
Artix 5.6.3

Developing
Interceptors for
the Java Runtime

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2015. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-19

http://www.microfocus.com/

Artix Developing Interceptors for the Java Runtime iii

Contents

Preface ... v
What is Covered in This Book ... v
Who Should Read This Book .. v
Organization of this Guide ... v
The Artix ESB Documentation Library .. v
Further Information and Product Support v

Information We Need .. vi
Contact information .. vi

Interceptors in the Artix ESB Runtime 1

The Interceptor APIs .. 7

Determining When the Interceptor is Invoked 9
Specifying an Interceptor's Phase ... 9
Constraining an Interceptors Placement in a Phase 11

Implementing the Interceptors Processing Logic . 15
Processing Messages .. 15
Unwinding After an Error ... 18

Configuring Endpoints to Use Interceptors 21
Deciding Where to Attach Interceptors 21
Adding Interceptors Using Configuration 22
Adding Interceptors Programmatically 25

Manipulating Interceptor Chains on the Fly 31

Appendix: Artix ESB Message Processing Phases . 35
Inbound phases .. 35
Outbound phases .. 36

Appendix: Artix ESB Provided Interceptors 37
Core Artix ESB Interceptors ... 37
Front-Ends .. 37
Message Bindings ... 39
Other Features .. 41

Appendix: Interceptor Providers 45
List of providers .. 45

Artix Developing Interceptors for the Java Runtime v

Preface
What is Covered in This Book

This book describes how to develop interceptors for the Artix
ESB Java Runtime runtime. It also describes how to configure
your applications to use these custom interceptors.

Who Should Read This Book
This book is intended for developers who are very comfortable
with Java programming and using the Java APIs geared toward
manipulating XML documents and SOAP messages. Developers
reading this book should also have an understanding of
distributed application design and the low-level details of how
endpoints in a distributed application communicate.

Organization of this Guide
This guide is organized to reflect how a developer will walk
through the process of developing an interceptor for the Artix
ESB Java Runtime runtime. The introduction lays out the basic
concepts and the subsequent chapters describe the one step of
the development process.

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the
document conventions used, and where to find additional
resources, see Using the Artix ESB Library.

Further Information and Product Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The WebSync service, where you can download fixes and
documentation updates.

• The Knowledge Base, a large collection of product tips and
workarounds.

• Examples and Utilities, including demos and additional
product documentation.

http://communities.progress.com/pcom/docs/DOC-105909

vi Artix Developing Interceptors for the Java Runtime

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be

http://www.microfocus.com/
http://www.microfocus.com/

Artix Developing Interceptors for the Java Runtime vii

available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
(trial software download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Artix Developing Interceptors for the Java Runtime 1

Interceptors in the
Artix ESB Runtime
Most of the functionality in the Artix ESB runtime is
implemented by interceptors. Every endpoint created by the
Artix ESB runtime has three potential interceptor chains for
processing messages. The interceptors in the these chains are
responsible for transforming messages between the raw data
transported across the wire and the Java objects handled by
the endpoint's implementation code. The interceptors are
organized into phases to ensure that processing happens on
the proper order.

A large part of what Artix ESB does entails processing
messages. When a consumer makes a invocation on a remote
service the runtime needs to marshal the data into a message
the service can consume and place it on the wire. The service
provider must unmarshal the message, execute its business
logic, and marshal the response into the appropriate message
format. The consumer must then unmarshal the response
message, correlate it to the proper request, and pass it back to
the consumer's application code. In addition to the basic
marshaling and unmarshaling, the Artix ESB runtime may do a
number of other things with the message data. For example, if
WS-RM is activated, the runtime must process the message
chunks and acknowledgement messages before marshaling and
unmarshaling the message. If security is activated, the runtime
must validate the message's credentials as part of the message
processing sequence.

2 Artix Developing Interceptors for the Java Runtime

Figure 1 shows the basic path that a request message takes
when it is received by a service provider.

Figure 1. Artix ESB Interceptor Chains

Message processing in Artix ESB
When a Artix ESB developed consumer invokes a remote service
the following message processing sequence is started:

1. The Artix ESB runtime creates an outbound interceptor chain
to process the request.

2. If the invocation starts a two-way message exchange, the
runtime creates an inbound interceptor chain and a fault
processing interceptor chain.

3. The request message is passed sequentially through the
outbound interceptor chain.

Each interceptor in the chain performs some processing on
the message. For example, the Artix ESB supplied SOAP
interceptors package the message in a SOAP envelope.

4. If any of the interceptors on the outbound chain create an
error condition the chain is unwound and control is returned
to the application level code.

An interceptor chain is unwound by calling the fault
processing method on all of the previously invoked
interceptors.

5. The request is dispatched to the appropriate service
provider.

Artix Developing Interceptors for the Java Runtime 3

6. When the response is received, it is passed sequentially
through the inbound interceptor chain.

NOTE: If the response is an error message, it is passed into the fault
processing interceptor chain.

7. If any of the interceptors on the inbound chain create an error

condition, the chain is unwound.

8. When the message reaches the end of the inbound
interceptor chain, it is passed back to the application code.

When an Artix ESB developed service provider receives a
request from a consumer, a similar process takes place:

1. The Artix ESB runtime creates an inbound interceptor chain
to process the request message.

2. If the request is part of a two-way message exchange, the
runtime also creates an outbound interceptor chain and a
fault processing interceptor chain.

3. The request is passed sequentially through the inbound
interceptor chain.

4. If any of the interceptors on the inbound chain create an error
condition, the chain is unwound and a fault is dispatched to
the consumer.

An interceptor chain is unwound by calling the fault
processing method on all of the previously invoked
interceptors.

5. When the request reaches the end of the inbound
interceptor chain, it is passed to the service
implementation.

6. When the response is ready it is passed sequentially through
the outbound interceptor chain.

NOTE: If the response is an exception, it is passed through the fault
processing interceptor chain.

7. If any of the interceptors on the outbound chain create an

error condition, the chain is unwound and a fault message is
dispatched.

8. Once the request reaches the end of the outbound chain, it is
dispatched to the consumer.

4 Artix Developing Interceptors for the Java Runtime

Interceptors
All of the message processing in the Artix ESB runtime is done by
interceptors.

Interceptors are POJOs that have access to the message data
before it is passed to the application layer. They can do a
number of things including: transforming the message, stripping
headers off of the message, or validating the message data.
For example, an interceptor could read the security headers
off of a message, validate the credentials against an external
security service, and decide if message processing can
continue.

The message data available to an interceptor is determined by a
number of factors:

• the interceptor's chain

• the interceptor's phase

• the other interceptors that occur earlier in the chain

Phases
Interceptors are organized into phases. A phase is a logical
grouping of interceptors with common functionality. Each phase
is responsible for a specific type of message processing. For
example, interceptors that process the marshaled Java objects
that are passed to the application layer would all occur in the
same phase.

Interceptor chains
Phases are aggregated into interceptor chains. An interceptor
chain is a list of interceptor phases that are ordered based on
whether messages are inbound or outbound.

Each endpoint created using Artix ESB has three interceptor
chains:

• a chain for inbound messages

• a chain for outbound messages

• a chain for error messages

Interceptor chains are primarily constructed based on the
choose of binding and transport used by the endpoint. Adding
other runtime features, such as security or logging, also add
interceptors to the chains. Developers can also add custom
interceptors to a chain using configuration.

Artix Developing Interceptors for the Java Runtime 5

Developing interceptors
Developing an interceptor, regardless of its functionality, always
follows the same basic procedure:

1. Determine which abstract interceptor class to extend.

Artix ESB provides a number of abstract interceptors to
make it easier to develop custom interceptors.

2. Determine the phase in which the interceptor will run.

Interceptors require certain parts of a message to be available
and require the data to be in a certain format. The contents
of the message and the format of the data is partially
determined by an interceptor's phase.

3. Determine if there are any other interceptors that must be
executed either before or after the interceptor.

In general, the ordering of interceptors within a phase is not
important. However, in certain situations it may be
important to ensure that an interceptor is executed before,
or after, other interceptors in the same phase.

4. Implement the interceptor's message processing logic.

5. Implement the interceptor's fault processing logic.

If an error occurs in the active interceptor chain after the
interceptor has executed, its fault processing logic is
invoked.

6. Attach the interceptor to one of the endpoint's interceptor
chains.

Artix Developing Interceptors for the Java Runtime 7

The Interceptor APIs
Interceptors implement the PhaseInterceptor interface which
extends the base Interceptor interface. This interface defines a
number of methods used by the Artix ESB's runtime to control
interceptor execution and are not appropriate for application
developers to implement. To simplify interceptor development,
Artix ESB provides a number of abstract interceptor
implementations that can be extended.

Interfaces
All of the interceptors in Artix ESB implement the base Interceptor
interface shown in Example 1.

Example 1. The Interceptor Interface

The Interceptor interface defines the two methods that a
developer needs to implement for a custom interceptor:

• handleMessage()

The handleMessage() method does most of the work in an
interceptor.

It is called on each interceptor in a message chain and
receives the contents of the message being processed.
Developers implement the message processing logic of the
interceptor in this method. For detailed information about
implementing the handleMessage() method, see Processing
Messages.

• handleFault()

The handleFault() method is called on an interceptor when
normal message processing has been interrupted. The
runtime calls the handleFault() method of each invoked
interceptor in reverse order as it unwinds an interceptor
chain. For detailed information about implementing the
handleFault() method, see Unwinding After an Error.

Most interceptors do not directly implement the Interceptor
interface. Instead, they implement the PhaseInterceptor
interface shown in Example 2. The PhaseInterceptor interface

package org.apache.cxf.interceptor;

public interface Interceptor<T extends Message>
{

void handleMessage(T message) throws Fault; void

handleFault(T message);

}

8 Artix Developing Interceptors for the Java Runtime

adds four methods that allow an interceptor to participate in
interceptor chains.

Example 2. The PhaseInterceptor Interface

Abstract interceptor class
Instead of directly implementing the PhaseInterceptor interface,
developers should extend the AbstractPhaseInterceptor class.
This abstract class provides implementations for the phase
management methods of the PhaseInterceptor interface. The
AbstractPhaseInterceptor class also provides a default
implementation of the handleFault() method.

Developers need to provide an implementation of the
handleMessage() method. They can also provide a different
implementation for the handleFault() method. The developer-
provided implementations can manipulate the message data
using the methods provided by the generic
org.apache.cxf.message.Message interface.

For applications that work with SOAP messages, Artix ESB
provides an AbstractSoapInterceptor class. Extending this
class provides the handleMessage() method and the
handleFault() method with access to the message data as an
org.apache.cxf.binding.soap.SoapMessage object.
SoapMessage objects have methods for retrieving the SOAP
headers, the SOAP envelope, and other SOAP metadata from
the message.

package org.apache.cxf.phase;
...

public interface PhaseInterceptor<T extends Message> extends
Interceptor<T>
{

Set<String> getAfter();

Set<String> getBefore();

String getId();

String getPhase();

}

Artix Developing Interceptors for the Java Runtime 9

Determining When the
Interceptor is Invoked
Interceptors are organized into phases. The phase in which an
interceptor runs determines what portions of the message data it
can access. An interceptor can determine its location in
relationship to the other interceptors in the same phase. The
interceptor's phase and its location within the phase are set as
part of the interceptor's constructor logic.

When developing a custom interceptor, the first thing to
consider is where in the message processing chain the
interceptor belongs. The developer can control an interceptor's
position in the message processing chain in one of two ways:

• Specifying the interceptor's phase

• Specifying constraints on the location of the interceptor
within the phase

Typically, the code specifying an interceptor's location is placed
in the interceptor's constructor. This makes it possible for the
runtime to instantiate the interceptor and put in the proper
place in the interceptor chain without any explicit action in the
application level code.

Specifying an Interceptor's Phase
Interceptors are organized into phases. An interceptor's phase
determines when in the message processing sequence it is
called. Developers specify an interceptor's phase its constructor.
Phases are specified using constant values provided by the
framework.

Phase
Phases are a logical collection of interceptors. As shown in
Figure 2, the interceptors within a phase are called sequentially.

10 Artix Developing Interceptors for the Java Runtime

Figure 2. An Interceptor Phase

The phases are linked together in an ordered list to form an
interceptor chain and provide defined logical steps in the
message processing procedure. For example, a group of
interceptors in the RECEIVE phase of an inbound interceptor
chain processes transport level details using the raw message
data picked up from the wire.

There is, however, no enforcement of what can be done in
any of the phases. It is recommended that interceptors within
a phase adhere to tasks that are in the spirit of the phase.

The complete list of phases defined by Artix ESB can be found
in Artix ESB Message Processing Phases.

Specifying a phase
Artix ESB provides the org.apache.cxf.Phase class to use for
specifying a phase. The class is a collection of constants. Each
phase defined by Artix ESB has a corresponding constant in the
Phase class. For example, the RECEIVE phase is specified by the
value Phase.RECEIVE.

Setting the phase
An interceptor's phase is set in the interceptor's constructor. The
AbstractPhaseInterceptor class defines three constructors for
instantiating an interceptor:

• public AbstractPhaseInterceptor(String phase)—sets the phase
of the interceptor to the specified phase and automatically
sets the interceptor's id to the interceptor's class name.

TIP: This constructor will satisfy most use cases.

Artix Developing Interceptors for the Java Runtime 11

• public AbstractPhaseInterceptor(String id, String phase)—
sets the interceptor's id to the string passed in as the first
parameter and the interceptor's phase to the second string.

• public AbstractPhaseInterceptor(String phase, boolean

uniqueId)—specifies if the interceptor should use a unique,
system generated id. If the uniqueId parameter is true, the
interceptor's id will be calculated by the system. If the
uniqueId parameter is false the interceptor's id is set to the
interceptor's class name.

The recommended way to set a custom interceptor's phase is to
pass the phase to the AbstractPhaseInterceptor constructor
using the super() method as shown in Example 3.

Example 3. Setting an Interceptor's Phase
import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
{

public StreamInterceptor()

{
super(Phase.PRE_STREAM);

 }
 }

The StreamInterceptor interceptor shown in Example 3 is placed
into the PRE_STREAM phase.

Constraining an Interceptors Placement in a
Phase

Placing an interceptor into a phase may not provide fine enough
control over its placement to ensure that the interceptor works
properly. For example, if an interceptor needed to inspect the
SOAP headers of a message using the SAAJ APIs, it would need
to run after the interceptor that converts the message into a SAAJ
object. There may also be cases where one interceptor
consumes a part of the message needed by another interceptor.
In these cases, a developer can supply a list of interceptors that
must be executed before their interceptor. A developer can also
supply a list of interceptors that must be executed after their
interceptor.

IMPORTANT: The runtime can only honor these lists within the
interceptor's phase. If a developer places an interceptor from an earlier
phase in the list of interceptors that must execute after the current
phase, the runtime will ignore the request.

12 Artix Developing Interceptors for the Java Runtime

Add to the chain before
One issue that arises when developing an interceptor is that the
data required by the interceptor is not always present. This can
occur when one interceptor in the chain consumes message data
required by a later interceptor. Developers can control what a
custom interceptor consumes and possibly fix the problem by
modifying their interceptors. However, this is not always
possible because a number of interceptors are used by Artix ESB
and a developer cannot modify them.

An alternative solution is to ensure that a custom interceptor is
placed before any interceptors that will consume the message
data the custom interceptor requires. The easiest way to do
that would be to place it in an earlier phase, but that is not
always possible. For cases where an interceptor needs to be
placed before one or more other interceptors the Artix ESB's
AbstractPhaseInterceptor class provides two addBefore()
methods.

As shown in Example 4, one takes a single interceptor id and
the other takes a collection of interceptor ids. You can make
multiple calls to continue adding interceptors to the list.

Example 4. Methods for Adding an Interceptor Before Other
Interceptors

public void addBefore(String i);
public void addBefore(Collection<String> i);

As shown in Example 5, a developer calls the
addBefore()method in the constuctor of a custom interceptor.

Example 5. Specifying a List of Interceptors that Must Run
After the Current Interceptor

TIP: Most interceptors use their class name for an interceptor id.

public class MyPhasedOutInterceptor extends AbstractPhaseIn terceptor
{

public MyPhasedOutInterceptor() {

super(Phase.PRE_LOGICAL);
addBefore(HolderOutInterceptor.class.getName());

}

...

}

Artix Developing Interceptors for the Java Runtime 13

Add to the chain after
Another reason the data required by the interceptor is not
present is that the data has not been placed in the message
object. For example, an interceptor may want to work with the
message data as a SOAP message, but it will not work if it is
placed in the chain before the message is turned into a SOAP
message. Developers can control what a custom interceptor
consumes and possibly fix the problem by modifying their
interceptors. However, this is not always possible because a
number of interceptors are used by Artix ESB and a developer
cannot modify them.

An alternative solution is to ensure that a custom interceptor is
placed after the interceptor, or interceptors, that generate the
message data the custom interceptor requires. The easiest way
to do that would be to place it in a later phase, but that is not
always possible. The AbstractPhaseInterceptor class provides two
addAfter() methods for cases where an interceptor needs to be
placed after one or more other interceptors.

As shown in Example 6, one method takes a single interceptor
id and the other takes a collection of interceptor ids. You can
make multiple calls to continue adding interceptors to the list.

Example 6. Methods for Adding an Interceptor After Other
Interceptors

public void addAfter(String i);

public void addAfter(Collection<String> i);

As shown in Example 7, a developer calls the
addAfter()method in the constuctor of a custom interceptor.

Example 7. Specifying a List of Interceptors that Must Run
Before the Current Interceptor

TIP: Most interceptors use their class name for an interceptor id.

public class MyPhasedOutInterceptor extends AbstractPhaseIn terceptor
{

public MyPhasedOutInterceptor() {

super(Phase.PRE_LOGICAL);
addAfter(StartingOutInterceptor.class.getName());

}

...

}

Artix Developing Interceptors for the Java Runtime 15

Implementing the
Interceptors
Processing Logic
Interceptors are straightforward to implement. The bulk of their
processing logic is in the handleMessage() method. This method
receives the message data and manipulates it as needed.
Developers may also want to add some special logic to handle
fault processing cases.

Figure 3 shows the process flow through an interceptor.

Figure 3. Flow Through an Interceptor

In normal message processing, only the handleMessage() method
is called. The handleMessage() method is where the interceptor's
message processing logic is placed.

If an error occurs in the handleMessage() method of the
interceptor, or any subsequent interceptor in the interceptor
chain, the handleFault() method is called. The handleFault()
method is useful for cleaning up after an interceptor in the
event of an error. It can also be used to alter the fault message.

Processing Messages
In normal message processing, an interceptor's handleMessage()
method is invoked. It receives that message data as a Message
object. Along with the actual contents of the message, the Message
object may contain a number of properties related to the
message or the message processing state. The exact contents

16 Artix Developing Interceptors for the Java Runtime

of the Message object depends on the interceptors preceding the
current interceptor in the chain.

Getting the message contents
The Message interface provides two methods that can be used in
extracting the message contents:

• public <T> T getContent(java.lang.Class<T> format);

The getContent() method returns the content of the message in
an object of the specified class. If the contents are not
available as an instance of the specified class, null is
returned. The list of available content types is determined
by the interceptor's location on the interceptor chain and the
direction of the interceptor chain.

• public Collection<Attachment> getAttachments();

The getAttachments() method returns a Java Collection object
containing any binary attachments associated with the
message. The attachments are stored in
org.apache.cxf.message.Attachment objects. Attachment objects
provide methods for managing the binary data.

IMPORTANT: Attachments are only available after the attachment
processing interceptors have executed.

Determining the message's direction
The direction of a message can be determined by querying the
message exchange. The message exchange stores the inbound
message and the outbound message in separate properties. It
also stores inbound and outbound faults separately.

The message exchange associated with a message is retrieved
using the message's getExchange() method. As shown in
Example 8, getExchange() does not take any parameters and
returns the message exchange as a
org.apache.cxf.message.Exchange object.

Example 8. Getting the Message Exchange
Exchange getExchange();

Artix Developing Interceptors for the Java Runtime 17

The Exchange object has four methods, shown in Example 9, for
getting the messages associated with an exchange. Each
method will either return the message as a
org.apache.cxf.Message object or it will return null if the message
does not exist.

Example 9. Getting Messages from a Message Exchange
Message getInMessage();
Message getInFaultMessage();
Message getOutMessage();
Message getOutFaultMessage();

Example 10 shows code for determining if the current message
is outbound. The method gets the message exchange and
checks to see if the current message is the same as the
exchange's outbound message. It also checks the current
message against the exchanges outbound fault message to
error messages on the outbound fault interceptor chain.

Example 10. Checking the Direction of a Message Chain

public static boolean isOutbound()
{

Exchange exchange = message.getExchange();
return message != null

&& exchange != null
&& (message == exchange.getOutMessage()

|| message == exchange.getOutFaultMessage());
}

18 Artix Developing Interceptors for the Java Runtime

Example
Example 11 shows code for an interceptor that processes zip
compressed messages. It checks the direction of the message
and then performs the appropriate actions.

Example 11. Example Message Processing Method
import java.io.IOException;
import java.io.InputStream;
import java.util.zip.GZIPInputStream;

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
{

...

public void handleMessage(Message message)
{

boolean isOutbound = false;
isOutbound = message == message.getExchange().getOutMessage()

|| message == message.getExchange().getOutFaultMessage();

if (!isOutbound)
{
try
{

InputStream is = message.getContent(InputStream.class);
GZIPInputStream zipInput = new GZIPInputStream(is);
message.setContent(InputStream.class, zipInput);

}
catch (IOException ioe)
 {

ioe.printStackTrace();
}

}
else
{
// zip the outbound message
}

 }
...

}

Unwinding After an Error
When an error occurs during the execution of an interceptor chain,
the runtime stops traversing the interceptor chain and unwinds
the chain by calling the handleFault() method of any interceptors
in the chain that have already been executed.

The handleFault() method can be used to clean up any resources
used by an interceptor during normal message processing. It
can also be used to rollback any actions that should only stand if
message processing completes successfully. In cases where the
fault message will be passed on to an outbound fault

Artix Developing Interceptors for the Java Runtime 19

processing interceptor chain, the handleFault() method can also
be used to add information to the fault message.

Getting the message payload
The handleFault() method receives the same Message object as
the handleMessage() method used in normal message processing.
Getting the message contents from the Message object is described
in Getting the message contents.

Example

Example 12 shows code used to ensure that the original XML
stream is placed back into the message when the interceptor
chain is unwound.

Example 12. Handling an Unwinding Interceptor Chain
@Override
public void handleFault(SoapMessage message)
{

super.handleFault(message);
XMLStreamWriter writer = (XMLStreamWriter)message.get(ORIGINAL_XML_WRITER);
if (writer != null)
{
message.setContent(XMLStreamWriter.class, writer);

}
}

Artix Developing Interceptors for the Java Runtime 21

Configuring Endpoints
to Use Interceptors
Interceptors are added to an endpoint when it is included in a
message exchange. The endpoint's interceptor chains are
constructed from a the interceptor chains of a number of
components in the Artix ESB runtime. Interceptors are specified
in either then endpoint's configuration or the configuration of one
of the runtime components. Interceptors can be added using
either the configuration file or the interceptor API.

Deciding Where to Attach Interceptors
There are a number of runtime objects that host interceptor
chains. These include:

• the endpoint object

• the service object

• the proxy object

• the factory object used to create the endpoint or the proxy

• the binding

• the central Bus object

A developer can attach their own interceptors to any of these
objects. The most common objects to attach interceptors are
the bus and the individual endpoints. Choosing the correct
object requires understanding how these runtime objects are
combined to make an endpoint.

Endpoints and proxies
Attaching interceptors to either the endpoint or the proxy is the
most fine grained way to place an interceptor. Any interceptors
attached directly to an endpoint or a proxy only effect the
specific endpoint or proxy. This is a good place to attach
interceptors that are specific to a particular incarnation of a
service. For example, if a developer wants to expose one
instance of a service that converts units from metric to imperial
they could attach the interceptors directly to one endpoint.

Factories
Using the Spring configuration to attach interceptors to the
factories used to create an endpoint or a proxy has the same
effect as attaching the interceptors directly to the endpoint or
proxy. However, when interceptors are attached to a factory
programmatically the interceptors attached to the factory are
propagated to every endpoint or proxy created by the factory.

22 Artix Developing Interceptors for the Java Runtime

Bindings
Attaching interceptors to the binding allows the developer to
specify a set of interceptors that are applied to all endpoints that
use the binding. For example, if a developer wants to force all
endpoints that use the raw XML binding to include a special ID
element, they could attach the interceptor responsible for
adding the element to the XML binding.

Buses
The most general place to attach interceptors is the bus. When
interceptors are attached to the bus, the interceptors are
propagated to all of the endpoints managed by that bus.
Attaching interceptors to the bus is useful in applications that
create multiple endpoints that share a similar set of
interceptors.

Combining attachment points
Because an endpoint's final set of interceptor chains is an
amalgamation of the interceptor chains contributed by the
listed objects, several of the listed object can be combined in a
single endpoint's configuration. For example, if an application
spawned multiple endpoints that all required an interceptor that
checked for a validation token, that interceptor would be
attached to the application's bus. If one of those endpoints also
required an interceptor that converted Euros into dollars, the
conversion interceptor would be attached directly to the specific
endpoint.

Adding Interceptors Using Configuration
The easiest way to attach interceptors to an endpoint is using the
configuration file. Each interceptor to be attached to an
endpoint is configured using a standard Spring bean. The
interceptor's bean can then be added to the proper interceptor
chain using Artix ESB configuration elements.

Each runtime component that has an associated interceptor
chain is configurable using specialized Spring elements. Each of
the component's elements have a standard set of children for
specifying their interceptor chains. There is one child for each
interceptor chain associated with the component. The children
list the beans for the interceptors to be added to the chain.

Artix Developing Interceptors for the Java Runtime 23

Configuration elements
Table 1 describes the four configuration elements for attaching
interceptors to a runtime component.

Table 1. Interceptor Chain Configuration Elements

Element Description

inInterceptors Contains a list of beans
configuring interceptors to add to
an endpoint's inbound interceptor
chain.

outInterceptors Contains a list of beans
configuring interceptors to add to
an endpoint's outbound
interceptor chain.

inFaultInterceptors Contains a list of beans
configuring interceptors to add to
an endpoint's inbound fault
processing interceptor chain.

outFaultInterceptors Contains a list of beans
configuring interceptors to add to
an endpoint's outbound fault
processing interceptor chain.

All of the interceptor chain configuration elements take a list
child element. The list element has one child for each of the
interceptors being attached to the chain. Interceptors can be
specified using either a bean element directly configuring the
interceptor or a ref element that refers to a bean element that
configures the interceptor.

24 Artix Developing Interceptors for the Java Runtime

Examples
Example 13 shows configuration for attaching interceptors to a
bus' inbound interceptor chain.

Example 13. Attaching Interceptors to the Bus
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://cxf.apache.org/core"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="
http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframe work.org/schema/beans/spring-beans.xsd">

...
<bean id="GZIPStream" class="demo.stream.interceptor.StreamInterceptor"/>

<cxf:bus>
<cxf:inInterceptors>

<list>
<ref bean="GZIPStream"/>

</list>
</cxf:inInterceptors>

</cxf:bus>
</beans>

Example 14 shows configuration for attaching an interceptor to
a JAX-WS service's outbound interceptor chain.

Example 14. Attaching Interceptors to a JAX-WS Service
Provider
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint ...>
<jaxws:outInterceptors>

<list>
<bean id="GZIPStream"
class="demo.stream.interceptor.StreamInterceptor" />

</list>
</jaxws:outInterceptors>

</jaxws:endpoint>
</beans>

More information
For more information about configuring endpoints using the
Spring configuration see Artix ESB Deployment Guide.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/core
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/core
http://cxf.apache.org/schemas/core.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/con
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://cxf.apache.org/ws/addressing
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.iona.com/support/docs/artix/5.5/deploy/java/deploy_java.pdf

Artix Developing Interceptors for the Java Runtime 25

Adding Interceptors Programmatically
Interceptors can be attached to endpoints programmatically
using either one of two approaches:

• the InterceptorProvider API

• Java annotations

Using the InterceptorProvider API allows the developer to attach
interceptors to any of the runtime components that have
interceptor chains, but it requires working with the underlying
Artix ESB classes. The Java annotations can only be added to
service interfaces or service implementations, but they allow
developers to stay within the JAX-WS API or the JAX-RS API.

Using the InterceptorProvider API
Interceptors can be registered with any component that
implements the InterceptorProvider interface, as shown in
Example 15.

Example 15. The InterceptorProvider Interface
package org.apache.cxf.interceptor; import

java.util.List;

public interface InterceptorProvider
{

List<Interceptor<? extends Message>> getInInterceptors();

List<Interceptor<? extends Message>> getOutInterceptors();

List<Interceptor<? extends Message>> getInFaultIntercept ors();

List<Interceptor<? extends Message>> getOutFaultIntercept ors();

}

The four methods in the interface allow you to retrieve each of
an endpoint's interceptor chains as a Java List object. Using the
methods offered by the Java List object, developers can add
and remove interceptors to any of the chains.

Procedure
To use the InterceptorProvider API to attach an interceptor to a
runtime component's interceptor chain, do the following:

1. Get access to the runtime component with the chain to
which the interceptor is being attached.

Developers will need to use Artix ESB specific APIs to access
the runtime components from standard Java application
code. The runtime components are usually accessible by
casting the JAX-WS or JAX-RS artifacts into the underlying
Artix ESB objects.

26 Artix Developing Interceptors for the Java Runtime

2. Create an instance of the interceptor.

3. Use the proper get method to retrieve the desired
interceptor chain.

4. Use the List object's add() method to attach the interceptor
to the interceptor chain.

TIP: This step is usually combined with that of retrieving the
interceptor chain.

Attaching an interceptor to a consumer
Example 16 shows code for attaching an interceptor to the
inbound interceptor chain of a JAX-WS consumer.

Example 16. Attaching an Interceptor to a Consumer
Programmatically
package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import org.apache.cxf.endpoint.ClientProxy;
import org.apache.cxf.endpoint.ClientProxy;

public class Client
{

public static void main(String args[])
{

QName serviceName = new QName("http://demo.eric.org",
"stockQuoteReporter");
Service s = Service.create(serviceName); ❶

QName portName = new QName("http://demo.eric.org",
"stockQuoteReporterPort");
s.addPort(portName, "http://schemas.xmlsoap.org/soap/",

"http://localhost:9000/EricStock Quote"); ❷

quoteReporter proxy = s.getPort(portName, quoteReporter.class); ❸

Client cxfClient = ClientProxy.getClient(proxy);

❹ ValidateInterceptor validInterceptor = new ValidateInterceptor(); ❺
cxfClient.getInInterceptors().add(validInterceptor); ❻

...

}
}

The code in Example 16 does the following:

❶ Creates a JAX-WS Service object for the consumer.

http://demo.eric.org/
http://demo.eric.org/
http://schemas.xmlsoap.org/soap/

Artix Developing Interceptors for the Java Runtime 27

❷ Adds a port to the Service object that provides the
consumer's target address.

❸ Creates the proxy used to invoke methods on the service
provider.

❹ Gets the Artix ESB Client object associated with the proxy.

❺ Creates an instance of the interceptor.

❻ Attaches the interceptor to the inbound interceptor chain.

Attaching an interceptor to a service provider
Example 17 shows code for attaching an interceptor to a service
provider's outbound interceptor chain.

Example 17. Attaching an Interceptor to a Service Provider
Programmatically
package com.fusesource.demo;
import java.util.*;

import org.apache.cxf.endpoint.Server;
import org.apache.cxf.frontend.ServerFactoryBean;
import org.apache.cxf.frontend.EndpointImpl;

public class stockQuoteReporter implements quoteReporter
{

...
public stockQuoteReporter()
{
ServerFactoryBean sfb = new ServerFactoryBean(); ❶
Server server = sfb.create(); ❷
EndpointImpl endpt = server.getEndpoint(); ❸

AuthTokenInterceptor authInterceptor = new AuthTokenInterceptor(); ❹

endpt.getOutInterceptors().add(authInterceptor); ❺
}

}

The code in Example 17 on page 50 does the following:

❶ Creates a ServerFactoryBean object that will provide
access to the underlying Artix ESB objects.

❷ Gets the Server object that Artix ESB uses to represent
the endpoint.

❸ Gets the Artix ESB EndpointImpl object for the service
provider.

❹ Creates an instance of the interceptor.

28 Artix Developing Interceptors for the Java Runtime

❺ Attaches the interceptor to the endpoint’s outbound
interceptor chain.

Attaching an interceptor to a bus
Example 18 shows code for attaching an interceptor to a bus'
inbound interceptor chain.

Example 18. Attaching an Interceptor to a Bus
import org.apache.cxf.BusFactory; org.apache.cxf.Bus;

...

Bus bus = BusFactory.getDefaultBus(); ❶

WatchInterceptor watchInterceptor = new WatchInterceptor(); ❷

bus..getInInterceptors().add(watchInterceptor); ❸

...

The code in Example 18 does the following:

❶ Gets the default bus for the runtime instance.

❷ Creates an instance of the interceptor.

❸ Attaches the interceptor to the inbound interceptor chain.

The WatchInterceptor will be attached to the inbound
interceptor chain of all endpoints created by the runtime
instance.

Using Java Annotations
Artix ESB provides four Java annotations that allow a developer
to specify the interceptor chains used by an endpoint. Unlike the
other means of attaching interceptors to endpoints, the
annotations are attached to application-level artifacts. The
artifact that is used determines the scope of the annotation's
effect.

Where to place the annotations
The annotations can be placed on the following artifacts:

• the service endpoint interface(SEI) defining the endpoint

If the annotations are placed on an SEI, all of the service
providers that implement the interface and all of the
consumers that use the SEI to create proxies will be
affected.

• a service implementation class

Artix Developing Interceptors for the Java Runtime 29

If the annotations are placed on an implementation class, all
of the service providers using the implementation class will
be affected.

The annotations
The annotations are all in the org.apache.cxf.interceptor package
and are described in Table 2.

Table 2. Interceptor Chain Annotations

Annotation Description

InInterceptors Specifies the interceptors for the
inbound interceptor chain.

OutInterceptors Specifies the interceptors for the
outbound interceptor chain.

InFaultInterceptors Specifies the interceptors for the
inbound fault interceptor chain.

OutFaultInterceptors Specifies the interceptors for the
outbound fault interceptor chain.

Listing the interceptors
The list of interceptors is specified as a list of fully qualified class
names using the syntax shown in Example 19.

Example 19. Syntax for Listing Interceptors in a Chain
Annotation
interceptors={"interceptor1", "interceptor2", ..., "interceptorN"

Example
Example 20 shows annotations that attach two interceptors to
the inbound interceptor chain of endpoints that use the logic
provided by SayHiImpl.

Example 20. Attaching Interceptors to a Service
Implementation
import org.apache.cxf.interceptor.InInterceptors;

@InInterceptors(interceptors={"com.sayhi.interceptors.FirstLast",
"com.sayhi.interceptors.Log Name"})
public class SayHiImpl implements SayHi
{

...
}

Artix Developing Interceptors for the Java Runtime 31

Manipulating
Interceptor Chains on
the Fly
Interceptors can reconfigure an endpoint's interceptor chain as
part of its message processing logic. It can add new interceptors,
remove interceptors, reorder interceptors, and even suspend the
interceptor chain. Any on-the-fly manipulation is invocation-
specific, so the original chain is used each time an endpoint is
involved in a message exchange.

Interceptor chains only live as long as the message exchange
that sparked their creation. Each message contains a reference
to the interceptor chain responsible for processing it.
Developers can use this reference to alter the message's
interceptor chain. Because the chain is per-exchange, any
changes made to a message's interceptor chain will not effect other
message exchanges.

Chain life-cycle
Interceptor chains and the interceptors in the chain are
instantiated on a per-invocation basis. When an endpoint is
invoked to participate in a message exchange, the required
interceptor chains are instantiated along with instances of its
interceptors. When the message exchange that caused the
creation of the interceptor chain is completed, the chain and its
interceptor instances are destroyed.

This means that any changes you make to the interceptor chain
or to the fields of an interceptor do not persist across message
exchanges. So, if an interceptor places another interceptor in the
active chain only the active chain is effected. Any future
message exchanges will be created from a pristine state as
determined by the endpoint's configuration. It also means that a
developer cannot set flags in an interceptor that will alter future
message processing.

TIP: If an interceptor needs to pass information along to future
instances, it can set a property in the message context. The context does
persist across message exchanges.

Getting the interceptor chain
The first step in changing a message's interceptor chain is
getting the interceptor chain. This is done using the
Message.getInterceptorChain() method shown in Example 21. The
interceptor chain is returned as a
org.apache.cxf.interceptor.InterceptorChain object.

32 Artix Developing Interceptors for the Java Runtime

Example 21. Method for Getting an Interceptor Chain
InterceptorChain getInterceptorChain();

Adding interceptors
The InterceptorChain object has two methods, shown in Example
22, for adding interceptors to an interceptor chain. One allows
you to add a single interceptor and the other allows you to add
multiple interceptors.

Example 22. Methods for Adding Interceptors to an
Interceptor Chain

void add(Interceptor <? extends Message> i);

void add(Collection<Interceptor <? extends Message>> i);

Example 23 shows code for adding a single interceptor to a
message's interceptor chain.

Example 23. Adding an Interceptor to an Interceptor Chain
On-the-fly

The code in Example 23 does the following:

❶ Instantiates a copy of the interceptor to be added to the
chain.

IMPORTANT: The interceptor being added to the chain should be in
either the same phase as the current interceptor or a latter phase than
the current interceptor.

❷ Gets the interceptor chain for the current message.

❸ Adds the new interceptor to the chain.

Removing interceptors
The InterceptorChain object has one method, shown in Example
24, for removing an interceptor from an interceptor chain.

Example 24. Methods for Adding Interceptors to an
Interceptor Chain

void remove(Interceptor <? extends Message> i);

void handleMessage(Message message)
{
...
AddledIntereptor addled = new AddledIntereptor(); ❶
InterceptorChain chain = message.getInterceptorChain(); ❷
chain.add(addled); ❸
...

}

Artix Developing Interceptors for the Java Runtime 33

Example 25 shows code for removing an interceptor
from a message's interceptor chain.

Example 25. Adding an Interceptor to an Interceptor Chain
On-the-fly

The code in Example 25 does the following:

❶ Instantiates a copy of the interceptor to be removed from
the chain.

IMPORTANT: The interceptor being removed from the chain should be
in either the same phase as the current interceptor or a latter phase
than the current interceptor.

❷ Gets the interceptor chain for the current message.

❸ Removes the interceptor from the chain.

void handleMessage(Message message)
{
...
SackedIntereptor sacked = new SackedIntereptor(); ❶
InterceptorChain chain = message.getInterceptorChain(); ❷
chain.remove(sacked); ❸
...

}

Artix Developing Interceptors for the Java Runtime 35

Appendix: Artix ESB
Message Processing
Phases
Inbound phases

Table A.1 lists the phases available in inbound interceptor chains.

Table A.1. Inbound Message Processing Phases

Phase Description

RECEIVE Performs transport specific processing, such as determining MIME
boundaries for binary attachments.

PRE_STREAM Processes the raw data stream received by the transport.
USER_STREAM
POST_STREAM
READ Determines if a request is a SOAP or XML message and builds adds the proper

interceptors. SOAP message headers are also processed in this phase.
PRE_PROTOCOL Performs protocol level processing. This includes processing of WS-* headers

and processing of the SOAP message properties. USER_PROTOCOL
POST_PROTOCOL
UNMARSHAL Unmarshals the message data into the objects used by the application level

code.
PRE_LOGICAL Processes the unmarshalled message data.
USER_LOGICAL
POST_LOGICAL
PRE_INVOKE

INVOKE Passes the message to the application code. On the server side, the service
implementation is invoked in this phase. On the client side, the response is
handed back to the application.

POST_INVOKE Invokes the outbound interceptor chain.

36 Artix Developing Interceptors for the Java Runtime

Outbound phases

Table A.2 lists the phases available in inbound interceptor
chains.

Table A.2. Inbound Message Processing Phases

Phase Description

SETUP Performs any set up that is required by later phases in the chain.
PRE_LOGICAL Performs processing on the unmarshalled data passed from the application level.
USER_LOGICAL
POST_LOGICAL
PREPARE_SEND Opens the connection for writing the message on the wire.
PRE_STREAM Performs processing required to prepare the message for entry into a data stream.
PRE_PROTOCOL Begins processing protocol specific information.
WRITE Writes the protocol message.
PRE_MARSHAL Marshals the message.
MARSHAL
POST_MARSHAL
USER_PROTOCOL Process the protocol message.
POST_PROTOCOL
USER_STREAM Process the byte-level message.
POST_STREAM
SEND Sends the message and closes the transport stream.

IMPORTANT: Outbound interceptor chains have a mirror set of ending
phases whose names are appended with _ENDING. The ending phases are
used interceptors that require some terminal action to occur before data is
written on the wire.

Artix Developing Interceptors for the Java Runtime 37

Appendix: Artix ESB
Provided Interceptors

Core Artix ESB Interceptors
Inbound
Table B.1 lists the core inbound interceptors that are added to
all Artix ESB endpoints.

Table B.1. Core Inbound Interceptors

Class Phase Description

ServiceInvokerInterceptor INVOKE Invokes the proper method on the service.
Outbound
The Artix ESB does not add any core interceptors to the outbound
interceptor chain by default. The contents of an endpoint's
outbound interceptor chain depend on the features in use.

Front-Ends
JAX-WS
Table B.2 lists the interceptors added to a JAX-WS endpoint's
inbound message chain.

Table B.2. Inbound JAX-WS Interceptors

Class Phase Description

HolderInInterceptor PRE_INVOKE Creates holder objects for any out or
in/out parameters in the message.

WrapperClassInInterceptor POST_LOGICAL Unwraps the parts of a wrapped
doc/literal message into the
appropriate array of objects.

LogicalHandlerInInterceptor PRE_PROTOCOL Passes message processing to the
JAX-WS logical handlers used by the
endpoint. When the JAX-WS handlers
complete, the message is passed
along to the next interceptor on the
inbound chain.

SOAPHandlerInterceptor PRE_PROTOCOL Passes message processing to the
JAX-WS SOAP handlers used by the
endpoint. The SOAP handlers
complete, the message is passed
along to the next interceptor in the
chain.

Table B.3 lists the interceptors added to a JAX-WS
endpoint's outbound message chain.

38 Artix Developing Interceptors for the Java Runtime

Table B.3. Outbound JAX-WS Interceptors

Class Phase Description

HolderOutInterceptor PRE_LOGICAL Removes the values of any out and in/out
parameters from their holder objects and
adds the values to the message's parameter
list.

WebFaultOutInterceptor PRE_PROTOCOL Processes outbound fault messages.
WrapperClassOutInterceptor PRE_LOGICAL Makes sure that wrapped doc/literal messages

and rpc/literal messages are properly wrapped
before being added to the message.

LogicalHandlerOutInterceptor PRE_MARSHAL Passes message processing to the JAX-WS
logical handlers used by the endpoint. When
the JAX-WS handlers complete, the message
is passed along to the next interceptor on the
outbound chain.

SOAPHandlerInterceptor PRE_PROTOCOL Passes message processing to the JAX-WS
SOAP handlers used by the endpoint. The
SOAP handlers complete, the message is
passed along to the next interceptor in the
chain.

MessageSenderInterceptor PREPARE_SEND Calls back to the Destination object to have
it setup the output streams, headers, etc.
to prepare the outgoing transport.

JAX-RS
Table B.4 lists the interceptors added to a JAX-RS endpoint's
inbound message chain.

Table B.4. Inbound JAX-RS Interceptors

Class Phase Description

JAXRSInInterceptor UNMARSHAL Selects the root resource class, invokes any configured
JAX-RS request filters, and determines the method to
invoke on the root resource.

IMPORTANT: The inbound chain for a JAX-RS endpoint skips straight
to the ServiceInvokerInInterceptor interceptor. No other interceptors will
be invoked after the JAXRSInInterceptor.

Artix Developing Interceptors for the Java Runtime 39

Table B.5 lists the interceptors added to a JAX-RS endpoint's
outbound message chain.

Table B.5. Outbound JAX-RS Interceptors

Class Phase Description

JAXRSOutInterceptor MARSHAL Marshals the response into the proper format for
transmission.

Message Bindings
SOAP
Table B.6 lists the interceptors added to a endpoint's inbound
message chain when using the SOAP Binding.

Table B.6. Inbound SOAP Interceptors

Class Phase Description

CheckFaultInterceptor POST_PROTOCOL Checks if the message is a fault message. If the
message is a fault message, normal processing is
aborted and fault processing is started.

MustUnderstandInterceptor PRE_PROTOCOL Processes the must understand headers.
RPCInInterceptor UNMARSHAL Unmarshals rpc/literal messages. If the message

is bare, the message is passed to a
BareInInterceptor object to deserialize the
message parts.

ReadsHeadersInterceptor READ Parses the SOAP headers and stores them in
the message object.

SoapActionInInterceptor READ Parses the SOAP action header and attempts to
find a unique operation for the action.

SoapHeaderInterceptor UNMARSHAL Binds the SOAP headers that map to operation
parameters to the appropriate objects.

AttachmentInInterceptor RECEIVE Parses the mime headers for mime boundaries,
finds the root part and resets the input stream to
it, and stores the other parts in a collection of
Attachment objects.

DocLiteralInInterceptor UNMARSHAL Examines the first element in the SOAP body to
determine the appropriate operation and calls the
data binding to read in the data.

StaxInInterceptor POST_STREAM Creates an XMLStreamReader object from the
message.

URIMappingInterceptor UNMARSHAL Handles the processing of HTTP GET methods.
SwAInInterceptor PRE_INVOKE Creates the required MIME handlers for

binary SOAP attachments and adds the
data to the parameter list.

Table B.7lists the interceptors added to a endpoint's
outbound message chain when using the SOAP
Binding.

40 Artix Developing Interceptors for the Java Runtime

Table B.7. Outbound SOAP Interceptors

Class Phase Description

RPCOutInterceptor MARSHAL Marshals rpc style messages for
transmission.

SoapHeaderOutFilterInterceptor PRE_LOGICAL Removes all SOAP headers that are
marked as inbound only.

SoapPreProtocolOutInterceptor POST_LOGICAL Sets up the SOAP version and the SOAP
action header.

AttachmentOutInterceptor PRE_STREAM Sets up the attachment marshallers and
the mime stuff needed to process any
attachments that may be in the
message.

BareOutInterceptor MARSHAL Writes the message parts.
StaxOutInterceptor PRE_STREAM Creates an XMLStreamWriter objects from

the message.
WrappedOutInterceptor MARSHAL Wraps the outbound message parameters.
SoapOutInterceptor WRITE Writes the soap:envelope element and

the elements for the header blocks in the
message. Also writes an empty
soap:body element for the remaining
interceptors to populate.

SwAOutInterceptor PRE_LOGICAL Removes any binary data that will be
packaged as a SOAP attachment and
stores it for later processing.

XML
Table B.8 lists the interceptors added to a endpoint's inbound
message chain when using the XML Binding.

Table B.8. Inbound XML Interceptors

Class Phase Description

AttachmentInInterceptor RECEIVE Parses the mime headers for mime boundaries,
finds the root part and resets the input stream to it,
and stores the other parts in a collection of
Attachment objects.

DocLiteralInInterceptor UNMARSHAL Examines the first element in the message body to
determine the appropriate operation and calls the
data binding to read in the data.

StaxInInterceptor POST_STREAM Creates an XMLStreamReader object from the
message.

URIMappingInterceptor UNMARSHAL Handles the processing of HTTP GET methods.
XMLMessageInInterceptor UNMARSHAL Unmarshals the XML message.

Table B.9 lists the interceptors added to a endpoint's
outbound message chain when using the XML
Binding.

Artix Developing Interceptors for the Java Runtime 41

Table B.9. Outbound XML Interceptors

Class Phase Description

StaxOutInterceptor PRE_STREAM Creates an XMLStreamWriter objects from the
message.

WrappedOutInterceptor MARSHAL Wraps the outbound message parameters.
XMLMessageOutInterceptor MARSHAL Marshals the message for transmission.

CORBA
Table B.10 lists the interceptors added to a endpoint's inbound
message chain when using the CORBA Binding.

Table B.10. Inbound CORBA Interceptors

Class Phase Description

CorbaStreamInInterceptor PRE_STREAM Deserializes the CORBA message.
BareInInterceptor UNMARSHAL Deserializes the message parts.

Table B.11 lists the interceptors added to a endpoint's
outbound message chain when using the CORBA
Binding.

Table B.11. Outbound CORBA Interceptors

Class Phase Description

CorbaStreamOutInterceptor PRE_STREAM Serializes the message.
BareOutInterceptor MARSHAL Writes the message parts.
CorbaStreamOutEndingInterceptor USER_STREAM Creates a streamable object for the

message and stores it in the message
context.

Other Features
Logging
Table B.12 lists the interceptors added to a endpoint's inbound
message chain to support logging.

Table B.12. Inbound Logging Interceptors

Class Phase Description

LoggingInInterceptor RECEIVE Writes the raw message data to the logging system.

Table B.13 lists the interceptors added to a endpoint's
outbound message chain to support logging.

42 Artix Developing Interceptors for the Java Runtime

Table B.13. Outbound Logging Interceptors

Class Phase Description

LoggingOutInterceptor PRE_STREAM Writes the outbound message to the logging
system.

For more information about logging see Artix ESB Logging in
Artix ESB Deployment Guide.

WS-Addressing
Table B.14 lists the interceptors added to a endpoint's inbound
message chain when using WS-Addressing.

Table B.14. Inbound WS-Addressing Interceptors

Class Phase Description

MAPCodec PRE_PROTOCOL Decodes the message addressing properties.

Table B.15 lists the interceptors added to a endpoint's
outbound message chain when using WS-Addressing.

Table B.15. Outbound WS-Addressing Interceptors

Class Phase Description

MAPAggregator PRE_LOGICAL Aggregates the message addressing properties for a message.
MAPCodec PRE_PROTOCOL Encodes the message addressing properties.

For more information about WS-Addressing see Deploying WS-
Addressing in Artix ESB Deployment Guide.

WS-RM

IMPORTANT: WS-RM relies on WS-Addressing so all of the WS-
Addressing interceptors will also be added to the interceptor chains.

Table B.16 lists the interceptors added to a endpoint's inbound
message chain when using WS-RM.

Table B.16. Inbound WS-RM Interceptors

Class Phase Description

RMInInterceptor PRE_LOGICAL Handles the aggregation of message parts and
acknowledgement messages.

RMSoapInInterceptor PRE_PROTOCOL Encodes and decodes the WS-RM properties from
messages.

Table B.17 lists the interceptors added to a endpoint's outbound
message chain when using WS-RM.

Artix Developing Interceptors for the Java Runtime 43

Table B.17. Outbound WS-RM Interceptors

Class Phase Description

RMOutInterceptor PRE_LOGICAL Handles the chunking of messages and the
transmission of the chunks. Also handles processing
of acknowledgements and resend requests.

RMSoapOutInterceptor PRE_PROTOCOL Encodes and decodes the WS-RM properties from
messages.

For more information about WS-RM see Enabling Reliable
Messaging in Artix Deployment Guide: Java.

Artix Developing Interceptors for the Java Runtime 45

Appendix: Interceptor
Providers
Interceptor providers are objects in the Artix ESB runtime that
have interceptor chains attached to them. They all implement
the org.apache.cxf.interceptor.InterceptorProvider interface.

Developers can attach their own interceptors to any interceptor
provider.

List of providers

The following objects are interceptor providers:

• AddressingPolicyInterceptorProvider

• ClientFactoryBean

• ClientImpl

• ClientProxyFactoryBean

• CorbaBinding

• CXFBusImpl

• org.apache.cxf.jaxws.EndpointImpl

• org.apache.cxf.endpoint.EndpointImpl

• ExtensionManagerBus

• JAXRSClientFactoryBean

• JAXRSServerFactoryBean

• JAXRSServiceImpl

• JaxWsClientEndpointImpl

• JaxWsClientFactoryBean

• JaxWsEndpointImpl

• JaxWsProxyFactoryBean

• JaxWsServerFactoryBean

• JaxwsServiceBuilder

• MTOMPolicyInterceptorProvider

• NoOpPolicyInterceptorProvider

• ObjectBinding

• RMPolicyInterceptorProvider

• ServerFactoryBean

• ServiceImpl

46 Artix Developing Interceptors for the Java Runtime

• SimpleServiceBuilder

• SoapBinding

• WrappedEndpoint

• WrappedService

• XMLBinding

	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of this Guide
	The Artix ESB Documentation Library
	Further Information and Product Support
	Information We Need
	Contact information

	Interceptors in the Artix ESB Runtime
	Message processing in Artix ESB
	Interceptors
	Phases
	Interceptor chains
	Developing interceptors

	The Interceptor APIs
	Interfaces
	Abstract interceptor class

	Determining When the Interceptor is Invoked
	Specifying an Interceptor's Phase
	Phase
	Specifying a phase
	Setting the phase

	Constraining an Interceptors Placement in a Phase
	Add to the chain before
	Add to the chain after

	Implementing the Interceptors Processing Logic
	Processing Messages
	Getting the message contents
	Determining the message's direction
	Example

	Unwinding After an Error
	Getting the message payload

	Configuring Endpoints to Use Interceptors
	Deciding Where to Attach Interceptors
	Endpoints and proxies
	Factories
	Bindings
	Buses
	Combining attachment points

	Adding Interceptors Using Configuration
	Configuration elements
	Examples
	More information

	Adding Interceptors Programmatically
	Using the InterceptorProvider API
	Procedure
	Attaching an interceptor to a consumer
	Attaching an interceptor to a service provider
	Attaching an interceptor to a bus
	Using Java Annotations
	Where to place the annotations
	The annotations
	Listing the interceptors
	Example

	Manipulating Interceptor Chains on the Fly
	Chain life-cycle
	Getting the interceptor chain
	Adding interceptors
	Removing interceptors

	Appendix: Artix ESB Message Processing Phases
	Inbound phases
	Outbound phases

	Appendix: Artix ESB Provided Interceptors
	Core Artix ESB Interceptors
	Inbound
	Outbound

	Front-Ends
	JAX-WS
	JAX-RS

	Message Bindings
	SOAP
	XML
	CORBA

	Other Features
	Logging
	WS-Addressing
	WS-RM

	Appendix: Interceptor Providers
	List of providers

