
Micro Focus® | CORBA® Add-on for REST
1.0.0

Installation and User Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and VisiBroker are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-11-29

http://www.microfocus.com

Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide iii

Contents

Preface .. 1
In This Guide.. 1
Contacting Micro Focus .. 1

Further Information and Product Support ... 1
Information We Need .. 2
Contact Information .. 2

Introduction .. 3
What is the CORBA Add-on for REST? .. 3

Components .. 4
Prerequisites .. 4
Using curl .. 4

Installing the CORBA Add-on for REST .. 5
Installation of the CORBA Add-on for REST... 6

CORBA Add-on for REST installation footprint ... 6
Prerequisites .. 6

Installation Instructions ... 7
Installing with the GUI .. 7
Silent Installation ... 9

Sample silent installer properties file ... 9
Performing silent installation .. 9

Licensing the Product .. 10
Troubleshooting .. 11

Getting Started.. 13
Setting the Environment .. 13

Run the Deployment Environment Script .. 13
Run the rest_env Script ... 13

The Typetest Example.. 13
The structure of the demonstration ... 15

Building the Demonstration .. 15
Orbix 6 ... 15
VisiBroker.. 16

Running the Demonstration .. 16
Running the CORBA Server .. 16
Scenarios for Deploying the REST Connector .. 16

Deploying the REST Connector insecurely .. 16
Deploying the REST Connector securely... 19
Deploying the REST Connector to serve a versioned REST API 23

IDL-RS Annotations... 27
Annotations Used.. 27

IDL Type Serialization ... 29
JSON Mapping for IDL Types... 29

JSON Mapping for Primitive IDL Types ... 29
JSON Mapping for Arrays and Sequences ... 29
JSON Mapping for Complex IDL Types.. 29

Enum types ... 30
Struct type .. 30
Union type... 30

XML Mapping for IDL Types .. 31
XML Mapping for Primitive IDL Types ... 31

iv Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide

XML Mapping for Complex IDL Types..31
Enum type ...31
Struct type...31
Union type ...32

IDL Request and Response Wrapping ..33
Wrapped Objects...33
Request Wrappers ...33

IDL Parameter Annotations...34
Response Wrappers ...34

System Exceptions...37

Configuration...39
Configuring Multiple Connectors ..40
Overriding the Configuration Variables..40
Extending the ORB Adapter Class ..40

idl2rest Options ...43

Connector Options ...45

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 1

Preface
This Guide describes the Micro Focus® | CORBA® Add-on for REST. It describes
how to install and set up the product.

In This Guide
This manual contains the following chapters:

• “Introduction” describes some of the concepts of the CORBA Add-on for
REST.

• “Installing the CORBA Add-on for REST” gives installation instructions.

• “Getting Started” tells you how to build and run the Typetest demonstration
program.

• “IDL-RS Annotations” describes an extension of the IDL annotations concept
for a REST API.

• “IDL Type Serialization” tells you how to serialize IDL types into JSON and
XML data formats:

• “IDL Request and Response Wrapping” describes using wrappers to create
single request and response objects.

• “System Exceptions” describes system exception mapping.

• “Configuration” describes configuration properties and how they can be
used and overridden.

• “idl2rest Options” describes command line flags that the idl2rest tool will
accept.

• “Connector Options” describes the command line flags used by the REST
Connector.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

http://www.microfocus.com

2 Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact Information
Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

http://www.microfocus.com

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 3

Introduction
This chapter introduces the Micro Focus® | CORBA® Add-on for REST (CORBA
Add-on for REST).

What is the CORBA Add-on for REST?
The CORBA Add-on for REST provides a standard and interoperable
mechanism to enable CORBA objects to be exposed as REST services.

With the CORBA Add-on for REST, pure REST client applications can use
these exposed CORBA services transparently, without having any
knowledge or awareness that these services are ultimately implemented by
CORBA objects.

The advantages offered by the CORBA Add-on for REST include the ability
to:

• Selectively annotate the IDL definitions corresponding to the CORBA
objects to be exposed to REST client applications, in order to
incrementally extend the reach and use of existing CORBA assets.

• Provide a standard mechanism to decorate IDL constructs with IDL-RS
annotations to clearly and unambiguously define REST representations of
CORBA services, which strive to comply with the Representational State
Transfer (REST) architectural style.

• Enable REST client applications to utilize readily available REST software
stack (such as an HTTP library and JSON or XML library) to access the
CORBA services exposed to REST, without requiring CORBA run-time
technology or tooling on the client side.

• Enable REST developers to build new REST client applications that
interact with a REST API façade, defined by IDL-RS annotations, to
CORBA objects, defined by IDL. This approach allows to leverage existing
CORBA assets without requiring CORBA expertise for the client-side
developers, who only need to use tools and technology that REST client
developers are already familiar with.

• Leverage the established approaches that REST over HTTP client
applications already employ to achieve load-balancing, NAT traversal,
and firewall traversal.

4 Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide

Components
The CORBA Add-on for REST contains the following components:

• An IDL compiler tool (idl2rest) that can translate existing CORBA IDL
along with IDL-RS Annotations, in order to generate a custom REST-to-
CORBA mapping.

• REST run-time and support libraries that can be used together with the
idl2rest generated code for the REST Connector.

• Support for the following Micro Focus CORBA ORBs:

• Orbix 6.3.11

• VisiBroker 8.5.6

• Product HotFixes for the ORBs mentioned above, that enable their
respective IDL compilers to correctly parse IDL-RS annotations. This
simplifies the development workflow for the CORBA products listed above, by
allowing existing IDL files to be annotated in place. This means that only a
single copy of the IDL files needs to be maintained.

Prerequisites
Each component has its own requirements.

• Installer: The installer requires JDK 1.7 (or later) to be installed. The
installer is available for both Windows and Linux operating systems.

• ORB Installation: The installer requires an existing CORBA installation
to upgrade.

Using curl
Some of the examples included in this document use curl commands to
send messages to URLs. Only one example of a curl command, for UNIX
installations, is shown in each case.

The curl command is not a standard part of Windows installations. Support
for curl on Windows is available through third-party products, and the exact
command options used may vary between implementations. The commands
given in this manual should be regarded as examples, and may not be the
exact commands that your installation will require.

For more information about curl, see for example https://curl.haxx.se/.

message URL https://curl.haxx.se/

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 5

Installing the CORBA Add-
on for REST
This chapter gives installation information for the Micro Focus® | CORBA®
Add-on for REST.

The CORBA Add-on for REST supports the following CORBA products:

• Orbix 6.3.11

• VisiBroker 8.5.6

The CORBA Add-on for REST product includes an idl2rest compiler which
takes as its input an IDL file marked with IDL-RS annotations. The compiler
uses this input to generate a custom REST connector component.

In addition, installing the CORBA Add-on for REST product updates the
existing IDL compilers, enabling them to generate CORBA code in the same
way as before, identifying and ignoring the IDL-RS annotations.

The diagram below demonstrates how the product can be used to annotate
(using the new IDL-RS annotations) an existing CORBA IDL file, and how by
using the idl2rest tool you can generate a custom component called the
Rest connector that can be used to allow REST clients to communicate
with CORBA servers.

The diagram below demonstrates how a typical deployment of the CORBA
Add-on for REST may appear. At the left of the diagram a REST client is
communicating via HTTP with a Rest Connector component or server; it is
this component that will then act as a CORBA client to the backend CORBA
server.

6 Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide

Installation of the CORBA Add-on for REST
In order to deploy the CORBA Add-on for REST product solution for your
ORB installation, run the installer and during the installation choose the
location of your existing ORB installation (VisiBroker 8.5.6 or Orbix 6.3.11).

CORBA Add-on for REST installation footprint
The content of the installer will be installed into a sub folder called REST
within the ORB installation location:

Prerequisites
What you need for this installation:

• The CORBA Add-on for REST installer

• A license for the idl2rest compiler

• An existing ORB installation, which will need to be upgraded to work with
REST. The currently supported ORB installations are:

• Orbix 6.3.11 or higher

• VisiBroker 8.5.6 or higher

• The CORBA Add-on for REST HotFixes for your existing ORB client and
server installation machines (to be downloaded from Micro Focus
Support).

ORB HotFixes must match the platforms (operating system, compiler,
bitness) that your ORB installations are deployed on.

<ORB_install>/REST/bin/ Directory containing the idl2rest tool,
and some other scripts.

<ORB_install>/REST/lib/ Directory containing the run-time
components of the product.

<ORB_install>/REST/demos/

<ORB_install>/REST/doc/license_agreement.txt

<ORB_install>/REST/doc/notices.txt

<ORB_install>/REST/uninstall/

<ORB_install>/REST/etc/

<ORB_install>/REST/license/

<ORB_install>/REST/var/

https://www.microfocus.com/support-and-services/download/
https://www.microfocus.com/support-and-services/download/

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 7

Installation Instructions
In order to install the CORBA Add-on for REST, download the installer into a
temporary directory (for example, \temp on Windows, or /tmp on Linux).

You can then either install using the GUI, or choose silent installation (see
“Silent Installation”.)

Installing with the GUI
To install via the GUI, download the installer as described above. Then:

1 Run the installer to launch InstallAnywhere.

On Windows, mf_rest_corba_addon_1.0_win.exe

On Linux, mf_rest_corba_addon_1.0_unix.bin

2 The installer will run through a series of screens. The License
Agreement screen is the first to display.

Read and agree the terms of the license agreement. Check I accept the
terms of the License Agreement and click Next. If you do not accept
the license, you cannot proceed further.

8 Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide

3 Choose the location of the ORB installation that will be upgraded. Either
accept the default offered or click Choose to browse to the correct
location.

4 The installer then asks for the location of the CORBA Add-on for REST
HotFix. The text shown on the screen depends on the ORB that is being
upgraded. The example illustrated below shows a VisiBroker installation;
if you are upgrading an Orbix 6 ORB, the text would change accordingly.

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 9

If you have not yet downloaded the necessary HotFix, click on the Micro
Focus Supportline link provided on the screen, and download from there
to your local machine. You can now select the HotFix and proceed with
the installation.

5 The remaining installer screens will be:

a Pre-installation summary

b Installation (this will show a progress of the installation as it occurs)

c Final post-installation screen mentioning the ORB installation that
was upgraded, and how to install the CORBA Add-on for REST license
(which is required before use).

Silent Installation
As an alternative to the GUI installation described above, you can install
silently.

A silent installation runs without user interaction, and is typically used to
automate installation across multiple machines. Download the installer as
described in “Installation Instructions”. Instead of specifying the installation
parameters via the screens of the GUI, the parameters are stored in an
installer properties file.

Sample silent installer properties file
A sample properties file for the CORBA Add-on for REST silent installer
would look as follows:

#
ORB_INSTALLATION=<path to orb installation>
REST_ADDON_HOTFIX=<path to rest add-on hotfix>
INSTALLER_UI=silent

Performing silent installation
To perform a silent installation, specify silent mode by using the -i switch
on the command line.

• Windows: mf_rest_corba_addon_1.0_win.exe -i silent

• Linux: mf_rest_corba_addon_1.0_unix.bin -i silent

If the installer properties file is named installer.properties and is in
the current directory, it will be automatically picked up. To specify a file with
a different filename or in a different location, use the -f command line
switch.

• Windows: mf_rest_corba_addon_1.0_win.exe -i silent -f c:\
temp\installer_win.properties

• Linux: mf_rest_corba_addon_1.0_unix.bin -i silent -f
/tmp/installer_linux.properties

10 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Licensing the Product
Before using the CORBA Add-on for REST product, you need to register and
activate the license you received for your product. The license may be in the
form of an email from Micro Focus listing one or more serial numbers and
license keys, or it may be a license key file sent to you in an email from
Micro Focus.

To license the product we need to run the licensing script:

• Windows: <ORB-installation>\REST\bin\rest_lmadm.bat

• Linux: <ORB-installation>/REST/bin/rest_lmadm.sh

The script will open up a GUI wizard. Follow the on-screen instructions to
register your license. You can register the product in one of the following
ways:

1 Serial Number: Where a serial number and activation key are available,
please follow these steps to register the product:

a Product Registration Wizard: Select Have Serial Number.

b Serial Number: Enter the 20-character serial number and the 6-
character license key supplied with your installation into the respective
fields.

c Select Registration Method: Choose Direct.

This is the recommended registration method, but note that for direct
registration you need internet access from the system on which your
product is installed; if you do not have access, choose one of the other
methods.

d Account Information: This is specified as a prerequisite for installing
CORBA Add-on for REST. Choose I have an account. If you have not
yet set up a developer network account, select I do not have an
account. The wizard prompts you for the information to create an
account.

e Account Information: Enter your developer network account
information: login name, email and password.

f Proxy settings: If you have any proxies configured, check I use a
proxy and enter your proxy information. If you do not use proxies,
just click Next.

g Information Summary: Check the information you have entered and
if it is correct click Next. Click Back if you want to change anything.

h Direct Registration: Assuming you did select Direct earlier, this
dialog shows how your registration is progressing. When registration is
complete, the Done button is enabled. Click Done.

2 Activation File: If a product activation file or slip file are available, then
select Have Activation File and follow the on-screen prompts to have
the activation file installed and registered.

For help obtaining one of the above, or if you encounter any issues with
licensing the product, please contact your local representative via Micro
Focus Support.

https://www.microfocus.com/support-and-services/download/
https://www.microfocus.com/support-and-services/download/

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 11

Troubleshooting
To view debug information from the installer, do the following:

• Windows: Hold down the Ctrl key immediately after launching the
installer until a console window appears.

• Linux: To send the debug output to the console, run the installer as
follows:

LAX_DEBUG=true ./mf_rest_corba_addon_1.0_unix.bin

12 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 13

Getting Started
This chapter describes using the CORBA Add-on for REST.

Setting the Environment
The first thing is to ensure that your ORB's environment is correctly set up.

Run the Deployment Environment Script
• Orbix 6: Before using the CORBA Add-on for REST with Orbix 6, you

must have deployed an Orbix domain, and need to have run the
deployment environment script that was generated during the
deployment process.

The deployment environment scripts are typically found in the
etc/bin sub-folder of an Orbix 6 installation. See the Orbix 6
Deployment Guide for further information.

• VisiBroker: Run the vbroker script in the bin folder of the VisiBroker
installation. See the VisiBroker Installation Guide for information on
this script.

The installation process described in the previous chapter (“Installing the
CORBA Add-on for REST”) created a sub-folder called REST inside the ORB
installation folder. This sub-folder contains the CORBA Add-on for REST
installation.

Run the rest_env Script
To source the environment for the CORBA Add-on for REST, run the script
called rest_env, which is located in the bin folder.

Now your environment is correctly set up and you can start using the
product.

The Typetest Example
This chapter describes how to create, build and run the typetest example
that is included in the CORBA Add-on for REST product. The demonstration
program can be found under the demos folder in the product installation.

The accompanying README.txt file contains detailed information on how to
run the demonstration program. The demonstration program contains a
CORBA server, a custom-generated REST Connector component, and some
sample REST clients demonstrating how clients written using a simple REST
framework can be used to talk to a CORBA server, via the REST connector
component.

Before you run the example program, it is important to understand how the
program uses the new IDL-RS annotations along with the idl2rest tool to
generate a custom REST connector. See the chapter “IDL-RS Annotations” for
details.

14 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

The following diagram shows the different parts of the demo and how they
work together.

There are three main components:

• REST Client: This is a client which can be written in any number of
languages and frameworks. The typical requirement is a HTTP library,
and the data serialization library (such as XML or JSON).

• REST Connector: This is the custom-generated component which has
been generated with the idl2rest tool, and translates or maps your HTTP
messages into CORBA messages that the CORBA server can understand.

• CORBA Server: This is your CORBA server, which may be one of the
Micro Focus ORBs listed in “Components”.

The typetest demonstration program uses the IDL-RS annotations to
create a REST API from the CORBA IDL.

The excerpt below shows the TypeTest interface, and some annotated IDL
operations. This shows how, by using a few IDL-RS annotations, it is
possible to add a REST API that can in turn be mapped into the desired
CORBA calls to invoke on the CORBA server.

@Path(uri = "/typetest", rir = "file:../typetest_objref.txt")
interface TypeTest
{

enum Beer { Wheat, Lambic, Bitter, Stout, Porter };

 @Path(enum_inout)
 @POST
 void enum_inout (inout Beer beerEnum);

 @Path("sysexc_op")
 @POST
 void sysexc_op();

@HTTPStatus(responseCode = 414,
description = "A new user exception")

 exception UserExc
 {
 long m1;
 boolean m2;
 string m3;
 };

 @Path("userexc_op")
 @POST
 void userexc_op() raises(UserExc);
...
...
...
};

If you look at the interface definition, you can see that the
MF_TypeTest::Typetest interface is annotated with the @Path
annotation. This will bind the interface to the URI /typetest and refer to
the backend CORBA Object contained in the file typetest_objref.txt.

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 15

For example, to call to the TypeTest::sysexc_op() operation, you could
issue the following HTTP Request to the URI:

<base_uri>/typetest/sysexc_op

with the HTTP POST method.

The structure of the demonstration
The directory and file structure of the typetest example, as it is installed,
is shown below. Inside the demonstration folder are the following important
folders:

• idl contains the IDL that has been annotated with IDL-RS annotations.

• rest_clients contains a number of different clients that have been
written with the following REST frameworks:

• JAX-RS/REST

• Python

• rest_connector contains the build scripts and README files required to
build and run the connector.

• corba_server contains the build scripts, source and README files to run
the CORBA server.

The typical folder layout for the typetest demonstration is as follows:

<REST_HOME>/demos/classes
<REST_HOME>/demos/typetest
<REST_HOME>/demos/typetest/idl
<REST_HOME>/demos/typetest/rest_clients/jax_rs
<REST_HOME>/demos/typetest/rest_clients/jax_rs/classes
<REST_HOME>/demos/typetest/rest_clients/jax_rs/src
<REST_HOME>/demos/typetest/rest_clients/python
<REST_HOME>/demos/typetest/rest_connector/idl2rest_output
<REST_HOME>/demos/typetest/rest_connector/<build-scripts>
<REST_HOME>/demos/typetest/rest_connector/<readme files>
<REST_HOME>/demos/typetest/corba_server/src/
<REST_HOME>/demos/typetest/corba_server/java_output
<REST_HOME>/demos/typetest/corba_server/<build-scripts>
<REST_HOME>/demos/typetest/corba_server/<readme files>

Building the Demonstration
This section gives instructions for building this demonstration for Orbix 6
and VisiBroker. These instructions build the CORBA Server, and the
generated REST connector.

Orbix 6
The Orbix 6 demo is run with the itant tool that is distributed with Orbix 6.

Windows:

cd %REST_HOME%\demos\typetest\corba_server
itant

UNIX:

cd $REST_HOME/demos/typetest/corba_server
itant

16 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

VisiBroker
The VisiBroker demonstration follows the demonstration build system that
VisiBroker demos use, which is a Makefile for UNIX platforms, and a batch
file script on Windows systems.

Windows:

cd %REST_HOME%\demos\typetest\corba_server
vbmake.bat

UNIX:

cd $REST_HOME/demos/typetest/corba_server
make all

Running the Demonstration
This consists of:

• Running the CORBA Server

• Scenarios for Deploying the REST Connector

Running the CORBA Server

Orbix 6

Windows:

cd %REST_HOME%\demos\typetest\corba_server
java -classpath .\classes;"%CLASSPATH%" typetest.MF_TypeTest.Server

UNIX:
cd $REST_HOME/demos/typetest/corba_server
java -classpath classes:$CLASSPATH typetest.MF_TypeTest.Server

VisiBroker

Windows:
cd %REST_HOME%\demos\typetest\corba_server
vbj -classpath .\classes;%CLASSPATH% typetest.MF_TypeTest.Server

UNIX:
cd $REST_HOME/demos/typetest/corba_server
vbj -classpath ./classes:$CLASSPATH typetest.MF_TypeTest.Server

Scenarios for Deploying the REST Connector
The section discusses how to take your existing CORBA server deployment
and deploy the REST Connector in three different ways. Each of the sections
describes deploying a new REST Connector instance. These demonstrate
how REST Connectors can be deployed in different circumstances, such as:

• Deploying the REST Connector insecurely

• Deploying the REST Connector securely

• Deploying the REST Connector to serve a versioned REST API

Deploying the REST Connector insecurely
At this point your CORBA server is compiled and running, and the remaining
component to run is the REST Connector.

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 17

In the bin folder of the installation is a shell script called:

• Windows: rest_connector.bat

• UNIX: rest_connector.sh

For details on the options that can be passed into the rest_connector
script, see “Connector Options”.

Orbix 6

Windows:

cd %REST_HOME%\demos\typetest\rest_connector
itant connector.compile

UNIX:

cd $REST_HOME/demos/typetest/rest_connector
itant connector.compile

VisiBroker

Windows:

cd %REST_HOME%\demos\typetest\rest_connector
vbmake.bat

UNIX:

cd $REST_HOME/demos/typetest/rest_connector
make -e all

At this point the build system has taken the annotated IDL file, and
compiled it with the idl2rest tool. The resulting generated code has been
compiled.

You are now ready to run the REST Connector. The rest_connector script
takes an argument that is the package name for the connector to scan for
generated code packages at runtime.

Windows:

%REST_HOME%\bin\rest_connector.bat --hostname REST-HOST
--config-file generated_config\connector.properties

UNIX:

$REST_HOME/bin/rest_connector.sh --hostname REST-HOST
--config-file generated_config/connector.properties

The excerpt below shows a sample output of what the Connector outputs
when it runs:

Nov 11, 2019 9:43:15 AM
com.microfocus.rest4corba.config.FlatPropertiesFileConfigurationH
andler loadProperties
INFO: Loaded properties from generated_config\
connector.properties: property count = 1
uriBasename: http://REST-HOST
Nov 11, 2019 9:43:18 AM
org.glassfish.grizzly.http.server.NetworkListener start
INFO: Started listener bound to [REST-HOST:8080]
Nov 11, 2019 9:43:18 AM
org.glassfish.grizzly.http.server.HttpServer start
INFO: [HttpServer] Started.

Once the connector is running you can run the REST clients against it. The
sources to the REST clients are located in the rest_clients sub-folder in
the demonstration (see “The structure of the demonstration”). See the README

18 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

files located in these folders for more information on running the provided
REST clients.

The excerpt below invokes an API using a curl command to send a HTTP
request to a URI. This example invokes a POST method on the enum_inout
URI. It also informs the Connector what format the request and response
messages are to contain. This is controlled via HTTP headers. In this
example, the request body is sending JSON, and XML is asked for in the
response message.

Request:
curl -s http://REST-HOST:8080/typetest/enum_inout -H
'Content-Type: application/json' -H 'Accept: application/xml' -X
POST -d '{"val": {"kind": "Porter"}}'

Response:
<enum_inoutResponseWrapper xmlns=""><val><kind>Wheat</kind></
val></enum_inoutResponseWrapper>

Note:
This request example is for a UNIX installation. For considerations about
using curl on Windows, see “Using curl”.

Java (JAX-RS):

The following excerpt is taken from the JAXRSClientJson class that is
provided in the typetest demonstration. It uses the JAX-RS APIs to build up
and parse the request and response.

WebTarget target = client.target(baseUrl + "enum_inout");
String inputData = "{\"val\":{\"kind\":\"Porter\"}}";
Response response = target.request("application/
json").post(Entity.json(inputData));
if(response.getStatus()!=200){

System.out.println("Did not get expected http response for
POST enum_inout expected 200");

throw new RuntimeException("HTTP Error: "+
response.getStatus());
}
System.out.println("Correct OK Response from the Server for POST
enum_inout ");
String result = response.readEntity(String.class);

if(result.contains("Wheat") == true)
System.out.println("Correct value returned for enum_inout

request " + result);
else {

System.out.println("Wrong value returned for enum_inout " +
result + " not contain Wheat");

System.exit(1);
}

Python:

The following excerpt taken from the Python client for the same API uses an
HTTP and a JSON library to build up and parse the request and response.

url_enum_inout = baseurl + "enum_inout"
r = session.post(url_enum_inout, json =
{'val':{'kind':'Porter'}})
if r.status_code == 200:

print ("GOOD http response for enum_inout 200 OK")
else:

exit("Exiting as bad return value for enum_inout " +
r.text);
check_string = str(r.text)
if check_string.find("Wheat") == -1:

exit("Exiting as bad return value for enum_inout\n");
else:

print ("enum_inout successful " + r.text + "\n")

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 19

Deploying the REST Connector securely
Until this point, we have described running the REST Connector and the
REST clients against a HTTP endpoint. This section describes how to turn on
TLS security so that you can run the connector to serve secure HTTP traffic
(https).

This section builds upon the previous deployment of an insecure REST
Connector, which you deployed on the host REST-HOST on port 8080,
serving the insecure HTTP traffic. You can now build upon this to run
another instance of the REST Connector, this time only serving secure
HTTPS traffic on port 9000. The diagram below visualizes this deployment.
The REST client-side application and the CORBA server application can
reside on the same host or on different hosts.

Generating TLS certificates

For ease of use with secure running, a script is provided in the etc sub-
folder of the installation for generating the TLS certificates used for the
secure demonstration. These TLS certificates must be generated because
the X509 extension SubjectAlternateName needs to be used to provide
alternate hostnames and IP addresses that are host-specific.

See the README.txt file in the etc subfolder of the CORBA Add-on for
REST installation for a detailed background and instructions for generating
and installing these TLS certificates.

Note:
If you are running the rest_connector and the REST client(s) on separate
machines, it is necessary to generate the certificates on the connector
machine and then copy the required certificates to the appropriate location
on the client machine(s).

Connector properties

Once the certificates are installed, ensure that you pass the --secure
option to the rest_connector script. You must also pass the --hostname
option to the script, and the hostname must match one of the hostnames

20 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

present in the TLS certificate's SubjectAlternateName (as described in
“Generating TLS certificates”).

The --hostname and --secure flags are also required when running the
REST clients provided with this demonstration. These flags ensure that the
correct TLS certificates are configured. See the README files in the
rest_clients/jax_rs and rest_clients/python sub-folders for
detailed instructions on how to do this.

This section describes and demonstrates this approach, and assumes that
you already have your TLS certificates generated at this point (see
“Generating TLS certificates” for details).

As no change is needed to the IDL, you do not need to re-run the idl2rest
tool.

mkdir secure_rest_connector
cd secure_rest_connector

Copy the previous connector.properties file to the current folder, and
rename it secure_connector.properties. You can edit the contents of
this copy to enable security.

Now configure the certificates. Open the secure_connector.properties
configuration file and uncomment these four TLS configuration items:

• REST_KEYSTORE_SERVER_FILE
• REST_KEYSTORE_SERVER_PWD
• REST_TRUSTSTORE_SERVER_FILE
• REST_TRUSTSTORE_SERVER_PWD
• REST_CONNECTOR_SECURE and set this to true

To set the port number that the connector will use, uncomment the
configuration variable REST_CONNECTOR_PORT and change its value to
9000.

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 21

The following example shows the main points that need configuring
highlighted in bold:

The port number the HTTP server will listen for HTTP traffic, by default the
HTTP server will listen on port: 8080
#
REST_CONNECTOR_PORT = 9000
eg: REST_CONNECTOR_PORT = 8080
##
Begin Security deployment settings for the HTTP Server
#
#
HTTP server SSL configuration
Use of SSL is controlled via the URI base.
#
#
Turn on HTTPs security, by default this is set to false.
#
REST_CONNECTOR_SECURE = <true|false>
REST_CONNECTOR_SECURE = true
#
Authenticate the client?
#
false: The client authenticates the server.
true: The client authenticates the server,
and the server authenticates the client.
#
REST_AUTHENTICATE_CLIENT = true
#
Relative paths are based off the directory in which
the rest_connector script was launched.
#
REST_KEYSTORE_SERVER_FILE = C://REST/etc/sslconfig/keystore_server.jks
REST_KEYSTORE_SERVER_PWD = keystoreserverpass
REST_TRUSTSTORE_SERVER_FILE= C://REST/etc/sslconfig/truststore_server.jks
REST_TRUSTSTORE_SERVER_PWD = truststoreserverpass
#
#
End of security properties
###

Now you can run the connector securely using the following command:

Windows:

%REST_HOME%\bin\rest_connector.bat --hostname REST-HOST
--config-file secure_connector.properties

UNIX:

$REST_HOME/bin/rest_connector.sh --hostname REST-HOST
--config-file secure_connector.properties

22 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Nov 12, 2019 12:02:54 PM
com.microfocus.rest4corba.config.FlatPropertiesFileConfigu
rationHandler loadProperties
INFO: Loaded properties from secure_connector.properties:
property count = 7
uriBasename: https://REST-HOST
Nov 12, 2019 12:02:57 PM
org.glassfish.grizzly.http.server.NetworkListener start
INFO: Started listener bound to [REST-HOST:9000]
Nov 12, 2019 12:02:57 PM
org.glassfish.grizzly.http.server.HttpServer start
INFO: [HttpServer] Started.
Nov 12, 2019 12:02:57 PM
com.microfocus.rest4corba.CorbaRestStandaloneServer run
INFO: Started server on: https://REST-HOST:9000

You can run a curl command to simulate a client sending HTTPS requests to
your secure Connector instance as follows:

Request:

curl -s --cacert <PATH_TO_CERTS>/caserver_export.pem
https://REST_HOST:9000/typetest/enum_inout -H
'Content-Type: application/json' -H 'Accept: application/
xml' -X POST -d '{"val": {"kind":"Porter"}}'

Response:

<enum_inoutResponseWrapper xmlns=""><val><kind>Wheat</
kind></val></enum_inoutResponseWrapper>

Note:
This request example is for a UNIX installation. For considerations about
using curl on Windows, see “Using curl”.

The JAX-RS and Python clients can also be run securely against the new
securely-deployed Connector, serving requests from port 9000 on the host
REST-HOST. Consult the README files in the respective rest client folders on
the exact command line options that are required to configure the clients to
run with the client-side TLS demo certificates.

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 23

Deploying the REST Connector to serve a versioned
REST API
The previous section described how you could run a single Connector
instance, and run some REST clients to talk to the Connector.

This section shows how to extend the existing CORBA IDL file that was
previously annotated with IDL-RS annotations. It will demonstrate that by
just changing some of the IDL-RS annotation values, you can construct a
different REST API. In addition you will root the entry point of the modified
API at a different URI. The example that follows changes the root URI from:
/typetest to /typetest_v2.

The following illustration shows the structure of the revised deployment.

During this example the CORBA server does not need to be brought down,
or reconfigured. The existing REST connectors that were used in the
previous sections can also be left running.

This section describes:

• Extending the IDLto include more IDL-RS annotations

• Compiling the IDL by running the idl2rest tool but compiling the generated
code into a separate package, typetest_v2

• Running the connector and configuring it with the typetest_v2. The
connector will be running on a separate port

• Running the REST clients against the new connector, showing how you can
point the clients at the updated modified API

24 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Extending the IDL

First, you can extend the previous IDL file. The changes are highlighted in
bold text below.

@Path(uri = "/typetest_v2", rir = "file:../typetest_objref.txt")
interface TypeTest
{
 enum Beer { Wheat, Lambic, Bitter, Stout, Porter };

 @Path(enum_inout)
 @POST
 void enum_inout (inout Beer beerEnum);

 @Path("sysexc_op")
 @POST
 void sysexc_op();

 @HTTPStatus(responseCode = 408,
description = "A new user exception")

 exception UserExc
 {
 long m1;
 boolean m2;
 string m3;
 };

 @Path("userexc_op_new")
 @POST
 void userexc_op() raises(UserExc);

 @Path("long_in/{arg1}")
 @POST
 void long_in(
 @PathParam("arg1")
 in long val
);

In the first change, the @Path annotation changes the uri to /
typetest_v2. This ensures that the connector serves requests from the
resource at the /typetest_v2 URI.

The next change is that the CORBA user exception is now annotated with
the @HTTPStatus annotation, and the URI for the userexc_op() is now
changed to userexc_new_op.

Compiling the IDL

The IDL can be compiled in the same way as before, with the following
change to the demo build-system.

Orbix6

Windows:

cd %REST_HOME%\demos\typetest\rest_connector
itant connector.compile -Drest.package=typetest_v2

UNIX:

cd $REST_HOME/demos/typetest/rest_connector
itant connector.compile -Drest.package=typetest_v2

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 25

VisiBroker

Windows:

cd %REST_HOME%\demos\typetest\rest_connector
vbmake.bat typetest_v2

UNIX:

cd $REST_HOME/demos/typetest/rest_connector
make -e REST_PACKAGE_NAME=typetest_v2

The above commands show how you can generate and compile the modified
IDL file (which only has IDL-RS changes) to create a new REST API rooted
under /typetest_v2.

Running the connector

At this point you can run the connector in a number of different ways. In
every case, you must configure two important pieces of information:

1 The port number: as you already have a connector running on port
8080, serving the /typetest URI, you need to choose a new port.

2 The REST package to use when the Connector starts.

The sections “Overriding the Configuration Variables” and “Connector Options”
document the various ways that this configuration can be provided to the
Connector.

In this section, we will configure the Connector by passing command-line
options to the rest_connector script.

Windows:

%REST_HOME%\bin\rest_connector.bat --hostname REST-HOST
--port 9090 --rest-package typetest_v2 --config-file
generated_config/connector.properties

UNIX :

$REST_HOME/bin/rest_connector.sh --hostname REST-HOST
--port 9090 --rest-package typetest_v2 --config
generated_config/connector.properties

26 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Running the REST clients

You can run your REST clients against the new connector as follows:
$ curl http://REST-HOST:8080/typetest/userexc_op -X POST -v
> POST /typetest/userexc_op HTTP/1.1
> User-Agent: curl/7.37.0
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 414 Request-URI Too Long
< Cache-Control: no-cache
< Content-Type: application/json
< Date: Fri, 22 Nov 2019 11:06:21 GMT
< Connection: close
< Content-Length: 30
<
* Closing connection 0
A new user exception

$ curl http://REST-HOST:9090/typetest_v2/userexc_op_new -X POST
-v

[SNIP..]

> POST /typetest_v2/userexc_op_new HTTP/1.1
> User-Agent: curl/7.37.0
> Host: localhost:9090
> Accept: */*

[SNIP…]

< HTTP/1.1 408 Request Timeout
< Cache-Control: no-cache
< Content-Type: application/json
< Date: Fri, 22 Nov 2019 11:07:14 GMT
< Connection: close
< Content-Length: 30
<
* Closing connection 0
A new user exception

In the example above, the first curl command sends a request to the URI
/typetest/userexc_op on port 8080. This returns an HTTP response code
of 414 with the message "A new user exception". You can see this by
looking at the IDL-RS annotation in the IDL excerpt in the section “The
Typetest Example”.

The second curl command above changes the URI and port, from
/typetest/user_exc_op on port 8080 to /typetest/user_exc_op_new
on port 9090. The connector on port 9090 has responded with an HTTP
response code of 408, and the message "A new user exception".

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 27

IDL-RS Annotations
The IDL-RS annotations are a new concept; the notion of IDL annotations
was recently added in the IDL 4 specification. The IDL-RS annotations follow
on from this notion of IDL annotations, to define a set of IDL annotations that
are applicable to decorate an IDL file to allow it to describe selective IDL
components, and to aid in providing a mapping from certain IDL constructs
to a REST API.

Annotations Used
The current list of implemented IDL-RS annotations used by the product
are:

• @Path: This annotation is used to bind a HTTP URI (Uniform Resource
Locator) to a particular IDL construct. The annotation takes two forms:

• Where the annotation only needs to mention the URI, so examples
would be: @Path("/bank").

• Where the annotation needs to be told about a persistent CORBA
object, along with the URI. In this form the annotation would look like:
@Path(uri = "/bank", rir = "corbaloc::localhost:3075/
BankRef").

• @GET: Maps to the HTTP GET method.

• @POST: Maps to the HTTP POST method.

• @PUT: Maps to the HTTP PUT method.

• @DELETE: Maps to the HTTP DELETE method.

• @Consumes: Can be used to tell the runtime what media-type can be
consumed in HTTP requests, the current supported types are JSON and
XML.

• @Produces: Can be used to tell the runtime what media-type can be
produced in HTTP responses, the current supported types are JSON and
XML.

• @HTTPStatus: This annotation is used to provide a custom mapping for
user exceptions. This mapping can map a user exception to a HTTP
response status code, and have the response body contain a custom
message.

An example of the annotation would be: @HTTPStatus(responseCode =
404, description = "Invalid Operation").

Where possible the IDL-RS annotations have tried to stay close to the JAX-
RS annotations that Java REST developers would be familiar with. With this
in mind, any developers coming from that development background should
be very comfortable with using the IDL-RS annotations to annotate an
existing IDL.

28 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 29

IDL Type Serialization
This chapter describes using the CORBA Add-on for REST product to serialize
IDL types into two different data formats:

• JSON (JavaScript Object Notation).

• XML (Extensive Markup Language).

These are self-describing data formats that are used extensively when
building distributed systems using REST.

JSON Mapping for IDL Types
The mapping for JSON serialization is based on the DDS-JSON OMG
specification as a starting point. The serialized content is the actual data
payload, and defining a schema for the JSON representation of the original
IDL type is less significant.

For more information about JSON see json.org.

JSON Mapping for Primitive IDL Types
Where possible the CORBA Add-on for REST tries to map IDL primitive types
to their nearest counterpart in the JSON data format.

All the IDL numeric primitives map to their counterpart in JSON. For
example an octet is easily represented as a number, and the same follows
through for the other numeric types. The exception is that JSON only
supports numbers in decimal notation, so any hexadecimal or octal values
will be encoded in their decimal representation.

The non-numeric primitives, such as boolean, string, and char types, can be
mapped directly to their counterparts in JSON.

JSON Mapping for Arrays and Sequences
JSON has native support for defining lists or array structures within its
syntax.

The following sequence in IDL:

typedef sequence<long> LongSeq;

would be serialized in JSON as:

[10, 2, 4, 5]

The same mapping would exist for an IDL Array as for an IDL Sequence.

Where the elements of the IDL Array or Sequence are of IDL primitives,
they are serialized to their nearest JSON counterpart. See “JSON Mapping for
Primitive IDL Types”.

JSON Mapping for Complex IDL Types
This section looks at how some of the more complex IDL types are serialized
to the JSON data format. Where possible a trade-off has been made
between payload size and readability.

http://www.json.org/
https://www.omg.org/spec/DDS-JSON
https://www.omg.org/spec/DDS-JSON

30 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Enum types
The following IDL enum type:

enum Colors {RED, BLUE, GREEN};

will be serialized into the following JSON payload:

{"kind": "BLUE"}

In the above example the Colors enum currently has the value of BLUE.
The value associated with the "kind" key is the stringified representation of
the current enum value.

Struct type
The following IDL struct type:

struct DateOfBirth {
 octet day;
 octet month;
 unsigned short year
};

struct CustomerType {
 String name;
 DateOfBirth dob;
}

will get serialized to the following JSON payload:

{
 "name": "Peter",
 "dob": {
 "day": 4,
 "month": 3
 "year": 1970
 },
}

Union type
The following IDL union type:

enum IPVerEnum {E_IPV4, E_IPV6, E_IP_UNKNOWN};

union IPVersion switch(IPVerEnum) {
 case E_IPV4:
 octet ipv4[4];
 case E_IPV6:
 octet ipv6[16];
 default:
};

will be serialized to the following JSON payload:

{
 "discriminator": {
 "kind": "E_IPV6"
 },
 "value": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 31

XML Mapping for IDL Types
This section defines how types defined in IDL are serialized in XML.

XML Mapping for Primitive IDL Types
All the IDL primitives are easily represented in XML.

XML Mapping for Complex IDL Types
This section looks at how some of the more complex IDL types are serialized
to the XML data format. Where possible a trade-off has been made between
payload size and readability.

Enum type
The following IDL enum type:

enum Colors {RED, BLUE, GREEN};

will be serialized as the following JSON payload:

<kind>BLUE</kind>

In the above example the Colors enum currently has the value of BLUE.
The value associated with the "kind" XML node is the stringified
representation of the current enum value.

Struct type
The following IDL struct type:

struct DateOfBirth {
 octet day;
 octet month;
 unsigned short year
};

struct CustomerType {
 String name;
 DateOfBirth dob;
}

will get serialized as the following XML payload:

<CustomerType>
 <name>Peter</name>
 <DateOfBirth>
 <day>4</day>
 <month>3</month>
 <year>1970</year>
 </DateOfBirth>
</CustomerType>

32 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Union type
The following IDL union type:

enum IPVerEnum {E_IPV4, E_IPV6, E_IP_UNKNOWN};

union IPVersion switch(IPVerEnum) {
 case E_IPV4:
 octet ipv4[4];
 case E_IPV6:
 octet ipv6[16];
 default:
};

will be serialized as the following XML payload:

<IPVersion>
 <discriminator>
 <kind>E_IPV6</kind>
 </discriminator>
 <value>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 <item>0</item>
 </value>
</IPVersion>

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 33

IDL Request and Response
Wrapping
This chapter describes how the CORBA Add-on for REST uses request and response wrapping to
meet HTTP’s requirement to deal with a single object.

Wrapped Objects
One of the advantages of using CORBA is its very rich way of sending multiple data items from
servers to clients using a combination of response values that can use not only the return type
of an IDL operation, but also the inout or out parameter modes.

While this makes CORBA very powerful and flexible, it does pose an issue with mapping request
parameters, and responses. HTTP defines its request and response bodies to contain a single
entity or object only. A solution to this is to wrap the REST parameters or responses into a
wrapped object. This wrapped object can then be serialized into one of the supported data
formats (JSON or XML), using the serialization rules defined in “IDL Type Serialization”.

The code generation tool idl2rest will automatically generate code to wrap request and
response data. Classes are named in the form:

<idl_operation_name>[Request|Response]Wrapper

For JSON payloads this is mostly hidden, while XML payloads will serialize the name of the
wrapper as the parent node in the XML payload.

Request Wrappers
In order to support sending multiple IDL parameters in an IDL request, CORBA Add-on for REST
needs a means to wrap these parameters together so that it can encode them in the body of a
HTTP request.

First, the following code snippet shows an IDL operation annotated with IDL-RS Annotations:

@POST
@Path("/op")
boolean op_with_multi_args(

in string message1,
in string message2,
in long long_val,
inout short short_val

);

The data sent in the HTTP request body would look like this, assuming that it is in JSON data
format:

POST /op HTTP/1.1
[SNIP...]
{

"message1" : "contents...",
"message2" : "more data for our CORBA server",
"long_val" : 300000,
"short_val": 2000

}

Or if the same example is in XML format, the HTTP request may look like this:

POST /op HTTP/1.1

34 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

<?xml version="1.0" encoding="UTF-8"?>
<op_with_multi_argsRequestWrapper xmlns="">
 <mesage1>contents...</message1>
 <mesage2>more data for our CORBA server </message2>
 <long_val>300000</long_val>
</op_with_multi_argsRequestWrapper>

IDL Parameter Annotations
In this more complex example, the first parameter to the existing IDL operation has been
annotated with an IDL-RS annotation.

@POST
@Path("/op/{id}
boolean op_with_multi_args(

@PathParam("id")
in string message1,
in string message2,
in long long_val,
inout short short_val

);

In this instance the request body would no longer have the key message1 in its JSON payload.
Instead, the content of the message1 parameter would form part of the URI, as it is annotated
with the IDL-RS annotation @PathParam:

PUT /op/message1 HTTP/1.1
[SNIP...]
{

"message2" : "more data for our CORBA server",
"long_val" : 300000,
"short_val": 2000

}

Or, in XML:

PUT /op/message1 HTTP/1.1
[SNIP...]
<?xml version="1.0" encoding="UTF-8"?>
<op_with_multi_argsRequestWrapper xmlns="">
 <mesage2>more data for our CORBA server </message2>
 <long_val>300000</long_val>
 <short_val>2000</short_val>
</op_with_multi_argsRequestWrapper>

Response Wrappers
If you include the same IDL example as in the previous section:

boolean op_with_multi_args(
in string message1,
in string message2,
in long long_val,
inout short short_val

);

This will now result in the following data being written in the HTTP response body (in JSON
format):

{
"ret" : false,
"short_val" : 24500

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 35

}

Or in the case of XML:

<?xml version="1.0" encoding="UTF-8"?>
<op_with_multi_argsResponseWrapper xmlns="">
 <ret>false</ret>
 <short_val>24500</short_val>
</op_with_multi_argsResponseWrapper>

You can see here that irrespective of whether the data format is JSON or XML, the data format
contains two pieces of data:

1 The ret key or node corresponds to the return value from the IDL operation.

2 The short_val key or node corresponds to the IDL parameter that is returned by the CORBA
server, as the IDL parameter had the inout parameter mode.

As you have seen above, any parameters that have a response-based parameter mode (that is,
inout and out) will be serialized in the HTTP response body.

36 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 37

System Exceptions
This chapter describes system exception mapping in the CORBA Add-on for
REST.

The CORBA Add-on for REST product provides a means to map any CORBA
System Exceptions raised during the invocation or processing of a CORBA
call to a HTTP response code. This gives a seamless way for REST
developers to handle any error conditions, in a more HTTP-friendly manner,
without needing to understand CORBA System Exceptions.

The table below shows the System Exceptions that the CORBA Add-on for
REST currently maps. Further System Exception mappings may be added in
a future release.

CORBA System Exception HTTP Response Code

COMM_FAILURE and TIMEOUT TIMEOUT (408)

OBJECT_NOT_EXIST and INV_OBJREF GONE (410)

TRANSIENT NOT_FOUND (404)

NO_PERMISSION UNAUTHORISED (401)

BAD_OPERATION and BAD_PARAM METHOD_NOT_ALLOWED (405)

MARSHAL BAD_REQUEST (400)

INTERNAL and INITIALIZE INTERNAL_SERVER_ERROR (500)

NO_IMPLEMENT NOT_IMPLEMENTED (501)

IMP_LIMIT, NO_MEMORY, and NO_RESOURCES SERVICE_UNAVAILABLE (503)

All other System Exceptions CONFLICT (409)

38 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 39

Configuration
This chapter describes configuration properties for the CORBA Add-on for
REST.

The CORBA Add-on for REST product typically requires a configuration file
called connector.properties. This file is generated when you run the
idl2rest tool to create the REST connector. The file is placed in the
generated_config sub-folder of the current directory.

The table below shows the configuration variables that are currently
supported in the product.

Property Name Description

REST_CONNECTOR_HOSTNAME The hostname that the Connector’s HTTP server
uses to listen for incoming HTTP messages

REST_CONNECTOR_PORT The port number that the Connector’s HTTP
server uses to listen for incoming HTTP
messages.

REST_CONNECTOR_SECURE Whether or not the Connector uses security.
The default is false.

If security is enabled the variables
REST_KEYSTORE_* and
REST_TRUSTSTORE_* must be configured to
point at the TLS keystore and truststores for
the Connector to use.

REST_KEYSTORE_SERVER_FILE The Java keystore file to be used when the
REST Connector is deployed securely.

REST_KEYSORE_SERVER_PWD The passphrase for the server’s keystore.

REST_TRUSTSTORE_SERVER_FILE The Java truststore file to be used when the
REST Connector is deployed securely.

REST_TRUSTSTORE_SERVER_PWD The passphrase for the server’s truststore.

REST_RESOURCE_PACKAGE The package to scan for generated REST
resource classes.

REST_ADD_ON_CLASS The fully qualified classname to look for to load
a custom add-on class. This is a class that
extends from the
com.microfocus.rest4corba.ext.CorbaAddOn
abstract class and that can be extended for
custom operations, such as getObjectKey().
This configuration item would typically be used
when the product is installed on top of another
ORB product.

REST_CONNECTOR_ORB_ADAPTER
_CLASS

The fully qualified class name to look for to load
a custom ORB adapter add-on class.

This is a class that extends from the
com.microfocus.rest4corba.ext.CorbaAddOn
abstract class, which can be extended for
custom operations. See “Extending the ORB
Adapter Class” for more information on
extending the class. This configuration item
would typically be used when the product is
installed on top of another ORB product.

40 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Configuring Multiple Connectors
The most straightforward method of configuring multiple connectors is to
maintain separate copies of the connector.properties file, and pass in
the --config-file command line option to each of the Connectors.

As is detailed in the next section, it is also possible to configure the
connector in a variety of ways, such as with command line options and
environment variables, or even a mixture of the two approaches. That being
said, Micro Focus recommends having the configuration in a single
configuration file, as this gives a clearer insight into the exact configuration
of the Connector.

Overriding the Configuration Variables
By default, configuration variables are configured by specifying them in the
connector.properties file that is generated from running the idl2rest
tool. Any of the variables in this file can be overridden by specifying an
environment variable of the same name.

A configuration variable is read and set as follows:

• The value is read from the configuration file, if there is no environment
variable set with the same name. If there is an environment variable set
with the same name, then this value is used.

• If a command line option is set, then this takes precedence over the
previous setting whether the variable existed in the configuration file or
as an environment variable.

Extending the ORB Adapter Class
The CORBA Add-on for REST product provides an extension mechanism
where different CORBA implementations may have a proprietary means of
discovering certain information. For example this can be used if you wanted
to leverage the use of a CORBA Objects object key, which is a useful piece
of information to identify a unique CORBA Object.

The following excerpt shows the code listing for an abstract Java class that
is provided by the product. By extending this abstract class, and
implementing the getObjectKey() Java method, it is possible to have the
product use this method to allow URIs to leverage the use of the object key
to uniquely identify the CORBA Object.

package com.microfocus.rest4corba.ext;

public abstract class CorbaAddOn {

 public org.omg.CORBA.Object string_to_object(String ref)
{
 return null;
 }

 public String
getObjectKey(org.omg.CORBA.portable.ObjectImpl obj) {
 return null;
 }

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 41

The following is an example of implementing this class:

import com.microfocus.rest4corba.ext.CorbaAddOn;

public class RESTOrbAdapter extends CorbaAddOn {

 @Override
 public String
getObjectKey(org.omg.CORBA.portable.ObjectImpl obj) {
 byte[] objectKeyBytes = null;
 // … Retrieve the object key via the ORBs underlying
proprietary APIs
 objectKeyBytes = <objkey-bytes>
 return new String(objectKeyBytes);
 }

}

You must then ensure that the class is compiled and present on the
Connectors classpath. When the connector runs and a URI is present with
the placeholder {objkey}, the Connector will call the
RESTOrbAdapter.getObjectKey() method to retrieve the unique value
for the CORBA Object.

42 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 43

idl2rest Options
The table below shows the command line flags that the idl2rest tool will
accept.

Option Usage

-D, -define foo[=bar] Define a preprocessor macro, optionally with
value.

-I, -include <dir> Specify an additional directory for #include
searching.

-P, -no_line_directives Do not emit #line directives from
preprocessor. Defaults to off.

-H, -list_includes Display #included file names as they are
encountered. Defaults to off.

-C, -retain_comments Retain comments in preprocessed output.
Defaults to off.

-U, -undefine foo Undefine a preprocessor macro

-[no_]idl_strict Strict OMG-standard interpretation of IDL
source. Defaults to off.

-[no_]builtin (TypeCode|Principal) Create built-in type "::TypeCode" or
"::Principal". Defaults to on.

-[no_]warn_unrecognized_pragmas Warn if a #pragma is not recognized. Defaults
to on.

-[no_]back_compat_mapping Use mapping that is compatible with
VisiBroker 3.x. Defaults to off.

-[no_]preprocess Preprocess the input file before parsing.
Defaults to on.

-[no_]warn_all Turn all warnings on/off simultaneously.
Defaults to off.

-dump_tree Dump the IDL Parse Tree (Front End)

-root_dir <path> Directory in which generated files should
reside.

-package <pkg> Specify a root package for generated code.

-[no_]compile Compile any Java file written automatically.
Defaults to off.

-[no_]gen_config Generate a usable Connector configuration file
called connector.properties in the current
folder. Defaults to on.

-version Display software version numbers.

44 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Micro Focus® | CORBA® Add-on for REST Instal lat ion and User Guide 45

Connector Options
The table below shows the command line flags that the rest_connector
Java class will accept.

The rest_connector script in addition takes the following option.

Option Usage

--hostname The hostname where the Connector should
listen for HTTP requests.

--port The port where the Connector should listen for
HTTP requests.

--secure Whether the Connector should listen securely
for HTTP requests on an https URL.

--rest-package The Java package that should be scanned for
idl2rest-generated classes.

--config-file The path to a configuration file with which the
connector should run with.

A default file can be generated by running:

idl2rest.<bat|sh> -gen_config

Option Usage

-verbose Runs the connector with tracing or more
logging verbosity.

46 Micro Focus® | CORBA® Add-on for REST Insta l lat ion and User Guide

Micro Focus® | CORBA® Add-on for REST Instal la t ion and User Guide 47

Index

C
Configuration properties 39, 43
configuration variables 39
connector.properties file 39, 40, 43
CORBA Add-on for REST

installation 5
installation footprint 6

CORBA Server
running 16

CORBA System Exceptions 37
curl 4, 18, 22

D
Deploying a Connector to Serve an Alternate
REST API 23

E
Extending the ORB Adapter Class 40

H
HTTP response code 37

I
idl2rest 1, 4, 5, 13, 14, 17, 20, 23, 39, 43, 45
idl2rest compiler 5, 6
IDL-RS annotations 27, 34
Installation

troubleshooting 11
Installing the CORBA Add-on for REST 5

J
Java class 40
JSON 29, 33, 34

mapping for IDL Types
arrays 29
complex types 29
enum 30
primitives 29
sequences 29
struct 30
union 30

L
Licensing 10

O
Orbix 6 4, 5, 6, 13
Orbix 6 deployment environment script 13

P
Performing silent installation 9

R
Request and Response Wrapping 33
Request wrappers 33
Response wrappers 34
REST Connector 5, 14, 17, 19, 39

rest_connector 45
rest_connector script 45
rest_env script 13
Running the CORBA Server 16

S
Scripts

Orbix 6 deployment environment script 13
rest_connector 45
rest_env 13
vbroker 13

Silent installation
performing 9

silent installation 9
Silent installer 9
Silent installer properties file 9
system exception mapping 37

T
TLS certificates 19
Troubleshooting 11
Typetest example 13

running 16
structure 15

V
vbroker script 13
VisiBroker 4, 5, 6, 13

W
Wrappers

request 33
response 34

X
XML 29, 33, 34, 35

mapping for IDL Types 31
complex 31
enum 31
primitives 31
struct 31
union 32

 48 Micro Focus® | CORBA® Add-on for REST Installation and User Guide

	Contents
	Preface
	In This Guide
	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact Information

	Introduction
	What is the CORBA Add-on for REST?
	Components

	Prerequisites
	Using curl

	Installing the CORBA Add- on for REST
	Installation of the CORBA Add-on for REST
	CORBA Add-on for REST installation footprint
	Prerequisites

	Installation Instructions
	Installing with the GUI
	Silent Installation
	Sample silent installer properties file
	Performing silent installation

	Licensing the Product

	Troubleshooting

	Getting Started
	Setting the Environment
	Run the Deployment Environment Script
	Run the rest_env Script

	The Typetest Example
	The structure of the demonstration

	Building the Demonstration
	Orbix 6
	VisiBroker

	Running the Demonstration
	Running the CORBA Server
	Scenarios for Deploying the REST Connector
	Deploying the REST Connector insecurely
	Deploying the REST Connector securely
	Deploying the REST Connector to serve a versioned REST API

	IDL-RS Annotations
	Annotations Used

	IDL Type Serialization
	JSON Mapping for IDL Types
	JSON Mapping for Primitive IDL Types
	JSON Mapping for Arrays and Sequences
	JSON Mapping for Complex IDL Types
	Enum types
	Struct type
	Union type

	XML Mapping for IDL Types
	XML Mapping for Primitive IDL Types
	XML Mapping for Complex IDL Types
	Enum type
	Struct type
	Union type

	IDL Request and Response Wrapping
	Wrapped Objects
	Request Wrappers
	IDL Parameter Annotations

	Response Wrappers

	System Exceptions
	Configuration
	Configuring Multiple Connectors
	Overriding the Configuration Variables
	Extending the ORB Adapter Class

	idl2rest Options
	Connector Options

