
Writing Artix Contracts: C++ 1

Artix 5.6.3

Writing Artix
Contracts: C++

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2015. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-24

http://www.microfocus.com/

Writing Artix Contracts: C++ iii

Contents

Preface .. i
What is Covered in This Book .. i
Who Should Read This Book .. i
How to Use This Book ... i
The Artix ESB Documentation Library ... i
Further Information and Product Support ii

Information We Need .. ii
Contact information ... iii

Introducing WSDL Contracts 1
WSDL elements ... 1
Structure of a WSDL Document .. 2

The logical part .. 2
The concrete part.. 2

Designing a contract .. 3

Defining Logical Data Units 4
Mapping Data into Logical Data Units .. 4
Adding Data Units to a Contract .. 5

Procedure .. 5
XML Schema Simple Types ... 6
Defining Complex Data Types ... 8

Defining Data Structures ... 8
Defining Arrays ... 11
Defining Types by Extension .. 13
Defining Types by Restriction ... 14
Defining Enumerated Types ... 15

Defining Elements ... 16

Defining Logical Messages Used by a Service 18
Messages and parameter lists .. 18
Message design for integrating with legacy systems 18
Message design for SOAP services .. 19
Message naming .. 20
Message parts.. 20

Defining Your Logical Interfaces 23
Process .. 23

Port types ... 23
Operations .. 24
Operation messages ... 24
Return values .. 25
Example .. 25

Index .. 27

Writing Artix Contracts: C++ i

Preface
What is Covered in This Book

This book describes how to write an abstract service definition
using Web Service Description Language (WSDL). An abstract
service definition describes the operations exposed by a service
in terms of the messages exchanged during the execution of
each operation. These messages are described as XML
documents that are implementation neutral. The abstract
service definition does not describe how the messages are
mapped to data that is transmitted over a network or what
communication protocols an implementation of the defined
service will use.

Who Should Read This Book
This book is intended for users of Artix ESB who are not
familiar with WSDL.

How to Use This Book
This book is organized as follows:

• Introducing WSDL Contracts provides a brief overview of the
concepts needed to understand a WSDL contract. It also
provides an overview of the structure of a WSDL contract.

• Defining Logical Data Units describes how to define data types
using XML Schema.

• Defining Logical Messages Used by a Service describes how data
types are built up into the messages that are used in the
definition of a WSDL interface.

• Defining Your Logical Interfaces describes how to define a
service interface in WSDL. Since interface definitions are
built up from the elements discussed, you should be sure
you understand the concepts in the previous chapters before
reading this chapter.

For information on adding the physical details to a WSDL
document see Bindings and Transports, C++ Runtime.

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the
document conventions used, and where to find additional
resources, see Using the Artix ESB Library.

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-105909

ii Writing Artix Contracts: C++

Further Information and Product Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The WebSync service, where you can download fixes and
documentation updates.

• The Knowledge Base, a large collection of product tips and
workarounds.

• Examples and Utilities, including demos and additional
product documentation.

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

http://www.microfocus.com/

Writing Artix Contracts: C++ iii

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be
available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
(trial software download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

http://www.microfocus.com/
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Writing Artix Contracts: C++ 1

Introducing WSDL
Contracts
WSDL documents define services using Web Service Description
Language and a number of possible extensions. The documents
have a logical part and a concrete part. The abstract part of the
contract defines the service in terms of implementation neutral
data types and messages. The concrete part of the document
defines how an endpoint implementing a service will interact with
the outside world.

The recommended approach to design services is to define your
services in WSDL and XML Schema before writing any code.
When hand-editing WSDL documents you must make sure that
the document is valid, as well as correct. To do this you must
have some familiarity with WSDL. You can find the standard on
the W3C web site, www.w3.org.

WSDL elements
A WSDL document is made up of the following elements:

• definitions — The root element of a WSDL document.
The attributes of this element specify the name of the WSDL
document, the document’s target namespace, and the
shorthand definitions for the namespaces referenced in the
WSDL document.

• types — The XML Schema definitions for the data units that
form the building blocks of the messages used by a service.
For information about defining data types see Defining
Logical Data Units.

• message — The description of the messages exchanged
during invocation of a services operations. These elements
define the arguments of the operations making up your
service. For information on defining messages see Defining
Logical Messages Used by a Service.

• portType — A collection of operation elements describing
the logical interface of a service. For information about
defining port types see Defining Your Logical Interfaces.

• operation — The description of an action performed by a
service. Operations are defined by the messages passed
between two endpoints when the operation is invoked. For
information on defining operations see Operations.

• binding — The concrete data format specification for an
endpoint. A binding element defines how the abstract

http://www.w3.org/TR/wsdl

2 Writing Artix Contracts: C++

messages are mapped into the concrete data format used by
an endpoint. This element is where specifics such as
parameter order and return values are specified.

• service — A collection of related port elements. These
elements are repositories for organizing endpoint definitions.

• port — The endpoint defined by a binding and a physical
address. These elements bring all of the abstract definitions
together, combined with the definition of transport details,
and they define the physical endpoint on which a service is
exposed.

Structure of a WSDL Document
A WSDL document is, at its simplest, a collection of elements
contained within a root definition element. These elements
describe a service and how an endpoint implementing that
service is accessed.

A WSDL document has two distinct parts:

• An abstract part that defines the service in implementation
neutral terms

• A concrete part that defines how an endpoint implementing
the service is exposed on a network

The logical part

The logical part of a WSDL document contains the types, the
message, and the portType elements.. It describes the
service’s interface and the messages exchanged by the
service. Within the types element, XML Schema is used to
define the structure of the data that makes up the messages.
A number of message elements are used to define the
structure of the messages used by the service. The portType
element contains one or more operation elements that
define the messages sent by the operations exposed by the
service.

The concrete part

The concrete part of a WSDL document contains the binding
and the service elements. It describes how an endpoint that
implements the service connects to the outside world. The
binding elements describe how the data units described by
the message elements are mapped into a concrete, on-the-
wire data format, such as SOAP. The elements contain one or
more elements which define the endpoints implementing the
service.

Writing Artix Contracts: C++ 3

Designing a contract
To design a WSDL contract for your services you must perform
the following steps:

1. Define the data types used by your services.

2. Define the messages used by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each
interface and the concrete representation of the data on
the wire.

5. Define the transport details for each of the services.

4 Writing Artix Contracts: C++

Defining Logical Data
Units
When describing a service in a WSDL contract complex data
types are defined as logical units using XML Schema.

When defining a service, the first thing you must consider is
how the data used as parameters for the exposed operations
is going to be represented. Unlike applications that are
written in a programming language that uses fixed data
structures, services must define their data in logical units that
can be consumed by any number of applications. This
involves two steps:

1. Breaking the data into logical units that can be mapped
into the data types used by the physical implementations
of the service

2. Combining the logical units into messages that are passed
between endpoints to carry out the operations

This chapter discusses the first step. Defining Logical
Messages Used by a Service on page 49 discusses the second
step.

Mapping Data into Logical Data Units
The interfaces used to implement a service define the data
representing operation parameters as XML documents. If you
are defining an interface for a service that is already
implemented, you must translate the data types of the
implemented operations into discreet XML elements that can be
assembled into messages. If you are starting from scratch, you
must determine the building blocks from which your messages
are built, so that they make sense from an implementation
standpoint.

Available type systems for defining service data units
According to the WSDL specification, you can use any type
system you choose to define data types in a WSDL contract.
However, the W3C specification states that XML Schema is
the preferred canonical type system for a WSDL document.
Therefore, XML Schema is the intrinsic type system in Artix
ESB.

XML Schema as a type system
XML Schema is used to define how an XML document is
structured. This is done by defining the elements that make
up the document. These elements can use native XML

Writing Artix Contracts: C++ 5

Schema types, like xsd:int, or they can use types that are
defined by the user. User defined types are either built up
using combinations of XML elements or they are defined by
restricting existing types. By combining type definitions and
element definitions you can create intricate XML documents
that can contain complex data.

When used in WSDL XML Schema defines the structure of the
XML document that holds the data used to interact with a
service. When defining the data units used by your service,
you can define them as types that specify the structure of the
message parts. You can also define your data units as
elements that make up the message parts.

Considerations for creating your data units
You might consider simply creating logical data units that
map directly to the types you envision using when
implementing the service. While this approach works, and
closely follows the model of building RPC-style applications, it
is not necessarily ideal for building a piece of a service-
oriented architecture.

The Web Services Interoperability Organization’s WS-I basic
profile provides a number of guidelines for defining data units
and can be accessed at http:// www.ws-
i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES.
In addition, the W3C also provides the following guidelines for
using XML Schema to represent data types in WSDL
documents:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

Adding Data Units to a Contract
Depending on how you choose to create your WSDL contract,
creating new data definitions requires varying amounts of
knowledge. The Artix ESB GUI tools provide a number of aids
for describing data types using XML Schema. Other XML
editors offer different levels of assistance. Regardless of the
editor you choose, it is a good idea to have some knowledge
about what the resulting contract should look like.

Procedure

Defining the data used in a WSDL contract involves the
following steps:

1. Determine all the data units used in the interface
described by the contract.

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

6 Writing Artix Contracts: C++

2. Create a type element in your contract.

3. Create a schema element, as shown in Example 1, as a
child of the type element.

The targetNamespace attribute specifies the namespace
under which new data types are defined. The remaining
entries should not be changed.

Example 1. Schema Entry for a WSDL Contract

4. For each complex type that is a collection of elements,
define the data type using a complexType element. See
Defining Data Structures on page 38.

5. For each array, define the data type using a complexType
element. See Defining Arrays on page 42.

6. For each complex type that is derived from a simple type,
define the data type using a simpleType element. See
Defining Types by Restriction on page 45.

7. For each enumerated type, define the data type using a
simpleType element. See Defining Enumerated Types on
page 47.

8. For each element, define it using an element element.
See Defining Elements on page 48.

XML Schema Simple Types
If a message part is going to be of a simple type it is not
necessary to create a type definition for it. However, the
complex types used by the interfaces defined in the contract
are defined using simple types.

Entering simple types
XML Schema simple types are mainly placed in the element
elements used in the types section of your contract. They are
also used in the base attribute of restriction elements and
extension elements.

Simple types are always entered using the xsd prefix. For
example, to specify that an element is of type int, you would
enter xsd:int in its type attribute as shown in Example 2.

Example 2. Defining an Element with a Simple Type

<schema targetNamespace="http://schemas.iona.com/bank.idl"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="simpleInt" type="xsd:int" />

http://schemas.iona.com/bank.idl
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

Writing Artix Contracts: C++ 7

Supported XSD simple types
Artix ESB supports the following XML Schema simple types:

• xsd:string

• xsd:normalizedString

• xsd:int

• xsd:unsignedInt

• xsd:long

• xsd:unsignedLong

• xsd:short

• xsd:unsignedShort

• xsd:float

• xsd:double

• xsd:boolean

• xsd:byte

• xsd:unsignedByte

• xsd:integer

• xsd:positiveInteger

• xsd:negativeInteger

• xsd:nonPositiveInteger

• xsd:nonNegativeInteger

• xsd:decimal

• xsd:dateTime

• xsd:time

• xsd:date

• xsd:QName

• xsd:base64Binary

• xsd:hexBinary

• xsd:ID

• xsd:token

• xsd:language

• xsd:Name

8 Writing Artix Contracts: C++

• xsd:NCName

• xsd:NMTOKEN

• xsd:anySimpleType

• xsd:anyURI

• xsd:gYear

• xsd:gMonth

• xsd:gDay

• xsd:gYearMonth

• xsd:gMonthDay

Defining Complex Data Types
XML Schema provides a flexible and powerful mechanism for
building complex data structures from its simple data types.
You can create data structures by creating a sequence of
elements and attributes. You can also extend your defined
types to create even more complex types.

In addition to building complex data structures, you can also
describe specialized types such as enumerated types, data
types that have a specific range of values, or data types that
need to follow certain patterns by either extending or
restricting the primitive types.

Defining Data Structures

In XML Schema, data units that are a collection of data fields
are defined using complexType elements. Specifying a
complex type requires three pieces of information:

• The name of the defined type is specified in the attribute of
the element.

• The first child element of the complexType describes the
behavior of the structure’s fields when it is put on the wire.
See Complex type varieties.

• Each of the fields of the defined structure are defined in
elements that are grandchildren of the element. See Defining
the parts of a structure.

For example, the structure shown in Example 3 is be
defined in XML Schema as a complex type with two
elements.

Writing Artix Contracts: C++ 9

Example 3. Simple Structure

Example 4 shows one possible XML Schema mapping for the
structure shown in Example 3.

Example 4. A Complex Type

Complex type varieties
XML Schema has three ways of describing how the fields of a
complex type are organized when represented as an XML
document and passed on the wire. The first child element of
the complexType element determines which variety of
complex type is being used. Table 1 shows the elements used
to define complex type behavior.

Table 1. Complex Type Descriptor Elements

Element Complex Type Behavior

sequence All the complex type’s fields must be present and
they must be in the exact order they are specified
in the type definition.

all All of the complex type’s fields must be present
but they can be in any order.

choice Only one of the elements in the structure can be
placed in the message.

If a sequence element, an all element, or a choice is not
specified, then a sequence is assumed. For example, the
structure defined in Example 4 generates a message
containing two elements: name and age.

If the structure is defined using a choice element, as shown in
Example 5, it generates a message with either a name element or an
age element.

struct personalInfo
{
 string name;
 int age;
};

<complexType name="personalInfo">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 </sequence>
</complexType>

10 Writing Artix Contracts: C++

Example 5. Simple Complex Choice Type

Defining the parts of a structure
You define the data fields that make up a structure using
element elements. Every complexType element should
contain at least one element element. Each element element
in the complexType element represents a field in the defined
data structure.

To fully describe a field in a data structure, element elements
have two required attributes:

• The name attribute specifies the name of the data field and
it must be unique within the defined complex type.

• The type attribute specifies the type of the data stored in
the field. The type can be either one of the XML Schema
simple types, or any named complex type that is defined
in the contract.

In addition to name and type, element elements have two
other commonly used optional attributes: minOccurs and
maxOccurs. These attributes place bounds on the number of
times the field occurs in the structure. By default, each field
occurs only once in a complex type. Using these attributes,
you can change how many times a field must or can appear in
a structure. For example, you can define a field
previousJobs, which must occur at least three times and no
more than seven times, as shown in Example 6.

Example 6. Simple Complex Type with Occurrence
Constraints

You can also use minOccurs to make the field optional by
setting minOccurs to zero as shown in Example 7. In this
case age can be omitted and the data will still be valid.

<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </choice>
</complexType>

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="previousJobs" type="xsd:string:
 minOccurs="3" maxOccurs="7"/>
 </all>
</complexType>

Writing Artix Contracts: C++ 11

Example 7. Simple Complex Type with Set to Zero

Defining attributes
In XML documents attributes are contained in the element’s
tag. For example, in the complexType element, name is an
attribute. They are specified using the attribute element. It
comes after the all, sequence, or choice element and is a
direct child of the complexType element. Example 8 shows a
complex type with an attribute.

Example 8. Complex Type with an Attribute

The attribute element has three attributes:

• name is a required attribute that specifies the string
identifying the attribute.

• type specifies the type of the data stored in the field. The
type can be one of the XML Schema simple types.

• use specifies if the attribute is required or optional. Valid
values are required or optional.

If you specify that the attribute is optional you can add the
optional attribute default. The default attribute allows you to
specify a default value for the attribute.

Defining Arrays

Artix ESB supports two methods for defining arrays in a
contract. The first is define a complex type with a single
element whose maxOccurs attribute has a value greater than
one. The second is to use SOAP arrays. SOAP arrays provide
added functionality such as the ability to easily define multi-
dimensional arrays and to transmit sparsely populated arrays.

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int" minOccurs="0"/>
 </choice>
</complexType>

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
 <attribute name="age" type="xsd:int" use="optional" />
</complexType>

12 Writing Artix Contracts: C++

Complex type arrays
Complex type arrays are a special case of a sequence
complex type. You simply define a complex type with a single
element and specify a value for the maxOccurs attribute. For
example, to define an array of twenty floating point numbers
you use a complex type similar to the one shown in Example
9.

Example 9. Complex Type Array

You can also specify a value for the minOccurs attribute.

SOAP arrays
SOAP arrays are defined by deriving from the SOAP-ENC:Array
base type using the wsdl:arrayType element. The syntax for
this is shown in Example 10.

Example 10. Syntax for a SOAP Array derived using
wsdl:arrayType

Using this syntax, TypeName specifies the name of the newly-
defined array type. ElementType specifies the type of the
elements in the array. ArrayBounds specifies the number of
dimensions in the array. To specify a single dimension array
use []; to specify a two-dimensional array use either [][] or
[,].

For example, the SOAP Array, SOAPStrings, shown in
Example 11, defines a one-dimensional array of strings. The
wsdl:arrayType attribute specifies the type of the array
elements, xsd:string, and the number of dimensions, with []
implying one dimension.

<complexType name="personalInfo>
 <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

Writing Artix Contracts: C++ 13

Example 11. Definition of a SOAP Array

You can also describe a SOAP Array using a simple element
as described in the SOAP 1.1 specification. The syntax for this
is shown in Example 12.

Example 12. Syntax for a SOAP Array derived using an
Element

When using this syntax, the element's maxOccurs attribute
must always be set to unbounded.

Defining Types by Extension

Like most major coding languages, XML Schema allows you to
create data types that inherit some of their elements from
other data types. This is called defining a type by extension.
For example, you could create a new type called alienInfo,
which extends the personalInfo structure defined in Example
4 by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of
the complexType element.

2. The complexContent element specifies that the new type
will have more than one element.

NOTE: If you are only adding new attributes to the complex
type, you can use a simpleContent element.

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

14 Writing Artix Contracts: C++

3. The type from which the new type is derived, called the
base type, is specified in the base attribute of the
extension element.

4. The new type’s elements and attributes are defined in the
extension element, in the same way as for a regular
complex type.

For example, alienInfo is defined as shown in Example
13.

Example 13. Type Defined by Extension

Defining Types by Restriction

XML Schema allows you to create new types by restricting the
possible values of an XML Schema simple type. For example,
you can define a simple type, SSN, which is a string of exactly
nine characters. New types defined by restricting simple types
are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name
attribute of the simpleType element.

2. The simple type from which the new type is derived,
called the base type, is specified in the restriction
element. See Specifying the base type.

3. The rules, called facets, defining the restrictions placed on
the base type are defined as children of the restriction
element. See Defining the restrictions.

Specifying the base type
The base type is the type that is being restricted to define the
new type. It is specified using a restriction element. The
restriction element is the only child of a simpleType
element and has one attribute, base, that specifies the base
type. The base type can be any of the XML Schema simple
types.

<complexType name="alienInfo">
 <complexContent>
 <extension base="personalInfo">
 <sequence>
 <element name="planet" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Writing Artix Contracts: C++ 15

For example, to define a new type by restricting the values of
an xsd:int you use a definition like the one shown in Example
14.

Example 14. int as Base Type

Defining the restrictions
The rules defining the restrictions placed on the base type are
called facets. Facets are elements with one attribute, value,
that defines how the facet is enforced. The available facets
and their valid value settings depend on the base type. For
example, xsd:string supports six facets, including:

• length

• minLength

• maxLength

• pattern

• whitespace

• enumeration

Each facet element is a child of the restriction element.

Example
Example 15 shows an example of a simple type, SSN, which
represents a social security number. The resulting type is a
string of the form xxx-xx-xxxx. <SSN>032-43-9876<SSN>
is a valid value for an element of this type, but
<SSN>032439876</SSN> is not.

Example 15. SSN Simple Type Description

Defining Enumerated Types

Enumerated types in XML Schema are a special case of
definition by restriction. They are described by using the
enumeration facet which is supported by all XML Schema

<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}"/>
 </restriction>
</simpleType>

16 Writing Artix Contracts: C++

primitive types. As with enumerated types in most modern
programming languages, a variable of this type can only have
one of the specified values.

Defining an enumeration in XML Schema
The syntax for defining an enumeration is shown in Example 16.

Example 16. Syntax for an Enumeration

EnumName specifies the name of the enumeration type.
EnumType specifies the type of the case values. CaseNValue,
where N is any number one or greater, specifies the value for
each specific case of the enumeration. An enumerated type
can have any number of case values, but because it is
derived from a simple type, only one of the case values is
valid at a time.

Example
For example, an XML document with an element defined by
the enumeration widgetSize, shown in Example 17, would be
valid if it contained <widgetSize>big</widgetSize>, but it
would not be valid if it contained
<widgetSize>big,mungo</widgetSize>.

Example 17. widgetSize Enumeration

Defining Elements
Elements in XML Schema represent an instance of an element
in an XML document generated from the schema. The most
basic element consists of a single element element. Like the
element element used to define the members of a complex
type, they have three attributes:

• name is a required attribute that specifies the name of the
element as it appears in an XML document.

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value"/>
 <enumeration value="Case2Value"/>
 ...
 <enumeration value="CaseNValue"/>
 </restriction>
</simpleType>

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>

Writing Artix Contracts: C++ 17

• type specifies the type of the element. The type can be
any XML Schema primitive type or any named complex
type defined in the contract. This attribute can be omitted
if the type has an in-line definition.

• nillable specifies whether an element can be omitted
from a document entirely. If nillable is set to true, the
element can be omitted from any document generated
using the schema.

An element can also have an in-line type definition. In-line
types are specified using either a complexType element or a
simpleType element. Once you specify if the type of data is
complex or simple, you can define any type of data needed
using the tools available for each type of data. In-line type
definitions are discouraged because they are not reusable.

18 Writing Artix Contracts: C++

Defining Logical
Messages Used by a
Service
A service is defined by the messages exchanged when its
operations are invoked. In a WSDL contract these messages
are defined using element. The messages are made up of one
or more parts that are defined using elements.

A service’s operations are defined by specifying the logical
messages that are exchanged when an operation is invoked.
These logical messages define the data that is passed over a
network as an XML document. They contain all of the
parameters that are a part of a method invocation.

Logical messages are defined using the message element in
your contracts. Each logical message consists of one or more
parts, defined in part elements.

TIP: While your messages can list each parameter as a
separate part, the recommended practice is to use only a single
part that encapsulates the data needed for the operation.

Messages and parameter lists

Each operation exposed by a service can have only one input
message and one output message. The input message
defines all of the information the service receives when the
operation is invoked. The output message defines all of the
data that the service returns when the operation is
completed. Fault messages define the data that the service
returns when an error occurs.

In addition, each operation can have any number of fault
messages. The fault messages define the data that is
returned when the service encounters an error. These
messages usually have only one part that provides enough
information for the consumer to understand the error.

Message design for integrating with legacy
systems

If you are defining an existing application as a service, you
must ensure that each parameter used by the method
implementing the operation is represented in a message. You
must also ensure that the return value is included in the
operation’s output message.

Writing Artix Contracts: C++ 19

One approach to defining your messages is RPC style. When
using RPC style, you define the messages using one part for
each parameter in the method’s parameter list. Each message
part is based on a type defined in the types element of the
contract. Your input message contains one part for each input
parameter in the method. Your output message contains one
part for each output parameter, plus a part to represent the
return value, if needed. If a parameter is both an input and
an output parameter, it is listed as a part for both the input
message and the output message.

RPC-style message definition is useful when service enabling
legacy systems that use transports such as CORBA. These
systems are designed around procedures and methods. As
such, they are easiest to model using messages that
resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service
and the application it is exposing.

Message design for SOAP services

While RPC style is useful for modeling existing systems, the
service’s community strongly favors the wrapped document
style. In wrapped document style, each message has a single
part. The message’s part references a wrapper element
defined in the types element of the contract. The wrapper
element has the following characteristics:

• It is a complex type containing a sequence of elements.
For more information see Defining Complex Data Types.

• If it is a wrapper for an input message:

• It has one element for each of the method’s input
parameters.

• Its name is the same as the name of the operation
with which it is associated.

• If it is a wrapper for an output message:

• It has one element for each of the method’s output
parameters and one element for each of the method’s
inout parameters.

• Its first element represents the method’s return
parameter.

• Its name would be generated by appending Response
to the name of the operation with which the wrapper is
associated.

20 Writing Artix Contracts: C++

Message naming

Each message in a contract must have a unique name within
its namespace. It is recommended that you use the following
naming conventions:

• Messages should only be used by a single operation.

• Input message names are formed by appending Request to
the name of the operation.

• Output message names are formed by appending Response
to the name of the operation.

• Fault message names should represent the reason for the
fault.

Message parts

Message parts are the formal data units of the logical
message. Each part is defined using a part element, and is
identified by a name attribute and either a type attribute or
an element attribute that specifies its data type. The data
type attributes are listed in Table 2.

Table 2. Part Data Type Attributes

Attribute Description

element="elem_name" The data type of the part is defined by
an element called elem_name.

type="type_name" The data type of the part is defined by
a type called type_name.

Messages are allowed to reuse part names. For instance, if a
method has a parameter, foo, that is passed by reference or
is an in/out, it can be a part in both the request message and
the response message, as shown in Example 18.

Example 18. Reused Part

Example
For example, imagine you had a server that stored personal
information and provided a method that returned an

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
<message>

Writing Artix Contracts: C++ 21

employee’s data based on the employee's ID number. The
method signature for looking up the data is similar to
Example 19.

Example 19. personalInfo lookup Method

This method signature can be mapped to the RPC style WSDL
fragment shown in Example 20.

Example 20. RPC WSDL Message Definitions

It can also be mapped to the wrapped document style WSDL
fragment shown in Example 21.

Example 21. Wrapped Document WSDL Message Definitions

personalInfo lookup(long empId)

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
 <part name="return"
element="xsd1:personalInfo"/>
<message/>

<types>
 <schema ...>
 ...
 <element name="personalLookup">
 <complexType>
 <sequence>
 <element name="empID" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 <element name="personalLookupResponse">
 <complexType>
 <sequence>
 <element name="return" type="personalInfo" />
 </sequence>
 </complexType>
 </element>
</schema>
</types>
<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse>
 <part name="return"
element="xsd1:personalLookupResponse"/>
<message/>

Writing Artix Contracts: C++ 23

Defining Your Logical
Interfaces
Logical service interfaces are defined using the portType
element.

Logical service interfaces are defined using the WSDL
portType element. The portType element is a collection of
abstract operation definitions. Each operation is defined by
the input, output, and fault messages used to complete the
transaction the operation represents. When code is generated
to implement the service interface defined by a portType
element, each operation is converted into a method
containing the parameters defined by the input, output, and
fault messages specified in the contract.

Process
To define a logical interface in a WSDL contract you must do
the following:

1. Create a portType element to contain the interface
definition and give it a unique name. See Port types.

2. Create an operation element for each operation defined
in the interface. See Operations.

3. For each operation, specify the messages used to
represent the operation’s parameter list, return type, and
exceptions. See Operation messages.

Port types

A WSDL portType element is the root element in a logical
interface definition. While many Web service implementations
map portType elements directly to generated implementation
objects, a logical interface definition does not specify the
exact functionality provided by the implemented service. For
example, a logical interface named ticketSystem can result
in an implementation that either sells concert tickets or issues
parking tickets.

The portType element is the unit of a WSDL document that is
mapped into a binding to define the physical data used by an
endpoint exposing the defined service.

Each portType element in a WSDL document must have a
unique name, which is specified using the attribute, and is
made up of a collection of operations, which are described in

24 Writing Artix Contracts: C++

operation elements. A WSDL document can describe any
number of port types.

Operations

Logical operations, defined using WSDL operation elements,
define the interaction between two endpoints. For example, a
request for a checking account balance and an order for a
gross of widgets can both be defined as operations.

Each operation defined within a portType element must have
a unique name, specified using the name attribute. The name
attribute is required to define an operation.

Operation messages

Logical operations are made up of a set of elements
representing the logical messages communicated between the
endpoints to execute the operation. The elements that can
describe an operation are listed in Table 3.

Table 3. Operation Message Elements

Element Description

input Specifies the message the client endpoint sends to
the service provider when a request is made. The
parts of this message correspond to the input
parameters of the operation.

output Specifies the message that the service provider
sends to the client endpoint in response to a
request. The parts of this message correspond to
any operation parameters that can be changed by
the service provider, such as values passed by
reference. This includes the return value of the
operation.

fault Specifies a message used to communicate an error
condition between the endpoints.

An operation is required to have at least one input or one
output element. An operation can have both input and
output elements, but it can only have one of each.
Operations are not required to have any fault elements, but
can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 4.

Writing Artix Contracts: C++ 25

Table 4. Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced
when mapping the operation to a concrete data
format. The name must be unique within the
enclosing port type.

message Specifies the abstract message that describes the
data being sent or received. The value of the
message attribute must correspond to the name
attribute of one of the abstract messages defined
in the WSDL document.

It is not necessary to specify the attribute for all input and
output elements; WSDL provides a default naming scheme
based on the enclosing operation’s name. If only one element
is used in the operation, the element name defaults to the
name of the operation. If both an input and an output
element are used, the element name defaults to the name of
the operation with either Request or Response respectively
appended to the name.

Return values

Because the operation element is an abstract definition of
the data passed during an operation, WSDL does not provide
for return values to be specified for an operation. If a method
returns a value it will be mapped into the output element as
the last part of that message.

Example

For example, you might have an interface similar to the one
shown in Example 22.

Example 22. personalInfo lookup interface

This interface can be mapped to the port type in Example 23.

interface personalInfoLookup
{
 personalInfo lookup(in int empID) raises(idNotFound);
}

26 Writing Artix Contracts: C++

Example 23. personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return" message="personalLookupResponse"/>
 <fault name="exception" message="idNotFoundException"/>
 </operation>
</portType>

Writing Artix Contracts: C++ 27

Index
A
Arrays, 15

complex type arrays, 16
SOAP arrays, 16

attribute element, 15
default attribute, 15
name attribute, 15
type attribute, 15
use attribute, 15

B
binding element, 5

C
Complex Data Types, 12
complex types

all type, 13
choice type, 13
sequence type, 13

complexType element, 12
concrete part, 6

D
Data Structures, 12
Defining Elements, 20
Defining Enumerated Types, 19
Defining Types by Extension, 17
Defining Types by Restriction, 18
definitions element, 5

E
element element, 14, 20

maxOccurs attribute, 14
minOccurs attribute, 14
name attribute, 20
nillable attribute, 21
type attribute, 21

F
fault element, 28

I
input element, 28

L
Logical Data Units, 8
Logical messages, 22

logical part, 6
Logical service interfaces, 27

M
Mapping Data, 8
message element, 5

O
operation element, 5, 29
Operation messages, 28
output element, 28

P
part element, 22, 24

element attribute, 24
name attribute, 24
type attribute, 24

port element, 6
portType element, 5, 27

R
RPC style design, 23

S
schema element, 10

targetNamespace attribute,
10

service element, 6
SOAP services

message design, 23

T
types element, 5, 23

W
wrapped document style design,

25
WSDL

concrete part, 6
contract, 7
elements, 5
logical part, 6
structure, 6

X
XML Schema, 8

simple types, 10

	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library
	Further Information and Product Support
	Information We Need
	Contact information

	Introducing WSDL Contracts
	WSDL elements
	Structure of a WSDL Document
	The logical part
	The concrete part

	Designing a contract

	Defining Logical Data Units
	Mapping Data into Logical Data Units
	Available type systems for defining service data units
	XML Schema as a type system
	Considerations for creating your data units

	Adding Data Units to a Contract
	Procedure

	XML Schema Simple Types
	Entering simple types
	Supported XSD simple types

	Defining Complex Data Types
	Defining Data Structures
	Complex type varieties
	Defining the parts of a structure
	Defining attributes

	Defining Arrays
	Complex type arrays
	SOAP arrays

	Defining Types by Extension
	Defining Types by Restriction
	Specifying the base type
	Defining the restrictions
	Example

	Defining Enumerated Types
	Defining an enumeration in XML Schema
	Example

	Defining Elements

	Defining Logical Messages Used by a Service
	Messages and parameter lists
	Message design for integrating with legacy systems
	Message design for SOAP services
	Message naming
	Message parts
	Example

	Defining Your Logical Interfaces
	Process
	Port types
	Operations
	Operation messages
	Return values
	Example

	Index

