User Interface Programming

ACUCOBOLGT®

Version 8.1

Micro Focus

9920 Pacific Heights Blvd
San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (IP) Ltd. 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-U1-080501-ACUCOBOL-GT-8.1

Contents

Chapter 1: Introduction

1.1 Overview of User INterface FEALUIESooireirirrirciin s 1-2
1.2 Developing Programs for Graphical SYStEMS..........ccccvivvieiiercrerierce e 1-7
1.2.1 Event-driven ENVIFONMENTS ..o 1-7
1.2.2 Configuration and Programming SUPPOITcccoeiinirienenine e 1-7
1.2.3 IndeX t0 Related TOPICS . ..ueiviieiriirieiee et 1-10
1.2.4 GUI Development With Third-party Kits and ToOIS..........ccoceovveriiniiniinnnn, 1-11

1.3 WiINAOWING CONCEPLS....veviiirieriiieieiesieresesestestesteseesseseesaesesssesessessesseseessessessessessnssenens 1-11
1.4 ACUCOBOL-GT WiINAOW TYPES w.cuvevervirierieresreeresresessessesseseessessessessessessssesssssessessessens 1-15
1.5 Creating Portable User INtErfaCes.......cccciveieieeie e 1-16
1.5.1 Incompatibilities Between Graphical and Character Systems............cccccecveennene 1-17
1.5.2 Strategies for Supporting Multiple SYStemSccccviiieinienienenee e 1-19
1.5.2.1 Dual interface, dual COUE...........coveiriiiiinie e 1-20

1.5.2.2 Single interface, Single COUE ... 1-21

1.5.2.3 Dual interface, SiNgIe COUEociiiiiiiirere e 1-22

1.5.2.4 Selecting the right approach ... 1-22

1.5.2.5 Determining which Ul iS FUNNING........ccoooiiiiiiii e 1-23

1.5.3 Tips for Solving Cross-Platform Interface Problemscc.ccccoocevivciiiiiinnenn 1-24
1.5.3.1 Establishing the initial WindOWcccociiiiiiniie e 1-24

1.5.3.2 Tips for building single-interface programs..........cccccceeeeneiercieneicnnennnns 1-26

1.5.3.3 Tips for building dual-interface programs..........c.ccccocevvenniensiensieseennens 1-27

1.6 GUI Development ProjECT ISSUES.viviirererieeeesese e se e seeseese s se e erae e e eressensesnens 1-29
1.6.1 Extent of the Interface Changes.........cvvververieicinie s 1-29
1.6.2 Suitability of the Current Ul to CONVErSIONccccvvvveviiireie e 1-30
1.6.3 RECOMMENTALIONS.c.uitiiiiiieiieieec e bbb 1-31
1.6.4 CoNVEISION WIZAIUovevieriiiieiieiise st nee e 1-31

1.7 SAMPIE PTOGIaMS ...ttt ettt ettt ettt et et e b 1-32

Chapter 2: Floating Windows

2.1 Overview of FI0ating WINAOWS.........ccooiiiiiiiiiene e 2-2
2.2 Relationship Between Floating Windows and SUbWINAOWScccceoevvenniennenieennnne 2-3
2.3 Active and CUrrent WINGOWScccoeiriiinieiniiiesess e 2-4
2.4 Parent and Child WINAOWSc.cooiiiiiiieee e 2-5
2.5 Creating, Inquiring, Modifying, and Destroying Windows...........cccccceevvieriveiicnneviesnnne, 2-6

2.6 Menus and FIoating WINAOWSooiiiiiiii e 2-8

Contents-ii

Chapter 3: Graphical Controls

3.1 Overview of Graphical CONLIOIScc.coviviiiieieser e 3-2
3.1.1 Visual Styles and Differences Among Operating SYStemscccccevvvevveriereernnn 3-5

3.2 Control Types, Handles, and IDS.........ccccoiiiirineiiiieeieen e 3-5
3.3 Interaction Between Controls and WINAOWScccooereiiiiienieinene e 3-6
3.4 Creating, Modifying, Inquiring, and Destroying Controls...........cccoovvrreiniineienenennns 3-7
3.5 The Character Coordinate PRraSeS.........ccoeiieiieineiserse s s 3-10
3.6 CoNtrols and the IMOUSEcciveiriiiiieie et ebe e 3-11
A = T4 VoI = U o] o ST SPS 3-12
3.7.1 Drawing the TMage.......couceiiieieie ettt 3-13
3.7.2 L0AAING BItMAPScueiieiiieiirieie sttt sttt bbb e e 3-15
3.7.3 Creating the BULIONcociiiicice s 3-16

3. 7.4 POP-UP HINES 1o.viiiie ettt e 3-19
375 POIADIILY ..o s 3-19

3.8 PAgEU LISt BOXES...cuieieitieeriiteeiee sttt e sttt et e e ste e e te e e steeta e aennae s reeneere e 3-20
3.8.1 Creating @ Paged LiSt BOXc.covoiiiiiiiie et 3-21
3.8.2 Adding Records t0 @ Paged LiSt BOX........cccooeiireieniinieieieeeeese e 3-22
3.8.3 Other List BOX OPEIatiONS.........cccoeiriiiriiirieiirieiinieteseeie st 3-23
3.8.3.1 Scroll Bars in Text-mode ENVIroNmMEeNtsccooevveeeivnienieneneseseeieeenes 3-23

3.8.4 Paged List Box Event Handling.........ccovovvineneierececese e 3-23
3.8.5 Paged List BOX EXAMPIE.......coviiiiiiiiiire e 3-27

IR N o 1o <o I] 1 o SRS 3-33

Chapter 4: Supporting Concepts and Related Issues

AL HANAIES. ... 4-2
B2 EVENES .o s 4-3
4.3 Graphical vs. TeXtual IMOGEScceiiiiiiiieeie e e 4-4
4.4 Styles and SPecial PrOPEItIEScoviirieiriiisiesese e 4-5
N 1YL= 1 T o LS PPRSR 4-7
4.5.1 ACHIVEX EXAMPIE....iieieieeci ettt e ne e ene e 4-8
A N | B T g o] -SSR 4-10
4.6 COOTAINALES ...ttt r e bbbt nn e nn et 4-11
4.6.1 Coordinate HandliNgcccoeiiiiiiiieie e 4-11
4.6.2 Coordinate SPace ProbIEMS ..o e 4-12
4.6.3 Coordinate SPace SOIULIONSccovuiiriiiriiiire e 4-12
A7 FONTS ..o 4-15
4.8 LaYOUL IMANAGETS. .. .eeiivietieiiee st esiee sttt iee s et e e ste st sbe e s e et e sse e s b e e be e anbe e nbe e s s beenbeenbneenes 4-16
4.8.1 Working with Layout Managersccccevverierierieseeieesessee e ssee e seesesssessesneenns 4-17

4.8.1.1 Attaching a layout manager to a WiNdOWccccevvvvereeieneseese e 4-18

Contents-iii

4.8.2 Setting LAYOUT-DATA ..ottt 4-18
4.8.3 Minimum and Maximum Control DIMENSIONSccerererieieiininieenese e 4-18
4.8.4 The ResSize LayOut MaNAQETcveiairerierienieie ettt 4-20

4.8.4.1 Resize manager LAYOUT-DATA VAIUES.......cccooriiiriieneieeeeeeeie 4-21

Chapter 5: Control Types Reference

5.1 The Components 0f @ CONLIOL........cooiiiiiiie s 5-2
TR S R Y/ o U U RO P VP UUT VRPN 5-3
TR o - o To | TSRS 5-4
TR I o o] o1 =TSRSS 5-4

5.1.3.1 COMMON PrOPEILIES ...vvvevreveiereesieieseeseeeereeesesresreseesresre e snessensesessesnessenees 5-5
5.1.3.2 SPECial PrOPEILIEScvviveieieiee ettt 5-6
5.1.4 Control Components DIagramccccvivrererirereseeseeeeeseseseseeseesseseseeessssenses 5-7

oI €1 (o] o L] £V =TS 5-8

5.3 ACHIVEX ettt e bbb e e et b bbb b et e b s b e nre 5-11
5.3.1 COMMON PrOPEITIES ...c.viviieieieiec ettt ettt sttt st 5-12
5.3.2 SPECIal PrOPEITIESoviveiiieiieee e 5-13
5.3l EVENTS ..ttt e ettt ne 5-16

ST 2 SO 5-17
5.4.1 COMMON PrOPEITIESvevveiecieeie sttt sttt snaenenne e 5-18
5.4.2 SPECIAl PrOPEITIES ..oviiieitiiieie ettt bbb 5-19
BLAZ EVENTS ..o bbb 5-22

5.5 BIIMAD .ttt bbbt bbb 5-22
5.5.1 COMMON PrOPEITIES ...e.veviieieiietee ettt sr e ne st st sr et sneneeneas 5-22
5.5.2 SPECIal PrOPEITIES ...ocvviieieeciese ettt e sre s 5-23
5.5.3 EVENES .o e 5-27

5.6 CNECK BOX. ..ttt s ettt b et e bbbt n e ene s 5-27
5.6.1 COMMON PrOPEITIEScviviiiiiiiiicie ettt 5-27
5.6.2 SPECial PrOPEITIEScv et 5-31
5.B.3 EVENTS ..ttt et 5-31
5.6.4 EXAMPIES.. .ot e 5-32

5.7 COMDO BOX ...ttt bttt b bt bbbt e et n b e b ene 5-32
5.7.1 COMMON PrOPEITIES ...c.viviiiieieie ettt sttt bbb e 5-33
5.7.2 SPECial PrOPEITIESoiiveiieeiieee e 5-35
BT 3 EVENTS ittt ettt nre s 5-36
5.7.4 USING SPECIAI KBYS....cviieieeieieie ettt e ettt st neanens 5-37
5. 7.5 EXAMPIES.. .ot et 5-37

5.8 DALE ENTIY oottt e an 5-38
5.8.1 COMMON PrOPEITIES ...c.veviiiieieiec ettt ettt s 5-39

5.8.2 SPECial PrOPEITIEScviveiiieiieiee e 5-43

Contents-iv

5.8.3 EXAMPIES. ...t 5-45
BLOENIIY FIEI....eecee e bbb e e 5-45
5.9.1 COMMON PrOPEITIESvovirieiiieiieiiee sttt ettt bbb 5-46
5.9.2 Special PrOPEITIEScoieiieieic e 5-55
593 EVENIS. ..o s 5-60
5.9.4 USING SPECIAI KBYS ...c.viieeieieeiiece sttt eene e s 5-61
5.9.5 EXAMPIES. ..ot 5-61
510 FTAIMIE ..ottt bbbt bbbt b et e e be b e e bt e Rb e bt e r b e e 5-62
5.10.1 COMMON PIOPEILIES ...c.veueeeeieiieieeie sttt sttt sb e 5-63
5.10.2 SPECIAl PrOPEILIESeuiiviiiiiiiiieiisiesiei ettt 5-66
5.10.3 EVENES. ..o 5-68
LT 0 T Ty o] [T 5-68
BLLL G 1ottt 5-69
5.11.1 COMMON PIOPEILIES ...c.viuveeeeeiieiieeeie sttt ettt sb e 5-73
5.11.2 SPECial PrOPEITIES ...c..oviuieiiiiie sttt 5-76
T R B VT o (SRRSO 5-106
B.A2 LADEL...oieeee s 5-107
5.12.1 COMMON PIOPEITIES ..oveveveieieieeeeste e see st e sie e e e ere s e e re e esaeneeneenenes 5-107
5.12.2 SPECIal PrOPEITIESocveeeiiiee ettt s nre e 5-109
D02, 3 EVBNES .ttt ettt bbb e e b e b nreen 5-110
5.12.4 EXAMPIES ..ottt ettt bbb bbb 5-110
TN T I 1) = T) RSOSSN 5-111
5.13.1 COMMON PIOPEITIES ..eveveveieieeeeeeste e st st ste e e ere e et snens e neeneerenns 5-111
5.13.2 SPECIal PrOPEITIES ...o.veuveeieieeese ittt st re s sne s 5-115
BLL3B.3 EVENES. ottt 5-122
5.13.4 USING SPECIAL KBYScvitiiiiiieieeet sttt 5-122
5.13.5 EXAMPIES ..ottt bbbt 5-122
DL N ET e bttt bbb e b ne e 5-123
5.14.1 COMMON PrOPEITIES ..eveveeeieeeeeeceste e ste st e sie e se e ere e et enae e enaenenes 5-123
5.14.2 SPECIal PrOPEITIESeiveeiiecie ettt s aenre e 5-124
BLLA.3 EVENES. ..ttt bbb 5-125
515 PUSH BULLON ...ttt 5-125
5.15.1 COMMON PIOPEILIES ...ttt sttt ettt 5-126
5.15.2 SPeCial PrOPEILIEScviveiiieiirieii ettt 5-131
BI85, 3 EVENIS. ..ottt 5-132
T T o 14 1] o] USSR 5-132
5.16 RAIO BUION ...t 5-133
5.16.1 COMMON PIOPEITIES ...c.viveeeieiieieeeeie sttt sttt sttt 5-133
5.16.2 SPeCial PrOPEILIEScviveiiieiirieiiieeie ettt 5-137

Lo TR I =T 1 (T 5-139

Contents-v

5.16.4 EXAMIPIES...c.iiitieie ittt sttt sttt ena e ne e 5-139
517 SCIOI B ..t ettt b et bbb b 5-140
5.17.1 COMMON PrOPEILIES ...cviiviieieeeeieieeesie sttt sttt sb e sb e e 5-141
5.17.2 Special PrOPErtiesccoiiiiiriiiieirieeee et 5-143
S.LT.B EVENTS ..o 5-143
5. 18 STALUS Bcveveiiciciicic et 5-144
5.18.1 COMMON PrOPEITIES ...cuviiveeeeiieeiesee e sieeieste e ste e e e s te e e et ensenneane e 5-145
5.18.2 SPECIAl PrOPEITIESoveeeeciieiieies ettt et 5-146
5.LB.3 EVENES ..ttt et bbbttt bbbt eb e nr e nne e 5-151
TR I SRS 5-152
5.19.1 COMMON PrOPEILIES ...eiveiveieieieiereeesteetesiesteseesie e seeseesessessessestesseseesesseseenens 5-154
5.19.2 SPECial PrOPEITIES ...ocveiveieeieriee e e ettt st eneere e 5-156
5.19.3 EVENTS .ueiteeiiisieieiee ettt 5-158
5.19.4 Programming TIPSoeeeeueruereereeeeieniesie st siesee e e ses e ereste e ssesse e seensesessessens 5-158
5.20 TIEE VIBW .ttt sttt b e bttt b e bbbt b bbb et e e 5-161
5.20.1 COMMON PIOPEILIES ..ottt 5-165
5.20.2 SPECIAl PrOPEITIES ...vvveveiceieieese sttt ene s s 5-168
5.20.3 EVENTS ..o 5-173
5. 21 WED BIOWSEoviviiicriietiecteseeie ettt 5-174
5.21.1 COMMON PrOPEITIESeviviieieeeeieieeesie sttt sttt sttt sb e sb e se e 5-175
5.21.2 SPECIAl PrOPEITIES .. .oveeiiciieiieese sttt et 5-177
5.21.3 Other PrOPEITIESeviiveiiieiiitciieteesie ettt 5-179
S.2L4 BVENTS ..ottt 5-180

Chapter 6: Events Reference

6.1 OVEIVIEW OF EVENLS ..viiieiiicte ettt ettt ettt st st e st st s te e sbe s sabe e sbeesaneearas 6-2
6.2 WINAOW EVENTS.....oiiuiiiiiiei ittt ettt et eb e s b et s ba e sbesbe st e sbaesbesbeenbenreenns 6-3
6.3 CONLIOI EVENES ..ottt e e be e s e e be e st e e be e sae e s nbe e sbeesnreennes 6-5
6.4 IMENU EVENTS ...t s e e et e e st e e e st b e e e snte e e snreeesreeeanes 6-24

Chapter 7: Using the Mouse

7.1 MOUSE PIOPEITIES ...ocvvivieeiieeiete sttt ettt et te e s te s e et e sna e benreennenneenes 7-2
7.2 Mouse Action Ownership in Graphical EnVironments...........ccccoovvieviveinvescesn e 7-3
7.3 How Mouse Actions Are HandIed ... 7-4
7.3.1 MouSe EXCEPLION PrOCESSINGcueieverieierinieiisieiete sttt 7-5
7.3.2 Assigning Results t0 MOUSE ACHIONS.........ceiieiienise e 7-6
7.3.3 UNMasking MOUSE ACHIONS.......cucveiieiiseresesiese e seeeeese e ste e e seensenannes 7-6
7.4 Automatic Mouse HandliNgc.ocviciieiii i 7-8

7.5 SCreen SECHION BENAVIONccvviiiiviiccie ettt ettt sb e s sab e e s sba e eaes 7-10

Contents-vi

7.6 WSMOUSE Library ROULINEccooviiiieieeriisisieeese st ss s sesasssssnsseseses 7-12

Chapter 8: Menu Bars and Pop-up Menus

8.1 IMENUS OVEIVIEW ...ttt ettt ettt ettt sttt sttt st e bbb nneb e b se e 8-2
8.2 Generic MenU HaNAIENoci it 8-2
8.2.1 StAtiC IMENU BaIS.......oiviiiiiiiee et 8-3
8.2.2 POP-UP MENU BAIS ...ttt ettt e e 8-3
8.2.3 SUDMEBNUSeiiviiiiitiiteie ettt sttt se et e be st e sbestesbestebeaeseeneeneas 8-4
8.3 Graphical Menu FaClItiESc.ccveviiie i 8-4
8.4 Overview of Menu Handlingccoovivviiiieiiccece s 8-5
8.4.1 Properties Of MeNU ENLFIEScc.vcviiecee et 8-5
8.5 Creating MenuS—1the SNOICUL..........c.coiiiiiie e e 8-6
8.5.1 USING GEIMMENU ...ttt sttt ettt ettt e bbb sbesbesbesbe e neeneas 8-6
8.6 Menu ACtIVAtioN aN0 USEc..oeiieieicisise e 8-12
8.6.1 DefiNiNg MENU KBYS.......cieiieieieeese st se et e ettt reenesne e s 8-13
8.7 IMENU INPUL ..ottt ettt ettt este s e stessaeste e e e teeneenteeneenneeneenneas 8-14
8.7.1 Function Key Handling.........c.cceii i 8-15
8.7.2 Menu Selection LIMITS.......cccooiiiiiiiiiiee e e 8-15
8.8 Changing MEenU RESUILSccuiiiiiiii et 8-15
8.9 ComMMON MENU OPEFALIONSveuiveiiiieierieiesieiesieie sttt sb et sreiesrere 8-16
8.9.1 Disabling MENU ITBMS.....cveveieeeiee et sre e s 8-16
8.9.2 ChecKing MENU ITBIMScveviieieieece et 8-17
8.9.3 Disabling an ENtire IMENUc.cccvoiiiiiiiie et 8-17
8.9.4 Menu Configuration With the Generic Menu Handler ... 8-18
8.10 POP-UP IMIBNUS ..ottt bbbttt b et bbb besbeenbenne e 8-18
8.11 Menu Handling: SAmMpPle COUE........ccoiiiiiiiieiieese e 8-20
8.12 System Menu “Close” Handling Under WiNndOWS...........ccceruerveiceeieninsnsiesesesesieseens 8-22
8.13 Portability CONCEIMS.ccieiicicc e e e sraens 8-23
8.14 Menu Bar Sample PrOgramsccccvieeieiiieieseeiesee e steesiesteesiesre e sneesaesneesnesseenaens 8-24

Chapter 9: Color Mapping

9.1 OVErview OF COIOr CROICES........ccciiiiiiire e 9-2
9.1.1 Simplified Mapping APPrOaCHc.coviiiie e e 9-3
9.1.2 Controlling the Color Mapping........ccceoereiirire et 9-4

9.2 COLOR_IMODEL SEEINGS ...vtvveeetereetereeiesieiesieieseeteseeie s it st st sne e sre e snesesnesesnee e 9-5
9.2.1 COLOR_MODEL SettingS 1 and 2........cceovueirieiiiiinieniseisesisieeeie e 9-6
9.2.2 COLOR_MODEL SettingS 3 aNnd 4ccvcivvereririeieeeeeesesieseeseeieseeeesessesseseens 9-8
9.2.3 COLOR_MODEL Settings 5 and Bccervverireriniinenisesenis e 9-9

9.2.4 COLOR_MODEL Settings 7 and 8ccovvrierrienriininenieesreesneenneeneens 9-10

Contents-vii

9.2.5 COLOR_MODEL Settings 9 and 10........cccueeirnnrrerininisiceenesiere s 9-11
9.3 COLOR_TABLE SEIINGSvcveuereteieririsisieieie st 9-12
9.4 Additional Color Configuration Variablesccccccoiiiininiiiiiiie e 9-15
9.4.1 Step 1: AsSign INitial ColOrS.........cooviiiiiiiiee e 9-16
9.4.2 Step 2: Assign Initial AtriDULESooeiecrcr e 9-16
9.4.3 Step 3: Transform ColOrS......ccvvvieiiieeice et snen 9-18
9.4.4 Step 4: Transform INtENSITIES........cccveiiiieicr e 9-18
9.5 ACHIVEX COlOT SEEINGS ... ettt sttt bbb e 9-20
9.6 Miscellaneous Options Under Windows and Windows NTcccccveriieininiinininnens 9-21
9.6.1 Background Brush COlOrcoiiiiiiiiiiee e 9-21
9.6.2 Drawing 3-D LINESvcueiuiieieieiee sttt se e ete st sre e e enae e e anens 9-22

Chapter 10: Help Automation

00 oo (Vo1 T o USSR 10-2
LO.2 HELP-ID .ottt ettt et et ne et 10-2
10.3 HEIP IMOGES......eeveiieieiciceete ettt et te st et sa e e e e eneenaerennennens 10-3
10.4 THe HEIP PrOCESSONc.veiieeieiiieiteett ettt et sttt te et esbe e e sreeneesreasaesreeneens 10-4
10.5 WINAOWS HEIP ..ttt sbe s 10-5

10.5.1 Mapping CONEXt IDSooveiuiieieieiisienie sttt e 10-6

Chapter 11: Using AcuXUI to Deploy a Cross-Platform User Interface

11,2 INtroduCing ACUXUL ..ottt st e et b e bbb 11-2
11.1.1 AcuXUI Versus the Thin CHENt ..o 11-4
11.2 SOIULION COMPONENTS. ...ttt e eb e bbb 11-4
11.3 INStAHAtION AN USE ...oveviiiiiiieicie ettt ettt 11-5
11.3.1 Running AcuXUI from a Java Commandcccccevveerinecieenie s 11-6
11.3.2 Runtime Options and Configurations...........c.ccvevvieeiienieiiscesc e 11-7
11.3.3 Applying a Different LooK and Feel.........ccooooiiiiiiiiiiiiie e 11-7
11.4 ACUCONNECE DEPIOYMENT......uiviiiiiitiicieieee bbb 11-8
11.5 Deploying ACUXUI @S an APPIEL......c.cci it 11-8
11.5.1 Updating Your WED Page.......cccouevveieiiirirsn s 11-9
11.5.2 Programming for APPIet USE.......ccucviiiiiiiiee e 11-10
11.6 Debugging With ACUXUL.........ccoviii et 11-10
11.7 Launching ACUXUI from IDES.........ccii ittt 11-12
11.7. 1 From ACUBENCNcciiieieeee e 11-12
11.7.2 From ECHIPSE ...cvoiieeceet et 11-13
11.8 Differences Between Java and Windows DesKtops........cccovvvevrivrienenenenecnienieenneans 11-18
11.8.1 UNSUPPOIE FEALUIEScviieeeiecieecie et ee e e ettt te e sae e e nneens 11-20

11.8.2 SUPPOIEA FEALUIESveveceiecieeie sttt sttt sv e s re e sre e srenneens 11-21

Contents-viii

11.8.2. 1 BItMAPSeiiviceieiie ettt et te ettt et e s beensesne e nreeneas 11-22

11.8.2.2 Browser CONLIOIS........ccoiiiiiiiiiiiiieees s 11-22

11.8.2.3 COMDO BOXESoeevieiiiiiiiitinie sttt st 11-22

11.8. 2.4 ENrY FIElAS.....oeieiiiciieicee e 11-23

12.8.2.5 FIAMES. ...eeiii ettt ettt r e nn e nre s 11-23

11.8.2.6 Left AGNMENL......c.ocoiie e 11-23

L1.8.2.7 IMIBINUS ..ttt sttt s se e e e ene 11-24

11.8.2.8 Message BoX Titleharsccvevviveiiiece e 11-26

11.9 Troubleshooting and Error IMESSAQEScoveueeereeirieneriesiesie e ssesneseas 11-26
11.9.1 JaVA 1OQQING -.eteteetietiieiieeie et ettt et ene s 11-27

Chapter 12: Tips and Hints

12.1 Regarding WINUOWS.......co.oiuiieiieiieicsie ettt sttt bbbt ebe b e e 12-2
12.2 Regarding CONIOISccuoiuiiiieieeeeietc ettt bbb e 12-4
12.3 REQArdiNg FONTSc.ooiiieiiiiiee ettt 12-7
12.4 Regarding Configuration Variablescceviviiiiiniiniiicsc s 12-7
12.5 Regarding DEDUGQING ...vvcveiverieieieieisie e ste et ra e re sttt sne s enaeneeneens 12-9

Chapter 13: Ul Terminology

Index

Infroduction

Key Topics

Overview of User Interface FEatUreS........covvevevveieiee v, 1-2
Developing Programs for Graphical Systems.........cccccvvvvevvvivnevninninnnnns 1-7
WiINAOWING CONCEPLS ..e.vveverieeeririeesireee e e ste e e esre e esee e e sree e sneens 1-11
ACUCOBOL-GT WINAOW TYPES...ccuereruirririeriereiieieieeeeiesiesiesieseesee s 1-15
Creating Portable User INterfacesc..ccvovvvienienievenenerenescesensnnnens 1-16
GUI Development Project ISSUESccvevereeieeveriesesieeseeiesee e sneens 1-29

SAMPIE PrOgramS ..ccuoiuiieiiiieieeeecetese et 1-32

1-2 m Introduction

1.1 Overview of User Interface Features

ACUCOBOL-GT® is part of the extend® family of Micro Focus solutions.

In addition to the standard display handling included in ANSI-85 COBOL,
ACUCOBOL-GT offers a comprehensive set of extensions for programming
and managing Graphical User Interfaces (GUIs). With these extensions, an
ACUCOBOL-GT developer can add a full-featured, native GUI to an
existing program entirely in COBOL. The purpose of these extensions is to:

allow developers to create a fully graphical program in COBOL for use
on systems such as Microsoft Windows.

allow developers to use a mix of graphical and character-based interfaces
in one program. Graphical features can be added to an existing program
without the need to rewrite the entire user interface.

allow programmers to develop graphical interface specifications that are
portable to a variety of host systems.

support graphical features in a way that is natural for COBOL.

mimic existing COBOL screen syntax as closely as possible to simplify
the task of reworking a character-based program into a graphical
program.

avoid the need to do event loop programming that is common for
graphical systems, but foreign to most COBOL programs.

make it easy to add new graphical capabilities in the future.

ACUCOBOL-GT supports the emulation of graphical controls and windows
on character-based systems. This emulation allows you to more easily write
a single program that will run on both character and graphical systems.
ACUCOBOL-GT supports the emulation of floating windows and the
following control types: label, entry field, push button, radio button, frame,
check box, list box (including infinite capacity list box), and combo box.

Overview of User Interface Features m 1-3

You can also use ACUCOBOL-GT’s traditional text-oriented mechanisms
for creating your user interface, such as the textual forms of the ACCEPT and
DISPLAY verbs, and Format 1 of the Screen Section. In addition, you can
use the Screen Section extensions to define and process both character-based
and graphical user interface screens.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

Generally, ACUCOBOL-GT GUI supports include:

e syntax extensions for creating native floating windows, toolbars, and
controls (such as buttons, entry fields, and labels)

 the ability to create and manage menu bars with pull-down submenus

» configuration variables for customizing windows, importing icons, and
mapping colors

» many host specific features such as message boxes and context-sensitive
help

Specifically, ACUCOBOL-GT’s GUI programming supports include:
» native floating (moveable) windows, including:
» modal and modeless window types
» default and custom window size and position
» dynamically resizeable windows
» configurable borders
e programmable title bar

» optional system menu

1-4 m Introduction

GUI controls, including:

* labels

« entry fields

« standard and infinite capacity list boxes
e combo boxes

e push buttons

 radio buttons

» check boxes

o frames

e bars*

 scroll bars*

e tabs*

e tree views

e bitmaps*

e grids*

 status bars

* Web browsers*

e .NET, ActiveX, and COM elements*
menu bars and submenus

display of bitmaps and bitmap buttons*
toolbars*

access to the native message box facility

access to the native file open and file save-as dialog boxes*

Overview of User Interface Features m 1-5

access to the native help facility and support for context sensitive help
specialized mouse handling

font selection and handling

custom colors

the ability to play “.WAV” audio files on Microsoft Windows systems
with sound capabilities

Note: Items marked with an “*” are not supported in text-mode
environments.

ACUCOBOL-GT runtime supports include:

full object code compatibility

the creation and runtime management of native floating windows and
graphical controls on Microsoft Windows and Windows NT

automatic text-mode emulation of floating windows and most graphical
controls, except bars, scroll bars, tabs, animated bitmaps, bitmap
buttons, and toolbars

automatic mouse support

automatic menu bar handling
extensive color mapping facilities
access to the Windows print spooler
automatic multi-tasking support
network compatibility

access to all memory available under Windows

1-6 m Introduction

Floating windows and graphical controls

ACUCOBOL-GT supports a class of windows called floating windows.
When run under a graphical environment, floating windows correspond to
the graphical windows that are native to the host environment. Floating
windows pop up over their parent window and can be repositioned by the
user with the mouse or system menu (if present). Floating windows are fully
described in Chapter 2, “Floating Windows.”

ACUCOBOL-GT also supports the creation, display, and manipulation of
graphical controls. (Graphical controls are listed above in this section.)
Toolbars can also be created and attached to floating windows. A toolbar can
host any type of control, but is usually populated with push buttons, check
boxes, and radio buttons. To simplify the programming of graphical controls,
ACUCOBOL-GT provides a consistent method for their specification and
handling. For a complete description of graphical controls, see Chapter 3,
“Graphical Controls.”

Automatic GUI runtime support

Many GUI capabilities are provided automatically by the runtime. To take
advantage of these features, you don’t have to change your COBOL code,
and you don’t have to recompile your program. You simply use the object
code generated with your ACUCOBOL-GT compiler, and execute it with a
runtime for Windows. When you do this your program automatically gains:

e anative, moveable, main application window.

» basic mouse support. Users can point and click to move the cursor, and
can highlight a string of characters and replace the string by typing a new
one.

» customizable colors, titles, window sizes, window placement, and
program icons (tailored with runtime configuration variables).

» access to the system’s print spooler, so that several files may be queued
for printing.

« the ability to run more than one application at the same time.

Developing Programs for Graphical Systems m 1-7

1.2 Developing Programs for Graphical Systems

The following sections discuss issues of importance to developers who are
building systems for graphical environments.

1.2.1 Event-driven Environments

Most GUI environments are event-driven. Unlike traditional operating
environments in which a program prompts for input and the user responds,
the event-driven environment turns the relationship around. Actions are
initiated by the user or system, and it’s the job of the program to listen for and
respond to events (events include mouse movements, menu selections, data
entry, etc.).

To support this, event-driven programs have an event loop that waits for and
handles events. Including an event loop in a COBOL program usually
requires significant changes to existing code. However, in ACUCOBOL-GT
the runtime implements the event loop and manages nearly all events for the
application. There is no need for the COBOL program to include an event
loop. This greatly simplifies programming for event-driven environments
and preserves the traditional procedural structure of the application. Events
which must be handled by the application are passed through to the program
along with any necessary data. The application is typically programmed to
handle these events in the same way that it handles the press of a function
key. Events and event handling are described in section 4.2, “Events,” and
in Chapter 6, “Events Reference.”

1.2.2 Configuration and Programming Support

ACUCOBOL-GT provides many configuration variables and runtime library
routines to tailor the environment and to help take advantage of host-specific
capabilities. Configuration variables are documented in Book 4, Appendix
H. Library routines are documented in Appendix I. Windows-specific
information is documented in A Guide to Interoperating with
ACUCOBOL-GT as is information on working with transaction processing
and message queueing systems on IBM and other hosts.

1-8 m Introduction

Following is a select list of configuration variables, runtime library functions,

and host-specific capabilities pertinent to interface programming and
configuration. For a complete list, refer to Book 4, ACUCOBOL-GT

Appendices.

Configuration Variables - Appendix H

3D_LINES
ACTIVE_BORDER_COLOR
BACKGROUND_INTENSITY
BOXED_FLOATING_WINDOWS

COLOR_MODEL
COLOR_TABLE
COLOR_TRANS
COLUMN_SEPARATION
DEFAULT_PROGRAM
DEFAULT_FONT
DISABLED_CONTROL_COLOR
DOUBLE_CLICK_TIME
EF_UPPER_WIDE
EF_WIDE_SIZE

F10_IS_MENU
FIELDS_UNBOXED

FONT

FONT_AUTO_ADJUST
FONT_SIZE_ADJUST
FONT_WIDE_SIZE_ADJUST
FOREGROUND_INTENSITY
FULL_BOXES

GUI_CHARS

INSERT_MODE
INTENSITY_FLAGS
KEYSTROKE
LISTS_UNBOXED

MENU_ITEM
MESSAGE_BOX_COLOR
MOUSE

MOUSE_FLAGS

NO_CONSOLE
OLD_ARIAL_DIMENSIONS
OPTIMAZE_CONTROL_RESIZE
PROMPTING

QUIT_MODE

RESIZE_FRAMES
RESIZE_FREELY

SCREEN
SHUTDOWN_MESSAGE_BOX
TEMPORARY_CONTROLS
TRANSLATE_TO_ANSI
WHITE_FILL
WIN_ERROR_HANDLING
WIN_F4_DROPS_COMBOBOX
WIN3_CLIP_CONTROLS

Developing Programs for Graphical Systems m 1-9

HINTS_OFF WIN3_EF_PADDED
HINTS_ON WIN3_GRID

HOT_KEY WIN32_3D

ICON WINDOW._TITLE
INACTIVE_BORDER_COLOR WINPRINT_NAMES_ONLY

Library Routines - Appendix |

C$EXCEPINFO WS$FONT
C$GETEVENTDATA WS$MENU
C$GETEVENTPARAM WS$MOUSE
C$OPENSAVEBOX WSPALETTE
C$RESOURCE WIN$PLAYSOUND
C$RUN WINS$PRINTER
C$SETEVENTDATA WSTEXTSIZE
C$SETEVENTPARAM WIN$VERSION
W$BITMAP WS$WINHELP

Windows-Specific Information - A Guide to Interoperating with
ACUCOBOL-GT

Message Boxes

Keyboard Differences

Hardware and Error Handling

Special Characteristics of 32-bit Windows
Calling DLLs

1-10 m Introduction

1.2.3 Index to Related Topics

Following is a select index to related topics documented in Book 1, User’s
Guide, Book 3, Reference Manual, and Book 4, Appendices. Consult each
book’s Table of Contents for a complete listing of topics. The entries below
are given with their manual name and section number. Note that User’s
Guide is abbreviated “UG”, Reference Manual is abbreviated “RF”, and
Appendices is abbreviated “AP”.

Related topics

ACCEPT verb RF 6.6
ActiveX and COM UG 6.10
Programming

Configuration Variables AP H
DISPLAY verb RF 6.6

Display interface uG4.4
Host-specific information AP M

Library routines AP

Screen Section UG 6.5, RF5.8
SPECIAL-NAMES paragraph RF4.1.3

Other major topics

ACUCOBOL-GT product UG1l1
overview

C subroutines, using APC
Compiler, using uG 21
Debugger, using UG 3.1
Multithreading UG 6.7
Runtime, using uG2.2

Working-Storage Section RF 5.5

Windowing Concepts m 1-11

1.2.4 GUI Development With Third-party Kits and Tools

To add graphical features not currently supported by ACUCOBOL-GT, you
can use one of the system development kits offered by operating system
vendors. For example, the Windows Software Development Kit (SDK) from
Microsoft supports extensions to applications running under Windows.
Using the SDK, you can build C routines that provide extra features, and then
call the C routines from your COBOL application. ACUCOBOL-GT is fully

compatible with the Microsoft Windows SDK, so the two are readily
integrated.

1.3 Windowing Concepts

The following basic window concepts form the foundation for GUI
programming and ACUCOBOL-GT window support.

The screen

The screen is the physical display area of the monitor.

The virtual screen

The virtual screen is a non-physical display area allocated to the application
by the operating system (or the ACUCOBOL-GT runtime). Itis called
virtual because not all of the allocated area need be displayed on the physical

1-12 m Introduction

screen. A window (defined below) is used to frame the virtual screen, and
scroll bars are provided, if necessary, to allow the user to navigate to any part
of the virtual screen. The application behaves as if the entire virtual screen is
always available.

=uys
File Edit | Format Help
Word Wirap -
Fonk... -
-
al N

The physical screen, virtual screen, and application window
Window

A window is a rectangular display area that provides a view of the virtual
screen. It can be any size, including the entire screen. It is usually framed.
Depending on the window type and the underlying system software,
windows are displayed in either graphical or text-mode. Windows can
include a number of other interface objects, such as a title bar, menu bar, and
controls.

Windowing Concepts m 1-13

In GUI environments, windows are the fundamental construct used to display
and accept commands and data from the user.

= My Computer - =101 %

J File Edit ‘iew Favorites Tools Help ﬁ
J dmEBack ~ mp - @| QSEarch @Fnlders @Histury | % @ =
J Address IE.D_JI My Computer j E'J'}GC'

ﬁS‘h Flappy (43
\=ILocal Disk (C:)
@Cumpact Disc (D)
\=MLocal Disk (E:)
5] Cantral Panel

|5 objectis) | |E.D_.]l My Compuker i

The My Computer window in Windows 2000

The main application window

The main application window is the application’s primary window. The
main application window is typically the first window that the application
creates. It usually includes a title bar displaying the application’s name and a
menu bar for quick access to the application’s basic functions. The main
application window is usually movable and resizeable.

Modeless windows

A modeless window is a window that allows the user to switch between
windows--usually application windows--without having to close the current
window. The current window application continues to run in the background
even after you switch to another window. An application might also use
several modeless windows to give the user access to different program
functions and to provide separate views of program data. The user activates
a modeless window using the host’s method--usually by clicking on it.
Modeless windows can contain most any type of control and are typically
moveable and resizeable. An application’s main application window is
usually a modeless window.

1-14 m Introduction

Modal windows

A modal window is a window that the user must respond to and close before
the application will continue. Dialog boxes are typically modal windows.
Modal windows may include buttons, entry boxes, and other controls that the
user manipulates to provide input and to confirm or cancel an action. Modal
windows are usually moveable but not resizeable.

Controls

A control is a self-contained graphical object with a dedicated function, such
as a push button, check box, entry field, or scroll bar. Controls are also
known as widgets. Though they are technically windows, controls are not
moveable or resizeable, nor do they have many of the other properties of a
window.

Tab Label Drop-down List Box Entry Field List Bowx with Spinner Push Button

4 Find: 2l Files
File \Edit | ¥iew Oplionz

Nan-.e&Lmdiun] Date Modiied [Advanced 3

O ype |acUCoBOL-GT Object FIV =l e

i
Cantaining text iH_'.' Program / Mew Search |
Size iz ;htmngt ;E I*1 j KB (%

Controls in a Windows dialog box

ACUCOBOL-GT Window Types m 1-15

1.4 ACUCOBOLGT Window Types

ACUCOBOL-GT includes two fundamental window types: floating
windows and subwindows (sometimes referred to as pop-up windows in
prior versions). Each window type is discussed briefly below. Floating
windows are discussed in detail in Chapter 2.

ACUCOBOL-GT also supports many types of controls (technically a type of
window). Controls are discussed in detail in Chapter 3.

Floating windows

A floating window is the ACUCOBOL-GT window type that creates a
host-based, pop-up window. When your application executes in a graphical
environment, such as Microsoft Windows, floating windows are created as
native pop-up windows, managed by the host operating system and the
ACUCOBOL-GT runtime.

Floating windows must be used when you want to include graphical controls,
such as buttons, entry boxes, and scroll bars. ACUCOBOL-GT supports two
types of floating windows: modal and modeless. Floating windows are
discussed in detail in Chapter 2.

Floating windows are positioned and displayed on the virtual screen (see
section 1.3, “Windowing Concepts.”). The virtual screen is intrinsic to all
applications that use floating or subwindows. The virtual screen size can be
set with the SCREEN SIZE runtime configuration variable and changed
during program execution with the MODIFY Statement in section 6.6 in
Book 3, Reference Manual. The default virtual screen size is 25 rows by 80
columns.

Independent windows

An independent window is similar to a floating window, except that
independent windows do not belong to parent windows; independent
windows are controlled independently. This subject is discussed in more
detail in Chapter 2.

1-16 m Introduction

Subwindows

Subwindow is the name given to ACUCOBOL-GT text-mode windows
created with the DISPLAY WINDOW or DISPLAY SUBWINDOW
statement. Prior to Version 3.0 these windows were simply referred to as
windows.

Subwindows are always text-mode windows and are not compatible with
graphical controls. However, subwindows can be mixed with floating
windows, so long as the subwindows do not display on top of graphical
controls. When an overlay occurs, due to the workings of the underlying host
system, control objects are improperly displayed on top of the text-mode
subwindow. For a discussion of textual and graphical modes, see section 4.3,
“Graphical vs. Textual Modes.”

You can easily convert subwindows to floating windows by changing the
DISPLAY WINDOW statement to a DISPLAY FLOATING WINDOW
statement. However, subwindows that simply define a screen region, that are
not bordered, or are not pop-up in nature, do not lend themselves to
conversion to floating windows.

1.5 Creating Portable User Interfaces

ACUCOBOL-GT allows you to run programs on a wide variety of host
systems. Because of its machine-independent object code, many
programmers use ACUCOBOL-GT to write programs that will run under
several different host systems. However, it can be challenging to write a
program that looks good and functions well under both character-based
systems and graphical systems because of the vastly different nature of these
systems. This is especially true if you include graphical controls in your
programs.

There are two main ways to approach this dilemma:

* You could take into consideration all of the differences between
graphical and character-based systems and design your user interface
accordingly. You could develop one interface, one set of source code to
handle all situations; you could develop two interfaces, but maintain
them in a single set of source code; or you could develop two separate

Creating Portable User Interfaces m 1-17

programs altogether (one for graphical systems and one for
character-based systems). Sections 1.5.1 through 1.5.3 discuss various
strategies for writing programs that are intended to run under both
graphical and character systems. Because many developers use
ACUCOBOL-GT to convert existing character-based programs into
graphical programs, these sections adopt the point of view that you are
doing such a conversion. However, most of the comments apply to
writing new programs as well.

* You can use AcuXUI™, an add-on user interface engine offered by
Micro Focus, to execute your graphical COBOL program from a Java
command line. This lets you run your program on any machine that
supports the Java Runtime Environment (JRE) Version 1.5 or later and
exhibit a GUI on a graphical desktop such as XServer. Chapter 11
discusses how to deploy your graphical ACUCOBOL-GT application
via AcuxXUlI.

1.5.1 Incompatibilities Between Graphical and Character
Systems

Ideally, you could simply modify your program to use graphical features, and
that program would then run perfectly under both graphical and character
systems. However, this is usually not the case. The key problems arise in the
different physical traits associated with graphical and character systems.
Let’s examine some of the primary differences.

For character systems, you can generally assume that you have a screen area
of 24 or 25 lines by 80 columns. While you can occasionally find larger
screens (e.g., many Xterm configurations), designing your programs for 24
by 80 will guarantee nearly universal compatibility. (Some programmers use
25 lines instead because this is the number of lines normally provided on
IBM PC compatibles, as well as many common terminals. The discussion
below uses 24 lines because it is traditionally the most portable value. If you
use 25 lines instead, the discussion still applies, but the problems that arise
during the conversion to a graphical system are more obvious.)

The display characteristics of graphical systems are harder to analyze.
Looking at current Microsoft Windows systems, they are usually configured
with one of these screen resolutions: 640 x 480, 800 x 600, or 1024 x 768.

1-18 m Introduction

You can find other sizes too, but these account for the vast majority. Now,
translate these values into character cells to see how they compare with
character systems. The FIXED-FONT used by ACUCOBOL-GT is usually
designed to be 8 pixels wide by 15 pixels high. On a 640 x 480 screen, this
gives exactly 80 characters across (assuming the window borders are placed
off of the screen) and 42 characters high (in practice, somewhat less because
of space used by the window’s title and menu). This size works fine with a
24 x 80 layout, and so simply running a character-based program under
Windows works fine.

However, problems arise when you convert that character-based program to
use graphical controls. Consider what happens when you convert text-based
data entry fields into ENTRY-FIELD controls. Typically, entry fields are
boxed (have a border around them) in order to match the normal look of a
Windows application, and they usually display using the DEFAULT-FONT
(a proportional font). The DEFAULT-FONT is normally 13 pixels high by 7
pixels wide. Making the entry fields boxed adds 50% to their height, with the
result that they are 20 pixels high. This gives exactly 24 lines on a 640 x 480
screen, but only if you omit all of the window borders, the title and menu, and
assuming that you do not include any spacing between the entry fields. If you
want to add a 3-D look to the entry fields, you need at least another 3 pixels,
making 24 lines approximately 552 pixels high (again, ignoring the window
title, etc.). In practice, you will usually want to be able to see the window’s
title, and its menu and toolbar (if any). This adds approximately 20 to 40
pixels depending on how many elements are present. As a result of these
conditions, you cannot assume that you have 24 lines available on a 640 x
480 system when you include graphical controls.

Note: Switching to the DEFAULT-FONT actually gains horizontal space:
it is only 7 pixels wide instead of the 8 used by the FIXED-FONT. In
reality, even more space is gained because DEFAULT-FONT is a
proportional font. Most strings of lower-case letters occupy much less
space than 7 pixels per character (upper-case strings, on the other hand,
occupy much more space).

Thus, the first major problem can be summarized as follows:

Creating Portable User Interfaces m 1-19

For a given screen resolution, a graphical screen is effectively shorter and
wider than the equivalent character-based screen.

Differences in the physical dimensions of controls also cause problems in
placing them. Consider entry fields again. On a character-based system,
entry fields are one line tall. On a graphical system, they are 1.5 lines tall.
ACUCOBOL-GT has a feature to account for this difference, but there are
also problems in horizontal positioning that are harder to account for. For
example, two radio buttons placed side-by-side might look great on a
graphical screen, but they may overlap when displayed on a character
screen. This happens because of the effects of shifting from a
proportionally sized font to a fixed-size font.

Now consider a FRAME control. On a graphical system, the frame is drawn
around the area that it occupies (except for the top line, which is adjusted to
account for the frame’s title). On a character system, the frame is drawn in
the middle of the character cells forming the edge of the frame, because that
is the best positioning that a character system can perform. A frame that is
two lines high on a graphical system has enough space inside it to hold one
line of text. On a character system, a two line high frame has no space inside
it to hold anything.

Thus the second major problem is:

Controls occupy different amounts of space in character and graphical sys-
tems.

The following sections discuss various approaches to managing these
issues. While there is no single solution to all the cases, ACUCOBOL-GT
offers a variety of ways to handle these problems.

1.5.2 Strategies for Supporting Multiple Systems

Selecting the best approach to supporting both graphical and character
systems is very important and well worth the time invested. In general terms,
there are three possible approaches to this problem. You can use
ACUCOBOL-GT with any of these approaches. These approaches can be
summarized as follows:

» Dual interface, dual code

1-20 m Introduction

1.5.2.1

This approach uses separate programs for graphical and character
systems.

« Single interface, single code

This approach uses one program with a single user interface that runs
under both graphical and character systems.

e Dual interface, single code

This approach uses one program that includes two user interface
implementations, one for graphical systems and one for character
systems.

Each of these approaches has advantages and difficulties. The following
sections consider the major issues.

Dual interface, dual code

This approach is in many ways the most obvious and straightforward. It is
also the approach used most often by other programming systems: simply
write different programs for the graphical and character systems. The big
advantage of this approach is that you can customize the code for the
characteristics of the host system as much as you want. Additionally, you
incur no overhead for having to include code that is not used for a particular
system. Finally, when you are programming you don’t have to think about
two systems at the same time. Development time for any one system is
shortened and testing is easier. These are all significant advantages.

Unfortunately, there are also many significant disadvantages. You have to

write two programs instead of one. And, you must maintain two programs.
Because there are two programs, you are likely to encounter twice as many
bugs. Also, the time required to develop the set of programs is most likely
greater than required by the other approaches.

Here are some cases where this approach offers significant advantages:

1. If you are in the process of retiring or freezing a character-based
application, then you can simply use that application as the starting point
for its graphical incarnation and leave the character version in its original
form in an archive for future maintenance. In this scenario, you do not

Creating Portable User Interfaces m 1-21

1.5.2.2

expect to do much more work on the character version, so spending a lot
of effort in maintaining a single piece of source code is probably not
worth what you gain.

2. If you intend to have sizable functional differences between a
character-based application and its graphical sibling, then it might not
make sense to try to have a single program cover both cases. In this
case, you really do have two different programs, with some overlap in
their functionality. The overlapping portions could be maintained as a
separate library of source that is shared by both systems.

In general, if you view the character-based application as having a limited
future, then this approach generally makes the most sense. The other two
approaches are more attractive if you plan on maintaining and enhancing the
character-based application in the future.

Single interface, single code

This approach relies on ACUCOBOL-GT’s ability to run the same program
on any machine. With this approach, you write a single program that has a
single user interface that runs on all machines. The big advantage of this
approach is that you need to write and maintain only one program. The
disadvantages are that you will have to work harder to get a program that
looks good on all systems, and you are limited to only those features that are
available on both graphical and character-based systems. Generally, this
means developing a simpler user interface for the graphical system than you
might otherwise choose. If you presently have a character-based user
interface and do not plan to add graphical controls, then this approach is
straightforward to pursue and is the obvious choice.

The biggest challenge to this approach is developing code that works well
under both systems. This generally means a lot of back-and-forth
development under Windows and a character-based system to ensure that the
results look good and work well. Fortunately, AcuBench® provides a
built-in facility for testing both character and GUI interfaces under Windows.
Alternatively, you can use the Windows Console runtime to perform initial
character-based testing.

1-22 m Introduction

1.5.2.3

1.5.2.4

This approach generally accommodates graphical single-line labels and entry
fields. Getting labels and entry fields to look right on both types of systems
is fairly easy. Incorporating other graphical elements tends to be harder and
should be done sparingly.

ACUCOBOL-GT does not yet support all control types on character-based
systems. In particular, bars, scroll bars, bitmaps, and tabs are not supported,
S0 you need to avoid these when using this approach. Support for these
controls may be included in a future version.

Dual interface, single code

With this approach, you write a single program that includes two user
interfaces: one for character systems and one for graphical systems, or even
one for Windows with the standard runtime and one for UNIX/Linux with
AcuXUI. The two user interfaces gather the same data, but in a fashion that
is customized for the host system. After the data is collected, the remainder
of the program is the same between the two systems.

This approach combines some of the advantages and disadvantages of the
other two approaches. On the positive side, there is only one set of source to
maintain. There is less programming than the dual code approach, but you
aren’t forced into the simplified user interface typically required by the single
interface approach. You can customize the user interface to take advantage
of features found on a graphical system without making the character-based
version unmanageable.

The biggest disadvantage is that you must write two user interfaces. While
this is less work than writing two separate programs, it is still a significant
amount of work. In addition, you must test the user interface code more
thoroughly than with the single interface approach, because only half of the
interface code is exercised on any one type of system.

Selecting the right approach

Each of these approaches has its merits. One thing to remember is that you
can mix the approaches. Mixing approaches can be quite useful in a large
project. Imagine a standard accounting package. In it, you might use the
dual code method to handle the main menu of the package. For example, the
graphical version might display a nice graphic and use the system’s menu bar

Creating Portable User Interfaces m 1-23

1.5.2.5

to initiate the subsidiary applications. The character version might instead
display the menu as the main contents of the opening screen since it can’t
show a graphical image. Parts of the application that perform maintenance of
minor files (such as shipping codes and user passwords) or entry of report
parameters, might use the single interface approach because the screens are
simple. Finally the key transaction entry screens (such as an order entry
screen) might use the dual interface, single code approach to ensure that the
screens work well for the respective systems while also ensuring that the
entered data is handled the same way by both systems.

You can even mix approaches inside a single program, or even a single
screen. You might have most of a screen use the single interface approach,
while a small portion of it is customized by using the dual interface
technique.

You do not need any special tools to use the dual interface, dual code
approach (although a good source-code control system always helps). For
the two single code approaches, ACUCOBOL-GT has special features to
simplify use of the single interface and dual interface methods. The next
section discusses these features and when you might use them.

Determining which Ul is running

To determine whether the user interface to your program is running through
AcuXUlI, the Windows runtime, or the thin client, you can add ACCEPT
TERMINAL-ABILITIES FROM TERMINAL-INFO to your program.
(TERMINAL-ABILITIES is defined in the sample/def/acucobol.def
copybook.) The TERMINAL-NAME field that is returned contains a short
descriptive name of the terminal type being used. If the user interface is
AcuXUI, then the TERMINAL-NAME field contains the string “AcuXUl”.
If the Windows runtime or thin client is being used, the TERMINAL-NAME
contains the string “Windows”.

If you are maintaining separate screen sections for these environments, this
could be useful for determining which screen section or routine to use at any
given moment. For example, you might include the following code in your
program:
accept TERMINAL-ABILITIES from TERMINAL-INFO
IT terminal-name = Acuxul
display screenla

1-24 m Introduction

terminal-name is defined as an 03 data-item under the 01
TERMINAL-ABILITIES.

The IS-REMOTE field is set to “true” if the program is running with AcuXUl
or thin client. When IS-REMOTE is “true”, CLIENT-MACHINE-NAME is
set to the name of the client that is running AcuXUI or thin client, plus a
hyphen (“-”) and the hex value of the client process ID. For example:

techxp-2efl

1.5.3 Tips for Solving Cross-Platform Interface Problems

1.5.3.1

This section describes how to use selected features of ACUCOBOL-GT to
solve common problems encountered when developing programs to run on
both character and graphical systems.

Establishing the initial window

One of the most important things that you can do when implementing a user
interface that includes graphical controls is establish the program’s main
application window correctly. By default, ACUCOBOL-GT will construct a
main application window for you. However, this window is designed to run
traditional, text-based COBOL programs and not programs with graphical
controls. The runtime does this so that it can run older ACUCOBOL
programs unchanged. If you plan to use graphical controls, it is very
important that you do not use the default window. Instead you should
explicitly create your window. There are two reasons why this is so
important:

1. It gives you an opportunity to account for the height difference between
character-based entry fields and graphical entry fields. How to do this is
described below.

2. It ensures that your program will look right when run under various
Windows machines using different resolutions. If you use the default,
you risk having your program look wrong when run under some
Windows configurations. The reason for this is that the standard fonts
used at higher resolutions are often not the ones supplied by Microsoft.
Instead, they come from the video card manufacturer. Sometimes, the
relative proportions of the standard fonts are changed from those seen
in the Microsoft fonts.

Creating Portable User Interfaces m 1-25

Since the runtime’s default window uses the FIXED-FONT to measure
lines and columns, but your controls usually use some other font (such as
the DEFAULT-FONT) to determine their size, a change in proportion
between these two fonts causes the screen to change. This can result in
overlapping controls and other problems. This is not a bug, but an effect
of the changing environment. By establishing your initial window
correctly, you can use the same font to position controls as you use to
size the controls. Then, regardless of the size of this font, your whole
application will scale itself proportionally and look fine.

Format 12 of the DISPLAY verb is used to create the main application
window. See DISPLAY Statement in section 6.6 in Book 3, Reference
Manual, for the rules that govern its use. See section 4.6 of this book for a
more detailed discussion of coordinate space issues. Here are a few
suggestions for handling the most common situations for graphical programs:

1.

Use “DISPLAY STANDARD GRAPHICAL WINDOW?”. The
GRAPHICAL phrase ensures that the default font used for controls is
also used to determine lines and columns in the window.

If boxed entry fields are going to be a major element of the window,
then use the following statement:

DISPLAY STANDARD GRAPHICAL WINDOW,
CELL SIZE = ENTRY-FIELD FONT, SEPARATE

You can substitute OVERLAPPED for SEPARATE if you prefer. This
statement also works well if vertically stacked push buttons are a major
component of the screen (push buttons require about 1.5 lines each,
just like boxed entry fields).

If you plan to use a font other than DEFAULT-FONT as your primary
font, name it as the CONTROL FONT. For example:

77 LARGE-FONT USAGE HANDLE OF FONT.

ACCEPT LARGE-FONT FROM
STANDARD OBJECT ““LARGE-FONT”
DISPLAY STANDARD GRAPHICAL WINDOW
CONTROL FONT IS LARGE-FONT
CELL SIZE = ENTRY-FIELD FONT, SEPARATE

1-26 m Introduction

1.53.2

There are many other options you can add to the DISPLAY STANDARD
WINDOW statement, including the ability to set the window’s size. The
preceding suggestions just cover the basics of establishing the measuring
font.

If you follow suggestion number two above, then you should find that you
can place labels and entry fields on whole line numbers and have them show
up nicely spaced under both character and graphical systems. Because the
line height is determined by the height of a boxed entry field, each line is
exactly big enough to hold one entire entry field. This solves the problem
where entry fields are 50% taller on graphical systems than they are on
character systems.

An alternative solution is to avoid using boxes with entry fields on graphical
systems. You can do this very easily by using the FIELDS_UNBOXED
configuration option. However, while this solution is very easy, it has two
problems. One is that the results look a little out of place under Windows,
where boxed fields are the norm. The other problem is that unboxed entry
fields are used so infrequently under Windows that the underlying Windows
code is not well exercised. Occasionally you will see slightly odd behavior
with unboxed entry fields under Windows (for example, leaving a stray pixel
turned on when it should be erased during editing).

Tips for building single-interface programs

Here are some ideas for simplifying the task of supporting a single user
interface on both character and graphical systems:

1. If you plan to use the bar, scroll bar, tab, or bitmap controls for your
graphical programs, make sure you program alternatives for the
character-based systems (in other words, build a dual-interface program
for these elements).

2. Make sure you establish a sensible cell size as described in the
previous section. This is the only way you can hope to have a single
set of coordinates describe screens that look good under both character
and graphical systems.

Creating Portable User Interfaces m 1-27

1.5.3.3

Provide plenty of space between elements on the same line. Items that
appear to be nicely separated on a graphical system may well overlap
under a character-based system. This occurs because the labels and
control titles are narrower on a graphical system because of the nature
of the proportional font used.

If you use frames, design them on the graphical system. The runtime
automatically grows frames as needed on character-based systems to
surround the contained controls.

In general, try to keep the screens simple. The more complex they are,
the harder it is to achieve a nice look under both types of systems.

Try to use a single size font under the graphical system. The character
system has only one size, so you can get more uniform results if you do
the same under graphical systems.

For cases where you cannot get a nice look under both systems using a
single set of coordinates, use the CLINE, CCOL, CSIZE and CLINES
options. These allow you to specify alternate coordinates and
dimensions for character-based systems. This lets you customize the
placement of screen elements for both graphical and character systems,
giving you finer control. For more information about these phrases,
see section 3.5, “The Character Coordinate Phrases.”

Tips for building dual-interface programs

The key to building dual-interface programs is being able to determine which
kind of system you are using. ACUCOBOL-GT provides two methods to
accomplish this:

1.

You can determine whether you are running under a character or
graphical system by using the ACCEPT FROM TERMINAL-INFO
verb. The HAS-GRAPHICAL-INTERFACE field is “true” when the
host system is graphical; otherwise, it is “false”. You can also use the
WIN$VERSION library routine to get more detailed information about
the Windows host operating system (see Book 4, Appendix I).

In the Screen Section, you can automate the detection of character and
graphical systems with the CHARACTER and GRAPHICAL reserved
word labels to indicate entries that apply to only one system (see
section 4.3 of this book).

1-28 m Introduction

You have a great deal of flexibility in how you implement dual interface
programs. On one extreme, you can have completely separate interfaces for
character and graphical systems. On the other, you can have a uniform
interface with only minor differences between them. Here are some ideas to
consider:

1.

If you are happy with your existing character interface, you may want to
leave it alone and simply develop a new graphical interface. You could
either start from scratch, or use your existing character interface as a
starting point. If you decide to have completely separate interfaces, then
you should start by isolating your character interface into one branch of
an IF statement that tests HAS-GRAPHICAL-INTERFACE. You then
develop the graphical interface in the other branch. Exactly the best way
to do this depends on the structure of your code.

If your existing character interface does not use the Screen Section,
consider using the Screen Section for the graphical interface. While
using the Screen Section is not required, it is easier because it
automates all of the mouse handling and transfer of control between
screen fields.

If you do use the Screen Section for your character interface, you can
use the CHARACTER and GRAPHICAL reserved word labels to do
customization. You could do this either globally, by creating separate
level 01 screen items for each system, or individually on selected
fields. Note that you may have two screen items with the same name,
as long as one is a CHARACTER item and the other isa GRAPHICAL
item. This allows you to have a single set of interface code in the
Procedure Division while still coding different screens.

Consider employing some of the tips from the single-interface model.
The more similar your two interfaces are, the easier they are to
maintain.

GUI Development Project Issues m 1-29

1.6 GUI Development Project Issues

For many COBOL programmers, graphical user interfaces, GUI
environments, and GUI programming are new territory. Enhancing or adding
a graphical user interface to an existing COBOL program raises many
questions and issues. Before you begin, we recommend that you thoroughly
consider the following basic questions:

1. To what extent will the program’s interface change?
2. How suitable is the current interface to conversion?

3. What resources are needed for the project?

1.6.1 Extent of the Interface Changes

There is no simple formula for defining a good specification for a modernized
user interface. The special needs of your application, the demands of your
marketplace, and the resources of your business will combine to define a
practical GUI specification. In this process we recommend that you explore
the full range of options available to you, from the small, selective upgrade,
to a full reimplementation project.

We recommend that you consider a phased upgrade approach to spread the
cost and risk of changing the user interface (Ul) over a longer period of time.
Remember that ACUCOBOL-GT can support a mix of graphic and
character-based screens. The phased approach gives you more time to learn
GUI technology in general, and ACUCOBOL-GT GUI support in particular.

Don’t forget to develop a test plan. Any significant changes to the Ul will
require careful testing. You may want some end users to help with testing
and evaluation. Be sure to include your test plan in the project schedule and
staffing estimates.

1-30 m Introduction

1.6.2 Suitability of the Current Ul to Conversion

A careful study of your application’s existing user interface implementation
can make a huge difference in ensuring the success of your project and
holding down costs. When it comes to modernizing the user interface, some
programs are better suited and less costly to update than others. Here are
some qualities to consider:

The easiest applications to convert tend to be those that already use the
Screen Section.

The most difficult programs to convert tend to be those in which the user
interface code is dispersed throughout the program, i.e., programs that
do not use the Screen Section, or do not organize screen processing code
into separate procedures. If your application fits that description and you
are going to undertake a large GUI upgrade project, it is nearly certain
that it will be more efficient to implement your new user interface with
the Screen Section. Also consider that Screen Section code is much
easier to maintain over the life of the application than is distributed Ul
DISPLAY and ACCEPT code. A large enhancement project presents a
good opportunity to move to the Screen Section.

However, if you’re doing a small enhancement project that is confined to
a small portion of your code, using individual DISPLAY statements to
create and process your screen elements might be reasonable.

Programs that already include a menu bar, the old-style character-based
pop-up windows (subwindows), and support for the mouse, are well on
their way to a modern user interface. These elements are easy to upgrade
and enhance to take advantage of ACUCOBOL-GT GUI support. Note,
however, that just because an application already includes this
functionality does not mean that there won’t be substantial work in
adding floating windows and controls.

Evaluate your existing, character-based user interface screens for
translatability into the graphical model. Many text-mode screens make
dense use of the screen. In contrast, graphical screens tend to be more
open, having more white space and fewer fields. Also, graphical objects
tend to take up more space on the screen than their equivalent text-mode
objects (mostly caused by the boxes used to frame controls). It may
require a lot of work to reformulate your character screens into

GUI Development Project Issues m 1-31

attractive, functional graphical screens. This problem is just as
challenging for applications that already make use of pop-up windows
and menu bars as for those that don’t.

1.6.3 Recommendations

Implement your GUI in the Screen Section.
» To control the size and cost of your project, execute it in phases.

» Ifsuitable, allow a mix of character-based and GUI screens (i.e., add new
graphical screens and retain some of your existing text-mode screens).

* Redesign your screens to make them less crowded and more consistent
with the established look of the GUI environment.

» Whenever possible, use AcuBench to design and prototype screens
quickly.

» Formulate a test plan and allocate time to execute it.

1.6.4 Conversion Wizard

In an effort to reduce the amount of work required to convert a traditional
text-based application into one that uses a graphical user interface, Acucorp
has developed a screen conversion tool known as the Character-to-GUI
Wizard. The tool works by watching a running character application and, at
a specified point, constructing an equivalent graphical screen. This screen is
then automatically imported into the AcuBench Screen Designer where you
can make modifications to it as desired. AcuBench then produces a Screen
Section description of the graphical screen that you can integrate back into
your original program. Because it requires the AcuBench Screen Designer,
the Character-to-GUI Wizard is only available on Windows platforms.

The Character-to-GUI Wizard is designed to work with any character screen
that you have created using ACUCOBOL-GT syntax. This allows it to work
with most existing character-based programs. Note that the wizard works
with programs using either of ACUCOBOL-GT’s two main screen handling
techniques: the Screen Section and inline ACCEPT/DISPLAY statements.

1-32 m Introduction

Although the wizard uses a variety of heuristics to decide how to convert the
code, these do not always produce the desired result, and some rework in the
Screen Designer should be expected. For usage information on the
Character-to-GUI Wizard, please refer to the AcuBench User’s Guide.

1.7 Sample Programs

The ACUCOBOL-GT release materials include many sample programs and
their source code. Many of these programs demonstrate ACUCOBOL-GT’s
GUI capabilities. We recommend that you study the source code for these
programs to gain a better understanding of how ACUCOBOL-GT GUI
objects are programmed. You will find these programs and their source code
in the “sample” subdirectory of your ACUCOBOL-GT installation.

Included among the sample programs is a program called message. This
program provides basic message-box support on any host. The message
program calls the host operating system’s message box handler when one is
available. Otherwise the runtime provides a simulated, character-based
message box. See the comments in the program source for additional details.

Floating Windows

Key Topics

Overview of Floating WINAOWS ..o 2-2
Relationship Between Floating Windows and Subwindows................ 2-3
Active and CUurrent WindoWS............cceeeierenenienenese e 2-4
Parent and Child WINGOWScooeiiiiiiiieie e 2-5
Creating, Inquiring, Modifying, and Destroying Windows................. 2-6

Menus and Floating WIiNdowS..........cccceveveeiineenee e 2-8

2-2 m Floating Windows

2.1 Overview of Floating Windows

ACUCOBOL-GT includes a class of graphical windows called floating
windows. When run under a graphical environment, floating windows
correspond to the graphical windows that are native to the host environment.
On character-based systems, floating windows are emulated with text-mode
elements and are managed directly by the ACUCOBOL-GT runtime system.

Note: Independent windows are similar to floating windows. The
following characteristics also apply to independent windows unless
otherwise noted.

The primary characteristics of a floating window are:

1.
2.

It is either modal or modeless (see below).

It pops up over its parent window (usually the main application
window) and is always displayed over the parent window wherever
they intersect.

It can be moved independently of the parent window and is able to
leave the area described by the parent window. The user can move it
directly with the mouse, without any program interaction.

It belongs to the parent window. If the parent window is minimized, it
is too. (Independent windows do not belong to parent windows;
independent windows are considered siblings of parent windows. They
can be minimized or maximized without controlling the parent
window.)

It may have a system menu associated with it that allows the user to
select some basic operations on the window, such as moving or closing
it.

The main application window is treated as a special-case floating window
that has no parent window.

Relationship Between Floating Windows and Subwindows = 2-3

Note: Since ACUCOBOL-GT Version 3.0, the traditional, non-moving,
text-based windows originally introduced in ACUCOBOL-85 were
renamed subwindows, to avoid confusion with floating windows.
However, the word WINDOW can still be used with the DISPLAY
WINDOW and CLOSE WINDOW verbs, providing backward
compatibility.

Floating windows may be either modal or modeless. A modal window is a
window that the user cannot leave until it is dealt with and closed. When a
modal window is active, all other windows are disabled.

A modeless window is one that allows the user to switch among windows
while allowing each modeless window to remain open and available. When
a modeless window is active, the user can activate another window using the
host system’s techniques for doing so (for example, by clicking on the
window with the mouse).

The names “modal” and “modeless” are derived from the idea that a modal
window enters a new mode in the program (for example, selecting a file to
open), while a modeless window does not (since the user can continue
working on tasks in other windows).

Floating windows are modal by default. The MODAL phrase may be
included as commentary. Inclusion of the MO