
Artix 5.6.3

Router Guide, C++
Runtime

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-24

Contents
Preface..v
Contacting Micro Focus ... vi

Introduction..1
Features of the Routing Service ..1
Routing Contracts ...2
Router Deployment Patterns...3

Compatibility of Ports and Operations7

Creating a Basic Route ..11

Adding Operation-Based Rules to a Route13

Adding Attribute-Based Rules to a Route.............................17

Adding Content-Based Rules to a Route21
Router’s Message Representation ..21
Specifying Evaluation Expressions ...24
Adding a Content-Based Rule to a Route ..25

Using Advanced Routing Features27
Load Balancing ...27
Message Broadcasting ...28
Failover Routing..30

Linking Routes ..31

Creating Routes Using Artix Tools35
Creating Routes from the Command Line ...35

Deploying an Artix Router ...39
Enabling Artix Routing ...39
Configuring an Artix Router ..40
Deploying a Router Using a Deployment Descriptor......................................42
Optimizing Router Performance...45

Routing Messages Containing References47
Endpoint References and the Router ..47
Preventing Memory Bloat in the Router ..48

Error Handling...51

Index ..53
 Artix Router Guide, C++ Runtime i i i

iv Artix Router Guide, C++ Runtime

Preface

What is Covered in this Book
This book discusses how to use the Artix ESB for C++ routing
service. It covers how the routing service directs message, the
WSDL extensions used to define routing rules, and how to deploy
an instance of the routing service.

Who Should Read this Book
This book is intended for any user who needs to use the Artix
routing service to connect endpoints in a SOA. It is expected that
the reader have a basic understanding of Service Oriented design
concepts and WSDL.

How to Use this Book
For an overview of the routing service, read “Introduction”.
For information on writing routing rules, read:
• “Compatibility of Ports and Operations”
• “Creating a Basic Route”
• “Adding Operation-Based Rules to a Route”
• “Adding Attribute-Based Rules to a Route”
• “Adding Content-Based Rules to a Route”
• “Linking Routes”
• “Creating Routes Using Artix Tools”
For information on configuring the routing service and optimizing
its performance, read:
• “Deploying an Artix Router”
• “Routing Messages Containing References”
For information on the advanced features of the router, read
“Using Advanced Routing Features”

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.
 Artix Router Guide, C++ Runtime v

https://supportline.microfocus.com/productdoc.aspx

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.
 vi Artix Router Guide, C++ Runtime

http://www.microfocus.com
http://www.microfocus.com

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
Artix Router Guide, C++ Runtime vii

http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 viii Artix Router Guide, C++ Runtime

Introduction
The Artix routing service provides message routing based on operations,
ports, message attributes, or message content.

Features of the Routing Service
An Artix router redirects messages based on rules defined in an
Artix contract. The routing functionality is provided by an Artix
plug-in and configuration. This means that neither the client nor
the server endpoints need to be modified, nor are they are aware
that routing is occurring. An Artix router is sometimes referred to
as an Artix switch.

Routes
The most basic Artix routes are between two endpoints that are
described by the port element of a WSDL contract. You can refine
your routes using the following types of additional rules:
• Operation-based
• Attribute-based
• Content-based

Operation-based
Operation-based rules allow you to refine a route by specifying a
particular operation on which the router will filter messages. By
adding an operation-based rule to a route, you direct the router to
only act upon messages that originate due to an invocation on a
particular operation of the specified port. Messages are routed
between logical operations whose arguments are equivalent.
For more information see “Adding Operation-Based Rules to a
Route” on page 13.

Attribute-based
Attribute-based routing rules allow you to refine a routing by
specifying values in the message header to be inspected. By
adding attribute-based rules to a route, you can direct the router
to only redirect messages based on certain values specified in the
message header.
For more information see “Adding Attribute-Based Rules to a
Route” on page 17.

Content-based
Content-based routing rules allow to refine a route by inspecting
the contents a message. Adding a content-based rule lets you
route messages based on the value of particular elements of a
 Artix Router Guide, C++ Runtime 1

message. The routes are defined using simple XPATH expressions
that query the message content and select a destination based on
the result.
For more information see “Adding Content-Based Rules to a
Route” on page 21.

Advanced features
In addition, you can specify routes that give you the following
advanced capabilities:
• Failover
• Load balancing
• Message broadcasting (fanout)
For more information see “Using Advanced Routing Features” on
page 27.

Routing Contracts
A router's contract must include definitions for the source services
and destination services. The contract also defines the routes that
connect the source endpoints to the destination endpoints. These
routing rules is all that is required to implement a route.

Routing contract requirements
A contract for the routing service is very similar to a contract for
any other Artix service. It is a WSDL document that defines the
types, interfaces, data mappings, and networking information that
defines an endpoint. Because the routing service bridges two, or
more endpoints, it requires that all of the information for the
endpoints it bridges are defined. In addition, a routing service
contract contains information specifying the routing rules for
connecting the defined endpoints.
A contract for the routing service must specify the following:
• all of the types passed between all of the endpoints being

connected.
• all of the messages that can be passed between the endpoints

being connected.
• an interface definition for each of the endpoints being

connected.

• a binding definition for each endpoint being connected.
• the connection information for all of the endpoints being

connected.
• at least one set of routing rules to define how messages are

routed between the connected endpoints.

Note: A routing service contract may have only one
interface definition because multiple endpoints can
share the same interface.
 2 Artix Router Guide, C++ Runtime

Routing namespace
The WSDL extension used to specify routes in an Artix contract are
defined in the namespace http://schemas.iona.com/routing. When
describing routes in an Artix contract you must add the following
to your contract’s definition element:

Common routing extensions
The most commonly used of the routing extensions are:

routing:route is the root element of any route defined in the
contract.

routing:source specifies the port that acts as the source for
messages that are to be routed.

routing:destination specifies the port to which messages will be
routed.
You do not need to do any programming and your applications
need not be aware that any routing is taking place.

Router Deployment Patterns
An Artix router does not require that any Artix-specific code be
compiled or linked into existing applications. An Artix router is
created by loading the Artix routing plug-in into an Artix process.
The recommended way to deploy a router is to use the Artix
container (see Deploying Artix Solutions).
Artix router can be deployed in a number of ways. Two common
deployment patterns are:
• Deploying multiple routers—each bridging between two

applications.
• Deploying one router—it bridges between all applications in a

domain.

Deploying multiple routers
This approach simplifies designing integration solutions, and
provides faster processing of each message (shown in Figure 1).
Using this approach, the Artix contract describing the interaction

<definitions ...
 xmlns:routing="http://schemas.iona.com/routing"

 ...>
Artix Router Guide, C++ Runtime 3

of the applications is simpler. It contains only the logical interfaces
shared by the two applications, the bindings for each payload
format, and the routing rules.

Because most applications use only one network transport, the
number of ports is minimal and the routing rules are simple.
Keeping the contract simple also enhances the performance of
each router because it has less processing to do. In this approach,
each router’s resource usage can be limited by tailoring its
configuration to optimize the router for the integration task that it
is responsible for.

Deploying one router
This approach limits the number of external services required in
your deployment environment (shown in Figure 2). This can
simplify monitoring and installation of deployments. It also
reduces the number of moving parts in an integration solution.

Using this approach, you can use a single WSDL contract that
includes all the information for all routes. In this case, the contract
information that describes the interaction of the applications is
more complex. It contains the logical interfaces shared by multiple
applications, the bindings for each payload format, and the routing
rules.
Alternatively, you can also specify that a single router uses
multiple WSDL files, each of which describes a single route, or a
number of routes. These could be the same WSDL contracts used

Figure 1: Using Multiple Artix Routers for Single Routes

Figure 2: Using a Single Artix Router for Multiple Routes
 4 Artix Router Guide, C++ Runtime

in multiple router deployment, however, they are all deployed in
the same router process. The configuration that identifies the
WSDL file containing the routing details is specified using a list,
which can include a collection of multiple WSDL files. For more
information, see “Configuring an Artix Router” on page 40.
Artix Router Guide, C++ Runtime 5

 6 Artix Router Guide, C++ Runtime

Compatibility of Ports
and Operations
The source endpoint and destination endpoint of a route must be able to
consume the routed messages.

The routing service can route messages between endpoints that
expect similar messages. The endpoints can use different message
transports and different payload formats, but the messages must
be logically identical. For example, if you have a baseball scoring
service that is hosted on a mainframe, it might send data using
fixed record length fields over a WebSphere MQ queue. Using a
router, you can route the score data to a reporting service that
consumes SOAP messages over HTTP.
Using the most basic routing rules, the destination endpoint must
have a matching logical operation defined for each of the logical
operations defined for the source endpoint. If you add an
operation-based rule, the restriction on the endpoints is relaxed.
The source endpoint and the destination endpoint must have one
logical operation that uses messages with the same logical
description.

Routing between endpoints
Routing between endpoints is rough grained in that the routing
rules are defined on the port elements of an Artix contract and do
not look at the individual logical operations defined in the logical
interface, defined by a portType element, for which the port
element defines an endpoint. Therefore, basic routing rules
require that the endpoints between which messages are routed
must have compatible logical interface descriptions.
For two endpoints to have compatible logical interfaces the
following conditions must be met:
• The portType element defining the destination’s logical

interface must contain a matching operation element for each
operation element in the portType element defining the
source’s logical interface. Matching operation elements must
have the same value in their name attribute.

• Each of the matching operation elements must have the same
number of input, output, and fault elements.

• Each of the matching operation elements’ input elements
must be associated to a logical message, defined by a message
element, whose sequence of part elements have matching
types.

• Each of the matching operation elements’ output elements
must be associated to a logical message whose sequence of
part elements have matching types.

• Each of the matching operation elements’ fault elements
must be associated to a logical message whose sequence of
part elements have matching types.
 Artix Router Guide, C++ Runtime 7

For example, given the two logical interfaces defined in Example 1
you could construct a route from an endpoint bound to
baseballScorePortType to an endpoint bound to
baseballGamePortType. However, you could not create a route from
an endpoint bound to finalScorePortType to an endpoint bound to
baseballGamePortType because the message types used for the
getScore operation do not match.

Example 1: Logical interface compatibility example

<message name="scoreRequest>
 <part name="gameNumber" type="xsd:int"/>
</message>
<message name="baseballScore">
 <part name="homeTeam" type="xsd:int"/>
 <part name="awayTeam" type="xsd:int"/>
 <part name="final" type="xsd:boolean"/>
</message>
<message name="finalScore">
 <part name="home" type="xsd:int"/>
 <part name="away" type="xsd:int"/>
 <part name="winningTeam" type="xsd:string"/>
</message>
<message name="winner">
 <part name="winningTeam" type="xsd:string"/>
</message>
<portType name="baseballGamePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest"

name="scoreRequest"/>
 <output message="tns:basballScore"

name="baseballScore"/>
 </operation>
 <operation name="getWinner">
 <input message="tns:scoreRequest"

name="winnerRequest"/>
 <output message="tns:winner" name="winner"/>
 </operation>
</portType>
<portType name="baseballScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest"

name="scoreRequest"/>
 <output message="tns:basballScore"

name="baseballScore"/>
 </operation>
</portType>
<portType name="finalScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest"

name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
 8 Artix Router Guide, C++ Runtime

Routing between operations
Operation-based routing rules check for compatibility based on the
operation elements of an endpoint’s logical interface description.
Therefore, messages can be routed between any two compatible
logical operations.
The following conditions must be met for operations to be
compatible:
• The operations must have the same number of input, output,

and fault elements.
• The logical messages must have the same sequence of part

types.
For example, if you added the logical interface in Example 2 to the
interfaces in Example 1 on page 8, you could specify a route from
getFinalScore defined in fullScorePortType to getScore defined in
finalScorePortType. You could also define a route from getScore
defined in fullScorePortType to getScore defined in
baseballScorePortType.

Example 2: Operation-based routing interface

<portType name="fullScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest"

name="scoreRequest"/>
 <output message="tns:basballScore"

name="baseballScore"/>
 </operation>
 <operation name="getFinalScore">
 <input message="tns:scoreRequest"

name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
Artix Router Guide, C++ Runtime 9

 10 Artix Router Guide, C++ Runtime

Creating a Basic Route
The simplest route directs messages between two endpoints without any
conditions.

Basic routing rules simply specify the source endpoint, or
endpoints, for the messages and the destination endpoint to which
messages are routed. All messages received by the source
endpoint are routed to the destination endpoint.
To describe a basic routing rule you use three elements:
• routing:route
• routing:source
• routing:destination

routing:route
The routing:route element is the root element of each route you
describe in your contract. It takes one required attribute, name,
that specifies a unique identifier for the route. The routing:route
element also has an optional attribute, multiRoute, which is
discussed in “Using Advanced Routing Features” on page 27.

routing:source
The routing:source element specifies the endpoint on which the
route listens for messages. A route can have several
routing:source elements as long as they all meet the compatibility
rules discussed in “Routing between endpoints” on page 7.
The routing:source element requires two attributes described in
Table 1.

routing:destination
The routing:destination element specifies the endpoint to which
the source messages are routed. The destination endpoint must
be compatible with the source endpoint. For a discussion of the
compatibility rules see “Routing between endpoints” on page 7.
In standard routing only one destination is allowed per route.
Multiple destinations are allowed in conjunction with the
routing:route element’s multiRoute attribute that is discussed in
“Using Advanced Routing Features” on page 27.

Table 1: Required Attributes for routing:source

Attribute Description

service Specifies the name of the service element
in which the source endpoint is defined.

port Specifies the name of the port element
defining the source endpoint.
 Artix Router Guide, C++ Runtime 11

The routing:destination element requires two attributes described
in Table 2.

Example
For example, to define a route from baseballScorePortType to
baseballGamePortType, defined in Example 1 on page 8, your Artix
contract would contain the elements in Example 3.

There are two sections to the contract fragment shown in
Example 3:
1. The logical interfaces must be bound to physical ports in

service elements of the Artix contract.
2. The route, baseballRoute, is defined with the appropriate

service and port attributes.

Table 2: Required Attributes for routing:destination

Attribute Description

service Specifies the name of the service element
in which the destination endpoint is
defined.

port Specifies the name of the port element
defining the destination endpoint.

Example 3: Port-based routing example

1 <service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <tibrv:port serverSubject="com.mycompany.baseball"/>
 </port>
</service>

2 <routing:route name="baseballRoute">
 <routing:source service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
</routing:route>
 12 Artix Router Guide, C++ Runtime

Adding
Operation-Based Rules
to a Route
Operation-based rules narrow the scope used to define the source of the
messages to a specific operation.

Operation-based routing rules refine a route by narrowing the
source of routed messages to specific logical operation. Any
message not related to the specified logical operation will be
unaffected by the route.

Adding an operation-based rule
To specify an operation-based routing rule you need to specify one
additional element to your route description: routing:operation.
The routing:operation element takes one required attribute, name,
that specifies the value of the name attribute of an operation
element in the source endpoint’s logical interface. The specified
operation element becomes the source of messages that are
routed. Messages corresponding to other logical operations will
not be routed.
The routing:operation element also has one optional attribute,
target, that specifies the value of the name attribute of an
operation element in the destination endpoint’s logical interface.
The specified operation element becomes the destination of
messages redirected by the route. If a target is specified,
messages are routed between the two operations. If no target is
specified, the source operation’s name is used as the name of the
target operation. The source and target operations must meet the
compatibility requirements discussed in “Routing between
operations” on page 9.
You can specify any number of routing:operation elements in a
route. They must be specified after all of the routing:source
elements and before any routing:destination elements.

How operation-based rules are applied
Operation-based routing rules apply to all of the routing:source
elements in the route. Therefore, if an operation-based routing
rule is specified, a message will be routed if all of the following are
true:
• The message is received from one of the endpoints specified

in a routing:source element.
• The operation name associated with the received message is

specified in one of the routing:operation elements.
If there are multiple operation-based rules in the route, the
message will be routed to the destination specified by the first the
matching operation’s target attribute.
 Artix Router Guide, C++ Runtime 13

Example
For example, to route messages from the getFinalScore operation
defined in fullScorePortType, shown in Example 2 on page 9, to
the getScore operation defined in finalScorePortType, shown in
Example 1 on page 8, your Artix contract would contain the
elements in Example 4.

There are two sections to the contract fragment shown in
Example 4:
1. The logical interfaces must be bound to physical endpoints in

service elements of the Artix contract.
2. The route, scoreRoute, is defined using the routing:operation

element.

Example 4: Operation to Operation Routing

1 <service name="fullScoreService">
 <port binding="tns:fullScoreBinding"
 name="fullScorePort">
 <mq:server QueueManager="BBQM"
 QueueName="MLBQueue"
 ReplyQueueManager="BBRQM"
 ReplyQueueName="MLBScoreQueue"/>
 </port>
</service>
<service name="finalScoreSerice">
 <port binding="tns:finalScoreBinding"
 name="finalScorePort">
 <soap:address

location="http://artie.com/finalScoreServer"/>
 </port>
</service>

2 <routing:route name="scoreRoute">
 <routing:source service="tns:fullScoreService"
 port="tns:fullScorePort"/>
 <routing:operation name="getFinalScore"

target="getScore"/>
 <routing:destination service="tns:finalScoreService"
 port="tns:finalScorePort"/>
</routing:route>
 14 Artix Router Guide, C++ Runtime

You could also create a route between the operation getScore,
defined in baseballGamePortType, and an endpoint bound to
baseballScorePortType. See Example 1 on page 8.The resulting
contract would include the fragment shown in Example 5.

Note that the routing:operation element only uses the name
attribute. In this case the logical interface bound to
baseballScorePort, baseballScorePortType, must contain an
operation getScore that has matching messages as discussed in
“Routing between operations” on page 9.

Example 5: Operation to Port Routing Example

<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <iiop:address location="file:\\score.ref"/>
 </port>
</service>
<routing:route name="scoreRoute">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
</routing:route>
Artix Router Guide, C++ Runtime 15

 16 Artix Router Guide, C++ Runtime

Adding Attribute-Based
Rules to a Route
Attribute-based rules refine a route by selecting the messages to be routed
based on the transport attributes set in a message’s header.

Artix allows you to route messages based on the transport
attributes set in a message’s header when using HTTP or
WebSphere MQ. You can also route messages based on security
settings and the CORBA principle.

Adding attribute-based rules
Rules the select messages based on message header transport
attributes are defined in routing:transportAttribute elements in
the route definition. Transport attribute rules are defined after all
of the operation-based routing rules and before any destinations
are listed.
The criteria for determining if a message meets an attribute-based
rule are specified in sub-elements of the
routing:tranportAttribute element. A message passes the rule if it
meets each criterion specified in the listed sub-element.

Defining the attributes
Each sub-element requires the two attributes defined in Table 3.

The contextName attribute is specified using the QName of the
context in which the attribute is defined. The contexts shipped
with Artix are described in Table 4.The contextAttributeName is
also a QName and is relative to the context specified. For
example, UserName is a valid attribute name for any of the HTTP
contexts, but not for the MQ contexts.

Table 3: Required Attributes for Attribute Selection Elements

Attribute Description

contextName Specifies the context defining the
transport attribute being evaluated.

contextAttributeName Specifies the name of the transport
attribute being evaluated.

Table 4: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the
attributes for HTTP
messages being
received by a service.
 Artix Router Guide, C++ Runtime 17

Most sub-elements have a value attribute that can be tested.
When dealing with string comparisons all elements have an
optional ignorecase attribute that can have the values yes or no (no
is the default). Each of the sub-elements can occur zero or more
times, in any order:

routing:equals applies to string or numeric attributes. For
strings, the
ignorecase attribute may be used.

routing:greater applies only to numeric attributes and tests
whether the attribute is greater than the value.

routing:less applies only to numeric attributes and tests whether
the attribute is less than the value.

routing:startswith applies to string attributes and tests whether
the attribute starts with the specified value.

routing:endswith applies to string attributes and tests whether
the attribute ends with the specified value.

routing:contains applies to string or list attributes. For strings, it
tests whether the attribute contains the value. For lists, it tests
whether the value is a member of the list. The contains element
accepts the optional ignorecase attribute for both strings and lists.

routing:empty applies to string or list attributes. For lists, it tests
whether the list is empty. For strings, it tests for an empty string.

routing:nonempty applies to string or list attributes. For lists, it
passes if the list is not empty. For strings, it passes if the string is
not empty.
For information on the transport attributes for HTTP and
WebSphere MQ see Binding and Transports, C++ Runtime.

corba:corba_input_attributes Contains the data
stored in the CORBA
principle.

mq:IncomingMessageAttributes Contains the
attributes for MQ
messages being
received by a service.

bus-security Contains the
attributes used by
the Artix security
service to secure
your services.

Table 4: Context QNames

Context QName Details
 18 Artix Router Guide, C++ Runtime

Example
Example 6 shows a route using attribute-based rules based on
HTTP header attributes. Only messages sent to the server whose
UserName is equal to JohnQ will be passed through to the destination
port.

Example 6: Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:transportAttributes>
 <routing:equals

contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>
Artix Router Guide, C++ Runtime 19

 20 Artix Router Guide, C++ Runtime

Adding Content-Based
Rules to a Route
Content-based routing rules evaluate the contents of a message and routes
it based on the results.

Procedure
To create a content-based route rule in your contract you need to
do the following things:
1. Add an expression to select message content using a

routing:expression element.
2. Add a new route to you contract using a routing:route

element.
3. Add a source endpoint to your route using a routing:source

element.
4. Specify the expression to use as a routing criteria using a

routing:query element.
5. Add one or more routing:destination elements as children to

the routing:query element.
6. If you want to add a default destination endpoint, add a

routing:destination element as a child of the routing:route
element.

Router’s Message Representation
The router receives messages in a number of wire formats. It uses
the information provided in the binding element of its contract to
turn the raw message into an XML message that can be evaluated.
Before you can write an expression to select content from a
message passing through the router, you need to understand how
the router sees the message.

Doc-literal style contracts
If your contract is constructed using the recommended doc-literal
style, the router sees the message as an instance of the element
specified as the message part. For example, if your service was
defined by the WSDL fragment in Example 7, the router would see
a message with the root element ticket.

Example 7: Doc-literal WSDL Fragment

<definitions targetNamespace="vehicle.demo.example"
 xmlns:tns="vehicle.demo.example"
 ...>
 Artix Router Guide, C++ Runtime 21

Example 8 shows an example of the message that the router
would process given the WSDL in Example 7.

 <types ...>
 ...
 <complexType name="vehicleType">
 <sequence>
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </sequence>
 </complexType>
 <complexType name="ticketType">
 <sequence>
 <element name="vehicle" type="vehicleType" />
 <element name="name" type="xsd:string" />
 <element name="parkTime" type="xsd:string" />
 </sequence>
 </complexType>
 <element name="ticket" type="ticketType" />
 ...
 </types>
...
<message name="ticketRequest">
 <part name="myTicket" element="xsd1:ticket" />
</message>
...
<portType name="parkingLotMeter">
 <operation name="register">
 <input name="parkedCar" message="tns:ticketRequest"/>
 ...
 </operation>
...
</portType>
...

Example 7: Doc-literal WSDL Fragment (Continued)

Example 8: Doc-literal Router Message

<ns1:parkedCar xmlns:ns1="vehicle.demo.example">
 <ticket>
 <vehicle>
 <VIN>0123456789</VIN>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
 <time>19:00</time>
 </ticket>
</ns1:parkedCar>
 22 Artix Router Guide, C++ Runtime

Non-standard contracts
When you use non-standard messages in your contract, the router
sees the message as a virtual XML document that is reconstructed
from the WSDL definitions in the contract. The mapping is done as
follows:
1. The name of the message’s root element is the QName of the

message element referred to by the operation’s input element.
2. Each part element of the message referenced by the input

element is mapped to an element derived from the name
attribute of the part element.

3. If the part element is of a complex type, or an element of a
complex type, the type’s elements appear inside of the
element corresponding to the part element.

For example, if you had a service defined by the WSDL fragment
in Example 9 and were going to route requests to the register
operation, the router would scan an XML document constructed
using the message ticketRequest, which is the input message.

When the router reconstructs the message, it the input message’s
name, given in the input element, as the name of the XML
document’s root element. It uses the message parts and the

Example 9: Non-standard WSDL Fragment

<definitions targetNamespace="vehicle.demo.example"
 xmlns:tns="vehicle.demo.example"
 ...>
 <types ...>
 ...
 <complexType name="vehicleType">
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </complexType>
 ...
 </types>
...
<message name="ticketRequest">
 <part name="vehicle" type="xsd1:vehicleType"/>
 <part name="name" type="xsd:string"/>
 <part name="parkTime" type="xsd:string" />
</message>
...
<portType name="parkingLotMeter">
 <operation name="register">
 <input name="parkedCar" message="tns:ticketRequest"/>
 ...
 </operation>
...
</portType>
...
Artix Router Guide, C++ Runtime 23

schema types to recreate the remaining elements in the XML
document. The resulting XML document would look like
Example 10.

Using element names
You can configure the transformer to use the element name of the
message parts instead of the value of the part element’s name
attribute. For more information see Configuring and Deploying
Artix Solutions, C++ Runtime.

Specifying Evaluation Expressions
The router uses expressions to evaluate a message’s content and
route it. These expressions are written using the XPath grammar.

Writing XPath expressions
XPath is a standard grammar for addressing the parts of an XML
document. The Artix router uses XPath expressions to extract the
content of a message for evaluation. For example, if you wanted
to write an XPath expression to extract the data stored in the
model element of the XML document in Example 10 you could use
the XPath expression parkedCar\vehicle\model which translates
into select the model element whose parent is a vehicle element
and has a parkedCar element as a parent.
You could also use the XPath expression \\model which translates
into select all of the model elements that are a descendent of the
root element. If there were multiple model elements, the
expression would select them all and return a string representing
the node set of model elements.
For more information on XPath see the specification at
http://www.w3.org/TR/xpath or see the tutorial at
http://www.w3schools.com/xpath.

Example 10: Router Message

<ns1:parkedCar xmlns:ns1="vehicle.demo.example">
 <vehicle>
 <VIN>0123456789</VIN>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
 <time>19:00</time>
</ns1:parkedCar>
 24 Artix Router Guide, C++ Runtime

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

Adding expressions to a contract
You add an expression to your contract using a routing:expression
element. The routing:expression element requires the two
attributes described in Table 5.

Example
Example 11 shows an example of adding an expression to an Artix
contract.

The expression selects the type child element of the
widgetOrderForm element in the message. The widgetOrderForm
element is not the root element of the message. It is generated
from one of the part elements defined in the contract.

Adding a Content-Based Rule to a Route

Using expressions in a route
To use the expression to route messages, you need to add it to
the route. This is done using the routing:query element. The
routing:query element is a child of the routing:route element and
must follow a single routing:source element. It has one attribute,
expression, that specifies the name of the expression used to
select a destination endpoint.

Specifying destinations for a content
based routing rule
The destinations that can be selected by the expression are
specified using routing:destination elements that are children of
the routing:query element. When used in content-based routing

Table 5: Required Attributes for routing:expression

Attribute Description

name Specifies a unique identifier by which the
expression is referred to when used in a
route definition.

evaluator Specifies the type of expression being used
to select the content.

Note: XPath is the only supported grammar and is
specified using the string xpath.

Example 11: Expression in an Artix Contract

<routing:expression name="widgetSize" evaluator="xpath">
 /*/widgetOrderform/type
</routing:expression>
Artix Router Guide, C++ Runtime 25

rules, the routing:destination elements use the value attribute.
The value attribute specifies the value of the expression that will
select the destination endpoint.
For example, the route shown in Example 12 specifies a
content-based routing rule that uses the expressing defined in
Example 11 and has three possible destination endpoints.

If the value of the message’s type element is med, the message will
be routed to the endpoint defined by the contract’s service
element whose name attribute equals medService.

Adding a default destination
To add a default destination for a content based routing rule, you
simply add a routing:destination element after the routing:query
element. If none of the destination endpoints specified by the
content-based routing rule are selected, the first destination after
the routing:query element is selected. Example 13 shows a
content-based routing rule with a default destination endpoint.

Example 12: Content-Based Routing Rule

<routing:route name="sizeRoute">
 <routing:source service="tns:orderService" />
 <routing:query expression="tns:widgetSize">
 <routing:destination value="small"
 service="tns:smallService" />
 <routing:destination value="med"

service="tns:medService" />
 <routing:destination value="big"

service="tns:bigService" />
 </routing:query>
</routing:route>

Example 13: Content-Based Routing Rule with a Default Destination

<routing:route name="sizeRoute">
 <routing:source service="tns:orderService" />
 <routing:query expression="tns:widgetSize">
 <routing:destination value="small"
 service="tns:smallService" />
 <routing:destination value="med"

service="tns:medService" />
 <routing:destination value="big"

service="tns:bigService" />
 </routing:query>
 <routing:destination service="tns:miscService" />
</routing:route>
 26 Artix Router Guide, C++ Runtime

Using Advanced
Routing Features
The router has a number of advanced features that use multiple
destinations.

Artix routing also supports the following advanced routing
capabilities:
• Load Balancing between a number of endpoints.
• Message Broadcasting to a number of destinations.
• Specifying a Failover Routing service to which messages are

routed.
All of these features use the optional multiRoute attribute on the
routing:route element.

Load Balancing
The router can load balance requests across a number of
endpoints without requiring any special configuration or
programming. It uses a round-robin algorithm to route requests,
that match a routing rule, to one of the specified destination
endpoints.

Specifying router based load balancing
Router-based load balancing rules are defined using the
routing:route element’s multiRoute attribute. To define a failover
route you set the multiRoute attribute to loadBalance. Within the
route definition you define a message source as you would for any
other route. You also specify a number of destination endpoints to
which messages will be routed. Using a round-robin algorithm the
router will direct each request from the source endpoint to one of
the specified destination endpoints.
 Artix Router Guide, C++ Runtime 27

Example
For example, if you had three endpoints that could process
requests for baseball scores and wanted to balance the request
load among them, you could create a route similar to the one
shown in Example 14.

Using this route, each time a new request was received for the
getScore operation, the router would direct it to whichever
endpoint was next in the rotation. So, the first request would be
routed to baseballScoreService1, the second request would be
routed to baseballScoreService2, the third request would be routed
baseballScoreService3, and so forth.

Message Broadcasting
Using the router, you can broadcast a message to multiple
endpoints. For example, you could deploy an endpoint whose
function is to generate shutdown warnings to all services deployed
in a network. You could simplify the development of this service
by using an Artix router to intercept a single warning message and
broadcast it to the other services. In this way, you would only
need to change the router’s contract when you add or remove
services.

Defining broadcasting rules
You define rules by setting the multiRoute attribute in the
routing:route element to fanout in your route definition. This
causes routed messages to be transmitted to all of the endpoints
specified by the route’s routing:destination elements.
There are three restrictions to using the fanout method of
message broadcasting:
• All of the source endpoints and destination endpoints must be

oneways. In other words, they cannot have any output
messages.

• The source endpoints and destination endpoints cannot have
any fault messages.

Example 14: Router Based Load Balancing

<routing:route name="scoreRoute" nultiRoute="loadBalance">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService1"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService2"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService3"
 port="tns:baseballScorePort"/>
</routing:route>
 28 Artix Router Guide, C++ Runtime

• The input messages of the source endpoints and destination
endpoints must meet the compatibility requirements as
described in “Compatibility of Ports and Operations” on
page 7.

Example
Example 15 shows an Artix contract fragment describing a route
for broadcasting a message to a number of endpoints.

Example 15: Fanout Broadcasting

<message name="statusAlert">
 <part name="alertType" type="xsd:int"/>
 <part name="alertText" type="xsd:string"/>
</message>
<portType name="statusGenerator">
 <operation name="eventHappens">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<portType name="statusChecker">
 <operation name="eventChecker">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<service name="statusGeneratorService">
 <port binding="tns:statusGeneratorBinding"
 name="statusGeneratorPort">
 <soap:address location="http:\\localhost:8081"/>
 </port>
</service>
<service name="statusCheckerService">
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort1">
 <corba:address location="file:\\status1.ref"/>
 </port>
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort2">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService">
 <tuxedo:input operation="infoRequest"/>
 </tuxedo:service>
 </tuxedo:server>
 </port>
</service>
<routing:route name="statusBroadcast"

multiRoute="fanout">
 <routing:source service="tns:statusGeneratorService"
 port="tns:statusGeneratorPort"/>
 <routing:operation name="eventHappens"

target="eventChecker"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort1"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort2"/>
</routing:route>
Artix Router Guide, C++ Runtime 29

Failover Routing
The Artix router can provide a basic level of high-availability by
allowing you to create routes that define failover scenarios. The
router will automatically redirect messages to a new endpoint if
the current destination fails. The router will attempt to send a
request to all the destinations in a route before throwing an
exception back to the client.

Defining the failover rules
To define a failover route you set the routing:route element’s
multiRoute attribute to failover. When you designate a route as
failover, the routed message’s target is selected using a
round-robin algorithm. If the first target in the list is unable to
receive the message, it is routed to the second target. The route
will traverse the destination list until either one of the target
services can receive the message or the end of the list is reached.
On the next failure, the router will start searching from the last
position on the list. So if the message was routed to the second
entry on the list to deal with an initial failure, the router will start
directing requests to the third entry on the list to handle the
second failure. When the end of the list is reached, the router will
start at the beginning again. If the router is unsuccessful in
delivering a message after trying each service in the failover route
once, the router will report that the message is undeliverable.

Example
Given the route shown in Example 16, the message will first be
routed to destinationPortA. If service on destinationPortA cannot
receive the message, it is routed to destinationPortB.

If destinationPortB fails at some future point, the messages are
then routed to destinationPortC. If destinationPortC cannot
receive messages, the router will then try destinationPortA. If
destinationPortA is not available, the router will try
destinationPortB. If destinationPortB is unavailable, the router will
report that the message cannot be delivered.

Example 16: Failover Route

<routing:route name="failoverRoute"
multiRoute="failover">

 <routing:source service="tns:sourceService"
 port="tns:sourcePort"/>
 <routing:destination service="tns:destinationServiceA"
 port="tns:destinationPortA"/>
 <routing:destination service="tns:destinationServiceB"
 port="tns:destinationPortB"/>
 <routing:destination service="tns:destinationServiceC"
 port="tns:destinationPortC"/>
</routing:route>
 30 Artix Router Guide, C++ Runtime

Linking Routes
It is possible to create complex routes by linking together several types
of routes.

There are occasions, particularly when using content-based
routing or using one of the multi-endpoint routing features, when
you need to link together a number of routing criteria. Using the
routing service you can do this by linking together a number of
routes. For example, you may want to route orders for customers
in Brazil to a local endpoint, but you also want the orders to
automatically fail-over to a alternative endpoint. You can do this
by creating a content-based route that specifies a fail-over route
as a destination.

Specifying a route as a destination
You link routes together by specifying one route as the destination
of another route. When the destination specifying the linked route
is selected, the message is passed through the second route to
determine its destination. The second route may also contain
destinations that contain linked routes. The message will pass
through each linked route in order until a destination containing
an endpoint is selected.
To specify a linked route as a destination you replace the service
attribute and the port attribute in a routing:destination element
with the route attribute. The value of the route attribute must
correspond to the name of another route in the contract. The
specified route becomes linked with the destination and any
message that selects this destination will be processed through it.
 Artix Router Guide, C++ Runtime 31

Example
Imagine that your company had order processing centers in
several cities and you needed to route orders to the processing
center closest to the delivery address. You could implement this
using a content-based route as shown in Example 17.

If you needed to add a fail-over mechanism to ensure that the
orders were processed by a different processing center in the
event of a failure, you could simply add two linked routes for the
destination of the content-based route as shown in Example 18.

Example 17: Content-Based Route

<routing:expression name="zipCode" evaluator="xpath">
 tns:placeWidgetOrder/widgetOrderForm/shippingAddress/zipCode
</routing:expression>
<routing:route name="zipCodeRoute">
 <routing:source service="tns:widgetOrderService"
 port="tns:SOAPPort" />
 <routing:query expression="tns:zipCode">
 <routing:destination value="02452"
 service="tns:widgetOrderServiceEast"
 port="walthamPort" />
 <routing:destination value="91105"
 service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
 </routing:query>
</routing:route>

Example 18: Linked Routes

<routing:expression name="zipCode" evaluator="xpath">
 tns:placeWidgetOrder/widgetOrderForm/shippingAddress/zipCode
</routing:expression>
<routing:route name="walthamRoute" multiRoute="failover">
 <routing:destination service="tns:widgetOrderServiceEast"
 port="walthamPort" />
 <routing:destination service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
</routing:route>
<routing:route name="passadenaRoute" multiRoute="failover">
 <routing:destination service="tns:widgetOrderServiceWest"
 port="passadenaPort" />
 <routing:destination service="tns:widgetOrderServiceEast"
 port="walthamPort" />
</routing:route>
<routing:route name="zipCodeRoute">
 <routing:source service="tns:widgetOrderService"
 port="tns:SOAPPort" />
 <routing:query expression="tns:zipCode">
 <routing:destination value="02452"
 route="tns:walthamRoute" />
 <routing:destination value="91105"
 route="tns:passadenaRoute" />
 </routing:query>
</routing:route>
 32 Artix Router Guide, C++ Runtime

Example 18 expands on Example 17 by adding two routes:
walthamRoute and passadenaRoute. Both of these routes will not
perform any routing on their own because they lack
routing:source elements. They are instead used as destinations for
the content-based route called zipCodeRoute. In Example 17, the
content-based route simply routed to one endpoint for each
destination. In Example 18, the route’s destinations are linked
routes. If the first destination is selected, the message is routed
through the fail-over route walthamRoute. If the second destination
is selected, the message is routed through the fail-over route
passadenaRoute.
Artix Router Guide, C++ Runtime 33

 34 Artix Router Guide, C++ Runtime

Creating Routes Using
Artix Tools
Artix provides both GUI and command-line tools for creating routes.

Creating Routes from the Command Line
The wsdltorouting command line tool can be used to add routes to
contracts. Wsdltorouting will import an existing contract and
generate a new contract containing the specified routing
instructions. The imported contract must contain the specified
source endpoint and destination endpoint, otherwise the tool will
generate an error.

Usage
To generate a route using the command line tool, use the
following command.

wsdltorouting has the following options.

wsdltorouting [-rn name][-ssn service][-spn port]
 [-dsn service][-dpn port][-on operation]
 [-ta attribute] [-d dir][-o file]
 [-L file][-quiet][verbose][-h][-v] wsdlurl

-rn name Specifies the name of the generated route. If
no name is given a unique name will be
generated for the route.

-ssn service Specifies the name of the service element to
use as the source of the route.

-spn port Specifies the name of the port element to use
as the source of the route.

-dsn service Specifies the name of the service element to
use as the destination of the route.

-dpn port Specifies the name of the port element to use
as the destination of the route.

-on operation Specifies the name of the operation to use for
the route. If the route is port-based, you do
not need to use this flag.

-ta attribute Specifies a transport attribute to use in
defining the route. For details on how to
specify the transport attributes, see
“Specifying transport attributes” on page 36.

-d dir Specifies the output directory for the
generated contract.

-o file Specifies the filename of the generated
contract.
 Artix Router Guide, C++ Runtime 35

Specifying transport attributes
When using wsdltorouting, transport attributes are specified using
four comma-separated values. The first value specifies the name
of the attribute’s context. The second value specifies the name of
the attribute. The third value is the condition used to evaluate the
attribute. The fourth value is the values against which the
attribute is evaluated.
Table 6 shows the valid context names to use in specifying a
transport attribute.

For more information on the properties available in the contexts
see either Developing Artix Applications in C++.
Table 7 shows the valid condition entries used in specifying
transport attributes when using wsdltorouting.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet mode.
-verbose Specifies that the tool runs in verbose mode.
-h Displays the tool’s usage statement.
-v Displays the tool’s version.

Table 6: Context Names Used with wsdltorouting

Context Name Artix Context

HTTP_SERVER_INCOMING_CONTE
XTS

HTTP properties received
as part of a client request

CORBA_CONTEXT_ATTRIBUTES CORBA transport properties

SECURITY_SERVER_CONTEXT Properties used to
configure security settings

Table 7: Conditions Used with wsdltorouting

Condition WSDL Equivalent

equals routing:equals

startswith routing:startswith

endswith routing:endswith

contains routing:contains

empty routing:empty

nonempty routing:nonempty

greater routing:greater

less routing:less
 36 Artix Router Guide, C++ Runtime

http://communities.progress.com/pcom/docs/DOC-106903

Example
If you had a contract that contained the services itchy and
scratchy, both with an equivalent operation gouge, you could use
the command shown in Example 19 to add a route to your
contract.

The resulting route is shown in Example 20.

Example 19: Adding a Route with wsdltorouting

wsdltorouting -rn itchyGougeScratchy -ssn itchy -spn
gougerPort

 -dsn scratchy -dpn gougedPort -on gouge
 -ta

HTTP_SERVER_INCOMING_CONTEXTS,UserName,equals,Goering
 itchyscratchy.wsdl

Example 20: Route from wsdltorouting

<routing:route name="itchyGougeScratchy">
 <routing:source service="tns:itchy"
 port="tns:gougerPort"/>
 <routing:operation name="gouge"/>
 <routing:transportAttributes>
 <routing:equals

contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="Goering"/>
 </routing:transportAttributes>
 <routing:destination service="tns:scratchy"
 port="gougedPort"/>
</routing:route>
Artix Router Guide, C++ Runtime 37

 38 Artix Router Guide, C++ Runtime

Deploying an Artix
Router
An instance of the Artix router can be deployed either as part of an
application’s configuration or directly into an Artix container.

Enabling Artix Routing
There are two approaches to enabling an Artix router:
• Using configuration variables.
• Using an Artix deployment descriptor.

Using configuration
You can configure an Artix router by adding the routing plug-in to
the orb_plugins list, and specifying the location of the contract
using the plugins:routing:wsdl_url entry. See “Configuring an
Artix Router” on page 40 for full details.
This configuration-based approach can be used with an Artix
container. Alternatively, you can also deploy a router into any
Artix process. For example, this might be useful if you want to
write CORBA clients and use Artix APIs.
You can also specify additional configuration variables to optimize
performance. See “Optimizing Router Performance” on page 45.

Using a deployment descriptor
You can only use a deployment descriptor to define routes if you
are using the container to host the router. The advantage of this
approach is that you do not need a dedicated configuration scope.
Another advantage to this approach is that you can deploy
additional routes into the process without stopping and restarting
the host process, which would be necessary in the configuration
approach.
When using the deployment descriptor approach, you must deploy
each router instance separately; whereas with the configuration
approach, all router instances are loaded automatically on startup.
See “Deploying a Router Using a Deployment Descriptor” on
page 42 for full details.
 Artix Router Guide, C++ Runtime 39

Selecting a host process
Although any Artix process can be used for Artix routing, the
preferred approach is to use the Artix container as the host
process.
When using the Artix container server process (it_container), you
have the option of using either the configuration approach, or the
deployment descriptor approach.
In addition, you can also use the container’s client application
(it_container_admin) to manage the deployed route.

Disabling a router
To undeploy a router, you must stop and restart the process
hosting the router. This applies to both the configuration and
deployment descriptor approach.
Using the configuration approach, you must edit the
plugins:routing:wsdl_url entry, removing the contract describing
the routes you wanted to undeploy.
Using the deployment descriptor approach, you would then either
not redeploy that particular contract, or you would remove its
corresponding deployment descriptor from the persistent
deployment directory. See Configuring and Deploying Artix
Solutions, C++ Runtime for full details.

Configuring an Artix Router
Because Artix’s routing functionality is implemented as an Artix
plug-in, you can make any Artix application a router by adding
routing rules to its contract, and by specifying configuration
settings in an Artix configuration file.
This section explains how to configure the routing plug-in, and
specify the location of the router’s contract.

Setting the orb_plugins list
Artix routers must include the routing plug-in name in its
orb_plugins list, for example:

Note: If you use an Artix client or server process to host
the routing plug-in, you can only use configuration to
specify routing details. You can not use a deployment
descriptor.

orb_plugins = ["xmlfile_log_stream", "soap", "at_http",
... , "routing"];

Note: You do not need to add the routing plug-in if you
have defined routes in a deployment descriptor (see
“Deploying a Router Using a Deployment Descriptor” on
page 42).
 40 Artix Router Guide, C++ Runtime

Plug-ins related to bindings, and transports are not required.
These are loaded automatically when the routing plug-in parses
the contract.

Setting the WSDL contract
You must configure the location of the contract, or contracts, that
the router gets its routing information from. You can do this using
the plugins:routing:wsdl_url variable. This variable specifies the
contracts that the router parses for routing rules. The following is
a simple example:

The location of the contract is relative to the location from which
the Artix router is started.
The following example contains multiple routing contracts:

In this example, the router expects that route1.wsdl is located in
the directory that it was started in, and that route2.wsdl is located
one directory level higher.

Defining a single route in configuration
This is the simple approach used by the routing demos (for
example, routing\operation_based).
Run the host process under a dedicated configuration scope. In
this scope, include the routing plug-in name in the orb_plugins list,
and use the plugins:routing:wsdl_url variable to specify the
location the contract containing the routing rules.
The required configuration is illustrated in Example 21, where
demos.operation_based.router is the scope under which the host
process runs.

Note: The routing plug-in must always be the last plug-in
listed in the orb_plugins list.

plugins:routing:wsdl_url="../../etc/router.wsdl";

plugins:routing:wsdl_url=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];

Example 21: Simple Router Configuration

demos {
 operation_based {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http"];

 router {
 #the routing plug-in implements the routing functionality
 orb_plugins = ["routing"];
Artix Router Guide, C++ Runtime 41

This router can then be deployed in the container server using the
following command:

Defining multiple routes in configuration
There are two approaches to using configuration to deploy
multiple routes into the same host process. The first is to specify
multiple routes in a single contract. Using this approach the
configuration is the same as that shown in Example 21. Using this
approach sacrifices the modularity of your routes for ease of
configuration.
The second approach is to place your routes in multiple contracts.
Using this approach you must list multiple entries for the
plugins:routing:wsdl_url variable, as shown in the following
example:

In this case, each contract may include one, or more, routes.
When listing multiple contracts, use the list format for specifying
configuration variables

Further information
For details of optional router configuration settings, see
“Optimizing Router Performance” on page 45.
For details of all the configuration options available for the routing
plug-in, see the Artix Configuration Reference.

Deploying a Router Using a Deployment Descriptor
This section explains how to deploy a router into an Artix container
using a deployment descriptor. This approach is illustrated in the
advanced\container\deploy_routes demo.

 #the path to the WSDL file that includes the routing
element

 plugins:routing:wsdl_url="../../etc/route.wsdl";
 };
 };
};

Example 21: Simple Router Configuration (Continued)

it_container -ORBname demos.operation_based.router
-ORBdomain_name operation_based
-ORBconfig_domains_dir ../../etc -publish

plugins:routing:wsdl_url= ["../../etc/route1.wsdl",
"../../etc/route2.wsdl"];
 42 Artix Router Guide, C++ Runtime

Defining multiple routes
In the deploy_routes demo, the Artix container process starts
under the global configuration scope defined in the artix.cfg
configuration file.

The extract shown in Example 22 is from one of the contracts
used in the advanced\container\deploy_routes demo.

Note: In this case, the routing plug-in is not loaded during
startup because it is not listed in the orb_plugins
configuration entry.

Example 22: Deploy Routes Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"
 targetNamespace="http://www.iona.com/bus/demos/router"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.iona.com/bus/demos/router"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:routing="http://schemas.iona.com/routing">

 <portType name="GoodbyeServicePortType">
 <operation name="say_goodbye">
 <input message=… name=…/>
 <output message=… name=…/>
 </operation>
 </portType>

 <binding name="SOAPGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="say_goodbye">
 <soap:operation …/>
 …
 </operation>
 </binding>

 <binding name="CORBAGoodbyeServiceBinding" type="tns:GoodbyeServicePortType">
 <corba:binding repositoryID="IDL:GoodbyeServicePortType:1.0"/>
 <operation name="say_goodbye">
 …
 </operation>
 </binding>

 <service name="SOAPHTTPService">
 <port binding="tns:SOAPGoodbyeServiceBinding" name="SOAPHTTPPort">
 <soap:address location=…/>
 </port>
 </service>
Artix Router Guide, C++ Runtime 43

The corresponding deployment descriptor is shown in Example 23.

In the example deployment descriptor, the opening service
element specifies the targetNamespace as an attribute and the
source service name as the element value. This information links
the deployment descriptor to a specific service. The wsdl_location
element provides the path to the contract that includes the related
route. The plugin element includes the information needed to load
the routing plug-in.
In the advanced\container\deploy_plugin demo, each contract
includes only one route. However, a contract can include multiple
routes and be referenced in the wsdl_location element in multiple
deployment descriptors. In this scenario, each deployment
descriptor uniquely identifies a source service using the content in
the opening service element.

 <service name="CORBASoapService">
 <port binding="tns:CORBAGoodbyeServiceBinding" name="CORBASoapPort">
 <corba:policy poaname=…/>
 <corba:address location=…/>
 </port>
 </service>

 <routing:route name="CorbaToSoap">
 <routing:source port="CORBASoapPort" service="tns:CORBASoapService"/>
 <routing:destination port="SOAPHTTPPort" service="tns:SOAPHTTPService"/>
 </routing:route>
</definitions>

Example 22: Deploy Routes Contract (Continued)

Example 23: Deploy Routes Deployment Descriptor

<?xml version="1.0" encoding="utf-8"?>
<m1:deploymentDescriptor xmlns:m1="http://schemas.iona.com/deploy">

 <service xmlns:servicens="http://www.iona.com/bus/demos/router"> servicens:CORBASoapService
 </service>

 <wsdl_location>
 ../../routes/soap_route.wsdl
 </wsdl_location>

 <plugin>
 <name>routing</name>
 <type>Cxx</type>
 <implementation>it_routing</implementation>
 <provider_namespace>
 http://schemas.iona.com/routing
 </provider_namespace>
 </plugin>
</m1:deploymentDescriptor>
 44 Artix Router Guide, C++ Runtime

Deploying multiple routes
In the deploy_routes demo, the container client application
(it_container_admin) is used to deploy two routes, each of which is
specified in a dedicated deployment descriptor file. For example:

Each deployment descriptor describes a single router, which is
identified by the targetNamespace assigned to the contract that
contains the route and the name of the source service.

Specifying persistent deployment
With the deployment descriptor approach, you can specify a
persistent deployment directory. When you initially deploy each
contract, a copy of the deployment descriptor is placed into this
directory.
When you restart the container, it automatically redeploys all the
contracts identified in these deployment descriptors. In this case,
the effect is the same as the configuration approach (that is, all
routes are deployed during the startup).

Further information
For more details on the Artix container, deployment descriptors,
and persistent deployment, see Configuring and Deploying,
C++ Runtime.
For working examples of the routing plug-in deployed in an Artix
container, see any of the demos in the following directory:
InstallDir\samples\routing

Alternatively, for a more advanced example, see:
InstallDir\samples\advanced\container\deploy_routes

Optimizing Router Performance
This section describes how to configure the following router
optimizations in an Artix configuration file:
• Setting router pass-through
• Setting CORBA bypass

Setting router pass-through
By default a router instance to passes along messages without
processing if the source and destination of the route use the same
binding. You can change this behavior by setting
plugins:routing:use_pass_through to false.

it_container_admin -deploy -file
../../routes/deployCORBASoapService.xml

it_container_admin -deploy -file
../../routes/deployCORBAHTTPService.xml
Artix Router Guide, C++ Runtime 45

When the router passes a message in its default pass-through
mode it copies the message buffer directly from the source
endpoint to the destination endpoint. This has a number of
implications:
• Reference proxification does not occur.
• Request level handlers are not called.
• Server-side message level handlers are not called.
• Authentication and authorization are skipped regardless of the

security settings.
If you want all messages to go through the router and be fully
processed, set this variable to false.

Setting CORBA bypass
For CORBA integrations, you can use location forwarding to
connect CORBA clients directly to CORBA servers, and thus bypass
the Artix routing plug-in entirely.
Set the plugins:routing:use_bypass configuration variable to true
to specify that the router sends CORBA LocateReply messages
back to the client. The default is false.

Further information
For more information on Artix router optimizations, see the Artix
Configuration Reference.
 46 Artix Router Guide, C++ Runtime

Routing Messages
Containing References
When routing messages containing endpoint references, Artix creates
client proxies for the referenced endpoint. This chapter explains how to
optimize router performance when routing messages containing endpoint
references.

Endpoint References and the Router
This section explains how the Artix router treats endpoint
references when routing to client systems. For example, you can
use the router to expose a service with a legacy payload and
transport (CORBA/IIOP) to clients with a newer payload and
transport (SOAP/HTTP).

References, client proxies, and transient
servants
When endpoint references are passed across the router, a client
proxy representation of the reference is created for the client to
invoke on. The router forwards the client invocation to the server
backend along with the client proxy representation. The process of
creating the client proxy from the endpoint reference is called
proxification. This process enables the router to translate between
different transports and protocols. A reference of a certain type
(such as CORBA) that passes through the router is automatically
converted to a reference of another type (such as SOAP).
For example, take the use case where a SOAP client invokes on a
SOAP/HTTP-to-CORBA router, which forwards it on to a CORBA
backend. In this scenario, a client call to MyBank::get_account()
returns an Account reference. The client proxy created for this
reference represents a route to the backend, and this is the key
element in bridging the invocation. The part of the router that
invokes on this client proxy is essentially a service inside the
router and is represented by a servant.
The nature of the get_account() invocation means that many
similar Account references, client proxies, and servants are
created in the router, thereby causing unlimited memory bloat,
depending on the number of Account references passing through
the router. The servant objects created in the router are also
called transient servants.
 Artix Router Guide, C++ Runtime 47

Default servant model
An alternative to using transient servants is a model called the
default servant, which maintains a template-based representation
of the service and automatically redirects to the correct client
proxy.
In previous versions of Artix, the router followed the transient
servant model for get_account() style invocations. The router now
uses the default servant model, which makes it more efficient and
more scalable. This also means that you can manage memory
issues in the router simply by setting the appropriate router
configuration variables. There are no changes required to
application code or WSDL contracts. For details, see “Preventing
Memory Bloat in the Router” on page 48.

Further information
For information on developing applications using the default
servant model and transient servant model, see Developing
Artix Applications in C++ and Developing Artix Applications
with JAX-RPC.

Preventing Memory Bloat in the Router
Because the router creates a new client proxy for each endpoint
reference that passes through it, the router can suffer from
memory bloating. To prevent this bloating, you can specify the
following in the router’s runtime configuration:
• maximum number of proxified references in the router
• maximum number of unproxified references in the router

Maximum proxified references
You can specify the maximum number of proxified endpoint
references in the router using the
plugins:routing:proxy_cache_size configuration variable. This is
the number of endpoint references that have already been
converted into a client proxy and are ready for invocation.
plugins:routing:proxy_cache_size works in conjunction with
plugins:routing:reference_cache_size. Having a smaller setting for
proxy_cache_size enables the router to conserve memory, while
still being ready for invocations. This is because proxified
references use more resources than unproxified references. The
default setting is:

Note:Router proxification is available for the following
bindings and transports: CORBA, SOAP, HTTP, and IIOP
Tunnel.

plugins:routing:proxy_cache_size=50;
 48 Artix Router Guide, C++ Runtime

The router caches references on a least recently used basis in the
order: proxified, unproxified. A proxified reference is demoted to
an unproxified reference when the proxy_cache_size limit is
reached. Unproxified references are promoted to proxies upon
invocation.

Maximum unproxified references
You can specify the maximum number of unproxified endpoint
references in the router using the
plugins:routing:reference_cache_size configuration variable. This
refers to the number of references that must be proxified before
they can be invoked on.
plugins:routing:reference_cache_size works in conjunction with
plugins:routing:proxy_cache_size. Having a larger setting for
reference_cache_size enables the router to conserve memory,
while still being ready for invocations, because unproxified
references use less resources than proxies. The default setting is:

Example banking system
For example, take a SOAP over HTTP client and CORBA server
banking system, with the router deployed between the client and
the server. There are 1,500 accounts in this banking system.
By default, the 50 most recently used accounts are present in the
router as proxified references. The next 1000 most recently used
are present as unproxified references. While the remaining 450 do
not exist in the router, but can be created on-demand.

Further information
For more information on these router configuration variables, see
the Artix Configuration Reference, C++ Runtime.
For more information about Artix configuration in general, see
Configuring and Deploying Artix Solutions, C++ Runtime.

plugins:routing:reference_cache_size="1000";
Artix Router Guide, C++ Runtime 49

 50 Artix Router Guide, C++ Runtime

Error Handling
The routing service reports errors back to the message originator.

Initialization errors
Errors that can be detected when the routing service is initializing,
such as routing between incompatible endpoints and some kinds
of route ambiguity, are logged and an exception is raised. This
exception aborts the initialization and shuts down the service.

Runtime errors
Errors that are detected at runtime are reported as exceptions and
returned to the message originator; for example “no route” or
“ambiguous routes”.
The destination endpoint does not receive any notification that a
message failed to be forwarded to it. If your endpoints require
such notification, you need to implement a mechanism to deliver
the notification outside the scope of the routed operation.
 Artix Router Guide, C++ Runtime 51

 52 Artix Router Guide, C++ Runtime

Index
A
Artix switch 1
attribute-based routing rules 1, 17

B
broadcasting 28
bus-security 18

C
client proxy 47
content-based routing rules 1
corba:corba_input_attributes 18
CORBA/IIOP 47
CORBA bypass 46
CORBA LocateReply 46

D
default servant 48
documentation

.pdf format vii
updates on the web vii

E
endpoint references 47

F
failover 30
fanout 28

H
http-conf:HTTPServerIncomingContexts 1

7

I
ignorecase 18
it_container 40
it_container_admin 40

L
load balancing 27
LocateReply 46

M
mq:IncomingMessageAttributes 18

O
operation-based routing rules 1, 9, 13

P
pass-through 45
plugins:routing:proxy_cache_size 48
plugins:routing:reference_cache_size 49
plugins:routing:use_bypass 46
plugins:routing:use_pass_through 45
plugins:routing:wsdl_url 40, 41
port-based routing rules 7
proxification 47, 48
proxified references 48
proxy 47

R
router pass-through 45
router proxification 48
routing 3, 40
routing:contains 18
routing:destination 11, 26, 31

port 12
route 31
service 12
value 26

routing:empty 18
routing:endswith 18
routing:equals 18

contextAttributeName 17
contextName 17
value 18

routing:expression 25
evaluator attribute 25
name attribute 25

routing:greater 18
routing:less 18
routing:nonempty 18
routing:operation 13

name 13
target 13

routing:query 25
expression attribute 25

routing:route 11
multiRoute 27, 28, 30

failover 30
fanout 28
loadBalance 27

name 11
routing:source 11

port 11
service 11

routing:startswith 18
routing:transportAttribute 17
routing rules

basic 11

S
servants 47
SOAP/HTTP 47
Artix Router Guide, C++ Runtime 53

switch 1

T
transient servants 47

U
unproxified references 48

X
XPath 24
 54 Artix Router Guide, C++ Runtime

	Preface
	Contacting Micro Focus

	Introduction
	Features of the Routing Service
	Routing Contracts
	Router Deployment Patterns

	Compatibility of Ports and Operations
	Creating a Basic Route
	Adding Operation-Based Rules to a Route
	Adding Attribute-Based Rules to a Route
	Adding Content-Based Rules to a Route
	Router’s Message Representation
	Specifying Evaluation Expressions
	Adding a Content-Based Rule to a Route

	Using Advanced Routing Features
	Load Balancing
	Message Broadcasting
	Failover Routing

	Linking Routes
	Creating Routes Using Artix Tools
	Creating Routes from the Command Line

	Deploying an Artix Router
	Enabling Artix Routing
	Configuring an Artix Router
	Deploying a Router Using a Deployment Descriptor
	Optimizing Router Performance

	Routing Messages Containing References
	Endpoint References and the Router
	Preventing Memory Bloat in the Router

	Error Handling
	Index

