
Artix 5.6.3

Developing
Advanced Artix
Plugins in C++

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-11

Contents
Preface..v
Contacting Micro Focus ..v

Basic Plug-In Implementation...1
Overview of a Basic Artix Plug-In ..1
Developing an Artix Plug-In ..3

Development Steps ...4
Implementing a BusPlugInFactory Class...4
Implementing a BusPlugIn Class ...7
Creating Static Instances ...10

Request Interceptors ..13
Overview of Request Interceptors..13

Client Request Interceptors ..13
Server Request Interceptors...16

Sending and Receiving Header Contexts...22
SOAP Header Context Example ...23
Sample Context Schema..24
Implementation of the Client Request Interceptor26
Implementation of the Server Request Interceptor30
Implementation of the Interceptor Factory ...34

Accessing and Modifying Parameters..41
Reflection Example..41
Implementation of the Client Request Interceptor43
Implementation of the Server Request Interceptor46

Raising Exceptions ..50

WSDL Extension Elements ...55
WSDL Structure ..55
WSDL Parse Tree ..56
How to Extend WSDL...59
Extension Elements for the Stub Plug-In ..61

Implementing an Extension Element Base Class61
Implementing the Extension Element Classes64
Implementing the Extension Factory..69
Registering the Extension Factory ...73

Artix Transport Plug-Ins..75
The Artix Transport Layer...75

Architecture Overview ...75
Artix Transport Classes ..77

Transport Threading Models..78
Threading Introduction ..79
MESSAGING_PORT_DRIVEN and MULTI_INSTANCE80
MESSAGING_PORT_DRIVEN and MULTI_THREADED82
MESSAGING_PORT_DRIVEN and SINGLE_THREADED84
EXTERNALLY_DRIVEN..85

Dispatch Policies ...87
Dispatch Policy Overview ...87
 Developing Advanced Artix Plugins in C++ ii i

RPC-Style Dispatch..88
Messaging-Style Dispatch...90

Accessing Contexts..92
Oneway Semantics ..95
Stub Transport Example ...97

Implementing the Client Transport ..97
Implementing the Server Transport ...103
Implementing the Transport Factory ..108
Registering and Packaging the Transport ..113

Artix Logging Reference ... 115
Using Artix TRACE Macros ..115

WS-RM Persistence... 119
Introduction to WS-RM Persistence ..119
WS-RM Persistence API ..123

Overview of the Persistence API ..123
RMPersistentManager Class ..124
RMEndpointPersistentStore Class...126
RMSequencePersistentStore Class ...128

Persistence and Recovery Algorithms ...130
Persistence at a Source Endpoint...130
Recovery of a Source Endpoint..132
Persistence at a Destination Endpoint ..134
Recovery of a Destination Endpoint ...135

Implementing a WS-RM Persistence Plug-In ..137

Index.. 139
iv Developing Advanced Artix Plugins in C++

Preface

What is Covered in This Book
Artix is built on top of Micro Focus ART (Adaptive Runtime
Technology), which uses dynamic linking to load Artix plug-ins at
runtime. This book explains how to write your own plug-ins for the
ART framework. Two major areas are covered: implementing Artix
interceptors, which enables you to access request and reply
messages as they pass through the stack; and implementing Artix
transports, which enables you to implement custom transport
protocols.

Who Should Read This Book
This book is aimed at experienced Artix developers who need to
customize the behavior of their Artix applications using advanced
APIs.
If you would like to know more about WSDL concepts, see
Understanding WSDL in Getting Started with Artix.

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
 Developing Advanced Artix Plugins in C++ v

https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com

Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
 vi Developing Advanced Artix Plugins in C++

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
Developing Advanced Artix Plugins in C++ vii

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 viii Developing Advanced Artix Plugins in C++

Basic Plug-In
Implementation
This chapter describes how to implement the core classes of an Artix
plug-in, IT_Bus::BusPlugInFactory and IT_Bus::BusPlugIn.

Overview of a Basic Artix Plug-In
This section describes the basic features of an Artix plug-in:
• Artix plug-ins.
• Plug-in packaging.
• Configuration.
• Loading the plug-in.
• Initializing the plug-in.
• BusPlugInFactory object.
• BusPlugIn object.

Artix plug-ins
An Artix plug-in is a well-defined component that can be
independently loaded into an application. Artix defines a
platform-independent framework for loading plug-ins dynamically,
based on the dynamic linking capabilities of modern operating
systems (that is, using shared libraries or DLLs).

Plug-in packaging
Plug-ins are packaged in a form that is compatible with the
dynamic linking capabilities of the particular platform on which
they are deployed: a shared library or a DLL.
For example, version 5 of a tunnel plug-in implemented in C++ for
the Visual C++ 6.0 compiler on the Windows platform would be
packaged as a .dll file and a .dps file (an ART-specific
dependencies file), as follows:
it_tunnel5_vc110.dll
it_tunnel5_vc110.dps

Configuration
The plug-ins that an application should load are specified by the
orb_plugins configuration variable, which contains a list of plug-in
names.
In addition, for each plug-in that is to be loaded, you need to
identify the whereabouts of the plug-in. For C++ applications, you
specify the root name of the corresponding shared library using
the plugins:<plugin_name>:shlib_name configuration variable.
 Developing Advanced Artix Plugins in C++ 1

For example, the following extract shows how to configure an
application, whose ORB name is plugin_example, to load a single
plug-in, sample_artix_interceptor.

Loading the plug-in
Figure 1 show how a plug-in is loaded by an application as the
application starts up.

The steps to load the plug-in are as follows:
1. The user launches the application, app, specifying the ORB

name as plugin_example at the command line.
2. As the application starts up, it scans the Artix configuration

file to determine which plug-ins to load. Priority is given to the
configuration settings in the plugin_example configuration
scope (that is, the ORB name determines which configuration
scopes to search).

3. The Artix core loads the plug-ins specified by the application’s
configuration.

Artix domain configuration file
...
plugin_example {
 orb_plugins = ["sample_artix_interceptor"];

 plugins:sample_artix_interceptor:shlib_name =
"it_sample_artix_interceptor";

};

Figure 1: Loading a Plug-In

> app -ORBname plugin_example

Config
File

Plug-In

Load plug-in3

Launch1

Application

Read2
 2 Developing Advanced Artix Plugins in C++

Initializing the plug-in
Plug-ins are usually initialized when the main application code
calls IT_Bus::init(). Figure 2 shows the plug-in initialization
sequence, which proceeds as follows:
1. The main application code calls IT_Bus::init().
2. The Artix core iterates over all of the plug-ins in the

orb_plugins list, calling
IT_Bus::BusPlugInFactory::create_bus_plugin() on each one.

3. The BusPlugInFactory object creates an IT_Bus::BusPlugIn
object, which initializes the state of the plug-in for the current
Bus instance.

4. After all of the BusPlugIn objects have been created, the Artix
core calls bus_init() on each BusPlugIn object.

BusPlugInFactory object
A BusPlugInFactory object provides the basic hook for initializing
an Artix plug-in. A single static instance of the BusPlugInFactory
object is created when the plug-in is loaded into an application.
See “Implementing a BusPlugInFactory Class” on page 4 for more
details.

BusPlugIn object
A BusPlugIn object caches the state of the plug-in for the current
Bus instance (an application can create multiple Bus instances).
Typically, the BusPlugIn object is responsible for performing most
of the plug-in initialization and shutdown tasks.

Developing an Artix Plug-In
This section describes how to develop the basic classes for the
sample_artix_interceptor plug-in. The objects described here, of
IT_Bus::BusPlugInFactory and IT_Bus::BusPlugIn type, are the
basic objects needed by every Artix plug-in, enabling a plug-in to
initialize and register with the Artix core.

Figure 2: Initializing a Plug-In

BusPlugIn

IT_Bus::init()1

Application

BusPlugInFactory

create_bus_plugin()2 bus_init()4

3

Developing Advanced Artix Plugins in C++ 3

Development Steps

How to implement
To implement an Artix plug-in, perform the following steps:

Implementing a BusPlugInFactory Class
This section describes how to implement a BusPlugInFactory class
for the sample_artix_interceptor plug-in.
An BusPlugInFactory object is the most fundamental constituent of
a plug-in and is responsible for bootstrapping the rest of the
plug-in functionality. A typical BusPlugInFactory implementation
does not do very much. Usually it just creates a new BusPlugIn
object in response to an invocation of the create_bus_plugin()
operation.

Step Action

1 Implement a class that inherits from the
IT_Bus::BusPlugInFactory base class. This class should:
• Implement create_bus_plugin() to return a new

IT_Bus::BusPlugIn object.
• Implement destroy_bus_plugin() to clean up the

allocated BusPlugIn object at shutdown time.

2 Implement a class that inherits from the
IT_Bus::BusPlugIn base class. This class should:
• Implement bus_init() to perform various actions at

initialization time.
• Implement bus_shutdown() to perform various

actions at shutdown time.

3 Create the following static instances:
• A static instance of the newly implemented

BusPlugInFactory class.
• Either of the following static instances:

♦ A static instance of the IT_Bus::BusORBPlugIn
class (for plug-ins packaged as a shared
library), or

♦ A static instance of the
IT_Bus::GlobalBusORBPlugIn class (for plug-ins
linked directly to the application).

The static instances are created when the library
containing the plug-in is loaded.
 4 Developing Advanced Artix Plugins in C++

C++ BusPlugInFactory header
Example 1 shows the C++ header for the SampleBusPlugInFactory
class, which is an example of an IT_Bus::BusPlugInFactory class.

The preceding header file can be described as follows:
1. Include it_bus_pdk/bus_plugin_factory.h, which is the header

file for the IT_Bus::BusPlugInFactory class.
2. The plug-in factory class, SampleBusPlugInFactory, inherits

from IT_Bus::BusPlugInFactory, which is the base class for all
plug-in factories.

Example 1: C++ Header for the BusPlugInFactory Class

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>

1 #include <it_bus_pdk/bus_plugin_factory.h>

// In namespace, IT_SampleArtixInterceptor
2 class SampleBusPlugInFactory :

 public IT_Bus::BusPlugInFactory
{
 public:
 SampleBusPlugInFactory();
 virtual ~SampleBusPlugInFactory();

 virtual IT_Bus::BusPlugIn*
 create_bus_plugin(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual void
 destroy_bus_plugin(
 IT_Bus::BusPlugIn* bus_plugin
);

 private:
 SampleBusPlugInFactory(const

SampleBusPlugInFactory&);

 SampleBusPlugInFactory&
 operator=(const SampleBusPlugInFactory&);
};
Developing Advanced Artix Plugins in C++ 5

C++ SampleBusPlugInFactory
implementation
Example 2 shows the C++ implementation of the
SampleBusPlugInFactory class, which is an example of an
IT_Bus::BusPlugInFactory class.

The preceding implementation can be described as follows:
1. The SampleBusPlugInFactory::create_bus_plugin() creates an

instance of an IT_Bus::BusPlugIn object.
The create_bus_plugin() operation is automatically called
whenever a new Bus instance is created (for example,
whenever you call IT_Bus::init()). Because you are allowed
to create more than one Bus instance, the plug-in must keep
track of its state for each Bus—hence the need for a separate
BusPlugIn object.

2. The SampleBusPlugInFactory::destroy_bus_plugin() cleans up
Bus plug-in objects at shutdown time.

Example 2: C++ Implementation of the SampleBusPlugInFactory Class

// C++

// SampleBusPlugInFactory
//

SampleBusPlugInFactory::SampleBusPlugInFactory()
{
 // complete
}

SampleBusPlugInFactory::~SampleBusPlugInFactory()
{
 // complete
}

IT_Bus::BusPlugIn*
1 SampleBusPlugInFactory::create_bus_plugin(

 IT_Bus::Bus* bus
) IT_THROW_DECL((IT_Bus::Exception))
{
 return new SampleBusPlugIn(bus);
}

void
2 SampleBusPlugInFactory::destroy_bus_plugin(

 IT_Bus::BusPlugIn* bus_plugin
)
{
 delete bus_plugin;
}

 6 Developing Advanced Artix Plugins in C++

Implementing a BusPlugIn Class
This section describes how to implement a BusPlugIn class for the
sample_artix_interceptor plug-in.
BusPlugIn objects are typically responsible for the following tasks:
• Registering factory objects that extend Artix functionality.
• Coordinating the plug-in’s initialization and shutdown tasks.
• Caching the plug-in’s per-Bus data and object references.

C++ BusPlugIn header
Example 3 shows the C++ header for the SampleBusPlugIn class,
which is an example of an IT_Bus::BusPlugIn class.

Example 3: C++ Header for the BusPlugIn Class

// C++
#include <it_bus/bus.h>
#include <it_bus/exception.h>

1 #include <it_bus_pdk/bus_plugin.h>

// In namespace IT_SampleArtixInterceptor

2 class SampleBusPlugIn :
 public IT_Bus::BusPlugIn,
 public IT_Bus::InterceptorFactory
{
 public:
 // IT_Bus::BusPlugIn
 //
 IT_EXPLICIT
 SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual ~SampleBusPlugIn();

 virtual void
 bus_init() IT_THROW_DECL((IT_Bus::Exception));

 virtual void
 bus_shutdown() IT_THROW_DECL((IT_Bus::Exception));

 // IT_Bus::InterceptorFactory
 //
 ... // (not shown)

 private:
 SampleBusPlugIn(const SampleBusPlugIn&);

 SampleBusPlugIn&
 operator=(const SampleBusPlugIn&);

 IT_Bus::String m_name;
};
Developing Advanced Artix Plugins in C++ 7

The preceding C++ header can be described as follows:
1. Include it_bus_pdk/bus_plugin.h, which is the header file for

the IT_Bus::BusPlugIn class.
2. The plug-in class, SampleBusPlugIn, inherits from two base

classes:
♦ IT_Bus::BusPlugIn—the base class for all plug-in classes.
♦ IT_Bus::InterceptorFactory—the base class for an

interceptor factory. You only need this class, if you are
implementing Artix interceptors (the code here is taken
from an Artix interceptor demonstration).

C++ BusPlugIn implementation
Example 4 shows the C++ implementation of the SampleBusPlugIn
class, which is an example of an IT_Bus::BusPlugIn class.

Example 4: C++ Implementation of the BusPlugIn Class

// C++

// In namespace IT_SampleArtixInterceptor

1 SampleBusPlugIn::SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception))
 :

2 BusPlugIn(bus),
3 m_name("artix_interceptor")

{
 assert(bus != 0);
}

SampleBusPlugIn::~SampleBusPlugIn()
{
 // complete
}

void
4 SampleBusPlugIn::bus_init(

) IT_THROW_DECL((IT_Bus::Exception))
{

5 IT_Bus::Bus_ptr bus = get_bus();

 InterceptorFactoryManager& factory_manager =

bus->get_pdk_bus()->get_interceptor_factory_manager();

6 factory_manager.register_interceptor_factory(
 m_name,
 this
);
}

void
 7 SampleBusPlugIn::bus_shutdown(

) IT_THROW_DECL((IT_Bus::Exception))
{

 8 Developing Advanced Artix Plugins in C++

The preceding C++ implementation can be described as follows:
1. The BusPlugIn constructor typically does not do much, apart

from initializing a couple of member variables.
2. You must always pass the bus instance to the base

constructor, IT_Bus::BusPlugIn(), which caches the reference
and makes it available through the
IT_Bus::BusPlugIn::get_bus() accessor.

3. The m_name member variable caches the name of the
interceptor factory for later use. The interceptor name is used
in the following contexts:
♦ When registering the interceptor factory with the bus.
♦ To enable the interceptor, by adding the interceptor name

to the relevant lists of interceptors in the artix.cfg file.
4. Artix calls bus_init() after all of the plug-ins have been

created by calls to create_bus_plugin(). The bus_init()
function is where most of the plug-in initialization actually
occurs. Typical tasks performed in bus_init() include:
♦ Reading configuration information from the artix.cfg

configuration file.
♦ Registering special kinds of objects, such as interceptor

factories, transport factories, binding factories, and so on.
♦ Logging.

5. The BusPlugIn::get_bus() function accesses the Bus reference
that was cached by the BusPlugIn base class constructor.

6. Because this code is from an interceptor demonstration, the
bus_init() implementation registers an interceptor factory.
The register function takes the interceptor name, m_name, and
the interceptor factory instance, this, as arguments.

7. Artix calls bus_shutdown() as the Bus is being shut down. This
is a the place to clean up any resources used by the plug-in
implementation. Typically, you would also unregister objects
that were registered in bus_init().

8. Because this code is from an interceptor demonstration,
unregister the interceptor factory.

 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 InterceptorFactoryManager& factory_manager =

bus->get_pdk_bus()->get_interceptor_factory_manager();

8 factory_manager.unregister_interceptor_factory(
 this
);
}

Example 4: C++ Implementation of the BusPlugIn Class
Developing Advanced Artix Plugins in C++ 9

Creating Static Instances
The mechanism for bootstrapping a plug-in is based on declaring
two static objects, as follows:
• A static instance of the plug-in factory (a subtype of

IT_Bus::BusPlugInFactory).
• Either of the following static instances:

♦ BusORBPlugIn static instance.
♦ GlobalBusORBPlugIn static instance.

BusORBPlugIn static instance
Create a static instance of IT_Bus::BusORBPlugIn type, if you intend
to package your plug-in as a shared library. The BusORBPlugIn
constructor has the following characteristics:
• The constructor registers the Bus plug-in factory with the Bus

core.
• The constructor does not call create_bus_plugin() on the

factory.
If a plug-in is packaged as a shared library, you must list the
plug-in name in the orb_plugins list in the Artix configuration file.
For each of the plug-ins listed in orb_plugins, Artix does the
following:
• Artix attempts to load the relevant shared library (dynamic

loading).
• Artix calls create_bus_plugin() on the factory.

GlobalBusORBPlugIn static instance
Create a static instance of IT_Bus::GlobalBusORBPlugIn type, if you
intend to link the plug-in code directly into your application. The
GlobalBusORBPlugIn constructor has the following characteristics:
• The constructor registers the Bus plug-in factory with the Bus

core.
• The constructor calls create_bus_plugin() on the factory.
A side effect of using GlobalBusORBPlugIn is that you can have only
one IT_Bus::BusPlugIn object for each application (instead of one
IT_Bus::BusPlugIn object for each Bus object).
If a plug-in is linked directly with your application, there is no
need to add the plug-in name to the orb_plugins list in the Artix
configuration.
 10 Developing Advanced Artix Plugins in C++

C++ static instances
Static instances, of SampleBusPlugInFactory and
IT_Bus::BusORBPlugIn type, are created by the following lines of
code.

The preceding code can be explained as follows:
1. Define the plug-in name to be sample_artix_interceptor. This

is the name that must be added to the orb_plugins list in the
artix.cfg file in order to load the plug-in.

2. Create a static SampleBusPlugInFactory instance,
und_sample_plugin_factory. This static instance is created
automatically, as soon as the sample_artix_interceptor plug-in
is loaded.

3. Create a static IT_Bus::BusORBPlugIn instance,
und_sample_interceptor_plugin, taking the plug-in name,
und_sample_plugin_name, and the plug-in factory,
und_sample_plugin_factory, as arguments.
This line is of critical importance because it bootstraps the
entire plug-in functionality. When the static BusORBPlugIn
constructor is called, it automatically registers the plug-in
factory with the Bus.

Example 5: Creating Static Objects for a Plug-In

// C++
namespace IT_SampleArtixInterceptor
{

1 const char* const und_sample_plugin_name =
"sample_artix_interceptor";

2 SampleBusPlugInFactory und_sample_plugin_factory;

3 IT_Bus::BusORBPlugIn und_sample_interceptor_plugin(
 und_sample_plugin_name,
 und_sample_plugin_factory
);
}

Developing Advanced Artix Plugins in C++ 11

 12 Developing Advanced Artix Plugins in C++

Request Interceptors
Artix request interceptors enable you to intercept operation requests and
replies, where the request and reply data are accessible in a high-level
format. This chapter describes how to access and modify header data and
parameter data from within a request interceptor.

Overview of Request Interceptors
This section provides a high-level overview of the architecture of
request interceptors in Artix.

Client Request Interceptors
Client request interceptors are used to intercept requests (and
replies) on the client side, between the proxy object and the
binding. Figure 3 shows the architecture of a client request
interceptor chain.

Interceptor chaining
A client request interceptor chain is arranged as a singly-linked
list: each interceptor in the chain stores a pointer to the next and
the chain is terminated by a binding object.
Client request interceptor chains are created dynamically. The
Artix core reads the relevant configuration variables as it starts up
and initializes a chain of interceptors that link together in the
specified order.

Figure 3: A Client Request Interceptor Chain

intercept_invoke()

Binding

Request-level
interceptors

Stub
Code

Proxy

invoke()
 Developing Advanced Artix Plugins in C++ 13

ClientRequestInterceptor class
A client request interceptor is represented by an instance of
IT_Bus::ClientRequestInterceptor type. The
ClientRequestInterceptor class has the following members:
• m_next_interceptor member variable.

Stores the pointer to the next ClientRequestInterceptor in the
chain. The m_next_interceptor variable is automatically
initialized by Artix when it constructs the chain.

• intercept_invoke() member function.
This is the main interceptor function. You implement this
function to implement new features with interceptors.

intercept_invoke() function
Example 6 shows the basic outline of how to implement the
intercept_invoke() function.

The typical implementation of intercept_invoke() has three main
parts:
• Pre-invoke processing—put any code here that you would

want to execute before the request is dispatched to the
remote server. At this point, the input parts are already
initialized. You can examine or replace input parts.

• Call the next interceptor in the chain—you must always call
intercept_invoke() on the next interceptor, as shown here.

• Post-invoke processing—put any code here that you would
want to execute after the reply is received from the remote
server. At this point, both the input and output parts are
initialized. You can examine or modify the output parts.
Replacing parts has no effect.

Example 6: Outline of intercept_invoke() Function

// C++
using namespace IT_Bus;

void
CustomCltReqInterceptor::intercept_invoke(ClientOperation& data)
{
 // PRE-INVOKE processing
 // ...

 m_next_interceptor->intercept_invoke(data);

 // POST-INVOKE processing
 // ...
}

 14 Developing Advanced Artix Plugins in C++

ClientOperation class
The data object that passes along the client request interceptor
chain is an instance of the IT_Bus::ClientOperation class. The
ClientOperation class encapsulates all of the request and reply
data.
The most important member functions of the ClientOperation class
are as follows:
• get_name()

Returns an IT_Bus::String that holds the name of the
operation that is being invoked.

• get_input_message()

Returns an IT_Bus::WritableMessage object that contains the
input parts. The simplest way to obtain the input parts list is
to call get_input_message().get_parts().

• get_output_message()

Returns an IT_Bus::ReadableMessage object that contains the
output parts. The simplest way to obtain the output parts list
is to call get_output_message().get_parts().

• request_contexts()

Returns an IT_Bus::ContextContainer object that provides
access to request contexts. You can use this object to write or
read headers in the request message.

• reply_contexts()

Returns an IT_Bus::ContextContainer object that provides
access to reply contexts. You can use this object to write or
read headers in the reply message.

Configuring a client request interceptor
To configure Artix to use a client request interceptor, you must
update the client request interceptor list in the Artix configuration
file. The client request interceptor list consists of a list of
alternative chain configurations, as follows:
binding:artix:client_request_interceptor_list = ["Chain01",

"Chain02", "Chain03", ...];

The Artix core first attempts to construct an interceptor chain
according to pattern in Chain01. If this attempt fails (for example, if
one of the interceptors in the chain is unavailable) Artix attempts
to use the next chain configuration, Chain02, instead.
Each chain configuration is specified in the following format:
"InterceptorA+InterceptorB+..."

Where InterceptorA is the name of interceptor A and InterceptorB is
the name of interceptor B and so on. An interceptor name is the
name under which the interceptor factory is registered with the
IT_Bus::InterceptorFactoryManager.
Developing Advanced Artix Plugins in C++ 15

Configuring an interceptor in an Artix
router
If an interceptor is meant to be used within an Artix router
process, you might need to configure the router to ensure the
interceptor is not bypassed. Specifically, if you configure a route
that maps messages between two bindings of the same type (for
example, CORBA-to-CORBA), the router bypasses interceptors by
default. This is often a useful optimization, but is unsuitable for
some applications.
To force all routed messages to pass through the interceptors in
the router, you should add the following line to the router’s
configuration:
plugins:routing:use_pass_through = "false";

Server Request Interceptors
Server request interceptors are used to intercept requests (and
replies) on the server side, between the binding and the servant
object. Figure 4 shows the architecture of a server request
interceptor chain.

Interceptor chaining
A server request interceptor chain is arranged as a doubly-linked
list: each interceptor in the chain stores pointers to the next one
and the previous one.
Server request interceptor chains are created dynamically. The
Artix core reads the relevant configuration variables as it starts up
and initializes a chain of interceptors that link together in the
specified order.

Figure 4: Server Request Interceptor Chain

Binding

Request-level
interceptors

Servant

operation()

intercept_pre_dispatch()

intercept_post_dispatch()
 16 Developing Advanced Artix Plugins in C++

Alternative interceptor model
Server request interceptors support an alternative interceptor
model, which requires you to implement a single interceptor
function, intercept_around_dispatch(), as shown in Figure 5.

The intercept_around_dispatch() is called at the very start of the
dispatch process (before intercept_pre_dispatch()) and returns at
the very end of the dispatch process (after
interceptor_post_dispatch()).

ServerRequestInterceptor class
A server request interceptor is represented by an instance of
IT_Bus::ServerRequestInterceptor type. The
ServerRequestInterceptor class has the following members:
• m_next_interceptor member variable.

Stores the pointer to the next ServerRequestInterceptor in the
chain. The m_next_interceptor variable is automatically
initialized by Artix.

• m_prev_interceptor member variable.
Stores the pointer to the preceding ServerRequestInterceptor
in the chain. The m_prev_interceptor variable is automatically
initialized by Artix.

• intercept_around_dispatch() member function.
An intercept point that is called at the very start of the
dispatch process (before the input parts have been
unmarshalled); and returns at the very end of the dispatch
process (after the output parts have been marshalled).
If you don’t want to implement this function, you can inherit
the default implementation from
IT_Bus::ServerRequestInterceptor, which simply calls the next
interceptor in the chain.

• intercept_pre_dispatch() member function.
Called after the input parts have been unmarshalled, but
before dispatching to the servant.

Figure 5: Server Request Interceptors Using intercept_around_dispatch()

intercept_around_dispatch()

Binding

Request-level
interceptors

Servant

operation()
Developing Advanced Artix Plugins in C++ 17

If you don’t want to implement this function, you can inherit
the default implementation from
IT_Bus::ServerRequestInterceptor, which simply calls the next
interceptor in the chain.

• intercept_post_dispatch() member function.
Called after dispatching to the servant, but before marshalling
the output parts.
If you don’t want to implement this function, you can inherit
the default implementation from
IT_Bus::ServerRequestInterceptor, which simply calls the next
interceptor in the chain.

Combining the interceptor models
If necessary, you can combine the two interceptor models by
implementing all of the intercept functions from the
ServerRequestInterceptor class. In this case, the sequence of
interceptor calls is as follows:
1. Artix calls intercept_around_dispatch() on the first interceptor,

which calls intercept_around_dispatch() on the second
interceptor, and so on to the end of the chain.

2. Inside the call to intercept_around_dispatch(), Artix calls the
first interceptor’s intercept_pre_dispatch() function, which
calls the second interceptor’s intercept_pre_dispatch()
function, and so on to the end of the chain. The last
interceptor returns, then the next-to-last interceptor, and
then all the way back to the first interceptor.

3. Artix calls the application code.
4. Artix calls the last interceptor’s intercept_post_dispatch()

function, which calls the next-to-last interceptor's
intercept_post_dispatch() function and so on. The first
interceptor returns all the way back to the last.

5. The last interceptor’s call to intercept_around_dispatch()
returns, all the way back to the first interceptor.

Sample call sequence
To illustrate the sequence of calls that results when the intercept
functions are all used together, consider the chain of three
interceptors, A, B, and C, where A is the first interceptor in the
 18 Developing Advanced Artix Plugins in C++

chain, and C is the last. Example 7 shows the sequence of events,
where >> denotes entering a function and << denotes leaving a
function.

intercept_around_dispatch() function
Example 8 shows the basic outline of how to implement the
intercept_around_dispatch() function.

Example 7: Sample Server Interceptor Call Sequence

A >> interceptor_around_dispatch()
 B >> interceptor_around_dispatch()
 C >> interceptor_around_dispatch()
 A >> interceptor_pre_dispatch()
 B >> interceptor_pre_dispatch()
 C >> interceptor_pre_dispatch()
 C << interceptor_pre_dispatch()
 B << interceptor_pre_dispatch()
 A << interceptor_pre_dispatch()
 Application >> invoke()
 Application << invoke()
 C >> interceptor_post_dispatch()
 B >> interceptor_post_dispatch()
 A >> interceptor_post_dispatch()
 A << interceptor_post_dispatch()
 B << interceptor_post_dispatch()
 C << interceptor_post_dispatch()
 C << interceptor_around_dispatch()
 B << interceptor_around_dispatch()
A << interceptor_around_dispatch()

Example 8: Outline of intercept_around_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_around_dispatch(
 ServerOperation& data
)
{
 // PRE-UNMARSHAL processing
 // ...

 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_around_dispatch(data);
 }

 // POST-MARSHAL processing
 // ...
}

Developing Advanced Artix Plugins in C++ 19

The typical implementation of intercept_around_dispatch() has
three main parts:
• Pre-unmarshal processing—put any code here that you would

want to execute before the request is dispatched to the
servant object. At this point, the input parts are not yet
unmarshalled. Therefore, you cannot access the input parts.

• Call the next interceptor in the chain—you must always call
intercept_around_dispatch() on the next interceptor, as shown
here.

• Post-marshal processing—put any code here that you would
want to execute after the servant code has executed. At this
point, both the input and output parts are available. You can
examine or modify the output parts. Replacing parts has no
effect.

intercept_pre_dispatch() function
Example 9 shows the basic outline of how to implement the
intercept_pre_dispatch() function.

The typical implementation of intercept_pre_dispatch() has two
main parts:
• Pre-dispatch processing—put any code here that you would

want to execute before the request is dispatched to the
servant object. At this point, the input parts are
unmarshalled. You can access or modify (but not replace) the
input parts.

• Call the next interceptor in the chain—you must always call
intercept_pre_dispatch() on the next interceptor, as shown
here.

Example 9: Outline of intercept_pre_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_pre_dispatch(
 ServerOperation& data
)
{
 // PRE-DISPATCH processing
 // ...

 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_pre_dispatch(data);
 }
}

 20 Developing Advanced Artix Plugins in C++

intercept_post_dispatch() function
Example 10 shows the basic outline of how to implement the
intercept_post_dispatch() function.

The typical implementation of intercept_post_dispatch() has two
main parts:
• Post-dispatch processing—put any code here that you would

want to execute after the request is dispatched to the servant
object. At this point, the output parts are initialized. You can
access or replace the output parts.

• Call the previous interceptor in the chain—you must always
call intercept_post_dispatch() on the previous interceptor, as
shown here.

ServerOperation class
The data object that passes along the server request interceptor
chain is an instance of the IT_Bus::ServerOperation class. The
ServerOperation class encapsulates the request and reply data.
The most important member functions of the ServerOperation class
are as follows:
• get_name()

Returns an IT_Bus::String that holds the name of the
operation that is being dispatched.

• get_input_message()

Returns an IT_Bus::ReadableMessage object that contains the
input parts. The simplest way to obtain the input parts list is
to call get_input_message().get_parts().

• get_output_message()

Returns an IT_Bus::WritableMessage object that contains the
output parts. The simplest way to obtain the output parts list
is to call get_output_message().get_parts().

Example 10: Outline of intercept_post_dispatch() Function

// C++
using namespace IT_Bus;

void
CustomSrvrReqInterceptor::intercept_post_dispatch(
 ServerOperation& data
)
{
 // POST-DISPATCH processing
 // ...

 if (m_prev_interceptor != 0) {
 m_prev_interceptor->intercept_post_dispatch(data);
 }
}

Developing Advanced Artix Plugins in C++ 21

• request_contexts()

Returns an IT_Bus::ContextContainer object that provides
access to request contexts. You can use this object to write or
read headers in the request message.

• reply_contexts()

Returns an IT_Bus::ContextContainer object that provides
access to reply contexts. You can use this object to write or
read headers in the reply message.

Configuring a server request interceptor
To configure Artix to use a server request interceptor, you must
update the server request interceptor list in the Artix configuration
file. The server request interceptor list consists of a list of
alternative chain configurations, as follows:
binding:artix:server_request_interceptor_list = ["Chain01",

"Chain02", "Chain03", ...];

The Artix core first attempts to construct an interceptor chain
according to pattern in Chain01. If this attempt fails (for example, if
one of the interceptors in the chain is unavailable) Artix attempts
to use the next chain configuration, Chain02, instead.
Each chain configuration is specified in the following format:
"InterceptorA+InterceptorB+..."

Where InterceptorA is the name of interceptor A and InterceptorB is
the name of interceptor B and so on. An interceptor name is the
name under which the interceptor factory is registered with the
IT_Bus::InterceptorFactoryManager.

Configuring an interceptor in an Artix
router
If an interceptor is meant to be used within an Artix router
process, you might need to configure the router to ensure the
interceptor is not bypassed. Specifically, if you configure a route
that maps messages between two bindings of the same type (for
example, CORBA-to-CORBA), the router bypasses interceptors by
default. This is often a useful optimization, but is unsuitable for
some applications.
To force all routed messages to pass through the interceptors in
the router, you should add the following line to the router’s
configuration:
plugins:routing:use_pass_through = "false";

Sending and Receiving Header Contexts
You can use Artix interceptors to send and receive header
contexts to transmit with operation request and replies. While it is
also possible to program header contexts at the application level,
there are significant advantages to writing this code at the
interceptor level. Header contexts are typically used to send
security credentials and other out-of-band data that are not
 22 Developing Advanced Artix Plugins in C++

specific to any port type. By putting this common code into an
interceptor, you can avoid cluttering your servant code and client
code.

SOAP Header Context Example
The examples in this section are based on the shared library
demonstration, which is located in the following Artix directory:
ArtixInstallDir/samples/advanced/shared_library

Figure 6 shows an overview of the shared library demonstration,
showing how the client piggybacks context data along with an
invocation request that is invoked on the sayHi operation.

Transmission of context data
As illustrated in Figure 6, SOAP context data is transmitted as
follows:
1. The client registers the context type, SOAPHeaderInfo, with the

Bus.
2. The client interceptor initializes the context data instance.
3. The client invokes the sayHi() operation on the server.
4. As the server starts up, it registers the SOAPHeaderInfo context

type with the Bus.
5. When the sayHi() operation request arrives on the server

side, the sayHi() operation implementation extracts the
context data from the request.

Figure 6: Overview of the Custom SOAP Header Demonstration

WSDL

WSDL File

Artix Server

sayHi("...")

Artix Client

ServerImpl

1

2

3

4

Context

Context
Context

XSD

XSD File

HelloWorld
Contract

SOAPHeaderInfo
Schema

HelloWorld
Contract

Register context

Initialize context data

Register context

Application

Plug-In Plug-In

5

XSD

XSD File

WSDL

WSDL File

SOAPHeaderInfo
Schema

Application
Developing Advanced Artix Plugins in C++ 23

HelloWorld WSDL contract
The HelloWorld WSDL contract defines the contract implemented
by the server in this demonstration. In particular, the HelloWorld
contract defines the Greeter port type containing the sayHi WSDL
operation.

SOAPHeaderInfo schema
The SOAPHeaderInfo schema (in the
samples/advanced/shared_library/etc/contextTypes.xsd file) defines
the custom data type used as the context data type. This schema
is specific to the shared library demonstration.

Sample Context Schema
This subsection describes how to define an XML schema for a
context type. In this example, the SOAPHeaderInfo type is declared
in an XML schema. The SOAPHeaderInfo type is then used by the
shared library demonstration to send custom data in a SOAP
header.

SOAPHeaderInfo XML declaration
Example 11 shows the schema for the SOAPHeaderInfo type, which
is defined specifically for the shared library demonstration to carry
some sample data in a SOAP header. Note that Example 11 is a
pure schema declaration, not a WSDL declaration.

The SOAPHeaderInfo complex type defines two member elements,
as follows:
• originator—holds an arbitrary client identifier.
• message—holds an arbitrary example message.

Example 11: XML Schema for the SOAPHeaderInfo Context Type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.iona.com/types/context"
 elementFormDefault="qualified"

attributeFormDefault="unqualified">
 <xs:complexType name="SOAPHeaderInfo">
 <xs:annotation>
 <xs:documentation>
 Content to be added to a SOAP header
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="originator" type="xs:string"/>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>
 24 Developing Advanced Artix Plugins in C++

Target namespace
You can use any target namespace for a context schema (as long
as it does not clash with an existing namespace). This
demonstration uses the following target namespace:
http://schemas.iona.com/types/context

Compiling the SOAPHeaderInfo schema
To compile the SOAPHeaderInfo schema, invoke the wsdltocpp
compiler utility at the command line, as follows:
wsdltocpp -n custom_interceptor contextTypes.xsd

Where contextTypes.xsd is a file containing the XML schema from
Example 11. This command generates the following C++ stub
files:
contextTypes_xsdTypes.h
contextTypes_xsdTypesFactory.h
contextTypes_xsdTypes.cxx
contextTypes_xsdTypesFactory.cxx

SOAPHeaderInfo C++ mapping
Example 12 shows how the schema from Example 11 on page 24
maps to C++, to give the custom_interceptor::SOAPHeaderInfo C++
class.

Example 12: C++ Mapping of the SOAPHeaderInfo Context Type

// C++
...
namespace custom_interceptor
{
 ...
 class SOAPHeaderInfo : public IT_Bus::SequenceComplexType
 {
 public:
 static const IT_Bus::QName type_name;

 SOAPHeaderInfo();
 SOAPHeaderInfo(const SOAPHeaderInfo & copy);
 virtual ~SOAPHeaderInfo();
 ...
 IT_Bus::String & getoriginator();
 const IT_Bus::String & getoriginator() const;
 void setoriginator(const IT_Bus::String & val);

 IT_Bus::String & getmessage();
 const IT_Bus::String & getmessage() const;
 void setmessage(const IT_Bus::String & val);
 ...
 };
 ...
}

Developing Advanced Artix Plugins in C++ 25

Implementation of the Client Request Interceptor
A client request interceptor performs processing on the client
operation object which passes through the client interceptor chain.
You implement the intercept_invoke() operation (called by the
preceding interceptor in the chain) to perform request processing.

The ClientRequestInterceptor base class
Example 13 shows the declarations of the IT_Bus::Interceptor
class and the IT_Bus::ClientRequestInterceptor class, which is the
base class for a client request interceptor. The member functions
that must be implemented by derived classes are highlighted in
bold font.

Example 13: The IT_Bus::ClientRequestInterceptor Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 enum InterceptorType
 {
 CPP_INTERCEPTOR,
 JAVA_INTERCEPTOR
 };

1 class IT_BUS_API Interceptor
 {
 public:
 Interceptor();
 Interceptor(InterceptorFactory* factory);
 virtual ~Interceptor();

 virtual InterceptorFactory* get_factory();
 virtual InterceptorType get_type();

 private:
 InterceptorFactory* m_factory;
 };

2 class IT_BUS_API ClientRequestInterceptor
 : public Interceptor
 {
 public:
 ClientRequestInterceptor();
 ClientRequestInterceptor(InterceptorFactory* factory);
 virtual ~ClientRequestInterceptor();

 virtual void
 chain_assembled(ClientRequestInterceptorChain& chain);

 virtual void
 chain_finalized(
 ClientRequestInterceptor* next_interceptor
);

 virtual void
 26 Developing Advanced Artix Plugins in C++

The preceding code can be explained as follows:
1. The IT_Bus::Interceptor class is the common base class for all

interceptor types.
2. The IT_Bus::ClientRequestInterceptor class, which inherits

from IT_Bus::Interceptor, is the base class for client request
interceptors.

C++ client request interceptor header
Example 14 shows the declaration of the
IT_SampleArtixInterceptor::ClientInterceptor class, which is
derived from the IT_Bus::ClientRequestInterceptor class.

 intercept_invoke(ClientOperation& data);

 protected:
 ClientRequestInterceptor* m_next_interceptor;
 };
};

Example 13: The IT_Bus::ClientRequestInterceptor Class

Example 14: Sample Client Request Interceptor Header File

// C++
// In file: samples/advanced/shared_library/
// cxx/plugin/client_interceptor.h

#include <it_bus/qname.h>
#include <it_bus/bus.h>
#include <it_bus_pdk/interceptor.h>
#include <it_cal/cal.h>

namespace IT_SampleArtixInterceptor
{

1 class ClientInterceptor :
 public virtual IT_Bus::ClientRequestInterceptor
 {
 public:
 ClientInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ClientInterceptor();

 virtual void
 intercept_invoke(IT_Bus::ClientOperation& data);

 private:
 ClientInterceptor&
 operator = (const ClientInterceptor& rhs);

 ClientInterceptor(const ClientInterceptor& rhs);

2 IT_Bus::Bus_ptr m_bus;
 };
};
Developing Advanced Artix Plugins in C++ 27

The preceding code can be explained as follows:
1. The ClientInterceptor implementation class inherits from the

IT_Bus::ClientRequestInterceptor base class.
2. The m_bus member variable stores a reference to the Bus

object.

C++ client request interceptor
implementation
Example 15 shows the implementation of the
IT_SampleArtixInterceptor::ClientInterceptor class.

Example 15: Sample Client Request Interceptor Implementation

// C++
// In file: samples/advanced/shared_library/
//

cxx/plugin/client_interceptor.cxx
// Include header files related to the soap context
#include <it_bus/operation.h>
#include <it_bus_pdk/context.h>

// Include header files representing the soap header content
#include "../types/contextTypes_xsdTypes.h"
#include "../types/contextTypes_xsdTypesFactory.h"

#include "client_interceptor.h"

IT_USING_NAMESPACE_STD
using namespace custom_interceptor;

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

1 ClientInterceptor::ClientInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
}

ClientInterceptor::~ClientInterceptor() { }

void
2 ClientInterceptor::intercept_invoke(ClientOperation& data)

{
 cout << "\tClient interceptor intercept_invoke method"
 << "\tOperation called: " << data.get_name()
 << endl;

3 // -----> PRE-INVOKE processing comes here <-----
 // For the sayHi operation, change the originator and message

4 if (data.get_name() == "sayHi")
 {
 // Obtain a pointer to the bus
 Bus_var bus = Bus::create_reference();
 28 Developing Advanced Artix Plugins in C++

 // Use the bus to obtain a pointer to the
ContextRegistry

 // created by the soap plugin
 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Create QName objects needed to define a context
 const QName principal_ctx_name(
 "",
 "SOAPHeaderInfo",
 ""
);

 // Obtain a pointer to the RequestContextContainer
5 ContextContainer* context_container =

 data.request_contexts();

 // Obtain a reference to the context
6 AnyType* info = context_container->get_context(

 principal_ctx_name,
 true
);

 if (0 == info)
 {
 throw Exception("Could not access Context");
 }

 // Cast the context into a SOAPHeaderInfo object
7 SOAPHeaderInfo* header_info =

 dynamic_cast<SOAPHeaderInfo*> (info);

 if (0 == header_info)
 {
 throw Exception("Could not cast Context");
 }

 // Create the content to be added to the header
 const String originator("Artix Engineering");
 const String message("We are Great!");

 // Add the header content
 cout << "\tSetting SOAP header with originator: "
 << originator << " and message: " << message << endl;

8 header_info->setoriginator(originator);
 header_info->setmessage(message);
 }

 if (ClientRequestInterceptor::m_next_interceptor != 0)
 {

9 ClientRequestInterceptor::m_next_interceptor->intercept_invoke
(data);

 }
10 // -----> POST-INVOKE processing comes here <-----

}

Example 15: Sample Client Request Interceptor Implementation
Developing Advanced Artix Plugins in C++ 29

The preceding code can be explained as follows:
1. The ClientInterceptor constructor is called by the interceptor

factory at the time the interceptor chain is constructed (see
“Implementation of the Interceptor Factory” on page 34).
Here you should initialize a local reference to the Bus, m_bus,
and the interceptor name, m_name.

2. The intercept_invoke() function is the key function in the
client request interceptor. This is the point at which you can
intercept and affect an operation invocation.

3. At this point (prior to invoking intercept_invoke() on the next
interceptor), you can add in any processing that needs to
complete before invoking the WSDL operation.

4. The interceptor modifies the context only for the sayHi
operation from the Greeter port type.

5. The interceptor obtains a reference to the context container
for outgoing requests.

6. Get a pointer to the context identified by the SOAPHeaderInfo
QName. If an instance of this context does not already exist,
the get_context() function creates a new one (indicated by
setting the second parameter to true).

7. Cast the IT_Bus::AnyType* variable from the previous step,
info, to the SOAPHeaderInfo* variable, header_info.

8. Set the originator and message attributes on the
SOAPHeaderInfo instance, header_info.

9. Invoke intercept_invoke() on the next interceptor in the
chain. This step is mandatory for almost all interceptors (a
possible exception being a security interceptor that decides to
prevent an invocation from proceeding).

10. At this point (after invoking intercept_invoke() on the next
interceptor), you can add in any processing that needs to
occur after invoking the WSDL operation.

Implementation of the Server Request Interceptor
A server request interceptor performs processing on the server
operation object which passes through the server interceptor
chain. You must implement the following functions to intercept
incoming requests:
• intercept_pre_dispatch()
• intercept_post_dispatch()

The ServerRequestInterceptor base
class
Example 16 shows the declarations of the IT_Bus::Interceptor
class and the IT_Bus::ServerRequestInterceptor class, which is the
base class for a server request interceptor. The member functions
that must be implemented by derived classes are highlighted in
bold font.
 30 Developing Advanced Artix Plugins in C++

Example 16: The IT_Bus::ServerRequestInterceptor Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 enum InterceptorType
 {
 CPP_INTERCEPTOR,
 JAVA_INTERCEPTOR
 };

1 class IT_BUS_API Interceptor
 {
 public:
 Interceptor();
 Interceptor(InterceptorFactory* factory);
 virtual ~Interceptor();

 virtual InterceptorFactory* get_factory();
 virtual InterceptorType get_type();

 private:
 InterceptorFactory* m_factory;
 };

2 class IT_BUS_API ServerRequestInterceptor
 : public Interceptor
 {
 public:
 ServerRequestInterceptor();
 ServerRequestInterceptor(InterceptorFactory* factory);
 virtual ~ServerRequestInterceptor();

 virtual void
 chain_assembled(ServerRequestInterceptorChain& chain);

 virtual void
 chain_finalized(
 ServerRequestInterceptor* next_interceptor
);

 virtual void
 intercept_pre_dispatch(ServerOperation& data);

 virtual void
 intercept_post_dispatch(ServerOperation& data);

 virtual void
 intercept_around_dispatch(ServerOperation& data);

 protected:
3 ServerRequestInterceptor* m_next_interceptor;

 ServerRequestInterceptor* m_prev_interceptor;
 };
};
Developing Advanced Artix Plugins in C++ 31

The preceding code can be explained as follows:
1. The IT_Bus::Interceptor class is the common base class for all

interceptor types.
2. The IT_Bus::ServerRequestInterceptor class, which inherits

from IT_Bus::Interceptor, is the base class for server request
interceptors.

3. The server request interceptor stores references both to the
next interceptor and the previous interceptor in the chain. A
server request interceptor chain is thus a doubly linked list.

C++ server request interceptor header
Example 17 shows the declaration of the
IT_SampleArtixInterceptor::ServerInterceptor class, which is
derived from the IT_Bus::ServerRequestInterceptor class.

Example 17: Sample Server Request Interceptor Header File

// C++
// In file: samples/advanced/shared_library/
// cxx/plugin/server_interceptor.h

#include <it_bus/qname.h>
#include <it_bus/bus.h>
#include <it_bus_pdk/interceptor.h>

namespace IT_SampleArtixInterceptor
{

1 class ServerInterceptor :
 public virtual IT_Bus::ServerRequestInterceptor
 {
 public:
 ServerInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ServerInterceptor();

 virtual void
 intercept_pre_dispatch(IT_Bus::ServerOperation& data);

 virtual void
 intercept_post_dispatch(IT_Bus::ServerOperation& data);

 private:
 ServerInterceptor&
 operator = (const ServerInterceptor& rhs);

 ServerInterceptor(const ServerInterceptor& rhs);

2 IT_Bus::Bus_ptr m_bus;
 };
};
 32 Developing Advanced Artix Plugins in C++

The preceding code can be explained as follows:
1. The ServerInterceptor implementation class inherits from the

IT_Bus::ServerRequestInterceptor base class.
2. The m_bus member variable stores a reference to the Bus

object.

C++ server request interceptor
implementation
Example 18 shows the implementation of the
IT_SampleArtixInterceptor::ServerInterceptor class.

Example 18: Sample Server Request Interceptor Implementation

// C++
// In file: samples/advanced/custom_interceptor/
// cxx/plugin/server_interceptor.cxx
#include "server_interceptor.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

IT_USING_NAMESPACE_STD

1 ServerInterceptor::ServerInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
}

ServerInterceptor::~ServerInterceptor() { }

void
2 ServerInterceptor::intercept_pre_dispatch(

 IT_Bus::ServerOperation& data
)
{

3 cout << "\tServer interceptor intercept_pre_dispatch invoked"
 << "\tOperation called: " << data.get_name() << endl;

4 // -----> PRE-INVOKE processing comes here <-----

 if (ServerRequestInterceptor::m_next_interceptor != 0)
 {

5 ServerRequestInterceptor::m_next_interceptor->intercept_pre_dispatch(data);
 }
}

void
6 ServerInterceptor::intercept_post_dispatch(

 IT_Bus::ServerOperation& data
)
{
 cout << "\tServer interceptor intercept_post_dispatch "
 << "invoked \tReturn from operation: "
 << data.get_name() << endl;
Developing Advanced Artix Plugins in C++ 33

The preceding code can be explained as follows:
1. The ServerInterceptor constructor is called by the interceptor

factory at the time the interceptor chain is constructed (see
“Implementation of the Interceptor Factory” on page 34).
Here you should initialize a local reference to the Bus, m_bus,
and the interceptor name, m_name.

2. The intercept_pre_dispatch() function is called before the
incoming request has been dispatched to the service
endpoint. This key function gives you a chance to access the
request before it is executed on the server side.

3. Print the name of the invoked WSDL operation to standard
output. For simplicity, in this demonstration the operation
name is printed using cout. In general, however, it is better
practice to use the Artix logging feature.

4. At this point (prior to invoking intercept_pre_dispatch() on
the next interceptor), you can add any processing that needs
to complete before invoking the WSDL operation.

5. Invoke intercept_pre_dispatch() on the next interceptor in the
chain. This step is mandatory for almost all interceptors (a
possible exception being a security interceptor that decides to
prevent an invocation from proceeding).

6. The intercept_post_dispatch() function is called after the
incoming request has been dispatched to the service
endpoint, but before the output parts have been marshalled.

7. The post-invoke processing should precede the call on the
next interceptor in the chain.

8. Invoke intercept_post_dispatch() on the previous interceptor
in the chain. This step is mandatory.

Implementation of the Interceptor Factory
Artix uses a factory pattern to manage the lifecycle of interceptor
objects. To install a set of interceptors, you must implement an
interceptor factory and register an instance of this factory with the
interceptor factory manager object. The interceptor factory
exposes functions that the Artix runtime can then call to create
new interceptor instances.
Request interceptors are created by the following functions:
• get_client_request_interceptor()
• get_server_request_interceptor()
Message interceptors are created by the following functions:
• get_client_message_interceptor()

7 // -----> POST-INVOKE processing comes here <-----

 if (ServerRequestInterceptor::m_prev_interceptor != 0)
 {

8 ServerRequestInterceptor::m_prev_interceptor->intercept_post_dispatch(data);

 }
}

Example 18: Sample Server Request Interceptor Implementation
 34 Developing Advanced Artix Plugins in C++

• get_server_message_interceptor()
If a particular kind of interceptor is not implemented, you can
indicate this with a return value of 0. The interceptor is then
omitted from the chain.

The InterceptorFactory base class
Example 19 shows the declarations of the
IT_Bus::InterceptorFactory class, which is the base class for an
interceptor factory.

Example 19: The IT_Bus::InterceptorFactory Class

// C++
// In file: it_bus_pdk/interceptor.h
...
namespace IT_Bus {
 class IT_BUS_API InterceptorFactory
 {
 public:
 virtual ClientMessageInterceptor *
 get_client_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_message_interceptor(
 ClientMessageInterceptor * message_interceptor
);

 virtual ClientRequestInterceptor *
 get_client_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_request_interceptor(
 ClientRequestInterceptor * request_interceptor
);

 virtual ServerMessageInterceptor*
 get_server_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_server_message_interceptor(
 ServerMessageInterceptor* message_interceptor
);

 virtual ServerRequestInterceptor*
 get_server_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_server_request_interceptor(
 ServerRequestInterceptor* request_interceptor
);

 virtual const String& name() = 0;
Developing Advanced Artix Plugins in C++ 35

C++ interceptor factory header
Example 20 shows the declaration of the
IT_SampleArtixInterceptor::SampleBusPlugIn class, which
implements the IT_Bus::InterceptorFactory class.

 protected:
 ...
 };
};

Example 19: The IT_Bus::InterceptorFactory Class

Example 20: Sample Interceptor Factory Header File

// C++
// In file: samples/advanced/shared_library/
// cxx/plugin/plugin.cxx
...
namespace IT_SampleArtixInterceptor
{

1 class SampleBusPlugIn :
 public IT_Bus::BusPlugIn,
 public IT_Bus::InterceptorFactory
 {
 public:
 IT_EXPLICIT
 SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception));

 virtual ~SampleBusPlugIn();

2 // IT_Bus::BusPlugIn
 //
 ... // Not shown.

3 //IT_Bus::InterceptorFactory
 //
 virtual IT_Bus::ClientMessageInterceptor *
 get_client_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_message_interceptor(
 IT_Bus::ClientMessageInterceptor* message_interceptor
);

 virtual IT_Bus::ClientRequestInterceptor *
 get_client_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_client_request_interceptor(
 IT_Bus::ClientRequestInterceptor * request_interceptor
) ;

 virtual IT_Bus::ServerMessageInterceptor*
 36 Developing Advanced Artix Plugins in C++

The preceding code can be explained as follows:
1. In this example, the IT_Bus::InterceptorFactory base class is

implemented by the plug-in class, SampleBusPlugIn. If you
prefer, you could implement IT_Bus::InterceptorFactory using
a separate class instead.

2. The implementation of the functions inherited from the
IT_Bus::BusPlugIn base class is discussed in another chapter—
see “Basic Plug-In Implementation” on page 1.

3. From this point on, all of the functions shown are inherited
from IT_Bus::InterceptorFactory.

4. The m_name variable is used to store the interceptor name.

 get_server_message_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_server_message_interceptor(
 IT_Bus::ServerMessageInterceptor* message_interceptor
);

 virtual IT_Bus::ServerRequestInterceptor*
 get_server_request_interceptor(
 const IT_WSDL::WSDLNode* const wsdl_node = 0
);

 virtual void destroy_server_request_interceptor(
 IT_Bus::ServerRequestInterceptor* request_interceptor
);

 virtual const IT_Bus::QName& name();

 private:
 SampleBusPlugIn(const SampleBusPlugIn&);

 SampleBusPlugIn&
 operator=(const SampleBusPlugIn&);

4 IT_Bus::String m_name;
 };
};

Example 20: Sample Interceptor Factory Header File
Developing Advanced Artix Plugins in C++ 37

C++ interceptor factory implementation
Example 21 shows the implementation of the
IT_SampleArtixInterceptor::SampleBusPlugIn class.

Example 21: Sample Interceptor Factory Implementation

// C++

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_SampleArtixInterceptor;

// SampleBusPlugIn
//

SampleBusPlugIn:: SampleBusPlugIn(
 IT_Bus::Bus_ptr bus
) IT_THROW_DECL((IT_Bus::Exception))
 :
 BusPlugIn(bus),
 m_name("artix_shlib_interceptor")
{
 assert(bus != 0);
}

SampleBusPlugIn::~SampleBusPlugIn() { }

// IT_Bus::BusPlugIn functions
//
void
SampleBusPlugIn::bus_init(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

1 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory_manager();

2 factory_manager.register_interceptor_factory(
 m_name,
 this
);
}

void
SampleBusPlugIn::bus_shutdown(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 InterceptorFactoryManager& factory_manager =
 bus->get_pdk_bus()->get_interceptor_factory_manager();

3 factory_manager.unregister_interceptor_factory(
 this
);
 38 Developing Advanced Artix Plugins in C++

}

// IT_Bus::InterceptorFactory functions
//
ClientMessageInterceptor *

4 SampleBusPlugIn::get_client_message_interceptor(
 const WSDLNode* const
)
{
 return 0;
}

void
5 SampleBusPlugIn::destroy_client_message_interceptor(

 ClientMessageInterceptor* message_interceptor
)
{
 delete message_interceptor;
}

ClientRequestInterceptor *
6 SampleBusPlugIn::get_client_request_interceptor(

 const WSDLNode* const
)
{
 return new ClientInterceptor(get_bus());
}

void
7 SampleBusPlugIn::destroy_client_request_interceptor(

 ClientRequestInterceptor * request_interceptor
)
{
 delete request_interceptor;
}

ServerMessageInterceptor*
SampleBusPlugIn::get_server_message_interceptor(
 const WSDLNode* const
)
{
 return 0;
}

void
SampleBusPlugIn::destroy_server_message_interceptor(
 ServerMessageInterceptor* message_interceptor
)
{
 delete message_interceptor;
}

ServerRequestInterceptor*
8 SampleBusPlugIn::get_server_request_interceptor(

 const WSDLNode* const
)
{
 return new ServerInterceptor(get_bus());

Example 21: Sample Interceptor Factory Implementation
Developing Advanced Artix Plugins in C++ 39

The preceding code can be explained as follows:
1. The IT_Bus::InterceptorFactoryManager object stores a list of

all interceptor factories. It is implemented by the Artix
runtime.

2. You must register the interceptor factory instance with the
interceptor factory manager, as shown here. The register
function takes the interceptor name, m_name, and the
interceptor factory instance, this, as arguments.

3. You usually unregister the interceptor factory in the body of
the IT_Bus::BusPlugIn::bus_shutdown() function to ensure a
clean shutdown of the Artix Bus.

4. You would implement the get_client_message_interceptor()
function to install a client message interceptor. In this
example, the function returns 0 to indicate that a client
message interceptor is not available.

5. The destroy_client_message_interceptor() function would be
called by the Artix runtime to clean up resources associated
with the client message interceptor.

6. The Artix runtime calls get_client_request_interceptor() in
the course of constructing a new interceptor chain to obtain a
client request interceptor instance.
The get_client_request_interceptor() function takes the
following arguments:
♦ wsdl_node—(defaults to 0).
In this example, the implementation of
get_client_request_interceptor() simply returns a new client
interceptor object.

7. The destroy_client_request_interceptor() function is called by
the Artix runtime to clean up resources associated with the
client request interceptor.

8. The Artix runtime calls get_server_request_interceptor() in
the course of constructing a new interceptor chain to obtain a
server request interceptor instance.
The get_server_request_interceptor() function takes the
following arguments:
♦ wsdl_node—(defaults to 0).

}

void
9 SampleBusPlugIn::destroy_server_request_interceptor(

 ServerRequestInterceptor* request_interceptor
)
{
 delete request_interceptor;
}

const String&
10 SampleBusPlugIn::name()

{
 return m_name;
}

Example 21: Sample Interceptor Factory Implementation
 40 Developing Advanced Artix Plugins in C++

In this example, the implementation of
get_server_request_interceptor() simply returns a new server
interceptor object.

9. The destroy_server_request_interceptor() function is called by
the Artix runtime to clean up resources associated with the
server request interceptor.

10. The name() function returns the interceptor name.

Accessing and Modifying Parameters
Artix interceptors enable you to access and modify both input and
output parameters, as a message passes back and forth along the
interceptor chain. On the client side, the input and output
parameters are accessible from the IT_Bus::ClientOperation
object. On the server side, the input and output parameters are
accessible from the IT_Bus::ServerOperation object.

Reflection Example
In order to access and modify operation parameters from within
an interceptor, it is essential to use the Artix reflection API. In
contrast to code written at the application level, an interceptor
must typically be able to process any port type or operation.
Hence, an interceptor implementation must be able to parse any
parameter type; this capability is provided by the Artix reflection
API.
To access operation parameters from within an interceptor, you
would typically need to use the following APIs:
• Part list type.
• Reflection API.

Part list type
Given either an IT_Bus::ClientOperation instance or an
IT_Bus::ServerOperation instance, data, you can access the input
parts and the output parts as follows:
• To obtain a reference to the input part list, call:

data.get_input_message().get_parts()

• To obtain a reference to the output part list, call:
data.get_output_message().get_parts()

The returned part list (of IT_Bus::PartList& type) is essentially a
vector of (IT_Bus::QName, IT_Bus::AnyType*) pairs.

Reflection API
The reflection API enables you to parse any Artix data type and to
process the data without any advance knowledge of its type. For
the example described in this section, you need only the following
classes:
• IT_Reflect::Reflection class—the base class for all reflection

types.
Developing Advanced Artix Plugins in C++ 41

• IT_Reflect::Value<IT_Bus::String> class—the reflection type
that represents a string.

• IT_Bus::Var<T> template—a smart pointer template type that
ensures that the referenced data is not leaked.

Reflection interceptor demonstration
The sample code in this section is taken from the Artix
demonstration ArtixInstallDir/samples/reflection/interceptor
Example 22 shows the WSDL definition of the Greeter port type
that is used in this demonstration.

Example 22: The Greeter Port Type

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 name="HelloWorld"
 targetNamespace="http://www.iona.com/reflect_interceptor"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.iona.com/reflect_interceptor"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>
 <wsdl:types>
 <schema targetNamespace="http://www.iona.com/reflect_interceptor"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="responseType" type="xsd:string"/>
 <element name="requestType" type="xsd:string"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest"/>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="tns:responseType" name="theResponse"/>
 </wsdl:message>
 <wsdl:message name="greetMeRequest">
 <wsdl:part element="tns:requestType" name="me"/>
 </wsdl:message>
 <wsdl:message name="greetMeResponse">
 <wsdl:part element="tns:responseType" name="theResponse"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest"
 name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </wsdl:operation>
 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest"
 name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse"
 name="greetMeResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>
 42 Developing Advanced Artix Plugins in C++

Implementation of the Client Request Interceptor
This subsection describes how to implement a client request
interceptor that uses reflection to modify an operation’s input and
output parameters.

C++ client request interceptor header
Example 23 shows the header for the ClientInterceptor class,
derived from the IT_Bus::ClientRequestInterceptor base class.

C++ client request interceptor
implementation
Example 24 shows the implementation of the ClientInterceptor
class.

Note: This example is only intended to be used in conjunction
with the Greeter port type, as defined in Example 22 on page 42.

Example 23: Client Interceptor Header for Reflection Example

// C++
#include <it_bus/bus.h>
#include <it_bus/qname.h>
#include <it_bus_pdk/interceptor.h>

class ClientInterceptor :
 public virtual IT_Bus::ClientRequestInterceptor
{
 public:
 ClientInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ClientInterceptor();

 virtual void
 intercept_invoke(
 IT_Bus::ClientOperation& data
);

 private:
 IT_Bus::Bus_ptr m_bus;
};

Example 24: Client Interceptor Implementation for Reflection Example

// C++
#include "client_interceptor.h"
#include <it_bus/operation.h>
#include <it_bus/part_list.h>
#include <it_bus/reflect/value.h>
#include <it_cal/iostream.h>
Developing Advanced Artix Plugins in C++ 43

IT_USING_NAMESPACE_STD;
using namespace IT_Bus;

ClientInterceptor::ClientInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
 // Complete
}

ClientInterceptor::~ClientInterceptor()
{
 // Complete
}

void
1 ClientInterceptor::intercept_invoke(

 ClientOperation& data
)
{
 // Get the value of the input part using reflection.
 // Client-side input parts are "serializable" that is they
 // will be serialized to the underlying transport.
 // Serializable parts are read-only.
 //

2 PartList& input_parts = data.get_input_message().get_parts();
3 if (input_parts.size() == 1)

 {
4 Var<const IT_Reflect::Reflection> r =

 input_parts[0].get_const_value().get_reflection();
5 Var<const IT_Reflect::Value<String> > input_reflection =

 dynamic_cast_var<const IT_Reflect::Value<String> >(r);
 assert(input_reflection.get());
 String input_string = input_reflection->get_value();

 // Print a message
 //

6 String replace_input = input_string + ",1";
 cout << "[Client pre-invoke intercepted: "
 << input_string << "]" << endl;
 cout << "[Replacing with " << replace_input << "]" << endl;

 // Replace the part before calling next interceptor.
 //

7 set_const_value(input_parts[0], replace_input);
 }

 // Call the next interceptor
 //

8 m_next_interceptor->intercept_invoke(data);

 // Get the value of the output string using reflection.
 //
 PartList& output_parts = data.get_output_message().get_parts();

9 if (output_parts.size() == 1)
 {
 Var<IT_Reflect::Reflection> r2 =

Example 24: Client Interceptor Implementation for Reflection Example
 44 Developing Advanced Artix Plugins in C++

The preceding interceptor implementation can be explained as
follows:
1. This implementation of intercept_invoke() is designed to

modify the parameters of the sayHi and greetMe WSDL
operations by adding a short string to the input parameter
and to the output parameter.

2. The returned part list, input_parts, contains all of the WSDL
parts containing input parameters for the operation. A part list
is essentially a vector of (IT_Bus::QName, IT_Bus::AnyType*)
pairs. The IT_Bus::AnyType is the base type for all WSDL types
in Artix.

3. The code in this if-block uses reflection to modify the first
input part. This example is hard-coded to work only with the
sayHi and greetMe operation from the Greeter port type. The
example modifies the request message, only if it consists of a
single part which is a string.

4. From the first (and only) pair in the part list, return the const
IT_Bus::AnyType value (using get_const_value()) and convert it
into a reflection object (using get_reflection()).

5. Assuming that the part contains a string, cast the reflection
object to a string reflection.
This step is only intended to work for the Greeter port type. In
the general case, you would have to use the reflection
interface to figure out the data type.

6. Define a modified string, replace_input, which adds ,1 to the
original string.

 output_parts[0].get_modifiable_value().get_reflection();
 Var<IT_Reflect::Value<String> > output_reflection =
 dynamic_cast_var<IT_Reflect::Value<String> >(r2);
 assert(output_reflection.get());
 String output_string = output_reflection->get_value();

 // Print a messsage
 //
 String replace_output = output_string + ",4";
 cout << "[Client post-invoke intercepted: " << output_string << "]"
 << endl;
 cout << "[Replacing with " << replace_output << "]" << endl;

 // Modify the value of the output part. This directly
 // modifies the underlying application data value.
 //
 output_reflection->set_value(replace_output);
 }
}

Example 24: Client Interceptor Implementation for Reflection Example
Developing Advanced Artix Plugins in C++ 45

7. Call set_const_value() to replace the sole input part in the
request. The set_const_value() function is a convenience
template, which is used only for simple types. It is defined in
it_bus/part.h as follows:

The IT_Bus::Part::set_const_value() function takes an
IT_Bus::AnyType as its first parameter. Because simple atomic
types, such as IT_Bus::String, do not inherit from AnyType, it is
necessary to wrap them in an IT_Bus::AnySimpleTypeT<T>
instance, which does inherit from AnyType.
For user-defined types (and other types that inherit from
AnyType), you can pass them directly to the
IT_Bus::Part::set_const_value() function.

8. The obligatory call to delegate to the next interceptor in the
chain.

9. In the reply message, modify the output, only if it consists of
a single part containing a string (intended for the Greeter port
type only).

Implementation of the Server Request Interceptor
This subsection describes how to implement a server request
interceptor that uses reflection to modify an operation’s input and
output parameters.

C++ server request interceptor header
Example 25 shows the header for the ServerInterceptor class,
which is derived from the IT_Bus::ServerRequestInterceptor base
class.

// C++
namespace IT_Bus {
 template <class T>
 void set_const_value(
 Part& part,
 T& value
)
 {
 part.set_const_value(
 new AnySimpleTypeT<T>(value),

Part::AUTO_DELETE);
 }
}

Note: This example is only intended to be used in conjunction
with the Greeter port type, as defined in Example 22 on page 42.

Example 25: Server Interceptor Header for Reflection Example

// C++
#include <it_bus/qname.h>
#include <it_bus/bus.h>
#include <it_bus_pdk/interceptor.h>

class ServerInterceptor :
 46 Developing Advanced Artix Plugins in C++

C++ server request interceptor
implementation
Example 26 shows the implementation of the ServerInterceptor
class.

 public virtual IT_Bus::ServerRequestInterceptor
{
 public:
 ServerInterceptor(
 IT_Bus::Bus_ptr bus
);

 virtual ~ServerInterceptor();

 virtual void
 intercept_pre_dispatch(
 IT_Bus::ServerOperation& data
);

 virtual void
 intercept_post_dispatch(
 IT_Bus::ServerOperation& data
);

 private:
 IT_Bus::Bus_ptr m_bus;
};

Example 25: Server Interceptor Header for Reflection Example

Example 26: Server Interceptor Implementation for Reflection Example

// C++
#include <it_bus/operation.h>
#include <it_bus/reflect/value.h>
#include <it_bus/part_list.h>
#include "server_interceptor.h"

using namespace IT_Bus;
using namespace IT_WSDL;
IT_USING_NAMESPACE_STD

ServerInterceptor::ServerInterceptor(
 Bus_ptr bus
)
 : m_bus(bus)
{
 // Complete.
}

ServerInterceptor::~ServerInterceptor()
{
 // Complete.
}

void
1 ServerInterceptor::intercept_pre_dispatch(
Developing Advanced Artix Plugins in C++ 47

 IT_Bus::ServerOperation& data
)
{
 // Get the value of the input string using reflection.
 // The value points to the value unmarshalled from the wire.
 //

2 PartList& input_parts = data.get_input_message().get_parts();
3 if (input_parts.size() == 1)

 {
4 Var<IT_Reflect::Reflection> r =

 input_parts[0].get_modifiable_value().get_reflection();
5 Var<IT_Reflect::Value<String> > input_reflection =

 dynamic_cast_var<IT_Reflect::Value<String> >(r);
 assert(input_reflection.get());
 String input_string = input_reflection->get_value();

 // Print a messsage
 //

6 String replace_input = input_string + ",2";
 cout << "[Server pre-invoke intercepted: "
 << input_string << "]" << endl;
 cout << "[Replacing with " << replace_input << "]"
 << endl;

 // Modify the value of the input part before the server
 // sees it.

7 input_reflection->set_value(replace_input);
 }

 if (m_next_interceptor != 0)
 {
 m_next_interceptor->intercept_pre_dispatch(data);
 }
}

void
8 ServerInterceptor::intercept_post_dispatch(

 IT_Bus::ServerOperation& data
)
{
 // Get the value of the output part using reflection.
 //
 PartList& output_parts = data.get_output_message().get_parts();

9 if (output_parts.size() == 1)
 {
 Var<const IT_Reflect::Reflection> r =
 output_parts[0].get_const_value().get_reflection();
 Var<const IT_Reflect::Value<String> > output_reflection =
 dynamic_cast_var<const IT_Reflect::Value<String> >(r);
 assert(output_reflection.get());
 String output_string = output_reflection->get_value();

 // Print a messageppp
 //
 String replace_output = output_string + ",3";
 cout << "[Server post-invoke intercepted: "
 << output_string << "]" << endl;
 cout << "[Replacing with " << replace_output << "]" << endl;

Example 26: Server Interceptor Implementation for Reflection Example
 48 Developing Advanced Artix Plugins in C++

The preceding interceptor implementation can be explained as
follows:
1. The implementation of intercept_pre_dispatch() is designed to

modify the input parameter of the sayHi and greetMe WSDL
operations by appending a short string.

2. The returned part list, input_parts, contains all of the WSDL
parts containing input parameters for the operation. A part list
is essentially a vector of (IT_Bus::QName, IT_Bus::AnyType*)
pairs. The IT_Bus::AnyType is the base type for all WSDL types
in Artix.

3. The code in this if-block uses reflection to modify the first
input part. This example is hard-coded to work only with the
sayHi and greetMe operation from the Greeter port type. The
example modifies the request message, only if it consists of a
single part which is a string.

4. From the first (and only) pair in the part list, return the
IT_Bus::AnyType value (using get_modifiable_value()) and
convert it into a reflection object (using get_reflection()).

5. Assuming that the part contains a string, cast the reflection
object to a string reflection.
This step is only intended to work for the Greeter port type. In
the general case, you would have to use the reflection
interface to figure out the data type.

6. Define a modified string, replace_input, which adds ,2 to the
original string.

7. Call IT_Reflect::Value<String>::set_value() to modify the
input part in the request.

8. The implementation of intercept_post_dispatch() is designed
to modify the output parameter of the sayHi and greetMe
WSDL operations by appending a short string.

9. In the reply message, modify the output, only if it consists of
a single part containing a string (intended for the Greeter port
type only).

 // Replace the value before calling next interceptor.
 //

10 set_const_value(output_parts[0], replace_output);
 }

 if (m_prev_interceptor != 0)
 {
 m_prev_interceptor->intercept_post_dispatch(data);
 }
}

Example 26: Server Interceptor Implementation for Reflection Example
Developing Advanced Artix Plugins in C++ 49

10. Call set_const_value() to replace the sole output part in the
request. The set_const_value() function is a convenience
template, which sets the part value to a simple type. It is
defined in it_bus/part.h as follows:

The IT_Bus::Part::set_const_value() function takes an
IT_Bus::AnyType as its first parameter. Because simple atomic
types, such as IT_Bus::String, do not inherit from AnyType, it is
necessary to wrap them in an IT_Bus::AnySimpleTypeT<T>
instance, which does inherit from AnyType.
For user-defined types (and other types that inherit from
AnyType), you can pass them directly to the
IT_Bus::Part::set_const_value() function.

Raising Exceptions
Artix allows you to raise exceptions in request interceptors, but
you must raise the exception at the appropriate place.

Where to raise an exception
There are specific places in the interceptor code where you can
raise exceptions, as follows:
• Client request interceptor—in the body of the

intercept_invoke() function, either before or after the
follow-on invocation to the next interceptor.

• Server request interceptor—in the body of the
intercept_around_dispatch() function, either before or after
the follow-on invocation to the next interceptor. In particular,
you cannot raise an exception in the body of an
intercept_pre_dispatch() or intercept_post_dispatch()
function.

Type of exceptions you can raise
You can raise the following types of exception in an interceptor:
• IT_Bus::FaultException (standard Artix exceptions),
• IT_Bus::UserFaultException (user-defined custom exceptions).

// C++
namespace IT_Bus {
 template <class T>
 void set_const_value(
 Part& part,
 T& value
)
 {
 part.set_const_value(
 new AnySimpleTypeT<T>(value),

Part::AUTO_DELETE);
 }
}

 50 Developing Advanced Artix Plugins in C++

Examples of exception raising
The following examples show how to raise an
IT_Bus::FaultException in an interceptor:
• Raising a fault exception in a client interceptor.
• Raising a fault exception in a server interceptor.

Raising a fault exception in a client
interceptor
Example 27 shows how to raise a NO_PERMISSION fault exception in
the body of a client interceptor’s intercept_invoke() function.

The preceding code fragment can be explained as follows:
1. The IT_Bus::FaultException type is the appropriate type of

exception to raise for the typical errors that occur during an
operation invocation. The constructor takes three arguments,
as follows:
♦ Fault category—faults must be classified into one of the

standard categories, which are enumerated in the
it_bus/fault_exception.h header file.

♦ Namespace URI—it is recommended to use a custom
namespace for your fault exceptions (for example,
http://schemas.YourCompany.com/exceptions). This enables

Example 27: Raising a Fault Exception in a Client Interceptor

// C++
void
ClientInterceptor::intercept_invoke(
 ClientOperation& data
)
{
 if (...) // If some error condition occurs...
 {
 IT_Bus::String error = "You don’t have permission!";

1 IT_Bus::FaultException exc(
 IT_Bus::FaultCategory::NO_PERMISSION,
 "http://schemas.YourCompany.com/exceptions",
 error
);

2 exc.set_description(error);
3 exc.set_completion_status(

 IT_Bus::FaultCompletionStatus::NO
);

4 exc.set_source(IT_Bus::FaultSource::CLIENT);
5 throw exc;

 }

 // Call the next interceptor
 m_next_interceptor->intercept_invoke(data);

}

Developing Advanced Artix Plugins in C++ 51

you to distinguish your fault exceptions from the Artix
fault exceptions (which conventionally belong to the
http://schemas.iona.com/exceptions namespace).

♦ Error code—a string code. This is typically a description of
the error condition.

2. The description is identical to the error code.
3. The completion status is NO, because this exception is raised

before the operation is invoked.
4. The source is set to CLIENT, because the exception is raised on

the client side.
5. Use the standard C++ throw mechanism to raise an exception.

Raising a fault exception in a server
interceptor
Example 28 shows how to raise a TIMEOUT fault exception in the
body of a server interceptor’s intercept_around_dispatch()
function.

Example 28: Raising a Fault Exception in a Client Interceptor

// C++
using namespace IT_Bus;

void
ServerInterceptor::intercept_around_dispatch(
 ServerOperation& data
)
{
 // PRE-UNMARSHAL processing
 // ...

 if (...) // If some error condition occurs...
 {
 IT_Bus::String error = "Something took too long!";
 IT_Bus::FaultException exc(
 IT_Bus::FaultCategory::TIMEOUT,
 "http://schemas.YourCompany.com/exceptions",
 error
);
 exc.set_description(error);

1 exc.set_completion_status(
 IT_Bus::FaultCompletionStatus::NO
);

2 exc.set_source(IT_Bus::FaultSource::SERVER);
3 throw exc;

 }

 // Call the next interceptor
 if (m_next_interceptor != 0) {
 m_next_interceptor->intercept_around_dispatch(data);
 }

 // POST-MARSHAL processing
 // ...
}

 52 Developing Advanced Artix Plugins in C++

The preceding code fragment can be explained as follows:
1. The completion status is NO, because this exception is raised

before the operation is invoked.
2. The source is set SERVER, because this exception is raised on

the server side.
3. Use the standard C++ throw mechanism to raise the

exception.
Developing Advanced Artix Plugins in C++ 53

 54 Developing Advanced Artix Plugins in C++

WSDL Extension
Elements
If you implement your own transport or binding plug-in, you would
typically configure it by defining a custom tag (or tags) in the WSDL
contract. This chapter describes how to add a custom tag—that is, a
WSDL extension element—to the Artix WSDL parser.

WSDL Structure
This section describes some basic features of the WSDL language
that are important for WSDL parsing. The following topics are
discussed:
• WSDL Example.
• Standard elements.
• Extensibility/extension elements.

WSDL Example
Example 29 shows the outline of a typical WSDL file, including the
important high-level elements that you would find in most WSDL
files.

Standard elements
The core of WSDL defines many standard XML elements (in
Example 29 on page 55, these tags appear without any prefix
before their names). For example, portType, binding, and service.
These elements belong to the base WSDL specification.

Example 29: WSDL Contract with Extensibility Elements

<wsdl:definitions name="nmtoken"? targetNamespace="uri"?>
 <wsdl:types> ?
 <xsd:schema />*
 <-- extensibility element --> *
 </wsdl:types>

 <wsdl:binding name="nmtoken" type="qname">*
 <-- extensibility element --> *
 <wsdl:operation />*
 </wsdl:binding>
 <wsdl:service name="nmtoken"> *
 <wsdl:port name="nmtoken" binding="qname"> *
 <-- extensibility element -->
 </wsdl:port>
 <-- extensibility element -->
 </wsdl:service>
 <-- extensibility element --> *

</wsdl:definitions>
 Developing Advanced Artix Plugins in C++ 55

Extensibility/extension elements
In addition to the standard elements, the WSDL standard allows
you to extend the language by adding new WSDL elements known
as extensibility elements or extension elements.
The WSDL standard does impose some restrictions, however, on
where you can add these extension elements (see appendix 3 of
the WSDL specification, http://www.w3.org/TR/wsdl).

WSDL Parse Tree
When an Artix application reads a WSDL file, the complete
contents of the file are parsed and analyzed into a linked tree of
objects, the WSDL parse tree. There are, in fact, two views of this
tree, as follows:
• XML view—this view of the parse tree is provided by the

IT_Bus::XMLNode base class. This view of the parse tree
provides XML parsing support, but has no awareness of WSDL
features.

• WSDL view—this view of the parse tree is provided by classes
that inherit from IT_WSDL::WSDLNode. This view of the parse
tree provides support for WSDL features.

This section focuses exclusively on the WSDL view of the parse
tree. You should be aware, however, that you might also
encounter the parse tree through the XML view. An
IT_Bus::XMLNode object and an IT_WSDL::WSDLNode object can both
refer to the same underlying node in the parse tree.
 56 Developing Advanced Artix Plugins in C++

http://www.w3.org/TR/wsdl

Parse tree classes
Figure 7 shows part of the inheritance hierarchy for the classes in
a WSDL parse tree. The WSDL nodes are classified into two main
types:
• IT_WSDL::WSDLExtensibleNode nodes—base class for standard

elements.
• IT_WSDL::WSDLExtensionElement nodes—base class for

extension elements.

WSDLNode
The IT_WSDL::WSDLNode class is the base class for all nodes of the
WSDL parse tree. It defines the following public member
functions:
// C++
IT_WSDL::NodeType get_node_type();

// Get the QName of this element node
const IT_Bus::QName & get_element_name();

// Get the namespace URI for this element node
const IT_Bus::String & get_target_namespace();

WSDLExtensibleNode
The IT_WSDL::WSDLExtensibleNode class is used as the base class for
the standard elements in WSDL. The nodes that inherit from
WSDLExtensibleNode are extensible, in the sense that they may
contain extension elements as sub-elements. In addition to the
functions inherited from IT_WSDL::WSDLNode, the WSDLExtensibleNode
base class defines the following public member functions:

Figure 7: WSDL Parse Tree Inheritance Hierarchy

IT_WSDL::WSDLNode

IT_WSDL::WSDLExtensionElementIT_WSDL::WSDLExtensibleNode

IT_WSDL::WSDLPort

IT_WSDL::WSDLService

IT_WSDL::WSDLMessage

IT_WSDL::WSDLOperation

IT_WSDL::WSDLDefinitions IT_WSDL::WSDLPortType

IT_WSDL::WSDLTypes

CustomExtensionElement
Developing Advanced Artix Plugins in C++ 57

// C++
IT_WSDL::WSDLExtensionElementList & get_extension_elements();

IT_WSDL::WSDLExtensionElement *
find_extension_element(
 const IT_Bus::QName &extension_element
);

IT_WSDL::WSDLExtensionElement *
create_extension_element(
 const IT_Bus::QName &extension_element
);

void
add_extension_element(
 IT_WSDL::WSDLExtensionElement *extension_element
);

WSDLPort
The IT_WSDL::WSDLPort extensible node represents the WSDL port
element. This WSDL node type is important for Artix transports,
because it encapsulates all of the information required either to
open a connection (client side) or to listen for a connection (server
side). The WSDLPort class defines the following member functions:
// C++
const IT_Bus::String & get_name ()
const IT_WSDL::WSDLService & get_service ()
const IT_WSDL::WSDLBinding * get_binding ()

WSDLBinding
The IT_WSDL::WSDLBinding extensible node represents the WSDL
binding element. This WSDL node type (together with a WSDL
port) encapsulates the information that is needed to establish a
WSDL binding. The WSDLBinding class defines the following
member functions:
// C++
IT_WSDL::WSDLDefinitions & get_definitions();
const IT_WSDL::WSDLDefinitions & get_definitions();
const IT_WSDL::IT_Bus::QName & get_name();
const IT_WSDL::WSDLBindingOperationMap & get_operations();
IT_WSDL::WSDLBindingOperationMap & get_operations();
const IT_WSDL::IT_Bus::QName & get_port_type_name();
const IT_WSDL::WSDLPortType * get_port_type();

const IT_WSDL::WSDLBindingOperation *
get_binding_operation (
 const IT_Bus::String &operation_name
);

const IT_Bus::String& get_binding_namespace() const;
 58 Developing Advanced Artix Plugins in C++

WSDLExtensionElement
The IT_WSDL::WSDLExtensionElement is the base class for custom
extension elements. If you want to implement your own extension
element class, you should make it inherit from
WSDLExtensionElement. In your own extension element
implementation, you must override the following member
functions:
// C++
IT_WSDL::WSDLExtensionFactory & get_extension_factory();

bool parse(
 const XMLIterator &port_type_iter,
 const IT_Bus::XMLNode &parent_node,
 IT_WSDL::WSDLErrorHandler &error_handler
);

How to Extend WSDL
This section provides a high-level overview of how you can extend
the parsing capabilities of WSDL by adding extension elements.

Sample WSDL extensions
For example, consider the MessageQueue (MQ) plug-in for Artix,
which introduces two new extension elements, mq:client and
mq:server, to WSDL. These new extension elements belong to the
http://schemas.iona.com/transports/mq namespace. Example 30
shows a WSDL extract with the MQ extension elements.

Example 30: WSDL Extract with MQ Extension Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mq="http://schemas.iona.com/transports/mq"

 ...
 >
 ...
 <service name="MQBaseService">
 <port ... >
 <mq:client ... />

 <mq:server ... />

 </port>
 </service>
</definitions>
Developing Advanced Artix Plugins in C++ 59

Factory pattern
The scheme for extending the WSDL parser is based on a factory
pattern. The programmer registers an extension factory, which is
then responsible for creating instances of the extension elements
on demand. Figure 8 illustrates the process of creating extension
elements.

Factory pattern stages
The factory pattern for creating extension elements, as shown in
Figure 8 on page 60, operates as follows:

Classes to implement
Figure 9 shows an outline of the inheritance hierarchy for the
classes you would need to write in order to extend WSDL. There
are typically three different kinds of class to implement:
• Extension factory—inherits from

IT_WSDL::WSDLExtensionFactory.

Figure 8: Factory Pattern for WSDL Extension Elements

register_extension_factory()

IT_WSDL::WSDLExtensionFactory

IT_WSDL::WSDLExtensionElement

IT_WSDL::WSDLFactory

create_extension_element()

1

2

3 create element

Stage Description

1 The programmer registers a custom WSDL extension
factory by calling register_extension_factory() on the
IT_WSDL::WSDLFactory object.
In this example, the extension factory is registered
against the http://schemas.iona.com/transports/mq
namespace URI.

2 Whenever the WSDL parser encounters an element
belonging to the http://schemas.iona.com/transports/mq
namespace, it calls create_extension_element() on the
extension factory.

3 The extension factory figures out which type of
extension element to create by examining the local part
of the supplied QName and then returns a new instance
of this extension element type.
 60 Developing Advanced Artix Plugins in C++

• Extension element base class—inherits from
IT_WSDL::WSDLExtensionElement and IT_Bus::XMLNode.

• Extension elements (one or more of)—inherit from the
extension element base class.

Extension Elements for the Stub Plug-In
This section describes how to extend WSDL, by implementing an
extension element class and an extension factory class for the
stub plug-in. Although the particular example shown here is based
on a transport plug-in, this section is relevant for binding plug-ins
as well.

Implementing an Extension Element Base Class
This subsection describes how to implement an extension element
base class for the stub transport. Although it is not strictly
necessary to define an extension element base class, if you have
just one extension element, it is nevertheless good coding
practice. Once you have defined a base class for your custom
extension elements, it is relatively easy to add new extension
elements as needed.

Extension element base header
Example 31 shows the header for the stub plug-in’s extension
element base class.

Figure 9: Extension Element Classes

Extension Element Base

Extension Element 1 Extension Element N

Extension Factory

IT_WSDL::WSDLExtensionElement IT_WSDL::WSDLExtensionFactory

...

IT_Bus::XMLNode

Example 31: Header for the StubTransportWSDLExtensionElement Class

// C++
#include <it_wsdl/wsdl_extension_element.h>
#include <it_wsdl/wsdl_port.h>

namespace IT_Transport_Stub
{

1 class StubTransportWSDLExtensionElement :
 public IT_WSDL::WSDLExtensionElement,
 public IT_Bus::XMLNode
 {
 public:
 StubTransportWSDLExtensionElement(
 IT_WSDL::WSDLExtensibleNode* the_node
Developing Advanced Artix Plugins in C++ 61

);

 virtual const IT_Bus::QName &
2 get_element_name() const;

 virtual const IT_Bus::String &
 get_target_namespace() const;

 virtual
 IT_WSDL::WSDLExtensionFactory &

3 get_extension_factory();

 virtual ~StubTransportWSDLExtensionElement();

 virtual void
 read(
 const IT_Bus::QName& name,
 IT_Bus::ComplexTypeReader & reader
) IT_THROW_DECL((IT_Bus::DeserializationException))
 {
 throw IT_Bus::IOException("Not Supported");
 }

 virtual void
 write(
 const IT_Bus::QName& element_name,
 IT_Bus::ComplexTypeWriter & writer
) const IT_THROW_DECL((IT_Bus::SerializationException))
 {
 // complete
 }

 virtual void
4 write(

 IT_Bus::XMLOutputStream & stream
) const IT_THROW_DECL((IT_Bus::IOException));

 virtual
 IT_Bus::AnyType&
 copy(
 const IT_Bus::AnyType & rhs
)
 {
 return *this;
 }

 protected:
5 IT_WSDL::WSDLExtensibleNode * m_wsdl_extensible_node;

 private:
 ...
 };
};

Example 31: Header for the StubTransportWSDLExtensionElement Class
 62 Developing Advanced Artix Plugins in C++

The preceding header file can be explained as follows:
1. The extension element base class must inherit from

IT_WSDL::WSDLExtensionElement and IT_Bus::XMLNode.
2. The get_element_name() and get_target_namespace() functions

are inherited from the IT_WSDL::WSDLNode base class, by way of
the IT_WSDL::WSDLExtensionElement class.

3. The get_extension_factory() element is inherited from the
IT_WSDL::WSDLExtensionElement class.

4. The write(XMLOutputStream) function is inherited from the
IT_WSDL::WSDLNode base class, by way of the
IT_WSDL::WSDLExtensionElement class.

5. The m_wsdl_extensible_node is used to store a pointer to the
parent node (that is, a pointer to the WSDLExtensibleNode
instance that contains this node).

Extension element base implementation
Example 32 shows the implementation of the stub plug-in’s
extension element base class.

Example 32: Implementation of StubTransportWSDLExtensionElement

// C++
#include "stub_transport_wsdl_extension_element.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_Transport_Stub;

1 StubTransportWSDLExtensionElement::StubTransportWSDLExtensionElement(
 IT_WSDL::WSDLExtensibleNode* the_node
) : m_wsdl_extensible_node(the_node)
{
 // complete
}

StubTransportWSDLExtensionElement::~StubTransportWSDLExtensionElement()
{
 // complete
}

WSDLExtensionFactory &
2 StubTransportWSDLExtensionElement::get_extension_factory()

{
 return StubTransportWSDLExtensionFactory::get_instance();
}

const IT_Bus::QName &
3 StubTransportWSDLExtensionElement::get_element_name() const

{
 return get_tag_name();
}

const IT_Bus::String &
4 StubTransportWSDLExtensionElement::get_target_namespace() const

{

Developing Advanced Artix Plugins in C++ 63

The preceding implementation class can be described as follows:
1. The sole constructor argument, the_node, is a pointer to the

parent extensible element node (an extensible element node
is a node that can contain other element nodes).

2. The get_extension_factory() function returns a reference to
the extension factory that is responsible for creating all of the
WSDL extension elements that inherit from this extension
element base class.

3. The implementation of get_tag_name() is inherited from the
IT_Bus::XMLNode base class. It returns the QName of the current
element.

4. The implementation of get_target_namespace() simply calls the
implementation from the IT_Bus::XMLNode base class.

5. You must implement the write(XMLOutputStream) function (and
the write_attributes() function—see “Extension element
implementation” on page 67), if you want your extension
elements to be writeable to a file or other output stream.

The implementation shown here writes the element’s start tag
(including any requisite namespace settings and attribute
settings) and the element’s end tag. This is sufficient for
simple elements with no content. On the other hand, if some
of your extension elements do have content, you should
override the write() function in that element’s sub-class.

Implementing the Extension Element Classes
This subsection describes how to implement the stub extension
element class (there is only one extension element in the stub
transport plug-in). This class must be capable of parsing the stub
extension element.

 return XMLNode::get_target_namespace();
}

void
5 StubTransportWSDLExtensionElement::write(

 XMLOutputStream & stream
) const IT_THROW_DECL((IOException))
{
 write_start_tag(stream);
 write_end_tag(stream);
}

Example 32: Implementation of StubTransportWSDLExtensionElement

Note: In particular, it is essential to implement the stream
write() function, in order for your extension elements to
function correctly with the Artix wsdl_publish plug-in. In
response to a client query, the wsdl_publish plug-in returns
the server’s in-memory version of the WSDL contract. If you
have not implemented the stream write() function, the
returned WSDL contract would not include your WSDL
extension element.
 64 Developing Advanced Artix Plugins in C++

Stub extension element
The stub plug-in adds a single extension element to WSDL, as
shown in Example 33. The stub extension element name is
NamespacePrefix:address, with a single attribute, location. In
Example 33, the NamespacePrefix is defined as stub.

Extension element header
Example 34 shows the header file for the stub extension element
class.

Example 33: Sample WSDL with Stub Extension Element

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...
 targetNamespace = ...
 xmlns = "http://schemas.xmlsoap.org/wsdl/"
 xmlns:stub= "http://schemas.iona.com/transports/stub"

 ...
 >
 ...
 <service ... >
 <port ... >
 <stub:address

 location="local_0001"

 />

 </port>
 </service>
</definitions>

Example 34: Header for the StubTransportWSDLAddress Class

// C++
#include "stub_transport_wsdl_extension_element.h"

namespace IT_Transport_Stub
{

1 class StubTransportWSDLAddress :
 public StubTransportWSDLExtensionElement
 {
 public:

 StubTransportWSDLAddress(
 IT_WSDL::WSDLExtensibleNode* the_node
);
 StubTransportWSDLAddress();
 virtual ~StubTransportWSDLAddress();

 IT_WSDL::WSDLExtensionElement*
 clone() const;

 virtual bool
 parse(
 const IT_Bus::XMLIterator & element_iterator,
 const IT_Bus::XMLNode & element,
 IT_WSDL::WSDLErrorHandler & error_handler
);
Developing Advanced Artix Plugins in C++ 65

The preceding header file can be described as follows:
1. The stub extension element inherits from the stub extension

element base class, StubTransportWSDLExtensionElement.
2. The get_location() and set_location() functions are not

inherited. They are specific to the StubTransportWSDLAddress
class.

3. The write_attributes() function is inherited from the
IT_Bus::XMLNode base class.

4. Two convenient constants are declared here: ELEMENT_NAME is
the local part of the extension element QName, which is
address; TYPE_ATTRIBUTE_NAME is the name of the attribute,
location.

5. The m_location variable stores the value of the location
attribute, (which is, essentially, all of the useful information
that is contained in the address element).

 const IT_Bus::String&
2 get_location() const;

 virtual void
 set_location(
 const IT_Bus::String & location
);

 virtual void
3 write_attributes(

 XMLOutputStream & stream
) const IT_THROW_DECL((IOException));

 virtual
 IT_Bus::AnyType&
 operator=(
 const IT_Bus::AnyType & rhs
)
 {
 return *this;
 }

4 static const IT_Bus::String ELEMENT_NAME;
 static const IT_Bus::String TYPE_ATTRIBUTE_NAME;

 private:

5 IT_Bus::String m_location;
 IT_Bus::String m_target_namespace;
 ...
 };
};

Example 34: Header for the StubTransportWSDLAddress Class
 66 Developing Advanced Artix Plugins in C++

Extension element implementation
Example 35 shows the implementation of the stub extension
element class.

Example 35: Implementation of the StubTransportWSDLAddress Class

// C++
#include "stub_transport_wsdl_address.h"

#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;
using namespace IT_Transport_Stub;

1 const String StubTransportWSDLAddress::ELEMENT_NAME = "address";
const String StubTransportWSDLAddress::TYPE_ATTRIBUTE_NAME = "location";

2 StubTransportWSDLAddress::StubTransportWSDLAddress(
 IT_WSDL::WSDLExtensibleNode* the_node
)
 : StubTransportWSDLExtensionElement(the_node)
{
 // complete
}

3 StubTransportWSDLAddress::StubTransportWSDLAddress()
 : StubTransportWSDLExtensionElement(0)
{
 set_tag_name(
 StubTransportWSDLAddress::ELEMENT_NAME.c_str(),
 StubTransportWSDLExtensionFactory::SCHEMA_URL.c_str(),
 0
);
}

StubTransportWSDLAddress::~StubTransportWSDLAddress()
{
 // complete
}

IT_WSDL::WSDLExtensionElement*
4 StubTransportWSDLAddress::clone() const

{
 StubTransportWSDLAddress* clone =
 new StubTransportWSDLAddress();
 clone->set_location(this->get_location());
 return clone;
}

bool
5 StubTransportWSDLAddress::parse(

 const XMLIterator & element_iterator,
 const IT_Bus::XMLNode & element,
 IT_WSDL::WSDLErrorHandler & error_handler
Developing Advanced Artix Plugins in C++ 67

The preceding class implementation can be explained as follows:
1. The ELEMENT_NAME and TYPE_ATTRIBUTE_NAME constants are

defined here.
2. This form of the constructor takes a pointer to the parent

extensible element. This is the form of constructor called by
the stub plug-in’s WSDL extension factory.

3. The default constructor sets the QName of this element by
calling the set_tag_name() function, which is inherited from the
IT_Bus::XMLNode class.

4. The clone() method makes a copy of the WSDL extension
element.

5. The parse() function is automatically called by the Artix core
as it constructs the in-memory WSDL model of the
application’s WSDL contract.

6. This call to XMLNode::operator=() copies the contents of the
element parameter into the current element. The unusual
syntax ensures that only the XMLNode version of the
assignment operator is used (as opposed to an assignment
operator defined lower down the inheritance hierarchy).

)
{

6 XMLNode::operator =(element);
7 m_location = element_iterator.get_field_as_string(

 TYPE_ATTRIBUTE_NAME
);
 return true;
}

const String&
8 StubTransportWSDLAddress::get_location() const

{
 return m_location;
}

void
StubTransportWSDLAddress::set_location(
 const String & location
)
{
 m_location = location;
}

void
9 StubTransportWSDLAddress::write_attributes(

 XMLOutputStream & stream
) const IT_THROW_DECL((IOException))
{
 XMLAttributeWriter::write(
 stream,
 "location",
 m_location
);
}

Example 35: Implementation of the StubTransportWSDLAddress Class
 68 Developing Advanced Artix Plugins in C++

7. The call to XMLIterator::get_field_as_string() searches the
node for the value of the location attribute (in this context,
field means an attribute value).

8. The get_location() function can be called by other
components of the stub plug-in to access the value of the
location attribute from the address element.

9. In order to support writing to an output stream (as required
for compatibility with the wsdl_publish plug-in, for example), it
is necessary to implement the write_attributes() function.
The XMLAttributeWriter class is a utility class that facilitates
writing XML attributes to the output stream. It defines a
collection of overloaded static write() functions that enable
you to write basic types as attributes. The
XMLAttributeWriter::write() function can take any of the
following types as its third argument: IT_Bus::String&,
IT_Bus::Boolean, IT_Bus::Float, IT_Bus::Double, IT_Bus::Int,
IT_Bus::Long, IT_Bus::Short, IT_Bus::UInt, IT_Bus::ULong,
IT_Bus::UShort, IT_Bus::Byte, IT_Bus::UByte, IT_Bus::DateTime,
IT_Bus::Decimal, IT_Bus::BinaryInParam.

Implementing the Extension Factory
This subsection describes how to write the stub extension factory
class. An extension factory must be capable of creating all types of
extension element that belong to a specific namespace (identified
by a namespace URI).
In particular, the stub extension factory must be capable of
creating all WSDL extension elements belonging to the
http://schemas.iona.com/transports/iiop_stub namespace. There
is, in fact, only one such extension element: stubPrefix:address.

Stub extension factory header
Example 36 shows the header file for the stub extension factory
class.

Example 36: Header for the StubTransportWSDLExtensionFactory Class

// C++
#include <it_wsdl/wsdl_extension_factory.h>
#include <it_bus/bus.h>
#include "stub_transport_wsdl_extension_element.h"

namespace IT_Transport_Stub
{

1 class StubTransportWSDLExtensionFactory
 : public IT_WSDL::WSDLExtensionFactory
 {
 public:
 virtual
 IT_WSDL::WSDLExtensionElement *
 create_extension_element(
 IT_WSDL::WSDLExtensibleNode& parent,
 const IT_Bus::QName& extension_element
) const;
Developing Advanced Artix Plugins in C++ 69

The preceding header file can be explained as follows:
1. The extension factory must inherit from the

IT_WSDL::WSDLExtensionFactory base class.
2. The get_extension_element() function is not inherited. It is

specific to the stub WSDL extension factory.
3. The SCHEMA_URL is a convenient string constant that stores the

namespace URI for this extension factory. It is initialized to be
http://schemas.iona.com/transports/stub.

Stub extension factory implementation
Example 37 shows the implementation of the stub extension
factory class.

 virtual IT_Bus::AnyType *
 create_type(
 const IT_Bus::QName& extension_element
) const;

 virtual void
 destroy_type(
 IT_Bus::AnyType * element
) const;

 static StubTransportWSDLExtensionFactory &
 get_instance();

 static StubTransportWSDLExtensionElement*
2 get_extension_element(

 const IT_WSDL::WSDLPort& wsdl_port,
 const IT_Bus::String& element_name
);

 StubTransportWSDLExtensionFactory();
 virtual ~StubTransportWSDLExtensionFactory();

3 static const IT_Bus::String SCHEMA_URL;

 private:
 ...
 };
};

Example 36: Header for the StubTransportWSDLExtensionFactory Class

Example 37: Implementation of the StubTransportWSDLExtensionFactory

// C++
#include "stub_transport_wsdl_address.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_WSDL;
using namespace IT_Bus;
using namespace IT_Transport_Stub;

1 const String StubTransportWSDLExtensionFactory::SCHEMA_URL =
"http://schemas.iona.com/transports/stub";
 70 Developing Advanced Artix Plugins in C++

StubTransportWSDLExtensionFactory::StubTransportWSDLExtensionFactory()
{
 // complete
}

StubTransportWSDLExtensionFactory::~StubTransportWSDLExtensionFactory()
{
 // complete
}

IT_Bus::AnyType *
2 StubTransportWSDLExtensionFactory::create_type(

 const QName& extension_element
) const
{
 return 0;
}

WSDLExtensionElement *
3 StubTransportWSDLExtensionFactory::create_extension_element(

 WSDLExtensibleNode& parent,
 const QName& extension_element
) const
{
 String local_part = extension_element.get_local_part();

4 if (local_part == StubTransportWSDLAddress::ELEMENT_NAME)
 {
 return new StubTransportWSDLAddress(&parent);
 }

5 return 0;
}

void
StubTransportWSDLExtensionFactory::destroy_type(
 IT_Bus::AnyType * element
) const
{
 delete IT_DYNAMIC_CAST(
 StubTransportWSDLExtensionElement *,
 element
);
}

6 StubTransportWSDLExtensionFactory
it_glob_stub_transport_wsdl_extension_factory_instance;

StubTransportWSDLExtensionFactory &
StubTransportWSDLExtensionFactory::get_instance()
{
 return it_glob_stub_transport_wsdl_extension_factory_instance;
}

StubTransportWSDLExtensionElement*
7 StubTransportWSDLExtensionFactory::get_extension_element(

 const WSDLPort& wsdl_port,

Example 37: Implementation of the StubTransportWSDLExtensionFactory
Developing Advanced Artix Plugins in C++ 71

The preceding implementation class can be explained as follows:
1. This line sets the SCHEMA_URL to

http://schemas.iona.com/transports/stub, which is the
namespace URI that identifies this WSDL extension factory.

2. A WSDL extension factory can also be used to define new XML
schema types, which can be instantiated using the
create_type() function. Because the stub plug-in’s schema
does not define any new types, this function has a dummy
implementation.

3. The create_extension_element() function is called by the Artix
core while it is creating the in-memory WSDL parse tree.
When the WSDL parser encounters an element that belongs to
the stub plug-in’s namespace URI, it delegates creation of the
element to this extension factory. The
create_extension_element() function is responsible for creating
all of the different kinds of elements that belong to the
http://schemas.iona.com/transports/stub namespace URI.

4. Because there is only one extension element defined by the
stub plug-in (that is, address), it is only necessary to check if
the local part of the QName equals address before creating a
StubTransportWSDLAddress instance.
In general, however, an implementation of
create_extension_element() would typically have to compare

 const String& element_name
)
{
 StubTransportWSDLExtensionElement* extension_element = 0;

8 const WSDLExtensionElementList & port_children_nodes =
 wsdl_port.get_extension_elements();

9 WSDLExtensionElementList::const_iterator node_iter =
 port_children_nodes.begin();

 QName element_qname("", element_name, SCHEMA_URL);

 while (node_iter != port_children_nodes.end())
 {
 const QName & curr_qname =
 (*node_iter)->get_element_name();

 if (element_qname == curr_qname)
 {
 extension_element = IT_DYNAMIC_CAST(
 StubTransportWSDLExtensionElement *,
 (*node_iter)
);
 }
 node_iter++;
 }

 return extension_element;
}

Example 37: Implementation of the StubTransportWSDLExtensionFactory
 72 Developing Advanced Artix Plugins in C++

the value of local_part with several different extension
element names to select the right type of element.

5. A return value of 0 indicates that create_extension_element()
could not create the requested element type.

6. This line creates a single global instance of the stub plug-in’s
WSDL extension factory.

7. The get_extension_element() function is specific to this
extension factory implementation. It searches a WSDL port
element, wsdl_port, for a sub-element with the given name,
element_name. The transport code uses this function to extract
configuration details from the WSDL port.

8. The get_extension_elements() function returns a list of all the
sub-elements contained in the WSDL port.

9. The extension element list is modelled on the C++ Standard
Template Library list type, std::list. Hence, you can use an
iterator to search through the WSDL port’s sub-elements.

Registering the Extension Factory
The final step is to register the stub extension factory, so that the
extensions become available to the overall WSDL parse tree.
Registration is performed by calling the
register_extension_factory() function on the WSDL factory object.

WSDL factory
The WSDL factory is an object of IT_WSDL::WSDLFactory type that
maintains a registry of all WSDL extension factory classes. The
following IT_WSDL::WSDLFactory member functions manage the
extension factory registry:
// C++
void register_extension_factory(
 const IT_Bus::String &extension_namespace,
 const WSDLExtensionFactory &factory
);

void deregister_extension_factory(
 const IT_Bus::String &extension_namespace
);

Namespace URI
Registration associates a specific namespace URI with an
extension factory. While parsing a WSDL file, the WSDL factory
will call on the extension factory whenever it encounters elements
from this namespace.
In the case of the stub extension factory, the namespace URI is:
http://schemas.iona.com/transports/stub

Note: You do not necessarily have to create this factory as
a global static object. Any variation of a singleton
implementation pattern would do here.
Developing Advanced Artix Plugins in C++ 73

Example
Example 38 shows how to register a stub extension factory with
the IT_WSDL::WSDLFactory object. For the stub plug-in, registration
is performed by the TransportFactory object—see “Implementing
the Transport Factory” on page 108.

Example 38: Registering a WSDL Extension Factory Instance

// C++
...
using namespace IT_Bus;
using namespace IT_WSDL;
...
void
IT_Transport_Stub::StubTransportFactory::register_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const
{
 factory.register_extension_factory(
 "http://schemas.iona.com/transports/stub",
 it_glob_stub_transport_wsdl_extension_factory_instance
);
}

void
IT_Transport_Stub::StubTransportFactory::deregister_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const
{
 factory.deregister_extension_factory(
 "http://schemas.iona.com/transports/stub"
);
}

 74 Developing Advanced Artix Plugins in C++

Artix Transport
Plug-Ins
This chapter describes how to implement an Artix transport plug-in,
which enables you to integrate Artix with any transport protocol.

The Artix Transport Layer
This section provides an overview of the architecture and API for
the Artix transport layer.

Architecture Overview

Transport architecture
Figure 10 gives a high-level overview of the Artix transport
architecture.

WSDL port
The WSDL port, as shown in Figure 10, refers to the WSDL port
element that specifies the connection parameters for this
transport instance. For example, the WSDL port for a
TCP/IP-based transport would specify values for the server’s host
and IP port.

Figure 10: Artix Transport Architecture

Artix Client
Transport

Artix
Binding

Artix Client

request response

send() receive()

Artix Server
Transport

Artix
Binding

Artix Server

request response

request

response

WSDL Port
<service ...>
 <port ...>
 ...
 </port>
</service>

initialize() initialize()
 Developing Advanced Artix Plugins in C++ 75

In the general case, a WSDL port can specify connection
parameters for both client and server.

Client transport
A client transport is an object of IT_Bus::ClientTransport type,
which can be implemented by an Artix plug-in developer. The
main functions supported by the client transport class are, as
follows:
• initialize()—configure the client connection (usually based

on the parameters read from the WSDL port).
• connect()/disconnect()—open/close a connection to the

remote host.
• invoke()/invoke_oneway()—send and receive messages in raw

binary format.

Server transport
A server transport is an object of IT_Bus::ServerTransport type,
which can be implemented by an Artix plug-in developer. The
main functions supported by the server transport class are, as
follows:
• activate()—begin listening for client connection attempts and

incoming request messages. Typically, the implementation of
this function spawns a new thread to listen for incoming
messages.

• deactivate()—stop listening for client connection attempts
and incoming request messages.

• get_configuration()—return a reference to the WSDL
extension element that configures this transport.

• shutdown()—notifies the server transport that the Bus is
shutting down.

• send()—a callback to send reply messages back to the client.
This function is called, only if you select an asynchronous style
of message dispatch (which is indicated by enabling the
requires stack unwind policy).

• run()—for a certain combination of policies, this function
contains the code that listens for incoming requests. If you
select the MESSAGING_PORT_DRIVEN threading resources policy in
combination with the MULTI_THREADED messaging port
threading policy, the run() function is called concurrently by
multiple messaging port threads.
 76 Developing Advanced Artix Plugins in C++

Artix Transport Classes
Figure 11 shows an overview of the main classes that are relevant
to the implementation of an Artix transport. A brief description of
each of these classes is provided in this subsection.

TransportFactory Class
The IT_Bus::TransportFactory is responsible for creating the basic
objects in a transport implementation.When implementing a
transport, you must implement a class that derives from
TransportFactory and then register an instance of the transport
factory implementation with the Artix Bus.

ClientTransport Class
For the client side of a transport, you must define and implement
a class that derives from the IT_Bus::ClientTransport class. The
client transport must be capable of opening a connection to a
remote service, as well as sending and receiving binary buffers
through the transport.

ServerTransport Class
For the server side of a transport, you must define and implement
a class that derives from the IT_Bus::ServerTransport class. The
server transport implementation should be capable of listening for
incoming request messages (in binary format) from the transport
layer and dispatching these messages up the call stack.
Requests are dispatched by calling the
IT_Bus::TransportCallback::dispatch() function.

Figure 11: Overview of the Artix Transport Classes

cr
ea

te
s creates

cr
ea

te
s

IT_Bus::TransportPolicyList

IT_Bus::TransportFactory

IT_Bus::ClientTransport IT_Bus::ServerTransport IT_Bus::TransportCallback

IT_Bus::DispatchInfo

cr
ea

te
s

Developing Advanced Artix Plugins in C++ 77

TransportCallback Class
The IT_Bus::TransportCallback class is provided by the Artix
runtime; you do not need to implement this class. The most
important member of TransportCallback is the dispatch() function,
which the server code uses to dispatch a request message up the
call stack.
The TransportCallback class acts as an observer for the
ServerTransport class. The TransportCallback functions must be
called from within a ServerTransport object as follows:
• TransportCallback::transport_activated()—called from within

ServerTransport::activate(), after the transport is activated.
• TransportCallback::transport_deactivated()—called from

within ServerTransport::deactivate(), after the transport is
deactivated.

• TransportCallback::transport_shutdown()—called from within
ServerTransport::shutdown(), after the transport has been shut
down.

DispatchInfo Class
The IT_Bus::DispatchInfo class is provided by the Artix runtime.
You can obtain a DispatchInfo object by calling the
TransportCallback::get_dispatch_context() function. On the server
side, a DispatchInfo object is used to encapsulate additional
information about the current message.
For example, the DispatchInfo object is used to hold incoming and
outgoing context data. You can also use the
DispatchInfo::get_correlation_id() function to obtain an ID that
lets you match incoming requests to outgoing replies.

TransportPolicyList Class
The IT_Bus::TransportPolicyList holds a collection of policy
options that affect the semantics of the server side of the
transport. You can customize the interaction between the Artix
runtime and the server transport by setting the appropriate
policies on a TransportPolicyList instance and returning this
instance from the TransportFactory::get_policies() function.

Transport Threading Models
Artix provides a variety of threading models for server transports.
For a relatively simple server transport implementation, you can
take advantage of the messaging port thread pool, which makes it
unnecessary to write the threading code yourself. Alternatively, if
you need more flexibility, you can use the externally driven
threading model, which allows you to implement a custom
threading model.
This section covers:
• Threading Introduction
• MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
 78 Developing Advanced Artix Plugins in C++

• MESSAGING_PORT_DRIVEN and MULTI_THREADED
• MESSAGING_PORT_DRIVEN and SINGLE_THREADED
• EXTERNALLY_DRIVEN

Threading Introduction
The server transport threading model is selected by setting
threading policies on an IT_Bus::TransportPolicyList object. This
section provides a brief overview of the various threading policy
combinations. The chosen threading policy combination affects the
transport in two ways:
• It dictates a particular programming model for the server

transport and
• It regulates the interaction between the Artix runtime and the

server transport.

Threading resources policy
The threading resources policy is used to tell the Artix runtime
where the server transport’s threading resources must come
from:
• MESSAGING_PORT_DRIVEN policy value—the threads used to read

incoming request messages are supplied from the messaging
port thread pool. This policy setting can be combined with one
of the following messaging port threading policies:
♦ MULTI_INSTANCE,
♦ MULTI_THREADED,
♦ SINGLE_THREADED.

• EXTERNALLY_DRIVEN policy value—the reader threads are either
created by the server transport itself or provided from some
other external source.

Messaging port threading model policy
If you have selected the MESSAGING_PORT_DRIVEN threading
resources policy, you can combine it with a messaging port
threading model policy. The following policy values are supported:
• MULTI_INSTANCE policy value—the Artix runtime creates

multiple instances of the ServerTransport class and each
instance consumes a single thread from the messaging port
thread pool.

• MULTI_THREADED policy value—the Artix runtime creates a single
instance of the ServerTransport class and this single instance
consumes multiple threads from the messaging port thread
pool.

• SINGLE_THREADED policy value—the Artix runtime creates a
single instance of the ServerTransport class and this instance
consumes a single thread from the messaging port thread
pool.
Developing Advanced Artix Plugins in C++ 79

Setting the server transport threading
policies
To set the server threading policies, create an
IT_Bus::TransportPolicyList instance, initialize it with the relevant
policy values, and return the policy list from the
TransportFactory::get_policies() function.
When the Artix runtime is about to activate a service, it calls the
get_policies() function to discover what kind of policies should
govern the server transport. This includes the settings for the
threading model.

MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
By combining the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE policy
values, you obtain the threading model shown in Figure 12. When
the service is activated, Artix creates multiple ServerTransport
instances to service the incoming requests. Each of the
ServerTransport instances consumes a thread from the messaging
port thread pool.
The implementation of the activate() function incorporates a
while loop which continuously reads request messages from the
transport layer and dispatches these requests to a
TransportCallback object. It is this blocked activate() function
which consumes a messaging port thread.

How it works
The MESSAGING_PORT_DRIVEN and MULTI_INSTANCE threading model
shown in Figure 12 works as follows:

Figure 12: MESSAGING_PORT_DRIVEN and MULTI_INSTANCE Threading Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1
2

while(...) {
 ...
}

activate()

dispatch()

1
2

Stage Description

1 Each of the threads in the messaging port thread pool
calls activate() on a separate IT_Bus::ServerTransport
instance. The activate() function remains blocked for as
long as the service is active (the activate()
implementation typically contains a while loop).
 80 Developing Advanced Artix Plugins in C++

Setting the policies
To set the server threading policies, create an
IT_Bus::TransportPolicyList instance, initialize it with the relevant
policy values, and return the policy list from the
TransportFactory::get_policies() function.
Example 39 shows how to set the MESSAGING_PORT_DRIVEN and
MULTI_INSTANCE policy values.

Configuring the thread pool
To configure the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
policies, set the following variable in the Artix configuration file:
policy:messaging_transport:min_threads

This variable specifies the number of threads in the messaging
port’s thread pool, when the multi-instance policy is in effect. The
default is 1.

2 Each of the ServerTransport objects calls dispatch() on a
separate IT_Bus::TransportCallback instance.

Stage Description

Example 39: Setting Policies for MESSAGING_PORT_DRIVEN and
MULTI_INSTANCE Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();

m_transport_policylist->set_policy_threading_resources
(

 IT_Bus::MESSAGING_PORT_DRIVEN
);

m_transport_policylist->set_policy_messaging_port_thre
ading(

 IT_Bus::MULTI_INSTANCE
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

Developing Advanced Artix Plugins in C++ 81

MESSAGING_PORT_DRIVEN and MULTI_THREADED
By combining the MESSAGING_PORT_DRIVEN and MULTI_THREADED policy
values, you obtain the threading model shown in Figure 13. When
the service is activated, Artix creates a single ServerTransport
instance to service the incoming requests. The activate() function
is responsible for initializing the transport and the run() function,
which is called concurrently by multiple threads, is responsible for
processing incoming requests.
The implementation of the run() function incorporates a while loop
which continuously reads request messages from the transport
layer and dispatches these requests to the TransportCallback
object.

How it works
The MESSAGING_PORT_DRIVEN and MULTI_THREADED threading model
shown in Figure 13 works as follows:

Figure 13: MESSAGING_PORT_DRIVEN and MULTI_THREADED Threading Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1

3

run()

dispatch()

2
run()

Stage Description

1 A thread from the messaging port thread pool calls
activate() on the sole IT_Bus::ServerTransport instance.
The activate() function puts the transport layer into a
state where it is ready to receive request messages, but
the function does not process any messages and returns
immediately.

2 A number of threads from the thread pool call run() on
the sole IT_Bus::ServerTransport instance. The run()
function is responsible for reading request messages
from the transport and dispatching them to the
TransportCallback object. Hence, the calls to run()
remain blocked for as long as the service is active.

3 Within each of the concurrent run() calls, the
implementation code calls dispatch() on the
IT_Bus::TransportCallback instance whenever a request
message is received on the transport.
 82 Developing Advanced Artix Plugins in C++

Setting the policies
To set the server threading policies, create an
IT_Bus::TransportPolicyList instance, initialize it with the relevant
policy values, and return the policy list from the
TransportFactory::get_policies() function.
Example 40 shows how to set the MESSAGING_PORT_DRIVEN and
MULTI_THREEADED policy values.

Thread safety
When you use the MULTI_THREADED policy value, there is only a
single instance of the ServerTransport, but the instance’s run()
function is called concurrently from multiple threads. It follows
that you must take care to make the implementation of run()
completely thread-safe.
For example, member variables of the ServerTransport class must
be protected by a mutex lock whenever they are accessed from
within the run() function.

Configuring the thread pool
To configure the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_THREADED
policies, set the following variable in the Artix configuration file:
policy:messaging_transport:concurrency

This variable specifies the number of threads in the messaging
port’s thread pool, when the multi-threaded policy is in effect. The
default is 1.

Example 40: Setting Policies for MESSAGING_PORT_DRIVEN and
MULTI_THREADED Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_threading_resources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_port_threading(
 IT_Bus::MULTI_THREADED
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

Developing Advanced Artix Plugins in C++ 83

MESSAGING_PORT_DRIVEN and SINGLE_THREADED
By combining the MESSAGING_PORT_DRIVEN and SINGLE_THREADED
policy values, you obtain the threading model shown in Figure 14.
When the service is activated, Artix creates a single
ServerTransport instance to service the incoming requests. The
ServerTransport instance consumes a single thread from the
messaging port thread pool.
The implementation of the activate() function incorporates a
while loop which continuously reads request messages from the
transport layer and dispatches these requests to the
TransportCallback object.

How it works
The MESSAGING_PORT_DRIVEN and SINGLE_THREADED threading model
shown in Figure 14 works as follows

Setting the policies
To set the server threading policies, create an
IT_Bus::TransportPolicyList instance, initialize it with the relevant
policy values, and return the policy list from the
TransportFactory::get_policies() function.

Figure 14: MESSAGING_PORT_DRIVEN and SINGLE_THREADED Threading Model

while(...) {
 ...
}

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1
2

Stage Description

1 A single thread in the messaging port thread pool calls
activate() on a single IT_Bus::ServerTransport instance.
The activate() function remains blocked for as long as
the service is active (the activate() implementation
typically contains a while loop).

2 The ServerTransport object calls dispatch() on the
IT_Bus::TransportCallback instance.
 84 Developing Advanced Artix Plugins in C++

Example 41 shows how to set the MESSAGING_PORT_DRIVEN and
SINGLE_THREADED policy values.

EXTERNALLY_DRIVEN
By selecting the EXTERNALLY_DRIVEN policy value, you obtain the
threading model shown in Figure 15. When the service is
activated, Artix creates a single ServerTransport instance to
service the incoming requests. The ServerTransport instance does
not consume any threads from the messaging port thread pool.
That is, the call to activate() must be non-blocking.
The essence of the EXTERNALLY_DRIVEN thread model is that it does
not consume any messaging port threads. This model is useful if
you use a transport library that has its own threading capabilities.

Example 41: Setting Policies for MESSAGING_PORT_DRIVEN and
SINGLE_THREADED Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_threading_resources(
 IT_Bus::MESSAGING_PORT_DRIVEN
);
 m_transport_policylist->set_policy_messaging_port_threading(
 IT_Bus::SINGLE_THREADED
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

Figure 15: EXTERNALLY_DRIVEN Threading Model

ServerTransport

activate()

Messaging Port Thread Pool TransportCallback

dispatch()

1

3
External Thread

Create T
hread

2

Developing Advanced Artix Plugins in C++ 85

How it works
The EXTERNALLY_DRIVEN threading model shown in Figure 15 works
as follows

Setting the policies
To set the server threading policies, create an
IT_Bus::TransportPolicyList instance, initialize it with the relevant
policy values, and return the policy list from the
TransportFactory::get_policies() function.
Example 42 shows how to set the EXTERNALLY_DRIVEN policy value.

Stage Description

1 A single thread in the messaging port thread pool calls
activate() on an IT_Bus::ServerTransport instance. The
activate() function puts the transport layer into a state
where it is ready to receive request messages, but it
does not process any messages.

2 Before returning, the activate() function either obtains a
thread from an external source or creates a new thread
to process the incoming request messages.
The request processing code could be put into a private
member function of ServerTransport or it could belong to
a different object altogether.

3 The request processing code, which is running in the
external thread, calls dispatch() on the
IT_Bus::TransportCallback instance.

Example 42: Setting Policies for EXTERNALLY_DRIVEN Threading Model

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();

m_transport_policylist->set_policy_threading_resources
(

 IT_Bus::EXTERNALLY_DRIVEN
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

 86 Developing Advanced Artix Plugins in C++

Dispatch Policies
Dispatching refers to the stage just after the server transport
obtains the request message in the form of a raw buffer. The
server transport calls the dispatch() function to pass the request
message up to the next layer in the stack, where it is processed
and ultimately routed to the appropriate servant object.
The dispatch policies enable you to control the degree to which
dispatching is synchronized with the transport layer. Broadly
speaking, the two main options are synchronous call semantics
(RPC-style dispatch) or asynchronous call semantics
(messaging-style dispatch).

Dispatch Policy Overview
On the server side, the manner in which a request message is
dispatched to the upper layers of an application can be influenced
by a number of policies, as follows:
• Stack unwind policy.
• Asynchronous dispatch policy.

Stack unwind policy
The stack unwind policy can be set or read from a
TransportPolicyList object using the following API functions:

The stack unwind policy selects between an RPC-style dispatch
and a messaging-style dispatch.
If the stack unwind policy is true, you must call the
DispatchInfo::provide_response_buffer() function to provide a
reply buffer reference and the TransportCallback::dispatch()
function blocks until the reply buffer is written.
If the stack unwind policy is false, you must call the
TransportCallback::dispatch() function to dispatch a request
buffer. The reply buffer is passed back to the ServerTransport
through a callback on the ServerTransport::send() function. In this
case also, the dispatch() function blocks until the reply buffer is
written.
The default is false.

// C++
namespace IT_Bus {
 class IT_BUS_API TransportPolicyList
 {
 public:
 ...
 virtual void
 set_policy_requires_stack_unwind(const bool policy) = 0;

 virtual const bool
 get_policy_requires_stack_unwind() const = 0;
};
Developing Advanced Artix Plugins in C++ 87

Asynchronous dispatch policy
The asynchronous dispatch policy can be set on a per-request
basis and is set by passing a boolean value into the optional
parameter of the TransportCallback::dispatch() function, which
has the following signature:

The asynchronous dispatch policy is an optimization that enables
you to decouple the reader thread from the dispatch processing.
If the asynchronous dispatch policy is true, the dispatch() function
returns immediately after adding the request message to a work
queue.
If the asynchronous dispatch policy is false, the dispatch()
function remains blocked until the dispatch processing is
complete.

RPC-Style Dispatch
Some implementations of a server transport could be layered over
a Remote Procedure Call (RPC) transport infrastructure. For this
kind of transport, it is more convenient if the upcall blocks until
the reply buffer becomes available (synchronous invocation).
Figure 16 shows an overview of an RPC-style dispatch call.

// C++
namespace IT_Bus {
 class IT_BUS_API TransportCallback
 {
 public:
 ...
 virtual void
 dispatch(
 BinaryBuffer& request_message,
 DispatchInfo& dispatch_context,
 bool dispatch_acynchronously_if_possible = 0

) = 0;
};

Note: The asynchronous dispatch policy has not yet been
implemented. That is, the dispatch() function always blocks. The
non-blocking functionality will be implemented in a later release.

Figure 16: Overview of RPC-Style Dispatch

ServerTransport TransportCallback

dispatch()
1

3

2

4

Request Buffer

Reply Buffer
 88 Developing Advanced Artix Plugins in C++

Dispatch steps
The stages shown in Figure 16 can be described as follows:

Setting the requisite policies
To set the transport policies, create an
IT_Bus::TransportPolicyList instance, initialize it with the relevant
policy values, and then return the policy list from the
TransportFactory::get_policies() function. Example 43 shows how
to implement a transport factory with the policies required for
RPC-style dispatch.

Stage Description

1 The server transport code calls dispatch() on the
TransportCallback object, passing in a reference to the
request buffer.

2 The TransportCallback object processes the request
message, resulting in an upcall to the relevant servant
object.

3 After processing the request, the TransportCallback
writes the reply data into the reply buffer.
Note: The reply buffer must be supplied to the
TransportCallback object in advance, using the
DispatchInfo::provide_response_buffer() function. For
details, see Example 44 on page 90.

4 The dispatch() call remains blocked until the reply buffer
is written. After dispatch() returns, therefore, the reply
buffer is available and ready to be sent back to the
client.

Example 43: Setting Policies for RPC-Style Dispatch

// C++
void
TransportFactoryImpl::initialize(Bus_ptr bus)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();
 m_transport_policylist->set_policy_requires_stack_unwind(
 true
);
}

const TransportPolicyList*
TransportFactoryImpl::get_policies()
{
 return m_transport_policylist;
}

Developing Advanced Artix Plugins in C++ 89

Implementation example
The code fragment in Example 44 shows how to make an upcall
into the Artix application using RPC-style dispatch. This code
fragment could appear in the body of the
ServerTransport::activate() function, in the body of the
ServerTransport::run() function, or in a completely different
object, depending on the type of threading model that is used (see
“Transport Threading Models” on page 78).

Messaging-Style Dispatch
The default style of dispatching used by the Artix server transport
is messaging-style dispatch, which is suitable for
message-oriented transports such as the MQ-Series transport. For
this kind of transport, the upcall returns as soon as it has
dispatched the request buffer. The reply buffer is returned
asynchronously, through a callback on the
ServerTransport::send() function. Figure 17 shows an overview of
a messaging-style dispatch call.

Example 44: Making an Upcall Using RPC-Style Dispatch

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// At this point, vvReceiveBuffer contains the reply message.

Figure 17: Overview of Messaging-Style Dispatch

ServerTransport TransportCallback

dispatch()
1

4

2

3

Request Buffer

Reply Buffer

5
send()
 90 Developing Advanced Artix Plugins in C++

Dispatch steps
The stages shown in Figure 17 can be described as follows:

Setting the requisite policies
Normally, there is no need to set transport policies explicitly for
messaging-style dispatch, because it is the default. If you do set
some transport policies, however, you must be sure that the value
of the requires stack unwind policy is false (the default).

Implementation example
The code fragment in Example 45 shows how to make an upcall
into the Artix application using messaging-style dispatch. This
code fragment could appear in the body of the
ServerTransport::activate() function, in the body of the
ServerTransport::run() function, or in a completely different
object, depending on the type of threading model that is used (see
“Transport Threading Models” on page 78).

Stage Description

1 The server transport code calls dispatch() on the
TransportCallback object, passing in a reference to the
request buffer.

2 The TransportCallback object processes the request
message, resulting in an upcall to the relevant servant
object.

3 The dispatch() call returns directly after dispatching the
request message.

4 After processing the request, the TransportCallback
writes the reply data into the reply buffer.

5 The Artix runtime calls send() on the ServerTransport
object, passing in a reference to the reply buffer.

Example 45: Making an Upcall Using Messaging-Style Dispatch

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// At this point, vvReceiveBuffer contains the reply message.
Developing Advanced Artix Plugins in C++ 91

In addition to dispatching the request buffer, you must implement
the ServerTransport::send() function to receive the callback
containing the reply buffer. Example 46 shows an outline
implementation of the send() function, which is suitable for
message-style dispatch.

Accessing Contexts
Contexts are an Artix mechanism that enables application code to
communicate with plug-ins. Contexts are typically used by
transports for the following purposes:
• Setting connection parameters (for example, timeouts).
• Sending data in message headers (either as part of a request

message or a reply message).
This section describes how to access and use contexts from within
a transport implementation.

Accessing contexts on the client side
The following extract from the IT_Bus::ClientTransport class
shows how you can access Artix contexts from the connect(),
invoke_oneway(), and invoke() functions.

Example 46: Implementation of send() for Message-Style Dispatch

// C++
void
ServerTransportImpl::send(
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 // Send the reply_message over the transport layer
 // back to the client.
 ... // (transport-specific details)
}

Note: Although Artix contexts are accessible from the
transport, in many cases it is more appropriate to access
contexts from within an interceptor. The use of
interceptors makes your code more modular: you can load
individual interceptors independently of the transport.

// C++
namespace IT_Bus
{
 class IT_BUS_API ClientTransport
 {
 public:
 virtual void
 connect(
 ContextContainer* out_context_container

) = 0;
 92 Developing Advanced Artix Plugins in C++

In each of these functions, the contexts are used as follows:
• connect() function—the outgoing context container could

contain settings that influence the transport connection (for
example, connection timeouts). You can define your own
context type specifically for this purpose.

• invoke_oneway() function—contexts can be used to send and
receive header information across a transport protocol, as
follows:
♦ If there is outgoing data to send in a header, the

transport implementation reads it from the relevant
outgoing context (obtained from out_container) and
inserts it into a request message header.

♦ If there is incoming data to receive from a header, the
transport implementation extracts it from the reply
message and writes it into the relevant incoming context
(obtained from in_container).

• invoke() function—both outgoing contexts and incoming
contexts are available, just as for the invoke_oneway()
function.

 ...
 virtual void
 invoke_oneway(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 ContextContainer* out_container,

 ContextContainer* in_container

) = 0;

 virtual void
 invoke(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 BinaryBuffer& response_buffer,
 ContextContainer* out_container,

 ContextContainer* in_container

) = 0;
 ...
 };
};

Note: Incoming reply contexts (read from incoming reply
messages) are supported, even though this is a oneway
WSDL operation. Oneway operations are not necessarily
implemented as oneways by the transport layer. Sometimes,
it is necessary to extract context data from reply messages,
even for oneway operations.
Developing Advanced Artix Plugins in C++ 93

Accessing contexts with RPC-style
dispatch
On the server side, incoming contexts and outgoing contexts are
accessible through the current IT_Bus::DispatchInfo object. For
example, the code for accessing contexts within an RPC-style
dispatch would have the following general outline:

Accessing contexts with
messaging-style dispatch
With messaging-style dispatch, there are two different points in
the code where you access contexts. Firstly, to access incoming
contexts, you need to insert some code before the
TransportCallback::dispatch() call, as follows:

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

ContextContainer& incoming_container =
dispatch_context.get_incoming_context_container();

// Process each incoming context as follows:
// 1. Extract the relevant header data from the incoming

request.
// 2. Obtain the relevant context instance from the
// incoming_container.
// 3. Populate the context instance with the header data.

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

ContextContainer& outgoing_container =
dispatch_context.get_outgoing_context_container();

// Process each outgoing context as follows:
// 1. Obtain the relevant context instance from the
// outgoing_container.
// 1. Read the context data from the context instance.
// 3. Marshal the context data into an outgoing reply header.

// C++
DispatchInfo& dispatch_context = m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);
 94 Developing Advanced Artix Plugins in C++

Next, to access outgoing contexts, you need to insert some code
into the ServerTransport::send() function, as follows:

Oneway Semantics
WSDL syntax allows you to define two different kinds of
operations:
• Normal operations—which include one or more output

messages.
• Oneway operations—which include only input messages.
In general, the remote invocation of a oneway operation can be
optimized so that it consists only of a request message; there is
no need to wait for a reply message, because no data is expected
in the reply. This is a valuable optimization, which is supported by
Artix.

Oneway semantics on the client side
When it comes to implementing oneway semantics on a specific
transport, however, there can be a mismatch between the WSDL
notion of a oneway and the semantics supported by the underlying

ContextContainer& incoming_container =
dispatch_context.get_incoming_context_container();

// Process each incoming context as follows:
// 1. Extract the relevant header data from the incoming request.
// 2. Obtain the relevant context instance from the
// incoming_container.
// 3. Populate the context instance with the header data.

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

// C++
void
ServerTransportImpl::send(
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 ...
 ContextContainer& outgoing_container =
 dispatch_context.get_outgoing_context_container();

 // Process each outgoing context as follows:
 // 1. Obtain the relevant context instance from the
 // outgoing_container.
 // 1. Read the context data from the context instance.
 // 3. Marshal the context data into an outgoing reply header.
 ...
}

Developing Advanced Artix Plugins in C++ 95

transport protocol. For example, the HTTP protocol requires that
you must always send an acknowledgment reply (HTTP 202 OK
reply), even if there is no reply data.
To give you sufficient flexibility to implement oneways, therefore,
the ClientTransport class requires you to implement separate
functions for handling normal operations and oneway operations,
as follows:
• ClientTransport::invoke() function—called when the WSDL

operation includes one or more output messages.
• ClientTransport::invoke_oneway() function—called when the

WSDL operation includes only input messages.

Oneway semantics with RPC-style
dispatch
Within the section of code that implements an RPC-style dispatch
on the server side, you can check whether a WSDL operation is
oneway by calling the DispatchInfo::is_oneway() function. If the
operation is oneway, you should handle it in the appropriate way
for the particular transport protocol.
For example, the code for performing an RPC-style dispatch would
have the following general outline:

// C++
DispatchInfo& dispatch_context =

m_callback->get_dispatch_context();

dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);

if (! dispatch_context.is_oneway()) {
 // Normal (two-way) WSDL operation

 // Use transport to send vvReceiveBuffer reply to client.
}
else {
 // Oneway WSDL operation

 // (vvReceiveBuffer is empty in this case)

 // HTTP protocol example: send an acknowledgment.

 // MQ-Series example: do not send any reply.
}

 96 Developing Advanced Artix Plugins in C++

Oneway semantics with messaging-style
dispatch
Within the implementation of the IT_Bus::ServerTransport::send()
function (which is responsible for sending replies back to the
client), you can check whether a WSDL operation is oneway by
calling the DispatchInfo::is_oneway() function. If the operation is
oneway, you should handle it in the appropriate way for the
particular transport protocol.
For example, an implementation of ServerTransport::send() would
have the following general outline:

Stub Transport Example
The stub transport is a very simple transport that facilitates
communication between a client and a server that are colocated in
the same process. The client transport object holds a pointer that
points directly at the server transport object. When the client has
a message to send to the server, it simply invokes a dispatch
function directly on the server transport object.
For this transport to work, the client and server must be
colocated. This transport is potentially useful as a diagnostic tool:
it enables you to send messages through the binding layers,
without doing any significant work at the transport layer.

Implementing the Client Transport
This subsection describes how to make a custom implementation
of the IT_Bus::ClientTransport class, using the stub client
transport as an example. The purpose of the client transport class
is to manage connections and send/receive messages in binary
format.

// C++
void
ServerTransportImpl::send(
 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 if (! dispatch_context.is_oneway()) {
 // Normal (two-way) WSDL operation

 // Use transport to send reply_message back to client.
 }
 else {
 // Oneway WSDL operation

 // HTTP protocol example: send an acknowledgment
 // before returning.

 // MQ-Series example: return immediately.
 }
}

Developing Advanced Artix Plugins in C++ 97

Sequence of call
Artix calls back on the client transport functions in the following
sequence:
1. initialize()—called once, to configure the port.
2. connect()—called once, to establish a connection to the

remote host. The connect() function should be non-blocking.
3. invoke()/invoke_oneway()—called for each WSDL operation

invocation, depending on whether it is a normal operation or a
oneway operation.

4. disconnect()—called once, to close the connection to the
remote host.

Client transport header
Example 47 shows the header file for the stub plug-in’s client
transport class.

Example 47: Header for the StubClientTransport Class

// C++
#include <it_bus_sys/bus_context.h>
#include <it_bus_pdk/messaging_transport.h>
#include "stub_transport_factory.h"
#include "stub_transport_wsdl_address.h"

namespace IT_Transport_Stub
{

1 class StubClientTransport : public IT_Bus::ClientTransport
 {
 public:
 StubClientTransport(

2 ServerTransportMap & server_transport_map
);
 virtual ~StubClientTransport();

3 virtual void
 initialize(const IT_WSDL::WSDLPort& Configuration);

 virtual IT_WSDL::WSDLExtensionElement&
 get_configuration();

 virtual void
 connect(IT_Bus::ContextContainer* out_context_container);

 virtual void disconnect();

 virtual void
 invoke_oneway(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const IT_Bus::BinaryBuffer& request_buffer,
 IT_Bus::ContextContainer* out_container,
 IT_Bus::ContextContainer* in_container
);
 98 Developing Advanced Artix Plugins in C++

The preceding transport class header can be explained as follows:
1. The tunnel client transport class must inherit from

IT_Bus::ClientTransport.
2. The IT_Transport_Stub::ServerTransportMap type is a typedef of

IT_Bus::StringMap<StubServerTransport *>, defined in the stub
plug-in’s transport factory header. The ServerTransportMap
class is a hash table that uses a string as the key to retrieve a
server transport instance. This hash table is the discovery
mechanism used by the stub plug-in to find a colocated server
transport instance.

3. The following functions, initialize(), get_configuration(),
connect(), disconnect(), send(), and receive(), are all
inherited from the IT_Bus::ClientTransport base class.

4. The m_server_transport_map variable stores a reference to the
ServerTransportMap instance passed into the constructor.

5. The m_server_transport variable stores a pointer to the target
server transport instance.

6. The m_address_element variable stores a pointer to the
stub:address WSDL element that defines the location of the
server transport.

7. The m_received binary buffer is used to store received
messages temporarily.

 virtual void
 invoke(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const IT_Bus::BinaryBuffer& request_buffer,
 IT_Bus::BinaryBuffer& response_buffer,
 IT_Bus::ContextContainer* out_container,
 IT_Bus::ContextContainer* in_container
);

 protected:
4 ServerTransportMap & m_server_transport_map;
5 StubServerTransport * m_server_transport;
6 StubTransportWSDLAddress * m_address_element;
7 IT_Bus::BinaryBuffer m_received;

 private:
 virtual void send(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 const IT_Bus::BinaryBuffer& vvSendBuffer,
 IT_Bus::ContextContainer* out_context_container
);

 virtual void receive(
 const IT_WSDL::WSDLOperation& wsdl_operation,
 IT_Bus::BinaryBuffer& vvReceiveBuffer,
 IT_Bus::ContextContainer* in_context_container
);
 };
};

Example 47: Header for the StubClientTransport Class
Developing Advanced Artix Plugins in C++ 99

Client transport implementation
Example 48 shows the implementation of the client transport
class.

Example 48: Implementation of the StubClientTransport Class

// C++
#include "stub_client_transport.h"
#include "stub_transport_wsdl_extension_factory.h"
#include "stub_server_transport.h"

using namespace IT_Bus;
using namespace IT_WSDL;

IT_Transport_Stub::StubClientTransport::StubClientTransport(
 ServerTransportMap & server_transport_map
)
: m_server_transport_map(server_transport_map)
{
 m_server_transport = 0;
 m_address_element = 0;

}

IT_Transport_Stub::StubClientTransport::~StubClientTransport()
{
}

void
1 IT_Transport_Stub::StubClientTransport::initialize(

 const IT_WSDL::WSDLPort& wsdl_port
)
{
 // get address from the WSDL
 //
 String location;
 //address extensor
 WSDLExtensionElement* wsdl_element =

2 StubTransportWSDLExtensionFactory::get_extension_element(
 wsdl_port,
 StubTransportWSDLAddress::ELEMENT_NAME
);

 m_address_element =
 IT_DYNAMIC_CAST(StubTransportWSDLAddress *, wsdl_element);

 if (m_address_element != 0)
 {
 location = m_address_element->get_location();
 }
}

IT_WSDL::WSDLExtensionElement&
3 IT_Transport_Stub::StubClientTransport::get_configuration()

{
 IT_WSDL::WSDLExtensionElement * elem = 0;
 return *elem;
}

 100 Developing Advanced Artix Plugins in C++

void
4 IT_Transport_Stub::StubClientTransport::connect(

 ContextContainer* out_context_container
)
{

5 String location = m_address_element->get_location();

6 ServerTransportMap::iterator iter =
 m_server_transport_map.find(location);

 if (iter == m_server_transport_map.end())
 {
 throw Exception(
 "Couldn't find server for stub transport address",
 location.c_str()
);
 }

 m_server_transport = (*iter).second;
}

void
7 IT_Transport_Stub::StubClientTransport::disconnect()

{
}

void
IT_Transport_Stub::StubClientTransport::invoke_oneway(
 const WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 ContextContainer* out_container,
 ContextContainer* //in_container
)
{
 send(
 wsdl_operation,
 request_buffer,
 out_container
);
}

void
IT_Transport_Stub::StubClientTransport::invoke(
 const WSDLOperation& wsdl_operation,
 const BinaryBuffer& request_buffer,
 BinaryBuffer& response_buffer,
 ContextContainer* out_container,
 ContextContainer* in_container
)
{
 send(
 wsdl_operation,
 request_buffer,
 out_container
);

 receive(

Example 48: Implementation of the StubClientTransport Class
Developing Advanced Artix Plugins in C++ 101

The preceding client transport implementation can be explained as
follows:
1. The main purpose of the initialize() function is to initialize

the configuration of the client transport port. The wsdl_port
parameter is an object of IT_WSDL::WSDLPort type, which is a
parse-tree node containing the data from a WSDL <port ... >
</port> element.

2. The get_extension_element() static function searches the
WSDL port node to find a StubPrefix:address sub-element, which
is then stored in m_address_element. See “Implementing the
Extension Element Classes” on page 64 for details.

3. The get_configuration() function has a dummy
implementation.

4. The connect() function is responsible for establishing a
connection to a service endpoint. In the case of the stub
transport, it attempts to find the colocated server transport
instance identified by the location attribute from the
<StubPrefix:address> tag.

5. The get_location() function returns the value of the location
attribute from the <StubPrefix:address> tag.

6. Search the server transport map, using the location attribute
as a key, in order to find a colocated StubServerTransport
instance.
The entries in the ServerTransportMap hash table are created
by one or more colocated StubServerTransport instances.

7. The disconnect() function has a dummy implementation. No
action is needed to disconnect from a stub server transport.

 wsdl_operation,
 response_buffer,
 in_container
);
}

void
8 IT_Transport_Stub::StubClientTransport::send(

 const IT_WSDL::WSDLOperation& wsdl_operation,
 const BinaryBuffer& vvSendBuffer,
 ContextContainer* out_context_container
)
{
 BinaryBuffer send_buffer(vvSendBuffer);

9 m_server_transport->dispatch(send_buffer, m_received);
}

void
10 IT_Transport_Stub::StubClientTransport::receive(

 const IT_WSDL::WSDLOperation& wsdl_operation,
 BinaryBuffer& vvReceiveBuffer,
 ContextContainer* in_context_container
)
{
 vvReceiveBuffer.attach(m_received);
}

Example 48: Implementation of the StubClientTransport Class
 102 Developing Advanced Artix Plugins in C++

8. The send() function transmits a WSDL request in the form of a
binary buffer, request_buffer.

9. For the stub transport, the implementation of send() is trivial:
you invoke dispatch() directly on the colocated stub server
transport instance.

10. The receive() function returns the binary buffer, m_received,
that was stored from the previous call to send().

Implementing the Server Transport
This subsection describes how to make a custom implementation
of the IT_Bus::ServerTransport class, using the stub server
transport as an example. The purpose of the server transport
class is to listen for client connection attempts, listen for incoming
messages and to dispatch incoming messages up to the Artix
binding layer.

Server transport header
Example 49 shows the stub plug-in’s server transport class:

Example 49: Header for the StubServerTransport Class

// C++
#include <it_bus_pdk/messaging_transport.h>
#include <it_bus_sys/bus_context.h>
#include "stub_transport_wsdl_address.h"
#include "stub_transport_factory.h"

namespace IT_Transport_Stub
{

1 class StubServerTransport : public IT_Bus::ServerTransport
 {
 public:
 StubServerTransport(
 ServerTransportMap & server_transport_map,
 const IT_WSDL::WSDLPort& wsdl_port
);
 virtual ~StubServerTransport();

2 virtual void
 activate(
 IT_Bus::TransportCallback& callback,
 IT_WorkQueue::WorkQueue_ptr work_queue = 0
);

 virtual IT_WSDL::WSDLExtensionElement&
 get_configuration();

 virtual void deactivate();

 virtual void shutdown();

 virtual void
 send(
 IT_Bus::BinaryBuffer& reply_message,
 IT_Bus::DispatchInfo& dispatch_context
Developing Advanced Artix Plugins in C++ 103

The preceding server transport header can be described as
follows:
1. The tunnel server transport class must inherit from

IT_Bus::ServerTransport.
2. The following functions, activate(), get_configuration(),

deactivate(), shutdown(), send(), and dispatch(), are all
inherited from the IT_Bus::ServerTransport base class.

3. The m_address_element variable stores a pointer to the
<StubPrefix:address> WSDL element that defines the location of
the server transport.

4. The m_callback variable stores a pointer to the
TransportCalback object, which is used to dispatch requests to
the next layer on the server side.

5. The m_server_transport_map variable stores a reference to the
ServerTransportMap instance, which holds a hash table
consisting of pairs of location attribute string and pointer to
StubServerTransport.

Server transport implementation
Example 50 shows the implementation of the server transport
class.

);

 void dispatch(
 IT_Bus::BinaryBuffer& vvSendBuffer,
 IT_Bus::BinaryBuffer& vvReceiveBuffer
);

 protected:
3 StubTransportWSDLAddress * m_address_element;
4 IT_Bus::TransportCallback * m_callback;
5 ServerTransportMap & m_server_transport_map;

 };
};

Example 49: Header for the StubServerTransport Class

Example 50: Implementation of the StubServerTransport Class

// C++
#include "stub_server_transport.h"
#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;
using namespace IT_WSDL;

1 IT_Transport_Stub::StubServerTransport::StubServerTransport(
 ServerTransportMap & server_transport_map,
 const WSDLPort& wsdl_port
)
: m_server_transport_map(server_transport_map)
{
 m_callback = 0;
 104 Developing Advanced Artix Plugins in C++

 // get address from the WSDL
 //
 String location;
 //address extensor
 WSDLExtensionElement* wsdl_element =

2 StubTransportWSDLExtensionFactory::get_extension_element(
 wsdl_port,
 StubTransportWSDLAddress::ELEMENT_NAME
);

 m_address_element =
 IT_DYNAMIC_CAST(StubTransportWSDLAddress *, wsdl_element);

 if (m_address_element != 0)
 {
 location = m_address_element->get_location();
 }
}

IT_Transport_Stub::StubServerTransport::~StubServerTransport()
{
}

void
3 IT_Transport_Stub::StubServerTransport::activate(

 IT_Bus::TransportCallback & callback,
 IT_WorkQueue::WorkQueue_ptr work_queue
)
{
 m_callback = &callback;

4 m_server_transport_map.insert(
 ServerTransportMap::value_type(
 m_address_element->get_location(),
 this
)
);

5 m_callback->transport_activated();
}

IT_WSDL::WSDLExtensionElement&
6 IT_Transport_Stub::StubServerTransport::get_configuration()

{
 IT_WSDL::WSDLExtensionElement * elem = 0;
 return *elem;
}

void
7 IT_Transport_Stub::StubServerTransport::deactivate()

{
 // Note: It is impossible to deactivate the stub transport
 // m_callback->transport_deactivated();
}

void
8 IT_Transport_Stub::StubServerTransport::shutdown()

{

Example 50: Implementation of the StubServerTransport Class
Developing Advanced Artix Plugins in C++ 105

The preceding server transport implementation can be described
as follows:
1. The StubServerTransport constructor receives two parameters

from the transport factory:
♦ server_transport_map—a String to StubServerTransport*

map, which is used to advertize the availability of stub
server transports to stub client transports.

♦ wsdl_port—an object of IT_WSDL::WSDLPort type, which is a
parse-tree node containing the data from a WSDL <port
... > </port> element.

2. The get_extension_element() static function searches the
WSDL port node to find a StubPrefix:address sub-element, which
is then stored in m_address_element. See “Implementing the
Extension Element Classes” on page 64 for details.

3. The activate() function is called by the Artix core to start up
the server transport. It takes the following arguments:

 ServerTransportMap::iterator iter =
 m_server_transport_map.find(m_address_element->get_location());

 if (iter != m_server_transport_map.end())
 {
 m_server_transport_map.erase(iter);
 }

9 m_callback->transport_shutdown_complete();
}

void
10 IT_Transport_Stub::StubServerTransport::send(

 BinaryBuffer& reply_message,
 DispatchInfo& dispatch_context
)
{
 assert(0);
}

void
11 IT_Transport_Stub::StubServerTransport::dispatch(

 BinaryBuffer& vvSendBuffer,
 BinaryBuffer& vvReceiveBuffer
)
{
 DispatchInfo& dispatch_context =
 m_callback->get_dispatch_context();

12 dispatch_context.provide_response_buffer(
 vvReceiveBuffer
);

13 m_callback->dispatch(
 vvSendBuffer,
 dispatch_context
);
}

Example 50: Implementation of the StubServerTransport Class
 106 Developing Advanced Artix Plugins in C++

♦ callback—the TransportCallback object is used to
communicate with the Artix core. In particular,
TransportCallback::dispatch() is used to dispatch
requests up to the application code.

♦ work_queue—this is a NULL pointer, unless you choose the
BORROWS_WORKQUEUE_SELF_DRIVEN threading resources policy.

The deactivate() and activate() functions can be used to
pause and resume the server transport. The activate()
function must be non-blocking.

4. Advertise this StubServerTransport instance by adding an entry
to the server transport map. Because the colocated stub client
transports have a reference to the same server transport map
instance, they will be able to find the stub server transport by
supplying the relevant location value as a key.

5. Before exiting the body of the activate() function, you must
notify the Artix core of the current activation status by calling
back on the IT_Bus::TransportCallback object. There are two
alternatives:
♦ TransportCallback::transport_activated()—call this, if the

transport activation is successfull.
♦ TransportCallback::transport_activation_failed()—call

this, if the transport activation fails.
6. The get_configuration() function has a dummy

implementation.
7. The deactivate() function is called in order to deactivate the

server transport temporarily. It can be used in combination
with activate() to pause and resume the server transport.
Before exiting the body of the deactivate() function, you must
notify the Artix core by calling
TransportCallback::transport_deactivated().

8. The shutdown() function is called by the Artix core while the
Bus shuts down. At this point, you should shut down the
server transport and perform whatever cleanup is necessary.

9. Before exiting the body of the shutdown() function, you must
notify the Artix core by calling
TransportCallback::transport_shutdown_complete().

10. The send() function is called, only if you have configured the
server transport to use the asynchronous dispatch model.
Because the stub transport uses the synchronous dispatch
model, the send() function is left unimplemented.
The choice between a synchronous or an asynchronous
dispatch model is selected by the requires stack unwind
policy. If the policy is true, the synchronous model is selected;
if false, the asynchronous model is selected. For more details
see “Implementing the Transport Factory” on page 108.

11. This dispatch() function is not inherited from
IT_Bus::ServerTransport. It is specific to the stub transport.
The dispatch() function represents a simple mechanism for

Note: The stub server transport is a special case, however,
because it is not possible to deactivate it. Strictly speaking,
therefore, we ought not to include the
transport_deactivated() call here.
Developing Advanced Artix Plugins in C++ 107

stub client transports to send a request and receive a reply
from the stub server transport: the client transport simply
makes a colocated call on the StubServerTransport::dispatch()
function.

12. Because this server transport uses the synchronous dispatch
model, you must call DispatchInfo::provide_response_buffer()
to provide a buffer into which the reply message will be
written.

13. Call TransportCallback::dispatch() to dispatch the request
message to the next stage. Because the transport uses the
synchronous dispatch model, the reply message is available in
the buffer, vvReceiveBuffer, as soon as the
TransportCallback::dispatch() call returns.

Implementing the Transport Factory
You must implement a transport factory as part of the stub
transport implementation. The Artix core calls functions on the
transport factory to create IT_Bus::ClientTransport and
IT_Bus::ServerTransport instances as needed.

Transport factory header
Example 51 shows the stub plug-in’s transport factory header.

Example 51: Header for the StubTransportFactory Class

// C++
#include <it_bus/bus.h>
#include <it_bus_pdk/messaging_transport.h>
#include <it_bus/string_map.h>

namespace IT_Transport_Stub
{
 class StubServerTransport;

1 typedef IT_Bus::StringMap<StubServerTransport *>
 ServerTransportMap;

2 class StubTransportFactory : public
IT_Bus::TransportFactory

 {
 public:
 StubTransportFactory();
 virtual ~StubTransportFactory();

 virtual IT_Bus::ClientTransport *
 create_client_transport();

 virtual void destroy_client_transport(
 IT_Bus::ClientTransport * transport
);

 virtual IT_Bus::ServerTransport*
 create_server_transport(
 const IT_WSDL::WSDLPort& configuration
);
 108 Developing Advanced Artix Plugins in C++

The preceding header file can be explained as follows:
1. The ServerTransportMap type is defined to be a hash table that

uses a string key to find pointers to StubServerTransport
instances. The server transport map is the endpoint discovery
mechanism for the stub transport.

2. The StubTransportFactory class inherits from the
IT_Bus::TransportFactory base class.

3. The m_server_transport_map variable is the concrete server
transport map instance, which is referenced by the client
transport objects and the server transport objects.

4. The m_transport_policylist variable stores a pointer to an
object that encapsulates the stub transport’s threading
policies.

 virtual void
 destroy_server_transport(
 IT_Bus::ServerTransport* transport
);

 virtual IT_Bus::ThreadingModel
 get_client_threading_model();

 virtual void
 register_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const;

 virtual void
 deregister_wsdl_extension_factories(
 IT_WSDL::WSDLFactory & factory
) const;

 virtual const IT_Bus::TransportPolicyList*
 get_policies();

 void
 initialize(
 IT_Bus::Bus_ptr bus
);

 protected:
 ...

3 ServerTransportMap m_server_transport_map;
4 IT_Bus::TransportPolicyList* m_transport_policylist;

 };
};

Example 51: Header for the StubTransportFactory Class
Developing Advanced Artix Plugins in C++ 109

Transport factory implementation
Example 52 shows the transport factory implementation.

Example 52: Implementation of the StubTransportFactory Class

// C++
#include <it_bus_pdk/pdk_bus.h>
#include "stub_transport_factory.h"
#include "stub_client_transport.h"
#include "stub_server_transport.h"

#include "stub_transport_wsdl_extension_factory.h"

using namespace IT_Bus;

IT_Transport_Stub::StubTransportFactory::StubTransportFactory()
{
}

IT_Transport_Stub::StubTransportFactory::~StubTransportFactory()
{
 delete m_transport_policylist;
}

IT_Bus::ClientTransport *
1 IT_Transport_Stub::StubTransportFactory::create_client_transport()

{
 return new

IT_Transport_Stub::StubClientTransport(m_server_transport_map);
}

void
2 IT_Transport_Stub::StubTransportFactory::destroy_client_transport(

 IT_Bus::ClientTransport * transport
)
{
 delete transport;
}

IT_Bus::ServerTransport*
3 IT_Transport_Stub::StubTransportFactory::create_server_transport

(
 const IT_WSDL::WSDLPort& wsdl_port
)
{
 return new IT_Transport_Stub::StubServerTransport(
 m_server_transport_map,
 wsdl_port
);
}

void
4 IT_Transport_Stub::StubTransportFactory::destroy_server_transport(

 IT_Bus::ServerTransport* transport
)
{
 delete transport;
}

 110 Developing Advanced Artix Plugins in C++

The preceding transport factory implementation can be explained
as follows:
1. The create_client_transport() function is called by the Artix

core whenever a new StubClientTransport instance is needed.
The StubClientTransport constructor takes on parameter: a
reference to the server transport map, which enables the stub
client transport to discover stub service endpoints.

2. The destroy_client_transport() function is normally
implemented exactly as shown here.

IT_Bus::ThreadingModel
5 IT_Transport_Stub::StubTransportFactory::get_client_threading_model()

{
 return IT_Bus::MULTI_INSTANCE;
}

6 extern IT_Transport_Stub::StubTransportWSDLExtensionFactory
it_glob_stub_transport_wsdl_extension_factory_instance;

void
7 IT_Transport_Stub::StubTransportFactory::register_wsdl_extension_factories(

 IT_WSDL::WSDLFactory & factory
) const
{

8 factory.register_extension_factory(
 "http://schemas.iona.com/transports/stub",
 it_glob_stub_transport_wsdl_extension_factory_instance
);
}

void
9 IT_Transport_Stub::StubTransportFactory::deregister_wsdl_extension_factories

(
 IT_WSDL::WSDLFactory & factory
) const
{
}

const TransportPolicyList*
10 IT_Transport_Stub::StubTransportFactory::get_policies()

{
 return m_transport_policylist;
}

void
11 IT_Transport_Stub::StubTransportFactory::initialize(

 Bus_ptr bus
)
{
 m_transport_policylist =
 bus->get_pdk_bus()->create_transport_policy_list();

12 m_transport_policylist->set_policy_threading_resources(EXTERNALLY_DRIVEN);
13 m_transport_policylist->set_policy_requires_concurrent_dispatch(true);
14 m_transport_policylist->set_policy_requires_stack_unwind(true);

}

Example 52: Implementation of the StubTransportFactory Class
Developing Advanced Artix Plugins in C++ 111

3. The create_server_transport() function is called by the Artix
core whenever a new StubServerTransport instance is needed.
The StubServerTransport constructor takes two parameters:
♦ A reference to the server transport map, which enables

the stub server transport to advertise its existence to
colocated clients.

♦ A reference to the WSDL port that contains a description
of this service endpoint.

4. The destroy_server_transport() function is normally
implemented exactly as shown here.

5. The get_client_threading_model() is implemented to select the
MULTI_INSTANCE client threading model.

6. This variable references a global static instance of the stub
plug-in’s WSDL extension factory.

7. The register_wsdl_extension_factories() function is called by
the Artix core while the stub plug-in is initializing. It gives you
an opportunity to register one or more WSDL extension
factories with the Bus.

8. This line registers the stub plug-in’s WSDL extension factory,
associating it with the
http://schemas.iona.com/transports/stub namespace URI. This
is the namespace that can be associated with the StubPrefix to
let you configure the StubPrefix:address element in your WSDL
contract.

9. As the stub plug-in shuts down, it calls
deregister_wsdl_extension_factories().

10. As the stub plug-in starts up, the Artix core calls
get_policies() to discover what policies are to be used with
this transport plug-in (the policies are mostly concerned with
server threading).

11. If you need to customize the transport policy list, you can do
this in the body of the initialize() function.

12. Usually, when the server transport’s threading policy is set to
EXTERNALLY_DRIVEN, it would imply that the server transport
code creates its own reader threads to process incoming
requests. In this case, because the stub transport is a
colocated transport, the situation is somewhat exceptional.
The reader thread is actually provided by the client side—the
client transport simply calls the server transport’s dispatch()
function directly.

13. The server’s concurrent dispatch policy is set to true. This
indicates to the Artix core that the stub server transport is
liable to make concurrent dispatches to the server-side
binding (by calling TransportCallback::dispatch() from
multiple threads).

14. The requires stack unwind policy is set to true. This selects a
synchronous approach to dispatching requests on the server
side. If you enable the stack unwind policy, you must
implement your server transport according to the following
pattern:
♦ Do not implement ServerTransport::send() (this function

is only used to receive replies asynchronously).
 112 Developing Advanced Artix Plugins in C++

♦ In the implementation of ServerTransport::dispatch(),
prior to calling TransportCallback::dispatch(), call
DispatchContext::provide_response_buffer() to specify a
buffer into which the result will be written.

♦ As soon as TransportCallback::dispatch() returns, the
response buffer contains the reply.

Registering and Packaging the Transport

Stub plug-in name
Example 53 shows how to register the stub transport plug-in by
creating a static instance of IT_Bus::BusORBPlugIn type. The
constructor registers the plug-in under the specified name,
stub_transport.

Registering the stub transport factory
with the Bus
Example 54 shows how to register the stub transport factory with
the Bus.

Example 53: Registering the Stub Transport Plug-In

// C++
namespace IT_Bus {
 ...
 const char* const und_stub_transport_plugin_name =

"stub_transport";

 StubTransportBusPlugInFactory
und_stub_transport_plugin_factory;

 IT_Bus::BusORBPlugIn und_stub_transport_plugin(
 und_stub_transport_plugin_name,
 und_stub_transport_plugin_factory
);
}

Example 54: Registering the Stub Transport Factory

// C++
void
StubTransportBusPlugIn::bus_init(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 m_transport_factory.initialize(bus);
 bus->get_pdk_bus()->register_transport_factory(

 "http://schemas.iona.com/transports/stub",

 &m_transport_factory

);

}

Developing Advanced Artix Plugins in C++ 113

To register the transport factory, perform the following steps:
1. Call the IT_Bus::TransportFactory::initialize() function to

initialize the transport factory.
2. Call the IT_Bus::PDKBus::register_transport_factory() factory

to register the transport factory.

Configuring the stub transport plug-in
To configure an application to use the stub transport plug-in, you
must add the plug-in name, stub_transport, to the orb_plugins list,
as follows:

void
StubTransportBusPlugIn::bus_shutdown(
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Bus_ptr bus = get_bus();
 assert(bus != 0);

 bus->get_pdk_bus()->deregister_transport_factory(
 "http://schemas.iona.com/transports/stub"
);
}

Example 54: Registering the Stub Transport Factory

Example 55: Configuring the Stub Transport Plug-In

Artix Configuration File

ApplicationScope {
 orb_plugins = [..., "stub_transport"];
 ...
};
 114 Developing Advanced Artix Plugins in C++

Artix Logging
Reference
This chapter explains how to use Artix TRACE macros, and explains the
Artix logging APIs.

Using Artix TRACE Macros
This section describes how to use TRACE macros in your own code
in order to send logging messages to the Artix event log. The
output from this Artix logging mechanism can then be controlled
using the configuration settings described in Deploying and
Managing Artix Solutions.
This section describes the following aspects of using Artix TRACE
macros:
• Header file.
• Initializing the Bus logger.
• Artix subsystem scope.
• Artix trace levels.
• Passing in arguments.
• Creating your own output.

Header file
To use the Artix TRACE macros, you must include the
it_bus/bus_logger.h header as follows:
#include <it_bus/bus_logger.h>

Note: In versions prior to Artix 3.0.2, the
it_bus/logging_support.h header was used instead. This
header is now deprecated, but it can be used to support
legacy logging code.
 Developing Advanced Artix Plugins in C++ 115

Initializing the Bus logger
In order to control logging independently for each Bus, it is
necessary to initialize a Bus logger object and associate it with a
particular Bus instance. The Bus logger must be initialized before
you can perform any tracing.
The normal way to initialize a Bus logger instance is to define it as
a member of the class you happen to be implementing. For
example, you can define and initialize a Bus logger instance in a
class, MyClass, as follows:
1. Declare a BusLogger pointer by inserting the

IT_DECLARE_BUS_LOGGER_MEM macro as a protected member in
the class header file:

2. In the class constructor, call the IT_INIT_BUS_LOGGER_MEM macro
to initialize the BusLogger instance, passing a valid Bus
instance to the macro argument:

3. In the class destructor, call the IT_FINALISE_BUS_LOGGER_MEM
macro to clean up the BusLogger instance.

The Bus pointer passed to the macro in the destructor must
be the same as the one passed to the macro in the
constructor.

Artix subsystem scope
Artix uses a hierarchy of subsystem scopes that enables you to
filter the messages that go into the event log. Artix uses several
different subsystem scopes internally, for example:

// C++
class myClass {
 ...
 protected:
 IT_DECLARE_BUS_LOGGER_MEM
};

// C++
myClass::myClass(IT_Bus::Bus_ptr bus) : m_bus(bus)
{
 IT_INIT_BUS_LOGGER_MEM(m_bus)
}

// C++
myClass::~myClass()
{
 IT_FINALISE_BUS_LOGGER_MEM(m_bus)
}

IT_BUS.CORE
IT_BUS.TRANSPORT.HTTP
IT_BUS.BINDING.SOAP
IT_BUS.BINDING.CORBA
IT_BUS.BINDING.CORBA.RUNTIME
 116 Developing Advanced Artix Plugins in C++

You can then define an event log filter in the Artix configuration
file to control the level of logging from each of the subsystems.
For example:

The default subsystem scope for any TRACE macros in your code
is IT_BUS. Instead of using the default, however, it is better to
specify a subsystem scope explicitly by defining the
_IT_SUBSYSTEM_SCOPE macro in your code.
For example, if you are generating logging messages from a
custom transport, you could define the subsystem scope as
follows:

You can define the subsystem scope to be any identifier consisting
of alphanumerics and the . character. The . character is used as a
delimiter to separate the subsystem levels.

Artix trace levels
When the event log filter and log stream are properly configured,
the Artix logging output from the TRACE macros is sent to the
event log.
When using TRACE macros, the most important concept is the
trace level, which is an enum that lets you filter events. Trace levels
are defined in the ArtixInstallDir/include/it_bus/logging_defs.h
file:

The simplest trace statement emits a constant string at level
IT_TRACE. For example:

Artix Configuration File
event_log:filters=["IT_BUS=FATAL+ERROR",
 "IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR"];

// C++
// Class implementation file.

// Header files:
#include <it_bus/bus_logger.h>
...

// Define _IT_SUBSYSTEM_SCOPE *after* including the headers.
#define _IT_SUBSYSTEM_SCOPE IT_BUS.TRANSPORT

const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL

const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR

const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING

const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH

const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED

const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW

const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

TRACELOG("Hello world");
Developing Advanced Artix Plugins in C++ 117

Passing in arguments
Several versions of the macro allow using a C printf format string,
and passing in some arguments. Because you cannot have
variable argument lists for macros, there are several defined
according to how many arguments are allowed:

Both the zero argument and the multiple argument versions have
a setting that allows a trace level to be passed in, instead of level
IT_TRACE. For example:

Creating your own output
If you need to create your own output using iostreams or another
expensive process that is not supported by the macro, use the
trace guard block. This ensures that the trace level test prevents
your trace creation code from running when it does not produce
output. For example:

To create binary output (for instance, a hex dump of the buffer),
use TRACELOGBUFFER. For example:

If the trace statement issues at a level less than or equal to the
process trace level, the entry is written to disk. The default log file
name is it_bus.log.

TRACELOG1("My name is: %s", "Slim Shady");
TRACELOG2("At state number %d, this happened: %s", 44, "connection failure");

TRACELOG_WITH_LEVEL(IT_METHODS, "MyClass::MyClass()");
TRACELOG_WITH_LEVEL1(IT_TRACE_METHODS_INTERNAL, "Value of my_name_field was %s", my_name_field);

BEGIN_TRACE(IT_TRACE)
 String trace_message = "data elements: ";
 for(i = 0; i < data_count; i++)
 {
 trace_message = trace_message + data_item[i] + " ";
 }
 TRACELOG(trace_message.c_str());
END_TRACE

TRACELOGBUFFER(vvMQMessageData, vvMQMessageData.GetSize())
 118 Developing Advanced Artix Plugins in C++

WS-RM Persistence
This chapter describes how to write a custom plug-in that implements the
persistence feature for WS-ReliableMessaging (WS-RM). The WS-RM
specification defines a protocol for the assured delivery of SOAP
messages (or sequences of SOAP messages) to a Web service destination.
By enhancing WS-RM with a persistence feature, you can ensure that
messages get delivered even after a program crash.

Introduction to WS-RM Persistence
Figure 18 shows an overview of how the WS-ReliableMessaging
(WS-RM) protocol works with persistence enabled. You would
deploy the WS-RM protocol in situations where delivery
assurances are required, even if the underlying transport is
unreliable. Instead of talking about clients and servers, the
WS-RM specification talks about source endpoints and destination
endpoints. Messages are transmitted from source endpoints and
received by destination endpoints.

Message sequence
Under the WS-RM protocol, messages are grouped into
sequences. A message sequence consists of one or more
messages.

Application source
The application source represents the application code that has a
message (or messages) to send. The WS-RM delivery assurances
come into effect as soon as the application source transfers a
message to the WS-RM source.

Figure 18: Overview of WS-ReliableMessaging with Persistence

Application
Source

WS-RM
Source

Persistence

Application
Source

WS-RM
Destination

Persistence

Transmit Sequence

Acknowledge
 Developing Advanced Artix Plugins in C++ 119

Application destination
The application destination represents the application code that
ultimately receives and processes the message. The WS-RM
delivery guarantee is fulfilled, as soon as the application
destination takes delivery of the message from the WS-RM
destination.

WS-RM source
A WS-RM source is an endpoint that is responsible for transmitting
a message with specific delivery assurances.

WS-RM destination
A WS-RM destination is an endpoint that is responsible for
receiving a message with specific delivery assurances.

WS-RM persistence plug-in
To provide message persistence for the WS-RM layer, you can
implement your own custom WS-RM persistence plug-in. The
persistence plug-in integrates the WS-RM layer with a database.
Messages can then be stored in the database as long as necessary
to guarantee message delivery, even if one of the application
programs crashes.
 120 Developing Advanced Artix Plugins in C++

Sample message exchange
Figure 19 shows an example of a WS-RM message exchange,
where the WS-RM source sends a sequence of three messages to
the WS-RM destination. The message types shown in this example
refer to SOAP messages containing the appropriate WS-RM
headers.

Steps in the message exchange
The steps shown in the message exchange of Figure 19 are, as
follows:
1. The message exchange pattern is initiated when the source

sends a CreateSequence message to the destination.
2. The destination responds by sending a CreateSequenceResponse

message back to the source.
3. Transmit the first message of a three message sequence. If

persistence is enabled, the WS-RM source saves the message
before transmitting.

4. Transmit the second message. If persistence is enabled, the
WS-RM source saves the message before transmitting.
In this example, it is assumed that the second message gets
lost. This can happen even if the underlying protocol is reliable
(like HTTP), because a WS-RM session can span multiple
connections. For example, consider what happens if a HTTP
connection drops while the second message is being sent. The
WS-RM source then transparently re-opens a HTTP connection
to send the third message. The second message is now
missing, even though the underlying protocol is reliable.

5. Transmit the final message of the sequence. A LastMessage
flag in the WS-RM header signals to the destination that this is
the last message in the sequence.

Figure 19: Sample WS-RM Message Exchange Pattern

WS-RM
Source

WS-RM
Destination

1

2

3

4

5

6

7

8

9

Sequence(ID="http://...", MessageNumber=2, AckRequested)

CreateSequence()

Sequence(ID="http://...", MessageNumber=1)

TerminateSequence()

CreateSequenceResponse(ID="http://...")

Sequence(ID="http://...", MessageNumber=2)

Sequence(ID="http://...", MessageNumber=3)

SequenceAcknowledgement(ID="http://...",
 AcknowledgementRange=1,3)

SequenceAcknowledgement(ID="http://...",
 AcknowledgementRange=1...3)
Developing Advanced Artix Plugins in C++ 121

6. The destination sends an acknowledgement back to the
source, confirming that message numbers 1 and 3 were
received.

7. The source endpoint can now remove messages 1 and 3 from
the WS-RM persistent storage. The second message must be
resent, however, because no acknowledgement for this
message has been received.

8. The destination sends an acknowledgement back to the
source, confirming that message numbers 1, 2, and 3 were
received.

9. The source terminates the message exchange pattern by
sending a TerminateSequence message to the destination
endpoint.

Adding persistence to the message
exchange protocol
The key benefit of adding persistence to the message exchange
protocol is that delivery of messages to the application destination
can be guaranteed, even if one of the application programs
crashes.
When persistence is enabled, the source endpoint persists
messages locally before attempting to transmit to the destination
endpoint. Likewise, the destination endpoint persists messages as
soon as they arrive. The messages stored on the destination side
can then be erased, once they have been delivered to the
application destination.

Standard persistence plug-in
Artix provides a default WS-RM persistence plug-in that stores
data in a Berkeley database.

Custom persistence plug-in
If you want to provide your own implementation of WS-RM
persistence (for example, if you prefer to use a database other
than Berkeley DB), follow the instructions in this chapter to
implement a custom persistence plug-in.

References
For more details, see the section Deploying WS-ReliableMessaging
in Configuring and Deploying Artix Solutions.
The WS-ReliableMessaging specification is available from OASIS,
at http://docs.oasis-open.org/ws-rx/wsrm/200702.
 122 Developing Advanced Artix Plugins in C++

http://docs.oasis-open.org/ws-rx/wsrm/200702

WS-RM Persistence API
This section describes the base classes that you need to define in
order to implement the WS-RM persistence feature.

Overview of the Persistence API
Figure 20 shows an overview of the WS-RM persistence API, which
consists of three classes: IT_Bus::RMPersistentManager,
IT_Bus::RMEndpointPersistentStore, and
IT_Bus::RMSequencePersistentStore. In order to write a WS-RM
persistence plug-in, you must provide an implementation for each
of these API classes.

RMPersistentManager class
The IT_Bus::RMPersistentManager class is the basic point of contact
between the WS-RM core and the WS-RM persistence layer. This
class is responsible for connecting to the database and managing
the persistence of WS-RM source endpoints and WS-RM
destination endpoints.

RMEndpointPersistentStore class
The IT_Bus::RMEndpointPersistentStore class represents the
persistent storage for a particular WS-RM endpoint (could be
either a source endpoint or a destination endpoint). This class
effectively acts as a container for message sequences.

RMSequencePersistenceStore class
The IT_Bus::RMSequencePersistenceStore class represents the
persistent storage for a particular WS-RM message sequence. This
class effectively acts as a container for messages.

Figure 20: Overview of the WS-RM Persistence API

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

Developing Advanced Artix Plugins in C++ 123

RMPersistentManager Class
The IT_Bus::RMPersistentManager class provides the basic point of
contact between the WS-RM core and WS-RM persistence plug-in.
You must implement this class in order to implement a WS-RM
persistence plug-in.
For details of how to register an IT_Bus::RMPersistentManager
instance, see “Implementing a WS-RM Persistence Plug-In” on
page 137.

RMPersistentManager class header
Example 56 shows the header for the IT_Bus::RMPersistentManager
class, with some hints on how to implement each member
function.

Example 56: The RMPersistentManager Class Header

// C++
#include <it_bus/types.h>

namespace IT_Bus
{
 class String;
 class QName;
 class BinaryBuffer;

 class RMPersistentManager
 {
 public:
 virtual RMEndpointPersistentStore*

1 rm_source_endpoint_created(
 const QName& wsdl_service_qname,
 const String& wsdl_port_name,
 const String& stringified_wsa_epr,
 const String& endpoint_address
) = 0;

 virtual RMEndpointPersistentStore*
2 rm_destination_endpoint_created(

 const QName& wsdl_service_qname,
 const String& wsdl_port_name,
 const String& stringified_wsa_epr
) = 0;

 virtual void
3 rm_endpoint_closed(

 RMEndpointPersistentStore* ep_store
) = 0;

 virtual RMEndpointPersistentStore*
4 get_next_source_endpoint_to_recover() = 0;

5 virtual void cleanup_persistent_store() = 0;
 };
 ...
}

 124 Developing Advanced Artix Plugins in C++

The preceding class header can be explained as follows:
1. The rm_source_endpoint_created() function is called by the

WS-RM core just after a WS-RM source endpoint is created.
The arguments to rm_source_endpoint_created() are used as
follows:
♦ Database key—the service name, wsdl_service_qname, and

port name, wsdl_port_name, together should be used to
generate a database key.

♦ Database data—the string arguments,
stringified_wsa_epr and endpoint_address, should be
stored in the keyed database record. You also need to
create a record for WS-RM source endpoint data.

When this function is called, you should create an entry in
your database to store the WS-RM source endpoint details.

2. The rm_destination_endpoint_created() function is called by
the WS-RM core just after a WS-RM destination endpoint is
created.
The arguments to rm_destination_endpoint_created() are used
as follows:
♦ Database key—the service name, wsdl_service_qname, and

port name, wsdl_port_name, together should be used as a
database key.

♦ Database data—the string argument, stringified_wsa_epr,
should be stored in the keyed database record. You also
need to create a record for WS-RM destination endpoint
data.

It is possible that rm_destination_endpoint_created() might be
called more than once for a given service name and port name
combination. If this happens, re-use the existing database
record (as keyed by the service name and port name) rather
than create a new record.

3. The rm_endpoint_closed() function is called by the WS-RM core
after an endpoint has been shut down.
To implement this function, delete all of the database records
associated with the specified endpoint instance. The WS-RM
core guarantees that this function is called only after all of the
sequences have been terminated.

4. The get_next_source_endpoint_to_recover() function is called
by the WS-RM core during recovery after a program crash.
The get_next_source_endpoint_to_recover() function should be
implemented to behave as follows:
i. The first time this function is called, it should retrieve the

list of WS-RM source endpoints from the database and
return a pointer to the first endpoint instance.

ii. On each subsequent call, the function should return a
pointer to the next source endpoint in the list.

Note: The rm_source_endpoint_created() function will
be called multiple times with the same service/port
combination, if the user creates multiple proxies. You
must ensure that a unique database key is generated
whenever this function is called, even if the
service/port combination is the same.
Developing Advanced Artix Plugins in C++ 125

iii. When the end of the list has been reached, the function
should return zero.

5. The cleanup_persistent_store() function is called by the
WS-RM core during a normal program shutdown (bus
shutdown), at which point all of the sequences will have been
terminated.
To implement this function, delete all of the database records
associated with the current program.

RMEndpointPersistentStore Class
The IT_Bus::RMEndpointPersistentStore class stores details either
for a source endpoint or for a destination endpoint. It also acts as
a container for WS-RM message sequences. You must implement
this class in order to implement a WS-RM persistence plug-in.

RMEndpointPersistentStore class header
Example 57 shows the header for the
IT_Bus::RMEndpointPersistentStore class, with some hints on how
to implement each member function.

Note: The WS-RM core runs through this call sequence only
once per session. Hence, it is not strictly necessary to reset
this iterator function at the end of the list.

Note: When a sequence has been terminated, that does not
necessarily imply that all of its message have been
transmitted and acknowledged or that all of the messages
have been delivered. When a process shuts down gracefully,
WS-RM sends a wsrm:SequenceTerminated fault to the peer
endpoint to terminate each sequence.

Example 57: The RMEndpointPersistentStore Class Header

// C++
#include <it_bus/types.h>

namespace IT_Bus
{
 class String;
 class QName;
 class BinaryBuffer;

 class RMEndpointPersistentStore
 {
 public:

1 virtual const QName& get_service_name() = 0;
 virtual String get_port_name() = 0;
 virtual String get_address() = 0;
 virtual String get_stringified_epr() = 0;

2 virtual void store_address(
 const String& endpoint_address
) = 0;
 126 Developing Advanced Artix Plugins in C++

The preceding header class can be explained as follows:
1. The following functions—get_service_name(), get_port_name(),

get_address(), and get_stringified_epr()—return basic data
from the endpoint’s database record.

2. The store_address() updates the endpoint address field (that
is, the same field that is accessible by calling get_address()).
This function is called only in a destination endpoint, after the
endpoint is activated. The sequence of events is as follows:
i. When a destination endpoint is created, the WS-RM core

calls rm_destination_endpoint_created().
ii. The destination endpoint is activated, at which point the

URL address becomes known (for example, the operating
system would allocate an IP address during activation).

iii. The WS-RM core calls store_address(), to pass on the
activated address.

3. The sequence_created() function is called by the WS-RM core
just after a new WS-RM sequence is created.
To implement this function, you should store the sequence_id
and acksto_uri strings in the endpoint’s database record.

4. The endpoint_needs_recovery() function is called by the WS-RM
core during recovery after a program crash.
This function must return true, if there are messages stored in
this endpoint’s database record that were not sent before the
program crashed.

5. The get_next_sequence_to_recover() function is called by the
WS-RM core during recovery after a program crash.
The get_next_sequence_to_recover() function should be
implemented to behave as follows:
i. The first time this function is called, it should retrieve the

list of message sequences from the database and return a
pointer to the first sequence instance.

ii. On each subsequent call, the function should return a
pointer to the next sequence in the list.

iii. When the end of the list has been reached, the function
should return zero.

3 virtual RMSequencePersistentStore* sequence_created(
 const String& sequence_id,
 const String& acksto_uri
) = 0;

4 virtual bool endpoint_needs_recovery() = 0;

 virtual RMSequencePersistentStore*
5 get_next_sequence_to_recover() = 0;

 };
}

Example 57: The RMEndpointPersistentStore Class Header
Developing Advanced Artix Plugins in C++ 127

RMSequencePersistentStore Class
The IT_Bus::RMSequencePersistentStore class acts as a container
for messages belonging to a particular message sequence, where
the messages are stored persistently. You must implement this
class in order to implement a WS-RM persistence plug-in.

RMSequencePersistentStore class
header
Example 58 shows the header for the
IT_Bus::RMSequencePersistentStore class, with some hints on how
to implement each member function.

Example 58: The RMSequencePersistentStore Class Header

// C++
#include <it_bus/types.h>

namespace IT_Bus
{
 class String;
 class QName;
 class BinaryBuffer;

 class RMSequencePersistentStore
 {
 public:

1 virtual String get_sequence_id() = 0;
 virtual String get_acksto_uri() = 0;

2 virtual bool store_message(
 IT_Bus::ULong message_id,
 BinaryBuffer& message,
 bool is_last_message
) = 0;

3 virtual void remove_message(
 IT_Bus::ULong message_id,
 bool highest_delivered_message_id
) = 0;

4 virtual void store_acknowledgement(
 const String& stringified_ack_range
) = 0;

5 virtual IT_Bus::ULong get_last_message_id() = 0;
6 virtual void sequence_terminated() = 0;
7 virtual BinaryBuffer* get_next_message_to_recover(

 IT_Bus::ULong& message_id
) = 0;
 };
}

 128 Developing Advanced Artix Plugins in C++

The preceding header class can be explained as follows:
1. The following functions—get_sequence_id(), and

get_acksto_uri()—return the sequence’s ID and wsa:acksTo
URI from the database record.

2. The store_message() function is called by the WS-RM core each
time a message is about to be sent as part of this message
sequence.
To implement this function, store the message buffer, message,
and the message ID, message_id, in the database. The
is_last_message argument is used by the WS-RM core to
indicate that this is the last message in the sequence.
The boolean value returned from store_message() is true, if the
message is successfully persisted, and false, otherwise.

3. The remove_message() function is called by the WS-RM core
after the specified message (identified by the message_id
argument) has been acknowledged (source side) or delivered
(destination side).
To implement this function, remove the specified message
from the endpoint’s database record. The
highest_delivered_message_id flag is used only for destination
endpoints. The flag is true, if the current message has the
highest ID of all the messages delivered so far in this
sequence. When the flag is true, you should store the value of
the message_id argument in the database.

4. No implementation required—this function is currently
unused.
The store_acknowledgement() function would be called by the
WS-RM core whenever an acknowledgement message is
received. This function is not needed, if InOrder delivery
assurance is enabled. Currently, Artix always requires InOrder
delivery assurance.

5. The get_last_message_id() returns the last message ID of the
current sequence. The returned value depends on whether the
current endpoint is a source endpoint or a destination
endpoint:
♦ Source endpoint—returns the ID for the last message of

the sequence or 0, if the last message has not been
persisted yet.

♦ Destination endpoint—returns the highest message ID
that has been delivered so far. This is the message ID
previously stored by calling remove_message().

6. The sequence_terminated() function is called by the WS-RM
core after the complete message sequence has been
delivered.
To implement this function, remove all details of the specified
message sequence from the database (including any
messages that might still be stored).

Note: On the destination side, the highest message ID is
relevant only if the InOrder delivery assurance policy is in
force. The InOrder delivery assurance guarantees that
messages are delivered in the same order in which they were
sent.
Developing Advanced Artix Plugins in C++ 129

7. The get_next_message_to_recover() function is called by the
WS-RM core during recovery after a program crash.
The get_next_message_to_recover() function is called iteratively
to return each message for recovery. The return value from
the function is a pointer to a buffer containing the message
and the out argument, message_id, returns the message’s ID.
If there are no more messages in the store, the function
returns 0.

Persistence and Recovery Algorithms
To implement a custom WS-RM persistence plug-in correctly, it is
helpful to understand the way in which the WS-RM core persists
and recovers data for the source and destination endpoints. This
section describes the interactions between the WS-RM core and a
custom WS-RM persistence plug-in for some basic persistence and
recovery scenarios.

Persistence at a Source Endpoint
This subsection describes the typical interaction between the
WS-RM core and a WS-RM persistence plug-in, providing
persistence for a WS-RM source endpoint.
Figure 21 gives a schematic overview of the steps involved in
persisting a source endpoint.

Figure 21: Overview of Persisting a Source Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore
cr

ea
te

s
cr

ea
te

s

rm_source_endpoint_created()

sequence_created()

store_message()

remove_message()

sequence_terminated()

1

2

3

4

5

 130 Developing Advanced Artix Plugins in C++

Persistence steps for a source endpoint
The steps shown in Figure 21 for persisting a source endpoint can
be explained as follows:

Stage Description

1 After a WS-RM source endpoint is created, the WS-RM
core calls rm_source_endpoint_created() on the
RMPersistentManager object, in order to create an
instance of a source endpoint in the persistent store.

2 When the source endpoint initiates a WS-RM message
sequence, the WS-RM core calls sequence_created() on
the RMEndpointPersistentStore object. This call is made
after receipt of the CreateSequenceResponse message,
which indicates completion of the sequence
establishment handshake.

3 Before each message is sent out on the wire, the WS-RM
core saves the message to the persistent store by calling
store_message() on the RMSequencePersistentStore object.
If the current message is the last message of the
sequence, the WS-RM core calls store_message() with the
is_last_message flag equal to true. This sets the value of
the last message ID, which is accessible through the
get_last_message_id() function. When is_last_message is
true, it implies that the final message includes a
wsrm:LastMessage element.

4 When the source endpoint receives an
acknowledgement, it iterates through the
acknowledgement range and calls remove_message() on
the RMSequencePersistentStore object to erase each
acknowledged message from the persistent store.

5 After the source endpoint sends the TerminateSequence
message, the WS-RM core calls sequence_terminated() on
the RMSequencePersistentStore object.
Developing Advanced Artix Plugins in C++ 131

Recovery of a Source Endpoint
This subsection describes the typical interaction between the
WS-RM core and a WS-RM persistence plug-in, where the source
endpoint is attempting to recover after a program crash.
A recovering source endpoint operates in two distinct modes:
1. Recovery mode—when an application program restarts after a

crash, it enters recovery mode, as described in this
subsection.
During recovery mode, WS-RM attempts to resend all of the
unacknowledged messages, and after all of the messages
have been acknowledged, the WS-RM core closes the
message sequences and endpoints and cleans up the
database.

2. Normal mode—after recovery, when a user creates a proxy,
the source endpoint starts to operate in normal mode, as
described in “Persistence at a Source Endpoint” on page 130.

Recovery of a source endpoint
Figure 22 gives a schematic overview of the steps involved in
recovering a source endpoint.

Figure 22: Overview of Recovering a Source Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

get_next_source_endpoint_to_recover()

get_next_sequence_to_recover()

get_next_message_to_recover()

sequence_terminated()

1

2

3

5
get_last_message_id()

4

 132 Developing Advanced Artix Plugins in C++

Recovery steps for a source endpoint
The steps shown in Figure 22 for recovering a source endpoint can
be explained as follows:

Stage Description

1 When a program initiates recovery after a crash, the
WS-RM core iteratively calls
get_next_source_endpoint_to_recover() on the
RMPersistentManager object in order to obtain a list of all
the source endpoints to recover (where each source
endpoint is represented by an RMEndpointPersistentStore
object).

2 On each of the endpoints to be recovered, the WS-RM
core iteratively calls get_next_sequence_to_recover() in
order to obtain a list of message sequences to recover
(where each message sequence is represented by an
RMSequencePersistentStore object).

3 The WS-RM core iteratively calls
get_next_message_to_recover() on each sequence in order
to assemble a list of unsent message for each sequence.

4 At the end of each sequence, the WS-RM core calls
get_last_message_id() to determine whether a
LastMessage message was sent. If the function returns 0,
the source endpoint must sent a LastMessage message to
finish the sequence.

5 After resending all of the outstanding messages and
receiving acknowledgements for them, the WS-RM core
calls sequence_terminated() on the relevant
RMSequencePersistentStore object.
Developing Advanced Artix Plugins in C++ 133

Persistence at a Destination Endpoint
This subsection describes the typical interaction between the
WS-RM core and a WS-RM persistence plug-in, providing
persistence for a WS-RM destination endpoint.
Figure 23 gives a schematic overview of the steps involved in
persisting a destination endpoint.

Persistence steps for a destination
endpoint
The steps shown in Figure 23 for persisting a destination endpoint
can be explained as follows:

Figure 23: Overview of Persisting a Destination Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

rm_destination_endpoint_created()

sequence_created()

store_message()

remove_message()

sequence_terminated()

1

5

6

7

endpoint_needs_recovery()

store_address()

2

3

4

Stage Description

1 After a WS-RM destination endpoint is created, the
WS-RM core calls rm_destination_endpoint_created() on
the RMPersistentManager object, in order to create an
instance of a destination endpoint in the persistent
store.

2 The WS-RM core calls endpoint_needs_recovery() to
discover whether there are any undelivered messages
from a previous run of the program (that is, whether the
program previously crashed).
In the current example, we presume the function returns
false, so that the destination endpoint operates in
normal mode.

3 After the destination endpoint is activated, the WS-RM
core calls store_address() to store the URL address for
this endpoint.
 134 Developing Advanced Artix Plugins in C++

Recovery of a Destination Endpoint
This subsection describes the typical interaction between the
WS-RM core and a WS-RM persistence plug-in, where the
destination endpoint is attempting to recover after a program
crash.
Figure 24 gives a schematic overview of the steps involved in
recovering a destination endpoint.

4 When the destination endpoint initiates a WS-RM
message sequence, the WS-RM core calls
sequence_created() on the RMEndpointPersistentStore
object. This call is made after receipt of the
CreateSequence message, but before sending the
CreateSequenceResponse message.

5 When the destination endpoint receives a message from
the transport layer, the WS-RM core saves the message
to the persistent store by calling store_message() on the
RMSequencePersistentStore object.
If the message duplicates a message already present in
the persistent store, the store_message() function would
return false, indicating that save operation failed.
After the message is persisted, the WS-RM core is ready
to send an acknowledgement of the message.

6 After the successful delivery of a message to the
Application Destination, the WS-RM core deletes the
message from the persistent store by calling
remove_message() on the RMSequencePersistentStore
object.

7 After the destination endpoint receives the
TerminateSequence message, the WS-RM core calls
sequence_terminated() on the RMSequencePersistentStore
object.

Stage Description

Figure 24: Overview of Recovering a Destination Endpoint

RMPersistentManager

RMSequencePersistentStore

RMEndpointPersistentStore

cr
ea

te
s

cr
ea

te
s

rm_destination_endpoint_created()

endpoint_needs_recovery()

get_next_message_to_recover()

sequence_terminated()

1

2

5

8

get_next_sequence_to_recover()
4

get_address()3

get_last_message_id()6
remove_message()7
Developing Advanced Artix Plugins in C++ 135

Recovery steps for a destination
endpoint
The steps shown in Figure 24 for recovering a destination endpoint
can be explained as follows:

Stage Description

1 When a program initiates recovery after a crash, the
WS-RM core calls rm_destination_endpoint_created() on
the RMPersistentManager object to obtain a reference to
an RMEndpointPersistentStore object.

2 The WS-RM core calls endpoint_needs_recovery() on the
destination endpoint, to determine whether or not this
endpoint needs to be recovered.
In the current example, we presume the function returns
true, so that the destination endpoint operates in
recovery mode.

3 The WS-RM core calls get_address() to recover the
address URL previously stored in the database. Artix
then activates the destination endpoint using this
address.

4 On each of the endpoints to be recovered, the WS-RM
core iteratively calls get_next_sequence_to_recover() in
order to obtain a list of message sequences to recover
(where each message sequence is represented by an
RMSequencePersistentStore object).

5 For each sequence, there are two categories of message
to recover:
• Messages received but not delivered (these are

stored in the database).
• Messages not received at all.
To obtain the list of messages received but not
delivered, the WS-RM core iteratively calls
get_next_message_to_recover() on the sequence.

6 To determine which messages have not been received at
all, the WS-RM core calls get_last_message_id().
Assuming that the InOrder delivery assurance is in force,
we know that all of the messages up to and including the
last message ID have been received and delivered.
For example, if the last message ID is 25 and the
database contains one undelivered message with
message ID 33, the destination endpoint can assemble
the following ranges to send in a WS-RM
acknowledgement message:
[(1,25), (33,33)]

7 After each message is successfully delivered to the
Application Destination, the WS-RM core deletes the
message by calling remove_message().
 136 Developing Advanced Artix Plugins in C++

Implementing a WS-RM Persistence Plug-In
This section gives a brief outline of the steps required to
implement a WS-RM persistence plug-in, as follows:
• Implementation steps.
• Registering the persistent manager.
• Plug-in init() function.

Implementation steps
To implement a WS-RM persistence plug-in, perform the following
steps:

8 After all of a sequence’s messages have successfully
reached the Application Destination, the WS-RM core
calls sequence_terminated() on the relevant
RMSequencePersistentStore object.

Stage Description

Step Action

1 Implement the persistent manager class by defining a
class that inherits from IT_Bus::RMPersistentManager
(which is declared in the it_bus_pdk/rm_persistence.h
header file).

2 Implement the endpoint persistent store class by
defining a class that inherits from
IT_Bus::RMEndpointPersistentStore. (which is declared in
the it_bus_pdk/rm_persistence.h header file).

3 Implement the sequence persistent store class by
defining a class that inherits from
IT_Bus::RMSequencePersistentStore. (which is declared in
the it_bus_pdk/rm_persistence.h header file).

4 Create an instance of the persistent manager class and
register the instance with the Artix endpoint manager
factory (see “Registering the persistent manager” on
page 138 and “Plug-in init() function” on page 138 for
details).
Developing Advanced Artix Plugins in C++ 137

Registering the persistent manager
To initialize the WS-RM persistence feature, you need to register a
persistent manager instance with the Artix bus, as shown in
Example 59.

The RMPersistentManagerImpl class is a sample implementation of
the IT_Bus::RMPersistentManager base class. The class constructor
should take an IT_Bus::Bus instance as an argument, to provide
easy access to the Artix bus instance. Use the Artix bus instance,
bus, to gain access to the RMEndpointManagerFactory instance and
then register the WS-RM persistent manager instance by calling
the register_rm_persistent_manager() function.

Plug-in init() function
Call the persistent manager constructor from inside the bus_init()
function, as shown in Example 60.

Where RMPersistenceBusPlugIn is an example plug-in class that
implements a WS-RM persistence plug-in.

Example 59: WS-RM Persistent Manager Constructor Function

// C++
RMPersistentManagerImpl::RMPersistentManagerImpl(
 Bus_ptr bus
)
{
 EndpointManagerFactory* factory =

bus->get_pdk_bus()->get_endpoint_manager_factory("wsrm");

 RMEndpointManagerFactory* rm_endpoint_manager_factory =
 IT_DYNAMIC_CAST(RMEndpointManagerFactory*, factory);

rm_endpoint_manager_factory->register_rm_persistent_manager(

 this
);
 ...
}

Example 60: Implementation of the Plug-In’s init() Function

// C++
void
RMPersistenceBusPlugIn::bus_init(
) IT_THROW_DECL((Exception))
{
 m_persistent_factory =
 new RMPersistentManagerImpl(m_bus);
}

 138 Developing Advanced Artix Plugins in C++

Index
A
activate() function 76, 80

and EXTERNALLY_DRIVEN scenario 85
and messaging-style dispatch 91
and single-threaded scenario 84
MULTI_THREADED scenario 82

architecture
of Artix transport 75

asynchronous dispatch policy 88

C
ClientTransport

connect() function 76
disconnect() function 76
initialize() function 76
invoke() function 76
invoke_oneway() function 92

ClientTransport class
accessing contexts in 92
connect() function 92
description 77
invoke() function 92
overview 76

ClientTransport invoke_oneway()
function 76

compiling a context schema 25
connect() function 76, 92
contexts

and trasnports 92
sample schema 24
scenario description 23
schema, target namespace 25

D
deactivate() function 76
disconnect() function 76
dispatch() function 87

and asynchronous dispatch 88
DispatchInfo

get_correlation_id() function 78
DispatchInfo class

and accessing contexts on the server
side 94

description 78
is_oneway() function 96
provide_response_buffer() function 87,

89
dispatching

messaging-style dispatch 90
RPC-style dispatch 87, 88

documentation
.pdf format vi
updates on the web vi
E
EXTERNALLY_DRIVEN policy value 79, 85

G
get_configuration() function 76
get_correlation_id() function 78
get_policies() function 78, 80

and MULTI_THREADED policy value 83
and RPC-style dispatch 89
and the EXTERNALLY_DRIVEN policy
value 86

and the SINGLE_THREADED policy
value 84

example 81

H
header contexts

sample schema type 24

I
initialize() function 76
invoke() function 76, 92
invoke_oneway() function 76, 92
iostreams 118
is_oneway() function 96
IT_TRACE 117

M
MESSAGING_PORT_DRIVEN and
MULTI_INSTANCE scenario 80

MESSAGING_PORT_DRIVEN and
MULTI_THREADED scenario 82

MESSAGING_PORT_DRIVEN and
SINGLE_THREADED scenario 84

MESSAGING_PORT_DRIVEN policy
and run() function 76

MESSAGING_PORT_DRIVEN policy
value 79

messaging port threading policy
EXTERNALLY_DRIVEN policy value 85
MULTI_INSTANCE policy value 79
MULTI_THREADED policy value 79
SINGLE_THREADED policy value 79

messaging-style dispatch 90
MULTI_INSTANCE policy value 79
MULTI_THREADED policy

and run() function 76
MULTI_THREADED policy value 79

O
oneway operations

overview 95
Developing Advanced Artix Plugins in C++ 139

oneway semantics
messaging-style dispatch 97

oneways functions
and RPC-style dispatch 96

P
policies

asynchronous dispatch policy 88
stack unwind policy 87

policy:messaging_transport:concurrency
configuration variable 83

policy:messaging_transport:min_threads
configuration variable 81

port
in transport architecture 76

printf 118
provide_response_buffer() function 87, 89

R
requires stack unwind policy

and messaging-style dispatch 91
RPC-style dispatch 87, 88

and oneway semantics 96
run() function 76

and thread safety 83
MULTI_THREADED scenario 82

S
sample context schema 24
schemas

context, example 24
send() function 76, 87

accessing contexts 95
and messaging-style dispatch 90, 97
implementing 92

ServerTransport
activate() function 76, 82
deactivate() function 76
get_configuration() function 76
run() function 76, 82
send() function 76
shutdown() function 76

ServerTransport class 76
activate() function 80, 84, 85
description 77
run() function 83
send() function 87

shutdown() function 76
SINGLE_THREADED policy value 79
SOAPHeaderInfo type 24
stack unwind policy 87

T
target namespace

for a context schema 25
threading policies

setting 81
threading resources policy

EXTERNALLY_DRIVEN policy value 79
MESSAGING_PORT_DRIVEN policy
value 79

thread pool
configuring for a MULTI_INSTANCE
transport 81

configuring for MULTI_THREADED
tranports 83

thread safety 83
trace level 117
TRACELOGBUFFER 118
TRACE macros 117
transport_activated() function 78
transport architecture 75
TransportCallback

dispatch() function 88
transport_activated() function 78
transport_deactivated() function 78
transport_shutdown() function 78

TransportCallback class
description 78
dispatch() function 87

transport_deactivated() function 78
TransportFactory

get_policies() function 78
TransportFactory class

description 77
get_policies() function 80, 83

TransportPolicyList class
and threading policies 79
description 78
setting policies 87

transport_shutdown() function 78

W
wsdltocpp compiler 25
 140 Developing Advanced Artix Plugins in C++

	Preface
	Contacting Micro Focus

	Basic Plug-In Implementation
	Overview of a Basic Artix Plug-In
	Developing an Artix Plug-In
	Development Steps
	Implementing a BusPlugInFactory Class
	Implementing a BusPlugIn Class
	Creating Static Instances

	Request Interceptors
	Overview of Request Interceptors
	Client Request Interceptors
	Server Request Interceptors

	Sending and Receiving Header Contexts
	SOAP Header Context Example
	Sample Context Schema
	Implementation of the Client Request Interceptor
	Implementation of the Server Request Interceptor
	Implementation of the Interceptor Factory

	Accessing and Modifying Parameters
	Reflection Example
	Implementation of the Client Request Interceptor
	Implementation of the Server Request Interceptor

	Raising Exceptions

	WSDL Extension Elements
	WSDL Structure
	WSDL Parse Tree
	How to Extend WSDL
	Extension Elements for the Stub Plug-In
	Implementing an Extension Element Base Class
	Implementing the Extension Element Classes
	Implementing the Extension Factory
	Registering the Extension Factory

	Artix Transport Plug-Ins
	The Artix Transport Layer
	Architecture Overview
	Artix Transport Classes

	Transport Threading Models
	Threading Introduction
	MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
	MESSAGING_PORT_DRIVEN and MULTI_THREADED
	MESSAGING_PORT_DRIVEN and SINGLE_THREADED
	EXTERNALLY_DRIVEN

	Dispatch Policies
	Dispatch Policy Overview
	RPC-Style Dispatch
	Messaging-Style Dispatch

	Accessing Contexts
	Oneway Semantics
	Stub Transport Example
	Implementing the Client Transport
	Implementing the Server Transport
	Implementing the Transport Factory
	Registering and Packaging the Transport

	Artix Logging Reference
	Using Artix TRACE Macros

	WS-RM Persistence
	Introduction to WS-RM Persistence
	WS-RM Persistence API
	Overview of the Persistence API
	RMPersistentManager Class
	RMEndpointPersistentStore Class
	RMSequencePersistentStore Class

	Persistence and Recovery Algorithms
	Persistence at a Source Endpoint
	Recovery of a Source Endpoint
	Persistence at a Destination Endpoint
	Recovery of a Destination Endpoint

	Implementing a WS-RM Persistence Plug-In

	Index

