
User Interface Programming

ACUCOBOL-GT®

Version 8.1

Micro Focus
9920 Pacific Heights Blvd

San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (IP) Ltd. 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-UI-080501-ACUCOBOL-GT-8.1

Contents

Chapter 1: Introduction
1.1 Overview of User Interface Features ... 1-2
1.2 Developing Programs for Graphical Systems.. 1-7

1.2.1 Event-driven Environments ... 1-7
1.2.2 Configuration and Programming Support ... 1-7
1.2.3 Index to Related Topics ... 1-10
1.2.4 GUI Development With Third-party Kits and Tools... 1-11

1.3 Windowing Concepts... 1-11
1.4 ACUCOBOL-GT Window Types ... 1-15
1.5 Creating Portable User Interfaces .. 1-16

1.5.1 Incompatibilities Between Graphical and Character Systems............................. 1-17
1.5.2 Strategies for Supporting Multiple Systems .. 1-19

1.5.2.1 Dual interface, dual code... 1-20
1.5.2.2 Single interface, single code.. 1-21
1.5.2.3 Dual interface, single code .. 1-22
1.5.2.4 Selecting the right approach .. 1-22
1.5.2.5 Determining which UI is running.. 1-23

1.5.3 Tips for Solving Cross-Platform Interface Problems .. 1-24
1.5.3.1 Establishing the initial window ... 1-24
1.5.3.2 Tips for building single-interface programs .. 1-26
1.5.3.3 Tips for building dual-interface programs... 1-27

1.6 GUI Development Project Issues... 1-29
1.6.1 Extent of the Interface Changes... 1-29
1.6.2 Suitability of the Current UI to Conversion .. 1-30
1.6.3 Recommendations.. 1-31
1.6.4 Conversion Wizard .. 1-31

1.7 Sample Programs ... 1-32

Chapter 2: Floating Windows
2.1 Overview of Floating Windows... 2-2
2.2 Relationship Between Floating Windows and Subwindows ... 2-3
2.3 Active and Current Windows .. 2-4
2.4 Parent and Child Windows .. 2-5
2.5 Creating, Inquiring, Modifying, and Destroying Windows... 2-6
2.6 Menus and Floating Windows ... 2-8

Contents-ii
Chapter 3: Graphical Controls
3.1 Overview of Graphical Controls ..3-2

3.1.1 Visual Styles and Differences Among Operating Systems3-5
3.2 Control Types, Handles, and IDs ...3-5
3.3 Interaction Between Controls and Windows ...3-6
3.4 Creating, Modifying, Inquiring, and Destroying Controls...3-7
3.5 The Character Coordinate Phrases ...3-10
3.6 Controls and the Mouse ...3-11
3.7 Bitmap Buttons ..3-12

3.7.1 Drawing the Image...3-13
3.7.2 Loading Bitmaps..3-15
3.7.3 Creating the Button ..3-16
3.7.4 Pop-up Hints ..3-19
3.7.5 Portability...3-19

3.8 Paged List Boxes..3-20
3.8.1 Creating a Paged List Box ...3-21
3.8.2 Adding Records to a Paged List Box...3-22
3.8.3 Other List Box Operations ...3-23

3.8.3.1 Scroll Bars in Text-mode Environments ...3-23
3.8.4 Paged List Box Event Handling...3-23
3.8.5 Paged List Box Example..3-27

3.9 Paged Grids ..3-33

Chapter 4: Supporting Concepts and Related Issues
4.1 Handles...4-2
4.2 Events...4-3
4.3 Graphical vs. Textual Modes ...4-4
4.4 Styles and Special Properties ...4-5
4.5 Methods..4-7

4.5.1 ActiveX Example...4-8
4.5.2 .NET Example ...4-10

4.6 Coordinates ..4-11
4.6.1 Coordinate Handling..4-11
4.6.2 Coordinate Space Problems ...4-12
4.6.3 Coordinate Space Solutions ...4-12

4.7 Fonts...4-15
4.8 Layout Managers..4-16

4.8.1 Working with Layout Managers ..4-17
4.8.1.1 Attaching a layout manager to a window ..4-18

 Contents-iii
4.8.2 Setting LAYOUT-DATA .. 4-18
4.8.3 Minimum and Maximum Control Dimensions ... 4-18
4.8.4 The Resize Layout Manager.. 4-20

4.8.4.1 Resize manager LAYOUT-DATA values... 4-21

Chapter 5: Control Types Reference
5.1 The Components of a Control.. 5-2

5.1.1 Type ... 5-3
5.1.2 Handle.. 5-4
5.1.3 Properties ... 5-4

5.1.3.1 Common properties ... 5-5
5.1.3.2 Special properties .. 5-6

5.1.4 Control Components Diagram... 5-7
5.2 Global Styles.. 5-8
5.3 ActiveX.. 5-11

5.3.1 Common Properties ... 5-12
5.3.2 Special Properties .. 5-13
5.3.3 Events .. 5-16

5.4 Bar.. 5-17
5.4.1 Common Properties ... 5-18
5.4.2 Special Properties .. 5-19
5.4.3 Events .. 5-22

5.5 Bitmap.. 5-22
5.5.1 Common Properties ... 5-22
5.5.2 Special Properties .. 5-23
5.5.3 Events ... 5-27

5.6 Check Box.. 5-27
5.6.1 Common Properties ... 5-27
5.6.2 Special Properties .. 5-31
5.6.3 Events .. 5-31
5.6.4 Examples.. 5-32

5.7 Combo Box .. 5-32
5.7.1 Common Properties ... 5-33
5.7.2 Special Properties .. 5-35
5.7.3 Events .. 5-36
5.7.4 Using Special Keys.. 5-37
5.7.5 Examples.. 5-37

5.8 Date Entry .. 5-38
5.8.1 Common Properties ... 5-39
5.8.2 Special Properties .. 5-43

Contents-iv
5.8.3 Examples..5-45
5.9 Entry Field..5-45

5.9.1 Common Properties ...5-46
5.9.2 Special Properties ..5-55
5.9.3 Events...5-60
5.9.4 Using Special Keys ..5-61
5.9.5 Examples..5-61

5.10 Frame ...5-62
5.10.1 Common Properties ...5-63
5.10.2 Special Properties ..5-66
5.10.3 Events...5-68
5.10.4 Examples..5-68

5.11 Grid ..5-69
5.11.1 Common Properties ...5-73
5.11.2 Special Properties ..5-76
5.11.3 Events...5-106

5.12 Label...5-107
5.12.1 Common Properties ..5-107
5.12.2 Special Properties ..5-109
5.12.3 Events...5-110
5.12.4 Examples..5-110

5.13 List Box..5-111
5.13.1 Common Properties ...5-111
5.13.2 Special Properties ..5-115
5.13.3 Events...5-122
5.13.4 Using Special Keys ..5-122
5.13.5 Examples..5-122

5.14 .NET...5-123
5.14.1 Common Properties ...5-123
5.14.2 Special Properties ..5-124
5.14.3 Events...5-125

5.15 Push Button ..5-125
5.15.1 Common Properties ...5-126
5.15.2 Special Properties ..5-131
5.15.3 Events...5-132
5.15.4 Examples..5-132

5.16 Radio Button ..5-133
5.16.1 Common Properties ...5-133
5.16.2 Special Properties ..5-137
5.16.3 Events...5-139

 Contents-v
5.16.4 Examples.. 5-139
5.17 Scroll Bar ... 5-140

5.17.1 Common Properties .. 5-141
5.17.2 Special Properties ... 5-143
5.17.3 Events .. 5-143

5.18 Status Bar ... 5-144
5.18.1 Common Properties .. 5-145
5.18.2 Special Properties .. 5-146
5.18.3 Events .. 5-151

5.19 Tab ... 5-152
5.19.1 Common Properties .. 5-154
5.19.2 Special Properties ... 5-156
5.19.3 Events .. 5-158
5.19.4 Programming Tips ... 5-158

5.20 Tree View .. 5-161
5.20.1 Common Properties ... 5-165
5.20.2 Special Properties .. 5-168
5.20.3 Events .. 5-173

5.21 Web Browser ... 5-174
5.21.1 Common Properties ... 5-175
5.21.2 Special Properties .. 5-177
5.21.3 Other Properties ... 5-179
5.21.4 Events .. 5-180

Chapter 6: Events Reference
6.1 Overview of Events ... 6-2
6.2 Window Events.. 6-3
6.3 Control Events ... 6-5
6.4 Menu Events .. 6-24

Chapter 7: Using the Mouse
7.1 Mouse Properties ... 7-2
7.2 Mouse Action Ownership in Graphical Environments.. 7-3
7.3 How Mouse Actions Are Handled... 7-4

7.3.1 Mouse Exception Processing... 7-5
7.3.2 Assigning Results to Mouse Actions... 7-6
7.3.3 Unmasking Mouse Actions.. 7-6

7.4 Automatic Mouse Handling... 7-8
7.5 Screen Section Behavior .. 7-10

Contents-vi
7.6 W$MOUSE Library Routine ...7-12

Chapter 8: Menu Bars and Pop-up Menus
8.1 Menus Overview ...8-2
8.2 Generic Menu Handler...8-2

8.2.1 Static Menu Bars..8-3
8.2.2 Pop-up Menu Bars ...8-3
8.2.3 Submenus...8-4

8.3 Graphical Menu Facilities ..8-4
8.4 Overview of Menu Handling ...8-5

8.4.1 Properties of Menu Entries ..8-5
8.5 Creating Menus—the Shortcut ..8-6

8.5.1 Using genmenu ..8-6
8.6 Menu Activation and Use ..8-12

8.6.1 Defining Menu Keys..8-13
8.7 Menu Input ...8-14

8.7.1 Function Key Handling..8-15
8.7.2 Menu Selection Limits...8-15

8.8 Changing Menu Results ...8-15
8.9 Common Menu Operations ..8-16

8.9.1 Disabling Menu Items..8-16
8.9.2 Checking Menu Items ..8-17
8.9.3 Disabling an Entire Menu ..8-17
8.9.4 Menu Configuration With the Generic Menu Handler ..8-18

8.10 Pop-up Menus ..8-18
8.11 Menu Handling: Sample Code...8-20
8.12 System Menu “Close” Handling Under Windows...8-22
8.13 Portability Concerns...8-23
8.14 Menu Bar Sample Programs ..8-24

Chapter 9: Color Mapping
9.1 Overview of Color Choices..9-2

9.1.1 Simplified Mapping Approach ..9-3
9.1.2 Controlling the Color Mapping..9-4

9.2 COLOR_MODEL Settings ..9-5
9.2.1 COLOR_MODEL Settings 1 and 2 ...9-6
9.2.2 COLOR_MODEL Settings 3 and 4 ...9-8
9.2.3 COLOR_MODEL Settings 5 and 6 ...9-9
9.2.4 COLOR_MODEL Settings 7 and 8 ...9-10

 Contents-vii
9.2.5 COLOR_MODEL Settings 9 and 10... 9-11
9.3 COLOR_TABLE Settings ... 9-12
9.4 Additional Color Configuration Variables .. 9-15

9.4.1 Step 1: Assign Initial Colors.. 9-16
9.4.2 Step 2: Assign Initial Attributes .. 9-16
9.4.3 Step 3: Transform Colors... 9-18
9.4.4 Step 4: Transform Intensities... 9-18

9.5 ActiveX Color Settings .. 9-20
9.6 Miscellaneous Options Under Windows and Windows NT.. 9-21

9.6.1 Background Brush Color ... 9-21
9.6.2 Drawing 3-D Lines .. 9-22

Chapter 10: Help Automation
10.1 Introduction.. 10-2
10.2 HELP-ID.. 10-2
10.3 Help Modes.. 10-3
10.4 The Help Processor .. 10-4
10.5 Windows Help ... 10-5

10.5.1 Mapping Context IDs .. 10-6

Chapter 11: Using AcuXUI to Deploy a Cross-Platform User Interface
11.1 Introducing AcuXUI .. 11-2

11.1.1 AcuXUI Versus the Thin Client .. 11-4
11.2 Solution Components... 11-4
11.3 Installation and Use ... 11-5

11.3.1 Running AcuXUI from a Java Command ... 11-6
11.3.2 Runtime Options and Configurations .. 11-7
11.3.3 Applying a Different Look and Feel.. 11-7

11.4 AcuConnect Deployment... 11-8
11.5 Deploying AcuXUI as an Applet... 11-8

11.5.1 Updating Your Web Page.. 11-9
11.5.2 Programming for Applet Use... 11-10

11.6 Debugging with AcuXUI... 11-10
11.7 Launching AcuXUI from IDEs.. 11-12

11.7.1 From AcuBench... 11-12
11.7.2 From Eclipse.. 11-13

11.8 Differences Between Java and Windows Desktops... 11-18
11.8.1 Unsupported Features .. 11-20
11.8.2 Supported Features .. 11-21

Contents-viii
11.8.2.1 Bitmaps ..11-22
11.8.2.2 Browser Controls ...11-22
11.8.2.3 Combo Boxes ..11-22
11.8.2.4 Entry Fields..11-23
11.8.2.5 Frames..11-23
11.8.2.6 Left Alignment...11-23
11.8.2.7 Menus ..11-24
11.8.2.8 Message Box Titlebars ..11-26

11.9 Troubleshooting and Error Messages ..11-26
11.9.1 Java logging ...11-27

Chapter 12: Tips and Hints
12.1 Regarding Windows...12-2
12.2 Regarding Controls ..12-4
12.3 Regarding Fonts ...12-7
12.4 Regarding Configuration Variables ...12-7
12.5 Regarding Debugging ..12-9

Chapter 13: UI Terminology

Index

1
 Introduction
Key Topics

Overview of User Interface Features... 1-2
Developing Programs for Graphical Systems....................................... 1-7
Windowing Concepts .. 1-11
ACUCOBOL-GT Window Types... 1-15
Creating Portable User Interfaces ... 1-16
GUI Development Project Issues ... 1-29
Sample Programs ... 1-32

1-2 Introduction
1.1 Overview of User Interface Features

ACUCOBOL-GT® is part of the extend® family of Micro Focus solutions.

In addition to the standard display handling included in ANSI-85 COBOL,
ACUCOBOL-GT offers a comprehensive set of extensions for programming
and managing Graphical User Interfaces (GUIs). With these extensions, an
ACUCOBOL-GT developer can add a full-featured, native GUI to an
existing program entirely in COBOL. The purpose of these extensions is to:

• allow developers to create a fully graphical program in COBOL for use
on systems such as Microsoft Windows.

• allow developers to use a mix of graphical and character-based interfaces
in one program. Graphical features can be added to an existing program
without the need to rewrite the entire user interface.

• allow programmers to develop graphical interface specifications that are
portable to a variety of host systems.

• support graphical features in a way that is natural for COBOL.

• mimic existing COBOL screen syntax as closely as possible to simplify
the task of reworking a character-based program into a graphical
program.

• avoid the need to do event loop programming that is common for
graphical systems, but foreign to most COBOL programs.

• make it easy to add new graphical capabilities in the future.

ACUCOBOL-GT supports the emulation of graphical controls and windows
on character-based systems. This emulation allows you to more easily write
a single program that will run on both character and graphical systems.
ACUCOBOL-GT supports the emulation of floating windows and the
following control types: label, entry field, push button, radio button, frame,
check box, list box (including infinite capacity list box), and combo box.

Overview of User Interface Features 1-3
You can also use ACUCOBOL-GT’s traditional text-oriented mechanisms
for creating your user interface, such as the textual forms of the ACCEPT and
DISPLAY verbs, and Format 1 of the Screen Section. In addition, you can
use the Screen Section extensions to define and process both character-based
and graphical user interface screens.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

Generally, ACUCOBOL-GT GUI supports include:

• syntax extensions for creating native floating windows, toolbars, and
controls (such as buttons, entry fields, and labels)

• the ability to create and manage menu bars with pull-down submenus

• configuration variables for customizing windows, importing icons, and
mapping colors

• many host specific features such as message boxes and context-sensitive
help

Specifically, ACUCOBOL-GT’s GUI programming supports include:

• native floating (moveable) windows, including:

• modal and modeless window types

• default and custom window size and position

• dynamically resizeable windows

• configurable borders

• programmable title bar

• optional system menu

1-4 Introduction
• GUI controls, including:

• labels

• entry fields

• standard and infinite capacity list boxes

• combo boxes

• push buttons

• radio buttons

• check boxes

• frames

• bars*

• scroll bars*

• tabs*

• tree views

• bitmaps*

• grids*

• status bars

• Web browsers*

• .NET, ActiveX, and COM elements*

• menu bars and submenus

• display of bitmaps and bitmap buttons*

• toolbars*

• access to the native message box facility

• access to the native file open and file save-as dialog boxes*

Overview of User Interface Features 1-5
• access to the native help facility and support for context sensitive help

• specialized mouse handling

• font selection and handling

• custom colors

• the ability to play “.WAV” audio files on Microsoft Windows systems
with sound capabilities

Note: Items marked with an “*” are not supported in text-mode
environments.

ACUCOBOL-GT runtime supports include:

• full object code compatibility

• the creation and runtime management of native floating windows and
graphical controls on Microsoft Windows and Windows NT

• automatic text-mode emulation of floating windows and most graphical
controls, except bars, scroll bars, tabs, animated bitmaps, bitmap
buttons, and toolbars

• automatic mouse support

• automatic menu bar handling

• extensive color mapping facilities

• access to the Windows print spooler

• automatic multi-tasking support

• network compatibility

• access to all memory available under Windows

1-6 Introduction
Floating windows and graphical controls

ACUCOBOL-GT supports a class of windows called floating windows.
When run under a graphical environment, floating windows correspond to
the graphical windows that are native to the host environment. Floating
windows pop up over their parent window and can be repositioned by the
user with the mouse or system menu (if present). Floating windows are fully
described in Chapter 2, “Floating Windows.”

ACUCOBOL-GT also supports the creation, display, and manipulation of
graphical controls. (Graphical controls are listed above in this section.)
Toolbars can also be created and attached to floating windows. A toolbar can
host any type of control, but is usually populated with push buttons, check
boxes, and radio buttons. To simplify the programming of graphical controls,
ACUCOBOL-GT provides a consistent method for their specification and
handling. For a complete description of graphical controls, see Chapter 3,
“Graphical Controls.”

Automatic GUI runtime support

Many GUI capabilities are provided automatically by the runtime. To take
advantage of these features, you don’t have to change your COBOL code,
and you don’t have to recompile your program. You simply use the object
code generated with your ACUCOBOL-GT compiler, and execute it with a
runtime for Windows. When you do this your program automatically gains:

• a native, moveable, main application window.

• basic mouse support. Users can point and click to move the cursor, and
can highlight a string of characters and replace the string by typing a new
one.

• customizable colors, titles, window sizes, window placement, and
program icons (tailored with runtime configuration variables).

• access to the system’s print spooler, so that several files may be queued
for printing.

• the ability to run more than one application at the same time.

Developing Programs for Graphical Systems 1-7
1.2 Developing Programs for Graphical Systems

The following sections discuss issues of importance to developers who are
building systems for graphical environments.

1.2.1 Event-driven Environments

Most GUI environments are event-driven. Unlike traditional operating
environments in which a program prompts for input and the user responds,
the event-driven environment turns the relationship around. Actions are
initiated by the user or system, and it’s the job of the program to listen for and
respond to events (events include mouse movements, menu selections, data
entry, etc.).

To support this, event-driven programs have an event loop that waits for and
handles events. Including an event loop in a COBOL program usually
requires significant changes to existing code. However, in ACUCOBOL-GT
the runtime implements the event loop and manages nearly all events for the
application. There is no need for the COBOL program to include an event
loop. This greatly simplifies programming for event-driven environments
and preserves the traditional procedural structure of the application. Events
which must be handled by the application are passed through to the program
along with any necessary data. The application is typically programmed to
handle these events in the same way that it handles the press of a function
key. Events and event handling are described in section 4.2, “Events,” and
in Chapter 6, “Events Reference.”

1.2.2 Configuration and Programming Support

ACUCOBOL-GT provides many configuration variables and runtime library
routines to tailor the environment and to help take advantage of host-specific
capabilities. Configuration variables are documented in Book 4, Appendix
H. Library routines are documented in Appendix I. Windows-specific
information is documented in A Guide to Interoperating with
ACUCOBOL-GT as is information on working with transaction processing
and message queueing systems on IBM and other hosts.

1-8 Introduction
Following is a select list of configuration variables, runtime library functions,
and host-specific capabilities pertinent to interface programming and
configuration. For a complete list, refer to Book 4, ACUCOBOL-GT
Appendices.

Configuration Variables - Appendix H

3D_LINES INSERT_MODE

ACTIVE_BORDER_COLOR INTENSITY_FLAGS

BACKGROUND_INTENSITY KEYSTROKE

BOXED_FLOATING_WINDOWS LISTS_UNBOXED

COLOR_MODEL MENU_ITEM

COLOR_TABLE MESSAGE_BOX_COLOR

COLOR_TRANS MOUSE

COLUMN_SEPARATION MOUSE_FLAGS

DEFAULT_PROGRAM NO_CONSOLE

DEFAULT_FONT OLD_ARIAL_DIMENSIONS

DISABLED_CONTROL_COLOR OPTIMAZE_CONTROL_RESIZE

DOUBLE_CLICK_TIME PROMPTING

EF_UPPER_WIDE QUIT_MODE

EF_WIDE_SIZE RESIZE_FRAMES

F10_IS_MENU RESIZE_FREELY

FIELDS_UNBOXED SCREEN

FONT SHUTDOWN_MESSAGE_BOX

FONT_AUTO_ADJUST TEMPORARY_CONTROLS

FONT_SIZE_ADJUST TRANSLATE_TO_ANSI

FONT_WIDE_SIZE_ADJUST WHITE_FILL

FOREGROUND_INTENSITY WIN_ERROR_HANDLING

FULL_BOXES WIN_F4_DROPS_COMBOBOX

GUI_CHARS WIN3_CLIP_CONTROLS

Developing Programs for Graphical Systems 1-9
Library Routines - Appendix I

Windows-Specific Information - A Guide to Interoperating with
ACUCOBOL-GT

HINTS_OFF WIN3_EF_PADDED

HINTS_ON WIN3_GRID

HOT_KEY WIN32_3D

ICON WINDOW_TITLE

INACTIVE_BORDER_COLOR WINPRINT_NAMES_ONLY

C$EXCEPINFO W$FONT

C$GETEVENTDATA W$MENU

C$GETEVENTPARAM W$MOUSE

C$OPENSAVEBOX W$PALETTE

C$RESOURCE WIN$PLAYSOUND

C$RUN WIN$PRINTER

C$SETEVENTDATA W$TEXTSIZE

C$SETEVENTPARAM WIN$VERSION

W$BITMAP W$WINHELP

Message Boxes

Keyboard Differences

Hardware and Error Handling

Special Characteristics of 32-bit Windows

Calling DLLs

1-10 Introduction
1.2.3 Index to Related Topics

Following is a select index to related topics documented in Book 1, User’s
Guide, Book 3, Reference Manual, and Book 4, Appendices. Consult each
book’s Table of Contents for a complete listing of topics. The entries below
are given with their manual name and section number. Note that User’s
Guide is abbreviated “UG”, Reference Manual is abbreviated “RF”, and
Appendices is abbreviated “AP”.

Related topics

Other major topics

ACCEPT verb RF 6.6

ActiveX and COM
Programming

UG 6.10

Configuration Variables AP H

DISPLAY verb RF 6.6

Display interface UG 4.4

Host-specific information AP M

Library routines AP I

Screen Section UG 6.5, RF 5.8

SPECIAL-NAMES paragraph RF 4.1.3

ACUCOBOL-GT product
overview

UG 1.1

C subroutines, using AP C

Compiler, using UG 2.1

Debugger, using UG 3.1

Multithreading UG 6.7

Runtime, using UG 2.2

Working-Storage Section RF 5.5

Windowing Concepts 1-11
1.2.4 GUI Development With Third-party Kits and Tools

To add graphical features not currently supported by ACUCOBOL-GT, you
can use one of the system development kits offered by operating system
vendors. For example, the Windows Software Development Kit (SDK) from
Microsoft supports extensions to applications running under Windows.
Using the SDK, you can build C routines that provide extra features, and then
call the C routines from your COBOL application. ACUCOBOL-GT is fully
compatible with the Microsoft Windows SDK, so the two are readily
integrated.

1.3 Windowing Concepts

The following basic window concepts form the foundation for GUI
programming and ACUCOBOL-GT window support.

The screen

The screen is the physical display area of the monitor.

The virtual screen

The virtual screen is a non-physical display area allocated to the application
by the operating system (or the ACUCOBOL-GT runtime). It is called
virtual because not all of the allocated area need be displayed on the physical

1-12 Introduction
screen. A window (defined below) is used to frame the virtual screen, and
scroll bars are provided, if necessary, to allow the user to navigate to any part
of the virtual screen. The application behaves as if the entire virtual screen is
always available.

The physical screen, virtual screen, and application window

Window

A window is a rectangular display area that provides a view of the virtual
screen. It can be any size, including the entire screen. It is usually framed.
Depending on the window type and the underlying system software,
windows are displayed in either graphical or text-mode. Windows can
include a number of other interface objects, such as a title bar, menu bar, and
controls.

Windowing Concepts 1-13
In GUI environments, windows are the fundamental construct used to display
and accept commands and data from the user.

The My Computer window in Windows 2000

The main application window

The main application window is the application’s primary window. The
main application window is typically the first window that the application
creates. It usually includes a title bar displaying the application’s name and a
menu bar for quick access to the application’s basic functions. The main
application window is usually movable and resizeable.

Modeless windows

A modeless window is a window that allows the user to switch between
windows--usually application windows--without having to close the current
window. The current window application continues to run in the background
even after you switch to another window. An application might also use
several modeless windows to give the user access to different program
functions and to provide separate views of program data. The user activates
a modeless window using the host’s method--usually by clicking on it.
Modeless windows can contain most any type of control and are typically
moveable and resizeable. An application’s main application window is
usually a modeless window.

1-14 Introduction
Modal windows

A modal window is a window that the user must respond to and close before
the application will continue. Dialog boxes are typically modal windows.
Modal windows may include buttons, entry boxes, and other controls that the
user manipulates to provide input and to confirm or cancel an action. Modal
windows are usually moveable but not resizeable.

Controls

A control is a self-contained graphical object with a dedicated function, such
as a push button, check box, entry field, or scroll bar. Controls are also
known as widgets. Though they are technically windows, controls are not
moveable or resizeable, nor do they have many of the other properties of a
window.

Controls in a Windows dialog box

ACUCOBOL-GT Window Types 1-15
1.4 ACUCOBOL-GT Window Types

ACUCOBOL-GT includes two fundamental window types: floating
windows and subwindows (sometimes referred to as pop-up windows in
prior versions). Each window type is discussed briefly below. Floating
windows are discussed in detail in Chapter 2.

ACUCOBOL-GT also supports many types of controls (technically a type of
window). Controls are discussed in detail in Chapter 3.

Floating windows

A floating window is the ACUCOBOL-GT window type that creates a
host-based, pop-up window. When your application executes in a graphical
environment, such as Microsoft Windows, floating windows are created as
native pop-up windows, managed by the host operating system and the
ACUCOBOL-GT runtime.

Floating windows must be used when you want to include graphical controls,
such as buttons, entry boxes, and scroll bars. ACUCOBOL-GT supports two
types of floating windows: modal and modeless. Floating windows are
discussed in detail in Chapter 2.

Floating windows are positioned and displayed on the virtual screen (see
section 1.3, “Windowing Concepts.”). The virtual screen is intrinsic to all
applications that use floating or subwindows. The virtual screen size can be
set with the SCREEN SIZE runtime configuration variable and changed
during program execution with the MODIFY Statement in section 6.6 in
Book 3, Reference Manual. The default virtual screen size is 25 rows by 80
columns.

Independent windows

An independent window is similar to a floating window, except that
independent windows do not belong to parent windows; independent
windows are controlled independently. This subject is discussed in more
detail in Chapter 2.

1-16 Introduction
Subwindows

Subwindow is the name given to ACUCOBOL-GT text-mode windows
created with the DISPLAY WINDOW or DISPLAY SUBWINDOW
statement. Prior to Version 3.0 these windows were simply referred to as
windows.

Subwindows are always text-mode windows and are not compatible with
graphical controls. However, subwindows can be mixed with floating
windows, so long as the subwindows do not display on top of graphical
controls. When an overlay occurs, due to the workings of the underlying host
system, control objects are improperly displayed on top of the text-mode
subwindow. For a discussion of textual and graphical modes, see section 4.3,
“Graphical vs. Textual Modes.”

You can easily convert subwindows to floating windows by changing the
DISPLAY WINDOW statement to a DISPLAY FLOATING WINDOW
statement. However, subwindows that simply define a screen region, that are
not bordered, or are not pop-up in nature, do not lend themselves to
conversion to floating windows.

1.5 Creating Portable User Interfaces

ACUCOBOL-GT allows you to run programs on a wide variety of host
systems. Because of its machine-independent object code, many
programmers use ACUCOBOL-GT to write programs that will run under
several different host systems. However, it can be challenging to write a
program that looks good and functions well under both character-based
systems and graphical systems because of the vastly different nature of these
systems. This is especially true if you include graphical controls in your
programs.

There are two main ways to approach this dilemma:

• You could take into consideration all of the differences between
graphical and character-based systems and design your user interface
accordingly. You could develop one interface, one set of source code to
handle all situations; you could develop two interfaces, but maintain
them in a single set of source code; or you could develop two separate

Creating Portable User Interfaces 1-17
programs altogether (one for graphical systems and one for
character-based systems). Sections 1.5.1 through 1.5.3 discuss various
strategies for writing programs that are intended to run under both
graphical and character systems. Because many developers use
ACUCOBOL-GT to convert existing character-based programs into
graphical programs, these sections adopt the point of view that you are
doing such a conversion. However, most of the comments apply to
writing new programs as well.

• You can use AcuXUI™, an add-on user interface engine offered by
Micro Focus, to execute your graphical COBOL program from a Java
command line. This lets you run your program on any machine that
supports the Java Runtime Environment (JRE) Version 1.5 or later and
exhibit a GUI on a graphical desktop such as XServer. Chapter 11
discusses how to deploy your graphical ACUCOBOL-GT application
via AcuXUI.

1.5.1 Incompatibilities Between Graphical and Character
Systems

Ideally, you could simply modify your program to use graphical features, and
that program would then run perfectly under both graphical and character
systems. However, this is usually not the case. The key problems arise in the
different physical traits associated with graphical and character systems.
Let’s examine some of the primary differences.

For character systems, you can generally assume that you have a screen area
of 24 or 25 lines by 80 columns. While you can occasionally find larger
screens (e.g., many Xterm configurations), designing your programs for 24
by 80 will guarantee nearly universal compatibility. (Some programmers use
25 lines instead because this is the number of lines normally provided on
IBM PC compatibles, as well as many common terminals. The discussion
below uses 24 lines because it is traditionally the most portable value. If you
use 25 lines instead, the discussion still applies, but the problems that arise
during the conversion to a graphical system are more obvious.)

The display characteristics of graphical systems are harder to analyze.
Looking at current Microsoft Windows systems, they are usually configured
with one of these screen resolutions: 640 x 480, 800 x 600, or 1024 x 768.

1-18 Introduction
You can find other sizes too, but these account for the vast majority. Now,
translate these values into character cells to see how they compare with
character systems. The FIXED-FONT used by ACUCOBOL-GT is usually
designed to be 8 pixels wide by 15 pixels high. On a 640 x 480 screen, this
gives exactly 80 characters across (assuming the window borders are placed
off of the screen) and 42 characters high (in practice, somewhat less because
of space used by the window’s title and menu). This size works fine with a
24 x 80 layout, and so simply running a character-based program under
Windows works fine.

However, problems arise when you convert that character-based program to
use graphical controls. Consider what happens when you convert text-based
data entry fields into ENTRY-FIELD controls. Typically, entry fields are
boxed (have a border around them) in order to match the normal look of a
Windows application, and they usually display using the DEFAULT-FONT
(a proportional font). The DEFAULT-FONT is normally 13 pixels high by 7
pixels wide. Making the entry fields boxed adds 50% to their height, with the
result that they are 20 pixels high. This gives exactly 24 lines on a 640 x 480
screen, but only if you omit all of the window borders, the title and menu, and
assuming that you do not include any spacing between the entry fields. If you
want to add a 3-D look to the entry fields, you need at least another 3 pixels,
making 24 lines approximately 552 pixels high (again, ignoring the window
title, etc.). In practice, you will usually want to be able to see the window’s
title, and its menu and toolbar (if any). This adds approximately 20 to 40
pixels depending on how many elements are present. As a result of these
conditions, you cannot assume that you have 24 lines available on a 640 x
480 system when you include graphical controls.

Note: Switching to the DEFAULT-FONT actually gains horizontal space:
it is only 7 pixels wide instead of the 8 used by the FIXED-FONT. In
reality, even more space is gained because DEFAULT-FONT is a
proportional font. Most strings of lower-case letters occupy much less
space than 7 pixels per character (upper-case strings, on the other hand,
occupy much more space).

Thus, the first major problem can be summarized as follows:

Creating Portable User Interfaces 1-19
For a given screen resolution, a graphical screen is effectively shorter and
wider than the equivalent character-based screen.

Differences in the physical dimensions of controls also cause problems in
placing them. Consider entry fields again. On a character-based system,
entry fields are one line tall. On a graphical system, they are 1.5 lines tall.
ACUCOBOL-GT has a feature to account for this difference, but there are
also problems in horizontal positioning that are harder to account for. For
example, two radio buttons placed side-by-side might look great on a
graphical screen, but they may overlap when displayed on a character
screen. This happens because of the effects of shifting from a
proportionally sized font to a fixed-size font.

Now consider a FRAME control. On a graphical system, the frame is drawn
around the area that it occupies (except for the top line, which is adjusted to
account for the frame’s title). On a character system, the frame is drawn in
the middle of the character cells forming the edge of the frame, because that
is the best positioning that a character system can perform. A frame that is
two lines high on a graphical system has enough space inside it to hold one
line of text. On a character system, a two line high frame has no space inside
it to hold anything.

Thus the second major problem is:

Controls occupy different amounts of space in character and graphical sys-
tems.

The following sections discuss various approaches to managing these
issues. While there is no single solution to all the cases, ACUCOBOL-GT
offers a variety of ways to handle these problems.

1.5.2 Strategies for Supporting Multiple Systems

Selecting the best approach to supporting both graphical and character
systems is very important and well worth the time invested. In general terms,
there are three possible approaches to this problem. You can use
ACUCOBOL-GT with any of these approaches. These approaches can be
summarized as follows:

• Dual interface, dual code

1-20 Introduction
This approach uses separate programs for graphical and character
systems.

• Single interface, single code

This approach uses one program with a single user interface that runs
under both graphical and character systems.

• Dual interface, single code

This approach uses one program that includes two user interface
implementations, one for graphical systems and one for character
systems.

Each of these approaches has advantages and difficulties. The following
sections consider the major issues.

1.5.2.1 Dual interface, dual code

This approach is in many ways the most obvious and straightforward. It is
also the approach used most often by other programming systems: simply
write different programs for the graphical and character systems. The big
advantage of this approach is that you can customize the code for the
characteristics of the host system as much as you want. Additionally, you
incur no overhead for having to include code that is not used for a particular
system. Finally, when you are programming you don’t have to think about
two systems at the same time. Development time for any one system is
shortened and testing is easier. These are all significant advantages.

Unfortunately, there are also many significant disadvantages. You have to
write two programs instead of one. And, you must maintain two programs.
Because there are two programs, you are likely to encounter twice as many
bugs. Also, the time required to develop the set of programs is most likely
greater than required by the other approaches.

Here are some cases where this approach offers significant advantages:

1. If you are in the process of retiring or freezing a character-based
application, then you can simply use that application as the starting point
for its graphical incarnation and leave the character version in its original
form in an archive for future maintenance. In this scenario, you do not

Creating Portable User Interfaces 1-21
expect to do much more work on the character version, so spending a lot
of effort in maintaining a single piece of source code is probably not
worth what you gain.

2. If you intend to have sizable functional differences between a
character-based application and its graphical sibling, then it might not
make sense to try to have a single program cover both cases. In this
case, you really do have two different programs, with some overlap in
their functionality. The overlapping portions could be maintained as a
separate library of source that is shared by both systems.

In general, if you view the character-based application as having a limited
future, then this approach generally makes the most sense. The other two
approaches are more attractive if you plan on maintaining and enhancing the
character-based application in the future.

1.5.2.2 Single interface, single code

This approach relies on ACUCOBOL-GT’s ability to run the same program
on any machine. With this approach, you write a single program that has a
single user interface that runs on all machines. The big advantage of this
approach is that you need to write and maintain only one program. The
disadvantages are that you will have to work harder to get a program that
looks good on all systems, and you are limited to only those features that are
available on both graphical and character-based systems. Generally, this
means developing a simpler user interface for the graphical system than you
might otherwise choose. If you presently have a character-based user
interface and do not plan to add graphical controls, then this approach is
straightforward to pursue and is the obvious choice.

The biggest challenge to this approach is developing code that works well
under both systems. This generally means a lot of back-and-forth
development under Windows and a character-based system to ensure that the
results look good and work well. Fortunately, AcuBench® provides a
built-in facility for testing both character and GUI interfaces under Windows.
Alternatively, you can use the Windows Console runtime to perform initial
character-based testing.

1-22 Introduction
This approach generally accommodates graphical single-line labels and entry
fields. Getting labels and entry fields to look right on both types of systems
is fairly easy. Incorporating other graphical elements tends to be harder and
should be done sparingly.

ACUCOBOL-GT does not yet support all control types on character-based
systems. In particular, bars, scroll bars, bitmaps, and tabs are not supported,
so you need to avoid these when using this approach. Support for these
controls may be included in a future version.

1.5.2.3 Dual interface, single code

With this approach, you write a single program that includes two user
interfaces: one for character systems and one for graphical systems, or even
one for Windows with the standard runtime and one for UNIX/Linux with
AcuXUI. The two user interfaces gather the same data, but in a fashion that
is customized for the host system. After the data is collected, the remainder
of the program is the same between the two systems.

This approach combines some of the advantages and disadvantages of the
other two approaches. On the positive side, there is only one set of source to
maintain. There is less programming than the dual code approach, but you
aren’t forced into the simplified user interface typically required by the single
interface approach. You can customize the user interface to take advantage
of features found on a graphical system without making the character-based
version unmanageable.

The biggest disadvantage is that you must write two user interfaces. While
this is less work than writing two separate programs, it is still a significant
amount of work. In addition, you must test the user interface code more
thoroughly than with the single interface approach, because only half of the
interface code is exercised on any one type of system.

1.5.2.4 Selecting the right approach

Each of these approaches has its merits. One thing to remember is that you
can mix the approaches. Mixing approaches can be quite useful in a large
project. Imagine a standard accounting package. In it, you might use the
dual code method to handle the main menu of the package. For example, the
graphical version might display a nice graphic and use the system’s menu bar

Creating Portable User Interfaces 1-23
to initiate the subsidiary applications. The character version might instead
display the menu as the main contents of the opening screen since it can’t
show a graphical image. Parts of the application that perform maintenance of
minor files (such as shipping codes and user passwords) or entry of report
parameters, might use the single interface approach because the screens are
simple. Finally the key transaction entry screens (such as an order entry
screen) might use the dual interface, single code approach to ensure that the
screens work well for the respective systems while also ensuring that the
entered data is handled the same way by both systems.

You can even mix approaches inside a single program, or even a single
screen. You might have most of a screen use the single interface approach,
while a small portion of it is customized by using the dual interface
technique.

You do not need any special tools to use the dual interface, dual code
approach (although a good source-code control system always helps). For
the two single code approaches, ACUCOBOL-GT has special features to
simplify use of the single interface and dual interface methods. The next
section discusses these features and when you might use them.

1.5.2.5 Determining which UI is running

To determine whether the user interface to your program is running through
AcuXUI, the Windows runtime, or the thin client, you can add ACCEPT
TERMINAL-ABILITIES FROM TERMINAL-INFO to your program.
(TERMINAL-ABILITIES is defined in the sample/def/acucobol.def
copybook.) The TERMINAL-NAME field that is returned contains a short
descriptive name of the terminal type being used. If the user interface is
AcuXUI, then the TERMINAL-NAME field contains the string “AcuXUI”.
If the Windows runtime or thin client is being used, the TERMINAL-NAME
contains the string “Windows”.

If you are maintaining separate screen sections for these environments, this
could be useful for determining which screen section or routine to use at any
given moment. For example, you might include the following code in your
program:

accept TERMINAL-ABILITIES from TERMINAL-INFO
 If terminal-name = AcuXUI
 display screen1a

1-24 Introduction
terminal-name is defined as an 03 data-item under the 01
TERMINAL-ABILITIES.

The IS-REMOTE field is set to “true” if the program is running with AcuXUI
or thin client. When IS-REMOTE is “true”, CLIENT-MACHINE-NAME is
set to the name of the client that is running AcuXUI or thin client, plus a
hyphen (“-”) and the hex value of the client process ID. For example:
techxp-2ef1

1.5.3 Tips for Solving Cross-Platform Interface Problems

This section describes how to use selected features of ACUCOBOL-GT to
solve common problems encountered when developing programs to run on
both character and graphical systems.

1.5.3.1 Establishing the initial window

One of the most important things that you can do when implementing a user
interface that includes graphical controls is establish the program’s main
application window correctly. By default, ACUCOBOL-GT will construct a
main application window for you. However, this window is designed to run
traditional, text-based COBOL programs and not programs with graphical
controls. The runtime does this so that it can run older ACUCOBOL
programs unchanged. If you plan to use graphical controls, it is very
important that you do not use the default window. Instead you should
explicitly create your window. There are two reasons why this is so
important:

1. It gives you an opportunity to account for the height difference between
character-based entry fields and graphical entry fields. How to do this is
described below.

2. It ensures that your program will look right when run under various
Windows machines using different resolutions. If you use the default,
you risk having your program look wrong when run under some
Windows configurations. The reason for this is that the standard fonts
used at higher resolutions are often not the ones supplied by Microsoft.
Instead, they come from the video card manufacturer. Sometimes, the
relative proportions of the standard fonts are changed from those seen
in the Microsoft fonts.

Creating Portable User Interfaces 1-25
Since the runtime’s default window uses the FIXED-FONT to measure
lines and columns, but your controls usually use some other font (such as
the DEFAULT-FONT) to determine their size, a change in proportion
between these two fonts causes the screen to change. This can result in
overlapping controls and other problems. This is not a bug, but an effect
of the changing environment. By establishing your initial window
correctly, you can use the same font to position controls as you use to
size the controls. Then, regardless of the size of this font, your whole
application will scale itself proportionally and look fine.

Format 12 of the DISPLAY verb is used to create the main application
window. See DISPLAY Statement in section 6.6 in Book 3, Reference
Manual, for the rules that govern its use. See section 4.6 of this book for a
more detailed discussion of coordinate space issues. Here are a few
suggestions for handling the most common situations for graphical programs:

1. Use “DISPLAY STANDARD GRAPHICAL WINDOW”. The
GRAPHICAL phrase ensures that the default font used for controls is
also used to determine lines and columns in the window.

2. If boxed entry fields are going to be a major element of the window,
then use the following statement:

DISPLAY STANDARD GRAPHICAL WINDOW,
 CELL SIZE = ENTRY-FIELD FONT, SEPARATE

3. You can substitute OVERLAPPED for SEPARATE if you prefer. This
statement also works well if vertically stacked push buttons are a major
component of the screen (push buttons require about 1.5 lines each,
just like boxed entry fields).

4. If you plan to use a font other than DEFAULT-FONT as your primary
font, name it as the CONTROL FONT. For example:

77 LARGE-FONT USAGE HANDLE OF FONT.

ACCEPT LARGE-FONT FROM
 STANDARD OBJECT “LARGE-FONT”
DISPLAY STANDARD GRAPHICAL WINDOW
 CONTROL FONT IS LARGE-FONT
 CELL SIZE = ENTRY-FIELD FONT, SEPARATE

1-26 Introduction
There are many other options you can add to the DISPLAY STANDARD
WINDOW statement, including the ability to set the window’s size. The
preceding suggestions just cover the basics of establishing the measuring
font.

If you follow suggestion number two above, then you should find that you
can place labels and entry fields on whole line numbers and have them show
up nicely spaced under both character and graphical systems. Because the
line height is determined by the height of a boxed entry field, each line is
exactly big enough to hold one entire entry field. This solves the problem
where entry fields are 50% taller on graphical systems than they are on
character systems.

An alternative solution is to avoid using boxes with entry fields on graphical
systems. You can do this very easily by using the FIELDS_UNBOXED
configuration option. However, while this solution is very easy, it has two
problems. One is that the results look a little out of place under Windows,
where boxed fields are the norm. The other problem is that unboxed entry
fields are used so infrequently under Windows that the underlying Windows
code is not well exercised. Occasionally you will see slightly odd behavior
with unboxed entry fields under Windows (for example, leaving a stray pixel
turned on when it should be erased during editing).

1.5.3.2 Tips for building single-interface programs

Here are some ideas for simplifying the task of supporting a single user
interface on both character and graphical systems:

1. If you plan to use the bar, scroll bar, tab, or bitmap controls for your
graphical programs, make sure you program alternatives for the
character-based systems (in other words, build a dual-interface program
for these elements).

2. Make sure you establish a sensible cell size as described in the
previous section. This is the only way you can hope to have a single
set of coordinates describe screens that look good under both character
and graphical systems.

Creating Portable User Interfaces 1-27
3. Provide plenty of space between elements on the same line. Items that
appear to be nicely separated on a graphical system may well overlap
under a character-based system. This occurs because the labels and
control titles are narrower on a graphical system because of the nature
of the proportional font used.

4. If you use frames, design them on the graphical system. The runtime
automatically grows frames as needed on character-based systems to
surround the contained controls.

5. In general, try to keep the screens simple. The more complex they are,
the harder it is to achieve a nice look under both types of systems.

6. Try to use a single size font under the graphical system. The character
system has only one size, so you can get more uniform results if you do
the same under graphical systems.

7. For cases where you cannot get a nice look under both systems using a
single set of coordinates, use the CLINE, CCOL, CSIZE and CLINES
options. These allow you to specify alternate coordinates and
dimensions for character-based systems. This lets you customize the
placement of screen elements for both graphical and character systems,
giving you finer control. For more information about these phrases,
see section 3.5, “The Character Coordinate Phrases.”

1.5.3.3 Tips for building dual-interface programs

The key to building dual-interface programs is being able to determine which
kind of system you are using. ACUCOBOL-GT provides two methods to
accomplish this:

1. You can determine whether you are running under a character or
graphical system by using the ACCEPT FROM TERMINAL-INFO
verb. The HAS-GRAPHICAL-INTERFACE field is “true” when the
host system is graphical; otherwise, it is “false”. You can also use the
WIN$VERSION library routine to get more detailed information about
the Windows host operating system (see Book 4, Appendix I).

2. In the Screen Section, you can automate the detection of character and
graphical systems with the CHARACTER and GRAPHICAL reserved
word labels to indicate entries that apply to only one system (see
section 4.3 of this book).

1-28 Introduction
You have a great deal of flexibility in how you implement dual interface
programs. On one extreme, you can have completely separate interfaces for
character and graphical systems. On the other, you can have a uniform
interface with only minor differences between them. Here are some ideas to
consider:

1. If you are happy with your existing character interface, you may want to
leave it alone and simply develop a new graphical interface. You could
either start from scratch, or use your existing character interface as a
starting point. If you decide to have completely separate interfaces, then
you should start by isolating your character interface into one branch of
an IF statement that tests HAS-GRAPHICAL-INTERFACE. You then
develop the graphical interface in the other branch. Exactly the best way
to do this depends on the structure of your code.

2. If your existing character interface does not use the Screen Section,
consider using the Screen Section for the graphical interface. While
using the Screen Section is not required, it is easier because it
automates all of the mouse handling and transfer of control between
screen fields.

3. If you do use the Screen Section for your character interface, you can
use the CHARACTER and GRAPHICAL reserved word labels to do
customization. You could do this either globally, by creating separate
level 01 screen items for each system, or individually on selected
fields. Note that you may have two screen items with the same name,
as long as one is a CHARACTER item and the other is a GRAPHICAL
item. This allows you to have a single set of interface code in the
Procedure Division while still coding different screens.

4. Consider employing some of the tips from the single-interface model.
The more similar your two interfaces are, the easier they are to
maintain.

GUI Development Project Issues 1-29
1.6 GUI Development Project Issues

For many COBOL programmers, graphical user interfaces, GUI
environments, and GUI programming are new territory. Enhancing or adding
a graphical user interface to an existing COBOL program raises many
questions and issues. Before you begin, we recommend that you thoroughly
consider the following basic questions:

1. To what extent will the program’s interface change?

2. How suitable is the current interface to conversion?

3. What resources are needed for the project?

1.6.1 Extent of the Interface Changes

There is no simple formula for defining a good specification for a modernized
user interface. The special needs of your application, the demands of your
marketplace, and the resources of your business will combine to define a
practical GUI specification. In this process we recommend that you explore
the full range of options available to you, from the small, selective upgrade,
to a full reimplementation project.

We recommend that you consider a phased upgrade approach to spread the
cost and risk of changing the user interface (UI) over a longer period of time.
Remember that ACUCOBOL-GT can support a mix of graphic and
character-based screens. The phased approach gives you more time to learn
GUI technology in general, and ACUCOBOL-GT GUI support in particular.

Don’t forget to develop a test plan. Any significant changes to the UI will
require careful testing. You may want some end users to help with testing
and evaluation. Be sure to include your test plan in the project schedule and
staffing estimates.

1-30 Introduction
1.6.2 Suitability of the Current UI to Conversion

A careful study of your application’s existing user interface implementation
can make a huge difference in ensuring the success of your project and
holding down costs. When it comes to modernizing the user interface, some
programs are better suited and less costly to update than others. Here are
some qualities to consider:

• The easiest applications to convert tend to be those that already use the
Screen Section.

• The most difficult programs to convert tend to be those in which the user
interface code is dispersed throughout the program, i.e., programs that
do not use the Screen Section, or do not organize screen processing code
into separate procedures. If your application fits that description and you
are going to undertake a large GUI upgrade project, it is nearly certain
that it will be more efficient to implement your new user interface with
the Screen Section. Also consider that Screen Section code is much
easier to maintain over the life of the application than is distributed UI
DISPLAY and ACCEPT code. A large enhancement project presents a
good opportunity to move to the Screen Section.

• However, if you’re doing a small enhancement project that is confined to
a small portion of your code, using individual DISPLAY statements to
create and process your screen elements might be reasonable.

• Programs that already include a menu bar, the old-style character-based
pop-up windows (subwindows), and support for the mouse, are well on
their way to a modern user interface. These elements are easy to upgrade
and enhance to take advantage of ACUCOBOL-GT GUI support. Note,
however, that just because an application already includes this
functionality does not mean that there won’t be substantial work in
adding floating windows and controls.

• Evaluate your existing, character-based user interface screens for
translatability into the graphical model. Many text-mode screens make
dense use of the screen. In contrast, graphical screens tend to be more
open, having more white space and fewer fields. Also, graphical objects
tend to take up more space on the screen than their equivalent text-mode
objects (mostly caused by the boxes used to frame controls). It may
require a lot of work to reformulate your character screens into

GUI Development Project Issues 1-31
attractive, functional graphical screens. This problem is just as
challenging for applications that already make use of pop-up windows
and menu bars as for those that don’t.

1.6.3 Recommendations

• Implement your GUI in the Screen Section.

• To control the size and cost of your project, execute it in phases.

• If suitable, allow a mix of character-based and GUI screens (i.e., add new
graphical screens and retain some of your existing text-mode screens).

• Redesign your screens to make them less crowded and more consistent
with the established look of the GUI environment.

• Whenever possible, use AcuBench to design and prototype screens
quickly.

• Formulate a test plan and allocate time to execute it.

1.6.4 Conversion Wizard

In an effort to reduce the amount of work required to convert a traditional
text-based application into one that uses a graphical user interface, Acucorp
has developed a screen conversion tool known as the Character-to-GUI
Wizard. The tool works by watching a running character application and, at
a specified point, constructing an equivalent graphical screen. This screen is
then automatically imported into the AcuBench Screen Designer where you
can make modifications to it as desired. AcuBench then produces a Screen
Section description of the graphical screen that you can integrate back into
your original program. Because it requires the AcuBench Screen Designer,
the Character-to-GUI Wizard is only available on Windows platforms.

The Character-to-GUI Wizard is designed to work with any character screen
that you have created using ACUCOBOL-GT syntax. This allows it to work
with most existing character-based programs. Note that the wizard works
with programs using either of ACUCOBOL-GT’s two main screen handling
techniques: the Screen Section and inline ACCEPT/DISPLAY statements.

1-32 Introduction
Although the wizard uses a variety of heuristics to decide how to convert the
code, these do not always produce the desired result, and some rework in the
Screen Designer should be expected. For usage information on the
Character-to-GUI Wizard, please refer to the AcuBench User’s Guide.

1.7 Sample Programs

The ACUCOBOL-GT release materials include many sample programs and
their source code. Many of these programs demonstrate ACUCOBOL-GT’s
GUI capabilities. We recommend that you study the source code for these
programs to gain a better understanding of how ACUCOBOL-GT GUI
objects are programmed. You will find these programs and their source code
in the “sample” subdirectory of your ACUCOBOL-GT installation.

Included among the sample programs is a program called message. This
program provides basic message-box support on any host. The message
program calls the host operating system’s message box handler when one is
available. Otherwise the runtime provides a simulated, character-based
message box. See the comments in the program source for additional details.

2
 Floating Windows
Key Topics

Overview of Floating Windows .. 2-2
Relationship Between Floating Windows and Subwindows................ 2-3
Active and Current Windows... 2-4
Parent and Child Windows .. 2-5
Creating, Inquiring, Modifying, and Destroying Windows................. 2-6
Menus and Floating Windows... 2-8

2-2 Floating Windows
2.1 Overview of Floating Windows

ACUCOBOL-GT includes a class of graphical windows called floating
windows. When run under a graphical environment, floating windows
correspond to the graphical windows that are native to the host environment.
On character-based systems, floating windows are emulated with text-mode
elements and are managed directly by the ACUCOBOL-GT runtime system.

Note: Independent windows are similar to floating windows. The
following characteristics also apply to independent windows unless
otherwise noted.

The primary characteristics of a floating window are:

1. It is either modal or modeless (see below).

2. It pops up over its parent window (usually the main application
window) and is always displayed over the parent window wherever
they intersect.

3. It can be moved independently of the parent window and is able to
leave the area described by the parent window. The user can move it
directly with the mouse, without any program interaction.

4. It belongs to the parent window. If the parent window is minimized, it
is too. (Independent windows do not belong to parent windows;
independent windows are considered siblings of parent windows. They
can be minimized or maximized without controlling the parent
window.)

5. It may have a system menu associated with it that allows the user to
select some basic operations on the window, such as moving or closing
it.

The main application window is treated as a special-case floating window
that has no parent window.

Relationship Between Floating Windows and Subwindows 2-3
Note: Since ACUCOBOL-GT Version 3.0, the traditional, non-moving,
text-based windows originally introduced in ACUCOBOL-85 were
renamed subwindows, to avoid confusion with floating windows.
However, the word WINDOW can still be used with the DISPLAY
WINDOW and CLOSE WINDOW verbs, providing backward
compatibility.

Floating windows may be either modal or modeless. A modal window is a
window that the user cannot leave until it is dealt with and closed. When a
modal window is active, all other windows are disabled.

A modeless window is one that allows the user to switch among windows
while allowing each modeless window to remain open and available. When
a modeless window is active, the user can activate another window using the
host system’s techniques for doing so (for example, by clicking on the
window with the mouse).

The names “modal” and “modeless” are derived from the idea that a modal
window enters a new mode in the program (for example, selecting a file to
open), while a modeless window does not (since the user can continue
working on tasks in other windows).

Floating windows are modal by default. The MODAL phrase may be
included as commentary. Inclusion of the MODELESS phrase makes a
window modeless.

2.2 Relationship Between Floating Windows and
Subwindows

In graphical environments, every floating window has an implicit
subwindow (and can have more than one if you create pop-up subwindows).
This implicit subwindow is a region of the floating window. It cannot exist
outside of the floating window, cannot cross the border of the floating
window, and cannot be moved independent of the floating window. In
essence, it is a viewing region in the active floating window.

2-4 Floating Windows
Therefore, under graphical systems, the application always has two active
windows: its active floating window and its implicit subwindow. When you
create a new floating window, it starts off with a default subwindow that
covers its entire interior (client area). You do not display directly to the
floating window, but instead to its subwindow. A subwindow’s coordinates
(and thus the program’s coordinates) are always relative to the floating
window it belongs to.

If you close a floating window, any subwindows associated with it are also
destroyed.

2.3 Active and Current Windows

 A floating window may be active. The active window is the window that the
user’s input goes to (also referred to as the window that has focus). This
active window is usually highlighted in some way. For example, under
Microsoft Windows NT, the active window is shown in the color scheme
defined in the Appearance tab of the Display Properties dialog box.

A floating window may also be current. The current window is the window
that the application uses whenever it does not explicitly refer to a window
(essentially, it is the default window). The current window is the window that
output is directed to. The current window is usually the same as the active
window, but it need not be. For example, if the application wants to display
some text in an inactive window, it would make that window the current
window and display text to it. Note that changing the current window does
not affect the input focus of the active window.

You can use the UPON phrase of the DISPLAY statement to temporarily
change the current window. You can also use the SET verb to change the
current window. For more information about the UPON Phrase, see section
6.4.9, Book 3, Reference Manual. For a complete description of the SET
Statement, see section 6.6, Book 3, Reference Manual.

Any time you execute an ACCEPT verb that retrieves input from the user, the
first thing that happens is that the runtime makes the active window current.
This ensures that the program is referring to the same window that the user is
using to enter data.

Parent and Child Windows 2-5
When a floating window is first created, it is made both the active and current
window. When a window is destroyed, the first applicable rule applies:

1. If the destroyed window was active, its parent window is made both
current and active.

2. If the destroyed window was current, then its parent window is made
current.

3. Otherwise, the current and active windows remain unchanged.

Except for the main application window, all windows have a parent window.

2.4 Parent and Child Windows

Except for the main application window, each floating window has a parent
window. The parent of a window is typically the current window at the time
the new window is created. For example, if the application starts off by
creating two floating windows in a row, the parent of the first window will be
the main application window, while the parent of the second window will be
the first window.

The converse of a parent window is a child window. If window A is window
B’s parent, then window B is window A’s child.

Windows are considered siblings if they have the same parent.

A floating window always displays over its parent wherever they intersect on
the screen. This is true even when the parent window is the current window.
An active window will always display over any of its siblings.

If you destroy a floating window, all of its children are also destroyed.

2-6 Floating Windows
2.5 Creating, Inquiring, Modifying, and Destroying
Windows

You create a floating window with the DISPLAY FLOATING WINDOW
statement. This statement constructs the specified window and returns a
handle to it. A window created with the above statement is modal by default
(the MODAL phrase can be added as commentary). To create a modeless
window, you can add the MODELESS phrase. Note that managing multiple
modeless windows is greatly simplified by associating a separate thread with
each modeless window. See section 6.8, “Multiple Execution Threads,” in
Book 1, ACUCOBOL-GT User’s Guide.

The program’s initial window, or main application window, is created either
automatically, via the runtime, or programmatically via the DISPLAY
INITIAL WINDOW statement. If the first DISPLAY statement is not a
DISPLAY INITIAL WINDOW (or DISPLAY STANDARD WINDOW
statement), the runtime automatically creates the initial window. The main
application window is always a modeless window.

Because floating windows can be moved and, optionally, resized, their
position and size are dynamic. To retrieve the current position and size of a
floating window, you use the INQUIRE verb. INQUIRE returns information
for the current window or the window identified by the specified handle.

To programmatically reposition or change the size or title of a window, you
use the MODIFY verb. The MODIFY statement applies the specified values
to the window identified by the handle or, if omitted, the current floating
window.

Windows have a property called “ACTION” that can be used in DISPLAY
and MODIFY statements. The ACTION property allows you to
programmatically maximize, minimize, or restore a window. To use
ACTION, assign it one of the following values (these names are found in
“acugui.def”):

ACTION-MAXIMIZE

Maximizes the window. It has the same effect as if the user clicked the
“maximize” button. Allowed only for windows that have
RESIZABLE or AUTO-RESIZE specified or implied for them. In

Creating, Inquiring, Modifying, and Destroying Windows 2-7
windows with RESIZABLE specified, when ACTION-MAXIMIZE
causes the window to change size, an NTF-RESIZED event occurs.
(This event does not occur, however, if AUTO-RESIZE is specified.)

ACTION-MINIMIZE

Minimizes the window. It has the same effect as if the user clicked the
“minimize” button. Allowed only for windows that have RESIZABLE
or AUTO-RESIZE specified or implied for them.

ACTION-RESTORE

If the window is currently maximized or minimized, restores the
window to its previous size and position; otherwise, it has no effect. It
has the same effect as if the user selected Restore from the menu.
Allowed only for windows that can be maximized or minimized. In
windows with RESIZABLE specified, and when
ACTION-MAXIMIZE has caused the window to change size, an
NTF-RESIZED event occurs when ACTION-RESTORE is used.
(This event does not occur, however, if AUTO-RESIZE is specified.)

If you assign an ACTION value that is not allowed, there is no effect other
than to trigger the ON EXCEPTION phrase of the MODIFY statement (if
present). Note that you can use the ACTION phrase to create a window that
is initially maximized or minimized.

You destroy a floating window with either the CLOSE WINDOW statement
or DESTROY verb. You specify the handle of the window you want to
destroy. Both verbs behave identically when acting on floating windows.
You cannot destroy the main application window. It is closed automatically
when the application terminates.

For a complete description of each of the above verbs, see Section 6.6 in
Book 3, Reference Manual. For detailed information regarding creating and
managing floating windows via the Screen Section, see Section 5.9, Book 3,
Reference Manual.

2-8 Floating Windows
2.6 Menus and Floating Windows

You can create and attach a menu bar to any floating window. The menu bar
is created and maintained with the methods described in section 8.1, “Menus
Overview.” Note that when a floating window is created, its menu, if
present, is the only menu available as long as that floating window is the
active window. Menus in other windows are disabled.

The library routine W$MENU is used to create and control the menu bar.
When you call W$MENU, and the routine has to resolve which window to
apply its actions to, it assumes the current window. With the following
operations, you can specify a particular window by passing the target
window’s handle as a parameter in the position noted below.

WMENU-SHOW --3rd parameter

WMENU-GET-HANDLE --2nd parameter

If you have a floating window displayed, and you want to update the menu in
the main application window, you must specify the handle of the main
application window in the call to WMENU-SHOW. For example:
DISPLAY INITIAL WINDOW, HANDLE MAIN-WINDOW
PERFORM BUILD-MAIN-MENU
CALL “W$MENU” USING WMENU-SHOW, MENU-HANDLE
 .
 .
DISPLAY FLOATING WINDOW ...
 .
 .
PERFORM CHANGE-MAIN-MENU
CALL “W$MENU”
 USING WMENU-SHOW, MENU-HANDLE, MAIN-WINDOW

Note: Microsoft Windows does not display menus correctly in floating
windows that have thick borders (i.e., BOXED floating windows). As a
matter of style, Windows applications never display menus in windows
with this border type (this style is normally used for dialog boxes). If you
want to put a menu in a floating window, you must not use the BOXED
style when you create the window. For an example of a floating window
with a menu, see the ACUCOBOL-GT debugger screen.

3
 Graphical Controls
Key Topics

Overview of Graphical Controls .. 3-2
Control Types, Handles, and IDs ... 3-5
Interaction Between Controls and Windows .. 3-6
Creating, Modifying, Inquiring, and Destroying Controls.................. 3-7
The Character Coordinate Phrases ... 3-10
Controls and the Mouse .. 3-11
Bitmap Buttons .. 3-12
Paged List Boxes.. 3-20
Paged Grids... 3-33

3-2 Graphical Controls
3.1 Overview of Graphical Controls

ACUCOBOL-GT allows you to create, display, and process graphical
controls. Graphical controls are also commonly called graphical objects or
widgets. Some examples of common graphical controls include push
buttons, list boxes, radio buttons, check boxes, and entry fields (text entry
boxes). ACUCOBOL-GT provides a consistent method for specifying and
handling graphical controls. Several common control types are supported.
Future versions of ACUCOBOL-GT may incorporate additional control
types.

Graphical controls have several important components:

1. Each control has an underlying type, such as push button or check box
(this is also called the control’s class). For a list of control types, see
section 3.2, “Control Types, Handles, and IDs.”

2. Each control has a handle that uniquely distinguishes the control.
Handles are also discussed in section 3.2.

3. Each control has a set of common properties defined for it. These
common properties are described in Section 6.4.9 of Book 3,
Reference Manual. If a common property is handled uniquely by a
control type, that special handling is described in Chapter 5, “Control
Types Reference,” in this book.

Common properties that apply to virtually all controls include:

location Each control has a screen location. The location is
given as row and column coordinates that specify the
position of the upper left-hand corner of the control on
the screen. The character coordinate phrases CLINE
and CCOL can be used to specify an alternate control
location for use on a non-graphical system.

Overview of Graphical Controls 3-3
size Controls have size information. The size information is
given as width and height. The exact meaning of the
width and height depends on the control type. Some
control types have a predefined size (in one or both
dimensions). The character coordinate phrases CSIZE
and CLINES can be used to specify an alternate control
size for use on a non-graphical system. Controls can
also be given minimum and maximum size
specifications. This is useful if you want to change the
size of a control when the window changes size. Layout
managers frequently use this information (see section
4.8, “Layout Managers”).

titles Controls can have titles. This usually appears as a text
label attached to the control. Examples include the text
on a push button or the text beside a check box. Some
controls, such as entry fields, do not use titles.

value A control also has a value. The value of a control is the
user-modifiable portion of that control. For an entry
field, this is the text entered into the box. For check
boxes, the value is whether the box is checked or not.
Some controls, such as push buttons, do not have values.
The exact range of values allowed is determined by the
control type.

color Controls have color. Both foreground and background
colors apply. The exact meaning of the color
information depends on the control type. Some controls
or host systems may limit the choice of colors.

font Most controls have a font that is used when text is
displayed in conjunction with the control.

event lists For any control that generates events, you can create an
event list that specifies for that control the types of
events that must be received or filtered out.

3-4 Graphical Controls
Note: Styles do not take a value. They are either applied (on), or not
applied (off).

Some styles apply to all controls. However, each control has its own
additional styles (see the table titled Styles Table, in section 5.1, “The
Components of a Control.”). Each style is described in Chapter 5,
“Control Types Reference.”

Certain operating system styles or themes have an effect on the
appearance of controls. See Section 3.1.1 for details on how
ACUCOBOL-GT applications behave when certain styles are in effect.

There are also common properties that determine whether a control is
displayed (VISIBLE), whether a control will respond to the user
(ENABLED), or whether a control has a key letter that the user can use
to activate the control with the keyboard (KEY).

4. In addition to the common properties, each control defines its own set
of special properties. These special properties give the control a
special attribute or capability. Special properties are specified with the
“PROPERTY” and “Property-Name” phrases of the “DISPLAY
Control-Type” statement (see Section 6.4.9 of Book 3, Reference
Manual). For a list of each control’s special properties, see the entry
for that control type in Chapter 5, “Control Types Reference.”

5. ActiveX and .NET controls define their own set of methods. Methods
(or object methods) specify the functions that the control provides.
They are invoked using the MODIFY verb, and they can take any
number of parameters or no parameters. ActiveX controls can also
take optional parameters (i.e., parameters that can be omitted). Refer to
section 4.5 of this book for more information.

styles Controls also have style properties. Style properties
typically affect the visual presentation of the control.
For example, a push button may be assigned the
DEFAULT style, which causes the push button to be
drawn with a thick border to indicate that it is the default
action.

Control Types, Handles, and IDs 3-5
Rather than using a unique syntax to define each control type,
ACUCOBOL-GT provides a generic method for specifying a control’s
characteristics. The programmer then selects the attributes that are
applicable to each desired control.

3.1.1 Visual Styles and Differences Among Operating
Systems

Controls can have different visual styling or themes on certain Windows
operating systems such as XP and Vista. By default, ACUCOBOL-GT
applications will not automatically employ the latest styling that is set on the
workstation (via the Windows Control Panel Display options). You can
change this default behavior and automatically have visual styling applied by
setting the WIN32_NATIVECTLS runtime configuration variable to
“TRUE”. You can also affect certain control styling through the runtime
configuration variable WIN32_3D. These variables are described in the
ACUCOBOL-GT Appendices Guide, Appendix H.

A control’s internal behavior may be different with various operating
systems. In Windows systems, some configuration variables have no effect
on the control’s behavior. On the other hand, in character-based systems,
controls are defined using the runtime’s configuration file and editing
capabilities. For example, the following configuration file entry causes
Function Key 7 to erase the contents of an entry field under UNIX, but not
under Windows:

KEYSTROKE Edit=Erase-field k7

3.2 Control Types, Handles, and IDs

Each control belongs to a particular type. The compiler knows the following
type names:

ACTIVE-X BAR

BITMAP CHECK-BOX

COMBO-BOX DATE-ENTRY

ENTRY-FIELD FRAME

3-6 Graphical Controls
Control type names are reserved by the compiler.

When you create a control, a handle to the control is also created. This handle
is a COBOL data item that uniquely identifies the control to the system. The
handle values are generated dynamically by the system at runtime and cannot
be controlled by the programmer.

In order to provide a constant name for the control that is the same between
runs, you can optionally assign an ID to the control. The ID is a
programmer-assigned number. Anytime the runtime returns information
about a control, it includes both its handle and its ID. Since the handle can
change from run to run, examining the ID can be more convenient. A
control’s ID is the only effective way to distinguish controls in a Screen
Section, because those controls’ handles are hidden from the programmer.

3.3 Interaction Between Controls and Windows

A control always belongs to a particular floating window and cannot be
displayed outside that window (however, some controls, such as combo
boxes, can temporarily pop up information outside of the floating window).
Like all screen elements, controls are positioned relative to the current
subwindow. When you destroy a floating window, all controls that belong to
that window are also destroyed.

Controls and pop-up subwindows do not interact well on some systems. The
reason for this is that graphical controls are native elements of the host
system, while subwindows are a text-only construct created by the
ACUCOBOL-GT runtime system. Because the host graphical system is not
aware of ACUCOBOL-GT subwindows, the system unwittingly displays

GRID LABEL

LIST-BOX .NET

PUSH-BUTTON RADIO-BUTTON

SCROLL-BAR STATUS-BAR

TAB TREE-VIEW

WEB-BROWSER

Creating, Modifying, Inquiring, and Destroying Controls 3-7
controls over subwindows. Unfortunately, such host systems do not have
support for a construct similar to ACUCOBOL-GT’s subwindows, so the
subwindows must be managed directly by the runtime system.

To avoid problems, you should not use controls in any location that may
intersect with a subwindow. If you are upgrading an existing program to use
controls, you should start by converting any subwindows to floating
windows. Floating windows interact correctly with controls, and have the
added benefit of having generally better functionality (for example, the user
can move them with the mouse).

Windows that have the AUTO-RESIZE or RESIZABLE attribute may be
dynamically resized by the user. Unless the program specifically handles it,
the size and position of the controls in the window remain unchanged. If the
window also has the CONTROLS-UNCROPPED attribute, controls that had
been invisible or partially invisible because they were positioned on or
outside the visible bounds of the windows, may become visible. If the user
tabs to a control outside of the visible area, the runtime will scroll the window
in order to make that control visible. To make it easier for programmers to
resize and reposition controls in a resizeable window, ACUCOBOL-GT
provides a layout manager facility. A layout manager is a piece of software
that manages the size and placement of controls in a particular window. For
more about layout managers, see section 4.8, “Layout Managers.”

3.4 Creating, Modifying, Inquiring, and Destroying
Controls

Create

You create graphical controls with the DISPLAY statement. You can either
specify the control’s characteristics directly in the DISPLAY statement, or
you can refer to a Screen Section entry that defines one or more controls. If
you do not use the Screen Section, then the DISPLAY verb returns a handle
to the new control. For Screen Section controls, the runtime automatically
creates and stores the handle for you.

3-8 Graphical Controls
Note: You create non-graphical COM controls (that are not ActiveX) and
non-graphical .NET controls with the CREATE statement.

Modify

Use the MODIFY verb to set properties and invoke methods of a control.
The MODIFY verb takes a control’s home position (upper left corner), its
handle, or the name of an elementary Screen Section item, as its first
parameter. Only the properties of the control that are specified in the
MODIFY statement are updated.

In addition, you can use the DISPLAY statement to update the properties of a
control specified in the Screen Section. When a DISPLAY statement is used,
the runtime compares the control’s current specification with its original
specification in the Screen Section and changes any aspects that are different.
For example, if you want to change the value of a control, simply change the
VALUE data item referenced in the Screen Section and DISPLAY that
Screen Section entry. Note that this applies mainly to common properties and
styles like SIZE, POSITION, and VISIBLE. To change the special properties
defined by (or specific to) an ActiveX control, you must use the MODIFY
verb.

Inquire

You can use the INQUIRE verb to get information about a control, including
its value, without having to activate the control. The INQUIRE verb is used
to retrieve a control’s current title, value, and other control-specific
properties. See the entry for INQUIRE in section 6.6 of Book 3, Reference
Manual.

Destroy

Use the DESTROY verb to destroy a control. The DESTROY verb takes a
control’s home position (upper left corner), its handle, or the name of an
elementary Screen Section item, as its first parameter. Note that the runtime
automatically destroys controls associated with a floating window when the
floating window is destroyed.

Creating, Modifying, Inquiring, and Destroying Controls 3-9
The following table specifies the COBOL verbs used to create, display,
modify, and destroy controls. Note that when controls are created
individually with the DISPLAY verb, the controls’ handles must be managed
by the program. For a discussion of handles, see section 4.1.

A control must be activated to allow data to be entered into it by the user.
Once a control is activated, it usually operates on its own without any
additional programming. After the user finishes with the control, any
associated COBOL data item is updated with the modified value. Only one
control can be active at any given time.

To activate a control, use the ACCEPT verb. If you ACCEPT a single
control, that control is activated, and the user can interact with it until some
terminating event occurs (usually pressing a termination or exception key, or
selecting some other control with the mouse). Once the entry is terminated,
the affected data items are updated and the ACCEPT statement terminates.

If you ACCEPT a Screen Section entry that contains several controls, the
runtime allows the user to move between those controls, activating each as
necessary. This simplifies the process of managing a set of controls on the
screen, because you do not need to process various mouse and keyboard
requests in your program. For this reason, it is generally preferable to use the
Screen Section for graphical controls. Ideally, all of the controls contained in
any one window should be contained in a single Screen Section entry. When
this is the case, you can allow the user to enter data into the entire window
with a single ACCEPT statement. You can use the Screen Section’s
embedded procedures to perform any necessary processing, such as
validating data entry, at the same time that the user is interacting with the
screen (see section 6.5.5 of Book 1, User’s Guide).

CONTROL Defined
individually

Defined in the SCREEN SECTION

Create DISPLAY DISPLAY

Accept ACCEPT ACCEPT

Modify MODIFY DISPLAY, MODIFY

Destroy DESTROY DESTROY

3-10 Graphical Controls
3.5 The Character Coordinate Phrases

In contexts where you can specify LINE, COL, SIZE, or LINES for a control,
you may additionally specify CLINE, CCOL, CSIZE, and CLINES
(respectively). These phrases let you specify alternate coordinates and
dimensions for controls when they are displayed on text-mode systems. The
CLINE, CCOL, CSIZE, and CLINES phrases are collectively called the
character coordinate phrases. They behave in all ways like their
corresponding counterparts, except that they are applied only when the
program executes in a text-mode environment.

Because of the physical differences between graphical and non-graphical
systems, getting a single screen description to look good on both types of
systems is challenging. Sometimes, the best way to account for these
physical differences is to use alternate coordinates or dimensions for some
screen elements. The CLINE, CCOL, CSIZE, and CLINES phrases allow
you to do this easily.

You specify the character coordinate phrases in exactly the same fashion as
their regular counterparts (i.e., CLINE is similar to LINE, CCOL to COL,
etc.). All of the syntax supported by one phrase works in the corresponding
phrase. For example, a Screen Section item that has a twin set of column
offsets is:
03 entry-field, col + 2, ccol + 1, ...

When run on a graphical host system, the character coordinate phrases have
no effect (although in some contexts the values are evaluated, so any relevant
table indexes should be set to legal values to prevent access violations).
When run on a character-based host, the character coordinate phrases
substitute for their graphical counterparts. For example, if you specify both
LINE and CLINE for a control, the CLINE specification is used as the line
number on a character-based system. Omitting a character coordinate phrase
causes the regular counterpart to be used instead. This means that you need
to specify character coordinate phrases only for those aspects of the control
that must be different between graphical and character-based hosts.

Controls and the Mouse 3-11
If you specify the CELLS option in either the SIZE or CSIZE phrase, then
you must use the CELLS option in both phrases. The same rule applies to the
CELLS option of the LINES and CLINES phrases. This rule is necessary
because the CELLS option asserts a particular style attribute for the control,
and styles work the same under both graphical and character-based systems.

3.6 Controls and the Mouse

Controls are implemented as small child windows. These windows do not
look like normal application windows. Instead, they define a rectangular
region of the application window that holds the control. In this sense, they
are similar to subwindows. The difference is that these child windows are
maintained by the host graphical system.

In the general model for graphical user interfaces, the system directs events
to the window where the event occurred. This window owns the event. The
effect of this is most noticeable when you examine what happens when
controls interact with the mouse. As the mouse moves across the application
screen, the various windows that the pointer passes over each receive the
appropriate events. If you look at an application screen that has several
controls, the application window receives those mouse events that occur
when the pointer is in the application window, but not over any of the
controls. When the mouse pointer is over a control, that control receives the
mouse events.

This means that the setting of the runtime configuration variable
MOUSE_FLAGS affects the behavior of the mouse only when it is not over
a control. When the mouse is over a control, that control does its own mouse
processing.

If you need to process the mouse while it is over a control, there are two
options:

1. You can capture the mouse using the CAPTURE-MOUSE option of the
W$MOUSE library routine. When the mouse is captured, all mouse
events are directed to the current application window, even those that
occur outside of the window altogether. It is advisable to capture the
mouse only for short periods of time, because capturing the mouse

3-12 Graphical Controls
prevents all other applications from using the mouse. Normally you
capture the mouse to handle a user-initiated action such as dragging a
screen object from one location to another.

2. You can disable the control. Disabled controls cannot receive input, so
any associated mouse actions are directed to the owning application
instead. To disable a control, use the ENABLED phrase of the Screen
Section, DISPLAY, or MODIFY statements. For more about the
ENABLED phrase, see section 6.4.9, Book 3, Reference Manual.

Note: It is rare that your program would need to manage the mouse
directly. In most cases, controls manage their own mouse messages
without any intervention by the program.

3.7 Bitmap Buttons

This section describes how to create bitmap buttons. A bitmap button is a
push button, check box, or radio button that looks like a push button, but with
a picture on its face instead of the usual text. Bitmap buttons are frequently
grouped together to form a toolbar. A bitmap button that is a check box or
radio button appears to be depressed when it has a non-zero value (is
selected, or “on”). It appears to be raised when its value is zero (is not
selected, or “off”).

Creating a bitmap button is a multi-step process. It helps to be familiar with
programming regular push buttons before you attempt to program a bitmap
button. To create a bitmap button you must complete the following steps:

1. Create the bitmap image with a paint application.

2. Update your program to load the bitmap into memory.

3. Update your program to create the button and specify the bitmap image
to apply to the button.

These steps are detailed in the sections that follow.

Bitmap Buttons 3-13
3.7.1 Drawing the Image

You create the bitmap image with a paint tool. This tool is host-system
dependent, as are the images it creates. Under Microsoft Windows, you can
use the Paint program that is bundled with Windows. For most bitmap
buttons, you will want to use the zoom mode of the paint program to make it
easier to adjust the individual pixels.

You create your bitmap as a strip that contains one or more bitmap button
faces. For example, the following bitmap image contains 15 button faces:

You can use more than one bitmap image strip in your program; however, the
runtime is more efficient when it pulls multiple images from the same strip.
In addition, it is usually more convenient to store multiple images in a single
file rather than several small files. Note that all images in a particular strip
must be the same size.

When you design the image, the first thing you need to do is to settle on the
size of the image. The default size under Windows is 15 pixels high by 16
pixels wide. However, you can use any size you want. Note that the bitmap
size is the size of the button’s image. To accommodate the button’s border,
the actual button will be somewhat larger. Under Windows, eight pixels are
added to the width and seven pixels are added to the height (so the default
button size is 24 pixels wide by 22 pixels high). The first thing you should
do in the bitmap editor is set the dimensions of the bitmap to the desired size.
For example, a strip of six default-size buttons would have an image size 15
pixels high by 96 pixels wide (6 * 16 = 96).

When you draw a strip that contains multiple images, make sure that each
image starts on a boundary that is a multiple of the image size. In the default
case, your images should start at offset 0, 16, 32, etc. (i.e., pixel numbers 1,
17, 33, etc.).

Under Windows, certain colors that you use in the bitmap will be mapped to
colors chosen by the user in the Control Panel. This mapping allows you to
create buttons that will have the same color scheme as the text-labeled

3-14 Graphical Controls
buttons on the screen. The following table names the bitmap colors that are
translated, as well as their RGB (red, green, blue) values and the system color
that they are translated to.

None of the other colors are translated.

It is best to use light gray as your primary background color. This color
ensures that the button’s edges (which are supplied by the runtime) blend in
correctly.

Note: The color transformation described above occurs only for bitmaps
stored in 16-color or 256-color format. Bitmaps stored in 24-bit format
(true color) do not contain an internal palette. As a result, there is no
efficient way of performing the transformation described above. Bitmaps
in 24-bit format will be displayed with their colors unchanged.

Once you have finished creating the bitmap, save it as a file. Under
Windows, you may use files in JPEG format as well as BMP. (See the next
section on Loading Bitmaps for important information related to JPEG
support). Once loaded, JPEG files can be used in any context that BMP files
may be used with no code changes. The recognizable extensions for JPEG
files are “JPE”, “JPEG”, and “JPG”.

Bitmap Color RGB Values System Color Used

Black 0, 0, 0 Button Text

Dark gray 128, 128, 128 Button Shadow

Light Gray 192, 192, 192 Button Face

White 255, 255, 255 Button Highlight

Blue 0, 0, 255 Selected Item Background

Magenta 255, 0, 255 Window Background

Bitmap Buttons 3-15
3.7.2 Loading Bitmaps

In your program, you must load bitmap images (BMP or JPG) from disk into
memory before they can be displayed as buttons. To load a bitmap, you must
use the WBITMAP-LOAD operation of the W$BITMAP library routine.
The call looks like this:
CALL "W$BITMAP" USING WBITMAP-LOAD, filename
 GIVING bitmap-handle

where filename is a literal or data item that holds the name of the bitmap file
to load, and bitmap-handle is a PIC 9(9) COMP-4 data item. This call opens
the filename file, loads the bitmap into memory and closes the file. If the
operation is successful, bitmap-handle will contain a positive value. If
bitmap-handle is zero or negative, an error occurred. See Book 4, Appendix
I, for a complete description of W$BITMAP, including all error values
returned by it.

Note: In order to use JPEG files, you must have the file “ajpg32.dll”
installed in the same directory as the runtime. Only 32-bit runtimes support
JPEG format images. If you need JPEG support on 64-bit Windows, run the
32-bit runtime or the Thin Client. You can also run the Thin Client with the
64-bit runtime.

If you have multiple bitmap files, you need to load each before you can use
the images they contain. Make certain to store the returned handles in
different data items.

W$BITMAP searches for resources before it searches for disk files. For
example, the “tour.cbl” sample program contains the following lines:
COPY RESOURCE "gtanima.bmp".

CALL "W$BITMAP" USING WBITMAP-LOAD,
"gtanima.bmp" GIVING GT-BITMAP

The bitmap loaded is the resource specified in the COPY RESOURCE
statement, because the referenced file name is the same as the resource name.
Replacing the COPY RESOURCE statement with
COPY RESOURCE "mybmps/gtanima.bmp"

3-16 Graphical Controls
produces the same results (assuming “mybmps/gtanima.bmp” existed at
compile time) because resource names are not stored with directory
information. Note that
CALL "W$BITMAP" USING WBITMAP-LOAD,
"mybmps/gtanima.bmp" . . .

also loads the resource “gtanima.bmp”, because W$BITMAP looks for a
resource first, stripping directory information as part of the lookup. If no
resource is found, W$BITMAP loads the file in the specified directory.

You can include JPEG files as a resource in your COBOL programs with the
COPY RESOURCE statement or by using “cblutil”, in exactly the same
manner as BMP files. cblutil “-info” will identify JPEG resources contained
within an object library.

Note: A resource name with a hyphen (“MY-FILE”) is considered
equivalent to the same resource name given with an underscore
(“MY_FILE”).

When you are done with an image and have destroyed all the buttons that
reference that image, you can remove it from memory with the
WBITMAP-DESTROY operation. Do not destroy an image that is
referenced by an existing button; the results are unpredictable.

3.7.3 Creating the Button

After you have loaded the bitmaps, you can create the buttons. Bitmap
buttons are created in the same manner as regular push buttons (see the
“DISPLAY Control-Type” statement in section 6.6, Book 3, Reference
Manual). You turn a push button, check box, or radio button into a bitmap
button by using the following styles and special properties:

BITMAP (style, required)

This style informs the system that the button should be drawn as a
bitmap button instead of a regular button. You must have this style set
when the button is created, and you cannot change this style after the
button is created.

Bitmap Buttons 3-17
BITMAP-NUMBER (numeric, special property, required)

This property identifies which image in the bitmap strip will be used
for this button. The first image in the strip is number “1”, the second
number “2”, and so on. If this value is set to zero, a blank button is
displayed. If this number is a negative value, or higher than the
number of images in the strip, the results are unpredictable. If a bitmap
strip contains only one image, you should specify the number “1”.
Note that you can change which bitmap appears on a button by
changing this value.

BITMAP-HANDLE (numeric, special property, optional)

This property identifies which bitmap strip to use for the button. If you
do not specify a bitmap handle, then the last bitmap loaded is used. If
you specify a handle, the handle must hold a value returned by
W$BITMAP when the bitmap was loaded. You can change bitmap
strips after a button has been created by changing this value.

You may optionally use the following styles to affect the appearance of the
buttons:

FRAMED (style, optional)

This style requests that a frame be drawn around the button. Typically
the frame is a thin black line. Note that not all systems support frames,
in which case the request is ignored. By default, buttons are framed
under Windows NT/Windows 2000.

UNFRAMED (style, optional)

This style requests that the button be drawn without a frame. Not all
systems support unframed buttons; on these systems the request is
ignored. By default, buttons are not framed under Windows 98.

SQUARE (style, optional)

This style is used only with framed bitmap buttons. It forces the button
to have square corners. Without this style, the button will have slightly
rounded corners. Not all systems support square buttons; on these
systems the request is ignored.

The following Screen Section entry describes two default size bitmap push
buttons:
01 SCREEN-1.
 03 PUSH-BUTTON, ROW 1, COL 2,

3-18 Graphical Controls
 BITMAP, BITMAP-NUMBER = 1.
 03 PUSH-BUTTON, OVERLAP-LEFT,
 BITMAP, BITMAP-NUMBER = 2.

Specifying the OVERLAP-LEFT style (see section 5.2, “Global Styles,” in
Chapter 5.) on the second button causes the two buttons to share a border if
they are framed. Note that this example assumes that you want to pull images
from the last bitmap loaded in your program.

Here is a more complete example that could be used with the six bitmaps
shown earlier in this section. It creates six bitmap buttons. The first two
buttons are push buttons, the third is a check box, and the final three are radio
buttons. The styles and properties used are appropriate for grouping the
buttons into a toolbar. Note that the “toolbar.cbl” sample program does this.
* Screen Section
01 TOOLS-1.

 03 PUSH-BUTTON, COL 2,
 BITMAP, BITMAP-NUMBER = 1,
 EXCEPTION-VALUE = 101.

 03 PUSH-BUTTON, OVERLAP-LEFT,
 BITMAP, BITMAP-NUMBER = 2,
 EXCEPTION-VALUE = 102.

 03 CHECK-BOX, COL + 2, BITMAP,
 BITMAP-NUMBER = 3, NOTIFY,
 EXCEPTION-VALUE = 103.

 03 RADIO-BUTTON, COL + 2, BITMAP,
 BITMAP-NUMBER = 4, NOTIFY,
 EXCEPTION-VALUE = 104.

 03 RADIO-BUTTON, OVERLAP-LEFT,
 BITMAP, BITMAP-NUMBER = 5,
 NOTIFY, EXCEPTION-VALUE = 105.

 03 RADIO-BUTTON, OVERLAP-LEFT,
 BITMAP, BITMAP-NUMBER = 6,
 NOTIFY, EXCEPTION-VALUE = 106.

Bitmap Buttons 3-19
3.7.4 Pop-up Hints

Bitmap buttons allow you to pack several controls into a small screen area.
This makes them particularly useful in the construction of toolbars.
However, a toolbar can be a problem for the novice or occasional application
user, because these users may not remember what functions the buttons
perform. Due to their small size, these buttons do not always clearly indicate
their purpose.

To aid these users, the runtime supports pop-up hints. A pop-up hint is a
piece of text that pops up in its own window when the user places the mouse
over a bitmap button for a predefined period of time. The text describes the
function of the button. After some time has elapsed, the pop-up window
disappears. Under Microsoft Windows, pop-up hints are also called tool tips.

To give a bitmap button a pop-up hint, simply assign the button a title. The
title does not appear on the button. Instead, the runtime uses it as the pop-up
hint. The hint will pop up automatically whenever the mouse is placed over
the button and remains over the button for at least three-quarters of a second.
The hint will automatically disappear after about four seconds. The hint will
also disappear if you move the mouse away from the button, use the button,
or start typing. Once a hint has been shown for a particular button, it will not
be redisplayed as long as the mouse remains over that button. This prevents
the hint from popping up annoyingly when the user uses the same button
repeatedly.

Pop-up hints are displayed in a system-dependent color and font. Under
Windows 98, the colors used are chosen by the user in the Control Panel for
“Tooltips.” SMALL-FONT is used to display the hint.

You can control various aspects of how hints work with theHINTS_ON and
HINTS_OFF runtime configuration variables described in Book 4,
Appendix H.

3.7.5 Portability

Bitmap buttons cannot be supported on non-graphical systems. Under such
systems, an attempt to create a bitmap button will fail, returning a handle with
the value NULL. If you intend to run programs with bitmap buttons on

3-20 Graphical Controls
character-based systems, you should arrange your program so that it can run
effectively without the bitmap buttons, or substitute regular push buttons for
the bitmap buttons when running on character-based systems.

Bitmaps are highly host-system dependent. You should be prepared to
recreate or convert your bitmaps when moving to other graphical systems.

3.8 Paged List Boxes

The standard list-box control provides a convenient way for a program to
implement a look-up facility for a group of items. It is also tempting to
extend this type of use into a method for locating records in a data file.
Unfortunately, this doesn’t work well when there are too many records in the
file. The programmer runs into two main problems:

1. The standard list box has a limited capacity (64K bytes), usually less
than 2000 items.

2. It takes too long to load the list box with the entire set of items.

Also, if the number of items is very large, the user may have a difficult time
locating a particular item. There are two reasons for this:

1. The resolution of the scroll bar’s slider is too coarse.

2. The search mechanism is too primitive (single-character match on the
first byte of the record).

The paged list box is a variation of the standard list box that solves all of
these problems. A paged list box works by managing only a limited number
of records at a time. When it needs more records, it requests them from the
controlling program. Paged list boxes are intended to be used in conjunction
with a large, ordered data source, typically records stored in an indexed file.

Compared to a standard list box, a paged list box has the following
advantages:

• There are no capacity limitations. Since the paged list box stores only a
small number of items at once, capacity is not an issue.

Paged List Boxes 3-21
• Load time is minimized. The list box displays as soon as it receives
enough items to fill its visible portion.

• There is an enhanced search facility. A paged list box can search for
items based on full text strings instead of single characters. When the
paged list box is active, the user can simply begin typing a string of text.
A search box pops up, displaying the entered characters and the list box
scrolls to the first entry that matches the string. You determine (with the
SORT-ORDER property) whether the search is case-sensitive or not.

• Memory requirements are minimal. Because it stores only a few items at
once, a paged list box can be less of a drain on memory than a standard
list box.

The primary disadvantage of a paged list box is that it’s more complicated to
program. Also, it’s not well suited to handling unordered data.

The rest of this section details the basics of programming paged list boxes.

3.8.1 Creating a Paged List Box

To create a paged list box, you simply add the style word “PAGED” to the
standard list box definition. Unlike some style attributes that can be applied
to the list box after it’s created, the paged property must be specified in the
original definition that creates the list box. You cannot change this property
after the list box is created. Other styles and properties associated with list
boxes can be used normally. Note, however, that a paged list box will always
be UNSORTED regardless of what you specify. Therefore, you must supply
data to the paged list box in the sort-order that is needed.

The following Screen Section fragment shows how a typical paged list box
might be declared. This declaration appears in the larger examples found
later in this section, as well. This example illustrates the use of a paged list
box to present records contained in a “keywords” file.
 78 lines-per-page value 12.
 77 list-1-data pic x(30).

01 list-1, list-box using list-1-data,
 line 3, column 10, size 30,
 lines lines-per-page,

3-22 Graphical Controls
 paged, 3-d,
 exception procedure is list-1-handler.

In the preceding example, the level 78 item lines-per-page defines the
number of lines contained in the list box. In the sections that follow, this size
is referred to as a page. The level 78 makes the examples that follow easier
to read. Also, note the declaration of an EXCEPTION PROCEDURE for the
list box. This is typical for paged list boxes that are defined in the Screen
Section. The EXCEPTION PROCEDURE will handle requests from the list
box when more data is needed.

3.8.2 Adding Records to a Paged List Box

A record is added to a paged list box in the same way that a record is added
to a standard list box: by assigning the record to the ITEM-TO-ADD
property. Most of the time, you will add records to the end of the list box
(exception: you will need to add to the top of the list when responding to
scroll-up requests from the user). You can, however, add records anywhere
in the list, by using the INSERTION-INDEX property. Remember that paged
list boxes are always unsorted, so you must add records in a fashion that
preserves the sort-order of the full set of records.

An important and unusual feature of the paged list box is that it never
contains more items than are needed to display one page (i.e., they contain
only what is shown on the screen). Whenever you add a record that would
cause the list to grow larger than one page, the list box automatically deletes
a record. If you add a record to the beginning of the list, the last record in the
list is deleted (causing the box to appear to scroll upward). Inserting an item
into any other position in the list causes the first record to be deleted (causing
the box to appear to scroll downward if you are adding to the end). This
automatic deletion is a coding convenience that frees you from having to
worry about the list box growing larger than a complete page of data.

The following example adds one item to the end of the current list’s contents:
modify list-1, item-to-add = keyword-word

Alternatively, this example shows how to add an item to the top of the list:
modify list-1, insertion-index = 1,
 item-to-add = keyword-word

Paged List Boxes 3-23
Remember that control properties are set in the order specified in the
statement. In the preceding example, the INSERTION-INDEX phrase must
appear before the ITEM-TO-ADD phrase in order to get the intended result.

3.8.3 Other List Box Operations

Paged list boxes include a mechanism that allows the user to enter a search
string. Any time a paged list box is active, the user can enter a sequence of
characters (the search string). The list box automatically pops up a search
box (entry field) displaying the search string. Each character entered
generates an NTF-PL-SEARCH event. The program should be programmed
to respond to the NTF-PL-SEARCH event, displaying the first entry in the
data source that matches the search string. For an example of
NTF-PL-SEARCH support, see the code example included at the end of
section 3.8.5, “Paged List Box Example.”

Other aspects of a standard list box apply equally to a paged list box. For
example, the currently selected item is the box’s VALUE. You can specify
the NOTIFY-DBLCLICK property to detect when the user double-clicks on
an item. You can empty the list with the RESET-LIST property, or use the
MASS-UPDATE property to speed changing the box’s contents. See section
5.13, “List Box,” for a complete description of list box properties and
operations.

3.8.3.1 Scroll Bars in Text-mode Environments

A runtime variable called "PAGED_LIST_SCROLL_BAR" enables you to
control the appearance of a scroll bar on paged list box controls in text-mode
environments. Refer to the ACUCOBOL-GT Appendix manual,
PAGED_LIST_SCROLL_BAR configuration variable, for details on this
variable’s settings.

3.8.4 Paged List Box Event Handling

The largest and most demanding issue regarding paged list boxes is the
additional required event handling. Whenever a paged list box needs more
data, it generates an event. The program must detect these events and

3-24 Graphical Controls
respond in a way that will update the box’s contents appropriately. There are
several such events. They are described in detail in Chapter 6, “Events
Reference.” In brief, they are:

NTF-PL-NEXT

Indicates the user wants to scroll the list box one record in the
downward direction.

NTF-PL-PREV

Indicates the user wants to scroll the list box one record in the upward
direction.

NTF-PL-NEXTPAGE

Indicates the user wants to scroll the list box one page in the downward
direction.

NTF-PL-PREVPAGE

Indicates the user wants to scroll the list box one page in the upward
direction.

NTF-PL-FIRST

Indicates the user wants to scroll to the top of the list.

NTF-PL-LAST

Indicates the user wants to scroll to the bottom of the list.

NTF-PL-SEARCH

Indicates the user wants to scroll to the page that contains the text he or
she has entered.

NTF-PL-NEXT-WHEEL

Indicates the user wants to use a wheelmouse to scroll the list box in
the downward direction.

NTF-PL-PREV-WHEEL

Indicates the user wants to use a wheelmouse to scroll the list box in
the upward direction.

Paged List Boxes 3-25
In each case, the program should locate the appropriate records and add them
to the box. After adding the records, the program re-ACCEPTs the box to
continue processing. Alternatively (and preferably), the program can use an
EXCEPTION PROCEDURE to handle the events, thus never leaving the
ACCEPT.

The program needs to track where it is in the overall list of items so that it can
respond sensibly to the NEXT and PREVIOUS requests. Usually, the list of
items consists of records contained in an indexed data file, and the ordering
of those records is based on one of the file’s keys. In this case, you can track
the current location in the list by using the file’s current record position. In
this way you need only to remember if the last record you read from the file
was placed at the beginning or end of the list box. If the record was placed at
the beginning, then a single READ PREVIOUS will give you the previous
record for the list. If the record was placed at the end, then a READ NEXT
will give you the next record for the list. If you must get the next item from
the opposite end of the list from your current position, then reading a page
worth of records in the appropriate direction will get you to the proper record.
The examples that follow explore this scheme in more detail.

Let’s begin with a simple example. Suppose you are reading from an indexed
file to get records for your list box. Also suppose that you always ensure that
the last record you read from the file was the one at the end of the current
page. In this situation, the following code fragment illustrates how you might
handle the NTF-PL-NEXT event. This code builds on the code shown in the
earlier example on constructing a paged list box (see section 3.8.1,
“Creating a Paged List Box”):
list-1-handler.
 if key-status = w-event
 evaluate event-type
 when ntf-pl-next
 read keywords-file next record
 at end
 continue
 not at end
 modify list-1,
 item-to-add = keywords-word
 end-read
 end-evaluate
 end-if.

3-26 Graphical Controls
In this example, you first determine if the exception that led you to this
paragraph was an event. Then you evaluate the event type. In the case of an
NTF-PL-NEXT event, you read the next record in the file and add it to the list
box.

To this add the case of handling the NTF-PL-NEXTPAGE event. The code
for this is very similar, except that you want to add a full page of records.
Here is an augmented example that does that:
list-1-handler.
 if key-status = w-event
 evaluate event-type
 when ntf-pl-next
 perform add-next-record
 when ntf-pl-nextpage
 perform add-next-record
 lines-per-page times
 end-evaluate
 end-if.

add-next-record.
 if not keywords-at-end
 read keywords-file next record
 at end set keywords-at-end to true
 not at end modify list-1,
 item-to-add = keywords-word
 end-read
 end-if.

A problem with this approach is that you have to do a lot more work to
implement NTF-PL-PREV and NTF-PL-PREVPAGE. Because the file’s
current position is at the end of the list, you have to read backward through
the entire page to get to the records you want. Then, when you are done
adding records, you have to read forward through the page to maintain the
program’s assumptions. A more efficient technique keeps track of which side
of the list you have last read from, and adjusts the position accordingly. This
technique is shown in the full example included in section 3.8.5, “Paged List
Box Example,” or in the “pagebox.cbl” sample program.

Paged List Boxes 3-27
Before laying out the full paged list-box example, consider how you might
handle the NTF-PL-SEARCH event. This event is unusual in that you have
to reposition the file arbitrarily. To get the search text that the user entered,
you must first INQUIRE on the list box’s SEARCH-TEXT property. That
information is then used to do the positioning. Typical code might look like:
list-1-handler.
 if key-status = w-event
 evaluate event-type
 when ntf-pl-next
 perform add-next-record
 when ntf-pl-nextpage
 perform add-next-record
 lines-per-page times
 when ntf-pl-search
 inquire list-1,
 search-text in keywords-word
 start keywords-file,
 key not less than keywords-word
 invalid key
 perform search-failure-handling
 not invalid key
 perform add-next-record
 lines-per-page times
 end-start
 end-evaluate
 end-if.

The full example that follows explores the issue of handling a failed search.

3.8.5 Paged List Box Example

The following partial program shows a full implementation of a paged list
box. Code that is incidental to the handling of the list box is omitted in the
interest of brevity.
file-control.
 select keywords-file
 assign to "techword.dat"
 organization is indexed
 access mode is dynamic
 record key is keyword-word
 file status is keyword-status.

3-28 Graphical Controls
file section.
fd keywords-file.
01 keyword-record.
 03 keyword-key.
 05 keyword-word pic x(15).
 05 keyword-id pic 9(7).

working-storage section.

78 list-box-lines value 16.

copy "acucobol.def".
copy "acugui.def".

77 keyword-status pic xx.
77 number-reads-needed pic 99.

* STATE-FLAG tracks where you are in the file.
* READING-FORWARDS indicates that the last read was
* of the last record shown in the box.
* READING-BACKWARDS indicates that the last read
* was of the first record in the box (via READ
* PREVIOUS). AT-START and AT-END handle special
* cases when you reach either end of the file.

77 state-flag pic x.
 88 reading-forwards value "f".
 88 reading-backwards value "b".
 88 at-start value "s".
 88 at-end value "e".

77 list-data pic x(15).

77 key-status
 is special-names crt status pic 9(4).

* Note: although the program never directly
* references the Screen Control data item, you have
* to declare it anyway. That is because "notify"
* style events will set it to the proper value when
* entering an EXCEPTION PROCEDURE. The value
* generated causes the controlling ACCEPT statement
* to continue processing after the exception
* procedure finishes. If you omit SCREEN-CONTROL,

Paged List Boxes 3-29
* then the result is that you exit the ACCEPT after
* the exception procedure completes.

01 screen-control
 is special-names screen control.
 03 accept-control pic 9.
 03 control-value pic 999.

01 event-status
 is special-names event status.
 03 event-type pic x(4) comp-x.
 03 event-window-handle handle.
 03 event-control-handle handle.
 03 event-control-id pic x(2) comp-x.
 03 event-data-1 signed-short.
 03 event-data-2 signed-long
 03 event-action pic x comp-x.

screen section.
01 screen-1.
 03 list-1, list-box using list-data,
 line 3, column 10, size 30,
 lines list-box-lines, 3-d,
 paged,
 exception procedure is list-1-handler.

* Other screen items typically found here

procedure division.
main-logic.
 open input keywords-file.
 set reading-forwards to true.

* Code to construct user’s window omitted

 display screen-1.

* Load the first page of list box items

 modify list-1, mass-update = 1
 perform list-box-lines times
 read keywords-file next record
 at end set at-end to true
 exit perform
 end-read

3-30 Graphical Controls
 modify list-1,
 item-to-add = keyword-word
 end-perform
 modify list-1, mass-update = 0.

* Now activate the list box

 accept screen-1.

* Code to use the entered data omitted

 stop run.

* LIST-1-HANDLER handles all exceptions generated
* by the list box. The only exceptions you care
* about are those that require a response in
* order to manage the list box properly.

list-1-handler.
 if key-status = w-event
 evaluate event-type
 when ntf-pl-next
 perform get-next-item

 when ntf-pl-prev
 perform get-prev-item

 when ntf-pl-nextpage
 modify list-1, mass-update = 1
 perform get-next-item list-box-lines times
 modify list-1, mass-update = 0

 when ntf-pl-prevpage
 modify list-1, mass-update = 1
 perform get-prev-item list-box-lines times
 modify list-1, mass-update = 0

 when ntf-pl-first
 move low-values to keyword-word
 start keywords-file,
 key not < keyword-word
 invalid key exit paragraph
 end-start
 set reading-forwards to true
 modify list-1, mass-update = 1

Paged List Boxes 3-31
 modify list-1, reset-list = 1
 perform get-next-item list-box-lines times
 modify list-1, mass-update = 0

 when ntf-pl-last
 move high-values to keyword-word
 start keywords-file,
 key not > keyword-word
 invalid key exit paragraph
 end-start
 set reading-backwards to true
 modify list-1, mass-update = 1
 modify list-1, reset-list = 1
 perform get-prev-item list-box-lines times
 modify list-1, mass-update = 0

* In the search logic, if you get too close to the
* end of the file, you simply act as if you wanted to
* find the last full page. Do this by setting the
* event type to NTF-PL-LAST and re-evaluating.

 when ntf-pl-search
 inquire list-1,
 search-text in keyword-word
 start keywords-file,
 key not < keyword-word
 invalid key
 move ntf-pl-last to event-type
 go to list-1-handler
 end-start
 set reading-forwards to true
 modify list-1, mass-update = 1
 perform get-next-item list-box-lines times
 if at-end
 move ntf-pl-last to event-type
 go to list-1-handler
 end-if
 modify list-1, mass-update = 0
 end-evaluate
 end-if.

* GET-NEXT-ITEM handles all cases where you read
* forwards through the file. It adjusts for the
* four possible states you could be in and then
* retrieves the next record. This record is added

3-32 Graphical Controls
* to the end of the list box. In some cases, you
* have to traverse over the page of records
* currently displayed (because you are switching
* direction).

get-next-item.
 evaluate true
 when at-start
 move low-values to keyword-word
 start keywords-file, key not < keyword-word
 invalid key exit paragraph
 end-start
 add 1 to list-box-lines
 giving number-reads-needed
 when at-end
 exit paragraph
 when reading-backwards
 move list-box-lines to number-reads-needed
 when reading-forwards
 move 1 to number-reads-needed
 end-evaluate

 perform number-reads-needed times
 read keywords-file next record
 at end set at-end to true
 exit paragraph
 end-read
 end-perform

 modify list-1,
 item-to-add = keyword-word

 set reading-forwards to true.

* GET-PREV-ITEM is the converse of GET-NEXT-ITEM.
* It retrieves the previous record in the list and
* adds it to the top of the list box. The code is
* structured identically to GET-NEXT-ITEM.

get-prev-item.
 evaluate true
 when at-end
 move high-values to keyword-word
 start keywords-file, key not > keyword-word
 invalid key exit paragraph

Paged Grids 3-33
 end-start
 add 1 to list-box-lines
 giving number-reads-needed
 when at-start
 exit paragraph
 when reading-forwards
 move list-box-lines to number-reads-needed
 when reading-backwards
 move 1 to number-reads-needed
 end-evaluate

perform number-reads-needed times
 read keywords-file previous record
 at end set at-start to true
 exit paragraph
 end-read
end-perform

modify list-1
 insertion-index = 1
 item-to-add = keyword-word

set reading-backwards to true.

3.9 Paged Grids

A grid is a matrix of data fields. Each element of this matrix, called a “cell,”
can hold either text or a bitmap, or both. Grids are organized into rows,
columns, and records. In a grid, a “row” is a grouping of cells that appear on
one line in the control. A “record” is one or more rows that are treated as a
logical unit. By default, a record occupies one row in a grid, but a record may
also “wrap around” to the next row when it passes the right edge of the grid.
A “column” identifies a particular cell in a record.

A grid’s capacity is limited by available memory. Sometimes, however, you
may want to view many records via a grid control. This could pose a problem
when you are using normal grids. Just loading all the records into the grid
could take an excessive amount of time. To remedy this problem, you may
want to use a “paged” grid.

3-34 Graphical Controls
When you are using the PAGED style in a grid, the grid holds only as many
records as can be viewed on the screen. This is called a “page” of data. The
vertical scroll bar found in a normal grid is replaced by four buttons. These
buttons respond to requests to get the next record, the previous record, the
next page, or the previous page. (Note that you can also apply wheelmouse
events to PAGED styled grids.) When the user clicks one of these buttons,
the grid sends a message to the program asking for the appropriate data
depending on which button was clicked. This data typically comes from an
indexed file. The expected program logic is to do one or more READ NEXT
or READ PREVIOUS statements to retrieve the data.

Note: By default, if a user switches focus by clicking any of the buttons
used to scroll a paged grid, a CMD-GOTO event is not generated. To
modify this behavior, set the GRID_BUTTONS_CAUSE_GOTO
configuration variable to “1” (on, true, yes), as described in Book 4,
Appendix H.

Paged grids are conceptually similar to paged list boxes. Programmers
familiar with paged list boxes, however, may notice some differences in
programming paged grids. These differences were designed to make
programming the grid’s paging logic easier. The noticeable differences are:

• The program’s structure is simplified because event procedures, instead
of responses to various exception values, are coded into the paging logic.

• Less coding is required, because there is no need to write any code for
Next Page and Previous Page actions. You may still opt to write
additional code if you want to define actions other than the response
normally expected from Next Page and Previous Page operations.

• Coding the response to the First Page and Last Page requests are simpler.

• Satisfying Next Record and Previous Record requests are easier because
the grid control can tell you how many records will have to be read (in
the proper direction) in response to these requests.

Furthermore, paged grids communicate requests for more data through
events such as:
MSG-PAGED-NEXT
MSG-PAGED-PREV

Paged Grids 3-35
MSG-PAGED-NEXTPAGE
MSG-PAGED-PREVPAGE
MSG-PAGED-FIRST
MSG-PAGED-LAST
MSG-PAGED-NEXT-WHEEL
MSG-PAGED-PREV-WHEEL

Paged grids never hold more data than they can display on the screen. When
you are adding a record at the end of a full page, the control deletes the
topmost non-heading record. This causes the grid’s contents to scroll
upward. When you are adding a record to any other position, the last record
in the grid is deleted. This causes all records after the one being added to
scroll downward.

Note: The current cell is not changed when the grid is paged. In other
words, if the grid’s cursor is at row 2, column 3, it will be at row 2, column
3 after the user clicks the “next record” button. This will effectively move
the cursor to a new record, even though its physical location has not
changed. Unlike other forms of cursor movement, this does not generate
any additional events. If you are performing special actions when the
cursor enters a new cell (for example, displaying related information
outside of the grid), then you should perform the appropriate actions in
response to paging events as well as cursor-movement events.

Tip: The paged grid feature is demonstrated in two AcuBench sample
project located in the Support > Examples and Utilities area of the Micro
Focus Web site. To download these projects, go to: http://
supportline.microfocus.com/examplesandutilities/index.asp. Select
Acucorp samples > Graphical User Interfaces > GridTXTViewer.zip and
pagedgrid.zip.

Example 1
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PagedGrid.
 AUTHOR. Bob Cavanagh.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT Samplegrid

http://supportline.microfocus.com/examplesandutilities/index.asp
http://supportline.microfocus.com/examplesandutilities/index.asp

3-36 Graphical Controls
 ASSIGN TO DISK "samplegrid.dat"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS samplegrid-status
 RECORD KEY IS samplegridkey
 ALTERNATE RECORD KEY IS samplealtkey = last-name,
first-name.

 DATA DIVISION.
 FILE SECTION.
 FD Samplegrid.
 01 samplegrid-record.
 05 samplegridkey.
 10 first-name PIC X(20).
 10 last-name PIC X(20).
 05 samplegrid-extension PIC X(4).
 05 samplegrid-department PIC X(15).
 05 manager-flag PIC 9.
 05 samplegrid-email PIC X(15).
 05 samplegrid-home-phone PIC X(15).
*
 WORKING-STORAGE SECTION.
 78 EVENT-ACTION-FAIL VALUE 4.
 78 MSG-CLOSE VALUE 16415.
 78 MSG-PAGED-NEXT VALUE 16419.
 78 MSG-PAGED-PREV VALUE 16420.
 78 MSG-PAGED-FIRST VALUE 16423.
 78 MSG-PAGED-LAST VALUE 16424.
 78 ACTION-FIRST-PAGE VALUE 10.
*
 01 EVENT-STATUS
 IS SPECIAL-NAMES EVENT STATUS.
 03 EVENT-TYPE PIC X(4) COMP-X.
 03 EVENT-WINDOW-HANDLE HANDLE OF WINDOW.
 03 EVENT-CONTROL-HANDLE HANDLE.
 03 EVENT-CONTROL-ID PIC XX COMP-X.
 03 EVENT-DATA-1 SIGNED-SHORT.
 03 EVENT-DATA-2 SIGNED-LONG.
 03 EVENT-ACTION PIC X COMP-X.
*
 01 SCREEN-CONTROL
 IS SPECIAL-NAMES SCREEN CONTROL.
 03 ACCEPT-CONTROL PIC 9.
 03 CONTROL-VALUE PIC 999.
 03 CONTROL-HANDLE HANDLE.

Paged Grids 3-37
 03 CONTROL-ID PIC XX COMP-X.
*
 77 Key-Status IS SPECIAL-NAMES CRT STATUS PIC 9(4) VALUE 0.
 88 Exit-Pushed VALUE 27.
 88 Message-Received VALUE 95.
 88 Event-Occurred VALUE 96.
 88 Screen-No-Input-Field VALUE 97.
*
 77 samplegrid-status PIC X(2).
 88 Valid-Samplegrid VALUE "00" THRU "09".

 77 Form1-Handle HANDLE OF WINDOW.
 77 Arial24B HANDLE OF FONT.
*
 01 GRID-COLUMN-HEADINGS.
 05 FILLER PIC X(20) VALUE "FIRST NAME".
 05 FILLER PIC X(20) VALUE "LAST NAME".
 05 FILLER PIC X(4) VALUE "EXT".
 05 FILLER PIC X(15) VALUE "DEPT.".
 05 FILLER PIC X(15) VALUE "E-MAIL".
 05 FILLER PIC X(15) VALUE "HOME PHONE".
*
 01 GRID-DATA.
 03 GRID-KEY.
 05 GRID-FIRST-NAME PIC X(20).
 05 GRID-LAST-NAME PIC X(20).
 03 GRID-EXTENSION PIC X(4).
 03 GRID-DEPARTMENT PIC X(15).
 03 GRID-EMAIL PIC X(15).
 03 GRID-HOME-PHONE PIC X(15).
*
 SCREEN SECTION.
 01 PgGridSample.
 03 Scr-Grid, Grid,
 COL 4.70, LINE 6.00, LINES 26.00 CELLS,
 SIZE 55.30 CELLS,
 ADJUSTABLE-COLUMNS, 3-D, COLOR IS 258, COLUMN-HEADINGS,
 DATA-COLUMNS (1, 21, 41, 45, 60, 75),
 DISPLAY-COLUMNS (1, 25, 49, 57, 76, 95),
 ALIGNMENT ("C", "C", "C", "C", "C", "C"),
 DATA-TYPES ("X(20)", "X(20)", "X(4)", "X(15)",
 "X(15)", "X(15)"),
 SEPARATION (5, 5, 5, 5, 5, 5),
 COLUMN-DIVIDERS (1, 1, 1, 1, 1, 1),
 CURSOR-COLOR 2, CURSOR-FRAME-WIDTH 3, DIVIDER-COLOR 1,

3-38 Graphical Controls
 HEADING-COLOR 257, HEADING-DIVIDER-COLOR 1, HSCROLL,
 ID IS 1, NUM-ROWS 20, PAGED, RECORD-DATA Grid-Data,
 RECORD-TO-ADD Grid-Data, ROW-DIVIDERS 1,
TILED-HEADINGS,
 USE-TAB, VPADDING 80, VIRTUAL-WIDTH 112,
 EVENT PROCEDURE Grid-Events.
*
 PROCEDURE DIVISION.
 DECLARATIVES.
 I-O-ERROR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON I-O.
 0200-DECL.
 EXIT.
 END DECLARATIVES.
*
 Acu-Main-Logic.
 OPEN I-O SAMPLEGRID.
 PERFORM Acu-PgGridSample-Scrn.
 PERFORM Load-Grid.
 PERFORM Acu-PgGridSample-Proc.
 CLOSE SAMPLEGRID.
 STOP RUN.
 .
 Load-Grid.
 MOVE GRID-COLUMN-HEADINGS TO GRID-DATA.

 MODIFY SCR-GRID INSERTION-INDEX = 1
 RECORD-TO-ADD=GRID-DATA.

 MOVE SPACES TO SAMPLEGRIDKEY.

 START SAMPLEGRID KEY NOT < SAMPLEGRIDKEY
 INVALID KEY
 EXIT PARAGRAPH
 END-START.
 MODIFY SCR-GRID ACTION = ACTION-FIRST-PAGE.
*
 Move-Data-To-Grid.
 MOVE FIRST-NAME TO GRID-FIRST-NAME.
 MOVE LAST-NAME TO GRID-LAST-NAME.

 MOVE SAMPLEGRID-EXTENSION TO GRID-EXTENSION.
 MOVE SAMPLEGRID-DEPARTMENT TO GRID-DEPARTMENT.
 MOVE SAMPLEGRID-EMAIL TO GRID-EMAIL.
 MOVE SAMPLEGRID-HOME-PHONE TO GRID-HOME-PHONE.

Paged Grids 3-39
*
 Move-Grid-To-Data.
 MOVE GRID-FIRST-NAME TO FIRST-NAME.
 MOVE GRID-LAST-NAME TO LAST-NAME.

 MOVE GRID-EXTENSION TO SAMPLEGRID-EXTENSION.
 MOVE GRID-DEPARTMENT TO SAMPLEGRID-DEPARTMENT.
 MOVE GRID-EMAIL TO SAMPLEGRID-EMAIL.

 MOVE GRID-HOME-PHONE TO SAMPLEGRID-HOME-PHONE.
*
 Acu-Exit-Rtn.
 EXIT PROGRAM
 STOP RUN
 .
*
 Acu-PgGridSample-Routine.
 PERFORM Acu-PgGridSample-Scrn.
 PERFORM Acu-PgGridSample-Proc
 .

 Acu-PgGridSample-Scrn.
 PERFORM Acu-PgGridSample-Create-Win.
 DISPLAY PgGridSample UPON Form1-Handle
 .

 Acu-PgGridSample-Create-Win.
* display screen
 DISPLAY Standard GRAPHICAL WINDOW
 LINES 38.00, SIZE 64.00, CELL HEIGHT 10, CELL WIDTH 10,
 AUTO-RESIZE, COLOR IS 65793, ERASE, LABEL-OFFSET 0,
 LINK TO THREAD, MODELESS, NO SCROLL, WITH SYSTEM MENU,
 TITLE "Paged Grid Sample", TITLE-BAR, NO WRAP,
 EVENT PROCEDURE Form1-Event-Proc,
 HANDLE IS Form1-Handle.
*
 DISPLAY PgGridSample UPON Form1-Handle
 .

* PgGridSample
 Acu-PgGridSample-Proc.
 PERFORM UNTIL Exit-Pushed
 ACCEPT PgGridSample
 ON EXCEPTION PERFORM Acu-PgGridSample-Evaluate-Func
 END-ACCEPT

3-40 Graphical Controls
 END-PERFORM
 DESTROY Form1-Handle
 INITIALIZE Key-Status
 .

* PgGridSample
 Acu-PgGridSample-Evaluate-Func.
* avoid changing focus
 MOVE 1 TO Accept-Control
 .
 Form1-Event-Proc.
*
 EVALUATE Event-Type
 WHEN Msg-Close
 PERFORM Acu-Exit-Rtn
 END-EVALUATE
 .

 Grid-Events.
*
 EVALUATE Event-Type
 WHEN Msg-Paged-First
 PERFORM Scr-Grid-Ev-Msg-Paged-First
 WHEN Msg-Paged-Last
 PERFORM Scr-Grid-Ev-Msg-Paged-Last
 WHEN Msg-Paged-Next
 PERFORM Scr-Grid-Ev-Msg-Paged-Next
 WHEN Msg-Paged-Prev
 PERFORM Scr-Grid-Ev-Msg-Paged-Prev
 END-EVALUATE
 .
*
 Scr-Grid-Ev-Msg-Paged-Next.
 PERFORM EVENT-DATA-2 TIMES
 READ SAMPLEGRID NEXT RECORD
 AT END MOVE EVENT-ACTION-FAIL TO EVENT-ACTION
 EXIT PARAGRAPH
 END-READ
 END-PERFORM

 PERFORM MOVE-DATA-TO-GRID
 MODIFY SCR-GRID, RECORD-TO-ADD = GRID-DATA
 .
*
 Scr-Grid-Ev-Msg-Paged-Prev.

Paged Grids 3-41
 PERFORM EVENT-DATA-2 TIMES
 READ SAMPLEGRID PREVIOUS RECORD
 AT END
 MOVE EVENT-ACTION-FAIL TO EVENT-ACTION
 EXIT PARAGRAPH
 END-READ
 END-PERFORM.

 PERFORM MOVE-DATA-TO-GRID.
 MODIFY SCR-GRID,
 INSERTION-INDEX = 2, RECORD-TO-ADD = GRID-DATA
 .
*
 Scr-Grid-Ev-Msg-Paged-First.
 MOVE LOW-VALUES TO SAMPLEGRIDKEY.
 START SAMPLEGRID KEY >= SAMPLEGRIDKEY
 INVALID KEY MOVE EVENT-ACTION-FAIL TO EVENT-ACTION
 END-START
 .
*
 Scr-Grid-Ev-Msg-Paged-Last.
 MOVE HIGH-VALUES TO SAMPLEGRIDKEY
 START SAMPLEGRID KEY <= SAMPLEGRIDKEY
 INVALID KEY MOVE EVENT-ACTION-FAIL TO EVENT-ACTION
 END-START
 .

Example 2

The following program excerpt illustrates how paged list boxes and paged
grids can be controlled by mousewheel events. For full context, and a
sample program, refer to the “Wheelmouse.cbl” program in the sample
programs folder of ACUCOBOL-GT.

[Excerpt]

PAGED-GRID-EVENTS.

 EVALUATE EVENT-TYPE
 …
 WHEN MSG-PAGED-PREV-WHEEL
 …
 PERFORM EVENT-DATA-2 TIMES
 PERFORM GET-PREV-ITEM

3-42 Graphical Controls
 END-PERFORM
 WHEN MSG-PAGED-NEXT-WHEEL
 …
 PERFORM EVENT-DATA-2 TIMES
 PERFORM GET-NEXT-ITEM
 END-PERFORM
 …
 END-EVALUATE
 .

PAGED-LIST-EVENTS.
 …
 EVALUATE EVENT-TYPE
 …
 WHEN NTF-PL-PREV-WHEEL
 …
 PERFORM EVENT-DATA-2 TIMES
 PERFORM GET-PREV-ITEM
 END-PERFORM
 WHEN NTF-PL-NEXT-WHEEL
 …
 PERFORM EVENT-DATA-2 TIMES
 PERFORM GET-NEXT-ITEM
 END-PERFORM
 …
 END-EVALUATE
 .

4
 Supporting Concepts and
Related Issues
Key Topics

Handles ... 4-2
Events ... 4-3
Graphical vs. Textual Modes .. 4-4
Styles and Special Properties.. 4-5
Methods .. 4-7
Coordinates .. 4-11
Fonts ... 4-15
Layout Managers.. 4-16

4-2 Supporting Concepts and Related Issues
4.1 Handles

Normally, when you create a graphical object, the runtime system generates
a unique value to identify that object, and stores that value in the program’s
specified handle. You make future references to that object by naming its
handle. Most of the graphically oriented features of ACUCOBOL-GT make
use of handles. A handle is a COBOL data item. Internally, a handle is
simply a number. The COBOL program uses handles to identify various
graphical items.

Note: In addition to all the graphical controls and user-interface-type
objects (e.g., window, font), a handle can be applied to a thread within a
program.

If you have worked with ACUCOBOL-GT’s text-based subwindows (textual,
pop-up windows), you are already familiar with the use of handles. The
POP-UP AREA phrase of the DISPLAY WINDOW verb names a PIC X(10)
data item that holds the handle of the created window. When you want to
remove the window, you use that data item in the CLOSE WINDOW verb.
The data item tells the system which window to close.

There is a data type, called USAGE IS HANDLE, that you use when you
want to declare a handle for a data item. The syntax for it is as follows:
USAGE IS HANDLE OF type

You can use this data type with or without specifying a type of handle, but
there are certain benefits if you do specify it. The primary benefit, for
handles of controls, is that the proper style and property names are known by
the compiler and can be used. Consider the difference in this example:

77 h-1 handle.
77 h-2 handle of entry-field.

then,
modify h-2, max-text = 15. (legal)
modify h-1, max-text = 15. (compile error)

Another significant benefit to typed handles is that the compiler can check
that they are being used in proper contexts.

Events 4-3
The runtime system can tell when a handle is no longer valid. If you make
reference to an invalid handle (for example, a handle to an object you have
destroyed), the requested operation is simply ignored.

When you make use of graphical objects in the Screen Section, the runtime
system automatically creates and manages the associated handles for you. In
this case you do not explicitly use handles when referring to graphical
objects.

For more information about handles and the USAGE IS clause, see Section
5.7.1.8, “USAGE clause” in Book 3, Reference Manual.

4.2 Events

In graphical systems, events communicate actions taken by the user and
various graphical objects. For example, if the user types a key, the system
may generate several events to denote that fact: a key pressed event, a
character typed event, and a key released event. A push button might
generate a button pushed event when the user activates it. Much of graphical
programming involves detecting and handling events.

Event programming is foreign to most COBOL programs. In order to
simplify the programming of graphical systems, ACUCOBOL-GT handles
most events internally. The runtime either performs the appropriate action, or
converts the event into a form more recognizable to a traditional COBOL
program. For example, you can create your push buttons so that button
pushed events are treated as if a particular function key was pressed.

Certain events must be handled by the program, however. In
ACUCOBOL-GT, there are very few of these, but they are important. Events
that must be acted upon by the COBOL program are called terminating
events. The name comes from the fact that their occurrence causes any active
ACCEPT statement to terminate, so that the COBOL program can handle the
event.

4-4 Supporting Concepts and Related Issues
When a terminating event occurs, any active ACCEPT statement terminates
and returns an exception value of “96”. In the file “acugui.def,” you will find
a level 78 for this value, called W-EVENT. When you set up a situation
where a terminating event could occur, you must be ready to handle this
exception value.

When a terminating event occurs, the runtime fills in the new EVENT
STATUS data item (event-status) with information about the event. The
EVENT STATUS data item is declared in SPECIAL-NAMES. This data
item identifies which event occurred, which window it occurred in, which
control it applies to (if any), and any additional information your program
might need. For details on the EVENT STATUS data item, see section 4.2.3,
Book 3, Reference Manual.

If desired, for any control that generates events you can specify a list of event
types that that control either must receive or not receive (filter out). To create
such a list, you use the EVENT-LIST, AX-EVENT-LIST, and
EXCLUDE-EVENT-LIST Common Properties. These are described in
section 6.4.9, “Common Screen Options,” of Book 3.

For a description of the events that can be returned by the runtime, see
Chapter 6, “Events Reference.”

Note: There is a special control style called SELF-ACT that can be
assigned to push buttons, radio buttons, and check boxes. This style
simplifies the handling of button events. If you also assign an exception
value to the button, it will act just like the equivalent function key. For
more about the SELF-ACT style see the description in section 5.15, “Push
Button.”

4.3 Graphical vs. Textual Modes

As previously discussed, ACUCOBOL-GT marries two diverse technologies:
text-only displays and graphical displays.

When we talk about an ACCEPT or DISPLAY statement, the term textual
refers to the forms of these verbs that handle text-based elements.
Specifically, textual refers to Format 1 of both verbs, plus any referenced

Styles and Special Properties 4-5
Format 1 Screen Section items. The term graphical refers to the forms of
these verbs that handle controls. Specifically, this includes Format 14 of the
DISPLAY verb, Format 7 of the ACCEPT verb, and Format 2 of any
referenced Screen Section items. Note that a LABEL control (which is a
block of text) is considered a graphical element, not a textual display.

When thinking about the textual display, you may find that it helps to think of
it as a rigid grid of character cells. Each cell in the grid holds one character,
and the cell’s size and location is fixed. This simulates the nature of text-only
monitors. In this mode, you can display five characters starting at column
“1” and expect the fifth character to be placed in column “5”.

The graphical display is then layered on top of the textual display. The
graphical display is not rigid. You can place elements anywhere on the
screen, not just in the fixed character cells. In this mode, displaying a label
of five characters starting at column “1” will not necessarily place the fifth
character in column “5” (because the label’s font may be variable-pitch). For
a more detailed discussion of screen coordinates, their manipulation, and use,
see section 4.6 in this chapter.

Two COBOL reserved words are available to mark Screen Section entries for
use in the graphical or textual environment. These reserved words are:
“GRAPHICAL” and “CHARACTER”. These markings have the effect of
restricting the display of the elements nested within them. The elements
contained in a GRAPHICAL Screen Section entry are displayed only when
the program is run on a graphical system. The contents of a CHARACTER
Screen Section entry are displayed only when the program is run on a
character-based system. When the program attempts to execute a marked
entry on a system of the opposite type, that entry is ignored (for an extended
description of these labels and their use, see Section 5.9 of Book 3, Reference
Manual).

4.4 Styles and Special Properties

ACUCOBOL-GT utilizes a special type of COBOL identifier that is
context-sensitive. These are the style and special property names of
controls. Each type of control has a set of styles and special properties that
apply to it. If these names were reserved words in COBOL, there would be
many new reserved words, making it likely that existing programs would

4-6 Supporting Concepts and Related Issues
have to be changed to be compiled with ACUCOBOL-GT. Because more
styles and special properties are expected in future versions, this proliferation
of reserved words would create an ever-increasing problem.

To address this issue, ACUCOBOL-GT does not reserve the style and special
property names in the usual manner. Instead, the compiler reserves them
only when in the context of acting on a control of the proper type. For
example, when you are defining an entry-field control in the Screen Section,
the style and special property names associated with entry fields are reserved.
At other times, they are not. This allows you to declare variables and
paragraphs with the same names as long as you do not try to refer to those
items in a context where the reserved meaning would apply.

Style and special property names are reserved in the following four cases:

1. When defining a Screen Section entry for a control;

2. In the scope of a DISPLAY statement that creates a control;

3. In the scope of a MODIFY statement that changes a control;

4. In the scope of an INQUIRE statement that references a control.

At all other times, the style and special property names are not reserved.

Since the compiler reserves only names that are appropriate for a particular
type of control, it can recognize those names only when it knows what type
of control is being acted on. If the control class is generic (variable), then the
compiler cannot determine which set of names to reserve, so it does not
reserve any of them. This leads to cases where the compiler cannot resolve
seemingly correct code.

For example, MAX-TEXT is a special property name associated with entry
fields. The following code appears to be correct, but will not compile:
77 FIELD-1 USAGE HANDLE.

MODIFY FIELD-1, MAX-TEXT = 15.

In the above example, the compiler does not recognize MAX-TEXT as a
meaningful word because it does not know that FIELD-1 is an entry field. In
order for this code to compile, you would have to change it to read:

Methods 4-7
77 FIELD-1 USAGE HANDLE OF ENTRY-FIELD.

MODIFY FIELD-1, MAX-TEXT = 15.

By declaring FIELD-1 as a handle to an entry field, you alert the compiler to
use the style and special property names associated with entry fields
whenever it is referenced.

Note: Sometimes you might need to use generic handles in your code
when you don’t know at compile-time what kind of control will be needed
during program execution. In these cases, you can always use the
alternative form of specifying styles and special properties. In this form,
you include the word “STYLE” or “PROPERTY” followed by the numeric
value associated with the style or special property (the value can be a literal
or stored in a variable). Level 78 declarations for the style and special
property names can be found in the file “controls.def”.

For example, the level 78 name that corresponds to MAX-TEXT is
EFP-MAX-TEXT (“EFP” is short for Entry Field Property). The following
code is another way of coding the preceding example:
77 FIELD-1 USAGE HANDLE.

MODIFY FIELD-1, PROPERTY EFP-MAX-TEXT = 15.

In most cases, you will probably use the style and special property names
known by the compiler. However, the advantage of using the values provided
in “controls.def” is that you can assign them to variables that need to be set
dynamically (at run time).

4.5 Methods

The following section pertains to ActiveX and .NET controls.

All ACUCOBOL-GT controls have properties and styles. In addition to
properties and styles, ActiveX and .NET controls have a concept known as
“methods.” In ActiveX and .NET, methods (also known as object methods)

4-8 Supporting Concepts and Related Issues
specify the functions that the control provides. To invoke (call) a method,
you use the MODIFY verb in much the same way that you set a property or
style.

Note: Unlike common properties and styles, you cannot use the DISPLAY
statement to set a special property or invoke a method of an ActiveX or
.NET control defined in the Screen Section. You must use the MODIFY
verb.

Both ActiveX and .NET methods can take any number of parameters or no
parameters. ActiveX controls can also take optional parameters (i.e.,
parameters that can be omitted). You specify the parameters in COBOL by
enclosing them in parentheses. With ActiveX controls, the optional
parameters are always last. If a method takes only one parameter, the
parentheses may be omitted. If a method takes no parameters, you must use
empty parentheses (“()”).

Note that ActiveX and .NET properties and methods should always be
prepended with an “@” sign in case they clash with COBOL reserved words
or ACUCOBOL-GT graphical control property and style names. “@”
identifies the relationship of the name to ActiveX or .NET.

4.5.1 ActiveX Example

Consider the ActiveX control, “Microsoft Rich Textbox Control 6.0”. Here
is an excerpt from its COPY file, created with the AXDEFGEN utility. (See
Chapter 4 of A Guide to Interoperating with ACUCOBOL-GT for more
information on AXDEFGEN):
...
 * LoadSave constants.

 * LoadSaveConstants
 CLASS @LoadSaveConstants
 CLSID, 9FAEAB20-894B-11CE-9576-0020AF039CA3
 NAME, “LoadSaveConstants”
 * long rtfRTF
 ENUMERATOR, @rtfRtf, 0
 * long rtfText
 ENUMERATOR, @rtfText, 1

Methods 4-9

...
 * Microsoft Rich Textbox Control 6.0

 *** Primary Interface ***

 * RichTextBox
 CLASS @RichTextBox
 CLSID, 3B7C8860-D78F-101B-B9B5-04021C009402
 NAME, “RichTextBox”
...
 * LoadFile
 * Loads an .RTF or text file into a RichTextBox control.
 METHOD, 37, @LoadFile,
 “BSTR bstrFilename”,
 “VARIANT vFileType”
 OPTIONAL 1
...

The LoadFile method takes two parameters: “bstrFilename” and
“vFileType”. “vFileType” is an OPTIONAL parameter. “bstrFileName” is a
BSTR type, and “vFileType” is a VARIANT type. To invoke this method
from COBOL, you use the MODIFY verb:
MODIFY RICH-TEXT-BOX-1 LoadFile (“myfile.rtf”, rtfRtf).

The ACUCOBOL-GT runtime automatically converts the parameters to the
appropriate type and invokes the method. The LoadFile method does not
have a return value. If the method had a return value that was not “void”, it
would be converted and moved to the item specified in the GIVING clause of
the MODIFY statement.

The syntax is as if LoadFile is a property whose value is its parameter list. For
example, the following is also valid:
MODIFY RICH-TEXT-BOX-1 PROPERTY 37 = (“myfile.rtf”, rtfRtf).

Note that 37 is the “property” number of LoadFile. The equals sign is
optional. Commas in the parameter list are optional. The parameters may be
arithmetic expressions.

4-10 Supporting Concepts and Related Issues
4.5.2 .NET Example

Consider the sample .NET control, “AmortControl.” Here is an excerpt from
its COPY file, created with the NETDEFGEN utility. (See Chapter 5 of A
Guide to Interoperating with ACUCOBOL-GT for more information on
using NETDEFGEN.):
* .NET Copy Book - Generated On 3/5/2004 10:39:23 AM

 OBJECT @ASSEMBLY
 NAME "@AmortControl"
 VERSION "1.0.1266.13363"
 CULTURE "neutral"
 STRONG "null"

* AmortControl.UserControl1
 NAMESPACE "AmortControl"
 CLASS "UserControl1"
 MODULE "amortcontrol.dll"
 VISUAL

 CONSTRUCTOR, 0, @CONSTRUCTOR1

* System.String get_WhatIfMonths()
 METHOD, 0, "@get_WhatIfMonths"
 RETURNING "BSTR", TYPE 8

* Void InitializeComponent()
 METHOD, 0, "@InitializeComponent"

* TotalInterest
 PROPERTY_GET, 0, @TotalInterest
 RETURNING, "BSTR", TYPE 8

* FireCalc ()
 EVENT, 520214344, @UserControl1_FireCalc

The get_WhatIfMonths method takes no parameters and returns a string of
characters. To invoke this method from COBOL, you use the MODIFY verb:
MODIFY AmortControl-handle "get_WhatIfMonths" ()
 GIVING MY-PICX-STRING.

Coordinates 4-11
The method has a return value that is converted and moved to the item
specified in the GIVING clause of the MODIFY statement. To get the
property TotalInterest:
INQUIRE ctl-handle TotalInterest IN TOT-INTEREST.

4.6 Coordinates

This section describes how display elements are located on the screen.

4.6.1 Coordinate Handling

ACUCOBOL-GT uses line and column positions to specify the location of
graphical objects. There are two reasons for this:

1. The line and column notation is already familiar to COBOL
programmers.

2. Retaining this notation makes translating text-based applications into
graphical applications much easier.

Because graphical objects are not constrained to whole line and column
locations, you may use non-integer values when specifying a line or column
position. For example, “LINE 1.5” is a point that is midway between the top
of line 1 and the top of line 2. Unless otherwise specified, the line/column
position of a graphical object refers to the upper-left pixel of the smallest
bounding rectangle that encloses the object.

Recall that the runtime treats the screen as two layers: a text-based character
layer with a graphical-object layer on top (section 4.3, “Graphical vs.
Textual Modes”). So that the runtime can execute text-only applications
properly, the line and column positions refer to the grid of characters in the
text layer. Thus, the font used by the text layer defines the size of a line and
column. We call a single character location in the text layer a cell. The
height of the cell is the height of one line, and the width of the cell is the
width of one column.

4-12 Supporting Concepts and Related Issues
4.6.2 Coordinate Space Problems

The biggest difficulty with the handling of coordinates is that the text-based
font used on the text layer may be an inappropriate size for use in locating
graphical objects. There are a couple of reasons for this. One is that the
text-layer font must be a fixed-pitch font, while the font used by graphical
objects is usually variable-pitch. Frequently this means that the two fonts
will be different sizes. The second problem is that some common graphical
controls (e.g., entry fields) are surrounded by a box, which makes the control
much larger than its font would otherwise suggest.

For example, under Windows 98 on a VGA display, the height of the usual
text-layer font is 15 pixels. The height of the font normally used for entry
fields is 13 pixels. The height of a boxed entry field is 50% larger than its
font, so a boxed entry field is 13 * 1.5 (round up) = 20 pixels high. This
means that each boxed entry field is 20 / 15 = 1.33 lines high.

While you are free to specify any coordinates needed to produce the look you
want, working largely with non-integer values is difficult and reduces
portability. It also makes converting text-based programs much harder,
because the text-based coordinates may not be the correct ones for the
corresponding graphical objects.

4.6.3 Coordinate Space Solutions

Ideally, you want the majority of your positioning coordinates to be integer
values. This is easier to work with and improves portability. While you will
undoubtedly encounter cases where you need to use non-integer coordinates,
their use should be minimized.

The simplest solution is to use the same font for your graphical objects as you
use in the text layer. Then, if you also use unboxed entry fields, you have
eliminated both trouble points. The problem with this solution is that it looks
wrong when compared to other graphical programs; the font is fixed-pitch
and the boxes are missing.

A more sophisticated solution is to change the way that coordinates are
measured. If you can set the coordinate space so that your controls fall on
integral coordinates, the problem is solved. ACUCOBOL-GT provides a

Coordinates 4-13
way to do this. When you create a window (including the main application
window), you can set its cell size with the CELL phrase of the DISPLAY
WINDOW verb. When you do this, you specify your own line and column
sizes. The phrase allows you to have the runtime measure a graphical object
and set the coordinate space appropriately. Typically, you would measure an
entry field with the font you want to use and have the runtime lay out the
screen accordingly. For details on the CELL phrase, see the DISPLAY
FLOATING WINDOW verb in Book 3, Reference Manual.

Note: When you change the coordinate space, you affect both the text and
graphical layers. Because of this, you have some restrictions if you are
going to use the text layer. In particular, you may not make a cell smaller
than a character, nor may you make it wider than a character (it can be
taller).

Here are some general guidelines to apply when deciding how to set up your
coordinate space:

1. If you plan to mix graphical objects with classical textual displays, use
the default cell size that is the size of the text-layer font. In this case, the
overriding consideration is the placement of the text in cells. The
graphical objects will have to be specified with whatever coordinates
work. You should try to keep the number of graphical objects to a
minimum, or consider converting to an entirely graphical screen if you
want to mix in a large number of graphical elements.

2. If you anticipate using entry fields heavily (as would be typical in a
conversion of a text-based application), you should set up the
coordinate space based on the size of an entry field. This makes the
placement of label/entry-field pairs very easy. Note that the CELL
phrase allows you to specify OVERLAPPED (vertically adjacent entry
fields share a common border) or SEPARATE (a little space placed
between entry fields). You can choose whichever style you think looks
better. Here is an example CELL phrase:

CELL SIZE = ENTRY-FIELD FONT MY-FONT, SEPARATE

3. If you will be using a mix of graphical objects, but only a few entry
fields, you should base the coordinate space on the size of a label. This
lets you measure with the correct font, but ignores the overhead
associated with entry fields. This setting is closest to what other

4-14 Supporting Concepts and Related Issues
graphical-design systems use (typically, these use a coordinate cell size
that is some fraction of the size of the system’s font). A typical CELL
phrase would be:

CELL SIZE = LABEL FONT MY-FONT

Another way to get the same result is to use the GRAPHICAL phrase
with the DISPLAY WINDOW verb. For example:

DISPLAY STANDARD GRAPHICAL WINDOW

4. If you want to compute exact pixel coordinates (for very specialized
displays), you should use a cell height and width of “10”. Then each
tenth of a cell (“.1”) corresponds to one pixel.

Note: You should not use “1” as the cell height and width because this
produces a text-layer memory map that is too large. Applications that
use “1” as a measure are not portable to non-graphical systems.

5. Finally, it is possible to set up your graphical control sizes based
entirely on the pixel count. You can specify the ‘x’ and ‘y’
coordinates, LINES, and SIZE of a control in pixels. This method
allows you to always have your positioning coordinates as integer
values, which is nice when you need absolute positioning. You gain
better control of your screen layouts, and screens based on different
cell sizes can easily be accommodated by the screen designer.

A sample DISPLAY statement would look like this:

DISPLAY PUSH-BUTTON LINE 300 PIXEL(S)
 COL 225 PIXEL(S)
 LINES 30 PIXEL(S)
 SIZE 120 PIXEL(S).

Note: Pixel coordinates are relative to the size of the target window.
Lowest legal value is ‘1’, and the highest legal value is equal to the largest
resolution covered by the target window. If that value is exceeded, the
property defaults to the closest legal value.

It is important to set your coordinate space early in your work. If you lay out
screens and then change the coordinate system, all of your previously
designed screens will have to be reworked.

Fonts 4-15
Because of the fundamental differences in the coordinate systems of
character and graphical systems, ACUCOBOL-GT provides two sets of
statement phrases with which to specify control size and positioning. For a
discussion of these phrases, see section 3.5, “The Character Coordinate
Phrases.”

4.7 Fonts

On graphical systems, you are not limited to only one font. ACUCOBOL-GT
provides general support for access to most fonts known to the system.

In ACUCOBOL-GT, fonts are represented in your program by handles (for
more about handles, see section 4.1, “Handles”). Once created, a font
handle indirectly refers to all the information the system needs to manage that
particular font. When you want to specify a particular font in your program,
you use its handle.

In ACUCOBOL-GT, you have access to most of the systems add-on fonts
(TrueType), as well as several predefined fonts. The set of predefined fonts
is used because they are guaranteed to be available on all Windows systems.
These fonts correspond to the various Windows system fonts that are
accessed with the GetStockObject API function.

Font handles are created in two ways: with the W$FONT library routine, and
with the ACCEPT FROM STANDARD OBJECT verb. The ACCEPT
FROM STANDARD OBJECT verb provides access to the system predefined
fonts only. See section 6.6 of Book 3, Reference Manual, for a description of
the ACCEPT Statement and a list of the available fonts.

The W$FONT library routine provides access to most of the fonts known to
the system, including TrueType fonts. W$FONT provides three primary
functions.

1. It returns a handle to the font on the system that either exactly or most
closely matches a font description.

2. Given a font handle, it returns a complete description of the font’s
characteristics.

4-16 Supporting Concepts and Related Issues
3. It creates and presents to the user a font selection dialog box, returning
a description of the font that the user selected.

For a complete description of W$FONT see Book 4, Appendix I.

Note: Fonts occupy memory. If you no longer need a font, you can free
the memory used by that font with the DESTROY Statement. The runtime
automatically destroys all fonts when it exits.

4.8 Layout Managers

ACUCOBOL-GT includes a layout manager facility that can be applied to
help manage some of the tricky aspects of a screen’s layout. A layout
manager is a specialized piece of software that is attached to a window and
that manages the placement and size of controls in that window. Individual
layout managers have their own rules regarding how controls are sized and
placed.

By default, a window does not have a layout manager attached to it. For such
windows, controls are sized and placed according to their normal properties
(e.g. LINE, COLUMN, SIZE, and LINES). When a layout manager is
attached to a window, the layout manager determines the size and placement
of controls, although it is free to use the normal properties to help make
decisions. A control can provide additional information about itself,
including special size and placement parameters, to the layout manager
through the LAYOUT-DATA property. The precise meaning of
LAYOUT-DATA varies from layout manager to layout manager.

Layout managers operate whenever a new control is placed in the window or
the window is resized.

Currently, ACUCOBOL-GT supports only a single type of layout manager.
This manager is called the resize manager. The resize manager does not
attempt to layout controls as they are being placed. Rather, it automatically
resizes and repositions controls whenever the associated window is resized.
Controls use LAYOUT-DATA to tell the resize manager which automatic
actions should be applied to them.

Layout Managers 4-17
To use a layout manager, the program must:

• make a copy of the layout manager and attach it to a window

• set the LAYOUT-DATA property on the desired controls

These steps, and a description of four control properties that can be used to
constrain a control’s dimensions, are described in the following sections.

4.8.1 Working with Layout Managers

Layout managers are created and referenced through a handle data item of
type LAYOUT-MANAGER. To create a copy of a layout manager you
simply declare a data item of type LAYOUT-MANAGER. For example:
77 MY-LAYOUT HANDLE OF LAYOUT-MANAGER.

The declaration of a layout manager handle may include automatic
initialization, in the same fashion as font handles. You can name any of the
standard layout managers after the word “LAYOUT-MANAGER”.
Currently, there is only one standard layout manager, LM-RESIZE, the resize
manager. For example:
77 MY-LAYOUT HANDLE OF LAYOUT-MANAGER, LM-RESIZE.

Like all handles, a layout manager consumes memory while allocated. You
free this memory with the DESTROY verb. For example:
DESTROY MY-LAYOUT

You get a layout manager handle by using the statement ACCEPT FROM
STANDARD OBJECT. For example:
ACCEPT MY-LAYOUT FROM STANDARD OBJECT “LM-RESIZE”

You do not need to do this if you use the initialization option mentioned
above. The layout manager returned by ACCEPT FROM STANDARD
OBJECT is a copy of the standard manager. Therefore, you should destroy it
when you are done with it. Destroying it will not affect other copies.

4-18 Supporting Concepts and Related Issues
4.8.1.1 Attaching a layout manager to a window

To be useful, a layout manager must be attached to a window. To attach a
layout manager to a window, you use the standard window property
LAYOUT-MANAGER. You can do this when you create the window or by
modifying the window. For example:
DISPLAY STANDARD GRAPHICAL WINDOW,
 BACKGROUND-LOW,
 LAYOUT-MANAGER = MY-LAYOUT.

A layout manager records data within itself about the window and controls it
is managing. Therefore, you should attach a layout manager to only one
window. If you want to use the same layout manager for a second window,
you should create a second copy of the layout manager.

Once attached to a window, a layout manager begins operating.

4.8.2 Setting LAYOUT-DATA

All controls have a standard property called LAYOUT-DATA. Layout
managers optionally use this data to help determine how to lay out the
control. Each manager imposes its own interpretation on the meaning of this
data.

LAYOUT-DATA is a numeric standard property. It can be set when you
create or modify the control. It can also be inquired.

The LAYOUT-DATA values for the resize manager are described in section
4.8.4.1.

4.8.3 Minimum and Maximum Control Dimensions

All controls have four properties that can be used to describe their minimum
and maximum allowed dimensions. Layout managers can use these
properties to determine how to size a control. The properties are:

MIN-HEIGHT The control’s minimum height.

MAX-HEIGHT The control’s maximum height.

Layout Managers 4-19
Each of these properties take a numeric value using the same units as the
control’s SIZE (width) and LINES (height) properties. Each property has a
default value of zero. A value of zero for MAX-HEIGHT and MAX-WIDTH
means “no maximum.”

A layout manager uses these values to limit how much it will modify a
control’s dimensions. A particular layout manager is free to interpret these
values to suit its purposes. The resize manager will treat them as absolute
limits.

For example, when creating a multiline entry field, you might want to limit
its vertical dimension to have both a minimum and maximum height. One
implementation might look like this:
DISPLAY ENTRY-FIELD, MULTILINE
 LINE 5, COL 10
 SIZE 50 CELLS, LINES 10 CELLS
 MIN-HEIGHT = 1.5
 MAX-HEIGHT = 20

In this example, the layout manager will not change the height of the entry
field to be less than 1.5 cells or more than 20 cells.

The four properties apply to all controls. Like all property names, they are
not reserved words. Therefore, you may use these words as user-defined
names anywhere in your program where property names are not allowed (i.e.,
outside of the Screen Section and the scope of DISPLAY, MODIFY, and
INQUIRE statements).

Typically, you would start out by leaving the properties at their default
values. The default values do not constrain the control’s dimensions. Then,
to address a particular layout problem, you would set one or more of the
properties to resolve the problem. For example, you may want to set a
minimum height for a control if the user can resize the window such that the
unconstrained control is reduced to a height of zero. Or, you may want to
limit an entry field to show no more than the total of lines of data it allows.

MIN-WIDTH The control’s minimum width.

MAX-WIDTH The control’s maximum width.

4-20 Supporting Concepts and Related Issues
4.8.4 The Resize Layout Manager

The resize layout manager is designed to assist with the process of handling
resizable windows (a resizable window is a floating window created with the
RESIZABLE phrase; see DISPLAY FLOATING WINDOW in section 6.6
of Book 3). It implements some basic rules that automate what happens to
controls when a window changes size. While the resize manager only
handles some fairly simple cases, the cases are common ones. This frees the
programmer to concentrate on more complex cases.

The standard object name of the resize manager is LM-RESIZE.

What the resize manager does affects only controls that have non-zero
LAYOUT-DATA. Thus, by default, the resize manager has no effect on a
window. If you want the resize manager to act on a control, then you assign
that control a LAYOUT-DATA value that indicates the kind of action you
want it to take. LAYOUT-DATA values are defined in the next section.

When the resize manager is first attached to a window, it does two things:

1. It automatically applies the CONTROLS-UNCROPPED style to the
window. This is necessary for the resize manager to function properly.

2. It records the current dimensions of the window. These are called the
design dimensions. The resize manager uses the design dimensions
when deciding how to size and position controls.

The essential concept with the resize manager is that the size of the window
when it is attached is the natural or design size of the window. It assumes
that all controls placed on the window look right when placed on a window
of this size.

For example, if you design a screen that looks good on a 25 x 80 window,
then you should attach the resize manager to that window when it is 25 x 80.
You normally accomplish this by creating the window that size and attaching
the resize manager at the same time. For example:
 DISPLAY STANDARD GRAPHICAL WINDOW
 BACKGROUND-LOW
 LINES 25, SIZE 80
 LAYOUT-MANAGER = LAYOUT-1

Layout Managers 4-21
Once attached, the resize manager takes effect anytime the window is resized
or a control is added to the window. The resize manager acts on any control
that has a non-zero LAYOUT-DATA value. The exact value determines what
actions the resize manager takes. The resize manager assumes that it has
complete control over the size and placement of controls that have
LAYOUT-DATA. After such a control has been displayed, the program
should not modify it in a way that changes its size or position (that is the job
of the resize manager). Doing so may result in improper resizing or
repositioning by the resize manager.

Note that a Screen Section control that is subject to the resize manager has its
design values set when the control is created.

There is a COPY file that can be helpful when working with the resize
manager. It contains a pre-declared layout manager handle (called
“LM-RESIZE”) and constants for the most common combinations of
LAYOUT-DATA settings. This COPY library is called “lmresize.def”.

Tip: The resize layout manager facility is demonstrated in an AcuBench
sample project located in the Support area of the Micro Focus Web site. To
download the program, go to: http://supportline.microfocus.com/
examplesandutilities/index.asp. Select Acucorp Samples > Graphical
User Interface > layoutmgr.zip.

Note: .NET controls cannot be managed by the resize layout manager.

4.8.4.1 Resize manager LAYOUT-DATA values

For the resize manager, a control’s LAYOUT-DATA property may be a
combination of any of the following values. To combine values, simply add
them together. The names of the values come from the “lmresize.def” file.

RLM-RESIZE-X (value 1)

This causes the control to be resized horizontally by an amount equal
to the width of the current window width minus its design width. This
causes the control to grow and shrink horizontally as the window
changes width. This is frequently useful if you have a control such as
a grid or a multi-line entry field in the middle of the window whose
area you want to increase as the user grows the window.

http://supportline.microfocus.com/examplesandutilities/index.asp
http://supportline.microfocus.com/examplesandutilities/index.asp

4-22 Supporting Concepts and Related Issues
RLM-MOVE-X (value 2)

This causes the control to reposition itself horizontally by an amount
equal to the difference of the current window width and its design
width. This is useful when you have a control that you want to keep
near the right edge of the window.

RLM-NO-MIN-X (value 4)

Without this, the resize manager will not reposition or resize a control
horizontally to be less than its design values. This prevents the control
from disappearing or colliding with other controls if the user makes the
window too small. Instead, the control will extend off the edge of the
window if the window is too small. Specifying this value relaxes this
rule and the control is allowed to become smaller than its design size or
move to the left of its design position. When you use this, you may
want to use the MIN-SIZE window property to limit how narrow the
user can make the window.

RLM-RESIZE-Y (value 16)

Similar to RLM-RESIZE-X, but it affects the vertical size of the
control. Only those controls whose height is specified in CELLS or
PIXELS are affected. Use this when you want to add more lines to a
control such as a grid or list box when the user grows the window. This
setting has undefined effects when used for a control whose height
does not use CELLS or PIXELS. This may become defined in a future
version, so you should avoid specifying this for controls that do not use
CELLS or PIXELS.

RLM-MOVE-Y (value 32)

Similar to RLM-MOVE-X, except it affects the vertical position of the
control. This is useful when you want a control to stay near the bottom
edge of the window.

RLM-NO-MIN-Y (value 64)

Same as RLM-NO-MIN-X, except that it affects the vertical aspect of
the control instead of the horizontal aspect.

The following are also found in “lmresize.def”. These are not unique values,
but useful combinations of the preceding values.

Layout Managers 4-23
RLM-RESIZE-X-ANY

Combines RLM-RESIZE-X and RLM-NO-MIN-X. This combination
allows for arbitrary resizing of the control horizontally.

RLM-MOVE-X-ANY

Combines RLM-MOVE-X and RLM-NO-MIN-X. This combination
allows for arbitrary repositioning of the control horizontally.

RLM-RESIZE-Y-ANY

Combines RLM-RESIZE-Y and RLM-NO-MIN-Y. This combination
allows for arbitrary resizing of the control vertically.

RLM-MOVE-Y-ANY

Combines RLM-MOVE-Y and RLM-NO-MIN-Y. This combination
allows for arbitrary repositioning of the control vertically.

RLM-RESIZE-BOTH

Combines RLM-RESIZE-X and RLM-RESIZE-Y. This combination
allows for the control to resize itself in both dimensions as the window
is resized.

RLM-RESIZE-BOTH-ANY

Combines RLM-RESIZE-X-ANY and RLM-RESIZE-Y-ANY. This
combination allows the control to resize itself in both dimensions and
without a minimum size.

RLM-MOVE-BOTH

Combines RLM-MOVE-X and RLM-MOVE-Y. This combination
keeps a control near the lower right corner of the window.

RLM-MOVE-BOTH-ANY

Combines RLM-MOVE-X-ANY and RLM-MOVE-Y-ANY. This
combination keeps a control near the lower right corner of the window,
with no minimum position.

There are other useful combinations, but these are the most common ones.

5
 Control Types Reference
Key Topics

The Components of a Control .. 5-2
Global Styles... 5-8

Control Types:
ActiveX ... 5-11
Bar .. 5-17
Bitmap .. 5-22
Check Box .. 5-27
Combo Box... 5-32
Date Entry .. 5-38
Entry Field ... 5-45
Frame.. 5-62
Grid... 5-69
Label ... 5-107
List Box... 5-111
.NET.. 5-123
Push Button.. 5-125
Radio Button .. 5-133
Scroll Bar ... 5-140
Status Bar ... 5-144
Tab .. 5-152
Tree View.. 5-161
Web Browser... 5-174

5-2 Control Types Reference
5.1 The Components of a Control

This chapter begins with a detailed look at the components of
ACUCOBOL-GT’s graphical controls. Included is a description of the
common and special properties of each control, along with the global style
properties that are valid for all control types. The chapter concludes with
reference entries for each control type.

To work efficiently with graphical controls, you need to be thoroughly
familiar with the components of controls and their organization.

In most instances, controls are simple to create and manage. In some cases
they are complex. In addition to the information in this chapter, information
pertaining to controls is located in the following chapters and sections:

Chapter 3, “Graphical Controls”

This chapter provides an overview of controls and how they fit into the
graphical environment. In addition, the chapter describes the use of the
alternate character coordinate phrases, the creation and use of bitmap buttons,
and the general use of paged list boxes and paged grids.

Chapter 4, section 4.4, “Styles and Special Properties”

This section describes how the compiler recognizes style and special property
names based on the context in which they appear.

Book 3, (Reference Manual), Chapter 5, section 5.8, “Screen
Section.”

This section describes the Screen Section syntax used to create controls.

Book 3, (Reference Manual), Chapter 6, section 6.4.9, “Common
Screen Options.”

This chapter describes options that are common to Screen Section entries and
the ACCEPT, DISPLAY, and MODIFY verbs. Included in this set are the
phrases used to specify a control’s common properties.

The Components of a Control 5-3
Book 3, (Reference Manual), Chapter 6, Section 6.6, DISPLAY
control-type-name

This section describes how the Format 14 DISPLAY Control-Type statement
is used to create controls.

The remainder of this section focuses on control components, particularly
their properties. At the end of this section you will find the “Common
Properties Table,” “Styles Table,” and “Special Properties Table.” These
tables provide a quick reference to control types and their properties.

Components

All controls have the following components:

• a Type

• a Handle

• a set of Properties

5.1.1 Type

The compiler recognizes the following control types:
ACTIVEX
BAR
BITMAP
CHECK-BOX
COMBO-BOX
DATE-ENTRY
ENTRY-FIELD
FRAME
GRID
LABEL
LIST-BOX
.NET
PUSH-BUTTON
RADIO-BUTTON

5-4 Control Types Reference
SCROLL-BAR
STATUS-BAR
TAB
TREE-VIEW
WEB-BROWSER

Control type names are reserved by the compiler.

5.1.2 Handle

When a control is created, a handle to the control is also created. This handle
is a COBOL data item. Its value uniquely identifies the control to the system.
Handle values are generated dynamically at runtime and cannot be controlled
by the programmer.

Note: If you want to assign a constant name to a control (a name that
remains the same between runs), you can assign an ID to the control.
Anytime the runtime returns information about a control, it includes both
its handle and its ID. Because the handle can change from run to run,
examining the ID can be more convenient. Note that using IDs is the only
effective way to distinguish controls in the Screen Section, because those
controls’ handles are hidden from the programmer.

5.1.3 Properties

All components of a control, excluding the type and handle, are properties.
Control properties are classified into two groups: common properties—those
that apply to all types of controls—and special properties—those that are
specific to a single type of control. Note, however, that some common
properties have a special meaning (or no meaning) for some control types. In
addition, some special properties are used by more than one control type. For
example, the special properties that apply to bitmap buttons are used by push
button, radio button, and check box controls.

The Components of a Control 5-5
Note: If a control property takes a text value, when the value is sent to the
control the runtime automatically strips trailing spaces and low-values from
the value.

5.1.3.1 Common properties

Common properties that apply to virtually all controls include: location, size,
title, value, color/intensity, font, style, visibility, usability (enabled/disabled),
ID, key, and event list.

The function and syntax of each common property is described in Section
6.4.9, “Common Screen Options” in Book 3, Reference Manual. Any
further qualification of a common property for a specific control type is
described in this chapter in the section that describes that control type.

Style

STYLE is a common property. The STYLE property holds a numeric value.
This value is the sum of the numeric values of the individual styles that have
been applied to a particular control. Styles affect the appearance or behavior
of a control. For example, some of the styles that apply to a radio button
include: BITMAP, FRAMED, and NOTIFY. Individual styles have a
predefined numeric value (assigned in the file “controls.def”) and do not take
any other value. A style can be applied or not applied. If the style is
indicated in a statement, it is applied to the control; if it is absent, it is not
applied. Most styles apply to only a certain type of control, although a few
are common to all controls.

There are two ways to specify a style for a control.

1. Include the style name in the statement that creates the control.

2. Add the style’s numeric value to any other style values that apply, and
include the sum value in the STYLE IS style-flags phrase, where
style-flags is the sum value.

Including the style name in the statement that creates the control is the usual
method for specifying a style. The collection of style names included in the
statement (such as “BITMAP” and “NOTIFY”) instructs the compiler to

5-6 Control Types Reference
build the appropriate STYLE property value (the STYLE property is
technically the method by which all styles are stored in the runtime system).
However, there is an important restriction: the compiler understands style
names only when it knows what kind of control is being built. If you specify
a control that has a variable (undefined) type, then you must specify styles
with the “STYLE IS style-flags” phrase. In this case, you construct the
STYLE property value by adding together the appropriate style numbers.
Each style has a corresponding numeric value, and the STYLE property holds
the sum of the specified styles. For example, if the numbers corresponding
to BITMAP and NOTIFY were “1” and “4” respectively, then the phrase
“STYLE IS 5” would specify those two styles. Each style’s identifying
number can be found in the file “controls.def” (they are level 78 items).

You can use the MODIFY statement to change a style value after a control
has been created. However, in many cases the behavior of Windows, limits
in the 32-bit Windows API, or restrictions in the ACUCOBOL-GT runtime,
prevent a style change from taking effect. Exactly which styles can be
effectively changed for each control is not known and is, therefore, not
documented. When a style is known to be modifiable or not modifiable, that
information is documented with the style. We recommend, however, that you
test the behavior of your application in the target environment to confirm that
style changes are handled in the way that you expect.

5.1.3.2 Special properties

Each control defines its own set of special properties. Special properties are
used to give a control a special attribute or capability. For example, an entry
field can have the special properties MAX-TEXT, MAX-LINES, and
CURSOR.

Special properties are specified with the PROPERTY and Property-Name
phrases of the DISPLAY control-type-name described in section 6.6, Book
3, Reference Manual, or in a Format 2 Screen Section entry. Note that the
PROPERTY reserved word always refers to a special property.

All special properties require a value. For example MAX-TEXT takes a
numeric value that specifies the maximum number of characters that can be
entered in the field.

The Components of a Control 5-7
In any statement in which control properties can be set (i.e., the Screen
Section and the DISPLAY and MODIFY verbs), you can specify a list of
property values in parentheses. This has the effect of setting the specified
property to each value in the list, in turn. This is useful for the special
properties that can have multiple settings. For example, you can assign the
values “20” and “30” to the DATA-COLUMNS list box property with the
following syntax:

DATA-COLUMNS ARE (20, 30)

The optional word “ARE” is allowed in place of “IS” or “=” in the syntax.

Because control property values are set in the order specified, if you specify
multiple values for a property that can take only a single value, the net effect
is the same as setting the last value in the list.

5.1.4 Control Components Diagram

Control components:

Type
Handle
Properties Common

Special

Location
Size
Title
Value
Color
.
.
Font
Style

MAX-TEXT
MAX-LINES
CURSOR
GROUP
.
.
RESET-LIST

NO-TAB
PERMANENT
TEMPORARY
.
.
RIMMED

Styles:
· are control-specific.
· typically affect the
look or behavior of
a control.
· do not take a value.

Special properties:
· are control-specific.
· assign specific values
or limits to a control.
· always take a value.

5-8 Control Types Reference
5.2 Global Styles

There are several styles that apply to all controls. These styles include:

NO-TAB

This style causes a Tab (or Shift-Tab) key press to skip the control.
Normally, while the program is performing a Screen Section ACCEPT,
when the user presses Tab or Shift-Tab, the next or previous element in
the Screen Section is activated. Specify NO-TAB on controls that you
want skipped when these keys are used. This style affects any key with
the following editing actions: Default-Next, Erase-Next, Next,
Numeric-Next, and Previous. When the program responds to key
presses that invoke the above editing actions, it does not activate any
control that has the NO-TAB style.

PERMANENT

 A permanent control is one that can be destroyed only by the
DESTROY verb, or by destroying the window containing the control.
By default, controls are permanent. A control can be made temporary
using the TEMPORARY_CONTROLS runtime configuration
variable.

Permanent controls are more efficient than temporary controls (see
TEMPORARY below). The PERMANENT style is applied to a
control when it is created and does not change during the life of that
control, even if the control’s style is modified.

TEMPORARY

 A temporary control self-destructs when its home location is
overwritten by another control or by textual output. Temporary
controls can also be destroyed in the same manner as permanent
controls. A temporary control self-destructs in the following
circumstances:

a. Another control is created in the exact same location.

The runtime maintains location information to the nearest 100th of
a character cell. If the newly created control is placed in the same
row and column as a temporary control (or less than one
one-hundredth of a cell away), it destroys the temporary control.

Global Styles 5-9
Note that moving a control on top of a temporary control does not
destroy the control (the runtime assumes that the temporary control
is about to be moved, also. This occasionally happens with Screen
Section updates when several items are of variable size). Only a
newly created control can destroy a temporary control.

b. Textual output is placed in the same character cell as the
temporary cell’s home location.

Note: BLANK SCREEN destroys all temporary controls in a
window.

The temporary style is applied when a control is first created and does
not change during the life of the control. If you attempt to apply both
the PERMANENT and TEMPORARY style to a control, the
PERMANENT style is used.

A control can also be made temporary using the
TEMPORARY_CONTROLS runtime configuration variable.

HEIGHT-IN-CELLS

Normally, the height of a control is expressed in control units. Each
control defines its own meaning for these units. Typically, a control
that is n units high will be exactly big enough to hold n lines of text.
This allows you to specify the size of a control in logical terms without
having to know its exact physical representation on the screen. The
HEIGHT-IN-CELLS style overrides this behavior. Instead of using
control units, you specify the height of the control exactly, using the
cell size of the owning window as the base unit. Thus, a height of one
(1) would cause the control to be exactly one row tall.

This option is especially useful in sizing frame control objects. The
style allows you to specify the frame’s exact dimensions without
having to know anything about the frame’s title font. You can also
specify this style with the CELLS option of the LINES phrase. For
example:

LINES = 15 CELLS.

This style is not intended for use in combination with a control’s
default height. Default heights are based on control units and when
based on character cells do not typically produce useful results.

5-10 Control Types Reference
WIDTH-IN-CELLS

This option is analogous to HEIGHT-IN-CELLS, except that it affects
the width of a control. This style is particularly useful when you want
to center a label over a region of the screen. By specifying the label’s
width in cells, and using the CENTER label style, you can easily do the
centering without knowing anything about the label’s font. For
example, if you have a window that is 40 columns wide, and you want
to center a title in it, you could use:

DISPLAY LABEL MY-TITLE, COLUMN 10, SIZE 20 CELLS,
 CENTER

Assuming that the title fits in 20 cells, this works for any title in any
font.

OVERLAP-LEFT

This style causes the control to be shifted a small amount to the left
from its specified position. The amount is equal to the width of the
control’s border. This shifting occurs when the control is created or
moved. If the control does not have a border, no shifting occurs.

The purpose of this style is to simplify placing several similar controls
in a row. For example, if you have a series of adjacent push buttons,
the normal appearance would be to draw each push button exactly
touching each other. This causes a double border to appear between
the push buttons. By shifting each one slightly to the left, you can have
the borders overlap and achieve a more uniform appearance with a
single border between the buttons. Most applications that have
adjacent push buttons do this. You can create the same effect by
manually positioning the controls with overlapping borders, but using
this style is easier and more portable because you don’t need to know
exactly how wide the borders are.

OVERLAP-TOP

This style is similar to the OVERLAP-LEFT style (see above), except
that in this case the control is shifted slightly upward. The amount of
the shift is determined by the height of the control’s border. This style
is useful when you want to create a series of controls that appear to be
adjacent to one another in a single column.

ActiveX 5-11
Note: A way to achieve a similar effect with entry fields is to use the
OVERLAPPED option on the CELL SIZE phrase of the DISPLAY
FLOATING WINDOW verb. This method is usually easier to employ
than the OVERLAP-TOP style applied to each individual field,
because it applies to the whole window.

5.3 ActiveX

There are two ways to add ActiveX controls to your ACUCOBOL-GT
program:

1. Using the AcuBench Screen Designer. This method is the easiest, but it
limits you to only graphical controls. It involves adding the control to
the Component Toolbox, drawing it onto the Screen Designer screen
form, modifying properties if desired, then generating code. This
method is described in detail in the AcuBench User’s Guide.

2. Using the ACUCOBOL-GT utility, AXDEFGEN. This method
requires some manual program modification, but it provides the
flexibility of adding any type of control or COM object to your
program, even non-graphical controls like a spell checker or
automation server (like Microsoft Word, Excel, or Internet Explorer).
This method involves running AXDEFGEN, adding new COPY files
to the project, modifying a few sections of code, and compiling. This
method is discussed in detail below.

ACUCOBOL-GT defines a control type named “ACTIVE-X” that it uses
internally whenever you CREATE, MODIFY, INQUIRE, or DESTROY an
ActiveX control.

In the vast majority of cases, you will not use the ACTIVE-X control type
directly. Instead, you will specify the name of the specific ActiveX control
type. This name can be determined by looking at the “***Primary
Interface***” section in the COPY file generated by AXDEFGEN.

Note: With some noted exceptions, the following documentation applies
even when you specify the name of a specific ActiveX control type.

5-12 Control Types Reference
5.3.1 Common Properties

This section lists some of the common properties for ActiveX controls. For
more information regarding ActiveX properties, see Chapter 4 of A Guide to
Interoperating with ACUCOBOL-GT, and Chapter 15, “Screen Designer
Controls” in the AcuBench User’s Guide.

TITLE

ActiveX controls associate the TITLE property with the “Window Text.” The
effect is dependent on the specific control type.

VALUE

ActiveX controls do not use values.

LINES/SIZE

The LINES and SIZE values describe the area occupied by the ActiveX
control, using the ActiveX control’s font to determine the dimensions of the
width and height. Note that the control’s font is otherwise ignored by the
ActiveX control.

COLOR

ActiveX controls ignore any colors specified. The actual colors used are
control-dependent.

AX-EVENT-LIST, EXCLUDE-EVENT-LIST

AX-EVENT-LIST is an exclusive list of ActiveX events that are either sent
to or withheld (blocked) from the program, depending on the value of
EXCLUDE-EVENT-LIST. See section 6.4.9, “Common Screen Options,” in
Book 3.

ActiveX 5-13
STYLES

USE-RETURN

The “Return” (or “Enter”) key typically terminates entry. If you
specify the USE-RETURN style, the “Return” key is instead used by
the ActiveX control when it is active. For example, if the ActiveX
control is a text editor or if it offers a command prompt, the
USE-RETURN style would allow the user to start a new line by
pressing “Return.” Without this style, pressing “Return” would
terminate input.

USE-TAB

The Tab key is typically used to move between fields or controls. If
you specify the USE-TAB style, the Tab is instead used by the ActiveX
control, when the control is active. This allows the user to enter a tab
into the ActiveX control, but prevents the user from using the Tab key
to leave the control.

USE-ALT

The user can normally activate a control by typing its key letter in
combination with some other special key. Under Microsoft Windows,
key letters are typed in conjunction with the Alt key. If you specify the
USE-ALT style, the Alt key is instead used by the ActiveX control
when it is active. This allows the user to enter an Alt key combination
into the ActiveX control, but prevents the user from using an Alt key
combination to activate another control.

5.3.2 Special Properties

CLSID (alphanumeric)

This special property is provided for advanced programming tasks that
require a generic interface to ActiveX controls. You may create,
modify, inquire and destroy an ActiveX control using the ACTIVE-X
control type, but with certain restrictions. The compiler will not
recognize symbolic property, method, or event names provided by the
ActiveX control. You must specify properties and methods by their
dispatch identifier (“dispid”) using the PROPERTY phrase, and you
must identify events by their dispatch identifier in your event

5-14 Control Types Reference
procedure. ACTIVE-X controls are identified by a globally unique
identifier called a “class id” (CLSID). In order to create an instance of
an ACTIVE-X control, you must provide this class id. Set CLSID to
the class id of the control when you create the control (either in the
screen section definition or in the DISPLAY statement).

LICENSE-KEY (alphanumeric)

Some ActiveX controls are licensed for run time via a license key that
is provided to you by the distributor of the control. This license key is
a text string provided by the control vendor. When you set the
LICENSE-KEY property to the value of the license key, you cause the
license key to be embedded in your COBOL program. Then, when the
COBOL program is run, the license key is passed to the ActiveX
control for verification.

Note: It is not necessary to specify a LICENSE-KEY for any of the
Microsoft controls included on the ACUCOBOL-GT installation CD.
If you use one of these controls in your program, the runtime applies
the license key for you automatically. For a discussion of these
controls, see Chapter 4 of A Guide to Interoperating with
ACUCOBOL-GT.

Getting the license key value and setting the LICENSE-KEY property
is simple using AcuBench. It is recommended that you use AcuBench
to get the license key value even if you don’t use AcuBench to create
your screens. In AcuBench, when you place an ActiveX control on a
screen form in the Screen Designer, the LICENSE-KEY property is
automatically set to the license key value (if the vendor provided a
value when the control was acquired and installed). If you use the
AcuBench Screen Designer to create your screens and generate code,
there is nothing more to do.

If you do not use AcuBench to create your screens, simply locate the
entry for the LICENSE-KEY property in the control’s Property
window, and copy and assign that value to LICENSE-KEY in the
Screen Section definition or DISPLAY statement of your program. For
example, you might include a LICENSE-KEY property like this one:

LICENSE-KEY "C1P0009-XPJ439-01MQ7-2223".

ActiveX 5-15
Please note that if the license key is WideChar (WCHAR)
(Doublebyte) such as “0x0067 0x01a2 0x00dd 0x0134 0x0167,” you
must use the STRING verb to put the license into a pic x variable,
otherwise the embedded NULLs may cause the key to be truncated or
even empty. To use a key such as this, you should declare a variable
like this:

77 mLicenseKey PIC X(128).

(Note that any size will do as long as it is wide enough to hold all the
characters as specified in the license plus two final NULLs.)

You should then set the variable’s value. For example:

INITIALIZE mLicenseKey REPLACING ALPHANUMERIC BY LOW-VALUES.
STRING x"00" x"67" x"01" x"a2" x"00" x"dd" x"01" x"34" x"01"
 x"67" delimited by size into mLicenseKey.

You can then invoke the ActiveX component through SCREEN
SECTION or PROCEDURE DIVISION using the DISPLAY verb
providing the following property:

LICENSE-KEY mLicenseKey.

The default value of LICENSE-KEY is “ ”.

INITIAL-STATE (multiple parameters)

Use INITIAL-STATE in conjunction with the C$RESOURCE library
routine to establish the ActiveX control’s initial state.

{ INITIAL-STATE } { Is } (resource-handle, resource-name)
 { Are }
 { = }

where

“resource-handle” is a HANDLE OF RESOURCE;

“resource-name” is a literal or data-item.

General Rules

1. “resource-handle” must be the handle of an open resource file. It is
obtained by calling the C$RESOURCE library routine.

2. “resource-name” must be the name of a resource item in the resource
file whose handle is specified in “resource-handle”.

5-16 Control Types Reference
3. INITIAL-STATE is only set once per control instance. After a program
creates an ActiveX control only the first DISPLAY or MODIFY that
specifies INITIAL-STATE will set it.

4. INITIAL-STATE failure raises one of the following exceptions:

Example
77 RES-HANDLE USAGE HANDLE OF RESOURCE

CALL "C$RESOURCE" USING CRESOURCE-LOAD, "PROGRAM1.RES"
 GIVING RES-HANDLE.

To set the ActiveX control’s initial state:
DISPLAY Calendar LINE 4 COLUMN 6 LINES 10 SIZE 40
 INITIAL-STATE (RES-HANDLE, "CALENDAR-1-INITIAL-STATE")
 HANDLE IN CALENDAR-1.

or in the screen section:
03 CALENDAR-1 Calendar LINE 4 COLUMN 6 LINES 10 SIZE 40
 INITIAL-STATE (RES-HANDLE, "CALENDAR-1-INITIAL-STATE").

“CALENDAR-1-INITIAL-STATE” is the name of a resource in
“PROGRAM1.RES”. Its binary value is the initial state of the
CALENDAR-1 ActiveX control. Note that each program that contains
ActiveX controls generally has its own resource file.

5.3.3 Events
CMD-GOTO
CMD-HELP
MSG-VALIDATE
MSG-AX-EVENT

ACU-E-INITIALSTATE Error reading resource item from resource
file

ACU-E-INVALIDHANDLE Invalid control handle

ACU-E-UNEXPECTED Unexpected error

Bar 5-17
5.4 Bar

The BAR control draws a line on the screen. The line can be either horizontal
or vertical, and can be any width. Several options allow you to produce
special effects such as double lines and raised or engraved lines. Additional
options allow lines to be joined together to form rectilinear objects and
shapes.

The bar control is available for both character-based systems and graphical
environments. However, on character-based systems, the DOTTED,
DASHED, and DOT-DASH styles are not supported. The following special
properties are also not supported on character systems: WIDTH, COLORS,
SHADING, POSITION-SHIFT, TRAILING-SHIFT, and LEADING-SHIFT.

In a graphical environment, the bar control covers any portion of text that
occupies the same space as the bar. In a character-based environment, the bar
does not cover the text, and it is displayed as a broken line.

Bar controls are drawn in the order created. This can be important when you
are overlapping bars to create junctions.

Graphical: text Character: text

5-18 Control Types Reference
5.4.1 Common Properties

The set of bar common properties includes:

TITLE

A bar does not have a title.

VALUE

A bar does not have a value.

SIZE

The SIZE and LINES values of a bar are measured in window cells. One of
the SIZE or LINES phrases must be zero (or unspecified). If LINES is zero,
the bar is horizontal. If SIZE is zero, the bar is vertical. Setting SIZE and
LINES to non-zero values has an undefined effect.

COLOR

A bar uses only the foreground color. The foreground color is the color of the
entire bar. See the COLORS property for other options.

STYLES

DOTTED

This style creates a dotted line instead of a solid line. It is a valid style
only when the bar’s width is one. The COLORS and SHADING
properties (see below) are ignored when this style is specified. The
line is drawn with the control’s foreground color. This style is not
available on character-based systems.

DASHED

This style creates a dashed line instead of a solid line. It is valid only
when the bar’s width is one. The COLORS and SHADING properties
(see below) are ignored when this style is specified. The line is drawn
with the control’s foreground color. This style is not available on
character-based systems.

Bar 5-19
DOT-DASH

This style creates a line that alternates dots and dashes. It is valid only
when the bar’s width is one. The COLORS and SHADING properties
(see below) are ignored when this style is specified. The line is drawn
with the control’s foreground color. This style is not available on
character-based systems.

5.4.2 Special Properties

WIDTH (numeric)

This property specifies the width (thickness) of the bar. Normally, bars
are 1 pixel wide. You can set the width to any number of pixels. For
example, “WIDTH = 5” creates a bar that is 5 pixels wide. This special
property is not available on character-based systems.

COLORS (numeric)

This property allows you to set the color of an individual pixel row or
column in the bar. The COLORS property can be set multiple times.
The first value assigned describes the color of the topmost pixel row in
a horizontal bar, or the left-most pixel column in a vertical bar. The
second setting describes the next pixel row or column, and so on. The
value must be the absolute color number you want to use, ignoring any
high or low intensity settings for the bar. Usually, you would specify
all of the desired colors at once by enclosing the values in parentheses.
For example, to create a black double line that is three pixels wide,
with a bright-white interior, you would specify the following:

DISPLAY BAR, WIDTH = 3, COLORS = (1, 16, 1), . . .

Any pixel rows or columns that are not specified by the COLORS
property are given the bar’s foreground color. You can reset the
COLORS property to an empty list by assigning a value of “999” or
higher. This special property is not available on character-based
systems.

5-20 Control Types Reference
SHADING (numeric)

Allows you to vary the color of individual pixel rows or columns. This
works similarly to the COLORS property, but instead of specifying a
color, you specify a number that indicates how you would like to adjust
the color. The possible values are as follows:

In the preceding table, “normal color” refers to the color the pixel row
or column would otherwise have (as determined by the control’s
foreground color or the COLORS property). Color shading (value “1”
and “-1”) only works for colors in the default palette and the colors
generated by the USER-GRAY, USER-WHITE, and USER-COLORS
window options. If you place other colors into the palette, the shading
options have no effect.

You can use shading to simplify the process of creating a 3-D line. For
example, to create a thin gray engraved line, you might use

DISPLAY BAR, COLOR WHITE, LOW, WIDTH = 2,
 SHADING = (-1, 1)

To produce a raised line, simply reverse the shading order:

SHADING = (1, -1)

This special property is not available on character-based systems.

POSITION-SHIFT (numeric)

This property specifies an adjustment to the bar’s position. Positive
values move the bar down (for horizontal bars) or to the right (for
vertical bars) by the specified number of pixels. Negative values shift
the bar upward or leftward instead. The purpose of this property is to
simplify manual positioning of a bar when cell measurements are
inconvenient. One use is to aid in joining two thick bars to make a
corner. For example, to make the lower right half of a box that is 5
cells high and 10 cells wide with a 3-pixel border, you could use:

DISPLAY BAR, WIDTH = 3, LINE 1, COL 11, LINES 5

2 Use color 16 (typically bright white)

1 Brighten the normal color

0 Leave the normal color unchanged

-1 Darken the normal color

-2 Use color 1 (typically black)

Bar 5-21
DISPLAY BAR, WIDTH = 3, LINE 6, COL 1, SIZE 10,
 POSITION-SHIFT = -3

Using the POSITION-SHIFT produces a square corner instead of a
jagged one. This special property is not available on character-based
systems.

TRAILING-SHIFT (numeric)

This property adjusts the length of each pixel row or column. This is
used for special case handling when joining lines together. Similar to
the COLORS and SHADING properties, TRAILING-SHIFT can be
set multiple times. Each setting affects the next pixel row or column in
the bar. The values assigned to TRAILING-SHIFT adjust the ending
point of the bar. The ending point is the right-most point for horizontal
bars or the uppermost point for vertical bars. A positive
TRAILING-SHIFT value extends the pixel row that many pixels. A
negative value reduces the pixel row instead. For example, if you want
a 3-pixel wide line to end like this:

you would use the following property:

TRAILING-SHIFT = (0, 1, 2)

You can reset the SHADING property to an empty list by assigning a
value of “999” or higher. Generally speaking, trailing shift is most
useful when joining two lines having more than one color together to
form a corner. This special property is not available on character-based
systems.

LEADING-SHIFT (numeric)

This property adjusts the length of each pixel row or column in a
manner similar to TRAILING-SHIFT. However, LEADING-SHIFT
differs in two ways from TRAILING-SHIFT. First, the effect applies
to the starting point of the line, instead of the trailing, i.e., the topmost
(vertical) or left-most (horizontal) point. Secondly, negative values
lengthen the line while positive values shorten the line. Essentially,

5-22 Control Types Reference
each value is added to the ending point coordinate to determine the
actual coordinate. This special property is not available on
character-based systems.

5.4.3 Events

Bars do not generate events.

5.5 Bitmap

Using the BITMAP control, a user can place a bitmap on the screen. The
effect is similar to using the W$BITMAP library routine. However, with the
bitmap control, your bitmap can be animated.

The bitmap control is available only for Microsoft Windows systems. Any
attempt to place a bitmap on the screen in other systems fails, and the
returned handle is NULL.

To display a bitmap, you must first load it with the W$BITMAP library
routine, using the WBITMAP-LOAD option described in Book 4, Appendix
I. This operation retrieves the bitmap from disk and loads it into memory.
The process is identical to loading bitmaps for bitmap push buttons.

5.5.1 Common Properties

TITLE

Bitmaps do not have titles.

Bitmap 5-23
VALUE

A bitmap does not have a value.

SIZE

SIZE and LINES are measured in pixels. The specified number of pixels are
displayed, starting from the upper left-hand corner of the bitmap (for an
exception to this, see the BITMAP-NUMBER special property below). If
SIZE and LINES are not specified, then the entire bitmap is used.

COLOR

This property is ignored. The bitmap is displayed using the colors encoded
in the image.

5.5.2 Special Properties

BITMAP-HANDLE (numeric)

This property indicates the bitmap to display. The value must
correspond to the bitmap handle returned by the WBITMAP-LOAD
option of W$BITMAP. If this value is omitted, the control uses the
bitmap most recently loaded by W$BITMAP.

BITMAP-NUMBER (numeric)

Use this property to display an image from a bitmap strip. A bitmap
strip is a series of images of equal width that are strung together
horizontally in a single bitmap file. The value of this property is the
number of the image in the strip, beginning on the left with “1”. You
can identify a particular image if you specify the width of the logical
image with the SIZE phrase and the number of the image with the
BITMAP-NUMBER property. The default value for this property is
“1”.

BITMAP-NUMBER is updated by the runtime to reflect the current
image shown when an animated bitmap is displayed. You can retrieve
this value with the INQUIRE verb.

5-24 Control Types Reference
BITMAP-RAW-HEIGHT

This property may not be invoked before the property
BITMAP-HANDLE has been set to a valid bitmap loaded with
WBITMAP-LOAD. The value returned is the image height in
device-independent pixels.

The value is read only, any attempt to MODIFY will fail. The
receiving variable should take into account a possible image size of 5
digits (PIC 9(5)). The receiving datatype typically is an integer, but
any numeric value is accepted.

BITMAP-RAW-WIDTH

This property may not be invoked before the property
BITMAP-HANDLE has been set to a valid bitmap loaded with
WBITMAP-LOAD. The value returned is the image width in
device-independent pixels. The value is read only, any attempt to
MODIFY will fail. The receiving variable should take into account a
possible image size of 5 digits (PIC 9(5)). The receiving datatype
typically is an integer, but any numeric value is accepted.

BITMAP-SCALE

This property is used to enable resizing of bitmaps. If not set, or set to
its default value of “0”, the bitmap cannot be resized. This means if the
size of the interior of the image is smaller than the image, the image is
cut to fit. If the interior is larger than the image size, the image size
does not increase to fill the interior.

If set to “1”, the bitmap will scale up or down to fit the interior given,
and no cutting of the bitmap occurs.

When setting this property, you must set it prior to setting the property
BITMAP-HANDLE to have any effect. For example:

SCREEN SECTION.
01 TEMPLATE-SCREEN.
 03 bmp BITMAP
 BITMAP-SCALE 1
 BITMAP-HANDLE GT-BITMAP
 SIZE 100 pixels
 LINES 200 pixels
 LINE 1
 COL 1.

Bitmap 5-25
With this new property, if you perform a MODIFY statement such as

MODIFY bmp SIZE = 200 LINES = 400.

the bitmap is resized accordingly and automatically. Note that you are
not limited to specifying pixel units; you may specify any legal display
unit.

Important considerations:

To keep the image from becoming blurred in the resizing process, do
not scale up or down in just one direction. For example, if you have an
image that is 200x300, increase or decrease the width and height, not
just one or the other.

If you enter an invalid resizing value for either the width or height, the
invalid entry will be ignored and the previous width or height value
will be used.

Resizing images is based on the image size, not the interior size. With
multiple resizes, you always will be resizing based on the original
image size, not the last resizing that you performed. This is done to
maintain the best image quality, as resizing a resized image can
degrade image quality.

Currently, only 24-bit colors are supported. If your bitmap is not 24
bit, you can use Microsoft paint to store the bitmap as 24 bit.

We recommend that jpeg files be used whenever possible, as they
appear to give the best resizing capability.

BITMAP-START, BITMAP-END (both numeric)

These properties are used when you want to animate a bitmap. Like
BITMAP-NUMBER, the value of BITMAP-START is the number of a
particular image in a bitmap strip, specifically, the first one to use
during animation. Animation runs sequentially in the strip from
BITMAP-START to BITMAP-END, looping back to
BITMAP-START. If BITMAP-START is not set smaller than
BITMAP-END, the control sets BITMAP-START equal to
BITMAP-END. The default value for each property is “1”.

5-26 Control Types Reference
BITMAP-TIMER (numeric)

This property is used for bitmap animation. Its value is the amount of
time each bitmap image is displayed during animation, in hundredths
of seconds. When this property is set to “0”, the bitmap is not
animated. Setting the property to a negative value has an undefined
effect.

TRANSPARENT-COLOR (numeric)

Use this property to designate “transparent regions” in a bitmap. This
is done by reserving one of the colors in the bitmap as the “transparent”
color. Any points in the bitmap that contain this color will not be
displayed when the bitmap is drawn, allowing the background to show
through. This can be useful if you want to integrate a logo onto a
screen in a way that accommodates the user’s choice of desktop colors.

To designate a transparent region, choose one color in the bitmap to be
the “transparent” color. Then, set the TRANSPARENT-COLOR
property to the RGB color value of this color. The RGB color value is
computed by the following formula:

 (red * 65536) + (green * 256) + blue

where red, green, and blue are values between 0 and 255. You can use
a hexadecimal numeric literal to express this value since each
component of the color occupies one byte in a binary value. For
example, the following literal expresses an orange color with red at
255, green at 128, and blue at 0:

 78 orange value x#FF8000.

The first byte (x ‘FF’) is the red value, the second byte (x‘80’) is the
green value, and the last byte (x‘00’) is the blue value.

If you set TRANSPARENT-COLOR to “-1” (the default), then the
transparency property is turned off and all colors display normally.

Setting TRANSPARENT-COLOR to the hex value “x#1000000” will
automatically specify the pixel in the upper-left corner of a bitmap as
the “transparent” color. (This is the level 78 constant
“BM-CORNER-COLOR” in “acugui.def”.) You do not need to know
the exact color of that pixel to use this value.

Check Box 5-27
In order to avoid flashing, the runtime will not update the region
“under” a transparent bitmap once it is in place. One effect of this is
that if you animate a bitmap with transparent regions, you must ensure
that those regions are the same in each frame of the animation, or the
image will blur.

5.5.3 Events

Bitmaps do not generate events.

5.6 Check Box

The CHECK-BOX control provides a box that the user can check or uncheck.
These controls typically present a series of options that can be independently
enabled.

5.6.1 Common Properties

The set of check box common properties includes:

TITLE

Check boxes may have titles. The title typically appears to the right of the
check box. The TITLE phrase is used to specify the title. A key letter may
be specified in the title (see Section 6.4.9 in Book 3, Reference Manual).

5-28 Control Types Reference
VALUE

Check boxes have numeric values. A value of “0” indicates the absence of a
check mark. A value of “1” indicates the presence of a check mark.

SIZE

The LINES and SIZE values describe the size of the check box’s title area.
The LINES value specifies the number of lines tall the title area will be. The
SIZE value specifies the width of the title area, using the width of the “0”
(zero) character as the base unit. Added to the title area is overhead needed
for the actual check box. This usually adds several character positions to the
width, and may affect the height if the check box is taller than the title’s font.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, replace the values specified by
the LINES and SIZE phrases.

LINES has a default value of “1”. The default value of SIZE is computed by
measuring the length of the title using the check box’s font and dividing by
the width of the “0” (zero) character. Thus, the default width of a check box
exactly occupies the space its text takes up on the screen.

When the BITMAP style is used, the LINES and SIZE values have a different
meaning. The values are the number of pixels in the height and width of the
bitmap image (see section 3.8.1, “Creating a Paged List Box,” for details).
If omitted, the default values depend on the host system. Under Microsoft
Windows, the default LINES value is “15” and the default SIZE value is
“16”. These correspond to the size of buttons typically found on a toolbar.

COLOR

Check boxes use both the foreground and background colors specified. If
either is omitted, the corresponding color of the check box’s owning
subwindow is used.

Bitmap check boxes do not use the specified colors. Instead the colors are
derived from the bitmap and the system defaults for push buttons.

Check Box 5-29
EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See section 6.4.9, “Common Screen Options,” in
Book 3.

STYLES

BITMAP

This style causes the check box to be drawn with a bitmap instead of its
normal appearance. See section 3.8, “Paged List Boxes,” for a
complete description.

FRAMED

This style is used only with bitmap buttons. It requests that a thin
frame be drawn around the button. Typically this appears as a thin
black line. Not all systems support frames, in which case the request is
ignored. By default, buttons are framed under Windows NT/Windows
2000.

UNFRAMED

This style is used only with bitmap buttons. It requests that the button
be drawn without a frame. Not all systems support unframed buttons,
in which case the request is ignored. By default, buttons are not framed
under Windows 98.

SQUARE

This style is used only with framed bitmap buttons. It forces the button
to have square corners. Without this style, the button will have slightly
rounded corners.

SELF-ACT

This style creates a self-activating check box. A SELF-ACT check box
behaves in the same way as a SELF-ACT push button (see the Push
Button section above for details). Self-activating check boxes return
control to the previously active control or window when they are
clicked. Typically, you will want to use the NOTIFY style (below) in
conjunction with SELF-ACT, so that your program is informed
whenever the check box is clicked.

5-30 Control Types Reference
NOTIFY

This style tells the runtime to generate a CMD-CLICKED event
whenever the value of the check box is changed by the user. This
allows your program to respond immediately to the change. In
essence, the check box acts like a combination check box and push
button. Without the NOTIFY style, the check box remains active after
it has been changed (exception: see SELF-ACT above).

LEFT-TEXT

Check boxes with this style display their text to the left of the box
instead of to the right. Note that if you use this style and try to
vertically align several check boxes, the boxes may not align vertically.
This is because the default behavior of the runtime is to place the right
edge of the check box at the minimum distance needed from its left
edge to accommodate the control’s text. This results in the boxes being
placed in different columns depending on the text of each control.
Supplying a uniform width using the SIZE property overrides this
behavior.

FLAT

On Windows systems, this style creates a check box without visible
borders. On non-Windows systems, this style has no effect.

MULTILINE

This style causes the check box to have a multi-line title. When the
MULTILINE style is applied, the check box’s title text is automatically
word wrapped to fit the check box’s size. You can force a line break in
the text by embedding an ASCII line feed character (h“0A”). The
MULTILINE style is ignored in character-based environments.

VTOP

This style causes the title text to be vertically aligned with the top of
the control’s area. By default, the title text is vertically aligned to the
center of the control’s area.

Check Box 5-31
5.6.2 Special Properties

BITMAP-NUMBER (numeric)

This property identifies the particular bitmap image to use with the
check box (see section 3.8, “Paged List Boxes,” for details). If you
explicitly name this property when creating the control, the BITMAP
style is automatically applied by the compiler. Note that this does not
occur if you use the PROPERTY phrase to specify this property (by
giving its identifying number).

BITMAP-HANDLE (handle)

This property identifies the bitmap image strip to use with the check
box. See section 3.8, “Paged List Boxes,” for details.

TERMINATION-VALUE (numeric)

This property works in a manner identical to the push button property
of the same name (see “Special Properties” paragraph for the push
button control in section 5.15). This property is used only when the
NOTIFY style is also used. The compiler applies the NOTIFY style
automatically if this property is named when the control is created.
Note that the NOTIFY style is not automatically applied if you use the
PROPERTY phrase to specify this property (by giving its identifying
number).

EXCEPTION-VALUE (numeric)

This property works in a manner identical to the push button property
of the same name. This property is used only when the NOTIFY style
is also used. The compiler will apply the NOTIFY style automatically
if you explicitly name this property when you create the control. Note
that the NOTIFY style is not automatically applied if you use the
PROPERTY phrase to specify this property (by giving its identifying
number).

5.6.3 Events
CMD-CLICKED
CMD-GOTO
CMD-HELP
MSG-VALIDATE

5-32 Control Types Reference
5.6.4 Examples

The following creates a simple check box:
DISPLAY CHECK-BOX, TITLE "Option &1",
 HANDLE IN CHECK-BOX-1.

Here is the Screen Section equivalent:
03 CHECK-BOX, "Option &1".

In this example, the check box starts out with a check mark in it:
DISPLAY CHECK-BOX "Option &2", VALUE 1,
 HANDLE IN CHECK-BOX-2.

It is common in Screen Section entries to assign a VALUE data item to the
box so that you can set and test the check box:
03 CHECK-BOX, "Option &3", USING OPTION-3-FLAG.

Here is a check box that can be dynamically disabled (grayed-out):
03 CHECK-BOX, "Option &4", USING OPTION-4-FLAG,
 ENABLED = BOX-4-ENABLED-FLAG.

5.7 Combo Box

A COMBO-BOX control provides the features of a list box and entry field
combined. The user may enter data into the entry field directly, or may select
a value from a list.

Combo Box 5-33
5.7.1 Common Properties

The set of combo box common properties includes:

TITLE

Combo boxes do not have titles.

VALUE

Combo boxes have alphanumeric values that represent the data in the entry
field portion of the control. For combo boxes with the DROP-LIST style, the
value represents the selected list item. In this case, the handling of the value
is the same as for list boxes.

SIZE

The SIZE value describes the width of the entry field portion of the combo
box. SIZE is calculated using the standard width of the font selected. The
LINES value describes the number of lines shown in the combo box. The
entry field portion of the box counts as one of the lines. The remaining lines
are part of the list box. Any overhead needed for boxes and other
sub-controls (such as scroll bars) is added to these values. Note that a vertical
scroll bar is automatically added when the number of items in the list exceeds
the value of LINES.

The default LINES value is “5”. The default SIZE value depends on whether
or not a VALUE is specified when the combo box is created. If a VALUE is
specified, the default SIZE value equals the size of the VALUE literal or data
item. Otherwise, the default SIZE is “12”.

On non-graphical systems, to show less data in the combo box than is present
in the data items, set SIZE to the desired width and MAX-TEXT to the length
of the longest data item.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, replace the values specified by
the LINES and SIZE phrases.

5-34 Control Types Reference
COLOR

Any foreground and background colors specified in the program are used. If
the background color is not specified, the owning subwindow’s background
color is used. If the foreground color is not specified, a system-default color
is used. Note that color handling in combo boxes is tricky, because there are
several components that make up a control. You will not be able to control
all of the colors shown using just foreground and background colors. For this
reason, we suggest using the default colors.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

DROP-DOWN

This style indicates that the list portion of the control is normally
hidden. To see the list, the user pushes a button shown beside the entry
field portion, causing it to drop down from the entry field. This is the
default style.

STATIC-LIST

This style causes the list to be permanently displayed on the screen.

DROP-LIST

This style is similar to the DROP-DOWN style, except that the entry
field is replaced by a static display of the currently selected list item.

UNSORTED

This style is the same as the list box style of the same name.

3-D

This style behaves identically to the 3-D entry field style of the same
name.

LOWER

This style converts all the text in the box to lower-case.

Combo Box 5-35
UPPER

This style converts all the text in the box to upper-case.

NOTIFY-DBLCLICK

This style causes the combo box to generate CMD-DBLCLICK events.
Normally, double-clicking on an item in the combo box has no special
effect. If you specify this style, double-clicking on an item will
generate a CMD-DBLCLICK event. This will usually terminate the
current ACCEPT statement and allow your program to act on the
selection immediately. You can also use an embedded EXCEPTION
PROCEDURE in the Screen Section to perform immediate processing.
Note that this style is generally useful only for STATIC-LIST style
boxes, because the other types of combo boxes close their drop-down
list as soon as the user clicks on an item (effectively preventing the
ability to perform a double-click). See also the
TERMINATION-VALUE and EXCEPTION-VALUE properties,
below, for related topics.

NOTIFY-SELCHANGE

This style causes the combo box to generate NTF-SELCHANGE
events. Normally, selecting an item in the combo box has no special
effect. If you specify this style, a selection change will generate an
NTF-SELCHANGE event. This allows your program to act
immediately on the new selection.

5.7.2 Special Properties

MAX-TEXT (numeric)

This property is the same as the entry field property of the same name.

ITEM-TO-ADD (alphanumeric)

This property is the same as the list box property of the same name.

MASS-UPDATE (numeric)

This property behaves the same as the list box property of the same
name.

RESET-LIST (numeric)

This property is the same as the list box property of the same name.

5-36 Control Types Reference
ITEM-TO-DELETE (numeric)

This property is the same as the LIST BOX property of the same name.

INSERTION-INDEX (numeric)

This property is the same as the list box property of the same name.

TERMINATION-VALUE (numeric)

This property produces the same behavior as the
TERMINATION-VALUE push button property, except that it acts on
the CMD-DBLCLICK event instead of the CMD-CLICKED event.
This property is used only when the NOTIFY-DBLCLICK style is also
used. The compiler applies the NOTIFY-DBLCLICK style
automatically if this property is explicitly named when the control is
initially created. Note that this does not occur if you use the
PROPERTY phrase to supply the property value (by giving its
identifying number).

EXCEPTION-VALUE (numeric)

This property produces the same behavior as the push button property
of the same name, except that it acts on the CMD-DBLCLICK event
instead of the CMD-CLICKED event. This property is used only when
the NOTIFY-DBLCLICK style is also used. The compiler applies the
NOTIFY-DBLCLICK style automatically if this property is explicitly
named when the control is initially created. Note that this does not
occur if you use the PROPERTY phrase to supply the property value
(by giving its identifying number).

5.7.3 Events
CMD-DBLCLICK
CMD-GOTO
CMD-HELP
MSG-VALIDATE
NTF-SELCHANGE

Combo Box 5-37
5.7.4 Using Special Keys

When a combo box has the input focus, the Home and End keys position the
cursor at the beginning or end of a line of text. The Page-Up and Page-Down
keys can be used to scroll the combo box. Setting KEYSTROKE
configuration entries does not affect these actions.

5.7.5 Examples

The first example creates a drop-down combo box (the default style) that
contains a one-line entry field and a four-line list box (total of five lines):

DISPLAY COMBO-BOX, LINES 5, HANDLE IN COMBO-BOX-1.

Here is the Screen Section equivalent. This definition also specifies a data
item in which the combo box choice will be stored:

03 COMBO-BOX-1, COMBO-BOX, TO COMBO-BOX-DATA, LINES 5.

Here is an example of code that adds 10 items to the combo box:
PERFORM VARYING IDX FROM 1 BY 1 UNTIL IDX > 10
 MODIFY BOX-1, ITEM-TO-ADD = BOX-DATA(IDX)
END-PERFORM.

The following combo box does not use a drop-down list (the list is always
displayed):

03 COMBO-BOX, USING BOX-DATA, STATIC-LIST, LINE 5,
 COLUMN 40, SIZE 20, LINES 8.

5-38 Control Types Reference
5.8 Date Entry

The date entry control provides a convenient way for users to enter date or
time values. The date entry control always stores a complete date and time,
even though, in most cases, only a portion of this information is shown to the
user. The control’s initial value is the date and time that the control is created.

The date entry control includes the following special features for date and
time handling:

• An integrated drop-down calendar from which users can select a date

• Standard date validation

• Flexible date and time formatting options

• A display format independent of the one used by your program to store
dates and times

• In some instances, automatic localization

Because the date entry control is a Microsoft control, there are certain
restrictions that apply to its use:

• The control can be used only in Microsoft Windows environments.

• Users of Windows NT 4.0 must have Internet Explorer 3.0 or later
installed on their system. This restriction does not apply to later versions
of the Windows NT operating system.

Date Entry 5-39
• The earliest date supported is January 1, 1752.

• There is no way to change the color of the control. The control always
uses the current system colors.

• The control has a 3-D border. This can be changed only on Windows XP
systems, which allow you to add an application manifest for the control.
Information about application manifests and Windows XP is available
from Microsoft.

• Because the date entry control has an intrinsic 3-D appearance, screens
containing this control look best if you use the WIN32_3D configuration
option for your other 3-D. This creates a consistent appearance.

• The date entry control does not have an “autoterminate” capability, so
the user must use the arrow keys or separator keys (such as “/” or “-”) to
move between the various fields of a date or time entry.

5.8.1 Common Properties

TITLE

Date entry controls do not use the TITLE property.

VALUE

The date entry control stores a value that is a complete date and time. The
format of this value as seen by your program varies depending on the
VALUE-FORMAT property. The initial value for the control is the date and
time the control is created.

Although the value of the control is alphanumeric, usual practice is to treat
the value as if it were numeric, setting and retrieving its value using numeric
variables. The runtime and the control perform any necessary conversions.

The control does not usually allow invalid date or time values. This can be
circumvented with the SHOW-NONE style, described below.

5-40 Control Types Reference
SIZE

Date entry controls determine height using a combination of font height plus
overhead of roughly 50 percent for the box and 3-D effect. The default
LINES setting is “1”.

Date entry controls calculate width by multiplying the SIZE setting by the
standard width of the font and then adding overhead for the box, 3-D effect,
and calendar drop-down button. In most cases, you will get good results by
setting the SIZE roughly equal to the number of characters in the formatted
display. The default SIZE value is “8”.

Note that a date entry control automatically makes small adjustments to its
specified size and position in order to better align with other
ACUCOBOL-GT controls that use the 3-D format.

COLOR

Date entry controls ignore any specified color settings. The actual colors
displayed are chosen by end-users in the Windows Control Panel. This may
result in an unusual appearance if a date entry control is added to a screen that
uses custom colors. The limitation is inherent to the underlying control.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

 CENTURY-DATE

This style uses nearly the same format as the SHORT-DATE style, but
the year portion always appears as four digits, even if the user has
specified a two-digit format in the Windows Control Panel. Users must
have Internet Explorer 5.0 or later installed to use this style
successfully.

Date Entry 5-41
 LONG-DATE

This style causes the date entry control to display a localized long date
format. The exact format of the long date depends on settings specified
by the user in the Windows Control Panel. In the United States, a
common long date format is “Monday, February 16, 2004”.

NO-F4

By default, the date entry control lets users open the calendar using the
“F4” key. This style prevents the control from using this shortcut,
reserving this key for your program’s use. Note that the “Alt+Down
Arrow” key combination also opens the calendar.

NO-UPDOWN

By default, the date entry control lets users scroll through the valid
values for each portion of the date or time using the up and down arrow
keys. This style disables these functions, reserving the arrow keys for
your program’s use. Note that users can still scroll through values in
the date entry control using the “+” and “-” keys on the numeric
keypad.

NOTIFY-CHANGE

This style causes the date entry control to generate an
NTF-CHANGED event each time the user changes the displayed date
or time. If this style is not specified, the program is only informed of a
new value in the control when the user leaves the field or performs a
terminating event (like pressing a function key).

RIGHT-ALIGN

This style causes the drop-down calendar to be roughly aligned with
the right edge of the date entry control. By default, the calendar is
aligned with the left edge of the control.

SHORT-DATE

This style causes the date entry control to display a localized short date
format. The exact format of the short date depends on settings
specified by the user in the Windows Control Panel. In the United
States, a common short date format is “02/16/2004”.

If no other format is specified, the control will default to the
SHORT-DATE format.

5-42 Control Types Reference
SHOW-NONE

This style adds a check box to the date entry control. When the check
box is selected, the control contains a valid date and/or time. When the
check box is unselected, the control behaves as if it had no value,
returning all zeroes instead of a date, or all nines instead of a time.

If you have created a date entry control with the SHOW-NONE style,
you can programatically cause the check-box to be unselected and the
value to appear grayed out by setting a date of zero or a time of all
nines. Likewise, by setting a valid date or time, you can cause the
check-box to appear selected and the value to appear normally.

To create a date entry control that uses the SHOW-NONE style and
starts with no date or no time, for example, you could use one of the
following statements:

DISPLAY DATE-ENTRY, SHOW-NONE, VALUE ZERO
DISPLAY DATE-ENTRY, SHOW-NONE, VALUE 999999

Note that the “999999” in the second example assumes the default
“HHMMSS” time format.

SPINNER

By default, a date entry control displays the date with a button used to
open a drop-down calendar. When you specify this style, that button is
replaced with small up and down arrows that can be used to modify
each portion of the date without referring to the calendar.

The spinner arrows appear by default when the date entry control
displays a time format.

TIME

This style causes the control to show a localized time format. The
exact format depends on settings specified by the user in the Windows
Control Panel. “10:35 AM” is a typical format.

If this style is set when the control is created, the VALUE-FORMAT
property is given the default value “DAVF-HHMMSS”. See the
description of the VALUE-FORMAT special property for more
information.

Date Entry 5-43
5.8.2 Special Properties

CALENDAR-FONT (handle)

Set this property to the handle of the font that you would like to use in
the drop-down calendar. If no value is specified, the calendar uses the
same font as the rest of the control.

DISPLAY-FORMAT (alphanumeric)

This property gives you the ability to display a custom date and time
format. When this property is set, its value takes precedence over any
SHORT-DATE, CENTURY-DATE, LONG-DATE, or TIME settings
that have been specified.

This property takes a string combining coded fields and quoted literals
as its value. The literals are displayed exactly as specified and are set
off by single quotation marks “ ' ”. The coded fields are replaced as
shown in the following table.

d Numeric day of the month, no leading zeros

dd Numeric day of the month, with leading zeros

ddd Three-letter abbreviation for the day of the week

dddd Full name of the day of the week

M Numeric month, no leading zeros

MM Numeric month, with leading zeros

MMM Three-letter abbreviation for the month

MMMM Full name of the month

y Last two digits of the year, without leading zeros if less than 10

yy Last two digits of the year

yyyy All four digits of the year

h Hours without leading zeros (12-hour clock)

hh Hours with leading zeros (12-hour clock)

H Hours without leading zeros (24-hour clock)

HH Hours with leading zeros (24-hour clock)

m Minutes without leading zeros

5-44 Control Types Reference
For example, the format string “dd'-'MMM'-'yyyy” would create
output like “16-Feb-2004”.

VALUE-FORMAT (numeric)

This property defines how the date entry control exchanges data with
your program. It establishes the format of the control’s value. The
default VALUE-FORMAT corresponds to the date/time style, as
follows:

The following formats, defined in “acugui.def”, are available:

DAVF-YYYYMMDD (value 0): The control’s value is expressed as an
eight-digit number. The first four digits are the year, followed by two
digits for the month and two digits for the day. This is the default format,
unless the TIME style was specified when the control was created.

DAVF-YYMMDD (value 1): The control’s value is expressed as a
six-digit number. The first two digits are the year, followed by month
and day.

DAVF-HHMMSShh (value 2): The control’s value is expressed as an
eight-digit, 24-hour time value, including hundredths of a second. The
first two digits are the hour, then minutes, seconds, and hundredths.
Note that even though the date entry control cannot display hundredths
of a second, it will nonetheless hold the value.

mm Minutes with leading zeros

s Seconds without leading zeros

ss Seconds with leading zeros

t One-character time-marker string (for example, “a” and “p”)

tt Multi-character time-marker string (for example, “AM” and
“PM”)

SHORT_DATE DAVF_YYMMDD

CENTURY_DATE DAVF_YYYYMMDD

LONG_DATE DAVF_YYYYMMDD

TIME DAVF_HHMMSS

Entry Field 5-45
DAVF-HHMMSS (value 3): The control’s value is expressed as a
six-digit, 24-hour time value. The first two digits are the hour, followed
by minutes and seconds. This is the default format when the TIME style
is specified when the control is created.

DAVF-YYYYMMDDHHMMSShh (value 4): The control’s full date
and time is expressed as a sixteen-digit value. This combines the
DAVF-YYYYMMDD and DAVF-HHMMSShh formats, and is the only
format that contains both date and time information.

5.8.3 Examples

This first example builds a simple date entry control.
DISPLAY DATE-ENTRY, VALUE date-val-1.

Since no size or format information is provided, the control will be one line
high and eight characters wide, and show the date in the default
SHORT-DATE format.

Here is the equivalent Screen Section entry, with the addition of the
LONG-DATE style:
03 DATE-ENTRY, LONG-DATE, VALUE DATE-VAL-1.

5.9 Entry Field

5-46 Control Types Reference
An ENTRY-FIELD control is a region where the user can enter or modify
text. While entry fields are one of the simplest controls, they are also one of
the most complex because of the large number of options that affect them.

Entry fields can occupy multiple lines on the screen. For multi-line entry
fields, the system automatically performs word wrapping when the user
enters data into the field. For single-line entry fields, the system
automatically performs horizontal scrolling when the user enters more text
than the field can display.

Many editing keys are available to modify the text. These editing keys are
defined by the host graphical system, and cannot be defined by your
KEYSTROKE configuration entries. For example, under Windows, when
the cursor is in an entry field, the left-arrow key moves the cursor to the left
in the field. If the left-arrow key is redefined in the KEYSTROKE file to
perform another function, that function is ignored while the cursor is in the
entry field.

Character-based systems support two ways for users to insert data into an
entry field: insert mode and overtype mode. Windows systems support only
one mode: insert mode. By default, character-based systems use overtype
mode. If you are running your application on a character-based system and
would like Windows-style behavior (insert mode) for your users, you must
set the INSERT_MODE runtime configuration variable or have users press
the <Insert> key.

Entry fields are limited to 32K bytes of text. Memory is allocated as needed.

The set of the entry field control properties includes:

5.9.1 Common Properties

TITLE

Entry fields do not use titles.

VALUE

Entry fields take a numeric or alphanumeric value.

Entry Field 5-47
Conversion between the alphanumeric and numeric forms occurs
automatically if you specify a numeric value. This allows you to use numeric
data items with entry fields. When you use a numeric data item as an entry
field’s value, the runtime prevents the user from entering non-numeric data.

Note: Under Windows, you may encounter a peculiar behavior that looks
like a bug but is actually a limitation of the Windows systems. If your entry
field is formatted for numeric value and you paste non-numeric data into it
from the clipboard, the runtime has no way of checking and verifying that
the data is of a correct format, and as a result, the entry field will be allowed
to contain invalid data.

MULTIPLE

You may use the “VALUE IS MULTIPLE value” option with multi-line
entry fields. The value data item should be a one-dimensional table with no
subscript specified. The effect of the MULTIPLE phrase is to match each
line of the entry field to occurrences in the table. The first line is matched to
the first occurrence in the table, the second line with the second occurrence,
and so on. Occurrences that are larger than the number of lines in the entry
field are set to spaces when the entry field is accepted. The MULTIPLE
option makes it easy to process a large multi-line entry field in COBOL.

There is one important issue to consider when you use the MULTIPLE value
option. The runtime does not provide a way to limit the amount of text the
user can enter on a single line. Thus, the user could enter more text than a
single occurrence of the value data item can hold. Normally, to prevent the
user from entering extra data, you might set the width of the entry field to be
the same as the size of the value data item. However, this does not always
work, because entry fields typically use a proportionally spaced font. Some
characters are smaller than others, and the user can thus enter more of those
characters than the width of the entry field might suggest.

There are two possible ways of addressing this issue. One option is to use a
fixed-width font with the entry field. Then the width of the field matches the
number of characters that the user can enter. The other option is to use a
value data item that is larger than the width of the entry field. You will need
to experiment to find appropriate sizes. You might try a value data item that
is 20% larger than the entry field.

5-48 Control Types Reference
This issue is not normally a problem for single-line entry fields: the
MAX-TEXT property (see below) prevents the user from entering too much
data.

Finally, note that you can have a multiple-line entry field without using the
MULTIPLE value phrase. In this case, the entire contents of the entry field
are returned as a single string. Any carriage returns that the user enters
directly are kept as part of the string. Carriage returns implied by
word-wrapping are discarded.

SIZE

Entry fields determine their height by multiplying the LINES value by the
height of the entry field’s font. If the entry field is also boxed (the default),
then the space required for the box is added to the height.

Entry fields determine their width by multiplying the SIZE value by the
standard or wide font measure as described below. If the entry field is also
boxed, the space required for the box is added to the width. Entry fields have
a minimum width of at least one character.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, replace the values specified by
the LINES and SIZE phrases.

The default LINES value is “1”. The default SIZE value depends on whether
or not a VALUE is specified when the field is created. If a VALUE is
specified, the default SIZE equals the size of the VALUE literal or data item.
Otherwise, the default SIZE is “8”.

Setting the entry field’s width

Most controls, including entry fields, base their width on the width of the “0”
(zero) character in the control’s font. This usually works well because in
most fonts, the “0” character is slightly wider than the average character.
This means that the field is optimally sized for numeric data, and nearly
optimally sized for alphanumeric data (actually it is slightly oversized, which
is preferable because the user can enter data that is wider than average). In
cases where the user enters very wide data, the entry field will scroll
horizontally to fit all the data.

Entry Field 5-49
However, there are a few cases where this rule does not produce the best
results. To handle these cases, several special sizing rules apply to entry
fields.

The most pronounced problem arises when the input includes a lot of
upper-case data. Upper-case characters are quite a lot wider than the average
character (“0”), so when there are many upper-case characters they often do
not fit in the space allotted by the normal rule. Therefore, additional rules
handle two cases: (a) upper-case-only fields, and (b) small fields. Small
fields require special handling because they tend to be coded fields (which
are usually shown in upper-case). Also, scrolling in small fields feels odd to
most users while scrolling in large fields is familiar.

To do a better job with these cases, the runtime employs a second font
measurement. The second measure averages the width of the “0” (zero)
character with the width of the maximum-width character in the font. This
value is approximately the size of the average upper-case character in most
fonts. We call this measurement the wide font measure. The size of the “0”
character is known as the standard font measure.

When the runtime constructs an entry field, the first applicable rule from the
list below is used to determine the entry field’s physical size. Overhead for
the entry field’s box, if present, is added to this width.

1. An entry field is never allowed to be smaller than the size of the
maximum width character. This ensures that at least one character of
data is visible in the field.

2. If the field has the NUMERIC style, then its SIZE is multiplied by the
standard font measure (i.e., numeric fields are normal).

3. If the field has the UPPER style, and the configuration variable
EF-UPPER-WIDE is non-zero, then its SIZE is multiplied by the wide
font measure (i.e., upper-case fields are wide).

4. If the field’s SIZE is less than or equal to the value of the configuration
variable EF-WIDE-SIZE, then its SIZE is multiplied by the wide font
measure (i.e., small fields are wide).

5. Otherwise, its SIZE is multiplied by the standard font measure (i.e.,
everything else is normal).

5-50 Control Types Reference
The default setting of EF-UPPER-WIDE is “1” (“on”). The default setting of
EF-WIDE-SIZE is “5”.

Tips

1. If your users will primarily enter upper-case characters in your
application, you can set EF-WIDE-SIZE to a large value (for example
“1000”) to ensure that all of your non-numeric fields allow enough space
for upper-case entry.

2. If you want to ensure that the standard measure is always applied, set
both EF-WIDE-SIZE and EF-UPPER-WIDE to zero.

3. If your upper-case fields are still too narrow (because, for example, you
tend to use upper-case “W” frequently), you can increase the entry
field’s size further with the FONT-WIDE-SIZE-ADJUST configuration
variable.

For a detailed description of the FONT-SIZE-ADJUST and
FONT-WIDE-SIZE-ADJUST configuration variables, see Book 4,
Appendices, Appendix H.

COLOR

Entry fields will use any specified foreground or background color. If either
color is omitted, then that color uses a system-dependent default value. On
most systems, the default foreground is black and the default background is
white. Under Microsoft Windows, the default values are determined by the
settings defined by the user in the Control Panel (usually black on
bright-white). These system-dependent default colors are not transformed or
mapped by the runtime’s color-handling configuration options.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

Entry Field 5-51
STYLES

NUMERIC

 This style causes the entry field to accept only numeric data. The
NUMERIC style is applied automatically to any entry field that has a
numeric or numeric-edited VALUE specified for it before it is created.
As a result, you do not normally need to specify this style explicitly.
Use this style when creating an entry field that does not have an initial
value, but which needs to be restricted to accepting only numeric data.

NO-BOX

On most host graphical systems, entry fields are boxed (on
character-based systems, they are not). The NO-BOX style prevents
the box from being shown. Generally speaking, boxed entry fields are
preferred stylistically, but you may need to omit the box in order to
conserve screen space.

BOXED

On graphical systems, this style causes a box to be drawn around the
entry field (the default). You can use the BOXED style to override the
FIELDS_UNBOXED configuration variable for individual entry
fields.

3-D

This style causes the entry field to appear inscribed into the surface of
the screen. This looks similar to the LOWERED frame style (see
“Frames” in section 5.10, below). The runtime uses the background
color of the floating window to determine how to draw the frame. The
background color is set when the window is created and each time the
window is erased. This color must be one of the low-intensity standard
colors, except for black (color numbers 2-7). Any other background
color will prevent the 3-D effect from displaying. Only boxed entry
fields will display 3-D effects.

LEFT

This style causes the value to be shown left-justified in the entry field
(the default). Changing this style after the control has been created has
no effect.

5-52 Control Types Reference
RIGHT

This style causes the value to be shown right-justified in the entry field.
This style implies that the entry field is MULTILINE. Changing this
style after the control has been created has no effect.

CENTER, CENTERED

This style is supported only in Windows. It centers the text in the entry
field. This style is allowed on other systems, but it has no effect.
Changing this style after the control has been created has no effect.

MULTILINE

This style indicates that the field can display and accept more than one
line of text. An entry field created with a LINES setting of two (2) or
more automatically has this style applied to it, unless the CELLS
phrase is also used or implied. For this reason, you usually will not
need to specify this style explicitly.

Note: An entry field created with the CELLS phrase following the
“LINES value” phrase has the single-line style applied to it by default.

VSCROLL

This style allows the user to scroll the contents of the entry field
vertically. Without this style, the user may not enter more lines of text
than the entry field can hold. With this style, the field will scroll as
needed to allow the user to enter multiple lines of text. This style
automatically implies the MULTILINE style.

VSCROLL-BAR

This style is identical to the VSCROLL style, with the addition that a
vertical scroll bar is placed to the side of the entry field. The size of the
entry field is extended to include the space needed by the scroll bar.

USE-RETURN

The Enter (or “Return”) key typically terminates entry. If you specify
the USE-RETURN style, the Enter key is instead used to start a new
line within the entry field, when the field is active. Without this style,
pressing Enter (normally) terminates input.

Entry Field 5-53
USE-TAB

The Tab key is typically used to move between fields. If you specify
the USE-TAB style, the user can enter a tab within the entry field when
the field is active. This prevents the user from using the Tab key to
leave the field.

LOWER

This style converts all keyboard entry to lower-case for this field. This
style can be changed to UPPER with the MODIFY statement after the
control has been created.

UPPER

This style converts all keyboard entry to upper-case for this field. This
style can be changed to LOWER with the MODIFY statement after the
control has been created.

NO-AUTOSEL

Normally, when an entry field is activated, all of its current contents
are selected and highlighted (exception: if the field is activated by the
mouse, this does not occur). This allows users to replace the entire
contents of the field by simply typing in a new value (they can edit the
current contents by using editing keys, or keep the current value by
terminating the field). The NO-AUTOSEL style prevents the
automatic selection from occurring. This is most commonly used on
large multi-line entry fields.

READ-ONLY

This style prevents the user from typing or editing data in the entry
field. In all other respects, the entry field behaves normally.

SECURE

This style prevents the characters that are entered into the field from
being displayed on the screen. In place of each character, an “*” is
displayed. This style is normally used with fields that take a password.
This style is not available with MULTILINE entry fields.

SPINNER (Available only for Windows-based systems.)

This style attaches up and down arrow buttons to the right side of the
entry field. When the user clicks on the up arrow, your program
receives a MSG-SPIN-UP event. Clicking on the down arrow

5-54 Control Types Reference
generates a MSG-SPIN-DOWN event. Your program would normally
respond to these events by incrementing or decrementing the entry
field’s value. Refer to the AUTO-SPIN style for simplified handling.

Note: The SPINNER style may be used only with a single-line entry
field. It is ignored if you specify MULTILINE, or if you have an entry
field that has more than two lines. In addition, a technical limitation of
Windows prevents spinners from being used by entry fields with
RIGHT or CENTER justification. This limitation stems from the fact
that Windows requires a multiline entry field to use these styles (even
if the entry field shows only one line). Windows interprets the up and
down arrows as vertical scrolling messages to this “multiline” field.

Using the SPINNER with a 3-D entry field produces a look
significantly different when you use the WIN32-3D configuration
option.

AUTO-SPIN

Similar to the SPINNER style, AUTO-SPIN provides a more
simplified way of handling spinners by automatically updating the
value of the entry field. When the user clicks the up arrow, the
control’s value is incremented by one. The down arrow decrements the
value by one. The entry field uses the properties MIN-VAL and
MAX-VAL to set the allowed range of values. When the user modifies
the entry field’s value, the AUTO-SPIN style interprets the current
value as an integer and sets the resulting value as an integer. This
could have non-obvious results if the field contains something other
than an integer when the arrows are clicked. The AUTO-SPIN is only
available to entry fields that are left justified.

Entry fields with the AUTO-SPIN style still generate MSG-SPIN-UP
and MSG-SPIN-DOWN events. This occurs before the value is
changed. If your program sets EVENT-ACTION to
EVENT-ACTION-FAIL in response to these events, AUTO-SPIN does
not change the value of the entry field. This allows you to do
additional range checking; you can also substitute a different value by
setting the entry field’s value directly in response to the event.

Entry Field 5-55
Note: The behavior of an entry field control with the SPINNER,
MIN-VAL, and MAX-VAL properties is determined by its event
procedure, which processes messages from the spinner arrows. If your
COBOL program does not use an event procedure, the behavior is as
follows:
When the user enters a value that is outside the permitted range and
then uses the spinner arrows to increase or decrease it, the value of the
field is incremented or decremented as required. Then if the value is
below MIN-VAL, it is set equal to MIN-VAL, and if the value is above
MAX-VAL, it is set equal to MAX-VAL.

AUTO

This style causes the entry field to terminate as soon as it is filled by
the user. A field is considered filled when the number of characters it
contains equals its MAX-TEXT setting (see below). You may also use
the words “AUTOTERMINATE” and “AUTO-SKIP” as synonyms for
AUTO. This provides compatibility with text-mode COBOL.

NOTIFY-CHANGE

This style causes the entry field to generate NTF-CHANGED events.
An NTF-CHANGED event is generated whenever the user changes the
value of the entry field. Use this style when you need to track
character-by-character changes to an entry field. Note that if you use
this style with AUTO, the auto-termination status will take precedence
over the NTF-CHANGED event (i.e., when the user fills the field, the
field will auto-terminate instead of generating an NTF-CHANGED
event).

5.9.2 Special Properties

MAX-TEXT (numeric)

This property limits the maximum number of characters that can be
entered by the user into the field. This includes any characters
generated by entering a return in a multi-line field. If the user attempts
to enter more characters than allowed, the system’s bell sounds. By
default, this property is set to the field’s SIZE setting (rounded up to
the next whole integer) multiplied by the LINES setting (truncated to
the next lower integer). For a single-line field, if you use the default

5-56 Control Types Reference
MAX-TEXT and SIZE settings, the user will not be able to enter more
characters than the field’s VALUE data item can hold. The default
MAX-TEXT setting is made when the control is created. After that,
the setting changes only if you explicitly change it.

If MAX-TEXT is set to zero, the only limits placed on keyboard input
are those imposed by the host system.

To make a single-line entry field that scrolls horizontally, you would
typically make the SIZE smaller than the size of the VALUE data item,
and then set MAX-TEXT to be the size of the VALUE data item. See
below for an example.

MAX-LINES (numeric)

This property limits the total number of lines that the user can enter in
a multi-line entry field. If the user tries to enter more lines, a message
box displays that informs the user that the box has too many lines.
When it is set to “0” (the default), the MAX-LINES setting is ignored.

Note: Regardless of how many lines are set or where in the Entry
Field the text is added, the control will accept no more than the number
of characters that keeps the total character count equal to the value set
in the MAX_TEXT property. This is standard behavior in a Windows
edit box.

CURSOR (numeric)

This property provides a way to position the cursor within the entry
field when the field is activated. You must use CURSOR in
conjunction with NO-AUTOSEL; otherwise, the default selection
logic will automatically reposition the cursor to the end of the field.

Note: When CURSOR equals “0”, the cursor is automatically
positioned by the host system. If CURSOR has a positive value, the
cursor is positioned at that character position (starting at “1”). For
example, if you assign CURSOR to “3”, the cursor is placed at the third
character (either on the third character or between the second and third
characters, depending on the appearance of the cursor).

Entry Field 5-57
Note: If you use the CURSOR property in a multiline entry field, it
will control the cursor position by counting the characters in the entry
field without regard to lines. Significantly, internal control characters
are also counted, which often makes it difficult to use the CURSOR
property effectively in a multiline entry field.

When CURSOR equals “-1”, all of the text in the entry field is selected
and the cursor is positioned to the end of the selection.

Ordinarily, this property is not needed. However, one example where
you might want to use it is in combination with the NOTIFY-CHANGE
style. As the user fills in the field, your program acts on each
keystroke. If you change the value of the field in response, the system
returns the cursor to column one of the field. Use CURSOR to
reposition the cursor to the point where the user was typing, or to some
other position in the field.

Note: If you use the CURSOR property in a Screen Section entry, you
should set it to “0” after you use it. If you leave it at a non-zero value,
the cursor will be repositioned to that value each time you DISPLAY
that Screen Section item.

CURSOR-COL (numeric)

This property controls and reports the cursor position in a multiline
entry field. Inquiring on CURSOR-COL returns the column number
(starting at 1) of the cursor. CURSOR-COL is often used
interdependently with the CURSOR-ROW property to determine the
exact position of the cursor with respect to the lines and columns of a
multiline entry field. For that reason, the two properties are discussed
together under the CURSOR-ROW paragraph (below).

CURSOR-ROW (numeric)

This property controls and reports the cursor position in a multiline
entry field. Inquiring on CURSOR-ROW returns the line number
(starting at 1) of the cursor.

Setting CURSOR-ROW alone has no immediate effect. However,
when you set CURSOR-COL, the values of CURSOR-ROW and
CURSOR-COL will be taken together to place the cursor at the

5-58 Control Types Reference
specified line and column. Thus you should always set
CURSOR-ROW before CURSOR-COL if you want to place the cursor
at a particular line and column.

If CURSOR-ROW specifies a value =0, the cursor will be placed at the
beginning of the entry field. If CURSOR-ROW specifies a line
number beyond the end of the text, the cursor will be placed at the end
of the text. If CURSOR-ROW is valid and CURSOR-COL specifies a
value =0, the cursor will be placed in column 1 of the specified line. If
CURSOR-ROW is valid and CURSOR-COL specifies a value greater
than the number of characters in the line, the cursor will be placed at
the end of the text in that line.

Note: In a single-line entry field, CURSOR-ROW is ignored when
set, and it always returns “1” when inquired. CURSOR-COL behaves
identically to the CURSOR property in a single-line entry field.

ACTION (numeric)

When set to a non-zero value, initiates a specific operation in the entry
field. The meaningful values are as follows:

See the COPY library “acugui.def” for the value names. Actions are
supported only under Windows. Specifying these actions under other
systems has no effect. Specifying a value other than one listed here has
no effect.

See the SET statement for a technique to automate the generation of
actions by other screen elements (such as push buttons or menu items).

ACTION-CUT Cuts the current selection to the clipboard

ACTION-COPY Copies the current selection to the
clipboard

ACTION-PASTE Pastes the clipboard contents into the entry
field at the cursor location. If any text is
selected, it is replaced by the paste
operation. Text pasted in excess of the
field’s capacity is truncated.

ACTION-DELETE Deletes the current selection

ACTION-UNDO Undoes the last change

Entry Field 5-59
MIN-VAL (numeric)

This property sets the lower bound for the range of numeric values the
user may enter into the entry field. The user may enter numeric values
between MIN-VAL and MAX-VAL (inclusive). This property also sets
the lower bound for the range of values used by the AUTO-SPIN style.
The value of MIN-VAL must be an integer in the range of -2147483647
to 2147483647. If both MIN-VAL and MAX-VAL are set to the
default (zero), no range checking is performed.

When the user enters a value that is out of range and shifts the input
focus away from the text box of the entry field control (i.e, clicks the
spinner or attempts to leave the control altogether), the entry field
displays a message box informing the user of the error. The default
error message reads “Please enter a value between min-val and
max-val”. You can change this with the TEXT configuration variable.

MAX-VAL (numeric)

This property sets the upper bound for the range of numeric values that
the user may enter into the entry field. Along with MIN-VAL, this
property is used for range validation; it is also used in conjunction with
the AUTO-SPIN style. See MIN-VAL for additional information.

SELECTION-TEXT (alphanumeric)

This property replaces the text currently selected in the control with the
value assigned to SELECTION-TEXT. If no text is currently selected,
the value is inserted at the current cursor location. When inquired, this
property returns the text currently selected, or spaces if nothing is
selected. Note that you can determine the exact text that is selected by
using the LENGTH option when inquiring on SELECTION-TEXT.
The following example displays a message box with the currently
selected text in quotes:

77 SEL-TEXT PIC X(100).
77 SEL-LEN PIC 9(3).

INQUIRE ENTRY-FIELD-1, SELECTION-TEXT IN SEL-TEXT,
 LENGTH IN SEL-LEN
IF SEL-LEN = ZERO
 DISPLAY MESSAGE BOX, "Nothing selected"
ELSE
 DISPLAY MESSAGE BOX,
 QUOTE, SEL-TEXT(1 : SEL-LEN), QUOTE
END-IF

5-60 Control Types Reference
If the selection spans multiple lines, any “soft” returns added internally
by the control to manage word-wrapping are omitted from the returned
value. Any “hard” returns (those inserted by the user via the <Enter>
or <Return> key) are represented by the two-character sequence h”0D”
h”0A” (carriage-return, line-feed).

Note: You generally should not place SELECTION-TEXT in the
Screen Section. If you do, every time you do a DISPLAY of that
screen item, the current value of SELECTION-TEXT replaces the
currently selected text.

AUTO-DECIMAL (numeric)

This property enables you to specify a minimum number of digits right
of the decimal point required for the automatic termination of the entry
field. When used as a property, the number of decimals should be
given like this:

AUTO-DECIMAL 2

This will auto-terminate the entry field once you have entered two
decimals.

When AUTO-DECIMAL is used as a property, the phrase “AUTO/
AUTOTERMINATE” is implied.

Note: There is a configuration variable, AUTO-DECIMAL, which,
when set to a non-zero value, performs the same function as the
AUTO-DECIMAL property. This variable is described in detail in
Book 4, Appendix H.

5.9.3 Events
CMD-GOTO
CMD-HELP
MSG-SPIN-UP
MSG-SPIN-DOWN
MSG-VALIDATE

Entry Field 5-61
NTF-CHANGED

5.9.4 Using Special Keys

When an entry field has the input focus, the Home and End keys position the
cursor at the beginning or end of a line of text. The Page-Up and Page-Down
keys can be used to scroll a multi-line entry field. Setting KEYSTROKE
configuration entries does not affect these actions.

5.9.5 Examples

This first example builds a simple entry field:
DISPLAY ENTRY-FIELD, HANDLE IN ENTRY-1.

Since no size information is provided, and no VALUE is specified, this field
will be one line high and eight characters wide.

In the next example, the entry field gets its initial contents and determines its
width from the VALUE data item:
DISPLAY ENTRY-FIELD, VALUE DATA-1,
 HANDLE IN ENTRY-1.

Here is the equivalent Screen Section entry, with the addition of the LOWER
style:
03 ENTRY-FIELD, USING DATA-1, LOWER.

You could also use the word VALUE instead of USING.

This next Screen Section entry describes an entry field that is roughly 10
characters wide on the screen but which can take up to 30 characters via
horizontal scrolling:
03 ENTRY-FIELD USING PIC-X-30-ITEM,
 SIZE 10, MAX-TEXT = 30.

Here is a Screen Section item (along with the relevant Working-Storage
items) that creates a 5-line entry box with a vertical scroll bar:

5-62 Control Types Reference
(Working-Storage)
01 DATA-TABLE-1, OCCURS 15 TIMES PIC X(40).

(Screen Section)
03 ENTRY-FIELD, VALUE MULTIPLE DATA-TABLE-1,
 LINES 5, SIZE 30, MAX-LINES = 15,
 VSCROLL-BAR, NO-AUTOSEL.

The above entry field will be 5 lines tall on the screen, but allow for 15 lines
of text. Notice that DATA-TABLE-1 is “PIC X(40)” while the SIZE of the
entry field is “30”. This provides extra space in DATA-TABLE-1 to allow for
the fact that an entry field of width “30” can hold more than 30 characters on
a given line. The NO-AUTOSEL style is not required, but would typically be
used for a scrolling, multiple-line field.

5.10 Frame

A FRAME is a simple box displayed on the screen. Use frames to group
together items, to create a progress (or status) bar, or to add visual interest to
the screen. Frames may have titles associated with them (which appear in
their border) and can have a variety of 3-D effects applied to them. A frame
may have only one 3-D style specified for it. If no 3-D styles are used, the
frame is drawn as a simple line.

Frames are unusual in that they draw on only a portion of their total area. The
interior of the frame is typically occupied by additional controls. Any
interior portion of the frame that is not occupied by another control is shown
as either spaces over the window’s background color or filled with a color
specified in the FILL-COLOR property. This means that you cannot display
textual data (e.g., Format 1 DISPLAY) inside a frame. If you need to create
a box around textual data, use DISPLAY BOX.

Frame 5-63
5.10.1 Common Properties

The set of FRAME common properties includes:

TITLE

A frame may have a title. It can appear in several possible positions,
depending on the value of the TITLE-POSITION special property. The
“TITLE” phrase is used to specify the title. A key letter may be specified in
the title (see Section 6.4.9, Book 3, Reference Manual).

VALUE

Frames do not have values.

SIZE

The LINES and SIZE values describe the area occupied by the frame, using
the frame’s font to determine the dimensions of the row and column. The
frame is drawn immediately inside the described area, except that the top or
bottom line of the frame is moved by half the height of the title font (even if
no title is specified). This allows the title, if any, to appear centered vertically
in the frame’s upper or lower line, depending on the value of the
TITLE-POSITION special property. However, if the FULL-HEIGHT style
(described below) is specified, the frame’s title will descend from the top of
the frame instead of being centered vertically. The default LINES value is
“5”. The default SIZE value is “12”.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, replace the values specified by
the LINES and SIZE phrases.

COLOR

For the default style, the foreground color is used when the frame is drawn.
The background color is not used. However, for the various 3-D styles, the
background color is the primary color used, and the foreground color is not
used. Normally, you want the background color to match the surrounding
area when drawing a 3-D effect. Frames use the current window colors as the
default foreground and background colors.

5-64 Control Types Reference
Note: If you are using the WIN32_NATIVECTLS runtime variable to
automatically enable XP or Vista control styles, and have frames with
labels, see the COLOR property of Section 5.12.1, “Common Properties”
for information on how the labels may display.

STYLES

HEAVY

This style causes the frame to be thicker or more pronounced than
normal. The exact effect depends on the other styles used.

VERY-HEAVY

This style creates a very heavy line or 3-D effect. Most of the 3-D
effects degrade somewhat when used with this style. However, you
should use this style whenever you use the ALTERNATE style.

ALTERNATE

This style creates an alternate look. To get the alternate look, you must
also specify either the HEAVY or VERY-HEAVY styles.

The default (NORMAL) style, when combined with the ALTERNATE
and VERY-HEAVY styles, produces a double-line frame. The runtime
accomplishes this by filling the middle pixel of the 3-pixel frame with
the background color.

The effect of ALTERNATE on the RAISED, LOWERED,
ENGRAVED, and RIMMED styles is described below under their
respective entries. All styles can be previewed on screen with the
FRAMES sample program.

RAISED

This is one of the four 3-D styles. The raised style causes the interior
of the frame to appear as if raised above the surface of the screen. We
suggest that you do not use a title with this style, because the title tends
to reduce the 3-D effect.

When combined with the ALTERNATE and VERY-HEAVY styles,
RAISED creates a frame that appears to have a raised area with a slight
rim around it.

Frame 5-65
Tip: Be careful when using this style that you don’t make a frame that
looks like a push button.

LOWERED

This is one of the four 3-D styles. This style causes the interior of the
frame to appear to be lower than the surface of the screen. We
recommend against using a title with this style, because the title tends
to spoil the 3-D effect.

When it is combined with the ALTERNATE and HEAVY (or
VERY-HEAVY) styles, LOWERED creates a frame that has a dark
border around the interior of the lowered region.

ENGRAVED

This is one of the four 3-D styles. This style causes the frame to appear
lower than the surface of the screen, while the interior of the frame
appears to be level with the surface.

When combined with the ALTERNATE and VERY-HEAVY styles, the
engraved area of the frame appears to be accentuated and deeper.
When ENGRAVED is used with the ALTERNATE and HEAVY styles,
the middle pixel of the 3-pixel frame is painted black instead of the
background color. This makes the framed region look like a separate
piece of the screen.

RIMMED

This is one of the four 3-D styles. This style causes the frame to appear
to be raised above the surface of the screen, while the interior of the
frame appears to be level with the surface.

When combined with the ALTERNATE and VERY-HEAVY styles, the
rim appears to be taller than usual.

FULL-HEIGHT

This style causes the top line of a frame to appear at the exact row
position specified. In this case, the frame’s title descends from the top
of the frame instead of being centered vertically. Use in conjunction
with TITLE-POSITION to adjust the frame title’s location.

To see how the different frame styles appear on your system, compile
and run the sample program “frames.cbl”.

5-66 Control Types Reference
5.10.2 Special Properties

HIGH-COLOR (numeric)

In order to draw the 3-D effects, the runtime requires three related
colors: the background color, and lighter and darker versions of that
color. The HIGH-COLOR property specifies the color number of the
brighter color. The LOW-COLOR property specifies the color number
of the darker color. If either of these values is zero, the runtime will
attempt to find default values. The runtime knows how to find colors
for the low-intensity versions of blue, green, cyan, red, magenta,
brown, and white (out of the default palette). If the background color
is not one of these colors, and either the HIGH-COLOR or
LOW-COLOR is zero (0), the 3-D effect will be ignored.

LOW-COLOR (numeric)

This property supplies the color number of the darker version of the
background color used to draw the 3-D styles. See HIGH-COLOR
above for a complete description.

FILL-COLOR (numeric)

This property establishes a color that fills a frame’s interior. The color
values range from 1 to 16. A value of “0” (the default) indicates that the
frame should have no fill color. The color acts like a background color
in terms of how color modification settings affect it. (Note that the
control’s background intensity setting can also affect this color.) For a
borderless colored area, make the frame’s color and the fill color the
same.

The specified fill color is used in the borders of the RAISED and
ENGRAVED styles, but not in the borders of the other 3-D styles.
Note that the frame’s title establishes its own background color, which
is visible only if it is not the same as the fill color. We recommend that
you do not insert titles on filled frames. (An exception is interior titles;
see the TITLE-POSITION property below.)

FILL-PERCENT (numeric)

This property allows you to fill a portion of a frame with the fill color.
The property’s value is the percentage of the frame filled, from 0 to
100. If the frame is taller than it is wide (in base units), then the fill
color is applied from the bottom of the frame up to the specified
percentage. Otherwise, the frame is filled with the indicated

Frame 5-67
percentage of fill color from left to right. You can use this property to
create a progress (or status) bar. The default value for this property is
“100”.

FILL-COLOR2 (numeric)

This property has the same range of values (1 - 16) as FILL-COLOR
but is used only if the value of FILL-PERCENT is less than “100”.
The color specified by this property is applied to the part of the frame
that is not filled by FILL-COLOR. If the value of FILL-COLOR2 is
“0” (the default), then no color is applied to the part of the frame not
already filled by FILL-COLOR.

TITLE-POSITION (numeric)

This property determines the position of the frame’s title, as follows:

1 Top left

2 Top center

3 Top right

4 Bottom left

5 Bottom center

6 Bottom right

7 Centered vertically and horizontally

Unless the FULL-HEIGHT style (described above) is in effect, a
TITLE-POSITION value of “1”, “2”, or “3” places the top of the frame
half a character lower than the specified position. A
TITLE-POSITION value of “4”, “5”, or “6” places the bottom of the
frame half a character higher than the specified position. With values
1 - 6, the frame’s title appears centered with respect to the frame’s
border.

TITLE-POSITION value “7” does not adjust the border position as
described above, nor does it have a background color. As a result, it
can be used with FILL-COLOR and FILL-PERCENT.

5-68 Control Types Reference
5.10.3 Events

Frames do not generate events.

5.10.4 Examples

The following creates a simple frame:
DISPLAY FRAME, LINES 7, SIZE 30.

Here is a frame with a title specified in the Screen Section:
03 FRAME, "Options", SIZE 15, LINES 7.

Here is a frame that has the visual effect of having a dramatically raised
surface:

03 FRAME, LINE 4, COL 15, LINES 5, SIZE 25,
 RAISED, HEAVY.

Grid 5-69
5.11 Grid

The GRID control is a two-dimensional table of data fields. Each element of
this table, called a “cell,” can hold either text or a bitmap, or both. Grids are
relatively complex controls with many properties that you can use to
customize their appearance and behavior.

Currently the grid control is supported only in Windows environments.
Attempting to create a grid control on other systems will fail, causing the
handle to be returned with the NULL value.

Grids are organized into rows, columns, and records. In a grid, a “row” is a
grouping of cells that appear on one line in the control. A “record” is one or
more rows that are treated as a logical unit. A “column” identifies a
particular cell in a record.

By default, a record occupies one row in a grid, but you can arrange for a
record to “wrap around” to the next row when it passes the right edge of the
grid. When this occurs, a record will occupy more than one row in the grid.
You might want to construct a grid like this when you want to see many fields

5-70 Control Types Reference
in a data record at once. Alternatively, you can have the grid use scroll bars
or wheelmouse events to access cells past the right edge of the control.
Column, row, and record numbers all start at “1”.

Grids come in two different formats: with horizontal scrolling and without.
When you opt for horizontal scrolling, each record may occupy only one row
in the grid. Grids with horizontal scrolling appear much like a spreadsheet.
Without horizontal scrolling, a record may occupy more than one row. In
either case, vertical scroll bars appear automatically when needed (providing
you allow them with the VSCROLL style).

A grid’s capacity is limited by available memory. The grid uses a sparse
storage technique in which records with no data have no memory allocated
for them. A grid may not have more than 100 columns. There are no other
practical limits (2 giga records (2,147,483,647 records) and 2 GB text per
record). A single cell may contain no more than 32766 bytes of text.

The grid operates in two different modes: navigate mode and entry mode.
While it is in navigate mode, the arrow keys move the cursor around the grid.
This is the default mode. The grid shifts to entry mode when the user starts
to modify data. In this mode, the arrow keys are used to edit the current cell’s
data. When the user finishes a cell, the grid returns to navigate mode.

The exact set of keys understood by the grid depends on the host system.
Under Windows, the following keys are used in navigate mode:

Up/Down Arrow moves cursor to the same column in the
previous/next record

Left/Right Arrow moves cursor to the previous/next column
in the record

Tab (with USE-TAB) moves cursor right, wrapping to next record
when at last cell in record

Backtab (with USE-TAB) moves cursor left, wrapping to the previous
record when at the first cell in record

Home moves to first column in record

Ctl-Home moves to first column of first record

End moves to last column in record

Grid 5-71
When in entry mode, the user types into an entry field control. All of the
editing keys usable by an entry field are usable here. The user leaves entry
mode by typing Enter or Tab/Backtab, or by clicking on another cell with the
mouse. The special property FINISH-REASON can be used to ascertain why
the user left entry mode.

Clicking a mouse on a cell moves the cursor to that cell. Double-clicking on
a cell shifts to entry mode.

Grids can have row and column headers. Use the ROW-HEADINGS style
to establish row headers and the COLUMN-HEADINGS style to make
column headers. Headers are normal cells with certain special traits as
follows:

1. Headers are always visible, regardless of how the user scrolls the grid.

2. The cursor does not move into a header cell.

3. The special properties HEADING-COLOR, HEADING-FONT and
HEADING-DIVIDER-COLOR apply only to header cells. The style
TILED-HEADINGS applies only to header cells.

4. The events MSG-HEADING-CLICKED,
MSG-HEADING-DBLCLICK, and MSG-HEADING-DRAGGED
apply only to header cells.

Otherwise, headers are normal cells. When you use column headers, record
“1” becomes the column headers. When you use row headers, column “1” of
each record supplies the row headers.

Ctl-End moves to first column in last record

Page Up/Down moves cursor up/down one page

Enter shifts to entry mode for the current cell;
highlights contents for editing

Shift-Enter moves cursor to the first column of the next
record

Any printable character shifts to entry mode for the current cell;
overwrites contents with character

5-72 Control Types Reference
The grid control can have different colors and fonts assigned to each cell. For
convenience, there are several ways this can be done. For example, you can
set the color for the grid as a whole, for a particular row or column, or for a
particular cell (in addition to other techniques). For a particular cell, there
could be several colors or fonts specified for it. The grid picks the color or
font to use by applying a priority list. The first item in the list that provides
the color or font is the one that is used. For colors, this is determined
independently for foreground and background colors.

For colors, the list of priorities is as follows (highest applying first):

• CURSOR-COLOR

• DRAG-COLOR

• REGION-COLOR

• CELL-COLOR

• HEADING-COLOR

• ROW-COLOR

• COLUMN-COLOR

• ROW-COLOR-PATTERN

• Grid’s overall color

For fonts, the following priority list is used:

• CELL-FONT

• HEADING-FONT

• ROW-FONT

• COLUMN-FONT

• Grid’s overall font

Currently, the grid control is available only under Windows.

Grid 5-73
5.11.1 Common Properties

TITLE

Grids do not have titles.

VALUE

A grid does not have a (single) value. You can set or inquire the contents of
each cell using the CELL-DATA property described below. You can also
retrieve an entire record at once with the RECORD-DATA property
described below.

SIZE

The SIZE of a grid is the number of characters across that you want to be
visible in the grid. This is measured using the grid’s default font. The LINES
of a grid is the number of rows you want to be visible. Note that this is not
the same as the number of records in the case where a record occupies more
than one row. Normally, you should ensure that the LINES setting of a grid
is an even multiple of the number of rows per record.

Space is added as needed to accommodate the grid’s scroll bars and any
border or grid lines.

COLOR

Grids will use any specified foreground or background color. If either color
is omitted, then that color uses a system-dependent default value. Under
Microsoft Windows, the default values are determined by the settings defined
by the user in the Control Panel (usually black on bright-white). Note that the
grid’s “color” is its default color. You can override this default for a specific
row, column, or cell using various special properties (see ROW-COLOR,
COLUMN-COLOR, CELL-COLOR, CURSOR-COLOR,
HEADING-COLOR and ROW-COLOR-PATTERN below). The grid uses a
priority rule for determining which color to use when several are specified for
a cell (for example, a cell that has a ROW-COLOR and a different
COLUMN-COLOR specified for it). This is discussed in detail in the
introduction to the grid above.

5-74 Control Types Reference
EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

3-D

Displays 3-D shading around the border of the control.

ADJUSTABLE-COLUMNS

Allows the user to change the size of the columns by dragging the
column dividers with the mouse. The grid must have only one row per
record for this style to have any effect. When the grid has column
headers, the user will be able to change the column widths only by
dragging the header dividers (this is to reduce the likelihood of the
user’s accidentally changing a column’s width when just clicking on a
cell). If the grid does not have column headers, then the user can drag
any part of the divider.

The minimum column size is “1”. The maximum is the visible portion
of the grid. If the grid allows for horizontal scrolling, then the
VIRTUAL-WIDTH property will change as the user changes column
sizes. When the user changes a column size, your program will be
informed via a MSG-COL-WIDTH-CHANGED message. Because
grids use integer character widths for measuring columns, the user will
not be able to place the column divider at just any pixel location. The
grid will adjust the location given by the user to the nearest character
position.

Note: Single column grids are not adjustable (the column already
occupies all of the grid’s display space). If a single column grid has the
ADJUSTABLE-COLUMNS property, the column may appear to be
adjustable, but when the user releases the mouse after dragging to
change the width, the column will return to its original width.

Grid 5-75
BOXED

Displays a border around the grid. If neither BOXED nor NO-BOX is
specified, then the default is machine-dependent. Under Windows, a
box is displayed.

CENTERED-HEADINGS

Draws column headings centered, regardless of the alignment of the
rest of the column. If this is not specified, then the column headings
match the alignment of the corresponding column. Note that the
alignment of row headings is specified as the first entry in the
ALIGNMENT property, so there is no need for any special row
heading alignment styles.

COLUMN-HEADINGS

Causes the first record to be treated as column headers. See the
discussion on headers above for details.

HSCROLL

Specifies a horizontally scrolling grid. A grid with this style may not
specify more than one row per record (see DISPLAY-COLUMNS
below).

NO-BOX

Causes the grid to display without a surrounding border. See BOXED.

NO-CELL-DRAG

Prevents the user from dragging a cell in a grid control. You can
configure NO-CELL-DRAG style to be the default setting for grid
controls by setting the "GRID_NO_CELL_DRAG" configuration
variable to “1” (on, true, yes). The default value is “0” (off, false, no)
and will enable the user to drag a cell in a grid control.

PAGED

Makes the grid a “paged” grid. Paged grids are typically used when the
number of records in the grid is too many for a normal grid. When you
set this style for a grid that contains data, records above the first visible
record and records after the last visible record are deleted. See section
3.9 for a complete description of paged grids.

5-76 Control Types Reference
ROW-HEADINGS

Treats the first column of each record as a row header. Note that this is
typically useful only when you have one record per row. See the
discussion on headers above for more details.

TILED-HEADINGS

Draws the headings with some shading that causes the headings to look
like tiles. This gives a light 3-D look to the grid. This style is effective
only if the background color for the heading cells is low-intensity and
not black. This looks best if you set the heading’s background color to
low-intensity white (i.e., gray) and set the heading’s divider color to
black. Using the constants found in the COPY library “acucobol.def”,
you can most easily specify this with:

HEADING-COLOR = BCKGRND-WHITE,
HEADING-DIVIDER-COLOR = BLACK

USE-TAB

Causes the grid to use the Tab and Backtab keys as navigation keys
within the grid. Without this style, the Tab and Backtab keys move
between the grid and other controls in the grid’s window.

VSCROLL

Specifies a vertical scroll bar for the grid. Grids without vertical scroll
bars may still contain more records than seen on the screen, and the
user can still reach these records using the keyboard. The usual reason
for creating a grid without a vertical scroll bar is if you are going to
limit the number of records to an amount that fits on the screen (see
NUM-ROWS below).

5.11.2 Special Properties

ACTION (alphanumeric)

Used only with paged grids, this property causes the grid to invoke its
paging logic in one of several ways. This simplifies the task of filling
the grid with its initial data. After creating a grid, you would typically
assign one of the following values to ACTION to load the initial page
of data that the user will see. The values of the following are level 78
data names found in “acugui.def”:

Grid 5-77
ACTION-FIRST-PAGE (value 10): Generates the grid’s
MSG-PAGED-FIRST event. This fills the grid with the first page of data
from the data source.

ACTION-LAST-PAGE (value 11): Generates the grid’s
MSG-PAGED-LAST event. This fills the grid with the last page of data
from the data source.

ACTION-CURRENT-PAGE (value 12): Empties the grid of any data
except for column headers and generates the grid’s
MSG-PAGED-NEXTPAGE event. If you position a data file using the
START statement before performing this action, the grid will fill the
page of data starting with the record selected by the START.

ACTION-PREVIOUS-PAGE (value 14): Generates the grid’s
MSG-PAGED-PREVPAGE event. This fills the grid with the previous
page of data from the data source.

ACTION-PREVIOUS (value 15): Generates the grid’s
MSG-PAGED-PREV event. This scrolls up to show the record before
the first record of the grid’s current data.

ACTION-NEXT (value 16): Generates the grid’s
MSG-PAGED-NEXT event. This scrolls down to show the next record
after the last record of the grid’s current data.

ACTION-NEXT-PAGE (value 17): Generates the grid’s
MSG-PAGED-NEXTPAGE event. This fills the grid with the next page
of data from the data source.

ACTION-HIDE-DRAG

Removes the DRAG-COLOR. See the description of the
DRAG-COLOR property below.

ALIGNMENT (alphanumeric)

Describes the alignment of each column in the grid. Each time you set
this property, you describe the alignment for the next column in the
grid, starting with the first. Setting this property to spaces clears the
previously specified alignments. Valid values are as follows (case does
not matter):

• “L” = left justified

5-78 Control Types Reference
• “R” = right justified

• “C” = centered

• “U” = unaligned

Unaligned data is displayed in the cell “as is.” Otherwise, leading and
trailing spaces are removed from the data, and it is justified as
specified. The default for unspecified columns is “unaligned.”

The following example sets various alignments for a three-column
grid:

ALIGNMENT = ("L", "R", "C")

BITMAP (numeric)

Places a bitmap in the cell identified by the X and Y properties. This
should be set to the handle of a bitmap loaded in memory (using the
WBITMAP-LOAD option of W$BITMAP). If it is set to zero, then
any existing bitmap is removed. You may place a bitmap in the same
cell as text. The bitmap is concatenated to the text (with a small
separation), and the whole unit is aligned as specified by the
ALIGNMENT property. When the user performs text entry in the cell,
the bitmap is hidden until the entry is complete. The same bitmap may
be placed in more than one cell. You should not destroy the bitmap
handle while any cells contain the bitmap.

BITMAP-NUMBER (numeric)

Identifies a particular image when you specify a bitmap strip as the
BITMAP for a cell. The first image in the strip is number “1”, the
second is number “2”, and so on. Images in a bitmap strip must be
uniform width, as specified by BITMAP-WIDTH. The cell affected is
identified by the X and Y properties. The default value is “1”.

BITMAP-TRAILING (numeric)

When set to “1”, this property indicates that the bitmap should follow
the text in the cell. When it is set to zero (the default), the bitmap
precedes the text. Other values have undefined effects. The cell
affected is identified by the X and Y properties.

Grid 5-79
BITMAP-WIDTH (numeric)

Identifies the width, in pixels, of the bitmap identified by BITMAP. If
the width is not set, then the entire bitmap is used. Used in conjunction
with BITMAP-NUMBER to select an image out of a bitmap strip. The
cell affected is identified by the X and Y properties.

CELL-COLOR (numeric)

Sets the color for the cell identified by the X and Y properties. The
color value specified uses the COLOR phrase values for both
foreground and background colors. The foreground and background
intensity of the grid is ignored—the value is treated as the final color
value. See COLOR above for related information.

CELL-DATA (alphanumeric)

When set, replaces the text data at the cell identified by the X and Y
properties with the specified value. When inquired, returns the text
data at that cell.

CELL-FONT (numeric)

Sets the font for the cell identified by the X and Y properties. This
should be set to a valid font handle.

CELL-PROTECTION (numeric)

Protects the individual cell identified by the X and Y properties from
being changed by the user. Set this property to “1” to protect a cell or
“0” to allow the cell to be changed. If the cell is protected, the user can
visit the cell, but not modify its contents. The appearance of the cell
does not automatically change when the cell is protected.

COLUMN-COLOR (numeric)

Sets the color for the entire column identified by the X property. The
color value specified uses the COLOR phrase values for both
foreground and background colors. The foreground and background
intensity of the grid is ignored—the value is treated as the final color
value. For example, to set column three’s color to dark blue (2) on
bright white (512), you could do the following:

MODIFY GRID-1, X = 3, COLUMN-COLOR = 514

You should be sure to set the X property before setting
COLUMN-COLOR. See COLOR above for related information.

5-80 Control Types Reference
COLUMN-DIVIDERS (numeric)

Sets the width, in pixels, of the column dividers. Each time you set this
property, you describe the width of the next column’s trailing
separator, starting with the first column. Setting this property to “-1”
clears the previously specified values. Unspecified columns use a
system-dependent default value. On graphical systems, the default
divider is one pixel wide. On character systems, the default divider is
omitted (zero pixels wide).

COLUMN-FONT (numeric)

Sets the font to use for the column identified by the X property. This
should be set to a valid font handle.

COLUMN-PROTECTION (numeric)

Protects the entire column identified by the X property from being
changed by the user. If this property is set to “1”, the column is
protected; if the property is set to “0”, the column is not protected. The
appearance of the column does not change when the column is
protected.

CURSOR-COLOR (numeric)

Sets the color for the cell containing the cursor. The color value
specified uses the COLOR phrase values for both foreground and
background colors. The foreground and background intensity of the
grid is ignored—the value is treated as the final color value. Note that
the cursor is normally hidden when the grid loses the focus. This
causes the cell containing the cursor to revert to its normal color. The
default cursor color is “0”. See COLOR and
CURSOR-FRAME-WIDTH for related information.

CURSOR-FRAME-WIDTH (numeric)

Determines how the cursor should display in the grid. When this is set
to a positive value, the cursor displays a frame that many pixels thick
around the cursor’s cell. The frame extends partially into the cell and
partially outside the cell. When this property is set to a negative value,
a light dotted line is drawn around the cell’s contents. The absolute
value of this property is the number of blank pixels between the cell’s
border and the dotted line. When it is set to zero, no cursor frame is
drawn. The default value is “3”.

Grid 5-81
CURSOR-X (numeric)

Identifies the column where the cursor is located. Setting this property
moves the cursor. Inquiring this property returns the cursor’s location.
Note that you may MODIFY this property during a MSG-VALIDATE
event to direct where the cursor should go after the user finishes an
entry into a cell. However, you should do this only if you are not also
forcing the user to stay in entry mode on the current cell. If you move
the cursor in response to other events while the user is in entry mode,
the results can be confusing.

CURSOR-Y (numeric)

Identifies the record where the cursor is located. Setting this property
moves the cursor. Inquiring this property returns the cursor’s location.
See CURSOR-X for additional comments.

DATA-COLUMNS (numeric)

This property describes where each column begins in records added to
the grid (see RECORD-TO-ADD). Columns are defined by character
positions in the raw data, with the first character being position “1”.
For example, the following data item:

01 LIST-DATA.
 03 NAME PIC X(20).
 03 PHONE-NUMBER PIC X(15).
 03 STATE PIC X(2).

would normally be displayed in three columns, one at position “1”
(NAME), one at position “21” (PHONE-NUMBER), and one at
position “36” (STATE). Each time you set DATA-COLUMNS to a
positive value, a new column is created at that position. Setting
DATA-COLUMNS to zero clears all the existing column definitions.
Note that there is always a column at position “1”, so setting position
“1” is not required. An example DATA-COLUMNS setting that would
match the LIST-DATA group item would be:

DATA-COLUMNS = (21, 36)

You can also specify DATA-COLUMNS using the
RECORD-POSITION construct. This is discussed in detail in Chapter
5.2.5 of the Reference Manual.

5-82 Control Types Reference
DATA-TYPES (alphanumeric)

Describes various entry characteristics of each column. Each time you
set this property, you describe the data type for the next column in the
grid, starting with the first. Setting this property to spaces clears the
previously specified data types.

A data type specification contains two components. The first is a
single character that describes the set of legal characters that the user
may type in this column. The set of possible values is:

You may specify the data type character in either upper or lower case.
After the data type character, you may specify the maximum number of
characters that may be entered in this column. This value is specified
in parentheses. Two values have special meanings: “0” indicates that
the maximum characters is set equal to the size of the column, and “-1”
indicates no limit other than those imposed by the internals of the grid
(i.e., 32766 characters). When a cell may contain more text than it can
display, the cell scrolls horizontally in a fashion similar to entry fields.

Character Description Characters Allowed

“X” Alphanumeric All characters

“U” Uppercase alphanumeric All characters —
automatically converted to
uppercase

“L” Lowercase alphanumeric All characters —
automatically converted to
lowercase

“9” Number Digits, local decimal point,
sign, space

“Z” Edited number Digits, sign, period, comma,
local currency symbol, “$”,
“*”, “/”, “%”, space

“I” Integer Digits, sign, space

“P” Positive integer Digits, space

“D” Date Digits, “/”, hyphen

“E” European Date Digits, “/”, hyphen, period

Grid 5-83
You may omit either part of the specification. If the data type part is
omitted, it defaults to “X” (all characters allowed). If the size is
omitted, it defaults to “0” (match the size of the column). These
defaults also apply to columns for which DATA-TYPES has not been
specified.

For example, to specify that a column should allow 30 uppercase
characters, specify “U(30)”. To create a column that allows only digits
for the width of the column, use “P(0)”, or just “P”.

Note: The data type character only limits which characters the user
can enter into the column. The grid itself does not further validate or
format the entered data. To do so, you should respond to the
MSG-FINISH-ENTRY event. The grid’s character filtering is
intended only to provide the first stage of validation by allowing only
characters that are appropriate for certain types of data.

DISPLAY-COLUMNS (numeric)

This property describes the number of columns and their location in the
grid. The first column always displays in column “1”. Additional
columns display at the locations set by DISPLAY-COLUMNS.
Columns are measured with the standard font. Each time you set
DISPLAY-COLUMNS to a positive value, a new display column is
defined. Setting DISPLAY-COLUMNS to “0” clears all of the
columns (except column 1). Usually, you set DISPLAY-COLUMNS in
a list, like this:

DISPLAY-COLUMNS = (1, 21, 35)

This example sets three columns, one starting at column “1”, the next
starting at column “21” and the last starting at column “35”. The last
column extends to the end of the grid (but see VIRTUAL-WIDTH
below).

In a grid without horizontal scrolling specified (see HSCROLL above),
you can have a record occupy multiple rows in a grid. To do this,
restart numbering columns at “1” after setting the first row’s columns.
For example, the following describes a grid with records that span two
rows, with three columns on the first row and two columns in the
second:

DISPLAY-COLUMNS = (1, 21, 35, 1, 21)

On the screen, one record of this grid would look something like this:

5-84 Control Types Reference
column 1 column 2 column 3

column 4 column 5

You can also use columns to hide data. A column set beyond the right
side of the grid is not visible on the screen. You can use this behavior
to store information in the grid that your program needs to associate
with records, but that you do not want to be seen by the user. One
potential use for this feature is to store a file record’s primary key value
in the hidden column so that you can retrieve the full record easily
when the user selects an item in the grid.

DIVIDER-COLOR (numeric)

Sets the color of the dividers for the grid. Set this to the color number
of the desired color (e.g. “1” for black, “9” for dark gray). The color
ignores the grid’s foreground and background intensity—it is treated as
the final color value. When this property is set to zero (the default), a
system-specific divider color is used. This color depends on the
background color for the grid.

DRAG-COLOR (numeric)

Sets the highlight color that’s applied to the rectangular area defined
when the user clicks and drags the mouse. DRAG-COLOR value
greater than zero defines a color to be applied using the COLOR phrase
values.

DRAG-COLOR is used for the same purpose as REGION-COLOR
(see the description of the REGION-COLOR property below for
details). You should use DRAG-COLOR instead of REGION-COLOR
when you want to allow users to highlight a block of cells by clicking
and dragging the mouse (REGION-COLOR has poor performance in
applications that run with the ACUCOBOL-GT Thin Client).

DRAG-COLOR is applied when the user begins a click-and-drag
operation.

DRAG-COLOR is removed when one of the following actions occur:

• The cursor is moved to a new cell after an MSG-END-DRAG event
is generated

• A heading is clicked

• An MSG-BEGIN-ENTRY event is generated

Grid 5-85
• The property ACTION is set to ACTION-HIDE-DRAG (level 78
found in “acugui.def”)

The DRAG-COLOR is hidden when the grid does not have focus.

If DRAG-COLOR is specified for a grid that has a menu defined for it,
the right-click of the mouse inside the drag region brings up the menu.
This allows the user to select a menu item intended specifically for a
marked region of the grid. The runtime determines whether or not a
grid has a menu immediately after the event
MSG-GRID-RBUTTON-DOWN completes.

DRAG-COLOR has a color priority above REGION-COLOR but
below CURSOR-COLOR.

END-COLOR (numeric)

Controls the color of the grid in the area past the end of the last column
or the end of the last row. In some cases, a blank area is visible. If this
property is set to zero (the default), this area is filled with the “button
face” color configured for the host machine (this is set in the Control
Panel under Windows). If it is set to a non-zero value, this value
represents the exact ACUCOBOL-GT color to use. These values range
from “1” (black) to “16” (bright white).

ENTRY-REASON (alphanumeric)

This property records the user’s action that caused the grid to shift to
entry mode. It is set immediately before the MSG-BEGIN-ENTRY
event is generated, and it is retained until overwritten by another
MSG-BEGIN-ENTRY event or until the grid is destroyed.

The encoding is a single PIC X character as follows:

x“00” A X“00” (binary 0, ASCII null) value indicates that
the user double-clicked on the cell

x“0D” A X“0D” (binary 13, ASCII carriage-return) value
indicates that the user pressed the <Enter> key

Otherwise Any other value is the key that the user pressed. For
example, if the user started typing “John,” then the
letter “J” is returned by ENTRY-REASON.

5-86 Control Types Reference
ENTRY-REASON can be only inquired. Setting it has no effect. You
may inquire on ENTRY-REASON during a MSG-BEGIN-ENTRY
event to determine what caused the current entry to start. Note that you
can then prohibit entry if you desire by moving
EVENT-ACTION-FAIL to EVENT-ACTION and returning from the
event procedure.

FILE-POS (numeric)

This property is used only for paged grids. The value of FILE-POS is
the grid’s record number that matches the current file position in the
corresponding data file. It is used to simplify the paging logic in your
program. FILE-POS computes the number of records that need to be
read in order to find the record needed by the grid. The grid uses this
value when generating MSG-PAGED-NEXT or MSG-PAGED-PREV
events.

The FILE-POS value will often be either the last visible record in the
grid or the first non-heading record visible. To illustrate, suppose that
you have a four-line grid with no headings. When you are moving
forward through the file, FILE-POS will usually be “4”, matching the
last record added to the grid. If the user clicks on the “Next Record”
button, the MSG-PAGED-NEXT event will indicate that only one
READ NEXT is needed to retrieve the appropriate record. However, if
the user clicks the “Previous Record” button, then the
MSG-PAGED-PREV event will indicate that four READ PREVIOUS
statements are needed to get the desired record. In this case, FILE-POS
will change to “1”, indicating that only one READ PREVIOUS is
needed to get another “previous” record while four READ NEXT
statements are needed to get the “next” record.

In addition, FILE-POS has three special values that are level 78 data
names defined in “acugui.def”. These values are listed below:

PAGED-AT-START
(value 2147418113)

When FILE-POS is set to this value, the grid
will not generate MSG-PAGED-PREV and
MSG-PAGED-PREVPAGE events.

Grid 5-87
 The grid automatically manages the FILE-POS, using the following
rules:

a. When a record is added to the grid in the topmost non-heading
position, FILE-POS is set to that position.

b. When a record is added to the grid or past the last grid record,
FILE-POS is set to that position.

c. If you set EVENT-ACTION-FAIL in response to a
MSG-PAGED-NEXT event, FILE-POS is set to PAGED-AT-END.

d. If you set EVENT-ACTION-FAIL in response to a
MSG-PAGED-PREV event, FILE-POS is set to
PAGED-AT-START.

e. If you set EVENT-ACTION-FAIL in response to a
MSG-PAGED-FIRST or MSG-PAGED-LAST event, FILE-POS is
set to PAGED-EMPTY.

f. If a MSG-PAGED-FIRST event sets EVENT-ACTION (this is the
default), FILE-POS is set to PAGED-AT-START.

g. If a MSG-PAGED-LAST event sets EVENT-ACTION, FILE-POS
is set to PAGED-AT-END.

h. If you reset the grid, FILE-POS is set to PAGED-EMPTY. Adding
records to the grid will change this value.

PAGED-AT-END
(value 2147418114)

When FILE-POS is set to this value, the grid
will not generate MSG-PAGED-NEXT and
MSG-PAGED-NEXTPAGE events.

PAGED-EMPTY
(value 2147418115)

When FILE-POS is set to PAGED-EMPTY,
it will not generate MSG-PAGED-NEXT,
MSG-PAGED-NEXTPAGE,
MSG-PAGE-PREV and
MSG-PAGED-PREVPAGE. Since it is
possible that other users will add records to
the file (that could be seen by re-reading it),
this value will still generate
MSG-PAGED-FIRST and
MSG-PAGED-LAST events.

5-88 Control Types Reference
The automatic handling provided here will correctly handle grids
whose data is coming from an indexed data file if you move the file’s
record pointer only in response to grid events (and only as required by
those events). In cases where you move the file’s record pointer
independent of a grid request, you will need to do one of the following:

a. Modify FILE-POS to reflect the actual record position. You may
use FILE-POS numbers outside of the range of available grid
records if needed. For example, if you position the file pointer one
record before the first record in the grid, set FILE-POS to “0”. Set
FILE-POS to “1” to point to the first record in the grid, “0” to
point to the record before that, “-1” to point to two records before
it, and so on. You can also use numbers larger than the last grid
record to indicate a position beyond the end of the grid.

b. Reposition the current file pointer to match the FILE-POS value.
You can do this by reading the appropriate record from the data
file again. Note that a START may not be good enough. START
positions the file pointer so that the next READ NEXT or READ
PREVIOUS returns the selected record. It may not return the
record positioned at either side of that record.

c. Ignore the positioning information passed into the
MSG-PAGED-NEXT and MSG-PAGED-PREV events, and the
positioning information supplied by the grid control. Supply your
own positioning logic. In this case, FILE-POS may be incorrect,
but FILE-POS is irrelevant at this point because you are not using
it. If you ignore the value of FILE-POS, you must decide whether
or not you will use the at-end or at-start feature of FILE-POS. If
you do not wish to use this feature, then do not set
EVENT-ACTION-FAIL in MSG-PAGED-NEXT and
MSG-PAGED-PREV events.

Any of the techniques mentioned above will work. Note, however, that
FILE-POS may be difficult to compute with the first technique because
it is often hard to tell how far apart two records are in an indexed file.

FINISH-REASON (signed integer)

This property tracks the reason why the grid user left entry mode and
entered navigation mode. Its value is set by the control immediately
before generation of a MSG-FINISH-ENTRY or a
MSG-CANCEL-ENTRY event. It can be inquired by the event

Grid 5-89
procedure for those events to determine why the user is leaving the
field she or he was entering. FINISH-REASON is normally only
inquired.

FINISH-REASON is a signed, integer property. It is set by the control
to a termination or exception value, or one of several preset values.
The preset values are described below along with the name of a
corresponding level 78 data item. These items are found in the COPY
library “acugui.def”.

Any other value indicates that the control received a termination or
exception value and FINISH-REASON is the value received. For
example, under the default keyboard configuration, if the user pressed
function key F1, FINISH-REASON is set to “1”. However, when the

-1 GRFR-BLANK-PAST-END This is a special case where the
entry was finished by the user
but canceled by the grid control
because the user entered spaces
into a blank row past the end of
the grid. Instead of “growing”
the grid in this case, the grid
rejects the user’s entry.

-2 GRFR-TERMINATING The grid control is terminating
in response to some external
event. A typical reason for this
would be if the user clicked on
another control or window.

-3 GRFR-CELL-CLICKED The user clicked on another cell
in the grid.

-4 GRFR-NAVIGATION-KEY The user pressed a navigation
key, such as an up or down
arrow. This is not generated for
the Tab key because that key is
sometimes a navigation key and
sometimes not.

-5 GRFR-ESCAPE-KEY The user pressed the Escape key.

-6 GRFR-ENTER-KEY The user pressed the Enter key.

-7 GRFR-TAB-KEY The user pressed the Tab key.

5-90 Control Types Reference
user’s action corresponds to a preset value, the preset value takes
precedence because the control directly processes those keys. For
example, if you configure the Tab key to return a termination value of
“9”, the control will still use a value of “-7” (GRFR-TAB-KEY) when
the user presses the Tab key.

HEADING-COLOR (signed integer)

Sets the color for header cells (both column and row headers). The
color value specified uses the COLOR phrase values for both
foreground and background colors. The foreground and background
intensity of the grid is ignored—the value is treated as the final color
value. See COLOR above for related information.

HEADING-DIVIDER-COLOR (numeric)

Sets the color to use for drawing row and column dividers in the
headings. Set this to the color number of the desired color. The color
ignores the grid’s foreground and background intensity—it is treated as
the final color value. Accepted values range from “1” (black) to “16”
(bright white). When this property is set to zero (the default), the
dividers in the headings are drawn using the same color as the dividers
in the rest of the grid.

HEADING-FONT (numeric)

Sets the font to use for row and column headings. This should be set to
a valid font handle. Note that HEADING-FONT takes precedence
over ROW-FONT and COLUMN-FONT, but not CELL-FONT.

HIDDEN-DATA (alphanumeric)

Allows the program to store data that is not displayed in a cell. A cell
can contain both displayed data (see CELL-DATA) and hidden data.
Hidden data is limited to 255 bytes per cell. Hidden data may be any
format, including non-printing characters.

Note: As with all properties that take a text value, when the value of
HIDDEN-DATA is stored, the runtime automatically strips trailing
spaces and low-values.

Grid 5-91
HSCROLL-POS (numeric)

This property controls the current scrolling position of the horizontal
scroll bar, specifying the column number of the left-most column
currently visible in the grid. When row-headings are used,
HSCROLL-POS specifies the column number that would appear in
column one of the grid if there were no headings.

Note that scrolling is limited to the normal scrolling range. If you
specify a value larger than the highest allowed value, the latter value is
used. If you specify a value less than “1”, you will receive undefined
results. If the grid does not allow scrolling in the specified dimension,
setting the property has no effect.

INSERT-ROWS (numeric)

When set to a positive value, this property inserts that many blank
records. These are added immediately before the record identified by
INSERTION-INDEX. See INSERTION-INDEX.

INSERTION-INDEX (numeric)

Setting this property to a positive value affects the location of records
added via RECORD-TO-ADD. When it is set to zero (the default),
records are added to the end of the grid. When INSERTION-INDEX is
positive, records are added immediately before the corresponding item
instead. For example, setting this to “1” causes the record to be
inserted as the first record of the list. When you finish adding the next
record, INSERTION-INDEX automatically resets itself to a value of
zero.

In statements that allow for multiple properties, the properties are set
in the order specified. Therefore, you can set both
INSERTION-INDEX and RECORD-TO-ADD in the same statement,
providing you specify INSERTION-INDEX first. For example, the
following statement will add a new record to the top of a grid:

MODIFY GRID-1,
INSERTION-INDEX = 1,
RECORD-TO-ADD = GRID-DATA-1

When you are inserting a record, the following properties are also
affected: ROW-COLOR, ROW-FONT, CELL-COLOR, CELL-FONT.
If these are specified for a record past the insertion point, then they will
be moved “down” one record. For example, if you have

5-92 Control Types Reference
ROW-COLOR specified for record “5”, and you insert record “3”, then
the ROW-COLOR will move to record “6”. This causes row and cell
properties to follow their data.

LAST-ROW (numeric)

When inquired, returns the record number of the last non-blank record
in the grid. Row headings are ignored in determining if a record is
blank. If the grid contains no non-blank records, LAST-ROW returns
zero.

MASS-UPDATE (numeric)

When set to a non-zero value, this property inhibits most (but not all)
updates to the screen by the control. This allows you to make multiple
changes to the grid faster, and with a smoother screen appearance.
When set to zero (the default), changes made to the grid are reflected
on the screen. Note that the act of setting this property to zero causes
the grid to repaint.

NUM-COL-HEADINGS (numeric)

This property determines the number of rows that will be treated as
column headings. When it is set to zero, the grid columns will not have
headings. When it is set to a positive value, this value will correspond
to the number of rows that will be treated as column headings. For
example, if you set the value of this property to “2”, the first two
records in the grid will be headings. Headings are always visible and
can be colored differently from the body of the grid. Specifying more
column headers than rows visible in the grid has undefined effects.

This property effectively supersedes the COLUMN-HEADINGS style.
If you specify COLUMN-HEADINGS, then a
NUM-COL-HEADINGS value of “0” is treated as if it were “1”. The
COLUMN-HEADINGS style has no effect when
NUM-COL-HEADINGS is set greater than zero. This rule provides
backwards compatibility with COLUMN-HEADINGS while still
allowing for a multi-row column header.

NUM-ROWS (numeric)

Determines the total number of records in the grid. When this property
is set to a positive value, the grid allows for exactly NUM-ROWS
records. When it is set to zero (the default), the grid extends to the last
record that has data defined for it. When it is set to “-1”, the grid

Grid 5-93
extends to one record past the last record that has data defined for it.
This provides a blank record at the end of the grid in which the user can
add new data. In the case of “0” and “-1”, the grid will grow as needed
when more records are added.

NUM-ROW-HEADINGS (numeric)

This property determines the number of columns that will be treated as
row headings. When it is set to zero, the grid rows will not have
headings. When it is set to a positive value, this value will correspond
to the number of columns that will be treated as row headings. For
example, if you set the value of this property to “2”, the first two
records in the grid will be headings. Headings are always visible and
can be colored differently from the body of the grid. Specifying more
row headers than columns visible in the grid has undefined effects.

This property effectively supersedes the ROW-HEADINGS style. If
you specify ROW-HEADINGS, then a NUM-ROW-HEADINGS
value of “0” is treated as if it were “1”. The ROW-HEADINGS style
has no effect when NUM-ROW-HEADINGS is set greater than zero.
This rule provides backwards compatibility with ROW-HEADINGS
while still allowing for a multi-column row header. (create, modify,
inquire)

RECORD-DATA (alphanumeric)

When set, replaces an entire record of text in the grid at once. You
must set DATA-COLUMNS beforehand to denote where each
column’s data starts. You must also set the “Y” property to indicate
which row you want to overwrite. If you specify a row that is past the
current end of the grid, the effect is the same as adding a new record at
that point. Otherwise, the row’s existing record is overwritten with the
new one.

When inquired, RECORD-DATA returns the data contained in the row
identified by property “Y”. This data is formatted according to
DATA-COLUMNS. If the requested row does not exist, the returned
value will be entirely spaces.

RECORD-TO-ADD (alphanumeric)

Adds an entire record of text to the grid at once. You must set
DATA-COLUMNS beforehand to denote where each column’s data
starts. The record is usually added at the end of the grid, but you can
change this by using INSERTION-INDEX. Note that the new record

5-94 Control Types Reference
is added to the grid - it does not overwrite any existing data. Also note
that RECORD-TO-ADD will not add an empty record. See
CELL-DATA for a way to add individual cells to a grid. See
INSERT-ROWS for a way to insert empty records.

RECORD-TO-DELETE (numeric)

Deletes an entire record from the grid. The value of this property is the
record number to delete. Deleting a record affects not only data, but
also ROW-COLOR, ROW-FONT, CELL-COLOR and CELL-FONT.
If any of these are specified for records following the one deleted, they
are moved “up” one record. This causes them to follow their current
data. So, for example, if record “5” has a ROW-COLOR specified for
it, and you delete record “3”, then the ROW-COLOR will now apply to
record “4”.

REGION-COLOR (numeric)

Sets the color for the region bounded by the rows START-Y and Y and
the columns START-X and X (inclusive). When you set
REGION-COLOR, any previous region color is removed and a new
region set. The boundaries of the region are set when
REGION-COLOR is set. Subsequent changes to X, START-X, Y or
START-Y have no effect on the region until the next time that
REGION-COLOR is set.

Region color is normally used to highlight an area being marked by the
user while dragging the mouse. To do this, usually all you need to do
is set REGION-COLOR to the desired color in response to a
MSG-GOTO-CELL-DRAG event. Note that when this event is
generated, START-X, X, START-Y and Y all have sensible values in
them, and they usually do not need to be set by your program.

Note: REGION-COLOR produces counter-intuitive results when you
are displaying more than one row per record. It should be avoided in
this case.

RESET-GRID (numeric)

When set to a non-zero value, empties the grid of data. In addition, any
ROW-FONT, ROW-COLOR, CELL-FONT and CELL-COLOR
settings are cleared. The cursor is positioned at the home cell (the
home cell is the uppermost, left-most, non-heading cell) and the grid is

Grid 5-95
scrolled to the home position. RESET-GRID is a one-time action.
Note that this clears the headings as well as the body of the grid. Also
note that both text and bitmap data are cleared.

ROW-COLOR (numeric)

Sets the color for the entire record identified by the Y property. The
color value specified uses the COLOR phrase values for both
foreground and background colors. The foreground and background
intensity of the grid are ignored—the value is treated as the final color
value. Note that although the property is called “ROW-COLOR”, it
actually refers to a full record, not just a row. See COLOR above for
related information.

ROW-COLOR-PATTERN (numeric)

Establishes a repeating color pattern to apply to the rows in the grid.
The first time you set this property, the specified color is applied to the
top row of the grid. The next setting is applied to the second row, and
so on. The pattern established then repeats throughout the grid’s
visible rows. The color value specified uses the COLOR phrase values
for both foreground and background colors. The foreground and
background intensity of the grid are ignored—the value is treated as
the final color value. Note that the color pattern is fixed to the visible
rows in the grid independently from the current vertical scroll position.
Scrolling through the grid does not change the visible aspects of the
color pattern. This prevents a “jittery” display while the user scrolls
vertically.

This example sets a two-row pattern where the first row will be
background white (512) and the second will be background yellow
(480). In both cases, the foreground is unspecified (zero added to the
value) and will come from some other source:

ROW-COLOR-PATTERN = (512, 480)

See COLOR above for related information.

ROW-DIVIDERS (numeric)

This property establishes the width (in pixels) of the row dividers.
Each time you set this property to a nonnegative value, you set the
width of the divider for one row of a record. The first setting applies
to the first row, the second to the second row, and so on. The pattern
established for one record repeats throughout the grid. You can clear

5-96 Control Types Reference
the list of divider settings by assigning a value of “-1”. Unspecified
dividers use a system-dependent default width. The default divider is
one pixel wide.

Assuming two rows per record, the following example would create a
pattern where records were divided from each other by a two-pixel
border, and the two rows within the record were divided by a one-pixel
border:

ROW-DIVIDERS = (1, 2)

ROW-FONT (numeric)

Sets the font for the record identified by the Y property. This should be
set to a valid font handle. Note that ROW-FONT refers to the font used
for an entire record, not just a row.

ROW-PROTECTION (numeric)

Protects the entire row identified by the Y property from being
changed by the user. Set the property to “1” to protect the row, or to
“0” to unprotect the row. The appearance of the row does not change
when the row is protected. Note that like other row properties, the
setting affects an entire record, not just the physical row.

SEARCH-OPTIONS (alphanumeric)

This property controls how searches are performed in the grid.

Note: The grid’s search facility does not contain a user interface. You
must supply one if you want to give the user a search function. One
typical interface is a pop-up dialog box where the user can set the
search text and options desired. Another typical interface is an entry
field in the same window as the grid, with a “Find” button beside the
entry field.

The SEARCH-OPTIONS property should be assigned from a structure
with the following layout:

01 GRID-SEARCH-OPTIONS.
 03 GRID-SEARCH-DIRECTION PIC 9.
 88 GRID-SEARCH-FORWARDS VALUE ZERO,
 FALSE 1.

 03 GRID-SEARCH-WRAP-FLAG PIC 9.
 88 GRID-SEARCH-WRAP VALUE ZERO,

Grid 5-97
 FALSE 1.

 03 GRID-SEARCH-CASE-FLAG PIC 9.
 88 GRID-SEARCH-IGNORE-CASE VALUE ZERO,
 FALSE 1.

 03 GRID-SEARCH-MATCH-FLAG PIC 9.
 88 GRID-SEARCH-MATCH-ANY VALUE ZERO.
 88 GRID-SEARCH-MATCH-LEADING VALUE 1.
 88 GRID-SEARCH-MATCH-ALL VALUE 2.

 03 GRID-SEARCH-LOCATION-FLAG PIC 9.
 88 GRID-SEARCH-VISIBLE VALUE ZERO.
 88 GRID-SEARCH-HIDDEN VALUE 1.
 88 GRID-SEARCH-ALL-DATA VALUE 2.

 03 GRID-SEARCH-SKIP-FLAG PIC 9.
 88 GRID-SEARCH-SKIP-CURRENT VALUE ZERO,
 FALSE 1.

 03 GRID-SEARCH-CURSOR-FLAG PIC 9.
 88 GRID-SEARCH-MOVES-CURSOR VALUE ZERO,
 FALSE 1.

 03 GRID-SEARCH-COLUMN PIC 9(5).
 88 GRID-SEARCH-ALL-COLUMNS VALUE ZERO.

A copy of this structure can be found in the copy library “acugui.def”.
It contains the default value settings for all the grid search parameters.
Use the COPY statement in the Working Storage section to include this
structure with its default values in your program.

To set the SEARCH-OPTIONS property, specify the name of the data
structure described above in the screen description entry for the grid or
via the “modify” statement. The example below uses the “modify”
statement to assign the property:

MODIFY GRID-1
SEARCH-OPTIONS = GRID-SEARCH-OPTIONS

To set new search values for a grid, start by using the “inquire”
statement to find out what the current values are (they may have been
modified previously). Next, set the desired values to the chosen search
parameters with the “set” statement, and finally, “modify” the grid to
apply the new values.

5-98 Control Types Reference
The following sample shows how to change the values for two of the
search parameters and apply the new search options to the grid.

INQUIRE grid-1, SEARCH-OPTIONS
 IN GRID-SEARCH-OPTIONS
SET (option-1) TO TRUE
SET (option-2) TO TRUE
MODIFY grid-1,
 SEARCH-OPTIONS = GRID-SEARCH-OPTIONS

Grid 5-99
The SEARCH-OPTIONS parameters have the following traits:

GRID-SEARCH-FORWARDS When this is set to true, the search
runs from left-to-right and
top-to-bottom in the grid. This is
the default behavior. When set to
false, the search runs from
right-to-left, bottom-to-top.

GRID-SEARCH-WRAP When this is set to true (the
default), a search “wraps around”
when it hits the top or bottom of the
grid. This causes the search to
proceed from the opposite end of
the grid. When it is set to false, the
search stops if it hits the top or
bottom of the grid.

GRID-SEARCH-IGNORE-CASE When this is set to true (the
default), the search ignores case
differences between letters when
determining if two strings match.
When it is set to false, a difference
in case between strings will cause
them not to match. You should be
certain to set this to “false” when
searching for data that contains
binary information (this could
happen if you search the grid’s
hidden data).

5-100 Control Types Reference
GRID-SEARCH-MATCH-ANY When this is set to true (the
default), a search string will match
if the string is contained anywhere
in the cell’s data (similar to a
substring search). For example, a
search for “bcd” would match the
string “abcde”.

GRID-SEARCH-MATCH-LEADING When this is set to true, a search
string will match if the string forms
the beginning of the cell’s data.
For example, a search for “bcd”
would match the string “bcde”, but
not the string “abcde”.

GRID-SEARCH-MATCH-ALL When this is set to true, a search
string matches only if it is identical
to the string being searched. For
example, “bcd” will match “bcd”,
but not “abcde” or “bcde”.

GRID-SEARCH-VISIBLE When this is set to true (the
default), the search is performed
only against the grid’s visible cell
data.

GRID-SEARCH-HIDDEN When this is set to true, the search
is performed only against the grid’s
hidden data.

GRID-SEARCH-ALL-DATA When this is set to true, the search
is performed against both the grid’s
visible and hidden data.

Grid 5-101
GRID-SEARCH-SKIP-CURRENT When this is set to true (the
default), the cell where the search
starts is not initially searched. If
you allow the search to wrap, it
will be searched last. If you do not
allow the search to wrap, then the
starting cell will not be searched.
This setting allows a “find next”
function to work. When this is set
to false, the starting cell is searched
first. Note that if you start the
search from a cell that is outside
the range of existing cells, then the
starting cell is searched first
regardless of the setting of this
flag. This allows you to find the
first occurrence of a string by
starting your search at row “0”
regardless of the setting of this
flag.

GRID-SEARCH-MOVES-CURSOR When this is set to true (the
default), the grid’s cursor will
move to the cell found by the
search. The grid will also scroll to
make that cell visible. If the search
fails, the cursor is not moved.
When this is set to false, the cursor
is not moved by a successful
search.

5-102 Control Types Reference
If you need to limit your search to two or more columns, but not all the
columns, then you will need to program the limited search yourself by
first setting GRID-SEARCH-ALL-COLUMNS and
GRID-SEARCH-SKIP-CURRENT to true, and
GRID-SEARCH-MOVES-CURSOR to false. Then perform the
search in a loop. Break out of the loop when
GRID-SEARCH-COLUMN equals one of the desired columns or
when the search fails. The search fails when it does not find a match
or the search returns a cell that is the same cell as the first match it
returned (in this case, the data you’re searching for appears only in
cells outside the desired columns). After finding a successful match,
you can place the cursor in that cell using the CURSOR-X and
CURSOR-Y properties.

The following example turns off “wrapping” and turns on forward
searching for a particular grid. This shows you how to change some
settings while leaving others unchanged:

COPY "acugui.def".
INQUIRE GRID-1, SEARCH-OPTIONS
 IN GRID-SEARCH-OPTIONS
SET GRID-SEARCH-WRAP TO FALSE
SET GRID-SEARCH-FORWARDS TO TRUE
MODIFY GRID-1,
 SEARCH-OPTIONS = GRID-SEARCH-OPTIONS

GRID-SEARCH-COLUMN When
GRID-SEARCH-ALL-COLUMN
S is set to true, the search runs
through every column in the grid.
Otherwise, if you set
GRID-SEARCH-COLUMN to a
non-zero value, the search runs
through that column number only.
Columns other than this column
are ignored. Note that row and
column headings are not normally
searched. You can search the row
headings by setting
GRID-SEARCH-COLUMN to “1”
(assuming that you have row
headings). You cannot search the
column headings.

Grid 5-103
The default settings are the same as the settings you get by moving
ZEROS to the GRID-SEARCH-OPTIONS data structure.

SEARCH-TEXT (alphanumeric)

When you assign this property, the grid initiates a search using the
current search options. The program looks for the value assigned to
this property. The search starts in the cell identified by the X and Y
properties unless overridden by the
GRID-SEARCH-SKIP-CURRENT described under
SEARCH-OPTIONS above. If the search is successful, then X and Y
are updated to reflect the cell found. The return value of this property
is the status of the search:

If X and Y identify a cell outside of the range of cells, then the starting
cell is determined as if the search “wrapped” from the logical (X,Y)
location. For example, if the starting point is a cell past the right-most
cell, a forward search starts at the first cell of the next row. You can use
this to force a search of the entire grid by starting a forward search at row
“0”, or a backward search from a row that is past the end of the grid’s
data.

The following sample code searches a grid for the word “science”,
starting at the cell where the cursor is currently located:

INQUIRE GRID-1, CURSOR-X IN CUR-COL,
 CURSOR-Y IN CUR-ROW
MODIFY GRID-1 (CUR-ROW, CUR-COL)
SEARCH-TEXT = "science" GIVING RESULT-1
IF RESULT-1 > GRDSRCH-NOT-FOUND
 DISPLAY MESSAGE BOX "Search succeeded".

GRDSRCH-NOT-FOUND

 (value 0)

No matching data found

GRDSRCH-FOUND

(value 1)

Search succeeded

GRDSRCH-WRAPPED

(value 2)

Search succeeded but had to
wrap

5-104 Control Types Reference
The grid’s search facility does not contain a user interface. You must
supply one if you want to give the user a search function. One typical
interface is a pop-up dialog box where the user can set the search text
and options desired. Another typical interface is an entry field in the
same window as the grid, with a “Find” button beside the entry field.

SEPARATION (numeric)

Describes the amount of white space that should be preserved at the
end of each column. This space appears between the end of the data
and the beginning of the next column. The column divider, if any,
appears in the region. This space is expressed as tenths of the standard
font width. For example, a value of “5” indicates a half-character
width.

Each time you set this property, you set the separation amount for the
next column in the grid, starting with the first. Setting this property to
“-1” clears the previously specified separation amounts. The default
separation used for unspecified columns is set by the
COLUMN-SEPARATION configuration variable. This defaults to
“5”.

START-X (numeric)

The START-X property is used in conjunction with the START-Y, X,
and Y properties to define a rectangular region in the grid. This region
is used when you are setting REGION-COLOR. START-X holds a
column number. The region colored by REGION-COLOR starts at
START-X and extends through X.

START-Y (numeric)

See START-X and REGION-COLOR for a description of this property.

VIRTUAL-WIDTH (numeric)

Sets the overall logical width of the grid. This is used only with grids
that have horizontal scrolling. This value is expressed in characters
(measured using the standard font width). If not specified, then the
grid extends to 10 characters past the last DISPLAY-COLUMN
specified (making the last column 10 characters wide). You can create
hidden columns by setting this value smaller than some of your
columns’ starting points.

Grid 5-105
VPADDING (numeric)

Sets the amount of vertical white space in each row. This value is the
percentage of the grid’s font height to apply as extra white space (i.e.,
separation between the cell’s data and the cell’s row dividers). The
default setting is “50”. Note that this produces a look similar to a series
of entry fields (because the normal entry field is 50% taller than its
font). On character systems, the VPADDING value is not used.

Note: The Windows implementation of the grid control uses the
standard “edit” (entry field) control to do its data entry (it creates the
edit control when the grid shifts to “entry mode”). The Windows edit
control has technical limitations with regards to vertical spacing.
These limitations depend on the alignment of the field (left justified
fields have fewer limitations). Setting VPADDING to less than “50”
can result in odd behavior. If you set VPADDING to less than “50,” be
sure to check that the grid behaves the way you want on your target
platforms.

VSCROLL-POS (numeric)

This property controls the current scrolling position of the vertical
scroll bar, specifying the first visible row of the grid’s scrollable
region.

Note that scrolling is limited to the normal scrolling range. If you
specify a value larger than the highest allowed value, the latter value is
used. If you specify a value less than “1”, you will receive undefined
results. If the grid does not allow scrolling in the specified dimension,
setting the property has no effect.

X (numeric)

The X property holds a column number. It is used by several other
properties when they need to know which column to act on. For
example, the COLUMN-COLOR property sets the color for the
column identified by the X property. Column numbers start at “1”.
Remember that properties are set in the order specified in a statement.
You should be certain to set the X property before setting another
property that refers to it.

5-106 Control Types Reference
Y (numeric)

The Y property is similar to the X property, except that it holds a record
number instead of a column number.

5.11.3 Events

Grid controls can generate the following events:
CMD-GOTO
CMD-HELP
MSG-VALIDATE
MSG-BEGIN-ENTRY
MSG-FINISH-ENTRY
MSG-CANCEL-ENTRY
MSG-GOTO-CELL
MSG-GOTO-CELL-MOUSE
MSG-GOTO-CELL-DRAG
MSG-BEGIN-DRAG
MSG-END-DRAG
MSG-BITMAP-CLICKED
MSG-BITMAP-DBLCLICK
MSG-HEADING-CLICKED
MSG-HEADING-DBLCLICK
MSG-HEADING-DRAGGED
MSG-BEGIN-HEADING-DRAG
MSG-END-HEADING-DRAG
MSG-COL-WIDTH-CHANGED
MSG-INIT-MENU
MSG-MENU-INPUT
MSG-END-MENU
MSG-GRID-RBUTTON-UP
MSG-GRID-RBUTTON-DOWN
MSG-PAGED-FIRST
MSG-PAGED-LAST
MSG-PAGED-NEXT
MSG-PAGED-NEXTPAGE
MSG-PAGED-PREV
MSG-PAGED-PREVPAGE

Label 5-107
MSG-PAGED-NEXT-WHEEL
MSG-PAGED-PREV-WHEEL

5.12 Label

The LABEL control type displays a simple string of text. Labels cannot take
any input from the user and, thus, cannot be activated. Use labels to describe
entry fields, or for any other situation where you need to display simple text.

Labels may occupy multiple lines. When a label is displayed on multiple
lines, it will use word-wrapping if possible so that words are not broken
across lines.

The set of LABEL properties includes:

5.12.1 Common Properties

TITLE

Labels can take titles. The text of the title is the text displayed on the screen.
The “TITLE” phrase is used to specify a title. A key letter may be specified
in the title (see the entry for “TITLE Phrase” in Section 6.4.9 of Book 3,
Reference Manual).

VALUE

Labels cannot be activated and do not take values.

5-108 Control Types Reference
SIZE

Labels define their height by multiplying the LINES value by the height of
the label’s font (including any interline spacing). For example, a LINES
value of “1” indicates one line of text. Labels define their width by
multiplying the SIZE value by the width of the “0” (zero) character of the
label’s font.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, replace the values specified by
the LINES and SIZE phrases.

The default value of LINES is “1”. The default value of SIZE is computed
by measuring the length of the label’s title using the label’s font and dividing
by the width of the “0” character. Thus, the default width of a label exactly
occupies the space its text takes up on the screen.

To get a multi-line label, set the LINES value to the number of lines wanted
and the SIZE value to the desired width. SIZE specifies the width that each
line of the label will occupy.

COLOR

Labels use both the foreground and background colors specified. If either is
omitted, the corresponding color of the label’s owning subwindow is used.

If you are using the WIN32_NATIVECTLS runtime variable to
automatically enable Windows XP or Vista control styles, label background
colors may exhibit a darker background when residing on frames or tab
frames. This is because XP and Vista label controls have a different
background color than frames or tab frames. Making labels have the
TRANSPARENT property resolves this issue.

STYLES

LEFT

This alignment style causes the label’s text to be left-aligned in its
region. By default, the label text is not justified.

Label 5-109
When LEFT, RIGHT, or CENTER is specified at the time the label is
created, the label’s text is stripped of leading and trailing spaces before
the default size is computed.

RIGHT

This style causes the label’s text to be right-aligned in its region. This
will appear no differently from LEFT if the SIZE of the label does not
provide any extra space for the label’s text.

CENTER, CENTERED

This style causes the label’s text to be centered in its region. This will
appear no differently from LEFT if the SIZE of the label does not
provide any extra space for the label’s text.

NO-KEY-LETTER

This style suppresses the interpretation of “&” as a key prefix. This is
useful in cases where you are assigning user-entered data to a label and
want to allow values that include the ampersand (“&”) character (such
as “AT&T”).

TRANSPARENT

This style makes a label’s background invisible, so that anything
underneath the label shows through. TRANSPARENT is useful if you
want to display a label that blends into a background having more than
one color. It is also useful when labels appear on frames or tab frames
and you are using the WIN32_NATIVECTLS runtime variable to
automatically enable XP or Vista control styles. In this case (due to
Microsoft design of these controls) the label may have a darker
background than the frame. Making the label transparent resolves this
issue.

5.12.2 Special Properties

LABEL-OFFSET (numeric)

Labels are frequently placed to the left of boxed entry fields. Boxed
entry fields are typically taller than their labels. This can create an
alignment task, because labels and entry fields placed at the same row
coordinate will not line up properly (the top of the label will match the
top of the entry field’s box instead of lining up with the field’s center).
The LABEL-OFFSET property enables you to adjust for this by

5-110 Control Types Reference
moving the label down the screen slightly. The value of
LABEL-OFFSET specifies the amount to move the label. Its units are
hundredths of rows. The default value is machine-dependent. For
Windows, it is “20” (i.e., 0.20 rows).

LABEL-OFFSET is ignored when the control’s coordinates are
specified in pixels (i.e., absolute coordinates).

Note: You can globally affect the default value with the
FIELDS-UNBOXED configuration entry.

5.12.3 Events

Labels do not generate events.

5.12.4 Examples

The following creates a simple anonymous label. The label is anonymous
because the statement doesn’t store the label’s handle and there is no way to
refer to it later in the program.
DISPLAY LABEL "Customer No:", LINE 2, COLUMN 5.

The equivalent in the Screen Section would be:
03 LABEL "Customer No:", LINE 2, COLUMN 5.

The following creates a three-line label:
DISPLAY LABEL,
 TITLE MY-LARGE-TEXT
 SIZE 15, LINES 3.

These Screen Section entries produce a set of labels that are all right-aligned:
03 LABEL "Date Entered:", SIZE 20, RIGHT.
03 LABEL "Date Modified:", LINE + 1,
 SIZE 20, RIGHT.
03 LABEL "Date Closed:", LINE + 1,
 SIZE 20, RIGHT.

List Box 5-111
5.13 List Box

A LIST-BOX control presents a vertical list of items that the user can scroll
through and select.

List box text limits are based on machine memory, which essentially equates
to no limit. Memory is allocated as needed.

5.13.1 Common Properties

The set of list box common properties includes:

TITLE

List boxes do not have titles.

VALUE

A list box has an alphanumeric value.

When VALUE is set, the list is searched for an exact, case-sensitive match
with the specified value. If the value is found, it is selected. If an exact match
is not found, the list is searched for an exact match regardless of case. If a
match is still not found, the list is searched again, this time for the first string
that contains the passed VALUE as a leading substring, regardless of case.
For example, if your list contains:

5-112 Control Types Reference
Capital Building
Capital-inc, unit 2
Capital-Inc

and VALUE is set to “Capital-Inc”, the third item is selected. If VALUE is
set to “CAP”, the first item is selected.

On termination of a list box entry, the value is the currently selected list item,
or spaces if no item is selected.

SIZE

The LINES setting specifies the number of lines of text that are visible in the
list box. The SIZE setting determines the maximum width of the text area as
a multiple of the width of the “0” (zero) character of the list box’s font. Any
overhead needed for the box itself, or any scroll bars, is added to the height
and width. The list box handler does not allow partial lines of text to be
displayed, so the height of the list box may be reduced accordingly.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, replace the values specified by
the LINES and SIZE phrases.

The default LINES value is “5”. The default SIZE value is “12”.

Note: The scroll bar is hidden if the list of items is small enough to be
shown on the screen. If this happens, the list box may appear wider than
specified as some systems add the space devoted to the scroll bar into the
text area. When enough items are added to the list to require a scroll bar,
the text space is reduced and the scroll bar displayed. If using the
WIN32_NATIVECTLS runtime variable, drop-down list behavior
changes. A Windows XP style list automatically expands downward to
show up to 30 items at a time, regardless of whether or not it temporally
overlaps a control beneath it. A scroll bar will not appear unless there are
more than 30 items.

List Box 5-113
 COLOR

List boxes will use any specified foreground or background color. If either
color is omitted, then that color uses a system-dependent default value. On
most systems, the default foreground is black and the default background is
white. Under Microsoft Windows, the default values are determined by the
user’s choices in the Control Panel (usually black on bright-white). These
system-dependent default colors are not transformed or mapped by the
runtime’s color-handling configuration options.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

UNSORTED

Normally the items in the list are automatically sorted
alphanumerically. Alternatively, the UNSORTED style causes the list
to be shown in the order in which the items are added.

LOWER

This style converts all the text in the box to lower-case.

UPPER

This style converts all the text in the box to upper-case.

PAGED

This style specifies that the list box is to be a paged list box. Paged list
boxes are typically used when the number of items in the list is too
large for a standard list box. See section 3.8, “Paged List Boxes,” for
a complete description of paged list boxes and an introduction to how
they’re programmed.

NO-BOX

This style removes the box that normally displays around the listed
items.

5-114 Control Types Reference
BOXED

This style indicates that a box should be placed around a list box. It is
the default for graphical versions of ACUCOBOL-GT. For
character-based versions, the default depends on the configuration
variable LISTS_UNBOXED.

3-D

This style behaves identically to the 3-D entry field style of the same
name.

NOTIFY-DBLCLICK

This style causes the list box to generate CMD-DBLCLICK events.
Normally, double-clicking on an item in the list box has no special
effect. If you specify this style, double-clicking on an item will
generate a CMD-DBLCLICK event. This will usually terminate the
current ACCEPT statement and allow your program to act on the
selection immediately. You can also use an associated EXCEPTION
PROCEDURE in the Screen Section to perform immediate processing.
See also the TERMINATION-VALUE and EXCEPTION-VALUE
properties below for related information.

NOTIFY-SELCHANGE

This style causes the list box to generate NTF-SELCHANGE events.
Normally, selecting an item in the list box has no special effect. If you
specify this style, a selection change will generate an
NTF-SELCHANGE event. This allows your program to act
immediately on the new selection.

NO-SEARCH

This style affects only paged list boxes. It inhibits the box’s built-in
search facility. If this style is in effect, the user can move around in the
paged list box with the arrow buttons and keyboard keys, but cannot
bring up the search box.

List Box 5-115
5.13.2 Special Properties

ITEM-TO-ADD (alphanumeric)

This property provides a way of adding items to the list box. Any time
you create or modify a list box, the ITEM-TO-ADD property is
examined. If it is not spaces, then its value is added to the items in the
list box. The examples below demonstrate how to use this property to
initially populate a list box.

RESET-LIST (numeric)

This property allows you to empty a list. If this property is “0”, it is
ignored. If it is non-zero, then all the items in the list are deleted.

MASS-UPDATE (numeric)

This property improves the efficiency of making large content changes
to the list box.

Normally, the runtime immediately repaints a list box when the
program adds or removes an item from the box. If you are making
several changes in a row, this process can be slow. To improve
performance, set the MASS-UPDATE property to “1”. While set to
“1”, MASS-UPDATE inhibits repainting of the box due to changes in
the box contents. To repaint after you have finished your changes, set
MASS-UPDATE to zero (“0”).

For example, this code could be used to initially populate the contents
of a list box:

MODIFY LIST-BOX-1, MASS-UPDATE = 1
PERFORM VARYING IDX FROM 1 BY 1
 UNTIL IDX > LIST-BOX-SIZE
 MODIFY LIST-BOX-1,
 ITEM-TO-ADD = LIST-BOX-ITEM(IDX)
END-PERFORM
MODIFY LIST-BOX-1, MASS-UPDATE = 0

In this example, the list box will not be repainted until the last
MODIFY statement executes.

5-116 Control Types Reference
ITEM-TO-DELETE (numeric)

Setting this property to a non-zero value deletes the corresponding item
in the list box. The first item in the list is item number “1” and each
item is numbered sequentially thereafter. Deleting a non-existent item
has no effect.

INSERTION-INDEX (numeric)

Setting this property to a positive value affects the location of the next
item added to the list box. When it is set to zero (the default), items are
added in sort-order, or to the end of the box if the list box has the
UNSORTED style. When INSERTION-INDEX is positive, the next
item added is placed immediately before the corresponding item
instead. For example, setting this to “1” causes the next item to be
inserted at the top of the list. You can place an item at the end of the
list by specifying an index one greater than the number of items in the
list. When you finish adding the next item, INSERTION-INDEX
automatically resets itself to a value of zero.

 In statements that allow for multiple properties, the properties are set
in the order specified. Therefore, you can set both
INSERTION-INDEX and ITEM-TO-ADD in the same statement,
providing you specify INSERTION-INDEX first. For example, the
following statement will add a new item to the top of a list box:

MODIFY LIST-BOX-1,
 INSERTION-INDEX = 1,
 ITEM-TO-ADD = "New top item"

SEARCH-TEXT (alphanumeric)

This property is used only in conjunction with paged list boxes.
SEARCH-TEXT returns the current value of the user-supplied search
text. Normally, this property is used in an INQUIRE statement when
you implement a response to the NTF-PL-SEARCH event (which
indicates that the user wants to search for a particular text string in the
list box). See section 3.8, “Paged List Boxes,” for a complete
description and code example.

DATA-COLUMNS (numeric)

This property describes where each column begins in the data added to
the list. Columns are defined by character positions in the raw data,
with the first character being position “1”. For example, the following
data item:

List Box 5-117
01 LIST-DATA.
 03 NAME PIC X(20).
 03 PHONE-NUMBER PIC X(15).
 03 STATE PIC X(2).

would normally be displayed in three columns, one at position “1”
(NAME), one at position “21” (PHONE-NUMBER), and one at
position “36” (STATE). Each time you set DATA-COLUMNS to a
positive value, a new column is created at that position. Setting
DATA-COLUMNS to zero clears all the existing column definitions.
Note that there is always a column at position “1”, so setting position
“1” has no useful effect.

Typically, you specify DATA-COLUMNS by enclosing a list of
columns in parentheses. This causes the compiler to generate code to
set each column in turn. For example, a setting that would match the
preceding example would be:

DATA-COLUMNS = (21, 36)

This can also be specified with the RECORD-POSITION construct.
The data item is referenced by a numeric literal whose value
corresponds to the location of the data item within the record. (This
construct is covered in detail in Section 5.2.5 of the Reference
Manual.) For example, the above example would be:

DATA-COLUMNS = (
 record-position of PHONE-NUMBER,
 record-position of STATE)

You must also specify DISPLAY-COLUMNS to get the columns to
display correctly. If you don’t, the results are undefined.

DISPLAY-COLUMNS (numeric)

This property describes where each DATA-COLUMN will display in
the list box. The first column always displays in column “1”.
Additional columns display at the locations set by
DISPLAY-COLUMNS. Columns are measured with the standard font
measure (i.e., the width of the character “0” in the list box’s font).
Each time you set DISPLAY-COLUMNS to a positive value, a new
display column is defined. Setting DISPLAY-COLUMNS to “0” clears
all of the columns (except column 1).

5-118 Control Types Reference
If you are using a proportionally spaced font, you should provide
enough space in each column to allow for wider-than-average data.
You will also want to provide some white space between columns. To
continue the example given under DATA-COLUMNS above, you
might code the following:

DATA-COLUMNS = (21, 36)
DISPLAY-COLUMNS = (31, 51)

In this example, the first column, which is 30 characters wide in the
display, accommodates a 20-character data source, and the second
column, which is 20 characters wide, accommodates a 15-character
data source.

Data contained in a column cannot overflow the allocated space. If the
data is too large to be fully displayed, the data is truncated. Therefore,
you should always set your columns wide enough to hold the largest
data item.

Note: You can also use columns to hide data. A column set beyond the
right side of the list box is not visible on the screen. You can use this
behavior to store information in the list box that your program needs to
associate with list items, but that you do not want to be seen by the
user. One potential use for this feature is to store a file record’s
primary key value in the hidden column so that you can retrieve the full
record easily when the user selects an item in the list.

ALIGNMENT (alphanumeric)

 This property specifies the alignment of data in each column. Like
DATA-COLUMNS and DISPLAY-COLUMNS, each time you assign
this property, you affect a new column. Allowed values are “L” for left
alignment, “R” for right alignment, “C” for centered alignment, and
“U” for unaligned. Equivalent lower-case values are also allowed, as
are any words that start with the appropriate letters (thus, you can spell
out “left”, “right”, and “center” if you want). For example, to establish
a left-aligned column followed by two right-aligned columns, you
would use:

ALIGNMENT = ("L", "R", "R")

List Box 5-119
To empty the alignment list (to establish new alignments, for example)
assign an alignment value of space (“ “). Left alignment differs from
unaligned in that leading spaces are removed from left-aligned data,
but not from unaligned data. Any column that does not have an
alignment specified for it is unaligned.

SEPARATION (numeric)

This property establishes a blank region at the end of each column.
This has the effect of creating a uniform separation space between each
column and prevents data from visually running together. When data
is too large to fit in the allocated space, the data is truncated to the
column width minus the separation space.

Like DATA-COLUMNS, each time you assign a value to this property,
you set the separation amount for a new column. The separation is
expressed in 10ths of characters. For example, to establish a
half-character separation, use a value of “5”. On character-based
systems, the separation is rounded down to the nearest whole character.
The blank region specified appears at the end of the column. Data is
never displayed in the separation region, it is truncated if need be.
Also, the separation region defines the edge from which right and
center justification are computed. To reset the separation list for a box,
assign the value “-1”. Unspecified columns use a default separation
value. This value is set by the configuration variable
COLUMN-SEPARATION.

DIVIDERS (numeric)

 When set, this property causes divider bars to be displayed between
columns. Like DATA-COLUMNS, each time you assign a value to this
property, you establish the divider for a new column. The value
assigned is the width of the divider, in pixels. A width of zero means
that there will be no divider. The divider appears after the column,
immediately before the beginning of the next column (there is a small
space between the divider and the next column’s text). To reset the list
of dividers, assign a value of “-1”. The divider’s color is the shadow
color of the list box (usually dark gray or black).

5-120 Control Types Reference
SELECTION-INDEX (numeric)

 This property, when set, causes the list box selection to change to the
indicated item. Items are numbered sequentially from the top of the list
box, starting at “1”. Setting this value to “-1” clears any selection.
Values beyond the number of list box items are undefined.

When queried, this property returns the item number of the current
selection, or “-1” if no item is selected.

Using SELECTION-INDEX to change the list box focus causes a faint
dotted-line box to appear around the selected item on graphical
systems. On character-based systems, the text cursor is displayed at
the end of the selected item. The end user presses the space bar to
choose the item.

THUMB-POSITION (numeric)

This property, when set, causes the list box to display the line number
of the item on top of the list box, scrolling the latter if necessary. Items
are numbered sequentially from the top of the list, starting at “1”.
Setting THUMB-POSITION to a value greater than the actual number
of lines in the list box or to a value less than “1” has no effect.

When queried, this property returns the line number of the item
currently displayed on top of the list box.

QUERY-INDEX (numeric)

This property is used only in conjunction with the ITEM-VALUE
property described below. This property determines which list box
item to return information about. Items are numbered sequentially
from the top of the list box, starting at “1”.

ITEM-VALUE (alphanumeric)

This property, when queried, returns the value of a list box item. The
item returned is determined by the current value of QUERY-INDEX
(see above). If QUERY-INDEX does not correspond to a valid item,
then nothing is returned.

For example, to determine the value of the first item in a list box,
perform the following statements:

MODIFY LIST-BOX-1, QUERY-INDEX = 1
INQUIRE LIST-BOX-1, ITEM-VALUE IN MY-ITEM

List Box 5-121
TERMINATION-VALUE (numeric)

This property produces the same behavior as the
TERMINATION-VALUE push button property, except that it acts on
the CMD-DBLCLICK event instead of the CMD-CLICKED event.
This property is used only when the NOTIFY-DBLCLICK style is also
used. The compiler applies the NOTIFY-DBLCLICK style
automatically if this property is explicitly named when the control is
initially created. Note that this does not occur if you use the
PROPERTY phrase to supply the property value (by giving its
identifying number).

EXCEPTION-VALUE (numeric)

This property produces the same behavior as the push button property
of the same name, except that it acts on the CMD-DBLCLICK event
instead of the CMD-CLICKED event. This property is used only when
the NOTIFY-DBLCLICK style is also used. The compiler applies the
NOTIFY-DBLCLICK style automatically if this property is named
when the control is initially created. Note that this does not occur if
you use the PROPERTY phrase to supply the property value (by giving
its identifying number).

SORT-ORDER (numeric)

This property applies to paged list boxes only. It determines whether
the case of the data items will be considered as the user searches for a
data item. It can take one of four values:

0 PL-SORT-DEFAULT Use the default sort order.
(Same as value 3.)

1 PL-SORT-NONE Every character the user types
results in a notification to the
COBOL program.

2 PL-SORT-NATIVE The paged list is searched and
case is considered. If the item
that the user has entered is on
the current page, it is selected.

3 PL-SORT-NATIVE-IGNORE-CASE The paged list is searched and
case is not considered. If the
item that the user has entered
is on the current page, it is
selected.

5-122 Control Types Reference
Note: If the style is set to UPPER or LOWER, and “SORT-ORDER =
2”, characters will be made UPPER or LOWER case as they are
entered in the search box, negating the attempt to do a case-sensitive
search.

5.13.3 Events
CMD-DBLCLICK
CMD-GOTO
CMD-HELP
MSG-VALIDATE
NTF-SELCHANGE

For paged list box:
NTF-PL-FIRST
NTF-PL-LAST
NTF-PL-NEXT
NTF-PL-PREV
NTF-PL-NEXTPAGE
NTF-PL-PREVPAGE
NTF-PL-NEXT-WHEEL
NTF-PL-PREV-WHEEL
NTF-PL-SEARCH

5.13.4 Using Special Keys

When list box has the input focus, the Page-Up and Page-Down keys can be
used to scroll the list box. Setting KEYSTROKE configuration entries does
not affect these actions.

5.13.5 Examples

This example creates a list box and fills it with the contents of a table:
DISPLAY LIST-BOX, LINES 5, SIZE 30, HANDLE IN

.NET 5-123
BOX-1.
PERFORM VARYING IDX FROM 1 BY 1 UNTIL IDX > TABLE-SIZE
 MODIFY BOX-1, ITEM-TO-ADD = TABLE-ITEM(IDX)
END-PERFORM.

The following Screen Section entry and accompanying code perform the
same actions:
03 LIST-1, LIST-BOX, LINES 5, SIZE 30,
 VALUE SELECTED-ITEM, ITEM-TO-ADD = ADD-ITEM.
PERFORM VARYING IDX FROM 1 BY 1 UNTIL IDX > TABLE-
SIZE
 MOVE TABLE-ITEM(IDX) TO ADD-ITEM
 DISPLAY LIST-1
END-PERFORM.
MOVE SPACES TO ADD-ITEM.

The first time through this loop, the list box is created (if it has not already
been created). Subsequent iterations of the loop modify the existing list box.
Note the move of spaces to ADD-ITEM at the end. This ensures that future
DISPLAYs of LIST-1 (or its parent group item) do not accidentally add
another item to the list box.

5.14 .NET

ACUCOBOL-GT defines a control type named “.NET” that it uses internally
whenever you CREATE, MODIFY, INQUIRE, or DESTROY a .NET
control.

You use a utility called netdefgen to generate a COBOL COPY file that
defines the control’s methods and properties. For information about adding a
.NET control to your program, please refer to Chapter 5 in A Guide to
Interoperating with ACUCOBOL-GT.

5.14.1 Common Properties

This section lists some of the common properties for .NET graphical
controls.

5-124 Control Types Reference
LINES/SIZE

The LINES and SIZE values describe the area occupied by the .NET control,
using the default font to determine the dimensions of the width and height. If
size and lines are omitted, the control’s default design size is used.

LINE/COL

The LINE and COL values describe the left corner position of the control on
the screen. LINE defines the y-axis and COL defines x-axis.

AX-EVENT-LIST, EXCLUDE-EVENT-LIST

AX-EVENT-LIST is an exclusive list of .NET events that are either sent to or
withheld (blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

5.14.2 Special Properties

FILE-PATH (alphanumeric)

When a .NET control does not reside in the Global Assembly Cache
(GAC) or in the directory where the ACUCOBOL-GT runtime resides,
you must use the FILE-PATH parameter to disclose the location of the
control. The parameter value is a file name or a file path and file name
of an XML file containing the .NET assembly information.

In the example below, Assembly, Module, StrongName, Version, and
Culture are from the assembly COPY file that was generated by the
NETDEFGEN utility. FilePath is the full path name of the control.

<?xml version="1.0" encoding="utf-8" ?>
<FILESPEC>
 <Assembly>AmortControl</Assembly>
 <Module>amortcontrol.dll</Module>
 <StrongName />
 <Version>1.0.1242.11216</Version>
 <Culture>neutral</Culture>
 <FilePath>E:\AmortControl\bin\Debug\AmortControl.dll
 </FilePath>
</FILESPEC>

Push Button 5-125
Note that FilePath could also be a UNC or URI notation, like
\HostName\bin\Debug\AmortControl.dll or file://HostName//bin/
Debug/AmortControl.dll.

5.14.3 Events
MSG-NET-EVENT

A MSG-NET-EVENT occurs when a .NET control has fired an event.
EVENT-DATA-2 contains the control’s event type. When a .NET event
type is referenced in your program, the name must be preceded with an “@”
character.

An example of event handling code might look like:
USERCONTROL-EVENTS.
 EVALUATE EVENT-TYPE
 WHEN MSG-NET-EVENT
 EVALUATE EVENT-DATA-2
 WHEN @UserControl1_FireCalc PERFORM display-update
 END-EVALUATE
 END-EVALUATE.

5.15 Push Button

A PUSH-BUTTON control is a region of the screen that the user can push
(click or select) to cause something to happen. Under most graphical
systems, push buttons appear to be raised up from the surface of the screen.
Push buttons do not have values. Instead, they generate events whenever
they are pushed. To simplify programming, you can assign termination or
exception values to push buttons so that they act like function keys or other
terminating keys when used. See the STYLES and PROPERTIES sections
that follow for information on how this works.

5-126 Control Types Reference
5.15.1 Common Properties

The set of push button common properties includes:

TITLE

A push button’s title appears centered in the button. The “TITLE” phrase is
used to specify the title. A key letter may be specified in the title (see Section
6.4.9 of Book 3, Reference Manual).

VALUE

Push buttons do not use values.

SIZE

The LINES and SIZE values describe the size of the button’s title area. The
LINES value describes the height of the title area. The SIZE value is the
width of the title area, using the width of the “0” (zero) character as the base
unit. Added to the title area is overhead for the push button’s border. The
exact size of the border area is system-dependent. Note that the title area may
be larger than the actual title. The title itself is centered both vertically and
horizontally in the title area.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, are used in place of the values
specified by the LINES and SIZE phrases.

The default LINES value is “1”. The default SIZE value is “8”.

When the BITMAP style is used, the LINES and SIZE values have a different
meaning. The values are the number of pixels in the height and width of the
bitmap image (see section 3.7, “Bitmap Buttons,” for details). If omitted,
the default values depend on the host system. Under Windows, the default
LINES value is “15” and the default SIZE value is “16”. These correspond
to the size of buttons typically found on a toolbar.

Push Button 5-127
COLOR

Push buttons ignore any colors specified. The actual colors used are
system-dependent. Under Windows, the user selects the colors in the Control
Panel.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

DEFAULT-BUTTON

This style indicates that this button is the default push button. The user
can push (activate) the default button by typing a termination key that
has a termination code of “13”. Under the default runtime
configuration, this is the “Return” (or “Enter”) key. When this occurs,
the runtime generates a button pushed event instead of the normal
termination event. This ensures that the program treats the “Return”
key and the default push button in the same manner (since they both
generate the same event). See the TERMINATION-VALUE property
described below for related information.

Push buttons with the DEFAULT-BUTTON style are typically
displayed differently by the host system. Under Microsoft Windows,
default push buttons have a thicker border. Only one button should
have the DEFAULT-BUTTON style at any one time. If more than one
button has the DEFAULT-BUTTON style, the meaning is ambiguous.
Note that the DEFAULT-BUTTON style is implied by the
OK-BUTTON style.

ESCAPE-BUTTON

Similar to the DEFAULT-BUTTON style, this style indicates that the
push button corresponds to the “Escape” key. The user can push this
button by typing a key that has an exception value of “27” (i.e., the
“Escape” key in the default configuration). When this occurs, the
runtime generates a button pushed event instead of the normal
exception event. This ensures that your program handles the “Escape”

5-128 Control Types Reference
key and the escape button in the same manner. Note that only one
enabled button should have the ESCAPE-BUTTON style at any one
time. See the EXCEPTION-VALUE property below for related
information.

NO-AUTO-DEFAULT

Normally, when a push button is activated, it becomes the default push
button. The runtime accomplishes this by giving the
DEFAULT-BUTTON style to the activated push button and removing
it from any other push button in the same floating window. This allows
the user to type the “Return” key to push the active button. If you
specify NO-AUTO-DEFAULT, then this behavior is not applied when
this button is made active. The default push button, if any, remains
unchanged.

SELF-ACT

Normally, when the user clicks on a button with the mouse, the mouse
requests that it be activated by sending a CMD-GOTO event to your
program (see Chapter 6, “Events Reference”). After being activated,
the button can then return that it has been pushed. Buttons with the
SELF-ACT style are self-activated instead. This means that they do
not send the CMD-GOTO event to your program when clicked.
Instead they activate themselves and then send the appropriate button
pushed termination status to the program. If you also assign an
exception value to the button, it will act just like the equivalent
function key. For example, the following statement fragment builds
a push button that behaves just like function key 1 (usually
marked “F1”).

DISPLAY PUSH-BUTTON, SELF-ACT, EXCEPTION-VALUE=1

Self-activating buttons behave differently in some additional, subtle,
ways. Normally, if the user down-clicks on a push button and then
moves the mouse away before releasing the button, the push button
remains active (shown in Windows by a thicker border around the
button). But the button is not clicked. Self-activating buttons do not
remain active. Instead, they re-activate the previous control. This is
done because self-activating controls don’t tell the program about the
down-click event. To ensure that the program and screen states are
consistent, the previous control is re-activated. Also, self-activating
buttons do not automatically become the default push button when
clicked on with the mouse.

Push Button 5-129
Generally speaking, there is rarely a need to use this style for push
buttons defined in a group within the Screen Section. The Screen
Section handler performs all the button activation needed when the
group is accepted. The SELF-ACT style is mostly useful when you
define individual push buttons using the DISPLAY verb (or as
elementary Screen Section items) and you do not want to program the
activation of those buttons. A common use would be to add push
buttons to an existing application where the push buttons will perform
the same operation as some function key. In this case, you can simply
create the push button with the SELF-ACT style and an exception
value that is the same as the function key. Usually, no other coding is
needed because the button will perform all of its own activation and
simulate the function key when it is clicked.

Note: The SELF-ACT style performs automatic activation only when
the user clicks on the button with the mouse or uses its key letter. You
must still program your own activation if you want the user to be able
to visit the button in some other fashion (for example, by using the
“Tab” key to move to the button).
Also note that this style makes the button self-activating, but not any
associated Screen Section entry. This means that any BEFORE or
AFTER procedures named in an associated Screen Section entry will
not automatically execute when the button is clicked. They will
function only when you ACCEPT the Screen Section entry in your
program.

OK-BUTTON

This style is used only when the button is created. It has the effect of
changing several of the button’s default values. It is equivalent to
specifying the following:

TITLE "OK"
DEFAULT-BUTTON
TERMINATION-VALUE = 13

You may override the TITLE and TERMINATION-VALUE settings by
providing your own. The net effect of the OK-BUTTON style is that it
provides a convenient way of creating a typical “OK” button.

5-130 Control Types Reference
CANCEL-BUTTON

This style is similar to the OK-BUTTON style, but it produces a
Cancel button instead. It is equivalent to specifying the following
defaults when the button is created:

TITLE "Cancel"
ESCAPE-BUTTON
EXCEPTION-VALUE = 27

You may override the TITLE and EXCEPTION-VALUE defaults by
providing your own.

BITMAP

 This style causes the push button to be drawn using a bitmap instead
of its default appearance. See section 3.7, “Bitmap Buttons,” for a
complete description.

FRAMED

 This style is used only with bitmap buttons. It requests that a thin
frame be drawn around the button. Typically this appears as a thin
black line. Not all systems support frames, in which case the request is
ignored. By default, buttons are framed under Windows NT/Windows
2000.

UNFRAMED

 This style is used only with bitmap buttons. It requests that the button
be drawn without a frame. Not all systems support unframed buttons,
in which case the request is ignored. By default, buttons are not framed
under Windows 98.

SQUARE

This style is used only with framed bitmap buttons. It forces the button
to have square corners. Without this style, the button will have slightly
rounded corners.

FLAT

On Windows systems, this style creates a button without visible
borders. On non-Windows systems, this style has no effect.

Push Button 5-131
MULTILINE

This style causes the push button to have a multi-line title. When the
MULTILINE style is applied, the push button’s title text is automatically
word wrapped to fit the push button’s size. You can force a line break in
the text by embedding an ASCII line feed character (h“0A”). The
MULTILINE style is ignored in character-based environments.

5.15.2 Special Properties

BITMAP-NUMBER (numeric)

This property identifies a particular bitmap image to use as the push
button. See section 3.7, “Bitmap Buttons,” for details. If you
explicitly name this property when creating a control, the BITMAP
style is automatically applied by the compiler. Note that this does not
occur if you use the PROPERTY phrase to specify this property by
giving its identifying number.

BITMAP-HANDLE (handle)

This property identifies the bitmap image strip to use with the push
button.

TERMINATION-VALUE (numeric)

This property modifies the way that a push button communicates to
your program when it has been pushed. Normally, a push button will
generate a CMD-CLICKED event. If you provide a non-zero
TERMINATION-VALUE, the push button will generate a termination
condition with the specified value instead. This makes the push button
act like a keyboard termination key. Most existing COBOL programs
are already coded to handle termination keys, so this is easier for the
COBOL program to work with.

Note: If you assign the DEFAULT-BUTTON style and a
TERMINATION-VALUE property of “13”, then the effects of typing
the “Return” key may seem rather odd. The DEFAULT-BUTTON
style converts the “Return” key’s termination event into a button
pushed event. The TERMINATION-VALUE property then changes
the button pushed event into a termination event with a value of “13”.
The net effect is the same as if neither the style nor property had been

5-132 Control Types Reference
used. The reason for this lengthy route is to ensure that the button and
“Return” key are handled identically, and to provide options for
programming push button handling, such as the setting of
TERMINATION-VALUE.

EXCEPTION-VALUE (numeric)

This property works in a fashion that is identical to the
TERMINATION-VALUE property, except that it converts button
pushed events into exception events (instead of termination events). If
a button has both a TERMINATION-VALUE and an
EXCEPTION-VALUE specified, the EXCEPTION-VALUE takes
precedence.

5.15.3 Events
CMD-CLICKED
CMD-GOTO
CMD-HELP
MSG-VALIDATE

5.15.4 Examples

The first example creates a simple push button with an ID of “100”. The key
letter of the push button is “H”.
DISPLAY PUSH-BUTTON,
 "&Help", ID 100, HANDLE IN BUTTON-1

This next example creates a very tall push button:
DISPLAY PUSH-BUTTON,
 TITLE "Tall", LINES 3, HANDLE IN BUTTON-2

The following Screen Section entry creates an “OK” button:
03 PUSH-BUTTON OK-BUTTON, LINE 10, COLUMN 20.

This last example creates a default push button that generates a termination
value of “200”:
03 PUSH-BUTTON "&Find", DEFAULT-BUTTON,

Radio Button 5-133
 TERMINATION-VALUE = 200.

5.16 Radio Button

A RADIO-BUTTON control is similar to a check box, except that the user
can usually select only one radio button out of a group of buttons. Selecting
one causes any other selected button to become unselected. These groups of
buttons typically present a small set of choices that affect a single program
function.

5.16.1 Common Properties

The set of radio button common properties includes:

TITLE

Radio buttons may have titles. The title typically appears to the right of the
button. The “TITLE” phrase is used to specify the title. A key letter may be
specified in the title (see Section 6.4.9, Book 3, Reference Manual).

VALUE

Radio buttons have numeric values. A value of “0” indicates an unselected
radio button. A value of “1” indicates a selected radio button.

Note: Radio buttons cannot have array elements in a VALUE or USING
phrase. The compiler detects and disallows such usage. An error message
is displayed at compile time.

5-134 Control Types Reference
SIZE

The LINES and SIZE values describe the size of the radio button’s title area.
The LINES value describes the height of the title area, in lines. The SIZE
value specifies the width of the title area, using the width of the “0” (zero)
character as the base unit. Added to the title area is the overhead needed for
the actual button. This usually adds several character positions to the width
and may affect the height if the button is taller than the title’s font.

When the program executes on a non-graphical system, the values specified
in the CLINES and CSIZE phrases, if present, replace the values specified by
the LINES and SIZE phrases.

The default value of LINES is “1”. The default value of SIZE is computed
by measuring the length of the title using the button’s font and dividing by the
width of the “0” character. Thus, the default width of a radio button exactly
occupies the space its text takes up on the screen.

When used with the BITMAP style, the LINES and SIZE values have a
different meaning. The values are the number of pixels in the height and
width of the bitmap image (see section 3.7, “Bitmap Buttons,” for details).
If omitted, the default values depend on the host system. Under Microsoft
Windows, the default LINES value is “15” and the default SIZE value is
“16”. These values correspond to the size of buttons typically found on a
toolbar.

COLOR

Radio buttons use both the foreground and background colors specified. If
either is omitted, the corresponding color of the button’s owning subwindow
is used.

Bitmap radio buttons do not use the specified colors. Instead, the colors are
derived from the bitmap and the system defaults for push buttons.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See section 6.4.9, “Common Screen Options,”
in Book 3.

Radio Button 5-135
STYLES

BITMAP

This style causes the radio button to be drawn with a bitmap instead of
its usual appearance. See section 3.7 for a complete description.

FRAMED

This style is used only with bitmap buttons. It requests that a thin
frame be drawn around the button. Typically this appears as a thin
black line. Not all systems support frames, in which case the request is
ignored. By default, buttons are framed under Windows NT/Windows
2000.

UNFRAMED

This style is used only with bitmap buttons. It requests that the button
be drawn without a frame. Not all systems support unframed buttons,
in which case the request is ignored. By default, buttons are not framed
under Windows 98.

SQUARE

This style is used only with framed bitmap buttons. It forces the button
to have square corners. Without this style, the button will have slightly
rounded corners.

SELF-ACT

This style creates a self-activating radio button. The behavior of the
SELF-ACT radio button is the same as that of the SELF-ACT push
button (see section 5.15). Self-activating radio buttons return control
to the previously active control or window when they are clicked.
Usually, you will want to use the NOTIFY style in conjunction with
SELF-ACT so that your program is informed whenever the radio
button is clicked.

NOTIFY

This style tells the runtime to generate a CMD-CLICKED event
whenever the value of the radio button is changed by the user. This
allows your program to respond immediately to the change. In
essence, the radio button will now act like a combination radio button
and push button. Without the NOTIFY style, the radio button remains
active after it has been changed (exception: see SELF-ACT above).

5-136 Control Types Reference
NO-GROUP-TAB

Normally, radio buttons that belong to a button group treat the “Tab”
and “Backtab” keys in a special fashion. Any time a radio button has
a non-zero GROUP special property, it acts as if it also has the
NO-TAB style unless it is the group leader. The group leader is the
radio button that is currently “on,” or the first radio button in the group
if they are all “off.” The effect is that when you tab to a radio button
group, control passes to the button that is on, or to the first button in the
group if none is on. Note that the NO-GROUP-TAB style suppresses
this special handling.

LEFT-TEXT

Radio buttons with this style display their text to the left of the box
instead of to the right. Note that if you use this style and try to
vertically align several radio buttons, the buttons may not align
vertically. This is because the default behavior of the runtime is to
place the right edge of the button at the minimum distance needed from
its left edge to accommodate the control’s text. This results in the
buttons being placed in different columns depending on the text of each
control. Supplying a uniform width using the SIZE property overrides
this behavior.

FLAT

On Windows systems, this style creates a radio button without visible
borders. On non-Windows systems, this style has no effect.

MULTILINE

This style causes the radio button to have a multi-line title. When the
MULTILINE style is applied, the radio button’s title text is automatically
word wrapped to fit the radio button’s size. You can force a line break in
the text by embedding an ASCII line feed character (h“0A”). The
MULTILINE style is ignored in character-based environments.

VTOP

This style causes the title text to be vertically aligned with the top of
the control’s area. By default, the title text is vertically aligned to the
center of the control’s area.

Radio Button 5-137
5.16.2 Special Properties

BITMAP-NUMBER (numeric)

This property identifies a particular bitmap image to use with the radio
button (see section 3.8 for details). If you explicitly name this property
when creating a control, the BITMAP style is automatically applied by
the compiler. Note that this does not occur if you use the PROPERTY
phrase to specify this property (by giving its identifying number).

BITMAP-HANDLE (handle)

This property identifies the bitmap image strip to use with the radio
button. See section 3.8 for details.

TERMINATION-VALUE (numeric)

This property works in a manner identical to the
TERMINATION-VALUE push button property. This property is used
only when the NOTIFY style is also used. The compiler applies the
NOTIFY style automatically if you explicitly name this property when
creating a control. Note that the NOTIFY style is not automatically
applied if you use the PROPERTY phrase to specify this property (by
giving its identifying number).

EXCEPTION-VALUE (numeric)

This property works in a manner identical to the push button property
of the same name. This property is used only when the NOTIFY style
is also used. The compiler applies the NOTIFY style automatically if
you explicitly name this property when creating a control. Note that
the NOTIFY style is not automatically applied if you use the
PROPERTY phrase to specify this property (by giving its identifying
number).

GROUP (numeric)

Radio buttons usually operate in groups of related buttons. Normally,
only one button of the group may be selected. When a button is
selected, all other buttons of the same group are unselected. The
GROUP property describes which buttons belong together. In any one
floating window, all radio buttons with the same non-zero GROUP
property value are treated as a single group. The runtime will ensure
that only one button in a group is selected at any one time.

5-138 Control Types Reference
The default GROUP value is “1”. If all radio buttons on the same
floating window retain the default value, they will be treated as a single
group.

Radio buttons with a GROUP value of “0” do not perform any checks
to ensure that only one button is selected. These buttons behave much
like check boxes; each one may be independently selected.

GROUP-VALUE (numeric)

This property simplifies the process of managing a group of radio
buttons. Normally, the program must determine which button in a
group is selected by examining the value of each button. The button
with a value of “1” is the selected button. The GROUP-VALUE
property is used to turn the value checking process into a single
operation. You assign each radio button in a group a distinct
GROUP-VALUE number. This links each button with its
corresponding GROUP-VALUE. In this way, you can determine
which button is selected by assigning all of the buttons in the group the
same VALUE data item. The data item will hold the GROUP-VALUE
number of the selected radio button.

Technically, this works as follows. For any radio button with a
non-zero GROUP-VALUE property, a selected button will update its
VALUE data item only during an ACCEPT. A selected button will
return its GROUP-VALUE property as its VALUE. During a
DISPLAY, a radio button will be selected only if its VALUE matches
its GROUP-VALUE. Any other VALUE will be treated as a VALUE
of zero.

Use this by assigning distinct GROUP-VALUE numbers to each button
in a group, and by assigning all the buttons to the same VALUE data
item. Then you can select a button by moving the button’s
GROUP-VALUE number to the VALUE data item and updating all the
buttons. On input, you can determine which button is currently
selected by simply examining the VALUE data item. It will contain the
GROUP-VALUE number of the selected button.

The default value for GROUP-VALUE is zero, which disables the
GROUP-VALUE mechanism.

Radio Button 5-139
5.16.3 Events
CMD-CLICKED
CMD-GOTO
CMD-HELP
MSG-VALIDATE

5.16.4 Examples

The following creates a simple radio button:
DISPLAY RADIO-BUTTON, "&Left Align",
HANDLE IN RADIO-BUTTON-1.

Frequently, you will want to create several radio buttons, each offering the
user a different option. Here is a Screen Section entry that specifies three
buttons:
01 ALIGNMENT-CHOICES.
 03 RADIO-BUTTON, "&Left", USING ALIGN-CHOICE
 GROUP-VALUE 1.
 03 RADIO-BUTTON, "&Right", USING ALIGN-CHOICE
 LINE + 1.5
 GROUP-VALUE 2.
 03 RADIO-BUTTON, "&Center", USING ALIGN-CHOICE
 LINE + 1.5
 GROUP-VALUE 3.

In the preceding example, ALIGN-CHOICE is set to “1”, “2”, or “3”
depending on which radio button is selected.

Here are the same buttons as they might appear in a toolbar. These buttons
are bitmap buttons. Also, instead of storing their value, they simply notify
the COBOL program when they have been pressed (via the
EXCEPTION-VALUE). Like most toolbar buttons, they are self activating.
This frees the COBOL program from having to explicitly ACCEPT the
toolbar buttons.
01 TOOLBAR-CHOICES.
 03 RADIO-BUTTON, "Left",
 NOTIFY, SELF-ACT
 BITMAP-NUMBER 1, EXCEPTION-VALUE 1.

5-140 Control Types Reference
 03 RADIO-BUTTON, "Right", OVERLAP-LEFT,
 NOTIFY, SELF-ACT,
 BITMAP-NUMBER 2, EXCEPTION-VALUE 2.
 03 RADIO-BUTTON, "Center", OVERLAP-LEFT,
 NOTIFY, SELF-ACT
 BITMAP-NUMBER 3, EXCEPTION-VALUE 3.

Several other examples of programming radio buttons can be found in the
sample programs included with the release materials. These examples
demonstrate a range of application, including use of the GROUP special
property and bitmap buttons. Look in “tour.cbl” for a simple example. See
“radiobtn.cbl” for a set of basic examples. See “winspool.cbl” for a more
complex use of radio buttons.

5.17 Scroll Bar

With the use of the SCROLL-BAR control, a user can “scroll through” a
continuous range of items. This control has five elements—next and
previous line buttons, next and previous page regions, and a slider (also
called a “thumb”), which indicates the current position in the range.

Scroll Bar 5-141
Scroll bars are available both for character-based and Microsoft Windows
systems. For character-based systems, you may choose to display the various
parts of the scroll bar with the GO-GUI-MAP and GF-GUI-MAP termcap
functions. You may also do this with theGUI_CHARS configuration
variable.

When a user clicks on a scroll bar, a message is sent to the scroll bar’s event
procedure, which updates the screen according to the new scroll position.
(For a detailed description of these events, see Chapter 6, “Events
Reference.” Scroll bars do not generate terminating events, so any ACCEPT
statement remains active while the user adjusts the scroll bar. The scroll bar
does not automatically update its own value when the user modifies it. You
should respond to each message by setting the scroll bar’s value to the new
position. Otherwise, the scroll bar will return to its previous setting after the
user finishes.

The ACUCOBOL-GT runtime supports the use of a mouse wheel with the
scroll bar control in all versions of Windows that support the wheelmouse. In
general, this means Windows 98 and those new versions thereafter. Support
applies only to vertical scroll bars. The Windows operating system supports
mouse wheel rotation through the WM_MOUSEWHEEL message. The
runtime intercepts the WM_MOUSEWHEEL events and translates them into
WM_VSCROLL messages, which are then handled as conventional mouse
button clicks on a scroll bar. By default, a single WM_MOUSEWHEEL
event is translated into three WM_VSCROLL messages. The application
user can configure this number to suit their preference through the Mouse
Properties sheet in Control Panel.

5.17.1 Common Properties

TITLE

Scroll bars do not have titles.

5-142 Control Types Reference
VALUE

A scroll bar has an integer value, which represents the slider’s position in the
control. The range of values is set by the properties MIN-VAL, MAX-VAL,
and PAGE-SIZE. Setting the value outside of the legal range has an
undefined effect.

SIZE

SIZE and LINES describe the area of the scroll bar in window cells. If SIZE
is omitted, then the width of a vertical scroll bar is the standard width of the
host system’s scroll bar. A horizontal scroll bar extends to the right edge of
the window when the scroll bar is created. If LINES is omitted, then the
system makes corresponding calculations—a horizontal scroll bar is standard
height, and a vertical scroll bar extends to the bottom edge.

COLOR

Scroll bars always use the system’s colors.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

HORIZONTAL

This style creates a horizontal scroll bar. Without this style, the scroll
bar is vertical.

TRACK-THUMB

This style causes the scroll bar to generate MSG-SB-THUMBTRACK
messages while the slider is moved by the user. Without this style, the
messages are suppressed. Use this style if you want to update the
screen while the user is moving the slider (as opposed to immediately
after a new slider position is selected).

Scroll Bar 5-143
To minimize network traffic and optimize performance,
MSG-SB-THUMBTRACK events are generated differently for thin
client applications. With thin client applications, when the slider is
moved by the user, a single MSG-SB-THUMBTRACK message is sent
immediately before the MSG-SB-THUMB message and the scroll bar is
automatically updated.

5.17.2 Special Properties

MIN-VAL (numeric)

This property sets the lowest value of the range of legal scroll bar
values. The default value is “0” (zero).

MAX-VAL (numeric)

This property sets the highest value of the range of legal scroll bar
values. The default value is “100”. MAX-VAL may not be greater
than 65536. Setting a larger range has an undefined effect. See
PAGE-SIZE below for additional information.

PAGE-SIZE (numeric)

This property describes the number of elements that appear on a “page”
of data. For example, if you scroll through a series of lines and 20 lines
fit in the window, then the page size is “20”. With a 32-bit runtime, this
property determines the size of the slider relative to the scroll bar. If
PAGE-SIZE is set to “0” (the default), then the system uses a default
slider size. PAGE-SIZE also reduces the range of values that the scroll
bar can take. The effective range is MIN-VAL to MAX-VAL minus
PAGE-SIZE.

5.17.3 Events
CMD-HELP
MSG-VALIDATE
MSG-SB-NEXT
MSG-SB-PREV
MSG-SB-NEXTPAGE

5-144 Control Types Reference
MSG-SB-PREVPAGE
MSG-SB-THUMB
MSG-SB-THUMBTRACK

5.18 Status Bar

Sample window with Status Bar at the bottom

The above illustration shows a STATUS-BAR control application in a sample
window. The text strings “Enter last name”, “Page 1 of 2”, “Edit”, and
“View” are all part of the status bar in this window. The status bar runs along
the bottom edge of the host window. It is not outlined by a border of its own
and appears blended in with the rest of the window area. The height of the
status bar is indicated by those of its panels that have borders. This particular
status bar consists of four panels and a grip. The first two panels are flat, they
have no borders to separate them, and thus look like a single flat panel. The
“Edit” panel is raised, while the “View” panel is lowered (indicating the
active mode in this example). The grip is the triangular area in the
lower-right corner of the window.

A status bar contains a number of panels designed to display text. You may
assign up to 128 panels to a status bar. Each panel can be programmed to
display the status of a certain event in the control’s host window.

Status bars do not scroll when the body of the window is scrolled. Instead,
the status bar remains accessible at the bottom of the window. Status bars
automatically grow and shrink horizontally to match the width of the owning
window.

On character-based systems, status bars are not created, i.e., any related
statements are ignored.

Status Bar 5-145
5.18.1 Common Properties

TITLE

The status bar does not have TITLE for a property, but you may use the
phrase “TITLE” in the same way as you would use “PANEL-TEXT” and thus
accomplish a de facto title of the status bar. Consider the following usage:

DISPLAY STATUS-BAR "This is the title panel".

or
DISPLAY STATUS-BAR
 TITLE "This is the title panel".

Both of the above are equivalent to the complete statement:
DISPLAY STATUS-BAR
 PANEL-WIDTHS -1
 PANEL-STYLE 0
 PANEL-TEXT "This is the title panel".

Your “title” will then be in PANEL-INDEX 1.

VALUE

Status bars have no value.

SIZE

Status bars have no size; their width always spans the width of the host
window, and their height depends on the window font, always
accommodating only one line of text.

COLOR

Status bars do not use colors; the colors of the status bar’s host window
are used.

5-146 Control Types Reference
STYLES

GRIP

If specified, the GRIP option allows you to include in the lower-right
corner of the window a triangular area in which you can click-and-drag
to resize the entire window. So the grip affects the entire window,
although it is a status bar style.

GRIP applies only to resizable windows. When it is specified, any
resizing of a window using the grip triggers the same event as would
resizing the window in a conventional way. If you specify grip in a
non-resizable window, it is ignored.

5.18.2 Special Properties

PANEL-WIDTHS (numeric)

You may specify this property’s value with an integer data item or
literal. PANEL-WIDTHS allows you to specify:

a. How many panels the status bar should hold: You may use an
array to specify all the panels on one line, and the number of items
in the array determines how many panels are created on the status
bar; and

b. The width of each panel on the status bar. Each number on the
array specifies the width of its corresponding panel in characters.

So if you specify your status bar using the following array:

DISPLAY STATUS-BAR
 PANEL-WIDTHS (50, 20, 20)
 [...].

you are setting up a status bar with three panels, the first 50 characters
wide, the other two at 20 characters each.

If you set PANEL-WIDTHS = 0, you create a status bar with one panel
extending across its entire width and no text.

If you set PANEL-WIDTHS to a single positive non-zero number
greater than the width of the entire status bar (as defined by the width
of the host window), the panel gets sized down to fit in the host
window and the text is truncated.

Status Bar 5-147
If you have a status bar composed of several panels, and you specify
particular widths for each of them, for example:

DISPLAY STATUS-BAR
 PANEL-WIDTHS (25, 25, 25, 25)

and this status bar is displayed in a window that is dynamic, when that
window shrinks below the size specified by PANEL-WIDTHS, all the
panels are reset to an average size small enough so that all panels fit in
the window, say “20, 20, 20, 20”.

If you do not want the all of the panels truncated, set the width of the
last panel to “-1”, for example:

DISPLAY STATUS-BAR
 PANEL-WIDTHS (25, 25, 25, -1)

This will cause the last panel to be sized to whatever space is left
available on the window after the first panels have been
accommodated. Based on our example if the window was sized to 80
columns, the panels would be “25, 25, 25, 5”

The widths of panels with no PANEL-WIDTHS specified will be
automatically calculated based on the total available width of the status
bar divided by the number of panels, as specified through the use of
PANEL-STYLE, PANEL-TEXT, or PANEL-INDEX.

When you modify PANEL-WIDTHS, the panel is not visually updated
until the text is applied. This means that a MODIFY using
PANEL-WIDTHS and no PANEL-TEXT will never be displayed.
Conversely, any MODIFY statement without PANEL-WIDTHS
reflects the changes immediately.

To erase the contents of a status bar, use:

MODIFY statusbar-handle PANEL-WIDTHS 0.

This removes all the panels and sets up the status bar with one panel
extending across its entire width. After this operation, you have one
panel with the style of previous panel 1 and no text.

5-148 Control Types Reference
PANEL-STYLE (numeric)

Allows you to specify the preferred style of the actual panel. You may
specify the value with an integer data item or literal. Valid values are:

• Flat (“0”) — the panel has the same height as the rest of the window,
with no visual borders. This style is generally used to present
information as a guide, displaying different text to inform the user
about the status of the program or the cursor’s location on the
screen, or prompt for action or data entry into a field. It may also be
used to indicate a condition that is temporarily disabled.

• Lowered (“1”) — the panel appears sunken in the host window.
This style is generally used to indicate that an option is active, for
instance, the “numlock” is on or the “insert” mode is active.

• Raised (“2”) — the panel appears raised in the host window. This
style is generally used to indicate that an option is deactivated
(“capslock” off, etc.).

You must apply the PANEL-STYLE before you apply the
PANEL-TEXT, in order to have the text displayed properly.

The default is “0” (zero).

PANEL-TEXT (alphanumeric)

Can be specified with a data item or a literal. It allows you to specify
the text content of a panel. The property pays attention to the current
setting of the TRANSLATE-TO-ANSI environment configuration
variable. The text may not exceed 255 characters, else the right-most
text is automatically truncated. If the text exceeds the size of the panel,
the visibility is the same as in any native Windows control, that is, the
left-most text is visible.

PANEL-INDEX (numeric)

An integer data item or literal. It allows you to specify which panel
you want to work with. General number range is from 1 to 128. If you
specify an index number that is larger than the current number of
panels but lower than 128, the status bar attempts to provide the
additional panels up to the index number specified. The new panels all
have the same width, as determined by the width of the status bar
minus the width of the existing panels and divided by the number of

Status Bar 5-149
additional panels to be generated. The additional panels inherit their
style from the first existing panel. If the first panel does not exist, the
default style “0” (zero) applies.

SELF-ACT (no parameters)

To have a panel in the status bar act like a push button without
additional coding, apply this style to the control. You will also have to
constrain your panel styles to either lowered (1) or raised (2). A click
on a panel will then toggle the panel between the two styles.

Example:

 01 ScreenDemo.
 03 AUTO-PANEL STATUS-BAR
 PANEL-WIDTHS (10, 10, 10, -1)
 PANEL-STYLE (1, 2, 1, 2)
 PANEL-TEXT ("Pan 1", "Pan 2", "Pan 3",
"Pan 4")
 SELF-ACT.

Note that this will not automatically provide your code with any
information, but you could inquire the panel for its current style and
use that as a switch for further execution.

Example:

77 MySecondPanelIsSetToStyle PIC 9.
 ...
 DISPLAY ScreenDemo.
 ACCEPT ScreenDemo.
 INQUIREAUTO-PANEL
 PANEL-INDEX(2)
 IN MySecondPanelIsSetToStyle.

Note that SELF-ACT is related to the CMD-CLICKED event.
SELF-ACT turns off the CMD-CLICKED event.

Note: The raised and lowered panels do not work with XP Visual
styles (WIN32_NATIVECTLS runtime configuration variable).

Array and index modes

There are two modes of specifying the special properties of a status bar:

5-150 Control Types Reference
1. Array mode, where you specify each property once, in an array, for all
the panels:

PANEL-WIDTHS (width-1, width-2, width-3, ...)
PANEL-STYLE (style-1, style-2, style-3, ...)
PANEL-TEXT (text-1, text-2, text-3, ...)

or

2. Index mode, where you define each panel separately, property by
property, assigning an index number to each panel. However, the total
number of panels must be defined before any panel style or text is
defined. Therefore, you must specify all of the PANEL-WIDTHS first,
as in:

PANEL-WIDTHS width-1
PANEL-WIDTHS width-2
PANEL-INDEX id-1
PANEL-STYLE style-1
PANEL-TEXT text-1
PANEL-INDEX id-2
PANEL-STYLE style-2
PANEL-TEXT text-2

It is generally recommended that you not mix array mode and index mode;
however, you can specify PANEL-WIDTHS in array mode, followed by
index mode for the remaining properties. For example:

DISPLAY STATUS-BAR
 PANEL-WIDTHS (10, 10, 10)
 PANEL-INDEX 1
 PANEL-STYLE 0
 PANEL-TEXT "Text one"
 PANEL-INDEX 2
 PANEL-STYLE 1
 PANEL-TEXT "Text two"
 PANEL-INDEX 3
 PANEL-STYLE 2
 PANEL-TEXT "Text three".

Sequence order

The Special Properties of the status bar control are reflective of the demands
of the underlying Windows API. Two rules apply in the case when you
specify a multi-panel status bar:

Status Bar 5-151
• The text is the last item processed before the display is performed. If you
do not set the number of panels before you specify the text, the status bar
is forced into single panel configuration.

• The style of a panel is set in accordance with whatever is active at the
moment. Thus, if you set the style after the text, it has no effect.

You should, therefore, observe this specific sequence of properties when
DISPLAYing or MODIFYing a status bar:

1. PANEL-WIDTHS, followed by the array;

2. PANEL-STYLE, followed by the array;

3. PANEL-TEXT, followed by the array;

4. GRIP.

So the syntax will look like this:
DISPLAY STATUS-BAR
 PANEL-WIDTHS (5, 10, 20)
 PANEL-STYLE (0, 2, 2)
 PANEL-TEXT ("Panel 1", "Panel 2", "Panel 3")
 GRIP.

5.18.3 Events

CMD-CLICKED

If a status bar does not have the SELF-ACT style applied, it will
generate the CMD-CLICKED when a mouse is clicked on it. To
capture the event, the status bar instance must have an EVENT
PROCEDURE assigned.

The event will return two items:

EVENT-DATA-1: The current style of the panel clicked.

EVENT-DATA-2: The index of the panel clicked.

Example:
 01 ScreenDemo.
 03 MANUAL-PANEL STATUS-BAR
 PANEL-WIDTHS (10, 10, 10, -1)

5-152 Control Types Reference
 PANEL-STYLE (1, 2, 1, 2)
 PANEL-TEXT ("Pan 1", "Pan 2", "Pan 3",
"Pan 4")
 EVENT PROCEDURE PanelEvent.
 ...
 PanelEvent.
 IF EVENT-DATA-1 > 1
 MOVE 0 TO EVENT-DATA-1
 ELSE
 ADD 1 TO EVENT-DATA-1
 END-IF
 MODIFY MANUAL-PANEL
 PANEL-INDEX EVENT-DATA-2
 PANEL-STYLE EVENT-DATA-1
 EXIT PARAGRAPH
 .

SELF-ACT turns off the new CMD-CLICKED event. Clicking the
status bar will not change the focus of the screen. Clicking the status
bar will not terminate an accept unless specifically coded to do so.

The raised and lowered panels do not work with XP Visual styles
(WIN32_NATIVECTLS runtime configuration variable). Events will
occur, but you will have to detect the events and change text to
visualize the clicks. The SELF-ACT style will not cause any visual
change; it will, however, change the panel style.

5.19 Tab

The TAB-CONTROL combines a box with a tab for a control that looks like
a file folder. The user may click on any tab to bring it forward. Some tabs
have key letters, and in those cases the user may also activate a particular tab
by typing the key letter (the underscored letter in the tab’s text) in conjunction

Tab 5-153
with the “Alt” key. You may define a tab’s key letter by placing an “&” in
front of the intended key letter in the tab’s text. This appears as an
underscored letter when the tab is displayed. For example,
DISPLAY TAB-CONTROL, TAB-TO-ADD = ("Tab&1", "Tab&2")

creates a control with two tabs. The first tab has a key letter of “1” and the
second tab has a key letter of “2”.

The program typically places different screen elements in the box depending
on the tab selected.

The tab control can be used by any application that displays its screens on a
32-bit Windows system, including applications deployed with thin client
technology. Any attempt to create a tab control on other systems fails and the
returned handle is NULL.

When a user clicks on a tab, the program is informed of the new selection and
the tab’s appearance is updated. (The behavioral distinction between tabs and
push buttons is that a tab responds immediately when clicked, and a push
button responds with the “clicked” event only when the mouse button is
released.)

You may allow the user to activate the tabs with the keyboard by accepting
the tab control as you would any other control (but you need not do so if you
want to provide only a mouse interface). During the keyboard operation of
the tab controls in Windows applications, the following logic is used by the
runtime to process the arrow keys:

Left Arrow keys are processed by Windows if the first item in the tab control
is not active. If the first item in the tab is active, then the runtime processes
the left arrow in the usual way (depending on the value of KEYSTROKE
entries).

Right Arrow keys are processed by Windows if the last item in the tab
control is not active. If the last item in the tab control is active, then the
runtime processes the right arrow in the usual way.

If the tab is a multiline tab, then up and down arrows are processed by
Windows instead of the runtime. “Processed by Windows” in this context
means that Windows decides which tab is selected next as the active tab, and
the runtime has no control over that decision.

5-154 Control Types Reference
It is important to define the elements of the tab control in a particular order in
the Screen Section to ensure that the runtime displays the control properly.
The preferred method is to use separate Screen Section groups to define the
contents of each tab page. See “Programming Tips” at the end of this
section for details.

5.19.1 Common Properties

TITLE

Tabs do not have titles.

VALUE

A tab control has a numeric value, which represents the currently selected
tab. Selecting a value outside of the range of existing tabs has an undefined
effect.

SIZE

SIZE and LINES describe the area occupied by the tab control, using the
tab’s font to determine the dimensions of the row and column. The area
described includes the row(s) occupied by the tabs as well as the box.

COLOR

Tab controls are always displayed using the push button colors selected by
the user in the Windows control panel.

Note: If you are using the WIN32_NATIVECTLS runtime variable to
automatically enable XP or Vista control styles and have frames with
labels, see the COLOR property of Section 5.12.1, “Common Properties”
for information on how the labels may display.

Tab 5-155
EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

MULTILINE

If the tabs do not all fit on one line, this style allows them to occupy as
many lines as needed. If this style is not used, then the system adds a
scroll bar so the user can scroll to the hidden tabs.

BUTTONS

This style produces a tab control with a different appearance. These
tabs look like push buttons (the box is not shown), but they act much
like a group of radio buttons.

FIXED-WIDTH

This style causes each tab to occupy the same amount of space.
Without this style, each tab is individually sized. Note that setting this
style can cause an odd appearance on multiline tabs.

VERTICAL

When this style is used, tabs are displayed vertically along the left edge
of the control. This style automatically implies the MULITLINE style.

Note that with this style, you cannot use the “&” character in a tab’s
text to assign a keyboard shortcut. Also note that if you use the
WIN32_NATIVECTLS runtime variable for invoking XP control
styles, the contents may not render correctly or at all. This is because
Windows XP native controls itself does not support this style.

Because some fonts are not displayed properly after being rotated, we
recommend using a TrueType font with vertical tabs. You can use the
W$FONT library routine to retrieve a TrueType font.

BOTTOM

This style causes tabs to appear on the bottom edge of the control
instead of the top. If the VERTICAL style is also specified, then tabs
appear on the right edge of the control instead of the left.

5-156 Control Types Reference
FLAT-BUTTONS

This style is similar to the BUTTONS style, but the button-style tabs
appear flat, with no border, rather than having a 3-D appearance. Note:
this style is only valid when the tabs are positioned at the top of the
control. If the BOTTOM style is used, and FLAT-BUTTONS is also
selected, the control will default to the BUTTONS style.

NO-DIVIDERS

This style is used only with the FLAT-BUTTONS style. When
specified, no dividers are drawn between the button-style tabs.

HOT-TRACK

When this style is used, a tab’s text is highlighted when the mouse
hovers over it. Note that the degree of highlighting is determined by
Windows and is often fairly subtle.

NO-FOCUS

Users cannot give focus to the tab control when this style is used.

5.19.2 Special Properties

TAB-TO-ADD (alphanumeric)

Assigning a value to this property adds a new tab to the control. The
value is the text of the tab. You may add several tabs at once by using
parentheses, as shown in the following example:

MODIFY TAB-1,
 TAB-TO-ADD = ("TAB 1", "TAB 2", "TAB 3")

This example adds three tabs in the order listed. Inquiring from this
property has no effect.

TAB-TO-DELETE (numeric)

Assigning a non-zero value to this property removes the
correspondingly numbered tab. Inquiring from this property has no
effect.

RESET-TABS (numeric)

Assigning a non-zero value to this property removes all existing tabs
from the control. Inquiring from this property has no effect.

Tab 5-157
BITMAP-HANDLE (numeric)

This property allows images from a bitmap file to be placed on
individual tabs. The images are displayed before the text of each tab.
Before a bitmap image can be placed on a tab, you must load the
bitmap file into memory by calling the library routine W$BITMAP
with the WBITMAP-LOAD option. The routine returns a handle that
is referred to by this property of the tab control.

The bitmap file loaded into memory is treated as a bitmap strip — a
series of images of equal width that are laid out side-by-side in a single
bitmap. The images are numbered sequentially starting at “1”. By
default, each tab in the control displays the image whose number is the
same as the tab’s ordinal number when the tab was defined. If you take
the following code as an example,

MODIFY TAB-1,
 TAB-TO-ADD = ("TAB 1", "TAB 2", "TAB 3")

then by default, TAB1 will show image “1”, TAB2 will show image
“2”, and TAB3 will show image “3”. You may change the default
handling of the assignment of these images with the
BITMAP-NUMBER property. See BITMAP-NUMBER and
BITMAP-WIDTH for additional information.

BITMAP-WIDTH (numeric)

This property sets the width of the images in the bitmap strip described
by BITMAP-HANDLE. If this property is not set, the images default
to 16-pixels wide. Set this property to match the actual width of the
images that make up the bitmap strip to get the look that you desire for
the tabs.

BITMAP-NUMBER (numeric)

This property identifies which bitmap image will be displayed for each
tab. To use this property, set the value of BITMAP-NUMBER to the
number of the image in the bitmap strip.

This property is additive. The first time you set the
BITMAP-NUMBER, the image identified with the bitmap number will
be displayed on the first tab; the second time you set this property, the
image identified will be displayed on the second tab, and so on. The
additive behavior of this property may be overridden in one of three
ways:

a. You may assign a value of “1” to this property.

5-158 Control Types Reference
b. You may empty the tab control through RESET-TABS.

c. You may specify a new list by keying in the bitmap numbers in
parentheses, as shown in the example below.

The following Screen Section entry creates a tab control with three
tabs, and places image numbers 3, 5 and 7 on those tabs:

03 TAB-CONTROL
 TAB-TO-ADD = ("Tab 1", "Tab 2", "Tab 3")
 BITMAP-NUMBER = (3, 5, 7)

If you omit the BITMAP-NUMBER, the bitmap images are assigned in
ordinal number by default. In other words, the following definition:

03 TAB-CONTROL
 TAB-TO-ADD = ("Tab 1", "Tab 2", "Tab 3")

has the same meaning as:

03 TAB-CONTROL
 TAB-TO-ADD = ("Tab 1", "Tab 2", "Tab 3")
 BITMAP-NUMBER = (1, 2, 3)

When no value is set for this property, the default behavior is to
automatically put bitmap number 1 on the first tab, bitmap number 2 on
the second tab, and so on.

5.19.3 Events
CMD-HELP
CMD-TABCHANGED
MSG-VALIDATE

5.19.4 Programming Tips

The preferred method of programming the tab control involves defining
separate level 01 items in the Screen Section for every individual tab page
and using a series DISPLAY statements, in a specific order, to display the
control. The following syntax sample demonstrates this technique.
01 TAB-FORM.
 03 MY-TAB, TAB-CONTROL
 COL 10 PIXELS
 LINE 10 PIXELS

Tab 5-159
 LINES 200 PIXELS
 SIZE 200 PIXELS
 TAB-TO-ADD IS ("Page 1", "Page 2", "Page 3")
 EVENT PROCEDURE TAB-EVENT
 VALUE WS-ACTIVE-PAGE.
01 TAB-PAGE-1.
 03 LABEL
 COL 30 PIXELS
 LINE 50 PIXELS
 TITLE "This is page 1"
 LEFT.
01 TAB-PAGE-2.
 03 LABEL
 COL 30 PIXELS
 LINE 50 PIXELS
 TITLE "This is page 2"
 LEFT.
01 TAB-PAGE-3.
 03 LABEL
 COL 30 PIXELS
 LINE 50 PIXELS
 TITLE "This is page 3"
 LEFT.

The Procedure Division syntax uses successive DISPLAY statements to
create the control. In the following example, the first DISPLAY statement
creates a standard graphical window as a canvas for the tab control (Fig. 1).
The second DISPLAY statement adds TAB-FORM, defined as a separate
level 01 item in the Screen Section (Fig. 2). Note that TAB-FORM can be
defined in the same group item with other controls for the same window. The
third DISPLAY statement adds the content of the first tab, TAB-PAGE-1,
defined as another separate level 01 item in the Screen Section (Fig. 3).
DISPLAY STANDARD GRAPHICAL WINDOW
 SCREEN LINE 1
 SCREEN COLUMN 1
 LINES 17
 SIZE 37
 CONTROL FONT IS WS-DISPLAY-FONT
 AUTO-MINIMIZE
 BACKGROUND-LOW
 MODELESS
 NO SCROLL
 WITH SYSTEM MENU
 TITLE "Tab control demo"

5-160 Control Types Reference
 TITLE-BAR
 NO WRAP
 HANDLE IS WS-WIN-HANDLE.
DISPLAY TAB-FORM.
DISPLAY TAB-PAGE-1.

Figure 1

Figure 2

Tree View 5-161
Figure 3

5.20 Tree View

The TREE-VIEW control presents hierarchical data in a list. This list is
indented to show the relationships among the data items. Users can “expand”
or “collapse” items in the list to view or hide subsidiary items.

5-162 Control Types Reference
Items

In a tree view control, each item in the hierarchical list is identified by an ID
that is assigned at the time the element is added to the control. This provides
a unique way to identify each item and thus allows for duplicate items at
different points in the hierarchy without any confusion. Tree view IDs are
declared in COBOL as USAGE POINTER data items.

Tree view controls have a variety of special properties, including the ability
to store hidden data with any item and to display bitmaps adjacent to the
items. The special property called ITEM is used to identify which item in the
hierarchy is to be affected by the property values you provide. Typically, you
set the value of the ITEM property to the ID of the item to be acted on, and
then you set another property (such as ITEM-TEXT or ENSURE-VISIBLE
or HAS-CHILDREN or BITMAP-NUMBER) to assign a value or setting to
that item. Note that you must set the value of ITEM before you set the other
property value in order to get the desired results. ITEM is the “index” for the
tree view control (see the MODIFY and INQUIRE statements for a
description of indexes).

Parent and child relationships

Items in a tree view control are placed within the hierarchical list according
to “parent” and “child” relationships that you specify. The special property
PARENT allows you to specify whether an item is at the top level of the
hierarchy (PARENT = 0, the default) or is the child of another item in the
hierarchy (PARENT value set to the ID of the parent item).

Another special property of the tree view control, HAS-CHILDREN, enables
you to specify whether new child items can be added underneath a specific
item in the list. When HAS-CHILDREN = 0 (the default), an item has
children only if they are already physically present in the control. This means
that no additional child items can be added to that item by the user.

If HAS-CHILDREN is set to a non-zero value (such as HAS-CHILDREN =
1), this indicates that the item identified by the ITEM property is entitled to
have child items added. This setting is useful when it is impractical to place
all of a tree’s items in the control at once (see examples immediately
following). In this situation, you populate the highest level of the tree and
then use this property to identify which of the top-level items are entitled to
have children. Then, when the user expands a particular item, you have the

Tree View 5-163
program respond to the MSG-TV-EXPANDING event by adding the
appropriate child items to the control. The HAS-CHILDREN property tells
the control which items can be expanded.

Adding child items

In many cases, it is impractical to fully load a tree view with all of the items
it logically contains. For example, if you want to represent every file on a
local disk drive in its directory hierarchy, a tree view is a natural way to do
this. However, it could take a long time to populate this tree: every file on the
entire drive would have to be located. One way to solve this problem is to
populate only the top level of the tree at first, and then populate only those
sub-levels that the user visits.

In order to do this, you have to tell the tree view whether an item is entitled
to have children when you add the item to the control. If you did not do this,
the control would not allow the user to expand that item. You establish the
ability to add children to an item by setting the property HAS-CHILDREN to
“1” when you add the parent item. For example:
MODIFY TV-1, ITEM-TO-ADD = "Parent Item"
 GIVING PARENT-1, HAS-CHILDREN = 1

This informs the control that the item has children, even though the children
are not physically present in the control.

There are two approaches you can take when managing the children of a
particular item. You can add them the first time the parent item expands, and
then leave them in the control, or you can add them as the parent expands and
delete them when the parent collapses.

Adding child items once

The first approach is to add child items the first time the parent is expanded
and then leave them in the control. To code this, respond to the
MSG-TV-EXPANDING message by seeing if there are any children of the
parent item. If not, then add them at this point. A typical event procedure for
this would look like this:
TREE-VIEW-EVENT-1.
 EVALUATE EVENT-TYPE
 WHEN MSG-TV-EXPANDING

5-164 Control Types Reference
 IF EVENT-DATA-1 = TVFLAG-EXPAND |Item expanding
 MODIFY TV-1(EVENT-DATA-2),
 NEXT-ITEM = TVNI-CHILD GIVING ITEM-1
 IF ITEM-1 = NULL |No children
 PERFORM ADD-CHILDREN
 END-IF
 END-IF
 END-EVALUATE

The paragraph ADD-CHILDREN would do the work needed to add the child
items. In this example, EVENT-DATA-1 contains a flag that describes
whether the parent item is being expanded or collapsed, and
EVENT-DATA-2 contains the ID of the parent item. See the description of
the event MSG-TV-EXPANDING for details.

Adding child items on each expansion

The second approach is to add child items each time the parent expands and
then remove them when the parent collapses. The code for adding the items
is slightly easier because you do not have to guard against adding multiple
times. However, you have additional code to handle the removal of the child
items. A typical event procedure for this approach looks like this:
TREE-VIEW-EVENT-1.

 EVALUATE EVENT-TYPE
 WHEN MSG-TV-EXPANDING
 IF EVENT-DATA-1 = TVFLAG-EXPAND
 PERFORM ADD-CHILDREN
 END-IF

 WHEN MSG-TV-EXPANDED
 IF EVENT-DATA-1 = TVFLAG-COLLAPSE
 MODIFY TV-1, ITEM-TO-EMPTY = EVENT-DATA-2
 END-IF

Note: It is important that you add the children in response to the
MSG-TV-EXPANDING event and remove them in response to the
MSG-TV-EXPANDED event. Any other approach can confuse the control
and produce odd results.

Tree View 5-165
Navigating a tree view with the keyboard

Typically, users use a mouse to interact with a tree view control. However,
users can also use the keyboard to accomplish many actions.

The down arrow key selects the next visible item in the tree (i.e. moves the
selection down one row).

The up arrow key selects the previous visible item in the tree (i.e. moves the
selection up one row).

If the current item is collapsed (i.e. has a plus sign to its left):

• The right arrow key expands the item

• The left arrow key selects the parent item

If the current item is expanded (i.e. has a minus sign to its left):

• The right arrow key selects the first child item

• The left arrow key collapses the item

If the current item has no children:

• The right arrow key has no affect

• The left arrow key selects the parent item

The page up (PgUp) and page down (PgDn) keys select items one page minus
one item away from the current item.

5.20.1 Common Properties

TITLE

Tree view controls do not have titles.

5-166 Control Types Reference
VALUE

A tree view’s value is the ID of the currently selected item. When you set the
VALUE, the corresponding item is selected (or the selection is removed if
there is no corresponding item). When you retrieve the VALUE, the result is
the ID of the current selection, or NULL if nothing is selected.

SIZE

SIZE and LINES describe the area occupied by the tree view control, using
the control’s font to determine the dimensions of a row and column.
Additional space is added for the scroll bar (which is hidden when it is not
needed). The default height of a tree view is 5 lines; the default width is 12
columns. For character-based systems, the size and appearance of the tree
view control depends on the configuration variables TREE-TAB-SIZE and
TREE-ROOT-SPACE.

COLOR

Tree views use any specified foreground or background color. If either color
is omitted, then that color uses a system-dependent default value. Under
Microsoft Windows, the default values are determined by the user’s choices
in the Control Panel (usually black on bright white). These
system-dependent default colors are not transformed or mapped by the
runtime’s color-handling configuration options.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

STYLES

3-D

Adds 3-D decoration around the border of the control. Effective only
on boxed tree views.

Tree View 5-167
BOXED

Indicates that a box should be placed around a tree view. This is the
default.

BUTTONS

Places small buttons to the left of each item that the user can click to
expand or collapse the item in addition to double-clicking the item.
The buttons show a “+” if the item can be expanded, or a “-” if it can
be collapsed. Items with no subsidiary items do not get a button. Also,
buttons are placed on the top level items only if you also specify the
SHOW-LINES and LINES-AT-ROOT styles. (Note: some versions of
Windows are known to have a bug that prevents the buttons from
displaying correctly if you do not also specify the SHOW-LINES
style.)

LINES-AT-ROOT

Allows the SHOW-LINES and BUTTONS styles to apply to top level
items. Note that the runtime configuration variable
TREE_ROOT_SPACE can control the number of screen columns
between the left edge of the Tree-View control and the root level text.

NO-BOX

This style removes the box that normally displays around the control.

SHOW-LINES

Causes faint lines to be drawn between the items to help clarify their
nesting relationship. Lines are not drawn between top level items
unless you also specify the LINES-AT-ROOT style.

SHOW-SEL-ALWAYS

When this style is applied, the control always shows the current
selection, even when it does not have the focus. The default is to hide
the selection when the control does not have the focus.

Tip: There are two runtme configuration variables that affect Tree View
controls. The TREE_ROOT_SPACE and TREE_TAB_SIZE described
in Appendix H.

5-168 Control Types Reference
5.20.2 Special Properties

BITMAP-HANDLE (numeric)

Identifies the handle of a loaded bitmap, so that images from that
bitmap can be shown in items in the tree view. You obtain the bitmap
handle by calling the library routine W$BITMAP with the
WBITMAP-LOAD option. The bitmap is treated as a bitmap strip —
a series of fixed-width images laid out side-by-side in a single bitmap.
The images are numbered sequentially, starting at “1”. Note that you
have only one bitmap strip for the entire control, although you can
select individual images out of this strip for each item. See
BITMAP-NUMBER.

BITMAP-NUMBER (numeric)

Identifies the bitmap image that will be displayed for the item
identified by ITEM. If you do not specify a bitmap number for a
particular item, that item will use bitmap number “1”. Note that you
can show different bitmaps for expanded or collapsed items by
changing an item’s BITMAP-NUMBER in response to the
MSG-TV-EXPANDING event.

BITMAP-WIDTH (numeric)

Sets the width of the images in the bitmap strip described by
BITMAP-HANDLE. If not set, then the images default to 16-pixels
wide. You should set this to match the actual width of the images that
make up the bitmap strip.

ENSURE-VISIBLE (numeric)

When set to a valid item ID, ensures that that item is visible in the
control. This may expand collapsed items and may cause scrolling.

EXPAND (numeric)

Programmatically expands or collapses the item identified by the
ITEM property. If you set EXPAND to TVFLAG-EXPAND, the item
is expanded. To collapse the item, set EXPAND to
TVFLAG-COLLAPSE. These constants are defined in “acugui.def”.
Set to zero when you want no action to occur.

Tree View 5-169
HIDDEN-DATA (alphanumeric)

Allows the program to store data that is not displayed in an item.
Hidden data is limited to 255 bytes per item. Hidden data may be any
format, including non-printing characters. This property acts on the
item identified by the ITEM property.

Note: As with all properties that take a text value, when the value of
HIDDEN-DATA is stored, the runtime automatically strips trailing
spaces and low-values.

HAS-CHILDREN (numeric)

When set to a non-zero value, indicates that the item identified by
ITEM has child items even if there are no child items in the control.
When set to zero (the default), an item has children only if they are
physically present in the control. This property is useful when it is
impractical to place all of a tree’s items in the control all at once. In
this approach, you do not place child items in the tree, but you mark
which items have children via this property. Then, when the user
expands a particular item, you have the program respond to the
MSG-TV-EXPANDING event by adding the appropriate child items to
the control. The HAS-CHILDREN property informs the control which
items can be expanded.

ITEM (numeric)

This property is used in conjunction with other properties to identify
which item to affect. Typically, you set ITEM to the ID of the item to
act on and then set another property to perform the action. Note that
you must set ITEM before the other property to get the desired results.
ITEM is the “index” for the tree view control (see the MODIFY and
INQUIRE statements for a description of indexes).

Note: The Windows API does not guard against invalid settings of
this property. As a result, setting this property to a value that does not
correspond to a valid item ID can result in a general protection fault
under Windows.

5-170 Control Types Reference
ITEM-TEXT (alphanumeric)

When set, changes the text of the item identified by ITEM to match the
value assigned. When queried, returns the text of the item identified by
ITEM.

ITEM-TO-ADD (alphanumeric)

Places a new item in the tree view control. The text assigned to
ITEM-TO-ADD is placed as a new item in the control. Its position in
the hierarchy is determined by the PARENT and PLACEMENT
special properties. The return value from this property is the ID of the
new item. If the new item is successfully added, the ITEM property is
set to point to this item (this makes attaching a bitmap or hidden data
to the item easier - see BITMAP-NUMBER and HIDDEN-DATA).

ITEM-TO-DELETE (numeric)

When set, deletes the item whose ID matches the assigned value. If
you place this in the Screen Section, then set this value to NULL to
ensure that you do not accidentally delete items.

ITEM-TO-EMPTY (numeric)

Deletes all child items of the item whose ID is assigned to this
property. When set to NULL, has no effect.

NEXT-ITEM (numeric)

Setting this property returns a specific item ID. The new item found
depends on the value used:

Value Item Found

TVNI-CHILD First child of the current ITEM

TVNI-FIRST-VISIBLE First item currently visible in control

TVNI-NEXT Next sibling of the current ITEM

TVNI-NEXT-VISIBLE Next visible item after ITEM

TVNI-PARENT Parent item of the current ITEM

TVNI-PREVIOUS Previous sibling of ITEM

TVNI-PREVIOUS-VISIBLE Previous visible item before ITEM

TVNI-ROOT Topmost item in the entire control

Tree View 5-171
These values are defined in “acugui.def”.

Note: ITEM must refer to a visible item when you are using
TVNI-NEXT-VISIBLE or TVNI-PREVIOUS-VISIBLE. The return
value from setting this property is the item ID if successful, or zero if
the specified item does not exist. Set NEXT-ITEM to zero when no
action is wanted.

PARENT (numeric)

Helps to determine the placement of a new item in the control. When
this is set to an ID of an item already in the control, the newly added
item will be a child of the PARENT item. If PARENT is set to zero,
then newly added items are placed at the top level. PARENT is set to
zero when the control is created.

In the following example, four items are added to a tree view control.
The first item is a parent to the next two items, and the last item is on
the top level like the first:

77 ID-1 USAGE POINTER.

MODIFY TREE-VIEW-1, ITEM-TO-ADD = "Item 1",
 GIVING ID-1,
 PARENT = ID-1,
 ITEM-TO-ADD = "Item 1-A",
 ITEM-TO-ADD = "Item 1-B",
 PARENT = 0,
 ITEM-TO-ADD = "Item 2".

The resulting tree looks like this:

5-172 Control Types Reference
PLACEMENT (numeric)

Works in conjunction with PARENT to determine where new items are
located in the hierarchy. The PLACEMENT value affects the location
within a given sub-level (i.e., the list of items that have the same
parent). If PLACEMENT is set to a valid item ID (whose parent is
PARENT), then the new item is placed immediately after this item.
Alternatively, you can use any one of the following special values
(defined in “acugui.def”):

The default setting is TVPLACE-LAST.

In the following example, items are sorted alphabetically except at the top
level:

77 ID-1 USAGE POINTER.
77 ID-2 USAGE POINTER.

MODIFY TREE-VIEW-1, ITEM-TO-ADD = "Ordinals", GIVING ID-1
 PARENT = ID-1, PLACEMENT = TVPLACE-SORT,
 ITEM-TO-ADD = ("First", "Second", "Third", "Fourth")
 PARENT = 0, PLACEMENT = TVPLACE-LAST,
 ITEM-TO-ADD = "Cardinals", GIVING ID-2,
 PARENT = ID-2, PLACEMENT = TVPLACE-SORT,
 ITEM-TO-ADD = ("One", "Two", "Three", "Four").

TVPLACE-FIRST Item placed first in the list

TVPLACE-LAST Item placed last in the list

TVPLACE-SORT Item sorted alphabetically in the list

Tree View 5-173
The resulting tree looks like this:

Note: The “Ordinals” and “Cardinals” appear in the order added
(TVPLACE-LAST), although the items under each are sorted
alphabetically (TVPLACE-SORT).

RESET-LIST (numeric)

When set to a non-zero value, this removes all items from the control.
Has no effect when set to zero.

5.20.3 Events

The tree view control generates the following events:
CMD-GOTO
CMD-HELP
MSG-TV-DBLCLICK
MSG-TV-EXPANDED
MSG-TV-EXPANDING
MSG-TV-SELCHANGE
MSG-TV-SELCHANGING
MSG-VALIDATE

5-174 Control Types Reference
5.21 Web Browser

The WEB-BROWSER control is used in conjunction with Microsoft Internet
Explorer 4.0 and later. It provides the view you see in the main window of
the Microsoft Internet Explorer, and it provides the functionality for
displaying Web pages containing HTML, scripting, and ActiveX control and
Java applet content. The control also hosts Component Object Model (COM)
document objects, supports COM hyperlinks, and allows users to view
Windows objects such as folders and files. Because it is an ActiveX control,
it can be used in a COM control container application.

For more information about the usage of the Web browser control, please
refer to Appendix B of “A Programmer’s Guide to the Internet.” That
document is included on your ACUCOBOL-GT distribution media and
installed in the same directory as the ACUCOBOL-GT manual set.

The ACUCOBOL-GT runtime uses ActiveX (COM control) containment to
offer the facilities of Microsoft’s Web browser control to COBOL programs.
The Web browser control is used just like any other ACUCOBOL-GT

Web Browser 5-175
control. To create a Web browser control identified by the name
BROWSER-1 and using the Working-Storage item URL-1 as its value, for
example, you would add the following lines to a screen section item:
03 BROWSER-1 WEB-BROWSER VALUE URL-1
 COLUMN 5, LINE 5, SIZE 60, LINES 20.

or add the following procedure division code:
DISPLAY WEB-BROWSER VALUE URL-1
 COLUMN 5, LINE 5, SIZE 60, LINES 20
 HANDLE IN BROWSER-1.

5.21.1 Common Properties

TITLE

The Web browser control does not use titles.

VALUE

The Web browser control takes an alphanumeric value, which is the URL.

SIZE

The Web browser control defines its height by multiplying the LINES value
by cell size.

The Web browser control defines its width by multiplying the SIZE value by
the standard or wide font measure as described below. If the Web browser
control is also boxed, the space required for the box is added to the width.
The Web browser control has a minimum width of at least one character.

COLOR

The Web browser control ignores any colors specified. The actual colors
used are system-dependent. Under Windows, the user selects the colors in
the Control Panel.

EVENT-LIST, EXCLUDE-EVENT-LIST

EVENT-LIST is an exclusive list of events that are either sent to or withheld
(blocked) from the program depending on the value of
EXCLUDE-EVENT-LIST. See Section 6.4.9, “Common Screen Options,”
in Book 3.

Methods

Methods are implemented as properties in ACUCOBOL-GT. To invoke a
method, you modify the control, setting the values of various properties that
represent the method parameters. Then, usually in the same modify
statement, you set a particular property that represents the method to invoke.
Sometimes just setting the value of a control invokes a method.

Here is a table of the methods with their corresponding ACUCOBOL-GT
Web browser control properties and descriptions:

To invoke the GoBack, GoForward, GoHome, GoSearch, Refresh, and
StopBrowser methods, modify the control, setting the appropriate properties
to “1”. To invoke the Navigate method, modify the control setting the
VALUE property to the desired URL. For example, to invoke the GoBack
method:

Method Control property Description

GoBack GO-BACK Navigates to the previous item in
the history list.

GoForward GO-FORWARD Navigates to the next item in the
history list.

GoHome GO-HOME Navigates to the current
configured home or start page.

GoSearch GO-SEARCH Navigates to Microsoft’s web
portal site.

Navigate VALUE Navigates to a resource
identified by a URL or file path.

Refresh REFRESH Reloads the current page.

StopBrowser STOP-BROWSER Stops any pending navigation or
download.

Web Browser 5-177
MODIFY BROWSER-1 GO-BACK=1.

To invoke the Navigate method:
MODIFY BROWSER-1 VALUE="http://www.acucorp.com".

Alternatively, if you have defined the WEB-BROWSER control with value
URL-1 in a screen section item called BROWSER-SCREEN:
MOVE "http://www.acucorp.com" to URL-1.
DISPLAY BROWSER-SCREEN.

These methods are invoked asynchronously. This means that the MODIFY
verb may finish executing before the operation is complete. You may check
the value of the BUSY property (see below) to determine whether the
operation has completed.

5.21.2 Special Properties

CUSTOM-PRINT-TEMPLATE (alphanumeric)

Internet Explorer versions 5.5 and later give you precise control over
the layout and contents of pages printed, print jobs, and the print
preview user interface. This is accomplished using an HTML script
file that you create called a “Custom Print Template.” Use the
CUSTOM-PRINT-TEMPLATE property of ACUCOBOL-GT’s Web
browser control to specify the name of your template file.

You may specify an absolute or relative path to the template file.
Relative path names are relative to the current working directory.
Under thin client, the path refers to a file on the server. The client
downloads the file to its local cache directory and gives it a temporary
name. If the file already exists in the cache directory, the client
downloads a new copy only if the file on the server is a different size
or has a later modification date than the file on the client.

You must set CUSTOM-PRINT-TEMPLATE before each print or print
preview operation. Its value is cleared after the print or print preview
operation completes.

See the Microsoft Developer Network for complete documentation of
the format and use of custom print templates.

5-178 Control Types Reference
PRINT (numeric)

The PRINT and PRINT-NO-PROMPT properties let users print the
contents of the page displayed via the Web browser control. Set
PRINT=1 to display the “Print” dialog, allowing users to choose a
printer, page range, number of copies, zoom level, and other options
before starting a print job.

PRINT-NO-PROMPT (numeric)

Set PRINT-NO-PROMPT=1 to start a print job without displaying the
“Print” dialog. Default settings are used unless
CUSTOM-PRINT-TEMPLATE is specified. The thin client displays a
security dialog to warn users about the risks of running scripts from
untrusted servers.

PAGE-SETUP (numeric)

Set PAGE-SETUP=1 to display the “Page Setup” dialog, allowing
users to change settings for margins, paper size, paper source, and
layout prior to printing.

PRINT-PREVIEW (numeric)

Set PRINT-PREVIEW=1 to display the “Print Preview” window. You
can customize the appearance and user interface in this window using
the CUSTOM-PRINT-TEMPLATE property.

COPY-SELECTION (numeric)

Set COPY-SELECTION=1 to copy the current selection to the
clipboard.

CLEAR-SELECTION (numeric)

Set CLEAR-SELECTION=1 to clear the current selection from the
clipboard.

SAVE-AS (numeric)

Set SAVE-AS=1 to display the “Save As” dialog and allow the user to
save a copy of the page displayed in the Web browser control to disk.

SAVE-AS-NO-PROMPT (alphanumeric)

The SAVE-AS-NO-PROMPT property uses the filename specified
with the FILE-NAME property when a page is saved from the browser
control. This was originally designed to bypass the “Save As” dialog

Web Browser 5-179
and save the Web page to disk without prompting the user. However,
Microsoft has identified this as a security risk and later versions of
Internet Explorer will always display the “Save As” dialog.

FILE-NAME (alphanumeric)

Set FILE-NAME to the path of a file to be used with the “Save As”
operation. The value of the FILE-NAME property is cleared after the
“Save As” operation is complete.

PROPERTIES (numeric)

Set PROPERTIES=1 to display the “Properties” dialog.

SELECT-ALL (numeric)

Set SELECT-ALL=1 to cause the entire contents of the HTML page,
current frame, or entry field to be selected. What gets selected depends
on which element of the Web page has the keyboard focus. If you click
in an HTML form entry field, then SELECT-ALL=1 selects the value
of that entry field only. If you click in an area of a frame outside of a
form, SELECT-ALL=1 selects the entire frame. This behavior was
designed by Microsoft and cannot be changed.

5.21.3 Other Properties

Here is a table of the properties with their corresponding ACUCOBOL-GT
Web browser control properties and descriptions:

Property Control property Description

Busy BUSY Indicates whether a download or
navigation is still in progress.

LocationName TITLE Name of the resource that the
WEB-BROWSER control is
currently displaying.

LocationURL VALUE URL of the resource that the
WEB-BROWSER control is
currently displaying.

Type TYPE Type of the current contained
document object.

5-180 Control Types Reference
BUSY, LOCATION-NAME, and TYPE are read-only properties. Setting
their values has no effect. As with all ACUCOBOL-GT control properties,
you may use the INQUIRE verb to obtain a Web browser control’s properties.
For example, to check whether a Web browser control has completed
executing the last invoked method:

INQUIRE BROWSER-1 BUSY IN BROWSER-1-BUSY.
IF BROWSER-1-BUSY = 1
...
END-IF

To get the URL that the browser is currently displaying:
INQUIRE BROWSER-1 VALUE IN URL-1.

Alternatively, if you have defined the control with value URL-1 in a screen
section item, the LocationURL is automatically moved to URL-1 when an
event or exception occurs or the ACCEPT terminates.

5.21.4 Events

The WEB-BROWSER control generates the following events:
MSG-WB-BEFORE-NAVIGATE
MSG-WB-DOWNLOAD-BEGIN
MSG-WB-DOWNLOAD-COMPLETE
MSG-WB-NAVIGATE-COMPLETE
MSG-WB-PROGRESS-CHANGE
MSG-WB-STATUS-TEXT-CHANGE
MSG-WB-TITLE-CHANGE

6
 Events Reference
Key Topics

Overview of Events.. 6-2
Window Events .. 6-3
Control Events ... 6-5
Menu Events ... 6-24

6-2 Events Reference
6.1 Overview of Events

 This chapter describes the events that can be generated when you are using
graphical windows and controls in an event-driven environment.

Events are categorized into command events, notify events, and messages.
Generally speaking, command events correspond to actions taken by the user
that the program needs to act on (for example, closing a window or pushing
a button). Notify events generally correspond to informational events that the
program may not have to act on. Messages pass information to a screen
control’s event procedure. This division is somewhat arbitrary, but
corresponds to the most common situations.

When a command or notify event occurs, the runtime system assigns a value
to the EVENT STATUS data item and then terminates the current ACCEPT
with an exception value of “96”. Note that the termination occurs even if the
particular ACCEPT statement does not normally allow exceptions. The
program should examine the EVENT STATUS data item to determine what
happened.

Messages are different from other events, because they do not terminate the
current ACCEPT. Messages are sent only to a control’s event procedure.
(See section 5.9.6, Book 3, Reference Manual, for a detailed discussion of
event procedures.)

The EVENT STATUS phrase is described in section 4.2.3, Book 3, Reference
Manual. The EVENT STATUS data item should be defined as follows:
01 EVENT-STATUS.
 03 EVENT-TYPE PIC X(4) COMP-X.
 03 EVENT-WINDOW-HANDLE USAGE HANDLE OF WINDOW.
 03 EVENT-CONTROL-HANDLE USAGE HANDLE.
 03 EVENT-CONTROL-ID PIC XX COMP-X.
 03 EVENT-DATA-1 USAGE SIGNED-SHORT.
 03 EVENT-DATA-2 USAGE SIGNED-LONG.
 03 EVENT-ACTION PIC X COMP-X.

A copy of this data item appears in the COPY file “crtvars.def”.

In the Screen Section, notification events are treated slightly differently from
command events. Normally, when an event triggers an EXCEPTION
procedure, the ACCEPT-CONTROL field of the SCREEN CONTROL status

Window Events 6-3
item is initialized to “0”. This causes the ACCEPT statement to terminate
after the EXCEPTION procedure completes. You can cause the ACCEPT
statement to continue processing fields by moving alternate values to the
ACCEPT-CONTROL data item. When a notification event triggers an
EXCEPTION procedure, the ACCEPT-CONTROL field is initialized to “1”
instead. This causes the ACCEPT statement to continue processing the
current field when the EXCEPTION procedure terminates. This is done as a
convenience. Most notification events can be handled entirely within the
EXCEPTION procedure and should not terminate ACCEPT processing. If
you need to terminate the controlling ACCEPT, simply move a “0” to
ACCEPT-CONTROL inside the EXCEPTION procedure.

Event values can be found in the file “acugui.def”. The names given in the
next section are the level 78 data items found in that file.

6.2 Window Events

The EVENT-CONTROL-HANDLE and EVENT-CONTROL-ID values will
always be zero (NULL) when a window event occurs. The values returned
are stored as signed integers and may return negative values.

Note: Command events begin with the prefix “CMD”. Notification events
start with “NTF”, and messages begin with “MSG”.

CMD-CLOSE (value 1)

This event indicates that the user has selected the close option from the
active window’s system menu. The application should respond by
hiding or destroying the window. The EVENT-WINDOW-HANDLE
data item will contain the handle of the window that the user wants to
close. The EVENT-DATA-1 and EVENT-DATA-2 values are not used.
Note that floating windows always return the exception CMD-CLOSE.
Also note that the runtime configuration variable QUIT-MODE affects
only the main application window. All other windows in the
application return the event CMD-CLOSE when the close button
is clicked.

6-4 Events Reference
CMD-ACTIVATE (value 6)

This event occurs when a window is activated by the user, but only if
the previously active window belongs to the same program (i.e., the
user switches windows within the program, and does not transfer
control from another program). The normal response is to ACCEPT
something in the newly active window, making it the active window
from the program’s point of view. If you use either the LINK or BIND
TO THREAD options when creating the window, then the runtime can
automatically handle this event. The EVENT-DATA-1 and
EVENT-DATA-2 values are not used. Threads are discussed in detail
in Section 6.8 of Book 1, ACUCOBOL-GT User’s Guide.

NTF-RESIZED (value 4114)

This event occurs when a resizeable window that does not have
AUTO-RESIZE specified is resized by the user. The application
typically reconstructs the screen in response. EVENT-DATA-1
contains the new height and EVENT-DATA-2 contains the new width,
both measured in hundredths of cells (e.g., an 80-column wide screen
is expressed as “8000”). Alternatively, after the ACCEPT terminates,
you can use a format 2 INQUIRE statement to obtain the window’s
dimensions and other information (see INQUIRE Statement in section
6.6, “Procedure Division,” of Book 3, Reference Manual).

The resize layout manager can simplify the task of resizing controls in
a window that has been resized. See Section 4.8, “Layout Managers,”
for more information.

MSG-CLOSE (value 16415)

This event occurs when the user clicks on the window’s close box,
selects “Close” from the window’s system menu, or types the host
system’s key sequence to close the application (Alt-F4 for Windows).

MSG-CLOSE provides a single point where you can test for the close
operation. This event will be followed by the normal close sequence
for the window. Handling of the initial window is dictated by the
current setting of the QUIT-MODE configuration variable. This may
also result in the generation of a CMD-CLOSE event for the other
windows. If you set EVENT-ACTION to EVENT-ACTION-FAIL in
response to this event, the close operation is inhibited.

Control Events 6-5
6.3 Control Events

Note: For any ACUCOBOL-GT, ActiveX, or .NET graphical control in
your program, you can specify a list of event types to either send to or
withhold from the program. This mechanism can be helpful in improving
application performance by eliminating the processing of events that are not
required. For details, see the entry for EVENT-LIST in Section 6.4.9,
“Common Screen Options,” of Book 3.

The following events are associated with controls:

CMD-CLICKED (value 4)

This event occurs for push button, check box, and radio button
controls, even if NOTIFY is not specified. Specifying NOTIFY makes
this a terminating event for check boxes and radio buttons.
CMD-CLICKED is always a terminating event for push buttons. The
EVENT-DATA-1 and EVENT-DATA-2 values are not used.

CMD-DBLCLICK (value 5)

Indicates that the user has double-clicked on an item in a list-box or
combo-box (returning this event), and that the box does not have a
TERMINATION-VALUE or EXCEPTION-VALUE associated with it.
This will occur only if the application requests it via the
NOTIFY-DBLCLICK list-box and combo-box styles.
EVENT-DATA-1 is the index of the selected item in the list (starting at
“1”). EVENT-DATA-2 is not used.

CMD-GOTO (value 3)

Indicates that the user wants to activate the control that generated the
event. This happens when the user clicks on an inactive control with
the mouse or types the control’s key letter. The application should
perform a normal ACCEPT of that control in response. (Failing to
ACCEPT a control in response to a CMD-GOTO event for that control
is generally not good programming practice, because it prevents the
control from behaving normally.) The EVENT-DATA-1 and
EVENT-DATA-2 values are not used. Note that the event is not
generated if you are ACCEPTing a Screen Section item and the user
selects different controls in that screen. The Screen Section handler
automatically performs the necessary activation.

6-6 Events Reference
The CMD-GOTO event is handled specially in the Screen Section with
regard to embedded procedures. This event causes a control’s AFTER
procedure to execute, instead of its EXCEPTION procedure. We
assume that moving between fields with the mouse is a normal event
and that field validation and clean-up (normally located in AFTER
procedures) should be executed.

CMD-HELP (value 8)

This event occurs when help is requested for the control described in
EVENT-CONTROL-HANDLE. The control’s help ID is in
EVENT-DATA-2 (this value is zero if the control does not have a help
ID). Because this event is handled by the runtime, it is not a
terminating event in your program. However, you can detect this event
in the control’s event procedure. You can also handle this event in the
event procedure itself and prevent the runtime’s automatic handling by
setting the EVENT-ACTION-CONTINUE element of the
EVENT-STATUS data item. For a detailed description of
EVENT-ACTION-CONTINUE and other elements of the
EVENT-STATUS data item, see Section 4.2.3, Book 3, Reference
Manual.

CMD-TABCHANGED (value 7)

This event occurs when the user selects a new tab from a TAB control.
The value of the selected tab is in EVENT-DATA-1. Unlike most
events, this one performs any validation specified in the ACCEPT, and
the current field’s AFTER procedure is executed rather than its
EXCEPTION procedure. This event ensures that the user cannot use
the TAB control to leave a form when it contains invalid data.
EVENT-DATA-2 is not used.

MSG-AX-EVENT (value 16436)

This event occurs when an ActiveX control or COM object has “fired”
an event. EVENT-DATA-2 contains the ActiveX control’s or COM
object’s event ID. This is a numeric identifier that matches an EVENT
phrase in the description of the class that generates the event. The ID
may be positive or negative.

For ActiveX, two pairs of library routines, C$GETEVENTDATA /
C$SETEVENTDATA and C$GETEVENTPARAM /
C$SETEVENTPARAM are used to get and set event parameters for

Control Events 6-7
the current event. For COM, you must use the C$GETEVENTDATA/
C$SETEVENTDATA routines to get and set event parameters. These
library routines are described in Appendix I, Book 4, Appendices.

MSG-BEGIN-DRAG (value 16406)

This is generated when the user begins dragging the mouse in a grid
control while holding down the left-button. This is generated only for
non-header cells. This is generated immediately before the first
corresponding MSG-GOTO-CELL-DRAG event. EVENT-DATA-1
contains the column number of the cell where the user began dragging
the mouse, and EVENT-DATA-2 contains the row number of that cell.
The properties X and Y are set to match these values for the duration
of this event. The properties START-X and START-Y are also set to
match these values (note that unlike “X” and “Y,” these settings are
retained after this event finishes).

MSG-BEGIN-ENTRY (value 16392)

This event occurs when the user starts modifying a cell in a grid
control. EVENT-DATA-1 contains the column number of the cell, and
EVENT-DATA-2 contains its record number. For convenience, the
properties X and Y are set to the cursor’s cell for the duration of this
event (i.e., they are set to the cursor’s location at entry to the event
procedure and restored to their prior values at exit). This allows you to
get a “before” image of the cell easily by simply doing an INQUIRE on
CELL-DATA.

You can prevent the entry from occurring by setting EVENT-ACTION
to EVENT-ACTION-FAIL.

MSG-BITMAP-CLICKED (value 16400)

This event occurs when the user left-clicks on a bitmap contained in a
grid control. EVENT-DATA-1 contains the column number of the cell
clicked, and EVENT-DATA-2 contains the record number of that cell.
For convenience, the properties X and Y are set to match these values
for the duration of the event.

If you set EVENT-ACTION to EVENT-ACTION-FAIL, the normal
action of left-clicking in a cell is prevented (i.e., the cursor is not
moved to that cell).

6-8 Events Reference
MSG-BITMAP-DBLCLICK (value 16401)

This event occurs when the user double-clicks on a bitmap contained in
a grid control. EVENT-DATA-1 contains the column number of the
cell double-clicked, and EVENT-DATA-2 contains the record number
of that cell. For convenience, the properties X and Y are set to match
these values for the duration of the event.

If you set EVENT-ACTION to EVENT-ACTION-FAIL, the normal
action of double-clicking in a cell is prevented (i.e., the grid does not
shift to entry mode for the cell).

MSG-BEGIN-HEADING-DRAG (value 16408)

This is generated when the user begins dragging the mouse in a grid
control while holding down the left-button. This is generated only for
header cells. This is generated immediately before the first
corresponding MSG-HEADING-DRAGGED event. EVENT-DATA-1
contains the column number of the cell where the user began dragging
the mouse, and EVENT-DATA-2 contains the row number of that cell.
The properties X and Y are set to match these values for the duration
of this event. The properties START-X and START-Y are also set to
match these values (note that unlike “X” and “Y”, these settings are
retained after this event finishes).

MSG-CANCEL-ENTRY (value 16394)

This event occurs when the user leaves entry mode in a grid control by
typing the “cancel” key (under Windows, this is the Escape key). The
contents of the cell are restored to the cell’s contents prior to the start
of the entry. EVENT-DATA-1 contains the column number of the cell,
and EVENT-DATA-2 contains its record number. For convenience, the
properties X and Y are set to the cursor’s cell for the duration of this
event. This event also occurs in the special case where the user enters
spaces (or nothing) into a cell that is in a record past the end of the last
record added to the grid. This is to prevent variable-length grids
(i.e. NUM-ROWS of “-1”) from expanding when the user enters
empty data.

Control Events 6-9
MSG-COL-WIDTH-CHANGED (value 16410)

This occurs when the user changes the width of a column in a grid
control. For this to occur, the grid must have the
ADJUSTABLE-COLUMNS style and must have only one row per
record. EVENT-DATA-1 contains the column number being changed.
EVENT-DATA-2 contains the new width (in characters).

MSG-END-DRAG (value 16407)

This event indicates that the user has released the mouse button after
dragging the mouse during a normal (non-header) drag operation in a
grid control. EVENT-DATA-1 contains the column number of the cell
where the user finished dragging the mouse. EVENT-DATA-2
contains that cell’s row number. The properties X and Y are set to
match these values for the duration of this event.

MSG-END-HEADING-DRAG (value 16409)

This event indicates that the user has released the mouse button after
dragging the mouse during a header drag operation in a grid control.
EVENT-DATA-1 contains the column number of the cell where the
user finished dragging the mouse. EVENT-DATA-2 contains that
cell’s row number. The properties X and Y are set to match these
values for the duration of this event.

MSG-FINISH-ENTRY (value 16393)

This event occurs when the user finishes editing a cell in a grid control.
You can use this opportunity to validate the cell’s contents and do any
reformatting of the data. EVENT-DATA-1 contains the column
number of the cell, and EVENT-DATA-2 contains its record number.
For convenience, the properties X and Y are set to the cursor’s cell for
the duration of this event. This allows you to retrieve the entered data
by simply performing an INQUIRE on CELL-DATA. To reformat the
entered data, INQUIRE on CELL-DATA, perform the desired
formatting, and MODIFY CELL-DATA with the reformatted data.
Note that if you INQUIRE directly into a numeric or numeric-edited
data item, you get automatic conversion similar to MOVE WITH
CONVERSION (with simple truncation on overflow). For more
sophisticated testing and reformatting, INQUIRE into an alphanumeric
item and examine the data directly.

6-10 Events Reference
You can force the user to stay in entry mode on the current cell by
setting EVENT-ACTION to EVENT-ACTION-FAIL. This is what
you should usually do if the user enters invalid data.

Note: Like all controls that can be activated, grids generate the
MSG-VALIDATE event. However, this occurs only when the user
attempts to leave the grid entirely. This is not usually very useful, so it
is best to do validation in response to MSG-FINISH-ENTRY.

MSG-GOTO-CELL (value 16395)

This is generated any time the user moves the cursor to a new grid
control cell using the keyboard. EVENT-DATA-1 contains the column
number of the cell being moved to, and EVENT-DATA-2 contains the
record number of that cell. For convenience, the properties X and Y
are set to match these values for the duration of the event. You can
determine which cell the user is moving from by inquiring CURSOR-X
and CURSOR-Y.

You can prevent the user from entering the cell by setting
EVENT-ACTION to EVENT-ACTION-FAIL. If you do this, the
cursor remains in its previous cell. You can direct the cursor to a
different cell by setting EVENT-ACTION to EVENT-ACTION-FAIL
and then modifying CURSOR-X and CURSOR-Y directly.

 MSG-GOTO-CELL-DRAG (value 16404)

This is generated when the user moves the mouse into a new grid
control cell while holding the left-button down. This event occurs only
if the user clicks in a non-header cell first. Clicking outside of the grid
and then dragging the mouse over the grid has no effect. Clicking in a
header cell and then dragging the mouse over the grid generates
MSG-HEADING-DRAGGED events instead.

Like most grid events, EVENT-DATA-1 contains the column number
of the cell being moved to, and EVENT-DATA-2 contains the record
number of that cell. For convenience, the properties X and Y are set to
match these values for the duration of the event.

The default action taken for this event is to scroll the grid (if needed)
and then place the cursor in the dragged-to cell. You can prevent the
cursor from being moved by setting EVENT-ACTION to
EVENT-ACTION-FAIL (the grid is scrolled regardless).

Control Events 6-11
This event can be disabled by setting the style NO-CELL-DRAG, or by
setting the runtime configuration file variable
GRID_NO_CELL_DRAG.

MSG-GOTO-CELL-MOUSE (value 16396)

This is generated any time the user moves the cursor to a grid control
cell using the mouse. This event is similar to MSG-GOTO-CELL,
which generates a message when the cursor is moved via the keyboard.
One reason you may want to know whether the user is moving to the
cell via the mouse or the keyboard is if you are preventing the user
from visiting a particular cell. You may want to leave the cursor in its
original location if the user clicks on the cell with the mouse. But if the
user types a key, you may want to skip over the field (you can tell
which direction to skip by looking at the cell the user is starting from).
This event differs from MSG-GOTO-CELL because a message is
generated by MSG-GOTO-CELL-MOUSE even when the user clicks
in the grid control cell that contains the cursor.

For details about the handling of this event, see MSG-GOTO-CELL.

Note: The behavior of this event changed with Version 5.2. For
more information, see “Changes Affecting Version 5.1” in Book 4,
Appendix C.

MSG-GRID-RBUTTON-DOWN (value 16426)

This event occurs in the grid control when the user depresses the right
mouse button. EVENT-DATA-1 is set to the column number of the cell
being clicked, EVENT-DATA-2 is set to the row number. If the grid is
right-clicked outside of any cells, these values are set to zero. The grid
properties X and Y are set to these same values for the duration of this
event. If you respond to this event by setting EVENT-ACTION to
EVENT-ACTION-COMPLETE, no further processing of this event
occurs. Otherwise, the grid acts as if the user pressed the left
mouse button.

6-12 Events Reference
MSG-GRID-RBUTTON-UP (value 16427)

This event occurs when the user releases the right mouse button. The
event behaves in the same manner as the
MSG-GRID-RBUTTON-DOWN event described above. Once this
event finishes processing, any pop-up menu associated with the grid is
displayed normally.

One way you can use this event is to select an appropriate pop-up menu
depending on the cell clicked. For example, you may want different
pop-up menus for the headings and the body of the grid. You can
examine the cell clicked in this event and set the appropriate pop-up
menu for the control. The selected menu appears after the event has
finished.

MSG-HEADING-CLICKED (value 16402)

This event occurs when the user left-clicks on a row or column header
in a grid control. EVENT-DATA-1 contains the column number of the
cell clicked, and EVENT-DATA-2 contains the record number of that
cell (one of these will be “1”). For convenience, the properties X and
Y are set to match these values for the duration of the event.

MSG-HEADING-DBLCLICK (value 16403)

This event occurs when the user double-clicks on a row or column
header in a grid control. EVENT-DATA-1 contains the column number
of the cell double-clicked, and EVENT-DATA-2 contains the record
number of that cell (one of these will be “1”). For convenience, the
properties X and Y are set to match these values for the duration of
the event.

MSG-HEADING-DRAGGED (value 16405)

This event occurs when the user moves the mouse into a grid control
header cell while holding the left-button down. This event is generated
only when the user first clicks in a header cell. If the user clicks in a
header, and then drags the mouse over a non-header cell,
MSG-HEADING-DRAGGED is generated and the closest header cell
is used. These rules allow the user to be a bit “sloppy” when dragging
the mouse.

EVENT-DATA-1 contains the column number of the cell dragged-to,
and EVENT-DATA-2 contains the row number (one of these will be
“1”). For convenience, the properties X and Y are set to match these
values for the duration of the event.

Control Events 6-13
MSG-NET-EVENT (value 16437)

This event occurs when a .NET control has fired an event.
EVENT-DATA-2 contains the .NET control’s event type. A library
routine, C$GETNETEVENTDATA, is used to get the event parameters
for the current event. This routine is described in Book 4, Appendix I.

MSG-PAGED-FIRST (value 16423)

This event occurs for grids with the PAGED style. It indicates that the
user has clicked on the “First Page” button (the same button as the
“Previous Record” button with the Shift key held down). The runtime
responds to this event by positioning the record pointer at the
beginning of the data source. Assuming that the data source is an
indexed file, a START statement sets the record pointer so that a READ
NEXT would retrieve the first record in the file. If you set
EVENT-ACTION to EVENT-ACTION-NORMAL (this is the
default), the following occurs after this event has finished:

a. the control is emptied of data, except for any column headers; and

b. the control generates a page worth of MSG-PAGED-NEXT events
to fill up the first page of data.

If you opted to fill up the first page itself in response to this event, set
EVENT-ACTION to EVENT-ACTION-COMPLETE to inform the
grid that it should not generate the MSG-PAGED-NEXT events to fill
the first page. If you cannot start at the beginning of the file (because
the file is empty), set EVENT-ACTION to EVENT-ACTION-FAIL.

MSG-PAGED-LAST (value 16424)

This event occurs for grids with the PAGED style. It indicates that the
user has clicked on the “Last Page” button (the “Next Record” button
with the Shift key held down). This works in the same manner as the
MSG-PAGED-FIRST event described above. You position the data
source so that a MSG-PAGED-PREV event would retrieve the last
record, and the grid handles the rest. See MSG-PAGED-FIRST and
MSG-PAGED-PREV.

MSG-PAGED-NEXT (value 16419)

This event occurs for grids with the PAGED style. It indicates that the
user has clicked on the “Next Record” button. The expected response
from the runtime is to supply the next record after the end of the grid’s
current data. To do this, add a new record at the end of the grid (using

6-14 Events Reference
RECORD-TO-ADD). If the data is from an indexed file, the value of
EVENT-DATA-2 is the number of READ NEXTs you need to perform
to get to the appropriate record. This value is controlled by the property
FILE-POS. See the discussion on the FILE-POS property under the
grid control for details on how this works. If you cannot supply the
next record (because you have reached the end of the file), respond by
setting EVENT-ACTION to EVENT-ACTION-FAIL. When you do
this, you receive no more MSG-PAGED-NEXT events.

MSG-PAGED-NEXTPAGE (value 16421)

This event occurs for grids with the PAGED style. It indicates that the
user has clicked on the “Next Page” button. If you do not define a
specific action when this event occurs, the grid implements the logic
itself by generating a page worth of MSG-PAGED-NEXT events. This
is done with the MASS-UPDATE internally set to a non-zero value.

If you want to supply the logic by adding code to handle this event, set
EVENT-ACTION to EVENT-ACTION-COMPLETE. This
action-status informs the grid that it should not generate the
MSG-PAGED-NEXT events because the “Next Page” has already
been handled.

MSG-PAGED-NEXT-WHEEL (value16439)

This event occurs when the user scrolls a wheelmouse downward or
away from the computer screen. The expected behavior from the
runtime is to scroll the grid downwards, that is, to fill in items from the
bottom of the grid. The following EVENT-DATA information applies
to these wheelmouse events: MSG-PAGED-NEXT-WHEEL,
MSG-PAGED-PREV-WHEEL, NTF-PL-NEXT-WHEEL,
NTF-PL-PREV-WHEEL.

Note: These events require Windows 98 or NT 4.0 or later (a
requirement by Microsoft).

EVENT-DATA 1 value indicates if one or more of the virtual keys have
been pressed (activated) at the time the scroll took place, for example,
scrolling while pressing a key.

Control Events 6-15
EVENT-DATA-1 values may occur simultanously, for instance, both
CONTROL and SHIFT keys may be active at the same time. To test
values, use the library function CBL_AND.

Since these values are passed straight through from Windows, any
additions made by Microsoft will automatically be made available to
the runtime. Such additions would require you to consult Microsoft
documentation on WM_MOUSEWHEEL and wParam to determine
what is being passed to the low order of the wParam.

EVENT-DATA-2 contains the number of lines to scroll as set in the
operating system’s SPI_GETWHEELSCROLLLINES and is inquired
by using the API function “SystemParametersInfo”.

The value of EVENT-DATA-2 represents the suggested standard
number of lines to scroll (typically three lines) as set and determined
by the operating system. Although you are free to change it, consider
leaving it as is, since it comes from the operating system and is most
likey what the user desires.

Since the number of wheelmouse scroll lines can be changed by users,
EVENT-DATA-2 is automatically notified and updated of any scroll
line number changes via the runtime. This behavior cannot be
disabled, as it is meant to comply with Windows standards. The
runtime will use the detected scroll line number for all applications, as
the value returned is used for each event controlled by the runtime.

Value Definition

0 No virtual key pressed.

1 Control key is pressed (MK_CONTROL).

2 Left mouse button is pressed (MK_LBUTTON).

4 Right mouse button is pressed (MK_RBUTTON).

8 A shift key is pressed (MK_SHIFT).

16 First X button is down (Windows 2000 or later)
(MK_XBUTTON1).

32 Second X button is down (Windows 2000 or later)
(MK_XBUTTON2).

6-16 Events Reference
Be aware that not only can users configure the number of lines to
scroll, they can also change to scrolling a page at a time. If this is the
case, EVENT-DATA-2 will return the following value:

78 WHEEL-PAGESCROLL VALUE 4294967265.

You should test EVENT-DATA-2 against this value, and if matching,
scroll a page rather than lines.

MSG-PAGED-PREV (value 16420)

This event occurs for grids with the PAGED style. It indicates that the
user has clicked the “Previous Record” button. The expected response
from the runtime is to supply the record before the first record of the
grid’s current data. To do this, add a new record at the start of the grid
(using RECORD-TO-ADD to add the record and INSERTION-INDEX
to position the record before the first row of data, and making sure that
the record is not inserted before any column headings in the grid). If
the data is from an indexed file, the value in EVENT-DATA-2 is the
number of READ PREVIOUS statements you need to perform to get to
the appropriate record. This value is controlled by the property
FILE-POS. See the discussion about the FILE-POS property under
grid control. If you cannot supply the record (because you have
reached the beginning of the file), respond by setting
EVENT-ACTION to EVENT-ACTION-FAIL. When you do this, you
will receive no more MSG-PAGED-PREV events.

MSG-PAGED-PREVPAGE (value 16422)

This event occurs for grids with the PAGED style. It indicates that the
user has clicked the “Previous Page” button. This works in the same
manner as the MSG-PAGED-NEXTPAGE event described above.
Although this event may be ignored, you may want to supply a specific
action in response to this event. See MSG-PAGED-NEXTPAGE for
details.

MSG-PAGED-PREV-WHEEL (value 16438)

This event occurs when the user scrolls a wheelmouse upward or
towards the computer screen. The expected behavior from the runtime
is to scroll the grid upwards, that is, to fill in items from the top of the
grid. EVENT-DATA-1 indicates if any virtual keys have been pressed
at the same time as the scroll, and EVENT-DATA-2 indicates the
number of lines that should be scrolled on each wheelmouse event.

Control Events 6-17
Refer to MSG-PAGED-NEXT-WHEEL (value16439) in this section
for details.

MSG-SB-NEXT (value 16385)

This event occurs when the user clicks on the down/right button in a
scroll bar. When this message is sent to the scroll bar’s event
procedure, the program should respond by setting the control’s new
position. EVENT-DATA-1 and EVENT-DATA-2 are not used.

MSG-SB-NEXTPAGE (value 16387)

This event occurs when the user clicks on the down/right page region
in a scroll bar. When this message is sent to the scroll bar’s event
procedure, the program responds by setting the control’s new position.
EVENT-DATA-1 and EVENT-DATA-2 are not used.

MSG-SB-PREV (value 16386)

This event occurs when the user clicks on the up/left button in a scroll
bar. When this message is sent to the scroll bar’s event procedure, the
program responds by setting the control’s new position.
EVENT-DATA-1 and EVENT-DATA-2 are not used.

MSG-SB-PREVPAGE (value 16388)

This event occurs when the user clicks on the up/left page region in a
scroll bar. When this message is sent to the scroll bar’s event
procedure, the program responds by setting the control’s new position.
EVENT-DATA-1 and EVENT-DATA-2 are not used.

MSG-SB-THUMB (value 16389)

This event occurs when the user repositions the scroll bar’s slider, or
“thumb.” When this message is sent to the scroll bar’s event
procedure, the program responds by setting the control’s new position
to the value in EVENT-DATA-2. EVENT-DATA-1 is not used.

MSG-SB-THUMBTRACK (value 16390)

This event occurs when the user moves a scroll bar’s slider that has the
TRACK-THUMB style. When this message is sent to the scroll bar’s
event procedure, the program does not reset the control’s position in
response. EVENT-DATA-2 contains the new position.
EVENT-DATA-1 is not used. This scroll bar message is the only one
that should not change the slider’s position.

6-18 Events Reference
MSG-SPIN-DOWN (value 16417) T

This event occurs when the user clicks the down arrow of an entry field
with the SPINNER style. The program responds to
MSG-SPIN-DOWN by decrementing the entry field by a specific
value, not necessarily 1. Similar to the MSG-SPIN-UP event described
above, if the entry field has the AUTO-SPIN style, you can set the
EVENT-ACTION to EVENT-ACTION-FAIL to prevent the control
from decrementing the value itself.

MSG-SPIN-UP (value 16416)

This event occurs when the user clicks the up arrow of an entry field
with the SPINNER style. The program responds to this event by
incrementing the value of the entry field. You are not limited to
incrementing by one. You may increment the value of the field any
way you want by inquiring the field’s current value and then modifying
it to have the desired value.

If the entry field has the AUTO-SPIN style, you can set
EVENT-ACTION to EVENT-ACTION-FAIL in response to
MSG-SPIN-UP to prevent the control from incrementing the value itself.

MSG-TV-DBLCLICK (value 16428)

This event occurs when the user double-clicks an item in a Tree-View
control that has no children. Items that have children expand or
collapse when double-clicked. The ID of the item clicked is in
EVENT-DATA-2.

You may set EVENT-ACTION to EVENT-ACTION-IGNORE to inhibit
the control’s internal handling of a double-click event. You should do
this if you wish to transfer control to a new window in response to the
double-click. If your code creates a new window here but does not
ignore the event, then the control’s internal handling can deactivate your
new window.

Control Events 6-19
MSG-TV-EXPANDED (value 16414)

This event occurs when an item in a Tree View control has expanded or
collapsed. The ID of the parent item is in EVENT-DATA-2. One of the
following two flags is in EVENT-DATA-1:

MSG-TV-EXPANDING (value 16413)

This event occurs when an item in a Tree View control is about to
expand or collapse. EVENT-DATA-1 and EVENT-DATA-2 are set in
the same manner as for the event MSG-TV-EXPANDED. You can
prevent the control from expanding or collapsing the item by setting
EVENT-ACTION to EVENT-ACTION-FAIL. Note that the runtime
will send both of these events in response to the user pressing the + or
* keys. The difference is that these messages are sent regardless of
whether the particular item is expanded already or not, whereas a
mouse event will only cause the EXPAND messages to be sent if the
item is not already expanded. This fact can cause problems in COBOL
programs, so programmers should be aware of it.

The + and * keys will generate an EXPANDED message with
EVENT-DATA-1 set to TVFLAG-EXPAND, while the - key will
generate an EXPANDED message with EVENT-DATA-1 set to
TVFLAG-COLLAPSE.

MSG-TV-SELCHANGE (value 16412)

This event occurs when the selection has changed in a Tree View
control. The ID of the new item is contained in EVENT-DATA-2.
EVENT-DATA-1 contains the cause of the change. It is one of the
following values (found in “acugui.def”):

TVFLAG EXPAND Item expanded to show children

TVFLAG COLLAPSE Item collapsed to hide children

TVFLAG MOUSE New item selected with mouse

TVFLAG KEYBOARD New item selected with keyboard

TVFLAG PROGRAM Program changed selected item

6-20 Events Reference
MSG-TV-SELCHANGING (value 16411)

This event occurs when the selection in a Tree View control is about to
change. EVENT-DATA-1 contains the reason for the change (see
MSG-TV-SELCHANGE), and EVENT-DATA-2 contains the ID of the
item that is about to be selected. You can prevent the selection from
occurring by setting EVENT-ACTION to EVENT-ACTION-FAIL.

This event is generated much more often and in many more
circumstances than may be anticipated. For example, the event is
generated when the control goes active, even if the selection does not
change. If the program is deployed with the thin client, the volume of
these events can cause performance problems. The configuration
variable TC_TV_SELCHANGING provides some control over the
generation of these events in a thin client deployment. See the entry for
TC_TV_SELCHANGING in Appendix H of Book 4.

MSG-VALIDATE (value 16391)

This event occurs immediately after the runtime performs intrinsic
validation of a field at data entry (for example, the REQUIRED
phrase). Specifically, an MSG-VALIDATE event is generated
whenever an activatable control terminates and the termination is not
the result of:

a. an event, except for CMD-GOTO, or CMD-TABCHANGED

b. a message, except “status 95”

c. an exception, except for those that also cause movement between
fields in a Screen Section

When the above conditions are met, it is a good point in the program to
perform other validation of a control’s data.

If the EVENT-ACTION element is set to
EVENT-ACTION-CONTINUE (value 2), the control remains active
so the user can correct any errors. Note that MSG-VALIDATE is not
generated for controls with the SELF-ACT style, nor is it sent when the
runtime does not normally perform validation (for example, in
response to a function key). This message is generated for any control
that is activated, even if it does not have a value. Because of the
dynamic nature of graphical screens, a user can exit a screen without
all the fields being validated; therefore, validation should also be
performed after completion of data entry.

Control Events 6-21
MSG-WB-BEFORE-NAVIGATE (value 16429)

Occurs when the WEB-BROWSER control is about to navigate to a
new URL. The NAVIGATE-URL property is set to the new URL. If
you set EVENT-ACTION to EVENT-ACTION-FAIL, navigate will be
cancelled.

MSG-WB-DOWNLOAD-BEGIN (value 16431)

Occurs when a navigation operation is beginning, shortly after the
BeforeNavigate event.

MSG-WB-DOWNLOAD-COMPLETE (value 16432)

Occurs when a navigation operation is finished.

MSG-WB-NAVIGATE-COMPLETE (value 16430)

Occurs after the browser has navigated to a new URL. The final URL
is stored in the VALUE property.

MSG-WB-PROGRESS-CHANGE (value 16433)

Occurs when the progress of a download is updated. The PROGRESS
property is set to the current progress value. The MAX-PROGRESS
property is set to maximum progress value

MSG-WB-STATUS-TEXT-CHANGE (value 16434)

Occurs when the status bar text has changed. The STATUS-TEXT
property is set to the new status text.

MSG-WB-TITLE-CHANGE (value 16435)

Occurs when the title of a document in the WEB-BROWSER control
becomes available or changes. The TITLE property is set to the
new title

NTF-CHANGED (value 4100)

Indicates that the value of an entry field may have been changed by the
user. This occurs only for entry fields that have the
NOTIFY-CHANGE style. EVENT-DATA-1 is the current position of
the cursor in the entry field (starting at “1”). EVENT-DATA-2 is
not used.

6-22 Events Reference
NTF-PL-FIRST (value 4105)

This event is generated only by list boxes with the PAGED style. It
indicates that the user wants to scroll to the top of the list. The normal
response is to add the first “n” records to the list where “n” is the
number of lines the list box can show. EVENT-DATA-1 and
EVENT-DATA-2 are not used.

NTF-PL-LAST (value 4106)

This event is generated only by list boxes with the PAGED style. It
indicates that the user wants to scroll to the bottom of the list. The
normal response is to add the last “n” records to the list where “n” is
the number of lines the list box can show. EVENT-DATA-1 and
EVENT-DATA-2 are not used.

NTF-PL-NEXT (value 4101)

This event is generated only by list boxes with the PAGED style. It
indicates that the user wants to scroll the list box one record in the
downward direction. The normal response to this message is to add the
next record in the list to the list box. EVENT-DATA-1 and
EVENT-DATA-2 are not used.

NTF-PL-NEXTPAGE (value 4103)

This event is generated only by list boxes with the PAGED style. It
indicates that the user wants to scroll the list box one page in the
downward direction. The normal response is to add the next “n”
records to the list box where “n” is the number of lines the list box can
show. EVENT-DATA-1 and EVENT-DATA-2 are not used.

NTF-PL-NEXT-WHEEL (value 4109)

This event occurs when the user scrolls a wheelmouse away from the
computer screen. The expected behavior from the runtime is to scroll
the LIST upwards, that is, to fill in items from the top of the list.
EVENT-DATA-1 indicates if any virtual keys have been pressed at the
same time as the scroll, and EVENT-DATA-2 indicates the number of
lines that should be scrolled on each wheelmouse event. Refer to
MSG-PAGED-NEXT-WHEEL (value16439) in this section for
details.

Control Events 6-23
NTF-PL-PREV (value 4102)

This event is generated only by list boxes with the PAGED style. It
indicates that the user wants to scroll the list box one record in the
upward direction. The normal response to this message is to add the
previous record in the list to the top of the list box. EVENT-DATA-1
and EVENT-DATA-2 are not used.

NTF-PL-PREV-WHEEL (value 4108)

This event occurs when the user scrolls a wheelmouse towards the
computer screen. The expected behavior from the runtime is to scroll
the list upwards, that is, to fill in items from the top of the list.
EVENT-DATA-1 indicates if any virtual keys have been pressed at the
same time as the scroll, and EVENT-DATA-2 indicates the number of
lines that should be scrolled on each wheelmouse event. Refer to
MSG-PAGED-NEXT-WHEEL (value16439) in this section for
details.

NTF-PL-PREVPAGE (value 4104)

This event is generated only by list boxes with the PAGED style. It
indicates that the user wants to scroll the list box one page in the
upward direction. The normal response is to add the previous “n”
records to the top of the list box, where “n” is the number of lines
the list box can show. EVENT-DATA-1 and EVENT-DATA-2 are
not used.

NTF-PL-SEARCH (value 4107)

This event is generated only by list boxes with the PAGED style. It
indicates that the user wants to scroll to the page that contains the text
he or she has entered. The normal response is to locate the closest
matching record and then to add a page of records to the list box,
starting with the record found. EVENT-DATA-1 contains the length of
the search text. EVENT-DATA-2 is not used. To determine the search
text entered, use the INQUIRE verb on the SEARCH-TEXT property
of the list box.

NTF-SELCHANGE (value 4099)

Indicates that the user has selected a new item in a list box or in the
list-box of a combo-box. This will only occur if the application
requests it via the NOTIFY-SELCHANGE list-box and combo-box
styles. EVENT-DATA-1 is the index of the selected item in the list
(starting at “1”). EVENT-DATA-2 is not used.

6-24 Events Reference
6.4 Menu Events

The following events are associated with pop-up menus that are tied to a
control. You can detect pop-up menu selections directly in a control’s event
procedure. The following messages are generated as the user goes through
the process of selecting a pop-up menu item:

MSG-INIT-MENU (value 16398)

This event occurs immediately prior to the display of a control’s
pop-up menu. EVENT-DATA-2 contains the control’s menu handle.
The control’s event procedure can use this event to update any state
information in the menu, such as enabling/disabling items or setting/
removing check marks. If the event procedure sets EVENT-ACTION
to EVENT-ACTION-FAIL, or sets the control’s menu handle to
NULL, then the menu is not displayed. In this case, any host-defined
built-in menu for the control class will display instead (e.g., Windows
Cut/Copy/Paste/Undo menu associated with entry fields). If there is no
host-defined menu, then no menu is shown.

MSG-INIT-MENU applies to windows in the same manner that it does
for controls. When a window’s pop-up menu is about to appear, you
can pass the information that came with this event to the window’s
event procedure to update the menu’s state before the menu is shown.
You can also prevent the menu from being seen by setting
EVENT-ACTION to EVENT-ACTION-FAIL.

MSG-MENU-INPUT (value 16397)

This event occurs when the user has activated a control’s pop-up menu
and selected an item on the menu. For windows, the information from
this message event is passed to a window’s event procedure when the
user does any of the following:

a. selects an item from the window’s pop-up menu bar,

b. selects an item from the window’s pop-up menu,

c. selects an item from a pop-up menu owned by a control contained
in the window, and that control’s event procedure did not stop
further processing of the menu selection, or

Menu Events 6-25
d. selects the “Close” option from the initial window’s system menu
(or clicks the “Close” button), and you have set the configuration
option QUIT-MODE to a positive value. This configuration
option causes the runtime to treat the close operation as if it were
an item on the initial window’s menu bar.

EVENT-DATA-2 contains the menu item’s ID. Setting
EVENT-ACTION to EVENT-ACTION-CONTINUE prevents further
processing of the menu selection. Otherwise, the menu selection is
treated as a normal menu selection from the menu bar (i.e., it
terminates the ACCEPT with an exception value equal to the menu
item’s ID).

MSG-END-MENU (value 16399)

This event occurs when the pop-up menu of either a control or a
window has been removed from the screen. EVENT-DATA-2 contains
the control’s (or window’s) menu handle. The only normal reason for
processing this event would be to undo some effect created in response
to MSG-INIT-MENU.

7
 Using the Mouse
Key Topics

Mouse Properties ... 7-2
Mouse Action Ownership in Graphical Environments 7-3
How Mouse Actions Are Handled.. 7-4
Automatic Mouse Handling.. 7-8
Screen Section Behavior ... 7-10
W$MOUSE Library Routine .. 7-12

7-2 Using the Mouse
7.1 Mouse Properties

This chapter describes how to activate and use a mouse with your COBOL
applications.

ACUCOBOL-GT offers mouse support for both character-based and
graphical environments. (Currently, Windows environments are supported.
Limited mouse support is provided for X terminals if you are using a
curses-compatible mouse. Support for character-based UNIX terminals with
ANSI mouse support is also available, but limited. Support for other host
systems may be added in the future, when their support software becomes
available.)

For many applications, ACUCOBOL-GT can provide automatic mouse
handling that simplifies the amount of programming you must do to use the
mouse effectively.

This chapter describes which mouse features are automatic when you run
your program with the ACUCOBOL-GT runtime. It also explains how to add
other mouse controls — in your COBOL program and your COBOL
configuration file — if you want them.

Note: In character-based environments, the mouse pointer is invisible by
default. To make use of the mouse, you’ll need to enable it, as described in
Section 7.6. Under graphical environments, such as Windows, the mouse
is always enabled.

A mouse is a device that allows the user to position a pointer on the screen.
A mouse has the following properties:

• The mouse pointer can be positioned anywhere on the physical screen.
(Note that this can include regions outside of your application window in
a graphical environment.)

• Under graphical environments, the mouse pointer can have a variety of
shapes. The default shape is typically an arrow. On character-based
systems, the mouse pointer is a square in reverse-video.

Mouse Action Ownership in Graphical Environments 7-3
• The mouse itself has from one to three buttons on it. These buttons may
be either “up” or “down.” We say that a mouse button has been
“clicked” if it has been pushed down and then quickly released. Also, a
button may be “double-clicked” (clicked twice in quick succession).
(Note that “up” and “down” are states; “clicking” and “double-clicking”
are transient actions.)

• The buttons are referred to as the “left,” “right,” and “middle” buttons.
A mouse with two buttons has only “left” and “right” buttons; a
one-button mouse has only a “left” button. Left-handed users typically
exchange the meanings of the left and right buttons, but this is handled
outside of the application — your program refers to the primary mouse
button as the “left” button regardless of the actual button used.

• Some mouses, in addition to the buttons, have a wheel. The mouse
wheel can be used to scroll a window, just like a scroll bar. In the
Windows environment, in the Mouse Properties applet of the Control
Panel, the user can configure mouse wheel action so that each click (or
notch) of the mouse wheel is equivalent to a certain number of mouse
button clicks on the scroll bar.

• The mouse pointer is independent from the program’s text cursor.
Typically, an application lets the user position the text cursor on the
screen by positioning the mouse pointer at the desired location and
clicking the left button.

7.2 Mouse Action Ownership in Graphical
Environments

In graphical environments such as Windows, several applications may be
running at the same time. How is the activity of moving the mouse pointer or
clicking a mouse button communicated to the correct application?

Mouse actions are first communicated directly to the environment. The
environment then determines which application receives a message about the
mouse activity.

7-4 Using the Mouse
Almost always, the basic rule is that whichever application window is
topmost and is sitting directly under the mouse pointer receives the current
mouse message.

The graphical environment makes this determination on its own, which
means that an ACUCOBOL-GT application is not aware of mouse actions
that happen outside its application window. Conversely, mouse actions
occurring within an ACUCOBOL-GT application window are not known to
other applications that might be running at the same time.

The one exception to the basic rule of “who receives the mouse message” is
that you can “capture” the mouse in your program by a subroutine call. If you
“capture” the mouse, your program receives all mouse messages, no matter
where they occur on the physical screen, until you “release” the mouse. (This
option is typically used for situations where the user is marking or dragging
some object on the screen. You can “capture” the mouse so that you can
control the situation even if the user accidentally moves the mouse outside
your application window. The specifics of mouse capturing are discussed
later in this chapter.)

7.3 How Mouse Actions Are Handled

ACUCOBOL-GT treats each mouse action like a unique function key that the
program can act on. Each (unmasked) mouse action returns an exception
value to the program. By examining the exception value, your program can
determine which action just occurred.

Because it would be very disruptive to your program to return exception
codes every time the user moved the mouse, the mouse actions can be
“masked” (ignored). By default, all mouse actions are masked (except those
that are managed by automatic mouse handling). So, your program is not
interrupted by any mouse action. You can enable some or all of the mouse
actions in any combination by setting the COBOL configuration variable
“MOUSE-FLAGS”, described in section 7.3.3. This allows you to program
only for those mouse actions that you care about.

After your program becomes aware of a mouse action, you’ll need additional
information, such as the location of the mouse. ACUCOBOL-GT provides a
utility library routine called “W$MOUSE” that allows you to determine the

How Mouse Actions Are Handled 7-5
mouse’s location and the state of each of its buttons. You can also use this
routine to control mouse behavior. You’d typically call “W$MOUSE” in
response to the user’s pressing one of the buttons, to determine where the
mouse is located.

The following sections detail ACUCOBOL-GT’s mouse handling.

7.3.1 Mouse Exception Processing

ACUCOBOL-GT treats each of the possible mouse actions in a manner
similar to a function key. Each action has a unique “key code” that allows
you to define the desired behavior by using the KEYSTROKE configuration
variable. The following table details the mouse action, the corresponding key
code, and the default exception value returned.

For example, if the user moves the mouse while your program is at an
ACCEPT statement, then that ACCEPT statement will terminate with an
exception value of “80”. Note that this will occur only if the mouse action is
“unmasked” and your ACCEPT statement allows for exception keys. If the
mouse action is masked or if the ACCEPT statement does not allow for
exception keys, then the mouse movement will be ignored.

Action Key Code Exception Value

Mouse moved Mv 80

Left button pushed Ml 81

Left button released ML 82

Left button double-clicked M1 83

Middle button pushed Mm 84

Middle button released MM 85

Middle button double-clicked M2 86

Right button pushed Mr 87

Right button released MR 88

Right button double-clicked M3 89

7-6 Using the Mouse
7.3.2 Assigning Results to Mouse Actions

You may assign different values or results to the mouse actions by using the
KEYSTROKE configuration variable. (This variable is described in detail in
ACUCOBOL-GT User’s Guide, Chapter 4, Section 4.3.2.2.)

For example, to cause the right button to delete the current character, use the
following configuration entry:

KEYSTROKE Edit=Delete Mr

The “Edit=Delete” phrase indicates the desired action; the “Mr” phrase is the
key code associated with the user’s pressing the right mouse button. You
may also accomplish the same thing in COBOL by using the SET
ENVIRONMENT verb:

SET ENVIRONMENT “KEYSTROKE” TO “Edit=Delete Mr”

7.3.3 Unmasking Mouse Actions

Normally, you don’t want every mouse action to return an exception value to
your program. For example, you usually don’t need to know that the user
moved the mouse. Having to program for that case for each ACCEPT
statement would be very tedious. For this reason, ACUCOBOL-GT allows
you to mask out (ignore) some or all of the mouse actions in any combination.
By default, all of the mouse actions are masked — you must enable the
actions that you want to use.

You control which mouse actions you want to handle by setting the value of
the configuration variable “MOUSE-FLAGS”. The value you set is actually
one or more values added together.

Each numeric value shown in the table below also has a descriptive name
(such as arrow-left-down). Note that these descriptive names come from the
file “acugui.def”. If you use these descriptive names in your program, add
this statement to the Working-Storage section of your program:
copy “acugui.def”

How Mouse Actions Are Handled 7-7
The possible values are:

AUTO-MOUSE-HANDLING Value 1. Causes ACUCOBOL-GT to use
its automatic mouse handling facility.
This is described in detail below. (default)

ALLOW-LEFT-DOWN Value 2. Enables the “left button pushed”
action.

ALLOW-LEFT-UP Value 4. Enables the “left button
released” action.

ALLOW-LEFT-DOUBLE Value 8. Enables the “left button
double-clicked” action.

ALLOW-MIDDLE-DOWN Value 16. Enables the “middle button
pushed” action.

ALLOW-MIDDLE-UP Value 32. Enables the “middle button
released” action.

ALLOW-MIDDLE-DOUBLE Value 64. Enables the “middle button
double-clicked” action.

ALLOW-RIGHT-DOWN Value 128. Enables the “right button
pushed” action.

ALLOW-RIGHT-UP Value 256. Enables the “right button
released” action.

ALLOW-RIGHT-DOUBLE Value 512. Enables the “right button
double-clicked” action.

ALLOW-MOUSE-MOVE Value 1024. Enables the “mouse moved”
action.

7-8 Using the Mouse
For example, if you wanted to act on the user’s pressing either the left or right
buttons, you could do the following in COBOL:

ADD ALLOW-LEFT-DOWN, ALLOW-RIGHT-DOWN
 GIVING MOUSE-SETTING
SET ENVIRONMENT “MOUSE-FLAGS” TO
 MOUSE-SETTING

You may also set the MOUSE-FLAGS variable directly in the COBOL
configuration file. The following entry in the configuration file would
produce the same results as the example shown above:

MOUSE-FLAGS 130

See the list above for the numeric values associated with each setting.

The default setting of MOUSE-FLAGS is “1”
(AUTO-MOUSE-HANDLING).

7.4 Automatic Mouse Handling

The setting of the MOUSE-FLAGS configuration variable determines
whether or not automatic mouse handling is used (see the preceding section).
By default, this is turned on.

ALWAYS-ARROW-CURSOR Value 2048. Forces the mouse pointer
always to be the default arrow shape when
you are using automatic mouse handling.
If this is not set, then the shape of the
mouse pointer varies depending on
various configuration options. This is
described in detail below.

ALLOW-ALL-SCREEN-ACTIONS Value 16384. This causes all enabled
mouse actions that occur within your
application’s window to be acted upon. If
this is not set, then only mouse actions that
occur within the current ACUCOBOL-GT
window are acted upon. (The current
ACUCOBOL-GT window is a window
created by your program with the
DISPLAY WINDOW verb.)

Automatic Mouse Handling 7-9
Automatic mouse handling requires no changes to the COBOL program. It
causes the runtime to interpret any mouse actions that occur within a field
that’s being entered by an ACCEPT statement. The runtime processes the
mouse actions; your application doesn’t have to do anything. Your
application doesn’t even have to be aware that a mouse action has occurred.

The user is able to do the following with the mouse:

• Move the cursor to any position within the current field by moving the
mouse to that location and pressing the left button. The cursor will move
to that location.

• Select a set of characters by moving the mouse to a location in the field,
pressing the left button, and then dragging the mouse to a new location
and releasing the button. The selected characters will be shown in
reverse video. The next character that the user types will replace the
selected characters. Also, if the user types any key associated with the
“Delete” action, the selected characters will be deleted.

• When the application is ACCEPTing a Screen Section item that includes
several fields, jump to another field by moving the mouse to that field
and pressing the left button.

Note: Automatic mouse support takes precedence over other settings.
That means that if a mouse action can be handled by automatic support, it
will be. If automatic support cannot handle the action, and you have
unmasked the action, then your program dictates how it’s handled.

In graphical environments, the mouse pointer can assume different shapes.
Whenever the mouse cursor is placed anywhere within the current field, it is
shown as an “I-Bar”. This is a vertical bar that’s typically used to indicate
that the cursor will be positioned at a particular character if you press the left
button. If you desire, you may change this by using the “MOUSE”
configuration variable described below or by setting the
ALWAYS-ARROW-CURSOR option in MOUSE-FLAGS (see section 7.3.3
for a description of ALWAYS-ARROW-CURSOR).

7-10 Using the Mouse
7.5 Screen Section Behavior

When the user selects a field in the Screen Section, the exact behavior
depends on the field’s underlying type. You can control the behavior of the
mouse with regard to each field type with the MOUSE configuration
variable. This variable takes as its arguments one of the field-type names, an
equals sign, and then two keywords separated by a comma, as shown:

field-type name=keyword, keyword

Depending on where you are setting the MOUSE variable, there are three
methods of setting its configuration.

If you want to implement this variable in a configuration file, the variable can
be set without using the equals sign. For example:

MOUSE-NUMERIC-SHAPE Bar

If you are setting the variable as part of your environment in Windows, the
variable would look this:

SET MOUSE-NUMERIC-SHAPE=Bar

If you are setting the variable in your program using COBOL syntax, the
variable would look like this:

SET ENVIRONMENT “MOUSE-NUMERIC-SHAPE” TO “Bar”

For more information, see the entry titled “MOUSE*” in Book 4, Appendix
H.

Field-type name

The runtime distinguishes between three classes of fields: numeric,
numeric-edited, and all others. These are referred to respectively as
NUMERIC, EDITED, and ALPHA.

First keyword

The first keyword defines how the field is selected when the user presses the
left button. It can be one of the following:

Screen Section Behavior 7-11
NONE Indicates that this type of field may not be selected with the mouse.
When this keyword is used, then the second keyword (which defines the
mouse’s shape) is ignored. The mouse will adopt the shape used for areas of
the screen that are not part of any field.

FIELD Indicates that pressing the left button anywhere in the field will cause
the cursor to be positioned at the beginning of the field.

CHARACTER Indicates that pressing the left button in the field will position
the cursor at the character pointed to by the mouse. If this is past the last
non-prompt character in the field, the cursor will be placed just after the last
non-prompt character.

Second keyword

The second keyword is used only for graphical environments. It indicates the
shape that the mouse pointer should take while in the field. It can be one of
the following:

In graphical environments such as Windows, you may also define the shape
that the mouse will take when it is used in the current field. Because the
action of the mouse is the same for all field types once they become the
current field, the mouse shape is the same for all three types. You set the
desired shape using the “CURRENT” keyword in the MOUSE configuration
variable. This is followed by an equals sign and the desired shape. The
default shape is the BAR shape.

The default configuration is as follows:

ARROW The mouse pointer appears in the default arrow
shape.

BAR The mouse appears as a vertical bar. This is the
“I-Bar” shape typically used to indicate that the
mouse can be positioned at a particular character.

CROSS The mouse pointer appears as cross-hairs.

MOUSE Alpha=Character, Bar

MOUSE Numeric=Field, Arrow

7-12 Using the Mouse
Note: You may place multiple entries on the “MOUSE” configuration line,
but you are not required to do so.

The following configuration variables can also be used to set the behavior of
the mouse:

With these variables, you need to set the first and second keywords
separately. For example, to change the defaults shown above for a numeric
field, you would enter:

MOUSE_NUMERIC_SELECT = character
MOUSE_NUMERIC_SHAPE = bar

The REQUIRED phrase is used in the Screen Section to ensure that a user
cannot bypass required fields by jumping to the last field with the mouse.

7.6 W$MOUSE Library Routine

The runtime system contains a library routine called “W$MOUSE” that you
can use to control the behavior of the mouse. You use this routine with the
CALL statement in your COBOL program.

See the W$MOUSE entry in Appendix I for details on using this routine.

MOUSE Edited=Field, Arrow

MOUSE Current=Bar

To set field selection: To set cursor shape:

MOUSE_ALPHA_SELECT MOUSE_ALPHA_SHAPE

MOUSE_EDITED_SELECT MOUSE_EDITED_SHAPE

MOUSE_NUMERIC_SELECT MOUSE_NUMERIC_SHAPE

 MOUSE_CURRENT_SHAPE

8
 Menu Bars and Pop-up
Menus
Key Topics

Menus Overview .. 8-2
Generic Menu Handler ... 8-2
Graphical Menu Facilities .. 8-4
Overview of Menu Handling .. 8-5
Creating Menus—the Shortcut ... 8-6
Menu Activation and Use ... 8-12
Menu Input .. 8-14
Changing Menu Results.. 8-15
Common Menu Operations .. 8-16
Pop-up Menus .. 8-18
Menu Handling: Sample Code ... 8-20
System Menu “Close” Handling Under Windows 8-22
Portability Concerns ... 8-23
Menu Bar Sample Programs ... 8-24

8-2 Menu Bars and Pop-up Menus
8.1 Menus Overview

ACUCOBOL-GT offers significant support for a variety of application
menus.

Menu Bars

ACUCOBOL-GT supports a fully integrated menu bar facility. This allows
you to display a main menu across the top of the screen, with optional
pull-down submenus. Each menu item acts much like a function key,
returning an exception value to your program. You decide how you want
your program to respond to each exception value.

An individual menu item can be disabled when it’s not appropriate for a user
to choose that item. At your option, a menu item can be marked to indicate
that it has been selected. Submenus can be divided into sections with
separator bars. Shortcut keys can be assigned to menu options and displayed
next to menu text.

You control when a menu bar is displayed. You can remove a main menu
whenever you like, and replace it with a different one.

Pop-up Menus

ACUCOBOL-GT also supports pop-up menus for Windows environments.
Pop-up menus appear over the application in a vertical orientation while the
user is selecting an item, and then they disappear from the screen. Each
window and control can have its own pop-up menu. A single pop-up menu
can also be shared by several windows and controls. You can invoke a
pop-up menu from your program, and you can also arrange for a right
mouse-click to invoke a pop-up menu that is tied to a window or control.

8.2 Generic Menu Handler

The menu facility uses the host system’s menu handler if one exists;
otherwise, it uses ACUCOBOL-GT’s own generic menu handler. The
generic menu handler accommodates character-based systems and gives you
a large measure of control over the appearance of the menu and its submenus.

Generic Menu Handler 8-3
Of the host systems currently supported, only Windows and Windows NT
have their own menu handlers. This chapter describes the generic menu
handler provided with ACUCOBOL-GT, and notes how the Windows menu
handlers differ from it.

The generic menu handler displays the main menu bar horizontally along the
top of the screen. The main menu bar can take one of two forms: static or
pop-up.

8.2.1 Static Menu Bars

A static menu bar occupies the top line of the screen and is visible to the user
even when it’s not being accessed. The top line of the screen is unavailable
to your program while a static menu is displayed.

The second line of the screen becomes line “1” to your program. Thus, the
effective screen height is reduced by one line when you display a static menu
bar.

When you initially display a static menu bar, the screen is scrolled down one
line to make room for it. If this causes your current window to extend past
the bottom edge of the screen, the window is truncated at the bottom edge.

When you remove a static menu bar, the screen is scrolled up one line so that
line “1” of your program is on the top edge of the screen. If your current
window extends to the bottom edge of the screen, it has one line added to it,
so that it still extends to the bottom edge after the move.

8.2.2 Pop-up Menu Bars

A pop-up menu bar is one that is not normally visible. Instead, it pops up
over the top line of the screen when the user activates it. The advantage of
using a pop-up menu bar is that you have the full screen available to your
program. The disadvantage is that the user cannot see the menu bar unless it
has been activated (popped up). Pop-up menu bars are often used on
character-based systems to conserve space.

8-4 Menu Bars and Pop-up Menus
You specify which type of menu bar you want by calling W$MENU with the
WMENU-SET-CONFIGURATION parameter. (W$MENU is described in
Appendix I of the ACUCOBOL-GT Appendices manual). Then, when the
menu bar is displayed with the WMENU-SHOW parameter, your preferred
menu bar type is used.

8.2.3 Submenus

No matter which type of main menu you use, submenus pop down from the
menu bar. You may also nest submenus, up to a total of five levels (including
the main menu). The ACUCOBOL-GT menu handler supports main menu
bars that are one line high, and submenus that have one column. You should
avoid creating menus that would exceed these limits.

8.3 Graphical Menu Facilities

If you’re running in a graphical environment such as Windows, your program
controls the general layout and contents of the menu. The environment
controls the look of the menu and handles most of the user’s interaction
with it.

Windows and Windows NT menu bars are static in that they display
continually until your program removes them. They are shown horizontally
along the top edge of your application’s window. They exist outside of your
program’s screen — you don’t need to allow space for the menu bar when
creating your application. A menu can contain submenus that pull down
vertically when the user selects them. The submenus may contain further
submenus, which Windows handles as pop-up menus.

Overview of Menu Handling 8-5
8.4 Overview of Menu Handling

A menu consists of a list of menu entries. Each entry consists of a text label
and a numeric ID. The label is displayed on the screen. The ID value does
not appear. It’s an internal value that uniquely identifies each menu entry.
When the user selects a menu entry, your program typically receives its
ID value.

Any menu entry may optionally lead to another menu, called a submenu.
When the user selects an entry that leads to a submenu, the submenu pops up
and the user continues with the selection process. The display and removal
of submenus is handled automatically by the system. Submenus may contain
additional submenus.

8.4.1 Properties of Menu Entries

Menu entries can have these additional properties:

• Any menu entry can be disabled. When disabled, the menu entry
appears differently to the user. Under Windows and Windows NT, it’s
shown in gray text instead of black text. The generic menu handler lets
you pick the color or attribute that distinguishes disabled items. The user
is not allowed to select a disabled item.

• Entries on submenus can also be checked. This means that a small mark
is shown next to the menu’s label. This is usually used to indicate that
the corresponding program option is enabled. Under Windows, the mark
is a check mark. With the generic menu handler, you can choose the
mark; by default it’s an asterisk.

• Finally, a submenu entry may have a specialized label that generates a
horizontal bar (called a separator). Separators may not be selected by
the user, nor may they be checked or disabled. Separators are usually
used to group related menu entries.

Your program interacts with the menu subsystem with two techniques.

1. You construct menus and control them with the W$MENU library
routine.

8-6 Menu Bars and Pop-up Menus
2. You receive input from a menu bar via the ACCEPT statement.

The following sections explain how to create and display a menu using a
utility program provided with ACUCOBOL-GT and discuss how your
program receives input from a menu.

8.5 Creating Menus—the Shortcut

You create menu bars and pop-up menus by using the W$MENU library
routine. The process of creating a large menu can be time-consuming, so
ACUCOBOL-GT includes a utility program to simplify this task. This utility
is called genmenu. It’s a COBOL program provided in source form.

The utility genmenu takes a simple text file that describes one or more menus
and generates COBOL source code that can create these menus. You can
then include this generated source file in your program by using the COPY
statement.

8.5.1 Using genmenu

To use genmenu:

1. Compile “genmenu.cbl”.

2. Create a text file that describes your menu(s).

3. Run genmenu on that text file to create a file of COBOL code. (Used
later in Step 5.)

4. Include the COPY file “acugui.def” somewhere in your
Working-Storage section.

5. Name the generated COBOL file (from Step 2) in a COPY statement
in your Procedure Division.

6. Build the menu: use one PERFORM statement in your application to
cause each menu to be built.

7. Display the menu: CALL W$MENU to cause one menu to be
displayed.

Creating Menus—the Shortcut 8-7
These steps are described in detail below.

Step One

To compile genmenu:
ccbl -x -o genmenu genmenu.cbl

Note: If you usually use a suffix on your COBOL object files, you should
add that suffix to the command line.

Step Two

The input to genmenu consists of a normal text file that you create using your
editor. This file contains the descriptions of one or more menus. You may
place blank lines freely in this file as well as comment lines that start with
either “*” or “#” in column one. You may use either upper case or lower case
when creating menu files.

Each line in a menu file consists of one or more fields. Fields are separated
from each other by spaces. You may also use commas and tabs as field
separators. Initial spaces in a line are ignored. Here’s a small example:
MENU main-menu
 “&File”, 0, submenu
 “&New”, 101
 “&Open”, 103, disabled
 “Save &As...”, 104
 separator
 “E&xit”, 105
 end-menu

You start a menu by placing the word “MENU” (for a menu bar) or “POPUP”
(for a pop-up menu) on a line followed by a menu name. A menu name may
be up to 20 characters long and must be formed like a COBOL identifier (it
will be used to build a COBOL paragraph name). The menu name does not
appear in the generated menu bar.

Following the “MENU” or “POPUP” line, you enter one line for each menu
entry that belongs to that menu. You end a menu by one of the following:

• ending the file (no more lines),

8-8 Menu Bars and Pop-up Menus
• starting another menu with another “MENU” or “POPUP” line,

• placing the word “END-MENU” or “END-POPUP” on a line by itself
(these words are treated as synonyms).

Each item in a menu needs both a label (the text that appears on screen) and
a numeric ID. So, each menu entry consists of the menu label (in quotes)
followed by its ID value. Use lower and upper case in the label so that it
appears exactly as you want it to appear on the menu. The ID value may
either be a number or the name of a level 78 that you will define in the final
program. It should be greater than zero and less than or equal to 4095
(exception: it may be zero for submenus or separators).

When you’re typing the label, place an “&” character in front of the letter that
will be the entry’s key letter. The user can access that menu entry quickly by
typing the key letter at the keyboard. The key letter will appear underlined
when the menu is displayed (unless you’ve specified some other
appearance—see section 8.9.4). Under the Windows environment, the user
must press <Alt> and then type the key letter to make a menu choice with a
key letter. (Menu options can also be selected with the mouse, if one is
available and enabled. See Chapter 7.)

Note: If you don’t select a key letter, no underline will appear and the first
letter of the label will be used as its key letter. If two or more key letters are
the same, when the user types that key letter, the system will advance to the
next menu item with the chosen key letter and then wait for the user to press
“Enter.” If you are programming for future delivery on more than one
operating system, be aware that key letters may be handled slightly
differently on different systems. See also section 8.13, “Portability
Concerns.”

Indicating a shortcut key in the label

A shortcut key is a keyboard key that you have designated in your program to
perform the same action as a menu item. You must create a programmatic
association between the menu item and the key. One easy way to do this is to
make the menu item’s ID value the same as the exception value of the
keystroke.

Creating Menus—the Shortcut 8-9
You may display the shortcut key’s text next to the menu item in your menu
if you want. To specify the shortcut key’s text, place it immediately after the
characters “\t” in the item’s label. For example, if you want to create a menu
item that has the text “Exit” and you want to display the shortcut key text
“Ctl-X” next to it, you would specify “Exit\tCtl-X” as the item’s label. You
might think of “\t” as specifying a “tab” character that separates the two
columns when they are displayed in the menu. If you need to include “\t” in
your menu label, specify “\\t” to prevent it from being interpreted as a
shortcut key indicator.

Menu flags

After an entry’s ID, you may optionally enter up to three flags. These flags
are these words:

Separators

Finally, you may enter a separator menu item by using the word
“SEPARATOR” (without quotes) in place of the menu’s label and then
optionally listing a menu ID for it (if you omit the ID value, it will be treated
as zero).

For example, the following menu file would describe one menu that consists
of two items, each one of which has a submenu:
MENU main-menu
 “&File”, 0, submenu
 “&New”, 101
 “&Open”, 102
 “&Save”, 103

CHECKED The menu entry starts with a check mark placed by it
(enabled).

DISABLED The menu entry starts disabled.

SUBMENU The menu entry leads to a submenu. Subsequent
menu entries refer to items that will be placed in that
submenu. You complete a submenu by placing the
word “END-MENU” on a line by itself. After
completing a submenu, resume listing menu entries
that appear on the parent menu.

8-10 Menu Bars and Pop-up Menus
 “Save &As...”, 104
 separator
 “E&xit”, 105
 end-menu
 “&Options”, 0, submenu
 “&Save Settings on Exit”, 201, checked
 “&Password Protect”, 202, checked
 “Confirm Deletions”, 203
 end-menu

Note: The blank lines and the indenting are not required, but make the
menu file easier to read.

Step Three

When your text file is complete, you can use genmenu to create the COBOL
source code that builds the menu. Use the following command:

RUNCBL genmenu menu-file copy-file

where menu-file is the name of your text file that describes the menu and
copy-file is the name of the file that will hold the generated source code. You
may omit copy-file, or both menu-file and copy-file. If you do, genmenu
will prompt you for these names. Note that because genmenu is a COBOL
program, it will use any FILE-PREFIX and FILE-SUFFIX variables that you
have set in your configuration file.

Under graphical systems, genmenu will pause when it is done and will give
you an opportunity to view its output. Press <Enter> to continue. If you are
running genmenu from a batch file or a makefile and do not want to see the
output on a graphical system, specify “-1” on the command line. On a
character-based system, genmenu is designed to run as a quiet utility that has
no screen output.

If genmenu detects any errors, it will display them, along with the line
number of menu-file that caused the problem. Otherwise, it will simply place
the generated source code in copy-file.

Creating Menus—the Shortcut 8-11
Step Four

Somewhere in your Working-Storage section, include the line:
COPY “acugui.def”

Step Five

Somewhere in the Procedure Division of your application, include the line:
COPY “copy-file”

Step Six

The COPY file created by genmenu will contain a paragraph called
“BUILD-MENU-NAME” where MENU-NAME is replaced by the name you
gave in the “MENU” line of your text file. This paragraph contains all the
code necessary to produce the menu you described in your file. If you have
more than one menu in your text file, then the COPY file will have a
paragraph for each of these menus.

You execute each one of these paragraphs with a PERFORM statement. For
example:

PERFORM BUILD-MAIN-MENU.

When the PERFORM returns, it will have set the data item
“MENU-HANDLE” to a value that uniquely identifies the created menu.
MENU-HANDLE is declared in “acugui.def” as a numeric data item.

If MENU-HANDLE is set to zero, then it indicates that an error has occurred
in the creation of the menu. This is typically due to the system’s running out
of memory. Otherwise, “MENU-HANDLE” contains a valid identifying
value. This value is called the menu’s handle.

If you plan to use more than one menu, move MENU-HANDLE to another
variable so that you don’t lose the menu’s unique identifier when you
PERFORM the code that constructs the other menus. The variable you use
must be declared as PIC S9(9) COMP-4.

For example:
MOVE MENU-HANDLE TO FILE-MENU-HANDLE.

8-12 Menu Bars and Pop-up Menus
Step Seven

To display a menu in your application, be sure that MENU-HANDLE does
not have a zero value (zero indicates an error). Then:

CALL “W$MENU” USING WMENU-SHOW, MENU-HANDLE

The variables in this call are declared in “acugui.def”. This call will cause
your menu to be displayed to the user. The user may immediately begin
entering menu commands.

In the following code fragment, two menus are created and, if the build is
successful, the main menu is displayed:

PERFORM BUILD-MAIN-MENU.
MOVE MENU-HANDLE TO MAIN-HANDLE.
PERFORM BUILD-MAIL-SYSTEM-MENU.
MOVE MENU-HANDLE TO
 MAIL-SYSTEM-HANDLE.

IF MAIN-HANDLE NOT = ZERO
 CALL “W$MENU” USING
 WMENU-SHOW, MAIN-HANDLE.

8.6 Menu Activation and Use

Under graphical environments such as Windows, once a menu is displayed
the user can start selecting items from that menu. The mouse is typically used
to make selections. (Under Windows, you can also select an item by pressing
the <Alt> key or the <F10> key, and then the succession of key letters that
form a path to the desired item.)

Note: By convention, the F10 key is used by Windows to activate program
menus. This action is controlled automatically by the program. The
configuration variable “F10_IS_MENU” allows you to set the runtime to
handle the F10 key as a user defined key. The default setting of
F10-IS-MENU is “1” (on, true, yes). When you change the setting to “0”
(off, false, no) you inhibit the menu activation capability.

Menu Activation and Use 8-13
On character-based environments, the user may activate the current menu by
any of the following methods:

1. The user may type a menu key. This is a key that is defined by your
program to activate menus. You may define as many menu keys as you
want. By default, there are no menu keys; your program must define
them. Menu key definition is described in the next section.

2. For static menus, the user can click on the menu bar with the mouse.
This assumes that the runtime contains mouse support.

3. On terminals with an ANSI-style mouse (like xterm), the user can press
<Alt> to activate the menu and then type a menu item’s key letter to
select the corresponding item.

Note: The only technique that is guaranteed to work for all machines is the
menu key technique. Because of this, you should ensure that either your
program or your COBOL configuration file defines one or more menu keys
if you create a menu.

8.6.1 Defining Menu Keys

To define a menu key in a character-based environment, assign the
edit-action “Menu” to a key with the KEYSTROKE variable in your COBOL
configuration file. For example, to make the <F1> key a menu key, place this
line into your configuration file:

KEYSTROKE Edit=Menu k1

Keys and their key codes (such as k1) are listed in Section 4.3.2.3 of Book
1, ACUCOBOL-GT User’s Guide.

You can also define a menu key within your program with SET
ENVIRONMENT. For example,

SET ENVIRONMENT “KEYSTROKE”
TO “Edit=Menu k1”

Note: <F10> is the menu activation key for Windows environments. This
cannot be modified.

8-14 Menu Bars and Pop-up Menus
Once a menu is active, the user can:

• use the arrow keys to move the highlight

• select an item with the Spacebar or the Return key

• jump to an item and select it by typing its key letter

• use the Escape key, along with any program-defined menu keys, to
cancel a menu or a submenu

8.7 Menu Input

Menu selections are handled by the ACCEPT statement. Generally speaking,
a menu selection acts much like a function key. Each menu item causes an
ACCEPT statement to terminate, returning an exception value equal to the
item’s ID.

For example, suppose the menu has this definition:
menu main-menu
 “&File”, 0, submenu
 “&New”, 101
 “&Open”, 102
 “&Save”, 103
 “Save &As...”, 104
 separator
 “E&xit”, 105
 end-menu

 “&Options”, 0, submenu
 “&Save Settings on Exit”, 201, checked
 “&Password Protect”, 202, checked
 “&Confirm Deletions”, 203
 end-menu

If the user selected the “New” menu item, then any executing ACCEPT
statement would terminate with an exception status of “101”.

Changing Menu Results 8-15
Note: Only ACCEPT statements that allow exception keys will terminate
with a menu selection. If the ACCEPT statement does not allow
exceptions, any menu selections will be ignored.

8.7.1 Function Key Handling

An existing application that uses function keys can readily be upgraded to use
menu bars. To create a menu item that behaves exactly the same as a
particular function key, give that menu item an ID that is the same as the
function key’s exception value.

8.7.2 Menu Selection Limits

The runtime system holds only one menu selection in its buffer at any time.
Subsequent menu selections overwrite the one being held. For example, if
the user selects “Quit” from the menu and then selects “Print” before the
program processes the “Quit” selection, then the program will receive only
the “Print” selection.

8.8 Changing Menu Results

The default action of a menu item is to return an exception value equal to the
item’s ID. You can change the default action of a particular item by using the
MENU-ITEM configuration variable.

Use MENU-ITEM in exactly the same fashion as the KEYSTROKE
variable, except that the last entry on the line is the menu’s ID, not the key
code. For example, to cause a menu item whose ID is “200” to act the same
as the Delete key, use the following:

MENU-ITEM Edit=Delete 200

Alternately, you could cause menu item “200” to call the “notepad” sample
program by using:

MENU-ITEM Hot-Key=“notepad” 200

8-16 Menu Bars and Pop-up Menus
You can program these entries in COBOL by using the SET
ENVIRONMENT verb. For example,

SET ENVIRONMENT “MENU-ITEM” TO
“Edit=Delete 200”

8.9 Common Menu Operations

After you have a menu constructed and in use, there are several common
operations you may want to perform. These are accomplished with the
W$MENU library routine. This section describes only these frequently used
operations.

See the entry for W$MENU in ACUCOBOL-GT Appendices manual,
Appendix I, for details on using this routine.

The routine takes one or more parameters, which are always passed BY
REFERENCE (the default in COBOL). The first parameter is always an
operation code. This code defines what the routine will do. The remaining
parameters depend on the operation selected. The operation codes are
defined in the COPY file “acugui.def”, which by default is located at:
...\AcuGT\sample\def.

8.9.1 Disabling Menu Items

Your program may want to enable or disable individual menu entries
dynamically. To do this, call W$MENU passing the WMENU-ENABLE or
WMENU-DISABLE operation code. Follow this with the handle of the
owning menu and the ID of the particular entry you want to change.

For example, to disable menu item “101”, use:
CALL “W$MENU” USING WMENU-DISABLE,
MENU-HANDLE, 101

If you enable or disable a menu item on the top level of the menu, you must
use the WMENU-SHOW operation to make your change visible. This allows
you to modify several top level items at once before re-displaying the menu.

Common Menu Operations 8-17
For example, you might have:
CALL “W$MENU” USING WMENU-ENABLE,
MENU-HANDLE, 101
CALL “W$MENU” USING WMENU-DISABLE,
MENU-HANDLE, 102
CALL “W$MENU” USING WMENU-SHOW,
MENU-HANDLE

8.9.2 Checking Menu Items

To place or remove a check mark from a menu item, use the
WMENU-CHECK or WMENU-UNCHECK operation code. Follow this by
the menu’s handle and the ID of the item you want to modify.

For example, to place a check mark beside the menu item “10”, use the
following code:

CALL “W$MENU” USING WMENU-CHECK,
MENU-HANDLE, 10

Placing check marks on top-level menu items has no effect.

8.9.3 Disabling an Entire Menu

You may want to prevent the user from having access to the menu during
certain parts of your program. To do so, call W$MENU using the
WMENU-BLOCK operation code. When you want to re-enable access, call
W$MENU using WMENU-UNBLOCK.

Normally, you will want to do this when you must have some specific
information from the user that you need in order to continue. By disabling
the menu, you will prevent the user from trying to initiate a different
operation that your program is not prepared to handle.

For example, if the user has selected “Open” from the menu, you may want
to disable the menu until you have retrieved the name of the file to open. This
could be coded like this:

CALL “W$MENU” USING WMENU-BLOCK
PERFORM GET-FILE-NAME-FROM-USER

8-18 Menu Bars and Pop-up Menus
CALL “W$MENU” USING WMENU-UNBLOCK

8.9.4 Menu Configuration With the Generic Menu
Handler

The ACUCOBOL-GT generic menu handler allows you to configure several
aspects of its look and feel. This is done with get/set configuration operations
of the W$MENU library routine. See the entry for W$MENU in
ACUCOBOL-GT Appendices manual, Appendix I, for details on using this
routine.

8.10 Pop-up Menus

Pop-up menus can be created on Windows environments. Pop-up menus
appear over the application in a vertical orientation while the user is selecting
an item, and then they disappear from the screen. You can programmatically
invoke a pop-up menu. In addition, you can arrange for a right mouse-click
to automatically invoke a pop-up menu tied to a window or a control. Each
window and control can have its own pop-up menu. In addition, you can
share a single menu between several windows and controls.

To create a pop-up menu, use the “W$MENU” routine with the
WMENU-NEW-POPUP operation. This operation works just like
WMENU-NEW, except that the resulting menu is a pop-up menu instead of
a menu bar. Once created, pop-up menus are acted upon just like menu bars.
Adding, changing, and deleting items is done in the same manner as for a
menu bar, as is enabling or disabling items. If you want to add a sub-menu to
a pop-up menu, you can use either a menu bar or another pop-up menu as the
submenu.

To invoke a pop-up menu directly, use the WMENU-POPUP operation of
“W$MENU”. The first operand is the handle of the menu you want to pop
up. The menu is placed at the location of the mouse unless you specify two
additional parameters, which are the absolute screen location (first row, then
column). The screen location is expressed in pixels, with (1, 1) being the
upper left-hand corner of the screen. This operation displays the menu, gets
the user’s selection (if any), and then removes the menu from the screen. The

Pop-up Menus 8-19
menu selection is placed into the runtime’s input stream for future processing
by an ACCEPT statement. This will appear to the ACCEPT statement just
like a menu selection off of the menu bar.

You can automate the handling of pop-up menus by associating them with
windows and controls. Each window and control can have its own pop-up
menu associated with it. To do so, simply specify the menu handle in the
POP-UP MENU phrase when you create the window or control. You can
also add, change, or remove the pop-up menu later with the MODIFY
statement.

When a window or control has a pop-up menu associated with it, the runtime
will automatically display and handle this menu when the user clicks the right
mouse button on the owning window or control. Your program will simply
receive the menu selection in the input stream as if it came from the menu bar.

You can also detect pop-up menu selections directly in a control’s event
procedure. The following messages are generated as the user goes through
the process of selecting a pop-up menu item:

MSG-INIT-MENU

Occurs immediately prior to the display of a control’s pop-up menu.
EVENT-DATA-2 contains the control’s menu handle. The control’s
event procedure can use this event to update any state information in
the menu, such as enabling/disabling items or setting/removing check
marks. If the event procedure sets EVENT-ACTION to
EVENT-ACTION-FAIL, or sets the control’s menu handle to NULL,
then the menu is not displayed. In this case, any host-defined built-in
menu for the control class will display instead (e.g., Windows Cut/
Copy/Paste/Undo menu associated with entry fields). If there is no
host-defined menu, then no menu is shown.

MSG-MENU-INPUT

Occurs when the user has activated a control’s pop-up menu and
selected an item on the menu. EVENT-DATA-2 contains the menu
item’s ID. Setting EVENT-ACTION to
EVENT-ACTION-CONTINUE prevents further processing of the
menu selection. Otherwise, the menu selection is treated as a normal
menu selection from the menu bar (i.e., it terminates the ACCEPT with
an exception value equal to the menu item’s ID).

8-20 Menu Bars and Pop-up Menus
MSG-END-MENU

Occurs when a control’s pop-up menu has been removed from the
screen. EVENT-DATA-2 contains the control’s menu handle. The
only normal reason for processing this event would be to undo some
effect created in response to MSG-INIT-MENU.

Using MSG-MENU-INPUT, you can handle all of a control’s pop-up
menu items directly in the control’s event procedure, without
terminating any controlling ACCEPT statement.

8.11 Menu Handling: Sample Code

The following code fragment constructs a menu that consists of two
submenus and displays it, first saving any existing menu.
78 ID-NEW VALUE 101.
78 ID-OPEN VALUE 102.
78 ID-SAVE VALUE 103.
78 ID-SAVE-AS VALUE 104.
78 ID-EXIT VALUE 105.
78 ID-SAVE-SET VALUE 201.
78 ID-PASSWORD VALUE 202.

77 OLD-MENU PIC S9(9) COMP-4.
77 MAIN-MENU PIC S9(9) COMP-4.
77 SUBMENU PIC S9(9) COMP-4.

BUILD-MENU.
* Create two empty menus and save their menu handles

 CALL “W$MENU” USING WMENU-NEW.
 MOVE RETURN-CODE TO MAIN-MENU.

 CALL “W$MENU” USING WMENU-NEW.
 MOVE RETURN-CODE TO SUBMENU.

 IF MAIN-MENU = ZERO OR SUBMENU = ZERO
 GO TO BUILD-MENU-EXIT.

* Build “File” submenu

 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, 0,

Menu Handling: Sample Code 8-21
 “&New”, ID-NEW.
 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, 0,
 “&Open...”,ID-OPEN.
 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, W-DISABLED,
 “&Save”, ID-SAVE.
 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, W-DISABLED,
 “Save &As...”, ID-SAVE-AS.
 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, W-SEPARATOR.
 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, 0,
 “E&xit”, ID-EXIT.

* Attach “File” submenu to main menu

 CALL “W$MENU” USING WMENU-ADD, MAIN-MENU, 0, 0,
 “&File”, 0, SUBMENU.

* When finished with the “File” submenu, make another
* submenu and populate it.

 CALL “W$MENU” USING WMENU-NEW.
 MOVE RETURN-CODE TO SUBMENU.
 IF SUBMENU = ZERO
 GO TO BUILD-MENU-EXIT.

 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, W-CHECKED,
 “&Save Settings on Exit”, ID-SAVE-SET.
 CALL “W$MENU” USING WMENU-ADD, SUBMENU, 0, 0,
 “&Password Protect”, ID-PASSWORD.

* Attach “Options” submenu

 CALL “W$MENU” USING WMENU-ADD, MAIN-MENU, 0, 0,
 “&Options”, 0, SUBMENU.

* Save current menu and display new one.

 CALL “W$MENU” USING WMENU-GET-MENU.
 MOVE RETURN-CODE TO OLD-MENU.

 CALL “W$MENU” USING WMENU-SHOW, MAIN-MENU.

Further on in the program, you may want to remove the check mark on the
“Save Settings on Exit” menu item. The following line of code would do
that:

8-22 Menu Bars and Pop-up Menus
 CALL “W$MENU” USING WMENU-CHECK, ID-SAVE-SET,
 W-UNCHECKED.

When it came time to remove this menu and restore the old one, you could
use the following code:
 CALL “W$MENU” USING WMENU-SHOW, OLD-MENU.
 CALL “W$MENU” USING WMENU-DESTROY, MAIN-MENU.

8.12 System Menu “Close” Handling Under
Windows

The Windows system menu has a “Close” item. Normally, if the user selects
this entry, the runtime system performs a normal shut down. The “Close”
option can be controlled with the QUIT_MODE configuration variable or
permanently disabled when the window is created with the NO-CLOSE
phrase.

A QUIT_MODE setting of zero or less is handled directly by the runtime
system, as described in Book 4, Appendix H. A positive QUIT_MODE
setting allows your program to manage the close action instead. When a
positive value is used, the “Close” item becomes a standard menu item with
an ID equal to the value of QUIT-MODE. You may then handle the “Close”
item just like any other menu item.

For example, if you set QUIT_MODE to “100”, your program will receive
exception value 100 when the user selects the “Close” item. If you wanted
to call a special shutdown program when the user selects “Close”, you can
assign the “Close” action to a hot-key program. For example:

MENU-ITEM Hot-Key=“shutdown” 100

In this example, the program “shutdown” might pop up a small window to
confirm that the user wants to exit and, if so, execute a STOP RUN.

When the NO-CLOSE phrase is specified in a Format 11 or 12 DISPLAY
WINDOW statement, the window’s “Close” menu option is permanently
disabled. The option can be applied only when the window is created and its

Portability Concerns 8-23
effects cannot be reversed. The NO-CLOSE option takes precedence over
other settings, including the setting of the QUIT_MODE configuration
variable.

8.13 Portability Concerns

The ACUCOBOL-GT runtime supports menu handling. If the host system
has its own menu system (such as Windows), then the runtime’s menu
handler calls the system’s menu handler. If the system does not have its own
menu handler (such as systems that use character-based terminals), then the
runtime supplies its own menu handling.

This implementation causes the look-and-feel of the menus to differ from
system to system. This is an advantage in that you can program for a single
menu handler while getting a native look-and-feel on each host system.
However, some host menuing systems may not support all features
identically. The more you know about possible differences in the hosts’
menu handlers, the more informed your programming decisions can be. Here
are some issues to be aware of while programming:

1. How the user selects key letters will vary from system to system. The
appearance of the key letter in the menu may vary from system to
system. In Windows, it appears underlined. In the runtime’s own
handler, the appearance is configurable.

2. If no key letter is supplied, then the implied key letter is
system-dependent. Under Windows, Windows NT, and the runtime
system, the first letter of the text acts as the key letter. Other systems
may use some other rule or may not supply any key letter.

3. The method by which the user activates the menu is system-dependent.
If you want to use the same method on all systems, define one or more
menu keys in your program. See section 8.6, “Menu Activation and
Use.”

4. Some systems may limit the number of items that appear in the
top-level menu. Under the runtime system’s own menu handler, the
top level is limited to the number of items that can be displayed in one
line. Also, a submenu may not have more items than fit in a single
column (minus the top line).

8-24 Menu Bars and Pop-up Menus
5. If you plan to run the same program under both graphical and
character-based systems, remember that the menu bar will occupy
space on the terminal. Under graphical systems such as Windows, the
menu bar is placed outside of the application’s virtual screen. On a
character-based screen, the menu bar resides on the top line, thus
removing one line from the application.

ACUCOBOL-GT’s Terminal Manager adjusts all the coordinates as
needed, but your program will have one less line to work with. Note,
however, that you can configure the menu bar to pop up over the top line
of the application when the menu is requested by the user. This will
result in the full screen being available to your application, although the
menu bar will be visible only when the user requests it.

6. Pop-up menus (which appear in a vertical orientation over the
application window and disappear after the user makes a selection) are
currently available only under Windows systems. They may be added
to other systems in future releases.

8.14 Menu Bar Sample Programs

Two sample COBOL programs called menubar and menubar2 are included
on the media sent to you from Micro Focus. We do not recommend either of
these routines for use with the current version of the compiler, but we provide
them for upward compatibility at sites that have used previous versions of our
compiler.

Earlier versions of the compiler came with the sample program menubar that
demonstrates how to implement a two-dimensional menu bar in COBOL.
The only difference between the menubar program on your media and the
original program is that it has been enhanced to support the mouse.

Also included is a variation of the menubar program. This is called
menubar2. This variation uses the W$MENU routine to implement its
menus. The result is that the menu is implemented by the host if you are
running on a graphical system such as Windows. If you desire, you may
replace menubar with menubar2. This allows you to convert applications

Menu Bar Sample Programs 8-25
that use menubar to start using graphical menus quickly. menubar2 cannot
substitute for all uses of menubar. See the comments in menubar2 for
restrictions.

Although these routines are included for compatibility with previous versions
of the compiler, we recommend that you avoid using menubar and
menubar2 where possible. When you use these programs, the user can select
menu items only when the program asks for them. This is the
program-driven model of a menu system. Normally, with a graphical user
interface, the menus are always active and items can be selected at any time.
This is the user-driven menu model. Generally speaking, your users will
expect to be able to use the menu at any time. You should try to provide this
where possible by using the newest menu features in the compiler.

9
 Color Mapping
Key Topics

Overview of Color Choices ... 9-2
COLOR_MODEL Settings... 9-5
COLOR_TABLE Settings .. 9-12
ActiveX Color Settings.. 9-20
Miscellaneous Options Under Windows and Windows NT.............. 9-21

9-2 Color Mapping
9.1 Overview of Color Choices

This chapter explains what to do if you want your background and
foreground color choices to look appropriate in both character-based and
graphical environments. The information applies to both black-and-white
and multi-color screens.

Many programs written for graphical environments use a white or gray
background. This is not the norm for character-based programs. Because of
this, chances are good that a character-based application will look out of
place when it’s run under a graphical environment (such as Microsoft
Windows).

You may want to consider using COBOL configuration variables to map
your color scheme to a scheme that’s more appropriate for a graphical
environment. The COBOL program can then remain the same in both types
of environments.

With its default settings, ACUCOBOL-GT will display your application
using the colors your application specifies. This means your application will
look the same whether it’s running under a character-based or graphical
operating system.

If you want your application to look the same under both types of systems,
then you don’t need to do any color mapping.

However, when an application is moved from a character-based environment
to a graphical environment, many developers choose to adjust the color
scheme. They do this in order to match the style of other applications running
in the graphical environment. This is especially true if the applications
normally use a black background, which would seem out of place in many
graphical environments.

You can choose to:

• change your COBOL code to adjust the colors directly in each
environment.

• make use of any end-user color controls that exist in your application.

Overview of Color Choices 9-3
• use one or more ACUCOBOL-GT configuration variables to effect a
color remapping. These variables enable you to make global color
changes quickly and also give you control over fine details. No changes
are needed to the COBOL program itself.

Although ACUCOBOL-GT contains several runtime configuration variables
that simplify the mapping of your colors, two in particular are of note.
COLOR_MODEL and COLOR_TABLE combine the effects of several
variables to give you high-level control over color combinations. The other
variables, described in section 9.4, permit additional fine-tuning.

COLOR_MODEL affects colors in a global way (for example: exchange
foreground and background colors). COLOR_TABLE affects specific color
combinations (transform a red foreground on a black background into white
on blue).

So if you decide to change any of your colors using configuration variables,
you would typically start by adjusting the COLOR_MODEL setting to
establish a global color scheme for your program. Then you’d adjust specific
colors, if necessary, with the COLOR_TABLE setting.

Using these two variables, you’ll probably be able to adjust your application
to assume a graphical look with little or no COBOL coding.

Note: On a monochrome monitor the runtime will display colors as various
shades of gray, unless you’ve set the COBOL configuration variable
MONOCHROME to a non-zero value. In that case, the runtime will use
only black and white.

9.1.1 Simplified Mapping Approach

The easiest way to start with configuration variables is to try the various
COLOR_MODEL settings described in this chapter (see, also, the entry for
COLOR_MODEL in Appendix H, Book 4, Appendices). If your
application is entirely black and white, then try all the odd-numbered settings
(they affect black and white only), and select the one you like best.

9-4 Color Mapping
If your program makes use of color, first decide whether or not you like the
color portions as they exist in your program. If you do, then try the
odd-numbered settings to change the black and white portions. If you want
to modify your colored portions, then try the even-numbered settings.

Note: Automatic transformations of programs that use color usually
produce at least one odd-looking color combination. So select a
COLOR_MODEL setting that comes close to what you want, and then
make specific adjustments using the COLOR_TABLE variable described in
this chapter (see, also, the entry for COLOR_TABLE in Appendix H, Book
4, Appendices).

9.1.2 Controlling the Color Mapping

A different approach to color adjustment is to use the COLOR_TABLE
facility to do all of your customization. With this approach, you don’t use the
COLOR_MODEL setting at all. Instead, you map each
foreground-background combination that you use to the desired new
combination.

This is usually more work than using the COLOR_MODEL setting, because
you must select each color combination individually. However, this approach
is straightforward and gives you total control over the colors selected.

The ACUCOBOL-GT debugger uses this technique. When you enter the
debugger screen, it saves the current color table and then creates a new one
that maps the usual debugger colors to colors more appropriate for a
graphical environment. When the debugger restores your application’s
screen, it also restores your color table.

In the next few sections we discuss COLOR_MODEL and COLOR_TABLE.
It’s likely that you can achieve the effects you want with these two variables
alone. If you discover that you need additional fine-tuning, see section 9.4
for more color configuration variables.

COLOR_MODEL Settings 9-5
9.2 COLOR_MODEL Settings

The runtime builds color models by using combinations of settings for these
three configuration variables:

• COLOR_TRANS

• INTENSITY_FLAGS

• BACKGROUND_INTENSITY

These variables are fully described in Appendix H, Book 4, Appendices.

We’ve combined a few settings of these variables to form ten color models
that will suit most situations. For example, COLOR_MODEL “1” is
equivalent to this combination: COLOR_TRANS “5”,
INTENSITY_FLAGS “34”, and BACKGROUND_INTENSITY “1”.

You can adjust the settings of the three variables individually, whether you
use a color model or not. Note that the most recent setting takes precedence.

Use the COLOR_MODEL setting to perform uniform changes to your
program’s color scheme. These changes are represented by rules that act on
your colors. An example of a rule is “exchange the foreground and
background colors”. You use the COLOR_MODEL setting to change your
color scheme in a global way.

There are eleven color models, numbered from “0” to “10”. Each of the
models performs a particular set of changes.

There are so many possible color schemes, and so many personal
preferences, that it’s impossible to predict which color model will look best
for your application. We summarize the general effects of each model in this
chapter, to help you narrow your choices. Even so, the quickest way to pick
the most suitable model is probably to try each one. To do this, add the line:

COLOR_MODEL 0

to your COBOL configuration file, and then run your program in the
Windows environment. Observe the results. Then edit the configuration file
to specify color model “1” and run again. You’ll quickly see which model
produces the results you want.

9-6 Color Mapping
The default color model is model “0”. It causes no changes to occur to your
color scheme. The remaining 10 models are grouped in pairs:

• The odd-numbered version of each pair transforms only those parts of
your program that are entirely black and white. Any character position
that contains any color will be left unchanged.

• The even-numbered version of the pair performs similarly to the
odd-numbered version, except that the rules are always applied
regardless of color. When selecting a COLOR_MODEL, you can ignore
the even-numbered models if you are satisfied with the color portions of
your program.

COLOR_MODEL settings “7” and “8” most closely match typical Windows
programs.

In the following pages, we give a general description of each model, along
with the corresponding component settings, and a picture of the black and
white effects caused by the model.

9.2.1 COLOR_MODEL Settings 1 and 2

COLOR_MODEL Settings 9-7
COLOR_MODEL settings “1” and “2” cause the default background to
be white.

A character’s intensity is shown in the foreground, but switched so that high
and low intensity are exchanged. This results in the default low intensity
being shown as gray-on-white, while high intensity appears as
black-on-white. The result is that high-intensity stands out more than
low-intensity.

Reverse-video appears as black-on-gray. If you use reverse-video boxed
windows, then these are good settings if you also want to use the 3-D-LINES
variable to give your borders a three-dimensional effect (described later in
this chapter).

Equivalent settings

COLOR_MODEL “1” is equivalent to COLOR_TRANS “5”,
INTENSITY_FLAGS “34”, and BACKGROUND_INTENSITY “1”.

COLOR_MODEL “2” is equivalent to COLOR_TRANS “4”,
INTENSITY_FLAGS “34”, and BACKGROUND_INTENSITY “1”. (See
Book 4, Appendix H, for details.)

9-8 Color Mapping
9.2.2 COLOR_MODEL Settings 3 and 4

COLOR_MODEL settings “3” and “4” are similar to models “1” and “2”.
The primary difference is in reverse-video, which appears as white-on-gray.
Also, background colors are brighter.

For COLOR_MODEL “3”, the foreground and background colors are
exchanged for each other, but only if they are both black or white. If either
the foreground or background contains a color other than black or white, then
nothing happens. This is equivalent to running the monochrome parts of your
program in reverse-video while maintaining the color portions unchanged.

For COLOR_MODEL “4”, the foreground and background colors are
exchanged for each other, but only if the background is black. This mode
insures that you never have a black background.

Equivalent settings

COLOR_MODEL “3” is equivalent to COLOR_TRANS “3”,
INTENSITY_FLAGS “34”.

COLOR_MODEL Settings 9-9
COLOR_MODEL “4” is equivalent to COLOR_TRANS “1”,
INTENSITY_FLAGS “34”.

9.2.3 COLOR_MODEL Settings 5 and 6

COLOR_MODEL settings “5” and “6” create a reverse-video image of your
application. Thus, low-intensity white-on-black will appear as
black-on-gray, and high-intensity will appear as black-on-white.

These settings cause the intensity to appear in the background instead of the
foreground. For applications that have low-intensity legends and
high-intensity data fields, this will cause the data fields to be highlighted on
the screen.

Equivalent settings

COLOR_MODEL “5” is equivalent to COLOR_TRANS “1”,
INTENSITY_FLAGS “129”.

COLOR_MODEL “6” is equivalent to COLOR_TRANS “1”,
INTENSITY_FLAGS “129”, BACKGROUND_INTENSITY “2”.

9-10 Color Mapping
See Book 4, Appendix H, for details.

9.2.4 COLOR_MODEL Settings 7 and 8

COLOR_MODEL settings “7” and “8” eliminate intensity altogether. The
default colors are shown as black-on-white.

These are the settings that most closely match typical Windows programs. If
you combine COLOR_MODEL 7 with the MONOCHROME configuration
variable (which causes colors to be ignored), then you will have an entirely
black-on-white application (except for reverse, which appears as
white-on-gray).

Equivalent settings

COLOR_MODEL “7” is equivalent to COLOR_TRANS “3”,
INTENSITY_FLAGS “161”.

COLOR_MODEL “8” is equivalent to COLOR_TRANS “1”,
INTENSITY_FLAGS “161”.

COLOR_MODEL Settings 9-11
See Book 4, Appendix H, for details.

9.2.5 COLOR_MODEL Settings 9 and 10

These settings are similar to models “7” and “8”, except that the background
color will be gray instead of white. This is useful if you want to use
3D_LINES and want to eliminate intensity considerations.

Equivalent settings

COLOR_MODEL “9” is equivalent to COLOR_TRANS “3”,
INTENSITY_FLAGS “193”.

COLOR_MODEL “10” is equivalent to COLOR_TRANS “1”,
INTENSITY_FLAGS “193”.

See Book 4, Appendix H, for details.

9-12 Color Mapping
9.3 COLOR_TABLE Settings

The COLOR_TABLE setting describes a set of specific changes to make to
your color scheme. Instead of acting on all the colors uniformly, the
COLOR_TABLE causes transformations of individual color combinations.
For example, a COLOR_TABLE entry might cause a red foreground on a
black background to be translated to a white foreground on a blue
background.

There are four values that need to be set: the foreground and background
colors (assigned numbers from 1 to 8) and the foreground and background
intensity (high or low). These are the basic color values, without any
intensity indicator:

For the color table, we combine intensity and color into a single variable by
adding “8” to the color value if high-intensity applies. These are the possible
values for foreground and background settings:

Color Color value

Black 1

Blue 2

Green 3

Cyan 4

Red 5

Magenta 6

Brown 7

White 8

Color Color value

low-intensity Black 1

low-intensity Blue 2

low-intensity Green 3

low-intensity Cyan 4

low-intensity Red 5

COLOR_TABLE Settings 9-13
*With this numbering scheme, you use the COLOR_TABLE variable (or
COBOL code) to build a two-dimensional table for background and
foreground colors. For example:

The table maps the colors specified by your program into the actual colors
that will appear on the screen. It tells the runtime which colors to use when
the program specifies a particular background-foreground combination.

low-intensity Magenta 6

low-intensity Brown 7

low-intensity White 8

high-intensity Black 9

high-intensity Blue 10

high-intensity Green 11

high-intensity Cyan 12

high-intensity Red 13

high-intensity Magenta 14

high-intensity Brown 15

high-intensity White 16

Back Fore
1
(low Black)

2
(low Blue)

3
(low Green)

4
(low Cyan)

1

2

3

4 3, 6

.

.

Color Color value

9-14 Color Mapping
For example, if the table carried the equivalent of “3, 6” in row 4, column 2,
this would mean that a low-intensity Cyan background (row 4) with a
low-intensity Blue foreground (column 2) should be mapped to a background
of low-intensity Green (3) with a foreground of low-intensity Magenta (6).
The value found in each cell in the table represents the final colors to be used.

The values in the table are not actually stored as numbered pairs. They are
stored as 8-bit numbers, as described later in this section.

Initially, the table is arranged so that no transformations take place. You use
the configuration setting COLOR_TABLE to change entries in the table.

Follow the word “COLOR_TABLE” with the original foreground and
background numbers, separated by a comma. Follow these by an equals sign,
and then the new foreground and background numbers, again separated by a
comma.

For example, to transform the color combination of foreground 5 on
background 2 to foreground 13 on background 2, you would use:
COLOR_TABLE 5, 2 = 13, 2

The color table may also be accessed directly by a COBOL program. It has
the following definition:
01 w-default-COLOR-TABLE is external.
 03 occurs 16 times
 indexed by background-color.
 05 final-color occurs 16 times
 indexed by foreground-color
 pic x comp-x.

Each table value is an 8-bit number where the low-order four bits indicate the
desired foreground color and the high-order four bits are the background
color. Because four bits result in a range of “0” to “15”, the colors are stored
as one less than their actual value of “1” to “16”. Mathematically, the colors
are determined by:

Foreground = N(mod 16) + 1

Background = (N/16) + 1

where “N” is the 8-bit value found in the table.

Additional Color Configuration Variables 9-15
For example, suppose we wanted to transform a background color of 5 and a
foreground color of 14 to be the colors represented by the variables “back”
and “fore”. The following COMPUTE statement does this, and can serve as
a template when you want to accomplish a similar color transformation:
compute final-color(5, 14) =
 (back - 1) * 16 + (fore - 1).

If you want to access the color table directly in your code, simply substitute
your variable names and color numbers in the sample code shown above.

You can also make COLOR_TABLE settings from inside of COBOL by
using SET ENVIRONMENT. Using the external table allows you to inquire
about current COLOR_TABLE values and allows you to quickly change
several values at once (for example, by processing an entire row in a loop).

9.4 Additional Color Configuration Variables

This section describes four additional configuration variables that can be
used to determine how colors are displayed.

You need to read this section only if you want to understand the exact effects
of the various COLOR_MODEL settings or want to experiment with its
component settings. For most sites, COLOR_MODEL and
COLOR_TABLE will be adequate for color control.

This section describes the following four configuration variables:

• COLOR_TRANS

• INTENSITY_FLAGS

• BACKGROUND_INTENSITY

• FOREGROUND_INTENSITY

For each character position on the screen, ACUCOBOL-GT assigns four
values: the foreground color, the background color, the foreground intensity,
and the background intensity. Your COBOL application may directly control
three of these attributes with various ACCEPT and DISPLAY options. The

9-16 Color Mapping
attributes you control are the foreground and background colors, and the
foreground intensity. You do not have direct control of the background
intensity from the ACCEPT or DISPLAY verbs.

When the runtime system displays screen data, it performs a series of steps to
transform the colors and intensities specified by your program, to the actual
colors and intensities shown. You can use a variety of configuration options
to affect these transformations. By doing so, you can alter the appearance of
your program without changing any of the program’s code.

In order to explain the available configuration options, we will walk through
the steps taken by the runtime system. At each point where an option can
affect the results, that option is described.

9.4.1 Step 1: Assign Initial Colors

The runtime assigns the initial foreground and background colors as specified
by your program. If you use the REVERSE option, the foreground and
background colors are exchanged for each other. If the output device is
monochrome, then the colors are transformed to black or white at this point.

There are no configuration options that affect this step, except for the
MONOCHROME option, which forces the colors to be set to black or white,
as if the output device is monochrome. To enable this option, set it to a
non-zero value.

9.4.2 Step 2: Assign Initial Attributes

The runtime selects a background intensity. Because your program does not
control this, the runtime relies solely on configuration options to do this. If
you do not set any options, the runtime uses a default intensity based on your
hardware and operating environment.

You may choose your own intensity by using the
BACKGROUND_INTENSITY configuration variable. It can be set to one
of the values “0”, “1” or “2”.

• When it’s set to “0”, the runtime uses the default intensity.

Additional Color Configuration Variables 9-17
• When it’s set to “1”, the runtime uses low-intensity.

• When it’s set to “2”, the runtime uses high-intensity.

There are two important exceptions:

• The first is that the runtime always assigns low-intensity to the
background if the background color is black. Using high-intensity
would cause the background to be dark gray, which tends to make the
screen look muddy.

• The second exception is that many devices do not support a background
intensity independent from the foreground intensity (most terminals, for
example). If this is the case, the runtime uses a convention of declaring
the background intensity to be low-intensity.

After setting the initial background intensity, the runtime selects the initial
foreground intensity. If your program specifies an intensity, then that is the
intensity used.

If your program uses the default intensity, then the setting of the
configuration option FOREGROUND_INTENSITY determines the
intensity:

• If it is set to “1”, then the runtime uses low-intensity.

• Setting it to “2” causes the runtime to use high-intensity.

• If it is set to “0”, then the runtime uses the default intensity for the output
device.

If your program specifies a default intensity, the runtime will never assign
high-intensity if the foreground is black. As with the background, we do this
to prevent a washed-out appearance. There’s one exception to this rule. The
runtime will assign high-intensity to a black foreground if the output device
does not support independent background intensities. In this case, the device
will typically show the background in high-intensity and keep the foreground
black. Note that if your program explicitly sets high-intensity, then that will
be used regardless of the foreground color.

9-18 Color Mapping
9.4.3 Step 3: Transform Colors

The configuration variable COLOR_TRANS (described in Appendix H)
determines how the initial colors are transformed. It may be set to any of
these values:

Generally speaking, you could use the COLOR_TRANS variable as a
starting point in converting an application to appear more natural under a
graphical environment such as Windows. Note that if your application is
entirely black-and-white, the first three COLOR_TRANS options are
essentially identical.

9.4.4 Step 4: Transform Intensities

Once the colors have been transformed, the runtime system transforms the
foreground and background intensities according to the setting of
INTENSITY_FLAGS. This option consists of a series of values added

0 By default, COLOR_TRANS is set to “0”, which causes no transformation.

1 This mode causes the foreground and background colors to be exchanged
for each other. This is equivalent to running the entire program in
reverse-video.

2 This causes white to be exchanged for black and black to be exchanged for
white. The foreground and background colors are transformed
independently. For example, a green foreground on a black background
would turn into a green foreground on a white background. This setting
usually has the effect of transforming a black background into white while
maintaining the general color scheme of the application.

3 The foreground and background colors are exchanged for each other, but
only if they are both black or white. If either the foreground or background
contains a color other than black or white, then nothing happens. This is
equivalent to running the monochrome parts of your program in
reverse-video while maintaining the color portions unchanged.

4 The foreground and background colors are exchanged for each other, but
only if the background is black. This mode insures that you never have a
black background.

5 If the colors are foreground white and background black, they are
exchanged for each other. Otherwise, nothing happens.

Additional Color Configuration Variables 9-19
together. Except as noted below, these options take effect only if the colors
were in some way affected by Step 3 above. In other words, intensity transfer
is ignored if Step 3 didn’t change your program’s colors. The runtime does
this to preserve the parts of your program that you left alone in Step 3. The
assumption is that you have programmed those parts to behave the way you
want.

You may set INTENSITY_FLAGS to a combination of the following values
by adding the values together:

These transformations are performed in the order listed above.

1 This option exchanges the foreground and background intensities for each
other. This is useful if you are swapping a black background into the
foreground and want to assign the foreground’s intensity to the
background.

2 Causes the foreground intensity to be inverted. That is, if the foreground
is high-intensity, it becomes low-intensity. Otherwise, it becomes
high-intensity. This is useful if you are transforming the background to
white and the foreground to black. Setting this will cause your
low-intensity foreground to be shown as gray while your high-intensity
item will show as black.

4 Forces the foreground to high-intensity. This will not be applied to a black
foreground.

8 Forces the foreground to low-intensity. This may not be used if “4” is
used.

16 Causes the “4” or “8” setting to be used even if the COLOR_TRANS
setting had no effect. This is an override switch that you can use to cause
all foreground intensities to be set to high or low.

32 Forces the background to high-intensity. This will not be applied to a black
background.

64 Forces the background to low-intensity. This may not be used if “32” is
used.

128 Forces the background to high-intensity, but only if it is black. This may
be used in conjunction with setting “32” or “64” for special effects.

256 Causes the “32”, “64”, or “128” setting to be used even if the
COLOR_TRANS setting had no effect.

9-20 Color Mapping
At this point, the resulting colors and intensities are combined and processed
using the COLOR_TABLE map described section 9.3. The final result is
shown on the screen.

9.5 ActiveX Color Settings

Many ActiveX controls use a special type named OLE_COLOR to represent
colors. Methods and properties that accept a color specification of
OLE_COLOR type expect that specification to be a number representing an
RGB color value. An RGB color value specifies the relative intensity of red,
green, and blue in a specific color to be displayed.

The intensities of red, green, and blue are each represented by a number
between 0 and 255. These three numbers are combined to form a single
OLE_COLOR.

OLE_COLOR is treated internally as a 32-bit integer. The least significant
byte is the value representing the red component of the color. The second
least significant byte represents the green component, and the third least
significant byte represents the blue component.

The following table lists some standard colors and the red, green and blue
values they include:

Color Red Value Green Value Blue Value

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Cyan 0 255 255

Red 255 0 0

Magenta 255 0 255

Yellow 255 255 0

White 255 255 255

Miscellaneous Options Under Windows and Windows NT 9-21
To construct an OLE_COLOR from the red, green, and blue numbers, use the
following formula:
OLE_COLOR = red + (green * 256) + (blue * 65536)

or using hexadecimal literals:
OLE_COLOR = red + (green * x#100) + (blue * x#10000)

As a convenience, eight standard colors have been defined in
ACTIVEX.DEF.
*Standard OLE_COLOR Values:
78 OLE-BLACK VALUE X#000000
78 OLE-BLUE VALUE X#0000FF
78 OLE-GREEN VALUE X#00FF00
78 OLE-CYAN VALUE X#00FFFF
78 OLE-RED VALUE X#FF0000
78 OLE-MAGENTA VALUE X#FF00FF
78 OLE-YELLOW VALUE X#FFFF00
78 OLE-WHITE VALUE X#FFFFFF

9.6 Miscellaneous Options Under Windows and
Windows NT

The following sections describe options available for Windows and Windows
NT systems.

9.6.1 Background Brush Color

The Windows and Windows NT environments use a background brush when
they resize a window. By default, the background brush color for
ACUCOBOL-GT is black. If you have arranged your default background to
be white, you will see a black flash when you resize the window. This does
not affect the final appearance of the window, but is briefly noticeable while
the window is being redrawn.

9-22 Color Mapping
If you desire, you can set the configuration variable WHITE_FILL to “1” to
cause ACUCOBOL-GT’s background brush to be set to white instead. Doing
this will also cause the initial screen that ACUCOBOL-GT paints to be white
instead of black.

Note: This variable must be set in the configuration file to be effective.
Modifying this variable with the SET ENVIRONMENT verb has no effect.

9.6.2 Drawing 3-D Lines

In the Windows environment, you may set the configuration variable
3D_LINES to “1” to cause the runtime to display lines and boxes with 3-D
shading. This makes the lines appear to be inscribed into the surface of the
screen. Only black lines on a non-black background are shown with shading.
Other lines are displayed normally.

The set of colors available to ACUCOBOL-GT significantly impacts how
effective the shading will be. Normally, the shading is most effective when
the background is low-intensity white. The other low-intensity colors are
next best.

The shading is only marginally effective with a high-intensity background.
For this reason, the 3D_LINES setting is not used when a high-intensity
background is drawn. Note that, by default, ACUCOBOL-GT shows
background colors in high-intensity, so you will need to use at least one other
configuration variable to arrange for a low-intensity background color. For
example, the BACKGROUND_INTENSITY variable described in Book 4,
Appendix H, could be set to “1” to force a low-intensity background.

Under Windows and Windows NT, you may freely change the way lines are
displayed in COBOL by using the SET ENVIRONMENT verb to set
3D_LINES, prior to displaying a line or a box.

• Setting it to “1” gives you the 3-D effect.

• Setting it to zero gives you normal lines.

Miscellaneous Options Under Windows and Windows NT 9-23
The runtime remembers which lines are drawn with 3-D, so you do not need
to keep track of this yourself. Note, however, that if you attach a 3-D line to
a non-3-D line, the intersection will use the 3D_LINES setting currently in
effect.

10
 Help Automation
Key Topics

Introduction ... 10-2
HELP-ID .. 10-2
Help Modes .. 10-3
The Help Processor ... 10-4
Windows Help... 10-5

10-2 Help Automation
10.1 Introduction

Help automation is the name given to the set of constructs and methods
included in ACUCOBOL-GT to support context-sensitive help in your
application. Many applications provide on-line help information in a way
that is sensitive to the application’s context. Context-sensitive help responds
to a particular screen or control that the user clicks on or otherwise identifies.

Help automation is the mechanism that takes care of informing the help
processor that help is needed for a particular item or context. The help
processor is a program or subroutine that performs the task of delivering the
help content to the user.

In ACUCOBOL-GT, the help automation mechanism consists of:

• a HELP-ID that identifies context-sensitive elements in the program.

• two help modes with corresponding exception values that give the user
two methods for initiating context-sensitive help.

• automated runtime support for detecting and passing requests for
context-sensitive help to the help processor.

10.2 HELP-ID

Help automation support is based on the concept of a help ID. A help ID is a
special integer value assigned to a control. When a help request is sent to the
help processor, the help ID of the associated control is sent as a parameter.

Typically, each control is assigned a unique value. This allows the help
processor to uniquely respond to each control. To create help that responds
to the window, rather than an individual control within it, you can give all of
the controls within a window the same help ID. Or you can mix the two
approaches by giving some individual controls unique help IDs, while the
remaining controls get a shared help ID. Because help IDs are associated
with controls, you cannot use help automation with character-based (textual)
ACCEPT fields.

Help Modes 10-3
Whether the control is defined in the Screen Section or in a DISPLAY
statement, help IDs are assigned with the HELP-ID phrase. You can easily
assign a screen-wide help ID to a window by specifying a HELP-ID for the
top-level group item in the Screen Section description. You can override the
screen-wide ID for a specific control by including the HELP-ID phrase in that
control’s definition.

10.3 Help Modes

After setting up the help IDs, you’ll need to decide which help modes to use
and how each mode will be presented to the user. The help mode describes
the user interface method that the user uses to initiate a context-sensitive help
request. The runtime supports two help modes: item help and help cursor.

The item help mode uses a predefined key or button to send an immediate
request for help for the active control or screen. When the user clicks on the
item help button or presses the item help key, the help ID of the active control
is immediately passed to the help processor.

The help cursor mode uses a predefined key (distinct from the item help key)
to initiate a special mode for selecting the item for which information is
wanted. Pressing the help cursor key or button usually changes the cursor to
a question mark that the user positions over the screen item in question and
then clicks. The mouse pointer then reverts to normal and the help
information for that item is displayed. Should the user click on an object that
doesn’t have a help ID, the cursor reverts to normal and nothing else happens.

To make the help modes work, you must assign each mode an exception
value. This is done with the Format 13 SET statement. After the exception
values are assigned, any control, menu item, or key that produces the
specified exception value will produce the associated help action. For
example, the Microsoft Windows design guidelines recommend that “F1”
produce help for the active item (item help), and that “Shift F1” produce a
help cursor. To implement those guidelines, you would use the following
statement (assuming the default keyboard configuration):
SET EXCEPTION VALUES 1 TO ITEM-HELP, 11 TO HELP-CURSOR.

10-4 Help Automation
The preceding statement reflects the fact that in the default keyboard
configuration “F1” produces an exception value of “1”, while “Shift F1”
produces an exception value of “11”.

After the exception values are assigned, you can create menu items or push
buttons that produce item help or help cursor by assigning those items an
exception value of “1” or “11”. It is important that item help and help cursor
push buttons be self activating (SELF-ACT style). If they are not, the effect
is that clicking on them will transfer control to the button. This is annoying
in the case of help cursor, and useless in the case of item help (the help
request would always pass the help ID of the help button).

10.4 The Help Processor

The last step in setting up help automation is to define the name of the help
processor program. Note that the help processor’s entry point is always a
COBOL program. The program can be the help processor itself, or a shell to
some other help processor, such as Windows Help. The help processor is
named by the value of the configuration variable HELP_PROGRAM. If
HELP_PROGRAM is undefined, the runtime uses the name “AcuHelp”.

Calls to the help processor are handled by the runtime using the normal
CALL mechanism. Regardless of the outcome of the CALL, when the
CALL to the help processor completes, the runtime returns to the current
control and continues normal operation.

The help processor is passed only one parameter, the EVENT STATUS data
item. It contains the CMD-HELP event that generated the CALL. The
CMD-HELP event contains all of the information needed to process the help
request: the control’s handle, its ID, its help ID (in EVENT-DATA-2) and the
handle of its owning window. In the case of HELP-CURSOR, you can get
the coordinates of the mouse when it was clicked on the control by calling
“W$MOUSE” with GET-MOUSE-STATUS before you do any ACCEPTs.
Note that the position returned is relative to the control’s owning window.

Windows Help 10-5
10.5 Windows Help

If your target platform is Windows, the obvious help processor to use is
Windows Help. You can access Windows Help through the “$WINHELP”
library routine (described in Book 4, Appendix I). Note however, that
$WINHELP is not supported in Microsoft Windows Vista. “$WINHELP”
takes an “OP-CODE” parameter that indicates the operation to perform.
These codes are defined in the COPY library “winhelp.def”. For
context-sensitive help, the two most useful op-codes are HELP-CONTEXT
(value 1) and HELP-CONTEXTPOPUP (value 8). In both cases, a context
ID is passed as the last parameter to “$WINHELP”. Typically, you would
use the control’s help ID as the context ID.

$WINHELP’s HELP-CONTEXT operation starts Windows Help in a
separate window and positions the user at the topic identified by the context
ID. The user is then free to navigate through the help text at will. The
HELP-CONTEXTPOPUP operation causes Windows Help to pop-up a
small window over the application that contains the topic identified by the
context ID. The window is removed as soon as the user types a key or clicks
the mouse.

Preparing your application to use Windows Help requires several steps.

In order to use Windows Help you must have a Windows compatible help
compiler to produce your help files. ACUCOBOL-GT does not come with a
help compiler and does not include documentation on the construction of
help files. A help compiler is included with most Microsoft language
products. Third-party help compilers are also available. If this is your first
effort to interface to Windows Help, be sure to carefully read the
documentation that comes with your Windows help compiler.

The help compiler takes two files as input: the help text source and the help
project file. It produces “.HLP” format help files that are used by Windows
Help. The help text source is a rich-text format (“.RTF”) file that contains a
marked-up form of the help text. The markings describe the various sections
of the help file, their look, and how they are cross-referenced. The help
project file (“.HPJ”) is a text file that contains project-specific instructions to
the help compiler. For information about how to create and use these files,
refer to your help compiler documentation.

10-6 Help Automation
10.5.1 Mapping Context IDs

Due to an inconsistency in the representation of the context ID value between
the Windows Help program and the WinHelp API function, some special
work is required. In Windows Help, context IDs are strings. These strings
are placed in the help source as footnotes using the “#” character as the
footnote symbol. However, the Windows Help API function (WinHelp) does
not accept a string for the context ID parameter. Instead, it requires a number.
Fortunately, there is a simple mechanism for translating numbers into context
IDs. This is done in the “[MAP]” section of the help project (.HPJ) file. In
the MAP section, you should include entries that map the context string to a
context number, like this:
#define ContextIdName ContextNumber

For example, if you had a section called “Help_CustName” in your help file,
and you wanted to assign the corresponding ID value 1000, you would use:
#define Help_CustName 1000

In your COBOL program, you could then assign a HELP-ID of “1000” to
your customer name entry field to provide a context link to the appropriate
section in the help file.

Because mapping names to numbers on a large scale is prone to error,
ACUCOBOL-GT provides a mechanism to simplify the process. We suggest
the following approach:

1. Create a COPY library for each of your help files. Each COPY library
should contain all of the context IDs for its associated help file.
Typically, one help file services all the programs in an application, but
it’s possible to organize help files differently.

2. Whenever you need a new context ID, add a level 78 to the COPY
library. The name should be the same as the section name in the help
file. Assign a unique number to the entry. You can either number
context IDs sequentially, or you can devise your own scheme. To add
an entry for the customer name example above, you would add the
following line:

78 Help-CustName VALUE 1000.

Windows Help 10-7
Note: Context names are not case-sensitive in either COBOL or the
help file.

3. In your COBOL program, include the COPY library and use its level
78 names as HELP-IDs. For example, this statement could be used in
a Screen Section entry:

ENTRY-FIELD USING CUSTOMER-NAME,
HELP-ID = Help-CustName

4. In your help file text (“.RTF” file), create a section with the same name
as the level 78 entry, followed by its associated help text. When
creating section names, be aware that any hyphens in a COBOL name
will be converted to underscores in the help file. Therefore, in the
preceding example, you would add a section called “Help_CustName”
to your help file.

5. Compile the program source with the “-defines” switch to create a file
containing “#defines” that correspond to your level 78s. For example,
if the COPY library created in step (1) is called “applhelp.def”, you
would use:

ccbl -defines applhelp.def

By default, this creates the file “applhelp.h” that contains one “#define”
for each level 78 in “applhelp.def”. Note that any hyphens in the level
78 names are converted to underscores in the corresponding “#define”.
This occurs because the “#defines” can be used in C programs as well as
with help files, and hyphens are not allowed in C names (they are
allowed in COBOL and the help file).

6. In your help project file (“.HPJ”), include a “[MAP]” section and add
an “#include” statement that references the “.h” file created in step (5).
For example:

[MAP]
#include <applhelp.h>

Your help files are now ready for the help compiler. Use your help compiler
to create an “.HLP” file from your help text source and help project files.

10-8 Help Automation
For a complete working example, see the help demonstration program
included with the Windows versions of ACUCOBOL-GT. The example
program and its related files can be found in the “sample\help” subdirectory
of your ACUCOBOL-GT installation.

11
 Using AcuXUI to Deploy a
Cross-Platform User Interface
Key Topics

Introducing AcuXUI ... 11-2
Solution Components .. 11-4
Installation and Use... 11-5
AcuConnect Deployment .. 11-8
Deploying AcuXUI as an Applet .. 11-8
Debugging with AcuXUI... 11-10
Launching AcuXUI from IDEs .. 11-12
Differences Between Java and Windows Desktops 11-18
Troubleshooting and Error Messages... 11-26

11-2 Using AcuXUI to Deploy a Cross-Platform User Interface
11.1 Introducing AcuXUI

AcuXUI is an optional cross-platform user interface engine that allows
graphical ACUCOBOL-GT programs to exhibit their user interface on UNIX
and Linux platforms as well as Windows platforms.

As always, graphical controls—such as windows, entry fields, and radio
buttons—are described in the COBOL program with ACUCOBOL-GT.
However, with AcuXUI, rather than directing the Windows operating system
to create the controls, the runtime directs the Java Runtime Environment
(JRE) to create the controls on a Java desktop. For this reason, the controls
can run on most operating systems, including UNIX, Linux, and Macintosh.
The Java desktop can also run on Windows.

Note that there are some differences in the way that controls display on a Java
desktop versus the traditional Windows desktop and that there are a few
limitations to what Java can display (for instance, it cannot display ActiveX
or .NET controls and other Windows-specific features).

AcuXUI’s limitations and the differences between Windows and Java
displays are covered in section 11.8.

Because AcuXUI is platform-independent, one of its benefits is that you can
deliver one graphical program on multiple platforms with predictable results.

You can deploy AcuXUI in three main ways:

• You can invoke it from a command line on the server. It runs on the
server and the display is handled either by an X Server or the JRE.

• You can combine it with AcuConnect to run a COBOL program on a
remote server. You can use AcuXUI instead of the thin client to display
their graphical front end, then the same software can be used on
Windows machines.

Introducing AcuXUI 11-3
• You can run it inside a browser as an applet.

Basic AcuXUI Configuration

Web Access Using AcuXUI as an Applet

In the Java Runtime Environment (JRE), graphical controls are based on the
Java Abstract Window Toolkit (AWT). The AWT is part of the standard API
for providing graphical user interfaces (GUIs) to Java programs.

There is one prerequisite for using AcuXUI: you must create a graphical user
interface for your program. It cannot be character-based.

11-4 Using AcuXUI to Deploy a Cross-Platform User Interface
11.1.1 AcuXUI Versus the Thin Client

Differences between AcuXUI and the ACUCOBOL-GT Thin Client include:

• AcuXUI can be run on the server, or, with AcuConnect, it can be run on
the client. Thin client runs only on the client.

• AcuXUI can run on either UNIX/Linux or Windows. Thin client runs
only on Windows, although the application launched by the Windows
thin client can be running on UNIX/Linux with the same user interface
as if it were running on Windows.

• Thin client programs can leverage WIN$ library routines, including
WIN$PRINTER. AcuXUI cannot.

• AcuXUI does not support character-based user interfaces, the
tab-control, the date-entry control, ActiveX/.NET controls, or rich-client
features. Thin client does.

11.2 Solution Components

AcuXUI Version 8.0 is a server-based product that requires the following
components on the server to run:

• ACUCOBOL-GT Development System (compiler and runtime) Version
8.0 or later. Version 8.0 of the runtime has been AcuXUI-enabled.

• Java Runtime Environment (JRE) Version 1.5.0 or later

• A Web server, if you are deploying AcuXUI as an applet

In addition, client machines that are networked to UNIX/Linux servers must
have a graphical desktop such as X Server running.

AcuXUI is delivered as a Java archive (JAR) file, “AcuXUI.jar”. It is
licensed separately from the runtime or compiler and requires the license file,
“wrun32.jlc” for Windows, or “runcbl.jlc” for UNIX/Linux, in order to run.

Installation, configuration, and startup are explained in section 11.3.

Installation and Use 11-5
11.3 Installation and Use

With AcuXUI, you do not directly execute your COBOL program using the
runtime, “runcbl” or “wrun32.exe”. Rather, you run your graphical
application by issuing a Java command on the server command line
indicating the AcuXUI Java archive (JAR) file and resources to use to run the
COBOL program. Batch and script files have been provided to streamline
this process. They are “acuxui.bat” on Windows and “acuxui.sh” on UNIX
or Linux.

Following are instructions for installing and configuring AcuXUI, then
launching your graphical program from the server:

1. Install ACUCOBOL-GT Version 8.1.

2. Do any GUI work you need. (Refer to ACUCOBOL-GT User
Interface Programming Guide for help.) Compile your program with
the Version 8.1 compiler.

3. Confirm that there is a CLASSPATH environment variable and that
“acuxui.jar” is in the CLASSPATH. If it is not, add the CLASSPATH
variable to your environment and specify the location of the JAR file
for AcuXUI. For example:

CLASSPATH=C:\Program
Files\Acucorp\Acucbl810\AcuGT\lib\AcuXUI.jar;

4. Install a Java 2 Standard Edition (J2SE) Java Runtime Environment
(JRE) Version 1.5.0 or later. You can download it from the Sun web
site at http://java.sun.com/j2se/1.5.0/download.jsp.

5. On Linux or UNIX clients, run the graphical desktop or X Server. If
you’re using X Server, set the DISPLAY environment variable as
follows:

DISPLAY=machine-name:0.0;export DISPLAY

Replace “machine-name” with the actual machine name.

6. Run your program from the AcuXUI batch or script file by typing
“acuxui” on the server command line and pressing Enter. You are
prompted:

Please enter the runtime command-line options that you
want to use (e.g., -d -c cblconfig -l -e errorfile):

7. Enter the runtime options to use when launching your COBOL
program and press Enter. You are prompted:

Please enter the object file and path (e.g.,
V:\Dev\Source\program1.acu):

8. Enter the location and name of your ACUCOBOL-GT object file and
press Enter.

11.3.1 Running AcuXUI from a Java Command

Rather than using the AcuXUI batch or script file (“acuxui.bat” or
“acuxui.sh”) to run your program, you can issue a Java command similar to
this:

On UNIX/Linux:
java com.acucorp.acuxui.AcuXUI --acucobolgt /runtime-path/runcbl /
objectfile-path/program.acu

On Windows:
java com.acucorp.acuxui.AcuXUI --acucobolgt \runtime-path\wrun32
\objectfile-path\program.acu

Where:

“java” is the Java command. You can include Java parameters if desired.

“com.acucorp.acuxui.AcuXUI” is the name of the Java class contained
in the “acuxui.jar” archive when it is unpacked.

“--acucobolgt” indicates the beginning of a list of COBOL resources.
Indicate your actual runtime path and object file path so that the AcuXUI
archive can locate these resources.

“runtime-path” is the complete path to the runtime executable.

“runcbl” or “wrun32” is the ACUCOBOL-GT runtime executible.

Installation and Use 11-7
“objectfile-path” is the complete path to the ACUCOBOL-GT object
file.

11.3.2 Runtime Options and Configurations

If desired, you can include regular runtime options, such as those for
specifying a configuration file (-c cblconfig) or an error file (-dle errorfile).
You specify runtime options in the command line after the path to the runtime
and before the path to the object file. For example:
java com.acucorp.acuxui.AcuXUI --acucobolgt
C:\acucorp\Acucbl8\AcuGT\bin\wrun32 -d -c
V:\Dev\Source\Config\cblconfig -l -e errorfile
V:\Dev\Source\program1.acu

AcuXUI supports all of the runtime options documented in the
ACUCOBOL-GT User’s Guide Section 2.3, with the exception of “-a”
(which is obsolete) and “--char2gui”. Note that “-t” is supported, but its
functionality matches that of AcuConnect, which is to turn on, and define a
tracing level. It also supports the AcuConnect options, “-p port” and “-s
server”.

In essence, you can follow “--acucobolgt” with any valid runtime command
line including the runtime path, runtime options (except “-a” and
“--char2gui”), and runtime object file.

11.3.3 Applying a Different Look and Feel

By default, programs deployed using AcuXUI take on the look and feel as
defined by the host operating system. You can “override” the operating
system’s default setting and specify a different look and feel. Do this by
Placing one of the following options before the "--acucobolgt" portion of
your Java command:

Option Result

--localLAF Local system look and feel (default
behavior, does not have to be set)

--motifLAF Motif look and feel

11-8 Using AcuXUI to Deploy a Cross-Platform User Interface
Example:
java com.acucorp.acuxui.AcuXUI --metalLAF --acucobolgt
\runtime-path\wrun32 \objectfile-path\program.acu

11.4 AcuConnect Deployment

If AcuConnect is running on a remote server with an alias, you can run your
program on the remote machine with AcuXUI. Set up server 1 as described
in section 11.3, then specify the “-s servername” and “-p port number”
runtime options when prompted by the “acuxui” batch or script file. If you
are using the full Java command prompt, enter the options as follows:

java com.acucorp.acuxui.AcuXUI -s servername -p portnumber
alias

where “servername” is the name of the server on which AcuConnect is
running the COBOL program and “portnumber” is the port number where
AcuConnect is listening.:

The AcuConnect deployment requires AcuConnect for Thin Client, an
AcuAccess file, and an alias entry.

11.5 Deploying AcuXUI as an Applet

Similar to the ACUCOBOL-GT Web thin client, AcuXUI can be deployed as
an applet to display a COBOL program inside a Web browser. This gives
your end users the ability to access your program any time, anywhere. Note
that the AcuXUI.jar file is signed with a digital certificate.

--xplatformLAF Cross-platform look and feel

--metalLAF Metal look and feel

--windowsLAF Windows look and feel

Option Result

Deploying AcuXUI as an Applet 11-9
Note: This deployment requires AcuConnect on the server. You must have
the appropriate number of runtime and AcuConnect licenses to support this
form of Web access.

To deploy AcuXUI as an applet you need a Web server. Update your Web
page to invoke your graphical application. To do this, you typically embed
the URL of AcuXUI along with the URL of your application on your Web
page. See Section 11.5.1, “Updating Your Web Page” for details.

When end users visit your Web site, the Web server delivers the
“AcuXUI.jar” file to client into the user’s browser, opens a socket to the
server where AcuConnect is running, and executes the COBOL program.
The user interface for your program automatically displays in their browser
window.

11.5.1 Updating Your Web Page

To deploy AcuXUI as an applet, create an HTML file similar to this one and
post it on your Web site. Include the applet code shown in black. This
specifies the archive name and class name for the applet contained in the
archive. Change the server name, port, alias, and username to suit your
deployment.

<html>
<H1>AcuXUI Applet Test</H1>
<APPLET CODE = "com.acucorp.acuxui.AcuXUIApplet"
ARCHIVE = "AcuXUI.jar" WIDTH = "500" HEIGHT = "395" >
<param name="servername" value="sparky">
<param name="port" value="5632">
<param name="alias" value="tour">
<param name="username"
value="entry-in-acurcl-acuaccess-file">
</applet>
</html>

11-10 Using AcuXUI to Deploy a Cross-Platform User Interface
Note: Because users are connecting via AcuConnect when using the
AcuXUI applet, they require an entry in the AcuAccess file. Use the
username parameter to specify the username with which to connect. If you
do not specify a username parameter in the HTML file under <param
name=“username”, then the client user name is sent to AcuConnect for
authentication.

11.5.2 Programming for Applet Use

If you are going to deploy AcuXUI as an applet, you should customize your
program so that it functions well as an applet. One of the requirements for
running in this environment is that your program must close files and
windows, destroy controls, fonts, bitmaps, etc., before exiting. You must
explicitly instruct the browser what to display or not display after a program
exits.

A program well written for applet use should not allow the user to exit the
program directly. Closing the program is a function that should be left in the
control of the browser or other applet viewer. An applet can be stopped by
closing the browser/viewer, navigating to another page, or loading a different
applet.

AcuXUI does not have the feature of destroying everything and leaving a
splash screen when it detects that the socket has been closed. When AcuXUI
closes in a browser, a “stream closed” error message is displayed.

11.6 Debugging with AcuXUI

The AcuBench integrated debugger is not available for AcuXUI.

To run your program with a runtime debugger, include the “-d” runtime
option when prompted by the “acuxui” batch or script file, or add “-d” to the
Java command used to run the program, for example:
java com.acucorp.acuxui.AcuXUI --acucobolgt /runtime-path/bin/
runcbl -d /objectfile-path/testprogram.acu

Debugging with AcuXUI 11-11
When a program is run with the “-d” option, a character-style debugger
appears giving you traditional debugger features, such as the ability to create
a trace file or accept a value for a variable.

Once a COBOL program is executing, access the debugger using the
<Control-Break> key during a screen accept, then terminate the accept to
break into the debugger.

A system menu with the Enter debugger option is not available when using
AcuXUI, although the standard Debugger menu is available. (Some options
may be grayed out).

11-12 Using AcuXUI to Deploy a Cross-Platform User Interface
11.7 Launching AcuXUI from IDEs

If you want to test your user interface with AcuXUI from your development
machine, you can do so.

11.7.1 From AcuBench

AcuBench has been integrated with AcuXUI. You build your COBOL
program and GUI as usual using AcuBench, but you run it using AcuXUI.

Rather than entering the Java command line in AcuBench, you specify the
name and location of the AcuXUI JAR file in the environment settings for the
project. Default settings have been provided:

1. From the Project menu, choose Settings.

2. Click the Environment tab.

3. Select the XUIJAR variable. Set its value to the name of the AcuXUI
JAR file (“AcuXUI.jar” by default).

Launching AcuXUI from IDEs 11-13
4. Select the variable named CLASSPATHDIR. For it’s value, browse to
the directory containing the “AcuXUI.jar” file (%acudir%\lib by
default).

5. If you want to pass Java parameters as part of the AcuXUI Java
command line, you can add a variable called XUIPARAMS to the
project’s environment. To do so, click the sun icon next to the red X,
enter XUIPARAMS in the Variable field, then enter the Java
parameters that you want to pass in the Value field, and click OK.

6. To run your program with AcuXUI, select Use AcuXUI from the
AcuBench Build menu.

Note that the AcuBench toolbar includes a coffee cup icon for launching your
program from Java via AcuXUI.

11.7.2 From Eclipse

To use AcuXUI from Eclipse:

11-14 Using AcuXUI to Deploy a Cross-Platform User Interface
1. Run AcuXUI by selecting Java Application from the tree view and
pressing the New button.

2. Select the COBOL program that you want to run with AcuXUI and
provide a descriptive name for the launch configuration in the Name
entry field.

Launching AcuXUI from IDEs 11-15
3. On the Main tab, browse to and select the Eclipse project to open. For
Main class, browse to the directory where AcuXUI is installed and
select “com.acucorp.acuxui.AcuXUI”. This is the name of the main
class in the JAR file for AcuXUI.

4. On the Arguments tab, indicate the runtime arguments to use when
launching the COBOL program. Precede the arguments with
“--acucobolgt” followed by the location and name of the runtime as

11-16 Using AcuXUI to Deploy a Cross-Platform User Interface
shown below. If desired, indicate any Java virtual machine arguments.
For working directory, specify the location of the COBOL program
“.acu” files.

Launching AcuXUI from IDEs 11-17
5. On the Classpath tab, select User Entries from the tree view, then use
the Add External JARs button on the right to add the “AcuXUI.jar”
file to this launch configuration. Click Apply when done.

6. Click Run to run your program from Eclipse.

11-18 Using AcuXUI to Deploy a Cross-Platform User Interface
11.8 Differences Between Java and Windows
Desktops

With AcuXUI, you program graphical controls in ACUCOBOL-GT as you
always have. (This book is your guide to user interface programming.)
However, if you have been previously running your graphical program on the
Windows desktop and you now begin to run it on the Java desktop (even on
Windows machines), you will notice some differences.

This is because the ACUCOBOL-GT graphical controls rely on the features
or behavior that Windows provides. In the JRE, graphical controls are based
on the Java Abstract Window Toolkit (AWT).

For example, here is a color chooser that you get when you call
W$PALETTE using WPALETTE-CHOOSE-COLOR on Windows with the
standard Windows runtime.

Here is the same color chooser running on Windows via AcuXUI and the
JRE:

Differences Between Java and Windows Desktops 11-19
Note that there are differences between operating systems, too. The same
chooser running on Linux looks like this:

This is because the JRE provides a different interface on Linux than it does
on Windows.

11-20 Using AcuXUI to Deploy a Cross-Platform User Interface
Other differences exist as well. For example, the sort order in combo boxes
is different in Java than in Windows. Other known differences are described
in this chapter.

11.8.1 Unsupported Features

The following features are supported on Windows desktops; but they are not
supported on the Java desktops created by AcuXUI.

• Relative positioning

• Temporary controls

• ActiveX controls

• .NET controls

• Date-time controls

• Multi-line titles

• @DISPLAY syntax

• C$COPY library routine with @DISPLAY syntax

• WIN$PRINTER and some other WIN$ library routines

• Layout manager for resizing of screens

If your program takes advantage of these features, you need to remove them
or provide alternate coding if you want to use AcuXUI. Here is a workaround
to create multi-line titles, for example. Once you create your control, modify
its title using HTML tags, like this:

<html> my text
 second line
 third line </html>

Likewise, you can accomplish printing through the traditional runtime
options “-d”, “-p”, and “-q” rather than with a call to WIN$PRINTER.

Differences Between Java and Windows Desktops 11-21
11.8.2 Supported Features

The following user interface controls and other features are portable across
platforms (with some minor differences) and so are supported by AcuXUI.
Those controls with minor differences are described in the sections 11.8.2.1
through 11.8.2.6. If you plan to use AcuXUI, please be sure to use only the
supported controls in your program.

• Bar

• Bitmaps

• Browser Control

• Character-based screens

• Check Box

• Combo Boxes

• Entry Fields

• Frame

• Grid

• Label

• List Box

• Menus

• Push Button

• Radio Button

• Scroll Bar

• Status Bar

• Tabs

• Toolbars

11-22 Using AcuXUI to Deploy a Cross-Platform User Interface
• Tree View

• W$ library routines such as W$FONT and W$PALETTE

• C$SYSTEM library routine

11.8.2.1 Bitmaps

WBITMAP-LOAD supports only 24-bit and 8-bit uncompressed “.bmp”
files. If you use a monochrome or 4-bit BMP file, you will receive a warning
if warnings are enabled.

Bitmap button color mapping works slightly differently. On the Windows
desktop, color RGB (192, 192, 192) is mapped to the button face color. On
the Java desktop, it is mapped to a transparent color. The effect appears the
same in most cases, since it is normally the case that the background color of
the button control is the button face color. This difference allows the Java
implementation of the UI to show a disabled button icon correctly.

11.8.2.2 Browser Controls

The browser control with the Windows runtimes (or Thin client) in effect
uses Internet Explorer. By doing so the browser control can render pages that
have content other than HTML, such as a PDF file. With AcuXUI the
browser control is limited to HTML pages or web content that use these types
of content:

• text/plain

• text/html

• text/rtf

11.8.2.3 Combo Boxes

With combo boxes, the Windows control has a “sorted” style, and Microsoft
does the sorting internally; ACUCOBOL-GT provides no sorting function.
As such, there is a possibility that some later version of the control will sort
things differently. This is beyond Micro Focus’s control.

Differences Between Java and Windows Desktops 11-23
With AcuXUI, the Java control has a “sorted” style, but the sort order is
different from Windows. With the combo box in Java, the sort order puts
lower case first (alpha, ALPHA, Alpha).

With AcuXUI, the combo box static property is not available. In addition, the
KEY property does not have any effect for a combo box if the NO-TAB
property is also used.

11.8.2.4 Entry Fields

For multiline entry-fields, the size of a tab in Java is based on the width of the
“m” character. This makes tabs fairly wide when using variable-pitch fonts.

11.8.2.5 Frames

AcuXUI uses a Jprogressbar for frame controls. If you choose to modify a
frame after its initial display, you should do one of two things:

• Destroy the frame and display a new one with all of the relevant
properties.

• Modify the frame using all of the relevant properties at once. For
instance if you display a frame and then want to modify it with a title and
a color, modify the frame with both properties at once. If you modify it
with a title, and then modify it again with a color, the title disappears.
This is different from how frames work with the standard runtime.

Note: You need to define the FILL-PERCENT property in order to see the
color that you define for FILL-COLOR.

On Windows, using 8.1 AcuXUI and the frame control, frames may look
different or not display at all compared to using pre-8.1 versions. This is
based on whether or not Windows XP style is set on the target system. The
Frame displays differently if the target system is set to Windows XP Look
and feel. Setting the Windows look and feel to classic resolves the frame
display issue.

11-24 Using AcuXUI to Deploy a Cross-Platform User Interface
11.8.2.6 Left Alignment

Check boxes and radio buttons with the LEFT-TEXT style display differently
under Java than they do under Windows. Under Windows, the text aligns
with the left edge of the control and the box or button aligns with the right
edge. The space between the two pieces varies with the control width. Under
AcuXUI, the right edge of the text appears just before the box or button, and
the combined unit is right-aligned in the control. The space between the text
and box is constant, and you get a variable amount of space before the text
based on the control width. If you stack several check boxes with the same
width vertically, the Windows implementation will have aligned left and right
edges. The Java implementation will have aligned right edges and ragged left
edges. Both look fine, just different.

11.8.2.7 Menus

The Java menuing system does not support simple menu selections on the
menu bar. Only sub-menus are allowed on the menu bar. If the COBOL
program builds a menu bar containing simple menu selections, these are
automatically converted into single-item sub-menus by AcuXUI.

Once a menu has been made the menu bar for a window, it can no longer be
used as a sub-menu elsewhere. This happens because AcuXUI has to
transform the generic Java menu class (JMenu) into Java’s menu bar class
(JMenuBar) in order to show the menu bar. Once transformed, a menu is no
longer suitable for being used as a sub-menu. If you try to do this, you will
receive a warning if warnings are enabled.

Also, you cannot delete an item from a top-level menu that is visible as a
menu bar. AcuXUI does not support this.

In addition, AcuXUI does not support the W$MENU opcode
WMENU-INPUT. This is generally not needed by graphical applications.

Pop-up menus are ignored when attached to frame controls. This is needed
to insure proper mouse operation for controls contained in the frame.

For pop-up menus, MSG-END-MENU arrives before MSG-MENU-INPUT
(under Windows, the order is the opposite). This change is generally
harmless as the two messages do not depend on each other.

Differences Between Java and Windows Desktops 11-25
The WMENU-POPUP opcode allows you to position the menu at the
mouse’s current location when the menu pops up. AcuXUI does not support
this feature, because Java does not have a way to get the current mouse
position outside of an event. Instead, the menu appears at screen location (0,
0).

Note: An easier way of positioning a pop-up menu at the mouse when it is
over an ACUCOBOL-GT window is to use the POP-UP MENU feature of
DISPLAY WINDOW.

Menu accelerator text works differently under Java than it does under
Windows. In the Windows version, when you specify a menu item, you
specify the menu text and, optionally, the text to help the user identify the
accelerator key. This appears after “\t” in the menu text. For example, the
following menu item texts:

"Clear\tCtrl-F1"
"Clear All\tAlt-F1"

display like this in the menu:
Clear Ctrl-F1
Clear All Alt-F1

With AcuXUI, the accelerator key is actually detected by Java’s keyboard
handler and internally mapped to simulate the selection of the menu item.
Java’s menuing system requires that the programmer specify the keystroke
that should be used as the accelerator key. The menuing system also displays
the human-readable form of the accelerator key in the menu display.

To make this happen, AcuXUI attempts to determine which keystroke is
desired from the text specified after the “\t” in the menu item. If it can
successfully determine the key, it removes the text from the menu item and
attaches the correct accelerator key to the menu item. Java then displays a
standardized form of the key name in the menu and does the keyboard
handling. The net effect on the program is largely transparent. The most
noticeable effect is that the displayed key name may be slightly different as it
will always be the Java standardized name instead of the text specified by the
program.

11-26 Using AcuXUI to Deploy a Cross-Platform User Interface
If the key name cannot be understood, then it is simply stripped from the
menu text (since it will not display correctly if left intact) and no accelerator
is assigned. In this case, the COBOL program is responsible for insuring that
the accelerator key works as intended (in the same way that it does under
Windows) and the key name does not appear in the menu. If warnings are
turned on, this generates a warning naming the key that could not be parsed.

11.8.2.8 Message Box Titlebars

With ACUCOBOL-GT and Windows, the display message box inherits its
title from the previous Window; or when run by itself, Windows assigns
“Error” to the title bar. This does not happen with the JRE or AcuXUI. With
AcuXUI, the title bar is blank in message boxes.

11.9 Troubleshooting and Error Messages

Because AcuXUI is not running your program, but interfacing with the
runtime to run your program, the most common AcuXUI error is

no main in thread

This error means that Java can’t find the resource indicated on the Java
command line. You may have typed the Java command wrong (the one that
begins with “java com.acucorp.acuxui...” A typographical error will result in
a “no main in thread” error. Or CLASSPATH may be incorrectly defined in
the environment. Make sure CLASSPATH is set to the location of
“AcuXUI.jar”.

Other than that, any program failures you have are reported by the runtime as
usual. If you specify a runtime error file with the “-e” option on the Java
command line at run time, you can check the runtime error file just as you
would when troubleshooting the Windows runtime.

You can also specify the “-m” option to track memory handling, as in “-m
<levelNum> <memFileName>”. This turns on memory handling
descriptions in the ACUCOBOL-GT runtime, which can be useful in
troubleshooting memory-related problems.. With “-m”, description and
tracking information is written to the file named by the file argument as
follows:

Troubleshooting and Error Messages 11-27
• If value is odd, a final memory dump, showing all blocks still allocated,
is performed.

• If (value / 2) is odd, each allocation, reallocation, and free is written to
the file.

• If (value / 4) is odd, a full memory dump is written for each allocation,
reallocation, and free.

Consult the Runtime Manual for a list of runtime options and error messages.

11.9.1 Java logging

If you want your COBOL program to output messages such as runtime errors
to a Java log file, you can call the C$JAVA library routine using the
CJAVA-LOGMESSAGE op-code. Log messages are written to a file called
“logging.properties”, which is configurable.

Refer to A Guide to Interoperating with ACUCOBOL-GT section 2.3.1.5 for
information on using Java logging from COBOL.

12
 Tips and Hints
Key Topics

Regarding Windows .. 12-2
Regarding Controls ... 12-4
Regarding Fonts .. 12-7
Regarding Configuration Variables... 12-7
Regarding Debugging .. 12-9

12-2 Tips and Hints
12.1 Regarding Windows

Question: When I click the mouse outside the area of my floating window, the runtime
doesn’t return any event to my program. Why?

Answer: This is normal behavior under Windows. Windows delivers the mouse
message to the top-most window where the mouse is located. If the mouse
isn’t clicked within the floating window, it never receives any indication that
a mouse event occurred. The only way to receive such events is to capture
the mouse, but that prevents the mouse from being used by any other
application. Ordinarily, the mouse should be captured only when the user is
marking or dragging some object on the screen.

Question: How can I trap the CMD-CLOSE event when the user closes the application
by selecting the “Close” option of the System Menu? I need to be able to
close files and perform an orderly shutdown.

Answer: Look at the QUIT-MODE runtime configuration variable. QUIT_MODE
allows you to handle this event in a program-defined way, or in a variety of
pre-defined ways. See Appendix H of Book 4, Appendices.

Question: I don’t see any references to Dialog Boxes. How do I build one? I

Answer: Under ACUCOBOL-GT, a Dialog Box is simply a floating window. You can
specify many options when creating the window, but the basic Dialog Box is
declared with:

DISPLAY FLOATING WINDOW,
 LINES height, SIZE width,
 BOXED, HANDLE IN handle-data-item

Common additions include a TITLE and SYSTEM MENU. You can then
populate the Dialog Box with “DISPLAY control-type” statements. Or a
better alternative is to define a Screen Section group item that describes all
the Dialog Box contents and then just DISPLAY that group item.

Question: Which of the Windows Common Dialog Boxes can I create directly from
ACUCOBOL-GT?

Answer: Five are available via ACUCOBOL-GT library routines. The ChooseColor
dialog box can be found in W$PALETTE. The PrintDialog setup box is
available in WIN$PRINTER. The file Open and Save-as dialogs are

Regarding Windows 12-3
available in C$OPENSAVEBOX. W$FONT has the ChooseFont dialog
box. Other Windows Common Dialogs are not directly available, though
they can be accessed indirectly through C.

Question: How do I handle a dialog box that doesn’t have any entry fields, for example
a dialog box with only push buttons?

Answer: All controls are handled in the same general fashion. This means that you can
ACCEPT a push button just as you do an entry field. Push buttons are a little
strange in that they don’t have values, but they do provide a termination
value, just as regular fields. The following is sample code for a simple dialog
box that prompts for verification before terminating the application. The line
and column numbers may need to be adjusted to improve appearance.

*Screen section
01 shutdown-screen.
 03 label “This will end your application”,
 line 2, column 3.
 03 push-button, ok-button, line 4, column 10.
 03 push-button, cancel-button, column 20.

*Procedure Division
display floating window,
 size 30, lines 5,
 title “Application Shutdown”,
 handle in shutdown-window.

display shutdown-screen.
perform, with test after,
 until key-status = 13 or 27
 accept shutdown-screen
 on exception key-status continue end-accept
end perform.

destroy shutdown-window.

if key-status = 13
 perform shutdown-windows.

12-4 Tips and Hints
Question: I’d like to minimize my COBOL application when I switch tasks, but a child
window is open, and I can’t access the minimize button of the main
application window. Why?

Answer: The child window is a modal window. As long as a modal window is open,
you cannot get to any other application window. To minimize the
application, you must first close all child windows.
If the current window were a modeless window, you could switch to a
different window without closing the first one. ACUCOBOL-GT Version
3.2 and later supports the creation of modeless windows.

Question: I want to create a toolbar large enough to host bitmap buttons that are 36
pixels square. How do I do that?

Answer: All you need to do to is to create a toolbar window that is tall enough to
handle 36 pixels (or any height you want). When you create the bitmap
buttons, be sure to specify the exact size of your buttons. For example, to
handle 36 pixel square bitmap buttons, try creating a toolbar four lines high.
Remember, you can use fractional line values to create a toolbar that is
exactly the height you want. For more about toolbars and bitmap buttons see
the “DISPLAY TOOLBAR” statement in section 6.6 of Book 3, Reference
Manual, and section 3.7, “Bitmap Buttons” in Book 2, User Interface
Programming.

12.2 Regarding Controls

Question: I have a window in which I’ve placed a number of SELF-ACT style radio
buttons. When one of those buttons is clicked, I see the button flash but the
previous control remains selected. What’s going on?

Answer: What you’re seeing is correct, if confusing, behavior. Self-activating buttons
have two traits: they don’t generate CMD-GOTO events, and once the user is
finished with them they reactivate the previously active control. In this case,
clicking on the radio button turns it on and also “completes” the use, causing
control to be returned to the previously selected radio button, turning off the
button that was clicked. All this happens in a flash. The bottom line is, don’t
make radio buttons self-activating if you plan to ACCEPT them directly.

Regarding Controls 12-5
Question: I have defined a TERMINATION-VALUE (or EXCEPTION-VALUE) for
my push button. When I click on it, I get a status “96” instead of the value I
have assigned. Is this a bug?

Answer: What you are seeing is correct behavior. When you click on a push button
with the mouse, two actions take place. First, when you press the mouse
button down, the push button requests that the program activate it. It does
this by generating a CMD-GOTO event, which is the status “96” that you are
seeing. After it gains control, it waits for you to release the mouse button. At
this point, the push button generates the termination or exception value that
you have assigned to it. Although we talk about “pushing” a button, in
reality, it is the act of releasing the button that is important. You can see this
by running any Windows application and pushing a button down with the
mouse. As long as you hold the mouse button down, nothing happens other
than the push button appearing depressed and gaining the input focus. Once
you release the mouse button, the program action associated with the push
button takes place.

If you are using push buttons in a Screen Section entry, you usually don’t see
the CMD-GOTO events because the Screen Section handler responds to
these events for you (although you can detect them in AFTER procedures and
EVENT procedures). When you are managing the activation of controls
directly in your program, then it is your responsibility to detect these events
and activate the appropriate controls.

Another possibility is to use the SELF-ACT style of push button. This style
tells the button to automatically activate itself when pushed. It does not
generate CMD-GOTO events.

Question: I asked for a FRAME that was 20 characters wide. When I use the
WIN3-GRID option, I can see that it is nowhere near that size. What’s
happening?

Answer: Frames, like other controls, are normally measured in terms of their font. In
the case of a frame, the font is the frame’s title font (even if the frame is not
given a title, it still has a title font). A frame of size “20” is a frame that is 20
title-font-characters wide. What the WIN3-GRID option shows you is the
size of each character cell in the window. A window’s character cell is
normally the same as the size of its text font. If the window’s text font and
the frame’s title font are not the same, then a frame of size “20” will not
occupy 20 character cells.

12-6 Tips and Hints
You can address this issue in one of four ways:

1. You can use the CELLS option when specifying the frame’s size (e.g.,
“SIZE 20 CELLS”). This causes the frame to be measured using the
window’s cell size;

2. You can change the dimensions of the window’s cell size to match the
frame’s title font (by using the CELL SIZE phrase when you create the
window);

3. You can make the frame’s font and the window’s text font the same; or,

4. You can use the PIXELS option when specifying the frame’s size (e.g.,
“SIZE 200 PIXELS”). This causes the frame to be measured using the
screen’s pixel size, and the resulting frame’s size is unrelated to either
the frame’s title font or the window’s text font.

Question: How many items can I put in a standard list box or combo box?

Answer: List box text limits are based on machine memory, which essentially equates
to no limit.

A paged list box can handle an unlimited number of items. See section 3.8.

Question: When the runtime is putting data into a standard list box or combo box
defined in the Screen Section, the last data item gets repeated. How do I
prevent this?

Answer: You need to move spaces to your ITEM-TO-ADD data item after you have
finished filling the list box or combo box. Otherwise, the last data item it
contains will be added to the box every time you DISPLAY that Screen
Section box, or any of its parent group items.

Question: When I use a property in a MODIFY statement, I get the compiler error
“Undefined data item: property-name”. I know the property is the right one.
Why do I get an error?

Answer: The handle that you are specifying in the MODIFY statement is a generic
handle (that is, “USAGE HANDLE” instead of “USAGE HANDLE OF
type”). The compiler does not recognize style and property names when you
reference a generic handle, because it does not know which set of names to
use. To rectify this problem, declare the handle as a handle to the appropriate
control type.

Regarding Fonts 12-7
ACCEPT FROM SCREEN doesn’t return anything!

ACCEPT FROM SCREEN returns classical text-based fields, but not
controls or the contents of controls (including entry fields). In other words,
it reads the terminal emulator plane of the screen, but not the graphical
plane. To determine the current contents of a control, use the INQUIRE verb.

12.3 Regarding Fonts

Question: How can I select one of my system’s custom fonts?

Answer: Use the W$FONT library routine. See Book 4, Appendix I.

12.4 Regarding Configuration Variables

Question: In the programs I developed with Version 2.3 and 2.4, I used the
configuration variable MOUSE-FLAGS to detect certain mouse events.
After updating my screens to include graphical controls, I notice that the
double-clicked events that I used to get in my entry fields are no longer
generated. What’s going on?

Answer: MOUSE-FLAGS does not detect any event that takes place over a control.
Mouse events that take place over a control are handled differently than
mouse events that interact with text-based screen items. The mouse, when
positioned over a control, is owned by the control. All mouse events that take
place over the control are sent directly to and handled by the control. List box
controls are the only controls that pass double-click events back to the
program. To detect a double-click in a list box, check for CMD-DBLCLICK
in EVENT-STATUS.

Question: In my configuration file I have a KEYSTROKE entry that defines carriage
return (^M) to have both a termination and exception value of “13”. It also
defines “edit=next” so that a carriage return also moves the cursor to the next

12-8 Tips and Hints
field. But when I have a screen that includes an “OK” button and a carriage
return is pressed, the screen terminates and the cursor is not moved to the next
field.

Answer: This is the correct behavior. Remember that the OK button style also implies
the DEFAULT button style. The DEFAULT button style has the effect of
acting as if it is pushed whenever a key with the value of “13” is pressed.

Question: A program running in UNIX with the configuration variable “KEYSTROKE
EDIT=Next terminate=17 kr” and “KEYSTROKE EDIT=Previous
terminate=17 kl” can return to the previous field or advance to the next field
when the <left arrow> or <right arrow> keys are pressed, but when the
program is running in Windows these keys do not work.

Answer: This is the correct behavior. When using controls, the host GUI determines
the meaning of any editing keys in the control itself. For our own simulated
GUI, we allow you to define the editing functions using the KEYSTROKE
entries. For other systems (such as Windows), the host determines how keys
are used. In the case of Windows, the left and right arrow keys move the
cursor but do not act as terminators.
While the runtime does allow you to configure which keys are terminating
keys (even for Windows), it cannot force the host GUI into a mixed mode
where a key is sometimes an editing key and sometimes a terminating key.

Question: With the KEYSTROKE configuration variable I redefine the menu activation
key. The redefinition works fine under UNIX but doesn’t under Windows.
Why?

Answer: Windows’ menu activation keys are not configurable. The only keys
available are the ones defined by Microsoft. The menu activation key under
Windows is F10.

Question: In many of my character-based applications I use BLINK to highlight some
text. Why is it that when I run those applications under Windows, the text
doesn’t blink?

Answer: BLINK isn’t supported under Windows.

Regarding Debugging 12-9
12.5 Regarding Debugging

Question: When I’m debugging and I can’t get to the System Menu, how can I set a
break?

Answer: You can directly request a break to the debugger by typing Ctl-Break. The
break will occur as soon as the current ACCEPT statement terminates. If the
program is not currently processing an ACCEPT statement, the break will
occur after the current statement terminates. This provides a method of
dynamically breaking to the debugger when you cannot get to the system
menu (for example, when you are in a floating window).

13
 UI Terminology
active window

The window that is receiving the user’s input. The window controlled by
the user and associated with the current ACCEPT statement. Only one
window can be active at a time. On most systems, the active window is
visually highlighted. A window is made active by any of the following
actions: (a) when it is created, (b) when the program does an ACCEPT of a
control in the window, (c) by some forms of the Format 10 SET statement,
and (d) when the user clicks on a modeless window. See also current
window.

ActiveX

A component model originally developed by Microsoft to standardize the
way that application components and services behave. Today, most
component-based technologies are assigned the label “ActiveX”.

ActiveX control

An ActiveX control is an Component Object Model (COM) object that
performs a well-defined function, usually involving a graphical user
interface. ActiveX controls subscribe to the ActiveX component model
originally developed by Microsoft. As such, they behave in a manner that
developers can predict, they are reusable, and they are toolable.
Pre-programmed controls (such as calendars, clocks, and gauges) are sold
by third-party vendors along with the licensing rights to use them in your
Windows application. By supporting ActiveX controls, ACUCOBOL-GT
allows you to take advantage of existing software functionality, as well as
create applications that conform to the Windows standard.

application window

See main application window

13-2 UI Terminology
bar

A control that draws a line on the screen.

bitmap

A control that allows you to place an animated bitmap on the screen.

border

The box forming the outermost edge of the window or control. Border
types include thin, thick, and shadowed (3D border).

buttons

A class of controls used for yes/no, on/off choices (push button, radio
button, check box).

character-based display

A video mode that displays only full characters such as those defined by the
ASCII or EBCDIC character sets.

check box

A control having a box which the user clicks on to select an on or off state.
An “X” or check-mark appears in the box when the item is selected.

child window

A window created by the currently active window (its parent). If the parent
window is closed (destroyed), the child is also closed.

client area

The area of the window inside the borders, menu bar, toolbar, and title bar.
synonym: display area

close box

See system menu.

combo box

An entry field with an attached list or drop-down list. The user can select
an entry from the list, or directly enter a value. synonym: combination box

 13-3
control

A graphical screen object with a dedicated input or output function, such as
a push button, check box, or entry field. synonym: widget

control border

See border.

control type

A classification that specifies a control’s properties. Each control type has
a set of common and special properties. synonym: control class

current window

The output window. The window currently being acted on by the program,
usually the same as the active window (the window accepting input), but it
can be different, temporarily, via use of the UPON phrase. See active
window.

cursor

The insertion point in a text field. The cursor is typically shown as a
blinking vertical bar (I-beam).

data entry field

See entry field.

desktop

The screen background on top of which windows and icons are displayed.

dialog box

A modal or modeless window used to supply information or elicit input.
Frequently used to get user preferences and confirm program actions.

display area

See client area.

13-4 UI Terminology
document window

A type of window used by the application to support and manage multiple
open documents, or multiple views of an open document (spreadsheet,
picture, etc.). Not currently supported in ACUCOBOL-GT.

drop-down list box

A selection box with a drop-down list.

entry field

A boxed field into which text is entered. If present, the current entry is
highlighted and the user can select, delete, or edit up to the maximum
length of the field. synonym: entry box, text box, edit box

event

A transitory action, such as a mouse movement, menu selection, or data
entry.

event-driven

A system in which programs respond to events (actions) initiated by the
user or system.

floating window

A host-based, pop-up window that displays over its parent window. It can
be moved independent of its parent.

frame

A box used to visually group items. A frame can have a label. In Microsoft
Windows, frames are called group boxes. Frames can have a variety of
border types: normal, heavy and various three dimensional effects.

Graphical User Interface System (GUI System)

An operating system or layer over the operating system that has as its
principal feature the graphical display and control of the application user
interface. The GUI system may provide other important operating system
functions, but graphical representation and control is central. synonym:
GUI Environment, Windowing System.

 13-5
grid

A two-dimensional table of data fields. Each element of this table, called a
“cell,” can hold either text or a bitmap, or both. Grids are relatively
complex controls with many properties that you can use to customize their
appearance and behavior.

group box

See frame.

hot spot

The area on or around a display object (text, button, icon, etc.) that is
affected by a mouse action.

icon

A small bitmapped graphic image variously used to represent the
application or as a button label.

initial window

See main application window.

label

A static text item. Labels are used to place text next to an entry field, or
anywhere it is needed. synonym: static text

list box

An input field that displays a list of options for the user to choose from.
The list box usually highlights the current selection.

main application window

The primary window of the application, usually including the application’s
main menu bar and title bar displaying the application’s name.

menu bar

The labels usually located below the title bar that provide access to the
application’s pull down menus. Standard menu bar items include the
“File”, “Edit”, and “Help” menus.

13-6 UI Terminology
message box

A modal window used to display error and system messages. The message
box may be supplied as a specialized service of the GUI system.

method

An ActiveX term. Methods (or object methods) specify the functions that
an ActiveX control provides. They are invoked using the MODIFY verb,
and they can take any number of parameters or no parameters. They can
also take optional parameters (i.e., parameters that can be omitted) and can
return values (with the GIVING phrase.

minimize/maximize buttons

Small buttons, usually located in the upper right corner of the window’s
title bar (optional feature). When activated, these buttons reduce the
window to an icon or enlarge the window to its largest supported size,
respectively.

mnemonic keys

The underlined letter on menu entries which, when accessed with a special
key combination from the keyboard, activates that menu item.

modal window

A window that, when active, prevents the user from activating any other
window.

modeless window

A window that, when active, allows the user to activate another window via
a system-dependent technique (for example, clicking on the window with
the mouse).

multi-line entry field

A large entry field displayed as multiple lines. synonym: multi-line edit
box

parent window

The current window when a new window is created. When the parent
window is closed, all associated child windows are also closed. See child
window.

 13-7
pointer

The arrow (or other shape) that is moved by the mouse, trackball, joystick,
etc. to navigate the screen.

pointing device

The mouse, trackball, stylist, or other device manipulated by the user to
move the pointer and make selections on the screen.

pop-up menu

A menu which is displayed when the user positions the mouse over an
object with a pop-up menu and clicks or activates the menu with the
keyboard. The menu pops up over the current window.

pop-up window

Any window created by the program that pops up over the current window.
Prior to Version 3.0, the term pop-up window was sometimes used to refer
to windows created with the DISPLAY WINDOW statement (these
windows are now known as subwindows). See also modal window and
modeless window.

pull-down menu

The list of menu options displayed when an option on the main menu bar is
activated by the pointer or keyboard. Menu options are displayed in a
vertical list that may have horizontal dividers and links to submenus.

push button

A rectangular area with text or a graphic that describes the action
performed by the button. synonym: command button

radio button

A set of two or more buttons used to present mutually exclusive options.
When one button is selected, all other buttons are made to appear empty
(like an old fashion car radio - when a button is pushed in the previously
pushed button pops out). synonym: option button

screen

The entire video display space.

13-8 UI Terminology
scroll bar

A bar with a slider box and arrow boxes at each end. Scroll bars are
attached to a window when the size of the data exceeds the window’s
display area. A window can have vertical or horizontal scroll bars, or both.

selection box

See list box.

static text field

See label.

subwindow

The traditional ACUCOBOL-85, text-based pop-up window. The name
subwindow was introduced in ACUCOBOL-GT Version 3.0.

system menu

An optional drop down menu, usually located in the left corner of the title
bar, reserved for special control of the active window. The system menu
usually includes options such as: Restore, Move, Size, Minimize,
Maximize, Close, and Switch To. synonym: close box, control menu

tab

A control that combines a box with a tab, resulting in a screen element that
looks like a file folder.

text box

See entry field.

thread

An execution path through your program.

title

The text label that is displayed in the window’s title bar. Also a common
property of all control types.

 13-9
title bar

The bar, usually at the top of the window, that includes a text label (title)
and, optionally, a system menu (left corner) and minimize and maximize
buttons (right corner).

toolbar

A row of icon buttons used to perform or initiate program tasks.

widget

A synonym for control.

window

The framed rectangular display space that typically includes a combination
of interface devices such as menus, controls, and scroll bars.

window frame

The border around a window. See border.

Index

Symbols
$WINHELP routine 10-5

Numerics
3-D lines and boxes, displaying in Windows 9-22
3-D style

COMBO-BOX 5-34
ENTRY-FIELD 5-51
GRID 5-74
LIST-BOX 5-114
TREE-VIEW 5-166

3D_LINES configuration variable 9-22

A
ACCEPT

activating a control with 3-9
floating windows, effect on 2-4
font handle, getting with 4-15
FROM SCREEN 12-7
FROM STANDARD OBJECT 4-15
using in a statement to select menus 8-14

ACCEPT-CONTROL field 6-2
ACTION

ENTRY-FIELD special property 5-58
GRID special property 5-76

ACTION-CURRENT-PAGE, GRID special property 5-77
ACTION-FIRST-PAGE, GRID special property 5-77
ACTION-HIDE-DRAG, GRID special property 5-77
ACTION-LAST-PAGE, GRID special property 5-77

Index-2
ACTION-NEXT, GRID special property 5-77
ACTION-NEXT-PAGE, GRID special property 5-77
ACTION-PREVIOUS, GRID special property 5-77
ACTION-PREVIOUS-PAGE, GRID special property 5-77
active and current windows 2-4
ACTIVE-X control

common properties 5-12
COLOR 5-12
SIZE 5-12
TITLE 5-12
VALUE 5-12

events 5-16
special properties 5-13

CLSID 5-13
INITIAL-STATE 5-15
LICENSE-KEY 5-14

styles 5-13
USE-ALT 5-13
USE-RETURN 5-13
USE-TAB 5-13

syntax 5-15
ActiveX controls

color settings 9-20
methods 4-7
WideChar license keys 5-15

acugui.def 4-4
AcuXUI

AcuBench integration 11-12
AcuConnect deployment 11-8
AcuXUI.jar file 11-4
applet deployment 11-8
bitmaps 11-22
CLASSPATH environment variable, and 11-5
combo boxes 11-22
components 11-4
controls supported 11-21
controls unsupported 11-20

 Index-3
debugging 11-10
deployment methods 11-2
Eclipse integration 11-13
entry fields 11-23
Introduction 11-2
licensing 11-4
menus 11-24
troubleshooting 11-26

ADJUSTABLE-COLUMNS, GRID style 5-74
ALIGNMENT

GRID special property 5-77
LIST-BOX special property 5-118

ALLOW-ALL-SCREEN-ACTIONS mouse action 7-8
ALLOW-LEFT-DOUBLE mouse action 7-7
ALLOW-LEFT-DOWN mouse action 7-7
ALLOW-LEFT-UP mouse action 7-7
ALLOW-MIDDLE-DOUBLE mouse action 7-7
ALLOW-MIDDLE-DOWN mouse action 7-7
ALLOW-MIDDLE-UP mouse action 7-7
ALLOW-MOUSE-MOVE mouse action 7-7
ALLOW-RIGHT-DOUBLE mouse action 7-7
ALLOW-RIGHT-DOWN mouse action 7-7
ALLOW-RIGHT-UP mouse action 7-7
ALTERNATE, FRAME style 5-64
ALWAYS-ARROW-CURSOR mouse action 7-8
array mode, STATUS-BAR control 5-150
AUTO, ENTRY-FIELD style 5-55
AUTO_DECIMAL configuration variable 5-60
AUTO-DECIMAL, ENTRY-FIELD special property 5-60
automatic GUI runtime support 1-6
automatic mouse handling 7-9
AUTO-MOUSE-HANDLING mouse action 7-7
AUTO-SPIN, ENTRY-FIELD style 5-54
AXDEFGEN utility 4-8, 5-11

Index-4
B
background brush 9-21
background color, color mapping 9-2
BACKGROUND_INTENSITY configuration variable 9-15, 9-16
BAR control 5-17

common properties 5-18
COLOR 5-18
SIZE 5-18
TITLE 5-18
VALUE 5-18

events 5-22
special properties 5-19

COLORS 5-19
LEADING-SHIFT 5-21
SHADING 5-20
TRAILING-SHIFT 5-21
WIDTH 5-19

styles 5-18
DASHED 5-18
DOT-DASH 5-19
DOTTED 5-18

BITMAP
button style 3-16
CHECK-BOX style 5-29
GRID special property 5-78
PUSH-BUTTON style 5-130
RADIO-BUTTON style 5-135

bitmap buttons 3-12
color mapping 3-13
creating in the Screen Section 3-17
creating the button 3-16
creating the image 3-13
file format 3-14
loading a bitmap 3-15
pop-up hints 3-19

configuration variables 3-19

 Index-5
portability issues 3-19
removing an image 3-15
size of image 3-13
styles 3-16
W$BITMAP library routine 3-15

BITMAP control 5-22
common properties 5-22

COLOR 5-23
SIZE 5-23
TITLE 5-22
VALUE 5-23

special properties
BITMAP-END 5-25
BITMAP-HANDLE 5-23
BITMAP-NUMBER 5-23
BITMAP-RAW-HEIGHT 5-24
BITMAP-RAW-WIDTH 5-24
BITMAP-SCALE 5-24
BITMAP-START 5-25
BITMAP-TIMER 5-26
TRANSPARENT-COLOR 5-26

BITMAP-END, BITMAP special property 5-25
BITMAP-HANDLE

button special property 3-17
CHECK-BOX special property 5-31
PUSH-BUTTON special property 5-131
RADIO-BUTTON special property 5-137
TAB special property 5-157
TREE-VIEW special property 5-168

BITMAP-HANDLE, BITMAP special property 5-23
BITMAP-NUMBER

CHECK-BOX special property 5-31
GRID special property 5-78
PUSH-BUTTON special property 5-131
RADIO-BUTTON special property 5-137
TAB special property 5-157
TREE-VIEW special property 5-168

Index-6
BITMAP-NUMBER, BITMAP special property 5-23
bitmapped graphics in Windows 3-15
BITMAP-RAW-HEIGHT, BITMAP special property 5-24
BITMAP-RAW-WIDTH, BITMAP special property 5-24
BITMAP-SCALE, BITMAP special property 5-24
BITMAP-START, BITMAP special property 5-25
BITMAP-TIMER, BITMAP special property 5-26
BITMAP-TRAILING, GRID special property 5-78
BITMAP-WIDTH

GRID special property 5-79
TAB special property 5-157
TREE-VIEW special property 5-168

BLANK SCREEN 5-9
BLINK phrase, not supported under Windows 12-8
BOTTOM, TAB style 5-155
BOXED

Grid styles 5-75
BOXED style, incompatible with menus 2-8
BOXED styles

ENTRY-FIELD 5-51
LIST-BOX 5-114
TREE-VIEW 5-167

browser, WEB-BROWSER control 5-174
building a menu 8-11
BUSY, WEB-BROWSER property 5-180
BUTTONS styles

TAB 5-155
TREE-VIEW 5-167

C
CALENDAR-FONT, DATE-ENTRY special property 5-43
CANCEL-BUTTON, PUSH-BUTTON style 5-130
capturing the mouse 7-4
carriage return doesn’t advance 12-8
CCOL phrase, character coordinate phrase explained 3-10

 Index-7
CELL phrase 4-13, 4-14
CELL size, establishing in the main application window 1-24
cell, defined 4-11
CELL-COLOR, GRID special property 5-79
CELL-DATA, GRID special property 5-79
CELL-FONT, GRID special property 5-79
CELL-PROTECTION, GRID special property 5-79
CELLS phrase, used with the character coordinate phrases 3-10
CENTER

ENTRY-FIELD style 5-52
LABEL style 5-109

CENTERED-HEADINGS, GRID style 5-75
CENTURY-DATE, DATE-ENTRY style 5-40
character coordinate phrases 3-10
CHARACTER, label in Screen Section 4-5
character-based applications, differences from graphical 1-17
Character-to-GUI Wizard 1-31
check marks

adding and removing in menus dynamically 8-17
on menus 8-5

CHECK-BOX control 5-27
bitmap button, introduced 3-12
common properties 5-27

COLOR 5-28
EVENT-LIST, EXCLUDE-EVENT-LIST 5-29
SIZE 5-28
TITLE 5-27
VALUE 5-28

events 5-31
examples 5-32
special properties 5-31

BITMAP NUMBER 5-31
BITMAP-HANDLE 5-31
EXCEPTION-VALUE 5-31
TERMINATION-VALUE 5-31

styles 5-29
BITMAP 5-29

Index-8
FLAT 5-30
FRAMED 5-29
LEFT-TEXT 5-30
NOTIFY 5-30
SELF-ACT 5-29
SQUARE 5-29
UNFRAMED 5-29

child windows 2-5
ChooseColor common dialog box 12-2
CLASSPATH environment variable 11-5
CLEAR-SELECTION, WEB-BROWSER control special properties 5-178
Close option, handling under Windows 8-22
closing the main application window 12-2
CLSID, ACTIVE-X special property 5-13
CMD-ACTIVATE event 6-4
CMD-CLICKED event 6-5
CMD-CLOSE event 6-3
CMD-DBLCLICK event 6-5
CMD-GOTO event 6-5, 12-4, 12-5
CMD-GOTO event, not generated for SELF-ACT buttons 5-128
CMD-HELP event 6-6, 10-4
CMD-TABCHANGED event 6-6
COLOR

ACTIVE-X common property 5-12
BAR common property 5-18
BITMAP common property 5-23
CHECK-BOX common property 5-28
COMBO-BOX common property 5-34
DATE-ENTRY common property 5-40
ENTRY-FIELD common property 5-50
FRAME common property 5-63
GRID common property 5-73
LABEL common property 5-108
LIST-BOX common property 5-113
PUSH-BUTTON common property 5-127
RADIO-BUTTON common property 5-134
SCROLL-BAR common property 5-142

 Index-9
STATUS-BAR common property 5-145
TAB common property 5-154
TREE-VIEW common property 5-166
WEB-BROWSER common property 5-175

color
configuration variables 9-15
customization for graphical environments 9-4
models, explained 9-5
options under Windows and Windows NT 9-21
setting, ActiveX 9-20

color mapping 9-2
for a bitmap 3-13
quick global color changes 9-3
remapping with configuration variables 9-3

color values
foreground and background settings 9-12
list of 9-12
numeric 9-12

COLOR_MODEL configuration variable 9-3, 9-15
described 9-5
settings 1 and 2 9-7
settings 3 and 4 9-8
settings 5 and 6 9-9
settings 7 and 8 9-10
settings 9 and 10 9-11

COLOR_TABLE configuration variable 9-3, 9-4
settings 9-15
specifying color changes 9-13

COLOR_TRANS configuration variable 9-15, 9-18
COLORS, BAR special property 5-19
COLUMN_SEPARATION configuration variable 5-104, 5-119
COLUMN-COLOR, GRID special property 5-79
COLUMN-DIVIDERS, GRID special property 5-80
COLUMN-FONT, GRID special property 5-80
COLUMN-HEADINGS, GRID style 5-75
COLUMN-PROTECTION, GRID special property 5-80
COMBO-BOX control 5-32

Index-10
common properties 5-33
COLOR 5-34
SIZE 5-33
TITLE 5-33
VALUE 5-33

events 5-36
examples 5-37
last item inserted twice 12-6
special keys 5-37
special properties 5-35

EXCEPTION-VALUE 5-36
INSERTION-INDEX 5-36
ITEM-TO-ADD 5-35
ITEM-TO-DELETE 5-36
MASS-UPDATE 5-35
MAX-TEXT 5-35
RESET LIST 5-35
TERMINATION-VALUE 5-36

styles 5-34
3-D 5-34
DROP-DOWN 5-34
DROP-LIST 5-34
LOWER 5-34
NOTIFY-DBLCLICK 5-35
NOTIFY-SELCHANGE 5-35
STATIC-LIST 5-34
UNSORTED 5-34
UPPER 5-35

command (CMD) events 6-2
common properties of controls 3-2, 5-5
configuration variables

AUTO_DECIMAL 5-60
BACKGROUND_INTENSITY 9-15, 9-16
COLOR_MODEL 9-3, 9-15
COLOR_TABLE 9-3
COLOR_TRANS 9-15, 9-18
COLUMN_SEPARATION 5-104, 5-119

 Index-11
EF_UPPER_WIDE 5-49
EF_WIDE_SIZE 5-49
F10_IS_MENU 8-12
FIELDS_UNBOXED 5-51, 5-110
FILE_PREFIX 8-10
FILE_SUFFIX 8-10
FONT_WIDE_SIZE_ADJUST 5-50
FOREGROUND_INTENSITY 9-17
GUI_CHARS 5-141
HINTS_OFF 3-19
HINTS_ON 3-19
INSERT_MODE 5-46
INTENSITY_FLAGS 9-15
KEYSTROKE 5-37, 5-46, 5-61, 5-122, 7-5, 8-13, 12-7
LISTS_UNBOXED 5-114
MENU_ITEM 8-15
MOUSE 7-10
MOUSE_FLAGS 3-11, 7-6, 12-7
QUIT_MODE 6-3, 6-4, 6-25, 8-22, 12-2
specific to interface programming and configuration 1-8
TEMPORARY_CONTROLS 5-8, 5-9
TEXT 5-59
tips and hints 12-7
TREE_ROOT_SPACE 5-166, 5-167
TREE_TAB_SIZE 5-166
WIN32_3D 5-54

configuration variables, list of
WIN32_NATIVECTLS 5-112

configuration variables, questions 12-7
context ID (Windows help) 10-6
context-sensitive help 10-2
control global styles 5-8

HEIGHT-IN-CELLS 5-9
NO-TAB 5-8
OVERLAP-LEFT 5-10
OVERLAP-TOP 5-10
PERMANENT 5-8

Index-12
TEMPORARY 5-8
WIDTH-IN-CELLS 5-10

controlling mouse behavior 3-11, 7-4, 7-12
controls

activating 3-9
ACTIVE-X controls 5-11
basic components of 3-2, 5-2
CELL size, establishing in the main application window 1-24
CELLS phrase 3-10

with character coordinate phrases 3-11
common properties 5-5

introduced 3-2
compatibility with subwindows 3-6
components of 5-3
constant ID 5-4
creating 3-7
entering data into 3-9
events 6-5
global styles for. See control global styles
handles 3-6, 5-4
identifier (ID) 3-5
LIST-BOX, PAGED. See controls, PAGED LIST-BOX control
mouse interaction with 3-11
overview 3-2
PAGED LIST-BOX control 3-20

adding records to 3-22
code example 3-27
event handling 3-23

PAGED LIST-BOX, search option 3-23
positioning with character coordinate phrases 3-10
properties 5-4
removing 3-8
size differences between graphical and text-mode systems 1-19
special properties 5-6

specifying multiple values 5-7
styles 5-5
text mode, tips 1-26

 Index-13
types of 3-5, 5-3
visual styles 3-5

controls and windows, interaction between 3-6
controls, listed

BAR control 5-17
BITMAP control 5-22
COMBO-BOX control 5-32
DATE-ENTRY control 5-38
ENTRY-FIELD control 5-46
FRAME control 5-62
GRID control 5-69
LABEL control 5-107
PAGED LIST-BOX control 3-20
PUSH-BUTTON control 5-125
RADIO-BUTTON control 5-133
SCROLL-BAR control 5-140
STATUS-BAR control 5-144
TAB control 5-152
TREE-VIEW control 5-161
WEB-BROWSER control 5-174

controls.def 5-6
conversion wizard, Character-to-GUI 1-31
converting text-based applications 1-31

dealing with coordinates 4-11
coordinate handling 4-11
coordinate space problems 4-12
coordinate space solutions 4-12
coordinates to position controls 4-11
COPY-SELECTION, WEB-BROWSER control special properties 5-178
creating menu bars and pop-up menus 8-2
cross platform interface problems 1-24
CSIZE phrase, character coordinate phrase explained 3-10
current window, defined 2-4
CURSOR, ENTRY-FIELD special property 5-56
cursor, position within field by mouse 7-11
CURSOR-COL, ENTRY-FIELD special property 5-57
CURSOR-COLOR, GRID special property 5-80

Index-14
CURSOR-FRAME-WIDTH, GRID special property 5-80
CURSOR-ROW, ENTRY-FIELD special property 5-57
CURSOR-X, GRID special property 5-81
CURSOR-Y, GRID special property 5-81
CUSTOM-PRINT-TEMPLATE, WEB-BROWSER control special properties 5-177

D
-d option 11-20
DASHED, BAR style 5-18
DATA-COLUMNS

GRID special property 5-81
LIST-BOX special property 5-116

DATA-TYPES, GRID special property 5-82
DATE-ENTRY control 5-38

common properties
COLOR 5-40
SIZE 5-40
TITLE 5-39
VALUE 5-39

restrictions on use 5-38
special properties

CALENDAR-FONT 5-43
DISPLAY-FORMAT 5-43
VALUE-FORMAT 5-44

styles 5-40
CENTURY-DATE 5-40
LONG-DATE 5-41
NO-F4 5-41
NOTIFY-CHANGE 5-41
NO-UPDOWN 5-41
RIGHT-ALIGN 5-41
SHORT-DATE 5-41
SHOW-NONE 5-42
SPINNER 5-42
TIME 5-42

 Index-15
debugger, setting a break point 12-9
DEFAULT-BUTTON, PUSH-BUTTON style 5-127
-defines compiler option 10-7
determining which UI is running 1-23
dialog box, Windows Common Dialogs 12-3
dialog boxes, creating 12-2, 12-4
disabling a menu item at creation 8-5
disabling menus with the W$MENU routine 8-16, 8-17
display themes 3-5
DISPLAY-COLUMNS

GRID special property 5-83
LIST-BOX special property 5-117

DISPLAY-FORMAT, DATE-ENTRY special property 5-43
displaying a menu 8-12
DIVIDER-COLOR, GRID special property 5-84
DIVIDERS, LIST-BOX special property 5-119
DOT-DASH, BAR style 5-19
DOTTED, BAR style 5-18
DRAG-COLOR, GRID special property 5-84
DROP-DOWN, COMBO-BOX style 5-34
DROP-LIST, COMBO-BOX style 5-34

E
EF_UPPER_WIDE configuration variable 5-49
EF_WIDE_SIZE configuration variable 5-49
END-COLOR, GRID special property 5-85
ENGRAVED, FRAME style 5-65
ENSURE-VISIBLE, TREE-VIEW special property 5-168
ENTRY-FIELD control 5-46

common properties 5-46
COLOR 5-50
MULTIPLE 5-47
SIZE 5-48
TITLE 5-46
VALUE 5-46

Index-16
editing keys 5-46
events 5-60
examples 5-61
KEYSTROKE definitions 5-46
multiple lines 5-46, 5-52
size limit 5-46
sizing rules 5-48
special keys 5-61
special properties 5-55

ACTION 5-58
AUTO-DECIMAL 5-60
CURSOR 5-56
CURSOR-COL 5-57
CURSOR-ROW 5-57
MAX-LINES 5-56
MAX-TEXT 5-55
MAX-VAL 5-59
MIN-VAL 5-59
SELECTION-TEXT 5-59

styles
3-D 5-51
AUTO 5-55
AUTO-SPIN 5-54
BOXED 5-51
CENTER 5-52
LEFT 5-51
LOWER 5-53
MULTILINE 5-52
NO-AUTOSEL 5-53
NO-BOX 5-51
NOTIFY-CHANGE 5-55
NUMERIC 5-51
READ-ONLY 5-53
RIGHT 5-52
SECURE 5-53
SPINNER 5-53
UPPER 5-53

 Index-17
USE-RETURN 5-52
USE-TAB 5-53
VSCROLL 5-52
VSCROLL-BAR 5-52

width of 5-48
ENTRY-REASON, GRID special property 5-85
ESCAPE-BUTTON, PUSH-BUTTON style 5-127
event driven systems, described 1-7
EVENT STATUS 4-4, 6-2, 10-4
EVENT-LIST, EXCLUDE-EVENT-LIST

CHECK-BOX common properties 5-29
events

ACTIVE-X controls 5-16
BAR controls 5-22
COMBO-BOX controls 5-36
command

CMD-ACTIVATE 6-4
CMD-CLICKED 6-5
CMD-CLOSE 6-3
CMD-DBLCLICK 6-5
CMD-GOTO 6-5
CMD-HELP 6-6
CMD-TABCHANGED 6-6

command (CMD)
defined 6-2

control, listed 6-5
described 4-3
GRID controls 5-106
menu, listed 6-24
message

MSG-AX-EVENT 6-6
MSG-BEGIN-DRAG 6-7
MSG-BEGIN-ENTRY 6-7
MSG-BEGIN-HEADING-DRAG 6-8
MSG-BITMAP, CLICKED 6-7
MSG-BITMAP-DBLCLICK 6-8
MSG-CANCEL-ENTRY 6-8

Index-18
MSG-CLOSE 6-4
MSG-COL-WIDTH-CHANGED 6-9
MSG-END-DRAG 6-9
MSG-END-HEADING-DRAG, 6-9
MSG-END-MENU 6-25
MSG-FINISH-ENTRY 6-9
MSG-GOTO-CELL 6-10
MSG-GOTO-CELL-DRAG 6-10
MSG-GOTO-CELL-MOUSE 6-11
MSG-GRID-RBUTTON-DOWN 6-11
MSG-GRID-RBUTTON-UP 6-12
MSG-HEADING-CLICKED 6-12
MSG-HEADING-DBLCLICK 6-12
MSG-HEADING-DRAGGED 6-12
MSG-INIT-MENU 6-24
MSG-MENU-INPUT 6-24
MSG-NET-EVENT 6-13
MSG-PAGED-FIRST 6-13
MSG-PAGED-LAST 6-13
MSG-PAGED-NEXT 6-13
MSG-PAGED-NEXTPAGE 6-14
MSG-PAGED-PREV 6-16
MSG-PAGED-PREVPAGE 6-16
MSG-PAGED-PREV-WHEEL 6-16
MSG-SB-NEXT 6-17
MSG-SB-NEXTPAGE 6-17
MSG-SB-PREV 6-17
MSG-SB-PREVPAGE 6-17
MSG-SB-THUMB 6-17
MSG-SB-THUMBTRACK 6-17
MSG-SPIN-DOWN 6-18
MSG-SPIN-UP 6-18
MSG-TV-DBLCLICK 6-18
MSG-TV-EXPANDED 6-19
MSG-TV-EXPANDING 6-19
MSG-TV-SELCHANGE 6-19
MSG-TV-SELCHANGING 6-20

 Index-19
MSG-VALIDATE 6-20
MSG-WB-BEFORE-NAVIGATE 6-21
MSG-WB-DOWNLOAD-BEGIN 6-21
MSG-WB-DOWNLOAD-COMPLETE 6-21
MSG-WB-NAVIGATE-COMPLETE 6-21
MSG-WB-PROGRESS-CHANGE 6-21
MSG-WB-STATUS-TEXT-CHANGE 6-21
MSG-WB-TITLE-CHANGE 6-21

messages (MSG)
defined 6-2

mouse
not returned as in Version 2.4 12-7
not returned to program 12-2

notification
NTF-CHANGED 6-21
NTF-PL-FIRST 6-22
NTF-PL-LAST 6-22
NTF-PL-NEXT 6-22
NTF-PL-NEXTPAGE 6-22
NTF-PL-PREV 6-23
NTF-PL-PREVPAGE 6-23
NTF-PL-SEARCH 6-23
NTF-RESIZED 6-4
NTF-SELCHANGE 6-23

notification (NTF)
defined 6-2

notify, defined 6-2
overview 6-2
RADIO-BUTTON controls 5-139
Screen Section handling 6-2
SCROLL-BAR controls 5-143
STATUS-BAR controls 5-151
TAB controls 5-158
terminating, described 4-3
TREE-VIEW controls 5-173
WEB-BROWSER controls 5-180
window 6-3

Index-20
events message
defined 6-2

EVENT-STATUS
EVENT-CONTROL-HANDLE data item 6-3
EVENT-CONTROL-ID data item 6-3
EVENT-DATA-2 data item 10-4

examples
menu handling 8-20
W$MENU 8-20

exception keys, and menus 8-14
EXCEPTION-VALUE

CHECK-BOX special property 5-31
COMBO-BOX special property 5-36
LIST-BOX special property 5-121
PUSH-BUTTON special property 5-132
RADIO-BUTTON special property 5-137

EXPAND, TREE-VIEW special property 5-168

F
F10_IS_MENU configuration variable 8-12
fields, excluding from mouse selection 7-10
FIELDS_UNBOXED configuration variable 5-51, 5-110
FILE_PREFIX configuration variable 8-10
FILE_SUFFIX configuration variable 8-10
FILE-NAME, WEB-BROWSER control special properties 5-179
FILE-POS

GRID special property 5-86
automatic management of 5-87
independent grid management 5-88

PAGED-AT-END, GRID special property 5-87
PAGED-AT-START, GRID special property 5-86
PAGED-EMPTY, GRID special property 5-87

FILL-COLOR, FRAME special property 5-66
FILL-COLOR2, FRAME special property 5-67
FILL-PERCENT, FRAME special property 5-66

 Index-21
FINISH-REASON, GRID special property 5-88
FIXED-WIDTH, TAB style 5-155
FLAT style

CHECK-BOX 5-30
PUSH-BUTTON 5-130
RADIO-BUTTON 5-136

FLAT-BUTTONS, TAB style 5-156
floating windows 1-15

ACCEPT statement, effects of on 2-4
ACTION 2-6
active 2-4
and graphical controls 1-6
and subwindows, relationship 2-3
attaching menu with W$MENU 2-8
closing 2-7

effect on current and active status 2-5
current 2-4
defined 1-15
getting the size and position of 2-6
inquiries 2-6
main application window, creating for optimal CELL size 1-24
menu in 2-8
modifying 2-6
parent 2-5

FONT_WIDE_SIZE_ADJUST configuration variable 5-50
fonts

memory management of 4-16
selecting with W$FONT 4-15
support for 4-15

FOREGROUND_INTENSITY configuration variable 9-15, 9-17
FRAME control

automatic sizing in text mode 1-27
common properties 5-63

COLOR 5-63
SIZE 5-63
TITLE 5-63
VALUE 5-63

Index-22
events 5-68
examples 5-68
sizing problems 12-5
special properties 5-66

FILL-COLOR 5-66
FILL-COLOR2 5-67
FILL-PERCENT 5-66
HIGH-COLOR 5-66
LOW-COLOR 5-66
TITLE-POSITION 5-67

styles 5-64
ALTERNATE 5-64
ENGRAVED 5-65
FULL-HEIGHT 5-65
HEAVY 5-64
LOWERED 5-65
RAISED 5-64
RIMMED 5-65
VERY-HEAVY 5-64

FRAMED
BUTTON style 3-17

FRAMED style
CHECK-BOX 5-29
PUSH-BUTTON 5-130
RADIO-BUTTON 5-135

FULL-HEIGHT, FRAME style 5-65
function keys

and menu bars 8-15
handling 8-15

G
generic menu handler 8-2
genmenu

compiling the utility 8-7
executing 8-10

 Index-23
GetStockObject, Windows API function 4-15
global styles of controls 5-8
graphical and textual modes, mixed 4-4
graphical user interface

development issues 1-29
development strategies 1-19
development with third party tools 1-11
portability issues 1-16
support, introduced 1-2

GRAPHICAL, label in Screen Section 4-5
graphics, bitmapped in Windows 3-15
GRID control 5-69

colors 5-72
common properties 5-73

COLOR 5-73
SIZE 5-73
TITLE 5-73
VALUE 5-73

entry mode 5-71
events 5-106
fonts 5-72
movement in 5-70
navigate mode 5-70
paged 3-33
row and column headers 5-71
special properties 5-76

ACTION 5-76
ALIGNMENT 5-77
BITMAP 5-78
BITMAP-NUMBER 5-78
BITMAP-TRAILING 5-78
BITMAP-WIDTH 5-79
CELL-COLOR 5-79
CELL-DATA 5-79
CELL-FONT 5-79
CELL-PROTECTION 5-79
COLUMN-COLOR 5-79

Index-24
COLUMN-DIVIDERS 5-80
COLUMN-FONT 5-80
COLUMN-PROTECTION 5-80
CURSOR-COLOR 5-80
CURSOR-FRAME-WIDTH 5-80
CURSOR-X 5-81
CURSOR-Y 5-81
DATA-COLUMNS 5-81
DATA-TYPES 5-82
DISPLAY-COLUMNS 5-83
DIVIDER-COLOR 5-84
DRAG-COLOR 5-84
END-COLOR 5-85
ENTRY-REASON 5-85
FILE-POS 5-86
FILE-POS, automatic management 5-87
FILE-POS, independent grid management 5-88
FILE-POS, PAGED-AT-END 5-87
FILE-POS, PAGED-AT-START 5-86
FILE-POS, PAGED-EMPTY 5-87
FINISH-REASON 5-88
GRID-SEARCH-ALL-DATA 5-100
GRID-SEARCH-COLUMN 5-102
GRID-SEARCH-FORWARDS 5-99
GRID-SEARCH-HIDDEN 5-100
GRID-SEARCH-IGNORE-CASE 5-99
GRID-SEARCH-MATCH-ALL 5-100
GRID-SEARCH-MATCH-ANY 5-100
GRID-SEARCH-MATCH-LEADING 5-100
GRID-SEARCH-MOVES-CURSOR 5-101
GRID-SEARCH-SKIP-CURRENT 5-101
GRID-SEARCH-VISIBLE 5-100
GRID-SEARCH-WRAP 5-99
HEADING-COLOR 5-90
HEADING-DIVIDER-COLOR 5-90
HEADING-FONT 5-90
HIDDEN-DATA 5-90

 Index-25
HSCROLL-POS 5-91
INSERTION-INDEX 5-91
INSERT-ROWS 5-91
LAST-ROW 5-92
MASS-UPDATE 5-92
NUM-COL-HEADINGS 5-92, 5-93
NUM-ROWS 5-92
RECORD-DATA 5-93
RECORD-TO-ADD 5-93
RECORD-TO-DELETE 5-94
REGION-COLOR 5-94
RESET-GRID 5-94
ROW-COLOR 5-95
ROW-COLOR-PATTERN 5-95
ROW-DIVIDERS 5-95
ROW-FONT 5-96
ROW-PROTECTION 5-96
SEARCH-OPTIONS 5-96
SEARCH-TEXT 5-103
SEPARATION 5-104
START-X 5-104
START-Y 5-104
VIRTUAL-WIDTH 5-104
VPADDING 5-105
VSCROLL-POS 5-105
X 5-105
Y 5-106

styles 5-74
3-D 5-74
ACTION, ACTION-CURRENT-PAGE 5-77
ACTION, ACTION-FIRST-PAGE 5-77
ACTION, ACTION-LAST-PAGE 5-77
ACTION, ACTION-NEXT 5-77
ACTION, ACTION-NEXT-PAGE 5-77
ACTION, ACTION-PREVIOUS 5-77
ACTION, ACTION-PREVIOUS-PAGE 5-77
ACTION-HIDE-DRAG 5-77

Index-26
ADJUSTABLE-COLUMNS 5-74
BOXED 5-75
CENTERED-HEADINGS 5-75
COLUMN-HEADINGS 5-75
HSCROLL 5-75
NO-BOX 5-75
NO-CELL-DRAG 5-75
PAGED 5-75
ROW-HEADINGS 5-76
TILED-HEADINGS 5-76
USE-TAB 5-76
VSCROLL 5-76

GRIP, STATUS-BAR style 5-146
GROUP, RADIO-BUTTON special property 5-137
GROUP-VALUE, RADIO-BUTTON special property 5-138
GUI_CHARS configuration variable 5-141

H
handles 4-2

control 3-5
defined 5-4
invalid 4-3
layout manager 4-17
POP-UP AREA phrase 4-2

HAS-CHILDREN, TREE-VIEW special property 5-169
HAS-GRAPHICAL-INTERFACE field 1-27
HEADING-COLOR, GRID special property 5-90
HEADING-DIVIDER-COLOR, GRID special property 5-90
HEADING-FONT, GRID special property 5-90
HEAVY, FRAME style 5-64
HEIGHT-IN-CELLS global control style 5-9
help automation 10-2
help compiler 10-5
help cursor mode 10-3
help key exception value 10-3

 Index-27
help modes 10-3
help processor 10-2, 10-4
help, interfacing to Windows help files 10-5
HELP_PROGRAM configuration variable 10-4
HELP-ID phrase 10-3
HIDDEN-DATA

GRID special property 5-90
TREE-VIEW special property 5-169

HIGH-COLOR, FRAME special property 5-66
HINTS_OFF configuration variable 3-19
HINTS_ON configuration variable 3-19
HORIZONTAL, SCROLL-BAR style 5-142
HOT-TRACK, TAB style 5-156
HSCROLL, GRID style 5-75
HSCROLL-POS, GRID special property 5-91

I
ID, of a control 3-6
INITIAL-STATE, ACTIVE-X special property 5-15
INSERT_MODE configuration variable 5-46
INSERTION-INDEX

COMBO-BOX special property 5-36
GRID special property 5-91
LIST-BOX special property 5-116
with PAGED list boxes 3-22

INSERT-ROWS, GRID special property 5-91
INTENSITY_FLAGS configuration variable 9-15
INTENSITY-FLAGS 9-19
interface programming, configuration variables 1-8
interfacing Help to Windows facility 10-5
invoking pop-up menus with the W$MENU routine 8-18
item help mode 10-3
ITEM, TREE-VIEW special property 5-169
ITEM-NEXT, TREE-VIEW special property 5-170
ITEM-TO-ADD

Index-28
COMBO-BOX special property 5-35
LIST-BOX special property 5-115
TREE-VIEW special property 5-170

ITEM-TO-DELETE
COMBO-BOX special property 5-36
LIST-BOX special property 5-116
TREE-VIEW special property 5-170

ITEM-TO-EMPTY, TREE-VIEW special property 5-170
ITEM-VALUE, LIST-BOX special property 5-120

K
key letter, specifying for a menu 8-8
KEYSTROKE configuration variable 5-37, 5-46, 5-61, 5-122, 7-5, 8-13, 12-7

L
LABEL control 5-107

common properties 5-107
COLOR 5-108
SIZE 5-108
TITLE 5-107
VALUE 5-107

events 5-110
examples 5-110
multiple lines 5-107
special properties 5-109

LABEL-OFFSET 5-109
styles 5-108

CENTER 5-109
LEFT 5-108
NO-KEY-LETTER 5-109
RIGHT 5-109
TRANSPARENT 5-109

LABEL-OFFSET, LABEL special property 5-109
LAST-ROW, GRID special property 5-92

 Index-29
layout manager, sample program 4-21
layout managers 4-16

handles to 4-17
LAYOUT-DATA 4-18
working with 4-17

LEADING-SHIFT, BAR special property 5-21
LEFT

ENTRY-FIELD style 5-51
LABEL style 5-108

LEFT-TEXT
CHECK-BOX style 5-30
RADIO-BUTTON style 5-136

library routines
$WINHELP 10-5
W$BITMAP 3-15
W$FONT 4-15
W$MENU 2-8, 8-16, 8-17, 8-18
W$MOUSE 3-11, 7-4, 7-12

LICENSE-KEY, ACTIVE-X special property 5-14
line drawing, BAR control 5-17
lines, with 3-dimensional shading 9-22
LINES-AT-ROOT, TREE-VIEW style 5-167
LIST-BOX control 5-111

common properties 5-111
COLOR 5-113
SIZE 5-112
TITLE 5-111
VALUE 5-111

events 5-122
examples 5-122
last item inserted twice 12-6
PAGED

adding records to 3-22
code example 3-27
described 3-20
event handling 3-23

size limit 5-111, 12-6

Index-30
special keys 5-122
special properties 5-115

ALIGNMENT 5-118
DATA-COLUMNS 5-116
DISPLAY-COLUMNS 5-117
DIVIDERS 5-119
EXCEPTION-VALUE 5-121
INSERTION-INDEX 5-116
ITEM-TO-ADD 5-115
ITEM-TO-DELETE 5-116
ITEM-VALUE 5-120
MASS-UPDATE 5-115
QUERY-INDEX 5-120
RESET-LIST 5-115
SEARCH-TEXT 5-116
SELECTION-INDEX 5-120
SEPARATION 5-119
SORT-ORDER 5-121
TERMINATION-VALUE 5-121
THUMB-POSITION 5-120

styles 5-113
3-D 5-114
BOXED 5-114
LOWER 5-113
NO-BOX 5-113
NO-SEARCH 5-114
NOTIFY-DBLCLICK 5-114
NOTIFY-SELCHANGE 5-114
PAGED 5-113
UNSORTED 5-113
UPPER 5-113

LISTS_UNBOXED configuration variable 5-114
LM-RESIZE, resize layout manager 4-20
LOCATION-NAME, WEB-BROWSER property 5-180
LOCATION-URL, WEB-BROWSER property 5-180
LONG-DATE, DATE-ENTRY style 5-41
LOW-COLOR, FRAME special property 5-66

 Index-31
LOWER
COMBO-BOX style 5-34
ENTRY-FIELD style 5-53
LIST-BOX style 5-113

LOWERED, FRAME style 5-65

M
main application window

creating for optimal CELL size 1-24
defined 1-11, 1-13
minimizing 12-4
performing an orderly shutdown 12-2

masking mouse actions 7-4
MASS-UPDATE

COMBO-BOX special property 5-35
GRID special property 5-92
LIST-BOX special property 5-115

MAX-LINES, ENTRY-FIELD special property 5-56
MAX-TEXT

COMBO-BOX special property 5-35
ENTRY-FIELD special property 5-55

MAX-VAL
ENTRY-FIELD special property 5-59
SCROLL-BAR special property 5-143

menu bars 8-2
caution about sample programs 8-24
pop-up 8-3
static 8-3

menu items
changing default action of 8-15
disabling at creation 8-5, 8-9
placing a check mark beside 8-5

MENU_ITEM configuration variable 8-15
MENU-HANDLE field 8-11
menus

Index-32
ACCEPT statement and 8-14
activation and use 8-12
activation keys under Windows 12-8
and exception keys 8-14
and floating windows 2-8
and portability concerns 8-23
attaching to floating windows with W$MENU 2-8
common operations of 8-16
configuration with the generic menu handler 8-18
creation, shortcut 8-6
defining menu keys in 8-13
displayed in floating windows 2-8
events 6-24
flags 8-9
generic menu handler 8-2
graphical facilities 8-4
handles 8-11
handling 8-5
incompatible with BOXED style 2-8
input 8-14
pop-up 8-2, 8-18
properties of entries 8-5
selection limits 8-15
separators 8-5, 8-9
shortcut letters for users 8-8
W$MENU

adding and removing check marks with 8-17
disabling items with 8-16
disabling with 8-17
example using 8-20
invoking pop-ups with 8-18

message (MSG) events 6-2
message box 1-32
methods 5-176

ActiveX and .NET 4-7
minimizing the application window 12-4
MIN-VAL

 Index-33
ENTRY-FIELD special property 5-59
SCROLL-BAR special property 5-143

modal window 1-14, 2-3
modeless window 1-13, 2-3
monochrome monitor 9-3
mouse

automatic handling of 7-8
buttons 7-3
capturing 7-4
clicking 7-3
controlling with W$MOUSE 3-11, 7-4, 7-12
exception values 7-5
excluding fields from selection 7-10
handling, in Screen Section 7-9
in character-based environments 7-2
in graphical environments 7-3
interaction with controls 3-11
key code table 7-5
managing 3-11
mouse wheel 5-141, 7-3
outside application window 7-4
owned by which window 7-4
pointer shape 7-9, 7-11
properties 7-2
unmasking 7-6
using to position cursor 7-11

mouse actions
ALLOW-ALL-SCREEN-ACTIONS 7-8
ALLOW-LEFT-DOUBLE 7-7
ALLOW-LEFT-DOWN 7-7
ALLOW-LEFT-UP 7-7
ALLOW-MIDDLE-DOUBLE 7-7
ALLOW-MIDDLE-DOWN 7-7
ALLOW-MIDDLE-UP 7-7
ALLOW-MOUSE-MOVE 7-7
ALLOW-RIGHT-DOUBLE 7-7
ALLOW-RIGHT-DOWN 7-7

Index-34
ALLOW-RIGHT-UP 7-7
ALWAYS-ARROW-CURSOR 7-8
assigning values to 7-6
AUTO-MOUSE-HANDLING 7-7
handling 7-4
ignoring 7-4
masking 7-4
with KEYSTROKE configuration variable 7-5

MOUSE configuration variable 7-10
MOUSE_FLAGS configuration variable 3-11, 7-6, 12-7
MSG-AX-EVENT event 6-6
MSG-BEGIN-DRAG event 6-7
MSG-BEGIN-ENTRY event 6-7
MSG-BEGIN-HEADING-DRAG event 6-8
MSG-BITMAP-CLICKED event 6-7
MSG-BITMAP-DBLCLICK event 6-8
MSG-CANCEL-ENTRY event 6-8
MSG-CLOSE event 6-4
MSG-COL-WIDTH-CHANGED event 6-9
MSG-END-DRAG event 6-9
MSG-END-HEADING-DRAG event 6-9
MSG-END-MENU event 6-25
MSG-FINISH-ENTRY event 6-9
MSG-GOTO-CELL event 6-10
MSG-GOTO-CELL-DRAG event 6-10
MSG-GOTO-CELL-MOUSE event 6-11
MSG-GRID-RBUTTON-DOWN event 6-11
MSG-GRID-RBUTTON-UP event 6-12
MSG-HEADING-CLICKED event 6-12
MSG-HEADING-DBLCLICK event 6-12
MSG-HEADING-DRAGGED event 6-12
MSG-INIT-MENU event 6-24
MSG-MENU-INPUT event 6-24
MSG-NET-EVENT event 6-13
MSG-PAGED-FIRST event 6-13
MSG-PAGED-LAST event 6-13
MSG-PAGED-NEXT event 6-13

 Index-35
MSG-PAGED-NEXTPAGE event 6-14
MSG-PAGED-PREV event 6-16
MSG-PAGED-PREVPAGE event 6-16
MSG-PAGED-PREV-WHEEL event 6-16
MSG-SB-NEXT event 6-17
MSG-SB-NEXTPAGE event 6-17
MSG-SB-PREV event 6-17
MSG-SB-PREVPAGE event 6-17
MSG-SB-THUMB event 6-17
MSG-SB-THUMBTRACK event 6-17
MSG-SPIN-DOWN event 6-18
MSG-SPIN-UP event 6-18
MSG-TV-DBLCLICK event 6-18
MSG-TV-EXPANDED event 6-19
MSG-TV-EXPANDING event 6-19
MSG-TV-SELCHANGE event 6-19
MSG-TV-SELCHANGING event 6-20
MSG-VALIDATE event 6-20
MSG-WB-BEFORE-NAVIGATE, WEB-BROWSER event 6-21
MSG-WB-DOWNLOAD-BEGIN, WEB-BROWSER event 6-21
MSG-WB-DOWNLOAD-COMPLETE, WEB-BROWSER event 6-21
MSG-WB-NAVIGATE-COMPLETE, WEB-BROWSER event 6-21
MSG-WB-PROGRESS-CHANGE, WEB-BROWSER event 6-21
MSG-WB-STATUS-TEXT-CHANGE, WEB-BROWSER event 6-21
MSG-WB-TITLE-CHANGE, WEB-BROWSER event 6-21
multi-line ENTRY-FIELD 5-47
MULTILINE style

ENTRY-FIELD 5-52
TAB 5-155

MULTIPLE, ENTRY-FIELD common property 5-47

N
.NET

control type 5-123
common properties 5-123

Index-36
events 5-125
special properties 5-124

controls
example 4-10
methods 4-7

MSG-NET-EVENT 6-13
netdefgen utility 5-123
NEXT-ITEM, TREE-VIEW special property 5-170
NO-AUTO-DEFAULT, PUSH-BUTTON style 5-128
NO-AUTOSEL, ENTRY-FIELD style 5-53
NO-BOX

ENTRY-FIELD style 5-51
GRID style 5-75
LIST-BOX style 5-113
TREE-VIEW style 5-167

NO-CELL-DRAG, GRID style 5-75
NO-DIVIDERS, TAB style 5-156
NO-F4, DATE-ENTRY style 5-41
NO-FOCUS, TAB style 5-156
NO-GROUP-TAB, RADIO-BUTTON style 5-136
NO-KEY-LETTER, LABEL style 5-109
NO-SEARCH, LIST-BOX style 5-114
NO-TAB global control style 5-8
notify (NTF) events 6-2
NOTIFY style

CHECK-BOX 5-30
RADIO-BUTTON 5-135

NOTIFY-CHANGE, DATE-ENTRY style 5-41
NOTIFY-CHANGE, ENTRY-FIELD style 5-55
NOTIFY-DBLCLICK 6-5

COMBO-BOX style 5-35
LIST-BOX style 5-114

NOTIFY-SELCHANGE
COMBO-BOX style 5-35
LIST-BOX style 5-114

NO-UPDOWN, DATE-ENTRY style 5-41
NTF-CHANGED event 6-21

 Index-37
NTF-PL-FIRST event 6-22
NTF-PL-LAST event 6-22
NTF-PL-NEXT event 6-22
NTF-PL-NEXTPAGE event 6-22
NTF-PL-PREV event 6-23
NTF-PL-PREVPAGE event 6-23
NTF-PL-SEARCH event 6-23
NTF-RESIZED event 6-4
NTF-SEL-CHANGE event 6-23
NUM-COL-HEADINGS, GRID special property 5-92, 5-93
NUMERIC, ENTRY-FIELD style 5-51
NUM-ROWS, GRID special property 5-92

O
object methods (ActiveX and .NET) 4-7
OK-BUTTON, PUSH-BUTTON style 5-129
operating system, getting the type of 1-27
OVERLAP-LEFT global control style 3-18, 5-10
OVERLAP-TOP global control style 5-10

P
-p option 11-20
PAGED GRID style 3-33, 5-75
PAGED LIST-BOX 5-113

adding records to 3-22
code example 3-27
creating 3-21
described 3-20
event handling 3-23

PAGE-SETUP, WEB-BROWSER control special properties 5-178
PAGE-SIZE, SCROLL-BAR special property 5-143
paint tool, creating bitmaps with 3-13
PANEL-INDEX, STATUS-BAR special property 5-148
PANEL-STYLE, STATUS-BAR special property 5-148

Index-38
PANEL-TEXT, STATUS-BAR special property 5-148
PANEL-WIDTHS, STATUS-BAR special property 5-146
parent and child relationships in a TREE-VIEW control 5-162
parent window 2-5
PARENT, TREE-VIEW special property 5-171
PERFORM statement, to build menus 8-11
PERMANENT global control style 5-8
pixel coordinates for graphical controls 4-14
PLACEMENT, TREE-VIEW special property 5-172
pointer shape 7-11
pop-up hints

configuration variables 3-19
with bitmap buttons 3-19

pop-up menus 8-2, 8-18
pop-up windows events for controls 6-24
portability

of bitmap buttons 3-19
user interface issues 1-16

portability and menus 8-23
positioning controls in a window 4-11
PRINT, WEB-BROWSER control special properties 5-178
PrintDialog common dialog box 12-2
printing 11-20
PRINT-NO-PROMPT, WEB-BROWSER control special properties 5-178
PRINT-PREVIEW, WEB-BROWSER control special properties 5-178
properties

mouse 7-2
of controls 5-4

PROPERTIES, WEB-BROWSER control special properties 5-179
protecting fields from mouse selection 7-10
PUSH-BUTTON control 5-125

bitmap button, introduced 3-12
common properties 5-126

COLOR 5-127
SIZE 5-126
TITLE 5-126
VALUE 5-126

 Index-39
events 5-132
examples 5-132
special properties 5-131

BITMAP-HANDLE 5-131
BITMAP-NUMBER 5-131
EXCEPTION-VALUE 5-132
TERMINATION-VALUE 5-131

status 96 12-5
styles 5-125, 5-127

BITMAP 5-130
CANCEL-BUTTON 5-130
DEFAULT-BUTTON 5-127
ESCAPE-BUTTON 5-127
FLAT 5-130
FRAMED 5-130
NO-AUTO-DEFAULT 5-128
OK-BUTTON 5-129
SELF-ACT 5-128
SQUARE 5-130
UNFRAMED 5-130

Q
-q option 11-20
QUERY-INDEX, LIST-BOX special property 5-120
QUIT_MODE configuration variable 6-3, 6-4, 6-25, 8-22, 12-2

handling close under Windows 8-22
to perform an orderly shutdown 12-2

R
RADIO-BUTTON control 5-133

bitmap button, introduced 3-12
button won’t stay selected 12-4
common properties 5-133

COLOR 5-134

Index-40
SIZE 5-134
TITLE 5-133
VALUE 5-133

events 5-139
examples 5-139
special properties 5-137

BITMAP-HANDLE 5-137
BITMAP-NUMBER 5-137
EXCEPTION-VALUE 5-137
GROUP 5-137
GROUP-VALUE 5-138
TERMINATION-VALUE 5-137

styles 5-135
BITMAP 5-135
FLAT 5-136
FRAMED 5-135
LEFT-TEXT 5-136
NO-GROUP-TAB 5-136
NOTIFY 5-135
SELF-ACT 5-135
SQUARE 5-135
UNFRAMED 5-135

RAISED, FRAME style 5-64
READ-ONLY, ENTRY-FIELD style 5-53
RECORD-DATA, GRID special property 5-93
RECORD-TO-ADD, GRID special property 5-93
RECORD-TO-DELETE, GRID special property 5-94
REGION-COLOR, GRID special property 5-94
RESET-GRID, GRID special property 5-94
RESET-LIST

COMBO-BOX special property 5-35
LIST-BOX special property 5-115
TREE-VIEW special property 5-173

RESET-TABS, TAB special property 5-156
resize layout manager 4-16, 4-20
resize layout manager, sample program 4-21
resource files

 Index-41
as used by W$BITMAP 3-15
loading with W$BITMAP 3-15

RIGHT
ENTRY-FIELD style 5-52
LABEL style 5-109

RIGHT-ALIGN, DATE-ENTRY style 5-41
RIMMED, FRAME style 5-65
ROW-COLOR, GRID special property 5-95
ROW-COLOR-PATTERN, GRID special property 5-95
ROW-DIVIDERS, GRID special property 5-95
ROW-FONT, GRID special property 5-96
ROW-HEADINGS, GRID style 5-76
ROW-PROTECTION, GRID special property 5-96

S
sample programs, for user interfaces 1-32
SAVE-AS, WEB-BROWSER control special properties 5-178
SAVE-AS-NO-PROMPT, WEB-BROWSER control special properties 5-178
screen 1-11
Screen Section

and mouse behavior 7-10
CHARACTER label 4-5
GRAPHICAL label 4-5
mouse handling in the 7-9

SCROLL-BAR control 5-140
common properties 5-141

COLOR 5-142
SIZE 5-142
TITLE 5-141
VALUE 5-142

events 5-143
special properties 5-143

MAX-VAL 5-143
MIN-VAL 5-143
PAGE-SIZE 5-143

Index-42
styles 5-142
HORIZONTAL 5-142
TRACK-THUMB 5-142

SDK, Microsoft Software Development Kit 1-11
search box, component of a paged-list box 3-23
SEARCH-OPTIONS, GRID special property 5-96
SEARCH-TEXT

GRID special property 5-103
LIST-BOX special property 5-116

SECURE, ENTRY-FIELD style 5-53
SELECT-ALL, WEB-BROWSER control special properties 5-179
selecting fonts 4-15
SELECTION-INDEX, LIST-BOX special property 5-120
SELECTION-TEXT, ENTRY-FIELD special property 5-59
SELF-ACT 4-4

CHECK-BOX style 5-29
PUSH-BUTTON style 5-128
RADIO-BUTTON style 5-135, 12-4

SEPARATION
GRID special property 5-104
LIST-BOX special property 5-119

separators
in menus 8-5, 8-9

setting, ActiveX color 9-20
SHADING, BAR special property 5-20
shape of mouse pointer 7-11
shortcut key, menus 8-8
SHORT-DATE, DATE-ENTRY style 5-41
SHOW-LINES, TREE-VIEW style 5-167
SHOW-NONE, DATE-ENTRY style 5-42
SHOW-SEL-ALWAYS, TREE-VIEW style 5-167
SIZE

ACTIVE-X common property 5-12
BAR common property 5-18
BITMAP common property 5-23
CHECK-BOX common property 5-28
COMBO-BOX common property 5-33

 Index-43
DATE-ENTRY common property 5-40
ENTRY-FIELD common property 5-48
FRAME common property 5-63
GRID common property 5-73
LABEL common property 5-108
LIST-BOX common property 5-112
PUSH-BUTTON common property 5-126
RADIO-BUTTON common property 5-134
SCROLL-BAR common property 5-142
STATUS-BAR common property 5-145
TAB common property 5-154
TREE-VIEW common property 5-166
WEB-BROWSER common property 5-175

size differences between graphical and text-mode systems 1-19
SORT-ORDER, LIST-BOX special property 5-121
special properties

context-sensitive treatment 4-5
of controls 5-6
STATUS-BAR control 5-146
TREE-VIEW control 5-168

SPINNER, DATE-ENTRY style 5-42
SPINNER, ENTRY-FIELD style 5-53
SQUARE style

CHECK-BOX 5-29
PUSH-BUTTON 5-130
RADIO-BUTTON 5-135

standard font measures, defined 5-49
START-X, GRID special property 5-104
START-Y, GRID special property 5-104
STATIC-LIST, COMBO-BOX style 5-34
status 96 12-5
STATUS-BAR control 5-144

common properties 5-145
COLOR 5-145
SIZE 5-145
TITLE 5-145
VALUE 5-145

Index-44
events 5-151
modes 5-149

array 5-150
special properties 5-146

PANEL-INDEX 5-148
PANEL-STYLE 5-148
PANEL-TEXT 5-148
PANEL-WIDTHS 5-146
SELF-ACT 5-149

styles 5-146
GRIP 5-146

styles
ActiveX controls 5-13
context-sensitive treatment 4-5
global 5-8
numbers, defined in controls.def 5-6
of controls 5-5
STATUS-BAR control 5-146
TREE-VIEW control 5-166

submenus 8-4, 8-5
subwindow 2-2

compatibility with controls 3-6
defined 1-16

syntax, for ACTIVE-X controls 5-15
system events 6-2
System Menu 2-2
System Menu, Close handling under Windows 8-22

T
TAB control 5-152

common properties 5-154
COLOR 5-154
SIZE 5-154
TITLE 5-154
VALUE 5-154

 Index-45
events 5-158
programming note 5-154
programming tips 5-158
special properties 5-156

BITMAP-HANDLE 5-157
BITMAP-NUMBER 5-157
BITMAP-WIDTH 5-157
RESET-TABS 5-156
TAB-TO-ADD 5-156
TAB-TO-DELETE 5-156

styles 5-155
BOTTOM 5-155
BUTTONS 5-155
FIXED-WIDTH 5-155
FLAT-BUTTONS 5-156
HOT-TRACK 5-156
MULTILINE 5-155
NO-DIVIDERS 5-156
NO-FOCUS 5-156
VERTICAL 5-155

TAB-TO-ADD, TAB special property 5-156
TAB-TO-DELETE, TAB special property 5-156
TEMPORARY global control style 5-8
TEMPORARY_CONTROLS configuration variable 5-8, 5-9
terminal information 1-23
terminating events, described 4-3
TERMINATION-VALUE 12-5

CHECK-BOX special property 5-31
COMBO-BOX special property 5-36
LIST-BOX special property 5-121
PUSH-BUTTON special property 5-131
RADIO-BUTTON special property 5-137

TEXT configuration variable 5-59
textual and graphical modes, mixed 4-4
thin client

MSG-TV-SELCHANGING event 6-20
TC_TV_SELCHANGING configuration variable 6-20

Index-46
THUMB-POSITION, LIST-BOX special property 5-120
TILED-HEADINGS, GRID style 5-76
TIME, DATE-ENTRY style 5-42
tips and hints regarding configuration variables 12-7
TITLE

ACTIVE-X common property 5-12
BAR common property 5-18
BITMAP common property 5-22
CHECK-BOX common property 5-27
COMBO-BOX common property 5-33
DATE-ENTRY common property 5-39
ENTRY-FIELD common property 5-46
FRAME common property 5-63
GRID common property 5-73
LABEL common property 5-107
LIST-BOX common property 5-111
PUSH-BUTTON common property 5-126
RADIO-BUTTON common property 5-133
SCROLL-BAR common property 5-141
STATUS-BAR common property 5-145
TAB common property 5-154
TREE-VIEW common property 5-165
WEB-BROWSER common property 5-175

TITLE-POSITION, FRAME special property 5-67
tool tips 3-19
toolbar, with large buttons 12-4
TRACK-THUMB, SCROLL-BAR style 5-142
TRAILING-SHIFT, BAR special property 5-21
TRANSPARENT, LABEL style 5-109
TRANSPARENT-COLOR, BITMAP special property 5-26
TREE_ROOT_SPACE configuration variable 5-166, 5-167
TREE_TAB_SIZE configuration variable 5-166
TREE-VIEW control 5-161

adding child items 5-163
on each expansion 5-164
once 5-163

common properties 5-165

 Index-47
COLOR 5-166
SIZE 5-166
TITLE 5-165
VALUE 5-166

events 5-173
items in 5-162
parent and child relationships 5-162
special properties 5-168

BITMAP-HANDLE 5-168
BITMAP-NUMBER 5-168
BITMAP-WIDTH 5-168
ENSURE-VISIBLE 5-168
EXPAND 5-168
HAS-CHILDREN 5-169
HIDDEN-DATA 5-169
ITEM 5-169
ITEM-NEXT 5-170
ITEM-TO-ADD 5-170
ITEM-TO-DELETE 5-170
ITEM-TO-EMPTY 5-170
NEXT-ITEM 5-170
PARENT 5-171
PLACEMENT 5-172
RESET-LIST 5-173

styles 5-166
3-D 5-166
BOXED 5-167
BUTTONS 5-167
LINES-AT-ROOT 5-167
NO-BOX 5-167
SHOW-LINES 5-167
SHOW-SEL-ALWAYS 5-167

TrueType fonts, selecting 4-15
TYPE, WEB-BROWSER property 5-180

Index-48
U
UNFRAMED

CHECK-BOX style 5-29
UNFRAMED style 3-17

PUSH-BUTTON 5-130
RADIO-BUTTON 5-135

UNICODE license keys, ActiveX controls 5-15
unmasking the mouse 7-6
UNSORTED style

COMBO-BOX 5-34
LIST-BOX 5-113

updating a menu 2-8
UPON phrase 2-4
UPPER style

COMBO-BOX 5-35
ENTRY-FIELD 5-53
LIST-BOX 5-113

USAGE IS HANDLE data type 4-2
USE-ALT, ACTIVE-X style 5-13
user interface

configuration and programming support 1-7
development strategies 1-19
features 1-2
related topics index 1-10
sample programs 1-32

USE-RETURN style
ACTIVE-X 5-13
ENTRY-FIELD 5-52

USE-TAB style
ACTIVE-X 5-13
ENTRY-FIELD 5-53
GRID 5-76

utilities
AXDEFGEN 4-8, 5-11

 Index-49
V
VALUE

ACTIVE-X common property 5-12
BAR common property 5-18
BITMAP common property 5-23
CHECK-BOX common property 5-28
COMBO-BOX common property 5-33
DATE-ENTRY common property 5-39
ENTRY-FIELD common property 5-46
FRAME common property 5-63
GRID common property 5-73
LABEL common property 5-107
LIST-BOX common property 5-111
PUSH-BUTTON common property 5-126
RADIO-BUTTON common property 5-133
SCROLL-BAR common property 5-142
STATUS-BAR common property 5-145
TAB common property 5-154
TREE-VIEW common property 5-166
WEB-BROWSER common property 5-175

VALUE IS MULTIPLE value phrase 5-47
VALUE-FORMAT, DATE-ENTRY special property 5-44
VERTICAL, TAB style 5-155
VERY-HEAVY, FRAME style 5-64
virtual screen, defined 1-11
VIRTUAL-WIDTH, GRID special property 5-104
Vista styles 3-5
visual styles 3-5
VPADDING, GRID special property 5-105
VSCROLL

ENTRY-FIELD style 5-52
GRID style 5-76

VSCROLL-BAR, ENTRY-FIELD style 5-52
VSCROLL-POS, GRID special property 5-105

Index-50
W
W$BITMAP routine

manipulating bitmaps 3-15
WBITMAP-DESTROY operation 3-16
WBITMAP-LOAD operation 3-15, 5-22, 5-157, 5-168

W$FONT routine, description 4-15
W$MENU routine

attaching menus to floating windows 2-8
checking menu items 8-17
disabling entire menus 8-17
disabling menu items 8-16
pop-up menus 8-18

W$MOUSE routine
description 7-4, 7-12

WEB-BROWSER control 5-174
common properties 5-175

COLOR 5-175
SIZE 5-175
TITLE 5-175
VALUE 5-175

events 5-180
methods 5-176
properties 5-179

BUSY 5-180
LOCATION-NAME 5-180
LOCATION-URL 5-180
TYPE 5-180

WEB-BROWSER control special properties 5-177
CLEAR-SELECTION 5-178
COPY-SELECTION 5-178
CUSTOM-PRINT-TEMPLATE 5-177
FILE-NAME 5-179
PAGE-SETUP 5-178
PRINT 5-178
PRINT-NO-PROMPT 5-178
PRINT-PREVIEW 5-178

 Index-51
PROPERTIES 5-179
SAVE-AS 5-178
SAVE-AS-NO-PROMPT 5-178
SELECT-ALL 5-179

wheel, mouse 7-3
WHITE_FILL configuration variable 9-22
wide font measure 5-49
WideChar license keys, ActiveX controls 5-15
WIDTH, BAR special property 5-19
WIDTH-IN-CELLS global control style 5-10
WIN32_3D configuration variable 5-54
WIN32_NATIVECTLS configuration variable 5-112
window

current 2-4
defined 1-12
events 6-3
floating, attaching menus with W$MENU 2-8
layout managers 4-16
modal 2-2, 2-3
modeless 2-2, 2-3
types 1-15
windowing concepts 1-11

Window events, listed 6-3
Windows

Common Dialog Boxes 12-2
Help 10-6
interface to Microsoft Help 10-5
questions asked 12-2
Software Development Kit 1-11

$WINHELP routine 10-5

X
X, GRID special property 5-105
XP visual styles 3-5

Index-52
Y
Y, GRID special property 5-106

	ACUCOBOL-GT®
	Introduction
	1.1 Overview of User Interface Features
	1.2 Developing Programs for Graphical Systems
	1.2.1 Event-driven Environments
	1.2.2 Configuration and Programming Support
	1.2.3 Index to Related Topics
	1.2.4 GUI Development With Third-party Kits and Tools

	1.3 Windowing Concepts
	1.4 ACUCOBOL-GT Window Types
	1.5 Creating Portable User Interfaces
	1.5.1 Incompatibilities Between Graphical and Character Systems
	1.5.2 Strategies for Supporting Multiple Systems
	1.5.2.1 Dual interface, dual code
	1.5.2.2 Single interface, single code
	1.5.2.3 Dual interface, single code
	1.5.2.4 Selecting the right approach
	1.5.2.5 Determining which UI is running

	1.5.3 Tips for Solving Cross-Platform Interface Problems
	1.5.3.1 Establishing the initial window
	1.5.3.2 Tips for building single-interface programs
	1.5.3.3 Tips for building dual-interface programs

	1.6 GUI Development Project Issues
	1.6.1 Extent of the Interface Changes
	1.6.2 Suitability of the Current UI to Conversion
	1.6.3 Recommendations
	1.6.4 Conversion Wizard

	1.7 Sample Programs

	Floating Windows
	2.1 Overview of Floating Windows
	2.2 Relationship Between Floating Windows and Subwindows
	2.3 Active and Current Windows
	2.4 Parent and Child Windows
	2.5 Creating, Inquiring, Modifying, and Destroying Windows
	2.6 Menus and Floating Windows

	Graphical Controls
	3.1 Overview of Graphical Controls
	3.1.1 Visual Styles and Differences Among Operating Systems

	3.2 Control Types, Handles, and IDs
	3.3 Interaction Between Controls and Windows
	3.4 Creating, Modifying, Inquiring, and Destroying Controls
	3.5 The Character Coordinate Phrases
	3.6 Controls and the Mouse
	3.7 Bitmap Buttons
	3.7.1 Drawing the Image
	3.7.2 Loading Bitmaps
	3.7.3 Creating the Button
	3.7.4 Pop-up Hints
	3.7.5 Portability

	3.8 Paged List Boxes
	3.8.1 Creating a Paged List Box
	3.8.2 Adding Records to a Paged List Box
	3.8.3 Other List Box Operations
	3.8.3.1 Scroll Bars in Text-mode Environments

	3.8.4 Paged List Box Event Handling
	3.8.5 Paged List Box Example

	3.9 Paged Grids

	Supporting Concepts and Related Issues
	4.1 Handles
	4.2 Events
	4.3 Graphical vs. Textual Modes
	4.4 Styles and Special Properties
	4.5 Methods
	4.5.1 ActiveX Example
	4.5.2 .NET Example

	4.6 Coordinates
	4.6.1 Coordinate Handling
	4.6.2 Coordinate Space Problems
	4.6.3 Coordinate Space Solutions

	4.7 Fonts
	4.8 Layout Managers
	4.8.1 Working with Layout Managers
	4.8.1.1 Attaching a layout manager to a window

	4.8.2 Setting LAYOUT-DATA
	4.8.3 Minimum and Maximum Control Dimensions
	4.8.4 The Resize Layout Manager
	4.8.4.1 Resize manager LAYOUT-DATA values

	Control Types Reference
	5.1 The Components of a Control
	5.1.1 Type
	5.1.2 Handle
	5.1.3 Properties
	5.1.3.1 Common properties
	5.1.3.2 Special properties

	5.1.4 Control Components Diagram

	5.2 Global Styles
	5.3 ActiveX
	5.3.1 Common Properties
	5.3.2 Special Properties
	5.3.3 Events

	5.4 Bar
	5.4.1 Common Properties
	5.4.2 Special Properties
	5.4.3 Events

	5.5 Bitmap
	5.5.1 Common Properties
	5.5.2 Special Properties
	5.5.3 Events

	5.6 Check Box
	5.6.1 Common Properties
	5.6.2 Special Properties
	5.6.3 Events
	5.6.4 Examples

	5.7 Combo Box
	5.7.1 Common Properties
	5.7.2 Special Properties
	5.7.3 Events
	5.7.4 Using Special Keys
	5.7.5 Examples

	5.8 Date Entry
	5.8.1 Common Properties
	5.8.2 Special Properties
	5.8.3 Examples

	5.9 Entry Field
	5.9.1 Common Properties
	5.9.2 Special Properties
	5.9.3 Events
	5.9.4 Using Special Keys
	5.9.5 Examples

	5.10 Frame
	5.10.1 Common Properties
	5.10.2 Special Properties
	5.10.3 Events
	5.10.4 Examples

	5.11 Grid
	5.11.1 Common Properties
	5.11.2 Special Properties
	5.11.3 Events

	5.12 Label
	5.12.1 Common Properties
	5.12.2 Special Properties
	5.12.3 Events
	5.12.4 Examples

	5.13 List Box
	5.13.1 Common Properties
	5.13.2 Special Properties
	5.13.3 Events
	5.13.4 Using Special Keys
	5.13.5 Examples

	5.14 .NET
	5.14.1 Common Properties
	5.14.2 Special Properties
	5.14.3 Events

	5.15 Push Button
	5.15.1 Common Properties
	5.15.2 Special Properties
	5.15.3 Events
	5.15.4 Examples

	5.16 Radio Button
	5.16.1 Common Properties
	5.16.2 Special Properties
	5.16.3 Events
	5.16.4 Examples

	5.17 Scroll Bar
	5.17.1 Common Properties
	5.17.2 Special Properties
	5.17.3 Events

	5.18 Status Bar
	5.18.1 Common Properties
	5.18.2 Special Properties
	5.18.3 Events

	5.19 Tab
	5.19.1 Common Properties
	5.19.2 Special Properties
	5.19.3 Events
	5.19.4 Programming Tips

	5.20 Tree View
	5.20.1 Common Properties
	5.20.2 Special Properties
	5.20.3 Events

	5.21 Web Browser
	5.21.1 Common Properties
	5.21.2 Special Properties
	5.21.3 Other Properties
	5.21.4 Events

	Events Reference
	6.1 Overview of Events
	6.2 Window Events
	6.3 Control Events
	6.4 Menu Events

	Using the Mouse
	7.1 Mouse Properties
	7.2 Mouse Action Ownership in Graphical Environments
	7.3 How Mouse Actions Are Handled
	7.3.1 Mouse Exception Processing
	7.3.2 Assigning Results to Mouse Actions
	7.3.3 Unmasking Mouse Actions

	7.4 Automatic Mouse Handling
	7.5 Screen Section Behavior
	7.6 W$MOUSE Library Routine

	Menu Bars and Pop-up Menus
	8.1 Menus Overview
	8.2 Generic Menu Handler
	8.2.1 Static Menu Bars
	8.2.2 Pop-up Menu Bars
	8.2.3 Submenus

	8.3 Graphical Menu Facilities
	8.4 Overview of Menu Handling
	8.4.1 Properties of Menu Entries

	8.5 Creating Menus - the Shortcut
	8.5.1 Using genmenu

	8.6 Menu Activation and Use
	8.6.1 Defining Menu Keys

	8.7 Menu Input
	8.7.1 Function Key Handling
	8.7.2 Menu Selection Limits

	8.8 Changing Menu Results
	8.9 Common Menu Operations
	8.9.1 Disabling Menu Items
	8.9.2 Checking Menu Items
	8.9.3 Disabling an Entire Menu
	8.9.4 Menu Configuration With the Generic Menu Handler

	8.10 Pop-up Menus
	8.11 Menu Handling: Sample Code
	8.12 System Menu “Close” Handling Under Windows
	8.13 Portability Concerns
	8.14 Menu Bar Sample Programs

	Color Mapping
	9.1 Overview of Color Choices
	9.1.1 Simplified Mapping Approach
	9.1.2 Controlling the Color Mapping

	9.2 COLOR_MODEL Settings
	9.2.1 COLOR_MODEL Settings 1 and 2
	9.2.2 COLOR_MODEL Settings 3 and 4
	9.2.3 COLOR_MODEL Settings 5 and 6
	9.2.4 COLOR_MODEL Settings 7 and 8
	9.2.5 COLOR_MODEL Settings 9 and 10

	9.3 COLOR_TABLE Settings
	9.4 Additional Color Configuration Variables
	9.4.1 Step 1: Assign Initial Colors
	9.4.2 Step 2: Assign Initial Attributes
	9.4.3 Step 3: Transform Colors
	9.4.4 Step 4: Transform Intensities

	9.5 ActiveX Color Settings
	9.6 Miscellaneous Options Under Windows and Windows NT
	9.6.1 Background Brush Color
	9.6.2 Drawing 3-D Lines

	Help Automation
	10.1 Introduction
	10.2 HELP-ID
	10.3 Help Modes
	10.4 The Help Processor
	10.5 Windows Help
	10.5.1 Mapping Context IDs

	Using AcuXUI to Deploy a Cross-Platform User Interface
	11.1 Introducing AcuXUI
	11.1.1 AcuXUI Versus the Thin Client

	11.2 Solution Components
	11.3 Installation and Use
	11.3.1 Running AcuXUI from a Java Command
	11.3.2 Runtime Options and Configurations
	11.3.3 Applying a Different Look and Feel

	11.4 AcuConnect Deployment
	11.5 Deploying AcuXUI as an Applet
	11.5.1 Updating Your Web Page
	11.5.2 Programming for Applet Use

	11.6 Debugging with AcuXUI
	11.7 Launching AcuXUI from IDEs
	11.7.1 From AcuBench
	11.7.2 From Eclipse

	11.8 Differences Between Java and Windows Desktops
	11.8.1 Unsupported Features
	11.8.2 Supported Features
	11.8.2.1 Bitmaps
	11.8.2.2 Browser Controls
	11.8.2.3 Combo Boxes
	11.8.2.4 Entry Fields
	11.8.2.5 Frames
	11.8.2.6 Left Alignment
	11.8.2.7 Menus
	11.8.2.8 Message Box Titlebars

	11.9 Troubleshooting and Error Messages
	11.9.1 Java logging

	Tips and Hints
	12.1 Regarding Windows
	12.2 Regarding Controls
	12.3 Regarding Fonts
	12.4 Regarding Configuration Variables
	12.5 Regarding Debugging

	UI Terminology

