
Artix 5.6.3

Configuration
Reference, C++
Runtime

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-18

 Artix Configuration Reference, C++ Runtime i i i

Contents

Preface.. vii
Contacting Micro Focus ... viii

Artix Runtime ..1
ORB Plug-ins ..1
Binding Lists...7
Event Log ..12
Initial Contracts ..16
Initial References ..18
JVM Options ...22
Message Snoop...22
Multi-threading ...24
Policies ..27
QName Aliases ...34
Reference Compatibility ...35

Artix Plug-ins ..39
AmberPoint ..40
Bus ...40
CA WSDM Observer...42
Client-Side High Availability..44
Container...45
Database Environment...45
FTP ...52
JMS...54
JMX...57
Local Log Stream ..59
Log4J Log Stream ...61
Locator Service...61
Locator Endpoint Manager ..63
Monitoring ...64
Peer Manager ...65
Performance Logging ...66
Remote Logging..67
Remote Method Invocation ...68
Routing ...69
Service Lifecycle ...72
Session Manager...73
Session Endpoint Manager..74
Session Manager Simple Policy ...74
SOAP...75
SOAP 1.2 ...77
Transformer Service ..77
Tuxedo ..80
Web Services Addressing ...80
Web Services Chain Service..82
Web Services Reliable Messaging ..84
WSDL Publishing Service..90
 XML File Log Stream...91
Custom Plug-ins..93

iv Artix Configuration Reference, C++ Runtime

Artix Security.. 95
Applying Constraints to Certificates..96
bus:initial_contract..97
bus:security ...98
initial_references...99
password_retrieval_mechanism...99
plugins:asp ..100
plugins:at_http ...102
plugins:atli2_tls ..105
plugins:csi..105
plugins:gsp ..106
plugins:https ..109
plugins:iiop_tls ...109
plugins:java_server ...111
plugins:login_client..114
plugins:login_service ...114
plugins:security ..114
plugins:security_cluster ...116
plugins:wsdl_publish..116
plugins:wss ..117
policies ..118
policies:asp ..123
policies:bindings ...126
policies:csi ...127
policies:external_token_issuer ..129
policies:https ..129
policies:iiop_tls ...134
policies:security_server..141
policies:soap:security ..141
principal_sponsor ..142
principal_sponsor:csi ...145
principal_sponsor:http ...147
principal_sponsor:https..148
principal_sponsor:iiop_tls ...149
principal_sponsor:wsse ..151

CORBA ... 153
plugins:codeset...153
plugins:giop ...155
plugins:giop_snoop ...156
plugins:http and https..157
plugins:iiop ..159
plugins:naming ...162
plugins:ots ...163
plugins:ots_lite ...165
plugins:ots_encina ..166
plugins:poa ..170
poa:FQPN...170
Core Policies ...172
CORBA Timeout Policies ...173
Artix Timeout Policies...174
policies:giop ...174
policies:giop:interop_policy ..175
policies:http ...177
policies:iiop ..178
policies:invocation_retry ..181

Artix Configuration Reference, C++ Runtime v

Index...183

vi Artix Configuration Reference, C++ Runtime

 Artix Configuration Reference, C++ Runtime vii

Preface

What is Covered in this Book
The Artix Configuration Reference, C++ Runtime provides a
comprehensive reference of Artix configuration variables in a C++
runtime environment. These variables are stored in an Artix .cfg
configuration file.

Who Should Read this Book
This book is intended for use by system administrators, in
conjunction with Configuring and Deploying Artix Solutions,
C++ Runtime. It assumes that the reader is familiar with Artix
administration. Anyone involved in designing a large scale Artix
solution will also find this book useful.
Knowledge of middleware or messaging transports is not required
to understand the general topics discussed in this book. However,
if you are using this book as a guide to deploying runtime
systems, you should have a working knowledge of the middleware
transports that you intend to use in your Artix solutions.

How to Use this Book
This book is organized as follows:
• “Artix Runtime” describes the configuration variables for the

core Artix runtime (for example, logging and multi-threading).
• “Artix Plug-ins” describes the configuration variables for

specific Artix plug-ins (for example, Artix locator, SOAP, or
JMS).

• “Artix Security” describes the variables used to configure Artix
security features (for example, passwords and certificates).

• “CORBA” describes the variables used to configure CORBA
plug-ins (for example, IIOP and OTS).

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and finding additional resources, see
Using the Artix Library.

Note: When deploying Artix in a distributed architecture with
other middleware, please see the documentation for that
middleware product. You may require access to an administrator.
For example, a Tuxedo administrator is required to complete a
Tuxedo distributed architecture.

 viii Artix Configuration Reference, C++ Runtime

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

http://www.microfocus.com
http://www.microfocus.com

Artix Configuration Reference, C++ Runtime ix

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 x Artix Configuration Reference, C++ Runtime

 Artix Configuration Reference, C++ Runtime 1

Artix Runtime
Artix is based on the highly configurable Adaptive Runtime (ART)
infrastructure. This provides a high-speed, robust, and scalable backbone
for deploying integration solutions. This chapter explains the
configuration settings for the core Artix runtime.

This chapter describes the following topics:
• ORB Plug-ins
• Binding Lists
• Event Log
• Initial Contracts
• Initial References
• JVM Options
• Message Snoop
• Multi-threading
• Policies
• QName Aliases
• Reference Compatibility

ORB Plug-ins
The orb_plugins variable specifies the list of plug-ins that Artix
processes load during initialization. A plug-in is a DLL or shared
library that can be loaded into an Artix application at runtime.
These plug-ins enable you to load network transports, payload
format mappers, error logging streams, and other features on the
fly.
The default orb_plugins entry includes the following:

All other plug-ins that implement bindings and transports load
transparently when the WSDL file is loaded into an application.
These plug-ins do not need to be explicitly listed in orb_plugins.
Artix determines what plug-ins are required from the content of
the WSDL file.
However, plug-ins for other services (for example, for security,
locator, session manager, routing, XSLT transformation, logging,
and so on) must all be included in the orb_plugins entry.

orb_plugins = ["xmlfile_log_stream",
 "iiop_profile",
 "giop",
 "iiop"];

 2 Artix Configuration Reference, C++ Runtime

Artix plug-ins
Each network transport and payload format that Artix
interoperates with uses its own plug-in. Many of the Artix services
features also use plug-ins. Artix plug-ins include the following:
• “Java plug-ins”.
• “Transport plug-ins”.
• “Payload format plug-ins”.
• “Service plug-ins”.
• “Internal ORB plug-ins”

Java plug-ins

Java plug-ins are configured differently from C++ plug-ins. For
example, the JMS transport plug-in is also written in Java and
requires that you configure it appropriately.

Java plug-in loader
When using a Java plug-in, you must include an entry for the java
plug-in loader in the orb_plugins list, as shown in Example 1.

The java plug-in automatically loads the JMS transport plug-in.

java_plugins variable
In addition to including the java plug-in loader in the orb_plugin
list, you must specify the java_plugins configuration variable,
which lists the names of the Java plug-ins that are to be loaded.
java_plugins is a list like orb_plugins. A plug-in cannot be listed in
both variables. Only Java plug-ins should be listed in java_plugins;
and Java plug-ins should not be listed in orb_plugins.
For example, if you are using a custom Java plug-in called
my_java_handler in your application you would use the
configuration similar to the fragment shown in Example 2 to load
the plug-ins.

In addition, you must also specify a plug-in factory class, for
example:

Example 1: Including the Java Plug-in Loader

orb_plugins=[..., "java", ...];

Example 2: Loading a Java Plug-in

orb_plugins=["xml_log_stream", ... "java", ...];
java_plugins=["my_java_handler"];

plugins:my_java_handler:classname="myJavaHandlerFactory"

Artix Configuration Reference, C++ Runtime 3

Artix Java plug-ins
The following Java plug-ins are also supplied by Artix, and can be
included in your java_plugins list:

Transport plug-ins

The Artix transport plug-ins are listed in Table 1.

Payload format plug-ins

The Artix payload format plug-ins are listed in Table 2.

java_uddi_proxy Dynamically locates existing Web services
endpoints using the UDDI service.

Table 1: Artix Transport Plug-ins

Plug-in Transport

at_http Provides support for HTTP.

https Provides support for HTTPS.

iiop Provides support for CORBA IIOP.

iiop_profile Provides support for CORBA IIOP profile.

giop Provides support for CORBA GIOP.

tunnel Provides support for the IIOP transport
using non-CORBA payloads.

tuxedo Provides support for Tuxedo
interoperability.

mq Provides support for IBM WebSphere MQ
interoperability, and MQ transactions.

java Provides support for Java Message Service
(JMS) interoperability (and also for other
Java plug-ins).

Table 2: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the
SOAP format. See also “SOAP”.

G2 Decodes and encodes messages packaged
using the G2++ format.

fml Decodes and encodes messages packaged
in FML format.

tagged Decodes and encodes messages packed in
variable record length messages or another
self-describing message format.

fixed Decodes and encodes fixed record length
messages.

 4 Artix Configuration Reference, C++ Runtime

Service plug-ins

Artix service feature plug-ins are listed in Table 3.

ws_orb Decodes and encodes CORBA messages.

Table 2: Artix Payload Format Plug-ins (Continued)

Plug-in Payload Format

Table 3: Artix Service Plug-ins

Plug-in Artix Feature

bus_loader In a pure CORBA application, add
a bus_loader at the end of your
plug-in list to start the bus and
initialize all BusPlugins. Not
needed if your application uses
IT_Bus::init.

bus_response_monitor Enables performance logging.
Monitors response times of Artix
client/server requests. See also
“Performance Logging” on
page 66.

locator_client Queries the locator and returns a
reference to a target service. See
also the Artix Locator Guide,
C++.

locator_endpoint Enables endpoints to use the
Artix locator service. See also
“Locator Endpoint Manager” on
page 63.

ots Enables the CORBA OTS
transaction system. See also
“Bus” on page 40.

ots_lite Enables the OTS Lite transaction
system, which supports
one-phase commit transactions.
See also “Bus” on page 40.

request_forwarder Enables forwarding of write
requests from slave replicas to
master replicas. See also
“Database Environment” on
page 45.

routing Enables Artix routing. See
“Routing” on page 69.

service_locator Enables the Artix locator. An
Artix server acting as the locator
service must load this plug-in.
See also “Locator Service” on
page 61.

Artix Configuration Reference, C++ Runtime 5

session_manager_service Enables the Artix session
manager. An Artix server acting
as the session manager must
load this plug-in. See also
“Session Manager” on page 73.

session_endpoint_manager Enables the Artix session
manager. Endpoints wishing to
be managed by the session
manager must load this plug-in.
See also “Session Endpoint
Manager” on page 74.

sm_simple_policy Enables the policy mechanism for
the Artix session manager.
Endpoints wishing to be
managed by the session
manager must load this plug-in.
See also “Session Manager
Simple Policy” on page 74.

service_lifecycle Enables service lifecycle for the
Artix router. This optimizes
performance of the router by
cleaning up proxies/routes that
are no longer in use. See also
“Service Lifecycle” on page 72.

uddi_proxy Dynamically locates existing Web
services endpoints using the
UDDI service. See also
“java_plugins variable” on
page 2.

wsat_protocol Enables the WS-Atomic
Transaction (WS-AT) system.
See also “Bus” on page 40.

ws_chain Enables you to link together a
series of services into a
multi-part process. See also
“Web Services Chain Service” on
page 82.

ws_coordination_service Enables the WS-Coordination
service, which coordinates
two-phase commit transactions.
See also “Bus” on page 40.

Table 3: Artix Service Plug-ins (Continued)

Plug-in Artix Feature

 6 Artix Configuration Reference, C++ Runtime

ws_coloc Enables colocation for
applications that share a
common binding. For example,
using the Artix transformer with
an Artix server, you can colocate
both processes. Instead of
passing through the messaging
stack, messages are passed
directly, which improves
performance. See also
“Colocation request-level
interceptors” on page 11.

wsdl_publish Enables Artix endpoints to
publish and download Artix
WSDL files. See also “WSDL
Publishing Service” on page 90.

wsrm Enables Web Services Reliable
Messaging. See also “Web
Services Reliable Messaging” on
page 84.

wsrm_db Enables Web Services Reliable
Messaging persistence.
Automatically loads the wsrm
plug-in. See also “Web Services
Reliable Messaging” on page 84.

xmlfile_log_stream Enables you to view Artix logging
output in a file. See also “XML
File Log Stream” on page 91.

xslt Enables Artix to process XSLT
scripts. See also “Transformer
Service” on page 77.

Table 3: Artix Service Plug-ins (Continued)

Plug-in Artix Feature

Artix Configuration Reference, C++ Runtime 7

Internal ORB plug-ins

This applies to CORBA integrations only. It is possible to specify
whether the default ORB shares settings with an internal ORB. In
certain circumstances such as initialization, Orbix creates an
internal ORB instance. The share_variables_with_internal_orb
setting is used to prevent an internal CORBA ORB from loading
Artix plug-ins.
For example, if you set an indirect persistence mode policy on an
Artix CORBA server, and also use the Artix locator_endpoint
plug-in. Essentially, in this case, the Artix CORBA endpoint is
talking to both Artix and Orbix locators.
Setting share_variables_with_internal_orb to false prevents the
internal ORB (IT_POAInternalORB) from sharing the default ORB
plug-ins. The default setting is as follows:

The list of plug-ins available for the internal ORB is specified using
the IT_POAInternalORB configuration scope.

Binding Lists
When using Artix’s CORBA functionality you need to configure how
Artix binds itself to message interceptors. The Artix binding
namespace contains variables that specify interceptor settings. An
interceptor acts on a message as it flows from sender to receiver.
Computing concepts that fit the interceptor abstraction include
transports, marshaling streams, transaction identifiers,
encryption, session managers, message loggers, containers, and
data transformers. Interceptors are based on the “chain of
responsibility” design pattern. Artix creates and manages chains
of interceptors between senders and receivers, and the interceptor
metaphor is a means of creating a virtual connection between a
sender and a receiver.
The binding namespace includes the following variables:
• client_binding_list
• server_binding_list

client_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and
POA colocation (where server and client are collocated in the same
process). Artix also provides message-level interceptors used in
client-side bindings for IIOP, SHMIOP and GIOP.

share_variables_with_internal_orb = "false";

IT_POAInternalORB
{
 orb_plugins = ["iiop_profile", "giop", "iiop"];
}

 8 Artix Configuration Reference, C++ Runtime

The binding:client_binding_list specifies a list of potential
client-side bindings. Each item is a string that describes one
potential interceptor binding. The default value is:

Interceptor names are separated by a plus (+) character.
Interceptors to the right are “closer to the wire” than those on the
left. The syntax is as follows:
• Request-level interceptors, such as GIOP, must precede

message-level interceptors, such as IIOP.
• GIOP or POA_coloc must be included as the last request-level

interceptor.
• Message-level interceptors must follow the GIOP interceptor,

which requires at least one message-level interceptor.
• The last message-level interceptor must be a message-level

transport interceptor, such as IIOP or SHMIOP.
When a client-side binding is needed, the potential binding strings
in the list are tried in order, until one successfully establishes a
binding. Any binding string specifying an interceptor that is not
loaded, or not initialized through the orb_plugins variable, is
rejected.
For example, if the ots plug-in is not configured, bindings that
contain the OTS request-level interceptor are rejected, leaving
["POA_Coloc", "GIOP+IIOP", "GIOP+SHMIOP"]. This specifies that POA
colocations should be tried first; if that fails, (the server and client
are not collocated), the GIOP request-level interceptor and the IIOP
message-level interceptor should be used. If the ots plug-in is
configured, bindings that contain the OTS request interceptor are
preferred to those without it.

server_binding_list

binding:server_binding_list specifies interceptors included in
request-level binding on the server side. The POA request-level
interceptor is implicitly included in the binding.
The syntax is similar to client_binding_list. However, in contrast
to the client_binding_list, the left-most interceptors in the
server_binding_list are “closer to the wire”, and no
message-level interceptors can be included (for example, IIOP).
For example:

An empty string ("") is a valid server-side binding string. This
specifies that no request-level interceptors are needed. A binding
string is rejected if any named interceptor is not loaded and
initialized.
The default server_binding_list is ["OTS", ""]. If the ots plug-in is
not configured, the first potential binding is rejected, and the
second potential binding ("") is used, with no explicit interceptors
added.

binding:client_binding_list =
["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

binding:server_binding_list = ["OTS",""];

Artix Configuration Reference, C++ Runtime 9

Binding Lists for Custom Interceptors
The binding:artix namespace includes variables that configure
Artix applications to use custom interceptors.
Artix interceptors are listed in the order that they are invoked on a
message when it passes through a messaging chain. For example,
if a server request interceptor list is specified as
"interceptor_1+interceptor_2", the message is passed into
interceptor_1 as it leaves the binding. When interceptor_1 processes
the message, it is passed into interceptor_2 for more processing.
interceptor_2 then passes the message along to the application
code.
The interceptor chain is specified as a single string, and each
interceptor name must be separated by a + character (for
example, "interceptor_1+interceptor_2+interceptor_3").
The variables in the binding:artix namespace are as follows:
• client_message_interceptor_list

• client_request_interceptor_list

• server_message_interceptor_list

• server_request_interceptor_list
These settings apply to all services activated in a single Artix bus.
See also “Port level interceptor chains” on page 10.

client_message_interceptor_list

binding:artix:client_message_interceptor_list is a string that
specifies an ordered list of message-level interceptors for a client
application. Each interceptor is separated using a + character, for
example:

There is no default value.

client_request_interceptor_list

binding:artix:client_request_interceptor_list is a string that
specifies an ordered list of request-level interceptors for a client
application. Each interceptor is separated using a + character, for
example:

There is no default value.

binding:artix:client_message_interceptor_list =
 "interceptor_1+interceptor_2";

binding:artix:client_request_interceptor_list =
 "interceptor_1+interceptor_2";

 10 Artix Configuration Reference, C++ Runtime

server_message_interceptor_list

binding:artix:server_message_interceptor_list is a string that
specifies an ordered list of message-level interceptors for a server
application. Each interceptor is separated using a + character, for
example:

There is no default value.

server_request_interceptor_list

binding:artix:server_request_interceptor_list is a string that
specifies an ordered list of request-level interceptors for a server
application. Each interceptor is separated using a + character, for
example:

There is no default value.

Port level interceptor chains
Each of the variables in the binding:artix namespace can also be
specified at the level of a service port. This more fine-grained
approach enables you to configure different interceptor chains for
different endpoints in the same application. For example:

The syntax of a ServiceQname is NamespaceURI:LocalPart. The following
example shows a service defined as FooService with a target
namespace of http://www.myco.com/myservice:

binding:artix:server_message_interceptor_list =
 "interceptor_1+interceptor_2";

binding:artix:server_request_interceptor_list =
 "interceptor_1+interceptor_2";

binding:artix:client_request_interceptor_list:ServiceQname:Por
tName="interceptor_1+interceptor_2";

binding:artix:server_request_interceptor_list:ServiceQname:Por
tName="interceptor_1+interceptor_2";

binding:artix:client_message_interceptor_list:ServiceQname:Por
tName="interceptor_1+interceptor_2";

binding:artix:server_message_interceptor_list:ServiceQname:Por
tName="interceptor_1+interceptor_2"";

binding:artix:client_request_interceptor_list:http://www.myco.com/myservice:FooServic
e:FooPort="interceptor_1+interceptor_2";

Artix Configuration Reference, C++ Runtime 11

Colocation request-level interceptors
The Artix support for colocation enables an Artix client proxy to
talk directly to a collocated Artix service, without incurring any
marshalling or transport overhead. Collocated means that the
client proxy and the service belong to the same Artix bus. Instead
of passing messages through the messaging stack, messages are
passed directly between the two, thereby improving performance.

colocation request-level configuration
Because the collocated layer bypasses the binding and transport
layer, you can specify colocation request-level interceptors
directly along the invocation path. For example:

When configuring colocation, you must ensure the following:
• The service must be collocated with the client proxy,

otherwise, the ws_coloc interceptors have no effect, and the
invocation is treated as remote.

• ws_coloc must be specified as the last client request-level
interceptor and the first server request-level interceptor. This
enables other request-level interceptors to be used with
colocation, and also enables the use of Artix contexts. Any
interceptors specified after the ws_coloc interceptor in the
client chain, or before the ws_coloc interceptor in the server
chain, will be ignored.

Using this approach, an existing Artix messaging port-based
service (for example, a SOAP/HTTP or CORBA service) can be
configured to add colocation quality-of-service without any change
to the WSDL contracts.

Interceptor Factory Plug-in
An Artix plug-in that implements an interceptor is dynamically
loaded when the interceptor name is specified in the binding list
(see “Binding Lists for Custom Interceptors” on page 9).
You must either include the interceptor plug-in name in your
orb_plugins list, or specify an interceptor factory plug-in.

binding:artix:client_request_interceptor_list:http://www.myco.com/myservice:FooServic
e:FooPort= "A+B+C+ws_coloc";

binding:artix:server_request_interceptor_list:http://www.myco.com/myservice:FooServic
e:FooPort= "ws_coloc+C+B+A";

Note: You do not need to specify the ws_coloc plug-in on
your orb_plugins list. When ws_coloc is specified in the
request-level interceptor chain, the ws_coloc plug-in is
loaded automatically.

 12 Artix Configuration Reference, C++ Runtime

interceptor_factory:InterceptorFactoryName:plugin

interceptor_factory:InterceptorFactoryName:plugin specifies the
name of the plug-in used by a custom interceptor. The format of
this variable is as follows:

For example,

You do not need to add such configuration for the interceptors that
are implemented internally by the various Artix plug-ins (for
example, security, service_lifecycle, and
artix_response_time_interceptor). These are all hard coded
already.
The following names are used in this syntax:
• The name of the interceptor factory: InterceptorFactoryName
• If the interceptor is implemented as a plug-in, the name of the

plug-in: (PluginName)
• The name of the shared library that hosts the plug-in:

SharedLibName
You must always specify the mapping between the plug-in name
and the shared library name, using the following configuration
syntax:

There are two ways in which a plug-in can be loaded:
• Specify the plug-in name in the ORB plug-ins list, for

example:

Using this approach, the plug-in is loaded during ORB
initialization.

• Configure a mapping between an interceptor factory name
and the plug-in name as follows:

Using this approach, the plug-in is loaded when the
interceptor list is parsed.

Event Log
The event_log namespace controls logging levels in Artix. It
includes the following variables:
• event_log:filters

• event_log:filters:bus:pre_filter

• event_log:filter_sensitive_info

• event_log:log_service_names:active

interceptor_factory:InterceptorFactoryName:plugin="PluginName";

interceptor_factory:TestInterceptor:plugin= "test_interceptor";

plugins:PluginName:shlib_name = "SharedLibName";

orb_plugins = [..., "PluginName", ...];

interceptor_factory:InterceptorFactoryName:plugin="PluginNam
e";

Artix Configuration Reference, C++ Runtime 13

• event_log:log_service_names:services

For details on HTTP trace logging, see
policies:http:trace_requests:enabled

event_log:filters

The event_log:filters variable can be set to provide a wide range
of logging levels. The default event_log:filters setting displays
errors only:

The following setting displays errors and warnings only:

Adding INFO_MED causes all of request/reply messages to be logged
(for all transport buffers):

The following setting displays typical trace statement output
(without the raw transport buffers being printed):

The following setting displays all logging:

The default configuration settings enable logging of only serious
errors and warnings. For more exhaustive output, select a
different filter list at the default scope, or include a more
expansive event_log:filters setting in your configuration scope.
Table 4 shows the full syntax used by the event_log:filters
variable to specify Artix logging severity levels.

event_log:filters = ["*=FATAL+ERROR"];

event_log:filters = ["*=FATAL+ERROR+WARNING"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI"];

event_log:filters = ["*=*"];

Table 4: Artix Logging Severity Levels

Severity Level Description

INFO_LO[W] Low verbosity informational messages.

INFO_MED[IUM] Medium verbosity informational
messages.

INFO_HI[GH] High verbosity informational messages.

INFO[_ALL] All informational messages.

WARN[ING] Warning messages.

ERR[OR] Error messages.

FATAL[_ERROR] Fatal error messages.

* All messages.

 14 Artix Configuration Reference, C++ Runtime

event_log:filters:bus:pre_filter

event_log:filters:bus:pre_filter provides filtering of log
messages that are sent to the EventLog before they are output to
the LogStream. This enables you to minimize the time spent
generating log messages that will be ignored. For example:

In this example, only WARNING, ERROR and FATAL priority log
messages are sent to the EventLog. This means that no processing
time is wasted generating strings for INFO log messages. The
EventLog then only sends FATAL and ERROR log messages to the
LogStream for the IT_BUS subsystem.

event_log:filter_sensitive_info

event_log:filter_sensitive_info specifies whether sensitive
information such as plain-text passwords are printed in the log.
For example, to enable filtering of WS-S plain-text passwords,
specify the following configuration setting:

This setting changes the characters in the log of a WS-S plain-text
password to * characters.
This variable can also be used to filter other types of sensitive
logging information, and multiple filters can be enabled in a single
setting. The general format for this configuration setting is as
follows:

In this general format, the first line provides the list of pattern
names to consider for replacement, and the second line provides
the actual pattern in the following syntax:

This replaces anything in the log between Start_pattern and
End_pattern with the # character.
Because Artix configuration files do not support the escaped "
character in configuration, any pattern that has the " character
should instead replace this character with the following:

event_log:filters:bus:pre_filter = "WARN+ERROR+FATAL";

event_log:filters = ["IT_BUS=FATAL+ERROR", "IT_BUS.BINDING=*"];

Note: event_log:filters:bus:pre_filter defaults to * (all
messages). Setting this variable to WARN+ERROR+FATAL improves
performance significantly.

event_log:filter_sensitive_info =
["event_log:filter_sensitive_info:wss_password"];

event_log:filter_sensitive_info:wss_password =
["#PasswordText$%''$%>", "</", "*"];

event_log:filter_sensitive_info = ["foo"];
foo = ["Start", "End", "#"];

["Start_Pattern", "End_Pattern", "Replacement_Character"];

$%''$%

Artix Configuration Reference, C++ Runtime 15

You must specify two single quotes and not a double quote. These
are then treated as the " character during the filtering of logging
information.

event_log:log_service_names:active

event_log:log_service_names:active specifies whether to enable
logging for specific services. You can use Artix service subsystems
to log for Artix services, such as the locator, and also for services
that you have developed. This can be useful if you are running
many services, and need to filter services that are particularly
noisy.
Using service-based logging involves extra configuration and
performance overhead, and is disabled by default. To enable
logging for specific services, set this variable as follows:

For more details, see event_log:log_service_names:services.

event_log:log_service_names:services

event_log:log_service_names:services specifies the specific service
names that you wish to enable logging for. This variable is
specified as follows:

Each service name must be specified in the following format:
"{NamespaceURI}LocalPart"

For example:

To enable logging for specific services, perform the following
steps:
1. Set the following variables:

2. Set your event log filters as appropriate, for example:

For more details, see event_log:log_service_names:active

event_log:log_service_names:active = "true";

event_log:log_service_names:services = ["ServiceName1",
"ServiceName2", ...];

"{http://www.my-company.com/bus/tests}SOAPHTTPService"

event_log:log_service_names:active = "true";
event_log:log_service_names:services = ["ServiceName1",

"ServiceName2"];

event_log:filters = ["IT_BUS=FATAL+ERROR",
 "ServiceName1=WARN+ERROR+FATAL",

"ServiceName2=ERROR+FATAL",

"ServiceName2.IT_BUS.BINDING.CORBA=INFO+WARN+ERROR+FATA
L"

];

 16 Artix Configuration Reference, C++ Runtime

Further information
For more detailed information on logging, see Configuring and
Deploying Artix Solutions.

Initial Contracts
Initial contracts specify the location of the WSDL contracts for
Artix services. This provides a uniform mechanism for finding Artix
service contracts, and enables user code to be written in a location
transparent way.
Because variables in the bus:initial_contract namespace are in the
global scope of artix.cfg, every application can access
them.Contracts for Artix services specify a localhost:0 port, which
means that the operating system assigns a TCP/IP port on startup.
To explicitly set a port, copy the relevant WSDL contract to
another location, and edit to include the port. In the application
scope, add a bus:initial_contract:url entry that points to the
edited WSDL file.
The bus:initial_contract:url namespace includes the following
variables:
• container

• locator

• peermanager

• sessionmanager

• sessionendpointmanager

• uddi_inquire

• uddi_publish

• login_service

In addition, the following variable enables you to specify a
well-known directory where contracts are stored:
• initial_contract_dir

Artix Configuration Reference, C++ Runtime 17

container

bus:initial_contract:url:container specifies the location of the
WSDL contract for the Artix container serivice. For example:

locator

bus:initial_contract:url:locator specifies the location of the
WSDL contract for the Artix locator service. For example:

peermanager

bus:initial_contract:url:peermanager specifies the location of the
WSDL contract for the Artix peer manager. For example:

sessionmanager

bus:initial_contract:url:sessionmanager specifies the location of
the WSDL contract for the Artix session manager. For example:

sessionendpointmanager

bus:initial_contract:url:sessionendpointmanager specifies the
location of the WSDL contract for the Artix session endpoint
manager. For example:

uddi_inquire

bus:initial_contract:url:uddi_inquire specifies the location of the
WSDL contract for the Artix UDDI inquire service. For example:

uddi_publish

bus:initial_contract:url:uddi_publish specifies the location of the
WSDL contract for the Artix UDDI publish service. For example:

bus:initial_contract:url:container =
"InstallDir/artix/Version/wsdl/container.wsdl";

bus:initial_contract:url:locator =
"InstallDir/artix/Version/wsdl/locator.wsdl";

bus:initial_contract:url:peermanager =
"InstallDir/artix/Version/wsdl/peer-manager.wsdl";

bus:initial_contract:url:sessionmanager =
"InstallDir/artix/Version/wsdl/session-manager.wsdl";

bus:initial_contract:url:sessionendpointmanager =
"InstallDir/artix/Version/wsdl/session-manager.wsdl";

bus:initial_contract:url:uddi_inquire =
"InstallDir/artix/Version/wsdl/uddi/uddi_v2.wsdl";

bus:initial_contract:url:uddi_publish =
"InstallDir/artix/Version/wsdl/uddi/uddi_v2.wsdl";

 18 Artix Configuration Reference, C++ Runtime

login_service

bus:initial_contract:url:login_service specifies the location of
the WSDL contract for the Artix peer manager. For example:

initial_contract_dir

bus:initial_contract_dir specifies a well-known directory for
accessing service contracts. This enables you to configure multiple
documents without explicitly setting every document in
configuration. If you specify a well-known directory, you only need
to copy the WSDL documents to this directory before the
application uses them. For example:

The value "." means use the directory from where the application
was started. You can specify multiple directories as follows:

Further information
For more information on finding WSDL contracts, see Configuring
and Deploying Artix Solutions.

Initial References
Initial references provide a uniform mechanism for enabling
servers and clients to communicate with services deployed in the
Artix container. This enables user code to be written in a location
transparent way. The bus:initial_references namespace includes
the following variables:
• locator

• peermanager

• sessionmanager

• sessionendpointmanager

• uddi_inquire

• uddi_publish

• login_service

• container

locator

bus:initial_references:url:locator specifies the location of an
initial endpoint reference for the Artix locator service. For
example:

bus:initial_contract:url:login_service =
"InstallDir/artix/Version/wsdl/login_service.wsdl";

bus:initial_contract_dir=["."];

bus:initial_contract_dir = [".", "../../etc"];

bus:initial_references:url:locator = "./locator.ref";

Artix Configuration Reference, C++ Runtime 19

For example, the locator.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a locator service. The same command can be used when a server
or a client obtains an endpoint reference.

peermanager

bus:initial_references:url:peermanager specifies the location of an
initial endpoint reference for the Artix peer manager service. For
example:

For example, the peermanager.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a peer manager service. The same command can be used when a
server or a client obtains an endpoint reference.

sessionmanager

bus:initial_references:url:sessionmanager specifies the location of
an initial endpoint reference for the Artix session manager service.
For example:

For example, the sessionmanager.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a session manager service. The same command can be used when
a server or a client obtains an endpoint reference.

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/locator}LocatorService -file
locator.ref

bus:initial_references:url:peermanager =
"./peermanager.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/peer_manager}PeerManagerService
-file peermanager.ref

bus:initial_references:url:sessionmanager =
"./sessionmanager.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/sessionmanager}SessionManagerServi
ce -file sessionmanager.ref

 20 Artix Configuration Reference, C++ Runtime

sessionendpointmanager

bus:initial_references:url:sessionendpointmanager specifies the
location of an initial endpoint reference for the Artix session
endpoint manager service. For example:

For example, the sessionendpointmanager.ref initial reference file
can be generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a session endpoint manager service. The same command can be
used when a server or a client obtains an endpoint reference.

uddi_inquire

bus:initial_references:url:uddi_inquire specifies the location of
an initial endpoint reference for the Artix UDDI inquire service. For
example:

For example, the uddi_inquire.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a UDDI inquire service. The same command can be used when a
server or a client obtains an endpoint reference.

uddi_publish

bus:initial_references:url:uddi_publish specifies the location of
an initial endpoint reference for the Artix UDDI publish service. For
example:

bus:initial_references:url:sessionendpointmanager =
"./sessionendpointmanager.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/sessionmanager}SessionEndpointManager
Service -file sessionendpointmanager.ref

bus:initial_references:url:uddi_inquire =
"./uddi_inquire.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://www.iona.com/uddi_over_artix}UDDI_InquireServi
ce -file uddi_inquire.ref

bus:initial_references:url:uddi_publish =
"./uddi_publish.ref";

Artix Configuration Reference, C++ Runtime 21

For example, the uddi_publish.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a UDDI publish service. The same command can be used when a
server or a client obtains an endpoint reference.

login_service

bus:initial_references:url:login_service specifies the location of
an initial endpoint reference for the Artix login service. For
example:

For example, the login_service.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a login service. The same command can be used when a server or
a client obtains an endpoint reference.

container

bus:initial_references:url:container specifies the location of an
initial endpoint reference for the Artix container service. For
example:

For example, the container.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a container service. The same command can be used when a
server or a client obtains an endpoint reference.

it_container_admin -container ContainerService.url
-publishreference -service
{http://www.iona.com/uddi_over_artix}UDDI_PublishServi
ce -file uddi_publish.ref

bus:initial_references:url:login_service =
"./login_service.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/login_service}LoginService -file
locator.ref

bus:initial_references:url:container = "./container.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/container}ContainerService -file
container.ref

 22 Artix Configuration Reference, C++ Runtime

JVM Options
You can use the jvm_options configuration variable to pass
parameters into a Java Virtual Machine (JVM) that is started in an
Artix process.

jvm_options

jvm_options specifies parameters that are passed to a JVM that is
started in an Artix process. This configuration variable takes the
following syntax:

For example:

This example passes in parameters to debug an Artix Java service
that is deployed in an Artix container. These JVM options enable
Java Platform Debugging Architecture (JPDA) on port 8787.

Further information
For details on using JPDA, see
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/.

Message Snoop
Artix message snoop is a message interceptor that sends
input/output messages to the Artix log to enable viewing of the
message content. This is a useful debugging tool when developing
and testing an Artix system. The artix:interceptors:message_snoop
namespace includes the following configuration variables:
• artix:interceptors:message_snoop:enabled

• artix:interceptors:message_snoop:log_level

• artix:interceptors:message_snoop:log_subsystem

artix:interceptors:message_snoop:enabled

artix:interceptors:message_snoop:enabled specifies whether message
snoop is enabled. Message snoop is enabled by default. It is
automatically added as the last interceptor before the binding to
detect any changes that other interceptors might make to the
message. By default, message_snoop logs at INFO_MED in the
MESSAGE_SNOOP subsystem.

jvm_options=["-Dname=Value,-Dname=Value, ...", "..."];

jvm_options = ["-Xdebug",
"-Xrunjdwp:transport=dt_socket,address=8787,server=y,sus
pend=y", "-verbose:class"];

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/

Artix Configuration Reference, C++ Runtime 23

Message snoop is invoked on every message call, twice in the
client and twice in the server (assuming Artix is on both sides).
This means that it can impact on performance. More importantly,
message snoop involves risks to confidentiality. You can disable
message snoop using the following setting:

artix:interceptors:message_snoop:log_level

artix:interceptors:message_snoop:log_level specifies a message
snoop log level globally or for a service port. The following
example sets the level globally:

The following example sets the level for a service port:

artix:interceptors:message_snoop:log_subsystem

artix:interceptors:message_snoop:log_subsystem specifies a
specific subsystem globally or for a service port. The following
example sets the subsystem globally:

The following example sets the subsystem for a service port:

artix:interceptors:message_snoop:enabled = "false";

WARNING: For security reasons, it is strongly
recommended that message snoop is disabled in
production deployments.

artix:interceptors:message_snoop:log_level = "WARNING";
event_log:filters = ["*=WARNING",

"IT_BUS=INFO_HI+WARN+ERROR", "MESSAGE_SNOOP=WARNING"];

artix:interceptors:message_snoop:http://www.acme.com/test
s:myService:myPort:log_level = "INFO_MED";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];

artix:interceptors:message_snoop:log_subsystem =
"MY_SUBSYSTEM";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MY_SUBSYSTEM=INFO_MED"];

artix:interceptors:message_snoop:http://www.acme.com/test
s:myService:myPort:log_subsystem = "MESSAGE_SNOOP";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];

 24 Artix Configuration Reference, C++ Runtime

If message snoop is disabled globally, but configured for a
service/port, it is enabled for that service/port with the specified
configuration only. For example:

Setting message snoop in conjunction with log filters is useful
when you wish to trace only messages that are relevant to a
particular service, and you do not wish to see logging for others
(for example, the container, locator, and so on).

Multi-threading
Variables in the thread_pool namespace control multi-threading.
Thread pools can be configured globally for Artix instances in a
configuration scope, or configured on a per-service basis.
The thread_pool namespace includes following variables:
• thread_pool:initial_threads

• thread_pool:high_water_mark

• thread_pool:low_water_mark

• thread_pool:max_queue_size

• thread_pool:stack_size

The following variable applies to automatic work queues:
• service:owns_workqueue

The following variables configure threading for custom transports
and transports such as HTTP, JMS, and MQ:
• policy:messaging_transport:client_concurrency

• policy:messaging_transport:concurrency

• policy:messaging_transport:max_threads

• policy:messaging_transport:min_threads

thread_pool:initial_threads

thread_pool:initial_threads specifies the number of initial threads
in each service’s thread pool. Defaults to 5.
This variable can be set at different levels in your configuration.
The following is a global setting:

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

artix:interceptors:message_snoop:enabled = "false";

artix:interceptors:message_snoop:http://www.acme.com/test
s:myService:myPort:log_level = "WARNING";

artix:interceptors:message_snoop:http://www.acme.com/test
s:myService:myPort:log_subsystem = "MY_SUBSYSTEM";

event_log:filters = ["*=WARNING",
"IT_BUS=INFO_HI+WARN+ERROR", "MY_SUBSYSTEM=WARNING"];

thread_pool:initial_threads = "3";

service:http://my.tns1/:SessionManager:thread_pool:initial_threads = ”3”;

Artix Configuration Reference, C++ Runtime 25

thread_pool:high_water_mark

thread_pool:high_water_mark specifies the maximum number of
threads allowed in each service’s thread pool. Defaults to 25.
This variable can be set at different levels in your configuration.
The following is a global setting:

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

thread_pool:low_water_mark

thread_pool:low_water_mark sets the minimum number of threads
in each service’s thread pool. Artix will terminate unused threads
until only this number exists. Defaults to 5.
This variable can be set at different levels in your configuration.
The following is a global setting:

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

thread_pool:max_queue_size

thread_pool:max_queue_size specifies the maximum number of
request items that can be queued on the internal work queue. If
this limit is exceeded, Artix considers the server to be overloaded,
and gracefully closes down connections to reduce the load. Artix
rejects subsequent requests until there is free space in the work
queue.
Defaults to -1, which means that there is no upper limit on the size
of the request queue. In this case, the maximum work queue size
is limited by how much memory is available to the process. The
following is a global setting:

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

thread_pool:high_water_mark = "10";

service:http://my.tns1/:SessionManager:thread_pool:high_water_mark =
"10";

thread_pool:low_water_mark = "5";

service:http://my.tns1/:SessionManager:thread_pool:low_water_mark = "5";

thread_pool:max_queue_size = "10";

service:http://my.tns1/:SessionManager:thread_pool:max_queue_size =
"10";

 26 Artix Configuration Reference, C++ Runtime

thread_pool:stack_size

thread_pool:stack_size specifies the stack size for each thread.
The stack size is specified in bytes. The default is the following
global setting:

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

service:owns_workqueue

service:owns_workqueue specifies whether a services can own an
automatic work queue. If this variable is set to true, the service
can own a work queue, if needed. For example, if your application
calls Service::get_workqueue(), this creates and returns a work
queue specific to that service.
If this variable is set to is false, the service never owns a work
queue, and uses the bus work queue instead. The default value is
true.
This variable can be set at different levels in your configuration.
The following is a global setting, which means that all services in a
bus have their own work queue:

The following setting is at the level of a fully-qualified service
name, which overrides the global setting, and means that only the
specified service has its own work queue:

policy:messaging_transport:client_concurrency

policy:messaging_transport:client_concurrency specifies the
number of ClientTransport instances created per WSDLPort
instance. This controls multi-threading on the client side. The
default value is 1.
This variable applies to Artix transports that use a MULTI_THREADED
client policy (see Developing Advanced Artix Plug-ins in
C++).
In general, requests from transports such as HTTP must block
until the previous reply has been received. If there are multiple
invocations blocking on a proxy, these must be queued and
effectively serialized. This variable enables the transport
mechanism to use a pool of underlying connections, and thereby
scale it up.
For example, the Artix HTTP and JMS transports implement this
threading model. You can specify this variable to the configuration
scope where you start your client with these transports.

thread_pool:stack_size = "1048576";

service:http://my.tns1/:SessionManager:thread_pool:stack_size =
"1048576";

service:owns_workqueue = "true";

service:http://my.tns1/:SessionManager:owns_workqueue = "true";

Artix Configuration Reference, C++ Runtime 27

policy:messaging_transport:concurrency

policy:messaging_transport:concurrency specifies the number of
threads in the messaging port's thread pool, when the
multi-threaded policy is in effect. The default is 1.
This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_THREADED
policies (see Developing Advanced Artix Plug-ins in C++).
For example, the Artix HTTP and JMS transports implement this
threading model. You can specify this variable to the scope where
you start your server with these transports.

policy:messaging_transport:max_threads

policy:messaging_transport:max_threads specifies the maximum
number of threads in the messaging port's thread pool, when the
multi-instance policy is in effect. The default is 1.
This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
policies (see Developing Advanced Artix Plug-ins in C++).
For example, the Artix MQ transport implements this threading
model. You can specify this variable to the scope where you start
your server with the MQ transport.

policy:messaging_transport:min_threads

policy:messaging_transport:min_threads specifies the mininum
number of threads in the messaging port's thread pool, when the
multi-instance policy is in effect. The default is 1.
This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
policies (see Developing Advanced Artix Plug-ins in C++).
For example, the Artix MQ transport implements this threading
model. You can specify this variable to the scope where you start
your server with the MQ transport.

Policies
The policies namespace contain variables that control a range of
runtime settings. For example, publishing host names, HTTP
buffers, and trace logging.

Transport policies
These include the following:
• policies:at_http:client:proxy_server

• policies:at_http:server_address_mode_policy:publish_hostname

• policies:at_http:server_address_mode_policy:local_hostname

• policies:http:buffer:prealloc_shared

• policies:http:buffer:prealloc_size

• policies:http:client_address_mode_policy:local_hostname

• policies:http:server_address_mode_policy:local_hostname

• policies:http:server_address_mode_policy:port_range

 28 Artix Configuration Reference, C++ Runtime

• policies:http:trace_requests:enabled

• policies:iiop:client_address_mode_policy:local_hostname

• policies:iiop:server_address_mode_policy:local_hostname

• policies:iiop:server_address_mode_policy:port_range

• policies:iiop:server_address_mode_policy:publish_hostname

• policies:soap:server_address_mode_policy:local_hostname

• policies:soap:server_address_mode_policy:publish_hostname

Bus policies
These include the following:
• policies:bus:resolved_endpoint:max_retries

Other policies
For information on policy:messaging_port variables, see
“Multi-threading” on page 24.

policies:at_http:client:proxy_server

policies:at_http:client:proxy_server specifies the URL of the
HTTP proxy server (if one exists) along a request/response chain.

For example:

You can specify the HTTP proxy server in different ways. The order
of priority is as follows:
1. Context API.
2. WSDL file.
3. Command line configuration, for example:

4. This configuration variable.

policies:at_http:server_address_mode_policy:publish_hostname

policies:at_http:server_address_mode_policy:publish_hostname
specifies how the server’s address is published in dynamically
generated Artix service contracts when using the HTTP transport.
The possible values are as follows:

Note: Artix does not support the existence of more than
one proxy server along a request/response chain.

policies:at_http:client:proxy_server =
"http://localhost:0/SOAPHTTPProxy";

client
-BUSCONFIG_policies:at_http:client:proxy_server="http://localhost:0/SOAPHTTPP
roxy"

canonical Publishes the fully qualified hostname of the
machine in the http:address element of the dynamic
WSDL (for example, http://myhost.mydomain.com).

Artix Configuration Reference, C++ Runtime 29

For example:

The following values are deprecated:

policies:at_http:server_address_mode_policy:local_hostname

policies:at_http:server_address_mode_policy:local_hostname
specifies the server hostname that is published in dynamically
generated Artix contracts. For example:

This variable accepts any valid string value. The specified
hostname is published in the http:address element, which
describes the server’s location. If no hostname is specified,
policies:at_http:server_address_mode_policy:publish_hostname is
used instead.

unqualified Publishes the unqualified local hostname of the
machine in the http:address element of the dynamic
WSDL. This does not include the domain name with
the hostname (for example, http://myhost).

ipaddress Publishes the IP address associated with the
machine in the http:address element of the dynamic
WSDL (for example, http://10.1.2.3). This is the
default behavior.

policies:at_http:server_address_mode_policy:publish_hostname="can
onical";

false Publishes the IP address of the running server in
the http:address element.

true Publishes the hostname of the machine hosting
the running server in the http:address element
of the WSDL contract.

Note:Setting the service URL programmatically overrides
this configuration variable. For more details, see
Developing Artix Applications with C++.

policies:at_http:server_address_mode_policy:local_hostname="207.4
5.52.34";

Note: See also
policies:http:server_address_mode_policy:local_hostname,
which specifies the host name that the server listens on.

 30 Artix Configuration Reference, C++ Runtime

policies:http:buffer:prealloc_shared

policies:http:buffer:prealloc_shared specifies whether the HTTP
pre-allocation buffer is shared among threads. Defaults to false.
This means that each thread pre-allocates its own buffer on the
first invocation for that thread.
If this variable is set to true, the buffer is shared among threads:

This means that the same buffer pre-allocation is shared among
all threads. Therefore, your application must ensure that multiple
invocations are not active at the same time.
See also policies:http:buffer:prealloc_size.

policies:http:buffer:prealloc_size

policies:http:buffer:prealloc_size specifies the pre-allocated size
of the HTTP buffer in bytes. The default value is 0, which means
there is no pre-allocation.
When this variable is set, Artix pre-allocates chunks of the
specified buffer size to avoid repeated allocations and
deallocations. Each thread (dispatcher or reply consumer)
performs this pre-allocation on the first message. Then repeated
invocations on the same thread reuse this buffer. For example, the
following setting specifies a 2 MB buffer:

User applications should work out their worst case load in
advance, and set this variable to an appropriate value. This
allocation can be reused by each subsequent request/reply on the
dispatcher/consumer thread. When the Artix bus is shut down, the
buffer allocation is freed.

policies:http:client_address_mode_policy:local_hostname

policies:http:client_address_mode_policy:local_hostname specifies
the outgoing client hostname. This enables you to explicitly
specify the hostname that the client binds on, when initiating a
TCP connection.
This provides support for multi-homed client host machines with
multiple hostnames or IP addresses (for example, those using
multiple DNS aliases or multiple network interface cards).
For example, if you have a client machine with two network
addresses (207.45.52.34 and 207.45.52.35), you can explicitly set
this variable to either address:

This variable accepts any valid string value. It is unspecified by
default, and the client uses the 0.0.0.0 wildcard address. In this
case, the network interface card used is determined by the
operating system.

policies:http:buffer:prealloc_shared = "true";

policies:http:buffer:prealloc_size = "2097152";

policies:http:client_address_mode_policy:local_hostname =
"207.45.52.34";

Artix Configuration Reference, C++ Runtime 31

policies:http:server_address_mode_policy:local_hostname

policies:http:server_address_mode_policy:local_hostname enables
you to explicitly specify the host name that the server listens on
when using the HTTP transport. This is unspecified by default.
For example, if you have a multi-homed server host machine with
two network addresses (207.45.52.34 and 207.45.52.35), you can
explicitly set this variable to either address:

policies:http:server_address_mode_policy:port_range

policies:http:server_address_mode_policy:port_range specifies a
range of HTTP ports in the following format: FromPort:ToPort
For example:

policies:http:trace_requests:enabled

policies:http:trace_requests:enabled specifies whether to enable
HTTP-specific trace logging. The default is false. To enable HTTP
tracing, set this variable as follows:

This setting outputs INFO level messages that show full HTTP
buffers (headers and body) as they go to and from the wire.
You should also set your log filter as follows to pick up the HTTP
additional messages, and then resend the logs:

For example, you could enable HTTP trace logging to verify that
basic authentication headers are written to the wire correctly.
Similarly, to enable HTTPS-specific trace logging, use the following
setting:

policies:http:server_address_mode_policy:local_hostname =
"207.45.52.34";

Note: See also
policies:at_http:server_address_mode_policy:local_hostnam
e, which specifies the hostname published in dynamically
generated Artix contracts.

policies:http:server_address_mode_policy:port_range="4003
:4008";

Note: The specified port_range has no effect when a fixed
TCP port is specified for the SOAP address in the WSDL
contract. The WSDL setting takes precedence over this
.cfg file setting.

policies:http:trace_requests:enabled="true";

event_log:filters = ["IT_HTTP=*"];

policies:https:trace_requests:enabled="true";

 32 Artix Configuration Reference, C++ Runtime

policies:iiop:client_address_mode_policy:local_hostname

policies:iiop:client_address_mode_policy:local_hostname enables
you to explicitly specify the host name that the client binds on.
This is unspecified by default.
For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this
variable to either address:

policies:iiop:server_address_mode_policy:local_hostname

policies:iiop:server_address_mode_policy:local_hostname enables
you to explicitly specify the host name that the server listens on
and publishes in its IORs. This is unspecified by default.
For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this
variable to either address:

policies:iiop:server_address_mode_policy:port_range

policies:iiop:server_address_mode_policy:port_range specifies the
range of ports that a server uses when there is no well-known
addressing policy specified for the port. Specified values take the
format of FromPort:ToPort, for example:

policies:iiop:server_address_mode_policy:publish_hostname

policies:iiop:server_address_mode-policy:publish_hostname
specifes whether IIOP exports hostnames or IP addresses in
published profiles. Defaults to false (exports IP addresses, and
does not export hostnames). To use hostnames in object
references, set this variable to true:

policies:soap:server_address_mode_policy:local_hostname

policies:soap:server_address_mode_policy:local_hostname specifies
the server hostname that is published in dynamically generated
Artix contracts when using SOAP as a transport.For example:

policies:iiop:client_address_mode_policy:local_hostname =
"207.45.52.34";

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";

policies:iiop:server_address_mode_policy:port_range="4003
:4008"

policies:iiop:server_address_mode_policy:publish_hostname
=true

policies:soap:server_address_mode_policy:local_hostname="207.45.
52.34";

Artix Configuration Reference, C++ Runtime 33

This variable accepts any valid string value. The specified
hostname is published in the soap:address element, which
describes the server’s location. If no hostname is specified,
policies:soap:server_address_mode_policy:publish_hostname is
used instead.

policies:soap:server_address_mode_policy:publish_hostname

policies:soap:server_address_mode_policy:publish_hostname
specifies how the server’s address is published in dynamically
generated Artix contracts when using SOAP as a transport. The
possible values are as follows:

For example:

The following values are deprecated:

policies:bus:resolved_endpoint:max_retries

policies:bus:resolved_endpoint:max_retries applies to service
proxies whose address details are obtained using
resolve_initial_references(). This variable specifies the number
of transparent rebinds for transient connection errors. Values can
be in the range of zero to infinity. The default value is 0.
Resolved proxies are initialized using the ClientProxyBase(QName
ServiceName) constructor.This tells the Artix bus the name of the
initialized service, but does not supply its WSDL or address. The
bus obtains the address by calling resolve_initial_references().

canonical Publishes the fully qualified hostname of the
machine in the soap:address element of the
dynamic WSDL (for example,
http://myhost.mydomain.com).

unqualified Publishes the unqualified local hostname of the
machine in the soap:address element of the
dynamic WSDL. This does not include the
domain name with the hostname (for example,
http://myhost).

ipaddress Publishes the IP address associated with the
machine in the soap:address element of the
dynamic WSDL (for example, http://10.1.2.3).

policies:soap:server_address_mode_policy:publish_hostname="ipa
ddress";

false Publishes the IP address of the running server
in the soap:address element. This is the default
behavior.

true Publishes the hostname of the machine hosting
the running server in the soap:address element
of the WSDL contract.

Note:Setting the service URL programmatically overrides
this configuration variable. For more details, see
Developing Artix Applications with C++.

 34 Artix Configuration Reference, C++ Runtime

Resolved proxies are fault tolerant and can rebind if errors occur.
By default, they do not rebind, and throw an exception if the
connection is lost. However, if you set
policies:bus:resolved_endpoint:max_retries to a value greater
than zero, the proxy tries to rebind using
resolve_initial_references(). For example, if you use the
locator_client plug-in to resolve initial references, the service
proxy can perform dynamic failover.

QName Aliases
QName aliases are shorthand names for services in Artix .cfg
configuration files. QNames are specified in the following format:
{NamespaceURI}LocalPart
For example: {http://ws.iona.com/locator}LocatorService. In this
case, the bus:initial_references:url:locator variable is used as a
shorthand instead of a more verbose format, such as
bus:initial_references:url:LocatorService:http://ws.iona.com/loc
ator.
The bus:qname_alias namespace includes the following variables:
• container

• locator

• peermanager

• sessionmanager

• sessionendpointmanager

• uddi_inquire

• uddi_publish

• login_service

container

bus:qname_alias:container specifies the QName alias for the Artix
container service. For example:

locator

bus:qname_alias:locator specifies the QName alias for the Artix
locator service. For example:

peermanager

bus:qname_alias:peermanager specifies the QName alias for the
Artix peer manager service. For example:

bus:qname_alias:container =
"{http://ws.iona.com/container}ContainerService";

bus:qname_alias:locator =
"{http://ws.iona.com/locator}LocatorService";

bus:qname_alias:peermanager =
"{http://ws.iona.com/peer_manager}PeerManagerService";

Artix Configuration Reference, C++ Runtime 35

sessionmanager

bus:qname_alias:sessionmanager specifies the QName alias for the
Artix session manager service. For example:

sessionendpointmanager

bus:qname_alias:sessionendpointmanager specifies the QName alias
for the Artix session endpoint manager service. For example:

uddi_inquire

bus:qname_alias:uddi_inquire specifies the QName alias for the
Artix UDDI inquire service. For example:

uddi_publish

bus:qname_alias:uddi_publish specifies the QName alias for the
Artix UDDI publish service. For example:

login_service

bus:qname_alias:login_service specifies the QName alias for the
Artix login service. For example:

Reference Compatibility
The bus namespace includes configuration variables that specify
backward compatibility with proprietary Artix reference and
endpoint reference formats. It includes the following:
• bus:non_compliant_epr_format

• bus:reference_2.1_compat

bus:qname_alias:sessionmanager =
"{http://ws.iona.com/sessionmanager}SessionManagerServ
ice";

bus:qname_alias:sessionendpointmanager =
"{http://ws.iona.com/sessionmanager}SessionEndpointManagerS
ervice";

bus:qname_alias:uddi_inquire =
"{http://www.iona.com/uddi_over_artix}UDDI_InquireServ
ice";

bus:qname_alias:uddi_publish =
"{http://www.iona.com/uddi_over_artix}UDDI_PublishServ
ice";

bus:qname_alias:login_service =
"{http://ws.iona.com/login_service}LoginService";

 36 Artix Configuration Reference, C++ Runtime

bus:non_compliant_epr_format

bus:non_compliant_epr_format specifies backward compatibility
with the Artix 4.0 proprietary endpoint reference format. The
endpoint references published by Artix 4.1 or higher are compliant
with the W3C WS-Addressing specification.
The default value of this variable in artix.cfg is false, which
means to use WS-A compliant endpoint references. To use the
proprietary Artix 4.0 endpoint reference format, set this variable
as follows:

Artix 4.0 endpoint reference format
Artix 4.0 does not support the wsaw:ServiceName element and
EndpointName attribute specified by the WS-Addressing WSDL
binding. This defines a WSDLBindingSchema for embedding WSDL
information in the endpoint reference (EPR) metadata.
The proprietary format of an Artix 4.0 EPR can cause
interoperability issues because it serializes the WSDL service as a
wsdl:service element in EPR metadata. Other vendors cannot
deserialize the wsdl:service element when processing EPR
metadata. Artix 4.0 also does not support deserializing a
ServiceName element, if present, in the inbound EPR.

Artix 4.1 or higher endpoint reference format
Artix 4.1 or higher supports the wsaw:ServiceName element and
EndpointName attribute. The on-the-wire format of an Artix 4.1 or
higher EPR containing metadata is different from an Artix 4.0 EPR.
Artix 4.1 or higher serializes WSDL metadata in the EPR metadata
as a wsaw:ServiceName element, and deserializes the
wsaw:ServiceName element, and its EndpointName attribute, if
present in the inbound EPR.
Artix 4.1 or higher does not publish the optional EndpointName
attribute if the WSDL service has only one port, but does if the
service has multiple endpoints. The EPR format introduced in Artix
4.1 is slightly different from the Artix 4.0 format, but complies
with W3C specifications and facilitates interoperability between
vendors.

Migrating from Artix 4.0
The following applies when migrating from Artix 4.0:

Zero impact scenarios There is no impact if deployed Artix 4.0
applications still use deprecated Artix references, and do not use
WS-Addressing EPRs. Perform one-step migration to Artix 4.1 or
higher, both on the client and server sides.

Mixed deployments The format of the WS-Addressing EPR that
Artix 4.0 clients receive from Artix services (for example, the
locator), depends on the value of the bus:non_compliant_epr_format
variable set on the Artix service side. Some Artix 4.0 applications
must be reconfigured if they use WS-A EPRs and decide to migrate
to Artix 4.1 or higher in phases. For example, upgrade to Artix 4.1
or higher on server side, and Artix 4.0 on client side.

bus:non_compliant_epr_format="true";

Artix Configuration Reference, C++ Runtime 37

Possible failing scenarios In some cases of mixed deployment,
Artix 4.0 client applications can fail while deserializing the EPR
coming on the wire. For example, clients of Artix 4.1 or higher
transient servants and default servants. Normal servants and
multi-port services will still work.

Solution to failing cases If Artix 4.0 clients get an IT_Bus
exception while creating a proxy using the EPR, the
bus:non_compliant_epr_format configuration value on the Artix 4.1
or higher server side must be set to true to get the Artix 4.0
(non-compliant) format. There is no need to change any source
code. The trace logs on the server side contain an entry for the
bus:non_compliant_epr_format configuration variable.

bus:reference_2.1_compat

bus:reference_2.1_compat specifies backward compatability with
pre-Artix 3.0.1 versions of an Artix reference. For example:

If this variable is set to true, the Artix reference is generated in
the pre-Artix 3.0.1 format. If this is not set or set to false, Artix
references are generated in the Artix 3.0.1 format.

Artix 3.0.1 reference format
From Artix 3.0.1, the proprietary references produced by Artix no
longer use a hard coded reference_properties element name.
Instead, Artix references use extension element names that are
described in the port definition.
For example, when using SOAP, an Artix 3.0.1 stringified
reference has the following format:

bus:reference_2.1_compat = "true";

<?xml version='1.0' encoding='utf-8'?>
<m1:reference service="m2:AccountService"
 wsdlLocation="file:./bank.wsdl"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:m1="http://www.iona.com/bus"

xmlns:m2="http://www.iona.com/bus/tests"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <port name="AccountPort" binding="m2:AccountBinding">
 <m3:address xsi:type="m3:tAddress"

location="http://localhost:999/AccountService/AccountPor
t/"

xmlns:m3="http://schemas.xmlsoap.org/wsdl/soap/">

 </m3:address>
 </port>
</m1:reference>

 38 Artix Configuration Reference, C++ Runtime

Pre-Artix 3.0.1 reference format
In earlier versions, stringified references had the following format:

<?xml version='1.0' encoding='utf-8'?>
<m1:reference service="m2:AccountService"
 wsdlLocation="file:./bank.wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:m1="http://www.iona.com/bus"
 xmlns:m2="http://www.iona.com/bus/tests"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <port name="AccountPort" binding="m2:AccountBinding">
 <reference_properties xsi:type="m3:tAddress"

location="http://localhost:999/AccountService/AccountPort/"
 xmlns:m3="http://schemas.xmlsoap.org/wsdl/soap/">
 </reference_properties>
 </port>
</m1:reference>

Note: This change is wire incompatible with previous
versions of Artix.

 Artix Configuration Reference, C++ Runtime 39

Artix Plug-ins
Artix is built on Adaptive Runtime architecture (ART), which enables
users to configure services as plug-ins to the core product. This chapter
explains the configuration settings for Artix-specific plug-ins.

Each Artix transport, payload format, and service has properties
that are configurable as plug-ins to the Artix runtime. The
variables used to configure plug-in behavior are specified in the
configuration scopes of each Artix runtime instance, and follow the
same order of precedence. A plug-in setting specified in the global
configuration scope is overridden by a value set in a narrower
scope.
For example, if you set plugins:routing:use_pass_through to true in
the global scope, and set it to false in the my_app scope, all Artix
runtimes, except for those running in the my_app scope, use true
for this value. Any Artix instance using the my_app scope uses false
for this value.
This chapter describes the following subjects:
• AmberPoint
• Bus
• CA WSDM Observer
• Client-Side High Availability
• Container
• Database Environment
• FTP
• JMS
• JMX
• Local Log Stream
• Log4J Log Stream
• Locator Service
• Locator Endpoint Manager
• Monitoring
• Peer Manager
• Performance Logging
• Remote Logging
• Remote Method Invocation
• Routing
• Service Lifecycle
• Session Manager
• Session Endpoint Manager
• Session Manager Simple Policy
• SOAP
• SOAP 1.2
• Transformer Service

 40 Artix Configuration Reference, C++ Runtime

• Tuxedo
• Web Services Addressing
• Web Services Chain Service
• Web Services Reliable Messaging
• WSDL Publishing Service
• XML File Log Stream
• Custom Plug-ins

AmberPoint
The plugins:ap_nano_agent namespace configures integration with
the AmberPoint SOA management system. It includes the
following variables:
• plugins:ap_nano_agent:hostname_address:local_hostname

• plugins:ap_nano_agent:hostname_address:publish_hostname

plugins:ap_nano_agent:hostname_address:local_hostname

plugins:ap_nano_agent:hostname_address:local_hostname is an
arbitrary string used as the client hostname instead of trying to
resolve it using the underlying IP runtime. This is undefined by
default.

plugins:ap_nano_agent:hostname_address:publish_hostname

plugins:ap_nano_agent:hostname_address:publish_hostname specifies
the form in which the Artix AmberPoint Agent resolves the host
address that an Artix service consumer (Artix proxy) runs on. This
variable takes the following values:

Bus
The plugins:bus namespace includes the following variables:
• plugins:bus:register_client_context

• plugins:bus:default_tx_provider:plugin

plugins:bus:register_client_context

plugins:bus:register_client_context specifies whether to register
a client context. You can enable registration of client contexts as
follows:

unqualified The host name in short form, without the domain
name (hostname).

ipaddress The host name in the form of an IP address (for
example, 123.4.56.789). This is the default.

canonical The host name takes a fully qualified form
(hostname.domainname).

true same as unqualified
false same as ipaddress

plugins:bus:register_client_context = "true";

Artix Configuration Reference, C++ Runtime 41

The client context provides information about the origin of the
incoming request (for example, its original IP address). By default,
the context is not registered. This avoids any extra overhead
associated with obtaining this information and populating the
context.

plugins:bus:default_tx_provider:plugin

plugins:bus:default_tx_provider:plugin specifies the default
transaction system used by Artix when a new transaction is
started by bus.transactions().begin_transaction(). The specified
value is the plug-in name of the transaction system provider
plug-in. The available values are:

Selecting a transaction provider
The choice of which transaction provider to use depends on the
type of Artix binding your application uses. If most of your
communication is over a CORBA binding, use ots_tx_provider. If
most of your communication uses a SOAP binding, use
wsat_tx_provider.
In both cases, Artix automatically interposes a transaction context
of the correct type when a call is made over a particular binding.
For example, if the default provider is OTS, and the application
makes an outbound SOAP call, Artix includes a
WS-AtomicTransaction SOAP header in the SOAP call. In this case,
the transaction is still coordinated by OTS.
Similarly, if the default provider is WSAT, and a CORBA call is
made, Artix automatically includes an OTS CORBA service context
in the IIOP call. In this case, the transaction is coordinated by a
WS-Coordination service.

orb_plugin configuration
The appropriate plug-in for your transaction system must also be
loaded. For example, to load the OTS plug-in, include the ots
plug-in name in the orb_plugins list:

For full details of using transaction systems in Artix, see
Developing Artix Applications in C++.

ots_tx_provider Uses OTS as the transaction provider. Creates
either an OTS Lite (single-resource) or OTS
Encina (multi-resource) transaction. This is the
default setting. For details of the additional
configuration used to specify whether OTS Lite
or OTS Encina is used, see the chapter “CORBA”.

wsat_tx_provider Uses a WS-Coordination/WS-AtomicTransaction
provider. The coordination service can either be
run in-process or inside the Artix container.

artix.cfg
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

 42 Artix Configuration Reference, C++ Runtime

CA WSDM Observer
The plugins:ca_wsdm_observer namespace configures integration
with the CA WSDM management system. It includes the following
variables:
• plugins:ca_wsdm_observer:auto_register

• plugins:ca_wsdm_observer:config_poll_time

• plugins:ca_wsdm_observer:handler_type

• plugins:ca_wsdm_observer:max_queue_size

• plugins:ca_wsdm_observer:min_queue_size

• plugins:ca_wsdm_observer:report_wait_time

plugins:ca_wsdm_observer:auto_register

plugins:ca_wsdm_observer:auto_register specifies whether the Artix
CA WSDM observer automatically registers observed services with
a WSDM service. The default is:

If you have a large number of observed services, the runtime
performance may be decreased because of equally large register
service requests sent to a WSDM service.
You can set this variable to false and manually import service
details from WSDL definitions into a WSDM console. However, this
only works for SOAP-HTTP non-transient services. This is because
WSDM can not import non-SOAP services described in WSDL,
while Artix does not publish WSDL for transient services.

plugins:ca_wsdm_observer:config_poll_time

plugins:ca_wsdm_observer:config_poll_time specifies how often, in
seconds, the observer should poll a WSDM service for
configuration updates, use the following variable:

The default is 180 seconds (3 minutes). Configuration updates tell
the observer whether transaction monitors have been enabled. If
so, the observer copies input/output raw messages, and reports
them to a WSDM service if duration or request/response size
thresholds have been exceeded.

plugins:ca_wsdm_observer:handler_type

plugins:ca_wsdm_observer:handler_type specifies a value that
identifies an Artix observer to a WSDM service. It should be above
200. The default is:

plugins:ca_wsdm_observer:auto_register = "true";

plugins:ca_wsdm_observer:config_poll_time

plugins:ca_wsdm_observer:handler_type = "217";

Artix Configuration Reference, C++ Runtime 43

In addition, if you change the default, you must also update the
following file with the new handler type:

Entries in this file take a format of observertype.X=ArtixObserver,
where X is the handler type value. The default entry is:
observertype.217=ArtixObserver

plugins:ca_wsdm_observer:max_queue_size

plugins:ca_wsdm_observer:max_queue_size specifies the maximum
number of service request records that the observer queue can
hold. For example:

The default is 500. New records are dropped when the queue size
reaches this value. If report_wait_time is not set, this variable is
ignored. In this case, reports are sent as soon as the queue size is
equal to max_queue_size.

plugins:ca_wsdm_observer:min_queue_size

plugins:ca_wsdm_observer:min_queue_size specifies how many
service request records must be available in a queue before a
report is sent to a WSDM service. For example:

The default is 5. Set this variable if your load is expected to be
large. If this variable is too low, the observer may send reports
too frequently, and if it is too high, the memory footprint may
increase significantly.

plugins:ca_wsdm_observer:report_wait_time

plugins:ca_wsdm_observer:report_wait_time specifies how often
reports should be sent in seconds. For example:

This variable is an alternative to min_queue_size, which instead
specifies the frequency of reports on a time basis. This variable
should be used with max_queue_size.

WSDM-Install-Dir/server/default/conf/WsdmSOMMA_Basic.proper
ties

plugins:ca_wsdm_observer:max_queue_size = "600";

plugins:ca_wsdm_observer:min_queue_size = "6";

plugins:ca_wsdm_observer:report_wait_time = 10;

 44 Artix Configuration Reference, C++ Runtime

Client-Side High Availability
The variables in the plugins:ha_conf namespace configure
client-side high availability settings:
• plugins:ha_conf:strategy

• plugins:ha_conf:random:selection

plugins:ha_conf:strategy

plugins:ha_conf:strategy specifies whether the client uses random
or sequential endpoint selection. Defaults to sequential.
Specifying random enables client applications to select a random
server each time they connect. The following example applies
globally:

The following example applies at the level of a service:

plugins:ha_conf:random:selection

plugins:ha_conf:random:selection specifies whether the client
always selects a random server or only after the client loses
connectivity with the first server in the list. Possible values are
always or subsequent. Defaults to always.
Specify always if you want your clients to be uniformly
load-balanced across different servers. The following example
applies globally:

Specify subsequent if you want your clients to favor a particular
server for their initial connectivity. The following example applies
globally:

The following example applies at the level of a service:

plugins:ha_conf:strategy="random";

plugins:ha_conf:strategy:http://www.iona.com/test:SOAPHTTPService="
random";

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="always";

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="subsequent";

plugins:ha_conf:strategy:http://www.iona.com/test:SOAPHTTPService="random";
plugins:ha_conf:random:selection:http://www.iona.com/test:SOAPHTTPService="su

bsequent";

Artix Configuration Reference, C++ Runtime 45

Container
The plugins:container namespace specifies settings for the Artix
container service. It includes the following variables:
• plugins:container:deployfolder

• plugins:container:deployfolder:readonly

plugins:container:deployfolder

plugins:container:deployfolder specifies the location of a local
folder where deployment descriptor files are saved to, and where
they are read from on restart. For example:

At startup, the container looks in the configured deployment folder
and deploys the contents of the folder.
By default, this folder enabled for dynamic read/write deployment.
This means that the container adds and removes files from the
deployment folder dynamically as services are deployed or
removed from the container.

plugins:container:deployfolder:readonly

plugins:container:deployfolder:readonly specifies whether the
local folder used to store deployment descriptor file is a read-only
folder. This can be used as an initialization folder to predeploy the
same required set of services after every restart.
This variable should be used in conjunction with
plugins:container:deployfolder. For example, the following
configuration enables a read-only persistent deployment folder:

Database Environment
The variables in the plugins:artix:db namespace configure
database environment and service replication settings:
• plugins:artix:db:allow_minority_master

• plugins:artix:db:auto_demotion

• plugins:artix:db:checkpoint_period

• plugins:artix:db:db_open_retry_attempts

• plugins:artix:db:download_files

• plugins:artix:db:election_timeout

• plugins:artix:db:env_name

• plugins:artix:db:error_file

• plugins:artix:db:home

• plugins:artix:db:iiop:port

• plugins:artix:db:inter_db_open_sleep_period

• plugins:artix:db:max_buffered_msgs

• plugins:artix:db:max_msg_buffer_size

plugins:container:deployfolder="../etc";

plugins:container:deployfolder:readonly="true";

 46 Artix Configuration Reference, C++ Runtime

• plugins:artix:db:max_ping_retries

• plugins:artix:db:ping_lifetime

• plugins:artix:db:ping_retry_interval

• plugins:artix:db:priority

• plugins:artix:db:replace_when_forwarding

• plugins:artix:db:replica_name

• plugins:artix:db:replicas

• plugins:artix:db:roundtrip_timeout

• plugins:artix:db:sync_retry_attempts

• plugins:artix:db:use_shutdown_hook

• plugins:artix:db:verbose_logging

• plugins:artix:db:verify_aggressive and
plugins:artix:db:recovery_attempt

plugins:artix:db:allow_minority_master

plugins:artix:db:allow_minority_master specifies whether a lone
slave can promote itself to a master if it sees that the current
master is unavailable. This is only allowed when the replica cluster
has two members. This variable defaults to false (not allowed). If
it is set to true, a slave that cannot reach its partner replica will
promote itself to master, even though it only has fifty per cent of
the votes (one out of two).

It is recommended that high availability clusters have an odd
number of members, and the recommended minimum number is
three. It is only possible to use a cluster with two members if you
specify the following configuration:

plugins:artix:db:auto_demotion

plugins:artix:db:auto_demotion specifies whether a master
automatically demotes itself to a slave when it loses contact with
the majority of the replica cluster. Defaults to true.
The problem of duplicate masters is crucial for any election-based
high availability system. Every effort must be taken to ensure that
only one master exists at any one time, because database updates
made to multiple masters can be extremely difficult to resolve.
The most common cause of duplicate masters to appear is a
network partition. This is a split in the network that leaves the
current master on one side and a majority of slaves on the other
side. Because the slaves have the majority of votes, they elect a
master on their side.

WARNING: This variable must be used with caution. If it is set
to true, and the two replicas in the cluster become separated due
to a network partition, they are both promoted to master. This
can be very problematic because both replicas could make
database updates, and resolving those updates later could be
very difficult, if not impossible.

plugins:artix:db:allow_minority_master="true";

Artix Configuration Reference, C++ Runtime 47

When this variable is set to true, duplicate masters should never
exist. If a master loses contact with the majority of the replica set,
it will automatically demote itself to slave.

plugins:artix:db:checkpoint_period

plugins:artix:db:checkpoint_period specifies how often in seconds
the Artix DB plug-in wakes up and performs a Berkeley DB
checkpoint on its environment, as prescribed by Sleepycat.
Defaults to 900 seconds (15 minutes), which should be meet all
eventualities. Setting this to a value less than 60 seconds may
have a negative impact on performance.

plugins:artix:db:db_open_retry_attempts

plugins:artix:db:db_open_retry_attempts specifies the number of
attempts made by a slave to open its new database.
When a slave starts for the first time and synchronizes with an
existing master, it may take some time for a slave to receive the
master's database over the wire, especially if the database is
large. If the slave gets no such file or directory errors when
starting up, it may help to increase this value. Defaults to 5.

plugins:artix:db:download_files

plugins:artix:db:download_files specifies whether fresh slaves
download the entire database from the master before starting up.
Defaults to true. Before starting up, fresh slaves have no database
files on their local filesystem.
There may be circumstances where fresh slaves should not
download the entire database before starting up. For example, if
the database very large, it may be desirable to allow Berkeley DB
to synchronize the databases instead.

plugins:artix:db:election_timeout

plugins:artix:db:election_timeout specifies the time spent
attempting to elect a new master. If a master can not be found in
this time, a new election is started. Defaults to 2000 milliseconds
(2 seconds). You should not often need to change this setting.

plugins:artix:db:env_name

plugins:artix:db:env_name specifies the filename for the Berkeley
DB environment file. The value specified must be the same for all
replicas. Defaults to db_env. You should not need to change this
setting.

WARNING: This variable must be used with caution. If it is set
to false, there is a chance that duplicate masters may appear
after a network partition. If this happens, and the partition is
repaired (allowing the masters to see each other), both masters
will self-demote to a slave, hold an election to determine who is
most up-to-date, and re-elect a master. If this occurs, any
updates made on a demoted master when it was separated from
the replicas will be lost.

 48 Artix Configuration Reference, C++ Runtime

plugins:artix:db:error_file

plugins:artix:db:error_file specifies the file that Berkeley DB
error messages are sent to. For example:

The file name can have any extension, so long as it is valid for its
operating system. The default value is "".
If plugins:artix:db:verbose_logging is set to true, additional
Berkeley DB messages about replication, deadlock, and recovery
are also sent to this file.

plugins:artix:db:home

plugins:artix:db:home specifies the directory where Berkeley DB
stores all the files for the service databases. Each service should
have a dedicated folder for its data stores. This is especially
important for replicated services.
Defaults to ReplicaConfigScope_db (for example, rep1_db), where
ReplicaConfigScope is the inner-most replica configuration scope.
You should not need to explicitly set this variable. If this directory
does not already exist, it will be created in the current working
directory.

plugins:artix:db:iiop:port

plugins:artix:db:iiop:port specifies the IIOP port that the replica
service starts on, and is used for communications between
replicas. Defaults to 0.
This variable must be set in a sub-scope for each replica specified
in the plugins:artix:db:replicas list. The following example shows
a sub-scope for the rep1 replica:

plugins:artix:db:inter_db_open_sleep_period

plugins:artix:db:inter_db_open_sleep_period specifies the amount
of time spent sleeping between failed database open attempts on
the slave side. This variable is related to
plugins:artix:db:db_open_retry_attempts.
Defaults to 2000 milliseconds (2 seconds).

plugins:artix:db:max_buffered_msgs

plugins:artix:db:max_buffered_msgs specifies the maximum
number of batch messages stored in the message buffer of a high
availabilty database. All messages are sent and the buffer is
flushed when this limit is reached. Defaults to 10. This feature
helps to reduce the traffic between replicas.

plugins:artix:db:error_file="c:\logs\berkeleydb.log";

rep1{
 plugins:artix:db:priority = "80";
 plugins:artix:db:iiop:port = "2000";
 };

Artix Configuration Reference, C++ Runtime 49

plugins:artix:db:max_msg_buffer_size

plugins:artix:db:max_msg_buffer_size specifies the maximum size
of the message buffer of a high availabilty database. All messages
are sent and the buffer is flushed when this limit is reached.
Defaults to 10240. This feature helps to reduce the traffic between
replicas.

plugins:artix:db:max_ping_retries

plugins:artix:db:max_ping_retries specifies how many failed pings
between replicas can happen before the remote replica is
considered unreachable. The replica is then marked as unavailable
until it can be pinged again.
Defaults to 1. This means that if one ping fails, the replica is
marked as UNAVAIL, and no attempt is made to send it any
database update or election packets until it becomes available
again.
For more details, see plugins:artix:db:ping_lifetime.

plugins:artix:db:ping_lifetime

plugins:artix:db:ping_lifetime specifies the amount of time that
the servant pinging replicas waits for before returning. Defaults to
10000 milliseconds (10 seconds).
Replicas monitor each other using inter-replica pings. These pings
are optimized to minimize the amount of network traffic between
replicas. This optimization is based on specifying long-lived pings.
If the server process dies before returning, the caller gets an
immediate notification of the failure of the ping. However, if the
server machine dies, the notification occurs when
plugins:artix:db:roundtrip_timeout expires. This is because the
server-side TCP/IP stack can not notify the caller of connection
failure if the host machine dies unexpectedly.

plugins:artix:db:ping_retry_interval

plugins:artix:db:ping_retry_interval specifies the number of
milliseconds between inter-replica ping attempts. Defaults to 2000
milliseconds (2 seconds).
For more details, see plugins:artix:db:ping_lifetime.

plugins:artix:db:priority

plugins:artix:db:priority specifies the replica priority. The higher
the priority the more likely the replica is to be elected as master.
This variable should be set if you are using replication.
There is no guarantee that the replica with the highest priority is
elected master. The first consideration for electing a master is who
has the most current database. Setting a priority of 0 means that
the replica is never elected master. Defaults to 1.
This variable must be set in a sub-scope for each replica. See the
example for plugins:artix:db:iiop:port.

 50 Artix Configuration Reference, C++ Runtime

plugins:artix:db:replace_when_forwarding

plugins:artix:db:replace_when_forwarding specifies whether the
port name or service name in the WSDL file is used as the
replaceable artifact when mastership moves around. Possible
values are port or service.
The Artix demos use port, and this is the IONA-preferred option.
However, if you wish to have multiple WSDL services representing
your cluster instead of multiple WSDL ports on one service, you
can specify service instead.

plugins:artix:db:replica_name

plugins:artix:db:replica_name specifies a simple string name for
the replica. It indicates the replica in the
plugins:artix:db:replicas list that this configuration refers to.
This variable must be set if plugins:artix:db:replicas is set,
otherwise a DBException/BAD_CONFIGURATION is thrown. Each replica
must have its own unique name, and must be present in the list.
Defaults to the replica’s innermost configuration scope (for
example, rep1). This value is automatically inferred and does not
need to be explicitly set, unless you wish to use a different replica
name.

plugins:artix:db:replicas

plugins:artix:db:replicas specifies a cluster of replica services.
This variable takes a list of replicas specified using the following
syntax:
ReplicaName=HostName:PortNum

For example, the following entry configures a cluster of three
replicas spread across three machines named jimi, noel, and
mitch.

Defaults to an empty list.

plugins:artix:db:roundtrip_timeout

plugins:artix:db:roundtrip_timeout specifies the amount of time
that a replica waits for a response from a ping sent to another
replica. Defaults to 20000 milliseconds (20 seconds).
If this variable is not set, some failed pings may take a long time
to return (for example, if the target machine loses power). When a
machine fails, the TCP/IP stack on the machine can not terminate
the connection. The client still waits for a reply, and thinks that
the connection is still valid.

plugins:artix:db:replicas=[“rep1=jimi:2000”,
“rep2=mitch:3000”, “rep3=noel:4000”];

Note: It is recommended that you set ReplicaName to the
same value as the replica’s configuration scope (see
plugins:artix:db:replica_name).

Artix Configuration Reference, C++ Runtime 51

The client only sees that the connection dies when TCP/IP times
out and marks the connection as terminated. The variable
prevents this situation from occurring.

plugins:artix:db:sync_retry_attempts

plugins:artix:db:sync_retry_attempts specifies the maximum
number of times that the slave sends a synchronization request to
the master. This is used when a slave starts for the first time and
synchronizes with an existing master.
Slave synchronization is performed by the slave sending a request
to the master to write a small piece of data to its database, and
then the slave waiting for this data to appear. When the data
appears on the slave side, the slave knows it is processing live
records from the master and is up-to-date and synchronized.
Defaults to 5. You should rarely need to change this setting.

plugins:artix:db:use_shutdown_hook

plugins:artix:db:use_shutdown_hook enables the Artix DB plug-in to
be used correctly within a container. Defaults to true. This setting
should not be changed, unless directed by Artix Support.

plugins:artix:db:verbose_logging

plugins:artix:db:verbose_logging specifies whether more Berkeley
DB messages about replication, deadlock and recovery are sent to
the error file. Defaults to false. Setting this variable to true has
effect only when plugins:artix:db:error_file is also set to true.

plugins:artix:db:verify_aggressive and
plugins:artix:db:recovery_attempt

The Berkeley database verification method is added to scan for a
corrupted database file before opening the same. If the database
verification (db_verify) fails, an exception is thrown and the
initialization fails. To start the process with a corrupted database
and join the replicated services, the following two new
configuration variables are added to control the db_verify.
1. plugins:artix:db:verify_aggressive

2. plugins:artix:db:recovery_attempt

Default setting is true, which catches all database corruption. It is
thorough as it verifies all the key/data pairs in the database, but
therefore more costly.

Note: This variable must be set to a larger value than
plugins:artix:db:ping_lifetime. Otherwise, valid pings would be
regarded as having timed out when they are still in progress.

plugins:artix:db:verify_aggressive="false"

plugins:artix:db:recovery_attempt="true";

 52 Artix Configuration Reference, C++ Runtime

Default setting is false. When enabled, the locator will try to
recover to the latest checkpoint (if it exists) after failed db
verification. With every start attempted and a DB_VERIFY_BAD it
will rollback one checkpoint.

FTP
The plugins:ftp namespace contains variables for File Transfer
Protocol. These include the following:
• plugins:ftp:policy:client:filenameFactory

• plugins:ftp:policy:client:replyFileLifecycle

• plugins:ftp:policy:connection:connectMode

• plugins:ftp:policy:connection:connectTimeout

• plugins:ftp:policy:connection:receiveTimeout

• plugins:ftp:policy:connection:scanInterval

• plugins:ftp:policy:connection:useFilenameMaskOnScan

• plugins:ftp:policy:credentials:name

• plugins:ftp:policy:credentials:password

• plugins:ftp:policy:server:filenameFactory

• plugins:ftp:policy:server:requestFileLifecycle

plugins:ftp:policy:client:filenameFactory

plugins:ftp:policy:client:filenameFactory specifies the name of
the class that implements the client’s filename factory. This
generates the filenames used for storing request messages on the
FTP server, and determines the name of the associated replies.
This class name must be listed on the endpoint’s class path. The
default setting is:

plugins:ftp:policy:client:replyFileLifecycle

plugins:ftp:policy:client:replyFileLifecycle specifies the name
of the class that implements the client's reply lifecycle policy. The
reply lifecycle policy is responsible for instructing the Artix runtime
whether a reply file must be deleted or moved to a different FTP
server location.
This class name must be listed on the endpoint’s class path. The
default setting is:

plugins:ftp:policy:client:filenameFactory="com.iona.jbus.
transports.ftp.policy.client.DefaultFilenameFactory";

plugins:ftp:policy:client:replyFileLifecycle="com.iona.jbus.
transports.ftp.policy.client.DefaultReplyFileLifecycle";

Artix Configuration Reference, C++ Runtime 53

plugins:ftp:policy:connection:connectMode

plugins:ftp:policy:connection:connectMode specifies the
connection mode used to connect to the FTP daemon. Valid values
are passive and active. The default is:

plugins:ftp:policy:connection:connectTimeout

plugins:ftp:policy:connection:connectTimeout specifies a timeout
value in milliseconds for establishing a connection with a remote
FTP daemon. The default is:

plugins:ftp:policy:connection:receiveTimeout

plugins:ftp:policy:connection:receive:Timeout specifies a receive
timeout value in milliseconds for the FTP daemon filesystem
scanner. The receive timeout will occur when the following
condition is met:

It is recommended that the receive timeout value is greater than
plugins:ftp:policy:connection:scanInterval * 1000. If this value is
set to 0, it is guaranteed that there will be at least one scan of the
remote FTPD filesystem before the timeout. The default is:

plugins:ftp:policy:connection:scanInterval

plugins:ftp:policy:connection:scanInterval specifies the interval,
in seconds, at which the request and reply locations are scanned
for updates. The default is:

plugins:ftp:policy:connection:useFilenameMaskOnScan

plugins:ftp:policy:connection:useFilenameMaskOnScan specifies
whether the Artix runtime uses a filename mask when calling the
FTP daemon with a FTP LIST command (for example, LIST
myrequests*).
Some FTP daemons do not implement support for listing a subset
of files based on a filename mask. To enable interoperability with
such servers, this variable must be set to false. However, if you
know that an FTP daemon supports a filtered LIST command,
setting this variable to true increases FTP transport performance.
The default is:

plugins:ftp:policy:connection:connectMode="passive";

plugins:ftp:policy:connection:connectTimeout="-1";

CurrentTime - StartReplyScanningTime >=
plugins:ftp:policy:connection:receiveTimeout

plugins:ftp:policy:connection:receiveTimeout="-1";

plugins:ftp:policy:connection:scanInterval="5";

plugins:ftp:policy:connection:useFilenameMaskOnScan="false";

 54 Artix Configuration Reference, C++ Runtime

plugins:ftp:policy:credentials:name

plugins:ftp:policy:credentials:name specifies the FTP daemon
user name. This variable along with
plugins:ftp:policy:credentails:password must have credentials
that allow the Artix runtime to list, add, move and remote files
from the filesystem location provided using FTP WSDL extensors.
The default is:

plugins:ftp:policy:credentials:password

plugins:ftp:policy:credentials:password specifies the FTP daemon
user password. The default is:

plugins:ftp:policy:server:filenameFactory

plugins:ftp:policy:server:filenameFactory specifies the name of
the class that implements the client’s filename factory. The
filename factory is responsible for identifying which requests to
dispatch, and how to name reply messages.
This class name must be listed on the endpoint’s class path. The
default setting is:

plugins:ftp:policy:server:requestFileLifecycle

plugins:ftp:policy:server:requestFileLifecycle specifies the name
of the class that implements the server's request lifecycle policy.
The request lifecycle policy is responsible for instructing the Artix
runtime whether a request file must be deleted or moved to a
different FTP server location.
This class name must be listed on the endpoint’s class path. The
default setting is:

JMS

The variables in the plugins:jms namespace configure settings for
interoperability with the Java Message Service. These include the
following:
• plugins:jms:policies:binding_establishment:backoff_ratio

• plugins:jms:policies:binding_establishment:initial_iteration_de
lay

• plugins:jms:policies:binding_establishment:backoff_ratio

• plugins:jms:pooled_session_high_water_mark

plugins:ftp:policy:credentials:name="anonymous";

plugins:ftp:policy:credentials:password="anonymous@anonymous
.net";

plugins:ftp:policy:server:filenameFactory="com.iona.jbus.
transports.ftp.policy.server.DefaultFilenameFactory";

plugins:ftp:policy:server:requestFileLifecycle="com.iona.jbus.t
ransports.ftp.policy.server.DefaultRequestFileLifecycle";

Artix Configuration Reference, C++ Runtime 55

• plugins:jms:pooled_session_low_water_mark

For information on configuring multi-threading with JMS, see
policy:messaging_transport:concurrency.

plugins:jms:policies:binding_establishment:backoff_ratio

plugins:jms:policies:binding_establishment:backoff_ratio
specifies the degree to which delays between reconnection retries
increase from one retry to the next. This is used when Artix tries
to reconnect to the Java Message Service after a connection is
dropped (for example, if JMS becomes unavailable, or a network
error occurs).
The successive delays between retries use the following geometric
progression:

For example, if the initial_iteration_delay is 1000 milliseconds,
and the backoff_ratio is 2:
• The first retry waits 1000 milliseconds.
• The second retry waits 1000 x 2 milliseconds.
• The third retry waits 1000 x 2 2 milliseconds.

....
• The nth retry waits 1000 x 2 (n-1) milliseconds.
The data type is long, and values must be greater than or equal to
0. Defaults to 2:

In your code, in the event of an initial failure, or an inability to
make a connection after the configured retries have been
exhausted, a method call will receive a RemoteException, which
wraps a TransportException.

plugins:jms:policies:binding_establishment:initial_iteration_delay

plugins:jms:policies:binding_establishment:initial_iteration_del
ay specifies the amount of time, between the first and second
attempts to establish a connection with a JMS broker.
The data type is long, and values must be greater than or equal to
0. Defaults to 1000 milliseconds:

Retry
Number

Delay

1 initial_iteration_delay x backoff_ratio 0

2 initial_iteration_delay x backoff_ratio 1

n initial_iteration_delay x backoff_ratio (n-1)

plugins:jms:policies:binding_establishment:backoff_ratio="2";

plugins:jms:policies:binding_establishment:initial_iteration_delay
="1000";

 56 Artix Configuration Reference, C++ Runtime

plugins:jms:policies:binding_establishment:max_binding_iteration
s

plugins:jms:policies:binding_establishment:max_binding_iteration
s specifies the limit on the number of times that an Artix client
tries to reconnect to a JMS broker. To disable reconnecting to the
Java Message Service, set this variable to 0.
The data type is long, and values must be greater than or equal to
0. Defaults to 5:

plugins:jms:pooled_session_high_water_mark

plugins:jms:pooled_session_high_water_mark specifies the limit on
the number of temporary JMS queues. The high water mark minus
the low water mark equals the number of soft references that are
stored.
Temporary queues that are stored as soft references will only be
garbage collected if memory becomes an issue for the client.
However, any temporary queue that is reaped will potentially be
replaced by another queue later. The default value is:

For example, by default, there are 520 temporary queues—500
soft references and 20 strong references (see
plugins:jms:pooled_session_low_water_mark).

plugins:jms:pooled_session_low_water_mark

plugins:jms:pooled_session_low_water_mark specifies the number of
temporary JMS queues that are stored as strong references. This
is the number of queues that remain in memory.
Temporary queues stored as strong references will never be
garbage collected, unless the client times out. In the event of a
timeout, the temporary queue is reaped to avoid it being used by
another invocation. However, any temporary queue that is reaped
will potentially be replaced by another queue later. The default
value is:

For example, by default, there are 520 temporary queues—20
strong references and 500 soft references (see
plugins:jms:pooled_session_high_water_mark).

plugins:jms:policies:binding_establishment:max_binding_iterati
ons="5";

plugins:jms:pooled_session_high_water_mark = "500";

Note: Setting the high water mark value too high could cause
problems with the JMS broker that the client is not aware of.

plugins:jms:pooled_session_low_water_mark = "20";

Artix Configuration Reference, C++ Runtime 57

JMX

The plugins:bus_management namespace includes variables that
specify JMX monitoring of the Artix runtime. JMX stands for Java
Management Extensions. These variables include:
• plugins:bus_management:enabled

• plugins:bus_management:connector:enabled

• plugins:bus_management:connector:port

• plugins:bus_management:connector:registry:required

• plugins:bus_management:connector:url:publish

• plugins:bus_management:connector:url:file

• plugins:bus_management:http_adaptor:enabled

• plugins:bus_management:http_adaptor:port

plugins:bus_management:enabled

plugins:bus_management:enabled specifies whether the Artix
runtime can be managed locally using JMX MBeans. The default
setting is false. To enable local JMX monitoring, set this variable
to true:

This setting enables a local access to JMX runtime MBeans. The
bus_management plug-in wraps runtime components into open
dynamic MBeans and registers them with a local MBeanServer.

plugins:bus_management:connector:enabled

plugins:bus_management:connector:enabled specifies whether the
Artix runtime can be managed remotely using JMX MBeans. The
default setting is false. To enable remote JMX monitoring, set the
following variables to true:

These settings allow for both local and remote access.
Remote access is performed through JMX Remote, using an RMI
Connector on a default port of 1099. When the configuration has
been set, you can use the following default JNDI-based
JMXServiceURL to connect remotely:

plugins:bus_management:connector:port

plugins:bus_management:connector:port specifies a port for remote
JMX access. For example, given the following setting:

plugins:bus_management:enabled="true";

plugins:bus_management:enabled="true";
plugins:bus_management:connector:enabled="true";

service:jmx:rmi://host:1099/jndi/artix

plugins:bus_management:connector:port="2000";

 58 Artix Configuration Reference, C++ Runtime

You can then use the following JMXServiceURL:

plugins:bus_management:connector:registry:required

plugins:bus_management:connector:registry:required specifies
whether the connector uses a stub-based JMXServiceURL. For
example, the following settings enable stub-based access:

See the javax.management.remote.rmi package for more details
on remote JMX.

plugins:bus_management:connector:url:publish

plugins:bus_management:connector:url:publish specifies whether
publishing the JMXServiceURL to a local file is enabled. To enable
this, specify the following:

plugins:bus_management:connector:url:file

plugins:bus_management:connector:url:file specifies a filename for
publishing the JMXServiceURL to a local file. For example, the
following settings override the default filename:

plugins:bus_management:http_adaptor:enabled

plugins:bus_management:http_adaptor:enabled specifies whether the
default HTTP adaptor console supplied by the JMX reference
implementation is enabled. To enable this adaptor, specify the
following:

plugins:bus_management:http_adaptor:port

plugins:bus_management:http_adaptor:port specifies a port for the
default HTTP adaptor console supplied by the JMX reference
implementation. For example:

To access the HTTP adaptor on this port, specify
http://localhost:7659 in your browser.

service:jmx:rmi://host:2000/jndi/artix

plugins:bus_management:enabled="true";
plugins:bus_management:connector:enabled="true";
plugins:bus_management:connector:registry:required="false";

plugins:bus_management:connector:url:publish="true";

plugins:bus_management:connector:url:publish="true";
plugins:bus_management:connector:url:file="../../service.url";

plugins:bus_management:http_adaptor:enabled="true";

plugins:bus_management:http_adaptor:port="7659";

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

Artix Configuration Reference, C++ Runtime 59

Local Log Stream
The variables in the plugins:local_log_stream namespace
configure text-based logging. By default, Artix is configured to log
messages in an XML format. You can change this behavior using
the local_log_stream plug-in.
The plugins:local_log_stream namespace contains the following
variables:
• plugins:local_log_stream:buffer_file

• plugins:local_log_stream:filename

• plugins:local_log_stream:filename_date_format

• plugins:local_log_stream:log_elements

• plugins:local_log_stream:log_thread_id

• plugins:local_log_stream:milliseconds_to_log

• plugins:local_log_stream:precision_logging

• plugins:local_log_stream:rolling_file

plugins:local_log_stream:buffer_file

plugins:local_log_stream:buffer_file specifies whether the output
stream is sent to a buffer before it writes to a local log file. To
specify this behavior, set this variable to true:

When set to true, by default, the buffer is output to a file every
1000 milliseconds when there are more than 100 messages
logged. This log interval and number of log elements can also be
configured.

plugins:local_log_stream:filename

plugins:local_log_stream:filename sets the output stream to the
specified local text file. For example:

If you do not specify a file name, logging is sent to stdout.

plugins:local_log_stream:filename_date_format

plugins:local_log_stream:filename_date_format specifies the
format of the date in a text-based rolling log file. The specified
date conforms to the format rules of the ANSI C strftime()
function. For example:

On the 31st January 2016, this results in a log file named
my_log_2016_01_31.

plugins:local_log_stream:buffer_file = "true";

plugins:local_log_stream:filename = "/var/adm/mylocal.log";

plugins:local_log_stream:rolling_file="true";
plugins:local_log_stream:filename="my_log";
plugins:local_log_stream:filename_date_format="_%Y_%m_%d";

 60 Artix Configuration Reference, C++ Runtime

plugins:local_log_stream:log_elements

plugins:local_log_stream:log_elements specifies the number of log
messages that must be in the buffer before they are output to a
log file. The default is 100 messages.
For example, the following configuration writes the log output to a
log file if there are more than 20 log messages in the buffer.

plugins:local_log_stream:log_thread_id

plugins:local_log_stream:log_thread_id specifies whether the
thread ID is logged in the log message or not, for example:

The default is false. When this setting has been enabled, the
following example logging message shows the thread ID in bold:

plugins:local_log_stream:milliseconds_to_log

plugins:local_log_stream:milliseconds_to_log specifies how often
in milliseconds that the log buffer is output to a log file. The
default is 1000 milliseconds.
For example, the following configuration writes the log output to a
log file every 400 milliseconds.

plugins:local_log_stream:precision_logging

plugins:local_log_stream:precision_logging specifies whether
events are logged with time precision in nanoseconds, or at the
granularity of seconds. The default value is false (to avoid
changing the logging output of deployed systems).
To enable precision logging, use the following setting:

plugins:local_log_stream:rolling_file

plugins:local_log_stream:rolling_file is a boolean which specifies
that the logging plug-in creates a new log file each day to prevent
the log file from growing indefinitely. In this model, the stream
appends the current date to the configured filename. This
produces a complete filename, for example:

plugins:local_log_stream:log_elements = "20";

plugins:local_log_stream:log_thread_id = "true";

Wed, 23 Sep 2015 12:22:26.0000000 [homer600:6870:1269287216]
(IT_BUS.CORE:0) I - Registering Bus plugin

SOAPServicePluginFactory

plugins:local_log_stream:milliseconds_to_log = "400";

plugins:local_log_stream:precision_logging = "true";

/var/adm/artix.log.02172006

Artix Configuration Reference, C++ Runtime 61

A new file begins with the first event of the day and ends at
23:59:59 each day. The default behavior is true. To disable rolling
file behavior, set this variable to false. For example:

Log4J Log Stream
The plugins:log4j_log_stream namespace configures integration
with Apache’s log4j logging tool. This namespace contains the
following variable:
• plugins:log4j_log_stream:use_stderr

plugins:log4j_log_stream:use_stderr

plugins:log4j_log_stream:use_stderr specifies whether to redirect
the log4j log stream to standard error. The default is false. To
redirect to standard error, specify the following setting:

You must ensure that the local_log_stream plug-in is present in
your orb_plugins list.

Locator Service
The locator service plug-in, service_locator, is configured by the
variables in the plugins:locator namespace:
• plugins:locator:peer_timeout

• plugins:locator:persist_data

• plugins:locator:selection_method

• plugins:locator:service_group

• plugins:locator:wsdl_port

plugins:locator:peer_timeout

plugins:locator:peer_timeout specifies the amount of time, in
milliseconds, that the locator plug-in waits between keep-alive
pings of the endpoints that are registered with it. The default and
minimum setting is 10000 milliseconds (10 seconds).
The locator uses a third-party peer manager to ping its endpoints.
For more details, see “Peer Manager” on page 65.

plugins:locator:persist_data

plugins:locator:persist_data enables persistence in the locator.
This variable specifies whether the locator uses a persistent
database to store references. For example:

Defaults to false, which means that the locator uses an
in-memory map to store references. When replicating the locator
you must set persist_data to true. If you do not, replication does
not work.

plugins:local_log_stream:rolling_file = "false";

plugins:log4j_log_stream:use_stderr = "true";

plugins:locator:persist_data="true";

 62 Artix Configuration Reference, C++ Runtime

plugins:locator:selection_method

plugins:locator:selection_method specifies the load balancing
selection method used by the locator.
When plugins:locator:persist_data is set to true, the locator to
switches from round robin to random load balancing.
You can change the default behavior of the locator to always use
random load balancing by setting the following:

plugins:locator:service_group

plugins:locator:service_group specifies an arbitrary group name
for an Artix service or bus. For example, you can use this to query
the locator for a specified group of services.
There are no restrictions on assigning services to groups in
different processes. Services in the same process can belong to
different groups, or to no group. Services in different processes
can belong to the same group. By default, a service belongs to no
group. Specifying a group in an Artix .cfg file takes precedence
over specifying a group in a WSDL file.

Specifying a group for a service
The following example defines a QName alias named corba_svc,
and assigns this to a group named CORBAGroup.

Specifying a group for a bus
You can also define a global group for all services in the current
bus. All services that do not have a group definition in WSDL or
configuration then belong to the global group by default.

plugins:locator:wsdl_port

plugins:locator:wsdl_port specifies a locator WSDL port for a
locator replica service. This allows the locator to specify the WSDL
port that it uses when registering its own servant. This feature
enables forwarding of write requests from a slave to a master
locator. The following is an example setting:

Defaults to the replica’s locator configuration scope name (for
example, Locator1). This value is automatically inferred and does
not need to be explicitly set, unless you wish to use a different
WSDL port name.

plugins:locator:selection_method = “random”;

bus:qname_alias:corba_svc =
"{http://demo.iona.com/advanced/LocatorQuery}CORBAService";

plugins:locator:service_group:corba_svc = "CORBAGroup";

plugins:locator:service_group = "DefaultGroupName";

plugins:locator:wsdl_port=Locator1;

Artix Configuration Reference, C++ Runtime 63

Locator Endpoint Manager
The locator endpoint manager plug-in, locator_endpoint, is
configured by the following variables:
• plugins:locator_endpoint:exclude_endpoints

• plugins:locator_endpoint:include_endpoints

plugins:locator_endpoint:exclude_endpoints

plugins:locator_endpoint:exclude_endpoints specifies endpoints to
be excluded from the locator. For example, if do not you want to
register the container service, but want to register all the
endpoints that are activated in that container, use the following
setting:

You can also wildcard your service names. This enables you to
filter based on a specified namespace. For example:

plugins:locator_endpoint:include_endpoints

plugins:locator_endpoint:include_endpoints specifies endpoints to
be included in the locator. For example, if you only want to
register the session manager, but not any of the endpoints that it
manages, use the following setting:

You can also wildcard your service names. This enables you to
filter based on a namespace. For example:

plugins:locator_endpoint:exclude_endpoints =
["{http://ws.iona.com/container}ContainerService"];

plugins:locator_endpoint:exclude_endpoints =
["{http://www.sample.com/finance}*"];

plugins:locator_endpoint:include_endpoints =
["{http://ws.iona.com/sessionmanager}SessionManagerService"];

plugins:locator_endpoint:include_endpoints =
["{http://www.sample.com/finance}*"];

Note: Combining the exclude_endpoints and include_endpoints
variables is ambiguous. If you do this, the application will fail to
initialize.

 64 Artix Configuration Reference, C++ Runtime

Monitoring
The monitoring_plugin enables integration with third-party
monitoring tools (for example, Aurea’s Actional® Application
Performance Monitoring). This plug-in is configured by the
following variables:
• plugins:monitoring_plugin:classname

• plugins:monitoring_plugin:enable_si_payload

• plugins:monitoring_plugin:know_report_tool

• plugins:monitoring_plugin:max_reported_payload_size

• plugins:monitoring_plugin:show_service_facade

plugins:monitoring_plugin:classname

plugins:monitoring_plugin:classname specifies the monitoring plug-in
factory class. When configuring the Artix monitoring plug-in, you
must also specify the java plug-in, and add monitoring handlers to
the interceptor chain. This is shown in the following example:

For more details on configuring binding lists and interceptors, see
“Binding Lists for Custom Interceptors” on page 9.

plugins:monitoring_plugin:enable_si_payload

plugins:monitoring_plugin:enable_si_payload specifies whether
reporting of the message payload on the server side is enabled
(for example, for a SOAP message over HTTP). If this option is set
to false, only the payload size is reported. The default value is:

Configure the plug-in factory class:
plugins:monitoring_plugin:classname =
 "com.iona.jbus.management.monitoring.interceptors.Monitoring

PlugInFactory";

Load the java plug-in:
orb_plugins = ["soap", "java"];

Load the monitoring plug-in:
java_plugins = ["monitoring_plugin"];

Add the client-side handlers to the interceptors chain.
binding:artix:client_request_interceptor_list= "monitoring_handler";
binding:artix:client_message_interceptor_list= "monitoring_handler";

Add the server-side handlers to the interceptors chain.
binding:artix:server_request_interceptor_list= "monitoring_handler";
binding:artix:server_message_interceptor_list= "monitoring_handler";

plugins:monitoring_plugin:enable_si_payload = "true";

Artix Configuration Reference, C++ Runtime 65

plugins:monitoring_plugin:know_report_tool

plugins:monitoring_plugin:know_report_tool specifies the name of the
reporting tool (in this case, actional). actional is currently the
only supported value. For example:

plugins:monitoring_plugin:max_reported_payload_size

plugins:monitoring_plugin:max_reported_payload_size specifies the
maximum size in bytes of the message payload to report. If a
message payload exceeds this value, only its size is reported,
regardless of the value of the enable_si_payload option. An
example setting is:

The default value is -1 (unlimited).

plugins:monitoring_plugin:show_service_facade

plugins:monitoring_plugin:show_service_facade enables reporting of all
interactions with an extra representation of the target service on
the client side. This is also known informally as an extra hop. This
is useful when it is impossible to report what service is being
invoked by the client (for example, where a JMS queue exists in
the invocation chain). The default value is:

Peer Manager
The peer manager is used by the locator and session manager to
ping their endpoints, and verify that they are still running. The
peer_manager plug-in is transparently loaded by the following
plug-ins:
• service_locator

• locator_endpoint

• session_manager_service

• session_endpoint_manager

The peer_manager includes the following configuration variables:
• plugins:peer_manager:ping_on_failure

• plugins:peer_manager:timeout_delta

plugins:peer_manager:ping_on_failure

plugins:peer_manager:ping_on_failure specifies whether the
receiver of a ping failure performs a reverse ping to verify the
validity of the failure. Defaults to false. To enable this feature, set
this variable as follows:

plugins:monitoring_plugin:know_report_tool= "actional";

plugins:monitoring_plugin:max_reported_payload_size=
"1024";

plugins:monitoring_plugin:show_service_facade= "false";

plugins:peer_manager:ping_on_failure = "true";

 66 Artix Configuration Reference, C++ Runtime

The peer manager service on both sides ping each other as a
health check (for example, locator endpoint manager and locator
service). If this variable is set, the peer manager that sees the
ping failure confirms the validity of the failure by performing a
ping itself. If this reverse ping succeeds, the ping failure is
spurious and can be ignored. However, if it does not succeed, this
is a genuine ping failure, and the appropriate callback is notified.
For example, this feature is useful in circumstances where a
hardware clock malfunctions and creates unnecessary ping
failure-like conditions (re-registrations or removal of endpoints).
For details on how the locator service and endpoint manager
interact with the peer manager, and how they react to failure, see
the Artix Locator Guide: C++.

plugins:peer_manager:timeout_delta

plugins:peer_manager:timeout_delta specifies the time allowed for
failover detection in milliseconds. The default is 2000.
For example, increasing the value of this variable to 10000 ensures
that only a real failure results in an endpoint being removed from
the locator’s list of endpoints:

Performance Logging
The bus response monitor and response time collector plug-ins
configure settings for Artix performance logging. The response
time collector plug-in periodically collects data from the response
monitor plug-in and logs the results. See Configuring and
Deploying Artix Solutions, C++ Runtime for full details of
Artix performance logging.
The Artix performance logging plug-ins include the following
variables:
• plugins:bus_response_monitor:type

• plugins:it_response_time_collector:filename.
• plugins:it_response_time_collector:server-id.
See also “Remote Logging” on page 67.

plugins:bus_response_monitor:type

plugins:bus_response_monitor:type specifies whether logging is
output to a file or stored in memory. Specifying file outputs
performance logging data to a file, while specifying memory places
the data into memory so it can be retrieved using the Artix
container service. When file is enabled, memory is also enabled. For
example:

plugins:peer_manager:timeout_delta = "10000";

plugins:bus_response_monitor:type = file;

Artix Configuration Reference, C++ Runtime 67

plugins:it_response_time_collector:filename

plugins:it_response_time_collector:filename specifies the location
of the performance log file. For example:

plugins:it_response_time_collector:server-id

plugins:it_response_time_collector:server-id specifies a server ID
that will be reported in your log messages. This server ID is
particularly useful in the case where the server is a replica that
forms part of a cluster.
In a cluster, the server ID enables management tools to recognize
log messages from different replica instances. For example:

This setting is optional; and if omitted, the server ID defaults to
the ORB name of the server. In a cluster, each replica must have
this value set to a unique value to enable sensible analysis of the
generated performance logs. This setting can also be used to
explicitly set a client ID that is reported in your log messages.

Remote Logging
Artix provides remote performance logging to enable you to send
logging data to a remote endpoint where the data can be persisted
and subsequently consumed by an application that is native to the
remote system. For example, depending on your architecture, it
might not be desirable or feasible to deploy the required
management tools on a particular platform. Remote logging
enables you to solve this problem.
The remote logging plug-in (remote_log_receiver) is configured by
the following variables:
• plugins:remote_log_receiver:iiop:addr_list

• plugins:remote_log_receiver:ior_filename

• plugins:remote_log_receiver:log_filename

• plugins:remote_log_receiver:prerequisite_plugins

See also “Performance Logging” on page 66.

plugins:remote_log_receiver:iiop:addr_list

plugins:remote_log_receiver:iiop:addr_list specifies the host
name or IP address of the host on which the remote logger is
running, and the port that it uses to listen for logging requests.
Values are specified as follows:

plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";

plugins:it_response_time_collector:server-id = "my_server_app1";

plugins:remote_log_receiver:iiop:addr_list = ["host:port"];

 68 Artix Configuration Reference, C++ Runtime

plugins:remote_log_receiver:ior_filename

plugins:remote_log_receiver:ior_filename specifies the file to
which the remote logger daemon writes a stringified Interoperable
Object Reference (IOR) when it starts up. This IOR may be
subsequently made available to the source applications that are
acting as clients of the remote logger. However, this is not
required if the source applications use a corbaloc URL rather than
an IOR to contact the remote logger. For example:

plugins:remote_log_receiver:log_filename

plugins:remote_log_receiver:log_filename specifies the local file on
the remote host to which all logs are directed. For example:

plugins:remote_log_receiver:prerequisite_plugins

plugins:remote_log_receiver:prerequisite_plugins specifies the
IIOP plug-ins that the remote logger needs for communication
with the source host(s). For example:

Remote Method Invocation
The Java Remote Method Invocation plug-in, rmi, is configured by
the following variables:
• plugins:rmi:registry_port

• plugins:rmi:start_registry

plugins:rmi:registry_port

plugins:rmi:registry_port specifies the port used to contact an
RMI registry. The Artix bus can optionally run an RMI registry as a
convenience for testing. The default setting is as follows:

plugins:rmi:start_registry

plugins:rmi:start_registry specifies whether to start an RMI
registry. The Artix bus can optionally run an RMI registry as a
convenience for testing. The default setting is false. To start an
RMI registry, use the following setting:

plugins:remote_log_receiver:ior_filename =
"/var/publish/logger_ref.txt";

plugins:remote_log_receiver:log_filename =
"/var/logs/remote_perflogs.txt";

plugins:remote_log_receiver:prerequisite_plugins =
["iiop_profile", "giop", "iiop"];

plugins:rmi:registry_port = "1099";

plugins:rmi:start_registry = "true";

Artix Configuration Reference, C++ Runtime 69

Routing
The routing plug-in uses the following variables:
• plugins:routing:proxy_cache_size

• plugins:routing:reference_cache_size

• plugins:routing:wsdl_url

• plugins:routing:use_bypass

• plugins:routing:use_pass_through

• plugins:routing:wrapped

plugins:routing:proxy_cache_size

plugins:routing:proxy_cache_size specifies the maximum number
of proxified server references in the router. This is the number of
references that have been converted into a proxy and are ready
for invocation.
plugins:routing:proxy_cache_size works in conjunction with
plugins:routing:reference_cache_size. Having a smaller setting for
proxy_cache_size enables the router to conserve memory, while
still being ready for invocations. This is because proxified
references use more resources than unproxified references (for
example, for client connections and bindings). The default setting
is:
plugins:routing:proxy_cache_size="50";

The router caches references on a least recently used basis in the
following order: proxified, unproxified. A proxified reference is
demoted to an unproxified reference when the proxy_cache_size
limit is reached. Unproxified references are promoted to proxies
upon invocation.
For example, take a SOAP-HTTP client and CORBA server banking
system with 1,500 accounts. By default, the 50 most recently
used accounts are present in the router as proxified references.
The next 1000 most recently used are present as unproxified
references. While the remaining 450 do not exist in the router, but
can be created on-demand.

plugins:routing:reference_cache_size

plugins:routing:reference_cache_size specifies the maximum
number of unproxified server references in the router. This refers
to the number of references that must be proxified before they
can be invoked on. plugins:routing:reference_cache_size works in
conjunction with plugins:routing:proxy_cache_size. Having a
larger setting for reference_cache_size enables the router to
conserve memory, while still being ready for invocations.
Unproxified references use less resources than proxies (for
example, for client connections and bindings). The default setting
is:
plugins:routing:reference_cache_size="1000";

Note: Router proxification is available for the following bindings
and transports: CORBA, SOAP, HTTP, and IIOP Tunnel.

 70 Artix Configuration Reference, C++ Runtime

The router caches transient references on a least recently used
basis in the following order: proxified, unproxified. Unproxified
references are promoted to proxies upon invocation. For an
example, see plugins:routing:proxy_cache_size.

plugins:routing:wsdl_url

plugins:routing:wsdl_url specifies the URL to search for Artix
contracts that contain the routing rules for your application. This
value can point to WSDL in any location, it does not need to be on
the local machine.
This value can be either a single URL or a list of URLs. If your
application is using the routing plug-in, you must specify a value
for this variable. The following example is from a default artix.cfg
file:

The following example specifies multiple routes:

Contract names must be relative to the location from which the
Artix router is started. In this example, the router expects that
route1.wsdl is located in the directory in which it was started, and
route2.wsdl was located one directory level higher.

plugins:routing:use_bypass

plugins:routing:use_bypass specifies a special optimization for
CORBA-only routes. It enables you to use CORBA location
forwarding to connect CORBA clients directly to CORBA servers,
bypassing the Artix routing plug-in.
When the client sends the first request to the router, the router
sends back a CORBA location forwarding reply, which tells the
client to connect directly to the server at the end of the route. The
client sends this and all subsequent requests directly to the
server, bypassing the router completely. This feature is disabled
by default. To enable bypass mode, use the following setting:

Routes that must examine the content of each request cannot
support bypass mode because the requests do not go through the
router. The following types of route support bypass mode:
• Straight source-destination routes.
• Failover: This is achieved by co-operation between CORBA

and the router. If a server fails, the forwarded CORBA client
automatically falls back to the original IOR, the router. The
router then re-forwards the client to a healthy server.

plugins:routing:wsdl_url="../wsdl/router.wsdl";

plugins:routing:wsdl=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];

Note: This variable does not accept a mixture of back slashes
and forward slashes. You must specify locations using only “\” or
“/”.

plugins:routing:use_bypass="true";

Artix Configuration Reference, C++ Runtime 71

• Load balancing: Load cannot be balanced per-operation using
bypass. The router forwards each client to a different server,
but when a client is forwarded all its requests go to the same
server. If the server fails, the client is re-forwarded to the
next healthy server in the round-robin, like failover.

plugins:routing:use_bypass and plugins:routing:use_pass_through
can both be set together. Bypass is used for CORBA-only
applications, while pass-through applies in all other cases. Bypass
gives best performance because the router effectively disappears.
However, pass-through may be preferable in the following cases:
• Bypass is disabled for per-operation, fan-out, and

transport-attribute routes.
• Bypassed clients must be able to connect directly to the

destination servers. Bypass is not suitable if the router is
being used as part of a firewall, or as a connection
concentrator.

plugins:routing:use_pass_through

plugins:routing:use_pass_through specifies whether the router
receives a message and sends it directly to the destination without
parsing. This only applies when the source and destination use the
same binding.
The default is true. The router copies the message buffer directly
from the source endpoint to the destination endpoint (if both use
the same binding). This disables reference proxification for
same-protocol routes (for example, HTTP-to-HTTP).
However, if you want all connections to go through the router, set
this variable to false. This means that all references are used
across the router.

plugins:routing:wrapped

plugins:routing:wrapped specifies whether a SOAP message uses a
doc-literal WRAPPED style. This enables the router to properly
unwrap all parts of the message. The default value is false.To
enable this feature, specify the following:

Note: Some attributes are carried in the message body, instead
of by the transport. Such attributes are always propagated when
the pass-through optimization is in effect, regardless of attribute
propagation rules.

plugins:routing:wrapped="true";

 72 Artix Configuration Reference, C++ Runtime

Service Lifecycle
The service lifecycle plug-in enables garbage collection of old or
unused proxy services. Dynamic proxy services are used when the
Artix router bridges services that have patterns such as callback,
factory, or passes references to other services. When the router
encounters a reference in a message, it proxifies it into one that a
receiving application can use. For example, an IOR from a CORBA
server cannot be used by a SOAP client, so a new route is
dynamically created for the SOAP client.
Dynamic proxies persist in the router memory and can have a
negative effect on performance. You can overcome this by using
service garbage collection to clean up proxies that are no longer
used. This cleans up unused proxies when a threshold has been
reached on a least recently used basis.
The Artix plugins:service_lifecycle namespace includes the
following variables:
• plugins:service_lifecycle:evict_static_services

• plugins:service_lifecycle:long_lived_services

• plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:evict_static_services

plugins:service_lifecycle:evict_static_services specifies
whether the service lifecycle plug-in only evicts transient services
or considers all services for eviction. By default, only transient
services are evicted. To evict both transient and static services,
specify the following setting:

plugins:service_lifecycle:long_lived_services

plugins:service_lifecycle:long_lived_services specifies a list of
services to exclude from the eviction list. This marks certain
services as important, so that even if they are not used over a
long period that, they are not evicted. For example:

You can specify a single service as follows:

plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:max_cache_size specifies the maximum
cache size of servants managed by the service_lifecycle plug-in.
For example:

plugins:service_lifecycle:evict_static_services="true";

plugins:service_lifecycle:long_lived_services =
[“http://demo.myco.com/bank:ATMService”,
“http://demo.myco.com/bank:LoanService”];

plugins:service_lifecycle:long_lived_services =
“http://demo.myco.com/bank:LoanService”;

plugins:service_lifecycle:max_cache_size = "30";

Artix Configuration Reference, C++ Runtime 73

To enable service lifecycle, you must also add the
service_lifecycle plug-in to the orb_plugins list, for example:

When writing client applications, you must make allowances for
the garbage collection service; in particular, ensure that
exceptions are handled appropriately. For example, a client may
attempt to proxify to a service that has already been garbage
collected. To prevent this, do either of the following:
• Handle the exception, get a new reference, and continue.

However, in some cases, this may not be possible if the
service has state.

• Set max_cache_size to a reasonable limit to ensure that all your
clients can be accommodated. For example, if you always
expect to support 20 concurrent clients, each with a transient
service session, you might wish to configure the
max_cache_size to 30.

You must not impact any clients, and ensure that a service is no
longer needed when it is garbage collected. However, if you set
max_cache_size too high, this may use up too much router memory
and have a negative impact on performance. For example, a
suggested range for this setting is 30-100.

Session Manager
The session manager, session_manager_service, is configured by
the following variable:
• plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout specifies the
amount of time, in milliseconds, that the session manager plug-in
waits between keep-alive pings of the endpoints registered with it.
The default and minimum setting is 10000 milliseconds (10
seconds).
The session manager uses a third-party peer manager to ping its
endpoints For more details, see “Peer Manager” on page 65.

orb_plugins = ["xmlfile_log_stream", "service_lifecycle",
"routing"];

Note: For a more scalable approach to managing proxies, see
plugins:routing:proxy_cache_size and
plugins:routing:reference_cache_size. This uses a single default
servant (instead of the multiple servants used by service
lifecycle), thereby minimizing the impact on router resources.

 74 Artix Configuration Reference, C++ Runtime

Session Endpoint Manager
The session endpoint manager plug-in, session_endpoint_manager,
is configured by the following variables:
• plugins:session_endpoint_manager:default_group

• plugins:session_endpoint_manager:header_validation

• plugins:session_endpoint_manager:peer_timeout

plugins:session_endpoint_manager:default_group

plugins:session_endpoint_manager:default_group specifies the
default group name for all endpoints that are instantiated using
the configuration scope.

plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:header_validation specifies
whether or not a server validates the session headers passed to it
by clients. Default value is true.

plugins:session_endpoint_manager:peer_timeout

plugins:session_endpoint_manager:peer_timeout specifies the
amount of time, in milliseconds, the session endpoint manager
plug-in waits between keep-alive pings back to the session
manager. The default and minimum setting is 10000 milliseconds
(10 seconds).
The session endpoint manager uses a third-party peer manager to
ping back to the session manager. For more details, see “Peer
Manager” on page 65.

Session Manager Simple Policy
The session manager’s simple policy plug-in, sm_simple_policy, is
configured by the following variables:
• plugins:sm_simple_policy:max_concurrent_sessions

• plugins:sm_simple_policy:min_session_timeout

• plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

plugins:sm_simple_policy:max_concurrent_sessions specifies the
maximum number of concurrent sessions the session manager will
allocate. Default value is 1.

plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:min_session_timeout specifies the
minimum amount of time, in seconds, allowed for a session’s
timeout setting. Zero means the unlimited. Default is 5.

Artix Configuration Reference, C++ Runtime 75

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_session_timeout specifies the
maximum amount of time, in seconds, allowed for a session’s
timesout setting. Zero means the unlimited. Default is 600.

SOAP
The soap plug-in includes the following configuration settings:
• plugins:soap:decl_namespaces_at_root

• plugins:soap:encoding

• plugins:soap:sequence_validation

• plugins:soap:validating

• plugins:soap:write_xsi_type

• plugins:soap:enforce_namespaces_at_root

• plugins:soap:qname_validation

plugins:soap:decl_namespaces_at_root

plugins:soap:decl_namespaces_at_root specifies whether XML
namespace prefixes are added only to the root of a SOAP
message. Defaults to false.
To specify that XML namespaces are added only in the SOAP
Envelope at the root of the message, use the following
configuration setting:

plugins:soap:encoding

plugins:soap:encoding specifies the character encoding used when
the SOAP plug-in writes service requests or notification broadcasts
to the wire. The valid settings are fully qualified IANA codeset
names (Internet Assigned Numbers Authority). The default value
is UTF-8. By default, this variable is not listed in the artix.cfg file.
For a listing of valid codesets visit the IANA’s website
(http://www.iana.org/assignments/character-sets).

plugins:soap:sequence_validation

plugins:soap:sequence_validation specifies whether to perform
basic sequence validation on WSDL files at runtime. This is
performed by default. To disable sequence validation, use the
following setting:

For example, you may need to use this setting if you see the
following error message from a client trying to connect to the Artix
locator service:

plugins:soap:decl_namespaces_at_root="true";

plugins:soap:sequence_validation = "false";

Expected element: node_id

http://www.iana.org/assignments/character-sets

 76 Artix Configuration Reference, C++ Runtime

The error is caused by clients connecting to the locator using a
different WSDL interface than the one published by the locator.

plugins:soap:validating

plugins:soap:validating specifies whether XML schema validation
is performed at runtime. This is not performed by default. To
enable runtime schema validation, use the following setting:

Schema validation is only available in the SOAP binding for read
operations, and is not supported for write operations.

plugins:soap:write_xsi_type

plugins:soap:write_xsi_type specifies whether to write the types
of message parts in the log file. When set to true, this identifies
each of the types associated with the message parts in the log file.
This only affects the content of the log file, giving you more
information on the type contained in each message part. This
variable for very useful for debugging purposes.

plugins:soap:enforce_namespaces_at_root

plugins:soap:enforce_namespaces_at_root variable enforces
namespace written at SOAP envelope root during SOAP message
serialization. The default setting is true.

plugins:soap:qname_validation

plugins:soap:qname_validation is a bus plugin configuration
variable that enables throwing exception when an Artix server
receives a request from a third party client that has an incorrect
namespace as part of a soap message body.
The default setting is false. You need to set to true in your scope
initializing bus in order to activate the variable.

Note: This configuration variable is deprecated. If you
experience the Expected element: node_id error message, you
should ensure that your locator client is using the correct WSDL.

plugins:soap:validating = "true";

Note: Basic sequence validation is performed by default (see
plugins:soap:sequence_validation).

Artix Configuration Reference, C++ Runtime 77

SOAP 1.2
The soap12 plugin is configured by the following variable:
• plugins:soap12:enable_mtom

plugins:soap12:enable_mtom

plugins:soap12:enable_mtom specifies whether Artix service
consumers use the SOAP Message Transmission Optimization
Mechanism (MTOM) to transmit binary data in SOAP messages.
They do not use MTOM by default.
MTOM is a SOAP 1.2 mechanism for optimizing binary data
transmission in SOAP messages. Artix service consumers must be
configured to use MTOM. Artix service providers, on the other
hand, do not need to be configured to use MTOM. When a service
provider receives a SOAP 1.2 request that uses MTOM, it will
respond using MTOM.
To enable an Artix service consumer to use MTOM, use the
following setting:

Transformer Service
The Artix transformer service uses Artix endpoints that are
configured in its configuration scope using the
artix:endpoint:endpoint_list. For each endpoint that uses the
transformer, you must specify an operation map with the
corresponding endpoint_name from the endpoint list. The
artix:endpoint namespace contains the following variables:
• artix:endpoint:endpoint_list

• artix:endpoint:endpoint_name:wsdl_location
• artix:endpoint:endpoint_name:wsdl_port
The transformer service (xslt plug-in) includes the following
configuration variables:
• plugins:xslt:endpoint_name:operation_map
• plugins:xslt:endpoint_name:trace_filter
• plugins:xslt:endpoint_name:use_element_name
• plugins:xslt:servant_list

plugins:soap12:enable_mtom = "true";

Note: To use MTOM with Artix ESB, you must also add the
correct schema types to a service’s WSDL file. For more
information on MTOM and the schema types involved, see the
Bindings and Transports, C++ Runtime guide.

 78 Artix Configuration Reference, C++ Runtime

artix:endpoint:endpoint_list

artix:endpoint:endpoint_list specifies a list of endpoint names
that are used to identify the defined endpoints. Each name in the
list represents an endpoint configured with the other variables in
this namespace. The endpoint names in this list are used by the
Web service chain plug-in and the Artix transformer. For example:

artix:endpoint:endpoint_name:wsdl_location

artix:endpoint:endpoint_name:wsdl_location specifies the location of
the Artix contract defining this endpoint. For example:

artix:endpoint:endpoint_name:wsdl_port

artix:endpoint:endpoint_name:wsdl_port specifes the port that
defines the physical representation of the endpoint. Use the
following format:

For example:

plugins:xslt:endpoint_name:operation_map

plugins:xslt:endpoint_name:operation_map specifies a list of XSLT
operations and scripts to be used in processing the recieved XML
messages. This list of scripts is used by each servant to process
requests. Each endpoint specified in the servant list has a
corresponding operation map entry. The operation map is
specified as a list using the syntax .

Each entry specifies a logical operation defined in the service
contract by an operation element, and the XSLT script to run when
a request is made on the operation. You must specify an XSLT
script for every operation defined. If you do not, the transformer
raises an exception when the unmapped operation is invoked.

plugins:xslt:endpoint_name:trace_filter

plugins:xslt:endpoint_name:trace_filter specifies optional debug
settings for the output of the XSLT engine. For example:

artix:endpoint:endpoint_list = ["corba", "tunnel"];

artix:endpoint:corba:wsdl_location="C:\myDir/test/wsdl/simple_servic
e.wsdl";

[{service_qname}]service_name[/port_name]

artix:endpoint:my_endpoint:wsdl_port="{http://www.mycorp.com/}MyService
/MyPort";

plugins:xslt:endpoint_name:operantion_map =
["wsdlOp1@filename1" , "wsdlOp2@filename2", ...,
"wsdlOpN@filenameN"];

plugins:xslt:endpoint_name:trace_filter =
"INPUT+TEMPLATE+ELEMENT+GENERATE+SELECT";

Artix Configuration Reference, C++ Runtime 79

These settings are described as follows:

plugins:xslt:endpoint_name:use_element_name

plugins:xslt:endpoint_name:use_element_name specifies whether to
use the message part element name or message part name when
performing transformations. The default value is false, which
means to use the message part name.
Using the message part element name matches the behavior of
Artix content-based routing. To use the message part element
name, specify the following setting:

The following WSDL file extract shows an example message part
element name and part name:

The following XSL file extract shows the example part element
name when this variable is set to true:

If this variable is set to false, the part name is used instead (in
this case, client_request).

plugins:xslt:servant_list

plugins:xslt:servant_list specifies a list of endpoints that are
instantiated as servants by the transformer. For example:

INPUT Traces the XML input passed to the XSLT engine.
TEMPLATE Traces template matches in the XSLT script.
ELEMENT Traces element generation.
GENERATE Traces generation of text and attributes.
SELECT Traces node selections in the XSLT script.

plugins:xslt:endpoint_name:use_element_name = "true";

<message name="client_request_message">
 <part element="tns:client_request_type" name="client_request"/>
</message>

<xsl:template match="client_request_type">
 <xsl:value-of select="first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="last_name"/>
</xsl:template>

plugins:xslt:servant_list=["endpoint_one", "endpoint_two" ...]

 80 Artix Configuration Reference, C++ Runtime

Tuxedo
The Tuxedo plug-in includes the following variable:
• plugins:tuxedo:server

plugins:tuxedo:server

plugins:tuxedo:server is a boolean that specifies if the Artix
process is a Tuxedo server and must be started using tmboot. The
default is:

Web Services Addressing
The plugins:messaging_port plug-in specifies variables that support
WS-Addressing (WS-A) and WS-ReliableMessaging (WS-RM).
These include:
• plugins:messaging_port:base_replyto_url

• plugins:messaging_port:generic_pool_size

• plugins:messaging_port:supports_wsa_mep

• plugins:messaging_port:supports_wsa_2005_mep

• plugins:messaging_port:wsrm_enabled

See also Web Services Reliable Messaging.

plugins:messaging_port:base_replyto_url

plugins:messaging_port:base_replyto_url specifies a base URI for a
WS-Addressing reply-to endpoint. The scope of a reply-to
endpoint is at the proxy level, and two Artix proxies can not share
the same endpoint. This means that each proxy has its own
reply-to endpoint. For example, if the base URI is specified as:

And if two proxies are instantiated, the first proxy will have a
reply-to endpoint whose URI is as follows:

Similarly, the second proxy will have a reply-to endpoint whose
URI is as follows:

The WS-A reply-to endpoint can be set at the Artix bus-level (like
the earlier example) or at a WSDL port-level, for example:

plugins:tuxedo:server = "false";

plugins:messaging_port:base_replyto_url=
"http://localhost:0/WSATestClient/BaseReplyTo/";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0
001";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0
002";

plugins:messaging_port:base_replyto_url:http://www.iona.com/bus
/tests:SOAPHTTPService:SOAPHTTPPort=
"http://localhost:0/WSATestClient/BaseReplyTo/";

Artix Configuration Reference, C++ Runtime 81

plugins:messaging_port:generic_pool_size

plugins:messaging_port:generic_pool_size specifies the upper limit
on messaging port pools. The messaging port maintains a number
of pools for MessageReader, MessageWriter, SendMessageContext and
ReceiveMessageContext.
The default value is -1. This means that these pools are
unbounded, which ensures backwards compatibility.
To specify that no pooling is performed, use the following setting:

plugins:messaging_port:supports_wsa_mep

plugins:messaging_port:supports_wsa_mep specifies whether a
WS-Addressing 2004 Message Exchange Pattern (MEP) is enabled.
You can specify this setting either at the Artix bus-level or a
specific WSDL port level. Port-specific configuration overrides
bus-specific configuration. When you enable
WS-ReliableMessaging, a WS-Addressing 2004 MEP is enabled
automatically (see “plugins:messaging_port:wsrm_enabled” on
page 82).

Bus-specific configuration
To enable WS-A at bus level, use the following setting:

WSDL port-specific configuration
To enable WS-A at a specific WSDL port level, you must specify
the WSDL service QName and the WSDL port name, for example:

plugins:messaging_port:supports_wsa_2005_mep

plugins:messaging_port:supports_wsa_2005_mep specifies whether a
WS-Addressing 2005 Message Exchange Pattern (MEP) is enabled.
You can specify this setting either at the Artix bus-level or a
specific WSDL port level. Port-specific configuration overrides
bus-specific configuration.

Bus-specific configuration
To enable WS-A at bus level, use the following setting:

plugins:messaging_port:base_replyto_url="0";

plugins:messaging_port:supports_wsa_mep = "true";

plugins:messaging_port:supports_wsa_mep:http://www.iona.com/bus
/tests:SOAPHTTPService:SOAPHTTPPort="true";

Note: Either WS-A 2004 or WS-A 2005 should be enabled. If
both are enabled, Artix enables WS-A 2005, and ignores WS-A
2004, and logs a MessagingPort warning message.

plugins:messaging_port:supports_wsa_2005_mep = "true";

 82 Artix Configuration Reference, C++ Runtime

WSDL port-specific configuration
To enable WS-A at a specific WSDL port level, you must specify
the WSDL service QName and the WSDL port name, for example:

plugins:messaging_port:wsrm_enabled

plugins:messaging_port:wsrm_enabled specifies whether
WS-ReliableMessaging is enabled. WS-RM can be enabled either at
the bus-level or a specific WSDL port level. Port-specific
configuration overrides bus-specific configuration. If you wish to
make a two-way invocation, you must configure a WS-RM-enabled
WSDL port with a non-anonymous reply-to endpoint.

Bus-specific configuration
To enable WS-RM for a specific bus, use the following setting:

WSDL port-specific configuration
To enable WS-RM at a specific WSDL port level, specify the WSDL
service QName and also the WSDL port name, for example:

Web Services Chain Service
The Web services chain service refers back to the Artix endpoints
configured in its configuration scope using
artix:endpoint:endpoint_list. For each endpoint that will be part
of the chain, you specify a service chain with the corresponding
endpoint_name from the endpoint list.
The Web service chain service, ws_chain, uses the following
configuration variables:
• plugins:chain:endpoint_name:operation_name:service_chain
• plugins:chain:init_on_first_call

• plugins:chain:servant_list

plugins:chain:endpoint_name:operation_name:service_chain

plugins:chain:endpoint_name:operation_name:service_chain specifies
the chain followed by requests made on the operation specified by
opereration_name. The operation must be defined as part of the
endpoint specified by endpoint_name.

plugins:messaging_port:supports_wsa_2005_mep:
http://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort="
true";

Note: A WS-Addressing 2004 MEP must be used with WS-RM.
You can not use a WS-Addressing 2005 MEP with WS-Reliable
Messaging (WS-RM).

plugins:messaging_port:wsrm_enabled = "true";

plugins:messaging_port:wsrm_enabled:http://www.iona.com/b
us/tests:SOAPHTTPService:SOAPHTTPPort="true";

Note: To enable WS-RM in the Artix runtime, you must
also add the wsrm plug-in to your orb_plugins list.

Artix Configuration Reference, C++ Runtime 83

Service chains are specified using the following syntax:

Each operation and port entry correspond to an operation and a
port in the endpoint’s Artix contract. The request is passed
through each service in the order specified. The final operation in
the list returns the response back to the endpoint.

plugins:chain:init_on_first_call

plugins:chain:init_on_first_call specifies whether to instantiate
proxy services when a call is made. Defaults to false. This means
that proxies are instantiated when the chain servant starts.
The chain invokes on other services, and for this reason, must
instantiate proxies. This can be done when the chain servant
starts (variable set to false), or later, when a call is made
(variable set to true).
You might not be able to properly instantiate proxies when the
servant is started because the servant to call is not started. For
example, this applies when using the Artix locator or UDDI.

plugins:chain:servant_list

plugins:chain:servant_list specifies a list of services in the Web
service chain. Each name in the list must correspond to a service
specified in the configuration scope. The following simple example
shows a list that contains one service:

["operation1@port1","operation2@port2", ..., "operationN@portN"]

bus:qname_alias:my_client =
"{http://www.iona.com/xslt}my_client_service";

bus:initial_contract:url:client =
"../../etc/my_transformation.wsdl";

...

plugins:chain:servant_list = ["my_client"];

 84 Artix Configuration Reference, C++ Runtime

Web Services Reliable Messaging
The plugins:wsrm plug-in specifies variables that support
WS-ReliableMessaging (WS-RM). These include:
• plugins:wsrm:acknowledgement_interval

• plugins:wsrm:acknowledgement_uri

• plugins:wsrm:base_retransmission_interval

• plugins:wsrm:delivery_assurance_policy

• plugins:wsrm:disable_exponential_backoff_retransmission_interva
l

• plugins:wsrm:enable_per_thread_sequence_scope

• plugins:wsrm:max_messages_per_sequence

• plugins:wsrm:max_unacknowledged_messages_threshold

• plugins:wsrm:thread_pool:high_water_mark

• plugins:wsrm:thread_pool:initial_threads

• plugins:wsrm:thread_pool:low_water_mark

• plugins:wsrm:thread_pool:max_queue_size

• plugins:wsrm:thread_pool:stack_size

• plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement

• plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement

See also Web Services Addressing.

plugins:wsrm:acknowledgement_interval

plugins:wsrm:acknowledgement_interval specifies the interval at
which the WS-RM destination sends asynchronous
acknowledgments. This is in addition to the synchronous
acknowledgments that are sent upon the receipt of an incoming
message. The default value is 3000 milliseconds.

Bus configuration
The following example shows how to set for a specific bus:

WSDL port configuration
The following example shows how to set for a specific WSDL port:

plugins:wsrm:acknowledgement_uri

plugins:wsrm:acknowledgement_uri specifies the endpoint at which
the WS-RM source receives acknowledgments. This is also known
as wsrm:AcksTo. The default value is the WS-A anonymous URI:

plugins:wsrm:acknowledgement_interval = "2500";

plugins:wsrm:acknowledgement_interva:http://www.iona.com/
bus/tests:SOAPHTTPService:SOAPHTTPPort = "2500";

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

Artix Configuration Reference, C++ Runtime 85

Bus configuration
The following example shows how to configure for a specific bus:

WSDL port configuration
The following example shows how to configure for a specific WSDL
port:

plugins:wsrm:base_retransmission_interval

plugins:wsrm:base_retransmission_interval specifies the interval at
which a WS-RM source retransmits a message that has not yet
been acknowledged. The default value is 2000 milliseconds.

Bus configuration
The following example shows how to set for a specific bus:

WSDL port configuration
The following example shows how to set for a specific WSDL port:

plugins:wsrm:delivery_assurance_policy

plugins:wsrm:delivery_assurance_policy specifies the message delivery
assurance policy. The available options are:

plugins:wsrm:acknowledgement_uri =
"http://localhost:0/WSASource/DemoAcksTo/";

plugins:wsrm:acknowledgement_uri:http://www.iona.com/bus/tests:
SOAPHTTPService:SOAPHTTPPort =

"http://localhost:0/WSASource/DemoAcksTo/";

plugins:wsrm:base_retransmission_interval = "3000";

plugins:wsrm:base_retransmission_interval:http://www.iona
.com/bus/tests:SOAPHTTPService:SOAPHTTPPort = "3000";

ExactlyOnceInOrder The RM destination delivers the
messages to the application destination
exactly once, in increasing order of RM
message ID. The calls to the application
destination are serialized. This is the
default value.

ExactlyOnceConcurrent The RM destination delivers the
messages to the application destination
exactly once. Instead of a serialized
message delivery (as in
ExactlyOnceInOrder), messages are
delivered concurrently, so they may not
be delivered in order.
However, for a message with ID n that is
being delivered, all the messages in the
range of 1 to n are received and
acknowledged by the RM destination.

 86 Artix Configuration Reference, C++ Runtime

Bus configuration
The following example shows how to set for a specific bus:

WSDL port configuration
The following example shows how to set for a specific WSDL port:

plugins:wsrm:disable_exponential_backoff_retransmission_interva
l

plugins:wsrm:disable_exponential_backoff_retransmission_interval
determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals
or not. The default value is false, which means that they are
attempted at exponential intervals.
If the value is true (exponential backoff disabled), the
retransmission of unacknowledged messages is performed at the
base retransmission interval.

Bus configuration
The following example shows how to set for a specific bus:

WSDL port configuration
The following example shows how to set for a specific WSDL port:

ExactlyOnceReceivedOrderThe RM destination delivers the
messages to the application destination
exactly once, as soon as it is received
from the underlying transport.
The RM destination makes no attempt to
ensure that the messages are delivered
in order of message ID, or that all the
previous messages have been
received/acknowledged. The benefit of
this policy is that it avoids a context
switch during dispatch in the RM layer,
and messages are not stored in the
in-memory undelivered messages map.

plugins:wsrm:delivery_assurance_policy =
"ExactlyOnceConcurrent";

plugins:wsrm:delivery_assurance_policy:http://www.iona.com/bus/
tests:SOAPHTTPService:SOAPHTTPPort =
"ExactlyOnceConcurrent";

plugins:wsrm:disable_exponential_backoff_retransmission_i
nterval = "true";

plugins:wsrm:disable_exponential_backoff_retransmission_i
nterval:http://www.iona.com/bus/tests:SOAPHTTPService:
SOAPHTTPPort = "true";

Artix Configuration Reference, C++ Runtime 87

plugins:wsrm:enable_per_thread_sequence_scope

plugins:wsrm:enable_per_thread_sequence_scope specifies whether to
create a separate RM sequence session for each invoking thread.
By default, an RM session is shared by all threads. Enabling this
setting creates a different RM sequence session for each thread,
and eliminates the possibility of indeterminate message ID
allocation. All messages sent by a particular thread are allocated a
message ID in increasing order. When the RM source endpoint is
closed, it closes all the open RM sequence sessions. The default
value is false (disabled).
Bus configuration
The following example shows how to set for a specific bus:

WSDL port configuration
The following example shows how to set for a specific WSDL port:

plugins:wsrm:max_messages_per_sequence

plugins:wsrm:max_messages_per_sequence specifies the maximum
number of user messages that are permitted in a WS-RM
sequence. The default is unlimited; this is sufficient is for most
situations.
When this attribute is set, the RM endpoint creates a new RM
sequence when the limit is reached and after receiving all the
acknowledgments for the messages previously sent. The new
message is then sent using the new sequence.

Bus configuration
The following example shows how to set for a specific bus

WSDL port configuration
The following example shows how to set for a specific WSDL port:

plugins:wsrm:max_retransmission_attempts

plugins:wsrm:max_retransmission_attempts specifies the maximum
number of retransmission attempts that the RM source session
makes for an unacknowledged message. If the number of
retransmission attempts reaches this threshold, RM source session
sends a wsrm:SequenceTerminated fault to the peer RM destination
session, and closes the session. Any subsequent attempt to send
message on this session results in an IT_Bus::Exception being
thrown. The default value is -1 (no limit on the number of
retransmission attempts).

plugins:wsrm:enable_per_thread_sequence_scope = "true";

plugins:wsrm:enable_per_thread_sequence_scope:http://www.iona.c
om/bus/tests:SOAPHTTPService:SOAPHTTPPort = "true";

plugins:wsrm:max_messages_per_sequence = "1";

plugins:wsrm:max_messages_per_sequence:http://www.iona.com/bus/
tests:SOAPHTTPService:SOAPHTTPPort = "1";

 88 Artix Configuration Reference, C++ Runtime

Bus configuration
The following example shows how to set for a specific bus:

WSDL port configuration
The following example shows how to set for a specific WSDL port:

plugins:wsrm:max_unacknowledged_messages_threshold

plugins:wsrm:max_unacknowledged_messages_threshold specifies the
maximum permissible number of unacknowledged messages at
the WS-RM source. When the WS-RM source reaches this limit, it
sends the last message with a wsrm:AckRequested header indicating
that a WS-RM acknowledgement should be sent by the WS-RM
destination as soon as possible.
In addition, when the WS-RM source has reached this limit, it does
not accept further messages from the application source. This
means that the caller thread (making the invocation on the proxy)
is blocked until the number of unacknowledged messages drops
below the threshold.
The default value is -1 (no limit on number of unacknowledged
messages).

Bus configuration
The following example shows how to set for a specific bus:

WSDL port configuration
The following example shows how to set for a specific WSDL port:

plugins:wsrm:thread_pool:high_water_mark

plugins:wsrm:thread_pool:high_water_mark specifies the maximum
number of threads allowed in the WS-RM thread pool. The default
is:

plugins:wsrm:thread_pool:initial_threads

plugins:wsrm:thread_pool:initial_threads specifies the number of
initial threads in the WS-RM thread pool. The default is:

plugins:wsrm:max_retransmission_attempts = "8";

plugins:wsrm:max_retransmission_attempts:http://www.iona.
com/bus/tests:SOAPHTTPService:SOAPHTTPPort = "8";

plugins:wsrm:max_unacknowledged_messages_threshold =
"50";

plugins:wsrm:max_unacknowledged_messages_threshold:http://www.i
ona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort = "50";

plugins:wsrm:thread_pool:high_water_mark="-1";

plugins:wsrm:thread_pool:initial_threads="5";

Artix Configuration Reference, C++ Runtime 89

plugins:wsrm:thread_pool:low_water_mark

plugins:wsrm:thread_pool:low_water_mark specifies the minimum
number of threads allowed in the WS-RM thread pool. The default
is:

plugins:wsrm:thread_pool:max_queue_size

plugins:wsrm:thread_pool:max_queue_size specifies the maximum
number of request items that can be queued on the WS-RM thread
work queue. The default is:

plugins:wsrm:thread_pool:stack_size

plugins:wsrm:thread_pool:stack_size specifies the stack size for each
thread. The stack size is specified in bytes. The default is:

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement specifies that
the server endpoint, which receives the application request, also
receives acknowledgements for the application response. This
option only applies when a proxy is used to make two-way
invocations.

Bus configuration
The following example shows how to configure for a specific Artix
bus:

WSDL port configuration
The following example shows how to configure for a specific WSDL
port:

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledge
ment

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement specifies
that a reply-to endpoint (wsa:replyTo), which receives the
application response, also receives acknowledgments for
application requests. This option only applies when a proxy is used
to make two-way invocations.

plugins:wsrm:thread_pool:low_water_mark="-1";

plugins:wsrm:thread_pool:max_queue_size="-1";

plugins:wsrm:thread_pool:stack_size="OS-specificDefault
ThreadStackSize";

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement
= "true";

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement
:http://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTT
PPort = "true";

 90 Artix Configuration Reference, C++ Runtime

Bus configuration
The following example shows how to configure for a specific Artix
bus:

WSDL port configuration
The following example shows how to configure for a specific WSDL
port:

WSDL Publishing Service
The WSDL publishing service, wsdl_publish, includes the following
configuration variables:
• plugins:wsdl_publish:hostname

• plugins:wsdl_publish:processor

• plugins:wsdl_publish:publish_port

Although all three variables are optional, it is recommended that
you define plugins:wsdl_publish:publish_port and
plugins:wsdl_publish:hostname in production environments.
See also enable_secure_wsdl_publish.

plugins:wsdl_publish:hostname

plugins:wsdl_publish:hostname specifies how the hostname is
constructed in the wsdl_publish URL. This is the URL that the
wsdl_publish plug-in uses to retrieve WSDL contracts.
By default, the unqualified primary hostname is used. The possible
values are as follows:

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement
= "true";

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement:
http://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";

canonical Use the fully qualified hostname of the machine in
the URL (for example http://myhost.mydomain.com).

unqualified Use the unqualified local hostname of the machine
in the URL. This does not include the domain
name with the hostname (for example,
http://myhost). This is the default.

ipaddress Use the IP address associated with the machine in
the URL (for example http://10.1.2.3).

SecondaryHostName For multi-homed machines, use the specified
literal string for a secondary hostname in the URL.
You can specify a logical name or a virtual IP
address (for example, http://myhost.mydomain.com
or http://10.1.2.3). Any leading or trailing white
spaces are stripped out.

Artix Configuration Reference, C++ Runtime 91

plugins:wsdl_publish:processor

plugins:wsdl_publish:processor specifies the type of preprocessing
done before publishing a WSDL contract. The possible values are
as follows:

plugins:wsdl_publish:publish_port

plugins:wsdl_publish:publish_port specifies the port on which the
WSDL publishing service can be contacted.
The default value is 0, which specifies that wsdl_publish will use a
port supplied by the operating system at runtime. You can get the
wsdl_publish URL from the bus.

 XML File Log Stream
The XML file log stream plug-in, xmlfile_log_stream, enables you
to view logging output in an XML file. It includes the following
variables:
• plugins:xmlfile_log_stream:buffer_file

• plugins:xmlfile_log_stream:filename

• plugins:xmlfile_log_stream:filename_date_format

• plugins:xmlfile_log_stream:log_elements

• plugins:xmlfile_log_stream:log_thread_id

• plugins:xmlfile_log_stream:milliseconds_to_log

• plugins:xmlfile_log_stream:rolling_file

• plugins:xmlfile_log_stream:use_pid

plugins:xmlfile_log_stream:buffer_file

plugins:xmlfile_log_stream:buffer_file specifies whether the
output stream is sent to a buffer before it writes to a local log file.
To specify this behavior, set this variable to true:

When set to true, by default, the buffer is output to a file every
1000 milliseconds when there are more than 100 messages
logged. This log interval and number of log elements can also be
configured.

Note: For details of how the address is published in dynamically
generated WSDL contracts, see
policies:at_http:server_address_mode_policy:publish_hostname
and policies:soap:server_address_mode_policy:publish_hostname.

artix Strip out server-side artifacts. This is the default
setting.

standard Strip out server side artifacts and Artix proprietary
extensors.

none Disable preprocessing.

plugins:xmlfile_log_stream:buffer_file = "true";

 92 Artix Configuration Reference, C++ Runtime

plugins:xmlfile_log_stream:filename

plugins:xmlfile_log_stream:filename specifies the filename for
your log file, for example:

If you do not specify a file name, logging is sent to stdout.

plugins:xmlfile_log_stream:filename_date_format

plugins:xmlfile_log_stream:filename_date_format specifies the
format of the date in an XML-based rolling log file. The specified
date conforms to the format rules of the ANSI C strftime()
function. For example:

On the 31st January 2016, this results in a log file named
my_log_2016_01_31.

plugins:xmlfile_log_stream:log_elements

plugins:xmlfile_log_stream:log_elements specifies the number of
log messages that must be in the buffer before they are output to
a log file. The default is 100 messages.
For example, the following configuration writes the log output to a
log file if there are more than 20 log messages in the buffer.

plugins:xmlfile_log_stream:log_thread_id

plugins:xmlfile_log_stream:log_thread_id specifies whether the
thread ID is logged in the log message or not, for example:

The default is true.

plugins:xmlfile_log_stream:milliseconds_to_log

plugins:xmlfile_log_stream:milliseconds_to_log specifies how
often in milliseconds that the log buffer is output to a log file. The
default is 1000 milliseconds.
For example, the following configuration writes the log output to a
log file every 400 milliseconds.

plugins:xmlfile_log_stream:filename = "artix_logfile.xml";

plugins:xmlfile_log_stream:rolling_file="true";
plugins:xmlfile_log_stream:filename="my_log";
plugins:xmlfile_log_stream:filename_date_format="_%Y_%m_%d";

plugins:xmlfile_log_stream:log_elements = "20";

plugins:xmlfile_log_stream:log_thread_id = "true";

plugins:xmlfile_log_stream:milliseconds_to_log = "400";

Artix Configuration Reference, C++ Runtime 93

plugins:xmlfile_log_stream:rolling_file

plugins:xmlfile_log_stream:rolling_file is a boolean which
specifies that the logging plug-in creates a new log file each day to
prevent the log file from growing indefinitely. In this model, the
stream appends the current date to the configured filename. This
produces a complete filename, for example:

A new file begins with the first event of the day and ends at
23:59:59 each day. The default behavior is true. To disable rolling
file behavior, set this variable to false. For example:

plugins:xmlfile_log_stream:use_pid

plugins:xmlfile_log_stream:use_pid specifies that the logging
plug-in uses a optional process identifier. The default is false. To
enable the process identifier, set this variable to true:

Custom Plug-ins
When you write a custom plug-in for Artix, you must provide some
configuration to the Artix runtime so that Artix can locate the
libraries and initial settings required to properly instantiate the
plug-in. This information is provided in the Artix .cfg file used by
your application. Typically, you would place the information in the
global scope so that more than one of your applications can use
the plug-in.

C++ plug-in libraries
When writing custom C++ plug-ins, you build your plug-in as a
shared library that the bus loads at runtime. In the .cfg file, you
need to provide the name of the shared library that loads the
plug-in. You can do this using the following configuration variable:
plugins:PluginName:shlib_name
The plug-in name provided must correspond to the plug-in name
that is listed in the orb_plugins list.

/var/adm/artix.log.02172005

plugins:xmlfile_log_stream:rolling_file = "false";

plugins:xmlfile_log_stream:use_pid = "true";

 94 Artix Configuration Reference, C++ Runtime

Example 3 shows an example of configuring a custom plug-in
called my_filter that is implemented by the shared library
my_filter.dll.

Prerequisite plug-ins
In addition to providing a pointer to the plug-in’s implementation,
you can also provide a list of plug-ins that your plug-in requires to
be loaded. You can provide this information using the following
configuration variable:
plugins:PluginName:prerequisite_plugins.
The prerequisite plug-ins are specified as a list of plug-in names
similar to that specified in the orb_plugins list. When you provide
this list the bus ensures that the required plug-ins are loaded
whenever your plug-in is loaded.
Example 4 shows configuring some prerequisite plug-ins for a
custom plug-in called my_filter.

Example 3: Custom C++ Plug-in Configuration

plugins:my_filter:shlib_name="my_filter"
...
my_app
{
 orb_plugins=["my_filter" ...];
 ...
}

Example 4: Custom Prerequisite Plug-in Configuration

plugins:my_filter:prerequisite_plugins = ["my_plugin_1",
"my_plugin_2", "my_plugin_3", "my_plugin4"];

 Artix Configuration Reference, C++ Runtime 95

Artix Security
This chapter describes variables used by the Artix Security Framework.
The Artix security infrastructure is highly configurable.

This chapter discusses the following topics:
• Applying Constraints to Certificates
• bus:initial_contract
• bus:security
• initial_references
• password_retrieval_mechanism
• plugins:asp
• plugins:at_http
• plugins:atli2_tls
• plugins:csi
• plugins:csi
• plugins:gsp
• plugins:https
• plugins:iiop_tls
• plugins:java_server
• plugins:login_client
• plugins:login_service
• plugins:security
• plugins:security
• plugins:wsdl_publish
• plugins:wsdl_publish
• plugins:wss
• policies
• policies:asp
• policies:bindings
• policies:csi
• policies:external_token_issuer
• policies:https
• policies:iiop_tls
• policies:security_server
• policies:soap:security
• principal_sponsor
• principal_sponsor:csi
• principal_sponsor:http
• principal_sponsor:https
• principal_sponsor:iiop_tls
• principal_sponsor:wsse

 96 Artix Configuration Reference, C++ Runtime

Applying Constraints to Certificates

Certificate constraints policy
You can use the CertConstraintsPolicy to apply constraints to peer
X.509 certificates by the default CertificateValidatorPolicy.
These conditions are applied to the owner’s distinguished name
(DN) on the first certificate (peer certificate) of the received
certificate chain. Distinguished names are made up of a number of
distinct fields, the most common being Organization Unit (OU) and
Common Name (CN).

Configuration variable
You can specify a list of constraints to be used by
CertConstraintsPolicy through the
policies:iiop_tls:certificate_constraints_policy or
policies:certificate_constraints_policy configuration variables. For
example:
policies:iiop_tls:certificate_constraints_policy =

["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=E
arth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth
",

"CN=TheOmnipotentOne"];

Constraint language
These are the special characters and their meanings in the
constraint list:

Example
This is an example list of constraints:
policies:iiop_tls:certificate_constraints_policy = [

"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",
"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

 * Matches any text. For example:
an* matches ant and anger, but not aunt

[] Grouping symbols.
 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.

Artix Configuration Reference, C++ Runtime 97

This constraint list specifies that a certificate is deemed acceptable
if and only if it satisfies one or more of the constraint patterns:
If

The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined
in each line until the certificate satisfies one of the constraints.
Only if the certificate fails all constraints is the certificate deemed
invalid.
Note that this setting can be sensitive about white space used
within it. For example, "CN =" might not be recognized, where
"CN=" is recognized.

Distinguished names
For more information on distinguished names, see the Security
Guide.

bus:initial_contract
The bus:initial_contract namespace contains the following
configuration variable:
• url:isf_service
• url:login_service

url:isf_service

Specifies the location of the Artix security service’s WSDL
contract. This variable is needed by applications that connect to
the Artix security service through a protocol specified in the
physical part of the security service’s WSDL contract (the
alternative would be to connect over IIOP/TLS using a CORBA
object reference).
This variable is used in conjunction with the
policies:asp:use_artix_proxies configuration variable.

 98 Artix Configuration Reference, C++ Runtime

url:login_service

Specifies the location of the login service WSDL to the
login_client plug-in. The value of this variable can either be a
relative pathname or a URL. The login_client requires access to
the login service WSDL in order to obtain details of the physical
contract (for example, host and IP port).

bus:security
The variables in the bus:security are intended for use with the
it_container_admin utility, in order to facilitate communication with
a secure Artix container. The bus:security namespace contains the
following configuration variables:
• enable_security
• user_name
• user_password

enable_security

The bus:security:enable_security variable is a boolean variable
that enables a client to send WSS username and password
credentials. When true, the client sends WSS username and
password credentials with every SOAP request message (whether
or not the connection is secured by SSL/TLS); when false, the
feature is disabled.
There are essentially two different ways of initializing the WSS
username and password credentials on the client side:
• From the Artix .cfg file—you can set the WSS credentials in

the Artix configuration using the related user_name and
user_password configuration variables. For example:

• From the command line—if you omit the
bus:security:user_name and bus:security:user_password
settings from the Artix configuration, the client program will
prompt you for the username and password credentials as it
starts up. For example:

user_name

Initializes a WSS username. This variable is intended for use in
conjunction with the bus:security:enable_security variable as part
of the configuration for the it_container_admin utility.

Artix .cfg file
bus:security:enable_security = "true";
bus:security:user_name = "Username";
bus:security:user_password = "Password";

Please enter login :
Please enter password :

Artix Configuration Reference, C++ Runtime 99

user_password

Initializes a WSS password. This variable is intended for use in
conjunction with the bus:security:enable_security variable as part
of the configuration for the it_container_admin utility.

initial_references
The initial_references namespace contains the following
configuration variables:
• IT_SecurityService:reference
• IT_TLS_Toolkit:plugin

IT_SecurityService:reference

This configuration variable specifies the location of the Artix
security service. Clients of the security service need this
configuration setting in order to locate and connect to the security
service through the IIOP/TLS protocol.

The most convenient way to initialize this variable is to use a
corbaloc URL. The corbaloc URL typically has the following format:
corbaloc:it_iiops:1.2@Hostname:Port/IT_SecurityService

Where Hostname is the name of the host where the security service
is running and Port is the IP port where the security service is
listening for incoming connections.
If the security service is configured as a cluster, you need to use a
multi-profile corbaloc URL, which lists the addresses of all the
services in the cluster. For example, if you configure a cluster of
three services—with addresses security01:5001, security02:5002,
and security03:5003—you would set the corbaloc URL as follows:
corbaloc:it_iiops:1.2@security01:5001,it_iiops:1.2@security02:50

02,it_iiops:1.2@security03:5003/IT_SecurityService

IT_TLS_Toolkit:plugin

This configuration variable enables you to specify the underlying
SSL/TLS toolkit to be used by Artix. The toolkit currently used is
based on OpenSSL.
For example, to specify that an application should use the System
SSL toolkit, you would set configuration variables as follows:

password_retrieval_mechanism
The configuration variables in the password_retrieval_mechanism
namespace are intended to be used only by the Artix services. The
following variables are defined in this namespace:
• inherit_from_parent

Note: This variable is not relevant to clients that connect
to a HTTPS-based security service.

initial_references:IT_TLS_Toolkit:plugin = "systemssl_toolkit";
plugins:systemssl_toolkit:shlib_name = "ORXSSSL";

 100 Artix Configuration Reference, C++ Runtime

• use_my_password_as_kdm_password

inherit_from_parent

If an application forks a child process and this variable is set to
true, the child process inherits the parent’s X.509 certificate
password through the environment.

use_my_password_as_kdm_password

This variable should be set to true only in the scope of the KDM
plug-in’s container. From a security perspective it is dangerous to
do otherwise as the password could be left in cleartext within the
process.
The KDM is a locator plug-in and so it is natural that it should use
the locator's identity as its identity. However, it requires a
password to encrypt its security information. By default the KDM
requests such a password from the user during locator startup and
this is separate from the locator password. The locator password
would be used if this variable is set to true.

plugins:asp
The plugins:asp namespace contains the following variables:
• authentication_cache_size
• authentication_cache_timeout
• authorization_realm
• default_password
• enable_security_service_cert_authentication
• enable_security_service_load_balancing
• security_type
• security_level

authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded, any new authentication tokens
acquired by calling the Artix security service are not stored in the
cache. The cache can shrink again if some of the cached
credentials expire (either because the individual token expiry time
is exceeded or the plugins:asp:authentication_cache_timeout is
exceeded).

Note: This variable is intended for use only by the
standard Artix services.

Note: This variable is intended for use only by the
standard Artix services.

Artix Configuration Reference, C++ Runtime 101

A value of -1 (the default) means unlimited size. A value of 0
means disable the cache. The value must lie within the range -1 to
2^31-1.

authentication_cache_timeout

The time (in seconds) after which a credential expires. Expired
credentials are removed from the cache and must re-authenticate
with the Artix security service on the next call from that user.
A value of -1 means an infinite time-out. A value of 0 means
disable the cache. The value must lie within the range -1 to 2^31-1.
Default is 600 seconds.

authorization_realm

Specifies the Artix authorization realm to which an Artix server
belongs. The value of this variable determines which of a user’s
roles are considered when making an access control decision.
For example, consider a user that belongs to the ejb-developer
and corba-developer roles within the Engineering realm, and to the
ordinary role within the Sales realm. If you set
plugins:asp:authorization_realm to Sales for a particular server,
only the ordinary role is considered when making access control
decisions (using the action-role mapping file).
The default is IONAGlobalRealm.

default_password

When the client credentials originate either from a CORBA
Principal (embedded in a SOAP header) or from a certificate
subject, the default_password variable specifies the password to
use on the server side. The plugins:asp:default_password variable
is used to get around the limitation that a PRINCIPAL identity and a
CERT_SUBJECT are propagated without an accompanying password.
The artix_security plug-in uses the received client principal
together with the password specified by
plugins:asp:default_password to authenticate the user through the
Artix security service.
The default value is the string, default_password.

Note: This variable does not affect CORBA credentials. For
details of how to configure the CORBA cache, see “plugins:gsp”.

Note: This variable does not affect CORBA credentials. For
details of how to configure the CORBA cache, see “plugins:gsp”.

 102 Artix Configuration Reference, C++ Runtime

enable_security_service_cert_authentication

When this parameter is set to true, the client certificate is
retrieved from the TLS connection. If no other credentials are
available, the client certificate is then sent to the Artix security
service for authentication.
The client certificate has the lowest precedence for authentication.
Hence, if any other credentials are presented by the client (for
example, if the client sends a WSS username and password),
these alternative credentials are sent to the Artix security service
instead of the certificate credentials.
Default is false.

enable_security_service_load_balancing

A boolean variable that enables load balancing over a cluster of
security services. If an application is deployed in a domain that
uses security service clustering, the application should be
configured to use client load balancing (in this context, client
means a client of the Artix security service). See also
policies:iiop_tls:load_balancing_mechanism.
Default is false.

security_type

(Obsolete) From Artix 3.0 onwards, this variable is ignored.

security_level

Specifies the level from which security credentials are picked up.
The following options are supported by the artix_security plug-in:

plugins:at_http
The plugins:at_http configuration variables are provided to
facilitate migration from legacy Artix applications (that is, Artix
releases prior to version 3.0). The plugins:at_http namespace
contains variables that are similar to the variables from the old
(pre-version 3.0) plugins:http namespace. One important change
made in 3.0, however, is that an application’s own certificate must
now be provided in PKCS#12 format (where they were previously
supplied in PEM format).
If the variables from the plugins:at_http namespace are used,
they take precedence over the analogous variables from the
principal_sponsor:https and policies:https namespaces.
The plugins:at_http namespace contains the following variables:
• client:client_certificate.
• client:client_private_key_password.
• client:trusted_root_certificates.

MESSAGE_LEVEL Get security information from the transport
header. This is the default.

REQUEST_LEVEL Get the security information from the message
header.

Artix Configuration Reference, C++ Runtime 103

• client:use_secure_sockets.
• server:server_certificate.
• server:server_private_key_password.
• server:trusted_root_certificates.
• server:use_secure_sockets.

client:client_certificate

This variable specifies the full path to the PKCS#12-encoded
X.509 certificate issued by the certificate authority for the client.
For example:
plugins:at_http:client:client_certificate =

"C:\aspen\x509\certs\key.cert.p12"

client:client_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by client:client_certificate.

client:trusted_root_certificates

This variable specifies the path to a file containing a concatenated
list of CA certificates in PEM format. The client uses this CA list
during the TLS handshake to verify that the server’s certificate has
been signed by a trusted CA.

client:use_secure_sockets

The effect of the client:use_secure_sockets variable depends on
the type of URL specifying the remote service location:
• https://host:port URL format—the client always attempts to

open a secure connection. That is, the value of
plugins:at_http:client:use_secure_sockets is effectively
ignored.

• http://host:port URL format—whether the client attempts to
open a secure connection or not depends on the value of
plugins:at_http:client:use_secure_sockets, as follows:
♦ true—the client attempts to open a secure connection

(that is, HTTPS running over SSL or TLS). If no port is
specified in the http URL, the client uses port 443 for
secure HTTPS.

♦ false—the client attempts to open an insecure connection
(that is, plain HTTP).

 104 Artix Configuration Reference, C++ Runtime

If plugins:at_http:client:use_secure_sockets is true and the client
decides to open a secure connection, the at_http plug-in then
automatically loads the https plug-in.

server:server_certificate

This variable specifies the full path to the PKCS#12-encoded
X.509 certificate issued by the certificate authority for the server.
For example:
plugins:at_http:server:server_certificate =

"c:\aspen\x509\certs\key.cert.p12"

server:server_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by server:server_certificate.

server:trusted_root_certificates

This variable specifies the path to a file containing a concatenated
list of CA certificates in PEM format. The server uses this CA list
during the TLS handshake to verify that the client’s certificate has
been signed by a trusted CA.

server:use_secure_sockets

The effect of the server:use_secure_sockets variable depends on
the type of URL advertising the service location:
• https://host:port URL format—the server accepts only secure

connection attempts. That is, the value of
plugins:at_http:server:use_secure_sockets is effectively
ignored.

• http://host:port URL format—whether the server accepts
secure connection attempts or not depends on the value of
plugins:at_http:server:use_secure_sockets, as follows:
♦ true—the server accepts secure connection attempts (that

is, HTTPS running over SSL or TLS). If no port is specified
in the http URL, the server uses port 443 for secure
HTTPS.

♦ false—the server accepts insecure connection attempts
(that is, plain HTTP).

Note: If plugins:at_http:client:use_secure_sockets is true and
the client decides to open a secure connection, Artix uses the
following client secure invocation policies by default:
 policies:https:client_secure_invocation_policy:requires =
["Confidentiality","Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
 policies:https:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
You can optionally override these defaults by setting the client
secure invocation policy explicitly in configuration.

Artix Configuration Reference, C++ Runtime 105

If plugins:at_http:server:use_secure_sockets is set and the server
accepts a secure connection, the at_http plug-in then
automatically loads the https plug-in.

server:use_secure_sockets:container

The effect of the server:use_secure_sockets:container variable is
similar to the effect of the server:use_secure_sockets variable,
except that only the ContainerService service is affected. Using
this variable, it is possible to enable HTTPS security specifically for
the ContainerService service without affecting the security settings
of other services deployed in the container.

plugins:atli2_tls
The plugins:atli2_tls namespace contains the following variable:
• use_jsse_tk

use_jsse_tk

(Java ART runtime) Specifies whether or not to use the JSSE/JCE
architecture with the CORBA binding.
Currently, when you deploy a new domain, Artix explicitly sets the
use_jsse_tk variable to true.

plugins:csi
The policies:csi namespace includes variables that specify
settings for Common Secure Interoperability version 2 (CSIv2):
• ClassName

• shlib_name

ClassName

ClassName specifies the Java class that implements the csi plugin.
The default setting is:
plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";

Note: If plugins:at_http:server:use_secure_sockets is set
and the server accepts a secure connection, Artix uses the
following server secure invocation policies by default:

policies:https:target_secure_invocation_policy:requires =
["Confidentiality","Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

policies:https:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
You can optionally override these defaults by setting the
target secure invocation policy explicitly in configuration.

 106 Artix Configuration Reference, C++ Runtime

This configuration setting makes it possible for the Artix core to
load the plugin on demand. Internally, the Artix core uses a Java
class loader to load and instantiate the csi class. Plugin loading
can be initiated either by including the csi in the orb_plugins list,
or by associating the plugin with an initial reference.

shlib_name

shlib_name identifies the shared library (or DLL in Windows)
containing the csi plugin implementation.
plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomes associated with the it_csi_prot shared
library, where it_csi_prot is the base name of the library. The
library base name, it_csi_prot, is expanded in a
platform-dependent manner to obtain the full name of the library
file.

plugins:gsp
The plugins:gsp namespace includes variables that specify
settings for the Generic Security Plugin (GSP). This provides
authorization by checking a user’s roles against the permissions
stored in an action-role mapping file. It includes the following:
• accept_asserted_authorization_info

• action_role_mapping_file

• assert_authorization_info

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• ClassName

• enable_authorization

• enable_gssup_sso

• enable_user_id_logging

• enable_x509_sso

• enforce_secure_comms_to_sso_server

• enable_security_service_cert_authentication

• sso_server_certificate_constraints

• use_client_load_balancing

accept_asserted_authorization_info

If false, SAML authorization data is not read from incoming
connections. Default is true.

Note: In Artix versions 4.0 and earlier, if no SAML authorization
data is received and this variable is true, Artix would raise an
exception. In Artix versions 4.1 and later, if no SAML
authorization data is retrieved, Artix re-authenticates the client
credentials with the security service, irrespective of whether the
accept_asserted_authorization_info variable is true or false.

Artix Configuration Reference, C++ Runtime 107

action_role_mapping_file

Specifies the action-role mapping file URL. For example:
plugins:gsp:action_role_mapping_file =

"file:///my/action/role/mapping";

assert_authorization_info

If false, SAML authorization data is not sent on outgoing
connections. Default is true.

authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.
A value of -1 (the default) means unlimited size. A value of 0
means disable the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call
from that user. The cache timeout should be configured to be
smaller than the timeout set in the is2.properties file (by default,
that setting is is2.sso.session.timeout=600).
A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which
a server belongs. The value of this variable determines which of a
user's roles are considered when making an access control
decision.
For example, consider a user that belongs to the ejb-developer
and corba-developer roles within the Engineering realm, and to the
ordinary role within the Sales realm. If you set
plugins:gsp:authorization_realm to Sales for a particular server,
only the ordinary role is considered when making access control
decisions (using the action-role mapping file).

ClassName

ClassName specifies the Java class that implements the gsp plugin.
This configuration setting makes it possible for the Artix core to
load the plugin on demand. Internally, the Artix core uses a Java
class loader to load and instantiate the gsp class. Plugin loading
can be initiated either by including the csi in the orb_plugins list,
or by associating the plugin with an initial reference.

enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server. Default is true.

 108 Artix Configuration Reference, C++ Runtime

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP)
when set to true.

enable_user_id_logging

A boolean variable that enables logging of user IDs on the server
side. Default is false.
Up until the release of Orbix 6.1 SP1, the GSP plug-in would log
messages containing user IDs. For example:
[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]

(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose
user IDs in the Orbix log. From Orbix 6.2 onward, the default
behavior of the GSP plug-in is changed, so that user IDs are not
logged by default. To restore the pre-Orbix 6.2 behavior and log
user IDs, set this variable to true.

enable_x509_sso

Enables certificate-based SSO when set to true.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login
service when set to true. When this setting is true, the value of
the SSL/TLS client secure invocation policy does not affect the
connection between the client and the login service.
Default is true.

enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based
authentication on the server side using the Artix security service.
Default is false.

sso_server_certificate_constraints

A special certificate constraints policy that applies only to the
SSL/TLS connection between the client and the SSO login server.
For details of the pattern constraint language, see “Applying
Constraints to Certificates” on page 96.

use_client_load_balancing

A boolean variable that enables load balancing over a cluster of
security services. If an application is deployed in a domain that
uses security service clustering, the application should be
configured to use client load balancing (in this context, client
means a client of the Artix security service). See also
policies:iiop_tls:load_balancing_mechanism.
Default is true.

Artix Configuration Reference, C++ Runtime 109

plugins:https
The plugins:https namespace contains the following variable:
• ClassName

ClassName

(Java ART runtime) This variable specifies the class name of the
https plug-in implementation. For example:
plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";

plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:
• buffer_pool:recycle_segments
• buffer_pool:segment_preallocation
• buffer_pools:max_incoming_buffers_in_pool
• buffer_pools:max_outgoing_buffers_in_pool
• delay_credential_gathering_until_handshake
• enable_iiop_1_0_client_support
• incoming_connections:hard_limit
• incoming_connections:soft_limit
• outgoing_connections:hard_limit
• outgoing_connections:soft_limit
• tcp_listener:reincarnate_attempts
• tcp_listener:reincarnation_retry_backoff_ratio
• tcp_listener:reincarnation_retry_delay

buffer_pool:recycle_segments

(Java ART runtime) When this variable is set, the iiop_tls plug-in
reads this variable’s value instead of the
plugins:iiop:buffer_pool:recycle_segments variable’s value.

buffer_pool:segment_preallocation

(Java ART runtime) When this variable is set, the iiop_tls plug-in
reads this variable’s value instead of the
plugins:iiop:buffer_pool:segment_preallocation variable’s value.

buffer_pools:max_incoming_buffers_in_pool

When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable’s
value.

 110 Artix Configuration Reference, C++ Runtime

buffer_pools:max_outgoing_buffers_in_pool

When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable’s
value.

delay_credential_gathering_until_handshake

(Windows only) This client configuration variable provides an
alternative to using the principal_sponsor variables to specify an
application’s own certificate. When this variable is set to true and
principal_sponsor:use_principal_sponsor is set to false, the client
delays sending its certificate to a server. The client will wait until
the server explicitly requests the client to send its credentials
during the SSL/TLS handshake.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of Artix SSL/TLS
applications with legacy IIOP 1.0 SSL/TLS servers, which do not
support IIOP 1.1.
The default value is false. When set to true, Artix SSL/TLS
searches secure target IIOP 1.0 object references for legacy IIOP
1.0 SSL/TLS tagged component data, and attempts to connect on
the specified port.

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side)
connections permitted to IIOP. IIOP does not accept new
connections above this limit. Defaults to -1 (disabled).
When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:incoming_connections:hard_limit
variable’s value.
Please see the chapter on ACM in the CORBA Programmer’s Guide
for further details.

incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin
closing incoming (server-side) connections. Defaults to -1
(disabled).
When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:incoming_connections:soft_limit
variable’s value.
Please see the chapter on ACM in the Orbix 6 CORBA
Programmer’s Guide for further details.

Note: This variable will not be necessary for most users.

Artix Configuration Reference, C++ Runtime 111

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:outgoing_connections:hard_limit
variable’s value.

outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the plugins:iiop:outgoing_connections:soft_limit
variable’s value.

tcp_listener:reincarnate_attempts

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnate_attempts specifies the
number of times that a Listener recreates its listener socket after
recieving a SocketException.
Sometimes a network error may occur, which results in a listening
socket being closed. On Windows, you can configure the listener
to attempt a reincarnation, which enables new connections to be
established. This variable only affects Java and C++ applications
on Windows. Defaults to 0 (no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_delay specifies
a delay between reincarnation attempts. Data type is long.
Defaults to 0 (no delay).

tcp_listener:reincarnation_retry_delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_backoff_ratios
pecifies the degree to which delays between retries increase from
one retry to the next. Datatype is long. Defaults to 1.

plugins:java_server
In the context of Artix security, the variables in the
plugins:java_server namespace are used only to configure the
Artix security service. To deploy the security service, Artix exploits
the generic server (which is a feature originally developed for
Orbix). The Artix security service is deployed into the following
container hierarchy:
• Generic server—a simple container, originally developed for

the Orbix product, which enables you to deploy CORBA
services implemented in C++.

• Java server plug-in—a JNI-based adapter that plugs into the
generic server, enabling you to deploy CORBA services
implemented in Java.

• JVM created by the Java server plug-in—once it is loaded, the
Java server plug-in creates a JVM instance to host a Java
program.

 112 Artix Configuration Reference, C++ Runtime

• Artix security service Java code—you instruct the Java server
plug-in to load the security service core (which is
implemented in Java) by specifying the appropriate class to
the plugins:java_server:class variable.

In addition to the configuration variables described in this section,
you must also include the following setting in your configuration:
generic_server_plugin = "java_server";

Which instructs the generic server to load the Java server plug-in.
The plugins:java_server namespace contains the following
variables:
• class
• classpath
• jni_verbose
• shlib_name
• system_properties
• X_options

class

In the context of the Artix security service, this variable specifies
the entry point to the core security service (the core security
service is a pure Java program). There are two possible values:
• com.iona.jbus.security.services.SecurityServer—creates an

Artix bus instance that takes its configuration from the bus
sub-scope of the current configuration scope. This entry point
is suitable for a security service that is accessed through a
WSDL contract (for example, a HTTPS-based security
service).

• com.iona.corba.security.services.SecurityServer—a
CORBA-based implementation of the security service, which
does not create an Artix bus instance. This entry point is
suitable for running an IIOP/TLS-based security service.

classpath

Specifies the CLASSPATH for the JVM instance created by the Java
server plug-in. For the Artix security service, this CLASSPATH must
point at the JAR file containing the implementation of the security
service. For example:

The Java server plug-in ignores the contents of the CLASSPATH
environment variable.

plugins:java_server:classpath =
"C:\artix_40/lib/artix/security_service/4.0/security_service
-rt.jar";

Artix Configuration Reference, C++ Runtime 113

jni_verbose

A boolean variable that instructs the JVM to output JNI-level
diagnostics, which can be helpful for troubleshooting. When true,
the JVM-generated diagnostic messages are sent to the Artix
logging stream; when false, the diagnostic messages are
suppressed.

shlib_name

Specifies the abbreviated name of the shared library that
implements the java_server plug-in. This variable must always be
set as follows:

system_properties

Specifies a list of Java system properties to the JVM created by the
Java server plug-in. For example, the Artix security service
requires the following Java system property settings:

Where each item in the list specifies a Java system property, as
follows:
<PropertyName>=<PropertyValue>

X_options

Specifies a list of non-standard, -X, options to the JVM created by
the Java server plug-in. In contrast to the way these options are
specified to the java command-line tool, you must omit the -X
prefix in the X_options list.
For example:

To find out more about the non-standard JVM options, type java
-X -help at the command line (using Sun’s implementation of the
JVM).

plugins:java_server:shlib_name = "it_java_server";

plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.
ORBSingleton",
"is2.properties=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_VERS
ION}/demos/security/full_security/etc/is2.properties.FILE",
"java.endorsed.dirs=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_
VERSION}/lib/endorsed"];

plugins:java_server:X_options = ["rs"];

 114 Artix Configuration Reference, C++ Runtime

plugins:login_client
The plugins:login_client namespace contains the following
variables:
• wsdl_url

wsdl_url

(Deprecated) Use bus:initial_contract:url:login_service instead.

plugins:login_service
The plugins:login_service namespace contains the following
variables:
• wsdl_url

wsdl_url

(Deprecated) Use bus:initial_contract:url:login_service instead.

plugins:security
The plugins:security namespace contains the following variables:
• direct_persistence
• iiop_tls:addr_list
• iiop_tls:host
• iiop_tls:port
• log4j_to_local_log_stream
• share_credentials_across_orbs

direct_persistence

A boolean variable that specifies whether or not the security
service runs on a fixed IP port (for an IIOP/TLS-based security
service). You must always set this variable to true in the security
service’s configuration scope, because the security service must
run on a fixed port.

iiop_tls:addr_list

When the security service is configured as a cluster, you must use
this variable to list the addresses of all of the security services in
the cluster.
The first entry, not prefixed by a + sign, must specify the address
of the current security service instance. The remaining entries,
prefixed by a + sign, must specify the addresses of the other
services in the cluster (the + sign indicates that an entry affects
only the contents of the generated IOR, not the security service’s
listening port).

Artix Configuration Reference, C++ Runtime 115

For example, to configure the first instance of a cluster consisting
of three security service instances—with addresses
security01:5001, security02:5002, and security03:5003—you would
initialize the address list as follows:

iiop_tls:host

Specifies the hostname where the security service is running. This
hostname will be embedded in the security service’s IOR (for an
IIOP/TLS-based security service).

iiop_tls:port

Specifies the fixed IP port where the security service listens for
incoming connections. This IP port also gets embedded in the
security service’s IOR (for an IIOP/TLS-based security service).

log4j_to_local_log_stream

Redirects the Artix security service’s log4j output to the local log
stream. In the Artix security service’s configuration scope, you can
set the plugins:security:log4j_to_local_log_stream variable to one
of the following values:
• true—the security service log4j output is sent to the local log

stream. This requires that the local_log_stream plug-in is
present in the orb_plugins list.

• false—(default) the log4j output is controlled by the
log4j.properties file (whose location is specified in the
is2.properties file).

When redirecting log4j messages to the local log stream, you can
control the log4j logging level using Artix event log filters. You can
specify Artix event log filters with the following setting in the Artix
.cfg file:
event_log:filters = ["IT_SECURITY=LoggingLevels"];

The IT_SECURITY tag configures the logging levels for the Artix
security service (which includes the redirected log4j stream). log4j
has five logging levels: DEBUG, INFO, WARN, ERROR, and FATAL. To
select a particular log4j logging level (for example, WARN), replace
LoggingLevels by that logging level plus all of the higher logging
levels (for example, WARN+ERROR+FATAL).

plugins:security:iiop_tls:addr_list = ["security01:5001",
"+security02:5002", "+security03:5003"];

 116 Artix Configuration Reference, C++ Runtime

For example, you can configure the Artix security service to send
log4j logging to the local log stream, as follows:

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs.
Normally, when you specify an own SSL/TLS credential (using the
principal sponsor or the principal authenticator), the credential is
available only to the ORB that created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are
configured to share credentials.
See also principal_sponsor:csi:use_existing_credentials for
details of how to enable sharing of CSI credentials.
Default is false.

plugins:security_cluster
The plugins:security_cluster namespace contains the following
variable:
• iiop_tls:addr_list

iiop_tls:addr_list

The plugins:security_cluster:iiop_tls:addr_list variable lists the
addresses for all of the security services in the cluster. Each
address in the list is preceded by a + sign, which indicates that the
service embeds the address in its generated IORs.
This variable is used in combination with the
plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port settings, which specify the address
where the security service listens for incoming IIOP/TLS request
messages.

plugins:wsdl_publish
The plugins:wsdl_publish namespace contains the following
variables:
• enable_secure_wsdl_publish

Artix .cfg file
security_service
{
 orb_plugins = ["local_log_stream", "iiop_profile",

"giop", "iiop_tls"];
 plugins:security:log4j_to_local_log_stream = "true";

 # Log all log4j messages at level WARN and above
 event_log:filters = ["IT_SECURITY=WARN+ERROR+FATAL"];
 ...
};

Artix Configuration Reference, C++ Runtime 117

enable_secure_wsdl_publish

A boolean variable that enables certain security features of the
WSDL publishing service that are required whenever the WSDL
publishing service is configured to use the HTTPS protocol. Set
this variable to true, if the WSDL publishing service is configured
to use HTTPS; otherwise, set it to false.
Default is false.
For example, to configure the WSDL publishing service to use
HTTPS, you should include the following in your program’s
configuration scope:

The plugins:at_http:server:use_secure_sockets setting is needed
to enable HTTPS for the WSDL publishing service.

plugins:wss
The plugins:wss namespace defines variables that are needed to
configure the Artix partial message protection feature. Partial
message protection is a WS-Security feature that enables you to
apply cryptographic operations at the SOAP 1.1 binding level,
including encrypting and signing a message’s SOAP body. The
variables belonging to this namespace are as follows:
• classname
• keyretrieval:keystore:file
• keyretrieval:keystore:provider
• keyretrieval:keystore:storepass
• keyretrieval:keystore:storetype
• protection_policy:location

classname

Specifies the name of the Java class that implements the WSS
plug-in. This variable must be set to the value
com.iona.jbus.security.wss.plugin.BusPlugInFactory.

Artix .cfg file
secure_server
{
 orb_plugins = [... , "wsdl_publish", "at_http", "https"];

 plugins:wsdl_publish:publish_port = "2222";
 plugins:wsdl_publish:enable_secure_wsdl_publish = "true";
 plugins:at_http:server:use_secure_sockets = "true";

 # Other HTTPS-related settings
 ...
};

Note: You must set both
plugins:wsdl_publish:enable_secure_wsdl_publish and
plugins:at_http:server:use_secure_sockets to true, when
enabling HTTPS for the WSDL publish plug-in.

 118 Artix Configuration Reference, C++ Runtime

keyretrieval:keystore:file

Specifies the location of a Java keystore file. This must be a
filename or file pathname, not a URL.

keyretrieval:keystore:provider

Specifies the name of the Java keystore provider (optional). Using
the Java cryptographic extension (JCE) package from Sun, it is
possible to provide a custom implementation of the Java keystore.
If your Java keystore is based on a custom provider, use this
variable to set the provider name.
Default is to use the default provider provided by the Java virtual
machine.

keyretrieval:keystore:storepass

Specifies the password to access the Java keystore. This variable
is used in conjunction with plugins:wss:keyretrieval:keystore:file
to associate a Java keystore with the WSS plug-in.
For example:

keyretrieval:keystore:storetype

Specifies the type of the Java keystore (optional). Using the Java
cryptographic extension (JCE) package from Sun, it is possible to
provide a custom implementation of the Java keystore. If your
Java keystore is based on a custom provider, use this variable to
set the keystore type.
Default is jks.

protection_policy:location

Specifies the location of a policy configuration file that governs the
behavior of the partial message protection feature. The policy
configuration file is an XML file that conforms to the
protection-policy.xsd XML schema (located in
ArtixInstallDir/schemas).

policies
The policies namespace defines the default CORBA policies for an
ORB. Many of these policies can also be set programmatically from
within an application. SSL/TLS-specific variables in the policies
namespace include:
• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

Artix .cfg file
plugins:wss:keyretrieval:keystore:file="Keystore.jks";
plugins:wss:keyretrieval:keystore:storepass="StorePassword";
plugins:wss:keyretrieval:keystore:provider="";
plugins:wss:keyretrieval:keystore:storetype="";

Artix Configuration Reference, C++ Runtime 119

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:allow_unauthenticated_clients_policy variable,
which takes precedence.
A boolean variable that specifies whether a server will allow a
client to establish a secure connection without sending a
certificate. Default is false.
This configuration variable is applicable only in the special case
where the target secure invocation policy is set to require
NoProtection (a semi-secure server).

 120 Artix Configuration Reference, C++ Runtime

certificate_constraints_policy

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:certificate_constraints_policy variable, which
takes precedence.
A list of constraints applied to peer certificates—see “Applying
Constraints to Certificates” on page 96. If a peer certificate fails to
match any of the constraints, the certificate validation step will
fail.
The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:client_secure_invocation_policy:requires
variable, which takes precedence.
Specifies the minimum level of security required by a client. The
value of this variable is specified as a list of association options—
see the Artix Security Guide: C++ for more details about
association options.
In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

client_secure_invocation_policy:supports

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:client_secure_invocation_policy:supports
variable, which takes precedence.
Specifies the initial maximum level of security supported by a
client. The value of this variable is specified as a list of association
options—see the Artix Security Guide for more details about
association options.
This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

max_chain_length_policy

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:max_chain_length_policy variable, which takes
precedence.
max_chain_length_policy specifies the maximum certificate chain
length that an ORB will accept. The policy can also be set
programmatically using the IT_TLS_API::MaxChainLengthPolicy
CORBA policy. Default is 2.

Artix Configuration Reference, C++ Runtime 121

mechanism_policy:accept_v2_hellos

A generic variable that sets this policy both for iiop_tls and https.
To set this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:accept_v2_hellos or
policies:https:mechanism_policy:accept_v2_hellos respectively for
IIOP/TLS or HTTPS.
The accept_v2_hellos policy is a special setting that facilitates
HTTPS interoperability with certain Web browsers. Many Web
browsers send SSL V2 client hellos, because they do not know
what SSL version the server supports. When true, the Artix
application accepts V2 client hellos, but continues the handshake
using either the SSL_V3 or TLS_V1 protocol. When false, the Artix
application throws an error, if it receives a V2 client hello. The
default is false.
For example:
policies:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

A generic variable that sets this policy both for iiop_tls and https.
To set this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:ciphersuites or
policies:https:mechanism_policy:ciphersuites respectively for
IIOP/TLS or HTTPS.
mechanism_policy:ciphersuites specifies a list of cipher suites for
the default mechanism policy. One or more of the cipher suites
shown in Table 5 can be specified in this list.

If you do not specify the list of cipher suites explicitly, all of the
null encryption ciphers are disabled and all of the non-export
strength ciphers are supported by default.

Table 5: Mechanism Policy Cipher Suites

Null Encryption,
Integrity and

Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

 122 Artix Configuration Reference, C++ Runtime

mechanism_policy:protocol_version

A generic variable that sets this policy both for iiop_tls and https.
To set this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:protocol_version or
policies:https:mechanism_policy:protocol_version respectively for
IIOP/TLS or HTTPS.
mechanism_policy:protocol_version specifies the list of protocol
versions used by a security capsule (ORB instance). The list can
include one or more of the values SSL_V3 and TLS_V1. For example:

session_caching_policy

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:session_caching_policy variable, which takes
precedence.
session_caching_policy specifies whether an ORB caches the
session information for secure associations when acting in a client
role, a server role, or both. The purpose of session caching is to
enable closed connections to be re-established quickly. The
following values are supported:
CACHE_NONE(default)
CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

target_secure_invocation_policy:requires

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:target_secure_invocation_policy:requires
variable, which takes precedence.
target_secure_invocation_policy:requires specifies the minimum
level of security required by a server. The value of this variable is
specified as a list of association options.

target_secure_invocation_policy:supports

A generic variable that sets this policy both for iiop_tls and https.
To set this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:target_secure_invocation_policy:supports
variable, which takes precedence.
supports specifies the maximum level of security supported by a
server. The value of this variable is specified as a list of
association options. This policy can be upgraded programmatically
using either the QOP or the EstablishTrust policies.

policies:mechanism_policy:protocol_version=["TLS_V1","SSL_V3"];

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

Artix Configuration Reference, C++ Runtime 123

trusted_ca_list_policy

A generic variable that sets this policy both for iiop_tls and https.
To set this policy for a specific protocol, set
policies:iiop_tls:trusted_ca_list_policy or
policies:https:trusted_ca_list_policy respectively for IIOP/TLS
or HTTPS.
trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The
aggregate of the CAs in all of the listed files is the set of trusted
CAs.
For example, you might specify two files containing CA lists as
follows:

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into
different lists and to select a particular set of CAs for a security
domain by choosing the appropriate CA lists.

policies:asp
The policies:asp namespace contains the following variables:
• enable_authorization
• enable_issue_external_token
• enable_security
• enable_sso
• load_balancing_policy
• use_artix_proxies
• server_interception_point

enable_authorization

A boolean variable that specifies whether Artix should enable
authorization using the Artix Security Framework. Default is true.

enable_issue_external_token

Sometimes, instead of presenting full credentials (including a
password) to an Artix server, a client might only be able to
provide a username. In spite of the fact that these credentials are
incomplete, the application might require the Artix security service
to issue a security token.

policies:trusted_ca_list_policy =
["install_dir/asp/version/etc/tls/x509/ca/ca_list1.pem",
"install_dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_authorization is true. For versions of Artix
prior to 4.0, the default value of
policies:asp:enable_authorization was false.

 124 Artix Configuration Reference, C++ Runtime

For example, this kind of scenario can arise, if your security
architecture has a mechanism for verifying credentials that is
external to the Artix security framework. At a certain point in your
application, the user’s identity might already have been
authenticated, but only the username is available for presentation
to the Artix security service.
To deal with this special case, you can configure the Artix
authentication mechanism to issue security tokens based on
usernames only. To enable this feature, configure your Artix
application as follows:
1. Artix server configuration—in the configuration file of the Artix

server that needs to obtain security tokens from the Artix
security service, set the
policies:asp:enable_issue_external_token variable to true.

2. Artix security server configuration—configure the
policies:external_token_issuer:client_certificate_constraint
s variable with the appropriate set of certificate constraints.
See “policies:external_token_issuer” on page 129 for details
of how to do this.

The Artix server will now be able to obtain a security token from
the Artix security service for any kind of credentials that contains
a username—for example, HTTP Basic Authentication credentials,
WSSE UsernameToken credentials, or CORBA Principal. The
password field in these credentials (if any) is ignored.
It is crucial that you configure the certificate constraints in the
security service, so that only the X.509 certificate from the
relevant Artix server matches the constraints.

enable_security

A boolean variable that specifies whether Artix should enable
security using the Artix Security Framework. When this variable is
set to false, all security features that depend on the
artix_security plug-in (that is, authentication and authorization
using the Artix security service) are disabled. Default is true.

enable_sso

This configuration variable is obsolete and has no effect.

WARNING: You must be certain that you can trust the
Artix server to verify user identities independently of the
Artix security service. Otherwise, your application’s
security will be compromised.

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_security is true. For versions of Artix prior
to 4.0, the default value of policies:asp:enable_security was
false.

Artix Configuration Reference, C++ Runtime 125

load_balancing_policy

When client load balancing is enabled, this variable specifies how
often the Artix security plug-in reconnects to a node in the
security service cluster. There are two possible values for this
policy:
• per-server—(the default) after selecting a particular security

service from the cluster, the client remains connected to that
security service instance for the rest of the session.

• per-request—for each new request, the Artix security plug-in
selects and connects to a new security service node (in
accordance with the algorithm specified by
policies:iiop_tls:load_balancing_mechanism).

This policy is used in conjunction with the
plugins:asp:enable_security_service_load_balancing and
policies:iiop_tls:load_balancing_mechanism configuration
variables.
Default is per-server.

use_artix_proxies

A boolean variable that specifies whether a client of the Artix
security service connects to the security service through a WSDL
contract or through a CORBA object reference. The
policies:asp:use_artix_proxies variable can have the following
values:
• true—connect to the security service through a WSDL

contract. The location of the security service WSDL contract
can be specified using the
bus:initial_contract:url:isf_service configuration variable.

• false—connect to the security service through a CORBA object
reference. The object reference is specified by the
initial_references:IT_SecurityService:reference
configuration variable.

Default is false.

server_interception_point

Controls the point at which the Artix security interceptor is called.
By default, the interceptor is called at the
intercept_around_dispatch phase. The following setting (which is
the default) is suitable for most applications:

Note: The process of re-establishing a secure
connection with every new request imposes a
significant performance overhead. Therefore, the
per-request policy value is not recommended for most
deployments.

policies:asp:server_interception_point =
"intercept_around_dispatch";

 126 Artix Configuration Reference, C++ Runtime

However, in some advanced applications, you might want to
interpret incoming information on the wire and be able to set
related information on the appropriate Artix security contexts
before the Artix security interceptor is called. For example, if you
want to perform dynamic credential mapping, use the following
setting:

policies:bindings
The policies:bindings namespace contains the following
variables:
• corba:gssup_propagation
• corba:token_propagation
• soap:gssup_propagation
• soap:token_propagation

corba:gssup_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to
enable the transfer of incoming SOAP credentials into outgoing
CORBA credentials.
The CORBA binding extracts the username and password
credentials from incoming SOAP/HTTP invocations and inserts
them into an outgoing GSSUP credentials object, to be transmitted
using CSI authentication over transport. The domain name in the
outgoing GSSUP credentials is set to a blank string. Default is
false.

corba:token_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to
enable the transfer of an SSO token from an incoming SOAP
request into an outgoing CORBA request.
The CORBA binding extracts the SSO token from incoming
SOAP/HTTP invocations and inserts the token into an outgoing
IIOP request, to be transmitted using CSI identity assertion.

soap:gssup_propagation

A boolean variable that can be used in a CORBA-to-SOAP router to
enable the transfer of incoming CORBA credentials into outgoing
SOAP credentials.

policies:asp:server_interception_point =
"intercept_pre_dispatch";

Note: This advanced security setting can not be used in
conjunction with the router when it is configured to use
pass-through mode. The Artix router in pass-threw mode
skips the intercept_pre_dispatch interception point. This
means that the Artix security interceptor only works with
the Artix router when the secure application is configured
to use the default setting (intercept_around_dispatch).

Artix Configuration Reference, C++ Runtime 127

The SOAP binding extracts the username and password from
incoming IIOP invocations (where the credentials are embedded in
a GIOP service context and encoded according to the CSI and
GSSUP standards), and inserts them into an outgoing SOAP
header, encoded using the WSS standard.
Default is false.

soap:token_propagation

A boolean variable that can be used in a CORBA-to-SOAP router to
enable the transfer of an SSO token from an incoming CORBA
request into an outgoing SOAP request.
The SOAP binding extracts the SSO token from an incoming IIOP
request and inserts the token into the header of an outgoing
SOAP/HTTP request.

policies:csi
The policies:csi namespace includes variables that specify
settings for Common Secure Interoperability version 2 (CSIv2):
• attribute_service:backward_trust:enabled

• attribute_service:client_supports

• attribute_service:target_supports

• auth_over_transport:authentication_service

• auth_over_transport:client_supports

• auth_over_transport:server_domain_name

• auth_over_transport:target_requires

• auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that
specifies the association options supported by the CSIv2 attribute
service (principal propagation). The only assocation option that
can be specified is IdentityAssertion. This policy is normally
specified in an intermediate server so that it propagates CSIv2
identity tokens to a target server. For example:
policies:csi:attribute_service:client_supports =

["IdentityAssertion"];

 128 Artix Configuration Reference, C++ Runtime

attribute_service:target_supports

attribute_service:target_supports is a server-side policy that
specifies the association options supported by the CSIv2 attribute
service (principal propagation). The only assocation option that
can be specified is IdentityAssertion. For example:
policies:csi:attribute_service:target_supports =

["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements
the IT_CSI::AuthenticateGSSUPCredentials IDL interface. The
authentication service is implemented as a callback object that
plugs into the CSIv2 framework on the server side. By replacing
this class with a custom implementation, you could potentially
implement a new security technology domain for CSIv2.
By default, if no value for this variable is specified, the Java CSI
plug-in uses a default authentication object that always returns
false when the authenticate() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that
specifies the association options supported by CSIv2 authorization
over transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:
policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which
this server application belongs. The iSF security domains are
administered within an overall security technology domain.
The value of the server_domain_name variable will be embedded in
the IORs generated by the server. A CSIv2 client about to open a
connection to this server would check that the domain name in its
own CSIv2 credentials matches the domain name embedded in
the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authorization
over transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:
policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization
over transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

Artix Configuration Reference, C++ Runtime 129

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

policies:external_token_issuer
The policies:external_token_issuer namespace contains the
following variables:
• client_certificate_constraints

client_certificate_constraints

To facilitate interoperability with Artix on the mainframe and to
facilitate interoperability with security architectures that perform
authentication independently of Artix, the Artix security service
can be configured to issue security tokens based on a username
only (no password required). This feature is known as the external
token issuer. Because this feature could potentially open a
security hole in the Artix security service, the external token
issuer is made available only to those applications that present a
certificate matching the constraints specified in
policies:external_token_issuer:client_certificate_constraints.
For details of how to specify certificate constraints, see “Applying
Constraints to Certificates” on page 96.
If you want to configure an Artix server that is not on the
mainframe to gain access to the external token issuer, see
“enable_issue_external_token” on page 123.
For example, by inserting the following setting into the security
service’s configuration scope in the Artix .cfg file, you would
effectively disable the external token issuer (recommended for
deployments that do not need to interoperate with the
mainframe).

This configuration variable must be set in the security server’s
configuration scope, otherwise the security server will not start.

policies:https
The policies:https namespace contains variables used to
configure the https plugin. It includes the following variables:
• buffer:prealloc_shared

• buffer:prealloc_size

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• target_secure_invocation_policy:requires

DISABLE the security service’s external token issuer.
Note: The empty list matches no certificates.
#
policies:external_token_issuer:client_certificate_constraints =

[];

 130 Artix Configuration Reference, C++ Runtime

• target_secure_invocation_policy:supports

• trace_requests:enabled

• trusted_ca_list_policy

buffer:prealloc_shared

policies:https:buffer:prealloc_shared specifies whether the HTTPS
pre-allocation buffer is shared among threads. Defaults to false.
This means that each thread pre-allocates its own buffer on the
first invocation for that thread.
If this variable is set to true, the buffer is shared among threads:

This means that the same buffer pre-allocation is shared among
all threads. Therefore, your application must ensure that multiple
invocations are not active at the same time.
See also buffer:prealloc_size.

buffer:prealloc_size

policies:https:buffer:prealloc_size specifies the pre-allocated
size of the HTTP buffer in bytes. The default value is 0, which
means there is no pre-allocation.
When this variable is set, Artix pre-allocates chunks of the
specified buffer size to avoid repeated allocations and
deallocations. Each thread (dispatcher or reply consumer)
performs this pre-allocation on the first message. Then repeated
invocations on the same thread reuse this buffer. For example, the
following setting specifies a 2 MB buffer:

User applications should work out their worst case load in
advance, and set this variable to an appropriate value. This
allocation can be reused by each subsequent request/reply on the
dispatcher/consumer thread. When the Artix bus is shut down, the
buffer allocation is freed.

client_secure_invocation_policy:requires

This policy overides
policies:client_secure_invocation_policy:requires for the https
plugin.
Specifies the minimum level of security required by a client. The
value of this variable is specified as a list of association options—
see the Artix Security Guide: C++ for more details about
association options.
This policy cannot be downgraded programmatically by the
application.

policies:https:buffer:prealloc_shared = "true";

policies:https:buffer:prealloc_size = "2097152";

Artix Configuration Reference, C++ Runtime 131

client_secure_invocation_policy:supports

This policy overides
policies:client_secure_invocation_policy:supports for the https
plugin.
Specifies the initial maximum level of security supported by a
client. The value of this variable is specified as a list of association
options—see the Artix Security Guide for more details about
association options.
This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

mechanism_policy:accept_v2_hellos

This HTTPS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.
The accept_v2_hellos policy is a special setting that facilitates
HTTPS interoperability with certain Web browsers. Many Web
browsers send SSL V2 client hellos, because they do not know
what SSL version the server supports.
When true, the Artix server accepts V2 client hellos, but continues
the handshake using either the SSL_V3 or TLS_V1 protocol. When
false, the Artix server throws an error, if it receives a V2 client
hello. The default is true.

For example:
policies:https:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy.
One or more of the following cipher suites can be specified in this
list:

Note: This default value is deliberately different from the
policies:iiop_tls:mechanism_policy:accept_v2_hellos default
value.

Table 6: Mechanism Policy Cipher Suites

Null Encryption,
Integrity and

Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

 132 Artix Configuration Reference, C++ Runtime

If you do not specify the list of cipher suites explicitly, all of the
null encryption ciphers are disabled and all of the non-export
strength ciphers are supported by default.

mechanism_policy:protocol_version

This HTTPS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.
Specifies the list of protocol versions used by a security capsule
(ORB instance). Can include one or more of the following values:
TLS_V1
TLS_V1_2
SSL_V3

The default setting is SSL_V3 and TLS_V1_2.
For example:
policies:https:mechanism_policy:protocol_version = ["TLS_V1_2",

"SSL_V3"];

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the https
plugin.
Specifies the minimum level of security required by a server. The
value of this variable is specified as a list of association options—
see the Artix Security Guide for more details about association
options.
This policy cannot be downgraded programmatically by the
application.

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the https
plugin.
Specifies the maximum level of security supported by a server.
The value of this variable is specified as a list of association
options—see the Artix Security Guide for more details about
association options.

trace_requests:enabled

Specifies whether to enable HTTPS-specific trace logging. The
default is false. To enable HTTPS tracing, set this variable as
follows:

This setting outputs INFO level messages that show full HTTP
buffers (headers and body) as they go to and from the wire.
You must also set log filtering as follows to pick up the additional
HTTPS messages, and then resend the logs:

policies:https:trace_requests:enabled="true";

event_log:filters = ["*=*"];

Artix Configuration Reference, C++ Runtime 133

For example, you could enable HTTPS trace logging to verify that
authentication headers are written to the wire correctly.
Similarly, to enable HTTP-specific trace logging, use the following
setting:

trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which
contains a concatenated list of CA certificates in PEM format. The
aggregate of the CAs in all of the listed files is the set of trusted
CAs.
For example, you might specify two files containing CA lists as
follows:
policies:trusted_ca_list_policy =

["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into
different lists and to select a particular set of CAs for a security
domain by choosing the appropriate CA lists.

policies:http:trace_requests:enabled="true";

 134 Artix Configuration Reference, C++ Runtime

policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting
affect the iiop_tls plugin. It contains the following variables:
• allow_unauthenticated_clients_policy

• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• client_version_policy

• connection_attempts

• connection_retry_delay

• load_balancing_mechanism

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• server_address_mode_policy:local_domain

• server_address_mode_policy:local_hostname

• server_address_mode_policy:port_range

• server_address_mode_policy:publish_hostname

• server_version_policy

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• tcp_options_policy:no_delay

• tcp_options_policy:recv_buffer_size

• tcp_options_policy:send_buffer_size

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a
client to establish a secure connection without sending a
certificate. Default is false.
This configuration variable is applicable only in the special case
where the target secure invocation policy is set to require
NoProtection (a semi-secure server).

buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:buffer_sizes_policy:default_buffer_size policy’s
value.

Artix Configuration Reference, C++ Runtime 135

buffer_sizes_policy:default_buffer_size specifies, in bytes, the
initial size of the buffers allocated by IIOP. Defaults to 16000. This
value must be greater than 80 bytes, and must be evenly divisible
by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:buffer_sizes_policy:max_buffer_size policy’s value.
buffer_sizes_policy:max_buffer_size specifies the maximum buffer
size permitted by IIOP, in kilobytes. Defaults to 512. A value of -1
indicates unlimited size. If not unlimited, this value must be
greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion
of certificate constraints in the Artix security guide for the syntax
of the pattern constraint language. If a peer certificate fails to
match any of the constraints, the certificate validation step will
fail.
The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The
value of this variable is specified as a list of association options—
see the Artix Security Guide for more details about association
options.
In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a
client. The value of this variable is specified as a list of association
options—see the Artix Security Guide for more details about
association options.
This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by
clients. A client uses the version of IIOP specified by this variable,
or the version specified in the IOR profile, whichever is lower.
Valid values for this variable are: 1.0, 1.1, and 1.2.
For example, the following file-based configuration entry sets the
server IIOP version to 1.1.

policies:iiop:server_version_policy="1.1";

 136 Artix Configuration Reference, C++ Runtime

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts
used when creating a connected socket using a Java application.
Defaults to 5.

connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

load_balancing_mechanism

Specifies the load balancing mechanism for the client of a security
service cluster (see also plugins:gsp:use_client_load_balancing
and plugins:asp:enable_security_service_load_balancing). In this
context, a client can also be an Artix server. This policy only
affects connections made using IORs that contain multiple
addresses. The iiop_tls plug-in load balances over the addresses
embedded in the IOR.
The following mechanisms are supported:
• random—choose one of the addresses embedded in the IOR at

random (this is the default).
• sequential—choose the first address embedded in the IOR,

moving on to the next address in the list only if the previous
address could not be reached.

max_chain_length_policy

This policy overides policies:max_chain_length_policy for the
iiop_tls plugin.
The maximum certificate chain length that an ORB will accept.
The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.
The accept_v2_hellos policy is a special setting that facilitates
HTTPS interoperability with certain Web browsers. Many Web
browsers send SSL V2 client hellos, because they do not know
what SSL version the server supports. When true, the Artix
application accepts V2 client hellos, but continues the handshake
using either the SSL_V3 or TLS_V1 protocol. When false, the Artix
application throws an error, if it receives a V2 client hello. The
default is false.

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy

Note: This default value is deliberately different from the
policies:https:mechanism_policy:accept_v2_hellos default value.

Artix Configuration Reference, C++ Runtime 137

For example:
policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for
the iiop_tls plugin.
Specifies a list of cipher suites for the default mechanism policy.
One or more of the following cipher suites can be specified in this
list:

If you do not specify the list of cipher suites explicitly, all of the
null encryption ciphers are disabled and all of the non-export
strength ciphers are supported by default.

mechanism_policy:protocol_version

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.
Specifies the list of protocol versions used by a security capsule
(ORB instance). Can include one or more of the following values:
TLS_V1
TLS_V1_2
SSL_V3
SSL_V2V3 (Deprecated)

The default setting is SSL_V3 and TLS_V1_2.
For example:
policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",

"SSL_V3"];

The SSL_V2V3 value is now deprecated. If you have any legacy
configuration that uses SSL_V2V3, you should replace it with the
following combination of settings:
policies:iiop_tls:mechanism_policy:protocol_version = ["SSL_V3",

"TLS_V1_2"];
policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

Table 7: Mechanism Policy Cipher Suites

Null Encryption,
Integrity and

Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

 138 Artix Configuration Reference, C++ Runtime

server_address_mode_policy:local_domain

(Java ART runtime) When this policy is set, the iiop_tls plug-in
reads this policy’s value instead of the
policies:iiop:server_address_mode_policy:local_domain policy’s
value.

server_address_mode_policy:local_hostname

(Java ART runtime) When this policy is set, the iiop_tls plug-in
reads this policy’s value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy’s
value.
server_address_mode_policy:local_hostname specifies the hostname
advertised by the locator daemon, and listened on by server-side
IIOP.
Some machines have multiple hostnames or IP addresses (for
example, those using multiple DNS aliases or multiple network
cards). These machines are often termed multi-homed hosts. The
local_hostname variable supports these type of machines by
enabling you to explicitly specify the host that servers listen on
and publish in their IORs.
For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this
variable to either address:

By default, the local_hostname variable is unspecified. Servers use
the default hostname configured for the machine with the Orbix
configuration tool.

server_address_mode_policy:port_range

(Java ART runtime) When this policy is set, the iiop_tls plug-in
reads this policy’s value instead of the
policies:iiop:server_address_mode_policy:port_range policy’s
value.
server_address_mode_policy:port_range specifies the range of ports
that a server uses when there is no well-known addressing policy
specified for the port.

server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:publish_hostname
policy’s value.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";

Artix Configuration Reference, C++ Runtime 139

server_address_mode-policy:publish_hostname specifes whether
IIOP exports hostnames or IP addresses in published profiles.
Defaults to false (exports IP addresses, and does not export
hostnames). To use hostnames in object references, set this
variable to true, as in the following file-based configuration entry:

The following itadmin command is equivalent:

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the policies:iiop:server_version_policy policy’s
value.
server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Artix
servers do not publish IIOP 1.0 profiles. The default value is 1.2.

session_caching_policy

This policy overides policies:session_caching_policy for the
iiop_tls plugin.

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the
iiop_tls plugin.
Specifies the minimum level of security required by a server. The
value of this variable is specified as a list of association options—
see the Artix Security Guide: C++ for more details about
association options.
In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the
iiop_tls plugin.
Specifies the maximum level of security supported by a server.
The value of this variable is specified as a list of association
options—see the Artix Security Guide for more details about
association options.
This policy can be upgraded programmatically using either the QOP
or the EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the policies:iiop:tcp_options_policy:no_delay
policy’s value.

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname

 140 Artix Configuration Reference, C++ Runtime

tcp_options_policy:no_delay specifies whether the TCP_NODELAY
option should be set on connections. Defaults to false.

tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:tcp_options_policy:recv_buffer_size policy’s value.
tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which
corresponds to using the default size defined by the operating
system.

tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:tcp_options_policy:send_buffer_size policy’s value.
tcp_options_policy:send_buffer_size specifies the size of the TCP
send buffer. This variable can only be set to 0, which corresponds
to using the default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.
Contains a list of filenames (or a single filename), each of which
contains a concatenated list of CA certificates in PEM format. The
aggregate of the CAs in all of the listed files is the set of trusted
CAs.
For example, you might specify two files containing CA lists as
follows:
policies:trusted_ca_list_policy =

["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into
different lists and to select a particular set of CAs for a security
domain by choosing the appropriate CA lists.

Artix Configuration Reference, C++ Runtime 141

policies:security_server
The policies:security_server namespace contains the following
variables:
• client_certificate_constraints

client_certificate_constraints

Restricts access to the Artix security server, allowing only clients
that match the specified certificate constraints to open a
connection to the security service. For details of how to specify
certificate constraints, see “Applying Constraints to Certificates”
on page 96.
For example, by inserting the following setting into the security
service’s configuration scope in the Artix .cfg file, you can allow
access by clients presenting the administrator.p12 and
iona_utilities.p12 certificates (demonstration certificates).

The effect of setting this configuration variable is slightly different
to the effect of setting
policies:iiop_tls:certificate_constraints_policy. Whereas
policies:iiop_tls:certificate_constraints_policy affects all
services deployed in the current process, the
policies:security_server:client_certificate_constraints variable
affects only the Artix security service. This distinction is significant
when the login server is deployed into the same process as the
security server. In this case, you would typically want to configure
the login server such that it does not require clients to present an
X.509 certificate (this is the default), while the security server
does require clients to present an X.509 certificate.
This configuration variable must be set in the security server’s
configuration scope, otherwise the security server will not start.

policies:soap:security
The policies:soap:security namespace contains just a single
configuration variable, as follows:
• enforce_must_understand

Allow access by demonstration client certificates.
WARNING: These settings are NOT secure and must be customized
before deploying in a real system.
#
policies:security_server:client_certificate_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services (demo cert), OU=Demonstration Section -- no
warranty --", "C=US,ST=Massachusetts,O=ABigBank*,CN=Abigbank
Accounts Server*",
"C=US,ST=Massachusetts,O=ABigBank*,CN=Iona utilities - demo
purposes"];

 142 Artix Configuration Reference, C++ Runtime

enforce_must_understand

Specifies whether the Artix runtime enforces the semantics
required by the mustUnderstand attribute, which appears in the
WS-Security SOAP header.
The semantics are as follows: when the mustUnderstand attribute is
set to 1, the message receiver must process all of the security
elements contained in the corresponding wsse:Security header
element. If the receiving program is unable to process the
wsse:Security element completely, the message should be
rejected.
You can disable this behavior by setting the
policies:soap:security:enforce_must_understand variable to false.
Default is true.
The mustUnderstand attribute appears as follows in a SOAP 1.1
header:

principal_sponsor
The principal_sponsor namespace stores configuration information
to be used when obtaining credentials. the CORBA binding
provides an implementation of a principal sponsor that creates
credentials for applications automatically.
Use of the PrincipalSponsor is disabled by default and can only be
enabled through configuration.
The PrincipalSponsor represents an entry point into the secure
system. It must be activated and authenticate the user, before
any application-specific logic executes. This allows unmodified,
security-unaware applications to have Credentials established
transparently, prior to making invocations.
The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

• callback_handler:ClassName

• login_attempts

<S11:Envelope>
 <S11:Header>
 ...
 <wsse:Security S11:actor="..." S11:mustUnderstand="...">
 ...
 </wsse:Security>
 ...
 </S11:Header>
 ...
</S11:Envelope>

Artix Configuration Reference, C++ Runtime 143

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to
obtain credentials automatically. Defaults to false. If set to true,
the following principal_sponsor variables must contain data in
order for anything to actually happen.

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the pkcs12_file authentication
method as follows:

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the pkcs12_file authentication method, the following
authentication data can be provided in auth_method_data:

For the pkcs11 (smart card) authentication method, the following
authentication data can be provided in auth_method_data:

pkcs12_file The authentication method uses a PKCS#12 file.
pkcs11 (Java ART runtime). The authentication data is

provided by a smart card.
security_label (Windows only). The authentication data is

specified by supplying the common name (CN)
from an application certificate’s subject DN.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain
and private key—required.

password A password for the private key—optional.
It is bad practice to supply the password from
configuration for deployed systems. If the
password is not supplied, the user is prompted
for it.

password_file The name of a file containing the password for
the private key—optional.
Make sure that the password file is read/write
protected on your file system.

provider A name that identifies the underlying PKCS #11
toolkit used by Artix to communicate with the
smart card.

slot The number of a particular slot on the smart
card (for example, 0) containing the user’s
credentials.

 144 Artix Configuration Reference, C++ Runtime

For the security_label authentication method on Windows, the
following authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a
certificate, bob.p12, whose private key is encrypted with the
bobpass password, set the auth_method_data as follows:

The following points apply to Java implementations:
• If the file specified by filename= is not found, it is searched for

on the classpath.
• The file specified by filename= can be supplied with a URL

instead of an absolute file location.
• The mechanism for prompting for the password if the

password is supplied through password= can be replaced with a
custom mechanism, as demonstrated by the login demo.

• There are two extra configuration variables available as part
of the principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

• These Java-specific features are available subject to change in
future releases; any changes that can arise probably come
from customer feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an
interface that implements the interface
com.iona.corba.tls.auth.CallbackHandler. This variable is only
used for Java clients.

login_attempts

login_attempts specifies how many times a user is prompted for
authentication data (usually a password). It applies for both
internal and custom CallbackHandlers; if a CallbackHandler is
supplied, it is invoked upon up to login_attempts times as long as
the PrincipalAuthenticator returns SecAuthFailure. This variable is
only used by Java clients.

pin A PIN to gain access to the smart card—
optional.
It is bad practice to supply the PIN from
configuration for deployed systems. If the PIN is
not supplied, the user is prompted for it.

label (Windows only.) The common name (CN) from an
application certificate’s subject DN

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];

Artix Configuration Reference, C++ Runtime 145

principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration
information to be used when obtaining CSI (Common Secure
Interoperability) credentials. It includes the following:
• use_existing_credentials

• use_principal_sponsor

• auth_method_data

• auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share
credentials can also share CSI credentials. If true, any CSI
credentials loaded by one credential-sharing ORB can be used by
other credential-sharing ORBs loaded after it; if false, CSI
credentials are not shared.
This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variable is also
true.
Default is false.

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI
principal sponsor on or off.
If set to true, the CSI principal sponsor is enabled; if false, the
CSI principal sponsor is disabled and the remaining
principal_sponsor:csi variables are ignored. Defaults to false.

 146 Artix Configuration Reference, C++ Runtime

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the GSSUPMech authentication method, the following
authentication data can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to
enter authentication data when the application starts up.
For example, to log on to a CSIv2 application as the administrator
user in the US-SantaClara domain:
principal_sponsor:csi:auth_method_data =

["username=administrator", "domain=US-SantaClara"];

When the application is started, the user is prompted for the
administrator password.

auth_method_id

auth_method_id specifies a string that selects the authentication
method to be used by the CSI application. The following
authentication method is available:

For example, you can select the GSSUPMech authentication
method as follows:
principal_sponsor:csi:auth_method_id = "GSSUPMech";

username The username for CSIv2 authorization. This is
optional. Authentication of CSIv2 usernames and
passwords is performed on the server side. The
administration of usernames depends on the particular
security mechanism that is plugged into the server
side see auth_over_transport:authentication_service.

password The password associated with username. This is
optional. It is bad practice to supply the password
from configuration for deployed systems. If the
password is not supplied, the user is prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.
When the client is about to open a new connection,
this domain name is compared with the domain name
embedded in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.
Note: If domain is an empty string, it matches any
target domain. That is, an empty domain string is
equivalent to a wildcard.

Note: It is currently not possible to customize the login prompt
associated with the CSIv2 principal sponsor. As an alternative,
you could implement your own login GUI by programming and
pass the user input directly to the principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

Artix Configuration Reference, C++ Runtime 147

principal_sponsor:http
The principal_sponsor:http namespace provides configuration
variables that enable you to specify the HTTP Basic Authentication
username and password credentials.

The principal sponsor is disabled by default.
For example, to configure a HTTP client to use the credentials
test_username and test_password, configure the HTTP principal
sponsor as follows:

The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor is used to enable or disable the HTTP
principal sponsor. Defaults to false. If set to true, the following
principal_sponsor:http variables must be set:
• auth_method_id

• auth_method_data

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the USERNAME_PASSWORD authentication
method as follows:

Note: Once the HTTP principal sponsor is enabled, the HTTP
header containing the username and password is always included
in outgoing messages. For example, it is not possible to omit the
HTTP Basic Authentication credentials while talking to security
unaware services. It is possible, however, to program the
application to set the username and password values equal to
empty strings.

principal_sponsor:http:use_principal_sponsor = "true";
principal_sponsor:http:auth_method_id = "USERNAME_PASSWORD";
principal_sponsor:http:auth_method_data =

["username=test_username", "password=test_password"];

USERNAME_PASSWORDThe authentication method reads the HTTP
Basic Authentication username and password
from the auth_method_data variable.

principal_sponsor:http:auth_method_id = "USERNAME_PASSWORD";

 148 Artix Configuration Reference, C++ Runtime

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the USERNAME_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:

The username field is required, and you can include either a
password field or a password_file field to specify the password.
For example, to configure an application with the username,
test_username, whose password is stored in the
wsse_password_file.txt file, set the auth_method_data as follows:

principal_sponsor:https
The principal_sponsor:https namespace provides configuration
variables that enable you to specify the own credentials used with
the HTTPS transport.
The HTTPS principal sponsor is disabled by default.
The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to
obtain credentials automatically. Defaults to false. If set to true,
the following principal_sponsor:https variables must contain data
in order for anything to actually happen:
• auth_method_id
• auth_method_data

username The HTTP Basic Authentication username—
required.

password The HTTP Basic Authentication password.
It is bad practice to supply the password from
configuration for deployed systems. If the
password is not supplied, the user is prompted for
it.

password_file The name of a file containing the HTTP Basic
Authentication password.

principal_sponsor:http:auth_method_data =
["username=test_username",
"password_file=wsse_password_file.txt"];

Artix Configuration Reference, C++ Runtime 149

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the pkcs12_file authentication
method as follows:

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the pkcs12_file authentication method, the following
authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a
certificate, bob.p12, whose private key is encrypted with the
bobpass password, set the auth_method_data as follows:

principal_sponsor:iiop_tls
The principal_sponsor:iiop_tls namespace provides configuration
variables that enable you to specify the own credentials used with
the IIOP/TLS transport.
The IIOP/TLS principal sponsor is disabled by default.
The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

pkcs12_file The authentication method uses a PKCS#12 file.

principal_sponsor:https:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain
and private key—required.

password A password for the private key.
It is bad practice to supply the password from
configuration for deployed systems. If the
password is not supplied, the user is prompted for
it.

password_file The name of a file containing the password for the
private key.
This option is not recommended for deployed
systems.

principal_sponsor:https:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];

 150 Artix Configuration Reference, C++ Runtime

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to
obtain credentials automatically. Defaults to false. If set to true,
the following principal_sponsor:iiop_tls variables must contain
data in order for anything to actually happen:
• auth_method_id
• auth_method_data

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the pkcs12_file authentication
method as follows:

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the pkcs12_file authentication method, the following
authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a
certificate, bob.p12, whose private key is encrypted with the
bobpass password, set the auth_method_data as follows:

pkcs12_file The authentication method uses a PKCS#12 file.

principal_sponsor:iiop_tls:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key.
It is bad practice to supply the password from
configuration for deployed systems. If the
password is not supplied, the user is prompted for
it.

password_file The name of a file containing the password for the
private key.
The password file must be read and write protected
to prevent tampering.

principal_sponsor:iiop_tls:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];

Artix Configuration Reference, C++ Runtime 151

principal_sponsor:wsse
The principal_sponsor:wsse namespace provides configuration
variables that enable you to specify the WSS username and
password credentials sent in a SOAP header.

The principal sponsor is disabled by default.
For example, to configure a SOAP client to use the credentials
test_username and test_password, configure the WSS principal
sponsor as follows:

If you use a SOAP 1.2 binding, you must also include the following
configuration in the client and in the server:

The following variables are in this namespace:
• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor is used to enable or disable the WSS
principal sponsor. Defaults to false. If set to true, the following
principal_sponsor:wsse variables must be set:
• auth_method_id
• auth_method_data

Note: Once the WSS principal sponsor is enabled, the SOAP
header containing the WSS username and password is always
included in outgoing messages. For example, it is not possible to
omit the WSS username/password header while talking to
security unaware services. It is possible, however, to program
the application to set the username and password values equal
to empty strings.

principal_sponsor:wsse:use_principal_sponsor = "true";
principal_sponsor:wsse:auth_method_id = "USERNAME_PASSWORD";
principal_sponsor:wsse:auth_method_data =

["username=test_username", "password=test_password"];

Artix .cfg file
...
orb_plugins = ["xmlfile_log_stream", "artix_security", ...];

plugins:artix_security:shlib_name = "it_security_plugin";

binding:artix:server_request_interceptor_list =

"principal_context+security";

binding:artix:client_request_interceptor_list =

"security+principal_context";

 152 Artix Configuration Reference, C++ Runtime

auth_method_id

auth_method_id specifies the authentication method to be used.
The following authentication methods are available:

For example, you can select the USERNAME_PASSWORD authentication
method as follows:

auth_method_data

auth_method_data is a string array containing information to be
interpreted by the authentication method represented by the
auth_method_id.
For the USERNAME_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:

The username field is required, and you can include either a
password field or a password_file field to specify the password.
For example, to configure an application with the WSS username,
test_username, whose password is stored in the
wsse_password_file.txt file, set the auth_method_data as follows:

USERNAME_PASSWORD The authentication method reads the WSS
username and password from the
auth_method_data variable.

principal_sponsor:wsse:auth_method_id = "USERNAME_PASSWORD";

username The WSS username—required.
password The WSS password.

It is bad practice to supply the password from
configuration for deployed systems. If the
password is not supplied, the user is prompted for
it.

password_file The name of a file containing the WSS password.

principal_sponsor:wsse:auth_method_data =
["username=test_username",
"password_file=wsse_password_file.txt"];

 Artix Configuration Reference, C++ Runtime 153

CORBA
When using the CORBA transport, Artix behaves like an Orbix C++
application. This means that you can specify the Orbix configuration
variables that apply to the CORBA-based plug-ins used by Artix.

 The following CORBA-based variables are discussed in this
chapter:
• plugins:codeset
• plugins:giop
• plugins:giop_snoop
• plugins:http and https
• plugins:iiop
• plugins:naming
• plugins:ots
• plugins:ots_lite
• plugins:ots_encina
• plugins:poa
• poa:FQPN
• Core Policies
• CORBA Timeout Policies
• Artix Timeout Policies
• policies:giop
• policies:giop:interop_policy
• policies:http
• policies:iiop
• policies:invocation_retry

plugins:codeset
The variables in this namespace specify the codesets used by the
CORBA portion of Artix. This is useful when internationalizing your
environment. This namespace includes the following variables:
• char:ncs

• char:ccs

• wchar:ncs

• wchar:ccs

• always_use_default

Note: The variables described in this chapter apply when
Artix is using the CORBA transport.

 154 Artix Configuration Reference, C++ Runtime

char:ncs

char:ncs specifies the native codeset to use for narrow characters.
The default setting is determined as follows:

char:ccs

char:ccs specifies the list of conversion codesets supported for
narrow characters. The default setting is determined as follows:

wchar:ncs

wchar:ncs specifies the native codesets supported for wide
characters. The default setting is determined as follows:

Table 8: Defaults for the native narrow codeset

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ ISO-8859-1

MVS C++ EBCDIC

ISO-8859-1/Cp-1292/
US-ASCII locale

Java ISO-8859-1

Shift_JS locale Java UTF-8

EUC-JP locale Java UTF-8

other Java UTF-8

Table 9: Defaults for the narrow conversion codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++

MVS C++ IOS-8859-1

ISO-8859-1/Cp-1292/
US-ASCII locale

Java UTF-8

Shift_JIS locale Java Shift_JIS, euc_JP,
ISO-8859-1

EUC-JP locale Java euc_JP, Shift_JIS,
ISO-8859-1

other Java file encoding,
ISO-8859-1

Table 10: Defaults for the wide native codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UCS-2, UCS-4

MVS C++ UCS-2, UCS-4

Artix Configuration Reference, C++ Runtime 155

wchar:ccs

wchar:ccs specifies the list of conversion codesets supported for
wide characters. The default setting is determined as follows:

always_use_default

always_use_default specifies that hardcoded default values will be
used and any codeset variables will be ignored if they are in the
same configuration scope or higher.

plugins:giop
This namespace contains the
plugins:giop:message_server_binding_list configuration variable,
which is one of the variables used to configure bidirectional GIOP.
This feature allows callbacks to be made using a connection
opened by the client, instead of requiring the server to open a new
connection for the callback.

message_server_binding_list

plugins:giop:message_server_binding_list specifies a list message
inceptors that are used for bidirectional GIOP. On the client-side,
the plugins:giop:message_server_binding_list must be configured

ISO-8859-1/Cp-1292/
US-ASCII locale

Java UTF-16

Shift_JIS locale Java UTF-16

EUC-JP locale Java UTF-16

other Java UTF-16

Table 10: Defaults for the wide native codesets

Platform/Locale Language Setting

Table 11: Defaults for the narrow conversion codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UTF-16

MVS C++ UTF-16

ISO-8859-1/Cp-1292/
US-ASCII locale

Java UCS-2

Shift_JIS locale Java UCS-2,
Shift_JIS,euc_JP

EUC-JP locale Java UCS-2, euc_JP,
Shift_JIS

other Java file encoding,
UCS-2

 156 Artix Configuration Reference, C++ Runtime

to indicate that an existing outgoing message interceptor chain
may be re-used for an incoming server binding, similarly by
including an entry for BiDir_GIOP, for example:
plugins:giop:message_server_binding_list=["BiDir_GIOP","GIOP"];

Further information
For details of all the steps involved in setting bidirectional GIOP,
see the Orbix Administrator’s Guide.

plugins:giop_snoop
The variables in this namespace configure settings for the GIOP
Snoop tool. This tool intercepts and displays GIOP message
content. Its primary roles are as a protocol-level monitor and a
debug aid.
The GIOP Snoop plug-in implements message-level interceptors
that can participate in client and/or server side bindings over any
GIOP-based transport.
The variables in the giop_snoop namespace include the following:
• filename

• rolling_file

• verbosity

filename

plugins:giop_snoop:filename specifies a file for GIOP Snoop output.
By default, output is directed to standard error (stderr). This
variable has the following format:

A month/day/year time stamp is included in the output filename with
the following general format:

rolling_file

plugins:giop_snoop:rolling_file prevents the GIOP Snoop output file
from growing indefinitely. This setting specifies to open and then
close the output file for each snoop message trace, instead of
holding the output files open. This enables administrators to
control the size and content of output files. This setting is enabled
with:

verbosity

plugins:giop_snoop:verbosity is used to control the verbosity levels of
the GIOP Snoop output. For example:

plugins:giop_snoop:filename = "<some-file-path>";

<filename>.MMDDYYYY

plugins:giop_snoop:rolling_file = "true";

plugins:giop_snoop:verbosity = "1";

Artix Configuration Reference, C++ Runtime 157

GIOP Snoop verbosity levels are as follows:

plugins:http and https
The variables in this namespace configure both the HTTP and
HTTPS transports. This namespace contains the following
variables:
• connection:max_unsent_data

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• ip:send_buffer_size

• ip:receive_buffer_size

• ip:reuse_addr

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

• pool:max_threads

• pool:min_threads

• tcp_connection:keep_alive

• tcp_connection:no_delay

• tcp_connection:linger_on_close

• tcp_listener:reincarnate_attempts

connection:max_unsent_data

connection:max_unsent_data specifies, in bytes, the upper limit for
the amount of unsent data associated with an individual
connection. Defaults to 512Kb.

incoming_connections:hard_limit

incoming_connections:hard_limit specifies the maximum number
of incoming (server-side) connections permitted to HTTP. HTTP
does not accept new connections above this limit. Defaults to -1
(disabled).

incoming_connections:soft_limit

incoming_connections:soft_limit sets the number of connections
at which HTTP begins closing incoming (server-side) connections.
Defaults to -1 (disabled).

ip:send_buffer_size

ip:send_buffer_size specifies the SO_SNDBUF socket options to
control how the IP stack adjusts the size of the output buffer.
Defaults to 0, meaning the that buffer size is static.

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH

 158 Artix Configuration Reference, C++ Runtime

ip:receive_buffer_size

ip:receive_buffer_size specifies the SO_RCVBUF socket options to
control how the IP stack adjusts the size of the input buffer.
Defaults to 0, meaning the that buffer size is static.

ip:reuse_addr

ip:reuse_addr specifies whether a process can be launched on an
already used port. The default on Windows is false. An exception
indicating that the address is already in use will be thrown.
The default on UNIX is true. This allows a process to listen on the
same port.

outgoing_connections:hard_limit

outgoing_connections:hard_limit sets the maximum number of
outgoing (client-side) connections permitted to HTTP. HTTP does
not allow new outgoing connections above this limit. Defaults to -1
(disabled).

outgoing_connections:soft_limit

outgoing_connections:soft_limit specifies the number of
connections at which HTTP begins closing outgoing (client-side)
connections. Defaults to -1 (disabled).

pool:max_threads

pool:max_threads specifies the maximum number of threads
reserved from the WorkQueue to support tasks working on behalf of
the ATLI transport. Defaults to 5.

pool:min_threads

pool:min_threads specifies the minimum number of threads
reserved from the WorkQueue to support tasks working on behalf of
the ATLI transport. Defualts to 1.

tcp_connection:keep_alive

tcp_connection:keep_alive specifies the setting of SO_KEEPALIVE on
sockets used to maintain HTTP connections. If set to TRUE, the
socket will send a keepalive probe to the remote host if the
connection has been idle for a preset period of time. The remote
system, if it is still running, will send an ACK response. Defaults to
TRUE.

tcp_connection:no_delay

tcp_connection:no_deplay specifies if TCP_NODELAY is set on the
sockets used to maintain HTTP connections. If set to false, small
data packets are collected and sent as a group. The algorithm
used allows for no more than a 0.2 msec delay between collected
packets. Defaults to TRUE.

Artix Configuration Reference, C++ Runtime 159

tcp_connection:linger_on_close

tcp_connection:linger_on_close specifies the setting of SO_LINGER
on all TCP connections. This is used to ensure that TCP buffers are
cleared when a socket is closed. This variable specifies the number
of seconds to linger, using a value of type long. The default is -1,
which means that the SO_LINGER socket option is not set.

tcp_listener:reincarnate_attempts

tcp_listnener:reincarnate_attempts specifies the number of times
that a Listener recreate its listener socket after recieving a
SocketException. This configuration varaible only effects Java
applications. Defaults to 1.

plugins:iiop
The variables in this namespace configure active connection
management, IIOP buffer management. For more information
about active connection management, see the Orbix
Administrator’s Guide.
This namespace contains the following variables:
• connection:max_unsent_data

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• ip:send_buffer_size

• ip:receive_buffer_size

• ip:reuse_addr

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

• pool:max_threads

• pool:min_threads

• tcp_connection:keep_alive

• tcp_connection:no_delay

• tcp_connection:linger_on_close

• tcp_listener:reincarnate_attempts

• tcp_listener:reincarnation_retry_backoff_ratio

• tcp_listener:reincarnation_retry_delay

connection:max_unsent_data

plugins:iiop:connection:max_unsent_data specifies the upper limit
for the amount of unsent data associated with an individual
connection. Defaults to 512k.

incoming_connections:hard_limit

plugins:iiop:incoming_connections:hard_limit specifies the
maximum number of incoming (server-side) connections
permitted to IIOP. IIOP does not accept new connections above
this limit. Defaults to -1 (disabled).

 160 Artix Configuration Reference, C++ Runtime

incoming_connections:soft_limit

plugins:iiop:incoming_connections:soft_limit sets the number of
connections at which IIOP begins closing incoming (server-side)
connections. Defaults to -1 (disabled).

ip:send_buffer_size

plugins:iiop:ip:send_buffer_size specifies the SO_SNDBUF socket
options to control how the IP stack adjusts the size of the output
buffer. Defaults to 0, meaning the that buffer size is static.

ip:receive_buffer_size

plugins:iiop:ip:receive_buffer_size specifies the SO_RCVBUF socket
options to control how the IP stack adjusts the size of the input
buffer. Defaults to 0, meaning the that buffer size is static.

ip:reuse_addr

plugins:iiop:ip:reuse_addr specifies whether a process can be
launched on an already used port. The default on Windows is
false. An exception indicating that the address is already in use
will be thrown.
The default on UNIX is true. This allows a process to listen on the
same port.

outgoing_connections:hard_limit

plugins:iiop:outgoing_connections:hard_limit sets the maximum
number of outgoing (client-side) connections permitted to IIOP.
IIOP does not allow new outgoing connections above this limit.
Defaults to -1 (disabled).

outgoing_connections:soft_limit

plugins:iiop:outgoing_connections:soft_limit specifies the
number of connections at which IIOP begins closing outgoing
(client-side) connections. Defaults to -1 (disabled).

pool:max_threads

plugins:iiop:pool:max_threads specifies the maximum number of
threads reserved from the WorkQueue to support tasks working on
behalf of the ATLI transport. Defaults to 5.

pool:min_threads

plugins:iiop:pool:min_threads specifies the minimum number of
threads reserved from the WorkQueue to support tasks working on
behalf of the ATLI transport. Defualts to 1.

tcp_connection:keep_alive

plugins:iiop:tcp_connection:keep_alive specifies the setting of
SO_KEEPALIVE on sockets used to maintain IIOP connections. If set
to TRUE, the socket will send a keepalive probe to the remote host

Artix Configuration Reference, C++ Runtime 161

if the conneciton has been idle for a preset period of time. The
remote system, if it is still running, will send an ACK response.
Defaults to TRUE.

tcp_connection:no_delay

plugins:iiop:tcp_connection:no_deplay specifies if TCP_NODELAY is
set on the sockets used to maintain IIOP connections. If set to
false, small data packets are collected and sent as a group. The
algorithm used allows for no more than a 0.2 msec delay between
collected packets. Defaults to TRUE.

tcp_connection:linger_on_close

plugins:iiop:tcp_connection:linger_on_close specifies the setting
of SO_LINGER on all TCP connections. This is used to ensure that
TCP buffers are cleared when a socket is closed. This variable
specifies the number of seconds to linger, using a value of type
long. The default is -1, which means that the SO_LINGER socket
option is not set.

tcp_listener:reincarnate_attempts

(C++/Windows only)
plugins:iiop:tcp_listener:reincarnate_attempts specifies the
number of attempts that are made to reincarnate a listener before
giving up, logging a fatal error, and shutting down the ORB.
Datatype is long. Defaults to 0 (no attempts).
Sometimes an network error may occur, which results in a
listening socket being closed. On Windows, you can configure the
listener to attempt a reincarnation. This enables new connections
to be established.

tcp_listener:reincarnation_retry_backoff_ratio

(C++/Windows only)
plugins:iiop:tcp_listener:reincarnation_retry_delay specifies a
delay between reincarnation attempts. Data type is long. Defaults
to 0 (no delay).

tcp_listener:reincarnation_retry_delay

(C++/Windows only)
plugins:iiop:tcp_listener:reincarnation_retry_backoff_ratio
specifies the degree to which delays between retries increase from
one retry to the next. Datatype is long. Defaults to 1.

 162 Artix Configuration Reference, C++ Runtime

plugins:naming
The variables in this namespace configure the naming service
plugin. The naming service allows you to associate abstract names
with CORBA objects, enabling clients to locate your objects.
This namespace contains the following variables:
• destructive_methods_allowed

• direct_persistence

• iiop:port

• lb_default_initial_load

• lb_default_load_timeout

• nt_service_dependencies

destructive_methods_allowed

destructive_methods_allowed specifies if users can make
destructive calls, such as destroy(), on naming service elements.
The default value is true, meaning the destructive methods are
allowed.

direct_persistence

direct_persistence specifies if the service runs using direct or
indirect persistence. The default value is false, meaning indirect
persistence.

iiop:port

iiop:port specifies the port that the service listens on when
running using direct persistence.

lb_default_initial_load

lb_default_initial_load specifies the default initial load value for a
member of an active object group. The load value is valid for a
period of time specified by the timeout assigned to that member.
Defaults to 0.0. For more information, see the Orbix
Administrator’s Guide.

lb_default_load_timeout

lb_default_load_timeout specifies the default load timeout value
for a member of an active object group. The default value of -1
indicates no timeout. This means that the load value does not
expire. For more information, see the Orbix Administrator’s Guide.

nt_service_dependencies

nt_service_dependencies specifies the naming service’s
dependencies on other NT services. The dependencies are listed in
the following format:

IT ORB-name domain-name

Artix Configuration Reference, C++ Runtime 163

This variable only has meaning if the naming service is installed as
an NT service.

plugins:ots
The variables in this namespace configure the object transaction
service (OTS) generic plugin. The generic OTS plugin contains
client and server side transaction interceptors and the
implementation of CosTransactions::Current. For details of this
plugin, refer to the CORBA OTS Guide.
The plugins:ots namespace contains the following variables:
• default_ots_policy

• default_transaction_policy

• default_transaction_timeout

• interposition_style

• jit_transactions

• ots_v11_policy

• propagate_separate_tid_optimization

• rollback_only_on_system_ex

• support_ots_v11

• transaction_factory_name

default_ots_policy

default_ots_policy specifies the default OTSPolicy value used when
creating a POA. Set to one of the following values:
requires
forbids
adapts

If no value is specified, no OTSPolicy is set for new POAs.

default_transaction_policy

default_transaction_policy specifies the default TransactionPolicy
value used when creating a POA.
Set to one of the following values:
• requires corresponds to a TransactionPolicy value of

Requires_shared.
• allows corresponds to a TransactionPolicy value of

Allows_shared.
If no value is specified, no TransactionPolicy is set for new POAs.

default_transaction_timeout

default_transaction_timeout specifies the default timeout, in
seconds, of a transaction created using CosTransactions::Current.
A value of zero or less specifies no timeout. Defaults to 30
seconds.

 164 Artix Configuration Reference, C++ Runtime

interposition_style

interposition_style specifies the style of interposition used when
a transaction first visits a server. Set to one of the following
values:
• standard: A new subordinator transaction is created locally

and a resource is registered with the superior coordinator.
This subordinate transaction is then made available through
the Current object.

• proxy: (default) A locally constrained proxy for the imported
transaction is created and made available though the Current
object.

Proxy interposition is more efficient, but if you need to further
propagate the transaction explicitly (using the Control object),
standard interposition must be specified.

jit_transactions

jit_transactions is a boolean which determines whether to use
just-in-time transaction creation. If set to true, transactions
created using Current::begin() are not actually created until
necessary. This can be used in conjunction with an OTSPolicy value
of SERVER_SIDE to delay creation of a transaction until an
invocation is received in a server. Defaults to false.

ots_v11_policy

ots_v11_policy specifies the effective OTSPolicy value applied to
objects determined to support
CosTransactions::TransactionalObject, if support_ots_v11 is set to
true.
Set to one of the following values:
• adapts
• requires

propagate_separate_tid_optimization

propagate_separate_tid_optimization specifies whether an
optimization is applied to transaction propagation when using C++
applications. Must be set for both the sender and receiver to take
affect. Defaults to true.

rollback_only_on_system_ex

rollback_only_on_system_ex specifies whether to mark a
transaction for rollback if an invocation on a transactional object
results in a system exception being raised. Defaults to true.

support_ots_v11

support_ots_v11 specifies whether there is support for the OMG
OTS v1.1 CosTransactions::TransactionalObject interface. This
option can be used in conjunction with ots_v11_policy. When this

Artix Configuration Reference, C++ Runtime 165

option is enabled, the OTS interceptors might need to use remote
_is_a() calls to determine the type of an interface. Defaults to
false.

transaction_factory_name

transaction_factory_name specifies the initial reference for the
transaction factory. This option must match the corresponding
entry in the configuration scope of your transaction service
implementation. Defaults to TransactionFactory.

plugins:ots_lite
The variables in this namespace configure the Lite implementation
of the object transaction service. The ots_lite plugin contains an
implementation of CosTransacitons::TransactionFactory which is
optimized for use in a single resource system. For details, see the
Orbix CORBA Programmer’s Guide.
This namespace contains the following variables:
• orb_name

• otid_format_id

• superior_ping_timeout

• transaction_factory_name

• transaction_timeout_period

• use_internal_orb

orb_name

orb_name specifies the ORB name used for the plugin’s internal ORB
when use_internal_orb is set to true. The ORB name determines
where the ORB obtains its configuration information and is useful
when the application ORB configuration needs to be different from
that of the internal ORB. Defaults to the ORB name of the
application ORB.

otid_format_id

otid_format_id specifies the value of the formatID field of a
transaction’s identifier (CosTransactions::otid_t). Defaults to
0x494f4e41.

superior_ping_timeout

superior_ping_timeout specifies, in seconds, the timeout between
queries of the transaction state, when standard interposition is
being used to recreate a foreign transaction. The interposed
resource periodically queries the recovery coordinator, to ensure
that the transaction is still alive when the timeout of the superior
transaction has expired. Defaults to 30.

 166 Artix Configuration Reference, C++ Runtime

transaction_factory_name

transaction_factory_name specifies the initial reference for the
transaction factory. This option must match the corresponding
entry in the configuration scope of your generic OTS plugin to
allow it to successfully resolve a transaction factory. Defaults to
TransactionFactory.

transaction_timeout_period

transaction_timeout_period specifies the time, in milliseconds, of
which all transaction timeouts are multiples. A low value increases
accuracy of transaction timeouts, but increases overhead. This
value is added to all transaction timeouts. To disable all timeouts,
set to 0 or a negative value. Defaults to 1000.

use_internal_orb

use_internal_orb specifies whether the ots_lite plugin creates an
internal ORB for its own use. By default, ots_lite creates POAs in
the application’s ORB. This option is useful if you want to isolate
the transaction service from your application ORB. Defaults to
false.

plugins:ots_encina
The plugins:ots_encina namespace stores configuration variables
for the Encina OTS plugin. The ots_encina plugin contains an
implementation of IDL interface
CosTransactions::TransactionFactory that supports the recoverable
2PC protocol. For details, see the CORBA OTS Guide.
This namespace contains the following variables:
• agent_ior_file

• allow_registration_after_rollback_only

• backup_restart_file

• direct_persistence

• direct_persistence

• global_namespace_poa

• iiop:port

• initial_disk

• initial_disk_size

• log_threshold

• log_check_interval

• max_resource_failures

• namespace_poa

• orb_name

• otid_format_id

• resource_retry_timeout

• restart_file

• trace_comp

Artix Configuration Reference, C++ Runtime 167

• trace_file

• trace_on

• transaction_factory_name

• transaction_factory_ns_name

• transaction_timeout_period

• use_internal_orb

• use_raw_disk

agent_ior_file

agent_ior_file specifies the file path where the management
agent object’s IOR is written. Defaults to an empty string.

allow_registration_after_rollback_only

allow_registration_after_rollback_only (C++ only) specifies
whether registration of resource objects is permitted after a
transaction is marked for rollback.
• true specifies that resource objects can be registered after a

transaction is marked for rollback.
• false (default) specifies that resource objects cannot be

registered once a transaction is marked for rollback.
This has no effect on the outcome of the transaction.

backup_restart_file

backup_restart_file specifies the path for the backup restart file
used by the Encina OTS to locate its transaction logs. If
unspecified, the backup restart file is the name of the primary
restart file—set with restart_file—with a .bak suffix. Defaults to
an empty string.

direct_persistence

direct_persistence specifies whether the transaction factory
object can use explicit addressing—for example, a fixed port. If
set to true, the addressing information is picked up from
plugins:ots_encina. For example, to use a fixed port, set
plugins_ots_encina:iiop:port. Defaults to false.

global_namespace_poa

global_namespace_poa specifies the top-level transient POA used as
a namespace for OTS implementations. Defaults to iOTS.

iiop:port

iiop:port specifies the port that the service listens on when using
direct persistence.

initial_disk

initial_disk specifies the path for the initial file used by the
Encina OTS for its transaction logs. Defaults to an empty string.

 168 Artix Configuration Reference, C++ Runtime

initial_disk_size

initial_disk_size specifies the size of the initial file used by the
Encina OTS for its transaction logs. Defaults to 2.

log_threshold

log_threshold specifies the percentage of transaction log space,
which, when exceeded, results in a management event. Must be
between 0 and 100. Defaults to 90.

log_check_interval

log_check_interval specifies the time, in seconds, between checks
for transaction log growth. Defaults to 60.

max_resource_failures

max_resource_failures specifies the maximum number of failed
invocations on CosTransaction::Resource objects to record.
Defaults to 5.

namespace_poa

namespace_poa specifies the transient POA used as a namespace.
This is useful when there are multiple instances of the plugin being
used; each instance must use a different namespace POA to
distinguish itself. Defaults to Encina.

orb_name

orb_name specifies the ORB name used for the plugin’s internal ORB
when use_internal_orb is set to true. The ORB name determines
where the ORB obtains its configuration information, and is useful
when the application ORB configuration needs to be different from
that of the internal ORB. Defaults to the ORB name of the
application ORB.

otid_format_id

otis_format_id specifies the value of the formatID field of a
transaction’s identifier (CosTransactions::otid_t). Defaults to
0x494f4e41.

resource_retry_timeout

resource_retry_timeout specifies the time, in seconds, between
retrying a failed invocation on a resource object. A negative value
means the default is used. Defaults to 5.

restart_file

restart_file specifies the path for the restart file used by the
Encina OTS to locate its transaction logs. Defaults to an empty
string.

Artix Configuration Reference, C++ Runtime 169

trace_comp

trace_comp sets the Encina trace levels for the component comp,
where comp is one of the following:
bde
log
restart
tran
tranLog_log
tranLog_tran
util
vol

Set this variable to a bracket-enclosed list that includes one or
more of the following string values:
• event: interesting events.
• entry: entry to a function.
• param: parameters to a function.
• internal_entry: entry to internal functions.
• internal_param: parameters to internal functions.
• global.
Defaults to [].

trace_file

trace_file specifies the file to which Encina level tracing is written
when enabled via trace_on. If not set or set to an empty string,
Encina level transactions are written to standard error. Defaults to
an empty string.

trace_on

trace_on specifies whether Encina level tracing is enabled. If set to
true, the information that is output is determined from the trace
levels (see trace_comp). Defaults to false.

transaction_factory_name

transaction_factory_name specifies the initial reference for the
transaction factory. This option must match the corresponding
entry in the configuration scope of your generic OTS plugin to
allow it to successfully resolve a transaction factory. Defaults to
TransactionFactory.

transaction_factory_ns_name

transaction_factory_ns_name specifies the name used to publish
the transaction factory reference in the naming service. Defaults
to an empty string.

 170 Artix Configuration Reference, C++ Runtime

transaction_timeout_period

transaction_timeout_period specifies the time, in milliseconds, of
which all transaction timeouts are multiples. A low value increases
accuracy of transaction timeouts, but increases overhead. This
value multiplied to all transaction timeouts. To disable all
timeouts, set to 0 or a negative value. Defaults to 1000.

use_internal_orb

use_internal_orb specifies whether the ots_encina plugin creates
an internal ORB for its own use. By default the ots_encina plugin
creates POA’s in the application’s ORB. This option is useful if you
want to isolate the transaction service from your application ORB.
Defaults to false.

use_raw_disk

use_raw_disk specifies whether the path specified by initial_disk
is of a raw disk (true) or a file (false). If set to false and the file
does not exist, the Encina OTS plugin tries to create the file with
the size specified in initial_disk_size. Defaults to false.

plugins:poa
This namespace contains variables to configure the CORBA POA
plug-in. It contains the following variables:
• root_name

root_name

root_name specifies the name of the root POA, which is added to all
fully-qualified POA names generated by that POA. If this variable
is not set, the POA treats the root as an anonymous root,
effectively acting as the root of the location domain.

poa:FQPN
The poa namespace includes variables that allow you to use direct
persistence and well-known addressing for POAs (Portable Object
Adaptors). These variables specify the policy for individual POAs
by specifying the fully qualified POA name for each POA. They take
the form:

For example to set the well-known address for a POA whose fully
qualified POA name is helloworld you would set the variable
poa:helloworld:well_known_address.
The following variables are in this namespace:
• direct_persistent

• well_known_address

poa:FQPN:Variable

Artix Configuration Reference, C++ Runtime 171

direct_persistent

direct_persistent specifies if a POA runs using direct persistence.
If this is set to true the POA generates IORs using the well-known
address that is specified in the well_known_address varaible.
Defaults to false. For an example of how this works, see
well_known_address.

well_known_address

well_known_address specifies the address used to generate IORs for
the associated POA when that POA’s direct_persistent variable is
set to true.
For example, to run your server using direct persistence, and well
known addressing, add the following to your configuration:

This corresponds to the following WSDL:

Using these configuration variables, all object references created
by the helloworld POA will now be direct persistent containing the
well known IIOP address of port 9202.
If your POA name is different, the configuration variables must be
modified. The scheme used is the following:

FQPN is the fully qualified POA name. This introduces the restriction
that your POA name can only contain printable characters, and
may not contain white space.
Address_Prefix is the string that gets passed to the well-known
addressing POA policy. Specify the actual port used using the
Address_Prefix:iiop:port variable. You can also use iiop_tls
instead of iiop.

poa:helloworld:direct_persistent = "true";
poa:helloworld:well_known_address = "helloworld_port";
helloworld_port:iiop:port = "9202";

<service name="CorbaService">
 <port binding="corbatm:CorbaBinding" name="CorbaPort">
 <corba:address

location="file:../../hello_world_service.ior"/>
 <corba:policy poaname="helloworld"/>
 </port>
</service>

poa:FQPN:direct_persistent=BOOL;
poa:FQPN:well_known_address=Address_Prefix;
Address_Prefix:iiop:port=LONG;

 172 Artix Configuration Reference, C++ Runtime

Core Policies
Configuration variables for core policies include:
• non_tx_target_policy

• rebind_policy

• routing_policy_max

• routing_policy_min

• sync_scope_policy

• work_queue_policy

non_tx_target_policy

non_tx_target_policy specifies the default NonTxTargetPolicy value
for use when a non-transactional object is invoked within a
transaction. Set to one of the following values:

rebind_policy

rebind_policy specifies the default value for RebindPolicy. Can be
one of the following:
TRANSPARENT(default)
NO_REBIND

NO_RECONNECT

routing_policy_max

routing_policy_max specifies the default maximum value for
RoutingPolicy. You can set this to one of the following:
ROUTE_NONE(default)
ROUTE_FORWARD

ROUTE_STORE_AND_FORWARD

routing_policy_min

routing_policy_min specifies the default minimum value for
RoutingPolicy. You can set this to one of the following:
ROUTE_NONE(default)
ROUTE_FORWARD

ROUTE_STORE_AND_FORWARD

sync_scope_policy

sync_scope_policy specifies the default value for SyncScopePolicy.
You can set this to one of the following:
SYNC_NONE

SYNC_WITH_TRANSPORT(default)
SYNC_WITH_SERVER

SYNC_WITH_TARGET

permit Maps to the NonTxTargetPolicy value PERMIT.
prevent Maps to the NonTxTargetPolicy value PREVENT.(default)

Artix Configuration Reference, C++ Runtime 173

work_queue_policy

work_queue_policy specifies the default WorkQueue to use for
dispatching GIOP Requests and LocateRequests when the
WorkQueuePolicy is not effective. You can set this variable to a
string that is resolved using ORB.resolve_initial_references().
For example, to dispatch requests on the internal multi-threaded
work queue, this variable should be set to
IT_MultipleThreadWorkQueue. Defaults to
IT_DirectDispatchWorkQueue. For more information about WorkQueue
policies, see the Orbix CORBA Programmer’s Guide.

CORBA Timeout Policies
Artix supports standard CORBA timeout policies, to enable clients
to abort invocations. Artix also provides proprietary policies, which
enable more fine-grained control. Configuration variables for
standard CORBA timeout policies include:
• relative_request_timeout

• relative_roundtrip_timeout

relative_request_timeout

relative_request_timeout specifies how much time, in
milliseconds, is allowed to deliver a request. Request delivery is
considered complete when the last fragment of the GIOP request
is sent over the wire to the target object. There is no default
value.
The timeout period includes any delay in establishing a binding.
This policy type is useful to a client that only needs to limit request
delivery time.

relative_roundtrip_timeout

relative_roundtrip_timeout specifies how much time, in
milliseconds, is allowed to deliver a request and its reply. There is
no default value.
The timeout countdown starts with the request invocation, and
includes:
• Marshalling in/inout parameters.
• Any delay in transparently establishing a binding.
If the request times out before the client receives the last
fragment of reply data, the request is canceled using a GIOP
CancelRequest message and all received reply data is discarded.
For more information about standard CORBA timeout policies, see
the Orbix CORBA Programmer’s Guide.

 174 Artix Configuration Reference, C++ Runtime

Artix Timeout Policies
This section lists configuration variables for proprietary
Artix-specific timeout policies, which enable more fine-grained
control than the standard CORBA policies. IONA-specific variables
in the policies namespace include:
• relative_binding_exclusive_request_timeout

• relative_binding_exclusive_roundtrip_timeout

• relative_connection_creation_timeout

relative_binding_exclusive_request_timeout

relative_binding_exclusive_request_timeout specifies how much
time, in milliseconds, is allowed to deliver a request, exclusive of
binding attempts. The countdown begins immediately after a
binding is obtained for the invocation. There is no default value.

relative_binding_exclusive_roundtrip_timeout

relative_binding_exclusive_roundtrip_timeout specifies how much
time, in milliseconds, is allowed to deliver a request and receive
its reply, exclusive of binding attempts. There is no default value.

relative_connection_creation_timeout

relative_connection_creation_timeout specifies how much time, in
milliseconds, is allowed to resolve each address in an IOR, within
each binding iteration. Default is 8 seconds.
An IOR can have several TAG_INTERNET_IOP (IIOP transport)
profiles, each with one or more addresses, while each address can
resolve via DNS to multiple IP addresses. Furthermore, each IOR
can specify multiple transports, each with its own set of profiles.
This variable applies to each IP address within an IOR. Each
attempt to resolve an IP address is regarded as a separate
attempt to create a connection.

policies:giop
The variables in this namespace set policies that control the
behavior of bidirectional GIOP. This feature allows callbacks to be
made using a connection opened by the client, instead of requiring
the server to open a new connection for the callback. The
policies:giop namespace includes the following variables:
• “bidirectional_accept_policy”.
• “bidirectional_export_policy”.
• “bidirectional_gen3_accept_policy”.
• “bidirectional_offer_policy”.

bidirectional_accept_policy

bidirectional_accept_policy specifies the behavior of the accept
policy used in bidirectional GIOP. On the server side, the
BiDirPolicy::BiDirAcceptPolicy for the callback invocation must be
set to ALLOW.

Artix Configuration Reference, C++ Runtime 175

You can set this in configuration as follows:
policies:giop:bidirectional_accept_policy="ALLOW";

This accepts the client's bidirectional offer, and uses an incoming
connection for an outgoing request, as long the policies effective
for the invocation are compatible with the connection.

bidirectional_export_policy

bidirectional_export_policy specifies the behavior of the export
policy used in birdirectional GIOP. A POA used to activate a
client-side callback object must have an effective
BiDirPolicy::BiDirExportPolicy set to BiDirPolicy::ALLOW. You can
set this in configuration as follows:
policies:giop:bidirectional_export_policy="ALLOW";

Alternatively, you can do this programmatically by including this
policy in the list passed to POA::create_POA().

bidirectional_gen3_accept_policy

bidirectional_gen3_accept_policy specifies whether
interoperability with Orbix 3.x is enabled. Set this variable to ALLOW
to enable interoperability with Orbix 3.x:
policies:giop:bidirectional_gen3_accept_policy="ALLOW";
This allows an Orbix 6.x server to invoke on an Orbix 3.x callback
reference in a bidirectional fashion.

bidirectional_offer_policy

bidirectional_offer_policy specifies the behavior of the offer
policy used in bidirectional GIOP. A bidirectional offer is triggered
for an outgoing connection by setting the effective
BiDirPolicy::BiDirOfferPolicy to ALLOW for an invocation. You can
set this in configuration as follows:
policies:giop:bidirectional_offer_policy="ALLOW";

Further information
For more information on all the steps involved in setting
bidirectional GIOP, see the Orbix Administrator’s Guide.

policies:giop:interop_policy
The policies:giop:interop_policy child namespace contains
variables used to configure interoperability with previous versions
of Artix and Orbix. It contains the following variables:
• allow_value_types_in_1_1

• enable_principal_service_context

• ignore_message_not_consumed

• negotiate_transmission_codeset

• send_locate_request

• send_principal

 176 Artix Configuration Reference, C++ Runtime

allow_value_types_in_1_1

allow_value_types_in_1_1 relaxes GIOP 1.1 complaince to allow
valuetypes to be passed by Java ORBs using GIOP 1.1. This
functionality can be important when interoperating with older
ORBs that do not support GIOP 1.2. To relax GIOP 1.1 compliance,
set this variable to true.

enable_principal_service_context

enable_principal_service_context specifies whether to permit a
prinicipal user identifier to be sent in the service context of CORBA
requests. This is used to supply an ORB on the mainframe with a
user against which basic authorization can take place.
Typically, on the mid-tier, you may want to set the principal to a
user that can be authorized on the mainframe. This can be
performed on a per-request basis in a portable interceptor. See
the Orbix CORBA Programmer’s Guide for how to write
portable interceptors.
To enable principal service contexts, set this variable to true:

ignore_message_not_consumed

ignore_message_not_consumed specifies whether to raise MARSHAL
exceptions when interoperating with ORBs that set message size
incorrectly, or with earlier versions of Artix if it sends piggyback
data. The default value is false.
The MARSHAL exception is set with one of the following minor codes:
• REQUEST_MESSAGE_NOT_CONSUMED

• REPLY_MESSAGE_NOT_CONSUMED

negotiate_transmission_codeset

negotiate_transmisission_codeset specifies whether to enable
codeset negotiation for wide characters used by some third-party
ORBs, previous versions of Orbix, and OrbixWeb. Defaults to true.
If this variable is set to true, native and conversion codesets for
char and wchar are advertised in IOP::TAG_CODE_SETS tagged
components in published IORs. The transmission codesets are
negotiated by clients and transmitted using an IOP::CodeSets
service context.
If the variable is false, negotiation does not occur and Artix uses
transmission codesets of UTF-16 and IS0-Latin-1 for wchar and
char types, respectively. Defaults to true.

send_locate_request

send_locate_request specifies whether GIOP sends LocateRequest
messages before sending initial Request messages. Required for
interoperability with Orbix 3.0. Defaults to true.

policies:giop:interop_policy:enable_principal_service_context
="true";

Artix Configuration Reference, C++ Runtime 177

send_principal

send_principal specifies whether GIOP sends Principal
information containing the current user name in GIOP 1.0 and
GIOP 1.1 requests. Required for interoperability with Orbix 3.0
and Orbix for OS/390. Defaults to false.

policies:http
This namespace contains variables used to set HTTP-related
policies. It contains the following variables:
• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• keep-alive:enabled

• server_address_mode_policy:port_range

buffer_sizes_policy:default_buffer_size

buffer_sizes_policy:default_buffer_size specifies, in bytes, the
initial size of the buffers allocated by HTTP. Defaults to 4096. This
value must be greater than 80 bytes, and must be evenly divisible
by 8.

buffer_sizes_policy:max_buffer_size

buffer_sizes_policy:max_buffer_size specifies, in bytes, the
maximum buffer size permitted by HTTP. Defaults to -1 which
indicates unlimited size. If not unlimited, this value must be
greater than 80.

keep-alive:enabled

keep-alive:enabled specifies if the server uses persistent
connections in response to an incomming Connection:keep-alive
header. If set to true, the server honors the connection setting
from the client. If set to false, the server always ignores the
connection setting from the client.

 178 Artix Configuration Reference, C++ Runtime

If no connection setting is sent from the client and this variable is
set to true, the server responds with Connection:close for HTTP
1.0 requests and Connection:keep-alive for HTTP 1.1 requests.
Defaults to false.

server_address_mode_policy:port_range

server_address_mode_policy:port_range specifies the range of ports
that a server uses when there is no well-known addressing policy
specified for the port.

policies:iiop
The policies:iiop namespace contains variables used to set
IIOP-related policies. It contains the following variables:
• client_address_mode_policy:local_hostname

• client_address_mode_policy:port_range

• client_version_policy

• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• server_address_mode_policy:local_hostname

• server_address_mode_policy:port_range

• server_address_mode_policy:publish_hostname

• server_version_policy

• tcp_options_policy:no_delay

• tcp_options_policy:recv_buffer_size

• tcp_options_policy:send_buffer_size

client_address_mode_policy:local_hostname

client_address_mode_policy:local_hostname specifies the host
name that is used by the client.
This variable enables support for multi-homed client hosts. These
are client machines with multiple host names or IP addresses (for
example, those using multiple DNS aliases or multiple network
interface cards). The local_hostname variable enables you to
explicitly specify the host name that the client listens on.

Note: Setting this variable to true does not prevent the
server from ultimately choosing to ignore the keep-alive
setting for other reasons. For example, if an explicit per
client service limit is reached, the server responds with a
Connection:close, regardless of this variable’s setting.

Artix Configuration Reference, C++ Runtime 179

For example, if you have a client machine with two network
addresses (207.45.52.34 and 207.45.52.35), you can explicitly set
this variable to either address:

By default, the local_hostname variable is unspecified, and the
client uses the 0.0.0.0 wildcard address. In this case, the network
interface card used is determined by the operating system.

client_address_mode_policy:port_range

(C++ only) client_address_mode_policy:port_range specifies the
range of ports that a client uses when there is no well-known
addressing policy specified for the port. Specified values take the
format of from_port:to_port, for example:

client_version_policy

client_version_policy specifies the highest GIOP version used by
clients. A client uses the version of GIOP specified by this variable,
or the version specified in the IOR profile, whichever is lower.
Valid values for this variable are: 1.0, 1.1, and 1.2.
For example, the following file-based configuration entry sets the
server IIOP version to 1.1.

The following itadmin command set this variable:

buffer_sizes_policy:default_buffer_size

buffer_sizes_policy:default_buffer_size specifies, in bytes, the
initial size of the buffers allocated by IIOP. Defaults to 16000. This
value must be greater than 80 bytes, and must be evenly divisible
by 8.

buffer_sizes_policy:max_buffer_size

buffer_sizes_policy:max_buffer_size specifies the maximum buffer
size permitted by IIOP, in kilobytes. Defaults to -1, which
indicates unlimited size. If not unlimited, this value must be
greater than 80.

server_address_mode_policy:local_hostname

server_address_mode_policy:local_hostname specifies the server
host name that is advertised by the locator daemon, and listened
on by server-side IIOP.

policies:iiop:client_address_mode_policy:local_hostname =
"207.45.52.34";

policies:iiop:client_address_mode_policy:port_range="4003:4008"

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy

 180 Artix Configuration Reference, C++ Runtime

This variable enables support for multi-homed server hosts. These
are server machines with multiple host names or IP addresses (for
example, those using multiple DNS aliases or multiple network
interface cards). The local_hostname variable enables you to
explicitly specify the host name that the server listens on and
publishes in its IORs.
For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this
variable to either address:

By default, the local_hostname variable is unspecified. Servers use
the default hostname configured for the machine with the Orbix
configuration tool.

server_address_mode_policy:port_range

server_address_mode_policy:port_range specifies the range of ports
that a server uses when there is no well-known addressing policy
specified for the port. Specified values take the format of
from_port:to_port, for example:

server_address_mode_policy:publish_hostname

server_address_mode-policy:publish_hostname specifes whether
IIOP exports hostnames or IP addresses in published profiles.
Defaults to false (exports IP addresses, and does not export
hostnames). To use hostnames in object references, set this
variable to true, as in the following file-based configuration entry:

The following itadmin command is equivalent:

server_version_policy

server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Artix
servers do not publish IIOP 1.0 profiles. The default value is 1.2.

tcp_options_policy:no_delay

tcp_options_policy:no_delay specifies whether the TCP_NODELAY
option should be set on connections. Defaults to false.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";

policies:iiop:server_address_mode_policy:port_range="4003:4008"

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname

Artix Configuration Reference, C++ Runtime 181

tcp_options_policy:recv_buffer_size

tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which
coresponds to using the default size defined by the operating
system.

tcp_options_policy:send_buffer_size

tcp_options_policy:send_buffer_size specifies the size of the TCP
send buffer. This variable can only be set to 0, which coresponds
to using the default size defined by the operating system.

policies:invocation_retry
The policies:invocation_retry namespace contains variables that
determine how a CORBA ORB reinvokes or rebinds requests that
raise the following exceptions:
• TRANSIENT with a completion status of COMPLETED_NO (triggers

transparent reinvocations).
• COMM_FAILURE with a completion status of COMPLETED_NO (triggers

transparent rebinding).
This namespace contains the following variables:
• backoff_ratio

• initial_retry_delay

• max_forwards

• max_rebinds

• max_retries

backoff_ratio

backoff_ratio specifies the degree to which delays between
invocation retries increase from one retry to the next. Defaults to
2.

initial_retry_delay

initial_retry_delay specifies the amount of time, in milliseconds,
between the first and second retries. Defaults to 100.

max_forwards

max_forwards specifies the number of forward tries allowed for an
invocation. Defaults to 20. To specify unlimited forward tries, set
to -1.

Note: The delay between the initial invocation and first
retry is always 0.

 182 Artix Configuration Reference, C++ Runtime

max_rebinds

max_rebinds specifies the number of transparent rebinds attempted
on receipt of a COMM_FAILURE exception. Defaults to 5.

max_retries

max_retries specifies the number of transparent reinvocations
attempted on receipt of a TRANSIENT exception. Defaults to 5.
For more information about proprietary timeout policies, see the
Orbix CORBA Programmer’s Guide.

Note: This setting is valid only if the effective RebindPolicy
is TRANSPARENT; otherwise, no rebinding occurs. For more
information, see “rebind_policy” on page 172.

Artix Configuration Reference, C++ Runtime 183

Index

A
active connection management

HTTP 157
IIOP 159

agent_ior_file 167
allow_registration_after_rollback_only 16

7
ANSI C strftime() function 59, 92
artix:endpoint 77
artix:endpoint:endpoint_list 78, 82
artix:endpoint:endpoint_name:wsdl_locat
ion 78

artix:endpoint:endpoint_name:wsdl_port
78

artix:interceptors:message_snoop:enable
d 22, 23

artix:interceptors:message_snoop:log_le
vel 23

asynchronous acknowledgement 84
at_http 3

B
backoff_ratio, reinvoking 181
backup_restart_file 167
Berkeley DB 47
BiDirPolicy::ALLOW 175
BiDirPolicy::BiDirAcceptPolicy 174
BiDirPolicy::BiDirExportPolicy 175
BiDirPolicy::BiDirOfferPolicy 175
binding:artix:client_message_interceptor
_list 9, 64

binding:artix:client_request_interceptor_l
ist 9, 64

binding:artix:server_message_intercepto
r_list 10, 64

binding:artix:server_request_interceptor
_list 10, 64

binding:client_binding_list 7, 8
binding:server_binding_list 8
binding policies

transparent retries 182
bus:initial_contract:url 16
bus:initial_contract:url:container 17
bus:initial_contract:url:locator 17
bus:initial_contract:url:login_service 18
bus:initial_contract:url:peermanager 17
bus:initial_contract:url:sessionendpointm
anager 17

bus:initial_contract:url:sessionmanager 1
7

bus:initial_contract:url:uddi_inquire 17
bus:initial_contract:url:uddi_publish 17
bus:initial_contract_dir 18

bus:initial_references:url:container 21
bus:initial_references:url:locator 18
bus:initial_references:url:login_service 21
bus:initial_references:url:peermanager 1

9
bus:initial_references:url:sessionendpoint
manager 20

bus:initial_references:url:sessionmanage
r 19

bus:initial_references:url:uddi_inquire 20
bus:initial_references:url:uddi_publish 20
bus:non_compliant_epr_format 36
bus:qname_alias:container 34
bus:qname_alias:locator 34
bus:qname_alias:login_service 35
bus:qname_alias:peermanager 34
bus:qname_alias:sessionendpointmanage
r 35

bus:qname_alias:sessionmanager 35
bus:qname_alias:uddi_inquire 35
bus:qname_alias:uddi_publish 35
bus:reference_2.1_compat 37
bus.transactions().begin_transaction() 41
-BUSCONFIG_ 28
bus_loader 4
bus_response_monitor 4

C
canonical 28, 33, 40, 90
CertConstraintsPolicy 96
CertConstraintsPolicy policy 96
certificate_constraints_policy variable 96
Certificates

constraints 96
certificates

CertConstraintsPolicy policy 96
constraint language 96

checkpoint 47
ClientProxyBase() 33
ClientTransport 26
client_version_policy

IIOP 135, 178
colocation 6, 11
colocation interceptor 11
concurrent_transaction_map_size 163
configuration updates 42
connection_attempts 136
constraint language 96
Constraints

for certificates 96
container 22
ContainerService.url 19
coordination service 41

 184 Artix Configuration Reference, C++ Runtime

corbaloc 68
CORBA router by-pass 70
create_transaction_mbeans 167
custom plug-ins 93

D
DB checkpoint 47
default_buffer_size 177, 179
default_ots_policy 163
default_transaction_policy 163
default_transaction_timeout 163
delivery assurance policies 85
direct_persistence 167

naming service 162
OTS Encina 167

documentation
.pdf format ix
updates on the web ix

duplicate masters 46
Dynamic 72
dynamic proxies 72

E
EndpointName 36
endpoint reference formats 35
ERROR 13
event_log:filters 13, 31, 132
event_log:filters:bus:pre_filter 14
event_log:filter_sensitive_info 14
event_log:log_service_names:active 15
event_log:log_service_names:services 15
ExactlyOnceConcurrent 85
ExactlyOnceInOrder 85
ExactlyOnceReceivedOrder 86
extra hop 65

F
FATAL_ERROR 13
filename 59, 91
fixed 3
fml 3
FTP daemon 53
FTP LIST command 53

G
G2 3
GIOP

interoperability policies 175
policies 175

giop 3
global_namespace_poa 167

H
handler type 43
hard_limit

HTTP 157, 158
IIOP 159, 160

high_water_mark 25
HTTP 26
HTTP buffer 130
HTTP plug-in configuration

hard connection limit
client 158
server 157

soft connection limit
client 158
server 157

HTTP policies
buffer sizes

maximum 177
ports 178

https 3

I
ignore_message_not_consumed 176
iiop 3
IIOP plug-in configuration

hard connection limit
client 160
server 159

soft connection limit
client 160
server 160

IIOP plugin configuration 159
IIOP policies 129, 134, 178

buffer sizes 179
default 179
maximum 179

client version 135, 178
connection attempts 136
export hostnames 32, 138, 178, 180
export IP addresses 32, 138, 178, 180
GIOP version in profiles 139, 180
server hostname 138, 179
TCP options

delay connections 139, 180
receive buffer size 140, 181

IIOP policy
ports 32, 138, 180

iiop_profile 3
INFO_ALL 13
INFO_HIGH 13
INFO_LOW 13
INFO_MEDIUM 13
initial_disk 167
initial_disk_size 168
initialization 45
initial references

Encina transaction factory 169
OTS lite transaction factory 166
OTS transaction factory 165

initial_threads 24
interceptor

colocation 11
interceptor chain 64
interceptors 7

client request-level 7
interoperability configuration 175

code set negotiation 176
GIOP 1.1 support 176
incompatible message format 176
LocateRequest messages 176

Artix Configuration Reference, C++ Runtime 185

Principal data 177
Interoperable Object Reference 68
interposition_style 164
invocation policies 181

forwarding limit 181
initial retry delay 181
retry delay 181
retry maximum 182

IOR 68
ip:receive_buffer_size 158, 160
ip:send_buffer_size 157, 160
ipaddress 29, 33, 40, 90
IT_Bus::Exception 87
it_container_admin 19

J
java 3
Java Message Service 54
Java Platform Debugging Architecture 22
java plug-in 2
Java plug-ins

loading 2
java_plugins 2, 3, 64
java_uddi_proxy 3
JCE architecture

enabling 105
jit_transactions 164
jms

temporary queues 56
JMS transport 26
JMS transport plug-in 2
JMX Remote 57
JMXServiceURL 58
JPDA 22
jvm_options 22

L
lb_default_initial_load 162
lb_default_load_timeout 162
local_hostname 32, 138, 179
local_log_stream plugin configuration 59
locator_client 4
locator_endpoint 4, 65
log4j 61
log_check_interval 168
logging

passwords 14
service-based 15

logging configuration
set filters for subsystems 12

logstream configuration
output stream 59
output to local file 59, 91
output to rolling file 60, 92

log_threshold 168

M
max_buffer_size 177, 179
max_forwards

reinvoking 181
max_queue_size 25

max_rebinds 182
max_resource_failures 168
max_retries 182
MBeans 57
MEP 81
Message Exchange Pattern 81
message part element 79
MessageReader 81
message snoop 22
MessageWriter 81
MESSAGING_PORT_DRIVEN 27
messaging port pools 81
mq 3
MQ transactions 3
MTOM 77
multi-homed 90
multi-homed hosts

clients 30, 31, 178
servers 180

multi-homed hosts, configure support
for 138

MULTI_INSTANCE 27
MULTI_THREADED 26, 27

N
namespace

artix:endpoint 78
binding 7
event_log 12
plugins:artix:db 45
plugins:bus 40
plugins:bus_management 57
plugins:ca_wsdm_observer 42
plugins:chain 82
plugins:codeset 153
plugins:container 45
plugins:csi 105
plugins:event 155
plugins:file_security_domain 162
plugins:ftp 52
plugins:gsp 106
plugins:ha_conf 44
plugins:http 157
plugins:https 157
plugins:iiop 159
plugins:jms 54
plugins:local_log_stream 59
plugins:locator 61
plugins:locator_endpoint 63
plugins:messaging_port 80
plugins:ots_mgmt 170
plugins:peer_manager 66
plugins:poa 170
plugins:routing 69
plugins:service_lifecycle 72
plugins:session_endpoint_manager 74
plugins:session_manager_service 73
plugins:sm_simple_policy 74
plugins:soap 75
plugins:soap12 77
plugins:tuxedo 80

 186 Artix Configuration Reference, C++ Runtime

plugins:wsdl_publish 91
plugins:wsrm 84
plugins:xmlfile_log_stream 91
poa:fqpn 170
policies 118, 172, 173, 174
policies:csi 127
policies:http 177
policies:https 129
policies:iiop 178
policies:iiop_tls 133
policies:shmiop 182
principal_sponsor:csi 145
principle_sponsor 142, 147, 148, 151

namespace_poa 168
naming service configuration 162

default initial load value 162
default load value timeout 162
NT service dependencies 162

negotiate_transmission_codeset 176
no_delay 139, 180
non_tx_target_policy 172
nterceptor_factory:InterceptorFactoryNa
me:plugin 12

nt_service_dependencies 162

O
orb_name

OTS Encina 168
OTS Lite 165

orb_plugins 1, 64
otid_format_id

OTS Encina 168
OTS Lite 165

ots 4
OTS configuration 163

default timeout 163
hash table size 163
initial reference for factory 165
initial reference for transaction
factory 165

interposition style 164
JIT transaction creation 164
optimize transaction propagation 164
OTSPolicy default value 163
roll back transactions 164
TransactionPolicy default 163
transaction timeout default 163

OTS Encina 41
OTS Encina configuration 166

backup restart file 167
direct persistence 167
initial log file 167
internal ORB usage 170
log file growth checks 168
log file size 168
log file threshold 168
logging configuration 169
log resource failures 168
management agent IOR 167
ORB name 168
OTS management object creation 167

POA namespace 168
raw disk usage 170
registration after rollback 167
restart file 168
retry timeout 168
transaction factory initial reference 169
transaction factory name 169
transaction ID 168
transaction timeout 170

OTS Lite 41
ots_lite 4
OTS Lite configuration 165

internal ORB 166
ORB name 165
transaction ID 165
transaction timeout 166

ots_tx_provider 41
ots_v11_policy 164

P
part element 79
passwords

logging 14
performance logging 66
ping failure 65
plug-in 1
plugins 57

at_http 3
bus_loader 4
bus_response_monitor 4
corba 4
fixed 3
fml 3
G2 3
giop 3
https 3
iiop 3
iiop_profile 3
java 3
java_plugins 3
locator_client 4
locator_endpoint 4
log4j_log_stream 61
mq 3
routing 4
service_lifecycle 5
service_locator 4
session_endpoint_manager 5
session_manager_service 5
sm_simple_policy 5
soap 3
tagged 3
tunnel 3
tuxedo 3
uddi_proxy 5
ws_chain 5
ws_coloc 6
wsdl_publish 6
ws_orb 4
wsrm 6
wsrm_db 6

Artix Configuration Reference, C++ Runtime 187

xmlfile_log_stream 6
xslt 6

plugins:ap_nano_agent:hostname_addre
ss:local_hostname 40

plugins:ap_nano_agent:hostname_addre
ss:publish_hostname 40

plugins:artix:db
home 48

plugins:artix:db:allow_minority_master 4
6

plugins:artix:db:checkpoint_period 47
plugins:artix:db:db_open_retry_attempts

46, 47
plugins:artix:db:download_files 47
plugins:artix:db:election_timeout 47
plugins:artix:db:env_name 47
plugins:artix:db:error_file 48
plugins:artix:db:iiop:port 48
plugins:artix:db:inter_db_open_sleep_pe
riod 48

plugins:artix:db:max_buffered_msgs 48
plugins:artix:db:max_msg_buffer_size 49
plugins:artix:db:max_ping_retries 49
plugins:artix:db:ping_lifetime 49
plugins:artix:db:ping_retry_interval 49
plugins:artix:db:priority 49
plugins:artix:db:replace_when_forwardin
g 50

plugins:artix:db:replica_name 50
plugins:artix:db:replicas 50
plugins:artix:db:roundtrip_timeout 50
plugins:artix:db:sync_retry_attempts 51
plugins:artix:db:use_shutdown_hook 51
plugins:artix:db:verbose_logging 51
plugins:asp:security_level 102
plugins:bus:default_tx_provider:plugin 4

1
plugins:bus:register_client_context 40
plugins:bus_management:connector:ena
bled 57

plugins:bus_management:connector:port
57

plugins:bus_management:connector:regi
stry:required 58

plugins:bus_management:connector:url:f
ile 58

plugins:bus_management:connector:url:
publish 58

plugins:bus_management:enabled 57
plugins:bus_management:http_adaptor:e
nabled 58

plugins:bus_management:http_adaptor:p
ort 58

plugins:bus_response_monitor:type 66
plugins:ca_wsdm_observer:auto_register

42
plugins:ca_wsdm_observer:config_poll_ti
me 42, 45

plugins:ca_wsdm_observer:handler_type
42

plugins:ca_wsdm_observer:max_queue_
size 43

plugins:ca_wsdm_observer:min_queue_s
ize 43

plugins:ca_wsdm_observer:report_wait_t
ime 43

plugins:chain:endpoint_name:operation_
name:service_chain 82

plugins:chain:init_on_first_call 83
plugins:chain:servant_list 83
plugins:codeset:always_use_default 155
plugins:codeset:char:ccs 154
plugins:codeset:char:ncs 154
plugins:codeset:wchar:ncs 154
plugins:codesets:wchar:ccs 155
plugins:container:deployfolder 45
plugins:container:deployfolder:readonly 4

5
plugins:csi:ClassName 105
plugins:csi:shlib_name 106
plugins:file_security_domain 162
plugins:ftp:policy:client:filenameFactory

52
plugins:ftp:policy:client:replyFileLifecycle

52
plugins:ftp:policy:connection:connectMod
e 53

plugins:ftp:policy:connection:connectTim
eout 53

plugins:ftp:policy:connection:receive:Tim
eout 53

plugins:ftp:policy:connection:scanInterva
l 53

plugins:ftp:policy:connection:useFilenam
eMaskOnScan 53

plugins:ftp:policy:credentials:name 54
plugins:ftp:policy:credentials:password 5

4
plugins:ftp:policy:server:filenameFactory

54
plugins:ftp:policy:server:requestFileLifec
ycle 54

plugins:giop:message_server_binding_lis
t 155

plugins:giop_snoop:filename 156
plugins:giop_snoop:rolling_file 156
plugins:giop_snoop:verbosity 156
plugins:gsp:authorization_realm 107
plugins:gsp:ClassName 107
plugins:ha_conf:random:selection 44
plugins:ha_conf:strategy 44
plugins:http:connection

max_unsent_data 157
plugins:http:incoming_connections:hard_
limit 157

plugins:http:incoming_connections:soft_li
mit 157

plugins:http:ip:reuse_addr 158
plugins:http:outgoing_connections:soft_li
mit 158

plugins:http:tcp_connection:keep_alive 1
58

plugins:http:tcp_connection:linger_on_cl
ose 159

 188 Artix Configuration Reference, C++ Runtime

plugins:http:tcp_connection:no_delay 158
plugins:http:tcp_listener:reincarnate_atte
mpts 159

plugins:iiop:connection
max_unsent_data 159

plugins:iiop:incoming_connections:hard_l
imit 159

plugins:iiop:incoming_connections:soft_li
mit 160

plugins:iiop:ip:receive_buffer_size 160
plugins:iiop:ip:reuse_addr 160
plugins:iiop:ip:send_buffer_size 160
plugins:iiop:outgoing_connections:hard_li
mit 160

plugins:iiop:outgoing_connections:soft_li
mit 160

plugins:iiop:pool:max_threads 160
plugins:iiop:pool:min_threads 160
plugins:iiop:tcp_connection:keep_alive 1

60
plugins:iiop:tcp_connection:linger_on_clo
se 161

plugins:iiop:tcp_connection:no_delay 161
plugins:iiop:tcp_connection:no_deplay 16

1
plugins:iiop:tcp_connection€inger_on_clo
se 161

plugins:iiop:tcp_listener:reincarnate_atte
mpts 111, 161

plugins:iiop:tcp_listener:reincarnation_re
try_backoff_ratio 111, 161

plugins:iiop:tcp_listener:reincarnation_re
try_delay 111, 161

plugins:iiop_tls:hfs_keyring_file_passwor
d 136

plugins:iiop_tls:tcp_listener:reincarnation
_retry_backoff_ratio 111

plugins:iiop_tls:tcp_listener:reincarnation
_retry_delay 111

plugins:it_response_time_collector:filena
me 67

plugins:it_response_time_collector:serve
r-id 66, 67

plugins:jms:policies:binding_establishme
nt:backoff_ratio 55

plugins:jms:policies:binding_establishme
nt:initial_iteration_delay 55

plugins:jms:policies:binding_establishme
nt:max_binding_iterations 56

plugins:jms:pooled_session_high_water_
mark 56

plugins:jms:pooled_session_low_water_
mark 56

plugins:local_log_stream:buffer_file 59
plugins:local_log_stream:filename 59
plugins:local_log_stream:filename_date_f
ormat 59

plugins:local_log_stream:log_elements 6
0, 92

plugins:local_log_stream:log_thread_id 6
0

plugins:local_log_stream:milliseconds_to
_log 60, 92

plugins:local_log_stream:precision_loggin
g 60

plugins:local_log_stream:rolling_file 61,
93

plugins:locator:peer_timeout 61
plugins:locator:persist_data 61
plugins:locator:selection_method 62
plugins:locator:service_group 62
plugins:locator:wsdl_port 62
plugins:locator_endpoint:exclude_endpoi
nts 63

plugins:locator_endpoint:include_endpoin
ts 63

plugins:log4j_log_stream:use_stderr 61
plugins:messaging_port:base_replyto_url

80
plugins:messaging_port:generic_pool_siz
e 81

plugins:messaging_port:supports_wsa_m
ep 81

plugins:messaging_port:wsrm_enabled 8
2

plugins:monitoring_plugin:classname 64
plugins:monitoring_plugin:enable_si_payl
oad 64

plugins:monitoring_plugin:know_report_t
ool 65

plugins:monitoring_plugin:max_reported
_payload_size 65

plugins:monitoring_plugin:show_service_
facade 65

plugins:naming:destructive_methods_allo
wed 162

plugins:naming:direct_persitence 162
plugins:naming:iiop:port 162
plugins:notify_log 163
plugins:ots_encina:iiop:port 167
plugins:peer_manager:ping_on_failure 65
plugins:peer_manager:timeout_delta 66
plugins:PluginName:prerequisite_plugins

94
plugins:PluginName:shlib_name 93
plugins:poa:ClassName 170
plugins:poa:root_name 170
plugins:remote_log_receiver:iiop:addr_lis
t 67

plugins:remote_log_receiver:ior_filename
68

plugins:remote_log_receiver:log_filenam
e 68

plugins:remote_log_receiver:prerequisite
_plugins 68

plugins:rmi:registry_port 68
plugins:rmi:start_registry 68
plugins:routing:proxy_cache_size 69
plugins:routing:reference_cache_size 69
plugins:routing:use_bypass 70
plugins:routing:use_pass_through 71
plugins:routing:wrapped 71
plugins:routing:wsdl_url 70

Artix Configuration Reference, C++ Runtime 189

plugins:service_lifecycle:evict_static_serv
ices 72

plugins:service_lifecycle:long_lived_servi
ces 72

plugins:service_lifecycle:max_cache_size
72

plugins:session_endpoint_manager:defau
lt_group 74

plugins:session_endpoint_manager:head
er_validation 74

plugins:session_endpoint_manager:peer_
timout 74

plugins:session_manager_service:peer_ti
meout 73

plugins:sm_simple_policy:max_concurre
nt_sessions 74

plugins:sm_simple_policy:max_session_ti
meout 75

plugins:sm_simple_policy:min_session_ti
meout 74

plugins:soap:encoding 75
plugins:soap:sequence_validation 75
plugins:soap:validating 76
plugins:soap:write_xsi_type 76
plugins:soap12:enable_mtom 77
plugins:tuxedo:server 80
plugins:wsdl_publish:hostname 90
plugins:wsdl_publish:processor 91
plugins:wsdl_publish:publish_port 91
plugins:wsrm:acknowledgement_interval

84
plugins:wsrm:acknowledgement_uri 84
plugins:wsrm:base_retransmission_interv
al 85

plugins:wsrm:delivery_assurance_policy
85, 86

plugins:wsrm:disable_exponential_backof
f_retransmission_interval 86

plugins:wsrm:enable_per_thread_sequen
ce_scope 87

plugins:wsrm:max_messages_per_seque
nce 87

plugins:wsrm:max_retransmission_attem
pts 88

plugins:wsrm:max_unacknowledged_mes
sages_threshold 88

plugins:wsrm:thread_pool:high_water_m
ark 88

plugins:wsrm:thread_pool:initial_threads
88

plugins:wsrm:thread_pool:low_water_ma
rk 89

plugins:wsrm:thread_pool:max_queue_si
ze 89

plugins:wsrm:thread_pool:stack_size 89
plugins:wsrm:use_wsa_replyto_endpoint
_for_wsrm_acknowledgement 89

plugins:xmlfile_log_stream:buffer_file 91
plugins:xmlfile_log_stream:filename 92
plugins:xmlfile_log_stream:filename_dat
e_format 92

plugins:xmlfile_log_stream:log_thread_id
92

plugins:xslt:endpoint_name:operation_m
ap 78

plugins:xslt:endpoint_name:trace_filter 7
8

plugins:xslt:endpoint_name:use_element
_name 79

plugins:xslt:servant_list 79
POA

plugin class name 170
root name 170

POA::create_POA() 175
poa:fqpn:direct_persistent 171
poa:fqpn:well_known_address 171
polices:max_chain_length_policy 120
policies

CertConstraintsPolicy 96
policies:allow_unauthenticated_clients_p
olicy 119

policies:at_http:client:proxy_server 28
policies:at_http:server_address_mode_p
olicy:local_hostname 29

policies:at_http:server_address_mode_p
olicy:publish_hostname 28, 29

policies:bus:resolved_endpoint:max_retri
es 33

policies:certificate_constraints_policy 120
policies:csi:attribute_service:client_suppo
rts 127

policies:csi:attribute_service:target_supp
orts 128

policies:csi:auth_over_transpor:target_su
pports 128

policies:csi:auth_over_transport:client_s
upports 128

policies:csi:auth_over_transport:target_r
equires 128

policies:giop:bidirectional_accept_policy
175

policies:giop:bidirectional_export_policy
175

policies:giop:bidirectional_gen3_accept_p
olicy 175

policies:giop:bidirectional_offer_policy 17
5

policies:giop:interop:allow_value_types_i
n_1_1 176

policies:giop:interop:ignore_message_no
t_consumed 176

policies:giop:interop:negotiate_transmiss
ion_codeset 176

policies:giop:interop:send_locate_request
176

policies:giop:interop:send_principal 177
policies:giop:interop_policy:enable_princi
pal_service_context 176

policies:http:buffer:prealloc_shared 30
policies:http:buffer:prealloc_size 30
policies:http:buffer_sizes_policy:max_buf
fer_size 177

 190 Artix Configuration Reference, C++ Runtime

policies:http:client_address_mode_policy
:local_hostname 30

policies:http:keep-alive:enabled 177
policies:http:server_address_mode_polic
y:local_hostname 31

policies:http:server_address_mode_polic
y:port_range 31, 178

policies:http:trace_requests:enabled 31
policies:https:buffer:prealloc_shared 130
policies:https:buffer:prealloc_size 130
policies:https:mechanism_policy:ciphersu
ites 131

policies:https:mechanism_policy:protocol
_version 132

policies:https:trace_requests:enabled 31,
133

policies:https:trusted_ca_list_policy 133
policies:iiop:buffer_sizes_policy:default_b
uffer_size 179

policies:iiop:buffer_sizes_policy:max_buff
er_size 179

policies:iiop:client_address_mode_policy:
local_hostname 32, 179

policies:iiop:client_address_mode_policy:
port_range 179

policies:iiop:client_version_policy 178
policies:iiop:server_address_mode_policy
:local_hostname 32, 179

policies:iiop:server_address_mode_policy
:port_range 32, 180

policies:iiop:server_address_mode_policy
:publish_hostname 32, 178, 180

policies:iiop:server_version_policy 180
policies:iiop:tcp_options:send_buffer_siz
e 181

policies:iiop:tcp_options_policy:no_delay
180

policies:iiop:tcp_options_policy:recv_buff
er_size 181

policies:iiop_tls:allow_unauthenticated_cl
ients_policy 134

policies:iiop_tls:certificate_constraints_po
licy 135

policies:iiop_tls:client_secure_invocation
_policy:requires 135

policies:iiop_tls:client_secure_invocation
_policy:supports 135

policies:iiop_tls:client_version_policy 135
policies:iiop_tls:connection_attempts 136
policies:iiop_tls:connection_retry_delay 1

36
policies:iiop_tls:max_chain_length_policy

136
policies:iiop_tls:mechanism_policy:cipher
suites 137

policies:iiop_tls:mechanism_policy:protoc
ol_version 137

policies:iiop_tls:server_address_mode_p
olicy:local_hostname 138

policies:iiop_tls:server_address_mode_p
olicy:port_range 138

policies:iiop_tls:server_address_mode_p
olicy:publish_hostname 138

policies:iiop_tls:server_version_policy 13
9

policies:iiop_tls:session_caching_policy 1
39

policies:iiop_tls:target_secure_invocation
_policy:requires 139

policies:iiop_tls:target_secure_invocation
_policy:supports 139

policies:iiop_tls:tcp_options:send_buffer_
size 140

policies:iiop_tls:tcp_options_policy:no_de
lay 139

policies:iiop_tls:tcp_options_policy:recv_
buffer_size 140

policies:iiop_tls:trusted_ca_list_policy 14
0

policies:invocation_retry:backoff_ratio 18
1

policies:invocation_retry:initial_retry_del
ay 181

policies:invocation_retry:max_forwards 1
81

policies:invocation_retry:max_rebinds 18
2

policies:invocation_retry:max_retries 182
policies:mechanism_policy:ciphersuites 1

21
policies:mechanism_policy:protocol_versi
on 122

policies:non_tx_target_policy 172
policies:rebind_policy 172
policies:relative_binding_exclusive_reque
st_timeout 174

policies:relative_binding_exclusive_round
trip_timeout 174

policies:relative_connection_creation_tim
eout 174

policies:relative_request_timeout 173
policies:relative_roundtrip_timeout 173
policies:routing_policy_max 172
policies:routing_policy_min 172
policies:session_caching_policy 122
policies:shmiop 182
policies:soap

erver_address_mode_policy:local_host
name 32

policies:soap:server_address_mode_polic
y:local_hostname 32

policies:soap:server_address_mode_polic
y:publish_hostname 33

policies:sync_scope_policy 172
policies:target_secure_invocation_policy:
requires 122

policies:target_secure_invocation_policy:
supports 122

policies:trusted_ca_list_policy 123
policies:work_queue_policy 173
policy:messaging_transport:client_concur
rency 26

Artix Configuration Reference, C++ Runtime 191

policy:messaging_transport:concurrency
27

policy:messaging_transport:max_threads
27

policy:messaging_transport:min_threads
27

pool:java_max_threads 160
pool:max_threads 158, 160
pool:min_threads 158, 160
pooling 81
prerequisite plug-ins 94
principal_sponsor:csi:auth_method_data

146
principal_sponsor:csi:use_principal_spon
sor 145

principal_sponsor Namespace
Variables 142, 147, 148, 151

principle_sponsor:auth_method_data 143,
148, 149, 152

principle_sponsor:auth_method_id 143,
147, 149, 152

principle_sponsor:callback_handler:Class
Name 144

principle_sponsor:login_attempts 144
principle_sponsor:use_principle_sponsor

143, 147, 148, 151
propagate_separate_tid_optimization 164
proprietary endpoint reference 36
proxies 72
proxification 69
proxy interposition 164
publish_hostname 32, 138, 180

R
read/write folder 45
read-only folder 45
rebind_policy 172
ReceiveMessageContext 81
recv_buffer_size 140, 181
refernce formats 35
relative_binding_exclusive_request_time
out 174

relative_binding_exclusive_roundtrip_tim
eout 174

relative_connection_creation_timeout 174
relative_request_timeout 173
relative_roundtrip_timeout 173
remote logging 67
remote_log_receiver 67
replicas, minimum number 46
reply-to endpoint 80
request_forwarder 4
request-level interceptor 11
resolve_initial_references() 33
resource_retry_timeout 168
restart_file 168
RMI Connector 57
rollback_only_on_system_ex 164
rolling_file 60, 92
router 72
router proxification 69

routing 4
routing plug-in 69
routing_policy_max 172
routing_policy_min 172

S
schema validation 76
secondary hostname 90
send_locate_request 176
SendMessageContext 81
send_principal 177
server ID, configuring 67
server_version_policy

IIOP 139, 180
service:owns_workqueue 26
service group, groups of services 62
service_lifecycle 5
service_locator 4, 61, 65
session_endpoint_manager 5, 65, 74
session_manager_service 5, 65, 73
share_variables_with_internal_orb 7
Sleepycat 47
sm_simple_policy 5, 74
soap 3, 75
soap12 77
SocketException 159
soft_limit

HTTP 157, 158
IIOP 160

SO_KEEPALIVE 158, 160
SO_LINGER 159, 161
standard interposition 164
strftime() 59, 92
superior_ping_timeout 165
support_ots_v11 164
sync_scope_policy 172

T
tagged 3
TCP_NODELAY 158, 161
TCP policies

delay connections 139, 180
receive buffer size 140, 181

temporary queues 56
thread_pool:high_water_mark 25
thread_pool:initial_threads 24
thread_pool:low_water_mark 25
thread_pool:max_queue_size 25
thread_pool:stack_size 26
thread pool policies 24

initial number of threads 24
maximum threads 25
request queue limit 25

timeout policies 173
toolkit replaceability

enabling JCE architecture 105
trace_file 169
trace_on 169
transaction configuration 41
transaction factory, initial reference 165
transaction_factory_name

 192 Artix Configuration Reference, C++ Runtime

OTS 165
OTS Encina 169
OTS Lite 166

transaction_factory_ns_name 169
TransactionPolicy, configure default
value 163

transactions
handle non-transactional objects 172

transaction_timeout_period
OTS Encina 170
OTS Lite 166

tunnel 3
tuxedo 3

U
uddi_proxy 5
unqualified 29, 33, 40, 90
use_internal_orb 166, 170
use_jsse_tk configuration variable 105
use_raw_disk 170

V
validation 76

W
WARNING 13
work_queue_policy 173
WS-Addressing 80
WS-Addressing 2004 81
WS-Addressing 2005 81
WS-AtomicTransaction 41
wsat_protocol 5
wsat_tx_provider 41
wsaw:ServiceName 36
ws_chain 5, 82
ws_coloc 6, 11
WS-Coordination 41
ws_coordination_service 5
wsdl:service 36
WSDLBindingSchema 36
WSDLPort 26
wsdl_publish 6, 90
ws_orb 4
WS-ReliableMessages 80, 84
wsrm 6

SequenceTerminated 87
wsrm:AckRequested 88
wsrm:AcksTo 84
wsrm_db 6
WS-S 14

X
xmlfile_log_stream 6, 91
xslt 6, 77

	Preface
	Contacting Micro Focus

	Artix Runtime
	ORB Plug-ins
	Binding Lists
	Event Log
	Initial Contracts
	Initial References
	JVM Options
	Message Snoop
	Multi-threading
	Policies
	QName Aliases
	Reference Compatibility

	Artix Plug-ins
	AmberPoint
	Bus
	CA WSDM Observer
	Client-Side High Availability
	Container
	Database Environment
	FTP
	JMS
	JMX
	Local Log Stream
	Log4J Log Stream
	Locator Service
	Locator Endpoint Manager
	Monitoring
	Peer Manager
	Performance Logging
	Remote Logging
	Remote Method Invocation
	Routing
	Service Lifecycle
	Session Manager
	Session Endpoint Manager
	Session Manager Simple Policy
	SOAP
	SOAP 1.2
	Transformer Service
	Tuxedo
	Web Services Addressing
	Web Services Chain Service
	Web Services Reliable Messaging
	WSDL Publishing Service
	XML File Log Stream
	Custom Plug-ins

	Artix Security
	Applying Constraints to Certificates
	bus:initial_contract
	bus:security
	initial_references
	password_retrieval_mechanism
	plugins:asp
	plugins:at_http
	plugins:atli2_tls
	plugins:csi
	plugins:gsp
	plugins:https
	plugins:iiop_tls
	plugins:java_server
	plugins:login_client
	plugins:login_service
	plugins:security
	plugins:security_cluster
	plugins:wsdl_publish
	plugins:wss
	policies
	policies:asp
	policies:bindings
	policies:csi
	policies:external_token_issuer
	policies:https
	policies:iiop_tls
	policies:security_server
	policies:soap:security
	principal_sponsor
	principal_sponsor:csi
	principal_sponsor:http
	principal_sponsor:https
	principal_sponsor:iiop_tls
	principal_sponsor:wsse

	CORBA
	plugins:codeset
	plugins:giop
	plugins:giop_snoop
	plugins:http and https
	plugins:iiop
	plugins:naming
	plugins:ots
	plugins:ots_lite
	plugins:ots_encina
	plugins:poa
	poa:FQPN
	Core Policies
	CORBA Timeout Policies
	Artix Timeout Policies
	policies:giop
	policies:giop:interop_policy
	policies:http
	policies:iiop
	policies:invocation_retry

	Index

