DevPartnerStudio Quick Reference

Print out all or portions of this document and keep it handy for quick reference (use a color DevPartner Toolbar

printer when available). Accessed from the Visual Studio toolbar.

DevPartner Features Toolbar button Shortcut function for
Use the links in the left column in the following table to locate reference information about Run-time error detection using BoundsChecker technology
DevPartner features. x

Run-time code coverage analysis

A A

To solve this problem Use this DevPartner Run-time error detection with code coverage analysis
feature

Detect programming problems and naming inconsistencies Code Review o Run-time performance analysis

Diagnose run-time errors in the source code Error Detection <

Locate performance bottlenecks in the application Coverage, Memory, and

8 Run-time memory analysis
Performance Analysis Y 4

Ensure code base stability throughout development and testing phases Coverage Analysis Session Data X o
. . A . Run-time analysis with Performance Expert
Determine memory allocation in an application and get feedback to Memory Analysis

reduce memory consumption

Perform a review of the solution code

» 2 [

=
il
=

-,
=

More Information

. Create and modify rules used during code reviews
Use the DevPartner online help to obtain “how to” information. See the Understanding DevPart- fy 9

ner Studio manual for an overview of the DevPartner software.
Compile-time instrumentation for error detection, coverage analysis,
both error detection and coverage analysis, performance analysis

Common Elements

. DevPartner options for
The DevPartner software provides these common elements, regardless of feature.

Analysis, Code review, Error detection

Xe [=

e DevPartner Toolbar
e DevPartner Menu

e DevPartner File Extensions DevPartner Menu
e Command Line Instrumentation Options

Accessed from the Visual Studio Tools menu.

Choose this menu item To
Error detection Perform run-time error detection using
x BoundsChecker technology

. Coverage Analysis Perform run-time code coverage analysis
LY

Choose this menu item

To

Common Elements

Run this DevPartner feature

To create this session file (extension)

% Error detection and Coverage Analysis

&% Performance Analysis
o

Memory Analysis
Ef;j Performance Expert

& Perform Code Review
'\.':-'

@
E Manage Code Review Rules

Error Detection Rules

. & . Native C/C++ Instrumentation

Native C/C++ Instrumentation Manager
Correlate
Merge Coverage Files

‘@ Submit TrackRecord defect

Perform run-time error detection with code
coverage analysis

Execute run-time performance analysis

Execute run-time memory analysis

Execute run-time analysis with Performance
Expert

Perform static code analysis

Access code review rules management

Access error detection rules management,
used to filter or suppress detected errors

Perform compile-time instrumentation for:
Error detection, Coverage analysis, Error
detection and coverage analysis ,
Performance analysis

Access the Instrumentation Manager
Correlate performance or coverage files
Merge coverage analysis sessions

Submit TrackRecord defect
See Note

Note: The Submit TrackRecord defect toolbar button is only available when TrackRecord is

installed.
& Options

Access DevPartner options
Choices include: Analysis, Code review,
Error detection

DevPartner File Extensions

File extensions for session files.

Run this DevPartner feature

To create this session file (extension)

Code review
Code coverage
Code coverage merge files

.dpmdb
.dpcov
.dpmrg

Error detection
Memory analysis
Performance analysis
Performance Expert

.dpbcl
.dpmem
.dpprf
.dppxp

Command Line Instrumentation Options

NMCL Options

The following table lists the NMCL options that you can use to instrument your unmanaged
(native) Visual C++ code from the command line. Use NMCL.EXE only to compile unmanaged
Visual C++ code with DevPartner error detection instrumentation. NMCL is not used with man-
aged code, which DevPartner instruments as it is passed to the common language runtime as it

executes.

Note All NMCL options must begin with a forward slash (shown in the following list) or
hyphen, followed by the letters NM. For example: /NMoption or -NMoption.

Use...

To...

/NMbcpath:bc-path

/NMclpath:cl-path

/NMhelp or /?

/NMignore:source-file or
/NMignore:source-file:method source-file

/NMlog:log-file
/NMnogm

/NMonly:source-file

/NMopt:option-file or
/NM@option-file

/NMpass

Specify the directory location of bcinterf.lib if you do not
have the directory that contains NMCL on your path.

Specify the directory location of cl.exe. You can use this
option to bypass the installed location of DEVENYV, or if
DEVENV is not installed.

Display help text

Specify a source file or a method in a source file that should
not be instrumented

Specify a log file for NMCL messages (default: stdout)

Ignore the CL /Gm (minimal rebuild) option if it appears on
the command line. You can use this option to avoid a
known conflict between the NMAKE /A and CL /Gm
options.

Specify a single source file that should be instrumented

Specify an option file (an ASClII file containing individual
command-line options, each on a separate line)

Specify pass-through mode, which instructs NMCL to call
CL without intervention. In this case, no instrumentation
takes place.

DevPartner Studio Quick Reference - 2

Use... To...

/NMstoponerror Stop NMCL if an error occurs during instrumentation. If this
option is not specified, the default behavior is to fall back to

a standard CL compile.

/NMbcOn Use DevPartner Error Detection instrumentation. This is the
default setting.

/NMtxOn Specifies instrumentation for performance and coverage
analysis.

/NMtxInlines Instruments methods that are marked as inlineable if inline
optimizations are enabled (using the /O1, /02, /Ob1, or
/Ob2 option)

/NMtxNoLines Instruct DevPartner not to collect line information. When

you use this option, DevPartner does not display any line
data in the Source tab. You can also use this to improve the
time required to instrument and run your application.

/NMtxpath:tx-path Specify the directory location of the performance and
coverage analysis library files if you do not have the

directory that contains NMCL on your path.

Note: When using NMCL, add the directory containing these utilities to your path. For exam-
ple, if you installed the product into the default directory, add the following directory to your
path:

C:\Program Files\Common Files\ Compuware\NMShared

Common Elements

NMLINK Options

The following table lists the NMLINK options that you can use to link your unmanaged (native
code) Visual C++ application to DevPartner.

Note: All NMLINK options must begin with a forward slash (shown in the following list) or
hyphen, followed by the letters NM. For example: /NMoption or -NMoption.

Use... To...
/NMbcOn

Use DevPartner Error Detection instrumentation. This is the
default setting.

/NMbcpath:bc-path Specify the directory location of bcinterf.lib if you do not

have the directory that contains NMCL on your path.
/NMhelp or /?
/NMlinkpath:link-path

Display help text

Specify the directory location of LINK.EXE. You can use this
option to bypass the installed location of DEVENYV, or if
DEVENV is not installed.

/NMpass Specify pass-through mode, which instructs NMLINK to call
LINK without intervention.
/NMtxOn Specifies instrumentation for performance and coverage

analysis.

/NMtxpath:tx-path Specify the directory location of the performance and
coverage analysis library files if you do not have the

directory that contains NMCL on your path.

Note: When using NMCL and NMLINK, add the directory containing these utilities to your
path. For example, if you installed the product into the default directory, add the following
directory to your path:

C:\Program Files\Common Files\Compuware\NMShared

DevPartner Studio Quick Reference - 3

Code Review

Command Shortcuts for Rule Manager

Use the following keyboard shortcuts to enter Rule Manager commands:

Command Action

Ctrl+A Rule > Select All Rules
Ctrl+C Rule > Copy Selected Rules
Ctrl+N Rule > New Rule

Ctrl+O File > Open Rule Set
Ctrl+P File > Print

Ctrl+V Rule > Paste Rules

F5 View > Refresh

Code Review

Code Review Default Options (General Node)

Category Settings

Projects to be reviewed All projects selected (Visual C++ .NET projects do not apply)
Rule set All Rules

Naming analysis On

Metrics analysis Off

Ignore compile errors Off

Exclude rules that require a build Off

Always generate a batch file On

Always save review results On

Prompt for session file name Off

Command-line Switches Used in CRBatch

CRBatch /<switch>

Switch

Function

/f configuration file/file name

/v or /verbose

/vs"7.1" or /vs “8.0"

Informs CRBatch what configuration file
to use when reviewing a solution or
project

This switch is mandatory.

Instructs CRBatch to report errors in a
message box, and to set the exit code
used by batch procedures

Although this switch is optional, it is
useful if you want to physically debug
configuration files.

Indicates the Visual Studio environment
where the batch review will be
executed; choices include 7.1 or 8.0.

It is recommended that you use this
switch, most importantly if you have
more than one version of Visual Studio
on your system. If you do not include
this switch, DevPartner will default to
the latest version.

Code Review Toolbar

Print <current code review results>

|@ma|v|+ 7|

Hide/Show Solution Tree

Hide/Show Descripton ~ ——

L

Suppress Rule

Filter Current View

Mark Item Fixed

T

Create and modify rules used during code reviews

Perform a review of the solution code

DevPartner Studio Quick Reference - 4

Code Review Summaries

Summary of Problems *

Code Review

Type Problems Severity
Names Total | Fizxed | High |Medium | Low |Warning
COM Interop 1 o a o o 1
Databaze - " . -
Summary of Counts
Drate
Summary Type Count
Design Tirme Properties
Review Time [in minutes) 1212
Error/Exception Handling
Total Lines (including blank lines) 2,183
Garbage Collection N
Code Only Lines 1,162
Ink ti lizati
riernationalzation Caornment Only Lines 270 Review Settings
Language "
uag Code with Comnments 0 Review Seltings Setting Yalue
Logic Rule Comparisons Made 468,267 Solution SpeadBump Nelz003
Maintainability . <:4pd_MHT-NMSource1666_MHT101515001
Total Lines Checked 2183 Solution Path \DPSVDP_Mainline\Analysis\Ex amplesiSpeedBurp Met\SpesdBurp, Met2003 sl
Parfarmance L v L v v v Session File ipd_MHT-HMSourcel666_MHT101515001
Portability o o o o o o \DPS\DP_Mainline\Analysis\Examples\speedBump Met\SpeedBurp Met 2003 DPMDE
" Cihpd_MHT-HMSource 1666_MHT101515D01
Project & Solution Properties 0 o] o o] Batch Command Execution File . | It ket i - s AT
Project List
Reliability L] o a o o a
Project Name Compile Errors Reviewed Project Path
Security 2 0 3 0 0 0 Drriver2003 False True Cihpd_MHT-MMSource 1666_MHT 101515001
Shandards 0 o o o o o WOPSYDP_Mainline'Analysis\ExamplesiSpeedBumnp.Met\DriverDriver2003 .ciproj
Cipd_MHT-MMSource 166E_MHT 101815001
System 0 i 0 i i 0 “Sharpz00z Fakse True \BPSYDP_MainlinelAnahysisExamples\SpesdBump et Sharp\CSharp2003.csproj
s abilit 0 o o o o o Ciipd_MHT-NMSource 1666_MHT 101515001
anity VB2003 Fakse True YDPS\DP_MainlinelAnahysis\ExamplesiSpeedBump Net WEAWE2003 vhpraj
User-Defined Rule]] 1]]] 1]
Metrics Analysis True
Wersioning o o 0 0 0 0 Maming Analysis Marning Guidelines
Windows API 0 i} 1] i} i} 1] Cictionary Marne Arnerican English
Summary of Call Graph Data
Totals 33 o 16 3 23 11
Summary Type Count
* Surnmaties include all rale violations. Your filter settings do not apply. Tatal Methads Graphed 24
Total Methods Uncalled o
Technology Hame ot supplied
Call Graph Analysis True
Ignare conmpile errars False
Exclude rules that require a build False
Always generate a batch file True

DevPartner Studio Quick Reference - 5

Code Review Results Panes

17 Problems pane — displays rule-based programming problems

Maming I Metrics I Call Graph I

‘iew by Variables = v

Code Review

Naming pane — lists .NET naming violations and offers suggestions

Metrics pane — provides code complexity statistics

Fixed | Suppressed | Rule | Tite 5. = | Project File

O 1099 Literal, hard-coded string Found inc... High CSharp2003 SpeedBum
a 1580 Type not excluded from use by untr... High Driverz003 Driver.cs |
a 1099 Literal, hard-coded string Found inc... High VB2003 VBdothet,
O 1099 Literal, hard-coded string found inc... High WEZ003 WEdokhet.!
< Il |

Surmmarsy | Problems Maming |Metrics I Ci

— I Marme

| Suggested

Summary I Problems | Maming Metrics |ga|| Graph I

Literal, hard-coded string found in code O m_RulesD... rulesDEPath ettt
&WBubbleSortBtn_Click SpeedBump... arp:
m_PrefsDE pReFSDE 5®EBubblesortBtn_Click Spesds CSharp2003
Trigger: Detected Literal, hard-coded, string in code [Occurrences: 1 O m_PrefsD,.. pRefFSDEP... %50t VBdotMet.vb ¥B2003
Drigin_al Source Line: labell Text = ""; D m_LastTri... lastTrigge... ,a'g,‘QSort SpeedBump... CSharp2003
Location: SpeedBump.cs = e - - - 2003
Wigw by All - |32003
Explanation Sumrmary | Problems I Maming I Metrics Call Graph | < az03
02003
literal, hard-coded string was found in the source file, p2003
= e - u - ~2003
02003
Repair n2doz
% 22003
Add a resource file to your project and place this literal s1 2 un G2 ua sods
the literal hard-coded string values, bitmap (brmp), icon g2 u | g2 un - 5% -
the ResourceManager class to retrieve the infarmation 5 v 5% Dorroceaang 5% pocompactos) 2ogs
20d3s
The following example code uses the ResourceManage 2003
20ds
wisual C# MET exarmple: bod3
e0ds
ResourceManager rm = new ResourceManager(MyLocali:
string foo = rm.GetString("string1");

w

L T T e e O I N N -]

File: Complexity Bad Fix % ™ Understanding
e 1] - -

Lines of Code

w

Simple ta moder.., 15

5 Simple to moder,., 17

5 Simple to moder,.. 38

5 Simple ta moder,.. 1

1 Simple 4 =
1 Simple 5

1 Simple 5

1 Simple 19

1 Simple 3

1 Simple 103 b |
1 Simple 10

1 Simple 16

1 Simple 4

1 Simple 4

1 Simple 4

1 Simple 4

1 Simple 3

1 Simple 1

1 Simple 3

1 Simple 104

|

=

L Call Graph pane — graphically shows method call tree

DevPartner Studio Quick Reference - 6

Coverage, Memory, and Performance Analysis

Coverage, Memory, and Performance Analysis DevPartner toolbar buttons for Coverage, Memory, and Performance

Determine application test coverage, analyze an application’s use of memory, and profile appli-

cation performance. Select analysis preference Performance Analysis
General and Data Collection Properties Coverage \ // Performance Expert
The following data collection properties apply to Performance, Coverage, and Memory @ - @: - &3' - - E@ -
analysis. 2
Error Detection with Coverage \ Memory

Property Default setting =

Automatically Merge Session Files Ask me if | would like to merge it Set DevPartner Onii

Collect information about .NET assemblies True et Devrartner Oplions

Collect COM Information True

Exclude Others True Native C/C++ Instrumentation

Instrument inline functions True Enable/disable instrumentation

Instrumentation Level Line
. Lol)
Track System Objects True Performance analysis -

Choose instrumentation type

Performance and Coverage Analysis Session Toolbars

) View Call Graph
Performance Session toolbar

//@ === | SpeedBump.Driver.Forml,.ckar -
Compare sessions \

Find method in source code

Coverage Session toolbar

SpeedBump.Driver.Forml..ckor -

DevPartner Studio Quick Reference - 7

Coverage Analysis

Coverage Analysis Session Data

Coverage Analysis

Results Summaries

DevPartner displays results for Coverage Analysis in session files. Session files present data in

tabbed format, including the following tabs:

* Method List
* Source Code
* Merge History
® Session or Merge Summary
Filter the data view View coverage metrics for methods
\Driver_l.dpmrg | 4k X
NE Al (£3.8% of 633 lines))
(] C108645HD1 - 0 (Criver Rl e i et [Merge coverage sessions and record merge history
oS VB 0.0% of 1t 34 of 55 methods called [61.8%)
d [t dCPP
% CSa::rg::E(i D(°x Methad List ISuurcE[Drivar.csll Merge History | Merge Surmmary |
) : Method ’ #1
-7 Driver { 91.0% I\Tam?e % Covered | Called | Pk Ex‘en:jted ;”
= Inactive Source (0 SpeedBurmp. ManagedCPP.Form1 .BubbleSartBtn_Click 0.0 T TR
) ; —— o
1 NativecPP.di ¢ SpeedBurmp. ManagedCPP.Form1 .Clear Timing 0.0 — oF537 lnes evecuted |
~[E] Methads Mot Covered SpeedBump. YBdothet Farm1, .ckar 0.0 [34 of 55 methods calg View statistics for sessions or merge file
Methods Less Than 20% Co | SpeedBump. VBdathet. Form1 . Dispose 0.0
Owver 30 Lines, Less Than 1 | SpeedBump, YBdotNet.Form1, InitializeCompanent 0.0 Method List| SourcelDiver.cs| Mere Histe | Merge Summary |
Remaoved Methods SpeedBump, YBdothet Form1 . DoRandomize 0.0 oo = M % Lines Covered
SpeedBump, YEdothet .Farm1 . UpdateSlot 0.0 o ~ Methods Covered
SpeedBump, YBdothet Form1 . Updateal 0.0 ~ M = valatilty
e e Y 0.0 a0
— 125 of 142 Ines enecured (00,05 gg 0 | — 125 0l 142 e wwecubed [9E00%)
[—— 130l 15 methods caled [55.7%) tBtn_Click, g:g | — 12 0f 15 methacs 73
- B0
Mathrod List SouncefSpendBump o2] | Sz Sunman| iad gg Methrxd List | SenscelSomeBumy e Session 5 |
C:"" Smmpcn - d)rthtn_CIick U:U 40 DevPartner - Coverage Analysts Sess0n Summary -
private void UpdateZlot{Int3Z iSlot) ing 0.0 a et
i a 0.0 10 Lrided:
Btn_Click 0.0
1 0.0 a0 “"""‘"'“";'W_ e |57 o NE TIBn| D
1 Click. 0.0 i Code: [
Tlick 0.0 10
) &0.0 FToCesson el Pentium GAT Mha
i ¥ of Frovessors
€0.0 Driverd.dpcov/ Driver2.dpcow Driver!. dpcov Driver.dpcor 5 Verson Micrasolt Windows 2000
. . fal Tmagers
' View execution data for)
private vold Randomizebtn_Clicklobiect sender, Syst lines of source code porcert of L Executed: 356
Pourber of : 191
1 DoRandomize (17 Puriber of Lives bot Exsoed: 346
1 Updateill Percert of Methods Calld: 5
)) — Pourrber of Method: 5
Prtwr of Mt bwwh Callal: 19
1l _l_I 1| |

DevPartner Studio Quick Reference - 8

Memory Analysis

Session Control for memory analysis

Memory Leaks session controls

Force a garbage

collection

Start and Stop Tracking poten- Take a memory leaks
tial memory leaks

emory Leaks |[& R print’]

serpiorary Objects I

Pause real-time graph (data col-
lection continues)

Memory Analysis

Choose process to profile

Graph shows state of managed
heap in real time

i IE‘I OBE45MO1 - 1448 [OptimizedwFE . exe)

[System Memory [J Profiled Memory

Class list dynamically updates to show

E what is in memory
e
=
a
=
3
= . .
Session controls tailored to type of memory data col-
0 .
00:00:32 00:00:37 00:00:42 00:00:43 00:00:55 00:01:00 lection
Elapsed time
RAM Footprint session controls:
Class name | Hamespace | Instance count | Size {bytes) | Tracked instance count © | Tracked size (bytes) |«
MameT able. Entry Systenn.Xnml 2.324 55,776 1.962 47,088 lDevPartner Memory Analysis
String System 5.262 588,206 1.823 271,438 [8] Memary Leaks [& RAM Footprint I@ Temporary Objects |
¥PathElement System.XmlXPath 942 4,056 BEE 58,888 [View RAM Footprint 71 ,T [OBE45NT - 1448 (D ptiizeddo/FB ove)
HPathText Systemn.XmlxPath 856 34,240 a9 31,560 |
#mifualifiedd ame Systern.Xml 748 14,960 438 9,960
Hashtable HashtableErnu System.Collections 118 4,248 118 4,248 Temporary Objects session controls:
unsigned byte(] 132 307.825 118 208,702
MouzeE ventirgs Systernwindows. Forms =l 2548 a1 2548 ;I .
DevPartner Memory Analysis
.) . [&] Memary Leaks | [& Ra&M Footprint [& Temparary Objects I
In leak analysis, monitor Tracked instance ® [BView Temporay Obiects B 11 [CI0BE45NDT - 1448 (Uplimizedif B.2xe)
count for objects that were not collected as Clear temporary object allocations
expected tracked to this point

DevPartner Studio Quick Reference - 9

Memory Analysis Session Data

Results tailored to type data collection
Analyze object allo-

aptimicodntb, sisnap.dpmen | oot

L. abysissnan.domem | opkimiedwlbs « 1.t arlysis? domes

Memory Analysis

X

Drill down sequentially from any

¢ RAM Footprint cations in depth ‘;;m"‘mgm o B object in the list to examine refer-
=) T T [ctme arregnce Hndmnd e (ntes) | Referenond cbets .
e Memory Leaks = 5 CoPogmn P [netr Compumsre DevParmes s 42404 0 enced objects
* Temporary Objects Summary of most me %5 o oporati (2 -
. B . .)))] Tabin FL)
¢ Click Show Complete Details to view session data ory-intensive object allo- 5 Corp s ok et 104
) Dbeect{ 230 String T able System 12958 181
cations 3] i et System windows Foms EITE mn =
e o
optimizedwfb. ..sissnap.dpmem | optimizedwfb - |...alysissnap.dpmem | optimizedufh - t. .t analysisgdipmen | n¥/ (g v
DevPartner Memary Analysis - BAM footprint analysis I_ Vil My =
4 Object Reference Graph
Objects that refer to the most allocated memory L Cemge By Trace ObjeC[references back
B

Compuware.De
Unreachable Ob...

to the garbage collection roots
that prevent objects from

Object Distribution Region#40 62,858 !
Region#238 46,900 being collected. Answers the
Region#7 2404 question: Why is this object
0 20,000 40,000 60,000 80,000 100,000) . t" . o
Live memory referred o by object (byles) Jump to the allocating source line still in memory
Sy T ek _/ from any method or object to edit
47,016 bytas
ca4501 hwes‘ source code
Methods that allocate the mast memory
QueryWindow..... 391,295
ReglonList..ctor 384,817
RegionList.Creat... 383 coteiceawt - .. Acaiysed donen | con e <uuskssnap. dpmam | qpx
QueryWindow 303,296 S / Wt 1t ol thes ek booken]meracey)
[Profiled objects § [] System objects QueryWindow.r... 215,068 e a— i of
0 100,000 200,000 300,000 e et [esodvem |t /1 P T RN s
Live memory allocated by method (bytes) e Jtunsn 00t agzoenicn De & 055 3% 6 03%
Show Complete Details Maploombom Copfumwmele & m nox = nix
\] sy s on o w: mam mex &
4 3 i e 2 > . .
S f /)) — — Drill down from any method in the
ummary of most memory-intensive = e = TR = e I PP e list to examine allocated objects,
o methods ' o and the objects they reference
Object distribution: user vs.
) Call Graph Qo
system objects (RAM foot-) / N
print only) Analyze the calling sequence of methods that ‘
allocated memory. Answers the question: Who —~
allocated all that memory? P —
00 %% *

1 S LT[

DevPartner Studio Quick Reference - 10

Performance Analysis

Performance Analysis Results Summaries

DevPartner displays results for Performance Analysis in session files. Session files present data in
tabbed format, including the following tabs:

* Method List

e Source Code

e Session Summary

Performance Analysis Session Data

Filter the data view Locate methods in source code

View performance metrics for methods View session statistics

Method List | Souece mervaandopn k| Session Summary |
Compare Sessions

\ \ 4k X

Method List | Soukce [manaqedcpp.hll Session SUmmarul

DriJFr.dper Driver1.dpprf |
B3] All { Modules: 29 ¥

-3 System (9

Top 20 Source Met
--[=] Top 20 Methods

--[=] Top 20 Called Sour

SpeedBump. CSharp. Formi..ctor

SpeedBump, Driver,Forml, InitislizeComponent
SpeedBump. Driver.Forml.ManagedCppBtn_Click
SpeedBump. Driver,Forml,Main

Time

Method List Source [managedkpn h] | Session Summare |
Enunt | % with Children |

| Source

COmMpOonents
Initisli

Spaadiimg. Derver Forml.ctor

Sptediiumd, MansgedCrP.F orml Dhbblsortiitn_Chck

£}] C108645M01 - Methad soin T shuith\| a
=424 Source (3 MName Method Children ale verage bt
™ Manag SpeedBump. ManageyCPP. Form 1, UpdateSlat 0.9 71,6\ 47,916 3.8
™ Driver | SpeedBump,ManagedCPP.Forml,SwapEm 0.6 71.4 \23,658 5.0 E Ik ! i g i E I I l
= csharg | SpeedBump.ManageddPP.Farml.B. . 0.3 68.0 1 58,514.7 el "
L% op SpeedBump. Driver,Farmi,.ctar 0.3 6.4 1 58,276.2 | i ‘| e | | Sovesngn I 2
SpeedBump, ManagedCPP, Forml, . ckar 0.2 0.4 1 46,333.5

0 Soeedimg, L Bk =
--[=] Top 20 Called Mett | SpeedBump. CSharp,Form1,Updateslot 1 0.6 hleedUpdate mwl-am :.::w‘ - 01 0.3
SpeedBump.ManagedCPP.Form1.L, .. 1 0.4 + J Speediung. Sharp. Forml. u;_ 01 0.3
" SpeedBump . Driver Foeml InkisheeComeanent o1 3
SpeedBump. Driver.Forml. CSharpBtn_Click 141 <sumarys st o] Mt o 80 a2
SpeedBump.ManagedCPP,Forml.. ., asts value a1 75.1
/// Clesn up any resources being used, el
SpeedBump. CSharp. Forml, SwapEm PRy - =
= SpeedBurnp, CSharp,Form1, QuickSartBtn_Click protected: Forrl 03 =3 LX)
SpeedBump.ManagedCPP, Form1, Q5ark: void Dispose(bool disposing | el =l
SpeedBump, CSharp, Forml, Q3ark {
SpeedBump. Managed PP, Form1,DoRandomize 1 0.3 if(disposing | .
SpeedBump.ManagedCPP,.Forml.... t - Method List| Source [managedepp bl 565§Qn Summary | Compare session data to
SpeedBump, CSharp, Form1. RandomizeBtn_Click. b feem DevPartney - Performance Analysis Session Summary B
! b X
e, compd assess impact of code
tarted: 6124j2003 4:21:44 P h
: nded: 8124j2003 4:22:49 P changes
0.0 % 3
11D udiolExampl . .
- bt~ | R Sl b 086 9% , __super::Dbis] :ﬁ:ﬂeﬂrgs: C:\Program FilesiC Partner o NETiBin|Driver. exe
it Code: o
31% private:
voia Inicaalizecd oo Intel Pentium 47 Mhe
29 = ysemMndonsFor_ - S ersion: Microsoft Windows 2000
| I 21% ad an
b of Called Methods (uith thread starts): 3,069
0% b of Calls: 688,72
otal Timing: 19,619,664, Microseconds
0.0% = Speedbump.CShamF - CL0GE4SNOL - 1688 (Driver)
= 428 Nurrber of Called Methods: 3068
Percent of Time Spent on Machine: 100.0
u\ Explore calling
Instrumented Source Images
00% = Spestbummp.CohapF_ sequence of methods
29% ad K B . ManagedCPP
and identify critical path Humber of Caled Methos 15 _lll
0.0 % 4 N
4 |l | v

DevPartner Studio Quick Reference - 11

Performance Expert

Performance Expert Performance Expert Session Controls

Results Summaries

DevPartner displays results for Performance Expert in session files. Session files present data in Window shows last 30 sec-

tabbed format, including the following tabs: onds of application activity.

e Call Graph Spikes in the graph indicate

e Call Tree Take a data snapshot - potential trouble spots.
Clear data collected earlier in

¢ Methods table
e Source code
e Call stacks

this session

DevPartner #erformance Expert

T T T T T 1
00:00:09 00:00:14 00:00:19 00:00:24 00:00:29 00:00:34 00:00:39
Elapsed time
N P (process time) MMM Disk (bytes transferredsec) I Metwork (bytes transferred)sec)

&1 .0 % of methods executed

Percentage of application code analyzed
during session

DevPartner Studio Quick Reference - 12

Performance Expert Session Data

Click individual method for Methods analysis

(without children)

Form.Main

Form, CtaF
Service, ChaF
Service, .chor
Form.ParseOption

Form.FtoC

Service, ChaF
Service ckar
Farm.Main
Form.ParseOption
Setvice, FtaC

Farm, CkaF

N
}“ 43,8 % of methods executed

Select method in stack to locate

source line that called child method

source | Call Stacks |

Click entry point method for Path analysis
(with children)

Call stacks showing paths that called EntryPointsMain, B

|52.5 % - Call stack 1

| Method

ProgramUnder Tes!
P Unde

ProgramUnderTest, Entry
ProgramUnderTest.Entry. ..

18

Call Tree tab shows impact of
disk, network I/0, and wait time

Performance Expert

Call Graph tab highlights critical Icons indicate type of

path and expensive child methods

/

activity in method: disk,

network, or lock wait time

Paths that use the most CPU - A
aths that uss the mo : 5 =l Bars showtime in
10,418,100.0 s o
i f— method vs. time in
56155050/ & & (FEUI D Form.CteR 2erice. ok " child methods
38,1 % 757 %
7,426,630 11 & B E o I 4]
o e — ——— |
2,366,896.0 || =
53,4564 = Slowest methods along all &% g%
o =) called paths Farm.Parsedption Service, ctar
26,781 4k m— Scrvice,ChkoF (¥ J
0o LI time i method (micraseconds) 10,418,110.0 - Service. ctar I — I — —'| Select a method to
00 %
Individual methods that use the most CPU ! Form. ParseOption - update source and call
§ , Service. Fror Form.FtaC Service,FtoC
7,426,6950 1 ’ SRR 4 stack tabs
2,387,093.0 | J | Farm. CkaF — ——
L 7e0.0 Method CPU time with Execution count | Disk activity (bytes transfe... | Wait time (ps) | Diskregt count | [A
£3,658.5 \A ; : 2] Methods table
25, 747,04 Service, .chor 2,387,093.0 4 657,872 7,423.0 102 shows impact of
2,314.6 Farm.Main 411,780.0 1] 0.0] disk, network 1/O,
0.0 CPU time in method (microseconds) 7,426,698.0 Form.ParseCption 163,655.9 4 a 0.0 a and Wait time
Service,FroC 25,747.0 2 o 999,2 0| =
Farm,CtoF £,314.6 Z o 0.0 1) v
Total elapsed time: 10,418,100.0 s Total execution time: 10,418,100.0 us < | s
A " e : Servi Choose metric
Double-click a line in a source display to edit in et dltt) i St @i
Visual Studio Source |Ca|| Stacks
‘CPU time without user children {ps) j For each line in Service, CtoF
7,426,672.0 0.0
[+ ~
53 B
N o . . 54 Il <remarks|=
j (82,5 % of tatal time in mefhod is caused by this call stack) E5: [System.\Web. Services. Protocals, SoapDacumentMethadattributed"htkp: ffkempuri. org/Ch
Location in source where/ProgramUnder Test, EntryPoints, EntryPoinks 56 public System,Double QtoF(Systgfn.Dpole £ . = Source tab shows
. 57 object[] results = this. Invake("CtoF", new object[] { X
&0: if (d?ne T=/nu||) 58 o 3 most expensive
3 B(1007; =1) .
Py el < I 3T line with metrics
63: Bi10); —
< >

DevPartner Studio Quick Reference - 13

Using DPAnalysis.exe

Use DPAnalysis.exe to run Coverage, Memory, Performance, and Performance Expert sessions
launched directly from the command line, or through a configuration file called through the
command line.

Command Line Operations

Use this syntax to run Coverage, Memory, Performance, or Performance Expert sessions from
the command line:

DPAnalysis [a] {b} {c} {d} [e] target {target args}

DPAnalysis.exe requires Analysis Type and Target Type switches. Use of other switches is
optional.

The following table lists the switches used with DPAnalysis.exe:

Category Switches

Category

Using DPAnalysis.exe

Switches

[a] Analysis Type /Cov[erage] - Sets analysis type to DevPartner Coverage Analysis
/Mem[ory] - Sets analysis type to DevPartner Memory Analysis
/Perflormance] - Sets analysis type to DevPartner Performance Analysis
/Explert] - Sets analysis type to DevPartner Performance Expert

{b} Data Collection /E[nable] - Enables data collection for the specified process or service
/D[isable] - Disables data collection for the specified process or service

{c} Other Options

{d} Analysis Options

[e] Target Type

/WAIT - In batch files with multiple targets, launches the next process only after the
current process exits.

/O[utput] - Specify the session file output directory and/or filename
/W][orkingDir] - Specify working directory for the process or service
/H[ost] - Specify the target’s host machine

/NOWAIT - Do not wait for the process to exit, just wait for it to start
/N[ewconsole] - Run the process in its own command window
/NO_MACHS - Disables excluding time spent on other threads

/NM_METHOD_GRANULARITY - Sets data collection granularity to method-level
(line-level is default)

/EXCLUDE_SYSTEM_DLLS - Excludes data collection for system dlls (Perf only)
/NM_ALLOW_INLINING - Enable run-time instrumentation of inline methods
/NO_OLEHOOKS- Disable collection of COM

/NM_TRACK_SYSTEM_OBJECTS - Track system object allocation (Memory only)

Identifies target to follow as either a process or service. Pick only one. All arguments
that follow the target name/path will be arguments to the target

/P[ocess] - Specify a target process (followed by arguments to process)
/S[ervice] - Specify a target service (followed by arguments to service)
/C[onfig] - Path to configuration file

DevPartner Studio Quick Reference - 14

Configuration File

Use this syntax to run Coverage, Memory, Performance, or Performance Expert sessions
through a configuration file:

DPAnalysis /config c:\temp\config.xml

The following table briefly describes the XML elements. See the online help for more details.

Element

Description

Using DPAnalysis.exe

AnalysisOptions

Arguments

Excludelmages

(Optional) For each Process or Service, zero or one. Defines runtime attributes for the
specified target process or service. Attributes correspond to DevPartner properties
accessible from the Properties Window in Visual Studio.

Attributes: SESSION_DIR, SESSION_FILENAME, NM_METHOD_GRANULARITY,
EXCLUDE_SYSTEM_DLLS, NM_ALLOW_INLINING, NO_OLEHOOKS,
NM_TRACK_SYSTEM_OBJECTS, NO_MACH5

(Optional) For each Process or Service, zero or one. Defines runtime attributes for the
specified target process or service. Attributes correspond to DevPartner Coverage,
Memory, and Performance properties accessible from the Properties Window in Visual
Studio.

Attributes: SESSION_DIR, SESSION_FILENAME, NM_METHOD_GRANULARITY,
EXCLUDE_SYSTEM_DLLS, NM_ALLOW_INLINING, NO_OLEHOOKS,
NM_TRACK_SYSTEM_OBJECTS, NO_MACH5

(Optional) For each Process or Service, zero or one. No default if omitted. Defines
images (at least one, no maximum) which, if loaded by the target process or service,
will not be profiled. No attributes.

Element Description

Host (Optional) For each Process or Service, zero or one. No default if omitted. Sets the host
machine of the target process or service. No attributes.

Name One required for each service. Provides the name of the service as registered with the
service control manager. This is the same name you would use for the system's NET
START command. No attributes.

Path One required for each process. Specify a fully qualified or relative path to the
executable. You can specify the executable name without the path if the executable
exists in the current directory. No attributes.

Process The configuration file must contain at least one Process or one Service element.

RuntimeAnalysis
Service

Targets

Specifies a target executable.
Attributes: CollectData, Spawn, NoWaitForCompletion, NewConsole

Required; one only. Defines the type of performance and maximum session time.

The configuration file must contain at least one Process or one Service element.
Specifies a target service.
Attributes: CollectData, Start, RestartlfRunning, RestartAtEndOfRun

Required. One only. Begins a block of one or more Process or Service entries. Target
processes and services are started in the order they are listed in the configuration file.
Attributes: RuninParallel

DevPartner Studio Quick Reference - 15

Error Detection

File Extensions Used by Error Detection

Category

Error Detection

Settings

Extension File Type Description

.dpbcl Error Detection Session File This is the Error Detection log for the user's program
execution.

.dpbcc Error Detection Settings File This file contains the various settings for Error

.dpbcd Detection. The .dpbcd extension refers to the default
settings file created, while .dpbcc refers to a custom
settings file that has been saved separately.

.dpsup Error Detection Suppressions File This file contains the various suppressions for the user's
program.

.dpflt Error Detection Filters File This file contains the various filters for the user's
program.

.dprul Error Detection Rules File This is a database of the user's suppressions and filters.

Default Options (Visual Studio) or Settings (Visual C++)

Category Settings
General On Log events
On Display error and pause

Data Collection

Prompt to save program results
Show memory and resource viewer when application exits

Source file search path - based on the location of the .EXE (standalone),
.DSW (Visual C++), or .SLN (Visual Studio).

Override symbol path - Default: empty

Working directory (standalone only) based on the location of the .EXE
Command line arguments (standalone only) - Default: empty

Call parameter coding depth =1

Maximum call stack depth on allocation = 5

Maximum call stack depth on error = 20

NLB file directory is based on the location of the .EXE (standalone),
.DSW (Visual C++), or .SLN (Visual Studio).

Generate NLB files dynamically

API Call Reporting

Call Validation

COM Call Reporting

COM Object Tracking

Off

Off

Off

Enable API call reporting. All selections are unavailable until you select this
item.

Collect window messages - Default when active: Off

Collect APl method calls and returns. - Default when active: On

View only modules needed by this application - Default when active: On
All modules (tree view). - Default when active: All selected

Enable call validation. All selections unavailable until you select this item
Enable memory block checking - Default when active: Off

Fill output argument before call - Default when active: Off

COM failure codes - Default when active: On

Check for COM “Not Implemented” return code - Default when active:
On

API failure codes - Default when active: On
Check invalid parameter errors: API, COM - Default when active: both On
Category: Handle and pointer arguments - Default when active: On

Category: Flag, range and enumeration arguments - Default when
active: On

Check statically linked C run-time library APIs - Default when active: On

DLLs to check for API errors (failures or invalid arguments) - Default
when active: All items selected

Enable COM method call reporting on objects that are implemented in
the selected modules

Report COM method calls on objects implemented outside of the listed
modules - Default when active: On

All components tree view - Default when active: All selected
Enable COM object tracking
All COM classes tree view - Default when active: All selected

DevPartner Studio Quick Reference - 16

Category Settings
Deadlock Analysis Off Enable deadlock analysis
- Assume single process - Default when active: On
- Enable watcher thread - Default when active: Off
- Generate errors when: A critical section is re-entered - Default when
active: Off
- Generate errors when: A wait is requested on an owned mutex - Default
when active: Off
- Number of historical events per resource - Default when active: 10
- Report synchronization API timeouts - Default when active: Off
- Report wait limits or actual waits exceeding (seconds) - Default when
active: 60
- Synchronization Naming Rules - Default when active: Don’t warn about
resource naming
Memory Tracking On Enable memory tracking
On Report leaks immediately
Off Show leaked allocation blocks
Off Enforce strict reallocation semantics
On Enable FinalCheck
On Enable guard bytes; Pattern = FC; Count = 4 bytes
- Check heap blocks at runtime: On free
On Enable fill on allocation; Pattern = FB
On Check uninitialized memory; Size = 2 bytes
On Enable poison on free; Pattern = FD
.NET Analysis Off Enable .NET analysis

.NET Call Reporting

Resource Tracking

Exception monitoring - Default when active: On

Finalizer monitoring - Default when active: On

COM interop monitoring - Default when active: On

PInvoke interop monitoring - Default when active: On

Interop reporting threshold - Default when active: 1

Enable .NET method call reporting

All types (tree view node) - Default when active: Selected.

.NET User Assemblies (tree view node) - Default when active: Selected

.NET System Assemblies (tree view node) - Default when active: Not
selected

Enable resource tracking

Resources tree view. All listed resources are selected by default

Error Detection

Error Detection Toolbar in Visual Studio

Start with Error Detection

Start with Coverage Analysis

Start with Error Detection and Coverage Analysis

Start without debugging with Performance Analysis

Note: The arrows next to each button allow you to start with or without
debugging, depending on the default action of the button.

M - @ = @‘: = ﬁ_% - @ Error Detection

- ﬁl‘lf

Native C/C++ Instrumentation
Enable/disable instrumentation
Choose instrumentation type

Error Detection Toolbar i

’7 DevP.

Set DevPartner Options——|

n Visual C++ 6.0
artner Integrated Error Detection

® ¢)

Log Events Q

Display Error and Pause
Show filtered messages

|
LBuiId with Performance
Build with Coverage

Build with Error Detection

DevPartner Studio Quick Reference - 17

Error Detection

Error Detection Window Icons Used in the Results Pane
— Results Pane — Details Pane Icon Description Appears in...
Summary, Memory Leaks, Other Leaks, Errors, .NET Displays long description of detected & Memory Leaks Summary, Memory Leaks, and Transcript tabs
Performance, Modlules, Transcript tabs provide error; call stack |nformat|0n, reference s Other Leaks Summary, Other Leaks, and Transcript tabs
overview and detail about detected errors. count graph (see inset below). L
x Errors Summary, Errors, and Transcript tabs
Thpe Quantity Locatio~| | Pohter Error: Pointer 040012EES0, used asan | L ‘NET Performance Summary, .NET Performance tabs
- argunpent, is out of range; no longer within the buffer
5 X Moveable Memary Eror 2 fpr variable & (%001 2EE 78 [20) in function Module Load Event Summary, Modules, and Transcript tabs
X Maonzera lack count 1 API_Fre Pointer_&mrayParamE =R ange.
X Dangling painter 1 Painter_ LI
cinter Error Current Call Stack - Thread O [0x0103] | & Subroutine call Transcript tab
Function | File ;I
Fainter Unrelated 1 . . .
x olnuer Inrteda ed t _ ; P Puirter_dmayParamErFange PTRERR.CPP J Garbage Collection Event Transcrlpt tab
X g dgea 2d painter Compansan 7 = ExecuteFunction BugBench?Dlg.cp;
£2] ead Overun OnTest BugBench7Dlg.cp
- X wiite Overrun 1 - | |_AfDispatchCmdMsg cmdtarg. cpp T Event Begins Transcript tab
q | » OnCrmdizg crmdtarg.cpp
OnCridh=q digcore.cop r
El summary I $ Memory Leaks | ¥y Other Leaks % Errors I sa 4 1 _»l_l i‘_ Event Resumes Transcript tab
c:\program fileshcompuwarehdevpartner studioteramples\bugbench?smainkplrer.cpp T=1
R Event Ends Transcript tab
{ Bl i P
TT R Riference Count View | Objeet Identiy View |
!nl a[a];
;;“::E: A amay index out of range 85 ‘ L5 ‘ il] Icons Used in the Details Pane
3i|-_r_r‘_‘—_l—'_‘—‘_‘—_ —
1
CATCH s s o e s
123456769 11 13 15 Icon Description
N hd| & Subroutine call
|— iR ef - Thread 0 [0:0070] =
Source Pane Rgetn |Fie || Line Ottt | Entry Parameters
clezdll DDDDTEDEF [lr]
) Cidatel ip.h 570
Displays source code for the COp-Inoface_Leck. comercop B .
if availabl ExpruteFuncion bugbench?dg.cpp £95 T Exit Parameters
detected error, if available. orfran bgbench7ds cop 539J M
_AfDispatchCmdbsa emdtarg cpp e
Orfmetts cmdtarg.cpp | O+ Return Value

L— Details Pane - Reference Count Graph

Displays Reference Count View and Object Identity
View tabs when you select an Interface Leak in the @ Property for data types
Results pane.

% Property (default) for data types

DevPartner Studio Quick Reference - 18

Error Detection

Reference Count Graph Toolbar Memory and Resource Viewer Dialog Box
Vertical Zoom Out Results Pane Memory Contents Pane
Vertical Zoom In Scale to Size .
Select Viewing Area Displays Memory, Resource, and Summary tabs Stack P
Horizontal Zoom Out —‘ 9 tack Pane
HO”ZOntaI Zoom In -»; DevPartner Error Detection Memory and Resource Yiewer = |EI ZI
he= =
SRR Rl [Locslion feomtres) [teesd o | bye. | =1| [2EbEDE 1guoooor—
CBubUtibEilliee b 4l 40 02F6$E80 DO0EAGS de. .
02F6fE84 0(00EAES e
ugutility. cpp in. b W04 1c
i : - [bugutility. cpp - Ox041c 0 neEeEBss 10017Be ! o
rogram Error Detecte 1alog box 02FE6BSC EBAADEOOD &
EBugUt\hlu:: ree - [bugutility. cpp - in.bug O0x041c 0 02F66E90 EBAADFOOD . &—¢
 EBulny 1o [butity oo i Dilc oI [[ozEecoas Daanroon oo
P . | - - .| —2
Error descrlptlon ———————— Tabsfor multlple call stacks mF‘ENS’\BrELﬁUb..ImHashTabIe - [map_wip.cpp - line B3 0x041c [gggggggg g iggggg _g_g
Chapw/ordT o0b::InitH ashT able - [map_wp.cpp - line 68 0x041c 28
[MFC7O.DLLY
i Program Error Detected - BugBench?.exe B (=] m&%"g%’ﬂﬁub“'”"HaShTable ~[map_wp.cpp - fine 63 0:D41c £
} Ch aptw/ordT o0b::InitH ashT able - [map_wp.cpp - line 68 Ox0d1c 28 J _lLI
- — " [MFCFO.DLL
Mem_ory.l._eak Leaving Sgope: Yarniable refergnces address 0403145130 (64] allocated by J CHoT rackbisct-opmraiar e [lco e 80 0TS o K} ¥
CObject: operator new.
o . [MFC7O.DLL - - -
= [CNaTrackObjeck:operator new - [aflls.cpp - Ine 80 D041 | 4240 i [Fie - | Line /0fset]
MFCTODLLT || | CBugltility:FilTree bugutilty... 159
Current Call Stack - Thread 0 [0x0408] Call Stack'At Allacation - Thread O [0x0408] | <N|1 | 3 PopulateTres main cpp £
q CBugBench?Dlg:Init... bugbench. 353
Function [Fie | Line / Oifset| & remory | %8 Resources | El summary | CBugBenchDig-La.. bugbench 4
Dgwljm CRTStart m?érl}-CDD 2?; o Sprogram fileshcompuware'devpartner studiohexamplesibugbench?main'bugutility. cpp ﬂ
_ ail artup crtdl.c =
ntdll.dl 0=00007FC3 szBuff , -]
ntdll.dll 0=000055FE sizeof [seBuff | [e
stTVIZ.item.pseText = szBuff ;
/¢ Allocate the structure we put in lParam.
pLPI = new LParamInfo ;
/¢ Regular DLL's resource chain, and serious problemns will d m_lParamirray[m nLParam++] = pLPI ;
A 1esult. /# This is a leaf node.
pLPI->iType = 2
new COynLinkLibrary(tainDLL);] pLPI->=tEQ = *pstE0 ; =
else if [dwReasan == DLL_PROCESS_DETACH) « 1
TRACENMMAIN RIE Tamninatinal ' LI Lirje: Mumber: 153 |5hnwing allitems j Help | Save | M ark [snd Close | Close I y
e
Elxplain Memory/Fesource Viewer Copy Suppress...
| | I | — Source Pane Mark and Close —
I Don't show this error dislog | This Run =l Displays source code for the Click to mark existing allocations and close the
 Dhsa \ e E Deb | Hal | o detected error, if available. dialog box. Marked items will not be shown when
t loggi I i 'l ebu a ontinue I .
Al s - 2 Memory and Resource viewer reappears.
— Call stack information — Source code for the detected error

DevPartner Studio Quick Reference - 19

ActiveCheck and FinalCheck Error Detection

ActiveCheck

ActiveCheck™ analyzes your program and searches for errors in your program executable as
well as the dynamic-link libraries (DLLs), third-party modules, and COM components used by
your program. The following tables list the types of errors found with ActiveCheck error

detection.

Deadlock-related Errors

APl and COM Errors

Error Detection

Memory Errors

Dynamic memory overrun

Freed handle is still locked

Handle is already unlocked

Memory allocation conflict

Pointer references unlocked memory block
Stack memory overrun

Static memory overrun

Deadlock

Potential deadlock

Thread deadlocked

Critical section errors

Semaphore errors

Resource usage and naming errors
Suspicious or questionable resource usage
Handle errors

Event errors

Mutex errors

Windows event errors

COM interface method failure

Invalid argument

Parameter range error

Questionable use of thread

Windows function failed

Windows function not implemented
Invalid COM interface method argument

FinalCheck Compile Time Instrumentation - Deepest Error Detection

FinalCheck™ compile time instrumentation (CTI) enables Error Detection to find more errors

(memory leaks, resource leaks, pointer errors, data corruption errors, and so on) as they occur

in real time. FinalCheck finds these types of errors plus all found with ActiveCheck.

Memory Errors

Pointer and Leak Errors

.NET Errors

Pointer and Leak Errors

Finalizer errors
GC.Suppress finalize not called
Dispose attributes errors

Unhandled native exception passed to managed
code

Interface leak
Memory leak
Resource leak

Reading overflows buffer
Reading uninitialized memory
Writing overflows buffer

Array index out of range
Assigning pointer out of range
Expression uses dangling pointer
Expression uses unrelated pointers
Function pointer is not a function
Leak due to leak

Leak due to module unload

Leak due to unwind

Memory leaked due to free
Memory leaked due to reassignment
Memory leaked leaving scope
Returning pointer to local variable

DevPartner Studio Quick Reference - 20

List of Available Keyboard Commands - Visual Studio

Error Detection

List of Available Keyboard Commands - Visual C++ 6.0

Command Action

Ctrl+Shift+O File > Open > Project
Ctrl+Shift+N File > New > Project
Ctrl+S File > Save Project
Ctrl+Shift+S File > Save All
Ctrl+Shift+F Edit > Find in Files
Ctrl+Shift+H Edit > Replace in Files
Alt+F12 Edit > Find Symbol
Ctrl+Alt+L View > Solution Explorer
Ctrl+Shift+C View > Class View
Ctrl+Alt+S View > Server Explorer
Ctrl+Shift+E View > Resource View

F4 View > Properties Window
Ctri+Alt+X View > Toolbox
Shift+Alt+Enter View > Full Screen
Shift+F4 View > Property Pages
Ctrl+Shift+B Build > Build Solution

F5 Debug > Start

Ctrl+F5 Debug > Start Without Debugging
Ctrl+Alt+E Debug > Exceptions

F11 Debug > Step Into

F10 Debug > Step Over
Ctrl+B Debug > New Breakpoint
Ctrl+F1 Help > Dynamic Help
Ctrl+Alt+F1 Help > Contents
Ctrl+Alt+F2 Help > Index

Ctrl+Alt+F3 Help > Search
Shift+Alt+F2 Help > Index results
Shift+Alt+F3 Help > Search results

Command Action

Ctrl+F Edit > Find

Ctrl+H Edit > Replace

Ctrl+G Edit > Go To

Alt+F2 Edit > Bookmarks

Alt+F9 Edit > Breakpoints

Ctrl+Alt+T Edit > List Members
Ctrl+Shift+space Edit > Parameter Info
Ctrl+Space Edit > Complete Word

Ctrl+w View > ClassWizard

Alt+0 View > Workspace

Alt+2 View > Output

Alt+Enter View > Properties

Ctrl+F7 Build > Compile filename

F7 Build > Build application_name
F5 Build > Start Debug > Go

F11 Build > Start Debug > Step Into
Ctrl+F10 Build > Start Debug > Run to Cursor
Alt+F12 Tools > Source Browser
Ctrl+Shift+R Tools > Record Quick Macro
Ctrl+Shift+S Tools > Play Quick Macro

DevPartner Studio Quick Reference - 21

