
Artix 5.6.3

Bindings and
Transports, C++
Runtime

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2015. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-24

http://www.microfocus.com/

iii

iii

Contents

Preface ... vii
What is Covered in This Book .. vii
Who Should Read This Book .. vii
How to Use This Book ... vii
The Artix ESB Documentation Library vii
Further Information and Product Support vii

Information We Need .. viii
Contact information .. viii

Part I Bindings

Understanding Bindings in WSDL 3
Port types and bindings ... 3
The WSDL elements ... 3
Adding to a contract ... 4

Using SOAP 1.1 Messages..................................... 43
Adding a SOAP 1.1 Binding ... 43

Using wsdltosoap ... 43
Adding SOAP Headers to a SOAP 1.1 Binding 45

Using SOAP 1.2 Messages..................................... 51
Adding a SOAP 1.2 Binding ... 51

Using wsdltosoap ... 51
Adding Headers to a SOAP 1.2 Message 54

Splitting messages between body and header 55

Sending Binary Data Using SOAP Attachments 59
Namespace ... 59
Changing the message binding .. 59
Describing a MIME multipart message 60

Sending Binary Data with SOAP MTOM 63
Defining Data Types to use MTOM ... 63

Using the XMime binary types .. 66
Enabling MTOM ... 66

Service consumers ... 67
Service providers ... 67

Using Tuxedo’s FML Buffers 69
FML/XML Schema support .. 69

Mapping from a field table to an Artix contract 70

iv

Mapping to logical type descriptions 70
Flattened XML and FML ... 72
Adding the FML binding ... 73

Using XML Documents .. 77
Hand editing .. 77
XML binding namespace .. 78
XML messages on the wire .. 78

Using Fixed Length Records 81
Hand editing .. 81
Fixed binding namespace .. 82
fixed:binding ... 82
fixed:operation .. 83
fixed:body ... 83
fixed:field ... 84
fixed:choice ... 88
fixed:case ... 88
fixed:sequence .. 90

Using Tagged Data ... 95
Hand editing .. 95
Namespace ... 96
tagged:binding .. 96
tagged:operation ... 97
tagged:body .. 97

Using the Pass Through Binding 105
Limitations ... 105
Namespace .. 105

Part II Transports

How Endpoints are Defined in WSDL 109
Endpoints and services .. 109
The WSDL elements .. 109
Adding endpoints to a contract ... 109
Supported transports ... 110

Using HTTP .. 111
Adding an HTTP Endpoint to a Contract 111

SOAP 1.1 ... 111
SOAP 1.2 ... 111
Other payloads ... 112
Using the command line tool .. 112

Configuring an HTTP Endpoint ... 117
Specifying Send and Receive Timeout Limits 117
Specifying a Username and a Password 118
Configuring Keep-Alive Behavior ... 120

v

v

Specifying Cache Control Directives 121
Managing Cookies in Artix Clients .. 123

Using the Java Messaging System 125
Defining a JMS Endpoint .. 125

Basic Endpoint Configuration ... 126
Alternate InitialContextFactory settings for using SonicMQ 128
Client Endpoint Configuration ... 129
Server Endpoint Configuration ... 129
Using the Command Line Tool .. 131

Migrating to the 4.x JMS WSDL Extensions 132
Using ActiveMQ as Your JMS Provider 133

Using IIOP .. 135

Using FTP ... 139
Adding an FTP Endpoint ... 139

Namespace ... 139
Defining the connection details .. 139

Coordinating Requests and Responses 141
Default implementation ... 141
Implementing the Client’s Coordination Logic 141
Configuring the client's coordination logic 144
Implementing the Server’s Coordination Logic 144
Using Properties to Control Coordination Behavior 148

Using WebSphere MQ ... 153
Adding a WebSphere MQ Endpoint .. 153
WebSphere MQ Connection Settings 157
Specifying the WebSphere Library to Load.............................. 158
Using Queues on Remote Hosts .. 159
Setting a Value of the Message Descriptor’s Format Field 161

Using Tuxedo .. 163

Part III Other Artix ESB Features

Working with CORBA .. 167
Adding a CORBA Binding .. 167
Creating a CORBA Endpoint .. 172

Configuring an Artix CORBA Endpoint 172
Generating CORBA IDL ... 175

Using the Artix Transformer 177
Using the Artix Transformer as a Service 177
Using Artix to Facilitate Interface Versioning 178
WSDL Messages and the Transformer 182
Writing XSLT Scripts .. 185
Elements of an XSLT Script .. 185

vi

XSLT Templates ... 187
Common XSLT Functions... 192

Using Codeset Conversion 193

vii

Preface
What is Covered in This Book

This book discusses the bindings and transports supported by
Artix ESB for C++. It describes how the combination of WSDL
elements and configuration is used to set-up a binding or a
transport. It also discusses the advantages of using each of
the bindings and transports. In the case of transports, such
as WebSphere MQ, it also discusses how to access some of
the transports more advanced features.

Who Should Read This Book
This book is intended for people who are developing the
contracts for endpoints that are going to be deployed into
Artix ESB for C++. It assumes a working knowledge of WSDL
and XML. It also assumes a working knowledge of the
underlying middleware technology being discussed.

How to Use This Book
This book is broken into three parts:

• Part I describes how to work with the message bindings.

• Part II describes how to work with the transports.

• Part III describes how to use other Artix ESB features that
are contract driven. This includes codeset conversion and
XSLT.

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library,
the document conventions used, and where to find additional
resources, see Using the Artix ESB Library.

Further Information and Product Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The WebSync service, where you can download fixes and
documentation updates.

http://communities.progress.com/pcom/docs/DOC-105909
http://communities.progress.com/pcom/docs/DOC-105909

viii

• The Knowledge Base, a large collection of product tips and
workarounds.

• Examples and Utilities, including demos and additional
product documentation.

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

http://www.microfocus.com/
http://www.microfocus.com/

ix

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be
available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
(trial software download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

1

Part I

Bindings
In this part
This part contains the following chapters:

Understanding Bindings in WSDL

Using SOAP 1.1 Messages

Using SOAP 1.2 Messages

Sending Binary Data Using SOAP with Attachments

Sending Binary Data with SOAP MTOM

Using Tuxedo’s FML Buffers

Using XML Documents

Using Fixed Length Records

Using Tagged Data

Using the Pass Through Binding

3

Understanding
Bindings in WSDL
Bindings map the logical messages used to define a service
into a concrete payload format that can be transmitted and
received by an endpoint.

Bindings provide a bridge between the logical messages used
by a service to a concrete data format that an endpoint uses
in the physical world. They describe how the logical messages
are mapped into a payload format that is used on the wire by
an endpoint. It is within the bindings that details such as
parameter order, concrete data types, and return values are
specified. For example, the parts of a message can be
reordered in a binding to reflect the order required by an RPC
call. Depending on the binding type, you can also identify
which of the message parts, if any, represent the return type
of a method.

Port types and bindings

Port types and bindings are directly related. A port type is an
abstract definition of a set of interactions between two logical
services. A binding is a concrete definition of how the
messages used to implement the logical services will be
instantiated in the physical world. Each binding is then
associated with a set of network details that finish the
definition of one endpoint that exposes the logical service
defined by the port type.

To ensure that an endpoint defines only a single service,
WSDL requires that a binding can only represent a single port
type. For example, if you had a contract with two port types,
you could not write a single binding that mapped both of
them into a concrete data format. You would need two
bindings.

However, WSDL allows for a port type to be mapped to
several bindings. For example, if your contract had a single
port type, you could map it into two or more bindings. Each
binding could alter how the parts of the message are mapped
or they could specify entirely different payload formats for the
message.

The WSDL elements

Bindings are defined in a contract using the WSDLbinding
element. The binding element has a single attribute, name,
that specifies a unique name for the binding. The value of this
attribute is used to associate the binding with an endpoint as

4

discussed in Understanding How Endpoints are Defined in
WSDL.

The actual mappings are defined in the children of the
binding element. These elements vary depending on the type
of payload format you decide to use. The different payload
formats and the elements used to specify their mappings are
discussed in the following chapters.

Adding to a contract

Artix provides command line tools for adding bindings to your
contracts.

The tools will add the proper elements to your contract for
you. However, it is recommended that you have some
knowledge of how the different types of bindings work.

You can also add a binding to a contract using any text
editor. When you hand edit a contract, you are responsible
for ensuring that the contract is valid.

Supported bindings
Artix ESB for C++ supports the following bindings:

• SOAP

• CORBA

• Fixed record length

• Pure XML

• Tagged (variable record length)

• Tuxedo's Field Manipulation Language (FML)

43

Using SOAP 1.1
Messages
Artix provides a tool to generate a SOAP 1.1 binding which
does not use any SOAP headers. However, you can add SOAP
headers to your binding using any text or XML editor. In
addition, you can define a SOAP binding that uses MIME
multipart attachments.

Adding a SOAP 1.1 Binding
Artix provides the wsdltosoap tool to add a SOAP 1.1
binding for a logical interface.

Using wsdltosoap

To generate a SOAP 1.1 binding using wsdltosoap use the
following command:

wsdltosoap {-i portType} {-n namespace} [-b binding] [-d dir]
[-o file] [-style {[document] | [rpc]}] [-use {[literal] |
[encoded]}] [-quiet] [-verbose] [-h] [-v] wsdl_file

The command has the following options:

Option Description

-i portType Specifies the name of the port type being mapped
to a SOAP 1.1 binding.

-n namespace Specifies the namespace to use for the SOAP 1.1
binding.

-b binding Specifies the name for the generated SOAP
binding. Defaults to portTypeBinding.

-d dir Specifies the directory into which the new WSDL
file is written.

-o file Specifies the name of the generated WSDL file.
Defaults to wsdl_file-soap.wsdl.

-style Specifies the encoding style to use in the SOAP
binding. Defaults to document.

-use Specifies how the data is encoded. Default is
literal.

-quiet Specifies that the tool runs in quiet mode.

44

Option Description

-verbose Specifies that the tool runs in verbose mode.

-h Specifies that the tool will display a usage
message.

-v Displays the tool’s version.

wsdltosoap does not support the generation of
document/encoded SOAP bindings.

Example
If your system had an interface that took orders and offered a
single operation to process the orders it would be defined in
an Artix contract similar to the one shown in Example 1.

Example 1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
/ ti

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/

45

The SOAP binding generated for orderWidgets is shown in
Example 2.

Example 2. SOAP 1.1 Binding for orderWidgets

This binding specifies that messages are sent using the
document/literal message style.

Adding SOAP Headers to a SOAP 1.1 Binding
SOAP headers are defined by adding soap:header elements
to your default SOAP 1.1 binding. The soap:header element
is an optional child of the input, output, and fault
elements of the binding. The SOAP header becomes part of
the parent message. A SOAP header is defined by specifying
a message and a message part. Each SOAP header can only
contain one message part, but you can insert as many SOAP
headers as needed.

Syntax
The syntax for defining a SOAP header is shown in Example
3. The message attribute of soap:header is the qualified
name of the message from which the part being inserted into
the header is taken. The part attribute is the name of the
message part inserted into the SOAP header. Because SOAP
headers are always document style, the WSDL message part
inserted into the SOAP header must be defined using an
element. Together the message and the part attributes fully
describe the data to insert into the SOAP header.

<binding name="orderWidgetsBinding" type="tns:orderWidgets">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">

 <soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>

</input>
<output name="bill">
<soap:body use="literal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>

http://schemas.xmlsoap.org/soap/http

46

Example 3. SOAP Header Syntax

As well as the mandatory message and part attributes,
soap:header also supports the namespace, the use, and the
encodingStyle attributes. These optional attributes function
the same for soap:header as they do for soap:body.

Splitting messages between body and header
The message part inserted into the SOAP header can be any
valid message part from the contract. It can even be a part
from the parent message which is being used as the SOAP
body. Because it is unlikely that you would want to send
information twice in the same message, the SOAP binding
provides a means for specifying the message parts that are
inserted into the SOAP body.

The soap:body element has an optional attribute, parts,
that takes a space delimited list of part names. When parts
is defined, only the message parts listed are inserted into the
SOAP body. You can then insert the remaining parts into the
SOAP header.

NOTE: When you define a SOAP header using parts of the parent
message, Artix automatically fills in the SOAP headers for you.

Example
Example 4 shows a modified version of the orderWidgets
service shown in Example 1. This version has been modified
so that each order has an xsd:base64binary value placed in
the SOAP header of the request and response. The SOAP
header is defined as being the keyVal part from the
widgetKey message. In this case you are responsible for
adding the SOAP header to your application logic because it is
not part of the input or output message.

Example 4. SOAP 1.1 Binding with a SOAP Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"

<binding name="headwig">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">

 <soap:operation soapAction="" style="document"/>
 <input name="grain">
 <soap:body .../>

<soap:header message="QName" part="partName"/>
</input>

...
</binding>

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/soap/http

47

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema

targetNamespace="http://widgetVendor.com/types/widgetTyp
es" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<message name="widgetKey">
<part name="keyVal" element="xsd1:keyElem"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyVal"/>

</input>
<output name="bill">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyVal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/http

48

...
</definitions>

You can modify Example 4 so that the header value is a part
of the input and output messages as shown in Example 5. In
this case keyVal is a part of the input and output messages.
In the soap:body element's parts attribute specifies that
keyVal cannot be inserted into the body. However, it is
inserted into the SOAP header.

Example 5. SOAP 1.1 Binding for orderWidgets with a SOAP
Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema

targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>
<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/http

49

<soap:body use="literal" parts="numOrdered"/>
<soap:header message="tns:widgetOrder" part="keyVal"/>

</input>
<output name="bill">
<soap:body use="literal" parts="bill"/>
<soap:header message="tns:widgetOrderBill" part="keyVal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>
...
</definitions>

51

Using SOAP 1.2
Messages
Artix provides tools to generate a SOAP 1.2 binding which
does not use any SOAP headers. However, you can add SOAP
headers to your binding using any text or XML editor.

Adding a SOAP 1.2 Binding
Artix provides the wsdltosoap to add a SOAP 1.2 binding for a
logical interface:

Using wsdltosoap

To generate a SOAP 1.2 binding using wsdltosoap use the
following command:

wsdltosoap {–soapversion 1.2} {-i portType} {-n
namespace} [-b binding] [-d dir] [-o file] [-style
[[document] | [rpc]]] [-use {[literal] | [encoded]}] [-quiet]
[-verbose] [-h] [-v] wsdl_file

The command has the following options:

Option Description

–soapversion 1.2 Specifies that the generated binding
should use SOAP 1.2.

-i portType Specifies the name of the port type
being mapped to a SOAP binding.

-n namespace Specifies the namespace to use for
the SOAP binding.

-b binding Specifies the name for the generated
SOAP binding. Defaults to
portTypeBinding.

-d dir Specifies the directory into which the
new WSDL file is written.

-o file Specifies the name of the generated
WSDL file. Defaults to wsdl_file-
soap.wsdl.

-style Specifies the encoding style to use in
the SOAP binding. Defaults to
document.

52

Option Description

-use Specifies how the data is encoded.
Default is literal.

-quiet Specifies that the tool runs in quiet
mode.

-verbose Specifies that the tool runs in
verbose mode.

-h Specifies that the tool will display a
usage message.

-v Displays the tool’s version’

Important: wsdltosoap does not support the generation of
document/encoded SOAP bindings.

Example
If your system had an interface that took orders and offered a
single operation to process the orders it would be defined in
an Artix contract similar to the one shown in Example 6 on
page 45.

53

Example 6. Ordering System Interface

The SOAP binding generated for orderWidgets is shown in
Example 7 on page 46.

Example 7. SOAP 1.2 Binding for orderWidgets

This binding specifies that messages are sent using the
document/literal message style.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>
...
</definitions>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<wsoap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="placeWidgetOrder">
<wsoap12:operation soapAction="" style="document"/>
<input name="order">

<wsoap12:body use="literal"/>
</input>
<output name="bill">

<wsoap12:body use="literal"/>
</output>
<fault name="sizeFault">

<wsoap12:body use="literal"/>
</fault>

</operation>
</binding>

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap12/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/http

54

Adding Headers to a SOAP 1.2 Message
SOAP message headers are defined by adding soap12:header
elements to your SOAP 1.2 message. The soap12:header
element is an optional child of the input, output, and fault
elements of the binding. The SOAP header becomes part of
the parent message. A SOAP header is defined by specifying
a message and a message part. Each SOAP header can only
contain one message part, but you can insert as many
headers as needed.

Syntax
The syntax for defining SOAP headers is shown in Example 8.

Example 8. SOAP Header Syntax

The soap12:header element’s attributes are described in
Table 1.

Table 1. soap12:header Attributes

Attribute Description

message A required attribute specifying the qualified name of the
message from which the part being inserted into the header is
taken.

part A required attribute specifying the name of the message part
inserted into the SOAP header.

use Specifies if the message parts are to be encoded using encoding
rules. If set to encoded the message parts are encoded using
the encoding rules specified by the value of the encodingStyle
attribute. If set to literal, the message parts are defined by
the schema types referenced.

encodingStyle Specifies the encoding rules used to construct the message.

<binding name="headwig">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="weave">
<soap12:operation soapAction="" style="documment"/>
<input name="grain">

<soap12:body .../>
<soap12:header message="QName" part="partName"

use="literal|encoded"
encodingStyle="encodingURI"
namespace="namespaceURI" />

</input>
...
</binding>

http://schemas.xmlsoap.org/soap/http

55

Attribute Description

Namespace Defines the namespace to be assigned to the header element
serialized with use="encoded".

Splitting messages between body and header

The message part inserted into the SOAP header can be any
valid message part from the contract. It can even be a part
from the parent message which is being used as the SOAP
body. Because it is unlikely that you would send information
twice in the same message, the SOAP 1.2 binding provides a
means for specifying the message parts that are inserted into
the SOAP body.

The soap12:body element has an optional attribute, parts,
that takes a space delimited list of part names. When parts
is defined, only the message parts listed are inserted into the
body of the SOAP 1.2 message. You can then insert the
remaining parts into the message's header.

Note: When you define a SOAP header using parts of the parent
message, Artix ESB automatically fills in the SOAP headers for you.

Example
Example 9 shows a modified version of the orderWidgets
service shown in Example 6. This version is modified so that
each order has an xsd:base64binary value placed in the
header of the request and the response. The header is
defined as being the keyVal part from the widgetKey
message. In this case you are responsible for adding the
application logic to create the header because it is not part of
the input or output message.

Example 9. SOAP 1.2 Binding with a SOAP Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema
targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap12/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

56

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>
<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<message name="widgetKey">
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>
<binding name="orderWidgetsBinding"
type="tns:orderWidgets">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">

<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey"
part="keyVal"/>

</input>
<output name="bill">

<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey"
part="keyVal"/>

</output>
<fault name="sizeFault">

<soap12:body use="literal"/>
</fault>

</operation>
</binding>
...
</definitions>

You can modify Example 9 so that the header value is a part
of the input and output messages, as shown in Example 10.
In this case keyVal is a part of the input and output
messages. In the soap12:body elements the parts attribute
specifies that keyVal should not be inserted into the body.
However, it is inserted into the header.

http://schemas.xmlsoap.org/soap/http

57

Example 10. SOAP 1.2 Binding for orderWidgets with a SOAP
Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema

targetNamespace="http://widgetVendor.com/types/widgetTy
pes" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>

<input name="order">

<soap12:body use="literal" parts="numOrdered"/>
<soap12:header message="tns:widgetOrder" part="keyVal"/>

</input>
<output name="bill">
<soap12:body use="literal" parts="bill"/>
<soap12:header message="tns:widgetOrderBill"
part="keyVal"/>

</output>
<fault name="sizeFault">
<soap12:body use="literal"/>

</fault>
</operation>

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap12/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/http

58

</binding>
...
</definitions>

59

Sending Binary Data
Using SOAP
Attachments
SOAP attachments provide a mechanism for sending binary
data as part of a SOAP message. Using SOAP with
attachments requires that you define your SOAP messages as
MIME multipart messages.

SOAP messages generally do not carry binary data. However,
the W3C SOAP 1.1 specification allows for using MIME
multipart/related messages to send binary data in SOAP
messages. This technique is called using SOAP with
attachments. SOAP attachments are defined in the W3C's
SOAP Messages with Attachments Note.

Namespace

The WSDL extensions used to define the MIME
multipart/related messages are defined in the namespace
http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this
namespace is prefixed with mime. The entry in the WSDL
definitions element to set this up is shown in Example 11.

Example 11. MIME Namespace Specification in a Contract
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Changing the message binding

In a default SOAP binding, the first child element of the
input, output, and fault elements is a soap:body element
describing the body of the SOAP message representing the
data. When using SOAP with attachments, the soap:body
element is replaced with a mime:multipartRelated element.

NOTE: WSDL does not support using mime:multipartRelated for
fault messages.

The mime:multipartRelated element tells Artix ESB that the
message body is going to be a multipart message that
potentially contains binary data. The contents of the element
define the parts of the message and their contents.

http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/wsdl/mime/

60

mime:multipartRelated elements contain one or more
mime:part elements that describe the individual parts of the
message.

The first mime:part element must contain the soap:body
element that would normally appear in a default SOAP
binding. The remaining mime:part elements define the
attachments that are being sent in the message.

Describing a MIME multipart message

MIME multipart messages are described using a
mime:multipartRelated element that contains a number of
mime:part elements. To fully describe a MIME multipart
message do the following:

1. Inside the input or output message you want to send as
a MIME multipart message, add a mime:mulipartRelated
element as the first child element of the enclosing
message.

2. Add a mime:part child element to the
mime:multipartRelated element and set its name attribute
to a unique string.

3. Add a soap:body element as the child of the mime:part
element and set its attributes appropriately.

TIP: If the contract had a default SOAP binding, you can copy the
soap:body element from the corresponding message from the
default binding into the MIME multipart message

4. Add another mime:part child element to the
mime:multipartReleated element and set its name
attribute to a unique string.

5. Add a mime:content child element to the mime:part
element to describe the contents of this part of the
message.

To fully describe the contents of a MIME message part the
mime:content element has the following attributes:

61

Table 2. mime:content Attributes

Attribute Description

part Specifies the name of the WSDL message part, from the parent
message definition, that is used as the content of this part of the
MIME multipart message being placed on the wire.

type The MIME type of the data in this message part. MIME types are
defined as a type and a subtype using the syntax type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are maintained by
the Internet Assigned Numbers Authority (IANA) and described in
detail in Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies and Multipurpose Internet
Mail Extensions (MIME) Part Two: Media Types.

For each additional MIME part, repeat steps Step 4 on page
54 and Step 5 on page 54.

Example
Example 12 shows a WSDL fragment defining a service that
stores X-rays in JPEG format. The image data, xRay, is stored
as an xsd:base64binary and is packed into the MIME
multipart message's second part, imageData. The remaining
two parts of the input message, patientName and
patientNumber, are sent in the first part of the MIME
multipart image as part of the SOAP body.

Example 12. Contract using SOAP with Attachments
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"

targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<message name="storRequest">
<part name="patientName" type="xsd:string"/>
<part name="patientNumber" type="xsd:int"/>
<part name="xRay" type="xsd:base64Binary"/>

</message>
<message name="storResponse">
<part name="success" type="xsd:boolean"/>

</message>
<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse"
name="storResponse"/>

</operation>
</portType>

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
http://medistor.org/x-rays
http://medistor.org/x-rays
http://schemas.xmlsoap.org/wsdl/
http://medistor.org/x-rays
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema

62

<binding name="xRayStorageBinding"
type="tns:xRayStorage">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap:operation soapAction="" style="document"/>
<input name="storRequest">

<mime:multipartRelated>
<mime:part name="bodyPart">
<soap:body use="literal"/>

</mime:part>
<mime:part name="imageData">

<mime:content part="xRay" type="image/jpeg"/>
</mime:part>

</mime:multipartRelated>
</input>
<output name="storResponse">
<soap:body use="literal"/>

</output>
</operation>

</binding>
<service name="xRayStorageService">
<port binding="tns:xRayStorageBinding"
name="xRayStoragePort">
<soap:address location="http://localhost:9000"/>

</port>
</service>

</definitions>

http://schemas.xmlsoap.org/soap/http

63

Sending Binary Data
with SOAP MTOM
SOAP Message Transmission Optimization Mechanism (MTOM)
is a mechanism for transmitting binary data in SOAP
messages. Using MTOM with Artix ESB requires adding the
correct schema types to a service's contract and enabling the
MTOM optimizations.

SOAP Message Transmission Optimization Mechanism (MTOM)
specifies a method for sending binary data. MTOM uses of
XML-binary Optimized Packaging (XOP) packages for
transmitting binary data. Using MTOM to send binary data
does not require you to fully define the MIME
Multipart/Related message as part of the SOAP binding. It
does, however, require that you do the following:

1. Annotate the data that you are going to send as an
attachment.

2. Enable the runtime's MTOM support.

Defining Data Types to use MTOM
When defining a data type for passing along a block of binary
data, such as an image file or a sound file, in WSDL you
define the element for the data to be of type
xsd:base64Binary or of type xsd:hexBinary. By default, any
element of either type results in the generation of a C++ type
which can be serialized using MTOM.

You can also specify the MIME type of the binary data using
the xmime:contentType attribute or
xmime:expectedContentType attributes. In addition, you can
define the types of the elements binary data using xmime
versions of the binary data types. When you use the MIME
data to an element definition, Artix generates special data
types to contain the data.

Using the XML Schema binary types
Example 13 shows a WSDL document for a Web service that
uses a message which contains one string field, one integer
field, and a binary field. The binary field is intended to carry a
large image file, so it is not appropriate for sending along as
part of a normal SOAP message.

Example 13. Message for MTOM Using XML Schema Types
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"

targetNamespace="http://mediStor.org/x-rays"

http://medistor.org/x-rays
http://medistor.org/x-rays

64

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:xsd1="http://mediStor.org/types/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://mediStor.org/types/"

xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="xRayType">

<sequence>
<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData" type="xsd:base64Binary"
/>

</sequence>
</complexType>
<element name="xRay" type="xsd1:xRayType" />

</schema>
</types>
<message name="storRequest">
<part name="record" element="xsd1:xRay"/>

</message>
<message name="storResponse">
<part name="success" type="xsd:boolean"/>

</message>
<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse"
name="storResponse"/>

</operation>
</portType>
<binding name="xRayStorageSOAPBinding"
type="tns:xRayStorage">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap12:operation soapAction="" style="document"/>
<input name="storRequest">
<soap12:body use="literal"/>

</input>
<output name="storResponse">
<soap12:body use="literal"/>

</output>
</operation>

</binding>
...

</definitions>

The data contained in the imageData element of the request
message will be sent using MTOM if the consumer is properly
configured. The runtime will automatically set the XOP
package's Content-Type property to application/octet-
stream.

http://schemas.xmlsoap.org/wsdl/
http://medistor.org/x-rays
http://schemas.xmlsoap.org/wsdl/soap12/
http://medistor.org/types/
http://www.w3.org/2001/XMLSchema
http://medistor.org/types/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http

65

Using XMime attributes to specifying the content type
Some Java Web Service frameworks use MIME type
information to optimize how their runtime manages binary
data. This is done using the xmime:expectedContentTypes
attribute. This attribute is defined in the
http://www.w3.org/2005/05/xmlmime namespace. It is
placed on the element's schema type definition and specifies
the MIME types that the element is expected to contain. The
xmime:expectedContentTypes attribute takes a comma
separated list of MIME types.

When the C++ code generator sees these attributes on an
element it generates Artix-specific objects to hold the data:

• If the element was defined using xsd:base64Binary the
code generator will create an
IT_Bus::XMimeBase64Binary object for it.

• If the element was defined using xsd:hexBinary the code
generator will create an IT_Bus::XMimeHexBinary object
for it.

NOTE: The MIME types are maintained by the Internet Assigned
Numbers Authority (IANA) and described in detail in Multipurpose
Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies and Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types.

Example 14 shows how you would modify xRayType from
Example 13 to specify the type of content passed in the
binary data field.

Example 14. Using XMime Attributes to Specify the Contents
of a Binary Field

...
<types>
<schema targetNamespace="http://mediStor.org/types/"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

<complexType name="xRayType">
<sequence>
<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData" type="xsd:base64Binary"

xmime:expectedContentTypes="image/gif"/>
</sequence>

</complexType>
<element name="xRay" type="xsd1:xRayType" />

</schema>
</types>

...

http://www.w3.org/2005/05/xmlmime
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
http://medistor.org/types/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2005/05/xmlmime

66

Using the XMime binary types

An alternate approach to specifying the data type of elements
that will be passed using MTOM is to define them using the
MIME binary types. The MIME binary types,
xmime:base64Binary and xmime:hexBinary are defined in the
http://www.w3.org/2005/05/xmlmime namespace. They can
be used as direct replacements for their respective XML
Schema data types.

Example 15 shows the xRayType, from Example 13, defined
using the MIME binary types.

Example 15. Message for MTOM Using MIME Binary Types

The Artix code generator creates Artix-specific data types for
elements defined using the MIME binary types:

• Elements of type xmime:base64Binary are mapped to
IT_Bus::XMimeBase64Binary objects.

• Elements of type xmime:hexBinary are mapped to
IT_Bus::XMimeHexBinary objects.

Enabling MTOM
By default, Artix service consumers do not use MTOM to
transmit binary data in SOAP messages. You need to
configure them to use this functionality.

Service providers, on the other hand, do not need any special
configuration to handle SOAP messages that use MTOM. They
can receive and send MTOM data by default.

<types>
<schema targetNamespace="http://mediStor.org/types/"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

<complexType name="xRayType">
<sequence>

<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData"
type="xmime:base64Binary"

/>
</sequence>
</complexType>
<element name="xRay" type="xsd1:xRayType" />

</schema>
</types>

http://www.w3.org/2005/05/xmlmime
http://medistor.org/types/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2005/05/xmlmime

67

Service consumers

You control the runtime's MTOM support using the
plugins:soap:enable_mtom and
plugins:soap12:enable_mtom configuration variables. These
are boolean variables whose default settings are false.

To activate the runtime's MTOM support set this variable to
true.

For more information on configuring Artix ESB for C++, see
Configuring and Deploying Artix Solutions, C++
Runtime.

Example 16 shows configuration for an endpoint that is
MTOM= enabled.

Example 16. Configuration for Enabling MTOM in SOAP 1.2

Service providers

Artix SOAP 1.2 service providers do not need to be configured
to use MTOM.

When a service provider receives a SOAP 1.2 request that
uses MTOM, it will respond using MTOM.

demos { mtom {
plugins:soap12:enable_mtom = "true";

};
};

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

69

Using Tuxedo’s FML
Buffers

Artix can send and receive messages packaged as FML
buffers.

Tuxedo’s native data format is FML. The FML buffers used by
Tuxedo applications are described in one of two ways:

• A field table file that is loaded at runtime.

• A C header file that is compiled into the application.

A field table file is a detailed and user readable text file
describing the contents of a buffer. It clearly describes each
field’s name, ID number, data type, and a comment. Using
the FML library calls, Tuxedo applications map the field table
description to usable fldids at runtime.

The C header file description of an FML buffer simply maps
field names to their fldid. The fldid is an integer value that
represents both the type of data stored in a field and a
unique identifying number for that field.

Artix works with this data by mapping the native Tuxedo data
descriptions into a WSDL binding element. As part of
developing an Artix solution to integrate with legacy Tuxedo
applications, you must add an FML binding to the contract
describing the integration.

FML/XML Schema support
An FML buffer can only contain the data types listed in
Table 3.

Table 3. FML Type Support

FML Type XML Schema Type

short xsd:short

short xsd:unsignedShort

long xsd:int

long xsd:unsignedInt

float xsd:float

double xsd:double

string xsd:string

70

FML Type XML Schema Type

string xsd:base64Binary

string xsd:hexBinary

Important: Due to FML limitations, support for complex types is
limited to xsd:sequence and xsd:all.

Mapping from a field table to an Artix contract

Creating an Artix contract to represent an FML buffer is a
two-step process:

1. Create the logical data representation of the FML buffer in
the Artix contract as described in Mapping to logical type
descriptions.

2. Enter the FML binding information using Artix WSDL
extensors as described in Adding the FML binding.

Mapping to logical type descriptions

To create a logical data type to represent data in an FML
buffer do the following:

1. If the C header file for the FML buffer does not exist,
generate it from the field table using the Tuxedo
mkfldhdr or mkfldhdr32 utility program.

2. For each field in the FML buffer, create an element with
the following attribute settings:

• name is set to a string that identifies the field. This
value is used to by the binding to correlate the logical
type with the FML field.

TIP: The value of the name attribute does not need to
match the name of the physical FML field.

• type is set to the appropriate XML Schema type for
the type specified in the field table. See FML/XML
Schema support.

3. If your Tuxedo application has data fields that are always
used together, you can group the corresponding elements
into complex types.

Important: In Tuxedo, a WSDL operation is implicitly bound to the
Tuxedo service used. So, when the Tuxedo extensor is configured for

71

the WSDL port there must be a one-to-one mapping between the
WSDL operation and the Tuxedo service. You should only group
elements into complex types only if they appear together in all
exposed Tuxedo services.

Consider a Tuxedo application that returns personnel records
on employees that needs to be exposed through a new web
interface. The Tuxedo application uses the field table file
shown in Example 17.

Example 17. personnelInfo Field Table File

personnelInfo field
name Number type flags comment
empID 100 long -
name 101 string -
age 102 short -
dept 103 string -
addr 104 string -
city 105 string -
state 106 string -
zip 107 string -

The C++ header file generated by the Tuxedo mkfldhdr tool to
represent the personnelInfo FML buffer is shown in
Example 18. Even if you are not planning to access the FML
buffer using the compile-time method, you will need to
generate the header file when using Artix because this will
give you the fldid values for the fields in the buffer.

Example 18. personnelInfo C++ header
/* fname fldid */
/* ----- ----- */
#define empID ((FLDID)8293) /* number: 100 type: long */
#define name ((FLDID)41062) /* number: 101 type: string */
#define age ((FLDID)102) /* number: 102 type: short */
#define dept ((FLDID)41064) /* number: 103 type: string */
#define addr ((FLDID)41065) /* number: 104 type: string */
#define city ((FLDID)41066) /* number: 105 type: string */
#define state ((FLDID)41067) /* number: 106 type: string */
#define zip ((FLDID)41068) /* number: 107 type: string */

Before mapping the FML buffer into your contract, you need
to look at the operations exposed by the Tuxedo application.
Suppose it exposes two operations:

• infoByName() that returns the employee data based on a
name search.

• infoByID() that returns the employee data based on the
employee’s ID number.

Because the employee data is always returned as a unit you
can group it into a complex type as shown in Example 19.

72

Example 19. Logical description of personneInfo FML buffer
<types>
<schema targetNamespace="http://soapinterop.org/xsd"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<complexType name="personnelInfo">
<sequence>

<element name="empId" type="xsd:int"/>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:short"/>
<element name="dept" type="xsd:string"/>
<element name="addr" type="xsd:string"/>
<element name="city" type="xsd:string"/>
<element name="state" type="xsd:string"/>
<element name="zip" type="xsd:string"/>

</sequence>
</complexType>
...

</schema>
</types>

The interface for your Tuxedo application would be mapped to
a portType similar to Example 20.

Example 20. personnelInfo Lookup Interface
<message name="idLookupRequest">
<part name="empId" type="xsd:int"/>

</message>
<message name="nameLookupRequest">
<part name="empId" type="xsd:string"/>

</message>
<message name="lookupResponse">
<part name="return" element="xsd1:personnelInfo"/>

</message>

<portType name="personelInfoLookup">
<operation name="infoByName">
<input name="name" message="nameLookupRequest"/>
<output name="return" message="lookupResponse"/>

</operation>
<operation name="infoByID">
<input name="id" message="idLookupRequest"/>
<output name="return" message="lookupResponse"/>

</operation>
</portType>

Flattened XML and FML

While XML Schema allows you to create structured data that
is organized in multiple layers, FML data is flat. All of the
elements in a field table exist on the same level. To handle

http://soapinterop.org/xsd
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

73

this difference Artix flattens out the XML data when it is
passed through the FML binding.

As a result, complex types defined in XML Schema are
collapsed into their composite elements. For instance, the
message lookupResponse, which uses the complex type
defined in Example 19, would be equivalent to the message
definition in Example 21 when processed by the FML binding.

Example 21. Flattened Message for FML

Adding the FML binding

To add the binding that maps the logical description of the
FML buffer to a physical FML binding do the following:

1. Add the following line in the definition element at the
beginning of the contract.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

2. Create a new binding element in your contract to define
the FML buffer’s binding.

3. Add a tuxedo:binding element to identify that this
binding defines an FML buffer.

4. Add a tuxedo:fieldTable element to the binding to
describe how the element names defined in the logical
portion of the contract map to the fldid values for the
corresponding fields in the FML buffer.

The tuxedo:fieldTable has a mandatory type attribute.
type can be either FML for specifying that the application
uses FML16 buffers or FML32 for specifying that the
application uses FML32 buffers.

5. For each element in the logical data type, add a
tuxedo:field element to the tuxedo:fieldTable
element.

tuxedo:field defines how the logical data elements map
to the physical FML buffer. It has two mandatory
attributes:

<message name="lookupResponse">
<part name="empId" type="xsd:int"/>
<part name="name" type="xsd:string"/>
<part name="age" type="xsd:short"/>
<part name="dept" type="xsd:string"/>
<part name="addr" type="xsd:string"/>
<part name="city" type="xsd:string"/>
<part name="state" type="xsd:string"/>
<part name="zip" type="xsd:string"/>

</message>

74

Table 4. Attributes of the FML Binding's Field Element

Attribute Description

name Specifies the name of the element or
message part that describes the field.

id Specifies the fldid value for the field in the
FML buffer

6. For each operation in the interface, create a standard
WSDL operation element to define the operation being
bound.

7. For each operation, add a standard WSDL input and
output elements to the operation element to define the
messages used by the operation.

8. For each operation, add a tuxedo:operation element to
the operation element.

For example, the binding for the personalInfo FML buffer,
defined in Example 17, will be similar to the binding shown in
Example 22.

Example 22. personalInfo FML binding
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfoService" targetNamespace=
"http://info.org/"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
>

...
<binding name="personalInfoFMLBinding"

type="tns:personnalInfoLookup">
<tuxedo:binding/>
<tuxedo:fieldTable type="FML">
<tuxedo:field name="empId" id="8293"/>
<tuxedo:field name="name" id="41062"/>
<tuxedo:field name="age" id="102"/>
<tuxedo:field name="dept" id="41064"/>
<tuxedo:field name="addr" id="41065"/>
<tuxedo:field name="city" id="41066"/>
<tuxedo:field name="state" id="41067"/>
<tuxedo:field name="zip" id="41068"/>

</fml:idNameMapping>
<operation name="infoByName">
<tuxedo:operation/>
<input name="name"/>
<output name="return"/>

</operation>
<operation name="infoByName">

http://schemas.xmlsoap.org/wsdl/
http://soapinterop.org/
http://www.w3.org/2001/XMLSchema
http://schemas.iona.com/transports/tuxedo
http://schemas.iona.com/transports/tuxedo

75

<tuxedo:operation/>
<input name="name"/>
<output name="return"/>

</operation>
</binding>

...
</definitions>

77

Using XML Documents
The pure XML payload format provides an alternative to the
SOAP binding by allowing services to exchange data using
straight XML documents without the overhead of a SOAP
envelope.

You can create an XML binding using any text or XML editor.

Hand editing

To map an interface to a pure XML payload format do the
following:

1. Add the namespace declaration to include the Artix ESB
extensions defining the XML binding. See XML binding
namespace.

2. Add a standard WSDL binding element to your contract
to hold the XML binding, give the binding a unique name,
and specify the name of the WSDL portType element
that represents the interface being bound.

3. Add an xformat:binding child element to the binding>
element to identify that the messages are being handled
as pure XML documents without SOAP envelopes.

4. Optionally, set the xformat:binding element's rootNode
attribute to a valid QName. For information on the effect
of the rootNode attribute see XML messages on the wire.

5. For each operation defined in the bound interface, add a
standard WSDL operation element to hold the binding
information for the operation's messages.

6. For each operation added to the binding, add the input,
output, and fault children elements to represent the
messages used by the operation.

These elements correspond to the messages defined in
the interface definition of the logical operation.

7. Optionally add an xformat:body element with a valid
rootNode attribute to the added input, output, and
fault elements to override the value of rootNode set at
the binding level.

NOTE: If any of your messages have no parts, for example the
output message for an operation that returns void, you must set the
rootNode attribute for the message to ensure that the message
written on the wire is a valid, but empty, XML document.

78

XML binding namespace

The extensions used to describe XML format bindings are
defined in the namespace
http://celtix.objectweb.org/bindings/xmlformat. Artix
ESB tools use the prefix xformat to represent the XML binding
extensions. Add the following line to your contracts:

xmlns:xformat="http://celtix.objectweb.org/bindings/xmlformat"

XML messages on the wire

When you specify that an interface’s messages are to be
passed as XML documents, without a SOAP envelope, you
must take care to ensure that your messages form valid XML
documents when they are written on the wire. You also need
to ensure that non-Artix participants that receive the XML
documents understand the messages generated by Artix ESB.

A simple way to solve both problems is to use the optional
rootNode attribute on either the global xformat:binding
element or on the individual message’s xformat:body
elements. The rootNode attribute specifies the QName for
the element that serves as the root node for the XML
document generated by Artix ESB. When the rootNode
attribute is not set, Artix ESB uses the root element of the
message part as the root element when using doc style
messages, or an element using the message part name as
the root element when using rpc style messages.

For example, if the rootNode attribute is not set the message
defined in Example 23 would generate an XML document with
the root element lineNumber.

Example 23. Valid XML Binding Message

For messages with one part, Artix ESB will always generate a
valid XML document even if the rootNode attribute is not set.
However, the message in Example 24 would generate an
invalid XML document.

<type ...>
...
<element name="operatorID" type="xsd:int"/>
...

</types><message name="operator"><part name="lineNumber"
element="ns1:operatorID"/>
</message>

http://celtix.objectweb.org/bindings/xmlformat
http://celtix.objectweb.org/bindings/xmlformat

79

Example 24. Invalid XML Binding Message

Without the rootNode attribute specified in the XML binding,
Artix will generate an XML document similar to Example 25
for the message defined in Example 24. The Artix-generated
XML document is invalid because it has two root elements:
pairName and entryNum.

Example 25. Invalid XML Document

If you set the rootNode attribute, as shown in Example 26.
Artix ESB will wrap the elements in the specified root
element. In this example, the rootNode attribute is defined
for the entire binding and specifies that the root element will
be named entrants.

Example 26. XML Binding with rootNode set
<portType name="danceParty">
<operation name="register">
<input message="tns:matildas" name="contestant"/>

</operation>
</portType>
<binding name="matildaXMLBinding" type="tns:dancingMatildas">
<xmlformat:binding rootNode="entrants"/>

An XML document generated from the input message would
be similar to Example 27. Notice that the XML document now
only has one root element.

<types>
...
<element name="pairName" type="xsd:string"/>
<element name="entryNum" type="xsd:int"/>
...

</types>
<message name="matildas">
<part name="dancing" element="ns1:pairName"/>
<part name="number" element="ns1:entryNum"/>

</message>

<pairName>
Fred&Linda

</pairName>
<entryNum>
123

</entryNum>

80

Example 27. XML Document generated using the rootNode
attribute

Overriding the binding's rootNode attribute setting
You can also set the rootNode attribute for each individual
message, or override the global setting for a particular
message, by using the xformat:body element inside of the
message binding. For example, if you wanted the output
message defined in Example 26 to have a different root
element from the input message, you could override the
binding's root element as shown in Example 28.

Example 28. Using xformat:body

<entrants>
<pairName>
Fred&Linda

<entryNum>
123

</entryNum>
</entrants>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">

<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered">
<xformat:body rootNode="entryStatus"/>

</output>
</operation>

</binding>

81

Using Fixed Length
Records
To make interoperating with mainframes and older systems
easy, Artix ESB can send and receive messages formatted as
fixed length records.

The Artix ESB fixed binding is used to represent fixed record
length data.

Common uses for this type of payload format are
communicating with back-end services on mainframes and
applications written in COBOL. Artix ESB provides several
means for creating a contract containing a fixed binding:

• If you are integrating with an application written in COBOL
and have the COBOL copybook defining the data to be
used, you can import the copybook to create a contract.

• If you have a description of the fixed data in some form
other than a COBOL copybook, you can create a contract
by describing the data.

• You can enter the binding information using any text
editor or XML editor.

Hand editing

To map a logical interface to a fixed binding you do the
following:

1. Add the proper namespace reference to the definition
element of your contract. See Fixed binding namespace.

2. Add a WSDL binding element to your contract to hold
the fixed binding, give the binding a unique name, and
specify the port type that represents the interface being
bound.

3. Add a fixed:binding element as a child of the new
binding element to identify this as a fixed binding and
set the element’s attributes to properly configure the
binding. See fixed:binding.

4. For each operation defined in the bound interface, add a
WSDL operation element to hold the binding information
for the operation’s messages.

5. For each operation added to the binding, add a
fixed:operation child element to the operation
element. See fixed:operation.

82

6. For each operation added to the binding, add the input,
output, and fault children elements to represent the
messages used by the operation.

These elements correspond to the messages defined in
the interface definition of the logical operation.

7. For each input, output, and fault element in the
binding, add a fixed:body child element to define how
the message parts are mapped into the concrete fixed
record length payload. See fixed:body.

Fixed binding namespace

The extensions used to describe fixed record length bindings
are defined in the namespace
http://schemas.iona.com/bindings/fixed. Artix tools use
the prefix fixed to represent the fixed record length
extensions. Add the following line to your contract:

xmlns:fixed="http://schemas.iona.com/bindings/fixed

fixed:binding

fixed:binding specifies that the binding is for fixed record
length data. Its attributes are described in Table 5.

Table 5. Attributes for fixed:binding

Attribute Description

justification Specifies the default justification of the
data contained in the messages. Valid
values are left and right.

Default is left.

encoding Specifies the codeset used to encode the
text data. Valid values are any valid ISO
locale or Internet Assigned Numbers
Authority (IANA) codeset name.

Default is UTF-8.

padHexCode Specifies the hex value of the character
used to pad the record.

The settings for the attributes on these elements become the
default settings for all the messages being mapped to the
current binding. All of the values can be overridden on a
message-by-message basis.

http://schemas.iona.com/bindings/fixed
http://schemas.iona.com/bindings/fixed

83

fixed:operation

fixed:operation is a child element of the WSDL operation
element and specifies that the operation’s messages are
being mapped to fixed record length data.

fixed:operation has one attribute, discriminator, that
assigns a unique identifier to the operation. If your service
only defines a single operation, you do not need to provide a
discriminator. However, if your service has more than one
service, you must define a unique discriminator for each
operation in the service. Not doing so will result in
unpredictable behavior when the service is deployed.

For each message used in the operation, you will need to
include a fixed:field element whose name attribute is equal to
the value of discriminator and whose bindingOnly
attribute is set to true. This field will hold the value used by
the binding to discriminate between the operations. For more
information see fixed:field.

fixed:body

fixed:body is a child element of the input, output, and
fault elements representing the messages being mapped to
fixed record length data. It specifies that the message body is
mapped to fixed record length data on the wire and describes
the exact mapping for the message’s parts.

To fully describe how a message is mapped into the fixed
message do the following:

1. If the default justification, padding, or encoding settings
for the attribute are not correct for this particular
message, override them by setting the following optional
attributes for fixed:body.

Table 6. Attributes for fixed:body

Attribute Description

justification Specifies how the data in the messages are
justified. Valid values are left and right.

encoding Specifies the codeset used to encode text
data. Valid values are any valid ISO locale
or IANA codeset name.

padHexCode Specifies the hex value of the character
used to pad the record.

84

2. For each part in the message the fixed:body element is
binding, add the appropriate child element to define the
part's concrete format on the wire.

The following child elements are used in defining how
logical data is mapped to a concrete fixed format
message:

fixed:field maps message parts defined using a simple
type. See the XML Schema Simple Types section in
Writing Artix ESB Contracts.

fixed:sequence maps message parts defined using a
sequence complex type. Complex types defined using all
are not supported by the fixed format binding. See the
Defining Data Structures section in Writing Artix ESB
Contracts.

fixed:choice maps message parts defined using a
choice complex type. See the Defining Data Structures
section in Writing Artix ESB Contracts.

3. If you need to add any fields that are specific to the
binding and that will not be passed to the applications,
define them using a fixed:field element with its
bindingOnly attribute set to true.

When bindingOnly is set to true, the field described by
the fixed:field element is not propagated beyond the
binding. For input messages, this means that the field is
read in and then discarded. For output messages, you
must also use the fixedValue attribute.

The order in which the message parts are listed in the
fixed:body element represent the order in which they are
placed on the wire. It does not need to correspond to the
order in which they are specified in the message element
defining the logical message.

fixed:field

fixed:field is used to map simple data types to a fixed
length record. To define how the logical data is mapped to a
fixed field do the following:

1. Create a fixed:field child element to the fixed:body
element representing the message.

2. Set the fixed:field element's name attribute to the
name of the message part defined in the logical message
description that this element is mapping.

85

3. If the data being mapped is of type xsd:string, a simple
type that has xsd:string as its base type, or an
enumerated type set, the size attribute of the
fixed:field element.

NOTE: If the message part is going to hold a date you can opt to use
the format attribute described in Step 4 on page 80 instead of the
size attribute.

The size attribute specifies the length of the string
record in the concrete fixed message. For example, the
logical message part, raverID, described in Example 29
would be mapped to a fixed:field similar to Example
30.

Example 29. Fixed String Message

In order to complete the mapping, you must know the
length of the record field and supply it. In this case, the
field, raverID, can contain no more than twenty
characters.

Example 30. Fixed String Mapping

<fixed:field name="raverID" size="20"/>

4. If the data being mapped is of a numerical type, like
xsd:int, or a simple type that has a numerical type as its
base type, set the fixed:field element's format
attribute.

The format attribute specifies how non-string data is
formatted. For example, if a field contains a 2-digit
numeric value with one decimal place, it would be
described in the logical part of the contract as an
xsd:float, as shown in Example 31.

Example 31. Fixed Record Numeric Message

From the logical description of the message, Artix has no
way of determining that the value of rageLevel is a 2-
digit number with one decimal place because the fixed
record length binding treats all data as characters. When
mapping rageLevel in the fixed binding the value of the
format attribute would be ##.#, as shown in Example 32.
This provides Artix with the meta-data needed to properly
handle the data.

<message name="fixedStringMessage">
<part name="raverID" type="xsd:string"/>
</message>

<message name="fixedNumberMessage">
<part name="rageLevel" type="xsd:float"/>

</message>

86

Example 32. Mapping Numerical Data to a Fixed Binding

<fixed:field name="rageLevel" format="##.#"/>

Dates are specified in a similar fashion. For example, the
value of the format attribute for the date 12/02/72 is
MM/DD/YY. When using the fixed binding it is
recommended that dates are described in the logical part
of the contract using xsd:string. For example, a message
containing a date would be described in the logical part of
the contract as shown in Example 33.

Example 33. Fixed Date Message

If goDate is entered using the standard short date format
for US English locales, mm/dd/yyyy, you would map it to a
fixed record field as shown in Example 34.

Example 34. Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>

5. If the justification setting is not correct for this particular
field, override it by setting the justification attribute.
Valid values are left and right.

6. If you want the message part to have a fixed value no
matter what data is set in the message part by the
application, set the fixed:field element’s fixedValue
attribute instead of the size or the format attribute.

The fixedValue attribute specifies a static value to be
passed on the wire. When used without
bindingOnly="true", the value specified by the
fixedValue attribute replaces any data that is stored in
the message part passed to the fixed record binding. For
example, if goDate, shown in Example 33, were mapped
to the fixed field shown in Example 35 the actual message
returned from the binding would always have the date
11/11/2112.

Example 35. fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112"/>

7. If the data being mapped is of an enumerated type, see
“Defining Enumerated Types” on page 43, add a
fixed:enumeration child element to the fixed:field
element for each possible value of the enumerated type.

<message name="fixedDateMessage">
<part name="goDate" type="xsd:string"/>

</message>

87

fixed:enumeration takes two required attributes: value
and fixedValue. The value attribute corresponds to the
enumeration value as specified in the logical description of
the enumerated type. The fixedValue attribute specifies
the concrete value that will be used to represent the
logical value on the wire.

For example, if you had an enumerated type with the
values FruityTooty, Rainbow, BerryBomb, and
OrangeTango the logical description of the type would be
similar to Example 36.

Example 36. Enumeration Logical Mapping

When you map the enumerated type, you need to know
the concrete representation for each of the enumerated
values. The concrete representations can be identical to
the logical or some other value. The enumerated type in
Example 36 could be mapped to the fixed field shown in
Example 37. Using this mapping Artix will write OT to the
wire for this field if the enumerations value is set to
OrangeTango.

Example 37. Fixed Ice Cream Mapping

Note that the parent fixed:field element uses the size
attribute to specify that the concrete representation is two
characters long. When mapping enumerations, the size
attribute will always be used to represent the size of the
concrete representation.

<xs:simpleType name="flavorType">
<xs:restriction base="xs:string">
<xs:enumeration value="FruityTooty"/>
<xs:enumeration value="Rainbow"/>
<xs:enumeration value="BerryBomb"/>
<xs:enumeration value="OrangeTango"/>

</xs:restriction>

<fixed:field name="flavor" size="2">
<fixed:enumeration value="FruityTooty"

fixedValue="FT"/>
<fixed:enumeration value="Rainbow" fixedValue="RB"/>
<fixed:enumeration value="BerryBomb"

fixedValue="BB"/>
<fixed:enumeration value="OrangeTango"

fixedValue="OT"/>
</fixed:field>

88

fixed:choice

fixed:choice is used to map choice complex types into fixed
record length messages. To map a choice complex type to a
fixed:choice do the following:

1. Add a fixed:choice child element to the fixed:body
element.

2. Set the fixed:choice element’s name attribute to the
name of the logical message part being mapped.

3. Set the fixed:choice element's optional
discriminatorName attribute to the name of the field
used as the discriminator for the union.

The value for discriminatorName corresponds to the
name of a binding only fixed:field element that
describes the type used for the union's discriminator as
shown in Example 38. The only restriction in describing
the discriminator is that it must be able to handle the
values used to determine the case of the union. Therefore
the values used in the union mapped in Example 38 must
be two-digit integers.

Example 38. Using the discriminatorName Attribute

4. For each element in the logical definition of the message
part, add a fixed:case child element to the
fixed:choice element.

fixed:case

fixed:case elements describe the complete mapping of a
choice complex type element to a fixed record length
message. To map a choice complex type element to a
fixed:case do the following:

1. Set the fixed:case element’s name attribute to the name
of the logical definition's element.

2. Set the fixed:case element's fixedValue attribute to
the value of the discriminator that selects this element.
The value of the fixedValue attribute must correspond to
the format specified by the discriminatorName attribute
of the parent fixed:choice element.

<fixed:field name="disc" format="##"
bindingOnly="true"/>

<fixed:choice name="unionStation"
discriminatorName="disc">

...
</fixed:choice>

89

3. Add a child element to define how the element’s data is
mapped into a fixed record.

The child elements used to map the part’s type to the
fixed message are the same as the possible child
elements of a fixed:body element. As with a fixed:body
element, a fixed:sequence is made up of fixed:field
elements to describe simple types, fixed:choice
elements to describe choice complex types, and
fixed:sequence elements to describe sequence complex
types.

Example 39 shows an Artix contract fragment mapping a
choice complex type to a fixed record length message.

Example 39. Mapping a Union to a Fixed Record Length
Message
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:tns="http://www.iona.com/FixedService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema

targetNamespace="http://www.iona.com/FixedService"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:complexType name="unionStationType">
<xsd:choice>
<xsd:element name="train" type="xsd:string"/>
<xsd:element name="bus" type="xsd:int"/>
<xsd:element name="cab" type="xsd:int"/>
<xsd:element name="subway" type="xsd:string"/>

</xsd:choice>
</xsd:complexType>

...
</types>
<message name="fixedSequence">
<part name="stationPart" type="tns:unionStationType"/>

</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"

type="tns:fixedSequencePortType">
<fixed:binding/>

...
<fixed:field name="disc" format="##"
bindingOnly="true"/>
<fixed:choice name="stationPart"

descriminatorName="disc">
<fixed:case name="train" fixedValue="01">

http://www.iona.com/FixedService
http://schemas.xmlsoap.org/wsdl/
http://schemas.iona.com/bindings/fixed
http://www.iona.com/FixedService
http://www.w3.org/2001/XMLSchema
http://www.iona.com/FixedService
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

90

<fixed:field name="name" size="20"/>
</fixed:case>
<fixed:case name="bus" fixedValue="02">
<fixed:field name="number" format="###"/>

</fixed:case>
<fixed:case name="cab" fixedValue="03">
<fixed:field name="number" format="###"/>

</fixed:case>
<fixed:case name="subway" fixedValue="04">

<fixed:field name="name" format="10"/>
</fixed:case>

</fixed:choice>
...

</binding>
...
</definition>

fixed:sequence

fixed:sequence maps sequence complex types to a fixed
record length message. To map a sequence complex type to a
fixed:sequence do the following:

1. Add a fixed:sequence child element to the fixed:body
element.

2. Set the fixed:sequence element's name attribute to the
name of the logical message part being mapped.

3. For each element in the logical definition of the message
part, add a child element to define the mapping for the
part’s type to the physical fixed message.

The child elements used to map the part's type to the
fixed message are the same as the possible child
elements of a fixed:body element. As with a fixed:body
element, a fixed:sequence is made up of fixed:field
elements to describe simple types, fixed:choice
elements to describe choice complex types, and
fixed:sequence elements to describe sequence complex
types.

4. If any elements of the logical data definition have
occurrence constraints, see Defining Data Structures on
page 34, map the element into a fixed:sequence
element with its occurs and counterName attributes set.

The occurs attribute specifies the number of times this
sequence occurs in the message buffer. counterName
specifies the name of the field used for specifying the
number of sequence elements that are actually being sent
in the message. The value of counterName corresponds to
a binding-only fixed:field with at least enough digits to

http://www.iona.com/support/docs/artix/5.5/contract/contract.pdf

91

count to the value specified in occurs as shown in
Example 40. The value passed to the counter field can be
any number up to the value specified by occurs and
allows operations to use less than the specified number of
sequence elements. Artix ESB will pad out the sequence
to the number of elements specified by occurs when the
data is transmitted to the receiver so that the receiver will
get the data in the promised fixed format.

Example 40. Using counterName

For example, a structure containing a name, a date, and an
ID number would contain three fixed:field elements to
fully describe the mapping of the data to the fixed record
message. Example 41 shows an Artix contract fragment for
such a mapping.

Example 41. Mapping a Sequence to a Fixed Record Length
Message
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:tns="http://www.iona.com/FixedService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema

targetNamespace="http://www.iona.com/FixedService"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:complexType name="person">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
<xsd:element name="ID" type="xsd:int"/>

</xsd:complexType>
...
</types>
<message name="fixedSequence">
<part name="personPart" type="tns:person"/>

</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
type="tns:fixedSequencePortType">
<fixed:binding/>

...

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">
...
</fixed:sequence>

http://www.iona.com/FixedService
http://www.iona.com/FixedService
http://schemas.xmlsoap.org/wsdl/
http://schemas.iona.com/bindings/fixed
http://www.iona.com/FixedService
http://www.w3.org/2001/XMLSchema
http://www.iona.com/FixedService
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

92

<fixed:sequence name="personPart">
<fixed:field name="name" size="20"/>
<fixed:field name="date" format="MM/DD/YY"/>
<fixed:field name="ID" format="#####"/>

</fixed:sequence>
...
</binding>
...
</definition>

Example
Example 42 shows an example of a contract containing a
fixed record length message binding.

Example 42. Fixed Record Length Message Binding
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:fixed="http://schemas.iona.com/binings/fixed"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">

<types>
<schema
targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="Address">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>

<xsd:element name="street1" type="xsd:string"/>
<xsd:element name="street2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zipCode" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="widgetOrderInfo">
<xsd:sequence>

<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.iona.com/binings/fixed
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

93

<xsd:element name="shippingAddress"
type="xsd1:Address"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="widgetOrderBillInfo">
<xsd:sequence>

<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>
<xsd:element name="amtDue" type="xsd:float"/>
<xsd:element name="orderNumber" type="xsd:string"/>
<xsd:element name="shippingAddress"
type="xsd1:Address"/>

</xsd:sequence>

</xsd:complexType>

</schema>
</types>

<message name="widgetOrder">
<part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation"
type="xsd1:widgetOrderBillInfo"/>

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

</operation>
</portType>
<binding name="orderWidgetsBinding"
type="tns:orderWidgets">
<fixed:binding/>
<operation name="placeWidgetOrder">
<fixed:operation discriminator="widgetDisc"/>

<input name="widgetOrder">
<fixed:body>
<fixed:sequence name="widgetOrderForm">
<fixed:field name="amount" format="###"/>
<fixed:field name="order_date"
format="MM/DD/YYYY"/>
<fixed:field name="type" size="2">
<fixed:enumeration value="big"
fixedValue="bg"/>
<fixed:enumeration value="large"
fixedValue="lg"/>
<fixed:enumeration value="mungo"
fixedValue="mg"/>
<fixed:enumeration value="gargantuan"
fixedValue="gg"/>

</fixed:field>
<fixed:sequence name="shippingAddress">
<fixed:field name="name" size="30"/>
<fixed:field name="street1" size="100"/>

94

<fixed:field name="street2" size="100"/>
<fixed:field name="city" size="20"/>
<fixed:field name="state" size="2"/>
<fixed:field name="zip" size="5"/>

</fixed:sequence>
</fixed:sequence>

</fixed:body>
</input>
<output name="widgetOrderBill">
<fixed:body>

<fixed:sequence name="widgetOrderConformation">
<fixed:field name="amount" format="###"/>
<fixed:field name="order_date"
format="MM/DD/YYYY"/>
<fixed:field name="type" size="2">
<fixed:enumeration value="big"
fixedValue="bg"/>
<fixed:enumeration value="large"
fixedValue="lg"/>
<fixed:enumeration value="mungo"
fixedValue="mg"/>
<fixed:enumeration value="gargantuan"
fixedValue="gg"/>

</fixed:field>
<fixed:field name="amtDue" format="####.##"/>
<fixed:field name="orderNumber" size="20"/>
<fixed:sequence name="shippingAddress">
<fixed:field name="name" size="30"/>
<fixed:field name="street1" size="100"/>
<fixed:field name="street2" size="100"/>
<fixed:field name="city" size="20"/>
<fixed:field name="state" size="2"/>
<fixed:field name="zip" size="5"/>

</fixed:sequence>
</fixed:sequence>

</fixed:body>
</output>

</operation>
</binding>

<service name="orderWidgetsService">
<port name="widgetOrderPort"
binding="tns:orderWidgetsBinding">
<http:address location="http://localhost:8080"/>

</port>
</service>
</definitions>

95

Using Tagged Data
Artix has a binding that reads and writes messages where the
data fields are delimited by specified characters.

The tagged data format supports applications that use self-
describing, or delimited, messages to communicate. Artix can
read tagged data and write it out in any supported data
format. Similarly, Artix is capable of converting a message
from any of its supported data formats into a self-describing
or tagged data message.

You can enter the binding information using any text editor or
XML editor.

Hand editing

To map a logical interface to a tagged data format do the
following:

1. Add the proper namespace reference to the definition
element of your contract. See Namespace.

2. Add a WSDL binding element to your contract to hold
the tagged binding, give the binding a unique name, and
specify the interface that represents the interface being
bound.

3. Add a tagged:binding element as a child of the new
binding element to identify this as a tagged binding and
set the element’s attributes to properly configure the
binding.

4. For each operation defined in the bound interface, add a
WSDL operation element to hold the binding information
for the operation’s messages.

5. For each operation added to the binding, add a
tagged:operation child element to the operation
element.

6. For each operation added to the binding, add the input,
output, and fault children elements to represent the
messages used by the operation.

These elements correspond to the messages defined in
the interface definition of the logical operation.

7. For each input, output, and fault element in the
binding, add a tagged:body child element to define how
the message parts are mapped into the concrete tagged
data payload.

96

Namespace

The extensions used to describe tagged data bindings are
defined in the namespace
http://schemas.iona.com/bindings/tagged. Artix tools use
the prefix tagged to represent the tagged data extensions.
Add the following line to the definitions element of your
contract:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"

tagged:binding

tagged:binding specifies that the binding is for tagged data
format messages. Its ten attributes are explained in Table 7.

Table 7. Attributes Used to Define a Tagged Binding

Attribute Purpose

selfDescribing Required attribute specifying if the message
data on the wire includes the field names.
Valid values are true or false. If this
attribute is set to false, the setting for
fieldNameValueSeparator is ignored.

fieldSeparator Required attribute that specifies the delimiter
the message uses to separate fields. Valid
values include any character that is not a
letter or a number.

fieldNameValueSeparator Specifies the delimiter used to separate field
names from field values in self-describing
messages. Valid values include any character
that is not a letter or a number.

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default
is tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing
is false, then this attribute is automatically
set to true.

messageStart Specifies a special token at the start of a
message. It is used when messages require a
special character at the start of the data
sequence. Valid values include any character
that is not a letter or a number.

http://schemas.iona.com/bindings/tagged
http://schemas.iona.com/bindings/tagged

97

Attribute Purpose

messageEnd Specifies a special token at the end of a
message. Valid values include any character
that is not a letter or a number.

unscopedArrayElement Specifies if array elements need to be scoped
as children of the array. If set to true, arrays
take the form
echoArray{myArray=2;item=abc;item=def}.
If set to false, arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}.
Default is false.

ignoreUnknownElements Specifies if Artix ignores undefined elements
in the message payload. Default is false.

ignoreCase Specifies if Artix ignores the case with
element names in the message payload.
Default is false.

The settings for the attributes on these elements become the
default settings for all the messages being mapped to the
current binding.

tagged:operation

tagged:operation is a child element of the WSDL operation
element and specifies that the operation’s messages are
being mapped to a tagged data format. It takes two optional
attributes that are described in Table 8.

Table 8. Attributes for tagged:operation

Attribute Purpose

discriminator Specifies a discriminator to be used by
the Artix runtime to identify the WSDL
operation that will be invoked by the
message receiver.

discriminatorStyle Specifies how the Artix runtime will
locate the discriminator as it processes
the message. Supported values are
msgname, partlist, fieldvalue, and
fieldname.

tagged:body

tagged:body is a child element of the input, output, and
fault messages being mapped to a tagged data format. It

98

specifies that the message body is mapped to tagged data on
the wire and describes the exact mapping for the message’s
parts.

tagged:body will have one or more of the following child
elements:

• tagged:field

• tagged:enumeration

• tagged:sequence

• tagged:choice

They describe the detailed mapping of the message to the
tagged data to be sent on the wire.

tagged:field
tagged:field is used to map simple types and enumerations
to a tagged data format. Its two attributes are described in
Table 9.

Table 9. Attributes for tagged:field

Attribute Purpose

name A required attribute that must correspond to
the name of the logical message part that is
being mapped to the tagged data field.

alias An optional attribute specifying an alias for
the field that can be used to identify it on the
wire.

When describing enumerated types tagged:field will have a
number of tagged:enumeration child elements.

tagged:enumeration
tagged:enumeration is a child element of tagged:field
and is used to map enumerated types to a tagged data
format. It takes one required attribute, value, which
corresponds to the enumeration value as specified in the
logical description of the enumerated type.

For example, if you had an enumerated type, flavorType,
with the values FruityTooty, Rainbow, BerryBomb, and
OrangeTango the logical description of the type would be
similar to Example 43.

99

Example 43. Ice Cream Enumeration

flavorType would be mapped to the tagged data format
shown in Example 44.

Example 44. Tagged Data Ice Cream Mapping

tagged:sequence
taggeded:sequence maps arrays and sequences to a tagged
data format.

Its three attributes are described in Table 10.

Table 10. Attributes for tagged:sequence

Attributes Purpose

name A required attribute that must correspond to
the name of the logical message part that is
being mapped to the tagged data sequence.

alias An optional attribute specifying an alias for
the sequence that can be used to identify it
on the wire.

occurs An optional attribute specifying the number
of times the sequence appears. This
attribute is used to map arrays.

A tagged:sequence can contain any number of
tagged:field, tagged:sequence, or tagged:choice child
elements to describe the data contained within the sequence
being mapped. For example, a structure containing a name, a
date, and an ID number would contain three tagged:field
elements to fully describe the mapping of the data to the
fixed record message. Example 45 shows an Artix contract
fragment for such a mapping.

<xs:simpleType name="flavorType">
<xs:restriction base="xs:string">
<xs:enumeration value="FruityTooty"/>
<xs:enumeration value="Rainbow"/>
<xs:enumeration value="BerryBomb"/>
<xs:enumeration value="OrangeTango"/>

</xs:restriction>
</xs:simpleType>

<tagged:field name="flavor">
<tagged:enumeration value="FruityTooty"/>
<tagged:enumeration value="Rainbow"/>
<tagged:enumeration value="BerryBomb"/>
<tagged:enumeration value="OrangeTango"/>

</tagged:field>

100

Example 45. Mapping a Sequence to a Tagged Data Format
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"
targetNamespace="http://www.iona.com/taggedSer vice"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/tagged"
xmlns:tns="http://www.iona.com/taggedService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://www.iona.com/taggedService"

xmlns="ht tp://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:complexType name="person">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
<xsd:element name="ID" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

...
</types>
<message name="taggedSequence">
<part name="personPart" type="tns:person"/>

</message>
<portType name="taggedSequencePortType">
...
</portType>
<binding name="taggedSequenceBinding"

type="tns:taggedSequencePortType">
<tagged:binding selfDescribing="false" fieldSeparator="pipe"/>

...
<tagged:sequence name="personPart">
<tagged:field name="name"/>
<tagged:field name="date"/>
<tagged:field name="ID"/>

</tagged:sequence>
...
</binding>
...
</definition>

tagged:choice
tagged:choice maps unions to a tagged data format. Its
three attributes are described in Table 11.

Table 11. Attributes for tagged:choice

Attributes Purpose

name A required attribute that must
correspond to the name of the logical
message part that is being mapped to
the tagged data union.

http://www.iona.com/taggedSer
http://schemas.xmlsoap.org/wsdl/
http://schemas.iona.com/bindings/tagged
http://www.iona.com/taggedService
http://www.w3.org/2001/XMLSchema
http://www.iona.com/taggedService
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

101

Attributes Purpose

discriminatorName Specifies the message part used as the
discriminator for the union.

alias An optional attribute specifying an
alias for the union that can be used to
identify it on the wire.

A tagged:choice may contain one or more tagged:case
child elements to map the cases for the union to a tagged
data format.

tagged:case
tagged:case is a child element of tagged:choice and
describes the complete mapping of a union’s individual cases
to a tagged data format. It takes one required attribute,
name, that corresponds to the name of the case element in
the union’s logical description.

tagged:case must contain one child element to describe the
mapping of the case’s data to a tagged data format. Valid
child elements are tagged:field, tagged:sequence, and
tagged:choice.

Example 46 shows an Artix contract fragment mapping a
union to a tagged data format.

Example 46. Mapping a Union to a Tagged Data Format
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"
targetNamespace="http://www.iona.com/tagService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/tagged"
xmlns:tns="http://www.iona.com/tagService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLS chema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="tagUnionPortType">

http://www.iona.com/tagService
http://schemas.xmlsoap.org/wsdl/
http://schemas.iona.com/bindings/tagged
http://www.iona.com/tagService
http://www.w3.org/2001/XMLSchema
http://www.iona.com/tagService
http://www.w3.org/2001/XMLS
http://schemas.xmlsoap.org/wsdl/

102

...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
<tagged:binding selfDescribing="false"

fieldSeparator="comma"/>
...

<tagged:choice name="stationPart"
descriminatorName="disc">

<tagged:case name="train">
<tagged:field name="name"/>

 </tagged:case>
<tagged:case name="bus">
<tagged:field name="number"/>

</tagged:case>
<tagged:case name="cab">
<tagged:field name="number"/>

</tagged:case>
<tagged:case name="subway">
<tagged:field name="name"/>

</tagged:case>
</tagged:choice>
...
</binding>
...
</definition>

Example
Example 47 shows an example of an Artix contract containing
a tagged data format binding.

Example 47. Tagged Data Format Binding
<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:taged="http://schames.iona.com/binings/tagged"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
<types>
<schema

targetNamespace="http://widgetVendor.com/types/widget
Types" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:simpleType name="widgetSize">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="big"/>
<xsd:enumeration value="large"/>
<xsd:enumeration value="mungo"/>
<xsd:enumeration value="gargantuan"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Address">

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/soap/
http://schames.iona.com/binings/tagged
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://widgetvendor.com/types/widgetTypes
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

103

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street1" type="xsd:string"/>

<xsd:element name="street2" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zipCode" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="widgetOrderInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>
<xsd:element name="shippingAddress" type="xsd1:Address"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="widgetOrderBillInfo">
<xsd:sequence>
<xsd:element name="amount" type="xsd:int"/>
<xsd:element name="order_date" type="xsd:string"/>
<xsd:element name="type" type="xsd1:widgetSize"/>
<xsd:element name="amtDue" type="xsd:float"/>
<xsd:element name="orderNumber" type="xsd:string"/>
<xsd:element name="shippingAddress" type="xsd1:Address"/>
</xsd:sequence>
</xsd:complexType>
</schema>
</types>
<message name="widgetOrder">
<part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation"

type="xsd1:widgetOrderBillInfo"/>
</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
</operation>
</portType>
<binding name="orderWidgetsBinding"

type="tns:orderWidgets">
<tagged:binding selfDescribing="false"

fieldSeparator="pipe"/>
<operation name="placeWidgetOrder">
<tagged:operation discriminator="widgetDisc"/>
<input name="widgetOrder">
<tagged:body>
<tagged:sequence name="widgetOrderForm">
<tagged:field name="amount"/>
<tagged:field name="order_date"/>
<tagged:field name="type" >

<tagged:enumeration value="big"/>
<tagged:enumeration value="large"/>

104

<tagged:enumeration value="mungo"/>
<tagged:enumeration value="gargantuan"/>

</tagged:field>
<tagged:sequence name="shippingAddress">
<tagged:field name="name"/>
<tagged:field name="street1"/>
<tagged:field name="street2"/>
<tagged:field name="city"/>
<tagged:field name="state"/>
<tagged:field name="zip"/>

</tagged:sequence>
</tagged:sequence>

</tagged:body>
</input>
<output name="widgetOrderBill">
<tagged:body>

<tagged:sequence name="widgetOrderConformation">
<tagged:field name="amount"/>

<tagged:field name="order_date"/>
<tagged:field name="type">
<tagged:enumeration value="big"/>
<tagged:enumeration value="large"/>
<tagged:enumeration value="mungo"/>
<tagged:enumeration value="gargantuan"/>

</tagged:field>
<tagged:field name="amtDue"/>
<tagged:field name="orderNumber"/>
<tagged:sequence name="shippingAddress">
<tagged:field name="name"/>
<tagged:field name="street1"/>
<tagged:field name="street2"/>
<tagged:field name="city"/>
<tagged:field name="state"/>
<tagged:field name="zip"/>

</tagged:sequence>
</tagged:sequence>

</tagged:body>
</output>

</operation>
</binding>
<service name="orderWidgetsService">

<port name="widgetOrderPort"
binding="tns:orderWidgetsBinding">
<http:address location="http://localhost:8080"/>
</port>
</service>
</definitions>

105

Using the Pass
Through Binding
The pass through binding allows you to send untyped
message buffers through the run time as binary blobs. The
runtime will make no attempts to interpret the data in the
message.

The pass through binding is a simple binding for sending
blobs of data across the wire. The binding makes no attempts
to interpret the data and just writes the message to the wire
as a string. It is ideal for dealing with data that uses custom
encodings that cannot be properly described using one of the
other Artix ESB bindings.

When sending data, an application can just simply stuff the
binary data into a string buffer. The pass through binding will
simply dump the data to the wire.

When reading data, the pass through binding simply reads
messages into a string buffer. The string buffer is passed to
the application layer. The binding does not make any effort to
interpret the data or change it in anyway. The string buffer
can be unpacked into an exact copy of the message sent
across the wire.

Limitations

Because the pass through binding makes no effort to
interpret the message contents and only interacts with string
buffers it imposes some limitation on how you define your
service's interface:

• Input messages can only have a single string part.

• Output messages can only have a single string part.

• On the server-side, requests are always handled by the
first operation defined in the WSDL's portType element.

Namespace

The extensions used to describe the pass though binding are
defined in the namespace
http://schemas.iona.com/bindings/passthru. Add the
following line to your contracts:

xmlns:passthru="http://schemas.iona.com/bindings/passthru"

http://schemas.iona.com/bindings/passthru
http://schemas.iona.com/bindings/passthru

106

Describing the binding
You describe a pass through binding by adding a single
passthru:binding child to the WSDL binding element.

Example 48. Pass Through Binding Example
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.iona.com/bus/tests"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:passthru="http://schemas.iona.com/bindings/passthru
" targetNamespace="http://www.iona.com/bus/tests"
name="PassthruService">
<message name="returnString" />
<message name="returnStringResponse">
<part name="return" type="xsd:string"/>

</message>
<portType name="PassthruPortType">
<operation name="returnString">
<input name="returnString"
message="tns:returnString"/>
<output name="returnStringResponse"
message="tns:returnStringResponse"/>

</operation>
</portType>
<binding name="PassthruPortBinding"
type="tns:PassthruPortType">
<passthru:binding combineParts="true" />

</binding>
...

</definitions>

http://schemas.xmlsoap.org/wsdl/
http://www.iona.com/bus/tests
http://www.w3.org/2001/XMLSchema
http://schemas.iona.com/transports/http
http://schemas.iona.com/bindings/passthru
http://schemas.iona.com/bindings/passthru
http://www.iona.com/bus/tests

107

Part II

Transports
In this part
This part contains the following chapters:

How Endpoints are Defined in WSDL

Using HTTP

Using the Java Messaging System

Using IIOP

Using FTP

Using WebSphere MQ

Using Tuxedo

109

How Endpoints are
Defined in WSDL
Endpoints represent an instantiated service. They are defined
by combining a binding and the networking details used to
expose the endpoint.

An endpoint can be thought of as a physical manifestation of
a service. It combines a binding, which specifies the physical
representation of the logical data used by a service, and a set
of networking details that define the physical connection
details used to make the service contactable by other
endpoints.

Endpoints and services

In the same way a binding can only map a single interface,
an endpoint can only map to a single service. However, a
service can be manifested by any number of endpoints. For
example, you could define a ticket selling service that was
manifested by four different endpoints. However, you could
not have a single endpoint that manifested both a ticket
selling service and a widget selling service.

The WSDL elements

Endpoints are defined in a contract using a combination of the
WSDL service element and the WSDL port element. The
service element is a collection of related port elements.
The port elements define the actual endpoints.

The WSDL service element has a single attribute, name, that
specifies a unique name. The service element is used as the
parent element of a collection of related port elements.
WSDL makes no specification about how the port elements
are related. You can associate the port elements in any
manner you see fit.

The WSDL port element has a single attribute, binding, that
specifies the binding used by the endpoint. The port element
is the parent element of the elements that specify the actual
transport details used by the endpoint. The elements used to
specify the transport details are discussed in the following
sections.

Adding endpoints to a contract

Artix provides the tools that add the proper elements to your
contract for you. However, it is recommended that you have

110

some knowledge of how the different transports used in
defining an endpoint work.

You can also add an endpoint to a contract using any text
editor. When you hand edit a contract, you are responsible
for ensuring that the contract is valid.

Supported transports

Artix ESB endpoint definitions are built using extensions
defined for each of the transports Artix ESB for C++
supports. Artix ESB C++ Runtime supports the following
transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ

• IIOP

• CORBA

• Java Messaging Service

• File Transfer Protocol

111

Using HTTP
HTTP is the standard TCP/IP-based protocol used for client-
server communications on the World Wide Web. The main
function of HTTP is to establish a connection between a web
browser (client) and a web server for the purposes of
exchanging files and possibly other information on the Web.

Adding an HTTP Endpoint to a Contract
Artix provides three ways of specifying an HTTP endpoint’s
address depending on the payload format you are using.
SOAP 1.1 has a standardized soap:address element. SOAP
1.2 uses the wsoap12:address element. All other payload
formats use Artix’s http:address element.

As well as the standard soap:address element or
http:address element, Artix provides a number of HTTP
extensions. The Artix extensions allow you to specify a
number of the HTTP port’s configuration values in the
contract.

SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you
must use the soap:address element to specify the
endpoint’s address. It has one attribute, location, that
specifies the endpoint’s address as a URL.

Example 49 shows a port element used to send SOAP 1.1
messages over HTTP.

Example 49. SOAP 1.1 Port Element
<service name="artieSOAP11Service">

<port binding="artieSOAPBinding" name="artieSOAPPort">
<soap:address location="http://artie.com/index.xml">
</port>

</service>

SOAP 1.2

When you are sending SOAP 1.2 messages over HTTP you
must use the wsoap12:address element to specify the
endpoint’s address. It has one attribute, location, that
specifies the endpoint’s address as a URL.

Example 49 shows a port element used to send SOAP 1.2
messages over HTTP.

http://artie.com/index.xml

112

Example 50. SOAP 1.2 Port Element
<service name="artieSOAP12Service">
<port binding="artieSOAPBinding" name="artieSOAPPort">
<wsoap12:address location="http://artie.com/index.xml">

 </port>
</service>

Other payloads

When your messages are mapped to any payload format
other than SOAP, such as fixed, you must use Artix’s
http:address element to specify the endpoint’s address.
Like the soap:address element, it has one attribute,
location, that specifies the endpoint’s address as a URL.

Using the command line tool

To use wsdltoservice to add an HTTP endpoint, use the
following options.

wsdltoservice {-transport soap/http} [-e service]
[-t port] [-b binding] [-a address] [-hssdt
serverSendTimeout] [-hscvt serverReceiveTimeout]
[-hstrc trustedRootCertificates] [-hsuss
useSecureSockets] [-hsct contentType] [-hscc
serverCacheControl] [-hsscse
supressClientSendErrors] [-hsscre
supressClientReceiveErrors] [-hshka honorKeepAlive]
[-hsmps serverMultiplexPoolSize] [-hsrurl
redirectURL] [-hscl contentLocation] [-hsce
contentEncoding] [-hsst serverType] [-hssc
serverCertificate] [-hsscc serverCertificateChain]
[-hsspk serverPrivateKey] [-hsspkp
serverPrivateKeyPassword] [-hcst clientSendTimeout]
[-hccvt clientReceiveTimeout] [-hctrc
trustedRootCertificates] [-hcuss useSecureSockets]
[-hcct contentType] [-hccc clientCacheControl]
[-hcar autoRedirect] [-hcun userName] [-hcp
password] [-hcat clientAuthorizationType] [-hca
clientAuthorization] [-hca accept] [-hcal
acceptLanguage] [-hcae acceptEncoding] [-hch host]
[-hccn clientConnection] [-hcck cookie] [-hcbt
browserType] [-hcr referer] [-hcps proxyServer]
[-hcpun proxyUserName] [-hcpp proxyPassword] [-hcpat
proxyAuthorizationType] [-hcpa proxyAuthorization]
[-hccce clientCertificate] [-hcccc
clientCertificateChain] [-hcpk clientPrivateKey]
[-hcpkp clientPrivateKeyPassword] [-o file] [-d
dir] [-L file] [[-quiet] | [-verbose]] [-h] [-v]
wsdlurl

The -transport soap/http flag specifies that the tool is to
generate an HTTP service. The other options are as follows.

http://artie.com/index.xml

113

Table 22. Options for Adding an HTTP Endpoint

Option Description

-transport soap/http If the payload being sent over the wire is SOAP,
use -transport soap. For all other payloads
use -transport http.

-e service Specifies the name of the generated service
element.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which the
service is generated.

-a address Specifies the value used in the address
element of the port.

-hssdt serverSendTimeout Specifies the number of milliseconds that the
server can continue to try to send a response to
the client before the connection is timed-out.

-hscvt serverReceiveTimeout Specifies the number of milliseconds that the
server can continue to try to receive a request
from the client before the connection is timed-
out.

-hstrc trustedRootCertificates Specifies the full path to the X509 certificate for
the certificate authority.

-hsuss useSecureSockets Specifies if the server uses secure sockets. Valid
values are true or false.

-hsct contentType Specifies the media type of the information
being sent in a server response.

-hscc serverCacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hsscse
supressClientSendErrors

Specifies whether exceptions are thrown when
an error is encountered on receiving a client
request. Valid values are true or false.

-hsscre
supressClientReceiveErrors

Specifies whether exceptions are thrown when
an error is encountered on sending a response
to a client. Valid values are true or false.

-hshka honorKeepAlive Specifies if the server honors client keep-alive
requests. Valid values are true or false.

-hsrurl redirectURL Specifies the URL to which the client request
should be redirected if the URL specified in the
client request is no longer appropriate for the
requested resource.

114

Option Description

-hscl contentLocation Specifies the URL where the resource being sent
in a server response is located.

-hsce contentEncoding Specifies what additional content codings have
been applied to the information being sent by
the server, and what decoding mechanisms the
client therefore needs to retrieve the
information.

-hsst serverType Specifies what type of server is sending the
response to the client.

-hssc serverCertificate Specifies the full path to the X509 certificate
issued by the certificate authority for the server.

-hsscc serverCertificateChain Specifies the full path to the file that contains all
the certificates in the chain.

-hsspk serverPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified by
serverCertificate.

-hsspkp
serverPrivateKeyPassword

Specifies a password that is used to decrypt the
private key.

-hcst clientSendTimeout Specifies the number of milliseconds that the
client can continue to try to send a request to
the server before the connection is timed-out.

-hccvt clientReceiveTimeout Specifies the number of milliseconds that the
client can continue to try to receive a response
from the server before the connection is timed-
out.

-hctrc trustedRootCertificates Specifies the full path to the X509 certificate for
the certificate authority.

-hcuss ueSecureSockets Specifies if the client uses secure sockets. Valid
values are true or false.

-hcct contentType Specifies the media type of the data being sent
in the body of the client request.

-hccc clientCacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hcar autoRedirect Specifies if the server should automatically
redirect client requests.

-hcun userName Specifies the username the client uses to
register with servers.

-hcp password Specifies the password the client uses to
register with servers.

115

Option Description

-hcat clientAuthorizationType Specifies the authorization mechanisms the
client uses when contacting servers.

-hca clientAuthorization Specifies the authorization credentials used to
perform the authorization.

-hca accept Specifies what media types the client is
prepared to handle.

-hcal acceptLanguage Specifies what language the client prefers for
the purposes of receiving a response

-hcae acceptEncoding Specifies what content codings the client is
prepared to handle.

-hch host Specifies the internet host and port number of
the resource on which the client request is
being invoked.

-hccn clientConnection Specifies if the client will open a new connection
for each request or if it will keep the original
one open. Valid values are close and Keep-
Alive.

-hcck cookie Specifies a static cookie to be sent to the
server.

-hcbt browserType Specifies information about the browser from
which the client request originates.

-hcr referer Specifies the value for the client’s referring entity.

-hcps proxyServer Specifies the URL of the proxy server, if one
exists along the message path.

-hcpun proxyUserName Specifies the username that the client uses to be
authorized by proxy servers.

-hcpp proxyPassword Specifies the password that the client uses to be
authorized by proxy servers.

-hcpat proxyAuthorizationType Specifies the authorization mechanism the client
uses with proxy servers.

-hcpa proxyAuthorization Specifies the actual data that the proxy server
should use to authenticate the client.

-hccce clientCertificate Specifies the full path to the X509 certificate
issued by the certificate authority for the client.

-hcccc clientCertificateChain Specifies the full path to the file that contains all
the certificates in the chain.

-hcpk clientPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified by
clientCertificate.

116

Option Description

-hcpkp
clientPrivateKeyPassword

Specifies a password that is used to decrypt the
private key.

-o file Specifies the filename for the generated contract.
The default is to append -service to the name
of the imported contract.

-d dir Specifies the output directory for the generated
contract.

-L file Specifies the location of your Artix license file.
The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.

-verbose Specifies that the tool runs in verbose mode.

-h Displays the tool’s usage statement.

-v Displays the tool’s version.

For more information about the specific attributes and their
values see the Artix WSDL Extension Reference.

Example
Example 51 shows the namespace entries you need to add to
the definitions element of your contract to use the HTTP
extensions.

Example 51. Artix HTTP Extension Namespaces
<definitions
...
xmlns:http="http://schemas.iona.com/transports/http"
... >

Example 52 shows a port element for an endpoint that sends
fixed data over HTTP.

Example 52. Generic HTTP Port
<service name="artieFixedService">
<port binding="artieFixedBinding" name="artieFixedPort">

<http:address location="http://artie.com/index.xml">
</port>

</service>

http://schemas.iona.com/transports/http
http://artie.com/index.xml

117

Configuring an HTTP Endpoint
In addition to the http:address element or soap:address
element used to specify the URL of an HTTP endpoint, Artix
uses two other elements to define a number of other
properties for HTTP endpoints: http-conf:client and http-
conf:server.

The http-conf:client element specifies properties used to
configure an HTTP client-side endpoint. The http-
conf:server element specifies properties used to configure
an HTTP server-side endpoint. The properties are specified as
attributes to the elements. While the elements share many
attributes there are differences.

To use the HTTP configuration elements, you need to include
the following entry in your contract’s definition element:

xmlns:http-conf=
"http://schemas.iona.com/transports/http/configuration"

For a complete discussion of the specific attributes and their
values see the Artix WSDL Extension Reference.

Specifying Send and Receive Timeout Limits

The most common values that needs to be configured for an
HTTP endpoint are the ones controlling how long the endpoint
will spend sending a receiving messages before issuing a
timeout exception. Both client endpoints and server endpoints
have two attributes that control their timeout behaviors:
SendTimeout and RecieveTimeout.

Send timeout
The timeout limit for attempting to send a message is
specified, for both the client-side and server-side, using the
SendTimeout attribute. The timeout limit specifies the
number of milliseconds an endpoint will spend attempting to
transmit a message. It has a default setting of 30000
milliseconds.

This value may need to be adjusted if you are transmitting
large messages as they take longer to send. Other factors
that may affect the amount of time needed to transmit
messages over HTTP are the speed of the network, distance
between the endpoints, and the amount of traffic on the
network. For example, if you were transmitting high-
resolution photographs across the Atlantic, you may need to
adjust the value of the SendTimeout attribute to 1200000 as
shown in Example 53.

http://schemas.iona.com/transports/http/con
http://schemas.iona.com/transports/http/con

118

Example 53. Setting the SendTimeout Attribute
<port ...>
<soap:address ... />
<http-conf:client SendTimeout="120000" />

</port>

Receive timeout
The ReceiveTimeout attribute specifies the amount of time
an endpoint spends between when it initially receives the
beginning of a message and the when it receives the last
piece of data in the message. For example, if a client using
the default settings sends a response to a service that takes
90 seconds to process the response, the client will not
timeout. However, if it takes the client 45 seconds to read the
response from the network, it will timeout.

The causes for long read times are similar to the reasons for
long send times. Large messages, heavy network traffic, and
large physical distances can all have an impact on the amount
of time it takes an HTTP endpoint to receive a message. For
example, if you are transmitting map data to a remote
research facility, you may want to specify a value of 600000
for the ReceiveTimeout attribute of the remote endpoint as
shown in Example 54.

Example 54. Setting the ReceiveTimeout Attribute
<port ...>
<soap:address ... />
<http-conf:server ReceiveTimeout="600000" />

</port>

Specifying a Username and a Password

Username/password authentication is a common way of
requiring clients to identify themselves. By requiring a client
to provide a username and a password, a server can keep a
record of who is accessing it and determine if they are
authorized to access the functionality requested. For
example, many Wiki applications and blogging applications
require a username and password before allowing content to
be edited.

In Artix, the username and password presented by an HTTP
endpoint are specified using the following attributes of the
http-conf:client element:

• UserName

• Password

119

Be aware that these values will be visible to anyone that has
access to the endpoint’s contract. Using this style of
authentication does not provide a high level of security. For
information on using stronger security measures with Artix
see the Artix Security Guide.

Setting a username
You set a username using the http-conf:client element’s
UserName attribute. The value you specify is used to populate
the username field in the HTTP header of all messages sent
from the endpoint. Setting this attribute is optional. If no
value is specified, Artix does not populate the username field
of the HTTP header with a default value.

Setting a password
You set a password using the http-conf:client element’s
Password attribute. The value you specify is used to populate
the password field in the HTTP header of all messages sent
from the endpoint. It is an entirely optional attribute. If no
value is specified, Artix does not populate the password field
of the HTTP header with a default value.

Relationship between the attributes
The UserName attribute and the Password attribute are
independent of each other. Although most applications that
require a username also require a password, it is not
mandatory that this pattern is followed. An application may
just require a username for identification, or it may just use a
password to provide a level of exclusivity.

Similarly, Artix does not require that the two attributes be
used together. If an endpoint only needs to provide a
password, you can provide a value for the Password attribute
without providing a value for the UserName attribute.
Example 55 shows an HTTP endpoint definition that specifies
just a username.

Example 55. Specifying Just a Username
<port ...>
<http:address ... />
<http-conf:client UserName="Joe" />

</port>

The attributes and other security features
Specifying a username and password in an endpoint’s
contract does not affect the use of other Artix security
features. You are not forced to use HTTPS when using a
username or password. Similarly, you are not stopped from
implementing your endpoint using WS-Security headers. For
more details on using Artix’s security features see the Artix
Security Guide.

120

Configuring Keep-Alive Behavior

The default behavior of Artix endpoints is to open a
connection and keep it open for as long as the client requires.
However, it is not always desirable to keep a connection open
over multiple requests. This can present a security problem.
Artix endpoints can, therefore, be configured to close
connections after each request/response cycle.

Making keep-alive requests
HTTP client endpoints are configured to make keep-alive
requests using the http-conf:client element’s Connection
attribute. This attribute has two values: close and Keep-
Alive.

Keep-Alive is the default. It specifies that the client
endpoint wishes to keep its connections open for future
requests. The client will request that the server keep the
connection open. If the server does honor the request, the
connection remains open until one of the endpoints dies. If
the server does not honor the request, the client must open a
new connection for each request.

close specifies that the client endpoint does not wish to keep
its connections open for future requests. The client will always
open a new connection for each request.

Example 56 shows a port element that defines an HTTP
client endpoint that does not want to reuse connections.

Example 56. Specifying that the HTTP Connection is Closed
<port ...>
<soap:address location="http://localhost:8080" />
<http-conf:client Connection="close" />

</port>

Honoring keep-alive requests
HTTP server endpoints are not required to honor keep-alive
requests. The default behavior of Artix HTTP server endpoints
is the accept keep-alive requests. You can change this
behavior using the http-conf:server element’s
HonorKeepAlive attribute. It has two values: false and
true.

true is the default. It specifies that the server endpoint will
honor all keep-alive requests. If a client connects to the
server endpoint using at least HTTP 1.1 and requests that the
connection is kept alive, the server endpoint is left open. The
client can continue to make requests over the original
connection.

121

false specifies that the server endpoint rejects all keep-alive
requests. Once the endpoint responds to a request it closes
the connection used for the request/response sequence.

Example 57 shows a port element that defines an HTTP
server endpoint that rejects keep-alive requests.

Example 57. Rejecting Keep-Alive Requests
<port ...>
<soap:address location="http://localhost:8080" />
<http-conf:server HonorKeepAlive="false" />

</port>

Specifying Cache Control Directives
A common method to reduce latency and control network
traffic on the Web is to use caches that sit between server
endpoints and client endpoints. These caches monitor the
interactions between the endpoints. They store responses to
requests as they are passed from a server endpoint to a client
endpoint.

When a cache sees a request that it recognizes, it will check
its stored responses. If a match is found, the cache will
respond to the request on behalf of the server endpoint. The
server endpoint will never know the request was made and
the client endpoint will never know that it is getting a cached
response.

While this optimizes the transaction time, it does pose a few
possible problems:

• If a server endpoint collects usage statistics, it will not
have accurate data.

• If the server endpoint frequently updates its data, the
client endpoint may get a response that is out of date.

HTTP provides a mechanism for specifying cache behavior
using the HTTP message header. You can configure these
settings for your endpoints using the CacheControl attribute
of both the http-conf:server element and the http-
conf:client element.

Server endpoint settings
Server endpoints can tell caches how to handle the responses
they issue. For example, a server endpoint can direct caches
that its responses are stale after 10 seconds. These directives
are only valid for the responses issued from a particular
server endpoint.

Table 23 shows the valid values for CacheControl in http-
conf:server.

122

Table 23. Settings for CacheControl on an HTTP Server
Endpoint

Directive Behavior

no-cache Caches cannot use a particular response to satisfy subsequent
client requests without first revalidating that response with the
server. If specific response header fields are specified with this
value, the restriction applies only to those header fields within the
response. If no response header fields are specified, the restriction
applies to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response because the
response is intended for a single user. If specific response header
fields are specified with this value, the restriction applies only to
those header fields within the response. If no response header
fields are specified, the restriction applies to the entire response.

no-store Caches must not store any part of response or any part of the
request that invoked it.

no-transform Caches must not modify the media type or location of the content
in a response between a server and a client.

must-
revalidate

Caches must revalidate expired entries that relate to a response
before that entry can be used in a subsequent response.

proxy-
revalidate

Means the same as must-revalidate, except that it can only be
enforced on shared caches and is ignored by private unshared
caches. If using this directive, the public cache directive must
also be used.

max-age Specifies the maximum age, in seconds, of a cached response
before it is stale.

s-maxage Means the same as max-age, except that it can only be enforced
on shared caches and is ignored by private unshared caches. The
age specified by s-maxage overrides the age specified by max-
age. If using this directive, the proxy-revalidate directive
must also be used.

cache-
extension

Specifies additional extensions to the other cache directives.
Extensions might be informational or behavioral. An extended
directive is specified in the context of a standard directive, so that
applications not understanding the extended directive can at least
adhere to the behavior mandated by the standard directive.

Client endpoint settings
Client endpoints can tell caches what kinds of responses they
will accept and how to handle the response they receive. For
example, a client endpoint can direct caches not to store any
responses that it receives. A client endpoint can also direct
caches that it will only accept a cached response that is less
than 5 seconds old.

123

Table 24 shows the valid settings for CacheControl in http-
conf:client.

Table 24. Settings for CacheControl on HTTP Client Endpoint

Directive Behavior

no-cache Caches cannot use a particular response to satisfy subsequent
client requests without first revalidating that response with the
server. If specific response header fields are specified with this
value, the restriction applies only to those header fields within
the response. If no response header fields are specified, the
restriction applies to the entire response.

no-store Caches must not store any part of a response or any part of the
request that invoked it.

max-age The client can accept a response whose age is no greater than
the specified time in seconds.

max-stale The client can accept a response that has exceeded its
expiration time. If a value is assigned to max-stale, it
represents the number of seconds beyond the expiration time
of a response
up to which the client can still accept that response. If no
value is assigned, it means the client can accept a stale
response of any age.

min-fresh The client wants a response that will be still be fresh for at
least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of the content
in a response between a server and a client.

only-if-
cached

Caches should return only responses that are currently stored
in the cache, and not responses that need to be reloaded or
revalidated.

cache-
extension

Specifies additional extensions to the other cache directives.
Extensions might be informational or behavioral. An extended
directive is specified in the context of a standard directive, so
that applications not understanding the extended directive can
at least adhere to the behavior mandated by the standard
directive.

Managing Cookies in Artix Clients
Artix can send and receive cookies. It can also be configured
to pass along a static cookie with all outgoing requests. While
Artix can send and receive cookies, it is up to the application
to set dynamic cookies and ensure they are properly
managed.

Sending static cookies
If you want your client to always attach a static cookie to its
requests, you can specify this in the client’s contract. The
cookie is specified using the cookie attribute of the http-
conf:client element.

124

How Artix processes cookies Artix handles cookies using its
context mechanism. For an HTTP application there are two
contexts. One context is for incoming messages and the other
is for outgoing messages. Figure 1 shows how an Artix client
manages cookies.

Figure 1. Artix Cookie Processing

When a client makes a request it can save a cookie into its
outbound context and it will be sent with all future requests.
If a client receives a cookie from a service, that cookie is
stored in the client’s inbound context.

The received cookie does not have to be inspected. In order
to inspect the contents of a received cookie, you will need to
add the proper logic to your client using the Artix context
APIs.

The received cookie is not automatically transferred to the
out bound context. If you client needs to pass a received
cookie along with future requests, you will need to add logic
to your client so that it will transfer the received cookie from
the client’s inbound context to the outbound context.

More information
For information about setting cookies and using Artix
contexts, see Developing Artix Applications in C++.

125

Using the Java
Messaging System
JMS is a standards based messaging system that is widely
used in enterprise Java applications.

Defining a JMS Endpoint
Artix provides a transport plug-in that enables endpoints to
use Java Messaging System (JMS) queues and topics. One
large advantage of this is that Artix allows C++ applications
to interact directly with Java applications over JMS.

Artix’s JMS transport plug-in uses the Java Naming and
Directory Interface (JNDI) to locate and obtain references to
the JMS provider. Once Artix has established a connection to
a JMS provider, Artix supports the passing of messages
packaged as either a JMS ObjectMessage or a JMS
TextMessage.

Message formatting
The JMS transport takes messages and packages them into
either a JMS ObjectMessage or a TextMessage. When a
message is packaged as an ObjectMessage the message’s
data, including any format-specific information, is serialized
into a byte[] and placed into the JMS message body. When a
message is packaged as a TextMessage, the message’s data,
including any format-specific information, is converted into a
string and placed into the JMS message body.

When a message sent by Artix is received by a JMS
application, the JMS application is responsible for
understanding how to interpret the message and the
formatting information. For example, if the Artix contract
specifies that the binding used for a JMS endpoint is SOAP,
and the messages are packaged as a TextMessage, the JMS
application will receive a string containing all of the SOAP
envelope information. For a message encoded using the fixed
binding, the message will contain no formatting information,
simply a string of characters, numbers, and spaces.

Namespace
The WSDL extensions used to define a JMS endpoint are
specified in the namespace
http://celtix.objectweb.org/transports/jms. To use the JMS
extensions you will need to add the line shown Example 58 to
the definitions element of your contract.

http://celtix.objectweb.org/transports/jms

126

Example 58. JMS Extension’s Namespace
xmlns:jms="http://celtix.objectweb.org/transports/jms"

Basic Endpoint Configuration

JMS endpoints need to know certain basic information about
how to establish a connection to the proper destination. This
information is provided using the jms:address element and
its child the jms:JMSNamingProperty element. The
jms:address element’s attributes specify the information
needed to identify the JMS broker and the destination. The
jms:JMSNamingProperty element specifies the Java
properties used to connect to the JNDI service.

address element
The basic configuration for a JMS endpoint is done by using a
jms:address element in your service’s port element. The
jms:address element uses the attributes described in Table
25 to configure the connection to the JMS broker.

Table 25. JMS Port Attributes

Attribute Description

destinationStyle Specifies if the JMS destination is a JMS queue
or a JMS topic.

jndiConnectionFactoryName Specifies the JNDI name of the JMS connection
factory to use when connecting to the JMS
destination.

jmsDestinationName Specifies the JMS name of the destination to
which requests are sent.

jmsReplyDestinationName Specifies the JMS name of the destination
where replies are sent. This attribute allows you
to use a user defined destination for replies. For
details see Using a named reply destination.

jndiDestinationName Specifies the JNDI name of the destination to
which requests are sent.

jndiReplyDestinationName Specifies the JNDI name of the destination
where replies are sent. This attribute allows you
to use a user defined destination for replies. For
more details see Using a named reply
destination.

connectionUserName Specifies the username to use when connecting
to a JMS broker.

connectionPassword Specifies the password to use when connecting
to a JMS broker.

127

JMSNamingProperties element
To increase interoperability with JMS and JNDI providers, the
jms:address element has a child element,
jms:JMSNamingProperty, that allows you to specify the
values used to populate the properties used when connecting
to the JNDI provider. The jms:JMSNamingProperty element
has two attributes: name and value. The name attribute
specifies the name of the property to set. The value attribute
specifies the value for the specified property.

The following is a list of common JNDI properties that can be
set:

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.factory.object

• java.naming.factory.state

• java.naming.factory.url.pkgs

• java.naming.dns.url

• java.naming.authoritative

• java.naming.batchsize

• java.naming.referral

• java.naming.security.protocol

• java.naming.security.authentication

• java.naming.security.principal

• java.naming.security.credentials

• java.naming.language

• java.naming.applet

For more details on what information to use in these
attributes, check your JNDI provider’s documentation and
consult the Java API reference material.

Using a named reply destination
By default Artix ESB for C++ endpoints using JMS create a
temporary queue for the response queue. You can change
this behavior by setting either the jmsReplyDestinationName
attribute or the jndiReplyDestinationName attribute in the
endpoint's contract. A client endpoint will listen for replies on
the specified destination and it will specify the value of the
attribute in the ReplyTo field of all outgoing requests. An

128

service endpoint will use the value of the
jndiReplyDestinationName attribute as the location for
placing replies if there is no destination specified in the
request’s ReplyTo field.

Examples
Example 59 shows an example of a JMS port specification
that uses dynamic queues.

Example 59. Artix JMS Port with DynamicQueues
<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.artix.jmstransport
">

<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.activemq.jndi.ActiveMQInitialContextFactory"
/>

<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616"

/>
</jms:address>

</port>
</service>

Example 60 shows an example of a JMS port specification
that does not use dynamic queues.

Example 60. Artix JMS Port with Non-dynamic Queues
<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

jmsDestinationName="sonic:jms/queue/RequestQJmsDestination"
destinationStyle="queue">

<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.activemq.jndi.ActiveMQInitialContextFactory"
/>

<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616"

/>
<jms:JMSNamingProperty name="queue.MyQueue"
value="example.MyQueue" />

</jms:address>
</port>

</service>

Alternate InitialContextFactory settings for
using SonicMQ

If you are using Sonic MQ, you must use an alternative
method of specifying the InitialContextFactory value.
Specify a colon-separated list of package prefixes to force the

129

JNDI service to instantiate a context factory with the class
name
com.iona.jbus.jms.naming.sonic.sonicURLContextFactory to
perform lookups. This is shown in Example 61.

Example 61. JMS Port with Alternate InitialContextFactory
Specification

<service name="JMSService">
<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address

jndiConnectionFactoryName="sonic:jms/queue/connectionFactory"
jndiDestinationName="jms/queue/helloWorldQueue">

<jms:JMSNamingProperty name="java.naming.factory.initial"
value="com.iona.jbus.jms.naming.sonic.sonicURLContextFactory"

/>
<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616"

/>
</jms:address>

</port>
</service>

Using the contract in Example 76 on page 169, Artix would
use the URL sonic:jms/queue/helloWorldQueue to get a
reference to the desired queue. Artix would be handed a
reference to a queue named helloWorldQueue if the JMS
broker has such a queue.

Client Endpoint Configuration

The client endpoint’s behaviors are configured using the
jms:client element. The jms:client element is a child of
the WSDL port element and has one attribute:

Table 26. Attributes for Configuring a JMS Client Endpoint

Attribute Description

messageType Specifies how the message data will be packaged as a JMS
message. text specifies that the data will be packaged as a
TextMessage. binary specifies that the data will be packaged
as an ObjectMessage.

This element is optional. The default behavior of a JMS client
endpoint is to send text messages.

Server Endpoint Configuration

JMS server endpoints have a number of behaviors that are
configurable in the contract. These include if the server uses
durable subscriptions, if the server uses local JMS

130

transactions, and the message selectors used by the
endpoint.

server element
Server endpoint behaviors are configured using the
jms:server element. The jms:server element is a child of
the WSDL port element and has the following attributes:

Table 27. Attributes for Configuring a JMS Server Endpoint

Attribute Description

useMessageIDAsCorrealationID Specifies whether JMS will use the
message ID to correlate messages.
The default is false.

durableSubscriberName Specifies the name used to register a
durable subscription. See Setting up
durable subscriptions.

messageSelector Specifies the string value of a
message selector to use. See Using
message selectors bookmark298.

transactional Specifies whether the local JMS
broker will create transactions around
message processing. The default is
false. See Using reliable messaging.

The jms:server element and all of its attributes are optional.

Setting up durable subscriptions
If you want to configure your server to use durable
subscriptions, you can set the optional
durableSubscriberName attribute. The value of the attribute
is the name used to register the durable subscription.

Using message selectors
If you want to configure your server to use a JMS message
selector, you can set the optional messageSelector
attribute. The value of the attribute is the string value of the
selector. For more information on the syntax used to specify
message selectors, see the JMS 1.1 specification.

Using reliable messaging
If you want your server to use the local JMS broker’s
transaction capabilities, you can set the optional
transactional attribute to true.

When the transactional attribute is set, an Artix server’s
JMS transport layer will begin a transaction when it pulls a
request from the queue. The server will then process the

131

request and send the response back to the JMS transport
layer. Once the JMS transport layer has successfully placed
the response on the response queue, the transport layer will
commit the transaction. So, if the Artix server crashes while
processing a request or the transport layer is unable to send
the response, the JMS broker will hold the request in the
queue until it is successfully processed.

In cases where Artix is acting as a router between JMS and
another transport, setting the transactional attribute will
ensure that the message is delivered to the second server.
The JMS portion of the router will not commit the message
until the message has been successfully consumed by the
outbound transport layer. If an exception is thrown during the
consumption of the message, the JMS transport will rollback
the message, pull it from the queue again, and attempt to
resend it.

Using the Command Line Tool

To use wsdltoservice to add a JMS endpoint use the tool with
the following options:

wsdltoservice {-transport jms} [-e service] [-t port] [-b
binding] [-o file] [-d dir] [-jnp propName:propVal...] [-jds
[queuetopic]] [-jnf connectionFactoryName] [-jdn
destinationName] [-jrdn replyDesinationName] [-jcun
username] [-jcp password] [-jmt [textbinar]] [-jms
messageSelector] [-jumi [truefalse]] [-jtr [truefalse]] [-jdsn
durableSubscriber] [-L file] [[-quiet] | [-verbose]] [-h] [-v]
wsdlurl

The -transport jms flag specifies that the tool is to
generate a JMS endpoint. The other options are as follows:

Table 28. Command Line Options for Creating a JMS Endpoint

Option Description

-e service Specifies the name of the generated service
element.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which the service
is generated.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-d dir Specifies the output directory for the generated
contract.

-jnp propName:propVal Specifies any optional Java properties to use in
connecting to the JNDI provider. This information is
used to populate a JMSNamingProperty element.

132

Option Description

You can use this flag multiple times.
-jds (queue/topic) Specifies if the JMS destination is a JMS queue or a JMS

topic.
-jfn
connectionFactoryName

Specifies the JNDI name bound to the JMS
connection factory to use when connecting to the
JMS destination.

-jdn destinationName Specifies the JNDI name of the JMS destination to
which Artix connects.

-jrdn
replyDestinationName

Specifies the JNDI name of the JMS destination used
for replies.

-jcun username Specifies the username used to connect to the JMS
broker.

-jcp password Specifies the password used to connect to the JMS
broker.

-jmt (text/binary) Specifies how the message data will be packaged as a
JMS message.

-jms messageSelector Specifies a message selector to use when pulling
messages from the JMS destination.

-jumi (true/false) Specifies if the JMS message id should be used as the
correlation id.

-jtr (true/false) Specifies if the services uses local JMS transactions
when processing requests.

-jdsn
durableSubscriber

Specifies the name of the durable subscription to use.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT PRODUCT DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.
-verbose Specifies that the tool runs in verbose mode.
-h Displays the tool’s usage statement.
-v Displays the tool’s version.

For more information about the specific attributes and their
values see the Artix WSDL Extension Reference.

Migrating to the 4.x JMS WSDL Extensions
The WSDL extensions used to configure a JMS endpoint were
modified in the 4.0 release of Artix. This update makes Artix
JMS endpoint definitions compatible with Celtix JMS
endpoints. To make the transition as smooth as possible,
Artix includes an XSLT script that can be used to
automatically migrate an old JMS endpoint definition to a new
JMS endpoint definition.

XSLT script
The XSLT script used to migrate old JMS endpoint definitions
to 4.x JMS endpoints is called
oldjmswsdl_to_newjmswsdl.xsl and it is located in

133

IntallDir/Artix/Version/etc/xslt/utilities/jms. It will
take any Artix contract containing a pre-4.x Artix JMS
endpoint definition as input and output an equivalent Artix
contract containing a 4.x Artix JMS endpoint.

Using the script with Artix
You can use Artix’s XSLT processor to convert your JMS
endpoints. To do so you run the Artix xslttransform command
line tool using the options shown in Example 62.

Example 62. Running the Transformer with the JMS Migration
Script
xslttransform -XSL oldjmswsdl_to_newjmswsdl.xsl
-IN oldWsdl.wsdl
-OUT newWsdl.wsdl

The XSLT processor will read the contract in oldWsdl.wsdl,
transform the old JMS endpoint to a new JMS endpoint, and
save the resulting contract in newWsdl.wsdl.

Using ActiveMQ as Your JMS Provider
Artix installs ActiveMQ, an open source JMS implementation,
for you to use as a possible messaging system. All of the
Artix JMS demos are configured to use ActiveMQ, so to run
the demos you must start the ActiveMQ broker.

Setting the CLASSPATH
When you set your Artix environment using the artix_env
script, the ActiveMQ jars are automatically added to your
CLASSPATH.

If you do not want to set the Artix environment before
starting ActiveMQ you need to add
InstallDir/lib/activemq/activemq/3.2.1/activemq-rt.jar to your
CLASSPATH.

Starting the broker
To start the ActiveMQ JMS broker run the following
command:

InstallDir/Artix/Version/bin/start_jms_broker

Stopping the broker
To shutdown the ActiveMQ JMS broker run the following
command:

InstallDir/Artix/Version/bin/ jmsbrokerinteract -sd

134

Security
By default, ActiveMQ’s security features are turned off. To
turn on ActiveMQ’s security features see the ActiveMQ
documentation.

More information
For more information on using ActiveMQ see the project’s
homepage at http://activemq.org.

http://activemq.org/

135

Using IIOP
Using IIOP to send non-CORBA formats allows you to take
advantages of CORBA services and QoS without using CORBA
applications.

Artix allows you to use IIOP as a generic transport for
sending data using any of the payload formats. When using
IIOP as a generic transport, you define your endpoint’s
address using aniiop:address element. The benefit of using
the generic IIOP transport is that it allows you to use CORBA
services without requiring your applications to be CORBA
applications. For example, you could use an IIOP tunnel to
send fixed format messages to an endpoint whose address is
published in a CORBA naming service.

Namespace
The namespace under which the IIOP extensions are defined
is http://schemas.iona.com/bindings/iiop_tunnel. If you
are going to add an IIOP port by hand you will need to add
this to your contract’s definition element.

IIOP address specification
The IOR, or address, of the IIOP port is specified using the
iiop:address element. You have four options for specifying
IORs in Artix contracts:

• Specify the object’s IOR directly in the contract, using the
stringified IOR format:

IOR:22342....

• Specify a file location for the IOR, using the following
syntax:

file:///file_name

NOTE: The file specification requires three backslashes (///).

• Specify that the IOR is published to a CORBA name
service, by entering the object’s name using the
corbaname format:

corbaname:rir/NameService#object_name

For more information on using the name service with Artix
see Artix for CORBA.

• Specify the IOR using corbaloc, by specifying the port at
which the service exposes itself, using the corbaloc
syntax.

http://schemas.iona.com/bindings/iiop_tunnel
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

136

corbaloc:iiop:host:port/service_name

When using corbaloc, you must be sure to configure your
service to start up on the specified host and port.

Specifying type of payload encoding
The IIOP transport can perform codeset negotiation on the
encoded messages passed through it if your CORBA system
supports it. By default, this feature is disabled so that the
agents sending the message maintain complete control over
codeset conversion. If you wish to enable automatic codeset
negotiation use the following element:

<iiop:payload type="string"/>

Specifying POA policies
Using the optional iiop:policy element, you can describe
the POA polices Artix will use when creating the IIOP
endpoint. These policies include:

• The POA name

• Persistence

• The system ID assigned to the POA

Setting these policies lets you exploit some of the enterprise
features of Micro Focus Orbix 6.x, such as load balancing and
fault tolerance, when deploying an Artix endpoints using the
IIOP transport. For information on using these advanced
CORBA features, see the Orbix documentation.

POA name
Artix POAs are created with the default name of WS_ORB. To
specify a name for the POA that Artix creates for an IIOP
endpoint, you use the following:

<iiop:policy poaname="poa_name"/>

The POA name is used for setting certain policies, such as
direct persistence and well-known port numbers in the
CORBA configuration.

Persistence
By default Artix POAs have a persistence policy of false. To
set the POA’s persistence policy to true, use the following:

<iiop:policy persistent="true"/>

ID Assignment
By default Artix POAs are created with a SYSTEM_ID policy,
meaning that their ID is assigned by Artix. To specify that the

137

IIOP endpoint’s POA should use a user-assigned ID, use the
following:

<corba:policy serviceid="POAid"/>

This creates a POA with a USER_ID policy and an object id of
POAid.

Using the command line tool
To use wsdltoservice to add an IIOP endpoint use the tool with
the following options.

wsdltoservice {-transport iiop} [-e service] [-t port] [-b
binding] [-a address] [-poa poaName] [-sid serviceId] [-pst
persists] [-paytype payload] [-o file] [-d dir] [-L file]
[[-quiet] | [-verbose]] [-h] [-v] wsdlurl

The -transport iiop flag specifies that the tool is to
generate an IIOP endpoint. The other options are as follows.

-e service Specifies the name of the generated service
element.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for which
the endpoint is generated.

-a address Specifies the value used in the generated
iiop:address elements.

-poa poaName Specifies the value of the POA name policy.
-sid
serviceId

Specifies the value of the ID assignment policy.

-pst persists Specifies the value of the persistence policy.
Valid values are true and false.

-paytype
payload

Specifies the type of data being sent in the
message payloads. Valid values are string,
octets, imsraw, imsraw_binary, cicsraw,
and cicsraw_binary.

-o file Specifies the filename for the generated contract.
The default is to append -service to the name
of the imported contract.

-d dir Specifies the output directory for the generated
contract.

-L file Specifies the location of your Artix license file.
The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.
-verbose Specifies that the tool runs in verbose mode.
-h Displays the tool’s usage statement.
-v Displays the tool’s version.

138

For more information about the specific attributes and their
values see the Artix WSDL Extension Reference.

Example
For example, an IIOP endpoint definition for the
personalInfoLookup binding would look similar to Example
63:

Example 63. CORBA personalInfoLookup Port
<service name="personalInfoLookupService">
<port name="personalInfoLookupPort"

binding="tns:personalInfoLookupBinding">
<iiop:address location="file:///objref.ior"/>
<iiop:policy persistent="true"/>
<iiop:policy serviceid="personalInfoLookup"/>

</port>
</service>

Artix expects the IOR for the IIOP endpoint to be located in a
file called objref.ior, and creates a persistent POA with an
object id of personalInfo to configure the IIOP endpoint.

139

Using FTP
Artix ESB allows endpoints to communicate using a remote
FTP server as an intermediary persistent datastore. When
using the FTP transport, client endpoints will put request
messages into a folder on the FTP server and then begin
scanning the folder for a response. Server endpoints will scan
the request folder on the FTP server for requests. When a
request is found, the service endpoint will get it and process
the request. When the service endpoint finishes processing
the request, it will post the response back to the FTP server.
When the client sees the response, it will get the response
from the FTP server.

Because of the file-based nature of the FTP transport and the
fact that endpoints do not have a direct connection to each
other, the FTP transport places the burden of implementing a
request/response coordination scheme on the developer. The
FTP transport also requires that you implement the logic
determining how the request and response messages are
cleaned-up.

Adding an FTP Endpoint
You define an FTP endpoint using WSDL extensions that are
placed within a the port element of a contract. The WSDL
extensions provided by Artix allow you to specify a number of
properties for establishing the FTP connection. In addition,
they allow you to specify some of the properties used to
define the naming properties for the files used by the
transport.

Namespace

To use the FTP transport, you need to describe the endpoint
using the FTP WSDL extensions in the physical part of a
WSDL contract. The extensions used to describe a FTP port
are defined in the following
namespace:xmlns:ftp="http://schemas.iona.com/transpo
rts/ftp"

This namespace will need to be included in your contract's
definitions element.

Defining the connection details

The connection details for the endpoint are defined in an
ftp:port element.

The ftp:port element has two attributes: host and port.

http://schemas.iona.com/transports/ftp
http://schemas.iona.com/transports/ftp

140

The host attribute is required. It specifies the name of the
machine hosting the FTP server to which the endpoint
connects.

The port attribute is optional. It specifies the port number on
which the FTP server is listening. The default value is 21.

Example 64 shows an example of a port element defining an
FTP endpoint.

Example 64. Defining an FTP Endpoint
<port name="FTPendpoint">
<ftp:port host="Dauphin" port="8080" />

</port>

In addition to the two required attributes, the ftp:port
element has the following optional attributes:

Attribute Description

requestLocation Specifies the location on the FTP server
where requests are stored. The default
is /.

replyLocation Specifies the location on the FTP server
where replies are stored. The default is /.

connectMode Specifies the connection mode used to
connect to the FTP daemon. Valid values are
passive and active.
The default is passive.

scanInterval Specifies the interval, in seconds, at which
the request and reply locations are scanned
for updates. The default is 5.

Specifying optional naming properties
You can specify optional naming policies using an
ftp:properties element. The ftp:properties element is a
container for a number ftp:property elements. The
ftp:property elements specify the individual naming
properties. Each ftp:property element has two attributes,
name and value, that make up a name-value pair that are
used to provide information to the naming implementation
used by the endpoint.

The default naming implementation provided with Artix has
two properties:

staticFilemanes Determines if the endpoint uses a static, non-
unique, naming scheme for its files. Valid
values are true and false. The default is
true.

requestFilenamePrefix Specifies the prefix to use for file names when
staticFilenames is set to false.

141

For information on defining optional properties see Using
Properties to Control Coordination Behavior.

Coordinating Requests and Responses
FTP requires that messages are written out to a file system
for retrieval. This poses a few problems. The first is
determining a naming scheme that is agreed upon by all
endpoints that use a common location on an FTP server.
Client endpoints and the server endpoints they are making
requests on need a method to coordinate requests and
responses. This includes knowing which messages are
intended for which endpoint.

The other problem posed by using a file system as a transport
is knowing when a message can be cleaned-up. If a message
is cleaned-up too soon, there is no way to re-read the
message if something goes wrong while it is being processed.
If a message is not cleaned-up soon enough, it is possible
that the message will be processed more than once.

Artix requires that you implement the logic used to determine
the file naming and clean-up logic used by your FTP
endpoints. This is done by implementing four Java interfaces:
two for the client-side and two for the server-side.

Default implementation

Artix provides a default implementation for coordinating
requests and responses. The default implementation enables
clients and servers to interact as if they are using a standard
RPC mechanism. Message names are generated at runtime
following a pattern based on the server endpoint’s service
name. Request messages are cleaned-up by the server
endpoint when the corresponding response is written to the
file system. Responses are cleaned-up by the client endpoint
when they are read from the file system.

Implementing the Client’s Coordination Logic

The client-side of the coordination implementation is made up
of two parts:

• The filename factory is responsible for generating the
filenames used for storing request messages on the FTP
server and determining the name of the associated
replies.

• The reply lifecycle policy is responsible for cleaning-up
reply files.

142

The filename factory
The client-side filename factory is created by implementing
the interface
com.iona.jbus.transports.ftp.policy.client.FilenameFactory

Example 65 shows the interface.

Example 65. Client-Side Filename Factory Interface
package com.iona.jbus.transports.ftp.policy.client;

import javax.xml.namespace.QName;
import com.iona.webservices.wsdl.ext.ftp.FTPProperties;

public interface FilenameFactory
{
void initialize(QName service, String port,

FTPProperties properties) throws Exception;

String getNextRequestFilename() throws Exception;
String getRequestIncompleteFilename(String requestFilename)
throws Exception;
String getReplyFilename(String requestFilename)
throws Exception;

FilenameFactoryPropertyMetaData[] getPropertiesMetaData();

};

The interface has four methods to implement:

initialize()

initialize() is called by the transport when it is loaded
by the bus. It receives the following:

• the QName of the service the client on which the client
wants to make requests.

• the value of the name attribute for the port element
defining the endpoint implementing the service.

• an array containing any properties you specified as
ftp:property elements in your client’s contract.

This method is used to set up any resources you need to
implement naming scheme used by the client-side
endpoints. For example, the default implementation uses
initialize() to do the following:

1. Determine if the user wants to use static filenames
based on an ftp:property element in the contract.
For more information see Using Properties to Control
Coordination Behavior on page 195.

2. If so, it generates a static filename prefix for the
requests.

143

3. If not, it uses the user supplied filename prefix for the
requests.

getNextRequestFilename()

getNextRequestFilename() is called by the transport
each time a request is sent out. It returns a string that
the transport will use as the filename for the completed
request message. For example, the default
implementation creates a filename by appending a string
representing the server endpoint’s system address and
the system time, in hexcode, to the prefix generated in
initialize().

getRequestIncompleteFilename()

getRequestIncompleteFilename() is called by the
transport each time a request is sent out. It returns a
string that the transport will use as the filename for the
request message as it is being transmitted. For example,
the default implementation creates a filename by
appending the request filename with _incomplete.

getReplyFilename()

getReplyFilename() is called by the transport when it
starts listening for a response to a two-way request. It
receives a string representing the name of the request’s
filename. It returns the name of the file that will contain
the response to the specified request. For example, the
default implementation generates the reply filename by
appending _reply to the request filename.

The reply lifecycle policy
The reply lifecycle policy is created by implementing the
com.iona.jbus.transports.ftp.policy.client.ReplyFileLifecycle
interface. Example 66 shows the interface.

Example 66. Reply Lifecycle Interface
package com.iona.jbus.transports.ftp.policy.client;
public interface ReplyFileLifecycle
{
boolean shouldDeleteReplyFile(String fileName)
throws Exception;
String renameReplyFile(String fileName)
throws Exception;

}

The interface has two methods to implement:

shouldDeleteReplyFile()

shouldDeleteReplyFile() is called by the transport
after it completes reading in a reply. It receives the

144

filename of the reply and returns a boolean stating if the
file should be deleted. If shouldDeleteReplyFile()
returns true, the transport deletes the reply file. If it
returns false, the transport renames reply file based on
the logic implemented in renameReplyFile().

renameReplyFile()

renameReplyFile() is called by the transport if
shouldDeleteReplyFile() returns false. It receives the
original name of the reply file. It returns a string the
contains the filename the transport uses to rename the
reply file.

Configuring the client's coordination logic

If you choose to implement your own coordination logic for an
FTP client endpoint, you need to configure the endpoint to
load the your implementation classes. This is done by adding
two configuration values to the endpoint’s Artix configuration
scope:

• plugins:ftp:policy:client:filenameFactory specifies
the name of the class implementing the client’s filename
factory.

• plugins:ftp:policy:client:replyFileLifecycle
specifies the name of the class implementing the client’s
reply lifecycle policy.

Both classes need to be on the endpoint’s classpath.

Example 67 shows an example of an Artix ESB configuration
scope that specifies an FTP client endpoint’s coordination
policies.

Example 67. Configuring an FTP Client Endpoint
ftp_client
{
plugins:ftp:policy:client:filenameFactory="demo.ftp.policy.client.

myFilenameFactory";
plugins:ftp:policy:client:replyFileLifecycle="demo.ftp.policy.client.

myReplyFileLifecycle";
};

For more information on configuring Artix ESB see
Configuring and Deploying Artix Solutions, C++
Runtime.

Implementing the Server’s Coordination Logic

The server-side of the coordination implementation is made
up of two parts:

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

145

• The filename factory is responsible for identifying which
requests to dispatch and how to name reply messages.

• The request lifecycle policy is responsible for cleaning-up
request files.

The filename factory
The server-side filename factory is created by implementing
the interface
com.iona.jbus.transports.ftp.policy.server.FilenameF
actory. Example 68 shows the interface.

Example 68. Server-Side Filename Factory Interface
package com.iona.jbus.transports.ftp.policy.server; import

javax.xml.namespace.QName;

import com.iona.jbus.Bus;
import com.iona.transports.ftp.Element;
import com.iona.webservices.wsdl.ext.ftp.FTPProperties;
public interface FilenameFactory
{
void initialize(Bus bus, QName service, String port,

FTPProperties properties) throws Exception;

String getRequestFilenamesRegEx()
throws Exception;
Element[] updateRequestFiles(Element[] inElements)
throws Exception;
String getReplyIncompleteFilename(String requestFilename)
throws Exception;
String getReplyFilename(String requestFilename)
throws Exception;
FilenameFactoryPropertyMetaData[]
getPropertiesMetaData();

}

The interface has six methods to implement:

initialize()

initialize() is called by the transport when it is
activated by the bus. It receives the following:

• the bus that has activated the transport.

• the QName of the service to which the endpoint is
implementing.

• the value of the name attribute for the port element
defining the endpoint’s connection details.

146

• an array containing any properties you specified as
ftp:property elements in your server endpoint’s
contract.

This method is used to set up any resources you need to
implement naming scheme used by the server-side
endpoints. For example, the default implementation uses
initialize() to do the following:

1. Determine if the user wants to use static filenames
based on an ftp:property element in the contract.
For more information see Using Properties to Control
Coordination Behavior.

2. If so, it generates a static filename prefix for the
requests.

3. If not, it uses the user supplied filename prefix for the
requests.

getRequestFileRegEx()

getRequestFileRegEx() is called by the transport when
it initializes the server-side FTP listener. It returns a
regular expression that is used to match request
filenames intended for a specific server instance. For
example, the default implementation returns a regular
expression of the form:

{wsdl:tns}_{wsdl:service(@name)}_{wsdl:port(@name
)}_{reqUuid}

updateRequestFiles()

updateRequestFiles() is called by the transport after it
determines the list of possible requests and before it
dispatches the requests to the service implementation for
processing. It receives an array of
com.iona.transports.ftp.Element objects. This array
is a list of all the request messages selected by the
request filename regular expression.
updateRequestFiles() returns an array of Element
objects containing only the messages that are to be
dispatched to the service implementation.

getReplyIncompleteFilename()

getReplyInclompleteFilename() is called by the
transport when it is ready to post a response. It receives
the filename of the request that generated the response.
It returns a string that is used as the filename for the
response as it is being written to the FTP server. For
example, the default implementation returns _incomplete
appended to request filename.

147

getReplyFilename()

getReplyFilename() is called by the transport after it
finishes writing a response to the FTP server. It receives
the filename of the request that generated the response.
It returns a string that is used as the filename for the
completed response. For example, the default
implementation returns _reply appended to request
filename.

getPropertiesMetaData()

getPropertiesMetaData() is a convenience function that
returns an array of all the possible properties you can use
to effect the behavior of the FTP naming scheme. The
properties returned correspond to the values defined in
the ftp:properties element. For more information see
Using Properties to Control Coordination Behavior.

The request lifecycle policy
The request lifecycle policy is created by implementing the
com.iona.jbus.transports.ftp.policy.server.RequestFi
leLifecycle interface. Example 69 shows the interface.

Example 69. Request Lifecycle Interface
package com.iona.jbus.transports.ftp.policy.server;
public interface RequestFileLifecycle
{
boolean shouldDeleteRequestFile(String fileName)
throws Exception;
String renameRequestFile(String fileName)
throws Exception;

}

The interface has two methods to implement:

shouldDeleteRequestFile()

shouldDeleteRequestFile() is called by the transport
after it completes writing in a response. It receives the
filename of the request that generated the response and
returns a boolean stating if the file should be deleted. If
shouldDeleteRequestFile() returns true, the transport
deletes the request file. If it returns false, the transport
renames reply file based on the logic implemented in
renameRequestFile().

renameRequestFile()

renameRequestFile() is called by the transport if
shouldDeleteRequestFile() returns false. It receives
the original name of the request file. It returns a string
that contains the filename the transport uses to rename
the request file.

148

Configuring the server's coordination logic
If you choose to use your own coordination logic for an FTP
server endpoint, you need to configure the endpoint to load
the proper implementation classes. This is done by adding
two configuration values to the endpoint’s Artix configuration
scope:

• plugins:ftp:policy:server:filenameFactory specifies
the name of the class implementing the server’s filename
factory.

• plugins:ftp:policy:server:requestFileLifecycle
specifies the name of the class implementing the server’s
request lifecycle policy.

Both classes need to be on the endpoint’s classpath.

Example 70 shows an example of an Artix configuration scope
that specifies an FTP server endpoint’s coordination policies.

Example 70. Configuring an FTP Server Endpoint
ftp_client
{
plugins:ftp:policy:server:filenameFactory="demo.ftp.policy
.server.myFilenameFactory";
plugins:ftp:policy:server:requestFileLifecycle="demo.ftp.pol
icy.client.myReqFileLifecycle";

};

For more information on configuring Artix see Configuring
and Deploying Artix Solutions, C++ Runtime.

Using Properties to Control Coordination Behavior

In order to ensure that your FTP client endpoints and FTP
server endpoints are using the same coordination behavior,
you may need to pass some information to the transports as
they initialize. To make this information available to both
sides of the application and still be settable at run time, the
Artix FTP transport allows you to provide custom properties
that are settable in an endpoint’s contract. These properties
are set using the ftp:properties element.

Properties in the contract
You can place any number of custom properties into port
element defining an FTP endpoint. As described in Specifying
optional naming properties, the ftp:properties element is a
container for one or more ftp:property elements. The
ftp:property element has two attributes: name and value.
Both attributes can have any string as a value. Together they
form a name/value pair that your coordination logic is
responsible for processing.

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

149

For example, imagine an FTP endpoint defined by the port
element in Example 71.

Example 71. FTP Endpoint with Custom Properties
<port ...>
<ftp:port ... />
<ftp:properties>
<ftp:property name="UseHumanNames" value="true" />
<ftp:property name="LastName" value="Doe" />

</ftp:properties>
</port>

The endpoint is configured using two custom FTP properties:

• UseHumanNames with a value of true.

• LastName with a value of Doe.

These properties are only meaningful if the coordination logic
used by the endpoint supports them. If they are not
supported, they are ignored.

Supporting the properties
The initialize() method of both the client-side filename
factory and the server-side filename factory take a
com.iona.webservices.wsdl.ext.ftp.FTPProperties
object. The FTPProperties object is populated by the
contents of the endpoints ftp:properties element when the
transport is initialized.

The FTPProperties object can be used to access all of the
properties defined by ftp:property elements. To access the
properties you do the following:

1. Use the getExtensors() method to get an Iterator
object.

2. Using the Iterator objects next() method, get the
elements in the list.

3. Cast the return value of the next() method to an
FTPProperty object.

Each com.iona.webservices.wsdl.ext.ftp.FTPProperty
object contains one name/value pair from one ftp:property
element. You can extract the value of the name attribute
using the FTPProperty object’s getProperty() with the
constant
com.iona.webservices.wsdl.ext.ftp.FTPProperty.NAME.
You can extract the value of the value attribute using the
FTPProperty object’s getProperty() with the constant
com.iona.webservices.wsdl.ext.ftp.FTPProperty.VALUE.

150

Once you have the values of the properties, it is up to you to
determine how they impact the coordination scheme.

Example 72 shows code for supporting the properties shown
in Example 71.

Example 72. Using Custom FTP Properties
import com.iona.webservices.wsdl.ext.FTPProperties; import
com.iona.webservices.wsdl.ext.FTPProperty;
String nameTypeProp = "UseHumanNames"; String lastNameProp
= "LastName";
for (Iterator it = properties.getExtensors();
it.hasNext();)
{
FTPProperty property = (FTPProperty)it.next(); String n =
property.getProperty(FTPProperty.NAME);
if (nameTypeProp.equals(n))
{
Boolean useHuman = new
Boolean(property.getProperty(FTPProperty.VALUE));

}
if (lastNameProp.equals(n))
{
String lastName =
property.getProperty(FTPProperty.VALUE);

}
}

Filling in the filename factory property metadata
The server-side filename factory’s getPropertiesMetaData()
method is a convenience function that can be used to publish
the supported custom properties. It returns the details of the
supported properties in an array of
com.iona.jbus.transports.ftp.policy.server.FilenameF
actoryPropertyMetaData objects.

FilenameFactoryPropertyMetaData objects have three fields:

• name is a string that specifies the value of the
ftp:property element’s name attribute.

• readOnly is a boolean that specifies if you can set this
property in a contract.

• valueSet is an array of strings that specify the possible
values for the property.

FilenameFactoryPropertyMetaData objects do not have any
methods for populating its fields once the object is
instantiated. You must set all of the values using the
constructor that is shown in Example 73.

151

Example 73. Constructor for
FilenameFactoryPropertyMetaData
public FilenameFactoryPropertyMetaData(String n, boolean ro,

String[] vs)
{
name = n; readOnly = ro; valueSet = vs;

}

Example 74 shows code for creating an array to be returned
from getPropertiesMetaData().

Example 74. Populating the Filename Properties Metadata
FilenameFactoryPropertyMetaData[] propMetas = new
FilenameFactoryPropertyMetaData[]
{
new FilenameFactoryPropertyMetaData("UseHumanNames", false,

new String[] {Boolean.TRUE.toString(),
Boolean.FALSE.toString()}),

new FilenameFactoryPropertyMetaData("LastName", false, null)
};

The list of possible values specified for the property LastName
is set to null because the property can have any string
value.

153

Using WebSphere MQ
Artix can use WebSphere MQ to transport messages and
leverage much of WebSphere’s infrastructure to provide QoS.

Adding a WebSphere MQ Endpoint
The description for an Artix WebSphere MQ endpoint is
entered in a port element of the Artix contract containing
the interface to be exposed over WebSphere MQ. Artix
defines two elements to describe WebSphere MQ endpoints
and their attributes:

• mq:client defines an endpoint for a WebSphere MQ
client application.

• mq:server defines an endpoint for a WebSphere MQ
server application.

You can use one or both of the WebSphere MQ elements to
describe a WebSphere MQ endpoint. Each can have different
configurations depending on the attributes you choose to set.

WebSphere MQ namespace
The WSDL extensions used to describe WebSphere MQ
transport details are defined in the WSDL namespace
http://schemas.iona.com/transports/mq. If you are going
to add a WebSphere MQ port by hand you will need to include
the following in the definitions tag of your contract:

xmlns:mq="http://schemas.iona.com/transports/mq"

Required Attributes
When you define a WebSphere MQ endpoint you need to
provide at least enough information for the endpoint to
connect to its message queues. For any WebSphere
application that means setting the QueueManager and
QueueName attributes in the port element. In addition, if you
are configuring a client that expects to receive replies from
the server, you need to set the ReplyQueueManager and
ReplyQueueName attributes of the mq:client element
defining the client endpoint.

In addition, if you are deploying applications on a machine
with a full MQ installation, you need to set the
Server_Client attribute to client if the endpoint is going
to use remote queues. This setting instructs Artix to load
libmqic instead of libmqm.

http://schemas.iona.com/transports/mq
http://schemas.iona.com/transports/mq

154

Using the command line tool
To use wsdltoservice to add a WebSphere MQ endpoint use
the tool with the following options.

wsdltoservice {-transport mq} [-e service] [-t port]
[-b binding] [-sqm queueManager] [-sqn queue] [-srqm
queueManager] [-srqn queue] [-smqn modelQueue] [-sus
usageStyle] [-scs correlationStyle] [-sam
accessMode] [-sto timeout] [-sme expiry] [-smp
priority] [-smi messageId] [-sci correlationId] [-sd
delivery] [-st transactional]

[-sro reportOption] [-sf format] [-sad
applicationData] [-sat accountingToken] [-scn
connectionName] [-sc convert] [-scr reusable] [-scfp
fastPath] [-said idData] [-saod originData] [-cqm
queueManager] [-cqn queue] [-crqm queueManager]
[-crqn queue] [-cmqn modelQueue]

[-cus usageStyle] [-ccs correlationStyle] [-cam
accessMode] [-cto timeout] [-cme expiry] [-cmp
priority] [-cmi messageId] [-cci correlationId] [-cd
delivery] [-ct transactional] [-cro reportOption]
[-cf format] [-cad applicationData] [-cat
accountingToken] [-ccn connectionName] [-cc convert]
[-ccr reusable] [-ccfp fastPath] [-caid idData]
[-caod originData] [-caqn queue] [-cui userId]
[-o file] [-d dir] [-L file] [[-quiet] | [-verbose]]
[-h] [-v] wsdlurl

The -transport mq flag specifies that the tool is to generate
a WebSphere MQ service. The other options are as follows.

Table 29. Options for Adding a WebSphere MQ Endpoint

Option Description

-e service Specifies the name of the generated service element.
-t port Specifies the value of the name attribute of the

generated port element.
-b binding Specifies the name of the binding for which the endpoint

is generated.
-sqm queueManager Specifies the name of the server’s queue manager.
-sqn queue Specifies the name of the server’s request queue.
-srqm
queueManager

Specifies the name of the server’s reply queue manager.

-srqn queue Specifies the name of the server’s reply queue.
-smqn modelQueue Specifies the name of the server’s model queue.
-sus usageStyle Specifies the value of the server’s UsageStyle

attribute. Valid values are Peer, Requester, or
Responder.

155

Option Description

-scs
correlationStyle

Specifies the value of the server’s CorrelationStyle
attribute. Valid values are messageId, correlationId,
or messageId copy.

-sam accessMode Specifies the value of the server’s AccessMode
attribute. Valid values are peek, send, receive,
receive exclusive, or receive shared.

-sto timeout Specifies the value of the server’s Timeout attribute.
-sme expiry Specifies the value of the server’s MessageExpiry

attribute.
-smp priority Specifies the value of the server’s MessagePriority

attribute.
-smi messageId Specifies the value of the server’s MessageId attribute.
-sci correlationId Specifies the value of the server’s CorrelationID

attribute.
-sd delivery Specifies the value of the server’s Delivery attribute.
-st transactional Specifies the value of the server’s Transactional

attribute. Valid values are none, internal, or xa.
-sro reportOption Specifies the value of the server’s ReportOption

attribute. Valid values are none, coa, cod,
exception, expiration, or discard.

-sf format Specifies the value of the server’s Format attribute.
-sad
applicationData

Specifies the value of the server’s ApplicationData
attribute.

-sat
accountingToken

Specifies the value of the server’s AccountingToken
attribute.

-scn
connectionName

Specifies the name of the connection by which the
adapter connects to the queue.

-sc convert Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid values
are true or false.

-scr reusable Specifies the value of the server’s ConnectionReusable
attribute. Valid values are true or false.

-scfp fastPath Specifies the value of the server’s ConnectionFastPath
attribute. Valid values are true or false.

-said idData Specifies the value of the server’s ApplicationIdData
attribute.

-saod originData Specifies the value of the server’s
ApplicationOriginData attribute.

-cqm queueManager Specifies the name of the client’s queue manager.
-cqn queue Specifies the name of the client’s request queue.
-crqm
queueManager

Specifies the name of the client’s reply queue manager.

-crqn queue Specifies the name of the client’s reply queue.

156

Option Description

-cmqn modelQueue Specifies the name of the client’s model queue.
-cus usageStyle Specifies the value of the client’s UsageStyle

attribute. Valid values are Peer, Requester, or
Responder The default value is Requester.

-ccs
correlationStyle

Specifies the value of the client’s CorrelationStyle
attribute. Valid values are messageId, correlationId,
or messageId copy.

-cam accessMode Specifies the value of the client’s AccessMode attribute.
Valid values are peek, send, receive, receive
exclusive, or receive shared.

-cto timeout Specifies the value of the client’s Timeout attribute.
-cme expiry Specifies the value of the client’s MessageExpiry

attribute.
-cmp priority Specifies the value of the client’s MessagePriority

attribute.
-cmi messageId Specifies the value of the client’s MessageId attribute.
-cci
correlationId

Specifies the value of the client’s CorrelationId
attribute.

-cd delivery Specifies the value of the client’s Delivery attribute.
-ct transactional Specifies the value of the client’s Transactional

attribute. Valid values are none, internal, or xa.
-cro reportOption Specifies the value of the client’s ReportOption

attribute. Valid values are none, coa, cod, exception,
expiration, or discard.

-cf format Specifies the value of the client’s Format attribute.
-cad
applicationData

Specifies the value of the client’s ApplicationData
attribute.

-cat
accountingToken

Specifies the value of the client’s AccountingToken
attribute.

-ccn
connectionName

Specifies the name of the connection by which the
adapter connects to the queue.

-cc convert Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid values
are true or false.

-ccr reusable Specifies the value of the client’s ConnectionReusable
attribute. Valid values are true or false.

-ccfp fastPath Specifies the value of the client’s ConnectionFastPath
attribute. Valid values are true or false.

-caid idData Specifies the value of the client’s ApplicationIdData
attribute.

-caod originData Specifies the value of the client’s
ApplicationOriginData attribute.

157

Option Description

-caqn queue Specifies the remote queue to which a server will put
replies if its queue manager is not on the same host as
the client’s local queue manager.

-cui userId Specifies the value of the client’s UserIdentification
attribute.

-o file Specifies the filename for the generated contract. The
default is to append –service to the name of the
imported contract.

-d dir Specifies the output directory for the generated contract.
-L file Specifies the location of your Artix license file. The default

behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.
-verbose Specifies that the tool runs in verbose mode.
-h Displays the tool’s usage statement.
-v Displays the tool’s version.

For more information about the specific attributes and their
values see the Artix WSDL Extension Reference.

Example
An Artix contract exposing an interface, monsterBash, bound
to a SOAP payload format, Raydon, on an WebSphere MQ
queue, UltraMan would contain a service element similar to
Example 75.

Example 75. Sample WebSphere MQ Port
<service name="Mothra">
<port name="X" binding="tns:Raydon">
<mq:server QueueManager="UMA"

QueueName="UltraMan" ReplyQueueManager="WINR"
ReplyQueueName="Elek" AccessMode="receive"
CorrelationStyle="messageId copy"/>

</port>
</service>

WebSphere MQ Connection Settings
The Artix ESB MQ transport makes some basic connection
decisions. These have an impact on the privileges required
when Artix ESB connects to a queue manager, and how
context information is handled.

Granting authority for setting context information
You can control access privileges using the WebSphere MQ
setmqaut command.

158

Example 76 shows the commands required to provide the
proper authorization for the Artix ESB transport. For example,
these commands apply when the Artix AccessMode WSDL
extension is set to send+setid.

Example 76. Granting the MQ Transport Authorization
setmqaut -m MY_QMNGR -t queue -n MY_Q -g grp +all

setmqaut -m MY_QMNGR -t queue -n MY_Q -g grp -setall
-passid -passall

For more details on setting authorizations, see the entry for
MQ AccessModes in the Artix WSDL Extension Reference.

Further information
For more information on the implications of using
MQOO_SET_ALL_CONTEXT and the setmqaut command, see:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/
index.jsp?topic=/com.ibm.mq.amqzag.doc/fa15980_.htm

Specifying the WebSphere Library to Load
The version of the WebSphere MQ shared library loaded by an
Artix MQ endpoint alters the types of queues that an endpoint
can access. For example, if an Artix endpoint loads the MQ
client shared library, it will only be able to use queues hosted
on a remote machine. Artix provides an attribute in the MQ
WSDL extensions that allows you to control which library is
loaded.

The attribute
Both the mq:server element and the mq:client element
support the attribute that is used to specify which MQ
libraries to load. The Server_Client attribute specifies which
shared libraries to load on systems with a full WebSphere MQ
installation. Table 30 describes the settings for this attribute
for each type of WebSphere MQ installation.

Table 30. WebSphere MQ Server_Client Attribute Settings

MQ
Installation

Server_Client
Value

Behavior

Full The server shared library (libmqm) is loaded and the
application will use queues hosted on the local machine.

Full server The server shared library (libmqm) is loaded and the
application will use queues hosted on the local machine.

Full client The client shared library (libmqic) is loaded and the
application will use queues hosted on a remote machine.

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/%20index.jsp?topic=/com.ibm.mq.amqzag.doc/fa15980_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/%20index.jsp?topic=/com.ibm.mq.amqzag.doc/fa15980_.htm

159

MQ
Installation

Server_Client
Value

Behavior

Client The application will attempt to load the server shared
library (libmqm) before loading the client shared library
(libmqic). The application accesses queues hosted on a
remote machine.

Client server The application will fail because it cannot load the server
shared libraries.

Client client The client shared library (libmqic) is loaded and the
application accesses queues hosted on a remote machine.

Example
Example 77 shows a service element for an MQ endpoint
that uses the MQ client shared library.

Example 77. ARTIX MQ Endpoint Using MQ Client Library
<service name="Mothra">
<port name="X" binding="tns:Raydon">
<mq:server QueueManager="UMA"

QueueName="UltraMan" ReplyQueueManager="WINR"
ReplyQueueName="Elek" Server_Client="client" />

</port>
</service>

Using Queues on Remote Hosts
When interoperating between WebSphere MQ endpoints
whose queue managers are on different hosts, Artix requires
that you specify the name of the remote queue to which the
server will post reply messages. This ensures that the server
will put the replies on the proper queue. Otherwise, the
server will receive a request message with the ReplyToQ field
set to a queue that is managed by a queue manager on a
remote host and will be unable to send the reply.

You specify this server’s local reply queue name in the
mq:client element’s AliasQueueName attribute when you
define it in the client endpoint’s contract.

Effect of AliasQueueName
When you specify a value for the AliasQueueName attribute
in an mq:client element, you alter how Artix populates the
request message’s ReplyToQ field and ReplyToQMgr field.
Typically, Artix populates the reply queue information in the
request message’s message descriptor with the values
specified in the ReplyQueueManager attribute and the
ReplyQueueName attribute. Setting the AliasQueueName
attribute causes Artix to leave ReplytoQMgr empty, and to

160

set ReplyToQ to the value of the AliasQueueName attribute.
When the ReplyToQMgr field of the message descriptor is left
empty, the sending queue manager inspects the queue
named in the ReplyToQ field to determine who its queue
manager is and uses that value for ReplyToQMgr. The server
puts the message on the remote queue that is configured as
a proxy for the client’s local reply queue.

Example
If you had a system defined similar to that shown in Figure 2,
you would need to use the AliasQueueName attribute setting
when configuring your WebSphere MQ client. In this set up
the client is running on a host with a local queue manager
QMgrA. QMgrA has two queues configured. RqA is a remote
queue that is a proxy for RqB and RplyA is a local queue. The
server is running on a different machine whose local queue
manager is QMgrB. QMgrB also has two queues. RqB is a local
queue and RplyB is a remote queue that is a proxy for
RplyA. The client places its request on RqA and expects
replies to arrive on RplyA.

Figure 2. MQ Remote Queues

The port elements for the client and server for this
deployment are shown in Example 78. The AliasQueueName
attribute is set to RplyB because that is the remote queue
proxying for the reply queue in server’s local queue manager.
The ReplyQueueManager attribute and the ReplyQueueName
attribute are set to the client’s local queue manager so that it
knows where to listen for responses. In this example, the
server’s ReplyQueueManager attribute and ReplyQueueName
attribute do not need to be set because you are assured that
the client is populating the request’s message descriptor with
the needed information for the server to determine where
replies are sent.

161

Example 78. Setting Up WebSphere MQ Ports for
Intercommunication
<mq:client QueueManager="QMgrA" QueueName="RqA"

ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
AliasQueueName="RplyB"
Format="string" Convert="true"/>

<mq:server QueueManager="QMgrB" QueueName="RqB"
Format="String" Convert="true"/>

Setting a Value of the Message Descriptor’s
Format Field

WebSphere MQ messages have a Format field in their
message descriptors. Message receivers use this field to
determine the nature of the data in the nature. What the
message receiver does with this information is the
responsibility of the application developer. Artix, however,
uses the Format field to determine if the contents of a
message are to undergo codeset conversion.

You can specify the value placed in the message descriptor’s
Format field using the Format attribute. This attribute is
supported by both the mq:client element and the
mq:server element and its value is a string specifying the
name of the message’s format.

Special values
The Format attribute can take the special values described in
Table 31.

Table 31. WebSphere MQ Format Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name is specified.

string Corresponds to MQFMT_STRING. string specifies that the
message consists entirely of character data. The message
data may be either single-byte characters or double-byte
characters.

unicode Corresponds to MQFMT_STRING. unicode specifies that
the message consists entirely of Unicode characters.
(Unicode is not supported in Artix at this time.)

event Corresponds to MQFMT_EVENT. event specifies that the
message reports the occurrence of a WebSphere MQ event.
Event messages have the same structure as programmable
commands.

programmable
command

Corresponds to MQFMT_PCF. programmable command
specifies that the messages are user-defined messages that
conform to the structure of a programmable command
format (PCF) message.

162

For more information, consult the IBM Programmable
Command Formats and Administration Interfaces
documentation at
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac
030d.htm#Header_12.

Using codeset conversion
Artix uses the value of the Format field in an MQ message
header to determine

if the message data should be converted into a host systems
native codeset. If the Format field is set to MQFMT_STRING,
Artix will attempt to convert the data into the host’s native
codeset. If the Format field has any other value, Artix will not
attempt to perform codeset conversion.

If you are interoperating with systems that use a different
codeset than the system your endpoint is hosted on, you
need to set the Format attribute of the Artix endpoint to
string. This is particularly important when you are
interoperating with WebSphere MQ applications hosted on a
mainframe because the data needs to be converted into the
systems native data format. Not doing so will result in the
mainframe receiving corrupted data.

Example
Example 79 shows an mq:client element that defines an
endpoint used for making requests against a server on a
mainframe system. In this particular example, we are talking
directly to the mainframe queue manager.

Example 79. WebSphere MQ Client Talking to the Mainframe
<mq:client QueueManager="Mainframe_Request_Queue_Manager"

QueueName="Application_request_queue_name"
ReplyQueueManager="Mainframe_Reply_Queue_Manager"
ReplyQueueName="Application_reply_queue_name"
Server_Client="client" Format="string" Convert=

"true" />

In this example, you will also need to set the MQSERVER
environment variable. The section Using a Remote MQ Server
in Artix Technical Use Cases explains this in detail.

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

163

Using Tuxedo
Artix allows services to connect using Tuxedo’s transport
mechanism. This provides them with all of the qualities of
service associated with Tuxedo.

Tuxedo namespaces
To use the Tuxedo transport, you need to describe the
endpoint using Tuxedo in the physical part of an Artix
contract. The extensions used to describe a Tuxedo endpoint
are defined in the following namespace:

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

This namespace will need to be included in your Artix
contract’s definition element.

Defining the Tuxedo services
As with other transports, the Tuxedo transport description is
contained within a port element. Artix uses a
tuxedo:server element to describe the attributes of a
Tuxedo endpoint. The tuxedo:server element has a child
element, tuxedo:service, that gives the bulletin board name
of a Tuxedo endpoint. The bulletin board name for the
endpoint is specified in the element’s name attribute. You can
define more than one Tuxedo service to act as an endpoint.

Mapping operations to a Tuxedo service
For each of the Tuxedo services that are endpoints, you must
specify which of the operations bound to the endpoint being
defined are handled by the Tuxedo service. This is done using
one or more tuxedo:input child elements. The
tuxedo:input element takes one required attribute,
operation, that specifies the WSDL operation that is handled
by this Tuxedo service endpoint.

Using the command line tools
To use wsdltoservice to add a Tuxedo endpoint use the tool
with the following options.

wsdltoservice {-transport tuxedo} [-e service] [-t
port] [-b binding] [-tsn tuxService] [-tfn
tuxService:tuxFunction] [-ton

tuxService:operation] [-o file] [-d dir] [-L file]
[[-quiet] | [-verbose]] [-h] [-v] wsdlurl

The -transport tuxedo flag specifies that the tool is to
generate a Tuxedo service. The other options are as follows.

164

Table 34. Options for Adding a Tuxedo Service

Option Description

-e service Specifies the name of the generated service
element.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for which the
endpoint is generated.

-tsn tuxService Specifies the name the service uses when
registering with the Tuxedo bulletin board.

-tfn
tuxService:tuxFunction

Specifies the name of the function to be used on
the specified Tuxedo bulletin board.

-ton
tuxService:operation

Specifies the WSDL operation that is handled by
the specified Tuxedo endpoint.

-o file Specifies the filename for the generated
contract. The default is to append -service to
the name of the imported contract.

-d dir Specifies the output directory for the generated
contract.

-L file Specifies the location of your Artix license file.
The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.
-verbose Specifies that the tool runs in verbose mode.
-h Displays the tool’s usage statement.
-v Displays the tool’s version.

For more information about the specific attributes and their
values see the Artix WSDL Extension Reference.

Example
An Artix contract exposing the personalInfoService as a
Tuxedo endpoint would contain a service element similar to
Example 80.

Example 80. Tuxedo Port Description
<service name="personalInfoService">
<port binding="tns:personalInfoBinding"
name="tuxInfoPort">
<tuxedo:server>
<tuxedo:service name="personalInfoService">

<tuxedo:input operation="infoRequest"/>
</tuxedo:service>

</tuxedo:server>
</port>

</service>

165

Part III

Other Artix ESB Features
In this part
This part contains the following chapters:

Working with CORBA

Using the Artix Transformer

Using Codeset Conversion

167

Working with CORBA
CORBA, unlike the other platforms supported by Artix ESB,
specifies both a mapping between the logical messages and a
network protocol. Because these two cannot be decoupled,
Artix provides extensions for both and requires that they be
used together. To further enforce the coupling of the CORBA
payload format and the CORBA network protocol all Artix
tools that generate CORBA extensions generate them in sets.

Adding a CORBA Binding
CORBA applications use a specific payload format when
making and responding to requests. The CORBA binding,
described using a WSDL extension, specifies the repository ID
of the IDL interface represented by the port type, resolves
parameter order and mode ambiguity in the operations’
messages, and maps the XML Schema data types to CORBA
data types.

In addition to the binding information, Artix also uses a
corba:typemap element to unambiguously describe how data
is mapped to CORBA data types. For primitive types, the
mapping is straightforward. However, complex types such as
structures, arrays, and exceptions require more detailed
descriptions. For a detailed description of the CORBA type
mappings see Artix for CORBA.

Options
To add a CORBA binding to an Artix contract you can choose
one of the following methods:

• Use the wsdltocorba command line tool. The command line
tool automatically generates the binding and type map
information for a specified port type. See Using
wsdltocorba.

• Enter the binding and typemap information by hand using
a text editor or XML editor. This option provides you the
flexibility to customize the binding. However, hand editing
Artix contracts can be a time consuming process and
provides no error checking mechanisms. For information
on the WSDL extensions used to specify a CORBA binding
see Mapping to the binding.

http://communities.progress.com/pcom/docs/DOC-106903

168

Using wsdltocorba
The wsdltocorba tool adds CORBA binding information to an
existing Artix contract. To generate a CORBA binding use the
following command:

wsdltocorba {-corba} {-i portType} [-d dir] [-b
binding] [-o file] [-props namespace] [-wrapped] [-L
file] [[-quiet] | [-verbose]] [-h] [-v] wsdl_file

The command has the following options:

Table 35. Options for Adding a CORBA Binding

Option Description

-corba Instructs the tool to generate a CORBA binding
for the specified port type.

-i portType Specifies the name of the port type being
mapped to a CORBA binding.

-d dir Specifies the directory into which the new WSDL
file is written.

-b binding Specifies the name for the generated CORBA
binding. Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file.
Defaults to wsdl_file-corba.wsdl.

-props
namespace

Specifies the namespace to use for the
generated CORBA typemap

-wrapped Specifies that the generated CORBA binding
uses wrapper types.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode. No
output will be shown on the console. This
includes error messages.

-verbose Specifies that the tool runs in verbose mode.
-h Specifies that the tool will display a usage

message.
-v Displays the tool’s version.
The generated WSDL file will also contain a CORBA endpoint
with no address specified.

WSDL namespace
The WSDL extensions used to describe CORBA data mappings
and CORBA transport details are defined in the WSDL
namespace http://schemas.iona.com/bindings/corba. To
use the CORBA extensions you will need to include the
following in the definitions tag of your contract:

xmlns:corba="http://schemas.iona.com/bindings/corba"

http://schemas.iona.com/bindings/corba
http://schemas.iona.com/bindings/corba

169

Mapping to the binding
The extensions used to map a logical operation to a CORBA
binding are described in detail below:

• corba:binding

corba:binding indicates that the binding is a CORBA
binding. This element has one required attribute:
repositoryID. The repositoryID attribute specifies the
full type ID of the interface. The type ID is embedded in
the object’s IOR and therefore must conform to the IDs
that are generated from an IDL compiler. These are of the
form:

IDL:module/interface:1.0

The corba:binding element also has an optional
attribute, bases, that specifies that the interface being
bound inherits from another interface. The value for bases
is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

//IDL
interface clash{}; interface bad : clash{};
would produce the following corba:binding:

<corba:binding repositoryID="IDL:bad:1.0"
bases="IDL:clash:1.0"/>

• corba:operation

corba:operation is an Artix-specific element of the
operation element and describes the parts of the
operation’s messages. corba:operation takes a single
attribute, name, which duplicates the name given in
operation.

• corba:param

corba:param is a child of corba:operation. Each part
element of the input and output messages specified in the
logical operation, except for the part representing the
return value of the operation, must have a corresponding
corba:param element. The parameter order defined in
the binding must match the order specified in the IDL
definition of the operation. The corba:param element has
the following required attributes:

170

Table 36. Attributes of corba:param

Attribute Description

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout,
out. Parameters set to in must be included in the
input message of the logical operation. Parameters set
to out must be included in the output message of the
logical operation. Parameters set to inout must appear
in both the input and output messages of the logical
operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

• corba:return

corba:return is a child of corba:operation and
specifies the return type, if any, of the operation. It has
two attributes:

Attribute Description

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.

• corba:raises

corba:raises is a child of corba:operation and
describes any exceptions the operation can raise. The
exceptions are defined as fault messages in the logical
definition of the operation. Each fault message must have
a corresponding corba:raises element. corba:raises
has one required attribute, exception, which specifies the
type of data returned in the exception.

In addition to operations specified in corba:operation tags,
within the WSDL operation element, each operation
element in the binding must also specify empty input and
output elements as required by the WSDL specification. The
CORBA binding specification, however, does not use them.

For each fault message defined in the logical description of
the operation, a corresponding fault element must be

171

provided in the operation element, as required by the WSDL
specification. The name attribute of the fault element
specifies the name of the schema type representing the data
passed in the fault message.

Example
For example, a logical interface for a system to retrieve
employee information might look similar to
personalInfoLookup, shown in Example 81.

Example 81. personalInfo lookup port type
<message name="personalLookupRequest">
<part name="empId" type="xsd:int"/>

</message>
<message name="personalLookupResponse">
<part name="return" element="xsd1:personalInfo"/>

</message>
<message name="idNotFoundException">
<part name="exception" element="xsd1:idNotFound"/>

</message>
<portType name="personalInfoLookup">
<operation name="lookup">
<input name="empID" message="personalLookupRequest"/>
<output name="return"

message="personalLookupResponse"/>
<fault name="exception" message="idNotFoundException"/>

</operation>
</portType>

The CORBA binding for personalInfoLookup is shown in
Example 82.

Example 82. personalInfoLookup CORBA Binding
<binding name="personalInfoLookupBinding"

type="tns:personalInfoLookup">
<corba:binding
repositoryID="IDL:personalInfoLookup:1.0"/>
<operation name="lookup">
<corba:operation name="lookup">
<corba:param name="empId" mode="in"

idltype="corba:long"/>
<corba:return name="return"

idltype="corbatm:personalInfo"/>
<corba:raises exception="corbatm:idNotFound"/>

</corba:operation>
<input/>
<output/>
<fault name="personalInfoLookup.idNotFound"/>

</operation>
</binding>

172

Creating a CORBA Endpoint
Generally, when you are creating a CORBA endpoint with
Artix, you need to do two things:

• Specify the port information in the Artix contract so that
Artix can instantiate the appropriate port.

• Generate the IDL describing your service so that a native
CORBA application can understand the interfaces of the
new service.

Configuring an Artix CORBA Endpoint

CORBA endpoints are described using the Artix-specific WSDL
elements corba:address and corba:policy within the
WSDL port element, to specify how a CORBA object is
exposed.

Namespace
The namespace under which the CORBA extensions are
defined is http://schemas.iona.com/bindings/corba. If
you are going to add a CORBA endpoint by hand you will
need to add this to your contract’s definition element.

CORBA address specification
The IOR of the CORBA object is specified using the
corba:address element.

You have four options for specifying IORs in Artix contracts:

• Specify the object’s IOR directly in the contract, using the
stringified IOR format:

IOR:22342...

• Specify a file location for the IOR, using the following
syntax:

file:///file_name

NOTE: The file specification requires three backslashes (///).

• Specify that the IOR is published to a CORBA name
service, by entering the object’s name using the
corbaname format:

corbaname:rir/NameService#object_name

For more information on using the name service with Artix
see Artix for CORBA.

http://schemas.iona.com/bindings/corba
http://communities.progress.com/pcom/docs/DOC-106903

173

• Specify the IOR using corbaloc, by specifying the port at
which the endpoint exposes itself, using the corbaloc
syntax.

corbaloc:iiop:host:port/service_name

When using corbaloc, you must be sure to configure your
endpoint to start up on the specified host and port.

Specifying POA policies
Using the optional corba:policy element, you can describe
a number of POA polices the endpoint will use when creating
the POA for connecting to a CORBA application. These policies
include:

• the name of the generated POA

• if persistence is used

• the ID of the generated POA

Setting these policies lets you exploit some of the enterprise
features of Micro Focus’ Orbix 6.x, such as load balancing and
fault tolerance, when deploying an Artix integration project.
For information on using these advanced CORBA features, see
the Orbix documentation.

POA name
Artix POAs are created with the default name of WS_ORB. To
specify the name of the POA Artix creates to connect with a
CORBA object, you use the following:

<corba:policy poaname="poa_name"/>

Persistence
By default Artix POAs have a persistence policy of false. To
set the POA’s persistence policy to true, use the following:

<corba:policy persistent="true"/>

ID assignment
By default Artix POAs are created with a SYSTEM_ID policy,
meaning that their ID is assigned by the ORB. To specify that
the POA connecting a specific object should use a user-
assigned ID, use the following:

<corba:policy serviceid="POAid"/>

This creates a POA with a USER_ID policy and an object id of
POAid.

174

Using the command line tool
You can use the wsdltoservice command line tool to add a
CORBA endpoint definition to an Artix contract. To use
wsdltoservice to add a CORBA endpoint use the tool with the
following options.

wsdltoservice {-transport corba} [-e service] [-t
port] [-b binding] [-a address] [-poa poaName] [-sid
serviceId] [-pst persists] [-o file] [-d dir] [-L
file] [[-q] | [-V]] [-h] wsdlurl

The -transport corba flag specifies that the tool is to
generate a CORBA endpoint. The other options are as follows.

Table 37. Options for Adding a CORBA Endpoint

Argument Descriptions

-e service Specifies the name of the generated service
element.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which the service
is generated.

-a address Specifies the value used in the corba:address
element of the port.

-poa poaName Specifies the value of the POA name policy.

-sid
serviceId

Specifies the value of the ID assignment policy.

-pst
persists

Specifies the value of the persistence policy. Valid
values are true and false.

-o file Specifies the filename for the generated contract.
The default is to append -service to the name of
the imported contract.

-d dir Specifies the output directory for the generated
contract.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output
will be shown on the console. This includes error
messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.

175

Example
For example, a CORBA port for the personalInfoLookup
binding would look similar to Example 83:

Example 83. CORBA personalInfoLookup Port
<service name="personalInfoLookupService">
<port name="personalInfoLookupPort"

binding="tns:personalInfoLookupBinding">
<corba:address location="file:///objref.ior"/>
<corba:policy persistent="true"/>
<corba:policy serviceid="personalInfoLookup"/>

</port>
</service>

Artix expects the IOR for the CORBA object to be located in a
file called objref.ior, and creates a persistent POA with an
object id of personalInfo to connect the CORBA application.

Generating CORBA IDL

Artix clients that use a CORBA transport require that the IDL
defining the interface exists and be accessible. Artix provides
tools to generate the required IDL from an existing WSDL
contract. The generated IDL captures the information in the
logical portion of the contract and uses that to generate the
IDL interface. Each portType element in the contract
generates an IDL module.

From the command line
The wsdltocorba tool compiles Artix contracts and generates
IDL for the specified CORBA endpoint. To generate IDL use
the following command:

wsdltocorba { -idl } {-b binding} [-corba] [-i
portType] [-d dir] [-o file] [-L file] [[-q] | [-V]]
[-h] wsdl_file

The command has the following options:

Table 38. Options for Generating IDL

Option Description

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which IDL is
to be generated.

-corba Instructs the tool to generate a CORBA binding
for the specified port type.

-i portType Specifies the name of the port type being
mapped to a CORBA binding.

176

Option Description

-d dir Specifies the directory into which the new WSDL
file is written.

-o file Specifies the name of the generated WSDL file.
Defaults to wsdl file.idl.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No
output will be shown on the console. This includes
error messages.

-V Specifies that the tool runs in verbose mode.
-h Specifies that the tool will display a usage message.
By combining the -idl and -corba flags with wsdltocorba,
you can generate a CORBA binding for a logical operation and
then generate the IDL for the generated CORBA binding.
When doing so, you must also use the -i portType flag to
specify the port type from which to generate the binding and
the -b binding flag to specify the name of the binding from
which to generate the IDL.

177

Using the Artix
Transformer
The Artix transformer allows you to perform message
transformations, data validation, and interface versioning
without having to write additional code.

Using the Artix Transformer as a Service
Using the Artix transformer, you can create a Web service
that does simple tasks such as converting dates into the
proper format or generating HTML output without writing any
code. You can also develop services to validate the format of
requests before they are sent to a busy server for processing.

The data processing is performed by the Artix transformer
which uses an XSLT script to determine how to process the
data.

Procedure
To use the Artix transformer as a service you:

1. Define the data, interface, binding, and transport details
for the server in an Artix contract.

2. Write the XSLT script that defines the data processing you
want the transformer to perform.

3. Configure the service with the transformer’s configuration
details.

Defining the server
The contract for a service that is implemented by the Artix
transformer is the same as the Artix contract for any other
service in Artix. You need to define the complex types, if any,
that the service uses. Then you need to define the messages
used by the service to receive and respond to requests.

Once the data types and messages are defined, you then
define the service’s interface. The only limitation for a service
that is implemented by the Artix Transformer is that it cannot
have any fault messages. The interface can define multiple
operations. Each operation will be processed using different
XSLT scripts.

After defining the logical details of the service, you need to
define the binding and network details for the service. The
transformer can use any of the bindings and transports
supported by Artix.

178

Writing the scripts
The XSLT scripts tell the transformer what it needs to do to
process the data it receives. The scripts can be as simple or
complex as they need to be to perform the task. The only
requirement is that they are valid XSLT documents.

For more information about writing XSLT scripts read Writing
XSLT Scripts.

Configure the transformer
The Artix transformer is an Artix plug-in and can be loaded by
an Artix process.

This provides a great deal of flexibility in how you configure
and deploy the process. There are two common deployment
patterns for deploying the Artix transformer as a service. The
first is to configure the transformer to load into the Artix
container. The second is to configure the transformer to load
directly into the client process which is making requests
against it.

For a detailed discussion of how to configure and deploy the
Artix Transformer see Configuring and Deploying Artix
Solutions, C++ Runtime.

Using Artix to Facilitate Interface Versioning
One of the most common and difficult problems faced in large
scale client server deployments is upgrading systems. For
example, if you change the interface for your server to add
new functionality or streamline communications, you then
need to change all of the clients that access the server. This
can mean upgrading thousands of clients that may be
scattered across the globe.

The Artix transformer provides a solution to this problem that
allows you to slowly upgrade the clients without disrupting
their ability to function. Using the transformer you can
develop an XSLT script that converts messages between the
different interfaces. Then you can place the transformer
between the old clients and the new server. This solution
eliminates the need for operating two versions of the same
server, or trying to do a massive client and server upgrade. It
also does this without requiring you to do any custom
programing.

Procedure
To use the Artix transformer for interface versioning do the
following:

1. Create a composite Artix contract defining both versions
of the interfaces that need to be supported.

179

2. Define an interface for the transformer that defines
operations for mapping the interfaces.

3. Add a SOAP binding to the contract for the transformer’s
interface.

4. Add an HTTP port to the contract to define how the
transformer can be contacted.

5. Write the XSLT scripts that define the message
transformations.

6. Configure the transformer.

7. Configure the Artix chain builder to create a chain
containing the transformer and the server on which clients
will make requests.

Creating a composite contract
While the server and the client applications can be run
without knowledge of the other’s interface, the transformer
responsible for translating the messages between to the two
interface versions must know about all of the interface
versions used. This includes all data type definitions and
message definitions used by both versions of the interface.

You can create this composite contract in several ways. The
most straightforward way is to create a new contract which
imports both the new interface’s contract and the old
interface’s contract. To import the contracts you place an
import element for each contract just after the definitions
element in the new contract and before any other elements in
the new contract. The import element has two attributes.
location specifies the pathname of the file containing the
contract that is being imported. namespace defines the XML
namespace under which the imported contract can be
referenced.

For example, if you were creating a composite contract for
interface versioning you would have two contracts; one for
the server with the updated interface and one for the client
using the legacy interface. The file name for the server’s
contract is r2e2.wsdl and the contract for the client is
r2e1.wsdl. For simplicity, they are located in the same
directory as the composite contract. The composite contract
importing both versions of the interface is shown in Example
84.

180

Example 84. Composite WSDL
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="transformer"

targetNamespace="http://www.widgets.com/transformer"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:r1="http://www.widgets.com/r2e2Server"
xmlns:r2="http://www.widgets.com/r2e1Client"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.widgets.com/transformer"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<import location="r2e2.wsdl"
namespace="http://www.widgets.com/r2e2Server/>

<import location="r2e1.wsdl"
namespace="http://www.widgets.com/r2e1Client"/>

</definitions>

Note that in the definitions element of the contract, XML
namespace shortcuts are defined for the imported contracts
namespace. This makes using items defined in the imported
contracts much easier.

Define the transformer's interface
Once you have imported all versions of the interface that you
need to support into the transformer’s composite contract,
you need to define the transformer’s interface. The
transformer must have one operation defined for each
transformation that is required to support all of the interface
versions. For example, if you only changed the structure of
the request message in when upgrading the server’s
interface, the transformer only needs one operation because
the transformation is only one way. If you changed both the
request and response messages, the transformer’s interface
will need two operations; one for the request message and
one for the response.

The operation to transform a request from the client to the
proper format for the server takes the client’s message as its
input element and the server’s message as its output
message. The operation to transform a response from the
server to the proper format for a client takes the server’s
outgoing message as its input element and the client’s
incoming message as its output element.

NOTE: Fault messages are not supported.

When adding the operations, be sure to use the proper
namespaces when referencing the messages for the different
versions of the interface. Using the wrong namespaces could
result in an invalid contract at the very least. If the contract
is valid, and the namespaces are incorrect, your system will
behave erratically.

http://www.widgets.com/transformer
http://schemas.xmlsoap.org/wsdl/
http://www.widgets.com/r2e2Server
http://www.widgets.com/r2e1Client
http://schemas.xmlsoap.org/wsdl/soap/
http://www.widgets.com/transformer
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2001/XMLSchema
http://www.widgets.com/r2e2Server/
http://www.widgets.com/r2e1Client

181

For example, if the interface in Example 84 was updated so
that both the client’s request and the server’s response need
to be transformed the transformer’s interface would need two
operations. In this example the name of the request message
is widgetRequest and the name of the response message is
widgetResponse. The interface for the transformer,
versionTransform, is shown in Example 85.

Example 85. Versioning Interface
<portType name="versionTransform">
<operation name="requestTransform">
<input name="oldRequest" message="r1:widgetRequest"/>
<output name="newRequest" message="r2:widgetRequest"/>

</operation>
<operation name="responseTransform">
<input name="newResponse" message="r2:widgetResponse"/>
<output name="oldReponse" message="r1:widgetResponse"/>

</operation>
</portType>

In the operation transforming the request,
requestTransform, the input message is taken from the
namespace r1 which is the namespace under which the
client’s contract is imported. The output message is taken
from r2 which is the namespace under which the server’s
contract is imported. For the response message
transformation, responseTransform, the order is reversed.
The input message is from r2 and the output message is from
r1.

Defining the physical details for the transformer
After defining the operations used in transforming between
the different version of the interface, you need to define the
binding and network details for the transformer. The
transformer can use any of the bindings and transports
supported by Artix. For information on adding a binding for
the transformer read Understanding Bindings in WSDL. For
information on adding network details for the transformer
read Understanding How Endpoints are Defined in WSDL.

Writing the XSLT scripts
The XSLT scripts tell the transformer what it needs to do to
process the data it receives. The scripts can be as simple or
complex as they need to be to perform the task. The only
requirement is that they are valid XSLT documents. For more
information about writing XSLT scripts read Writing XSLT
Scripts.

Configuring the transformer
The Artix transformer is an Artix plug-in and can be loaded by
an Artix process.

182

This provides a great deal of flexibility in how you configure
and deploy the process. For a detailed discussion of how to
configure and deploy the Artix transformer see Configuring
and Deploying Artix Solutions, C++ Runtime.

When using the transformer to do interface versioning, you
need to deploy it as part of a service chain. To build a service
chain in Artix you deploy the Artix chain builder. Like the
transformer, the chain builder is an Artix plug-in and provides
a number of deployment options. One way of deploying the
chain builder along with the transformer is to deploy it
alongside the transformer in an Artix container.

For a detailed discussion of how to configure and deploy the
Artix chain builder see Configuring and Deploying Artix
Solutions, C++ Runtime.

WSDL Messages and the Transformer
Conceptually, the Artix transformer works on XML
representations of the data passed along the wire. Your XSLT
scripts are written based on the WSDL descriptions of the
message’s being processed. This relieves you of the burden of
understanding how the data on the wire is represented.

Incoming messages
The virtual XML document the transformer uses as input is
created by using the Artix contract to map the raw data from
the input port into a DOM facade. The mapping is done as
follows:

• If the message is defined using the doc-literal styles, the
transformer uses the message part’s schema definition to
create a representation of the message.

• If the message is not defined using the doc-literal style,
the transformer does the following to build an XML
representation of the message:

1. the name of the message’s root element is the QName
of the message element referred to by the operation’s
input element.

2. Each part element in the input message is placed in
an element derived from the name attribute of the
part element.

3. If the part is of a complex type, or an element of a
complex type, the type’s elements appear inside of the
element containing the part.

For example, if you had a service defined by the WSDL
fragment in Example 86 and the transformer implemented

183

the operation configure, the XML document would be
constructed using the message oldClientInput, which is the
input message.

Example 86. WSDL Fragment for Transformer
<definitions targetNamespace="vehicle.demo.example"

xmlns:tns="vehicle.demo.example"
...>

<types ...>
...
<complexType name="vehicleType">
<element name="vin" type="xsd:string" />
<element name="model" type="xsd:string" />

</complexType>
</types>
...
<message name="original">
<part name="vehicle" type="xsd1:vehicleType"/>
<part name="name" type="xsd:string"/>

</message>
<message name="transformed">
<part name="vehicle" type="xsd:string"/>
<part name="firstName" type="xsd:string"/>
<part name="lastName" type="xsd:string"/>

</message>
...
<portType name="parkingLotMeter">
<operation name="configure">
<input name="oldClientInput" message="tns:original"/>
<output name="updatedInput" message="tns:transformed"/>

</operation>
...
</portType>
...

When the message is reconstructed, the transformer uses the
input message’s name, given in the input element, as the
name of the root element of the XML document. It then uses
the message parts and the schema types to recreate the data
as an XML message. So if the transformer was using the
contract defined in Example 86 an input message processed
by the transformer could look like Example 87.

Example 87. Transformer Input Message
<ns1:oldClientInput xmlns:ns1="vehicle.demo.example">
<vehicle>

<vin>0123456789</vin>
<model>Prius</model>
</vehicle>
<name>Old MacDonald</name>

</oldClientInput>

184

Outbound message
The results from the transformer go through the reverse of
the process that turns the input message into a virtual XML
document. The transformer uses the output message
definition from the Artix contract to place the result message
back onto the wire in the proper payload format. If the result
message is not properly formed this attempt will fail, so you
must be careful when writing your XSLT script to ensure that
the results match the expected format.

When the result message is deconstructed, the transformer
expects the following:

• If the output message is defined using the doc-literal
style, the message must match the schema defining the
message’s part.

• If the output message is not defined using the doc-literal
style, then the following must be true:

• The name of the message’s root element is the QName
of the message element referred to by the output
element in the contract.

• There are the same number of elements in the result
as there are part elements in the output message
definition.

• The elements in the result are based on the name
attributes of the part elements in the output message
definition.

• The data contained in the element representing the
output message’s part elements matched the XML
Schema definitions in the contract.

• For example, a result message for the configure
operation defined in Example 86 would look like
Example 88.

Example 88. Transformer Output Message
<ns1:updatedInput xmlns:ns1="vehicle.demo.example">>
<vehicle>Prius</vehicle>
<firstName>Old</firstName>
<lastName>MacDonald</lastName>

</updatedInput>

Using element names
You can configure the transformer to use the element name
of the message parts instead of the value of the part
element’s name attribute. For more information see
Configuring and Deploying Artix Solutions, C++
Runtime.

185

Writing XSLT Scripts
XML Stylesheet Language Transformations (XSLT) is a language
used to describe the transformation of XML documents. The
current W3C standard for XSLT is 1.0 and can be read at the
W3C web site (http://www.w3.org/TR/xslt). XSLT documents,
called scripts, are well-formed XML documents that describe
how a source XML document is transformed into a resulting
XML document. It can be used to perform tasks as simple as
splitting a name entry into first and last name entries and as
complex as validating that a complex XML document matches
the expectations of an interface described in a WSDL
document.

Procedure
Writing an XSLT script can be done in a number of ways and
using a number of tools. The steps given here assume that
you are writing fairly simple scripts using a text editor.

To write a XSLT script do the following:

1. Create an XML stylesheet with the required
xsl:transform element.

2. Determine which elements in your source message need
to be processed and create xsd:template elements for
each of them.

3. For each element that has a matching template element,
define how you want the element processed to produce a
new output document.

4. If child elements need to be processed as part of
processing a parent element, define a template for the
child element and apply it as part of the parent element’s
template using xsd:apply-templates.

Elements of an XSLT Script
An XSLT script is essentially an XML stylesheet containing a
special set of elements that instruct an XSLT engine in the
processing of other XML documents. An XSLT script must be
defined in an xsl:transform element or an xsl:stylesheet
element. In addition, it needs at least one valid top-level
element to define the transformation.

The transform element
The xsl:transform element denotes that the document is an
XML stylesheet. The xsl:stylesheet element can be used in
place of the xsl:transform element. They are equivalent.

http://www.w3.org/TR/xslt

186

When creating an XSLT script you must set the version
attribute to 1.0 to inform the transformer what version of
XSLT you are using. In addition, you must provide an XML
namespace shortcut for the XSLT namespace in the
xsl:transform element. Example 89 shows a valid
xsl:transform element for an XSLT script.

Example 89. XSLT Script Stylesheet Element
<xsl:transform version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
...
</stylesheet>

Top-level elements
While all that is needed to make an XML document a valid
XSLT script is the xsl:transform element, the
xsl:transform element does not provide any instructions for
processing data. The data processing instructions in an XSLT
script are provided by a number of top-level XSLT elements.
These elements include:

• xsl:import

• xsl:include

• xsl:strip-space

• xsl:preserve-space

• xsl:output

• xsl:key

• xsl:decimal-format

• xsl:namespace-alias

• xsl:attribute-set

• xsl:variable

• xsl:param

• xsl:template

An XSLT script can have any number and combination of top-
level elements. Other than xsl:import, which must occur
before any other elements, the top-level elements can be
used in any order. However, be aware that the order
determines the order in which processing steps happen.

http://www.w3.org/1999/XSL/Trans

187

Example
Example 90 shows a simple XSLT script that transforms SSN
elements into acctNum elements.

Example 90. Simple XSLT Script
<xsl:transform version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:template match="SSN">

<acctNum>
<xsl:value-of select="."/>

</acctNum>
</xsl:template>
</xsl:stylesheet>

Using this XSLT script the transformer would change a
message that contained <SSN>012457890</SSN> into a
message that contained <acctNum>012457890</acctNum>.

XSLT Templates
XSLT processors use templates to determine the elements on
which to apply a set of transformations. Documents are
processed from the top element through their structure to
determine if elements match a defined template. If a match is
found, the rules specified by the template are applied.

To write a template in XSLT you need to do the following:

1. Create an xsl:template element.

2. Provide the path to the source element it processes.

3. Write the processing rules.

xsl:template elements
Templates are defined using xsl:template elements. These
elements take one required attribute, match, which specifies
the source element that triggers the rules. In addition, you
can use the name attribute to give the template a unique
identifier for referencing it elsewhere in the contract.

Specifying the source elements
You specify the elements of the source document to which
template rules are matched using the match attribute of the
xsl:template element. The source elements are specified
using the syntax specified by the XPath specification
(http://www.w3.org/TR/xpath). The source element address
looks very similar to a file path where slash(/) specifies the
root element and child elements are listed in top down order
separated by a slash(/). For example to specify the surname
element of the XML document shown in Example 91, you
would specify it as /name/surname.

http://www.w3.org/1999/XSL/Trans
http://www.w3.org/TR/xpath

188

Example 91. Sample XML Document
<name>
<firstname> Joe
</firstname>
<surname> Friday
</surname>

<name>

Template matching order
XSLT processors start processing with the <xsl:template
match="/"> element if it is present. All of the processing
directives for this template act on the top-level elements of
the source document. For example, given the XML document
shown in Example 91 any processing rules specified in
<xsl:template match="/"> would apply to the name
element. In addition, specifying a template for the root
element(/) forces you to make all your source element paths
explicit from the root element. The XSLT script shown in
Example 92 generates the string Friday when run on
Example 91.

Example 92. XSLT Script with Root Element Template
<xsl:transform version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:template match="/">
<xsl:value-of select="/name/surname"/>

</xsl:template>
</xsl:transform>

You do not need to specify a template for the root element of
the source document in an XSLT script. When you omit the
root element’s template the processor treats all template
paths as though they originated from the source documents
top level element. The XSLT script in Example 93 generates
the same output as the script in Example 92.

Example 93. XSLT Script without Root Element Template
<xsl:transform version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:template match="surname">

<xsl:value-of select="."/>
</xsl:template>

</xsl:transform>

Template rules
The contents of an xsl:template element define how the
source document is processed to produce an output
document. You can use a combination of XSLT elements,
HTML, and text to define the processing rules. Any plain text
and HTML that are used in the processing rules are placed
directly into the output document. For example, if you wanted

http://www.w3.org/1999/XSL/Transform%27
http://www.w3.org/1999/XSL/Transform%27
http://www.w3.org/1999/XSL/Transform%27
http://www.w3.org/1999/XSL/Transform%27

189

to generate an HTML document from an XML document you
would use an XSLT script that included HTML tags as part of
its processing rules. The script in Example 94 takes an XML
document with a title element and a subTitle element
and produces an HTML document where the contents of
title are displayed using the <h1> style and the contents
of subTitle are displayed using the <h2> style.

Example 94. XSLT Template with HTML
<xsl:transform version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:template match="/">
<h1>
<xsl:value-of select="//title"/>

</h1>
<h2>
<xsl:value-of select="//subTitle"/>

</h2>
</xsl:template>

</xsl:transform>

Applying templates to child elements
You can instruct the XSLT processor to apply any templates
defined in the script to the children of the element being
processed using an xsl:apply-templates element as one of
the rules in a template. xsl:apply-templates instructs the
XSLT processor to treat the current element as a root
element and run the templates in the script against it.

For example you could rewrite Example 94 as shown in
Example 95 using xsl:apply-templates and defining a
template for the title and subTitle elements.

Example 95. XSLT Template Using apply-templates
<xsl:transform version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>
<xsl"template match="title">
<h1>
<xsl:value-of select="."/>

</h1>
</xsl:template>
<xsl"template match="subTitle">
<h2>
<xsl:value-of select="."/>

</h2>
</xsl:template>

</xsl:transform>

http://www.w3.org/1999/XSL/Transform%27
http://www.w3.org/1999/XSL/Transform%27
http://www.w3.org/1999/XSL/Transform%27
http://www.w3.org/1999/XSL/Transform%27

190

You can use the optional select attribute to limit the child
elements to which the templates are applied. select takes
an XPath value and operates in the same manner as the
match attribute of xsl:template.

Example
For example, if your ordering system produced bills that
looked similar to the XML document in, you could use an
XSLT script to reformat the bill for a system that required the
customer’s name in a single element, name, and the city and
state to be in a comma-separated field, city.

Example 96. Bill XML Document
<widgetBill>
<customer>

<firstName> Joe
</firstName>
<lastName> Cool
</lastName>

</customer>
<address>

<street>
123 Main Street

</street>
<city>
Hot Coffee

</city>
<state> MS
</state>
<zipCode> 3942
</zipCode>

</address>
<amtDue> 123.50

</amtDue>
</widgetBill>

The XSLT script shown in Example 97 would result in the
desired transformation.

Example 97. XSLT Script for widgetBill
<xsl:transform version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
❶ <xsl:template match="widgetBill">

<xsl:element name="widgetBill">
<xsl:apply-templates/>

</xsl:element>
</xsl:template>

<xsl:template match="customer">
❷ <xsl:element name="name">

<xsl:value-of select="concat(//firstName,’ ’,//lastName)"/>
</xsl:element>

</xsl:template>
<xsl:template match="address">

http://www.w3.org/1999/XSL/Transform%27
http://www.w3.org/1999/XSL/Transform%27

191

❸ <xsl:element name="address">
<xsl:copy-of select="//street"/>
<xsl:element name="city">
<xsl:value-of select="concat(//city,’, ’,//state)"/>

</xsl:element>
<xsl:copy-of select="//zipCode"/>

</xsl:element>
</xsl:template>

❹ <xsl:template match="amtDue">
<xsl:copy-of select="."/>
</xsl:template>

</xsl:transform>

The script does the following:

❶ Creates an element, widgetBill, in the output
document and places the results of the other
templates as its children.

❷ Creates an element, name, and sets its value to the
result of the concatenation.

❸ Creates an element, address, and sets its value to the
results of the rules. address will contain a copy of the
street element from the source document, a new
element, city, that is a concatenation, and a copy of
the zipCode element from the source document.

❹ Copies the amtDue element from the source document
into the output document.

Processing the document in Example 96 with this XSLT script
would result in the XML document shown in Example 98.

Example 98. Processed Bill XML Document
<widgetBill>
<customer> Joe Cool

</customer>
<address>
<street>

123 Main Street
</street>

<city>
Hot Coffee, MS

</city>
<zipCode> 3942
</zipCode>

</address>
<amtDue> 123.50

</amtDue>
</widgetBill>

192

Common XSLT Functions
XSLT provides a range of capabilities in processing XML
documents. These include conditional statements, looping,
creating variables, and sorting.

However, there are a few common functions that are used to
generate output documents. These include:

• xsl:value-of

• xsl:copy-of

• xsl:element

xsl:value-of
xsl:value-of creates a text node in the output document. It
has a required select attribute that specifies the text to be
inserted into the output document.

The value of select is evaluated as an expression describing
the data to insert. It can contain any of the XSLT string
functions, such as concat(), or an XSLT axis describing an
element in the source document.

Once the select expression is evaluated the result is placed
in the output document.

xsl:copy-of
xsl:copy-of copies data from the source document into the
output document. It has a required select. The value of
select is an expression describing the elements to be
copied.

When the result of evaluating the expression is a tree
fragment, the complete fragment is copied into the output
document. When the result is an element, the element, its
attributes, its namespaces, and its children are copied into
the output document. When the result is neither an element
nor a result tree fragment, the result is converted to a string
and then inserted into the output document.

xsl:element
xsl:element creates an element in the output document. It
takes a required name attribute that specifies the name of the
element that is created. In addition, you can specify a
namespace for the element using the optional namespace
attribute.

193

Using Codeset
Conversion
Some bindings do not natively support codeset conversion.
Artix provides WSDL extensions and a plug-in that add
codeset conversion to these bindings.

While many of the bindings supported by Artix provide a
means for handling codeset conversion, some do not. It is
also possible that any custom bindings you developed do not
support codeset conversion. To allow bindings that do not
natively support codeset conversion to participate in
environments where more than one codeset is used, Artix
provides an i18n message-level interceptor that will perform
codeset conversion on the message buffer before it is placed
on the wire.

The i18n interceptor can be configured by defining the
codeset conversion in your endpoint’s Artix contract using an
Artix port extensor. You can also configure the i18n
interceptor programmatically using the context mechanism.
The programmatic settings will override any settings
described in the contract. For more information on using the
context mechanism see the appropriate development guide
for your development environment.

Configuring Artix to use the i18n interceptor
Before your application can use the generic i18n interceptor
for code conversion you must configure the Artix bus to load
the required plug-ins and add the interceptor to the
appropriate message interceptor lists. To configure your
application to use the i18n interceptor do the following:

1. If your application includes a client that needs to use
codeset conversion, add i18n-
context:I18nInterceptorFactory to the
binding:artix:client_message_interceptor_list variable for
your application.

2. If your application includes a service that needs to use
codeset conversion, add i18n-
context:I18nInterceptorFactory to the
binding:artix:server_message_interceptor_list variable for
your application.

For more information on configuring Artix see Configuring
and Deploying Artix Solutions, C++ Runtime.

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

194

Describing the codeset conversions in the contract
You define the codeset conversions performed by the i18n
interceptor in the port element defining an endpoint. There
are two extensors used to define the codeset conversions.
One, i18n-context:server, is for service providers and the
other, i18n-context:client, is for clients. They both
provide settings for how both incoming messages and
outgoing messages are to be encoded. These extensions are
defined in the namespace
http://schemas.iona.com/bus/i18n/context.

To define the codeset conversions performed by the i18n
interceptor do the following:

1. Add the following line to the definitions element of
your contract.

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"

2. If your application provides a service that requires
codeset conversion add a i18n-context:server element
to the port definition of the service endpoint.

Table 39 shows the attributes for the i18n-context:server
element. These attributes define how message codesets are
converted.

Table 39. Attributes for the i18n-context:server Element

Attribute Description

LocalCodeSet Specifies the server’s native codeset. The
default is the codeset specified by the local
system’s locale setting.

OutboundCodeSet Specifies the codeset into which replies are
converted. The default is the codeset
specified in InboundCodeSet.

InboundCodeSet Specifies the codeset into which requests are
converted. The default is the codeset
specified in LocalCodeSet.

If your application includes a client that requires codeset
conversion add an i18n-context:client element to the port
definition of the service endpoint.

Table 40 describes the attributes used by the i18n-
context:client element for defining how message codesets
are converted.

http://schemas.iona.com/bus/i18n/context
http://schemas.iona.com/bus/i18n/con

195

Table 40. Attributes for the i18n-context:client Element

Attribute Description

LocalCodeSet Specifies the server's native codeset. Default is
the codeset specified by the local system's locale
setting.

OutboundCodeSet Specifies the codeset into which requests are
converted. The default is the codeset specified in
LocalCodeSet.

InboundCodeSet Specifies the codeset into which replies are
converted. The default is the codeset specified in
OutboundCodeSet.

Example
The contract fragment in Example 99 shows a port definition
for an endpoint that defines a server/client pair. The server
uses UTF-8 as its local codeset and the client uses ISO-8859-
1 as its local codeset.

Example 99. Specifying Codeset Conversion
...
<service name="covertedService">
<port binding="tns:convertedFixedBinding"

name="convertedPort">
<http:address location="localhost:0"/>
<i18n:client LocalCodeSet="ISO-8859-1"

OutboundCodeSet="UTF-8"
InboundCodeSet="ISO-8859-1"/>

<i18n:server LocalCodeSet="UTF-8"
OutboundCodeSet="ISO-8859-1"/>

</port>
</service>
...

Using the endpoint definition above, the client will convert its
requests into UTF-8 before sending them to the server. The
server will convert its replies into ISO-8859-1 before sending
them to the client. The client’s inbound codeset is set to ISO-
8859-1 because if left unset the value would have defaulted
to UTF-8. The client would then perform an extra conversion.

	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library
	Further Information and Product Support
	Information We Need
	Contact information

	Understanding Bindings in WSDL
	Port types and bindings
	The WSDL elements
	Adding to a contract
	Supported bindings

	Using SOAP 1.1 Messages
	Adding a SOAP 1.1 Binding
	Using wsdltosoap
	Example

	Adding SOAP Headers to a SOAP 1.1 Binding
	Syntax
	Splitting messages between body and header
	Example

	Using SOAP 1.2 Messages
	Adding a SOAP 1.2 Binding
	Using wsdltosoap
	Example

	Adding Headers to a SOAP 1.2 Message
	Syntax
	Splitting messages between body and header
	Example

	Sending Binary Data Using SOAP Attachments
	Namespace
	Changing the message binding
	Describing a MIME multipart message
	Example

	Sending Binary Data with SOAP MTOM
	Defining Data Types to use MTOM
	Using the XML Schema binary types
	Using XMime attributes to specifying the content type
	Using the XMime binary types

	Enabling MTOM
	Service consumers
	Service providers

	Using Tuxedo’s FML Buffers
	FML/XML Schema support
	Mapping from a field table to an Artix contract
	Mapping to logical type descriptions
	Flattened XML and FML
	Adding the FML binding

	Using XML Documents
	Hand editing
	XML binding namespace
	XML messages on the wire
	Overriding the binding's rootNode attribute setting

	Using Fixed Length Records
	Hand editing
	Fixed binding namespace
	fixed:binding
	fixed:operation
	fixed:body
	fixed:field
	fixed:choice
	fixed:case
	fixed:sequence
	Example

	Using Tagged Data
	Hand editing
	Namespace
	tagged:binding
	tagged:operation
	tagged:body
	tagged:field
	tagged:enumeration
	tagged:sequence
	tagged:choice
	tagged:case
	Example

	Using the Pass Through Binding
	Limitations
	Namespace
	Describing the binding

	How Endpoints are Defined in WSDL
	Endpoints and services
	The WSDL elements
	Adding endpoints to a contract
	Supported transports

	Using HTTP
	Adding an HTTP Endpoint to a Contract
	SOAP 1.1
	SOAP 1.2
	Other payloads
	Using the command line tool
	Example

	Configuring an HTTP Endpoint
	Specifying Send and Receive Timeout Limits
	Send timeout
	Receive timeout

	Specifying a Username and a Password
	Setting a username
	Setting a password
	Relationship between the attributes
	The attributes and other security features

	Configuring Keep-Alive Behavior
	Making keep-alive requests
	Honoring keep-alive requests

	Specifying Cache Control Directives
	Server endpoint settings
	Client endpoint settings

	Managing Cookies in Artix Clients
	Sending static cookies
	More information

	Using the Java Messaging System
	Defining a JMS Endpoint
	Message formatting
	Namespace
	Basic Endpoint Configuration
	address element
	JMSNamingProperties element
	Using a named reply destination
	Examples

	Alternate InitialContextFactory settings for using SonicMQ
	Client Endpoint Configuration
	Server Endpoint Configuration
	server element
	Setting up durable subscriptions
	Using message selectors
	Using reliable messaging

	Using the Command Line Tool

	Migrating to the 4.x JMS WSDL Extensions
	XSLT script
	Using the script with Artix

	Using ActiveMQ as Your JMS Provider
	Setting the CLASSPATH
	Starting the broker
	Stopping the broker
	Security
	More information

	Using IIOP
	Namespace
	IIOP address specification
	Specifying type of payload encoding
	Specifying POA policies
	POA name
	Persistence
	ID Assignment
	Using the command line tool
	Example

	Using FTP
	Adding an FTP Endpoint
	Namespace
	Defining the connection details
	Specifying optional naming properties

	Coordinating Requests and Responses
	Default implementation
	Implementing the Client’s Coordination Logic
	The filename factory
	The reply lifecycle policy

	Configuring the client's coordination logic
	Implementing the Server’s Coordination Logic
	The filename factory
	The request lifecycle policy
	Configuring the server's coordination logic

	Using Properties to Control Coordination Behavior
	Properties in the contract
	Supporting the properties
	Filling in the filename factory property metadata

	Using WebSphere MQ
	Adding a WebSphere MQ Endpoint
	WebSphere MQ namespace
	Required Attributes
	Using the command line tool
	Example

	WebSphere MQ Connection Settings
	Granting authority for setting context information
	Further information

	Specifying the WebSphere Library to Load
	The attribute
	Example

	Using Queues on Remote Hosts
	Effect of AliasQueueName
	Example

	Setting a Value of the Message Descriptor’s Format Field
	Special values
	Using codeset conversion
	Example

	Using Tuxedo
	Tuxedo namespaces
	Defining the Tuxedo services
	Mapping operations to a Tuxedo service
	Using the command line tools
	Example

	Working with CORBA
	Adding a CORBA Binding
	Options
	Using wsdltocorba
	WSDL namespace
	Mapping to the binding
	Example

	Creating a CORBA Endpoint
	Configuring an Artix CORBA Endpoint
	Namespace
	CORBA address specification
	Specifying POA policies
	POA name
	Persistence
	ID assignment
	Using the command line tool
	Example

	Generating CORBA IDL
	From the command line

	Using the Artix Transformer
	Using the Artix Transformer as a Service
	Procedure
	Defining the server
	Writing the scripts
	Configure the transformer

	Using Artix to Facilitate Interface Versioning
	Procedure
	Creating a composite contract
	Define the transformer's interface
	Defining the physical details for the transformer
	Writing the XSLT scripts
	Configuring the transformer

	WSDL Messages and the Transformer
	Incoming messages
	Outbound message
	Using element names

	Writing XSLT Scripts
	Procedure

	Elements of an XSLT Script
	The transform element
	Top-level elements
	Example

	XSLT Templates
	xsl:template elements
	Specifying the source elements
	Template matching order
	Template rules
	Applying templates to child elements
	Example

	Common XSLT Functions
	xsl:value-of
	xsl:copy-of
	xsl:element

	Using Codeset Conversion
	Configuring Artix to use the i18n interceptor
	Describing the codeset conversions in the contract
	Example

