
Micro Focus
IIOP Domain Boundary Controller

(I-DBC) 4.0.0

Deployment Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2010-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and VisiBroker are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-10-30

http://www.microfocus.com

I -DBC Deployment Guide iii

Contents

Preface .. 1
Contacting Micro Focus .. 1

Further Information and Product Support ... 1
Information We Need .. 2
Contact information .. 2

High Availability and Scalability .. 3
High Availability and Scalability... 3
Different Flavours of HA and Scalability.. 3

High Availability and Scalability at System Level ... 3
High Availability and Scalability at Application Level....................................... 4

High Availability and Scalability with a Traffic Redirector ... 4
High Availability & Scalability as provided by the DBC .. 5

Traffic Redirection: NAT versus Direct Routing... 6
Connection Bundling ... 7

High Availability Provided by Hot Standby... 9
Monitoring ... 10

DBC Built-In Monitoring ... 10
End-to-End Monitoring... 11

Deployment Considerations .. 12
Planning the Installation .. 12
Calculate Application Throughput .. 12
Calculate DBC Requirements .. 12

Deployment Example... 13
Deployment Requirements ... 13

Replication .. 15
Replication Technology... 15

Shared Host... 15
Resources.. 15

Maintenance... 16
Reliability and Asynchronous Operation.. 16
Limitations and Restrictions.. 17

Communication .. 17
Security .. 17
IOR Timeout .. 17
Object Keys ... 18
Duplication of Calls ... 18
Delayed OBJECT_NOT_EXIST ... 18

Configuration ... 18
Replication Interface ... 20
Replication Message Properties ... 21

Performance... 21
Multi Processor Machines ... 21
Estimated Throughput ... 21

Runtime Object Values... 22
Installation Notes.. 25

Performance Monitoring .. 27
Setting up the Usage Data Collector .. 27
Activating the Usage Data Collector ... 27

SPS Client.. 29
SPS Client Commands ... 29

iv I-DBC Deployment Guide

Administrative Rights for SPS Client Operations ...31

Hardened System...33
Requirements and Recommendations for Linux..33
Operating System..33
Network Services ..34
Kernel and Network Stack ..34

I-DBC Authentication...37
I-DBC Authenticator Architecture...37
Caveats ...38
Generic Interface ..38
Generic Use..40
Authentication Methods..42

RSA/ACE SecurID Mapping ...42
I-DBC Authenticator Events ..45

I -DBC Deployment Guide 1

Preface
The Micro Focus IIOP-Domain Boundary Controller (I-DBC) is an
infrastructure building block that can be deployed in many ways, in diverse
scenarios. This Deployment Guide takes a closer look at special
deployment requirements like high availability and scalability and discusses
various topics related to the deployment of DBCs, such as performance
monitoring and hardening the operating system. Most topics presented in
this guide require a basic understanding of DBC concepts as presented in
the I-DBC Administrator’s Guide.

The Deployment Guide contains the following parts:

• “High Availability and Scalability” discusses how the DBC can be deployed to
provide linear scalability and unlimited support for various high-
availability scenarios.

• “Replication” describes how the replication feature provides stateful
failover. Stateful failover means that any hardware or software failures
will go completely unnoticed to the client.

• “Performance Monitoring” describes how I-DBC performance can be
monitored.

• “SPS Client” describes the SPS Client, a command line interface which can
be used to configure the SPS and to obtain state information about the
SPS.

• “Hardened System” gives recommendations on how to set up an operating
system hardened against the risk of attack.

• “I-DBC Authentication” explains the I-DBC Authenticator plugin, an
authentication framework via a dedicated CORBA interface which can be
used when the client cannot do certificate based authentication.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note:

Some information may be available only to customers who have
maintenance agreements.

http://www.microfocus.com

2 I-DBC Deployment Guide

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

http://www.microfocus.com

I -DBC Deployment Guide 3

High Availability and
Scalability
This chapter describes how to configure the DBC to scale in high throughput
scenarios and how availability of DBC services can be ensured in case of
hardware or software failures. Before reading this chapter you should be
familiar with the standard DBC system. Stateful failover (replication) for I-
DBC installations is explained in “Replication”.

High Availability and Scalability
The following sections discuss the different mechanisms that the DBC
architecture offers to achieve high availability and scalability. The ways in
which high availability and scalability are tackled are closely related,
therefore they are presented together.

High Availability (HA): The service of the DBC will still be provided even if
a hardware or software component fails. This is achieved by replicating
components of the DBC Proxy to eliminate single points of failure and
providing health monitoring facilities. If a component fails, a failover
mechanism will use a replica of the failed component.

Scalability: Adapt the service of the DBC Proxy to fit higher requirements
in terms of number of clients, throughput, or latency. Scalability can be
achieved in several ways. The type of scalability presented here is obtained
by operating multiple DBC Proxies in a cluster. A traffic redirector is used to
distribute requests among DBC Proxies so that the load is shared.

Different Flavours of HA and Scalability
High availability and scalability can be provided in two ways. Either the
application takes care of failover and load-distribution itself (application
level), or it relies on some external mechanism to provide the failover
service (system level).

High Availability and Scalability at System
Level
To provide high availability and scalability on the system level, an external
mechanism (on protocol level) is required. Such a mechanism is usually
called cluster management software. A central part of this cluster
management software is the traffic redirector. A traffic redirector is a
software add-on or dedicated device that employs a load-balancing
algorithm to distribute client connections to a “cluster” of servers. Typically,
this software presents the cluster host as a single virtual host and provides
a single virtual IP-address to the client. The traffic redirector of the cluster
management software simply redirects network traffic from a failed or
overloaded component to another working and less busy one in a way
possibly transparent to the client. The load of message processing is
reduced on the individual DBC Proxy machines in the cluster, allowing the
deployment of less expensive hardware. Examples for cluster management
software are Sun Cluster 3 or Linux Virtual Server. Examples for traffic
redirectors are Cisco CSS (Content Service Switch) or Cisco SLB (Server

4 I-DBC Deployment Guide

Load-Balancer) which is a feature of Cisco’s IOS software and can be run on
Cisco’s switches.

High Availability and Scalability at Application
Level
The other possibility is to make the client aware of redundant components,
thus providing high availability and scalability on the application level. This
usually requires a higher development effort, but there are benefits: the
application can be tailored more precisely to the requirements it has to
fulfill. This includes but is not restricted to: faster failover, behaviour based
on knowledge about the failure state of components, better dynamic load-
balancing, improved stickiness of sessions. It also saves avoids the cost of
cluster management software or traffic redirector.

High Availability and Scalability with a Traffic
Redirector

To provide high availability and scalability several DBC Proxies can be
operated in a cluster. Each DBC Proxy in a cluster shares its properties with
any other DBC Proxy in the same cluster. In the standard case (as depicted
in figure 1), a traffic redirector will distribute the traffic from the clients
amongst the DBCs in this cluster. A typical cluster would consist of at least
two DBC Proxies.

The clients reach the DBC service via the virtual IP address (VIP), that is,
the address of the traffic redirector (or load-balancer). The traffic redirector
receives all the traffic and distributes the IP packets among the active DBC
Proxies, based on the result of regular monitoring checks. If a DBC Proxy is
overloaded or fails, the traffic redirector removes this DBC Proxy from its
distribution list and forwards packets to the remaining set of active DBC
Proxies. The traffic redirector takes care that IP packets belonging to a TCP
connection are always directed to the same DBC Proxy. If a DBC Proxy fails
in such a scenario, high availability is provided by terminating all TCP
connections associated with the failed DBC Proxy and re-routing all new TCP
connections to another DBC Proxy. The clients will see that their
connections to the cluster are broken and they will establish new TCP
connections.

Figure 1 Multiple DBC Proxies with traffic redirector

Client 1

Client 2

Server

DBC Proxy

DBC Proxy

Redirector

DBC Proxy Cluster

VIP

I -DBC Deployment Guide 5

High Availability & Scalability as provided by the
DBC

The DBC Proxy offers several mechanisms to support high availability and
scalability. In general, the recommended configuration uses at least the
traffic redirector of a cluster management software at the domain boundary
and does application level HA and scalability between DBC Proxies and
Security Policy Servers (see figure 2). Therefore, a DBC installation can
consist of multiple Security Policy Servers which constitute the Security
Policy Server Cluster. All Security Policy Servers are configured the same
way so that any of those Security Policy Servers can serve requests from
any client. Thus, there can only be one Security Policy Server cluster
belonging to a single DBC installation.

Figure 2 Recommended High Availability / Scalability configuration

Sensible configurations include at least two, but not more than ten Security
Policy Servers. If operating only a single Security Policy Server, high
availability and scalability are not provided.

Standard clients of these Security Policy Servers are the DBC Proxies. A
DBC installation can have multiple clusters of DBC Proxies. Each DBC Proxy
in a cluster shares its properties with any other DBC Proxy in the same
cluster. In the standard case (as depicted in figure 2), a cluster management
software distributes the traffic from the clients amongst the DBC Proxies in
this cluster. A typical cluster would consist of at least two DBC Proxies.

The recommended configuration also requires the use of a cluster
management software for the DBC Proxies. As a minimum, the traffic
redirector is required. It is possible to operate without a traffic redirector,
but then the distribution of clients must be achieved by other means, e.g.,
DNS round-robin. Doing so is not recommended.

If operating only a single DBC Proxy in a cluster, high availability and
scalability are not provided for clients of this DBC Proxy.

SPS 2

SPS 1

Traffic
Redirector

DBC
Proxy 1

DBC
Proxy 2

From/to the
external
domain

Traffic
Redirector

Server 1

Server 2

6 I-DBC Deployment Guide

The DBC Proxies are cluster-aware and interoperate with the cluster
management, that is, they provide the cluster management with state
information so that the cluster management can see if a DBC Proxy is still
providing its service. Migration, as offered by some cluster management
packages, is not supported by the DBC Proxy.

Towards the Security Policy Servers, the DBC Proxies provide application-
level high availability and scalability themselves. DBC Proxies failover to
another Security Policy Server autonomously. Therefore, no cluster
management software is needed for the Security Policy Server. Multiple
DBC Proxies statically distribute the load to the Security Policy Servers.

Traffic Redirection: NAT versus Direct Routing
There are various techniques for redirecting network traffic. The DBC can be
used with Network Address Translation (NAT) and Direct Routing (DR), as
explained in the following sections. In both cases, the DBC software
configurations on all cluster machines must be identical, except, of course,
for local network addresses (the Administration Console takes care of this).

Network Address Translation (NAT)

The first redirection technique is Network Address Translation (NAT). The
redirector effectively is a NAT router, providing a virtual address (VIP) for
the DBC service of the cluster, as shown in figure 3. A client packet targeted
at this virtual address is routed to one of the cluster DBC Proxies for
processing, with the target address translated to the DBC Proxy’s physical
network address, the Real IP address (RIP). Replies from the DBC Proxy are
routed back to the redirector, which translates the physical originator
address back to the virtual DBC Proxy address before routing the reply to
the client.

Figure 3 Traffic redirection using a NAT router

The individual DBC Proxy machines in the cluster must use the redirector as
the default gateway for reply routing. The DBC software must be configured
to use the virtual DBC Proxy address as NAT address on the external
interface (assuming distribution is done for incoming client traffic). Apart
from that, the configuration is the same as for a single DBC Proxy solution.
An advantage of this redirection technique is that the DBC Proxies do not
have to be located in the same physical network or on the same VLAN.

Router/Firewall

DBC
Proxy

NAT
Redirector

VIP

 DBC Proxy Cluster

Client Server

DBC
Proxy

RIP1

RIP2

Router/Firewall

DBC
Proxy

NAT
Redirector

VIP

 DBC Proxy Cluster

Client Server

DBC
Proxy

RIP1

RIP2

I -DBC Deployment Guide 7

Direct Routing (DR)

The second redirection technique is Direct Routing (DR). Incoming and
outgoing packets are routed on different paths (see figure 4).

Figure 4 Traffic redirection using direct routing

All of the DBC Proxies in the cluster have the virtual DBC Proxy address
(VIP) configured as an alias address typically on a loopback interface. The
redirector forwards incoming client packets to one of the DBC Proxies for
processing. Reply packets are routed directly to the client, bypassing the
redirector.

This approach requires more complex configuration of the components. The
router between the clients and the redirector must be configured to route all
inbound client traffic to the redirector, but directly route outbound traffic.
The individual DBC Proxy machines in the cluster must be capable of
providing alias addresses on their loopback interface for configuring the
virtual DBC Proxy address. Also, these addresses must be prevented from
replying to ARP requests (see “DBC Built-In Monitoring”). The default gateway
must be the router towards the client network. The DBC software must be
configured to use the virtual DBC Proxy address (VIP) as external interface
(assuming distribution is done for incoming client traffic). Apart from that,
the configuration is the same as for a single DBC Proxy solution.

An advantage of this redirection technique is that it is faster than the NAT
setup because replies are not routed via Traffic Redirector. Note that
outgoing connections may not come from the VIP address. A disadvantage
of the Direct Routing setup is that the DBC Proxies have to be located in the
same physical network.

Connection Bundling
There is one problem with traffic redirection: CORBA IIOP is a multi-
connection protocol, that is, a single set of application interactions between
client and server may consist of multiple TCP connections. As the I-DBC is a
stateful device with respect to exported IORs, all connections of a session
must be routed to I-DBC Proxies which have this state available. The
standard I-DBC edition has no provision for state replication between
different I-DBC Proxy hosts. Accordingly, the redirector must recognize all
connections of a session, and route them to the same I-DBC Proxy machine
in the cluster. In other words, traffic redirection is restricted to complete
sessions. This capability is usually called bundling, persistence, or sticky

Router/Firewall

DBC
Proxy

DR
Redirector

VIP

 DBC Proxy Cluster

Client Server

DBC
Proxy

loopback
VIP

loopback
VIP

Router/Firewall

DBC
Proxy

DR
Redirector

VIP

 DBC Proxy Cluster

Client Server

DBC
Proxy

loopback
VIP

loopback
VIP

8 I-DBC Deployment Guide

mode. It is mandatory that this is enabled on the redirector, otherwise the
I-DBC service will not work. As the director has no notion of what a session
comprises for the I-DBC Proxy, all connections from the same source are
routed to the same destination I-DBC Proxy in sticky mode.

Replication

The I-DBC enterprise edition provides a feature called “Replication”,
enabling different I-DBC Proxies to share their IORs. When replication is
active, operating the redirector in sticky mode is not necessary.

Usually, sessions are coupled with a timer. Once the last connection of a
session is closed, its association to a particular machine remains active for a
certain amount of time, so subsequent connections may continue the
session. After this timer expires, new connections from the same source are
considered to belong to a new session. A new association will be established
for a different machine, based on the redirector’s load-balancing algorithm.
The I-DBC software employs a similar timer, the Access Session termination
timeout, that closes an Access Session once all client connections are
closed. Both timeouts, on the I-DBC Proxy and on the redirector, must be
configured to the same value.

Connection Bundling in tunneling scenarios

Although connection bundling is required for the IIOP protocol to function, it
may cause a problem in tunneling scenarios, or in the case of clients hidden
behind a masquerading firewall. In these cases all network traffic appears
to come from a single IP address. Accordingly, the redirector has no means
of distinguishing between the individual client sessions, in fact it will assume
them all to be part of a single session. That way scalability is lost (in case
the standard edition is used) but the architecture can still provide
availability.

In tunneling scenarios, the bundling problem may be avoided by also using
a cluster of DBC Proxies on the client side, where each DBC Proxy has an
individual (possibly translated) address (see figure 5).

Figure 5 Load-balancing in a tunnel scenario

The server-side redirector may then use these addresses for load-
balancing. This is especially useful if the tunnel runs over a high bandwidth
network, as the client-side redirectors allow efficient use of the full
bandwidth.

 DBC Cluster

Client 2

Server

Client 1

Redirector

 DBC Cluster

DBC

DBC

Redirector

DBC

DBC

 DBC Cluster

Client 2

Server

Client 1

Redirector

 DBC Cluster

DBC

DBC

Redirector

DBC

DBC

 DBC Cluster

Client 2

Server

Client 1

Redirector

 DBC Cluster

DBC

DBC

Redirector

DBC

DBC

I -DBC Deployment Guide 9

High Availability Provided by Hot Standby
The hot standby approach is based on a single machine hosting the primary
DBC installation, which serves requests on a virtual IP address and
performs normal message processing. In case of failures, a secondary (or
“standby”) DBC machine takes over and guarantees uninterrupted service
to clients.

This approach relies on a secondary DBC host monitoring the primary DBC
host, and on network-level functionality to take over the virtual IP address
used by the primary host. This functionality is offered by the separate
failover package, which is included in the DBC distribution and combines
with DBC specific monitoring and failover functions, as shown in figure 6.

The DBC’s hot standby functionality is designed to mask two types of
failures:

• failures of the entire machine, or the host’s network interface card (NIC),
and

• failures of only the DBC Proxy process.

Failures of the Security Policy Server process are addressed by a different
mechanism, viz. the failover functionality of the Security Policy Server
Cluster, as explained in “High Availability & Scalability as provided by the DBC”.

When the primary DBC host or just its network interface become
unavailable, this is noticed by the failover daemon on the secondary DBC.
This daemon will simply send out an ARP packet that announces the new
NIC that now binds to the virtual IP address, so client requests will now
arrive at the secondary DBC.

To integrate with the failover package Micro Focus provides additional
monitoring components (see also the next section). These components are
called dbcmon and dbcfailover.sh. dbcmon monitors the availability of
the DBC Proxy and provides this monitoring information via HTTP. The
script dbcfailover.sh regularly polls dbcmon and notifies the failover
mechanism, which finally triggers the same ARP-based mechanism that was
used to mask machine-level failures.

Figure 6 DBC Hot Standby

DBC Host 1DBC Host 1

dbcmon

SPS
Master

DBC
Proxy

dbc-
failover

failover

IPIP

DBC Host 2DBC Host 2

dbcmon

SPS

DBC
Proxy

dbc-
failover

failover

IPIP

10 I-DBC Deployment Guide

Note that to mask the failover process from clients, routers in the network
where the DBC hosts are deployed must be configured to accept gratuitous
ARP packets from the DBC hosts that announce that the virtual IP address is
now to be mapped to the secondary DBC’s network interface card (NIC).
The primary DBC host can re-obtain this virtual address when it is back in
operation.

Monitoring
To provide high availability all involved components must be constantly
monitored to check their availability. There are many techniques that can
be employed to monitor hardware, software, and network links. At a
minimum, a simple ping test can be used to check the availability of a DBC
Proxy machine. However, this does not verify the availability of the actual
DBC software running on that machine.

The DBC supports two principal monitoring approaches. It can interwork
with the monitoring mechanism of a traffic redirector (see next section), or
it can use end-to-end monitoring, that is, access the Server across the DBC
(this approach is explained in more detail in the section “End-to-End
Monitoring”).

DBC Built-In Monitoring
The DBC software provides a facility for external monitoring, which is used
by an additional monitoring agent software. This monitoring agent
(DBCAgent) checks the availability of the DBC Proxy at regular intervals and
provides this information to a monitoring agent by HTTP or port availability.
When the master fails, the monitoring agent sends a gratuitous ARP which
tells the routers and/or switches that the association between the VIP and
the MAC address has changed. From then on IP packets destined for the VIP
will be forwarded to a bystanding DBC Proxy. Note that sending the ARP is
not part of the DBCAgent, and that setting up ARP sending tools is outside
the scope of this document.

Interworking with Traffic Redirector Monitoring

Most traffic redirectors use a monitoring mechanism to determine the
availability of individual cluster machines, that is, DBC Proxies, as well as
the services running on them. The DBC’s monitoring agent can be queried
by the redirector monitor via a specific protocol. Currently an HTTP Agent is
provided. Agents for other protocols or monitor products can be provided
via professional services.

DBCAgent in Detail

The DBC monitoring mechanism (DBCAgent) works as follows. If the DBC
Proxy is operational, it writes a single character to a FIFO queue roughly
every second. The DBCAgent reads the FIFO queue. If it does not see a new
character for five seconds (default), it will flag the DBC Proxy as down. The
DBCAgent can be queried externally by opening a TCP connection to a port
specified when starting the DBCAgent. If the DBC Proxy is up, the DBCAgent
will send an HTTP reply with the state of 200 OK. If the DBC Proxy is down,
DBCAgent will either send 503 Service unavailable or, if used with the
-a option, it will refuse the connection. As most traffic redirectors are used
for web servers, it is easy to configure the traffic redirectors to check the
DBCAgent at regular intervals to find out if the DBC Proxy is up or down.
The request actually sent to the DBCAgent is ignored by the DBCAgent.
Thus, it does not matter which document is requested by the traffic

I -DBC Deployment Guide 11

redirector’s monitoring. For further reference, please refer to the man-page
of the DBCAgent.

End-to-End Monitoring
The best way to ensure the proper operation of the I-DBC is to access a
CORBA service across it. The monitoring interface of the CORBA server
which provides information whether the service is working properly can be
used for this purpose. If the service can be accessed from the DBC Proxy
host across the DBC Proxy, all is well and the DBC Proxy is flagged up.
Otherwise, it is flagged down. You simply need to implement a small CORBA
client accessing the service at regular intervals and open a TCP listener if
the test succeeded, and close the TCP listener again if it fails.

With this method, a very reliable monitoring can be achieved. The only
remaining problem is that the failure of the test does not tell you whether
the DBC Proxy or the original CORBA server is down or if something is
misconfigured in between. For traffic redirectors capable of querying
multiple sources, you can run the DBCAgent in parallel, and, if the service is
considered unavailable by the traffic redirector, check the DBCAgent’s
output to see if the DBC Proxy is causing the outage or the CORBA server.

Operating the DBC Proxy with Servers “In Line”

Sometimes, it is sensible to operate a DBC Proxy together with a bunch of
servers as a failover group (see figure 7). In this case, the DBC Proxy and
the servers are regarded as a unit. Whether the server(s) or the DBC Proxy
fails does not matter – the whole unit is failed over to a hot-standby unit (or
load-balanced onto the remaining units only).

Figure 7 DBC Proxies with Servers “in line”

This setup saves the cost for an additional traffic redirector in front of the
servers (see “Recommended High Availability / Scalability configuration”). It is a
common scenario when the DBC is used for access control for all services
offered by the servers and there is no other path of access to the servers
than across the DBC Proxies. This deployment provides for similar
availability compared to a deployment where the servers have their own
traffic redirector in addition to the one in front of the DBC Proxies.

Traffic
Redirector

DBC
Proxy 1

DBC
Proxy 2

From/to the
external
domain

Server 1

Server 2

Group A

Group B

12 I-DBC Deployment Guide

Deployment Considerations
The optimal deployment of a load-balanced DBC architecture depends on
several interdependent variables that must be considered during the
planning phase. The following procedure may help to determine the
requirements for a given scenario.

If availability is an issue, remember that all involved components (server,
redirector, networks) must be laid out in a redundant form.

Planning the Installation
For high availability, the DBC can be operated in a failover scenario (variant
A). The actual failover operation is provided by a component which is not
part of the DBC itself. For scalability, the traffic redirector is responsible for
routing the clients to different DBC Proxies to distribute the load evenly
among the available DBC Proxies (variant B).

From the DBC perspective, both installation variants are considered equal.
For the DBC Proxy, it makes no difference whether it is steadily working in
parallel to another DBC Proxy (in the load-balancing scenario, variant B) or
whether it stands by until the primary DBC Proxy fails and it is assigned the
virtual IP (VIP) in a failover scenario (variant A).

Hot-standby vs. load-balancing

When planning the installation, it is necessary to consider the sizing of the
components to decide if a load-balancing solution is needed or if a hot-
standby solution will suffice. If a single DBC Proxy can handle all the
requests alone, a hot-standby solution is adequate, though it does not hurt
to use a traffic redirector. The only reason not to use a traffic redirector
would be the cost of the traffic redirector. For a recipe to calculate the sizing
of a DBC installation from application throughput demands, see the next
section.

Note that if high availability is an issue, remember that all involved
components (server, redirector, networks) must be laid out in a redundant
form.

Calculate Application Throughput
1 Measure the average throughput required by a typical interaction in your

application, between a single client and the server, without the DBC
Proxy.

2 Calculate the total required throughput from the anticipated number of
concurrent sessions and the measured single-session value.

3 Make sure the network deployed between the client and the server is
capable of handling the total throughput. If not, you will have to upgrade
the network first.

4 Make sure your server is capable of handling this total throughput. If not
you will have to find a load balancing solution for this problem first.

Calculate DBC Requirements
1 Select a traffic redirector product that is capable of handling the total

application throughput. Make sure it has at least minimal monitoring
capabilities; if not, add a compatible monitor product.

I -DBC Deployment Guide 13

2 Select a hardware platform for the DBC Proxy cluster machines.

3 Measure the maximum throughput that a DBC Proxy on the selected
platform can provide. You can do this by running an increasing number of
concurrent sessions of your application through the DBC Proxy, and
finding the strongest downward bend in the resulting performance graph.

4 Calculate the total number of DBC Proxies required from the total
throughput and the maximum throughput of the single DBC Proxy. You
may need to repeat these last three steps to optimize the cost-to-
performance balance.

After finishing the process, you may want to estimate the performance of
the scenario under peak load. For that purpose, repeat the application
throughput calculation, but this time, measuring the maximum single
session throughput. Compare the resulting throughput against the
capacities of your server, network, and redirector. Divide the throughput by
the number of planned DBC Proxy machines, and check their performance
graphs with this load.

Deployment Example
Consider an application that requires an average throughput of 200 kBit/sec
and a maximum throughput of 300 kBit/sec in each direction for a typical
IIOP session, that is, between a single client and the server. The session
consists of 6 request/reply round trips where each has a message size of 4
kByte (ca. 192 kBit/sec in each direction).

We anticipate a requirement for 250 parallel sessions, so the required
average throughput in each direction is 48 MBit/sec with a peak of 75 MBit/
sec and 1500 messages per second. The total required average throughput
(in both directions) is 96 MBit/sec with a peak of 150 MBit/sec and 3000
messages per second.

We have an existing infrastructure built on 100 MBit/sec FastEthernet, which
will be capable of sustaining this load both in the average and maximum
case, and thus is sufficient for this application. The server runs on high-end
hardware and is also capable of handling this load.

For this example, we assume the traffic redirector deployed can handle the
100 MBit/sec full duplex of the network without measurable performance
impact.

Performance tests were done with standard PC hardware for the DBC
platform (because it has a good price/performance ratio). Specifically, a
Dual-Pentium III 866 MHz system with 512 MB RAM and two quality network
interface cards. This machine was capable of handling a peak throughput of
85 MBit/sec at 4 KByte per IIOP message with 2700 IIOP messages per
second.

Consequently, we need two of these machines to handle the average
application throughput. Assuming a good load-balancing algorithm in the
redirector, each machine would handle 48 MBit/sec, running at 64% load,
and handling 1500 IIOP messages per second.

The two machines will also be capable of handling the maximum application
throughput. Each would handle 75 MBit/sec, running at 88% load.

Deployment Requirements
When planning the system, take the following requirements into account:
The Security Policy Servers must be able to contact each other directly. This

14 I-DBC Deployment Guide

is necessary for the synchronization of configuration data and state
information between the SPSs.

Each Security Policy Server in the cluster must be able to contact any DBC
Proxy directly on the respective local or NAT address. This means that the
connection is made directly to the respective DBC Proxy and that no
redirector must be interfering with the connection. This is absolutely
necessary to make sure every DBC Proxy will be configured in the startup
process.

Without a Traffic Redirector for the SPS Cluster

If you are not using a cluster management software (that is, a traffic
redirector) on the Security Policy Server cluster, the only requirement is
that each DBC Proxy must be able to connect to at least one SPS directly on
the respective local or NAT address.

With a Traffic Redirector for the SPS Cluster

If a traffic redirector is used for the Security Policy Server cluster, only the
virtual IP address of the cluster mapped to the Control Connection port of
all Security Policy Servers needs to be reachable. Combinations are
supported, e.g., accessing the virtual IP-address from the user interfaces
and letting the DBC Proxies connect directly to the real IP-addresses.

I -DBC Deployment Guide 15

Replication
The I-DBC enterprise edition offers a feature called “Replication” which
enables stateful failover. Stateful failover means that any hardware or
software failures will go completely unnoticed to the client.

If a cluster component fails and replication is not enabled, a client must
reconnect to the overtaking I-DBC Proxy, that is, the client needs to start
over from the beginning. Replication enables multiple I-DBC Proxies to
share their state. Newly proxified IORs will be multicasted to the other
I-DBC Proxies. This enables stateful failover as any I-DBC Proxy will have all
the necessary information available to serve any client request.

Replication also provides better scalability, because in contrast to the
standard edition, it is no longer necessary to operate the traffic redirector in
sticky mode. Load-balancing can be done based on the individual load of the
I-DBC Proxies and is no longer restricted by connection bundling (see
“Connection Bundling”).

The following sections describe Replication in detail, covering the different
modes and configuration options.

Replication Technology
State replication between different Proxy Processes is done using UDP
messages. A replication ADD request containing the Access Session
identifier, the original and the proxified IOR is sent for each newly proxified
IOR to a multicast address on which every Proxy Process is listening. This
multicast address must be unique for each cluster using the same cluster
interconnect network. Acknowledges and RESOLVE requests are sent and
received from and to a unicast UDP socket.

Another state that is replicated is the termination of Access Sessions. An
Access Session may only end after the last client has closed its last
connection to any of the Proxy Processes. Thus, the Proxy Processes need
to agree upon this moment. This is accomplished using a distributed
termination detection algorithm.

Shared Host
State replication between Proxy Processes running on the same host is done
using the same mechanism as for state replication across host boundaries.
To make this work, the sockets are configured to receive multicast packets
originating from the same host. This behaviour is called “loopback”. It is not
to be confused with the loopback interface. Thus, if there is more than one
Proxy Process running on the same host, that is, if multiprocessor systems
are employed, loopback is enabled automatically, so that Proxy Processes
running on the same host can participate just as any other Proxy Process
located on a different host.

Resources
Replication needs two UDP addresses per Proxy Process, which need to be
configured: a unicast sender/receiver and a multicast receiver. The
replication sender/receiver is bound to a configurable port on a unicast
address on the cluster interconnect network. Each Proxy Process needs its
own port. Thus, the configured port number is the start of a range of ports,

16 I-DBC Deployment Guide

one for each Proxy Process on the host. The multicast address can be freely
chosen from the range of multicast addresses. Sending to and receiving
from the multicast group will only be done using the interface specified by
the unicast address.

Maintenance
For maintenance, the I-DBC Proxy Cluster supports check out and check in.
Check out of a cluster member happens automatically when the cluster host
or the I-DBC Proxy running on it is shut down. For check in, the I-DBC
Proxy coming up must have its state synchronized with the state of the
other cluster members. This is achieved by a procedure called “ResolveAll”.
When an I-DBC Proxy is started, the replication system will automatically
multicast a “ResolveAll” request first. This tells the other cluster members
to send their state to the newly started Proxy Process, effectively copying
the cluster state to the new cluster member. This supports maintenance of
an I-DBC Proxy Cluster in the following scenario:

A cluster with two I-DBC Proxies (I-DBC Proxy A and I-DBC Proxy B) is
running. I-DBC Proxy A is taken down for maintenance. Check out happens
automatically. After completing the maintenance, A comes up again. Next,
B shall be shut down for maintenance. To be able to safely shut down B
without interrupting the CORBA service exported via the I-DBC Proxy
Cluster, the state of B must be replicated onto A before shutting down B.
This will be done automatically during startup of I-DBC Proxy A with the
check in procedure “ResolveAll”. An event
“ReplicationIORTableCopySuccess” will be generated, when the state
transfer is complete. It has an attribute “role” with the value “client” for the
newly started Proxy Process and “server” for any other Proxy Process. You
need to wait for this event to occur before shutting down I-DBC Proxy B
otherwise the state of the cluster will be corrupted. Eventually, the service
will be interrupted because of lost state.

If check in “ResolveAll” fails, it is retried after a timeout (which defaults to
60 seconds). It is retried again for as many times as specified in the field
“number of retries” (which defaults to 3). This timeout can be changed by
the user (see section “Configuration”). If even the last retry fails, an event
“ReplicationIOR-TableCopyFailure” will be generated.

Reliability and Asynchronous Operation
The replication mechanism is reliable in the sense that it assures that state
replication to at least one peer Proxy Process on a different host has been
successful for every state change. The mechanism can be operated either
asynchronously or synchronously.

Asynchronous mode

Asynchronous operation means that GIOP messages are forwarded even if
the replication requests triggered by proxifications in this message have not
been acknowledged yet. Synchronous mode means that the GIOP message
is forwarded only after all replication requests triggered by this message
have been acknowledged.

Synchronous mode

In the synchronous case, we can be sure that each IOR has been replicated
within the cluster, that is, it is present on a least two different cluster hosts.
In case of failure of any I-DBC Proxy host, the replicated state can be used

I -DBC Deployment Guide 17

after the client has established a new connection to one of the other I-DBC
Proxies. Synchronous operation is slower than asynchronous mode: It
increases the latency for each call by about 1.5 milliseconds on a fast
ethernet cluster interconnect, but does not limit the achievable throughput
for independent parallel CORBA requests. Depending on your reliability and
speed requirements, we recommend using asynchronous operation if you’re
ready to sacrifice a little reliability for speed. Even in asynchronous
operation, requests are retried, so asynchronous operation is nearly as
reliable as synchronous operation.

Asynchronous operation will lead to severe problems when the cluster
interconnect is not redundant and fails. It might take the I-DBC a while to
recognize the failure of the cluster interconnect, but by then it has no
means to replicate the state changes to its peer I-DBC Proxies.

Making the cluster interconnect redundant will reduce the problem, but it
can still not be guaranteed that the replication request has been sent before
the GIOP request has been forwarded. If the I-DBC Proxy machine fails
between sending the GIOP request and sending the replication request,
state information will be lost. Loss of state would inadvertently make the
Access Session unusable for the client. However, the chance of a replication
request being delayed longer than the corresponding GIOP message is very
small.

Limitations and Restrictions
This section lists some implementation details to clarify limitations and
restrictions when using replication. For instructions on how to configure
replication with the Administration Console, please refer to section
“Configuration”.

Communication
The Replication Module binds to the configured multicast address and port.
It sets the socket option REUSEADDR to enable multiple receivers on the
same port. It also needs to know its real interface address (supplied via the
configuration), because it will only respond with ACK packets, if the address
given in the request for selection of the ACK sender matches the interface
address part of the configuration dictionary “localAddress”. Translated
addresses (NAT) are not supported for the cluster interconnect.

Security
For performance reasons, there is no encryption and no authentication
between hosts on the cluster interconnect network. Therefore the cluster
interconnect network must be trustworthy and should be isolated from any
other network. Either a dedicated cluster interconnect network is used or
replication is done via one of the other network interfaces. In the latter
case, firewalls need to be in place to prevent UDP traffic from entering into
or leaving the cluster interconnect.

IOR Timeout
If IOR Invalidation Timeout Triggered (II-TT) is active, IORs are timed out
autonomously. Currently, there is no provision for deleting IORs from the
replicated state or to prevent deletion as described for the Access Session
management. Because this prevents reliable failover, it can not be used in a
replicated cluster.

18 I-DBC Deployment Guide

Object Keys
Object keys are unique per Proxy Process to prevent duplicates. In addition
to the object key scheme employed in the I-DBC standard edition, the
process id of the Proxy Process and a fixed random number chosen at
startup is prepended to every object key.

Duplication of Calls
There is a chance of a method being called multiple times on the server
when failover occurs during a method call. The problem is caused by the
fact that the client can not decide whether the method has already been
called on the server when the connection brakes while waiting for the result
from the I-DBC Proxy. The client has to retry the call. Method calls thus
need to be idempotent to prevent inconsistencies or transaction semantics
need to be used. This is true for any distributed application.

Consider a situation where the client sends a request to the I-DBC Proxy.
The request gets forwarded to the server and the server sends a reply. The
I-DBC Proxy host goes down before the reply reaches the client. What will
the client do?

The client gets a timeout from the I-DBC Proxy, because it is no longer
there. The client reconnects, gets switched over to another I-DBC Proxy.
Then, the client re-sends the request and all goes well. The only drawback
is, that the server has served the request twice without the client knowing.
But that will happen in configurations without the I-DBC Proxies as well, if
the network is interrupted and the client reconnects to re-issue the request.
It is the responsibility of the application programmer to anticipate this
behaviour.

To ensure transaction semantics you must use a transaction monitor. The
use of such a monitor is highly recommended for any mission-critical
business application.

Delayed OBJECT_NOT_EXIST
If faced with an unknown IOR or a request addressing an unknown object
key, the Proxy Process needs to emit a resolve request to check if the IOR
or object key is present in the state of any other Proxy Process and wait for
a reply. If the IOR or object key can not be found, OBJECT_NOT_EXIST will
be thrown eventually. If an application expects to see OBJECT_NOT_EXIST
exceptions as part of its normal operation on a regular basis, the application
will be slowed down a bit, because this exception will only be thrown after
the I-DBC has verified that the key is not known to any host.

Configuration
This section explains how to configure the replication feature with the
Administration Console. Go to the “I-DBC Proxy Cluster” panel and activate
replication by checking the box “Replicate the state between DBCs”. Now
you can configure the replication interface on the “I-DBC Proxy” panel. The

I -DBC Deployment Guide 19

replication interface is the physical interface the Multicast Address binds to
(see below). It is used to exchange cluster interconnect messages.

Figure 8 Network Interfaces – Replication Interface

The replication interface can be a separate interface, or it can be shared
with any other interface, for example, the Internal or Management
Interface. Note that the NAT Address of this interface does not apply the
Replication Interface.

20 I-DBC Deployment Guide

Replication Interface
After activating replication on the “I-DBC Proxy Cluster” panel, the panel
“Replication Interface” will be available (see below).

Figure 9 Replication Interface

On this panel you can configure replication properties:

• Local UDP Port Range: As stated before, the state information is
exchanged between the different Proxy Processes using UDP messages.
Here you configure the address of the unicast UDP sender and receiver.
This address is used for sending ACKs and RESOLVEs. The address must
be on the cluster interconnect network. The UDP port given here is the
base of a range of ports, one port for each Proxy Process on a host. The
range must not overlap with the UDP port used in the multicast address
(see below). The ports defined here will also be used as the target port
for sending RESOLVEs. Thus, all local ports of all I-DBC Proxies in a
cluster are equal.

• Multicast Address: Defines the multicast address. The address must be
between 224.0.0.2 and 239.255.255.255. As all addresses in the range
224.0.0.2 to 224.0.0.255 are link local addresses, these are
recommended. The default multicast address is 239.255.58.1.

• Multicast Port: Defines the multicast UDP port. The UDP port can be
chosen freely, but must be different from the ports specified for the local
UDP port range.

I -DBC Deployment Guide 21

Replication Message Properties
• Maximum Number of Retries: Defines the number of retries. This is valid

for ADD, RESOLVE and RESOLVE_ALL.

• Retry Timeout (Standard): The timeout for standard retries in
milliseconds

• Retry Timeout (Resolve All): The timeout for Resolve All retries in
milliseconds

• Synchronized: If you check this box, GIOP messages will be forwarded
only after the state replication has been confirmed. If not activated, state
replication will be retried until number of retries is exceeded, GIOP
messages will be forwarded before successful replication has been
confirmed.

Performance
This section discusses how the performance of a cluster can be estimated.

Multi Processor Machines
All multicast requests need to be looped back to the same host if more than
one Proxy Process is active on a host, which is usually only the case on a
multiprocessor machine. This is expensive because the sending process will
also see all of its own ADD requests.

“No looping” is selected automatically when the number of Proxy Processes
is 1. If the number of Proxy Processes is larger than 1, “looping” is activated
automatically.

When looping is selected, the sender can identify its own requests by the
sender id contained in each ADD request. Thus, the sender can filter out its
own packets before being processed further. This saves the effort for
updating the IOR Table, but not the effort of receiving the packet and
decoding at least part of it.

Estimated Throughput
The total capacity of the cluster is calculated by the capacity of single CPU
multiplied by the number of CPUs, but limited by the time needed for
replication. This is expressed by the following formula:

where

• n is the number of CPUs in the cluster,

• roundtriptime the time for a method call including response,

• replicationtime the additional cost for the replication of a single proxified
IOR.

• p is the proxification rate which gives the ratio of messages causing a
proxification to the total number of messages. A message causing

throughput n= 1
roundtriptime overhead+
--------------------------------------×

overhead n p replicationtime×× ,=

22 I-DBC Deployment Guide

proxification is a message transmitting an object reference (IOR) as
parameter or return value.

The assumption here is that every pth requests a proxification including
replication is done. Therefore, the time needed to accomplish this is the
product of the time needed for a single replication multiplied by p and the
number of CPUs.

If the rate of proxifications is low compared to the number of messages
transmitted, scalability is expected to be very good, as can be seen in
Table 1, in the column for p=0.1. Please note that these numbers are
synthesized. Measurements were made on two single processor Sun Ultra
10 running at 440 MHz. Measurements were taken to determine the
average delay imposed on a method call without parameters returning a
single IOR. The result was that a round-trip took no longer than 2000
microseconds without replication, and replication costs less than 500
microseconds per Proxy Process. The delays were verified to be linear by
running 2 and 3 Proxy Processes on the same machines. For the table, we
made the assumption that the capacity of the cluster simply scales linearly
with the number of available CPUs. This is not true in general, but close
enough for this demonstration.

Runtime Object Values
During operation, the state of the Replication Service can be monitored
using the SPS Client – a command line interface to the SPS to get state
information from the SPS (for details on how to install and use the SPS
Client, please refer to “SPS Client”).

Example: State Dump of Replication Service

The following example shows the state of a Replication Service after a test
with a single client has been run. The I-DBC Proxy is configured with two
Proxy Processes per host, which can be deduced from the listing of the
peers containing two entries. The peer list includes only those Proxy
Processes which are selectable as acknowledgers, so only peers on another
host are listed. The name of the peer host is dolphin, while the host on
which the state was dumped is named mamba.

{"ObjectId" = "pid5966.ReplicationService"
 "Values" = {
 "active" = "true"
 "addMessagesSent" = "924"
 "averageRtt" = "0.294063"
 "currentProcesses" = "0"

Table 1 Predicted throughput on cluster with Sparc IIe / 440 MHz Processors

n msg/sec for p=1 msg/sec for p=0.5 msg/sec for p=0.1

2 571 727 930

4 888 1230 1777

6 1090 1600 2553

8 1230 1882 3265

12 1411 2285 4528

16 1523 2560 5614

I -DBC Deployment Guide 23

 "droppedLooped" = "887"
 "identifier" = "1693381801"
 "inhibited" = "false"
 "maxRtt" = "1.166224"
 "maxVirtualProcessId" = "2"
 "messagesACK" = "1019"
 "messagesReceived" = "3696"
 "messagesRequest" = "2677"
 "messagesResent" = "4"
 "messagesSent" = "932"
 "messagesTerminate" = "4"
 "messagesVeto" = "2"
 "minRtt" = "0.005208"
 "outstandingReplicates" = "0"
 "peers" = [
 { "address" = "hostname=dolphin.microfocus.com,
 address=192.168.1.33, port=50305"
 "state" = "up"
 "virtualProcessId" = "0" },
 { "address" = "hostname=dolphin.microfocus.com,
 address=192.168.1.33, port=50306"
 "state" = "up"
 "virtualProcessId" = "1" }
]
 "resolveMessagesSent" = "2"
 "sequenceNumber" = "928"
 "singlePeer" = "false"
 "synchronous" = "false"
 "terminateMessagesSent" = "6"
 "virtualProcessId" = "0" }

The fields defined here are as follows:

• The state of active is true or false. True means that replication is active.
In a non-clustered environment, active is false.

• addMessagesSent counts the number of ADD messages.

• currentProcesses is the number of currently active replication
processes.

• minRtt, averageRtt and maxRtt give the respective round-trip times in
seconds.

• droppedLooped counts the number of packets which have been received
by the sender itself and thus been dropped before being processed.

• identifier is the fixed random number which identifies this Proxy Process
on the host. This is also used for object key disambiguation.

• inhibited is false, because ADD messages are sent while proxifying. For
testing and performance evaluation, the Replication Service can be
switched to inhibited mode where ADDs are sent only upon RESOLVE
request.

• maxVirtualProcessId is the same as the number of Proxy Processes on
one host.

• messagesACK is the number of acknowledges received.

• messagesReceived counts the total of messages received.

• messagesRequest is the count of request messages.

• messagesResent is the total of messages which timed out and needed
to be resent.

24 I-DBC Deployment Guide

• messagesSent counts the total number of messages sent.

• messagesTerminate is the number of requests for Access Session
termination received.

• messagesVeto is the number of VETOs received.

• outstandingReplicates is the number of ACKs, which are expected to
arrive but have not yet.

• peers is a vector of peers on other hosts.

• The state of each entry is either “up” or “down“. “down” means, the peer
has not responded to an ADD request within the timeout.

• The virtualProcessId just numbers the peers on one host.

• resolveMessagesSent is the number of RESOLVEs sent.

• sequenceNumber is the current sequence number.

• If there is only a single peer, then singlePeer is true.

• synchronous denotes the mode of operation.

• terminateMessagesSent is the number of requests for Access Session
termination sent.

• virtualProcessId is the number this Proxy Process has on this host.

I -DBC Deployment Guide 25

Installation Notes
When installing a cluster of I-DBC Proxies, there are several non-obvious
things to consider. The following text covers some of these points.

Direct Routing

Direct routing is the recommended mode of operation for a traffic redirector
for a small cluster, because it provides the best performance. When using
direct routing, you need to do the following:

• Configure the virtual IP address of the traffic redirector on all I-DBC Proxy
hosts. Make sure these virtual IP addresses are never advertised via ARP.

• Enter the virtual IP address as the local external and internal interface
address in Administration Console. This will cause the Proxy Processes to
actually bind to the virtual address, which is intended. Do not enter the
virtual IP address in the field “virtual address”.

• Make sure the virtual IP is routed from clients and servers to the virtual
director.

• Check availability of the virtual address using telnet vip <I-DBC
port>.

If you want to operate the I-DBC in dual homed mode, you must use either
a second traffic redirector, or a second virtual address, on your traffic
redirector.

NAT

When your traffic redirector is configured to use NAT for mapping the virtual
IP address to the cluster hosts, do the following:

• Enter the real interface address of each I-DBC Proxy into the fields for the
local address of external and/or internal interface of the Administration
Console. Usually, you will not be filling out the NAT fields.

• Enter the virtual IP address in the field “virtual address” and check the
box.

• Make sure the virtual IP is routed from clients and servers to the virtual
director.

• Check availability of the virtual address using telnet vip <I-DBC
port>.

26 I-DBC Deployment Guide

I -DBC Deployment Guide 27

Performance Monitoring
To support performance management tasks the DBC provides on-demand
access to usage data, which may be taken into account for a single DBC
Cluster or DBC host. The following performance indicators are used when
operating the I-DBC:

• GIOP Message Bytes Received

• GIOP Message Bytes Sent

• Number of GIOP Messages Received

• Number of GIOP Messages Sent

The usage data collector has been designed to provide data at regular time
intervals. Each time when usage data is retrieved the usage counters are
reset to account usage within the next time interval. For the ease of
integration with third party performance management solutions, the
collected usage data is stored in a flat file with comma separated values
(CSV). The usage data collector is provided by means of a shell script which
can be adapted easily to your requirements.

Setting up the Usage Data Collector
The usage data collector script collectperfdata.sh is part of your SPS
installation and it is located in directory <INSTALLDIR>/sps/bin/.
By default, the collected usage data is stored on the Security Policy Server
to the CSV file <INSTALLDIR>/sps/adm/PerfData.csv. Before using the
script you need to adapt the script internal settings to your Security Policy
Server (SPS) configuration. Use a text editor to open the shell script and
modify the following settings:

• Check the settings for SPS_PROTOCOL, SPS_HOST, and SPS_PORT.
These variables are set up during the installation of the SPS. SPS_HOST
and SPS_PORT should contain the SPS host, IP address, and port
provided for management access (that is, the endpoint to which you
connect with the Administration Console). The SPS_PROTOCOL variable
must be set to “ssliop” if SSL protection is enabled for the SPS. Otherwise
set the variable to “iiop”.

• The CLUSTER_NAME variable holds the name of the DBC Cluster. The
default name used by the SPS configuration is “idbcCluster1” or
“wsdbcCluster1” respectively. If you have assigned a different name you
need to set the variable to the assigned name.

• The ADMIN_USER and ADMIN_PWD variables hold the user ID and
password required for management access. If you changed the account
settings you need to change the variables to the new settings.

Activating the Usage Data Collector
To activate the usage data collector you must execute the shell script at
regular time intervals (that is, every hour). This can be achieved easily
using the cron tool of the operating system. To defined a cron job you can
use the "crontab -e" command. This command will open a text editor to
edit the current table of cron jobs. Each entry has the following format:
“<minute> <hour> <day of month> <month> <day of week>
<command>”, where each time and date field may specify a single value or

28 I-DBC Deployment Guide

a range of values. The asterisk "*" may be used for time and date fields to
specify all possible values. To schedule the script for hourly execution you
need to enter:

0 * * * * /opt/microfocus/sps/bin/collectperfdata.sh

I -DBC Deployment Guide 29

SPS Client
The SPS Client is a command line interface to the Security Policy Server (SPS).
The SPS Client can be used to configure the SPS or to obtain state information
about the SPS.

For information on installing the SPS Client, see the chapter “Installing the
SPS Client” in the documentation for the relevant Micro Focus | CORBA
Add-on Guide.

SPS Client Commands
To start the SPS client type:

./spscli.sh

After start-up, the SPS Client will ask for a user name and password. You
can use, for example, the default user admin with the password admin to
log in.

The SPS Client provides several commands which are listed in the following
table.

Command Description

collectUsageData
<clusterName>
[<dbcName>]

Gathers usage data from the given cluster,
accumulates the retrieved values, and prints a CSV
record with the format: timestamp, bytesReceived,
bytesSent, messagesReceived, messagesSent.
Optionally, a DBC name may be specified to gather the
data from a single DBC host only.

dump <clusterName>
<dbcName>

Dump all attributes from the named ProxyManager.

get <clusterName>
<dbcName> <objectId>
<attribute name>

Retrieves the attribute value of the attribute named
<attribute name> from the object with id <objectId>.
For example the command:

get cluster1 dbc1 NodeManagerAdmin proxyProcesses

 produces a list of all proxy process identifiers.

getAll <clusterName>
<dbcName> <objectId>
<attribute name>

Retrieves the attribute values of the attribute named
<attribute name> from all the objects with id
<objectId>. For example the command:

getAll cluster1 dbc1 logging levels

returns a list of all logging options.

getDescription Retrieves the description of the Security Policy Server.

help Prints a list of all commands.

ior ... The ior command has a number of sub-commands.
See Table 3 for a list of these commands.

login <username>
<password>

Login to the Security Policy Server with username and
password. If the password is omitted, it will be
requested by a password prompt.

mon Enter monitor mode.

readConfig <filename> Get the current configuration.

Table 2 SPS Client commands

30 I-DBC Deployment Guide

restart <clusterName>
[<dbcName>]

Restart the ProxyManager after configuration changes.

Example: "restart dbcCluster1 dbcProxy1" restarts
the specified ProxyManager

Example: "restart dbcCluster1" restarts the whole
cluster.

restartSPS <SPSName> Restart SPS with the given name. Give an empty name
to restart all SPSs.

sessionInfo
<clusterName>

Prints the number of connections, IORs, and pending
requests for all access sessions from the given cluster
and calculates the total numbers. For example:
sessionInfo iDBCProxyCluster1

set <clusterName>
<dbcName> <objectId>
<attribute name>
<attribute value>

Sets the attribute with name <attribute name> of
the object with id <objectId> to value <attribute
value>. The attribute value must be a stringified
dictionary, that is, string/int/bool literals must be
quoted. Example: set dbcCluster1 dbcProxy1
pid1234.ADF enabled “false”

setAll <clusterName>
<dbcName> <objectId>
<attribute name>
<attribute value>

Sets the attribute with name <attribute name> of the
object with id <objectId> to value <attribute value>
for all Proxies. Example: setAll dbcCluster1
dbcProxy1 ADF enabled “false”

smon Enter StateMonitor mode.

writeConfig
<filename>

Write the configuration from file <filename> to the
Security Policy Server.

writeConfig <version>
<filename>

Write the configuration diff from file <filename> to the
Security Policy Server.

quit Exit the program.

Command Description

ior deactivate
<clustername>
<stringified ior>
[<match>]

Deactivate the given original IOR on all I-DBCs of the
given cluster. This change is effective immediately. By
default, the original IOR is matched. The other IOR is
returned. [match] is a bitmask: 0 all, 1 host, 2 TCP
port, 4 SSL port, 8 object key, 16 match will be done
on the proxified IOR.

ior deploy <cluster
name> <stringified
original IOR>
<proxification info
dict>

Proxify the given original IOR and activate it on the
given cluster. This command is effective immediately.
<proxification info dict> is a dictionary containing
additional proxification info. The dictionary must not
contain any spaces.

ior deployTransient
<cluster name>
<stringified original
IOR> <proxification
info dict>

Proxify the given original IOR and activate it on the
given cluster. This command is effective immediately,
but the deployed IOR will be lost on the next config
update or proxy restart. <proxification info dict>
is a dictionary containing additional proxification info.
The dictionary must not contain any spaces.

Table 3 Sub-commands for the ior command

Command Description

Table 2 SPS Client commands

I -DBC Deployment Guide 31

Administrative Rights for SPS Client Operations
You can allow or deny administrative rights for the following SPS Client
operations:

• Update the IOR table, that is the use of the commands ior deactivate,
ior deploy, ior deployTransient

• Clear the ADF Cache , that is the use of the command clearCache

• Get/set attributes, that is the use of the commands get, getAll, set,
setAll

Administrative rights can be configured on the “Roles - Administration”
panel (see the “Role Properties – Administration” section in the
Administrator’s Guide).

32 I-DBC Deployment Guide

I -DBC Deployment Guide 33

Hardened System
Requirements and Recommendations for Linux

The DBC software must be installed on machines that will become part of
your firewall. All firewall machines are potential targets of attacks, so they
require great care in the configuration of their operating system and
network components. In this chapter, we describe the requirements for the
machines you will use as DBC components, and provide recommendations
for hardening your system for secure operation. If you are unsure about the
topics described here, please consult a computer security or firewall expert
for advice.

While it is a good idea to secure every machine in your network, it is
mandatory for the firewall machines. Since these are located at the entry
points of your network, they are the first line of defence that a potential
attacker has to deal with.

Hardened system

On firewall machines you should make sure that there are as few handles
for attacks as possible, both in terms of available network services and
operating system features. This is called a hardened system.

When using DBC software, you should especially take care with the machine
you will use as the DBC Proxy host, as it is part of your firewall. However, if
your security policy requires protection against inside attacks too, the same
applies to the Security Policy Server machines and possibly the DBC Proxy
administration machines.

Operating System

Minimal operating system

In general, start with a minimum installation of the operating system. If you
are more experienced with the installation procedures, use a custom
installation. You should only install such components that are absolutely
required for the operation of the security related software.

The DBC Proxy host is run solely as a server, so there is no need for any
graphical user interface (GUI) components. This also applies to the Security
Policy Server if you do not use the Administration Console locally.

File permissions and logon

Make sure you have very strict permissions on critical system files,
especially in the directory /etc. Remove SUID/SGID flags from executables
if possible. Restrict logon to the console or a dedicated management
interface.

No NFS or YP/NIS

Configure the machine as a stand alone system. Do not use NFS or YP/NIS,
since these components are very vulnerable to attacks. Instead, use only
local file systems and the shadow password mechanism. If possible,
deactivate any accounts on the machine, except those needed for
administration and the services. There should be no need for your regular
network users to access the firewall machines anyway.

34 I-DBC Deployment Guide

Network Services
Pay special attention to network services. Most of them are unnecessary on
a firewall machine, so you can disable them. Prevent standalone service
daemons from starting, and also disable the inetd super daemon if you do
not need the services it provides (check its configuration file /etc/
inetd.conf). See your operating system manual for instructions.

Remote administration

There are a few exceptions to this general rule. If you need a means for
remote administration, use a secure service such as SSH. This is usually
provided by the standalone daemon sshd. Do not use traditional services
such as telnet or rsh/rexec, since they are vulnerable to sniffing and
hijacking attacks.

Use email only in forward mode

You may also want to use email notifications for problems or security alerts.
Often, the sending of email is possible without a specific mail daemon, but
in some cases you may have to use one. If so, you should disable all of its
features, and use it only for forwarding mail to your mail gateway or
administration system.

Restricted access to network services

If you use any network services, try to restrict their binding to network
interfaces. If you have a dedicated management interface, configure the
services to bind to that. Generally, the services should not be accessible
from interfaces that are connected to a public or untrusted network. You
may also use meta-daemons such as tcpd to restrict access, or use local
packet filtering for that purpose.

After you have finished configuring the network services, use netstat -a
and watch for any lines specifying LISTEN as state. Verify that there are
only those services you need, and that they use the correct bind address
(network interface).

Kernel and Network Stack
Make sure you have the latest patches installed for your kernel. For some
operating systems, there may be special add-on patches available which
can be used to enhance security.

Minimum kernel

On some systems, you can compile your own kernel. Apply the same rule as
for the system components: Only include those features that you absolutely
need, and omit anything else. Build a monolithic kernel if possible.

Check your operating system manual to see if your network stack provides
basic protection against common low-level attacks, such as SYN flooding or
fragmentation bombs. Enable these features or compile them in.

IP forwarding

If you use a multi-homed machine for the DBC Proxy host, make sure that
IP forwarding/routing is disabled. This prevents an attacker bypassing the
IIOP Proxy.

I -DBC Deployment Guide 35

Strong end system model

Also, consult the documentation for your network stack to see whether it
enforces a strong end system model. This means that each packet arriving
at a network interface must have that interface’s network address as its
target address. If this is not the case, your system may be vulnerable to
spoofing attacks. You can enforce a strong end system model by using a
local packet filtering component (e.g., ipchains on Linux). Create a rule
for each interface to only accept packets targeted at the interface address
or its broadcast address, and set the default policy to discard or drop
anything else.

36 I-DBC Deployment Guide

I -DBC Deployment Guide 37

I-DBC Authentication
The I-DBC Access Control is primarily designed to work with mutual
authentication via SSL. However, in some scenarios the client cannot use
certificate based authentication. For such cases the I-DBC provides an
alternative authentication framework via a dedicated CORBA interface

This chapter is intended for developers who wish to use the I-DBC
Authenticator in their applications. We assume you are familiar with the
general I-DBC architecture, and the requirements of the specific native
authentication method you wish to use.

I-DBC Authenticator Architecture
The I-DBC Authenticator interface is a framework for generic
authentication. Specific authentication methods are provided as a mapping
to this interface. We describe both the generic use and several specific
mappings in the following sections.

The I-DBC Authenticator service is located on the I-DBC host (see figure 10).
Clients can contact the I-DBC Authenticator interface at the same host and
port address as any Initial Contact Point (ICP). It is an inband service, so
the client must use the same connection for subsequent invocations on IIOP
Proxies.

Figure 10 The I-DBC Authenticator Architecture

Inband authentication

The I-DBC Authenticator interface cannot authenticate clients by itself,
since this process usually requires sensitive information. Accordingly, the
authenticator forwards the request to the Security Policy Server, which in
turn passes the request to the appropriate authentication module.

There may be multiple authentication modules, each of which can perform a
specific authentication method. The module either performs the
authentication by itself, or uses a local system service. Finally, the module
sends a response to the I-DBC Authenticator service which in turn sends it
back to the client.

Client Host

ICP
Client

Security ServerDBC Host

Security Service
DBC Authenticator
Service

Authentication
 Module

IIOP Proxy

38 I-DBC Deployment Guide

Caveats
You may use the I-DBC Authenticator interface instead of SSL
authentication, but there are some constraints.

If you do not use SSL, all data is sent unprotected over any intermediate
networks between the client and the I-DBC host. Attackers may intercept
this data on the way to get hold of passwords or other sensitive information.

You are strongly recommended to use at least client-side SSL

That way, your password is cryptographically protected as it travels through
the network.

Authentication using the I-DBC-Authenticator Interface is also not as fine-
grained as SSL. It only accepts a single user at a time from each client host,
and denies access to other users from the same machine. (In some
scenarios you may work around this restriction by using IP address based
Access Sessions). The I-DBC Proxy has to enforce this restriction to
securely separate Access Sessions. This may lead to problems if your client
network is behind a masquerading firewall.

Since the I-DBC Authenticator is an inband service, a successful
authentication is only valid for the TCP connection it was sent over. If your
client ORB creates additional connections to the I-DBC Proxy, it must re-
authenticate on the new connection. This is not a problem if your client ORB
reuses connections to its peers, as is done in most ORBs. However, if your
client ORB creates connections for each method invocation, you cannot use
the I-DBC Authenticator. The I-DBC Proxy has to enforce this restriction,
otherwise attackers could forge the source address of a connection to gain
access to your authenticated session.

Generic Interface
The I-DBC Authenticator CORBA interface is sufficiently generic to allow
mapping to all kinds of authentication services, including those that utilize
query callbacks (for which I-DBC uses continue_authentication). For a
detailed description of the methods and their parameters see the section
“Generic Use”.

There are similarities to the application view interfaces of the CORBA
security specification. However I-DBC uses a different interface, to prevent
clashes if your clients and servers use a compliant ORB security service.

// Generic I-DBC Authenticator Interface

#pragma prefix “xtradyne.com”

module Xtradyne {
 // return value of authentication functions
 // this is the same as Security::AuthenticationStatus
 enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
 };

 // this is the same as Security::Opaque

I -DBC Deployment Guide 39

 typedef sequence<octet> Opaque;

 // this is the same as Security::AuthenticationMethod
 typedef unsigned long AuthenticationMethod;

 // we currently support these authentication methods:
 // SSL, already verified by transport layer
 const AuthenticationMethod authSSL = 0;

 // RSA ACE (SecurID)
 const AuthenticationMethod authACE = 2;

 // Product-specific User ID/Password scheme
 const AuthenticationMethod authUsernamePassword = 222;

 // the methods of this interface are implemented
 // or intercepted by the I-DBC
 interface DBCAuthenticator {
 // authenticate
 AuthenticationStatus authenticate(
 in AuthenticationMethod method,
 in string security_name,
 in Opaque auth_data,
 out Opaque session_data,
 out Opaque continuation_data,
 inout Opaque auth_specific_data
);

 // respond to challenge
 AuthenticationStatus continue_authentication(
 inout Opaque session_data,
 in Opaque response_data,
 out Opaque continuation_data,
 inout Opaque auth_specific_data
);

 // change authentication data
 AuthenticationStatus change_auth_data(
 in AuthenticationMethod method,
 in string security_name,
 in Opaque new_auth_data,
 out Opaque session_data,
 out Opaque continuation_data,
 inout Opaque auth_specific_data
);
 };
};

40 I-DBC Deployment Guide

Generic Use
In this section we describe the generic use of the I-DBC Authenticator
interface. These are only general guidelines. See the description of a
specific authentication method for additional information in the section
“Authentication Methods”.

Authenticate

The client starts an authentication session by calling authenticate, as
shown in figure 11. The desired authentication method prescribes the use
and format of the other parameters. In all cases the client must provide a
security name (e.g. user name) and authentication data (e.g. password).

Figure 11 Basic Authentication

The client may provide additional authentication specific data if this is
needed for the authentication method. In that case the client may construct
an appropriate sequence, for example, to indicate requested privileges. If
no additional data is needed the client should pass an empty sequence.

Return values

The result of the call indicates the further course of action:

• If the I-DBC Proxy returns SecAuthSuccess, all is well. The user may still
call change_auth_data if this is supported by the current authentication
method (see “change_auth_data” for details).

• If the I-DBC Proxy returns SecAuthFailure, the user may retry
authentication by calling authenticate again, usually with different
parameters.

• If the I-DBC Proxy returns SecAuthExpired, the client should stop
attempting to authenticate. Often the user must reestablish the account
by some external means.

• If the I-DBC Proxy returns SecAuthContinue, the user must provide a
response to the given challenge via continue_authentication.

In any case the I-DBC Proxy provides session_data (SD) that the client
must use for further invocations. The client must consider it to be an
opaque value, and thus pass it verbatim.

The I-DBC Proxy may also issue a challenge in continuation_data,
specially when the return value is SecAuthContinue. See figure 12.

Furthermore, the I-DBC Proxy may provide additional authentication
specific data if needed for the current authentication method. In this case,
the client is responsible for interpreting the contents of the sequence. The
sequence may, for example, indicate which kind of response is expected to
the challenge, or that the user is expected to change his authentication
data.

Client Host Authenticator

authenticate

SecAuthSuccess/SecAuthFailure

SecAuthExpired/SecAuthContinue

I -DBC Deployment Guide 41

continue_ authentication

If the I-DBC Proxy issues a challenge, the client must respond by calling
continue_authentication and must provide the returned session data
verbatim (see figure 12). The client must give the response in
response_data. Furthermore the client may provide authentication specific
data if needed for the authentication method.

Figure 12 Authentication Challenge and Continuation

The I-DBC Proxy responds with the same return values as for
authenticate, and also uses the out parameters in the same way. Note
that the returned session data (SD2 in the figure above) may be different
from the data the client provided (in the above example the client provided
the session data SD1). The new data must be used for further invocations.

change_auth_data

After successful authentication, the client may change its authentication
data via change_auth_data (see figure 13). It must provide the last
returned session data along with the new authentication data. The I-DBC
Proxy responds with the same return values and output parameters as with
authenticate. But if it issues a challenge, change_auth_data must be
called again instead of continue_authentication.

Client Host

authenticate

Authenticator

SecAuthContinue (SD1)

SecAuthSuccess/ SecAuthFailure

SecAuthExpired/ SecAuthContinue (SD2)

continue authenticatation (SD1)

Client Host

authenticate

Authenticator

SecAuthContinue (SD1)

SecAuthSuccess/ SecAuthFailure

SecAuthExpired/ SecAuthContinue (SD2)

change_auth_data (SD1)

SecAuthSuccess/ SecAuthFailure

SecAuthExpired/ SecAuthContinue (SD3)

change_auth_data (SD2)

(optional)

42 I-DBC Deployment Guide

Figure 13 Change of Authentication Data

Exceptions

In some cases the I-DBC Authenticator may raise an exception. It uses the
existing CORBA system exceptions, specifically:

• BAD_PARAM when the authentication method is unknown or not supported

• MARSHAL when the parameters provided by the client are not formed as
expected

• BAD_INV_ORDER is used if continue_authentication or
change_auth_data is called before authenticate

Authentication Methods
For each supported authentication method we provide a mapping to our
generic I-DBC Authenticator scheme. Such a mapping describes how
authentication data is encoded into the generic parameter sequences, and
how the client must react to return values and output parameters. In some
cases we provide convenience functions or classes which you can include
into your client, these are described at the end of each mapping description.

RSA/ACE SecurID Mapping
This section describes how the RSA/ACE Agent API is mapped to the I-DBC
Authenticator interface.

Figure 14 SecurID Authentication

authenticate

The client calls authenticate with the method constant authACE and
specifies his user name as security_name, and his passcode (pin and
token-code combination) in auth_data (see figure 14). The
auth_specific_data parameter is not used in this mapping, the client
must provide an empty sequence.

The return value of the call indicates the further course of action:

• SecAuthSuccess: Authentication succeeded. The auth_specific_data
out parameter contains a string specifying the users default shell. This
ends the authentication session. The client may now issue regular
application calls.

• SecAuthFailure: Authentication failed. This ends the authentication
session. The client may start a new session with different parameters. In
most cases, the user made a mistake with the passcode.

• SecAuthExpired: The user’s account does not exist or has expired. This
ends the authentication session. The client may start a new session with
different parameters. Usually, a different user name is given.

Client Host Authenticator

authenticate

SecAuthSuccess (spec=shell)

SecAuthFailure/ SecAuthExpired

I -DBC Deployment Guide 43

• SecAuthContinue: Further data is needed. The two continuation cases
are indicated by the contents of the auth_specific_data output
parameter. The sequence contains a single byte. If this byte has the
value 0, the client must continue authentication with the next token code.
If this byte is 1, the user must select a new pin, this is described below.
In any case the I-DBC Proxy returns a session identifier, which must be
passed verbatim for further invocations. The continuation_data output
parameter contains values specific to each case.

continue_ authentication: next token code required

Figure 15 Next Token Code Challenge and Response

If the authenticate call results in the next token code situation, the client
must respond with the next token within a certain time (see figure 15). The
time-out value (in seconds) is given in the continuation_data out
parameter in network byte order. To continue the authentication session,
the client may call continue_authentication, giving the session_data
as received before, and the next passcode as response_data. The
auth_specific_data parameter must contain a single byte set to 0. The
return value from this call is either SecAuthSuccess or SecAuthFailure,
with the semantics as described above.

If the authenticate call results in the new pin situation, the client must
respond in conformance with the domains policy (see figure 16). This is
specified by the values encoded in the continuation_data out parameter.
Its layout is as follows:

• octet 1 is the minimum pin length

• octet 2 is the maximum pin length

• octet 3 is the user-selectable flag

• octet 4 is the alphanumeric flag

• the next 16 octets contain a system generated pin.

See the ACE/Agent API documentation for a detailed description on how to
use these values.

Client Host

authenticate (code1)

Authenticator

SecAuthContinue (SD, spec=0,timeout)

SecAuthSuccess/ SecAuthFailure

continue authenticatation (SD, spec=0, code2)

44 I-DBC Deployment Guide

continue_ authentication: new PIN selection

Figure 16 New PIN Challenge

The client must call continue_authentication, giving the session_data
as received before, and the new pin as response_data. The user may
decide to cancel the pin creation/selection, but then the client must still
invoke continue_authentication, with an empty sequence as
response_data. The auth_specific_data parameter must contain a
single byte set to 1.

The I-DBC Proxy returns SecAuthFailure if the new pin is not accepted by
the ACE system. This ends the authentication session. The client may start
a new one if desired, but will have to supply a new pin.

The I-DBC Proxy indicates success by returning SecAuthExpired. This may
seem a bit strange, but it means that the old pin has “expired”. The ACE/
Agent API requires that the user re-authenticates after a pin change, so the
I-DBC Proxy does not return success here. This allows client authentication
code to loop until SecAuthSuccess is returned.

This mapping does not use the change_auth_data method because
changing the pin is handled by continue_authentication.

Exceptions

The I-DBC Proxy may raise an exception in certain cases:

• INITIALIZE means that the I-DBC Proxy could not start the ACE module
for some reason.

• BAD_PARAM means that a parameter did not match the size requirements
of the ACE/Agent API.

• BAD_INV_ORDER means that a next token code or pin change challenge
were not answered with continue_authentication, or that the wrong
type of response was sent.

See the ACE documentation for details.

Client Host

authenticate (oldPIN)

Authenticator

SecAuthContinue (SD, spec=1,PIN-params)

SecAuthFailure/ SecAuthExpired

continue authenticatation (SD, spec=1, newPIN)

I -DBC Deployment Guide 45

I-DBC Authenticator Events
I-DBC Authenticator events can be used to check the behavior of the I-DBC
Authenticator Interface. The following events are available and can be
activated on the “Audit Policy” panel of the Administration Console:

• DBCAuthenticatorAuthenticationFailure

• DBCAuthenticatorAuthenticationSuccess

• DBCAuthenticatorAuthenticationInfo

Note that the Info event yields information about every step of the
authentication process, whereas the Success and Failure events only state if
the authentication as a whole was successful or not.

46 I-DBC Deployment Guide

I -DBC Deployment Guide 47

Index

A
Authentication Mechanisms

RSA SecurID 42

H
Hardened System

Kernel and Network Stack 34
Network Services 34
Operating System 33
Requirements and Recommendations 33

High Availability 3
as provided by the DBC 5
Calculate application throughput 12
Calculate DBC requirements 12
Deployment Considerations 12
Deployment Requirements 13
Types 3

I
I-DBC Authenticator 37

Architecture 37
Audit Events 45
Authenticator Caveats 38
Basic Authentication 40
Challenge and Continuation 41
Generic Interface 38

R
Replication 15

Configuration 18
Duplication of calls 18
Estimated Throughput 21
Installation Notes 25
IOR Timeout 17
Limitations and Restrictions 17
Loopback 15
Maintenance 16
Message Properties 21
Object Keys 18
Performance 21
Reliability and asynchronous operation 16
Runtime Object Values 22
Security Considerations 17
Technology 15

Replication Interface 20
RSA/ACE SecurID Mapping 42

S
Scalability 3, 6

Connection Bundling 7
Deployment Example 13
Direct Routing 7
Network Address Translation 6
Tunnel Scenario 8
Types 3

SecurID
RSA/ACE Mapping 42

SPS Client 29

Administrative Rights 31
Commands 29

T
Traffic Redirector 14

U
UserID/Password authentication

I-DBC Authenticator 37

 48 I-DBC Deployment Guide

	Contents
	Preface
	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	High Availability and Scalability
	High Availability and Scalability
	Different Flavours of HA and Scalability
	High Availability and Scalability at System Level
	High Availability and Scalability at Application Level

	High Availability and Scalability with a Traffic Redirector
	High Availability & Scalability as provided by the DBC
	Traffic Redirection: NAT versus Direct Routing
	Connection Bundling

	High Availability Provided by Hot Standby
	Monitoring
	DBC Built-In Monitoring
	End-to-End Monitoring

	Deployment Considerations
	Planning the Installation
	Calculate Application Throughput
	Calculate DBC Requirements

	Deployment Example
	Deployment Requirements

	Replication
	Replication Technology
	Shared Host
	Resources

	Maintenance
	Reliability and Asynchronous Operation
	Limitations and Restrictions
	Communication
	Security
	IOR Timeout
	Object Keys
	Duplication of Calls
	Delayed OBJECT_NOT_EXIST

	Configuration
	Replication Interface
	Replication Message Properties

	Performance
	Multi Processor Machines
	Estimated Throughput

	Runtime Object Values
	Installation Notes

	Performance Monitoring
	Setting up the Usage Data Collector
	Activating the Usage Data Collector

	SPS Client
	SPS Client Commands
	Administrative Rights for SPS Client Operations

	Hardened System
	Requirements and Recommendations for Linux
	Operating System
	Network Services
	Kernel and Network Stack

	I-DBC Authentication
	I-DBC Authenticator Architecture
	Caveats
	Generic Interface
	Generic Use
	Authentication Methods
	RSA/ACE SecurID Mapping

	I-DBC Authenticator Events

