
Artix 5.6.3

Bindings and
Transports, Java
Runtime

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2015. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-03-11

http://www.microfocus.com/

Artix Bindings and Transports, Java Runtime iii

Contents

Preface ... v
What is Covered in This Book ... v
Who Should Read This Book ... v
How to Use This Book .. v
The Artix ESB Documentation Library .. v
Further Information and Product Support v

Information We Need ... vi
Contact information ... vi

Part I Bindings

Understanding Bindings in WSDL 3
Port types and bindings ... 3
The WSDL elements ... 3
Adding to a contract ... 4

Using SOAP 1.1 Messages....................................... 5
Adding a SOAP 1.1 Binding ... 5

Using wsdltosoap ... 5
Adding SOAP Headers to a SOAP 1.1 Binding 7

Using SOAP 1.2 Messages..................................... 13
Adding a SOAP 1.2 Binding ... 13

Using wsdltosoap ... 13
Adding Headers to a SOAP 1.2 Message 15

Splitting messages between body and header 16

Sending Binary Data Using SOAP Attachments 21
Namespace ... 21
Changing the message binding .. 21
Describing a MIME multipart message 22

Sending Binary Data with SOAP MTOM 25
Annotating Data Types to use MTOM 25

WSDL first ... 26
Java first .. 28

Enabling MTOM ... 29
Using JAX-WS APIs ... 29
Using configuration ... 30

Using XML Documents .. 33
XML binding namespace .. 33

iv Artix Bindings and Transports, Java Runtime

Hand editing .. 33
XML messages on the wire .. 34

Part II Transports

How Endpoints are Defined in WSDL 39
Endpoints and services ... 39
The WSDL elements ... 39
Adding endpoints to a contract .. 39
Supported transports .. 40

Using HTTP .. 41
Adding a Basic HTTP Endpoint .. 41

SOAP 1.1 .. 41
SOAP 1.2 .. 41

Configuring a Consumer .. 42
Using Configuration .. 42
Using WSDL .. 48
Consumer Cache Control Directives .. 49

Configuring a Service Provider .. 50
Using Configuration .. 50
Using WSDL .. 54
Service Provider Cache Control Directives 54

Configuring the Jetty Runtime .. 56
Using the HTTP Transport in Decoupled Mode 59

Using JMS .. 65
Namespaces ... 65
Basic Endpoint Configuration .. 65

Using Configuration .. 65
Using WSDL .. 69
Using a named reply destination .. 70

Consumer Endpoint Configuration ... 70
Using Configuration .. 71
Using WSDL .. 72

Provider Endpoint Configuration .. 73
Using Configuration .. 73
Using WSDL .. 74

JMS Runtime Configuration .. 75
Consumer Specific Runtime Configuration 75
Provider Specific Runtime Configuration 76

Using WebSphere MQ ... 77

Artix Bindings and Transports, Java Runtime v

Preface
What is Covered in This Book

This book discusses the bindings and transports supported by
the Artix ESB Java Runtime. It describes how the combination
of WSDL elements and configuration is used to set-up a
binding or a transport. It also discusses the advantages of
using each of the bindings and transports.

Who Should Read This Book
This book is intended for people who are developing the
contracts for endpoints that are going to be deployed into the
Artix ESB Java Runtime. It assumes a working knowledge of
WSDL and XML. It also assumes a working knowledge of the
underlying middleware technology being discussed.

How to Use This Book
This book is broken into two parts:

• Part I describes how to work with the message bindings.

• Part II describes how to work with the transports.

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library,
the document conventions used, and where to find additional
resources, see Using the Artix ESB Library.

Further Information and Product Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The WebSync service, where you can download fixes and
documentation updates.

• The Knowledge Base, a large collection of product tips and
workarounds.

• Examples and Utilities, including demos and additional
product documentation.

http://communities.progress.com/pcom/docs/DOC-105909
http://communities.progress.com/pcom/docs/DOC-105909

vi Artix Bindings and Transports, Java Runtime

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be

http://www.microfocus.com/
http://www.microfocus.com/

Artix Bindings and Transports, Java Runtime vii

available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/artix.aspx (trial
software download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Artix Bindings and Transports, Java Runtime 1

Part I

Bindings
In this part
This part contains the following chapters:

Understanding Bindings in WSDL

Using SOAP 1.1 Messages

Using SOAP 1.2 Messages

Sending Binary Data Using SOAP with Attachments

Sending Binary Data with SOAP MTOM

Using XML Documents

Artix Bindings and Transports, Java Runtime 3

Understanding
Bindings in WSDL
Bindings map the logical messages used to define a service
into a concrete payload format that can be transmitted and
received by an endpoint.

Bindings provide a bridge between the logical messages used
by a service to a concrete data format that an endpoint uses
in the physical world. They describe how the logical messages
are mapped into a payload format that is used on the wire by
an endpoint. It is within the bindings that details such as
parameter order, concrete data types, and return values are
specified. For example, the parts of a message can be
reordered in a binding to reflect the order required by an RPC
call. Depending on the binding type, you can also identify
which of the message parts, if any, represent the return type
of a method.

Port types and bindings

Port types and bindings are directly related. A port type is an
abstract definition of a set of interactions between two logical
services. A binding is a concrete definition of how the
messages used to implement the logical services will be
instantiated in the physical world. Each binding is then
associated with a set of network details that finish the
definition of one endpoint that exposes the logical service
defined by the port type.

To ensure that an endpoint defines only a single service,
WSDL requires that a binding can only represent a single port
type. For example, if you had a contract with two port types,
you could not write a single binding that mapped both of
them into a concrete data format. You would need two
bindings.

However, WSDL allows for a port type to be mapped to
several bindings. For example, if your contract had a single
port type, you could map it into two or more bindings. Each
binding could alter how the parts of the message are mapped
or they could specify entirely different payload formats for the
message.

The WSDL elements

Bindings are defined in a contract using the WSDLbinding
element. The binding element has a single attribute, name,
that specifies a unique name for the binding. The value of this
attribute is used to associate the binding with an endpoint as

4 Artix Bindings and Transports, Java Runtime

discussed in Understanding How Endpoints are Defined in
WSDL.

The actual mappings are defined in the children of the
binding element. These elements vary depending on the type
of payload format you decide to use. The different payload
formats and the elements used to specify their mappings are
discussed in the following chapters.

Adding to a contract

Artix provides command line tools for adding bindings to your
contracts.

The tools will add the proper elements to your contract for
you. However, it is recommended that you have some
knowledge of how the different types of bindings work.

You can also add a binding to a contract using any text
editor. When you hand edit a contract, you are responsible
for ensuring that the contract is valid.

Supported bindings
The Artix ESB Java Runtime supports the following bindings:

• SOAP 1.1

• SOAP 1.2

• CORBA

• Pure XML

Artix Bindings and Transports, Java Runtime 5

Using SOAP 1.1
Messages
Artix provides a tool to generate a SOAP 1.1 binding which
does not use any SOAP headers. However, you can add SOAP
headers to your binding using any text or XML editor. In
addition, you can define a SOAP binding that uses MIME
multipart attachments.

Adding a SOAP 1.1 Binding
Artix provides the wsdltosoap tool to add a SOAP 1.1
binding for a logical interface.

Using wsdltosoap

To generate a SOAP 1.1 binding using wsdltosoap use the
following command:

wsdltosoap {-i port-type-name} [-b binding-name] [-d output-
directory] [-o output-file] [-n soap-body-namespace] [-style
(document/rpc)] [-use (literal/encoded)] [-v] [[-verbose] | [-
quiet]] wsdlurl

The command has the following options:

Option Description

-i port-type-
name

Specifies the portType element for which a binding
is generated.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The command has the following optional arguments:

Option Description

-b binding-
name

Specifies the name of the generated SOAP binding.

-d output-
directory

Specifies the directory to place the generated
WSDL.

-o output-
file

Specifies the name of the generated WSDL file.

-n soap-body-
namespace

Specifies the SOAP body namespace when the style
is RPC.

6 Artix Bindings and Transports, Java Runtime

Option Description

-style
(document/
rpc)

Specifies the encoding style (document or RPC) to
use in the SOAP binding. The default is to
document.

-use
(literal/
encoded)

Specifies the binding use (encoded or literal) to use
in the SOAP binding. The default is literal.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

The -i port-type-name and wsdlurl arguments are required. If
the –style rpc argument is specified, the -n soap-body-
namespace argument is also required. All other arguments are
optional and may be listed in any order.

Important: wsdltosoap does not support the generation of
document/encoded SOAP bindings.

For more information see wsdl2soap in the Artix ESB Java
Runtime Command Reference.

Example
If your system has an interface that takes orders and offers a
single operation to process the orders it would be defined in a
WSDL fragment similar to the o ne shown in Example 1.

 Example 1. Ordering System Interface
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/

Artix Bindings and Transports, Java Runtime 7

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>
...
</definitions>

The SOAP binding generated for orderWidgets is shown in
Example 2.

Example 2. SOAP 1.1 Binding for orderWidgets

This binding specifies that messages are sent using the
document/literal message style.

Adding SOAP Headers to a SOAP 1.1 Binding
SOAP headers are defined by adding soap:header elements
to your default SOAP 1.1 binding. The soap:header element
is an optional child of the input, output, and fault
elements of the binding. The SOAP header becomes part of
the parent message. A SOAP header is defined by specifying
a message and a message part. Each SOAP header can only
contain one message part, but you can insert as many SOAP
headers as needed.

<binding name="orderWidgetsBinding" type="tns:orderWidgets">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">

<soap:operation soapAction=""
style="document"/>

<input name="order">
<soap:body use="literal"/>

</input>
<output name="bill">
<soap:body use="literal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>

http://schemas.xmlsoap.org/soap/http

8 Artix Bindings and Transports, Java Runtime

Syntax
The syntax for defining a SOAP header is shown in Example
3. The message attribute of soap:header is the qualified
name of the message from which the part being inserted into
the header is taken. The part attribute is the name of the
message part inserted into the SOAP header. Because SOAP
headers are always document style, the WSDL message part
inserted i nto the SOAP header must be defined using an
element. Together the message and the part attributes fully
describe the data to insert into the SOAP header.

 Example 3. SOAP Header Syntax

As well as the mandatory message and part attributes,
soap:header also supports the namespace, the use, and the
encodingStyle attributes. These optional attributes function
the same for soap:header as they do for soap:body.

Splitting messages between body and header
The message part inserted into the SOAP header can be any
valid message part from the contract. It can even be a part
from the parent message which is being used as the SOAP
body. Because it is unlikely that you would want to send
information twice in the same message, the SOAP binding
providesa means for specifying the message parts that are
inserted into the SOAP body.

The soap:body element has an optional attribute, parts,
that takes a space delimited list of part names. When parts
is defined, only the message parts listed are inserted into the
SOAP body. You can then insert the remaining parts into the
SOAP header.

Example
Example 4 shows a modified version of the orderWidgets
service shown in Example 1. This version has been modified
so that each order has an xsd:base64binary value placed in
the SOAP header of the request and response. The SOAP
header is defined as being the keyVal part from the
widgetKey message. In this case you are responsible for

<binding name="headwig">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">

 <soap:operation soapAction="" style="document"/>
 <input name="grain">
 <soap:body .../>

<soap:header message="QName" part="partName"/>
</input>

...
</binding>

http://schemas.xmlsoap.org/soap/http

Artix Bindings and Transports, Java Runtime 9

adding the SOAP header to your application logic because it is
not part of the input or output message.

Example 4. SOAP 1.1 Binding with a SOAP Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<message name="widgetKey">
<part name="keyVal" element="xsd1:keyElem"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyVal"/>

</input>
<output name="bill">
<soap:body use="literal"/>

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/http

10 Artix Bindings and Transports, Java Runtime

<soap:header message="tns:widgetKey" part="keyVal"/>
</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>
...
</definitions>

You can modify Example 4 so that the header value is a part
of the input and output messages as shown in Example 5. In
this case keyVal is a part of the input and output messages.
In the soap:body element's parts attribute specifies that
keyVal cannot be inserted into the body. However, it is
inserted into the SOAP header.

Example 5. SOAP 1.1 Binding for orderWidgets with a SOAP
Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

Artix Bindings and Transports, Java Runtime 11

<fault message="tns:badSize" name="sizeFault"/>
</operation>

</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal" parts="numOrdered"/>
<soap:header message="tns:widgetOrder" part="keyVal"/>

</input>
<output name="bill">
<soap:body use="literal" parts="bill"/>
<soap:header message="tns:widgetOrderBill" part="keyVal"/>

</output>
<fault name="sizeFault">
<soap:body use="literal"/>

</fault>
</operation>

</binding>
...
</definitions>

http://schemas.xmlsoap.org/soap/http

Artix Bindings and Transports, Java Runtime 13

Using SOAP 1.2
Messages
Artix provides tools to generate a SOAP 1.2 binding which
does not use any SOAP headers. You can add SOAP headers
to your binding using any text or XML editor.

Adding a SOAP 1.2 Binding
Artix provides the wsdltosoap tool to add a SOAP 1.2
binding for a logical interface.

Using wsdltosoap

To generate a SOAP 1.2 binding using wsdltosoap use the
following command:

wsdl2soap {-i port-type-name} [-b binding-name] {-soap12} [-
d output-directory] [-o output-file] [-n soap-body-
namespace] [-style (document/rpc)] [-use (literal/encoded)] [-v]
[[-verbose] | [-quiet]] wsdlurl

The tool has the following required arguments:

Option Interpretation

-i port-type-
name

Specifies the portType element for which
a binding is generated.

-soap12 Specifies that the generated binding uses
SOAP 1.2.

wsdlurl The path and name of the WSDL file
containing the portType element
definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP
binding.

-soap12 Specifies that the generated binding will
use SOAP 1.2.

-d output-
directory

Specifies the directory to place the
generated WSDL file.

14 Artix Bindings and Transports, Java Runtime

Option Interpretation

-o output-file Specifies the name of the generated
WSDL file.

-n soap-body-
namespace

Specifies the SOAP body namespace
when the style is RPC.

-style
(document/rpc)

Specifies the encoding style (document or
RPC) to use in the SOAP binding. The
default is document.

-use

(literal/encode
d)

Specifies the binding use (encoded or
literal) to use in the SOAP binding. The
default is literal.

-v Displays the version number for the tool.

-verbose Displays comments during the code
generation process.

-quiet Suppresses comments during the code
generation process.

The -i port-type-name and wsdlurl arguments are required. If
the -style rpc argument is specified, the -n soap-body-
namespace argument is also required. All other arguments are
optional and can be listed in any order.

Important: wsdltosoap does not support the generation of
document/encoded SOAP bindings.

Example
If your system has an interface that takes orders and offers a
single operation to process the orders it is defined in a WSDL
fragment similar to the one shown in Example 6.

Example 6. Ordering System Interface
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap12/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/

Artix Bindings and Transports, Java Runtime 15

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>
...
</definitions>

The SOAP binding generated for orderWidgets is shown in
Example 7 on page 46.

Example 7. SOAP 1.2 Binding for orderWidgets
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">

<soap12:body use="literal"/>
</input>
<output name="bill">

<wsoap12:body use="literal"/>
</output>
<fault name="sizeFault">

<soap12:body use="literal"/>
</fault>

</operation>
</binding>

This binding specifies that messages are sent using the
document/literal message style.

Adding Headers to a SOAP 1.2 Message
SOAP message headers are defined by adding soap12:header
elements to your SOAP 1.2 message. The soap12:header
element is an optional child of the input, output, and fault
elements of the binding. The SOAP header becomes part of
the parent message. A SOAP header is defined by specifying
a message and a message part. Each SOAP header can only
contain one message part, but you can insert as many
headers as needed.

Syntax
The syntax for defining a SOAP header is shown in Example
8.

http://schemas.xmlsoap.org/soap/http

16 Artix Bindings and Transports, Java Runtime

Example 8. SOAP Header Syntax
<binding name="headwig">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="weave">
<soap12:operation soapAction="" style="documment"/>
<input name="grain">

<soap12:body .../>
<soap12:header message="QName" part="partName"

use="literal|encoded" encodingStyle="encodingURI"
namespace="namespaceURI" />

</input>
...
</binding>

The soap12:header element’s attributes are described in
Table 1.

Table 1. soap12:header Attributes

Attribute Description

message A required attribute specifying the qualified name of the
message from which the part being inserted into the header is
taken.

part A required attribute specifying the name of the message part
inserted into the SOAP header.

use Specifies if the message parts are to be encoded using encoding
rules. If set to encoded the message parts are encoded using
the encoding rules specified by the value of the encodingStyle
attribute. If set to literal, the message parts are defined by
the schema types referenced.

encodingStyle Specifies the encoding rules used to construct the message.

namespace Defines the namespace to be assigned to the header element
serialized with use="encoded".

Splitting messages between body and header

The message part inserted into the SOAP header can be any
valid message part from the contract. It can even be a part
from the parent message which is being used as the SOAP
body. Because it is unlikely that you would send information
twice in the same message, the SOAP 1.2 binding provides a
means for specifying the message parts that are inserted into
the SOAP body.

http://schemas.xmlsoap.org/soap/http

Artix Bindings and Transports, Java Runtime 17

The soap12:body element has an optional attribute, parts,
that takes a space delimited list of part names. When parts
is defined, only the message parts listed are inserted into the
body of the SOAP 1.2 message. You can then insert the
remaining parts into the message's header.

Note: When you define a SOAP header using parts of the parent
message, Artix ESB automatically fills in the SOAP headers for you.

Example
Example 9 shows a modified version of the orderWidgets
service shown in Example 6. This version is modified so that
each order has an xsd:base64binary value placed in the
header of the request and the response. The header is
defined as being the keyVal part from the widgetKey
message. In this case you are responsible for adding the
application logic to create the header because it is not part of
the input or output message.

 Example 9. SOAP 1.2 Binding with a SOAP Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema
targetNamespace="http://widgetVendor.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>
<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>
<message name="widgetKey">
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">

http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap12/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

18 Artix Bindings and Transports, Java Runtime

<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>
<binding name="orderWidgetsBinding"
type="tns:orderWidgets">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">

<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey"
part="keyVal"/>

</input>
<output name="bill">

<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey"
part="keyVal"/>

</output>
<fault name="sizeFault">

<soap12:body use="literal"/>
</fault>

</operation>
</binding>
...
</definitions>

You can modify Example 9 so that the header value is a part
of the input and output messages, as shown in Example 10.
In this case keyVal is a part of the input and output
messages. In the soap12:body elements the parts attribute
specifies that keyVal should not be inserted into the body.
However, it is inserted into the header.

Example 10. SOAP 1.2 Binding for orderWidgets with a SOAP
Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"

targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://widgetVendor.com/widgetOrderForm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema

targetNamespace="http://widgetVendor.com/types/widgetTy
pes" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

http://schemas.xmlsoap.org/soap/http
http://widgetvendor.com/widgetOrderForm
http://widgetvendor.com/widgetOrderForm
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap12/
http://widgetvendor.com/widgetOrderForm
http://www.w3.org/2001/XMLSchema
http://widgetvendor.com/types/widgetTypes
http://schemas.xmlsoap.org/soap/encoding/
http://widgetvendor.com/types/widgetTypes
http://widgetvendor.com/types/widgetTypes
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/

Artix Bindings and Transports, Java Runtime 19

<element name="keyElem" type="xsd:base64Binary"/>
</schema>

</types>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsd1:keyElem"/>

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int"/>

</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>

</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>

<input name="order">

<soap12:body use="literal" parts="numOrdered"/>
<soap12:header message="tns:widgetOrder" part="keyVal"/>

</input>
<output name="bill">
<soap12:body use="literal" parts="bill"/>
<soap12:header message="tns:widgetOrderBill"
part="keyVal"/>

</output>
<fault name="sizeFault">
<soap12:body use="literal"/>

</fault>
</operation>

</binding>
...
</definitions>

http://schemas.xmlsoap.org/soap/http

Artix Bindings and Transports, Java Runtime 21

Sending Binary Data
Using SOAP
Attachments
SOAP attachments provide a mechanism for sending binary
data as part of a SOAP message. Using SOAP with
attachments requires that you define your SOAP messages as
MIME multipart messages.

SOAP messages generally do not carry binary data. However,
the W3C SOAP 1.1 specification allows for using MIME
multipart/related messages to send binary data in SOAP
messages. This technique is called using SOAP with
attachments. SOAP attachments are defined in the W3C's
SOAP Messages with Attachments Note.

Namespace

The WSDL extensions used to define the MIME
multipart/related messages are defined in the namespace
http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this
namespace is prefixed with mime. The entry in the WSDL
definitions element to set this up is shown in Example 11.

Example 11. MIME Namespace Specification in a Contract
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Changing the message binding

In a default SOAP binding, the first child element of the
input, output, and fault elements is a soap:body element
describing the body of the SOAP message representing the
data. When using SOAP with attachments, the soap:body
element is replaced with a mime:multipartRelated element.

NOTE: WSDL does not support using mime:multipartRelated for
fault messages.

The mime:multipartRelated element tells Artix ESB that the
message body is going to be a multipart message that
potentially contains binary data. The contents of the element
define the parts of the message and their contents.

http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/wsdl/mime/

22 Artix Bindings and Transports, Java Runtime

mime:multipartRelated elements contain one or more
mime:part elements that describe the individual parts of the
message.

The first mime:part element must contain the soap:body
element that would normally appear in a default SOAP
binding. The remaining mime:part elements define the
attachments that are being sent in the message.

Describing a MIME multipart message

MIME multipart messages are described using a
mime:multipartRelated element that contains a number of
mime:part elements. To fully describe a MIME multipart
message do the following:

1. Inside the input or output message you want to send as
a MIME multipart message, add a mime:mulipartRelated
element as the first child element of the enclosing
message.

2. Add a mime:part child element to the
mime:multipartRelated element and set its name attribute
to a unique string.

3. Add a soap:body element as the child of the mime:part
element and set its attributes appropriately.

TIP: If the contract had a default SOAP binding, you can copy the
soap:body element from the corresponding message from the
default binding into the MIME multipart message

4. Add another mime:part child element to the
mime:multipartReleated element and set its name
attribute to a unique string.

5. Add a mime:content child element to the mime:part
element to describe the contents of this part of the
message.

To fully describe the contents of a MIME message part the
mime:content element has the following attributes:

Table 2. mime:content Attributes

Attribute Description

part Specifies the name of the WSDL message part, from the
parent message definition, that is used as the content of
this part of the MIME multipart message being placed on
the wire.

Artix Bindings and Transports, Java Runtime 23

Attribute Description

type The MIME type of the data in this message part. MIME
types are defined as a type and a subtype using the syntax
type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are
maintained by the Internet Assigned Numbers Authority
(IANA) and described in detail in Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies and Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types.

For each additional MIME part, repeat steps Step 4 and Step
5.

Example
Example 12 shows a WSDL fragment defining a service that
stores X-rays in JPEG format. The image data, xRay, is stored
as an xsd:base64binary and is packed into the MIME
multipart message's second p art, imageData. The remaining
two parts of the input message, patientName and
patientNumber, are sent in the first part of the MIME
multipart image as part of the SOAP body.

Example 12. Contract using SOAP with Attachments
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"

targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<message name="storRequest">
<part name="patientName" type="xsd:string"/>
<part name="patientNumber" type="xsd:int"/>
<part name="xRay" type="xsd:base64Binary"/>

</message>
<message name="storResponse">
<part name="success" type="xsd:boolean"/>

</message>

<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse"
name="storResponse"/>

</operation>
</portType>

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
http://medistor.org/x-rays
http://medistor.org/x-rays
http://schemas.xmlsoap.org/wsdl/
http://medistor.org/x-rays
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema

24 Artix Bindings and Transports, Java Runtime

<binding name="xRayStorageBinding"
type="tns:xRayStorage">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap:operation soapAction="" style="document"/>
<input name="storRequest">
<mime:multipartRelated>
<mime:part name="bodyPart">
<soap:body use="literal"/>

</mime:part>
<mime:part name="imageData">
<mime:content part="xRay" type="image/jpeg"/>

</mime:part>
</mime:multipartRelated>

</input>
<output name="storResponse">
<soap:body use="literal"/>

</output>
</operation>

</binding>

<service name="xRayStorageService">
<port binding="tns:xRayStorageBinding"
name="xRayStoragePort">
<soap:address location="http://localhost:9000"/>

</port>
</service>

</definitions>

http://schemas.xmlsoap.org/soap/http

Artix Bindings and Transports, Java Runtime 25

Sending Binary Data
with SOAP MTOM
SOAP Message Transmission Optimization Mechanism (MTOM)
is a mechanism for transmitting binary data in SOAP
messages. Using MTOM with Artix ESB requires adding the
correct schema types to a service's contract and enabling the
MTOM optimizations.

SOAP Message Transmission Optimization Mechanism (MTOM)
specifies a method for sending binary data. MTOM uses of
XML-binary Optimized Packaging (XOP) packages for
transmitting binary data. Using MTOM to send binary data
does not require you to fully define the MIME
Multipart/Related message as part of the SOAP binding. It
does, however, require that you do the following:

1. Annotate the data that you are going to send as an
attachment.

You can annotate either your WSDL or the Java class that
implements your data.

2. Enable the runtime's MTOM support.

This can be done either programmatically or through
configuration.

3. Develop a DataHandler for the data being passed as an
attachment.

NOTE: Developing DataHandlers is beyond the scope of this
book.

Annotating Data Types to use MTOM
In WSDL, when defining a data type for passing along a block
of binary data, such as an image file or a sound file, you
define the element for the data to be of type
xsd:base64Binary. By default, any element of type
xsd:base64Binary results in the generation of a byte[] which
can be serialized using MTOM. However, the default behavior
of the code generators does not take full advantage of the
serialization.

In order to fully take advantage of MTOM you must add
annotations to either your service's WSDL document or the
JAXB class that implements the binary data structure. Adding
the annotations to the WSDL document forces the code
generators to generate streaming data handlers for the binary

26 Artix Bindings and Transports, Java Runtime

data. Annotating the JAXB class involves specifying the
proper content types and might also involve changing the
type specification of the field containing the binary data.

WSDL first

Example 13 shows a WSDL document for a Web service that
uses a message which contains one string field, one integer field,
and a binary field. The binary field is intended to carry a large
image file, so it is not appropriate to send it as part of a normal
SOAP message.

Artix Bindings and Transports, Java Runtime 27

Example 13. Message for MTOM

If you want to use MTOM to send the binary part of the message
as an optimized attachment you must add the
xmime:expectedContentTypes attribute to the element
containing the binary data. This attribute is defined in the
http://www.w3.org/2005/05/xmlmime namespace and specifies
the MIME types that the element is expected to contain. You can
specify a comma separated list of MIME types. The setting of
this attribute changes how the code generators create the JAXB
class for the data. For most MIME types, the code generator

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"

targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://mediStor.org/x-rays"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:xsd1="http://mediStor.org/types/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://mediStor.org/types/"

xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="xRayType">

 <sequence>
<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData" type="xsd:base64Binary" />

 </sequence>
</complexType>
<element name="xRay" type="xsd1:xRayType" />

</schema>
</types>

<message name="storRequest">
<part name="record" element="xsd1:xRay"/>

</message>
<message name="storResponse">
<part name="success" type="xsd:boolean"/>

</message>

<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse" name="storResponse"/>

</operation>
</portType>

<binding name="xRayStorageSOAPBinding" type="tns:xRayStorage">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap12:operation soapAction="" style="document"/>
<input name="storRequest">
<soap12:body use="literal"/>

</input>
<output name="storResponse">
<soap12:body use="literal"/>

</output>
</operation>

</binding>
...

</definitions>

http://www.w3.org/2005/05/xmlmime
http://medistor.org/x-rays
http://medistor.org/x-rays
http://schemas.xmlsoap.org/wsdl/
http://medistor.org/x-rays
http://schemas.xmlsoap.org/wsdl/soap12/
http://medistor.org/types/
http://www.w3.org/2001/XMLSchema
http://medistor.org/types/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http

28 Artix Bindings and Transports, Java Runtime

creates a DataHandler. Some MIME types, such as those for
images, have defined mappings.

Note: The MIME types are maintained by the Internet Assigned
Numbers Authority (IANA) and are described in detail in Multipurpose
Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies and Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types.

Tip: For most uses you specify application/octet-stream.

Example 14 shows how you can modify xRayType from
Example 13 for using MTOM.

Example 14. Binary Data for MTOM

The generated JAXB class generated for xRayType no longer
contains a byte[]. Instead the code generator sees the
xmime:expectedContentTypes attribute and generates a
DataHandler for the imageData field.

Note: You do not need to change the binding element to use MTOM.
The runtime makes the appropriate changes when the data is sent.

Java first

If you are doing Java first development you can make your JAXB
class MTOM ready by doing the following:

Make sure the field holding the binary data is a DataHandler.

Add the @XmlMimeType() annotation to the field containing the data
you want to stream as an MTOM attachment.

Example 15 shows a JAXB class annotated for using MTOM.

...
<types>
<schema targetNamespace="http://mediStor.org/types/"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

<complexType name="xRayType">
<sequence>

<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData" type="xsd:base64Binary"

xmime:expectedContentTypes="application/octet-stream"/>
</sequence>

</complexType>
<element name="xRay" type="xsd1:xRayType" />

</schema>
</types>

...

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt
http://medistor.org/types/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2005/05/xmlmime

Artix Bindings and Transports, Java Runtime 29

Example 15. JAXB Class for MTOM

Enabling MTOM
By default the Artix ESB runtime does not enable MTOM
support. It sends all binary data as either part of the normal
SOAP message or as an unoptimized attachment. You can
activate MTOM support either programmatically or through
the use of configuration.

Using JAX-WS APIs

Both service providers and consumers must have the MTOM
optimizations enabled. The JAX-WS APIs offer different
mechanisms for each type of endpoint.

Service provider
If you published your service provider using the JAX-WS APIs
you enable the runtime's MTOM support as follows:

1. Access the Endpoint object for your published service.

The easiest way to access the Endpoint object is when you
publish the endpoint. For more information see Publishing
a Service in Developing Artix® Applications with JAX-
WS.

2. Get the SOAP binding from the Endpoint using its
getBinding() method, as shown in Example 16.

Example 16. Getting the SOAP Binding from an Endpoint

You must cast the returned binding object to a SOAPBinding
object to access the MTOM property.

Set the binding's MTOM enabled property to true using the binding's
setMTOMEnabled() method, as shown in Example 17 on page 51.

Example 17. Setting a Service Provider's MTOM Enabled
Property

binding.setMTOMEnabled(true);

@XmlType
public class XRayType {

protected String patientName; protected int
patientNumber;
@XmlMimeType("application/octet-stream")
protected DataHandler imageData;

...
}

// Endpoint ep is declared previously

30 Artix Bindings and Transports, Java Runtime

Consumer
To MTOM enable a JAX-WS consumer you must do the
following:

1. Cast the consumer's proxy to a BindingProvider object.

TIP: For information on getting a consumer proxy see
Developing a Consumer Without a WSDL Contract in
Developing Artix® Applications with JAX-WS or Developing a
Consumer From a WSDL Contract in Developing Artix®
Applications with JAX-WS.

2. Get the SOAP binding from the BindingProvider using its
getBinding() method, as shown in Example 18.

Example 18. Getting a SOAP Binding from a BindingProvider

Set the bindings MTOM enabled property to true using the binding's
setMTOMEnabled() method, as shown in Example 19 on page 52.

Example 19. Setting a Consumer's MTOM Enabled Property
binding.setMTOMEnabled(true);

Using configuration

If you publish your service using XML, such as when deploying to
a container, you can enable your endpoint's MTOM support in the
endpoint's configuration file. For more information on
configuring endpoints see the Artix ESB Deployment Guide.

Procedure
The MTOM property is set inside the jaxws:endpoint element
for your endpoint. To enable MTOM do the following:

1. Add a jaxws:property child element to the endpoint's
jaxws:endpoint element.

Add a entry child element to the jaxws:property element.

Set the entry element's key attribute to mtom-enabled.

Set the entry element's value attribute to true.

Example
Example 20 shows an endpoint that is MTOM enabled.

// BindingProvider bp declared previously
SOAPBinding binding =
(SOAPBinding)bp.getBinding();

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf

Artix Bindings and Transports, Java Runtime 31

Example 20. Configuration for Enabling MTOM

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schema/jaxws.xsd">

<jaxws:endpoint id="xRayStorage"

implementor="demo.spring.xRayStorImpl"
address="http://localhost/xRayStorage">

<jaxws:properties>
<entry key="mtom-enabled" value="true"/>

</jaxws:properties>
</jaxws:endpoint>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/jaxws
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schema/jax
http://localhost/xRayStorage
http://localhost/xRayStorage

Artix Bindings and Transports, Java Runtime 33

Using XML Documents
The pure XML payload format provides an alternative to the
SOAP binding by allowing services to exchange data using
straight XML documents without the overhead of a SOAP
envelope.

XML binding namespace

The extensions used to describe XML format bindings are
defined in the namespace
http://cxf.apache.org/bindings/xformat. Artix ESB tools use
the prefix xformat to represent the XML binding extensions.
Add the following line to your contracts:

xmlns:xformat="http://cxf.apache.org/bindings/xformat"

Hand editing

To map an interface to a pure XML payload format do the
following:

1. Add the namespace declaration to include the Artix ESB
extensions defining the XML binding. See XML binding
namespace.

2. Add a standard WSDL binding element to your contract
to hold the XML binding, give the binding a unique name,
and specify the name of the WSDL portType element
that represents the interface being bound.

3. Add an xformat:binding child element to the binding>
element to identify that the messages are being handled
as pure XML documents without SOAP envelopes.

4. Optionally, set the xformat:binding element's rootNode
attribute to a valid QName. For more information on the
effect of the rootNode attribute see XML messages on the
wire.

5. For each operation defined in the bound interface, add a
standard WSDL operation element to hold the binding
information for the operation's messages.

6. For each operation added to the binding, add the input,
output, and fault children elements to represent the
messages used by the operation.

These elements correspond to the messages defined in
the interface definition of the logical operation.

34 Artix Bindings and Transports, Java Runtime

7. Optionally add an xformat:body element with a valid
rootNode attribute to the added input, output, and
fault elements to override the value of rootNode set at
the binding level.

NOTE: If any of your messages have no parts, for example the
output message for an operation that returns void, you must set the
rootNode attribute for the message to ensure that the message
written on the wire is a valid, but empty, XML document.

XML messages on the wire

When you specify that an interface’s messages are to be
passed as XML documents, without a SOAP envelope, you
must take care to ensure that your messages form valid XML
documents when they are written on the wire. You also need
to ensure that non-Artix participants that receive the XML
documents understand the messages generated by Artix ESB.

A simple way to solve both problems is to use the optional
rootNode attribute on either the global xformat:binding
element or on the individual message’s xformat:body
elements. The rootNode attribute specifies the QName for
the element that serves as the root node for the XML
document generated by Artix ESB. When the rootNode
attribute is not set, Artix ESB uses the root element of the
message part as the root element when using doc style
messages, or an element using the message part name as
the root element when using rpc style messages.

For example, if the rootNode attribute is not set the message
defined in Example 23 would generate an XML document with
the root element lineNumber.

Example 21. Valid XML Binding Message

For messages with one part, Artix ESB will always generate a
valid XML document even if the rootNode attribute is not set.
However, the message in Example 24 would generate an
invalid XML document.

<type ...>
...
<element name="operatorID" type="xsd:int"/>
...

</types><message name="operator"><part name="lineNumber"
element="ns1:operatorID"/>
</message>

Artix Bindings and Transports, Java Runtime 35

Example 22. Invalid XML Binding Message

Without the rootNode attribute specified in the XML binding,
Artix will generate an XML document similar to Example 25
for the message defined in Example 24. The Artix-generated
XML document is invalid because it has two root elements:
pairName and entryNum.

Example 23. Invalid XML Document

If you set the rootNode attribute, as shown in Example 26
Artix ESB will wrap the elements in the specified root
element. In this example, the rootNode attribute is defined
for the entire binding and specifies that the root element will
be named entrants.

Example 24. XML Binding with rootNode set
<portType name="danceParty">
 <operation name="register">
 <input message="tns:matildas" name="contestant"/>
 </operation>
</portType>

<binding name="matildaXMLBinding"
type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
</binding>

An XML document generated from the input message would
be similar to Example 27. Notice that the XML document now
only has one root element.

<types>
...
<element name="pairName" type="xsd:string"/>
<element name="entryNum" type="xsd:int"/>
...

</types>
<message name="matildas">
<part name="dancing" element="ns1:pairName"/>
<part name="number" element="ns1:entryNum"/>

</message>

<pairName>
Fred&Linda

</pairName>
<entryNum>
123

</entryNum>

36 Artix Bindings and Transports, Java Runtime

 Example 25. XML Document generated using the rootNode
attribute

Overriding the binding's rootNode attribute setting
You can also set the rootNode attribute for each individual
message, or override the global setting for a particular
message, by using the xformat:body element inside of the
message binding. For example, if you w anted the output
message defined in Example 26 to have a different root
element from the input message, you could override the
binding's root element as shown in Example 28.

 Example 26. Using xformat:body

<entrants>
<pairName>
Fred&Linda

<entryNum>
123

</entryNum>
</entrants>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">

<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered">
<xformat:body rootNode="entryStatus"/>

</output>
</operation>

</binding>

Artix Bindings and Transports, Java Runtime 37

Part II

Transports
In this part
This part contains the following chapters:

How Endpoints are Defined in WSDL

Using HTTP

Using JMS

Using WebSphere MQ

Artix Bindings and Transports, Java Runtime 39

How Endpoints are
Defined in WSDL
Endpoints represent an instantiated service. They are defined
by combining a binding and the networking details used to
expose the endpoint.

An endpoint can be thought of as a physical manifestation of
a service. It combines a binding, which specifies the physical
representation of the logical data used by a service, and a set
of networking details that define the physical connection
details used to make the service contactable by other
endpoints.

Endpoints and services

In the same way a binding can only map a single interface,
an endpoint can only map to a single service. However, a
service can be manifested by any number of endpoints. For
example, you could define a ticket selling service that was
manifested by four different endpoints. However, you could
not have a single endpoint that manifested both a ticket
selling service and a widget selling service.

The WSDL elements

Endpoints are defined in a contract using a combination of the
WSDL service element and the WSDL port element. The
service element is a collection of related port elements.
The port elements define the actual endpoints.

The WSDL service element has a single attribute, name, that
specifies a unique name. The service element is used as the
parent element of a collection of related port elements.
WSDL makes no specification about how the port elements
are related. You can associate the port elements in any
manner you see fit.

The WSDL port element has a single attribute, binding, that
specifies the binding used by the endpoint. The port element
is the parent element of the elements that specify the actual
transport details used by the endpoint. The elements used to
specify the transport details are discussed in the following
sections.

Adding endpoints to a contract

Artix provides command line tools for adding a number of the
endpoint types to your contracts.

40 Artix Bindings and Transports, Java Runtime

The tools will add the proper elements to your contract for
you. However, it is recommended that you have some
knowledge of how the different transports used in defining an
endpoint work.

You can also add an endpoint to a contract using any text
editor. When you hand edit a contract, you are responsible
for ensuring that the contract is valid.

Supported transports

Artix ESB endpoint definitions are built using extensions
defined for each of the transports Artix ESB Java Runtime
supports. This includes the following transports:

• HTTP

• IBM WebSphere MQ

• CORBA

• Java Messaging Service

• File Transfer Protocol

Artix Bindings and Transports, Java Runtime 41

Using HTTP
HTTP is the underlying transport for the Web. It provides a
standardized, robust, and flexible platform for communicating
between endpoints. Becuase of these factors it is the
assumed transport for most WS-* specifications and is
integral to RESTful architectures.

Adding a Basic HTTP Endpoint
There are three ways of specifying an HTTP endpoint’s
address depending on the payload format you are using:

• SOAP 1.1 uses the standardized soap:address element.

• SOAP 1.2 uses the soap12:address element.

• All other payload formats use the http:address element.

SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you
must use the SOAP 1.1 soap:address element to specify the
endpoint’s address. It has one attribute, location, that
specifies the endpoint’s address as a URL. The SOAP 1.1
address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

Example 29 shows a port element used to send SOAP 1.1
messages over HTTP.

Example 27. SOAP 1.1 Port Element
<definitions ...

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
...
<service name="SOAP11Service">
<port binding="SOAP11Binding" name="SOAP11Port">
<soap:address location="http://artie.com/index.xml">

</port>
</service>
...

<definitions>

SOAP 1.2

When you are sending SOAP 1.2 messages over HTTP you
must use the SOAP 1.2 wsoap12:address element to specify
the endpoint’s address. It has one attribute, location, that
specifies the endpoint’s address as a URL. The SOAP 1.2
address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap12/.

http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap12/

42 Artix Bindings and Transports, Java Runtime

Example 30 shows a port element used to send SOAP 1.2
messages over HTTP.

Example 28. SOAP 1.2 Port Element
<definitions ...

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ... >
<service name="SOAP12Service">
<port binding="SOAP12Binding" name="SOAP12Port">
<soap12:address location="http://artie.com/index.xml">

</port>
</service>
...

</definitions>

Configuring a Consumer
HTTP consumer endpoints can specify a number of HTTP
connection attributes including whether the endpoint
automatically accepts redirect responses, whether the
endpoint can use chunking, whether the endpoint will request
a keep-alive, and how the endpoint interacts with proxies. In
addition to the HTTP connection properties, an HTTP
consumer endpoint can specify how it is secured.

A consumer endpoint can be configured using two
mechanisms:

• Configuration

• WSDL

Using Configuration

Namespace
The elements used to configure an HTTP consumer endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. In order to
use the HTTP configuration elements you must add the lines
shown in Example 29 to the beans element of your endpoint's
configuration file. In addition, you must add the configuration
elements' namespace to the xsi:schemaLocation attribute.

Example 29. HTTP Consumer Configuration Namespace
<beans ...

xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-
conf.xsd

...>

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/schemas/configuration/http-conf.xsd

Artix Bindings and Transports, Java Runtime 43

The conduit element
You configure an HTTP endpoint using the http-conf:conduit
element and its children. The http-conf:conduit element
takes a single attribute, name, that specifies the WSDL port
element corresponding to the endpoint. The value for the
name attribute takes the form portQName.http-conduit.
Example 30 shows the http-conf:conduit element that would
be used to add configuration for an endpoint that is specified
by the WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> when the endpoint's target
namespace is http://widgets.widgetvendor.net.

Example 30. http-conf:conduit Element
...
<http-conf:conduit
name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit>
...

</http-conf:conduit>
...

The http-conf:conduit element has child elements that
specify configuration information. They are described in
Table 3.

Table 3. Elements Used to Configure an HTTP Consumer
Endpoint

Element Description

http-conf:client Specifies the HTTP connection properties such as
timeouts, keep-alive requests, content types, etc. See
The client element.

http-conf:authorization Specifies the parameters for configuring the basic
authentication method that the endpoint uses
preemptively.

The preferred approach is to supply a Basic
Authentication Supplier object.

http-conf:proxyAuthorization Specifies the parameters for configuring basic
authentication against outgoing HTTP proxy servers.

http-
conf:tlsClientParameters

Specifies the parameters used to configure SSL/TLS.

http-conf:basicAuthSupplier Specifies the bean reference or class name of the object
that supplies the basic authentication information used
by the endpoint, either preemptively or in response to a
401 HTTP challenge.

http://widgets.widgetvendor.net/
http://widgets/widgetvendor.net

44 Artix Bindings and Transports, Java Runtime

Element Description

http-conf:trustDecider Specifies the bean reference or class name of the object
that checks the HTTP(S) URLConnection object to
establish trust for a connection with an HTTPS service
provider before any information is transmitted.

The client element
The http-conf:client element is used to configure the non-
security properties of a consumer endpoint's HTTP
connection. Its attributes, described in Table 4, specify the
connection's properties

Table 4 HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout Specifies the amount of time, in milliseconds, that the
consumer attempts to establish a connection before it
times out. The default is 30000.

0 specifies that the consumer will continue to send the
request indefinitely.

ReceiveTimeout Specifies the amount of time, in milliseconds, that the
consumer will wait for a response before it times out.
The default is 30000.

0 specifies that the consumer will wait indefinitely.

AutoRedirect Specifies if the consumer will automatically follow a
server issued redirection. The default is false.

MaxRetransmits Specifies the maximum number of times a consumer
will retransmit a request to satisfy a redirect. The
default is -1 which specifies that unlimited
retransmissions are allowed.

AllowChunking Specifies whether the consumer will send requests
using chunking. The default is true, which specifies
that the consumer will use chunking when sending
requests. Chunking cannot be used if either of the
following are true:

• http-conf:basicAuthSupplier is configured to
provide credentials preemptively.

• AutoRedirect is set to true.

In both cases the value of AllowChunking is ignored
and chunking is disallowed.

Artix Bindings and Transports, Java Runtime 45

Attribute Description

Accept Specifies what media types the consumer is prepared
to handle. The value is used as the value of the HTTP
Accept property. The value of the attribute is specified
using multipurpose internet mail extensions (MIME)
types.

AcceptLanguage Specifies what language (for example, American
English) the consumer prefers for the purpose of
receiving a response. The value is used as the value
of the HTTP AcceptLanguage property.

Language tags are regulated by the International
Organization for Standards (ISO) and are typically
formed by combining a language code, determined by
the ISO-639 standard, and country code, determined
by the ISO-3166 standard, separated by a hyphen.
For example, en-US represents American English.

AcceptEncoding Specifies what content encodings the consumer is
prepared to handle. Content encoding labels are
regulated by the Internet Assigned Numbers Authority
(IANA). The value is used as the value of the HTTP
AcceptEncoding property.

ContentType Specifies the media type of the data being sent in the
body of a message. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType property. The default is text/xml.

For web services, this should be set to text/xml. If the
client is sending HTML form data to a CGI script, this
should be set to application/x-www-form-urlencoded.
If the HTTP POST request is bound to a fixed payload
format (as opposed to SOAP), the content type is
typically set to application/octet-stream.

Host Specifies the Internet host and port number of the
resource on which the request is being invoked. The
value is used as the value of the HTTP Host property.

This attribute is typically not required. It is only
required by certain DNS scenarios or application
designs. For example, it indicates what host the client
prefers for clusters (that is, for virtual servers
mapping to the same Internet protocol (IP) address).

46 Artix Bindings and Transports, Java Runtime

Attribute Description

Connection Specifies whether a particular connection is to be kept
open or closed after each request/response dialog.
There are two valid values:

• Keep-Alive — Specifies that the consumer wants
the connection kept open after the initial
request/response sequence. If the server honors
it, the connection is kept open until the consumer
closes it.

• close(default) — Specifies that the connection to
the server is closed after each request/response
sequence.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain comprising
a request from a consumer to a service provider. See
Consumer Cache Control Directives.

Cookie Specifies a static cookie to be sent with all requests.

BrowserType Specifies information about the browser from which
the request originates. In the HTTP specification from
the World Wide Web consortium (W3C) this is also
known as the user-agent. Some servers optimize
based on the client that is sending the request.

Referer Specifies the URL of the resource that directed the
consumer to make requests on a particular service.
The value is used as the value of the HTTP Referer
property.

This HTTP property is used when a request is the
result of a browser user clicking on a hyperlink rather
than typing a URL. This can allow the server to
optimize processing based upon previous task flow,
and to generate lists of back-links to resources for the
purposes of logging, optimized caching, tracing of
obsolete or mistyped links, and so on. However, it is
typically not used in web services applications.

If the AutoRedirect attribute is set to true and the
request is redirected, any value specified in the
Referer attribute is overridden. The value of the HTTP
Referer property is set to the URL of the service that
redirected the consumer’s original request.

Artix Bindings and Transports, Java Runtime 47

Attribute Description

DecoupledEndpoint Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate provider-
consumer connection. For more information on using
decoupled endpoints see Using the HTTP Transport in
Decoupled Mode.

You must configure both the consumer endpoint and
the service provider endpoint to use WS-Addressing
for the decoupled endpoint to work.

ProxyServer Specifies the URL of the proxy server through which
requests are routed.

ProxyServerPort Specifies the port number of the proxy server through
which requests are routed.

ProxyServerType Specifies the type of proxy server used to route
requests. Valid values are:

• HTTP (default)

• SOCKS

Example
Example 31 shows the configuration of an HTTP consumer
endpoint that wants to keep its connection to the provider
open between requests, that will only retransmit requests
once per invocation, and that cannot use chunking streams.

Example 31. HTTP Consumer Endpoint Configuration
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configur
ation

http://cxf.apache.org/schemas/configuration/http-
conf.xsd http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd">

<http-conf:conduit
name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">

<http-conf:client Connection="Keep-Alive"

MaxRetransmits="1" AllowChunking="false" />
</http-conf:conduit>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://apache.org/hello_world_soap_http

48 Artix Bindings and Transports, Java Runtime

Using WSDL

Namespace
The WSDL extension elements used to configure an HTTP
consumer endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. In order to use
the HTTP configuration elements you must add the line shown
in Example 33 to the definitions element of your endpoint's
WSDL document.

Example 32. HTTP Consumer WSDL Element's Namespace
<definitions ...

xmlns:http-
conf="http://cxf.apache.org/transports/http/configu
ration

The client element
The http-conf:client element is used to specify the connection
properties of an HTTP consumer in a WSDL document. The http-
conf:client element is a child of the WSDL port element. It
has the same attributes as the client element used in the
configuration file. The attributes are described in Table 4.

Example
Example 34 shows a WSDL fragment that configures an HTTP
consumer endpoint to specify that it does not interact with
caches.

Example 33. WSDL to Configure an HTTP Consumer
Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:client CacheControl="no-cache" />

</port>
</service>

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration

Artix Bindings and Transports, Java Runtime 49

Consumer Cache Control Directives

Table 5 lists the cache control directives supported by an HTTP
consumer.

Table 5. http-conf:client Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy subsequent requests
without first revalidating that response with the server. If specific
response header fields are specified with this value, the restriction
applies only to those header fields within the response. If no response
header fields are specified, the restriction applies to the entire
response.

no-store Caches must not store either any part of a response or any part of the
request that invoked it.

max-age The consumer can accept a response whose age is no greater than the
specified time in seconds.

max-stale The consumer can accept a response that has exceeded its expiration
time. If a value is assigned to max-stale, it represents the number of
seconds beyond the expiration time of a response up to which the
consumer can still accept that response. If no value is assigned, the
consumer can accept a stale response of any age.

min-fresh The consumer wants a response that is still fresh for at least the
specified number of seconds indicated.

no-
transform

Caches must not modify media type or location of the content in a
response between a provider and a consumer.

only-if-
cached

Caches should return only responses that are currently stored in the
cache, and not responses that need to be reloaded or revalidated.

cache-
extension

Specifies additional extensions to the other cache directives. Extensions
can be informational or behavioral. An extended directive is specified in
the context of a standard directive, so that applications not
understanding the extended directive can adhere to the behavior
mandated by the standard directive.

50 Artix Bindings and Transports, Java Runtime

Configuring a Service Provider
HTTP service provider endpoints can specify a number of
HTTP connection attributes including if it will honor keep alive
requests, how it interacts with caches, and how tolerant it is
of errors in communicating with a consumer.

A service provider endpoint can be configured using two
mechanisms:

• Configuration

• WSDL

Using Configuration

Namespace
The elements used to configure an HTTP provider endpoint
are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. In order to
use the HTTP configuration elements you must add the lines
shown in Example 34 to the beans element of your endpoint's
configuration file. In addition, you must add the configuration
elements' namespace to the xsi:schemaLocation attribute.

Example 34. HTTP Provider Configuration Namespace
<beans ...

xmlns:http-
conf="http://cxf.apache.org/transports/http/configurati
on
...
xsi:schemaLocation="...
http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-
conf.xsd
...>

The destination element
You configure an HTTP service provider endpoint using the http-
conf:destination element and its children. The http-
conf:destination element takes a single attribute, name, that
specifies the WSDL port element that corresponds to the
endpoint. The value for the name attribute takes the form
portQName.http-destination. Example 35 shows the http-
conf:destination element that is used to add configuration for
an endpoint that is specified by the WSDL fragment <port
binding="widgetSOAPBinding" name="widgetSOAPPort> when
the endpoint's target namespace is
http://widgets.widgetvendor.net.

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://widgets.widgetvendor.net/

Artix Bindings and Transports, Java Runtime 51

Example 35. http-conf:destination Element
...
<http-conf:destination

name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-
destination>

...
</http-conf:destination>

...

The http-conf:destination element has a number of child
elements that specify configuration information. They are
described in Table 6.

Table 6. Elements Used to Configure an HTTP Service
Provider Endpoint

Element Description

http-conf:server Specifies the HTTP connection
properties. See The server element.

http-
conf:contextMatchStrategy

Specifies the parameters that
configure the context match
strategy for processing HTTP
requests.

http-
conf:fixedParameterOrder

Specifies whether the parameter
order of an HTTP request handled
by this destination is fixed.

The server element
The http-conf:server element is used to configure the
properties of a service provider endpoint's HTTP connection. Its
attributes, described in Table 7, specify the connection's
properties.

Table 7. HTTP Service Provider Configuration Attributes

Attribute Description

ReceiveTimeout Sets the length of time, in
milliseconds, the service provider
attempts to receive a request
before the connection times out.
The default is 30000.

0 specifies that the provider will not
timeout.

http://widgets/widgetvendor.net
http://widgets/widgetvendor.net

52 Artix Bindings and Transports, Java Runtime

Attribute Description

SuppressClientSendErrors Specifies whether exceptions are to
be thrown when an error is
encountered on receiving a request.
The default is false; exceptions are
thrown on encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to
be thrown when an error is
encountered on sending a response
to a consumer. The default is false;
exceptions are thrown on
encountering errors.

HonorKeepAlive Specifies whether the service
provider honors requests for a
connection to remain open after a
response has been sent. The default
is false; keep-alive requests are
ignored.

RedirectURL Specifies the URL to which the client
request should be redirected if the
URL specified in the client request is
no longer appropriate for the
requested resource. In this case, if
a status code is not automatically
set in the first line of the server
response, the status code is set to
302 and the status description is set
to Object Moved. The value is used
as the value of the HTTP
RedirectURL property.

CacheControl Specifies directives about the
behavior that must be adhered to
by caches involved in the chain
comprising a response from a
service provider to a consumer. See
Service Provider Cache Control
Directives.

ContentLocation Sets the URL where the resource
being sent in a response is located.

ContentType Specifies the media type of the
information being sent in a
response. Media types are specified
using multipurpose internet mail
extensions (MIME) types. The value
is used as the value of the HTTP
ContentType location.

Artix Bindings and Transports, Java Runtime 53

Attribute Description

ContentEncoding Specifies any additional content
encodings that have been applied to
the information being sent by the
service provider. Content encoding
labels are regulated by the Internet
Assigned Numbers Authority
(IANA). Possible content encoding
values include zip, gzip, compress,
deflate, and identity. This value is
used as the value of the HTTP
ContentEncoding property.

The primary use of content
encodings is to allow documents to
be compressed using some
encoding mechanism, such as zip or
gzip. Artix ESB performs no
validation on content codings. It is
the user’s responsibility to ensure
that a specified content coding is
supported at application level.

ServerType Specifies what type of server is
sending the response. Values take
the form program-name/version;
for example, Apache/1.2.5.

Example
Example 37 shows the configuration for an HTTP service provider
endpoint that honors keep-alive requests and suppresses all
communication errors.

Example 36. HTTP Service Provider Endpoint Configuration
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-
conf.xsd http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd">

<http-conf:destination
name="{http://apache.org/hello_world_soap_http}SoapPort.http-des tination">

<http-conf:server SuppressClientSendErrors="true"
SuppressClientReceiveErrors="true" HonorKeepAlive="true" />

</http-conf:destination>
</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://apache.org/hello_world_soap_http

54 Artix Bindings and Transports, Java Runtime

Using WSDL

Namespace
The WSDL extension elements used to configure an HTTP
provider endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is
commonly referred to using the prefix http-conf. To use the
HTTP configuration elements you must add the line shown in
Example 38 to the definitions element of your endpoint's
WSDL document.

Example 37. HTTP Provider WSDL Element's Namespace
<definitions ...

xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration

The server element
The http-conf:server element is used to specify the
connection properties of an HTTP service provider in a WSDL
document. The http-conf:server element is a child of the
WSDL port element. It has the same attributes as the server
element used in the configuration file. The attributes are
described in Table 7.

Example
Example 39 shows a WSDL fragment that configures an HTTP
service provider endpoint specifying that it will not interact
with caches.

Example 38. WSDL to Configure an HTTP Service Provider
Endpoint

<service ...>
<port ...>
<soap:address ... />
<http-conf:server CacheControl="no-cache" />
</port>

</service>

Service Provider Cache Control Directives

Table 8 lists the cache control directives supported by an
HTTP service provider.

 Table 8. http-conf:server Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration

Artix Bindings and Transports, Java Runtime 55

Directive Behavior

response. If no response header fields are specified,
the restriction applies to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user.
If specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of the response or
any part of the request that invoked it.

no-
transform

Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-
revalidate

Caches must revalidate expired entries that relate to
a response before that entry can be used in a
subsequent response.

proxy-
revalidate

Does the same as must-revalidate, except that it
can only be enforced on shared caches and is
ignored by private unshared caches. When using this
directive, the public cache directive must also be
used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-max-age Does the same as max-age, except that it can only be
enforced on shared caches and is ignored by private
unshared caches. The age specified by s-max-age
overrides the age specified by max-age. When using
this directive, the proxy-revalidate directive must
also be used.

cache-
extension

Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can adhere
to the behavior mandated by the standard directive.

56 Artix Bindings and Transports, Java Runtime

Configuring the Jetty Runtime
The Jetty runtime is used by HTTP service providers and HTTP
consumers using a decoupled endpoint. The runtime's thread
pool can be configured, and you can also set a number of the
security settings for an HTTP service provider through the Jetty
runtime.

Namespace
The elements used to configure the Jetty runtime are defined in the
namespace http://cxf.apache.org/transports/http-
jetty/configuration. It is commonly referred to using the
prefix httpj. In order to use the Jetty configuration elements you
must add the lines shown in Example 40 to the beans element of
your endpoint's configuration file. In addition, you must add the
configuration elements' namespace to the xsi:schemaLocation
attribute.

 Example 39. Jetty Runtime Configuration Namespace
<beans ...

xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration
...
xsi:schemaLocation="...
http://cxf.apache.org/transports/http-jetty/configuration

http://cxf.apache.org/schemas/configuration/http-jetty.xsd
...>

The engine factory element
The httpj:engine-factory element is the root element used to
configure the Jetty runtime used by an application. It has a
single required attribute, bus, whose value is the name of the
Bus that manages the Jetty instances being configured.

TIP: The value is typically cxf which is the name of the default Bus
instance.

The httpj:engine-factory element has three children that
contain the information used to configure the HTTP ports
instantiated by the Jetty runtime factory. The children are
described in Table 9.

Table 9. Elements for Configuring a Jetty Runtime Factory

Element Description

httpj:engine Specifies the configuration for a
particular Jetty runtime instance.
See The engine element.

http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd

Artix Bindings and Transports, Java Runtime 57

httpj:identifiedTLSServerParameters Specifies a reusable set of
properties for securing an HTTP
service provider. It has a single
attribute, id, that specifies a
unique identifier by which the
property set can be referred.

httpj:identifiedThreadingParameters Specifies a reusable set of
properties for controlling a Jetty
instance's thread pool. It has a
single attribute, id, that specifies
a unique identifier by which the
property set can be referred.

See Configuring the thread pool.

The engine element
The httpj:engine element is used to configure specific
instances of the Jetty runtime. It has a single attribute, port,
that specifies the number of the port being managed by the
Jetty instance.

TIP: You can specify a value of 0 for the port attribute. Any
threading properties specified in an httpj:engine element with its
port attribute set to 0 are used as the configuration for all Jetty
listeners that are not explicitly configured.

Each httpj:engine element can have two children: one for
configuring security properties and one for configuring the
Jetty instance's thread pool. For each type of configuration
you can either directly provide the configuration information
or you can provide a reference to a set of configuration
properties defined in the parent httpj:engine-factory
element.

The child elements used to provide the configuration
properties are described in Table 10.

Table 10. Elements for Configuring a Jetty Runtime Instance

Element Description

httpj:tlsServerParameters Specifies a set of properties for
configuring the security used for the
specific Jetty instance.

httpj:tlsServerParametersRef Refers to a set of security properties
defined by an
identifiedTLSServerParameters
element. The id attribute provides
the id of the referred
identifiedTLSServerParameters
element.

58 Artix Bindings and Transports, Java Runtime

Element Description

httpj:threadingParameters Specifies the size of the thread pool
used by the specific Jetty instance.
See Configuring the thread
poolbookmark179.

httpj:threadingParametersRef Refers to a set of properties defined
by a identifiedThreadingParameters
element. The id attribute provides
the id of the referred
identifiedThreadingParameters
element.

Configuring the thread pool
You can configure the size of a Jetty instance's thread pool by
either:

• Specifying the size of the thread pool using a
identifiedThreadingParameters element in the engine-
factory element. You then refer to the element using a
threadingParametersRef element.

• Specifying the size of the of the thread pool directly using
a threadingParameters element.

The threadingParameters has two attributes to specify the
size of a thread pool. The attributes are described in Table 11.

NOTE: The httpj:identifiedThreadingParameters element has a
single child threadingParameters element.

Table 11. Attributes for Configuring a Jetty Thread Pool

Attribute Description

minThreads Specifies the minimum number of threads
available to the Jetty instance for processing
requests.

maxThreads Specifies the maximum number of threads
available to the Jetty instance for processing
requests.

Artix Bindings and Transports, Java Runtime 59

Example
Example 41 shows a configuration fragment that configures a
Jetty instance on port number 9001.

Example 40. Configuring a Jetty Instance

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration" xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="http://cxf.apache.org/configuration/security

http://cxf.apache.org/schemas/configuration/security.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd">

...

<httpj:engine-factory bus="cxf">
<httpj:identifiedTLSServerParameters id="secure">
<sec:keyManagers keyPassword="password">
<sec:keyStore type="JKS" password="password"

file="certs/cherry.jks"/>
</sec:keyManagers>

</httpj:identifiedTLSServerParameters>

<httpj:engine port="9001">
<httpj:tlsServerParametersRef id="secure" />
<httpj:threadingParameters minThreads="5"
maxThreads="15" />

</httpj:engine>
</httpj:engine-factory>
</beans>

Using the HTTP Transport in Decoupled Mode
In normal HTTP request/response scenarios, the request and the
response are sent using the same HTTP connection. The
service provider processes the request and responds with a
response containing the appropriate HTTP status code and the
contents of the response. In the case of a successful request,
the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when
requests take an extended period of time to execute, it makes
sense to decouple the request and response message. In this
case the service provider sends the consumer a 202 Accepted
response to the consumer over the back-channel of the HTTP
connection on which the request was received. It then

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/configuration/security
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/transports/http-jetty/configuration
http://java.sun.com/xml/ns/jaxws
http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

60 Artix Bindings and Transports, Java Runtime

processes the request and sends the response back to the
consumer using a new decoupled server->client HTTP
connection. The consumer runtime receives the incoming
response and correlates it with the appropriate request before
returning to the application code.

Configuring decoupled interactions
Using the HTTP transport in decoupled mode requires that you
do the following:

1. Configure the consumer to use WS-Addressing.

See Configuring an endpoint to use WS-Addressing.

2. Configure the consumer to use a decoupled endpoint.

See Configuring the consumer.

3. Configure any service providers that the consumer interacts
with to use WS-Addressing.

See Configuring an endpoint to use WS-Addressing.

Configuring an endpoint to use WS-Addressing
Specify that the consumer and any service provider with
which the consumer interacts use WS-Addressing.

You can specify that an endpoint uses WS-Addressing in one
of two ways:

• Adding the wswa:UsingAddressing element to the
endpoint's WSDL port element as shown in Example 42.

Example 41. Activating WS-Addressing using WSDL
...
<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wswa:UsingAddressing
xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>

</port>
</service>
...

• Adding the WS-Addressing policy to the endpoint's WSDL
port element as shown in Example 43.

Example 42. Activating WS-Addressing using a Policy
...
<service name="WidgetSOAPService">

<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy">

http://widgetvendor.net/widgetSeller
http://www.w3.org/2005/02/addressing/wsdl
http://widgetvendor.net/widgetSeller
http://www.w3.org/2006/07/ws-policy

Artix Bindings and Transports, Java Runtime 61

<wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

<wsp:Policy/>
</wsam:Addressing>

</wsp:Policy>
</port>

</service>
...

NOTE: The WS-Addressing policy supersedes the
wswa:UsingAddressing WSDL element.

Configuring the consumer
Configure the consumer endpoint to use a decoupled endpoint
using the DecoupledEndpoint attribute of the http-
conf:conduit element.

Example 43 shows the configuration for setting up the
endpoint defined in Example 41 to use a decoupled endpoint.
The consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

Example 43. Configuring a Consumer to Use a Decoupled
HTTP Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/conf
iguration"
xsi:schemaLocation="http://cxf.apache.org/transports/h
ttp/configuration

http://cxf.apache.org/schemas/configuration/http-
conf.xsd http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd">

<http:conduit
name="{http://widgetvendor.net/services}WidgetSOAPPort.h
ttp-conduit">
<http:client
DecoupledEndpoint="http://widgetvendor.net:9999/decoup
led_endpoint" />

</http:conduit>
</beans>

http://www.w3.org/2007/02/addressing/metadata
http://widgetvendor.net/widgetSellerInbox
http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://widgetvendor.net/services
http://widgetvendor.net/services

62 Artix Bindings and Transports, Java Runtime

How messages are processed
Using the HTTP transport in decoupled mode adds extra
layers of complexity to the processing of HTTP messages.
While the added complexity is transparent to the
implementation level code in an application, it might be
important to understand what happens for debugging
reasons.

Figure 1 shows the flow of messages when using HTTP in
decoupled mode.

Figure 1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a
request message is generated.

2. The WS-Addressing layer adds the WS-A headers to the
message.

When a decoupled endpoint is specified in the consumer's
configuration, the address of the decoupled endpoint is
placed in the WS-A ReplyTo header.

3. The message is sent to the service provider.

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the
provider's WS-A layer.

Artix Bindings and Transports, Java Runtime 63

6. Because the WS-A ReplyTo header is not set to anonymous,
the provider sends back a message with the HTTP status
code set to 202, acknowledging that the request has been
received.

7. The HTTP layer sends a 202 Accepted message back to the
consumer using the original connection's back-channel.

8. The consumer receives the 202 Accepted reply on the back-
channel of the HTTP connection used to send the original
message.

When the consumer receives the 202 Accepted reply, the
HTTP connection closes.

9. The request is passed to the service provider's
implementation where the request is processed.

10. When the response is ready, it is dispatched to the WS-A
layer.

11. The WS-A layer adds the WS-Addressing headers to the
response message.

12. The HTTP transport sends the response to the consumer's
decoupled endpoint.

13. The consumer's decoupled endpoint receives the response
from the service provider.

14. The response is dispatched to the consumer's WS-A layer
where it is correlated to the proper request using the WS-
A RelatesTo header.

15. The correlated response is returned to the client
implementation and the invoking call is unblocked.

Artix Bindings and Transports, Java Runtime 65

Using JMS
JMS is a standards-based messaging system that is widely
used in enterprise Java applications.

Namespaces
WSDL Namespace
The WSDL extensions used to define a JMS endpoint are
specified in the namespace http://www.w3.org/2010/soapjms/.
In order to use the JMS extensions you will need to add the
line shown in Example 45 to the definitions element of
your contract.

Example 44. JMS Extension Namespace
xmlns:soapjms="http://www.w3.org/2010/soapjms/"

Configuration Namespace
The Artix ESB JMS endpoint configuration properties are
specified under the http://www.w3.org/2010/soapjms/
namespace. In order to use the JMS configuration properties
you will need to add the line shown in Example 46 to the beans
element of your configuration.

 Example 45. JMS Configuration Namespaces
xmlns:soapjms="http://www.w3.org/2010/soapjms/"

Basic Endpoint Configuration
JMS endpoints need to know certain basic information about
how to establish a connection to the proper destination. This
information can be provided in one of two places:

• Configuration

• WSDL

Using Configuration

JMS endpoints can be configured using Spring configuration.
You can configure the server-side and consumer-side
transports independently.

NOTE: Information in the configuration file will override the
information in the endpoint's WSDL file.

http://www.w3.org/2010/soapjms/
http://www.w3.org/2010/soapjms/

66 Artix Bindings and Transports, Java Runtime

Standard JMS transport configuration in the runtime can be
done via Spring dependency injection. Additionally the
configuration offers many more options. The connection
factory can be resolved via Spring configuration instead of
JNDI.

The following example configs use the p-namespace from
Spring 2.5. Inside a features element the JMSConfigFeature
can be defined.

<jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint" address="jms://"
 serviceClass="com.example.customerservice.CustomerService">
 <jaxws:features>
 <bean xmlns="http://www.springframework.org/schema/beans"
 class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
</jaxws:client>

The above example references a bean "jmsConfig" where the
whole configuration for the JMS transport can be done.

A JAX-WS Endpoint can be defined in the same way:

<jaxws:endpoint
 xmlns:customer="http://customerservice.example.com/"
 id="CustomerService"
 address="jms://"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 implementor="com.example.customerservice.impl.CustomerServiceImpl">
 <jaxws:features>
 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig" />
 </jaxws:features>
</jaxws:endpoint>

The JMSConfiguration bean needs at least a reference to a
connection factory and a target destination:

<bean id="jmsConfig" class="org.apache.cxf.transport.jms.JMSConfiguration"
 p:connectionFactory-ref="jmsConnectionFactory"
 p:targetDestination="test.cxf.jmstransport.queue"
/>

If your ConnectionFactory does not cache connections you
should wrap it in a spring SingleConnectionFactory. This is
necessary because the JMS Transport creates a new

Artix Bindings and Transports, Java Runtime 67

connection for each message and the
SingleConnectionFactory is needed to cache this connection.

<bean id="jmsConnectionFactory"
class="org.springframework.jms.connection.SingleConnectionFactory">
 <property name="targetConnectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
 </property>
</bean>

The attributes described in Table 25 configure the connection
to the JMS broker.

Table 25. JMS Endpoint Attributes

Attribute Description

connectionFactory Mandatory field. A reference to a bean that
defines a jms ConnectionFactory. Remember to
wrap the connectionFactory as described above
when not using a pooling ConnectionFactory.

reconnectOnException If wrapping the connectionFactory with a Spring
SingleConnectionFactory and
reconnectOnException is true, will create a new
connection if there is an exception thrown,
otherwise will not try to reconnect if the there is
an exception thrown. Default is false.

This option is deprecated. The runtime always
reconnects on exceptions.

targetDestination A JNDI name or provider-specific name of a
destination. For example, for ActiveMQ:
test.cxf.jmstransport.queue

destinationResolver A reference to a Spring DestinationResolver.
This allows you to define how destination names
are resolved to JMS Destinations. By default a
DynamicDestinationResolver is used. It resolves
destinations using the JMS provider’s features. If
you reference a JndiDestinationResolver you
can resolve the destination names using JNDI.

transactionManager A reference to a Spring transaction manager.
This allows your webservice to take part in JTA
Transactions. You can also register a Spring JMS
Transaction Manager to have local transactions.

pubSubNoLocal If true, do not receive your own messages when
using topics. Default is false.

68 Artix Bindings and Transports, Java Runtime

Attribute Description

receiveTimeout How many milliseconds to wait for a response
messages. The default value is changed to 60000
(60 seconds)

explicitQosEnabled If true, means that QoS parameters are set for
each message. Default is false.

deliveryMode NON_PERSISTENT = 1. Messages will be kept only
in memory

PERSISTENT = 2 (default). Messages will be
persisted to disk

priority Priority for the messages. Default is 4. See your
JMS provider documentation for details.

timeToLive After this time, the message will be discarded by
the JMS provider. (Default is 0)

sessionTransacted If true, means JMS transactions are used.
(Default is false).

messageSelector A JMS selector to filter incoming messages
(allows shariing a queue).

subscriptionDurable A durableSubscriptionName. Default is false.

messageType One of text (default), binary, byte.

pubSubDomain false (default) means use queues. true means
use topics.

maxSuspendedContinuations The maximum suspended continuations that the
JMS destination could have. If the current
suspended continuations number exceeds this
maximum value, the JMSListenerContainer will
be stopped. The default value is -1, which
means that this feature is disabled.

reconnectPercentOfMax If the JMSListenerContainer is stopped because
the number of current suspended continuations
exceeds the maxSuspendedContinuations value,
then the JMSListenerContainer will be restarted
when the current suspended continuations
number falls below the value of
(maxSuspendedContinuations*
reconnectPercentOfMax/100). The default value is
70.

createSecurityContext Setting this to true (default) means create a
user security context for incoming messages.

Artix Bindings and Transports, Java Runtime 69

Example
Example 47 shows an Artix ESB configuration entry for
configuring the addressing information for a JMS consumer
endpoint.

Example 46. Addressing Information in a Artix ESB
Configuration File

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ct="http://cxf.apache.org/configuration/types"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:jms="http://cxf.apache.org/transports/jms"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd"
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd"
 >

 <jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 address="jms://"
 serviceClass="com.example.customerservice.CustomerService">
 <jaxws:features>
 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
 </jaxws:client>

 <bean id="jmsConfig" class="org.apache.cxf.transport.jms.JMSConfiguration"
 p:connectionFactory-ref="jmsConnectionFactory"
 p:targetDestination="test.cxf.jmstransport.queue"
 />

 <bean id="jmsConnectionFactory"
class="org.springframework.jms.connection.SingleConnectionFactory">
 <property name="targetConnectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
 </property>
 </bean>
</beans>

Using WSDL

If you prefer to configure your endpoint using WSDL, you can
specify JMS endpoints as a part of a WSDL service definition.

NOTE: Information in the configuration file will override the
information in the endpoint's WSDL file.

Example
Example 47 shows an example of a JMS WSDL port
specification.

70 Artix Bindings and Transports, Java Runtime

Example 47. JMS WSDL Port Specification
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address
location="jms:jndi:dynamicQueues/test.Celtix.jmstransport?jndiURL=
 tcp://localhost:61616&jndiInitialContextFactory=
 org.activemq.jndi.ActiveMQInitialContextFactory"/>
 </port>
</service>

Using a named reply destination

By default Artix ESB endpoints using JMS create a temporary
queue for sending replies back and forth. If you prefer to use
named queues, you can configure the queue used to send
replies as part of an endpoint's JMS configuration.

Setting the reply destination name
You specify the reply destination using the replyToName
attribute in the endpoint's JMS configuration. A client
endpoint will listen for replies on the specified destination and
it will specify the value of the attribute in the ReplyTo field of
all outgoing requests. A service endpoint will use the value of
the replyToName attribute as the location for placing replies if
there is no destination specified in the request’s ReplyTo
field.

Example
Example 48 shows the configuration for a JMS client endpoint.

Example 48. JMS Consumer Specification Using a Named
Reply Queue
<jaxws:client id="CustomerService"
address="jms:jndimyDestination?jndiURL=tcp://localhost:61616&
jndiInitialContextFactory=org.apache.cxf.transport.jms.MyInitialContextFactory&
jndiConnectionFactoryName=myConnectionFactory&
replyToName=myReplyDestination"
 serviceClass="com.example.customerservice.CustomerService">
 </jaxws:client>

Consumer Endpoint Configuration
JMS consumer endpoints specify the type of messages they
use. JMS consumer endpoint can use either a JMS
ByteMessage or a JMS TextMessage. When using an
ObjectMessage the consumer endpoint uses a byte[] as the
method for storing data into and retrieving data from the JMS
message body. When messages are sent, the message data,
including any formating information, is packaged into a byte[]
and placed into the message body before it is placed on the
wire. When messages are received, the consumer endpoint

Artix Bindings and Transports, Java Runtime 71

will attempt to unmarshall the data stored in the message
body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a
string as the method for storing and retrieving data from the
message body. When messages are sent, the message
information, including any format-specific information, is
converted into a string and placed into the JMS message
body. When messages are received the consumer endpoint
will attempt to unmarshall the data stored in the JMS
message body as if it were packed into a string.

When native JMS applications interact with Artix ESB
consumers, the JMS application is responsible for interpreting
the message and the formatting information. For example, if
the Artix ESB contract specifies that the binding used for a
JMS endpoint is SOAP, and the messages are packaged as
TextMessage, the receiving JMS application will get a text
message containing all of the SOAP envelope information.

A consumer endpoint can be configured in one of two ways:

• Configuration

• WSDL

TIP: The recommended method is to place the consumer endpoint
specific information into the Artix ESB configuration file for the
endpoint.

Using Configuration

Specifying the message type
Consumer endpoint configuration is specified using the
jms:conduit element. Using this configuration element,
you specify the message type supported by the consumer
endpoint using the jms:runtimePolicy child element. The
message type is specified using the messageType
attribute. The messageType attribute has two possible
values:

Table 13. messageType Values

text Specifies that the data will be packaged as a
TextMessage.

binary Specifies that the data will be packaged as a
ByteMessage.

72 Artix Bindings and Transports, Java Runtime

Example
Example 49 shows a configuration entry for configuring a JMS
consumer endpoint.

Example 49. Configuration for a JMS Consumer Endpoint
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ct="http://cxf.apache.org/configuration/types"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:jms="http://cxf.apache.org/transports/jms"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd"
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd"

 >

 <jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 ...
 <jaxws:features>
 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
 </jaxws:client>

 <bean id="jmsConfig"

class="org.apache.cxf.transport.jms.JMSConfiguration"
 p:connectionFactory-ref="jmsConnectionFactory"
 ...
 p:messageType="binary"
 ...
 />

 <bean id="jmsConnectionFactory"

class="org.springframework.jms.connection.SingleConnectionFactory">

 </bean>
</beans>

Using WSDL

Spcifying the message type
The type of messages accepted by a JMS consumer endpoint
is configured by adding the property to the JMS URI that is
defined in the <soap:address> for our service definition.

Table 14. JMS Client WSDL Extensions

messageType Specifies how the message data will be
packaged as a JMS message. text specifies
that the data will be packaged as a
TextMessage. binary specifies that the data
will be packaged as an ByteMessage

Artix Bindings and Transports, Java Runtime 73

Example
Example 50 shows the WSDL for configuring a JMS consumer
endpoint.

Example 50. WSDL for a JMS Consumer Endpoint
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location=
"jms:jndi:dynamicQueues/test.Celtix.jmstransport?jndiURL=tcp://localhost:61616&
jndiInitialContextFactory=org.activemq.jndi.ActiveMQInitialContextFactory&
messageType=binary"/>
 </port>
</service>

Provider Endpoint Configuration
JMS provider endpoints have a number of behaviors that are
configurable. These include:

• how messages are correlated

• the use of durable subscriptions

• if the service uses local JMS transactions

• the message selectors used by the endpoint

Service endpoints can be configured in one of two ways:

• Configuration

• WSDL

NOTE: The recommended method is to place the provider endpoint
specific information into the Artix ESB configuration file for the
endpoint.

Using Configuration

Specifying configuration data
Provider endpoint configuration is specified using the following
WSDL JMA parameters:

Table 15. Provider Endpoint Configuration

Attribute Description

74 Artix Bindings and Transports, Java Runtime

useConduitSelector Each conduit is assigned a UUID. If set
to true this conduit id will be the prefix
for all correlation ids. This allows
several endpoints to share a JMS queue
or topic.

durableSubscriptionName Specifies the name used to register a
durable subscription.

conduitIDSelectorPrefix If set, this string will be the prefix for
all correlation ids that the conduit
creates and will also be used in the
selector for listening to replies.

sessionTransacted Set to true for resource local
transactions. Do not set if you use JTA.

Example
Example 51 shows a Artix ESB configuration entry for
configuring a provider endpoint.

Example 51. Configuration for a Provider Endpoint
 <bean id="jmsConfig" class="org.apache.cxf.transport.jms.JMSConfiguration"
 p:connectionFactory-ref="jmsConnectionFactory"
 ...
 p:conduitSelectorPrefix="cxf_message_selector"
 p:durableSubscriptionName="cxf subscriber"
 p:useConduitIdSelector="true"
 p:sessionTransacted="true"
 ...
 />

Using WSDL

Configuring the endpoint
Provider endpoint behaviors are configured using the same JMS
properties as in Table 15.

Example
Example 52 shows the WSDL for configuring a JMS provider
endpoint.

Example 52. WSDL for a JMS Provider Endpoint
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location=
"jms:jndi:dynamicQueues/test.Celtix.jmstransport?jndiURL=
tcp://localhost:61616&jndiInitialContextFactory=
org.activemq.jndi.ActiveMQInitialContextFactory&sessionTransacted=
true&conduitIdSelectorPrefix=cxf_message_selector&useConduitIdSelector=
true&durableSubscriptionName=cxf_subscriber"/>
 </port>

Artix Bindings and Transports, Java Runtime 75

</service>

JMS Runtime Configuration
In addition to configuring the externally visible aspects of
your JMS endpoint, you can also configure aspects of its
internal runtime behavior. There are two types of runtime
configuration:

• Consumer specific configuration

• Provider specific configuration

Consumer Specific Runtime Configuration

The JMS consumer configuration allows you to specify two
runtime behaviors:

• The number of milliseconds the consumer will wait for a
response.

• The number of milliseconds a request will exist before the
JMS broker can remove it.

Configuration element
You can configure consumer runtime behavior using two
WSDL JMA parameters that are used to specify the
configurable runtime properties of a consumer endpoint.

Configuring the response timeout interval
You specify the interval, in milliseconds, a consumer endpoint
will wait for a response before timing out using the JMS
parameter receiveTimeout in the WSDL. The default timeout
interval is 60000.

Configure the request time to live
You specify the interval, in milliseconds, that a request can
remain unreceived before the JMS broker can delete it using
the JMS parameter timeToLive in the WSDL. The default time
to live interval is 0 which specifies that the request has an
infinite time to live.

Example
Example 53 shows a configuration fragment that sets the
consumer endpoint's request lifetime to 500 milliseconds and
its timeout value to 500 milliseconds.

Example 53. JMS Consumer Endpoint Runtime Configuration
...
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">

76 Artix Bindings and Transports, Java Runtime

 <soap:address
location="jms:jndi:dynamicQueues/test.Celtix.jmstransport?jndiURL
=tcp://localhost:61616&jndiInitialContextFactory=org.activemq
.jndi.ActiveMQInitialContextFactory&timeToLive=500&receiv
eTimeout=500"/>
 </port>
</service>

Provider Specific Runtime Configuration

The provider specific configuration allows you to specify to
runtime behaviors:

• The amount of time a response message can remain
unreceived before the JMS broker can delete it.

• The client identifier used when creating and accessing
durable subscriptions.

Configuring the durable subscriber identifier
The WSDL JMS parameter durableSubscriptionClientId
specifies the client identifier the endpoint uses to create and
access durable subscriptions.

Example
Example 54 shows a configuration fragment that sets the
provider endpoint's response lifetime to 500 milliseconds and
its durable subscription client identifier to jms-test-id.

Example 54. Provider Endpoint Runtime Configuration
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location=
"jms:jndi:dynamicQueues/test.Celtix.jmstransport?jndiURL=
tcp://localhost:61616&
jndiInitialContextFactory=
org.activemq.jndi.ActiveMQInitialContextFactory&
timeToLive=500&
durableSubscriptionClientId=jms-test-id"/>
 </port>
</service>

Artix Bindings and Transports, Java Runtime 77

Using WebSphere MQ
Artix ESB connects to WebSphere MQ using MQ's JMS APIs. It
is set up using the standard Artix ESB JMS transport
configuration.

To configure an endpoint to use WebSphere MQ you need to
provide the following information:

• The class name of MQ's initial context factory.

• The URL of MQ's JNDI provider.

IMPORTANT: In addition to the above, you will also need to provide
the standard JMS configuration information.

This information can be provided as part of an endpoint's WSDL
document or in an endpoint's configuration

JMS Addressing Information
Regardless of the JMS provider in use, you will always need to
provide some standard addressing information using WSDL
JMS parameters to specify the correct JMS URI that the JMS
provider will use. Table 18 shows the attributes needed when
using WebSphere MQ's JMS interface.

Table 18. jms:address Attributes for Using WebSphere MQ

Attribute Description

destinationStyle WebSphere MQ supports both
queues and topics.

jndiConnectionFactoryNa
me

The JNDI name for the connection
factory can be any string. You will
need to use this value when
providing the WebSphere MQ
specific JMS properties.

jndiDestinationName The JNDI name for the destination
can be any string. You will need to
use this value when providing the
IBM WebSphere MQ specific JMS
properties.

The JNDI Initial Context Factory
You specify the WebSphere MQ JNDI initial context factory using
a jms:JMSNamingProperty element. As shown in Example 55,
the value of the name attribute is java.naming.factory.initial
and the value of the value attribute is
com.ibm.mq.jms.context.WMQInitialContextFactory.

78 Artix Bindings and Transports, Java Runtime

Example 55. Specifying the JNDI Initial Context Factory
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location=
"jms:jndi:dynamicQueues/test.Celtix.jmstransport?jndiURL=tcp://localhost:1414&
jndiInitialContextFactory=com.ibm.mq.jms.context.WMQInitialContextFactory"/>
 </port>
</service>

IMPORTANT: com.ibm.mq.jms.context.WMQInitialContextFactory is
only available in the IBM supplied SupportPac ME01.

The JNDI Provider URL
You specify the JNDI provider's URL using the jndiURL property
to the <soap:address> element in the wsdl or spring
configuration file. See Example 55 for the use of this
property in the WSDL.

There are two options for a JNDI provider when using
WebSphere MQ:

• The default WebSphere MQ installation includes JNDI
providers for local file systems and LDAP servers.

• SupportPac ME01, available from IBM, provides support for
using a WebSphere MQ queue manager as a JNDI
repository. It can dynamically generate JMS administrable
objects, based on actual queues on the queue manager.

For more information about setting up JNDI providers for use with
WebSphere MQ, see the WebSphere MQ documentation.

	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library
	Further Information and Product Support
	Information We Need
	Contact information

	Understanding Bindings in WSDL
	Port types and bindings
	The WSDL elements
	Adding to a contract
	Supported bindings

	Using SOAP 1.1 Messages
	Adding a SOAP 1.1 Binding
	Using wsdltosoap
	Example

	Adding SOAP Headers to a SOAP 1.1 Binding
	Syntax
	Splitting messages between body and header
	Example

	Using SOAP 1.2 Messages
	Adding a SOAP 1.2 Binding
	Using wsdltosoap
	Example

	Adding Headers to a SOAP 1.2 Message
	Syntax
	Splitting messages between body and header
	Example

	Sending Binary Data Using SOAP Attachments
	Namespace
	Changing the message binding
	Describing a MIME multipart message
	Example

	Sending Binary Data with SOAP MTOM
	Annotating Data Types to use MTOM
	WSDL first
	Java first

	Enabling MTOM
	Using JAX-WS APIs
	Service provider
	Consumer

	Using configuration
	Procedure
	Example

	Using XML Documents
	XML binding namespace
	Hand editing
	XML messages on the wire
	Overriding the binding's rootNode attribute setting

	How Endpoints are Defined in WSDL
	Endpoints and services
	The WSDL elements
	Adding endpoints to a contract
	Supported transports

	Using HTTP
	Adding a Basic HTTP Endpoint
	SOAP 1.1
	SOAP 1.2

	Configuring a Consumer
	Using Configuration
	Namespace
	The conduit element
	The client element
	Example

	Using WSDL
	Namespace
	The client element
	Example

	Consumer Cache Control Directives

	Configuring a Service Provider
	Using Configuration
	Namespace
	The destination element
	The server element
	Example

	Using WSDL
	Namespace
	The server element
	Example

	Service Provider Cache Control Directives

	Configuring the Jetty Runtime
	Namespace
	The engine factory element
	The engine element
	Configuring the thread pool
	Example

	Using the HTTP Transport in Decoupled Mode
	Configuring decoupled interactions
	Configuring an endpoint to use WS-Addressing
	Configuring the consumer
	How messages are processed

	Using JMS
	Namespaces
	WSDL Namespace
	Configuration Namespace

	Basic Endpoint Configuration
	Using Configuration
	Example

	Using WSDL
	Example

	Using a named reply destination
	Setting the reply destination name
	Example

	Consumer Endpoint Configuration
	Using Configuration
	Specifying the message type
	Example

	Using WSDL
	Spcifying the message type
	Example

	Provider Endpoint Configuration
	Using Configuration
	Specifying configuration data
	Example

	Using WSDL
	Configuring the endpoint
	Example

	JMS Runtime Configuration
	Consumer Specific Runtime Configuration
	Configuration element
	Configuring the response timeout interval
	Configure the request time to live
	Example

	Provider Specific Runtime Configuration
	Configuring the durable subscriber identifier
	Example

	Using WebSphere MQ
	JMS Addressing Information
	The JNDI Initial Context Factory
	The JNDI Provider URL

