
Micro Focus® | CORBA® Add-on for
Cloud, Containers & Virtual Environments

1.0.0

Installation and Configuration Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and VisiBroker are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-11-11

http://www.microfocus.com

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l la t ion and Conf igurat ion Guide iii

Contents

Preface ... 1
In this Guide ... 1
Contacting Micro Focus ... 1

Further Information and Product Support .. 1
Information We Need ... 2
Contact Information ... 2

Introduction ... 3
What is the CORBA Add-on for Cloud, Containers & Virtual Environments 3

Components .. 3
Prerequisites ... 4

Uninstalling ... 4

CORBA in the Cloud or in Virtual Environments 5
Introduction .. 5
Installation in the Cloud or in Virtual Environments ... 6

Installation Footprints ... 6
Installation footprint on Linux... 7
Installation footprint on Windows.. 7

Deployment Scenario for Cloud and Virtual Environment 8
Installation Prerequisites ... 9
Installation Steps ... 9
CORBA for Cloud and Virtual Environments: Installed Components Overview . 10

Installing with the GUI .. 11
Silent installer properties... 16

CORBA for Cloud and Virtual Environments: Upgrading an existing ORB
installation... 16

Installing with the GUI .. 16
Silent installer properties... 18

CORBA in Containers .. 19
Introduction .. 19
Installation in Containers .. 20

Installation Footprint .. 20
Deployment Scenario for CORBA for Containers ... 21
Installation Prerequisites ... 22
CORBA for Containers: Installed Components Overview 23

Installation .. 25
Installing on the Docker Development machine .. 25

Installing with the GUI .. 25
Silent installer properties... 33

Upgrading the client side ORB installation ... 33
Installing with the GUI .. 33
Silent installer properties... 35

Silent Installation... 37
Installing with the Silent Installer ... 37

Sample installer properties file ... 37
Performing a silent installation ... 39

Installing the SPS Client... 41
Installing the SPS Client .. 41

Installation Overview .. 41
After Installation .. 42

iv CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide

Configuring the SPS Client ...42
Installing Keys and Certificates ..43

Docker Toolbox and IP Addresses... 45
Introduction ..45
Using the IP Address of the Windows System ...45
Configure Oracle VM VirtualBox Port Forwarding ...46

 Common Docker Images.. 51
The Docker Images ...51

Dockerfiles ..52
The Operating System Docker Image ..52

The Dockerfile for CentOS ...52
Building the CentOS Operating System Docker Image53

The Dockerfile for Ubuntu ..53
Building the Ubuntu Operating System Docker Image53

The I-DBC Docker Image ...54
The Dockerfile for I-DBC ...56

User ID ...57
I-DBC Environment Variables..57
Common Entrypoint Helper Script ...57
Install I-DBC ..58
Building the I-DBC Docker Image..58

The Orbix 3 Docker Image .. 59
The Orbix 3 Docker Image ...59

The Dockerfile for Orbix 3 ..59
User ID ...60
Installing Orbix 3 ..60
Orbix 3 Entrypoint Helper Script..60
Proxified IOR Location ...61

Building the Orbix 3 Docker Image ...61

The Orbix 6 Docker Image .. 63
The Orbix 6 Docker Image ...63

The Dockerfile for Orbix 6 ..63
User ID ...64
Installing Orbix 6 ..64
Orbix 6 Entrypoint Helper Script..64
Proxified IOR Location ...65
Orbix 6 Domain Name ...65
Build Script ..65
Building the Orbix 6 Docker Image ..65

Creating Orbix 6 Deployment Descriptors 67
Introduction ..67
The Basic Log Demo ...68

Deployment inside a Docker Container ..69
Creating the Deployment Descriptor ...70

Modifying the Deployment Descriptor for use with Docker.....................71
Creating a Deployment Descriptor for your Orbix 6-based Application72

The VisiBroker Docker Image ... 73
The VisiBroker Docker Image ...73

The Dockerfile for VisiBroker ..73
User ID ...74

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide v

Installing VisiBroker ... 74
Install HotFixes .. 74
VisiBroker Entrypoint Helper Script ... 74
Proxified IOR Location ... 75

Building the VisiBroker Docker Image ... 75

The VisiBroker Smart Agent Relay .. 77
The Smart Agent in Containerized Environments .. 77

Topology of the Smart Agent Relay ... 78
Configuring I-DBC for Use with the Smart Agent Relay Within a Container 79

I-DBC Proxification using visiOSAgentPerPOA ... 80
Configuring the Smart Agent Relay ... 80

Command Line Switches ... 80
Logging... 81
Ports... 81

Properties ... 81
Initializing the SmartAgent Relay .. 82
Satisfying Smart Agent Requests .. 84
Successful Request/Response Cycle .. 84

Transient Error Mitigation .. 84
No response from the Internal Smart Agent Relay............................... 85
No response from the Internal Smart Agent 86

Property Reference .. 86

Updating SPS Configuration Items ... 89
Introduction .. 89
Prerequisites ... 89
Build the Base OS and I-DBC Docker Images ... 90

Build the Base Docker Image ... 90
Build the I-DBC Docker Image .. 90

Run the I-DBC Docker Image ... 90
Save the Current SPS Configuration ... 91
Start I-DBC inside Docker ... 91

Change the Server SSL Version .. 91
Diff the config file .. 93
Structure of the SPS Configuration File ... 94
Determine the Full Name of the Server SSL Version Configuration Item 95
Using the Configuration Item Name and Value ... 97
Published Ports with Docker ... 98
Using I-DBC to Proxify Transient and Persistent IORs .. 98

Index ..101

vi CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide

CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide 1

Preface
This Guide describes the Micro Focus® | CORBA® Add-on for Cloud, Containers
& Virtual Environments. It describes how to install and set up the product.

In this Guide
This manual contains the following chapters:

• Introduction describes some of the concepts of the CORBA Add-on for
Cloud, Containers & Virtual Environments.

• CORBA in the Cloud or in Virtual Environments describes how the CORBA Add-
on for Cloud, Containers & Virtual Environments operates in Cloud
environments and in Virtual Environments and gives installation
instructions.

• CORBA in Containers describes how the CORBA Add-on for Cloud,
Containers & Virtual Environments operates in the Docker container and
gives installation instructions.

• Silent Installation gives information on using the silent installer.

• Installing the SPS Client gives instructions for installing the SPS Client,
which is a command line interface to the Security Policy Server (SPS)
included in the I-DBC.

• Docker Toolbox and IP Addresses describes how to use the IP address of
your Windows system with the Docker Toolbox.

• Common Docker Images describes the Docker images required for CORBA-
based applications.

• The Orbix 3 Docker Image describes the Orbix 3 Docker image.

• The Orbix 6 Docker Image describes the Orbix 6 Docker image.

• Creating Orbix 6 Deployment Descriptors how to create deployment
descriptors for Orbix 6-based applications.

• The VisiBroker Docker Image describes the VisiBroker Docker image.

• The VisiBroker Smart Agent Relay describes the Smart Agent Relay
(osarelay) which enables you to use the Smart Agent (osagent) in
containerized environments.

• Updating SPS Configuration Items describes how to configure the SPS to
allow your applications to run correctly.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

2 CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact Information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

http://www.microfocus.com
http://www.microfocus.com

CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide 3

Introduction
This chapter introduces the Micro Focus® | CORBA® Add-on for Cloud,
Containers & Virtual Environments (the CORBA Add-on for Cloud, Containers
& Virtual Environments).

What is the CORBA Add-on for Cloud, Containers &
Virtual Environments

The CORBA Add-on for Cloud, Containers & Virtual Environments enables
you to extend your CORBA applications to operate with Micro Focus CORBA
products (VisiBroker, Orbix 3 and Orbix 6) in the Cloud, in virtual
environments, and in container-based platforms such as Docker.

It solves the main problem of network isolation and enables you to expose
your enclosed and unreachable CORBA service to the internet or to other
services outside of containers.

This product solves issues arising from two main deployment scenarios:

• The use of CORBA in the Cloud or in Virtual Environments,

• The use of CORBA in Containers.

Components
The CORBA Add-on for Cloud, Containers & Virtual Environments contains
the following components:

• Micro Focus IIOP Domain Boundary Controller (I-DBC): Allows
CORBA-based clients and servers to communicate easily across a
network boundary where Network Address Translation (NAT) is occurring.
A NAT layer can map private internal container addresses to public
external host addresses. Connecting CORBA clients to services running
either side of a NAT requires use of a proxy server, such as I-DBC, to
manage the address translation within the CORBA object references.This
is often challenging for CORBA-based applications. The I-DBC is
described in the Micro Focus IIOP Domain Boundary Controller (I-
DBC) v.4.0.0 Deployment Guide.

• Administration Console for I-DBC: A graphical interface for
administering the I-DBC. Using the Administration Console is described in
the Micro Focus IIOP Domain Boundary Controller (I-DBC) v.4.0.0
Administrator’s Guide.

• Support for the following CORBA ORBs:

• Orbix 3

• Orbix 6

• VisiBroker

• CORBA product HotFixes: To enable the CORBA products to work
correctly with I-DBC, some HotFixes are required.

4 CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide

Prerequisites
Each component has its own requirements.

• Installer: The installer requires JDK 1.7 (or later) to be installed. The
installer is available for both Windows and Linux operating systems.

• I-DBC: in order to run I-DBC, you will need a valid license file.

Note: You must have the license available when you perform the
installation; you cannot specify a license code subsequently.

• Administration Console: the machine on which the administration
console is installed must have JDK 1.8 (or more recent) installed.

• VisiBroker 8.5.6 (or later): during installation, you will need to provide
the 64-bit VisiBroker 8.5 installer file and a suitable license file. You will
also need to provide the installer files for all HotFixes required.

• Orbix 6.3.11 (or later): during installation, you will need to provide the
64-bit Orbix 6.3 installer and a suitable license file.

• Orbix 3.3.15 (or later): during installation, you will need to provide the
64-bit Orbix 3.3 installer, the 64-bit Orbix 3.3 SSL installer and Java and
C++ authentication codes. Orbix 3.3 can be installed without the
authentication codes being specified, but in this case the codes must be
added to the Orbix 3.3 installation before the ORB can be used.

• An installation directory. The installer has an install directory for Cloud,
Virtual Environment and Container installations, but not for ORB
upgrades. The default directories are:

On Windows systems:
<System Program Files>\Micro Focus\corba_addon_cloud_container

On Linux systems:
/opt/microfocus/corba_addon_cloud_container

Uninstalling
An uninstall file is included in the installation for Cloud, Virtual
Environment and Container installations, but not for ORB upgrades.
Running this file guides you through removing the product HotFixes.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide 5

CORBA in the Cloud or in
Virtual Environments
This chapter describes how the CORBA Add-on for Cloud, Containers & Virtual
Environments can be used to extend CORBA functionality into the Cloud and
in virtual environments.

Introduction
The CORBA Add-on for Cloud, Containers & Virtual Environments adds
support for:

• The following Cloud environments:

• Amazon AWS

• Microsoft Azure

• Google Cloud

• The following Virtual Environments:

• VMWare vSphere

• VMWare vCloud

In these circumstances, the CORBA server is hidden inside an isolated
network hosted on either the Virtual Environment or the Cloud provider
infrastructure, and is therefore unreachable from external CORBA clients, as
indicated in the following diagram.

The CORBA Add-on for Cloud, Containers & Virtual Environments product
provides a solution to the issues that can arise when trying to connect to
CORBA server applications in a cloud or virtual environment with Network
Address Translation (NAT) or any other network bridging issues and the
challenge when trying to connect to CORBA clients that are running outside
of this environment.

6 CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide

Installation in the Cloud or in Virtual Environments
In order to deploy the CORBA Add-on for Cloud, Containers & Virtual
Environments in a Cloud or Virtual Environment, run the installer and select
the CORBA in Cloud and Virtual Environments option at the
Deployment Scenario window.

Installation Footprints
The CORBA Add-on for Cloud, Containers & Virtual Environments product
provides the following components for CORBA in Cloud and Virtual Environments
deployments:
• Micro Focus IIOP Domain Boundary Controller (I-DBC): Allows

CORBA-based clients and servers to easily communicate across a
network boundary where network isolation is occurring. Requires a Linux
host.

• Administration Console for I-DBC: A graphical interface for
administering I-DBC. Using the Administration Console is described in the
Micro Focus IIOP Domain Boundary Controller (I-DBC) v.4.0.0
Administrator’s Guide.

• The capability to upgrade an existing CORBA ORB installation with
features and capabilities to communicate across a network boundary with
the help of I-DBC.

• The I-DBC install packages and scripts to be used on the Linux host.

• Administration Console install package to be extracted and installed on
the host.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide 7

Installation footprint on Linux
Installing the product for a Cloud environment or a virtual environment, on
a Linux system, installs the following files (assuming you are installing on
the Domain Boundary Controller (I-DBC) machine):

Installation footprint on Windows
Installing the product for a Cloud environment or a virtual environment, on
a Windows system, installs the following files (assuming you are installing
on the Domain Boundary Controller (I-DBC) machine):

idbc/ Directory containing the full I-DBC
installation

adminconsole/ Directory containing the extracted
Administration Console GUI to
administer an I-DBC installation

doc/license_agreement.txt

doc/notices.txt

resources/mf_idbc_install.sh I-DBC installer script

resources/mf_idbc_services.sh I-DBC service installer script to be run
after I-DBC installation

resources/microfocus_CLI-4.0.0.tar.gz I-DBC installer package used by
mf_idbc_install.sh

resources/microfocus_IDBC-4.0.0.tar.gz I-DBC installer package used by
mf_idbc_install.sh

resources/microfocus_SPS-4.0.0.tar.gz I-DBC installer package used by
mf_idbc_install.sh

resources/microfocus_AdminConsole.tar.gz AdminConsole package for manual
extraction

uninstall/

adminconsole\ Directory containing the extracted
Administration Console GUI to
administer an I-DBC installation on a
Linux host

doc\license_agreement.txt

doc\notices.txt

resources\mf_idbc_install.sh I-DBC installer script to be installed on
a Linux host

resources\mf_idbc_services.sh I-DBC service installer script to be run
after I-DBC installation

resources\microfocus_CLI-4.0.0.tar.gz I-DBC installer package used by
mf_idbc_install.sh

resources\microfocus_IDBC-4.0.0.tar.gz I-DBC installer package used by
mf_idbc_install.sh

resources\microfocus_SPS-4.0.0.tar.gz I-DBC installer package used by
mf_idbc_install.sh

resources\microfocus_AdminConsole.tar.gz AdminConsole package for manual
extraction

uninstall\

8 CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide

Deployment Scenario for Cloud and Virtual
Environment
This section describes the virtual machines that make up a typical Cloud or
Virtual Environment deployment:

• CORBA client machine: the CORBA client application runs on this
machine. This machine is usually located outside the Cloud or Virtual
Environment.

• CORBA server machine: the CORBA server application runs on this
machine. This machine is located within the Cloud or Virtual Environment
and it is not directly reachable from the outside.

• Domain Boundary Controller machine: this machine acts as the
CORBA gateway between the outer CORBA Client machines and the inner
CORBA server machines.

• Optional development machine: this machine hosts the CORBA
development environment and the CORBA Add-on for Cloud, Containers
& Virtual Environments components. This can be a generic development
machine or it can be dedicated to running the Administration Console
component to administer the I-DBC component on the Domain Boundary
Controller machine.

For a further overview and full information on the capabilities of the I-DBC
and Administration Console components, see the Micro Focus IIOP
Domain Boundary Controller (I-DBC) v.4.0.0 Deployment Guide and
the Micro Focus IIOP Domain Boundary Controller (I-DBC) v.4.0.0
Administrator’s Guide.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Instal lat ion and Conf igurat ion Guide 9

Installation Prerequisites
To deploy the CORBA Add-on for Cloud, Containers & Virtual Environments,
you need the following components:

• The CORBA Add-on for Cloud, Containers & Virtual Environments Linux
installer, for the installation of I-DBC.

• Optionally the CORBA Add-on for Cloud, Containers & Virtual
Environments Windows installer for manual I-DBC deployment and for
the Administration Console.

• A Linux VM designated as the boundary controller machine to host I-DBC.

• A license for I-DBC, if you are installing on the Domain Boundary
Controller machine.

• An ORB installation. You will need to install an ORB, upgrade and existing
installation to work with a Cloud deployment scenario. The current
supported ORB installations are:

• VisiBroker 8.5.6 or higher

• Orbix 6.3.11 or higher

• Orbix 3.3.15 or higher

• The CORBA Add-on for Cloud, Containers & Virtual Environments ORB
HotFixes for your existing ORB client and server installation machines (to
be downloaded from Micro Focus Supportline). The CORBA Add-on for
Cloud, Containers & Virtual Environments ORB HotFixes must match the
platforms (operating system, compiler version, and bitness) that your
ORB installations are deployed on.

Installation Steps
To install the CORBA Add-on for Cloud, Containers & Virtual Environments
in a VCloud or virtual environment, follow these steps:

1 On the I-DBC Linux host machine, run the CORBA Add-on for Cloud,
Containers & Virtual Environments installer selecting the CORBA in
Cloud and Virtual Environments deployment scenario, and choosing
the option to install on a Domain Boundary Controller host.

2 On the CORBA server machine, run the CORBA Add-on for Cloud,
Containers & Virtual Environments installer selecting the CORBA in
Cloud and Virtual Environments deployment scenario, and choosing
the Upgrade an existing ORB installation on this host option.

3 On the CORBA client machine, run the CORBA Add-on for Cloud,
Containers & Virtual Environments installer selecting the CORBA in
Cloud and Virtual Environments deployment scenario, and choosing
the Upgrade an existing ORB installation option.

Once the installation is complete and I-DBC is properly configured, the
connectivity challenges can be overcome.

https://www.microfocus.com/support-and-services/download/
https://www.microfocus.com/support-and-services/download/
https://www.microfocus.com/support-and-services/download/

10 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

CORBA for Cloud and Virtual Environments:
Installed Components Overview
After you have installed the CORBA Add-on for Cloud, Containers & Virtual
Environments on the appropriate machines, the overall deployment looks
like the following illustration.

Suppose the example above chose to install the Administration Console on a
Windows system, the result would look like:

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 11

To install the CORBA Add-on for Cloud, Containers & Virtual Environments
to the Domain Boundary Controller host, run the installer as follows:

1 Download the installer into a temporary directory (for example, \temp on
Windows, or /tmp on UNIX).

2 Run the installer to launch InstallAnywhere.

• On Windows, mf_ccve_corba_addon_1.0_win_x64.exe

• On UNIX, mf_ccve_corba_addon_1.0_lnx_x64.bin

Installing with the GUI
To install via the GUI, run the installer as described above. The installer will
run through the following screens.

1 The License Agreement screen displays.

Read and agree the terms of the license agreement. Check I accept the
terms of the License Agreement and click Next. If you do not accept
the license, you cannot proceed further.

12 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

2 The Deployment Scenario window displays. Select CORBA in Cloud
and Virtual Environments and click Next.

3 The Cloud and Virtual Environments window displays. Select
Installing on Domain Boundary Controller host.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 13

4 The Choose Installation Folder screen displays.

Specify your desired installation directory either by typing the folder
name into the text box or by clicking Choose to browse for it. Click Next
to proceed.

5 The CORBA® Add-on License screen displays.

Specify your CORBA® Add-on license.slip file by typing the filename
into the textbox or clicking Choose to browse for it. Click Next to
continue.

14 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

6 If the license.slip file you specify does not exist or cannot be found,
the following screen is displayed.

If you do not have a license.slip file, then you can click the Continue
without License File button to continue with installing I-DBC. However
you will need to manually license the installed I-DBC and SPS services
before you can use it. To do this, once you have obtained a
license.slip file, you need to place it into the license directory for I-
DBC.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 15

7 The Pre-Installation Summary screen displays.

This screen is shown once all the required installation parameters have
been specified. Click Previous to move back through earlier screens if
any changes need to be made. Click Install to proceed with the
installation.

8 If more than one network interface is detected, you will see the following
screen.

Select the correct IP address for the I-DBC that you wish to configure.

16 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

Silent installer properties
As an alternative to the GUI installation, you can use the silent installer as
described in “Installing with the Silent Installer”.

The silent installation properties that you need to specify in this case are:

If the I-DBC host has multiple network interfaces, use the following
properties to configure which IP address will be used with the I-DBC and
SPS services.

CORBA for Cloud and Virtual Environments:
Upgrading an existing ORB installation
In order to upgrade an existing VisiBroker, Orbix 3 or Orbix 6 installation to
operate with the CORBA Add-on for Cloud, Containers & Virtual
Environments, run the installer as follows:

1 Download the installer into a temporary directory (for example, \temp on
Windows, or /tmp on UNIX).

2 Run the installer to launch InstallAnywhere.

• On Windows, mf_ccve_corba_addon_1.0_win_x64.exe

• On UNIX, mf_ccve_corba_addon_1.0_lnx_x64.bin

Installing with the GUI
To install via the GUI, run the installer as described above. The installer will
run through the following screens.

1 The License Agreement screen displays, as described in the previous
procedure.

2 The Deployment Scenario window displays. As in the previous
procedure, select CORBA in Cloud and Virtual Environments and click
Next.

USER_INSTALL_DIR=<install location>

INSTALLER_UI=SILENT

INSTALL_CLOUD=1

INSTALL_IDBC=1

CCVE_LICENSE=<license.slip location>

UPGRADE_ORB=0

INSTALL_CONTAINER=0

INSTALL_DOCKER=0

CONFIG_IDBC_HOST=<Network Interface IP>

CONFIG_SPS_HOST=<Network Interface IP>

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 17

3 The Cloud and Virtual Environments window displays. This time,
select Upgrading an existing ORB installation.

4 The Upgrade ORB Installation window displays. Select the location of a
valid ORB to upgrade and click Next.

18 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

5 At the next screen, specify the location of the HotFix to apply in order to
upgrade your ORB.

If you have not yet downloaded the necessary HotFix, click the Micro
Focus Supportline link shown on the screen, and download from there
to your local machine. You can now select the HotFix and proceed with
the installation.

Silent installer properties
As an alternative to the GUI installation, you can use the silent installer as
described in “Installing with the Silent Installer”.

The silent installation properties that you need to specify in this case are:

INSTALLER_UI=SILENT

INSTALL_CLOUD=1

INSTALL_IDBC=0

INSTALL_CONTAINER=0

INSTALL_DOCKER=0

UPGRADE_ORB=1

ORB_INSTALLATION=<orb install location>

CCVE_ADDON_HOTFIX=<hotfix files location>

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 19

CORBA in Containers
This chapter describes how the CORBA Add-on for Cloud, Containers & Virtual
Environments can be used to extend CORBA functionality into the Docker
container.

Introduction
The Docker containers can be hosted on either Linux or Windows systems.

In these circumstances, the CORBA server is isolated within a Docker
container and is therefore by default unreachable from external CORBA
clients.

The CORBA Add-on for Cloud, Containers & Virtual Environments provides a
solution to the issues arising when trying to connect CORBA clients running
outside of containers to CORBA servers running within containers.
The Docker container will run one of the following operating systems:

• CentOS

• Ubuntu

The Docker container can be hosted on a system running one of the
following operating systems:

• Linux

• Windows 7

• Windows 10

20 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

Installation in Containers
In order to deploy the CORBA Add-on for Cloud, Containers & Virtual
Environments in a container, run the installer and select the CORBA in
Containers option at the Deployment Scenario window.

Installation Footprint
The CORBA Add-on for Cloud, Containers & Virtual Environments product
provides the following components for the CORBA in Containers
deployment.

• Dockerfiles to enable you to build Docker image layers, from the base
operating system layer image all the way to the CORBA application
samples layer.

• Administration Console for I-DBC: A graphical interface for
administering I-DBC. Using the Administration Console is described in the
Micro Focus IIOP Domain Boundary Controller (I-DBC) v.4.0.0
Administrator’s Guide.

• The capability to upgrade an existing CORBA ORB installation with
features and capabilities to communicate with a CORBA application
deployed within a container.

• The I-DBC install packages and scripts to be used within a container.

• Administration Console install package to be extracted and installed on
the host.

The footprint of the CORBA Add-on for Cloud, Containers & Virtual
Environments when installed in a container differs from the Cloud
installation, as it installs the Docker folder. This folder contains dockerized

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 21

samples, and scripts demonstrating how to dockerize ORB applications.
Installing the product installs the following files:

Deployment Scenario for CORBA for Containers
This section describes the infrastructure that makes up a typical Docker
deployment:

• CORBA client machine: the CORBA client application runs on this
machine.

• CORBA server machine: the CORBA server application runs within a
Docker container hosted in the Docker engine running on this machine.
This CORBA server application is isolated by Docker and is not directly
reachable to the outside. The I-DBC component deployed within each
Docker container makes the CORBA server application available to the
outside.

adminconsole/ The extracted Administration Console GUI to
administer a I-DBC installation running within a
container.

doc/license_agreement.txt

doc/notices.txt

docker/ Directory containing all Docker-related assets.
See “CORBA for Containers: Installed Components
Overview” for the contents of the directory.

docker/common/centos_layer An operating system image for a CentOS base
layer used by the idbc_layer.

docker/common/ubuntu_layer An operating system image for an ubuntu base
layer used by the idbc_layer.

docker/common/idbc_layer_layer An I-DBC image built on top of the operating
system image. I-DBC overcomes the NAT
issues. Used by the orb_base_layer.

docker/
<orbix3,orbix6,visibroker>/
orb_base_layer

A CORBA product image built on top of the I-
DBC image. The CORBA product can be one of
Orbix 6, Orbix3, or VisiBroker. Used by the
application_layer.

docker/
<orbix3,orbix6,visibroker>/
application_layer/

An application image built on top of the CORBA
product image. Several demonstration
examples are provided to illustrate how to build
your own CORBA-based application inside a
Docker container.

resources/ The resources sub-directory contains all the
components necessary and used within and
outside a container. That can be used when
creating your own containerized CORBA
application.

resources/mf_idbc_install.sh

resources/mf_idbc_services.sh

resources/microfocus_CLI-4.0.0.tar.gz

resources/microfocus_IDBC-4.0.0.tar.gz

resources/microfocus_SPS-4.0.0.tar.gz

resources/microfocus_AdminConsole.tar.gz

uninstall/

22 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

• Development machine: this machine hosts the CORBA development
environment and the Docker development environment. This machine is
used to build Docker container images that can then be deployed to the
CORBA server machine.

For a further overview and full information on the capabilities of the I-DBC
and Administration Console components, see the Micro Focus IIOP
Domain Boundary Controller (I-DBC) v.4.0.0 Deployment Guide and
the Micro Focus IIOP Domain Boundary Controller (I-DBC) v.4.0.0
Administrator’s Guide, and the chapter “Common Docker Images”.

Installation Prerequisites
To deploy the CORBA Add-on for Cloud, Containers & Virtual Environments,
you need the following components:

• The CORBA Add-on for Cloud, Containers & Virtual Environments Linux
installer.

• Optionally the CORBA Add-on for Cloud, Containers & Virtual
Environments Windows installer.

• A license for the CORBA Add-on for Cloud, Containers & Virtual
Environments.

• A Docker development environment.

• An ORB installation. You will need to install an ORB, or upgrade an
existing installation to work with a Cloud deployment scenario. The
current supported ORB installations are:

• VisiBroker 8.5.6 or higher for Linux 64-bit installer, or VisiBroker 8.5
for Linux 64-bit GA installer plus VisiBroker 8.5 service pack 6.

• Orbix 6.3.11 or higher for Linux installer

• Orbix 3.3.15 or higher for Linux 64-bit installer (both Orbix and
OrbixSSL installers required).

• The CORBA Add-on for Cloud, Containers & Virtual Environments ORB
HotFixes for Linux 64-bit for the ORB runtime deployed within Docker
containers (to be downloaded from Micro Focus Supportline).

• The CORBA Add-on for Cloud, Containers & Virtual Environments ORB
HotFixes for the existing ORB client machines (to be downloaded from

message URL https://www.microfocus.com/support-and-services/download/

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 23

Micro Focus Supportline). The ORB HotFixes must match the platforms
(operating system, compiler, bitness) that your ORB installations are
deployed on.

CORBA for Containers: Installed Components
Overview
The CORBA Add-on for Cloud, Containers & Virtual Environments for
Containers needs to be installed on the Docker development machine and
also on the CORBA client machines. See “CORBA for Containers: Installed
Components Overview” for a description of the process.

After you have installed the CORBA Add-on for Cloud, Containers & Virtual
Environments, the following components will have been installed in the
docker/ directory (see “Installation Footprint”):

• Dockerfiles to enable you to build Docker images:

• An operating system image base layer - the operating system base
layer is either CentOS or Ubuntu by default.

• An I-DBC image layer built on top of the operating system image. I-
DBC enables connectivity between the Docker isolated network within
the container and the outside.

• An ORB product image layer built on top of the I-DBC image layer. By
default, the ORB product can be either:

• Orbix 3

• Orbix 6

• VisiBroker

• An application image layer built on top of the ORB product image.
Several demonstration examples are provided to illustrate how to build
your own CORBA server application inside a Docker container.

• Scripts to support configuration and running of I-DBC, the ORB, and
CORBA server applications inside a Docker container.

• Enhancements and fixes to ORB products to allow them to work with I-
DBC inside a Docker container, such as the VisiBroker OSAgent relay
component.

• The I-DBC and SPS components to enable cross-containers connectivity.
These allow CORBA based clients and servers to easily communicate
across a network boundary where Network Address Translation (NAT) is
occurring.

• The Administration Console for I-DBC. This is a graphical interface for
administering I-DBC.

24 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

Docker application image layers built with these tools can be deployed and
run on any Docker host machine. CORBA server applications run inside
these containers can now be transparently accessed from CORBA clients.

The Docker product examples provide several README files that explain
how to build Docker images. Follow through the examples to gain an
understanding of how to build the Docker images and run Docker containers
using those images.

The final Docker image is composed of multiple Docker images:

Once you get a basic understanding of how to build Docker images that can
run CORBA product examples, you can follow the examples as a guide to
building a Docker image that runs your particular CORBA-based application.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 25

You replace the “product examples” image with an image that runs your
CORBA-based application.

Installation
The CORBA Add-on for Cloud, Containers & Virtual Environments for
Containers needs to be installed on the Docker development machine and
also on the CORBA client machines.

1 On the Docker development machine, run the installer selecting the
CORBA in Containers deployment scenario.

2 On the CORBA client machines, run the installer selecting the CORBA in
Containers deployment scenario to upgrade an existing ORB installation.

Installing on the Docker Development machine
To install the CORBA Add-on for Cloud, Containers & Virtual Environments
to the Docker development machine, run the installer as follows:

1 Download the installer into a temporary directory (for example, \temp on
Windows, or /tmp on UNIX).

2 Run the installer to launch InstallAnywhere.

• On Windows, mf_ccve_corba_addon_1.0_win_x64.exe

• On UNIX, mf_ccve_corba_addon_1.0_lnx_x64.bin

Installing with the GUI
To install via the GUI, run the installer as described above. The installer will
run through the following screens.

26 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

1 The License Agreement screen displays.

Read and agree the terms of the license agreement. Check I accept the
terms of the License Agreement and click Next. If you do not accept
the license, you cannot proceed further.

2 The Deployment Scenario window displays. Select CORBA® in
Containers and click Next.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 27

3 The Containers Deployment screen is displayed. Select Installing on
Docker development machine and click Next.

4 The CORBA® in Containers screen displays.

Here you can tick all, some, or none of the options presented. Select the
option for the ORB or ORBs you wish to use.

28 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

Note:

If you select no options, Docker common layers (OS layer and I-DBC
layer) are installed, giving you a starting point to develop an ORB layer
that could be built on Orbacus, JacORB or TAO or any other ORB runtime.

5 The Choose Installation Folder screen displays.

Specify your desired installation directory either by typing into the text
field or by clicking Choose to browse for it. Click Next to proceed.

6 The CORBA® Add-on License screen displays.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 29

Specify your CORBA® Add-on license file by typing the filename into the
textbox or clicking Choose to browse for it. Click Next to continue.

7 If you selected VisiBroker in step 4, the VisiBroker Installer screen
displays.

Select the location of the VisiBroker installer and the location of the
HotFix to apply in order to upgrade the VisiBroker ORB. If you have not
yet downloaded the necessary HotFix, click the Micro Focus
Supportline link provided on the screen, and download from there to
your local machine. You can now select the hotfix and proceed with the
installation. Click Next.

30 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

8 The VisiBroker License screen displays.

Enter the location of your VisiBroker license file. You can type the
filename directly into the textbox, or browse for it by clicking Choose.
Click Next to continue.

9 The Additional VisiBroker container HotFixes screen displays.

If you have HotFixes that need to be applied to the VisiBroker installation
within Docker containers, you can specify them here. Select the HotFix
and click Add if there are any more to apply. The HotFixes will be applied

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 31

in the order they are listed in the text box (top to bottom). Use the Up
and Down buttons to adjust the sequence. To specify HotFix(es), click
the Add button. When you have listed all of them in the correct order,
click Next.

10 If you selected Orbix 6 in step 4, the Orbix 6.3 Installer and License
screen displays.

Enter the locations both of the Linux 64-bit installer and of the license file
in this screen. You can type the filenames directly into the textboxes, or
browse for them by clicking Choose. Once both files have been specified,
click Next to continue.

32 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

11 If you selected Orbix 3 in step 4, the Orbix 3.3 Installer and Codes
screen displays.

Enter the locations both of the Orbix 3.3 and the OrbixSSL 3.3 Linux 64-
bit installers and of the C++ and Java license codes in this screen. You
can type the filenames directly into the textboxes, or browse for them by
clicking Choose. Once both files have been specified, click Next to
continue.

12 The Pre-Installation Summary screen displays.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 33

This screen is shown once all the required installation parameters have
been specified. Click Previous to move back through earlier panels if any
changes need to be made. Click Install to proceed with the installation.

Silent installer properties
As an alternative to the GUI installation, you can use the silent installer as
described in “Installing with the Silent Installer”.

The silent installation properties that you need to specify in this case are:

Upgrading the client side ORB installation
To upgrade the client side ORB installation, run the installer as follows:

1 Download the installer into a temporary directory (for example, \temp on
Windows, or /tmp on UNIX).

2 Run the installer to launch InstallAnywhere.

• On Windows, mf_ccve_corba_addon_1.0_win_x64.exe

• On UNIX, mf_ccve_corba_addon_1.0_lnx_x64.bin

Installing with the GUI
To install via the GUI, run the installer as described above. The installer will
run through the following screens.

1 The License Agreement screen displays, as described in the previous
procedure.

USER_INSTALL_DIR=<install location>

INSTALLER_UI=SILENT

INSTALL_CLOUD=0

INSTALL_IDBC=0

UPGRADE_ORB=0

INSTALL_CONTAINER=1

INSTALL_DOCKER=1

CCVE_LICENSE=<license.slip location>

INSTALL_VB_DOCKER=1

VISI_INSTALLER=<VB 8.5.6 Linux 64 Bit installer location>

VISI_LICENSE=<license.slip location>

VISI_CCVE_ADDON_HOTFIX=<ccve hotfix for VB 8.5.6 Linux 64 Bit location>

VISI_HOTFIX_LIST=<Comma seperated customer hotfix files location list>

INSTALL_O6_DOCKER=1

ORBIX6_INSTALLER=<Orbix 6.3.11 Linux installer location>

ORBIX6_LICENSE=<license.slip location>

INSTALL_O3_DOCKER=1

ORBIX3_INSTALLER=<Orbix 3.3.15 Linux 64 Bit installer location>

ORBIXSSL3_INSTALLER=<OrbixSSL 3.3.15 Linux 64 Bit installer location>

ORBIX3_CXX_KEY=<product code>

ORBIX3_JAVA_KEY=<product code>

34 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

2 The Deployment Scenario window displays. As in the previous
procedure, select the CORBA in Containers option and click Next.

3 The Containers Deployment screen is displayed. Select the Upgrading
an existing ORB Installation option and click Next.

4 The Upgrade ORB Installation window displays. Select the location of a
valid ORB to upgrade and press Next.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 35

5 At the next screen, specify the location of the HotFix to apply in order to
upgrade your ORB.

If you have not yet downloaded the necessary HotFix, click the Micro
Focus Supportline link provided on the screen, and download from
there to your local machine. You can now select the HotFix and proceed
with the installation.

Silent installer properties
As an alternative to the GUI installation, you can use the silent installer as
described in “Installing with the Silent Installer”.

The silent installation properties that you need to specify in this case are:

INSTALLER_UI=SILENT

INSTALL_CLOUD=0

INSTALL_IDBC=0

INSTALL_CONTAINER=1

INSTALL_DOCKER=0

UPGRADE_ORB=1

ORB_INSTALLATION=<orb install location>

CCVE_ADDON_HOTFIX=<hotfix files location>

36 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 37

Silent Installation
This chapter describes the silent installer. For further installation information,
see CORBA in the Cloud or in Virtual Environments and CORBA in Containers.

The silent installer is available for both Windows and Linux operating
systems.

Installing with the Silent Installer
As an alternative to the GUI described in CORBA in the Cloud or in Virtual
Environments and CORBA in Containers, the installation can be performed in
silent mode. A silent installation runs without user interaction, and is
typically used to automate installation across multiple machines. Instead of
specifying the installation parameters via the interface, the parameters are
stored in an installer properties file. The properties and values required will
vary greatly depending on what sort of installation you are carrying out. See
the CORBA in the Cloud or in Virtual Environments and CORBA in Containers
chapters for details of those properties.

Sample installer properties file
To perform a silent installation, you must prepare an installer properties file
that contains the required information. Each line consists of a property
name and a property value, separated by an equals sign. A line can be
commented out (or a descriptive comment added) by placing a hash mark
(#) at the start of the line. A sample file is below:

USER_INSTALL_DIR=<install location>
INSTALLER_UI=SILENT
INSTALL_CLOUD=0
INSTALL_IDBC=0
#CONFIG_IDBC_HOST=<Network Interface IP>
#CONFIG_SPS_HOST=<Network Interface IP>
UPGRADE_ORB=0
#ORB_INSTALLATION=<orb install location>
#CCVE_ADDON_HOTFIX=<hotfix files location>
INSTALL_CONTAINER=1
INSTALL_DOCKER=1
CCVE_LICENSE=<license.slip location>
INSTALL_VB_DOCKER=1
VISI_INSTALLER=<VB 8.5.6 Linux 64 Bit installer location>
VISI_LICENSE=<license.slip location>
VISI_CCVE_ADDON_HOTFIX=<ccve hotfix for VB 8.5.6 Linux 64 Bit
location>
VISI_HOTFIX_LIST=<Comma seperated customer hotfix files location
list>
INSTALL_O6_DOCKER=1
ORBIX6_INSTALLER=<Orbix 6.3.11 Linux installer location>
ORBIX6_LICENSE=<license.slip location>
INSTALL_O3_DOCKER=1
ORBIX3_INSTALLER=<Orbix 3.3.15 Linux 64 Bit installer location>
ORBIXSSL3_INSTALLER=<OrbixSSL 3.3.15 Linux 64 Bit installer
location>
ORBIX3_CXX_KEY=<product code>
ORBIX3_JAVA_KEY=<product code>

The meaning of each property is described below. In the chapters CORBA in
the Cloud or in Virtual Environments and CORBA in Containers, the descriptions of
each installation scenario set out which properties require which values.

38 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

Note that for Windows directory paths, the backslash directory separator
must be escaped and specified by using $ and /. This is required by
InstallAnywhere. For example:
USER_INSTALL_DIR=C:$/$MainDirectory$/$SubDirectory$/$CCVE

Property name Description

USER_INSTALL_DIR Specifies the target directory for the installation.

INSTALLER_UI Specifies the type of installation. For a silent installation, this must
have the value silent.

INSTALL_CLOUD Specifies whether the Cloud and Virtual Environments installer
scenario will be used (1) or not (0).

INSTALL_CONTAINER Specifies whether the Container installer scenario will be used (1) or
not (0).

INSTALL_IDBC Specifies whether IDBC/SPS/CLI servcies will be installed (1) or not
(0). Used only with INSTALL_CLOUD=1.

CONFIG_IDBC_HOST Specifies the IP address to use for the I-DBC service, if there is more
than one possible on the I-DBC host. Used only with INSTALL_IDBC=1
on Linux platforms.

CONFIG_SPS_HOST Specifies the IP address to use for the SPS service, if there is more
than one possible on the I-DBC host. Used only with INSTALL_IDBC=1
on Linux platforms.

CCVE_LICENSE Specifies the location of the CCVE license file. Used with
INSTALL_IDBC=1 on Linux platforms or INSTALL_DOCKER=1.

UPGRADE_ORB Specifies whether an existing Orbix6, Orbix3 or VisiBroker 8.5
installation will be upgraded (1) or not (0). Only to be used with
INSTALL_IDBC=0 and INSTALL_DOCKER=0.

ORB_INSTALLATION Specifies the location of the existing CORBA product to be upgraded.
Used only with UPGRADE_ORB=1.

CCVE_ADDON_HOTFIX Specifies the location of the product-specific CCVE hotfix available
from Micro Focus Support. Used only with UPGRADE_ORB=1.

INSTALL_DOCKER Specifies whether Docker examples will be installed (1) or not (0).
Used only with INSTALL_CONTAINER=1.

INSTALL_VB_DOCKER Specifies whether the Docker examples for VisiBroker will be installed
(1) or not (0).

VISI_INSTALLER Specifies the location of the VisiBroker installer binary. Used only with
INSTALL_VB_DOCKER=1.

VISI_LICENSE Specifies the location of the VisiBroker license file. Used only with
INSTALL_VB_DOCKER=1.

VISI_CCVE_ADDON_HOTFIX Specifies the location of the CCVE Linux hotfix for VisiBroker avaible
from Micro Focus Support. Used only with INSTALL_VB_DOCKER=1.

VISI_HOTFIX_LIST Specifies the list of VisiBroker hotfix files, separated by commas.
Used only with INSTALL_VB_DOCKER=1.

INSTALL_O6_DOCKER Specifies whether the Docker examples for Orbix 6 will be installed
(1) or not (0).

ORBIX6_INSTALLER Specifies the location of the Orbix 6 installer binary. Used only with
INSTALL_O6_DOCKER=1.

ORBIX6_LICENSE Specifies the location of the Orbix 6 license file. Used only with
INSTALL_O6_DOCKER=1.

INSTALL_O3_DOCKER=1 Specifies whether the Docker examples for Orbix 3 will be installed
(1) or not (0).

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 39

Performing a silent installation
To perform a silent installation, specify silent mode by using the -i switch
on the command line.

• Windows: mf_ccve_corba_addon_1.0_win_x64.exe -i silent

• Linux: mf_ccve_corba_addon_1.0_lnx_x64.bin -i silent

If the installer properties file is named installer.properties and is in
the current directory, it will be automatically picked up. To specify a file with
a different filename or in a different location, use the -f command line
switch.

• Windows: mf_ccve_corba_addon_1.0_win_x64.exe -i silent
-f c:\corba\installer_win.properties

• Linux: mf_ccve_corba_addon_1.0_lnx_x64.bin -i silent
-f /home/users/corba/installer_linux.properties

ORBIX3_INSTALLER Specifies the location of the Orbix 3 installer binary. Used only with
INSTALL_O3_DOCKER=1.

ORBIXSSL3_INSTALLER Specifies the location of the Orbix 3 SSL installer binary. Used only
with INSTALL_O3_DOCKER=1.

ORBIX3_CXX_KEY Specifies the C++ authentication key for Orbix 3. Used only with
INSTALL_O3_DOCKER=1.

ORBIX3_JAVA_KEY Specifies the Java authentication key for Orbix 3. Used only with
INSTALL_O3_DOCKER=1.

Property name Description

40 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 41

Installing the SPS Client
The SPS Client is a command line interface to the Security Policy Server (SPS).
The SPS Client can be used to configure the SPS or to obtain state information
about the SPS.

Installing the SPS Client
Note that the SPS Client can only be installed on Linux systems.

All files are placed in the directory /opt/microfocus/cli.

Install the package by typing:
rpm -ivh /cdrom/linux/resources/Microfocus_CLI-4.0.0-<x>i386.rpm

If you want to install into a different directory use the --prefix option (not
possible using RPM 4.0, for example RedHat 8.0):

rpm -ivh --prefix /different_directory ...

For more information about the installed package, such as the date of
installation, the version number, etc., use the command:

rpm -q -i Microfocus_CLI

Installation Overview
The SPS Client installation directory contains the following:

Directory Description

env.sh Source this script to set the appropriate shell
environment (bash and sh) for DBC commands.

env.csh Source this script to set the appropriate shell
environment (csh and tcsh) for DBC commands.

bin/ Contains the binaries.

bin/cliconfig.sh Shell script to configure the SPS Client.

bin/collectperfdata.sh Shell script for collecting performance data (see also
“Performance Monitoring” in the I-DBC Deployment
Guide).

bin/dbcstat Tool to find out the status of the DBC.

bin/deploydominoior.sh Shell script to deploy a domino IOR.

bin/der2pem.sh Shell script to convert key and certificate files from
DER to PEM encoding.

bin/generateior Shell script to generate an IOR.

bin/listconnections.sh A helper script to view all connections on a single DBC.

bin/openssl Tool to create keys and certificates

bin/printcert.sh Tool for checking the validity of certificates.

bin/printior Tool for printing an IOR in a readable way.

bin/proxifyior.sh Tool to proxify an IOR.

bin/showciphers.sh Script to display a list of cipher suite presets offered by
the DBC.

Table 1 Contents of the SPS Client installation directory

42 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

After Installation

Configuring the SPS Client
Use the script <installdir>/bin/cliconfig.sh to configure the SPS
Client, that is, to give the script the host and port of the Security Policy
Server. The script can be given the following arguments:

 ./cliconfig.sh [-h][-b] [-i <address>] [-p <port>]
[-s yes|no] [-n <cluster>]

-h prints a help message

-b batch mode, do not ask for confirmation

-i <address> This is the IP address of SPS to contact. The default
address is 127.0.0.1

-p <port> This is the port of SPS to contact. The default port is
15000.

-s yes|no If you choose “yes” IIOP/SSL will be used to contact the
SPS. If you choose “no” plain IIOP will be used to contact the
SPS. The default is yes.

-n <cluster> name of the DBC cluster. The default name is
iDBCProxyCluster1.

If your SPS is for example running on a host with the IP address
192.168.47.11 with the default management port 15000, type:

./cliconfig.sh -i 192.168.47.11

bin/spsclient The SPS Client executable.

bin/spscli.sh Script to start the SPS Client.

bin/xtradyne.sh Collection of common settings. This is sourced by all
other scripts.

lib/ Dynamic libraries for the SPS Client.

adm/ Contains configuration information and keys.

Directory Description

Table 1 Contents of the SPS Client installation directory

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 43

Installing Keys and Certificates
If SSL is used on the management connection, you need to install the
proper keys and certificates for the SPS Client installation:

1 Copy the file <installdir>/sps/adm/AdminConsoleKeys.tar from
the SPS host to the directory <installdir>/cli/adm on the host where
the SPS Client will be running.

2 On the SPS Client host change to directory <installdir>/cli/adm and
unpack the tar file:

tar xvfp AdminConsoleKeys.tar

3 Create symbolic links as follows:
ln -sf AdminConsoleKey.der SPSClientKey.der
ln -sf AdminConsoleCert.der SPSClientCert.der

4 Make sure that key files are owned by user corba:
chown corba *.der

44 CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 45

Docker Toolbox and IP
Addresses

Introduction
Docker for Windows systems can be one of:

• Docker Desktop for Windows

• Docker Toolbox

If your Windows system does not meet the requirements for Docker
Desktop for Windows, then you can use the Docker Toolbox.

A component of the Docker Toolbox is the Docker Quickstart terminal. When
running this terminal, a message similar to the following may appear on the
screen:

docker is configured to use the default machine with
IP 192.168.99.100

IP address 192.168.99.100 is most likely not the IP address of your
Windows system. It is an IP address used by the Oracle VM VirtualBox,
which is another component of the Docker Toolbox.

When running a Docker container, the IP address of the Windows system
hosting the container is passed as an environment variable:

--env MF_HOST_IP=192.168.99.100

Using the IP address displayed in the Docker Quickstart terminal
(192.168.99.100) can pose challenges when running an application inside a
Docker container. I-DBC inside the container will use IP address
192.168.99.100 when it proxifies an IOR.

For clients running outside the Docker container that use the proxified IOR
to make invocations on the server running inside the Docker container:

• The invocation will succeed if you run the client on the same Windows
system that is hosting the Docker container.

• The invocation will most likely fail if you run the client on a different
system from the one hosting the Docker container. IP address
192.168.99.100 is probably not a known IP address to your network.

Using the IP Address of the Windows System
Rather than passing IP address 192.168.99.100 as an environment variable
into the Docker container, we recommend that you use the IP address of
the Windows system itself.

Pass the IP address of your Windows system as an environment variable
when starting the Docker container, using the command:

--env MF_HOST_IP=<ip_addr>

For example:

--env MF_HOST_IP=10.16.16.120

I-DBC will then proxify IORs using the IP address passed, in this example
10.16.16.120. Client invocations using this IOR will still fail, however.

46 CORBA Add-on for Cloud, Containers & Vir tual Environments

In order to be able to use the IP address of the Windows system, you can
configure port forwarding can be configured in the Oracle VM VirtualBox.

Configure Oracle VM VirtualBox Port Forwarding
Before configuring port forwarding, compile a list of all the published ports
used when running Docker containers.

The CORBA Add-on for Cloud, Containers & Virtual Environments samples
publish the following ports when running Docker containers:

Your application may use ports in addition to or instead of these ports. Be
sure to note all of them.

Once a list of all the ports that require forwarding is made, configure the
Oracle VM VirtualBox.

Clicking this displays the Oracle VM VirtualBox Manager window.

Port Description

3000 Insecure port

3001 Insecure port

3002 Insecure port

8885 Secure port

Double-click Oracle VM VirtualBox on
your Windows system desktop

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 47

Click Settings. The default-Settings window displays.

Click Network.

48 CORBA Add-on for Cloud, Containers & Vir tual Environments

On the Adapter1 tab, click Advanced.

Click Port Forwarding.

Use the + icon on the right-hand side of the Port Forwarding Rules
window to add rows and build up a table similar to the one below, based on
the list of ports that require port forwarding.

The Name column should provide a descriptive name of the port being
forwarded.

If you wish to give the Administration Console access to the I-DBC Security
Policy Server (SPS) running inside a Docker container on port 15000, add
an entry as follows:

Name Protocol Host IP Host Port Guest IP Guest Port

… … … … … …

IDBC_15000 TCP 15000 15000

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 49

Once all possible ports that Docker containers might publish are configured
into the Port Forwarding rules, the IP address of the Windows system
(rather than the IP address of the Oracle VM VirtualBox) can be passed as
the MF_HOST_IP environment variable when running Docker containers.

50 CORBA Add-on for Cloud, Containers & Vir tual Environments

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 51

 Common Docker Images
In Object Oriented Programming, a class is the “blueprint” used to create an
instance of an object. Similarly in Docker, a Docker image is the blueprint
used to create an instance of a Docker container.

Classes can also inherit from other classes, providing a “building block”
approach to creating classes. Similarly, Docker allows images to be created
from other images using the same “building block” approach.

The next few chapters describe the fundamental Docker images required for
using CORBA-based applications in a Docker environment. This chapter
focuses on the operating system Docker image and the I-DBC Docker image.
This chapter assumes that the CORBA Add-on for Cloud, Containers &
Virtual Environments product is installed at <installdir>. See CORBA in
Containers for instructions on installing the CORBA Add-on for Cloud,
Containers & Virtual Environments.

The paths and commands given here assume installation on a Linux
machine. If you are using a Windows machine, adjust the paths and
commands to suit Windows.

The Docker Images
Docker images are built upon each other as follows:

The foundation image is the operating system Docker image. Currently two
operating systems are supported:

• CentOS

• Ubuntu

The I-DBC Docker image is built on top of the operating system Docker
image. I-DBC is an application that facilitates crossing network boundaries
for CORBA-based applications.

The ORB Docker image is built on top of the I-DBC Docker image. The ORB
Docker image contains one of the following CORBA products:

• Orbix 3

• Orbix 6

52 CORBA Add-on for Cloud, Containers & Vir tual Environments

• VisiBroker

The CORBA-based application Docker image is built on top of the ORB
Docker image. It contains the CORBA based application that you wish to run
inside a Docker container.

Dockerfiles
Docker images are defined by Dockerfiles. Dockerfiles consist of a set of
instructions. Some common instructions are:

• FROM: Specifies the Docker image that this particular Dockerfile is based
on.

• RUN: Execute a command as part of the Docker image creation.

• COPY: Copy a file into the Docker image.

• ENV: Define an environment variable.

The docker build command is used to create a Docker image from a
Dockerfile.

The Operating System Docker Image
The operating system Docker image is the foundation upon which all other
Docker images are built.

It is good practice is to make this image as lightweight as possible by
creating the smallest image possible that is still capable of running your
CORBA based application.

Currently two operating systems are supported:

• CentOS

• Ubuntu

The Dockerfile for CentOS
The Dockerfile for the CentOS Docker image can be found at
<installdir>/docker/common/centos_layer/Dockerfile.

It looks as follows:
Our image is based on the official CentOS Docker image
FROM centos

We also install some essential tools as well as OpenJDK
RUN yum install -y iproute initscripts
RUN yum install -y net-tools
RUN yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
RUN yum group install -y "Development Tools"

ENV JAVA_HOME /usr/lib/jvm/java

The Dockerfile is based on the CentOS Docker image, as indicated in the
FROM command. This is a 64-bit version of the operating system. Multiple
RUN commands install tools needed to run I-DBC and a CORBA ORB. One of
the tools installed is an OpenJDK 8, and an environment variable is set to
indicate its location.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 53

Building the CentOS Operating System Docker Image
In a window that supports Docker commands, use the following to build the
CentOS operating system Docker image. You will need access to the
internet for this command to work correctly:

cd <installdir>/docker/common/centos_layer
docker build -t base-os-layer .

Note:

The '.' character is an essential part of the “docker build” command.

This Docker image is given the name base-os-layer. The I-DBC Docker
image will build on top of this image.

The Dockerfile for Ubuntu
If you prefer, you can use Ubuntu instead of CentOS in the operating
system Docker image. The Dockerfile for the Ubuntu Docker image can be
found at <installdir>/docker/common/ubuntu_layer/Dockerfile.

It looks as follows:
This image is based on the ubuntu Docker image
FROM ubuntu
ENV DEBIAN_FRONTEND=noninteractive

We also install some essential tools as well as OpenJDK
RUN apt-get update
RUN apt-get install -y openjdk-8-jdk
RUN apt-get install -y iproute2 net-tools iputils-ping
RUN apt-get install -y gcc mono-mcs
RUN ln -s /usr/bin/make /usr/bin/gmake
RUN ln -s /usr/lib/jvm/java-1.8.0-openjdk-amd64 /usr/lib/jvm/java

ENV JAVA_HOME /usr/lib/jvm/java-1.8.0-openjdk-amd64

The Dockerfile is based on the Ubuntu Docker image, as indicated in the
FROM command. This is a 64-bit version of the operating system. Multiple
RUN commands install tools needed to run I-DBC and a CORBA ORB. One of
the tools installed is an OpenJDK 8, and an environment variable is set to
indicate its location.

Building the Ubuntu Operating System Docker Image
In a window that supports Docker commands, use the following to build the
Ubuntu operating system Docker image. You will need access to the
internet for this command to work correctly:

cd <installdir>/docker/common/ubuntu_layer
docker build -t base-os-layer .

Note:

The '.' character is an essential part of the “docker build” command.

This Docker image is given the name base-os-layer. The I-DBC Docker
image will build on top of this image.

54 CORBA Add-on for Cloud, Containers & Vir tual Environments

The I-DBC Docker Image
The I-DBC Docker image is built upon the operating system Docker image
built according to the instructions above, with the image name base-
os_layer.

See the I-DBC Administrator's Guide for detailed information on I-DBC.

Running CORBA-based applications inside a Docker container poses
challenges where the network running inside a Docker container is often
distinct from, and unknown to, the general network outside the Docker
container.

The following diagram illustrates the point, using some example IP
addresses.

A CORBA-based application running inside the Docker container in the
diagram above will publish IORs with an IP address of 172.17.0.2. A client
application running outside the Docker container will likely be unable to use
an IOR with an IP address of 172.17.0.2.

I-DBC can help with this issue. I-DBC will run inside the container along
with the CORBA based application. I-DBC is aware of both the network
hosting the Docker container (the machine with IP address 10.16.16.156)

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 55

and the network inside the Docker container (the container with IP address
172.17.0.2).

When the application publishes an IOR, I-DBC can be used to “proxify” the
IOR. This means that I-DBC transforms the original IOR into a new IOR,
replacing information such as the hostname (IP address 172.17.0.2 in the
diagram above) and port with a hostname (IP 10.16.16.156 in the diagram
above) and port of the machine hosting the Docker container.

The proxified IOR can be used successfully by clients as the IP address in
the proxified IOR is a “known” address on the network.

I-DBC:

• Receives client invocations,
• Passes them along to the CORBA-based application running inside the

container,
• Receive any replies from the application,
• Passes them back to the client.

56 CORBA Add-on for Cloud, Containers & Vir tual Environments

The Dockerfile for I-DBC
The Dockerfile for the I-DBC Docker image can be found at:
<installdir>/docker/common/idbc_layer/Dockerfile

It looks as follows:

Docker image is based on the previous platform image
FROM base-os-layer:latest

Pre-Installation User Setup
RUN groupadd --gid 1024 corbagroup
RUN useradd -ms /bin/bash -g corbagroup corba

ENV DBC_USER corba
ENV PRODUCT_HOME /home/corba/microfocus/idbc

RUN mkdir -p $PRODUCT_HOME
RUN chown -R corba:corbagroup /home/corba
USER corba

ENV PRODUCT_USER corba
ENV COUNTRY uk
ENV COMPANY microfocus
COPY entrypoint_common.sh /home/corba/entrypoint_common.sh

Install the SPS and run its setup scripts
COPY microfocus_SPS-4.0.0.tar.gz $PRODUCT_HOME/microfocus_SPS-4.0.0.tar.gz
COPY microfocus_CLI-4.0.0.tar.gz $PRODUCT_HOME/microfocus_CLI-4.0.0.tar.gz
COPY microfocus_IDBC-4.0.0.tar.gz $PRODUCT_HOME/microfocus_IDBC-4.0.0.tar.gz
COPY mf_idbc_install.sh $PRODUCT_HOME/mf_idbc_install.sh
COPY idbc_license.slip $PRODUCT_HOME/license.slip
WORKDIR $PRODUCT_HOME/
RUN /bin/bash $PRODUCT_HOME/mf_idbc_install.sh install
RUN /bin/bash $PRODUCT_HOME/mf_idbc_install.sh configure
#
Install IDBC and get the contents of ProxyKeys from the SPS

ENV IDBC_PRODUCT_DIR $PRODUCT_HOME

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 57

The Dockerfile is based on the base-os-layer:latest Docker image, as
indicated by the FROM command. This was the operating system Docker
image created in “The Operating System Docker Image”.

There are several important things to note.

User ID
The RUN command is used to create a group and user ID as follows:

• Group: corbagroup

• User ID: corba

The ENV command sets the DCB_USER variable to “corba”, and the
PRODUCT_HOME variable to the I-DBC installation directory.

The RUN command is used to create the I-DBC installation directory, and to
recursively change ownership of user corba's home directory to user
corba.

The USER command sets the user to corba.

All further Docker commands, and all applications run inside Docker
containers, will now be run as user corba, assuming that no Dockerfiles
built upon the Dockerfile for I-DBC specify a different user with the USER
command.

I-DBC Environment Variables
The ENV command sets these variables:

• PRODUCT_USER to corba, indicating that I-DBC is to run as user corba.

• COUNTRY to UK, which will be used when generating certificates.

• COMPANY to microfocus, which will be used when generating certificates.

Common Entrypoint Helper Script
The COPY command is used to copy the file entrypoint_common.sh to the
directory /home/corba/entrypoint_common.sh.

This file contains helper functions to do things such as:

• Set configuration items for I-DBC
• Start I-IDBC
• Check the running status of I-DBC
• Proxify an IOR
• Start a CORBA server application

These functions are used in the various examples found in:

<installdir>/docker/orbix3/application_layer
<installdir>/docker/orbix6/application_layer
<installdir>/docker/visibroker/application_layer

The entrypoint scripts for the various examples illustrate how to make use
of these functions.

When creating your own CORBA based application running inside of a
Docker container, you can:

• Use the functions in entrypoint_common.sh as illustrated in the various
example entrypoint scripts, if they satisfy the requirements of your
application.

• Add or update functions in entrypoint_common.sh to suit the
requirements of your application.

58 CORBA Add-on for Cloud, Containers & Vir tual Environments

• Provide your own mechanism to do the equivalent of what
entrypoint_common.sh does.

Install I-DBC
The COPY command is used to copy the I-DBC installation files. The installer
files are:

• microfocus_SPS-4.0.0.tar.gz: Installs a 64-bit version of the
Security Policy Server

• microfocus_CLI_4.0.0.tar.gz: Installs a 64-bit version of the
Security Policy Server client

• microfocus_IDBC-4.0.0.tar.gz: Installs a 64-bit version of the I-DBC
proxy

• mf_idbc_install.sh: Install and configuration script

• idbc_license.slip: A license needed to run I-DBC

The RUN command is used to run the mf_idbc_install.sh script to install
and configure I-DBC.

The ENV command sets the DCB_USER variable to “corba”, and the
PRODUCT_HOME variable to the I-DBC installation directory.

Building the I-DBC Docker Image
In a window that supports Docker commands, use the following to build the
I-DBC Docker image:

cd <installdir>/docker/common/idbc_layer
docker build -t idbc-layer .

Note:

The '.' character is an essential part of the docker build command.

This Docker image is given the name idbc-layer. The various ORB Docker
images will build on top of this image.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 59

The Orbix 3 Docker Image
This chapter describes the Orbix 3 ORB Docker image.

The Orbix 3 Docker Image

The Orbix 3 Docker image is built upon the I-DBC Docker image, which is in
turn built upon the operating system Docker image.

This chapter assumes that the CORBA Add-on for Cloud, Containers &
Virtual Environments product is installed at <installdir>.

Paths and commands given in this chapter assume installation on a Linux
machine. If using a Windows machine, adjust the paths and commands to
suit Windows.

The Dockerfile for Orbix 3
The Dockerfile for the Orbix 3 Docker image can be found at
<installdir>/docker/orbix3/orb_base_layer/Dockerfile.

It looks as follows:
FROM idbc-layer

Pre-Installation User Setup
USER corba
run mkdir -p /home/corba/microfocus/orbix/orbix33
ENV CORBA_PRODUCT_DIR /home/corba/microfocus/orbix/orbix33

Copy the Orbix 3 installer files
COPY microfocus_orbix3_lnx.bin ${CORBA_PRODUCT_DIR}/
microfocus_orbix3_lnx.bin
COPY microfocus_orbix3_ssl_lnx.bin ${CORBA_PRODUCT_DIR}/
microfocus_orbix3_ssl_lnx.bin
COPY installer.properties ${CORBA_PRODUCT_DIR}/
installer.properties

Install Orbix 3
RUN ${CORBA_PRODUCT_DIR}/microfocus_orbix3_lnx.bin -f
${CORBA_PRODUCT_DIR}/installer.properties
RUN ${CORBA_PRODUCT_DIR}/microfocus_orbix3_ssl_lnx.bin -f
${CORBA_PRODUCT_DIR}/installer.properties

60 CORBA Add-on for Cloud, Containers & Vir tual Environments

Add the entrypoint_helper script
COPY entrypoint_helper_o3.sh /home/corba/

Create location for proxified IOR's to go
RUN mkdir -p /home/corba/proxified_iors

Ready to work
WORKDIR ${CORBA_PRODUCT_DIR}

The Dockerfile is based on the idbc-layer Docker image, as indicated by
the FROM instruction. This image was the I-DBC Docker image created in the
steps outlined in the “Common Docker Images” chapter.

User ID
Note that the USER instruction indicates that all further Docker commands,
and all applications that are run inside Docker containers created from this
image, will now be run as user corba (unless any Dockerfiles built upon the
Dockerfile for Orbix 3 specify a different user with the USER instruction).

Installing Orbix 3
The Dockerfile creates the directory path /home/corba/microfcous/
orbix/orbix33, which is where Orbix 3 will be installed.

The following files are copied:

• microfocus_orbix3_lnx.bin: The Orbix 3 installer for Linux

• microfocus_orbix3_ssl_lnx.bin: The Orbix 3 SSL installer for Linux

• installer.properties: The silent installer file

The RUN instruction runs the Orbix 6 installer, referencing the silent installer
file.

Orbix 3 Entrypoint Helper Script
The COPY instruction is used to copy the file entrypoint_helper_o3.sh to
the directory /home/corba.

The file entrypoint_helper_o3.sh includes methods that are found in the
separate file entrypoint_common.sh, which was installed as part of the I-
DBC Docker image.

This file contains helper function run_securely, which is used to indicate
that Orbix 3 is running in secure mode.

The functions in entrypoint_helper_o3.sh and entrypoint_common.sh
are used in the various demos found in:

<installdir>/docker/orbix3/application_layer

The entrypoint scripts for the various demos illustrate how to make use of
these functions.

When creating your own CORBA based application running inside a Docker
container, you can:

• Use the functions in entrypoint_helper_o3.sh and
entrypoint_common.sh as illustrated in the various example entrypoint
scripts, if they satisfy the requirements of your application.

• Add or update functions in entrypoint_helper_o3.sh and
entrypoint_common.sh to suit the requirements of your application.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 61

• Provide your own mechanism to do the equivalent of what
entrypoint_helper_o6.sh and entrypoint_common.sh do.

Proxified IOR Location
The RUN instruction makes a directory called /home/corba/
proxified_iors. When using functions from entrypoint_helper_o6.sh
and entrypoint_common.sh to proxify IORs, they will be written to this
directory.

Building the Orbix 3 Docker Image
In a window that supports Docker commands, use the following to build the
Orbix 3 Docker image:

cd <installdir>/docker/orbix3/orb_base_layer
docker build -t orbix3-idbc-layer .

Note:

The '.' character is an essential part of the "docker build" command.

The Docker image is given the name orbix3-idbc-layer. All the Orbix 3
demo Docker images in <installdir>/docker/orbix3/
application_layer are built on top of this image.

As illustrated in the demos, your CORBA-based application would create a
Docker image based on the orbix3-idbc-layer image as well, following a
pattern similar to what is done for each demo.

62 CORBA Add-on for Cloud, Containers & Vir tual Environments

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 63

The Orbix 6 Docker Image
This chapter describes the Orbix 6 ORB Docker image.

The Orbix 6 Docker Image

The Orbix 6 Docker image is built upon the I-DBC Docker image, which is in
turn built upon the operating system Docker image.

This chapter assumes that the CORBA Add-on for Cloud, Containers &
Virtual Environments product is installed at <installdir>.

Paths and commands given in this chapter assume installation on a Linux
machine. If using a Windows machine, adjust the paths and commands to
suit Windows.

The Dockerfile for Orbix 6
The Dockerfile for the Orbix 6 Docker image can be found at
<installdir>/docker/orbix6/orb_base_layer/Dockerfile.

It looks as follows:
FROM idbc-layer

Pre-Installation User Setup
USER corba
RUN mkdir -p /home/corba/microfocus/orbix/etc/bin
ENV IT_PRODUCT_DIR /home/corba/microfocus/orbix

Install Orbix 6
COPY microfocus_orbix6_lnx.bin ${IT_PRODUCT_DIR}/
microfocus_orbix6_lnx.bin
COPY installer.properties ${IT_PRODUCT_DIR}/installer.properties
RUN ${IT_PRODUCT_DIR}/microfocus_orbix6_lnx.bin -i silent -f
${IT_PRODUCT_DIR}/installer.properties

Copy the Orbix 6 License file into the install etc directory
COPY licenses.txt ${IT_PRODUCT_DIR}/etc/licenses.txt

ENV IT_LICENSE_FILE ${IT_PRODUCT_DIR}/etc/licenses.txt

Add the entrypoint_helper script

64 CORBA Add-on for Cloud, Containers & Vir tual Environments

COPY entrypoint_helper_o6.sh /home/corba/

Create location for proxified IOR's to go
RUN mkdir /home/corba/proxified_iors

Allows for Java builds using "itant"
#
ENV IT_DOMAIN_NAME orbix6_domain
COPY build_env.sh /home/corba/

Ready to work
WORKDIR ${IT_PRODUCT_DIR}

The Dockerfile is based on the idbc-layer Docker image, as indicated by
the FROM instruction. This image was the I-DBC Docker image created in the
steps outlined in the “Common Docker Images” chapter.

User ID
Note that the USER instruction indicates that all further Docker commands,
and all applications that are run inside Docker containers created from this
image, will now be run as user corba (unless any Dockerfiles built upon the
Dockerfile for Orbix 6 specify a different user with the USER instruction).

Installing Orbix 6
The Dockerfile creates a directory path and sets the IT_PRODUCT_DIR
environment variable to /home/corba/microfcous/orbix, which is where
Orbix 6 will be installed.

The following files are copied:

• microfocus_orbix6_lnx.bin: The Orbix 6 installer for Linux

• installer.properties: The silent installer file

The RUN instruction runs the Orbix 6 installer, referencing the silent installer
file.

An Orbix 6 license file is copied, and the IT_LICENSE_FILE environment
variable is set to point to its location.

Orbix 6 Entrypoint Helper Script
The COPY instruction is used to copy the file entrypoint_helper_o6.sh to
the directory /home/corba.

The file entrypoint_helper_o6.sh includes methods that are found in the
separate file entrypoint_common.sh, which was installed as part of the I-
DBC Docker image.

This file contains helper functions to do things such as:

• Get an IOR from an Orbix 6 configuration file

• Proxify an IOR from an Orbix 6 configuration file

• Run an Orbix 6 deployment

• Start Orbix 6 services

These functions are used in the various demos found in:

<installdir>/docker/orbix6/application_layer

The entrypoint scripts for the various demos illustrate how to make use of
these functions.

When creating your own CORBA based application running inside a Docker
container, you can:

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 65

• Use the functions in entrypoint_helper_o6.sh as illustrated in the
various example entrypoint scripts, if they satisfy the requirements of
your application.

• Add or update functions in entrypoint_helper_o6.sh to suit the
requirements of your application.

• Provide your own mechanism to do the equivalent of what
entrypoint_helper_o6.sh does.

Proxified IOR Location
The RUN instruction makes a directory called /home/corba/
proxified_iors. When using functions from entrypoint_helper_o6.sh
and entrypoint_common.sh to proxify IORs, they will be written to this
directory.

Orbix 6 Domain Name
The ENV instruction is used to set the IT_DOMAIN_NAME environment
variable to the value orbix6_domain.

When building and running the Orbix 6 demos in <installdir>/docker/
orbix6/application_layer, the domain name will be assumed to be
orbix6_domain.

Build Script
The file build_env.sh is copied into the directory /home/corba. This
script allows for building Orbix 6-based applications before a deployment is
performed.

Building the Orbix 6 Docker Image
In a window that supports Docker commands, use the following to build the
Orbix 6 Docker image:

cd <installdir>/docker/orbix6/orb_base_layer
docker build -t o6-idbc-layer .

Note:

The '.' character is an essential part of the "docker build" command.

The Docker image is given the name o6-idbc-layer. All the Orbix 6 demo
Docker images in -3.2-<x>/docker/orbix6/application_layer are
built on top of this image.

As illustrated in the demos, your CORBA-based application would create a
Docker image based on the o6-idbc-layer image as well, following a
pattern similar to what is done for each demo.

66 CORBA Add-on for Cloud, Containers & Vir tual Environments

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 67

Creating Orbix 6
Deployment Descriptors
This chapter describes how to create deployment descriptors for Orbix 6-
based applications.

Introduction
When developing applications based on Orbix 6, one of the development
steps is to perform an Orbix 6 deployment. The items generated by the
deployment process include:

• A configuration file. It can be file based, or a Configuration Repository
(CFR).

• Log files for deployed services.

• Database files for the IMR, and potentially other Orbix 6 services.

• A deployment descriptor.

See the Orbix 6 Deployment Guide for further information on
deployment.

Orbix 6-based applications running inside a Docker container will require
deployment. Deployments inside Docker containers will use a deployment
descriptor. This chapter explains how to create this deployment descriptor
by using the supplied Orbix 6 basic log demo as an example.

This chapter assumes that:

• Orbix 6 is installed outside of Docker at <orbix6dir>.

• The CORBA Add-on for Cloud, Containers & Virtual Environments is
installed at <installdir>.

• Paths and commands given in this chapter assume installation on a Linux
machine. If using a Windows machine, adjust the paths and commands
to suit Windows.

Note that the basic log demo exists in two places:

• The demo supplied with Orbix 6 at <orbix6dir>/asp/6.3/demos/
corba/enterprise/basic_log. The client part of the demo is run
outside Docker from here.

• The demo supplied with the CORBA Add-on for Cloud, Containers & Virtual
Environments at <installdir>/docker/orbix6/application_layer/
basic_log_demo_cxx. The server part of the demo is run inside Docker
from here.

68 CORBA Add-on for Cloud, Containers & Vir tual Environments

The Basic Log Demo
This demo creates a Docker image built upon the o6-idbc-layer Docker
image.

The Dockerfile for the demo looks as follows:
Dockerfile for the basic_log demo
#
Use o6-idbc-layer as the base layer for this image.
To create the Docker image for this demo run:
#
docker build -t orbix6_application:latest .
#
FROM o6-idbc-layer

WORKDIR ${IT_PRODUCT_DIR}
ENV TEST_DIR ${IT_PRODUCT_DIR}/asp/6.3/demos/corba/enterprise/
basic_log/simple/cxx_demo

Build the basic_log demo inside the image
#
RUN . /home/corba/build_env.sh && cd ${TEST_DIR} && make -e

Add the deployment descriptor file to the image
#
COPY ${IT_DOMAIN_NAME}_dd.xml ${IT_PRODUCT_DIR}/etc/
${IT_DOMAIN_NAME}_dd.xml

Add the entrypoint.sh file to the image
#
COPY entrypoint.sh ${TEST_DIR}

When a Docker container is started using this image, run this
script
#
ENTRYPOINT ${TEST_DIR}/entrypoint.sh

When creating a Docker image from this Dockerfile:

• The Orbix 6 basic log xx demo is built.

• Files orbix6_domain_dd.xml and entrypoint.sh are copied.

• The ENTRYPOINT instruction indicates that the entrypoint.sh script is
to be run when a Docker container is started using this image.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 69

File <installdir>/docker/orbix6/application_layer/
basic_log_demo_cxx/README_CXX.txt has instructions on how to run
this demo.

Deployment inside a Docker Container
The file entrypoint.sh calls the function deploy_orbix6_if_needed,
which is part of entrypoint_helper_o6.sh. This function will perform a
deployment if no prior deployment is detected.

It runs the Orbix itconfigure tool in command line mode and takes
deployment descriptor orbix6_domain_dd.xml as input. The file
orbix6_domain_dd.xml looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<dd:descriptor xmlns:dd="http://ns.iona.com/orbix/schema/dd/1.2">
 <!--This deployment descriptor version 1.2.0 has been generated
by Orbix tools-->
 <dd:configuration>
 <dd:domain>orbix6_domain</dd:domain>
 <dd:source>file</dd:source>
 <dd:location_domain>all_services.location</
dd:location_domain>
 </dd:configuration>
 <!--Concrete node information for this deployment-->
 <dd:nodes>
 <dd:node name="node1" ip="1.1.1.1" profile="node1">
 <dd:policies>
 <dd:policy name="prefer_ipv4" value="true" />
 </dd:policies>
 </dd:node>
 </dd:nodes>
 <!--The following profiles will be deployed-->
 <dd:profile id="node1">
 <dd:service name="locator" link="false">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" instrumented="false"
proxified="false" managed="false" authenticated="false"
perflog="false" dynlog="false" />
 <dd:endpoint protocol="iiop" port="3075" />
 </dd:service>
 <dd:service name="node_daemon" link="false">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" instrumented="false"
proxified="false" managed="false" authenticated="false"
perflog="false" dynlog="false" />
 <dd:endpoint protocol="iiop" port="53079" />
 </dd:service>
 <dd:service name="basic_log" link="false">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" instrumented="false"
proxified="false" managed="false" authenticated="false"
perflog="false" dynlog="false" />
 <dd:endpoint protocol="iiop" port="53093" />
 </dd:service>
 <dd:component name="demos">
 <dd:endpoint protocol="iiop" />
 </dd:component>
 </dd:profile>
</dd:descriptor>

70 CORBA Add-on for Cloud, Containers & Vir tual Environments

Creating the Deployment Descriptor
Whether running the basic log demo, or your own Orbix 6 based application
inside a Docker container, you will need to create an
orbix6_domain_dd.xml file to be used when deploying.

Use the Orbix 6 itconfigure tool in GUI mode to create the deployment
descriptor file. The descriptor file used in the basic log demo was created as
follows:

1 Open a window and set the JAVA_HOME environment variable to a JDK
that can run the Orbix 6 itconfgure tool.

2 Start the itconfigure tool.

3 Use standard mode to create a new domain named orbix6_domain. It is
important to use this name as the deployment functions in
entrypoint_helper_o6.sh are coded to use a deployment descriptor
named orbix6_domain_dd.xml. In the Configuration Domain Type"
section, choose the Select Services button.

4 Navigate through the Service Startup and Security windows. Choose
Insecure Communication.

5 Navigate through the Fault Tolerance window to the Select Services
window and check the following checkboxes:

a Location

b Node Daemon

c Basic Logging

d Demos

6 Navigate to the Confirmation and Deploying window.

7 Once deployment is complete, the Summary window appears. Press
Finish to end the deployment process. You can close the Orbix
Configuration window.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 71

The deployment descriptor file is written to
<orbix6dir>/etc/domains/orbix6_domain/orbix6_domain_dd.xml.

It will look something like:
<?xml version="1.0" encoding="UTF-8"?>
<dd:descriptor xmlns:dd="http://ns.iona.com/orbix/schema/dd/1.2">
 <!--This deployment descriptor version 1.2.0 has been generated by Orbix tools-->
 <dd:configuration>
 <dd:domain>orbix6_domain</dd:domain>
 <dd:source>file</dd:source>
 <dd:location_domain>orbix6_domain.location</dd:location_domain>
 </dd:configuration>
 <!--Concrete node information for this deployment-->
 <dd:nodes>
 <dd:node name="MY-SYSTEM" ip="10.16.16.188" profile="MY-SYSTEM">
 <dd:policies>
 <dd:policy name="prefer_ipv4" value="true" />
 </dd:policies>
 </dd:node>
 </dd:nodes>
 <!--The following profiles will be deployed-->
 <dd:profile id="MY-SYSTEM">
 <dd:service name="locator" link="false">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" instrumented="false" proxified="false"
managed="false" authenticated="false" perflog="false" dynlog="false" />
 <dd:endpoint protocol="iiop" port="3075" />
 </dd:service>
 <dd:service name="node_daemon" link="false">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" instrumented="false" proxified="false"
managed="false" authenticated="false" perflog="false" dynlog="false" />
 <dd:endpoint protocol="iiop" port="53079" />
 </dd:service>
 <dd:service name="basic_log" link="false">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" instrumented="false" proxified="false"
managed="false" authenticated="false" perflog="false" dynlog="false" />
 <dd:endpoint protocol="iiop" port="53093" />
 </dd:service>
 <dd:component name="demos">
 <dd:endpoint protocol="iiop" />
 </dd:component>
 </dd:profile>
</dd:descriptor>

Modifying the Deployment Descriptor for use with
Docker
Two lines in the generated deployment descriptor above are highlighted:

<dd:node name="MY-SYSTEM" ip="10.16.16.188" profile="MY-SYSTEM">
…
 <dd:profile id="MY-SYSTEM">

These lines have information that reflects the machine where the
deployment was run:

• The host name of the machine: MY-SYSTEM

• The IP address of the machine: 10.16.16.188

Since these values will have no meaning when the deployment descriptor is
used inside a Docker container where the host name and IP address will
almost certainly be different, you can change the two lines in the file to
more general values as follows:

 <dd:node name="node1" ip="1.1.1.1" profile="node1">
…
 <dd:profile id="node1">

72 CORBA Add-on for Cloud, Containers & Vir tual Environments

When deploying inside a Docker container, the values node1 and 1.1.1.1
will be replaced with the Docker container's actual host name and IP
address.

Creating a Deployment Descriptor for your Orbix 6-
based Application

The instructions above illustrate how the deployment descriptor for the
basic log demo was created. When considering your particular application,
you will need to consider several questions including:

• Whether to run insecurely or securely.

• Whether fault tolerance is required.

• The set of Orbix 6 services your application needs.

Once you have determined these, run the itconfigure tool as described
above, selecting the security, fault tolerance, and services as required by
your application. Be sure to use the name orbix6_domain as the domain
name if you are using the functions supplied in entrypoint_helper_o6.sh
to deploy inside Docker.

In the Dockerfile for your application, copy orbix6_domain_dd.xml into
the Docker container, to /home/corba/microfocus/orbix/
orbix6_domain_dd.xml.

Use the deploy_orbix6_if_needed function from
entrypoint_helper_o6.sh in the entrypoint script for your application to
perform the deployment.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 73

The VisiBroker Docker
Image
This chapter describes the VisiBroker ORB Docker image.

The VisiBroker Docker Image

The VisiBroker Docker image is built upon the I-DBC Docker image, which is
in turn built upon the operating system Docker image.

This chapter assumes that the CORBA Add-on for Cloud, Containers &
Virtual Environments product is installed at <installdir>.

Paths and commands given in this chapter assume installation on a Linux
machine. If using a Windows machine, adjust the paths and commands to
suit Windows.

The Dockerfile for VisiBroker
The Dockerfile for the VisiBroker Docker image can be found at
<installdir>/docker/visibroker/orb_base_layer/Dockerfile.

It looks as follows:
Based on our idbc layer
FROM idbc-layer

Pre-Installation User Setup
USER corba
RUN mkdir -p /home/corba/microfocus/Visibroker
ENV VB_INST_DIR /home/corba/microfocus/Visibroker

Install Visibroker & configure
COPY microfocus_visibroker_lnx.bin /home/corba/
microfocus_visibroker_lnx.bin
COPY silentproperties.txt /home/corba/silentproperties.txt
RUN /home/corba/microfocus_visibroker_lnx.bin -f /home/corba/
silentproperties.txt

Copy the Visibroker License file into the install directory
COPY license.slip $VB_INST_DIR/license/license.slip

74 CORBA Add-on for Cloud, Containers & Vir tual Environments

Install hotfixes on top of the installation if there are any
COPY hotfixes /home/corba/hotfixes
COPY hotfix_install_helper.sh /home/corba/
hotfix_install_helper.sh
RUN /home/corba/hotfix_install_helper.sh

Add the entrypoint_helper script
COPY entrypoint_helper_vb.sh /home/corba/

Create location for proxified IOR's to go
RUN mkdir /home/corba/proxified_iors

Ready to work
WORKDIR $VB_INST_DIR

The Dockerfile is based on the idbc-layer Docker image, as indicated by
the FROM instruction. This image was the I-DBC Docker image created in the
steps outlined in the “Common Docker Images” chapter.

User ID
Note that the USER instruction indicates that all further Docker commands,
and all applications that are run inside Docker containers created from this
image, will now be run as user corba (unless any Dockerfiles built upon the
Dockerfile for VisiBroker specify a different user with the USER instruction).

Installing VisiBroker
The Dockerfile creates the directory path /home/corba/microfocus/
Visibroker, which is where VisiBroker will be installed. The ENV instruction
sets the environment variable VB_INST_DIR to point to this directory.

The following files are copied:

• microfocus_visibroker_lnx.bin: The VisiBroker installer for Linux

• silentproperties.txt: The silent installer file

The RUN instruction runs the VisiBroker installer, referencing the silent
installer file.

The license file license.slip is copied to the VisiBroker installation
license directory.

Install HotFixes
If any HotFixes are available, they are applied by copying:

• The HotFixes directory

• The hotfix_installer_helpers.sh script

The hotfix_installer_helpers.sh script will install any HotFixes it finds
in the HotFixes directory.

VisiBroker Entrypoint Helper Script
The COPY instruction is used to copy the file entrypoint_helper_vb.sh to
the directory /home/corba.

The file entrypoint_helper_vb.sh includes methods that are found in the
separate file entrypoint_common.sh, which was installed as part of the I-
DBC Docker image.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 75

This file contains helper functions to do things such as:

• Start a VisiBroker feature

• Start a VisiBroker feature and wait for an IOR to be created

• Deploy a VisiBroker service.

The functions in entrypoint_helper_vb.sh and entrypoint_common.sh
are used in the various examples found in:

<installdir>/docker/visibroker/application_layer

The entrypoint scripts for the various examples illustrate how to make use
of these functions.

When creating your own CORBA based application running inside a Docker
container, you can:

• Use the functions in entrypoint_helper_vb.sh and
entrypoint_common.sh as illustrated in the various example entrypoint
scripts, if they satisfy the requirements of your application.

• Add or update functions in entrypoint_helper_vb.sh and
entrypoint_common.sh to suit the requirements of your application.

• Provide your own mechanism to do the equivalent of what
entrypoint_helper_vb.sh and entrypoint_common.sh do.

Proxified IOR Location
The RUN instruction makes a directory called /home/corba/
proxified_iors. When using functions from entrypoint_common.sh to
proxify IORs, they will be written to this directory.

Building the VisiBroker Docker Image
In a window that supports Docker commands, use the following to build the
VisiBroker Docker image:

cd <installdir>/docker/visibroker/orb_base_layer
docker build -t vb-idbc-layer .

Note:

The '.' character is an essential part of the "docker build" command.

The Docker image is given the name vb-idbc-layer. All the VisiBroker
example Docker images in <installdir>/docker/visibroker/
application_layer are built on top of this image.

As illustrated in the examples, your CORBA-based application would create
a Docker image based on the vb-idbc-layer image as well, following a
pattern similar to what is done for each example.

76 CORBA Add-on for Cloud, Containers & Vir tual Environments

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 77

The VisiBroker Smart Agent
Relay
This chapter describes the VisiBroker Smart Agent Relay.

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory
service. It allows client programs to locate object implementations, enabling
the client to connect to those implementations and invoke their behavior. The
Smart Agent is proprietary to VisiBroker, and so does not operate with other
ORB implementations.

For detailed information on what the Smart Agent is and how to use it, see
the VisiBroker (for C++ or Java) Developer's Guide chapter entitled
“Using the Smart Agent”.

The Smart Agent in Containerized Environments
The VisiBroker Smart Agent Relay (osarelay) enables you to use Smart
Agent in containerized environments.

The VisiBroker Smart Agent uses both UDP and TCP to communicate with
VisiBroker clients and server implementations. UDP is primarily used for
communications from clients and servers to the Smart Agent, and is
preferred to TCP because:

• UDP is very lightweight relative to TCP, minimizing network traffic
overhead.

• UDP broadcast is used to enable running Smart Agents to be
automatically discovered by clients, servers and other Smart Agents.

Although UDP is the primary transport used by the Smart Agent, TCP is
used to support the Location Service functionality (see the VisiBroker (for
C++ or Java) Developer's Guide chapter “Using the Location Service”).

However, the use of UDP is a problem in some containerized environments,
such as Docker, which do not allow UDP communications across the
container boundary. This prevents the Smart Agent from being able to
operate in these conditions. The Smart Agent Relay (osarelay) has been
developed to provide a solution for this issue.

Containers enable application environments to be isolated. Connecting
CORBA clients to services running either side of a container boundary NAT
layer (see “What is the CORBA Add-on for Cloud, Containers & Virtual
Environments”) requires the use of a proxy server, such as I-DBC, to manage
the address translation within the CORBA object references. The I-DBC is
described in the Micro Focus IIOP Domain Boundary Controller (I-
DBC) v.4.0.0 Deployment Guide.

The Smart Agent Relay (in concert with I-DBC) enables the Smart Agent to
operate across the container boundary. It does this by using CORBA to
extend Smart Agent functionality, to send CORBA messages over the
domain boundary to another Smart Agent relay. This in turn enables
external Smart Agents to talk to internal containerized Smart Agents.

The Smart Agent Relay has been designed to complement Smart Agent in
such a way as to be installable non-intrusively along with existing VisiBroker
implementations.

78 CORBA Add-on for Cloud, Containers & Vir tual Environments

Topology of the Smart Agent Relay
The diagram below shows a typical topology of a containerized application
that can be invoked upon from outside the container. This example assumes
that your services are running inside containers and your clients are
executed outside. This is not a hard restriction; it is also perfectly possible
to run clients inside containers and run servers outside containers.

A more complex multi-container example is depicted below:

This diagram shows multiple containers, each hosting a server. As before,
each server registers with a Smart Agent that is running inside its
container. In order to make that service available externally, a Smart Agent
Relay is included. This Smart Agent's IOR is proxified by I-DBC and made
available to the external Relays. Once the external Relays are able to
establish IIOP connections to the internal Relays and vice-versa, any
requests from clients and subsequent responses are relayed via the internal

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 79

Smart Agent Relay. I-DBC dynamically proxifies object references that are
passed as IIOP request or response messages between relays so that these
object references can be used by clients effectively to call onto the servers
via the i-DBC proxies.

Configuring I-DBC for Use with the Smart Agent
Relay Within a Container

To correctly set up interaction between i-DBC and the Smart Agent Relay
within a container, there are some options that need to configured
correctly. By default, I-DBC handles incoming connections and works as a
proxy to forward messages. Some settings need to be activated for
outgoing connections to be passed through the Smart Agent Relay.

First, ensure that you set ports for I-DBC's privateDomain correctly:

• configs.iDBCProxyCluster1.shared.proxy.privateDomain.
acceptors.[0].localAddress.port

This enables the Smart Agent Relay that exists inside the container to
send messages out, via i-DBC. Make sure that whatever value ports you
use are published for use with the container.

• configs.iDBCProxyCluster1.shared.proxy.privateDomain.
acceptors.[1].localAddress.port

This sets up the privateDomain’s second acceptor as well, which is
necessary for a secure connection.

Secondly, activate the use of the publicDomain connectors:

• configs.iDBCProxyCluster1.shared.proxy.publicDomain.
connectors.[0].useConnector

• configs.iDBCProxyCluster1.shared.proxy.publicDomain.
connectors.[1].useConnector

Both of these must be set to true to allow for outgoing connections. As
above, the second connector is for secure connections.

Finally, you must change a pair of I-DBC's proxification options for
compatibility with the Smart Agent and Smart Agent Relay:

• configs.iDBCProxyCluster1.shared.proxy.proxification
Options.useOriginalKey

You must set this to true so that proxified IORs preserve the correct
information passed from the Smart Agent Relay to the Smart Agent.

• configs.iDBCProxyCluster1.shared.proxy.proxification
Options.visiOSAgentPerPOA

This option must be set to true to allow the Smart Agent Relay to pass
server references bound using BindSupportPolicy. This option is
specific for use with the Smart Agent Relay so see the section “I-DBC
Proxification using visiOSAgentPerPOA” for more information.

For more information on the above options, and any others you wish to
alter, please refer to the I-DBC Administrator’s Guide. For an example
on how these options are set, see the basic_bank_agent_with_relay
examples provided with the installation.

80 CORBA Add-on for Cloud, Containers & Vir tual Environments

I-DBC Proxification using visiOSAgentPerPOA
If you need the Smart Agent Relay to be able to pass server references that
are bound to a local Smart Agent using a BindSupportPolicy of BY_POA, you
must set the I-DBC option visiOSAgentPerPOA to true.

When binding a Server object reference to a Smart Agent using the BY_POA
BindSupportPolicy, Smart Agent passes a 'service' IOR (which identifies only
the POA and not a specific object) between instances of itself and its clients.
VisiBroker clients can use a service IOR as supplied by Smart Agent to
generate a full object IOR that may then be used to make an IIOP request
back to a specific object.

I-DBC maintains an IOR table which contains a mapping of proxified IORs
that it has generated to their original IORs. When binding BY_POA, the
proxified IOR will be based upon a service IOR. However, the Client
generates an IOR (based on the proxified service IOR but with an object
identifier included) when making its IIOP request back via I-DBC. Because
I-DBC's IOR table does not contain an entry for this generated object IOR,
I-DBC responds to the Client with an OBJECT_NOT_EXIST message.

Setting the
configs.iDBCProxyCluster1.shared.proxy.proxificationOptions.
visiOSAgentPerPOA option to true ensures that when I-DBC cannot
initially find an entry in its IOR table for the object IOR provided, it will try
again using a service IOR that is based on the supplied object IOR. This
enables I-DBC to locate the appropriate entry for the service in its IOR table
and thus identify the correct route back to the Server inside the container
so that the request can be delivered.

Note that if your Servers only bind to Smart Agent using the
BindSupportPolicy BY_INSTANCE, full object IORs will be registered with
Smart Agent and so the visiOSAgentPerPOA option is not required.

Configuring the Smart Agent Relay
You can control the behavior of the Smart Agent Relay (osarelay) using a
number of options. These are:

• Command line switches used to control behavior that is in common with
the Smart Agent (osagent).

• VisiBroker-style properties used to control osarelay’s contact with Smart
Agents.

Command Line Switches
The command line switches allow you to control behavior that is in common
with the Smart Agent

To display details of the available command line switches, run:

osarelay -?

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 81

Logging
You can use the following switches to enable logging:

For example, to start the Smart Agent Relay with comprehensive logging set to
on, enter:

osarelay +l oa -v

By default, log messages are directed to stdout. Log messages can
alternatively be redirected to a file. The log file name will be generated
(based off its process ID), but the location and the maximum log file size
can be controlled using the following switches:

Ports
The Smart Agent Relay will partner with the Smart Agents that are listening
for traffic on the UDP port defined by the OSAGENT_PORT variable, as
described in the chapter “Using the Smart Agent” in the VisiBroker (for C++
or Java) Developer's Guide. The UDP port that will be used by Smart
Agent Relay for communicating with its partner Smart Agents can be set
using the OSARELAY_PORT environment property. This can be overridden on
the Smart Agent Relay's command line using the -p switch described
below.

The Smart Agent Relay does not share the same UDP port used by the
Smart Agent for listening for discovery requests. If neither OSARELAY_PORT
nor -p is specified then Smart Agent Relay will listen on the port at
(OSAGENT_PORT + 1).

Properties
Some aspects of Smart Agent Relay are set using properties, which are
defined in the VisiBroker style used by OSAgent itself.

Option Description
-v Turns verbose mode on, which provides information and

diagnostic messages during execution.

On UNIX, the verbose output is sent to stdout.

+l <options> Show or enable the logging level:

• o - Turn logging on.

Log levels:

• f - Fatal

• e - Error

• w - Warning

• i - Informational

• d - Debugging

• a - All

Option Description
-d <pathname> Sets the OSARELAY_LOG_DIR log directory location.

-ls <size> Specifies the trimming log size of 1024KB block. Max
value is 512, therefore the largest log size is 512MB

Option Description
-p <UDP_port_number> Overrides the setting of OSARELAY_PORT

(registry setting on Windows systems).

82 CORBA Add-on for Cloud, Containers & Vir tual Environments

Initializing the SmartAgent Relay
Smart Agent Relay finds a partner Smart Agent by either:

• Sending a direct UDP message to vbroker.agent.addr: OSAGENT_PORT,
or

• Sending out a UDP broadcast message on OSAGENT_PORT.

As described in “Ports”, Smart Agent Relay uses a distinct port for
communicating with Smart Agent. It cannot share OSAGENT_PORT unless it
will be hosted separately from Smart Agent. By using a port number that is
distinct from OSAGENT_PORT, Smart Agent Relay can reside on the same
host as Smart Agent. Since Smart Agent is unaware of Smart Agent Relay's
port, Smart Agent Relay must make the initial contact to establish a
relationship between the two.

If at start-up the Smart Agent Relay is unable to establish contact with a
Smart Agent, it will periodically retry attempts to locate a partner Smart
Agent with the frequency defined by the property vbroker.agent.relay.
discoverAgentTimeout (by default, 2 seconds).

During initialization, Smart Agent Relay will by default share information
about other running Smart Agent Relays that it is aware of. However, to get
an initial connection established, one Smart Agent Relay must be provided
with the IOR for a second Smart Agent Relay.

In the topology depicted below, a Smart Agent Relay (1) that is internal to
the Container Host is started first.

During start-up, Smart Agent Relay writes out its own IORs to file:

These are default filenames which can be overridden using the properties
vbroker.agent.relay.ior and vbroker.agent.relay.adminior.

When the Container is started, its start-up script proxifies the Internal Relay
IOR (2) by using the I-DBC SPS Client. An example of such a command is
provided below:

IOR File Description
osarelay.ior Transient IOR for the Smart Agent Relay service.

osarelayadmin.ior Persistent IOR for the Smart Agent Relay service.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 83

/usr/xtradyne/sps/bin/spsclient -u admin -p admin -d /usr/
xtradyne/sps/adm -C "ior deployTransient iDBCProxyCluster1
IOR:123...789 {}" > proxifiedInternalRelay.ior

The osarelayadmin.ior file of the internal relay after proxification is then
copied (3) to an area of the Container Host's filesystem that will be visible
to the external relay when it is started.

The external Smart Agent Relay is then started with the internal Relay's
proxified IOR supplied on the command line (4) using the property
vbroker.agent.relay.admins.

An example command line might be:

osarelay -Dvbroker.agent.relay.admins=file://
<path_to_volume>/proxifiedInternalRelay.ior

During its initialization, the external Relay will make a call to the internal
Relay passing its own IOR. Note that I-DBC proxifies this IOR on-the-fly (5).
Once this stage is complete, both internal and external Smart Agent Relays
are aware of each other.

84 CORBA Add-on for Cloud, Containers & Vir tual Environments

Satisfying Smart Agent Requests
The following sections describe possible outcomes of a Smart Agent
request. These are:

• A Successful Request/Response Cycle

• No response from the Internal Smart Agent Relay

• No response from the Internal Smart Agent

Successful Request/Response Cycle
The following diagram illustrates how requests for containerized CORBA
services are satisfied using a combination of Smart Agents and Smart Agent
Relays.

When a client makes a request for a service (1) on a Smart Agent
(OSAgent) which the Smart Agent cannot immediately satisfy, it forwards
this request (2) on to any further Smart Agents and Smart Agent Relays
that it is aware of. In the arrangement depicted above, the external Relay
will package the content of the request into a CORBA one-way request and
forward it (3) across the container boundary (via I-DBC) to its peer Relay
inside the container. The internal Relay then reconstitutes the Smart Agent
request and sends it over UDP to any running internal Smart Agents (4). In
this instance, the internal Smart Agent does have a registered entry for the
requested service, so it is able to respond to the internal Relay with a
Service IOR (5). The internal Relay packages the content of the response,
including the Service IOR, into a CORBA one-way request and sends it back
across the container boundary. I-DBC recognizes that the payload of the
CORBA message contains an IOR and proxifies it on-the-fly, such that the
IOR received by the external Relay is already proxified. The external Relay
then reconstitutes a Smart Agent response message, including the Proxified
Service IOR, and sends it on to the external Smart Agent which is then able
to satisfy the original client request (6).

Transient Error Mitigation
As stated previously (see “The Smart Agent in Containerized Environments”),
Smart Agent uses UDP for communication with VisiBroker clients and server
implementations. UDP is an “unreliable” transport, in that it does not

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 85

guarantee whether data has arrived at its destination, nor, if it has, whether
it is intact. The Smart Agent application layer protocol builds in retry
behavior and message integrity checking to address these issues. The
CORBA communication between Relays is TCP based but in the event of
short-duration connection issues it might also suffer message loss.

Smart Agent Relay uses a combination of timeouts and retry schedules to
mitigate the risk of a message (whether UDP-based or CORBA one-way) not
successfully arriving at its destination. These measures are configurable and
are described in the following sections.

No response from the Internal Smart Agent Relay
If the external Smart Agent Relay does not receive a response from the
internal Relay within a specific period of time, it will retry the request. This
is illustrated below:

The external arrangement of Client, Smart Agent and Smart Agent Relay
follows the Successful Request/Response Cycle previously described. However,
in the example illustrated above, the requests forwarded on by the internal
Relay are not being responded to (perhaps because its partner internal
Smart Agent(s) has become unavailable).

The initial client request (1) is forwarded by Smart Agent (2) on to the
external Smart Agent Relay, which re-packages the request into a CORBA
one-way request and sends it to the internal Relay (3) In this case, the
internal Relay reconstitutes the Smart Agent request and sends it on to an
address and port where it believes its partner Smart Agent is listening (4).

Timeout and retry properties

In this scenario no response is forthcoming from that request, and therefore
no Relay response is generated by the internal Smart Agent Relay. After a
period of time defined by vbroker.agent.relay.relayRequestTimeout, the CORBA
request (3) times out and is retried. This occurs as many times as defined
by vbroker.agent.relay.maxFullRequestRetries. If no response has been received
after the maximum number of timeouts for that request has occurred, a
TIMEOUT response will be returned by the external Relay.

86 CORBA Add-on for Cloud, Containers & Vir tual Environments

No response from the Internal Smart Agent
Transient errors can potentially occur at the link between the internal Smart
Agent Relay and its partner internal Smart Agent(s), as shown below:

Such errors could result in either the request failing to arrive at the Smart
Agent (4) or the response failing to arrive back at the Relay (5). Smart
Agent Relay mitigates against both these circumstances by implementing a
timeout for a response to be received.

If the internal Relay does not receive a response from any of its internal
Smart Agents within the time defined by vbroker.agent.relay.
agentRequestTimeout, it times out and immediately returns a TIMEOUT
response to the external Relay. This is then forwarded on to the external
Smart Agent which can then respond to the original client request with
FAIL.

Property Reference
The properties used by the Smart Agent Relay, together with the
corresponding environment variables where there are any, are as follows:

Property
Environment
variable Default Description

vbroker.agent.relay.
admins

none “” Comma-separated list of
proxified IORs of peer Smart
Agent Relays. Can use either of
osarelay.ior or osarelayadmin.ior
as the source IORs.

vbroker.agent.relay.
discoverAgentTimeout

OSARELAY_DISCOVER_AGE
NT_TIMEOUT

2000 The period (in milliseconds)
between attempts to locate a
partner Smart Agent while the
Relay is without a partner.

vbroker.agent.relay.
relayRequestTimeout

OSARELAY_RELAY_
REQUEST_TIMEOUT

3000 The time, in milliseconds,
between attempts to retry a
failed request.

vbroker.agent.relay.
maxFullRequestRetries

OSARELAY_MAX_
REQUEST_RETRIES

0 The maximum number of times a
failed request is retried
before returning a failure
response.

vbroker.agent.relay.
agentRequestTimeout

OSARELAY_AGENT_
REQUEST_TIMEOUT

1000 The time, in milliseconds,
between attempts to retry a
request.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 87

vbroker.agent.relay.
timeoutCheckInterval

OSARELAY_TIMEOUT_
INTERVAL

500 The time, in milliseconds,
between checks for Smart Agent
request timeouts.

vbroker.agent.relay.
announceSelf

none true Whether a relay should
automatically register itself
as a destination for locate
requests from another relay
when it becomes aware of that
other relay.

vbroker.agent.relay.
pushRelays

none true When a relay becomes aware of
another relay if this property
is true it will send all
current registered
destinations to it.

vbroker.agent.relay.
pullRelays

none true When a relay becomes aware of
another relay if this property
is true it will request all the
other relay's known
destinations and register them
as destinations.

vbroker.agent.relay.
unreachableCleanupAfter

none 600 The minimum limit, in seconds,
on how long a relay destination
will be retained after it is
first detected to be no longer
reachable.

vbroker.agent.relay.
adminior

none osarelay
admin.ior

The filename to output the
Relay service IOR to. This is a
persistent lifecyle IOR (that
is, the IOR will be the same if
the relay is restarted if
configured with a fixed IIOP
listen port).

vbroker.agent.relay.ior none osarelay.io
r

The filename to output a
transient lifecycle IOR for the
Relay service (that is,
previous file contents will
become invalid whenever the
service is restarted).

vbroker.agent.relay.port OSARELAY_PORT OSAGENT_
PORT +1

(14001)

The port number used to connect
the Relay to the OSAGENT_PORT
domain.

vbroker.agent.relay.
addrFile

OSARELAY_ADDR_FILE OSAGENT_
ADDR_FILE

(null)

A file that stores the IP
address or host name of a host
running a Smart Agent.

vbroker.agent.relay.
localFile

OSARELAY_LOCAL_FILE OSAGENT_
LOCAL_FILE

(null)

Specifies which network to use
on Multi-home machines.

vbroker.agent.relay.
logDir

OSARELAY_LOG_DIR VBROKER_
ADM

Specifies the directory for the
OSARELAY log to reside in.

vbroker.agent.relay.
logLevel

none i Specifies the log level of
messages to be written to the
log file. Acceptable values
are:

• Debug(d)
• Informational(i)
• Error(e)
• Warning(w)
• Fatal(f)
• All(a)

Equivalent to the -l switch
described under “Logging”.

Property
Environment
variable Default Description

88 CORBA Add-on for Cloud, Containers & Vir tual Environments

In addition to osagent-specific and osarelay-specific options the Smart
Agent Relay will accept any (C++) ORB configuration option to modify its
behavior as a service. For example, in order to configure a fixed IIOP listen
port to 12345 one might pass the argument:

-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=12345

See the VisiBroker C++ Programmer's Guide for the complete list of
ORB options.

Note

These properties can also be added to a properties file, and passed
to the relay using the -OSApropStorage option. This is the
recommended method for most environments.

For example:

osarelay -OSApropStorage /path/to/relay_properties.txt

The properties in this file should be separated by new lines.

Options passed to the Smart Agent Relay take priority over Environment
Variables, and the Environment Variables take priority over options found
inside the property file.

vbroker.agent.relay.
logSize

none 1 Sets the maximum log file size
(in megabytes). Equivalent to
the -ls switch described under
“Logging”.

The maximum size is 512.

vbroker.agent.relay.
verbose

none false Turns Smart Agent Relay
logging’s verbose mode on
(true) and off (false).
Equivalent to the -v switch
described under “Logging”.

vbroker.agent.relay.
broadcastOff

none false When this is set to true, Smart
Agent Relay will not send out a
broadcast to find other agents.

You can use this in combination
with vbroker.agent.relay. addrFile; if
this is set to true, the relay
will communicate only with the
agents listed in addrFile.

vbroker.agent.relay.
ignoreSignal

none none Allows you to specify that
certain signals are to be
ignored. Possible options are:

• Quit(quit)
• Hangup(hup)
• Interrupt(int)

Bourne and Korn shell users are
recommended to run the Smart
Agent Relay with
ignoreSignal=hup.

If you wish to ignore more than
one of these signals, list the
option separately for each one.
For example:

vbroker.agent.relay.
ignoreSignal=hup
vbroker.agent.relay.
ignoreSignal=int

Note that this usage of
repeated statements is unique
to this option.

Property
Environment
variable Default Description

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 89

Updating SPS Configuration
Items
When you are using I-DBC inside Docker, it is essential to configure the
Security Policy Server (SPS) properly to allow your application to run
correctly. The entrypoint_common.sh script, copied into the Docker
container during the creation of the I-DBC Docker image, provides an example
of how to configure SPS using commands run in a shell script.

Introduction
Whether expanding on the functions in entrypoint_common.sh, or
providing your own mechanism, one challenge is to determine the SPS
configuration item names and values that must be set to allow your
application to work as expected.

This section will walk through the steps to determine the SPS configuration
item name of the server SSL version -
configs.iDBCProxyCluster1.shared.proxy.SSL.SSLServer.crypto.
method.

The approach is to use the Administration Console to make the update.
Then use the diff command on a "before" and “after” version of the SPS
configuration file to determine the server SSL version configuration item
name.

Once you understand how to determine the name of this configuration item,
the same process can be used to determine the name of other configuration
items.

The combination of the SPS configuration item names and their
corresponding values allow for I-DBC to be configured using an automated
approach (as is done via entrypoint_common.sh) rather than non-
automated interactive approach (as is done via the Administration Console).

When running outside Docker, paths and commands given in this document
assume installation on a Linux machine. If using a Windows machine, adjust
the paths and commands to suit Windows.

Prerequisites
Before you make any update, ensure that:

• The Administration Console is installed. See the instructions in the CORBA
in the Cloud or in Virtual Environments and CORBA in Containers chapters. The
following procedures assume that the Administration Console is installed
in <installdir>/adminconsole.

• The CORBA Add-on for Cloud, Containers & Virtual Environments is
installed.See the instructions in the CORBA in the Cloud or in Virtual
Environments and CORBA in Containers chapters. The following procedures
assume that the CORBA Add-on for Cloud, Containers & Virtual
Environments is installed in <installdir>.

• You have a JRE installation that can run the Administration Console

• You have Docker installed

• You can determine the IP address of your machine

90 CORBA Add-on for Cloud, Containers & Vir tual Environments

You will need two windows:

• A window capable of running Docker commands to run the Docker
container. I-DBC will be run inside this container.

• A window to run the Administration Console. The Administration Console
will be run outside Docker. It will connect to the SPS running inside the
Docker container.

Build the Base OS and I-DBC Docker Images
Open a window capable of running Docker commands. This window will be
used to build the Docker images, as well as run the Docker container.
Two Docker images must be created:

• The base operating system image. The CORBA Add-on for Cloud,
Containers & Virtual Environments supports the use of either CentOS or
Ubuntu as the base Docker image; this example uses a CentOS base
image.

• An I-DBC image, built upon the CentOS base image.

Build the Base Docker Image
Build the base Docker image, using CentOS in this example, by issuing the
following command:

cd <installdir>/docker/common/centos_layer
docker build -t base-os-layer .

Note:

The '.' character is an essential part of the docker build command.

See “The Dockerfile for CentOS” for more information.

Build the I-DBC Docker Image
Build the I-DBC Docker image by issuing the following command.

cd <installdir>docker/common/idbc_layer
docker build -t idbc-layer .

Note:

The '.' character is an essential part of the docker build command.

See “The Dockerfile for I-DBC” for more information.

Run the I-DBC Docker Image
Run the Docker container in the same window where the Docker images
were built, as follows:

1 Determine the IP address of your machine.

2 Run the following command, replacing <ip_addr> with your actual IP
address:

docker run --name idbc_container --publish 15000:15000
--env MF_HOST_IP=<ip_addr> --env MF_IDBC_PORT=3000
-it idbc-layer

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 91

• This command starts a Docker container named idbc_container. Port
15000 is opened into the container, which will allow the Administration
Console to connect from outside the Docker container.

• The command also starts an interactive shell in the container. You will
see a command prompt similar to the following:

[corba@c41afce343e6 idbc]$

Save the Current SPS Configuration
Inside the Docker container, save a "before" version of the SPS
configuration file. This will allow you to use the diff command after the
Administration Console is used to update the configuration item for the
server SSL version. In the Docker container interactive shell enter:

cd /home/corba/microfocus/idbc/sps/adm
cp dbc.config dbc.config_before

Start I-DBC inside Docker
In the same window, issue the following commands to start I-DBC:

cd /home/corba/microfocus/idbc
./startStop.sh start

Look for a message similar to the following:

Starting ... ok

Change the Server SSL Version
Open a second window. Be sure to set the JAVA_HOME environment
variable to point to a version of Java that can run the Administration
Console.

Start the Administration Console:

cd <installdir>/adminconsole/bin
./AdminConsole

The Login on Security Policy Server… window displays.

You can accept the default Address and User ID values. Enter the password
(admin) and press OK. This will connect the Administration Console to the
Security Policy Server running inside Docker.

92 CORBA Add-on for Cloud, Containers & Vir tual Environments

The Admin Console window displays:

Double click Micro Focus Administrative Domain. Then expand I-DBC
Proxy and SSL Profiles. Click on SSLServer.

In the SSL Version: drop-down, select TLSv1.2 or higher.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 93

From the Server menu item select Write to Security Policy Server.

A pop-up appears indicating that DCB components need to be restarted. Press
Yes.

The Administration Console will then work to save to updated value into the SPS
configuration file inside Docker.

Diff the config file
In the window where the Docker container was started, use the interactive
shell to navigate to the SPS configuration directory and run the diff
command on the current SPS config file against the “before” copy of the
file:

cd /home/corba/microfocus/idbc/sps/adm
diff dbc.config dbc.config_before

The results of the diff command may look something like this:

92d91
< "filename" = "ProxyKey.pem"
1932,1933c1931
< -----END CERTIFICATE-----
< "

> -----END CERTIFICATE-----"
1993,1994c1991
< -----END CERTIFICATE-----
< "

> -----END CERTIFICATE-----"
1998,1999c1995,1996
< "ciphersuite" = "TLSv1"
< "method" = "tlsv1_2"

94 CORBA Add-on for Cloud, Containers & Vir tual Environments

> "ciphersuite" = "DEFAULT:!EXPORT"
> "method" = "v23"
4141c4138
< "version" = "3.2.0"

> "version" = "3.1"
4179,4180c4176,4177
< "version" = "1"
< }

> "version" = "0"
> }

Even though only one configuration item was updated, the Administration
Console drives multiple updates into the SPS configuration file.

Looking closely at the diff results, we can see “method” = “tlsv1_2”,
which is related to the server SSL version update we just made. We have
two pieces of information:

1 The SPS configuration file value for the server SSL version is: tlsv1_2

2 The partial SPS configuration item name for the server SSL version is:
method

Structure of the SPS Configuration File
The full name of the server SSL version configuration item must still be
determined. To get the full name, you need to traverse the SPS configuration file.
In order to do that, an understanding of the structure of the SPS configuration file
is helpful.

A simplified configuration file looks like this example:
{
 "Scope1" = {
 "config_item1" = "value1"
 "config_item1 = "value2"
 }
 "Scope2" = {
 "config_item3" = "value3"
 "Scope3" = {
 "config_item4" = "value4"
 }
 }
}

The configuration file is divided into scopes. Each scope begins with '{' and
ends with '}'. Except for the scope at the beginning of the file - the main
scope - each scope has a name.

Inside each scope there are configuration items with their corresponding
values. A scope can also contain a scope.

In the simplified configuration file:

• There are 3 scopes: Scope1, Scope2 and Scope 3

• Scope3 is a "sub-scope" contained within Scope2, where Scope2 is the
"parent scope".

• Scope1 and Scope2 are "sibling" scopes where they share the same
parent - the "main" scope.

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 95

The name of a configuration item depends on the scope it is in, as well as all
the scopes it is contained in.

Consider "config_item4". It is contained in "Scope3", which itself is
contained in "Scope2". So the full configuration item name for
"config_item4" is: Scope2.Scope3.config_item4

Determine the Full Name of the Server SSL Version
Configuration Item

The output of the diff command (see “Diff the config file”) showed that:

• The SPS configuration file value for the server SSL version is tlsv1_2

• The partial SPS configuration item name for the server SSL version is
method

We know that part of the server SSL version configuration item is "method". We
need to traverse all the scopes in the configuration file to determine the full
name.

Start by using the vi editor to edit the SPS configuration file, using the following
commands:

cd /home/corba/microfocus/idbc/sps/adm
vi dbc.config

Use the vi '/' command to find "tlsv1_2" in the configuration file:
/tlsv1_2

The cursor will land on the "method" = "tlsv1_2" line in the configuration
file:

…
 }
 "ciphersuite" = "TLSv1"
 "method" = "tlsv1_2"
}
…

Use the vi '%' command to determine the scope containing the "method"
configuration item. Move the cursor onto the '}' character below the "method"
configuration item. Type '%".

The cursor will land on the "crypto" = { line in the configuration file:
…
}
"SSLServer" = {
 "crypto" = {
 "RSA" = {
 "keyFiles" = {
 "certificate" = {
…

The "method" configuration item is contained in the "crypto" scope.

Begin to build the server SSL version configuration item name crypto.method

Just above "crypto" in the file, we see the "SSLServer" scope is the parent
scope for the "crypto" scope. Continue to build the server SSL version
configuration item name SSLServer.crypto.method

96 CORBA Add-on for Cloud, Containers & Vir tual Environments

Move the cursor onto the '}' character above the "SSLServer" scope. Type '%'.

The cursor will land on the "SSLClient" scope in the configuration file:
…
}
"SSL" = {
 "SSLClient" = {
…

"SSLClient" is a sibling scope to "SSLServer". Both scopes are contained
within the "SSL" scope. The server SSL version configuration item name is now:
SSL.SSLServer.crypto.method

Move the cursor onto the '}' character above the "SSL" scope. Type '%'.

The cursor will land on the "CSIv2" scope in the configuration file:
…
}
"CSIv2" = {
 "CSS" = {
…

Scope "CSIv2" is a sibling scope to "SSL". But we need to find the parent scope
of "SSL".

Move the cursor onto the '}' character above the "CSIv2" scope. Type '%'.

The cursor will land on the "ADF" scope in the configuration file:
…
}
"proxy" = {
 "ADF" = {
 "cache" = {
…

Scope "ADF" is a sibling scope to "SSL". We can see that scope "proxy" is the
parent scope of "ADF". Since "ADF" is a sibling scope to "SSL", "proxy" is also the
parent scope of "SSL". The server SSL version configuration item name is now:

proxy.SSL.SSLServer.crypto.method

Put the cursor on the '}'character above "proxy" and use '%" to get the sibling
scope to "proxy".

The cursor will land on the "nodeManager" scope in the configuration file:
…
}
"shared" = {
 "nodeManager" = {
 "PAM" =
…

Scope "nodeManager" is a sibling scope to "proxy". We can see that scope
"shared" is the parent scope of "nodeManager". Since "nodeManager" is a
sibling scope to "proxy", "shared" is also the parent scope of "proxy". The
server SSL version configuration item name is now:

shared.proxy.SSL.SSLServer.crypto.method

Put the cursor on the '}'character above "shared" and use '%" to get the sibling
scope to "shared".

The cursor will land on the "description" scope in the configuration file:

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 97

…
}
"description" = {
 "edition" = "enterprise"
…

Scope "description" is a sibling scope to "shared". But we need to find the
parent scope of "shared".

Move the cursor onto the '}' character above the "description" scope. Type
'%'.

The cursor will land on the "DBCs" scope in the configuration file:
…
}
"configs" = {
 "iDBCProxyCluster1" = {
 "DBCs" = {
 "iDBCProxy1" = {
}
…

Scope "DCBS" is a sibling scope to "shared". We can see that scope
"iDBCProxyCluster1" is the parent scope of "DBCs". Since "DBCs" is a sibling
to scope "shared", "iDBCProxyCluster1" is also the parent of scope
"shared". Further, we can see that scope "configs" is the parent of scope
"iDBCProxyCluster1".

Note that the parent scope of "configs" is the main scope. So we now have the
complete name of the server SSL version configuration item:

configs.iDBCProxyCluster1.shared.proxy.SSL.SSLServer.
crypto.method

Using the Configuration Item Name and Value
We have determined the following:

• The SPS configuration file value for server SSL version is tlsv1_2

• The full SPS configuration item name for the server SSL version is
configs.iDBCProxyCluster1.shared.proxy.SSL.SSLServer.
crypto.method

As shown in the entrypoint_common.sh, the Set Dictionary Value
command - setdictvalue - can be used to set a configuration item in the
SPS configuration item. The steps to using setdictvalue to update a
configuration item are:

1 Rename the SPS configuration file as we will create a new configuration
file

2 Use the cat command to pipe the contents of the renamed SPS
configuration file into the setdictvalue command

3 The setdictvalue command will use the configuration item name and
value to update the configuration file

4 Pipe the results of setdictvalue into the new configuration file

5 Remove the renamed configuration file

You must perform these steps before starting I-DBC.

98 CORBA Add-on for Cloud, Containers & Vir tual Environments

For example:

cd /home/corba/microfocus/idbc/sps/adm
mv dbc.config dbc.config.tmp
cat dbc.config.tmp | setdictvalue "-" "
configs.iDBCProxyCluster1.shared.proxy.SSL.SSLServer.
crypto.method " " tlsv1_2" > dbc.config
rm dbc.config.tmp

Published Ports with Docker
When you ran the Docker container in the example above (see “Run the I-
DBC Docker Image”), the command was as follows:

docker run --name idbc_container --publish 15000:15000 --
env MF_HOST_IP=<ip_addr> --env MF_IDBC_PORT=3000 -it idbc-
layer

This particular Docker command published port 15000, which allows the
Administration Console to connect to the Security Policy Server. While your
application will require other ports to be opened in order to access it from
outside Docker, it might be considered a security risk for your application to
have port 15000 published.

Once you understand all the SPS configuration item names and values that
need to be set for your application to work correctly, and you have
automated the process of setting those configuration items, you may want
to consider removing port 15000 as one of the published ports when
running a Docker container.

Using I-DBC to Proxify Transient and Persistent
IORs

Usually a Docker container will have its own network that makes it
challenging for a CORBA client running outside of the Docker container to
contact a CORBA server running inside the Docker container.

IORs created inside of the Docker container are "proxified", providing an
address and port that is accessible outside of the Docker container.
Invocations from clients using the proxified IOR will pass though I-DBC
running inside the Docker container and passed along to the server.

A proxified IOR can be either "transient" or "persistent". A "transient" IOR is
only valid for the lifetime of the server that created the IOR. A "persistent"
IOR is valid over successive instantiations of the target server and POA.

The entrypoint_common.sh file has a proxify_ior function. The
spsclient command line tool is used to proxify an IOR. Currently this
function proxifies all IORs as "transient" by using the deployTransient
subcommand of spsclient. This means that:

• Docker "forgets" about all proxified IORs when the Docker container is
stopped.

• If a Docker container is stopped and subsequently restarted, all IORs are
proxified as "transient" IORs again, allowing for an orderly restart of I-.

If "persistent" proxified IORs are preferred, then the proxify_ior function
in entrypoint_common.sh can use the deploy subcommand of
spsclient instead of deployTransient. (Alternatively you may have your
own implementation to produce the same effect).

CORBA® Add-on for Cloud, Containers & Vir tual Environments Insta l lat ion and Conf igurat ion Guide 99

Be aware that when a Docker container is stopped, I-DBC will remember all
"persistent" proxified IORs. If the Docker container is restarted, then care
must be taken not to reproxify any "persistent" IORs, as I-DBC is already
aware of them.

100 CORBA Add-on for Cloud, Containers & Vir tual Environments

CORBA® Add-on for Cloud, Containers & Virtual Environments Installation and Configuration Guide 101

Index

A
Administration Console 6, 48
Amazon AWS 5

C
CentOS 51, 52, 90
Cloud environments 5
Commands

docker build 52, 53, 61, 65, 75
Common Docker images 51
Configuring the Smart Agent relay 80
Containers 77
CORBA-based application Docker
image 52

D
Deployment descrioptors

Orbix 6 67
deployTransient 98
diff command 93
Docker 20, 89

Desktop for Windows 45
for Windows 45
Quickstart terminal 45
Toolbox 45

docker build command 52, 53, 61, 65, 75
Docker images 1, 51, 52, 90

CORBA-based application 52
I-DBC 51, 54, 58
operating system 51, 52
ORB 51
Orbix 3 59
Orbix 6 63
VisiBroker 73

Dockerfiles 52
Basic log demo application 68
for CentOS 52
for Orbix 3 59
for Orbix 6 63
for Ubuntu 53
for VisiBroker 73
I-DBC 56

E
entrypoint_common.sh 89, 98
environment variables

I-DBC 57
MF_HOST_IP 49

F
Functions

proxify_ior 98

G
Google Cloud 5
GUI installation 11, 16, 25, 33

I
I-DBC 21, 77

Docker image 51, 54, 58
I-DBC environment Variables 57
I-DBC) 3, 6
Install I-DBC 58
Installation

GUI 11, 16, 25, 33
in Containers 20
in the Cloud or in Virtual
Environments 6

performing a silent installation 39
prerequisites 9, 22
silent 37
SPS Client 41
SPS client 41
steps 9, 23
troubleshooting 4
uninstallation 4

Installing
Orbix 3 60
Orbix 6 64
VisiBroker 74

J
JRE 89

L
Logging 81

M
MF_HOST_IP environment variable 49
Microsoft Azure 5

N
Network Address Translation 3, 5

O
Object Oriented Programming 51
Operating system Docker image 51, 52
Oracle VM VirtualBox 45, 46, 49
ORB Docker image 51
Orbix 3 3, 51

Docker Image 59
Dockerfile 59
installing 60

Orbix 6 3, 51
Deployment descriptors 67

 102 CORBA® Add-on for Cloud, Containers & Virtual Environments Installation and Configuration Guide

Docker Image 63
Dockerfile 63
installing 64

OSAgent 81
osagent 77
osarelay 77

P
Performing a silent installation 39
Ports 81
ports

published 98
Properties

Smart Agent Relay 81
Proxify 98

S
Satisfying Smart Agent Requests 84
Security Policy Server 48, 89

configuration file 89
diff 93
new 97
structure 94

Server SSL Version
change 91

Server SSL version 89, 95
configuration item complete name 97

Silent installation 37
Smart Agent 77

satisfying requests 84
Smart Agent Relay 77

configuriing 80
logging 81
ports 81
properties 81

SPS Client 41
Configuration 42
Installation 41

spsclient tool 98

T
TCP 77
Troubleshooting 4

U
Ubuntu 51, 52, 90
UDP 77, 84
Uninstallation 4

V
vbroker.agent.relay.admins 86
vbroker.agent.relay.agentRequestTimeou
t 86

vbroker.agent.relay.discoverAgentTimeou
t 86

vbroker.agent.relay.maxFullRequestRetri
es 86

vbroker.agent.relay.relayRequestTimeout
86

vbroker.agent.relay.timeoutCheckInterval
87

Virtual Environments 5
Virtual machines 8
VisiBroker 3, 52

Docker Image 73
Dockerfile 73
installing 74
Smart Agent 77
Smart Agent Relay 77

configuring 80
logging 81
ports 81
properties 81

VMWare vCloud 5
VMWare vSphere 5

	Contents
	Preface
	In this Guide
	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact Information

	Introduction
	What is the CORBA Add-on for Cloud, Containers & Virtual Environments
	Components

	Prerequisites
	Uninstalling

	CORBA in the Cloud or in Virtual Environments
	Introduction
	Installation in the Cloud or in Virtual Environments
	Installation Footprints
	Installation footprint on Linux
	Installation footprint on Windows

	Deployment Scenario for Cloud and Virtual Environment
	Installation Prerequisites
	Installation Steps
	CORBA for Cloud and Virtual Environments: Installed Components Overview
	Installing with the GUI
	Silent installer properties

	CORBA for Cloud and Virtual Environments: Upgrading an existing ORB installation
	Installing with the GUI
	Silent installer properties

	CORBA in Containers
	Introduction
	Installation in Containers
	Installation Footprint
	Deployment Scenario for CORBA for Containers
	Installation Prerequisites
	CORBA for Containers: Installed Components Overview

	Installation
	Installing on the Docker Development machine
	Installing with the GUI
	Silent installer properties

	Upgrading the client side ORB installation
	Installing with the GUI
	Silent installer properties

	Silent Installation
	Installing with the Silent Installer
	Sample installer properties file
	Performing a silent installation

	Installing the SPS Client
	Installing the SPS Client
	Installation Overview

	After Installation
	Configuring the SPS Client
	Installing Keys and Certificates
	tar xvfp AdminConsoleKeys.tar
	ln -sf AdminConsoleKey.der SPSClientKey.der
	ln -sf AdminConsoleCert.der SPSClientCert.der
	chown corba *.der

	Docker Toolbox and IP Addresses
	Introduction
	Using the IP Address of the Windows System
	Configure Oracle VM VirtualBox Port Forwarding

	Common Docker Images
	The Docker Images
	Dockerfiles

	The Operating System Docker Image
	The Dockerfile for CentOS
	Building the CentOS Operating System Docker Image

	The Dockerfile for Ubuntu
	Building the Ubuntu Operating System Docker Image

	The I-DBC Docker Image
	The Dockerfile for I-DBC
	User ID
	I-DBC Environment Variables
	Common Entrypoint Helper Script
	Install I-DBC
	Building the I-DBC Docker Image

	The Orbix 3 Docker Image
	The Orbix 3 Docker Image
	The Dockerfile for Orbix 3
	User ID
	Installing Orbix 3
	Orbix 3 Entrypoint Helper Script
	Proxified IOR Location

	Building the Orbix 3 Docker Image

	The Orbix 6 Docker Image
	The Orbix 6 Docker Image
	The Dockerfile for Orbix 6
	User ID
	Installing Orbix 6
	Orbix 6 Entrypoint Helper Script
	Proxified IOR Location
	Orbix 6 Domain Name
	Build Script
	Building the Orbix 6 Docker Image

	Creating Orbix 6 Deployment Descriptors
	Introduction
	The Basic Log Demo
	Deployment inside a Docker Container
	Creating the Deployment Descriptor
	Modifying the Deployment Descriptor for use with Docker

	Creating a Deployment Descriptor for your Orbix 6- based Application

	The VisiBroker Docker Image
	The VisiBroker Docker Image
	The Dockerfile for VisiBroker
	User ID

	Installing VisiBroker
	Install HotFixes
	VisiBroker Entrypoint Helper Script
	Proxified IOR Location

	Building the VisiBroker Docker Image

	The VisiBroker Smart Agent Relay
	The Smart Agent in Containerized Environments
	Topology of the Smart Agent Relay

	Configuring I-DBC for Use with the Smart Agent Relay Within a Container
	I-DBC Proxification using visiOSAgentPerPOA

	Configuring the Smart Agent Relay
	Command Line Switches
	Logging
	Ports

	Properties
	Initializing the SmartAgent Relay
	Satisfying Smart Agent Requests
	Successful Request/Response Cycle

	Transient Error Mitigation
	No response from the Internal Smart Agent Relay
	No response from the Internal Smart Agent

	Property Reference

	Updating SPS Configuration Items
	Introduction
	Prerequisites
	Build the Base OS and I-DBC Docker Images
	Build the Base Docker Image
	Build the I-DBC Docker Image

	Run the I-DBC Docker Image
	Save the Current SPS Configuration
	Start I-DBC inside Docker

	Change the Server SSL Version
	Diff the config file
	Structure of the SPS Configuration File
	Determine the Full Name of the Server SSL Version Configuration Item
	Using the Configuration Item Name and Value
	Published Ports with Docker
	Using I-DBC to Proxify Transient and Persistent IORs

	Index

