy" ... >

 <cxf:bus>
 <cxf:features>
 <p:policies/>
 <cxf:logging/>
 </cxf:features>
 </cxf:bus>
 ...
</beans>
Artix Security Guide Java 77

property files, where alice.properties contains the properties for
the signature key and bob.properties contains the properties for
the encryption key.

In fact, although it is not obvious from the property names, each
of these keys is used for two distinct purposes on the client side:
• alice.properties (that is, the key specified by

ws-security.signature.properties) is used on the client side as
follows:
♦ For signing outgoing messages.
♦ For decrypting incoming messages.

• bob.properties (that is, the key specified by
ws-security.encryption.properties) is used on the client side
as follows:
♦ For encrypting outgoing messages.
♦ For verifying signatures on incoming messages.

If you find this confusing, see “Basic Signing and Encryption
Scenario” for a more detailed explanation.
The following example shows how to add signature and encryption
properties to a JAX-WS endpoint. The properties file,
bob.properties, contains the properties for the signature key and
the properties file, alice.properties, contains the properties for
the encryption key (this is the inverse of the client configuration).

<beans ... > <jaxws:client
name="{http://InteropBaseAddress/interop}MutualCertificate10
SignEncrypt_IPingService" createdFromAPI="true">

 <jaxws:properties>
 <entry key="ws-security.signature.properties"

value="etc/alice.properties"/>
 <entry key="ws-security.encryption.properties"

value="etc/bob.properties"/>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

<beans ... >
 <jaxws:endpoint name=

"{http://InteropBaseAddress/interop}MutualCertificate10SignEncrypt_IPingService"
id="MutualCertificate10SignEncrypt"
address="http://localhost:9002/MutualCertificate10SignEncrypt"
serviceName="interop:PingService10"
endpointName="interop:MutualCertificate10SignEncrypt_IPingService"
implementor="interop.server.MutualCertificate10SignEncrypt">

 <jaxws:properties>
 <entry key="ws-security.signature.properties" value="etc/bob.properties"/>
 <entry key="ws-security.encryption.properties" value="etc/alice.properties"/>
 </jaxws:properties>
 </jaxws:endpoint>
 ...
</beans>
 78 Artix Security Guide Java

Each of these keys is used for two distinct purposes on the server
side:
• bob.properties (that is, the key specified by

ws-security.signature.properties) is used on the server side
as follows:
♦ For signing outgoing messages.
♦ For decrypting incoming messages.

• alice.properties (that is, the key specified by
ws-security.encryption.properties) is used on the server side
as follows:
♦ For encrypting outgoing messages.
♦ For verifying signatures on incoming messages.

Define the WSS4J property files
Artix ESB uses WSS4J property files to load the public keys and
the private keys needed for encryption and signing. “WSS4J
Keystore Properties” describes the properties that you can set in
these files.

Table 4: WSS4J Keystore Properties

Property Description

org.apache.wss4j.crypto.provider Specifies the WSS4J specific provider used to create
Crypto instances. Defaults to the default WSS4J
implementation of Crypto,
org.apache.wss4j.common.crypto.Merlin.
The rest of the properties in this table are specific to the
Merlin implementation of the Crypto interface.

org.apache.wss4j.crypto.
merlin.keystore.provider

(Optional) The provider used to load keystores. Defaults
to the installed provider.
You can switch provider to Sun's JSSE keystore provider
by setting this property to SunJSSE.

org.apache.wss4j.crypto.merlin.
cert.provider

The provider used to load certificates. Defaults to the
keystore provider, the value of
org.apache.wss4j.crypto.merlin.keystore.provider.

org.apache.wss4j.crypto.
merlin.keystore.type

The type of the keystore. Defaults to
java.security.KeyStore.getDefaultType().

org.apache.wss4j.crypto.
merlin.keystore.file

Specifies the location of the keystore file to load, where
the location is specified relative to the Classpath.

org.apache.wss4j.crypto.
merlin.keystore.alias

(Optional) The default keystore alias to use, if none is
specified.

org.apache.wss4j.crypto.
merlin.keystore.password

The password used to load the keystore. The default
value is security.

org.apache.wss4j.crypto.merlin.
keystore.private.password

The default password used to load the private key.
Artix Security Guide Java 79

For example, the etc/alice.properties file contains property
settings to load the PKCS#12 file, certs/alice.pfx, as follows:

The etc/bob.properties file contains property settings to load the
PKCS#12 file, certs/bob.pfx, as follows:

Programming encryption keys and
signing keys
An alternative approach to loading encryption keys and signing
keys is to use the properties shown inTable 5 to specify Crypto
objects that load the relevant keys. This requires you to provide
your own implementation of the WSS4J Crypto interface,
org.apache.wss4j.common.crypto.Crypto.

org.apache.wss4j.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.wss4j.crypto.merlin.keystore.type=PKCS12
org.apache.wss4j.crypto.merlin.keystore.password=password
org.apache.wss4j.crypto.merlin.file=certs/alice.pfx

org.apache.wss4j.crypto.provider=org.apache.wss4j.common.crypto.Merlin

org.apache.wss4j.crypto.merlin.keystore.password=password

for some reason, bouncycastle has issues with bob.pfx
org.apache.wss4j.crypto.merlin.keystore.provider=SunJSSE
org.apache.wss4j.crypto.merlin.keystore.type=PKCS12
org.apache.wss4j.crypto.merlin.file=certs/bob.pfx

Table 5: Properties for Specifying Crypto Objects

Property Description

ws-security.signature.crypto Specifies an instance of a Crypto object that is
responsible for loading the keys for signing and
decrypting messages.

ws-security.encryption.crypt Specifies an instance of a Crypto object that is
responsible for loading the keys for encrypting messages
and verifying signatures.
 80 Artix Security Guide Java

WSS4J Crypto interface
Example 17 shows the definition of the Crypto interface that you
can implement, if you want to provide encryption keys and signing
keys by programming. For more information, see the WSS4J
home page (http://ws.apache.org/wss4j/).
Artix Security Guide Java 81

http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/

Example 17: WSS4J Crypto Interface

// Java
package org.apache.wss4j.common.crypto;

import org.apache.wss4j.WSSecurityException;

import java.io.InputStream;
import java.math.BigInteger;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

public interface Crypto {
X509Certificate loadCertificate(InputStream in)
throws WSSecurityException;

X509Certificate[] getX509Certificates(byte[] data, boolean
reverse)
throws WSSecurityException;

byte[] getCertificateData(boolean reverse, X509Certificate[]
certs)
throws WSSecurityException;

public PrivateKey getPrivateKey(String alias, String
password)
throws Exception;

public X509Certificate[] getCertificates(String alias)
throws WSSecurityException;

public String getAliasForX509Cert(Certificate cert)
throws WSSecurityException;

public String getAliasForX509Cert(String issuer)
throws WSSecurityException;

public String getAliasForX509Cert(String issuer, BigInteger
serialNumber)
throws WSSecurityException;

public String getAliasForX509Cert(byte[] skiBytes)
throws WSSecurityException;

public String getDefaultX509Alias();

public byte[] getSKIBytesFromCert(X509Certificate cert)
throws WSSecurityException;

public String getAliasForX509CertThumb(byte[] thumb)
throws WSSecurityException;

public KeyStore getKeyStore();

public CertificateFactory getCertificateFactory()
throws WSSecurityException;

public boolean validateCertPath(X509Certificate[] certs)
throws WSSecurityException;

public String[] getAliasesForDN(String subjectDN)
throws WSSecurityException;

}

 82 Artix Security Guide Java

Specifying the Algorithm Suite
An algorithm suite is a coherent collection of cryptographic
algorithms for performing operations such as signing, encryption,
generating message digests, and so on.
For reference purposes, this section describes the algorithm suites
defined by the WS-SecurityPolicy specification. Whether or not a
particular algorithm suite is available, however, depends on the
underlying security provider. Artix ESB security is based on the
pluggable Java Cryptography Extension (JCE) and Java Secure
Socket Extension (JSSE) layers. By default, Artix ESB is configured
with Sun's JSSE provider, which supports the cipher suites
described in Appendix A of Oracle's JSSE Reference Guide.

Syntax
The AlgorithmSuite element has the following syntax:

The algorithm suite assertion supports a large number of
alternative algorithms (for example, Basic256). For a detailed
description of the algorithm suite alternatives, see Table 6.

Algorithm suites
Table 6 provides a summary of the algorithm suites supported by
WS-SecurityPolicy. The column headings refer to different types of
cryptographic algorithm, as follows: [Dig] is the digest algorithm;

<sp:AlgorithmSuite xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (<sp:Basic256 ... /> |
 <sp:Basic192 ... /> |
 <sp:Basic128 ... /> |
 <sp:TripleDes ... /> |
 <sp:Basic256Rsa15 ... /> |
 <sp:Basic192Rsa15 ... /> |
 <sp:Basic128Rsa15 ... /> |
 <sp:TripleDesRsa15 ... /> |
 <sp:Basic256Sha256 ... /> |
 <sp:Basic192Sha256 ... /> |
 <sp:Basic128Sha256 ... /> |
 <sp:TripleDesSha256 ... /> |
 <sp:Basic256Sha256Rsa15 ... /> |
 <sp:Basic192Sha256Rsa15 ... /> |
 <sp:Basic128Sha256Rsa15 ... /> |
 <sp:TripleDesSha256Rsa15 ... /> |
 ...)
 <sp:InclusiveC14N ... /> ?
 <sp:SOAPNormalization10 ... /> ?
 <sp:STRTransform10 ... /> ?
 (<sp:XPath10 ... /> |
 <sp:XPathFilter20 ... /> |
 <sp:AbsXPath ... /> |
 ...)?
 ...
 </wsp:Policy>
 ...
</sp:AlgorithmSuite>
Artix Security Guide Java 83

http://docs.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA
http://docs.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

[Enc] is the encryption algorithm; [Sym KW] is the symmetric
key-wrap algorithm; [Asym KW] is the asymmetric key-wrap
algorithm; [Enc KD] is the encryption key derivation algorithm;
[Sig KD] is the signature key derivation algorithm.

Types of cryptographic algorithm
The following types of cryptographic algorithm are supported by
WS-SecurityPolicy:
• Symmetric key signature
• Asymmetric key signature
• Digest
• Encryption
• Symmetric key wrap
• Asymmetric key wrap
• Computed key
• Encryption key derivation
• Signature key derivation

Symmetric key signature
The symmetric key signature property, [Sym Sig], specifies the
algorithm for generating a signature using a symmetric key.
WS-SecurityPolicy specifies that the HmacSha1 algorithm is always
used.

Table 6: Algorithm Suites

Algorithm Suite [Dig] [Enc] [Sym KW] [Asym KW] [Enc KD] [Sig KD]

Basic256 Sha1 Aes256 KwAes256 KwRsaOaep PSha1L256 PSHA1L192

Basic192 Sha1 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192

Basic128 Sha1 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128

TripleDes Sha1 TripleDes KwTripleDes KwRsaOaep PSha1L128 PSha1L128

Basic256Rsa15 Sha1 Aes256 KwAes256 KwRsa15 PSha1L192 PSha1L192

Basic192Rsa15 Sha1 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192

Basic128Rsa15 Sha1 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128

TripleDesRSA15 Sha1 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192

Basic256Sha256 Sha256 Aes256 KwAes256 KwRsa15 PSha1L192 PSha1L192

Basic192Sha256 Sha256 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192

Basic128Sha256 Sha256 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128

TripleDesSha256 Sha256 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192

Basic256Sha256RSA15 Sha256 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192

Basic192Sha256RSA15 Sha256 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192

Basic128Sha256RSA15 Sha256 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128

TripleDesSha256RSA15 Sha256 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192
 84 Artix Security Guide Java

The HmacSha1 algorithm is identified by the following URI:

Asymmetric key signature
The asymmetric key signature property, [Asym Sig], specifies the
algorithm for generating a signature using an asymmetric key.
WS-SecurityPolicy specifies that the RsaSha1 algorithm is always
used.
The RsaSha1 algorithm is identified by the following URI:

Digest
The digest property, [Dig], specifies the algorithm used for
generating a message digest value. WS-SecurityPolicy supports
two alternative digest algorithms: Sha1 and Sha256.
The Sha1 algorithm is identified by the following URI:

The Sha256 algorithm is identified by the following URI:

Encryption
The encryption property, [Enc], specifies the algorithm used for
encrypting data. WS-SecurityPolicy supports the following
encryption algorithms: Aes256, Aes192, Aes128, TripleDes.
The Aes256 algorithm is identified by the following URI:

The Aes192 algorithm is identified by the following URI:

The Aes128 algorithm is identified by the following URI:

The TripleDes algorithm is identified by the following URI:

Symmetric key wrap
The symmetric key wrap property, [Sym KW], specifies the
algorithm used for signing and encrypting symmetric keys.
WS-SecurityPolicy supports the following symmetric key wrap
algorithms: KwAes256, KwAes192, KwAes128, KwTripleDes.
The KwAes256 algorithm is identified by the following URI:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

http://www.w3.org/2000/09/xmldsig#rsa-sha1

http://www.w3.org/2000/09/xmldsig#sha1

http://www.w3.org/2001/04/xmlenc#sha256

http://www.w3.org/2001/04/xmlenc#aes256-cbc

http://www.w3.org/2001/04/xmlenc#aes192-cbc

http://www.w3.org/2001/04/xmlenc#aes128-cbc

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

http://www.w3.org/2001/04/xmlenc#kw-aes256
Artix Security Guide Java 85

The KwAes192 algorithm is identified by the following URI:

The KwAes128 algorithm is identified by the following URI:

The KwTripleDes algorithm is identified by the following URI:

Asymmetric key wrap
The asymmetric key wrap property, [Asym KW], specifies the
algorithm used for signing and encrypting asymmetric keys.
WS-SecurityPolicy supports the following asymmetric key wrap
algorithms: KwRsaOaep, KwRsa15.
The KwRsaOaep algorithm is identified by the following URI:

The KwRsa15 algorithm is identified by the following URI:

Computed key
The computed key property, [Comp Key], specifies the algorithm
used to compute a derived key. When secure parties communicate
with the aid of a shared secret key (for example, when using
WS-SecureConversation), it is recommended that a derived key is
used instead of the original shared key, in order to avoid exposing
too much data for analysis by hostile third parties.
WS-SecurityPolicy specifies that the PSha1 algorithm is always
used.
The PSha1 algorithm is identified by the following URI:

Encryption key derivation
The encryption key derivation property, [Enc KD], specifies the
algorithm used to compute a derived encryption key.
WS-SecurityPolicy supports the following encryption key
derivation algorithms: PSha1L256, PSha1L192, PSha1L128.
The PSha1 algorithm is identified by the following URI (the same
algorithm is used for PSha1L256, PSha1L192, and PSha1L128; just the
key lengths differ):

http://www.w3.org/2001/04/xmlenc#kw-aes192

http://www.w3.org/2001/04/xmlenc#kw-aes128

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

http://www.w3.org/2001/04/xmlenc#rsa-1_5

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/
dk/p_sha1

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/
dk/p_sha1
 86 Artix Security Guide Java

Signature key derivation
The signature key derivation property, [Sig KD], specifies the
algorithm used to compute a derived signature key.
WS-SecurityPolicy supports the following signature key derivation
algorithms: PSha1L192, PSha1L128.

Key length properties
Table 7 shows the minimum and maximum key lengths supported
in WS-SecurityPolicy.

The value of the minimum symmetric key length, [Min SKL],
depends on which algorithm suite is selected.

Table 7: Key Length Properties

Property Key length

Minimum symmetric key length [Min SKL] 128, 192, 256

Maximum symmetric key length [Max SKL] 256

Minimum asymmetric key length [Min AKL] 1024

Maximum asymmetric key length [Max AKL] 4096
Artix Security Guide Java 87

 88 Artix Security Guide Java

Authentication
This chapter describes how to use policies to configure authentication in
a Artix ESB application. Currently, the only credentials type supported
in the SOAP layer is the WS-Security UsernameToken

Introduction to Authentication
In Artix ESB, an application can be set up to use authentication
through a combination of policy assertions in the WSDL contract
and configuration settings in Spring XML.

Steps to set up authentication
In outline, you need to perform the following steps to set up an
application to use authentication:
1. Add a supporting tokens policy to an endpoint in the WSDL

contract. This has the effect of requiring the endpoint to
include a particular type of token (client credentials) in its
request messages.

2. On the client side, provide credentials to send by configuring
the relevant endpoint in Spring XML.

3. (Optional) On the client side, if you decide to provide
passwords using a callback handler, implement the callback
handler in Java.

4. On the server side, associate a callback handler class with the
endpoint in Spring XML. The callback handler is then
responsible for authenticating the credentials received from
remote clients

Specifying an Authentication Policy
If you want an endpoint to support authentication, associate a
supporting tokens policy assertion with the relevant endpoint
binding. There are several different kinds of supporting tokens
policy assertions, whose elements all have names of the form
*SupportingTokens (for example, SupportingTokens,
SignedSupportingTokens, and so on). For a complete list, see
“SupportingTokens assertions”.
Associating a supporting tokens assertion with an endpoint has
the following effects:
• Messages to or from the endpoint are required to include the

specified token type (where the token's direction is specified
by the sp:IncludeToken attribute).

• Depending on the particular type of supporting tokens ele-
ment you use, the endpoint might be required to sign and/or
encrypt the token.

Note: Remember, you can also use the HTTPS protocol as the
basis for authentication and, in some cases, this might be easier
to configure. See “Authentication Alternatives”.
 Artix Security Guide Java 89

The supporting tokens assertion implies that the runtime will
check that these requirements are satisfied. But the
WS-SecurityPolicy policies do not define the mechanism for
providing credentials to the runtime. You must use Spring XML
configuration to specify the credentials (see “Providing Client
Credentials”).

Syntax
The *SupportingTokens elements (that is, all elements with the
SupportingTokens suffix—see “SupportingTokens assertions”) have
the following syntax:

Where SupportingTokensElement stands for one of the supporting
token elements, *SupportingTokens.Typically, if you simply want to
include a token (or tokens) in the security header, you would
include one or more token assertions, [Token Assertion], in the
policy. In particular, this is all that is required for authentication.
If the token is of an appropriate type (for example, an X.509
certificate or a symmetric key), you could theoretically also use it
to sign or encrypt specific parts of the current message using the
sp:AlgorithmSuite, sp:SignedParts, sp:SignedElements,
sp:EncryptedParts, and sp:EncryptedElements elements. This
functionality is currently not supported by Artix ESB, however.

Sample policy
Example 18 shows an example of a policy that requires a
WS-Security UsernameToken token (which contains
username/password credentials) to be included in the security
header. In addition, because the token is specified inside an
sp:SignedSupportingTokens element, the policy requires that the
token is signed. This example uses a transport binding, so it is the
underlying transport that is responsible for signing the message.

<sp:SupportingTokensElement xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 [Token Assertion]+
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?
 (
 <sp:SignedParts ... > ... </sp:SignedParts> |
 <sp:SignedElements ... > ... </sp:SignedElements> |
 <sp:EncryptedParts ... > ... </sp:EncryptedParts> |
 <sp:EncryptedElements ... > ... </sp:EncryptedElements> |
) *
 ...
 </wsp:Policy>
 ...
</sp:SupportingTokensElement>
 90 Artix Security Guide Java

For example, if the underlying transport is HTTPS, the SSL/TLS
protocol (configured with an appropriate algorithm suite) is
responsible for signing the entire message, including the security
header that contains the specified token. This is sufficient to
satisfy the requirement that the supporting token is signed.

Where the presence of the sp:WssUsernameToken10 sub-element
indicates that the UsernameToken header should conform to
version 1.0 of the WS-Security UsernameToken specification.

Token types
In principle, you can specify any of the WS-SecurityPolicy token
types in a supporting tokens assertion. For SOAP-level
authentication, however, only the sp:UsernameToken token type is
relevant.

sp:UsernameToken
In the context of a supporting tokens assertion, this element
specifies that a WS-Security UsernameToken is to be included in
the security SOAP header. Essentially, a WS-Security

Example 18: Example of a Supporting Tokens Policy

<wsp:Policy wsu:Id="UserNameOverTransport_IPingService_policy">

 <wsp:ExactlyOne>
 <wsp:All>
 <sp:TransportBinding> ... </sp:TransportBinding>
 <sp:SignedSupportingTokens

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy">

 <wsp:Policy>
 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy/IncludeToken/AlwaysToRecipient">

 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
Artix Security Guide Java 91

UsernameToken is used to send username/password credentials in
the WS-Security SOAP header. The sp:UsernameToken element has
the following syntax:

The sub-elements of sp:UsernameToken are all optional and are
not needed for ordinary authentication. Normally, the only part of
this syntax that is relevant is the sp:IncludeToken attribute.

sp:IncludeToken attribute
Valid values of the sp:IncludeToken attribute are summarized in
Table 8.

<sp:UsernameToken sp:IncludeToken="xs:anyURI"? xmlns:sp="..."
... >
 (
 <sp:Issuer>wsa:EndpointReferenceType</sp:Issuer> |
 <sp:IssuerName>xs:anyURI</sp:IssuerName>
) ?
 <wst:Claims Dialect="..."> ... </wst:Claims> ?
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:NoPassword ... /> |
 <sp:HashPassword ... />
) ?
 (
 <sp:RequireDerivedKeys /> |
 <sp:RequireImpliedDerivedKeys ... /> |
 <sp:RequireExplicitDerivedKeys ... />
) ?
 (
 <sp:WssUsernameToken10 ... /> |
 <sp:WssUsernameToken11 ... />
) ?
 ...
 </wsp:Policy>
 ...
</sp:UsernameToken>

Note: Currently, in the sp:UsernameToken syntax, only the
sp:WssUsernameToken10 sub-element is supported in Artix ESB.

Table 8: Values of sp:IncludeToken

Prefix Namespace URI

http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702/IncludeToken/Never

The token MUST NOT be included in any
messages sent between the initiator and the
recipient; rather, an external reference to
the token should be used.

http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702/IncludeToken/Once

The token MUST be included in only one
message sent from the initiator to the
recipient. References to the token MAY use
an internal reference mechanism.
Subsequent related messages sent between
the recipient and the initiator may refer to
the token using an external reference
mechanism.
 92 Artix Security Guide Java

SupportingTokens assertions
The following kinds of supporting tokens assertions are supported:
• sp:SupportingTokens
• sp:SignedSupportingTokens
• sp:EncryptedSupportingTokens
• sp:SignedEncryptedSupportingTokens
• sp:EndorsingSupportingTokens
• sp:SignedEndorsingSupportingTokens
• sp:EndorsingEncryptedSupportingTokens
• sp:SignedEndorsingEncryptedSupportingTokens

sp:SupportingTokens
This element requires a token (or tokens) of the specified type to
be included in the wsse:Security header. No additional
requirements are imposed.

sp:SignedSupportingTokens
This element requires a token (or tokens) of the specified type to
be included in the wsse:Security header. In addition, this policy
requires that the token is signed, in order to guarantee token
integrity.

http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702/IncludeToken/
AlwaysToRecipient

The token MUST be included in all messages
sent from initiator to the recipient. The token
MUST NOT be included in messages sent
from the recipient to the initiator.

http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702/
IncludeToken/AlwaysToInitiator

The token MUST be included in all messages
sent from the recipient to the initiator. The
token MUST NOT be included in messages
sent from the initiator to the recipient.

http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702/IncludeToken/
Always

The token MUST be included in all messages
sent between the initiator and the recipient.
This is the default behavior.

Table 8: Values of sp:IncludeToken

Prefix Namespace URI

WARNING: This policy does not explicitly require the tokens to
be signed or encrypted. It is normally essential, however, to
protect tokens by signing and encryption.

WARNING: This policy does not explicitly require the tokens to
be encrypted. It is normally essential, however, to protect tokens
both by signing and by encryption.
Artix Security Guide Java 93

sp:EncryptedSupportingTokens
This element requires a token (or tokens) of the specified type to
be included in the wsse:Security header. In addition, this policy
requires that the token is encrypted, in order to guarantee token
confidentiality.

sp:SignedEncryptedSupportingTokens
This element requires a token (or tokens) of the specified type to
be included in the wsse:Security header. In addition, this policy
requires that the token is both signed and encrypted, in order to
guarantee token integrity and confidentiality

sp:EndorsingSupportingTokens
An endorsing supporting token is used to sign the message
signature (primary signature). This signature is known as an
endorsing signature or secondary signature. Hence, by applying
an endorsing supporting tokens policy, you can have a chain of
signatures: the primary signature, which signs the message itself,
and the secondary signature, which signs the primary signature.

sp:SignedEndorsingSupportingTokens
This policy is the same as the endorsing supporting tokens policy,
except that the tokens are required to be signed, in order to
guarantee token integrity.

sp:EndorsingEncryptedSupportingTokens
This policy is the same as the endorsing supporting tokens policy,
except that the tokens are required to be encrypted, in order to
guarantee token confidentiality.

WARNING: This policy does not explicitly require the tokens to
be signed. It is normally essential, however, to protect tokens
both by signing and by encryption.

Note: If you are using a transport binding (for example,
HTTPS), the message signature is not actually part of the SOAP
message, so it is not possible to sign the message signature in
this case. If you specify this policy with a transport binding, the
endorsing token signs the timestamp instead.

WARNING: This policy does not explicitly require the tokens to
be signed or encrypted. It is normally essential, however, to
protect tokens by signing and encryption.

WARNING: This policy does not explicitly require the tokens to
be encrypted. It is normally essential, however, to protect tokens
both by signing and by encryption.

WARNING: This policy does not explicitly require the tokens to
be signed. It is normally essential, however, to protect tokens
both by signing and by encryption.
 94 Artix Security Guide Java

sp:SignedEndorsingEncryptedSupportingTokens
This policy is the same as the endorsing supporting tokens policy,
except that the tokens are required to be signed and encrypted, in
order to guarantee token integrity and confidentiality

Providing Client Credentials
There are essentially two approaches to providing UsernameToken
client credentials: you can either set both the username and the
password directly in the client's Spring XML configuration; or you
can set the username in the client's configuration and implement a
callback handler to provide passwords programmatically. The
latter approach (by programming) has the advantage that
passwords are easier to hide from view.

Client credentials properties
Table 9 shows the properties you can use to specify WS-Security
username/password credentials on a client's request context in
Spring XML.

Configuring client credentials in Spring XML
To configure username/password credentials in a client's request
context in Spring XML, set the ws-security.username and
ws-security.password properties as follows:

Table 9: Client Credentials Properties

Prefix Namespace URI

ws-security.user
name

Specifies the username for UsernameToken policy
assertions.

ws-security.
password

Specifies the password for UsernameToken policy
assertions. If not specified, the password is obtained by
calling the callback handler

ws-security.
callback-handler

Specifies the class name of the WSS4J callback handler that
retrieves passwords for UsernameToken policy assertions.
Note that the callback handler can also handle other kinds
of security events

<beans ... >
 <jaxws:client name="{NamespaceName}LocalPortName"

 createdFromAPI="true">
 <jaxws:properties>
 <entry key="ws-security.username" value="Alice"/>
 <entry key="ws-security.password"

 value="abcd!1234"/></jaxws:properties>
 </jaxws:client>
...
</beans>
Artix Security Guide Java 95

If you prefer not to store the password directly in Spring XML
(which might potentially be a security hazard), you can provide
passwords using a callback handler instead.

Programming a callback handler for passwords
If you want to use a callback handler to provide passwords for the
UsernameToken header, you must first modify the client
configuration in Spring XML, replacing the ws-security.password
setting by a ws-security.callback-handler setting, as follows:

<beans ... >
 <jaxws:client name="{NamespaceName}LocalPortName"

createdFromAPI="true">
 <jaxws:properties>
 <entry key="ws-security.username" value="Alice"/>
 <entry key="ws-security.callback-handler"

 value="interop.client.UTPasswordCallback"/>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>
 96 Artix Security Guide Java

In the preceding example, the callback handler is implemented by
the UTPasswordCallback class. You can write a callback handler by
implementing the javax.security.auth.callback.CallbackHandler
interface, as shown in Example 19

The callback functionality is implemented by the
CallbackHandler.handle() method. In this example, it assumed
that the callback objects passed to the handle() method are all of
org.apache.wss4j.WSPasswordCallback type (in a more realistic
example, you would check the type of the callback objects).
A more realistic implementation of a client callback handler would
probably consist of prompting the user to enter their password.

Example 19: Callback Handler for UsernameToken Passwords

package interop.client;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import

javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.wss4j.WSPasswordCallback;

public class UTPasswordCallback implements CallbackHandler {

 private Map<String, String> passwords = new HashMap<String,
String>();

 public UTPasswordCallback() {
 passwords.put("Alice", "ecilA");
 passwords.put("Frank", "invalid-password");
 //for MS clients
 passwords.put("abcd", "dcba");
 }
 public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];
 String pass = passwords.get(pc.getIdentifier());
 if (pass != null) {
 pc.setPassword(pass);
 return;
 }
 }

 throw new IOException();
 }
 // Add an alias/password pair to the callback mechanism.
 public void setAliasPassword(String alias, String password)
 {
 passwords.put(alias, password);
 }
}

Artix Security Guide Java 97

https://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/ext/WSPasswordCallback.html

WSPasswordCallback class
When a CallbackHandler is called in a Artix ESB client for the
purpose of setting a UsernameToken password, the corresponding
WSPasswordCallback object has the USERNAME_TOKEN usage code.
For more details about the WSPasswordCallback class, see
org.apache.wss4j.WSPasswordCallback.
The WSPasswordCallback class defines several different usage
codes, as follows:
USERNAME_TOKEN

Need the password to fill in or to verify UsernameToken
credentials. In other words, this usage code is used both on
the client side (to obtain a password to send to the server)
and on the server side (to obtain a password in order to
compare it with the password received from the client).

DECRYPT
Need a password to get the private key of this identifier
(username) from the keystore. WSS4J uses this private key to
decrypt the session (symmetric) key.

SIGNATURE
Need the password to get the private key of this identifier
(username) from the keystore. WSS4J uses this private key to
produce a signature.

KEY_NAME
Need the key, not the password, associated with the identifier.
WSS4J uses this key to encrypt or decrypt parts of the SOAP
request. Note, the key must match the symmetric
encryption/decryption algorithm specified (refer to
WSHandlerConstants.ENC_SYM_ALGO).

USERNAME_TOKEN_UNKNOWN
Either an unspecified password type or the password type,
passwordText. In these both cases, only the password variable
is set. The callback class now may check if the username and
password match. If they do not match, the callback class must
throw an exception. The exception can be a
UnsupportedCallbackException or an IOException.

SECURITY_CONTEXT_TOKEN
Need the key to be associated with a
wsc:SecurityContextToken.

UNKNOWN
Not used by WSS4J

Authenticating Received Credentials
On the server side, you can verify that received credentials are
authentic by registering a callback handler with the Artix ESB
runtime. You can either write your own custom code to perform
credentials verification or you can implement a callback handler
that integrates with a third-party enterprise security system (for
example, an LDAP server).
 98 Artix Security Guide Java

https://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/ext/WSPasswordCallback.html

Configuring a server callback handler in
Spring XML
To configure a server callback handler that verifies UsernameToken
credentials received from clients, set the
ws-security.callback-handler property in the server's Spring XML
configuration, as follows:

In the preceding example, the callback handler is implemented by
the UTPasswordCallback class.

Implementing the callback handler to
check passwords
To implement a callback handler for checking passwords on the
server side, implement the
javax.security.auth.callback.CallbackHandler interface. The
general approach to implementing the CallbackHandler interface
for a server is similar to implementing a CallbackHandler for a
client. The interpretation given to the returned password on the
server side is different, however: the password from the callback
handler is compared against the received client password in order
to verify the client's credentials.
For example, you could use the sample implementation shown in
Example 19 to obtain passwords on the server side. On the server
side, the WSS4J runtime would compare the password obtained
from the callback with the password in the received client
credentials. If the two passwords match, the credentials are
successfully verified.
A more realistic implementation of a server callback handler would
involve writing an integration with a third-party database that is
used to store security data (for example, integration with an LDAP
server).

<beans ... >
 <jaxws:endpoint

id="UserNameOverTransport"
address="https://localhost:9001/UserNameOverTransport"
serviceName="interop:PingService10"
endpointName="interop:UserNameOverTransport_IPingService"
implementor="interop.server.UserNameOverTransport"
depends-on="tls-settings">

 <jaxws:properties>
 <entry key="ws-security.username" value="Alice"/>
 <entry key="ws-security.callback-handler"
 value="interop.client.UTPasswordCallback"/>
 </jaxws:properties>
 </jaxws:endpoint>
...
</beans>
Artix Security Guide Java 99

 100 Artix Security Guide Java

ASN.1 and
Distinguished Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished
Names play an important role in the security standards that define X.509
certificates and LDAP directories.

ASN.1
The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining
data types and structures that is independent of any particular
machine hardware or programming language. In many ways,
ASN.1 can be considered a forerunner of the OMG’s IDL, because
both languages are concerned with defining platform-independent
data types.
ASN.1 is important, because it is widely used in the definition of
standards (for example, SNMP, X.509, and LDAP). In particular,
ASN.1 is ubiquitous in the field of security standards—the formal
definitions of X.509 certificates and distinguished names are
described using ASN.1 syntax. You do not require detailed
knowledge of ASN.1 syntax to use these security standards, but
you need to be aware that ASN.1 is used for the basic definitions
of most security-related data types.

BER
The OSI’s Basic Encoding Rules (BER) define how to translate an
ASN.1 data type into a sequence of octets (binary representation).
The role played by BER with respect to ASN.1 is, therefore, similar
to the role played by GIOP with respect to the OMG IDL.

DER
The OSI’s Distinguished Encoding Rules (DER) are a specialization
of the BER. The DER consists of the BER plus some additional rules
to ensure that the encoding is unique (BER encodings are not).

References
You can read more about ASN.1 in the following standards
documents:
• ASN.1 is defined in X.208.
• BER is defined in X.209.
 Artix Security Guide Java 101

Distinguished Names
Historically, distinguished names (DN) were defined as the
primary keys in an X.500 directory structure. In the meantime,
however, DNs have come to be used in many other contexts as
general purpose identifiers. In Artix ESB, DNs occur in the
following contexts:
• X.509 certificates—for example, one of the DNs in a certificate

identifies the owner of the certificate (the security principal).
• LDAP—DNs are used to locate objects in an LDAP directory

tree.

String representation of DN
Although a DN is formally defined in ASN.1, there is also an LDAP
standard that defines a UTF-8 string representation of a DN (see
RFC 2253). The string representation provides a convenient basis
for describing the structure of a DN.

DN string example
The following string is a typical example of a DN:

Structure of a DN string
A DN string is built up from the following basic elements:
• OID.
• Attribute types.
• AVA.
• RDN.

OID
An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

Attribute types
The variety of attribute types that could appear in a DN is
theoretically open-ended, but in practice only a small subset of
attribute types are used.

Note: The string representation of a DN does not provide a
unique representation of DER-encoded DN. Hence, a DN that is
converted from string format back to DER format does not
always recover the original DER encoding.

C=US,O=Micro Focus,OU=Engineering,CN=A. N. Other
 102 Artix Security Guide Java

Table 10 shows a selection of the attribute types that you are
most likely to encounter:

AVA
An attribute value assertion (AVA) assigns an attribute value to an
attribute type. In the string representation, it has the following
syntax:

For example:

Alternatively, you can use the equivalent OID to identify the
attribute type in the string representation (see Table 10). For
example:

RDN
A relative distinguished name (RDN) represents a single node of a
DN (the bit that appears between the commas in the string
representation). Technically, an RDN might contain more than one
AVA (it is formally defined as a set of AVAs); in practice, however,
this almost never occurs. In the string representation, an RDN has
the following syntax:

Here is an example of a (very unlikely) multiple-value RDN:

Table 10: Commonly Used Attribute Types

String
Representation

X.500 Attribute Type Size of
Data

Equivalent
OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid

<attr-type>=<attr-value>

CN=A. N. Other

2.5.4.3=A. N. Other

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

OU=Eng1+OU=Eng2+OU=Eng3
Artix Security Guide Java 103

Here is an example of a single-value RDN:

OU=Engineering
 104 Artix Security Guide Java

OpenSSL Utilities
The openssl program consists of a large number of utilities that have
been combined into one program. This appendix describes how you use
the openssl program with when managing X.509 certificates and private
keys.

Using OpenSSL Utilities

The OpenSSL package
This section describes a version of the openssl program that is
available with Eric Young’s OpenSSL package, which you can
download from the OpenSSL Web site, http://www.openssl.org.
OpenSSL is a publicly available implementation of the SSL
protocol. Consult “License Issues” for information about the
copyright terms of OpenSSL.

Command syntax
An openssl command line takes the following form:

For example:

The openssl utilities
This appendix describes the following openssl utilities:

Note: For complete documentation of the OpenSSL utilities,
consult the documentation at the OpenSSL web site
http://www.openssl.org/docs.

openssl utility arguments

openssl x509 -in OrbixCA -text

x509 Manipulates X.509 certificates.
req Creates and manipulates certificate signing requests,

and self-signed certificates.
rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).
s_client Implements a generic SSL/TLS client.
s_server Implements a generic SSL/TLS server.
 Artix Security Guide Java 105

http://www.openssl.org

The -help option
To get a list of the arguments associated with a particular
command, use the -help option as follows:

For example:

The x509 Utility

Purpose of the x509 utility
In Artix the x509 utility is mainly used for:
• Printing text details of certificates you wish to examine.
• Converting certificates to different formats.

Options
The options supported by the openssl x509 utility are as follows:

openssl utility -help

openssl x509 -help

-inform arg - input format - default PEM
(one of DER, NET or PEM)

-outform arg - output format - default PEM
(one of DER, NET or PEM

-keyform arg - private key format - default PEM

-CAform arg - CA format - default PEM

-CAkeyform arg - CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN

-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certificate
- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object
 106 Artix Security Guide Java

Using the x509 utility
To print the text details of an existing PEM-format X.509
certificate, use the x509 utility as follows:

To print the text details of an existing DER-format X.509
certificate, use the x509 utility as follows:

To change a certificate from PEM format to DER format, use the
x509 utility as follows:

The req Utility

Purpose of the req utility
The req utility is used to generate a self-signed certificate or a
certificate signing request (CSR). A CSR contains details of a
certificate to be issued by a CA. When creating a CSR, the req
command prompts you for the necessary information from which a
certificate request file and an encrypted private key file are
produced. The certificate request is then submitted to a CA for
signing.
If the -nodes (no DES) parameter is not supplied to req, you are
prompted for a pass phrase which will be used to protect the
private key.

-req - input is a certificate request, sign and output

-CA arg - set the CA certificate, must be PEM format

-CAkey arg - set the CA key, must be PEM format. If missing
it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-sha1/
-mdc2

- digest algorithms used when signing
certificates

openssl x509 -in MyCert.pem -inform PEM -text

openssl x509 -in MyCert.der -inform DER -text

openssl x509 -in MyCert.pem -inform PEM -outform DER -out
MyCert.der

Note: It is important to specify a validity period (using the
-days parameter). If the certificate expires, applications
that are using that certificate will not be authenticated
successfully.
Artix Security Guide Java 107

Options
The options supported by the openssl req utility are as follows:

Using the req Utility
To create a self-signed certificate with an expiry date a year from
now, the req utility can be used as follows to create the certificate
CA_cert.pem and the corresponding encrypted private key file
CA_pk.pem:

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM

-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg key file format

-keyout arg file to send the key to

-newkey rsa:bits generate a new RSA key of ‘bits’ in size

-newkey dsa:file generate a new DSA key, parameters taken from
CA in ‘file’

-[digest] Digest to sign with (md5, sha1, md2, mdc2)

-config file request template file

-new new request

-x509 output an x509 structure instead of a
certificate req. (Used for creating self
signed certificates)

-days number of days an x509 generated by -x509 is
valid for

-asn1-kludge by default, the req command generates the
correct PKCS#10 format for certificate
-asn1-kludge requests that contain no
attributes. However, certain CAs only accept
requests containing no attributes in an
invalid form: this option produces this
invalid format.

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem
 108 Artix Security Guide Java

This following command creates the certificate request MyReq.pem
and the corresponding encrypted private key file
MyEncryptedKey.pem:

The rsa Utility

Purpose of the rsa utility
The rsa command is a useful utility for examining and modifying
RSA private key files. Generally RSA keys are stored encrypted
with a symmetric algorithm using a user-supplied pass phrase.
The OpenSSL req command prompts the user for a pass phrase in
order to encrypt the private key. By default, req uses the triple
DES algorithm. The rsa command can be used to change the
password that protects the private key and to convert the format
of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase
used to encrypt it.

Options
The options supported by the openssl rsa utility are as follows:

Using the rsa Utility
Converting a private key to PEM format from DER format involves
using the rsa utility as follows:

Changing the pass phrase which is used to encrypt the private key
involves using the rsa utility as follows:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des
using 168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus

openssl rsa -inform DER -in MyKey.der -outform PEM -out
MyKey.pem

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey.pem -des3
Artix Security Guide Java 109

Removing encryption from the private key (which is not
recommended) involves using the rsa command utility as follows:

The ca Utility

Purpose of the ca utility
You can use the ca utility create X.509 certificates by signing
existing signing requests. It is imperative that you check the
details of a certificate request before signing. Your organization
should have a policy with respect to the issuing of certificates.
The ca utility is used to sign certificate requests thereby creating a
valid X.509 certificate which can be returned to the request
submitter. It can also be used to generate Certificate Revocation
Lists (CRLS). For information on the ca -policy and -name options,
refer to “The OpenSSL Configuration File”.

Creating a new CA
To create a new CA using the openssl ca utility, two files (serial
and index.txt) need to be created in the location specified by the
openssl configuration file that you are using.

Options
The options supported by the openssl ca utility are as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out
MyKey2.pem

Note: Do not specify the same file for the -in and -out
parameters, because this can corrupt the file.

-verbose - Talk alot while doing things

-config file - A config file

-name arg - The particular CA definition to use

-gencrl - Generate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - number of days to certify the certificate
for

-md arg - md to use, one of md2, md5, sha or sha1

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEM private key file

-key arg - key to decode the private key if it is
encrypted

-cert - The CA certificate
 110 Artix Security Guide Java

Note: Most of the above parameters have default values as
defined in openssl.cnf.

Using the ca Utility
Converting a private key to PEM format from DER format involves
using the ca utility as shown in the following example. To sign the
supplied CSR MyReq.pem to be valid for 365 days and create a new
X.509 certificate in PEM format, use the ca utility as follows:

The s_client Utility

Purpose of the s_client utility
You can use the s_client utility to debug an SSL/TLS server. Using
the s_client utility, you can negotiate an SSL/TLS handshake
under controlled conditions, accompanied by extensive logging
and error reporting.

Options
The options supported by the openssl s_client utility are as
follows:

-in file - The input PEM encoded certificate
request(s)

-out file - Where to put the output file(s)

-outdir dir - Where to put output certificates

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key
and challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos
universal strings

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

-connect
host[:port]

- Specify the host and (optionally) port to
connect to. Default is local host and port
4433.

-cert certname - Specifies the certificate to use, if one is
requested by the server.

-certform format - The certificate format, which can be either
PEM or DER. Default is PEM.

-key keyfile - File containing the client’s private key.
Default is to extract the key from the client
certificate.
Artix Security Guide Java 111

-keyform format - The private key format, which can be either
PEM or DER. Default is PEM.

-pass arg - The private key password.

-verify depth - Maximum server certificate chain length.

-CApath directory- Directory to use for server certificate
verification.

-CAfile file - File containing trusted CA certificates.

-reconnect - Reconnects to the same server five times
using the same session ID.

-pause - Pauses for one second between each read and
write call.

-showcerts - Display the whole server certificate chain.

-prexit - Print session information when the program
exits.

-state - Prints out the SSL session states.

-debug - Log debug data, including hex dump of
messages.

-msg - Show all protocol messages with hex dump.

-nbio_test - Tests non-blocking I/O.

-nbio - Turns on non-blocking I/O.

-crlf - Translates a line feed (LF) from the terminal
into CR+LF, as required by some servers.

-ign_eof - Inhibits shutting down the connection when
end of file is reached in the input.

-quiet - Inhibits printing of session and certificate
information; implicitly turns on -ign_eof as
well.

-ssl2, -ssl3,
-tls1, -no_ssl2,
-no_ssl3, -no_tls1

- These options enable/disable the use of
certain SSL or TLS protocols.

-bugs - Enables workarounds to several known bugs in
SSL and TLS implementations.

-cipher cipherlist - Specifies the cipher list sent by the client.
The server should use the first supported
cipher from the list sent by the client.

-starttls protocol - Send the protocol-specific message(s) to
switch to TLS for communication, where the
protocol can be either smtp or pop3.

-engine id - Specifies an engine, by it's unique id
string.

-rand file(s) - A file or files containing random data used
to seed the random number generator, or an
EGD socket. The file separator is ; for
MS-Windows, , for OpenVMS, and : for all
other platforms.
 112 Artix Security Guide Java

Using the s_client utility
Before running the s_client utility, there must be an active
SSL/TLS server for you to connect to. For example, you could
have an s_server test server running on the local host, listening on
port 9000. To run the s_client test client, open a command
prompt and enter the following command:

Where clientcert.pem is a file containing the client’s X.509
certificate in PEM format. When you enter the command, you are
prompted to enter the pass phrase for the clientcert.pem file.

The s_server Utility

Purpose of the s_server utility
You can use the s_server utility to debug an SSL/TLS client. By
entering openssl s_server at the command line, you can run a
simple SSL/TLS server that listens for incoming SSL/TLS
connections on a specified port. The server can be configured to
provide extensive logging and error reporting.

Options
The options supported by the openssl s_server utility are as
follows:

openssl s_client -connect localhost:9000 -ssl3
-cert clientcert.pem

-accept port - Specifies the IP port to listen for incoming
connections. Default is port 4433.

-context id - Sets the SSL context id (any string value).

-cert certname - Specifies the certificate to use for the
server.

-certform format - The certificate format, which can be either
PEM or DER. Default is PEM.

-key keyfile - File containing the server’s private key.
Default is to extract the key from the server
certificate.

-keyform format - The private key format, which can be either
PEM or DER. Default is PEM.

-pass arg - The private key password.

-dcert filename,
-dkey keyname

- Specifies an additional certificate and private
key, enabling the server to have multiple
credentials.

-dcertform format,
-dkeyform format,
-dpass arg

- Specifies additional certificate format, private
key format, and passphrase respectively.

-nocert - If this option is set, no certificate is used.

-dhparam filename - The DH parameter file to use.
Artix Security Guide Java 113

-no_dhe - If this option is set, no DH parameters will be
loaded, effectively disabling the ephemeral DH cipher
suites.

-no_tmp_rsa - Certain export cipher suites sometimes use a
temporary RSA key. This option disables temporary RSA
key generation.

-verify depth,
-Verify depth

- Maximum client certificate chain length. With
the -Verify option, the client must supply a
certificate or an error occurs.

-CApath directory- Directory to use for client certificate
verification.

-CAfile file - File containing trusted CA certificates.

-state - Prints out the SSL session states.

-debug - Log debug data, including hex dump of
messages.

-msg - Show all protocol messages with hex dump.

-nbio_test - Tests non-blocking I/O.

-nbio - Turns on non-blocking I/O.

-crlf - Translates a line feed (LF) from the terminal
into CR+LF, as required by some servers.

-quiet - Inhibits printing of session and certificate
information; implicitly turns on -ign_eof as
well.

-ssl2, -ssl3,
-tls1, -no_ssl2,
-no_ssl3, -no_tls1

- These options enable/disable the use of
certain SSL or TLS protocols.

-bugs - Enables workarounds to several known bugs in
SSL and TLS implementations.

-hack - Enables a further workaround for some some
early Netscape SSL code.

-cipher cipherlist - Specifies the cipher list sent by the client.
The server should use the first supported
cipher from the list sent by the client.

-www - Sends a status message back to the client
when it connects. The status message is in
HTML format.

-WWW - Emulates a simple web server, where pages are
resolved relative to the current directory.

-HTTP - Emulates a simple web server, where pages are
resolved relative to the current directory.

-engine id - Specifies an engine, by it's unique id
string.

-id_prefix_arg - Generate SSL/TLS session IDs prefixed by arg.

-rand file(s) - A file or files containing random data used
to seed the random number generator, or an
EGD socket. The file separator is ; for
MS-Windows, , for OpenVMS, and : for all
other platforms.
 114 Artix Security Guide Java

Connected commands
When an SSL client is connected to the test server, you can enter
any of the following single letter commands at the server side:

Using the s_server utility
To use the s_server utility to debug SSL clients, start the test
server with the following command:

Where the test server listens on the IP port 9000 and
servercert.pem is a file containing the server’s X.509 certificate in
PEM format.
The s_server utility also provides a convenient way to test a
secure Web browser. If you start the s_server utility with the -WWW
switch, the test server functions as a simple Web server, serving
up pages from the current directory. For example:

The OpenSSL Configuration File
A number of OpenSSL commands (for example, req and ca) take a
-config parameter that specifies the location of the openssl
configuration file. This section provides a brief description of the
format of the configuration file and how it applies to the req and ca
commands. An example configuration file is listed at the end of
this section.

Structure of openssl.cnf
The openssl.cnf configuration file consists of a number of sections
that specify a series of default values that are used by the openssl
commands.

q End the current SSL connection but still accept new
connections.

Q End the current SSL connection and exit.
r Renegotiate the SSL session.
R Renegotiate the SSL session and request a client

certificate.
P Send some plain text down the underlying TCP

connection. This should cause the client to
disconnect due to a protocol violation.

S Print out some session cache status information.

openssl s_server -accept 9000 -cert servercert.pem

openssl s_server -accept 9000 -cert servercert.pem -WWW
Artix Security Guide Java 115

[req] Variables
The req section contains the following variables:

default_bits configuration variable
The default_bits variable is the default RSA key size that you wish
to use. Other possible values are 512, 2048, and 4096.

default_keyfile configuration variable
The default_keyfile variable is the default name for the private
key file created by req.

distinguished_name configuration variable
The distinguished_name variable specifies the section in the
configuration file that defines the default values for components of
the distinguished name field. The req_attributes variable specifies
the section in the configuration file that defines defaults for
certificate request attributes.

[ca] Variables

Choosing the CA section
You can configure the file openssl.cnf to support a number of CAs
that have different policies for signing CSRs. The -name parameter
to the ca command specifies which CA section to use. For
example:

This command refers to the CA section [MyCa]. If -name is not
supplied to the ca command, the CA section used is the one
indicated by the default_ca variable. In the “Example openssl.cnf
File”, this is set to CA_default (which is the name of another
section listing the defaults for a number of settings associated
with the ca command). Multiple different CAs can be supported in
the configuration file, but there can be only one default CA.

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

openssl ca -name MyCa ...
 116 Artix Security Guide Java

Overview of the variables
Possible [ca] variables include the following:

The serial number field should be unique, as should the CN/status
combination. The ca utility checks these at startup.

[policy] Variables

Choosing the policy section
The policy variable specifies the default policy section to be used if
the -policy argument is not supplied to the ca command. The CA
policy section of a configuration file identifies the requirements for
the contents of a certificate request which must be met before it is
signed by the CA.
There are two policy sections defined in the “Example openssl.cnf
File”: policy_match and policy_anything.

Example policy section
The policy_match section of the example openssl.cnf file specifies
the order of the attributes in the generated certificate as follows:

The match policy value
Consider the following value:
countryName = match

This means that the country name must match the CA certificate.

dir: The location for the CA database
 The database is a simple text database containing the
 following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified
revoked date: When it was revoked, blank if not revoked
serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate
certs: Where the issued certificates are kept

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress
Artix Security Guide Java 117

The optional policy value
Consider the following value:

This means that the organisationalUnitName does not have to be
present.

The supplied policy value
Consider the following value:

This means that the commonName must be supplied in the certificate
request.

organisationalUnitName = optional

commonName = supplied
 118 Artix Security Guide Java

Example openssl.cnf File

Listing
The following listing shows the contents of an example openssl.cnf
configuration file:

##
openssl example configuration file.
This is mostly used for generation of certificate requests.
###
[ca]
default_ca= CA_default # The default ca section
###

[CA_default]

dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL
private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request should
conform to the details of the CA

policy= policy_match

For the CA policy

[policy_match]
countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied
emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types
Artix Security Guide Java 119

[policy_anything]
countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]
default_bits = 1024
default_keyfile= privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName= Country Name (2 letter code)
countryName_min= 2
countryName_max = 2
stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName= An optional company name
 120 Artix Security Guide Java

License Issues
This appendix contains the text of licenses relevant to ESB.

OpenSSL License
The license agreement for the usage of the OpenSSL command
line utility shipped with ESB SSL/TLS is as follows:

LICENSE ISSUES
==============
 The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
 the OpenSSL License and the original SSLeay license apply to the toolkit.
 See below for the actual license texts. Actually both licenses are BSD-style
 Open Source licenses. In case of any license issues related to OpenSSL
 please contact openssl-core@openssl.org.

 OpenSSL License

/* ==
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 Artix Security Guide Java 121

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
 122 Artix Security Guide Java

* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
Artix Security Guide Java 123

 124 Artix Security Guide Java

Index
A
administration

OpenSSL command-line utilities 15
ASN.1 8, 101

attribute types 102
AVA 103
OID 102
RDN 103

attribute value assertion 103
authentication

SSL/TLS
mutual 32
target only 29
trusted CA list 34

AVA 103

B
Basic Encoding Rules 101
BER 101

C
CA 7

choosing a host 10
commercial CAs 9
index file 17
list of trusted 11
multiple CAs 11
private CAs 9
private key, creating 18
security precautions 10
See Alsocertificate authority
self-signed 18
serial file 17
trusted list 34

116
CA, setting up 15
CAs 15
ca utility 110
certificate authority

and certificate signing 7
certificates

chaining 10
contents of 8
creating and signing 21
importing and exporting 13
peer 11
PKCS#12 file 12
public key 8
security handshake 29
self-signed 10, 18
serial number 8
signing 7, 20, 24
signing request 20, 23
trusted CA list 34
X.509 7

certificate signing request 20, 23
signing 20, 24

chaining of certificates 10
Configuration file 115
CSR 20, 23

D
DER 101
Distinguished Encoding Rules 101
distinguished names

definition 102
DN

definition 102
string representation 102

documentation
.pdf format vi
updates on the web vi

H
HTTPS

client configuration 2, 4

I
index file 17

M
multiple CAs 11
mutual authentication 32

O
opage Abstract Syntax Notation One
see ASN.1 101

OpenSSL 9, 105
openSSL

configuration file 115
utilities 105

openSSL.cnf example file 119
OpenSSL command-line utilities 15

P
peer certificate 11
PKCS#12 files

creating 12, 21
definition 12
importing and exporting 13
viewing 12

117
private key 18
public keys 8
Artix Security Guide Java 125

R
RDN 103
relative distinguished name 103
116

req utility 107
req Utility command 107
rsa utility 109
rsa Utility command 109

S
security handshake

SSL/TLS 29
self-signed CA 18
self-signed certificate 10
serial file 17
serial number 8
signing certificates 7
SSL/TLS

security handshake 29
SSLeay 9

T
target authentication 29
trusted CA list policy 34
trusted CAs 11

V
Variables 116, 117

X
X.500 101
X.509 certificate

definition 7
X.509 certificates 7
x509 utility 106
 126 Artix Security Guide Java

	Preface
	Contacting Micro Focus

	Security for HTTP-Compatible Bindings
	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Special Requirements on HTTPS Certificates
	Creating Your Own Certificates
	Prerequisites
	Set Up Your Own CA
	Use the CA to Create Signed Certificates in a Java Keystore
	Use the CA to Create Signed PKCS#12 Certificates

	Generating a Certificate Revocation List

	Configuring HTTPS and IIOP/TLS
	Authentication Alternatives
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	Specifying Trusted CA Certificates for HTTPS
	Specifying Trusted CA Certificates for IIOP/TLS

	Specifying an Application’s Own Certificate
	Deploying Own Certificate for HTTPS
	Deploying Own Certificate for IIOP/TLS

	Specifying a Certificate Revocation List

	Configuring HTTPS Cipher Suites
	Supported Cipher Suites
	Cipher Suite Filters
	SSL/TLS Protocol Version

	The WS-Policy Framework
	Message Protection
	Transport Layer Message Protection
	SOAP Message Protection
	Introduction to SOAP Message Protection
	Basic Signing and Encryption Scenario
	Specifying an AsymmetricBinding Policy

	Specifying a SymmetricBinding Policy
	Specifying Parts of Message to Encrypt and Sign
	Providing Encryption Keys and Signing Keys
	Specifying the Algorithm Suite

	Authentication
	Introduction to Authentication
	Steps to set up authentication

	Specifying an Authentication Policy
	Providing Client Credentials
	Configuring client credentials in Spring XML

	Authenticating Received Credentials

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility
	The s_client Utility
	The s_server Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	License Issues
	OpenSSL License

	Index

