A Guide to Interoperating with
ACUCOBOLGT®

Version 8.1

Micro Focus

9920 Pacific Heights Blvd.
San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (IP) Ltd, 1988-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft, Windows, ActiveX, Internet Explorer, SQL Server, Visual Studio, ODBC, COM, and
.NET are trademarks or registered trademarks of Microsoft Corp. I1BM, WebSphere, MQ Series,
TXSeries, and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. Sun, Solaris, Java, JavaServer
Pages, and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries. BEA, WebLogic, WebLogic Server, and Tuxedo are trademarks or registered
trademarks of BEA Systems, Inc. Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. SAP is a registered trademark of SAP AG. Sybase is a registered trademark of Sybase,
Inc. UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds. Netscape, Netscape Navigator, and Netscape
Communicator are registered trademarks and service marks of Netscape Communications
Corporation. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-UG-080901-Interop-8.1

Contents

Chapter 1: Introduction

L1 INErOTUCTION.....eiveiteiite ettt ettt sttt e e eebeeabesbaeaesbeesbesbeebesbeenbenbeenns 1-2
1.2 DOCUMENLALION OVEIVIEBWovieiviiticericte ettt sttt sbeebesbeesbesbeestesbeebesreebesbeenbesnsenns 1-2
1.3 The extend Family of ProdUCES..........ccovovi i 1-4
1.4 TECNNICAI SEIVICES ..c.vveiveectii ittt ettt et be e s b e e be e s beesate e sbeesaeeenbee s 1-7

Chapter 2: Working with Java Technology

2.1 COBOL/Java INteroperabilitycccceveiiieiiiiece e 2-2
2.2 Calling COBOL frOM JAVAcouiiieiiiieie ettt ettt 2-2
2.2.1 Using the Java Compiler OPtioNS.........cccoiiiiirine e 2-4
2.2.2 Using the Java APL, “CVMLJAI" ... e 2-4
2.2.2.L CVM CIESS ..ottt sttt sttt sttt ettt sttt seeseenneneas 2-5

2.2.2.2 CALL_OPTIONS ClaSSc.viveuiereiiieiisieiisie ettt 2-9

2.2.2.3 SAMPIE USE CASEvevieeriiteietee ettt 2-11

2.2.2.4 Configuration and deployment...........ccoeeieiiniieneineeeeee e 2-11

2.2.2.5 SBCUIILY ...ttt e et b e 2-13

2.2.2.6 Example of Java calling COBOLccccoceriinienieneeeee e 2-14

2.2.2.7 Running the Java interoperability sample programs...........ccc.ccoverireinnen. 2-15

2.2.2.8 Building a Shared Library for HP-UX 11.0cccccoovinniiniincieneenneee 2-17

2.2.3 USING CESOCKET ...viiiiiieiiieiinieisiecsiees st 2-18
2.2.4 Using ACUCOBOL-GT’S CGI EXENSIONS......ccviirrreerieriesieseenieriereseesessnsennnens 2-19
2.2.5 Using the Java Native Interface (JNI)ccoooveviiiiii i 2-20
2.2.6 USING NAMEA PIPES....c.eiiiieiieiiieie ettt sttt st sne s 2-21
2.2.7 USING ACUXUL ...ttt 2-22
2.2.8 USING ACUXDBC ...ttt bbb 2-23

2.3 Calling Java from COBOLcccoccviiiie ettt nnens 2-23
2.3.1 Calling the CBIAVA ROULINE ...cvviveicieiiisisieee st 2-24
2.3.1.1 Method SIGNALUIESeiveeiecieie et 2-25

2.3.1.2 Supported parameter tYPEScvivveierierieeie e ere e 2-27

2.3.1.3 Creating and using Java objects in COBOL...........cccoovvvvivnienncieevecee, 2-28

2.3.1.4 Creating and using Java arrays in COBOLcccccoovvivvinienncieccecenn, 2-30

2.3.1.5 Using Java logging from COBOLcccccviveiiiiiie e 2-33

2.3.1.6 Creating and using a JDBC ReSUItSEL..........ccoevviieiiviiee e, 2-36

2.3.1.7 Java Remote Method Invocation (RMI) interoperabilityc.cccoeveee. 2-39

2.3.1.8 Handling Java eXCEPLIONSceivveiveiesiecie et se et 2-42

2.3.1.9 Releasing MEMOIYccceveieeiesieeie sttt ste e see st sre et neesresne e 2-42

2.3.1.10 C$IAVA configuration variablescccceovveienniensiennieneene e 2-43

Contents-ii

2.3.1.11 Configuration and deploymentcccvevevvevein e 2-44

2.3.1.12 Linking the runtime to “libjvm.sI” on HP-UXcccoeiiviiiiiiieieies 2-45

R I B T 1111 o] S 2-47

2.3.1.14 Running the Java interoperability sample programsc.cccceevvveiennnnns 2-48

2.3.2 USING CESOCKETooiiiiiiieiiiieiisieie sttt sttt sttt nenn 2-48
2.3.3 Calling the Java Virtual Machine (JVM) DLL or Shared Library............cc.co...... 2-49
2.3.4USING CESYSTEM ...ooviiiiciicisie sttt 2-50
2.3.5 USING NAMEA PIPES...c.viiveieieieieeee et sie ettt e eeneene e 2-50

2.4 Mapping JaVa Data TYPES....cverueieeeeiestesiesiesiestesiessessessesessessessessessessesseseessenseseesesnsasens 2-51
2.5 J2EE APPHCALION SEIVELS ...ocviiiiiceiicii ettt sttt re e e e e ste e aesrennaens 2-53
2.5.1 Working with J2EE Application Server Productsccocoereiiiiinieniencncnens 2-53

2.6 WED SBIVICES. ...ttt ettt bbbttt be et b e b 2-54
2.6.1 Providing Web Services from COBOLcccveiiniiniininecese s 2-55
2.6.2 Consuming Web Services in COBOLccccvivrivereiciece e 2-55

Chapter 3: Working with Windows Technologies

3.1 COBOL aN0 WINUOWScvevinieieieiieiesie st sie s st et stessesaesteseessenseseeseensesens 3-2
3.2 Calling COBOL From Other Windows Programs..........ccccoeruevereereensesieseseseseseensenens 3-2
3.2.1 Using the ACUCOBOL-GT COM SEIVENccervereerrarreestesesieseenieseeeeesesnssessens 3-4
3.2.1.1 Methods of the COM Server 0bJECEcovvvveveieereire e 3-6

3.2.2 Calling the RUNEIME DLL ...c..ccveieceee et 3-9

3.3 Calling DLLS from COBOLccoiiiieiieeie ettt 3-13
3.3.1 Loading DLLs with the CALL Statementccoeveieiiiieiinenese e 3-13
3.3.2 Loading DLLs with Configuration Variables ... 3-17
3.3.3 Loading DLLs with the “-y” Runtime Optionccccevevrevereiieieer s 3-18

3.4 Working With Open Database Connectivity (ODBC).......cccccvrveveieienesnsinsesesnseseens 3-19
341 WhAL IS ODBC? ..ottt sttt enn 3-19

3.5 Accessing the WINAOWS APL........c.oiiiie et s 3-21
3.5.1 Microsoft DOCUMENTALIONc.eviviiiiiriiieiiteriete et 3-21
3.5.2 Useful WINAOWS API DLLS ..ot e 3-22
3.5.3 Calling a Windows API function from ACUCOBOL-GTccccovvvveivrvrernnnnnns 3-23

3.6 USING ViSUAI CH+ INET ...ccuiiiiiiciie ettt nnaens 3-28
3.6.1 Building @ NeW RUNLIMEcccviiiiie et 3-29
3.6.2 User Interface APProaches........coo it 3-29

3.7 Windows-specific Features of ACUCOBOL-GTcccooverrineeneinieieneesieeseiesieeas 3-32
3.7.1 Windows-specific Library ROULINEScccooeiiiiiiiieinescseeseescseee 3-35

Chapter 4: Using ActiveX Controls and COM Obijects
4.1 Leveraging Ready-made CONLrolScoieiiiiniinieses e 4-2

Contents-iii

4.2 Adding ActiveX Controls or COM Obijects to Your COBOL Program...........ccccceeevenenne 4-3
4.3 Properties, Styles, and Methods..........cocoviiiiiii e 4-9

4.3.1 Passing COBOL Data to Methods or Properties as SAFEARRAYS........c.ccccc.... 4-11

4.3.2 Using COBOL Data Types as ActiveX and COM Object Parameters................ 4-15
4.4 ActiveX and COM EVENEScooviuiiiiiiciiieitrise et 4-17

T o) T2 T S 4-21
4.5 ACTIVE-X CONTOI TYPE weovieeiiiieiesie et sie s e st ste st te e ste e sae et staebesneeneennas 4-22
4.6 NAME CIASNES ...ttt sbe s 4-22
A7 USEIUL FIIES ..t bbb s 4-24
4.8 MUltiple ODJeCt INTEITACESc.cvviiieiiieice e 4-24
4.9 ActiveX Library ROULINES.......cccvieieriiiceee s s et sne e 4-27
4.10 Distributing Applications Containing ActiveX Controls..........cccccvevvvrieveversresiesnnnns 4-28
4.11 Deployment GUIAEIINESccuviieiieiice et 4-30
4.12 Creating COM Objects on Remote Network SErVErS.........cocverererereieeisinese e 4-32
4.13 Qualified ActiveX Control and Object NamMESccvirereiereininese s 4-34
414 ENUMETALONS ...ttt ettt sttt sttt st b e sbe e bt b e et e e st e e sb e e sbe e s nbe e sbeesnneenneas 4-34
4.15 ActiveX Color RepreSentationccccvevrerereerieeeiese e se s s e 4-35
4.16 ActiveX Error Handling........ccccvvviiviieieecsce e 4-35
4.17 ACHIVEX DEDUGUING «rovveteeie ettt ettt et s ae st e e ene e 4-35
4.18 ActiveX TroubleSNOOtINGcooiieiiiii s 4-36
4.19 ACLIVEX EXAMPIES ...ttt bbb bbbt 4-37
4.20 AXDEFGEN Utility REfEIENCEc.ooviviiiiiiieiiese e 4-41

4.20.1 AXDEFGEN COPY FilES ...c.oiiiiiieiieieseie et 4-43

Chapter 5: Working With .NET Assemblies

5.1 COBOL N0 NET ...ooiiiiiiiiiieiiiieie ettt 5-2
5.2 WHAL IS INET? .ot 5-2
5.3 What 1S an ASSEMDBIY?ocuiiii e 5-3
5.4 Calling COBOL from .NETccociiiieie ettt st ane s 5-3
5.4.1 Using the .NET MSIL Compiler OPtioNns..........cocererereiieneeieesenesese e 5-4

B4 LT —oNBIEXE ot s 5-5

5.4.0.2 -NELAIL ... 5-6

5.4.1.3 Data passing liMitationscccooriiiniiiie s 5-8

5.4 1.4 EXAMPIE ..ttt et 5-8

5.4.2 Using the .NET Interface Assembly, “wrunnet.dll” ..o, 5-13
5.4.2.1 CVM CIBSS ...ttt 5-13

5.4.2.2 PrOPEITIES ...ttt ettt sttt et 5-17

5.4.2.3 EFTON COUBS.....uetitiitiiiteiiteiste ettt ettt sttt sttt 5-20

5.4.2.4 COMPIIEITYPES ..ottt 5-21

5.4.3 Using the ACUCOBOL-GT COM SEIVET.......ccceririiriiirieinieinieisiee e 5-22

Contents-iv

5.5 Calling .NET from COBOLcccviieiieiicie ettt ste e 5-24
5.5.1 Using .NET assemblies in COBOLcccociiiiiiniiiinescc e 5-25
5.5.1.1 CoCreate Instance Failed Error ... 5-29

5.5.1.2 SAMPIE PrOgramceiiiiieiesie ettt 5-29

5.5.1.3 Limits and reStriCtioNScveviveririniriiisiesieesie e 5-33

5.5.1.4 Optimizing the “AcuToNet.dll” interface..........ccoceveveiininiince 5-34

5.5.1.5 .NET control distribution and liCeNSIiNg..........cccceoiiiviniinieniiine e 5-35

5.5.1.6 NAME CIASNEScviiiiiiiiiieee e 5-35

5.5.2 NETDEFGEN Utility REEreNCecccoviiiiiiii i 5-36
5.5.2.1 Changing Default NETDEFGEN Settingscccccueerierieneneneieniciseniean 5-40

5.5.2.2 NETDEFGEN COPY fIlESeiiviiiiiiiieirienese e 5-42

5.5.2.3 Passing data as Parameters..........coerererererieinese st 5-47

5.5.2.4 NETDEFGEN MEthOUScooiviiiriiiiieirieieie e 5-47

5.5.2.5 NETDEFGEN PrOperti€s.......ccccoeierererieieeieiiniesie e 5-49

5.5.2.6 NETDEFGEN EVENTS.......coiiiiiiiiiiiieisie et 5-50

5.5.2.7 NETDEFGEN €NUMETAtOrS........ccooivviiiiiiiiiciisese e 5-50

5.5.2.8 NETDEFGEN EITOIS ..ottt 5-51

5.5.2.9 Sample COPY il ..ot 5-52

5.5.2.10 SamPple CONLIOISveiuiiiiieiecee e 5-55

5.6 Interacting With .NET WeD SEIVICESccooiiiiiiiiiieees e 5-56

Chapter 6: Working with C and C++ Programs

6.1 COBOL @N0 C/CH .ottt sttt sttt sttt sae bt st e b e b sbe e sbe e ene e e 6-2
6.2 MatChing C Data ITEMSciiiiriiiiieieriee et 6-3
6.3 Calling C Programs From COBOL.........cccccvviirierierieieieiese e sesesressesie e saesesese e sneseas 6-5
6.3.1 Calling C Programs in DLLs or Shared Object Libraries..........cccccocevvevveinniniinnnnns 6-6
6.3.1.1 Loading shared libraries with the “-y” runtime option..........cc.ccocevvrveienene. 6-7

6.3.1.2 Loading shared libraries with the SHARED_LIBRARY _LIST configuration

VAFTADIE .. 6-8

6.3.1.3 Loading shared libraries with the CALL statement.............ccccceevevervenenne. 6-9

6.3.1.4 Calling routines in shared libraries with the CALL statement................... 6-10

6.3.2 Calling C Programs via the Direct Methodcccccovviieinicce e 6-10
6.3.3 Calling C Programs via the Interface Methodccccooeiiiiiiiiiniiii 6-13
6.3.3.1 The “SUD” INTEITACEciiie et e 6-14

6.3.3.2 The “SUb85” INtEITACEccoiiiire e 6-17

6.3.4 Cancelling a CALLEed C Program..........ccouereireeneeneenieeseeeseee e 6-19
6.3.5 Managing the Terminal...........ccccoiiiiiiiini s 6-20
6.3.6 Relinking the RUNtIME SYStEMcvciiiiecere e 6-20
6.3.6.1 Linking on WindOowS SYSIEMS.......ccccevirerierierierieeeieceeese e see e 6-21

6.3.6.2 Linking on UNIX and LiNUX SYSEMS......cccoveiereeverrnnesenieseeseeeeeseeseees 6-22

6.3.6.3 LinKing 0N VIMS SYSIEMScviiiiriereie et e et 6-24

Contents-v

6.3.6.4 Linking on MPE/iIX SYSIEMSccciveiiiieiesie e e 6-24

6.4 Calling COBOL frOM C....oouiiiiieieeiee ettt e sne 6-25
B.4. 1 INCIUAR FIIES.....eiieieeieie et 6-25
6.4.2 USING the C AP ..ot 6-26
6.4.2.1 Using the C APLIN WINAOWSc.ccoereiniiinieieieie e 6-26

6.4.3 FUNCLION RETEIENCEcviveiiecece s 6-27

6.5 Using the C APL: TWO APPrOACHESc.ccviiiiie et 6-43
6.5.1 Simple Use Case for acu_cobol()ccccovvieiiiiiiriiccc e 6-44
6.5.2 Calling the Runtime From a C Main Programccocceereienencisesceesenenins 6-45
6.5.2.1 Creating the rUNTIME ..o 6-45

6.5.2.2 Initializing the ruNtime ... 6-46

6.5.2.3 Shutting down the rUNtime ... 6-47

6.5.2.4 Notes 0N COBOL VEIDS.......cc.oiiiiiiiire e 6-48

6.5.3 Calling COBOL ROULINES.......cuetiieiieeieiisie et 6-49
6.5.3.1 Starting 2 COBOL Main Program..........cccoererereereeeeesesesiesie e seseesessenne 6-49

6.5.3.2 Calling COBOL subroutines that call C routings..........ccocoeeevereneiennienn 6-50

6.5.3.3 Canceling @ COBOL SUBFOULINE.cccooeieiirie e 6-52

6.5.4 EXCeption HANAIINGc.ooviiiiiiiiiieicene e 6-53
6.5.5 Unloading Programs from MEMOIY........cccccveveieieiiesinse e seeseereeesreesessessennens 6-53
6.5.6 SIgNal HaNAIINGocviiiiiceece et eneas 6-54
6.5.6.1 When to call acu_abend()........cccoerveervriniiinieie e 6-55

6.5.7 Setting a Debug Method with acu_cobol()........ccccceevviieiiiici e, 6-55

6.6 Other Interface Paths for COBOL and C.........coooiiiiiiiiiiine e 6-55
6.6.1 Connecting With CESOCKET ..o s 6-56
6.6.2 Starting a Program with C$SYSTEMcccoiiiiinininei s 6-57
6.6.3 Passing Data With Named PiPEScoveveiiierirere e 6-57

6.7 Tracking, Monitoring and Debugging MEemOrYc.cceevvierirerieieeieee e seseereseenens 6-59
6.7.1 Memory Debugging VIa Ccocoveiieiieiiccseec e 6-60
6.7.2 Turning Memory Debugging Features On and Offcccoceiiiiiiiiiiiinicne 6-61
6.7.3 Reporting Allocated BIOCKS..........cocoiiiiiiiiiiieee e 6-62
6.7.4 Getting MemOory AMOUNTScuriirierienieieie et 6-62
6.7.5 Testing Memory BOUNGAIIEScc.coviivieieriereriiesee e etese et sie e sasne s 6-62

Chapter 7: Deploying ACUCOBOL-GT Applications on the Web

7.1 COBOL ONthE WED ...ttt e sre e s 7-2
7.2 WED ThiN CHEBNE..cviiuiicveci ettt ettt et s sbe e b e sba e besbeenbeebeenes 7-3
7.3 COBOL CGI INEITACEiiiie ittt sttt s ebe e sar e sbe e sraeere e 7-4
TAWED RUNTIME ..ttt e be e s ba e e te e sbe e sabe e sbe e s rbe e steesaneenes 7-5
7.5 Internet Helper APPIICALIONcoiiiiiiee e 7-6

7.6 Web Browsing from COBOLcccoiiiiniiriiisieesieesesi e 7-6

Contents-vi

7.7 COBOL WED SEIVICES ...veviiuviee ittt ettt sttt s e s rbe e s s ba e s s bae e s sba e e s sbba s s sabeessabeeeas 7-7
7.8 Other INTEIrNEE SOIULIONS ...t st e e e e sabe e e st e e s s beeas 7-8

Chapter 8: Accessing ACUCOBOL-GT Applications from Mobile Devices

8.1 Overview of Mobile COMPULINGccoiiiiiiiie e s 8-2
8.2 Key Mobile TerminolOgycocoiaiiiiiiiii e e 8-2
82,1 LANQUAGESceutitienie ettt ettt sttt ettt e bt et e bt se bt ae e b e b e nbe b e e be b e e b nne e 8-3
8.2.2 PIOLOCOIS ...ttt sttt ettt sb ettt neene st renrens 8-3
8.2.3 Wireless Communication Standards...........coeovereiniennennensese s 8-4
8.2.3.1 The past and the PreSENtccccoeveeeiciere e 8-4

8.2.3.2 TRE FULUIE.....eviitieceice e 8-5

8.2.3.3 3G SLAIUS ...ttt et 8-6

8.3 MODbile PIAFOrM TIENAScvevirieiirieieseiere e e 8-6
8.4 Mobile SyStem DeSIgN ISSUESccueieirieiee ettt sne e 8-7
841 USEI INTEITACE ... ettt ettt bbb 8-7
8.2 SBOUILY .ttt bbb ettt b e bt bt bbb et e b e nneneas 8-8
8.4.3 Degree of CONNECLIVILYcoiveiriiiiiiriee e 8-8
8.4.4 RECOII LOCKING.....ueiviiieiiiiieieeieee et sttt ettt sttt en e neenens 8-9

8.5 Service-oriented ArchiteCture (SOA) ... v 8-10
8.6 Methods for Mobile COMPULINGcceiveiiieiiiicc e 8-10
8.6.1 ACUCOBOL-GT COM SEIVEN ...cvcuiieiiieiirieiisieiesistesieessessssssessessssessssessssesssseses 8-11
8.6.2 ACUCOBOL-GT CGI Language EXtENSIONS........cccoeeererenireieenieieeseeeeseesie e 8-11
8.6.3 ACUCOBOL-GT Runtime and Short Message Service (SMS) Processing........ 8-11

Chapter 9: Working with Transaction Processing Systems

LS8 1) oo [0 Tod o] o SRRSO 9-2
9.2 What IS Transaction PrOCESSING?cceiiiiiiiiiiie sttt 9-2
.3 IBIM CICS ...ttt e b e bbbt b ettt b e bbb e nas 9-3
9.4 Working with the IBM CICS Transaction GateWayccccceverieeieneernseenieseenieseennes 9-4
9.4.1 Including the Transaction Gateway Routines in the Runtimeccccceevveeee 9-5
9.4.2 Connecting to CICS APPIICALIONS.coviiiiiiie e 9-6
9.5 Working with IBM TXSErES CICS.......ccooiiiiiiiiiiiie e 9-7
9.5.1 How TXSeries CICS Works with ACUCOBOL-GTccceovvvrirvrnnenerienieienens 9-8
9.5.2 Modernizing APPLICALIONScccververeieeiese e 9-8
9.6 Working with UniKix Mainframe Rehosting Software........c..cccoccevovvvevviene e, 9-9
9.7 Working With BEA TUXEUOccuiiieiecece et 9-10
9.7.1 Creating a Tuxedo CHEent Programcccceeeieienene e 9-13
9.7.2 Creating @ TUXEAO SEIVEc.oiviuiieierieierieie ettt 9-14

9.7.3 Running Your Tuxedo APPliCatioNccocceriiiiiiieineieee e 9-14

Contents-vii

9.8 Background Debugging OPLIONSccceiiiiieieiicisrce e 9-15
9.8.1 Background Debugging With an Xterm..........c.cooeierieninensie e 9-15
9.8.2 Defining debugging methods with “ADM _t”.........cccccoei i 9-16

0.8.2.1 USING AN XEBIIM ...ttt ettt 9-16
9.8.2.2 USING @ tEIMINAL ..ot e 9-17
9.8.2.3 Using the thin ClIeNt...........cooiiiii e 9-18

Chapter 10: Working with Messaging Middleware

10.1 Support for IBM WebSphere MQoooiiiiiiiiiie e 10-2
10.2 Support for IBM Shared LiDraries ... 10-3
10.3 Support for WebSphere MQ COPY FileS........ccoiiiiiiiiiiiiiiieicneese e 10-4
10.4 Connecting to WebSphere MQ ApPPlICAtIONSccccovvivvieririre e 10-4
10.4.1 Adding WebSphere MQ Calls to Your ACUCOBOL-GT Program.................. 10-5
10.4.1.1 Connecting to the qUEUE MANAGENcccecvreriereerieeeeee e 10-6

10.4.1.2 Opening SPECITIC QUBUES........cuvvrerererierieieeeee e e sre e aereene e 10-7

10.4.1.3 Reading messages from QUEUES.........cvevrvrerereerieeerese e e e seeseeseesenneens 10-8

10.4.1.4 Writing mesSages t0 QUEUEScvererrerrerierieriereeeeresressessesseseeseessessesensenns 10-9

10.4.1.5 ClOSING QUEUES.....c.eevvevrereeresiestesiestestesiesaeseeseeseesesseesesressessesseseeseessensesanses 10-10

10.4.1.6 Disconnecting from the qUEUE MaNAGErcccovvevrerierereereeneiese e 10-11

10.4.2 Setting Up WOrKING-StOrageccovviieriirieiieeieniesiesieeiesre s sre e see e saesneens 10-12
10.4.3 Compiling Your ApPlCatioNccoeriiiieiiieieiiee e 10-12
10.4.4 Configuring the Runtime and ENVIronmentccccooevvevenniencneneieeeeeeen, 10-13

Chapter 11: Working with Non-Vision Data

I 00 I 1o o To 0 Tod o SRRSO 11-2
11.2 Working With XIML Data.........ccoeireiiiiiiie et 11-3
11.2.1 XML CONCEPLS....ceiviiririieiie ettt et 11-4
11.2.1.1 XML dOCUMENEScvvevieiieiiitisiesie sttt s e ere e 11-5

11.2.1.2 XIMIL PAISEIS ...ecvveiieiieiieieeieste sttt 11-10

L1213 USAQE . vttt ettt e et 11-10

11.2.2 The XML-10-FD ULHITY ...ccveiiiiiieieciee e 11-12
11.2.2.1 XMI2FAd QUEPUL .. 11-12

11.2.2.2 xmI2fd command OPLIONScvcvevriererineie e 11-13

11.2.3 The ACUXML INtEITACEc.oiviiiieieeer s 11-16
11.2.3.1 Data diCtIONAIIESc..eveieeiieiieiisiesie sttt 11-18

11.2.3.2 AcuXML configuration variables..........c.cccoovivivieiiniiiiensee, 11-19

11.2.4 USING ACUXML ..ottt 11-20
11.2.4.1 ACUXML OULPUL SETUCTUIESuvveiiesiiiiiee sttt 11-23

11.2.4.2 RESHICHIONS ...ttt bbb s 11-24

11.2.5 ACUXML EFror REPOITING ..cveviieeeiieiiniesie st 11-27

Contents-viii

11.2.6 Using the CEXIML ROULINE.........ccoiiieiiiisieisie ettt 11-28
11.2.6.1 General ProCEAUIE.ccviee e ceee e este et 11-28

11.2.6.2 Understanding CEXML terminology..........cccvveriveiineiinieieseneneiesieennns 11-29
11.2.6.3 Parsing an XML filecceoviieiiiicsc e 11-31
11.2.6.4 Moving to an element...........ccveieiieiiii e 11-33

11.2.6.5 REtreVING Aata.......cccoeieiiieieiiee e 11-34

11.2.6.6 Adding, modifying, or deleting data...........cccccevevveivnrcve e, 11-35

12.2.6.7 WIItING @ FIlE.c.eiiiii e s 11-36

11.2.6.8 Releasing the Parser.......c.cccocvcieieriieie e e 11-36

11.2.6.9 RELHEVING EITOIS ..c.viieeiieesee e st st sie et te ettt ae st este e sreenees 11-36
11.2.6.10 Retrieving attribDULES.........ccveieiiee e 11-37
11.2.6.11 RetrieVing COMMENEScciviiieiieiesie e ee e e et 11-38
11.2.6.12 CEXML €XAMPIES.....cviiiiriiieiiieisie ettt e 11-38

11.3 Working with Relational Dataccooiiiiiiiiiiee s 11-42
11.3.1 ACUAGL INTEITACEvivieiieieeeeee et e 11-42
11.3.2 EMBedded SQLooiiieieeieeseees et e 11-43
11.3.2.1 Embedding SQL statements into ACUCOBOL-GT.........ccccecervrerinennne 11-43

11.3.2.2 Supported ESQL pre-Compilers.......coveiieneiennineinee e 11-44

11.4 Working With ODBC Data.........cccerveiveviriesiesiesiesiesieseeseeseesesesesresseseessessessesssssssenses 11-45
11.5 Working with File Systems like C-ISAM and KSAMcccccvvveivvivvievieniencnecienens 11-45
11.6 Working with an EXTFH INterfacecccoovveiiiici e 11-46
11.6.1 Using the EXTFH INterfacec.covoiiiiiieiiiiie e 11-46
11.6.2 Making EXTFH Libraries Available to the Runtimec.ccocoiiiiiiiiicnncne 11-46
11.6.2.1 Accessing files through EXTFH.......ccccoooiiiiiiiiiiie e 11-47

11.6.2.2 Searching for funCtion NAMESccoveieriiiriee e 11-48

11.6.2.3 Setting libraries for indexed, relative, and sequential files................... 11-49

11.6.2.4 Statically linking EXTFH-compatible libraries..........cccccoceieviininnne 11-50

11.7 File System ConfigUIationccoeiiiiiiiiiiesicses e 11-50
11.8 File System INitialiZationcccoviviirieieisese e e 11-52

Index

Infroduction

Key Topics

INTFOAUCTION ..ttt sbb e e ere e sare s 1-2
Documentation OVENVIEWcccveiveireeiriireeire e e sree e siaesresrsesresnsesneenns 1-2
The extend Family of Products.........cccocevoeevvveenineenc e, 1-4

TECHNICAl SEIVICES.....oviiiciiie ittt 1-7

1-2 m Introduction

1.1 Introduction

For companies with mission-critical COBOL business applications, the
ability to interoperate with other technologies while retaining their
time-proven programs can present some interesting opportunities. Imagine
your legacy code interacting with applications in another language, working
with XML documents, accessing data in a variety of databases, or operating
in an application server environment. Such possibilities can help you refresh
a long-established application and, perhaps more importantly, provide the
needed edge for your company to compete successfully in today’s tight
marketplace.

For companies with ACUCOBOL-GT® applications, interoperability with
other technologies is an attainable goal. The extend® family of technologies
includes many opportunities for extending and enhancing your legacy
applications, allowing you to integrate that code with other enterprise
information technology components regardless of their platform, language,
database, or network infrastructure. You can combine our technologies in a
number of ways to solve your business issues, while protecting your valuable
investment in legacy applications. A Guide to Interoperating with
ACUCOBOL-GT provides information to help you facilitate this integration
as the need arises.

1.2 Documentation Overview

This manual describes various methods that allow your ACUCOBOL-GT
applications to interoperate with technologies that provide enhanced
capabilities and functionality. Topics include

« “Working with Java Technology” provides information that can help
your ACUCOBOL-GT applications interoperate with Java. The chapter
includes details about methods for calling COBOL from Java and calling
Java from COBOL. You can also learn about mapping Java data types,
J2EE application server technology, and Web services.

Documentation Overview m 1-3

In “Working with Windows Technologies,” you learn how to leverage
Microsoft Windows technologies in your ACUCOBOL-GT programs.
The chapter includes information about calling dynamic link libraries
(DLLs), accessing the Windows Application Programming Interface
(API), and using some Windows-specific ACUCOBOL-GT features.

“Using ActiveX Controls and COM Objects” describes how to include
Microsoft ActiveX controls and COM objects in your ACUCOBOL-GT
program.

“Working With .NET Assemblies” describes how to call .NET
assemblies from your ACUCOBOL-GT program and how to invoke
COBOL from a .NET assembly. It also discusses interacting with .NET
Web services from COBOL.

“Working with C and C++ Programs” provides information about
how your ACUCOBOL-GT applications can interoperate with C and
C++ programs. Learn about direct calls from C to COBOL and from
COBOL to C, interfacing to COBOL from C via the ACUCOBOL-GT C
API, and matching C data items.

In “Deploying ACUCOBOL-GT Applications on the Web,” you can
learn about our various technologies that help you deploy your
ACUCOBOL-GT applications on the Internet. The chapter includes
descriptions of the ACUCOBOL-GT Web Thin Client and Web
Runtime, our Common Gateway Interface (CGI) extensions, and more.

“Accessing ACUCOBOL-GT Applications from Mobile Devices”
explores the basic concepts of accessing COBOL programs from mobile
devices running non-COBOL applications. You receive background
information on mobile terminology, infrastructure, and platform trends.
Some mobile system design issues are covered, and a sample mobile
system with a COBOL back end is described.

“Working with Transaction Processing Systems” discusses how
ACUCOBOL-GT can interoperate with online transaction processing
(OLTP) systems. You learn about transaction processing in general, and
then find out how ACUCOBOL-GT can work with specific transaction
processing technologies.

1-4 m Introduction

¢ In*“Working with Messaging Middleware,” you learn how to integrate
ACUCOBOL-GT applications with message passing middleware,
specifically IBM WebSphere MQ (formerly MQ Series).

e In“Working with Non-Vision Data,” you learn how ACUCOBOL-GT
applications can interoperate with external data sources, including XML
documents, SQL databases, ODBC-compliant data sources, C-ISAM
and KSAM files, and file systems that use an EXTFH interface to access
files.

Other manuals in the extend documentation set are referenced in this book as
well. These manuals may be accessed from support section of the Micro
Focus website or installed from your product media.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

1.3 The extend Family of Products

Your strategy for interoperability may include one or more members of the
extend family of products. Brief descriptions of these technologies appear in
the following sections.

AcudGL®

ACUCOBOL-GT uses Acu4GL libraries to access information stored in
relational database management systems (RDBMSs). Data dictionaries
generated by the compiler guide the libraries in mapping the field names and
data types that are passed between COBOL and the database engine. The
essence of Acu4GL libraries is that standard COBOL 1/0O statements are used
to access databases.

The extend Family of Products = 1-5

Acu4GL dynamically generates industry-standard SQL from COBOL 1/0
statements. As the ACUCOBOL-GT runtime module is executing your
COBOL application, Acu4GL is running “behind the scenes” to match up the
requirements and rules of both COBOL and the RDBMS to accomplish the
task set by your application. This means that Acu4GL utilizes the full power
designed into the database engine.

ACUCOBOLGT

ACUCOBOL-GT is an ANSI 1985 COBOL compiler designed to provide a
powerful development environment for a wide range of computers. Fast
compile speed, clear error messages, and a multi-window source level
debugger work together to provide a high performance, easy to use COBOL
development platform. Portable object code, a generic interface to a variety
of file systems, and a device-independent terminal interface help to simplify
the distribution of applications developed with ACUCOBOL-GT.

In addition to portable object code, ACUCOBOL-GT can generate and
execute object files that contain native instructions for specific types of
processors. This enables you to optimize the use of CPU resources on the
host machine while maintaining full portability within the same family of
processors.

AcuXDBC™

AcuXDBC is a data management system, designed to integrate
ACUCOBOL-GT data files into a relational database-like environment.
AcuXDBC enables you to apply SQL and relational database concepts to
your COBOL data sources resulting in data that is accessed and managed in
much the same way as many of today’s popular relational database
management systems.

AcuXDBC lets you retrieve and update ACUCOBOL-GT’s Vision indexed
files, relative files, and sequential files from Windows-based applications
including Microsoft Word, Excel, and Access. Business Intelligence tools
such as Crystal Reports® Professional, and custom applications developed in
ODBC-supported environments such as Visual Basic® are supported as well.
With the enterprise edition, you can also retrieve data through Java

1-6 m Introduction

applications that utilize JDBC standards. Direct SQL access to your
ACUCOBOL-GT data is available in both the Windows and UNIX
environments.

AcuXDBC Server is an add-on to AcuXDBC that supports remote processing
on a UNIX/Linux or Windows server.

AcuConnect®

AcuConnect is a client/server technology that is an integral part of our
distributed computing solution. AcuConnect lets you implement a client/
server system in which the client piece can be as “thin” or as “thick” as you
need.

AcuConnect has two deployment environments. With AcuConnect's
distributed processing deployment, users can distribute application logic
between client and server machines in a way that best suits their needs.
AcuConnect users can also take advantage of our Thin Client technology,
which lets you run the user interface (Ul) portion of your application on a
graphical display host while the rest of the application and data reside on the
server.

AcuServer®

AcuServer is an add-on module that provides remote file access services to
ACUCOBOL-GT applications running on most UNIX, Linux, and Windows
TCP/IP based networks. AcuServer provides the ability to create and store
indexed, relative, and sequential data files on any UNIX, Linux, or Windows
NT/2000/2003/2008 server equipped with AcuServer. It also provides full
function remote access from supported clients to indexed, relative,
sequential, and object files stored on an AcuServer server.

AcuSQL®

AcuSQL is an add-on tool that supports the inclusion of embedded SQL
(ESQL) statements in ACUCOBOL-GT program source code. The AcuSQL
pre-compiler, in combination with the AcuSQL runtime library, allows your
ESQL COBOL programs to access IBM® DB2®, Microsoft® SQL Server,
and ISO/ANSI SQL92 compliant data sources.

Technical Services m 1-7

Acuxul™

AcuXUI is a cross-platform user interface engine that allows graphical
ACUCOBOL-GT programs to exhibit their user interface on UNIX and
Linux platforms as well as Windows platforms. With AcuXUI, you do not
directly execute your COBOL program using the runtime. Rather you run
your graphical application by issuing a Java command on the server
command line indicating the AcuXUI Java archive (JAR) file and resources
to use to run the COBOL program.

1.4 Technical Services

You can reach Technical Services in the United States Monday through
Friday from 6:00 a.m. to 5:00 p.m. Pacific time, excluding holidays. You can
also raise and manage product issues online and follow the progress of the
issue or post additional information directly through the website. Following
is our contact information:

Phone: +1 858.795.1902

Phone: 800.399.7220 (in the USA and Canada)
Fax: +1 858.795.1965

E-mail: support@microfocus.com

Online: http://supportline.microfocus.com

For worldwide technical support information, please visit http://
supportline.microfocus.com.

mailto:support@microfocus.com
http://supportline.microfocus.com
http://supportline.microfocus.com
http://supportline.microfocus.com

1-8 m Introduction

Working with Java
Technology

Key Topics

COBOL/Java Interoperabilityccooiiieniiininieneee e 2-2
Calling COBOL fromM JAVA......ccucoveeeieirsinsesesiesie e seesieeeseesssesesnsseeses 2-2
Calling Java from COBOL........ccccoviieriiiese e 2-23
Mapping Java Data TYPEScccecererererieriese e e s 2-51
N = AN o] o] [0 L [0 TS T=T Y] 2-53

AVAY] O IS T=Y Y/ [2-54

2-2 m Working with Java Technology

2.1 COBOL/Java Interoperability

Businesses want to deploy Java technology for a variety of reasons. They
include:

« The flexibility of JavaServer Pages™ for graphical front ends, Internet
portals, mobile devices, etc.

* The availability of an enterprise standard, Java2 Enterprise Edition
(J2EE™)

« The promise of application server technology from vendors such as
BEA, IBM, Sun, and Oracle

Despite the opportunities that Java affords, many businesses recognize that
their legacy applications have high value to them. They know that COBOL
runs their business. Their COBOL programs have been time-tested,
fine-tuned, and proven reliable and scalable. They have been custom-fitted
to their business processes.

Rather than replacing COBOL with Java, many organizations integrate their
legacy assets with the newer Java components.

Java scenario

A bank has a mission-critical loan processing application written in COBOL.
The bank wants to make the application accessible on a Web site as part of a
customer loan portal. The portal will be supported by an application server
running J2EE applications. The bank wants to take the existing COBOL
application and integrate it with the J2EE applications so that requests
coming in through the application server will be routed to and processed by
the COBOL application.

2.2 Calling COBOL from Java

With ACUCOBOL-GT®, there are many ways to achieve interoperability
with Java. If you want to call COBOL from a Java application, you can:

Calling COBOL from Java m 2-3

Use ACUCOBOL-GT’s Java compiler options to generate Java classes
that call your ACUCOBOL-GT program. Java programmers can then
invoke these classes as they would any native Java code.

Use the Java native interface, “CVM.jar”, to interact with the COBOL
program at the API level. “CVM.jar” contains a singleton class, CVM,
that encapsulates the ACUCOBOL-GT runtime. With the CVM, the Java
programmer can programmatically instantiate an instance of the
ACUCOBOL-GT runtime and invoke a COBOL program. The
programmer can use other classes or methods of CVM to specify runtime
options and program options.

Use the C$SOCKET library routine to facilitate interprocess
communication via sockets. C$SOCKET is a low-level option, but it is
very flexible.

Use our CGI extensions. The Java programmer can use CGl to call a
remote COBOL procedure through a Web server.

Use the Java Native Interface (JNI) to call the ACUCOBOL-GT
runtime dynamic link library (DLL) in Windows or shared library in
UNIX.

Use named pipes to pass data between your COBOL and Java
applications if they reside on the same host machine. Passing data
through named pipes is a low-level solution requiring the development
of C code. Named pipes are a good option for legacy applications that
perform strictly file 1/0.

Use AcuXUI ™ to execute your graphical COBOL program from a Java
command line. This lets you run your program on any machine that
supports the JRE Version 1.5 or later and exhibit a GUI on a graphical
desktop such as XServer.

Use AcuXDBC " to access COBOL Vision data from a Java Database
Connectivity (JDBC)-enabled application.

2-4 m Working with Java Technology

2.2.1 Using the Java Compiler Options

There are two compiler options that make it easy for you to provide COBOL
services to a Java program:

Compiler Option Description
--javaclass Generates a Java class that calls your COBOL
program
--javamain Generates a Java class with a main method
-javaclass

When you specify the “--javaclass” option at compile time, the compiler
generates a “.java” file in addition to a “.acu” file. The “.java” file has the
same prefix as the “.acu” file and is placed in the same directory. This “.java”
file is a Java class that calls the COBOL program being compiled. Java
programmers can then invoke this class as they would any native Java code.

-javamain

Same as “--javaclass” except “--javamain” generates a class with a main
method added.

2.2.2 Using the Java API, “CVM.jar”

Another way to call COBOL from Java is to use the application programming
interface (API) contained in the Java archive, “CVM.jar”. This interface can
be used by Java developers to call COBOL functionality (programs, entry
points, etc.) from their Java class.

Note: This feature is available only to shared library or DLL versions of
the ACUCOBOL-GT runtime. On Windows, the DLL version is
automatically available. To see if this feature is available to you on UNIX,
type “Is lib” from the ACUCOBOL-GT installation directory. If you see the
filename “libruncbl.so” or “libruncbl.sl”, then the feature is available. For
instructions on creating a shared library for HPUX 11.0, see section 2.2.2.8.

Calling COBOL from Java m 2-5

2.2.2.1

“CVM.jar” consists of two main classes:

Class Description

CVM CVM is a singleton class representing the
ACUCOBOL-GT runtime. This class allows Java
developers to programmatically manage the
ACUCOBOL-GT runtime, giving them low-level
control of COBOL objects from Java.

CALL_OPTIONS [Thisoptions class is used for setting options for each
called COBOL program.

Note that you can call COBOL from Java locally or remotely. You can even
have the runtime execute remotely without a COBOL object executing on the
client. All you need on the client is a Java program and a runtime. For this
to work, you set CODE_PREFIX in the configuration file that you provide
with the runtime initialization to point to a remote server hosting your
COBOL application. The remote server must also be running AcuConnect.
AcuConnect is able to execute a COBOL object remotely and share data with
the local runtime. For more information on executing remote COBOL
programs with AcuConnect, please refer to the AcuConnect User’s Guide.

CVM class

CVM is a Java class representing the ACUCOBOL-GT runtime. The CVM
class exposes public methods for setting runtime options, calling and
cancelling programs, getting object libraries, and much more.

The following table contains a description of each method. Please note that
the get method returns the current value of a particular property or string.
The set method sets the string or property value. For example,
“setErrorsOut” sets the name of the file to which to send error messages, and
“getErrorsOut” returns the filename that is currently set for the error log.

Boolean properties like Terminallnit are set to false by default. If you want
to set a boolean property to true, then you call the set method for that
property. For example, Terminallnit is set to false by default, meaning that
terminal initialization is not inhibited. If you want to inhibit terminal

2-6 m Working with Java Technology

initialization, set Terminallnit to true by calling “setTerminallnit” passing in
true. Call “getTerminallnit” to see what boolean value is currently set for this

property.

Public Method

Description

initialize(RT_OPTS options)

Initializes the ACUCOBOL-GT CVM

initialize(String cmdLine)

Initializes the CVM with
command-line options

callProgram(String name, Object
params[], CALL_OPTIONS options)

Calls the named COBOL program
using specified parameters and
program options

cancelAllPrograms()

Cancels all programs

cancelProgram(String name)

Cancels the named program and holds
it in memory

unloadAllPrograms()

Empties memory of all programs

unloadProgram(String name)

Empties memory of the named
program

shutdown()

Shuts down the CVM

CVM GET_INSTANCE()

Returns the instance of the CVM in this
process

CVM GET_INSTANCE(String
logPropertiesFile)

Specify a Java String that is the name
of the logging properties file. This
enables you to use a different file
which is not the default Java logging
properties file.

Calling COBOL from Java m 2-7

Public Method

Description

CVM GET_INSTANCE(String
logPropertiesFile, String libLoc, String
ext)

The first String parameter has the same
meaning as the previous
GET_INSTANCE. The second String
parameter is the location of the Acu
shared libraries. On windows, this is
where the acu dlls are installed (
“c:\Program
Files\Acucorp\Acucbl810\AcuGT\bin.
The third parameter is the extension of
the shared libraries — on windows the
extension is “.dIl”, on linux it is “.s0”,
and on some versions of HP-UX it is
“sl”.

setLog(Logger log)

Overrides the default log with a
user-specified log

Statusinfo GetStatusInfo()

Checks the status of a called
COBOL program that has finished
running. Use Statusinfo as
follows:

class Statusinfo {
public long cobol_return_code;
public int exit_code;
public int signal_number;
public int call_error;
public String exit_msg;};

getCVMError() Gets the last error message of the CVM
object class

getLastErrorMsg() Returns the last error message string
from the runtime

get/setSwitches() Gets or sets the list of Special Names

switches to turn on

get/setConfigFile()

Gets or sets an alternate configuration
file

get/setErrorsOut()

Gets or sets an error messages file

get/setErrorsAppend()

Gets or sets a file to append error
messages to

get/setKeyFile()

Gets or sets a keyboard input file

2-8 m Working with Java Technology

Public Method

Description

get/setimport()

Gets or sets a variable for importing
graphical screens

get/setPlays() Gets or sets a file of input keystroke
scripts

get/setDisplayOut() Gets or sets a file for display output

get/setDisplayAppend() Gets or sets a file to append display
output

get/setDebugCmads() Gets or sets a file containing debugger

commands

get/setTerminalOut()

Gets or sets a file to capture terminal
output

get/setObjLib()

Gets or sets an object file library

get/setEmbeddedL.ib()

Gets or sets a configuration file from a
COBOL object library

get/setTerminallnit()

Inhibits terminal initialization

get/setCGIWarnings()

Suppresses warning messages in CGI
programs

get/setlgnoreSignals()

Ignores terminal hang-up signals

get/setListConfig() Lists contents of the configuration file

get/setNoSaveDebug() Prevents the debugger from reading
and writing adb

get/setSafeMode() Runs in safe mode

get/setNonNumeric()

Suppresses warnings when
non-numeric data is used as numeric
data

get/setExtendedError()

Displays extended error codes for file
error “30”

get/setDumpMem() Dumps memory for memory access
violations
get/setThrowErrors() Displays error message text in a

MessageBox

Calling COBOL from Java = 2-9

2.2.2.2

Public Method Description

get/setCharToGui() Converts character screens to GUI
equivalent

get/setZipErrorFile() Compresses the error file

get/setLinkagelLength() Disables Linkage item length test

To set options in the CVM class (i.e., to set runtime options), use the specific
“setOption” method such as “setConfigFile” and the value to set. You can
also call “setOption” with the option name passed as a string.

Call “cvm.initialize” after setting options. After “initialize” is called, setting
options has no effect until you call “initialize” again.

CALL_OPTIONS class

The CALL_OPTIONS class represents the options for each called COBOL
program. If you want to pass program options to the “cvm.callProgram”
method that runs the COBOL program, create a CALL_OPTIONS object,
then add options to it. The CALL_OPTIONS class is structured as follows:

class CALL_OPTIONS {

public String GetOption(String key);

public void SetOption(String key, String value);
3

Valid call options include:

» cache — an unsigned value that determines whether the runtime should
maintain the program in a memory cache after it has been canceled. This
parameter is useful for application servers like CICS that allow each
program to be configured as resident or nonresident.

If “cache” is FALSE (“0”), the runtime removes the program from
memory and sets the Working-Storage to its initial state on subsequent
calls. If “cache” is TRUE (“1”), it marks the program as “cached” and
resets Working-Storage for the next call; the program remains in
memory according to the caching rules. For information on managing
logical and physical cancels that may affect the behavior of “cache”,
refer also to the LOGICAL_CANCELS configuration variable in
Appendix H of the ACUCOBOL-GT documentation set.

2-10 m Working with Java Technology

debug_method (-dn) where n is 0-3:

0 = ADM_NONE for no debugging

1= ADM_XTERM to debug using a new xterm

2 = ADM_TERMINAL to debug using an existing terminal through
runcbl

3 =ADM_THINCLIENT to debug using a waiting thin client

Based on the debug_method selected, you may need to also specify
debug_method_string.

debug_method_string — a char* that sets the display setting for the
debug_method

For ADM_XTERM, set to the Xservername:displaynumber of the xterm
or setto NULL to allow the xterm to use the default display given by the
DISPLAY environment variable. For ADM_TERMINAL, set the string
to the tty device on which you will execute runchbl. For
ADM_THINCLIENT, set to client:port where the client is the host on
which acuthin is executing and port is the port on which it is listening.

Note: The value of debug_method_string overrides the value, if any,
in the DISPLAY configuration variable for the xterm.

See section 9.8, “Background Debugging Options,” for more
information on background debugging.

no.stop — an unsigned input value that, when set to “1”, causes STOP
RUN to be ignored.

program.name — the name of the COBOL program being called

The CALL_OPTIONS class contains a linkage_signature property that
describes the data in the linkage section. For example, a linkage_signature of
“X45X20SS1J” describes two PIC X items of 45 and 20 bytes respectively,
two shorts, an integer, and a long.

Calling COBOL from Java m 2-11

The linkage_signature ensures that there is enough memory for Java strings
to get passed in, even when the Java string has a shorter length than the PIC
X data item in the linkage section. For example, a Java string of length 10
can be passed into a PIX X(45) data item. In this case, 45 bytes are allocated
to memory, not 10 bytes.

2.2.2.3 Sample use case

CVM cvm = CVM.GET_INSTANCEQ);
cvm._setErrorsOut(*'/tmp/errfile’);
cvm._setConfigFile('c:/myproject/config™);
cvm.initialize();

CALL_OPTIONS co = new CALL_OPTIONSQ);
co.setOption(‘'debug_method™™, "1');

Object objInt = new Integer(l);

Object objString = new String("'Test String Parameter™);
Object params[] = {

objint,

objString

}:
cvm._callProgram(*'TestJavaToCobol*, params, co);
cvm.cancelProgram(*"TestJavaToCobol');
cvm.shutdown();

2.2.2.4 Configuration and deployment

To call COBOL from Java using the CVM, perform the following steps:

1.

Install and correctly configure the ACUCOBOL-GT runtime.
Optionally, install AcuBench® if the system will also be used for
COBOL development.

Install and correctly configure a Java Runtime Environment (JRE)
Version 1.4.2 or later. Optionally, install a J2SE Software Developer’s
Kit (SDK) if the same system will also be used for Java development.

Place the path to the JRE /bin directory in the PATH environment
variable. Here is an example:

PATH =D:/j2sdkl.4.2_04/bin.

2-12 m Working with Java Technology

If the ACUCOBOL-GT installation directory is not the current directory,
then that directory should also be placed on the path. The runtime path
must be correctly configured so that a call to LoadLibrary(“wrun32.dll”)
or loading the shared library “libruncbl.so” succeeds.

4. Place the path to “CVM.jar” in the CLASSPATH environment variable.
Also ensure that the class or JAR (Java Archive) file that contains the
declaration of main is included in the classpath. For JAR files, include
the filenames in the classpath. For class files, include the directory
where the class files reside. Here is a Windows example:

CLASSPATH=d:\cobol7\bin\acuUtilities.jar;d:\cobol7\bin
\CVM.jar;c:\cobol7\JavaProject

For UNIX platforms, use a colon as a delimiter instead of a semicolon.

5. Add the location of the runtime DLLs and shared libraries to the
variable LD_LIBRARY_PATH. For example, on Windows:

LD_LIBRARY_PATH=C:\Program
Files\Acucorp\AcucbI800\AcuGT\bin

On UNIX or Linux, the shared libraries are located in /AcuGT/lib.
6. Do one of the following:

a. Place a copy of the COBOL program to be called in the same
directory as the ACUCOBOL-GT runtime. This would be the
compiled “.acu” file that contains the COBOL program.

b. Pass the fully qualified filename of the COBOL program to be
called to the runtime.

c. Use aconfiguration variable to identify the location of the COBOL
program.

7. Ensure that all configuration options located in the configuration file
are set up correctly. This includes the location of the JRE, preloading
the JVM, and the command line that will be passed to the JVM.

8. The Java class being used to call COBOL must provide a main
function such as this:

public static void main(String[] args)

Calling COBOL from Java m 2-13

2225

10.

11.

The Java program calling COBOL must include an import statement
that imports the ACUCOBOL-GT Java class that is used. Here is an
example:

import com.acucorp.acucobolgt._*;

The Java program calling COBOL must declare two objects: one of
type CVM and one of type CALL_OPTIONS. The following is sample
Java code that shows how to call a COBOL program, passing two
parameters, using the “CVM.class™:

CVM cvm = CVM.GET_INSTANCEQ);
cvm_setErrorsOut(*'/tmp/errfile’);
cvm._setConfigFile('c:/myproject/config™);
cvm._initialize();

CALL_OPTIONS co = new CALL_OPTIONSQ);
co.setOption(‘'debug_method", "1');

Object objInt = new Integer(l);

Object objString = new String("'Test String Parameter™);
Object params[] = {

objint,

objString

};
cvm._callProgram(*'TestJavaToCobol*, params, co);
cvm._cancelProgram(**TestJavaToCobol™);
cvm.shutdown();

The COBOL program being called must provide a Linkage Section that
matches the order and type of the Java parameters passed in the Java
Obiject array. This is done by the COBOL programmer. Here is an
example of a Linkage Section that does this for the above program:

linkage section.
77 test-integer-parameter usage is signed-int.
77 test-string-parameter pic x(21) value spaces.

Security

The CVM class in “CVM.jar” supports the default security manager class in
Java, known as java.lang.SecurityManager. For information on this class or
overriding the default security manager, please refer to the Java API
documentation provided by Sun Microsystems.

2-14 m Working with Java Technology

2.2.2.6 Example of Java calling COBOL

Java program

import com.acucorp.acucobolgt.*;

public static void main(String[] args) throws l0Exception {
try{
CVM cvm = CVM.GET_INSTANCEQ);
cvm.setErrorsOut(*'/tmp/errfile™);
cvm.setConfigFile(*'c:/myproject/config™);
cvm.initialize();

CALL_OPTIONS co = new CALL_OPTIONSQ);
co.setOption(*'debug_method", "1');

int intParam = 1;
Integer objInt = new Integer(intParam);

byte byteParam = "a";
Byte objByte = new Byte(byteParam);

char charParam = "b";
Character objChar = new Character(charParam);

Object params[] = {
objint,
objByte,
objChar
3
cvm.callProgram(*"TestJavaToCobol', params, co);
cvm.cancelProgram(*'TestJavaToCobol™);

objiInt = (Integer)params[0];

objByte = (Byte)params[1];

objChar = (Character)params[2];

System.out._printIn(*'COBOL changed value to " +
objInt.intvalue());

System._out._printIn(*'COBOL changed value to " +
objByte_byteValue();

System.out._printIn(**COBOL changed value to " +
objChar.charValue());

Calling COBOL from Java m 2-15

cvm.shutdown();
} catch (Exception e){
e._printStackTrace();
}
}

COBOL program

identification division.
program-id. TestJavaToCobol.

data division.

working-storage section.

COPY "java.def".

01 status-val pic 9(02) value zero.

linkage section.

01 integer-parameter usage is signed-int.
01 byte-parameter pic X.

01 char-parameter pic X.

procedure division
using integer-parameter, byte-parameter,
char-parameter.

main-logic.
move 3 to integer-parameter.
move "d" to byte-parameter.
move '‘e" to char-parameter.
exit program.

2.2.2.7 Running the Java interoperability sample programs

Your ACUCOBOL-GT distribution includes Java interoperability sample
programs. You will find them in the \acugt\sample\java\ directory where
ACUCOBOL-GT is installed. Following are instructions for setting up and
running the samples.

1. Install the JDK Version 1.4.2 or greater on your machine. A JDK is
required because the Java compiler must build the samples.

2-16 m Working with Java Technology

2. Add “CVM.jar” and the current directory to the CLASSPATH
environment variable. (This is used for Java calling COBOL.) The
“CVM.jar” file is in the installation \bin directory. For instance, in
Windows, your entry should look like this:

CLASSPATH=C:\Program
Files\Acucorp\Acucbl800\AcuGT\bin\CVM_jar;.;

3. Edit the file called “config” and use it as a configuration file for
running the samples.

a. [For COBOL calling Java, use the JAVA_LIBRARY_NAME
variable to specify the Java library to call (“jvm.dIl” or
“libjvm.s0”). On Windows, your entry might look like this:

JAVA_LIBRARY_NAME=jvm.dlI1

You can add a fully qualified path to the name if necessary.

b. Add the options variables, JAVA_OPTIONS and
PRELOAD_JAVA_LIBRARY. For Java calling COBOL,
JAVA_OPTIONS should specify the same CLASSPATH as the
environment like this:

JAVA_OPTIONS=-Djava.class.path=C:Program Files\Acucorp\Acucbl800\AcuGT\bin\CVM.jarj;.;

The variable PRELOAD_JAVA_LIBRARY=1 tells the runtime to
load the JVM upon initialization.

4. Add the location of “jvm.dll” or “libjvm.so” to the PATH environment
variable. On Windows, the entry should look like:

PATH=<additional path info>;C:\Program Files\Java\jdk1.5.0_03\jre\bin\client;

For convenience, it may be helpful to have the Java \bin directory in the
PATH as well. On Windows, that directory might be C:\Program
Files\Java\jdk1.5.0_03\bin.

5. Add the location of the runtime DLLs and shared libraries to the
variable LD_LIBRARY_PATH. For example, on Windows:

LD_LIBRARY_PATH=C:\Program
Files\Acucorp\Acucbl800\AcuGT\bin

On UNIX or Linux, the shared libraries are located in /AcuGT/lib.

Calling COBOL from Java m 2-17

10.

11.

Compile the Java program “JavaCallingCobol.java” with the
command:

Javac JavaCallingCobol.java
Compile “CobolCallingJava.java” with:
jJavac CobolCallingJava.java

Ensure that COPYPATH includes the \acugt\sample\ directory. The
program “CobolCallingJava.cbl” requires the copyfile “java.def.”

Compile the COBOL program “JavaCallingCobol.cbl” with the
command:

ccbl/ccbl32 -x -Ga JavaCallingCobol .cbl

Compile “CobolCallingJava.cbl” with:
ccbl/ccbl32 -x -Ga CobolCallingJava.cbl

Run the Java calling COBOL test:

java -Djava.library._path=<directory runcbl/wrun32 located> JavaCallingCobol cvm

2228

12.

13.

14.

Check the console log output to ensure that the program finished
successfully.

Run the COBOL calling Java test:

runcbl CobolCallingJava
or
wrun32 CobolCallingJava

Check the log file “CVM.log” to ensure that the program finished
successfully.

Building a Shared Library for HP-UX 11.0

Because we do not offer a shared library distribution of ACUCOBOL-GT on
HP-UX 11.0 or before, customers who want to use the Java API feature need
to create the shared library manually. To do so, follow these instructions:

1.

Add the following five lines to the end of SACUCOBOL/lib/Makefile.
Note that the whitespace before the fourth and fifth lines must be tabs,
not spaces.

2-18 m Working with Java Technology

stdlib:/usr/lib:/lib
libruncbl.sl: amain.o $(SUBS)
1d -b $(SHAREDLIB_LDFLAGS) -o libruncbl.sl amain.o $(SUBS) \
$(RUNTIME_LIB) $(LIBS) $(SYS_LIBS)

2. Run “make libruncbl.sl” from the $ACUCOBOL/lib directory.

This creates a file named “libruncbl.sI” that can be loaded by the CVM
class when calling COBOL from Java. You can also add “libruncbl.sl”
to the “clean” target so that “make clean” will remove “libruncbl.sl”.

2.2.3 Using C$SOCKET

If desired, you can facilitate communication between Java and COBOL
programs on a socket level. ACUCOBOL-GT includes a library routine,
known as C$SOCKET, to perform interprocess communication.

When calling COBOL from Java:

1. The COBOL programmer uses the CSSOCKET routine to create a server
socket (op-code 1) and wait for and accept a connection from the Java
client (op-code 2).

2. The Java programmer creates a socket, connects via TCP/IP to the port
of the COBOL program, and writes data to it.

3. Via C$SOCKET, the COBOL program reads the data (op-code 6),
processes it, and returns data to the socket (op-code 5).

Of course, because the data format is totally open and undefined, the COBOL
and Java programmers must agree on a common format.

Following is sample code to demonstrate this capability:

*The following code creates a server socket.
CALL ""C$SOCKET"™ USING AGS-CREATE-SERVER, 8765
GIVING SOCKET-HANDLE-1.

*The following code waits for a connection.
CALL ""C$SOCKET'™ USING AGS-NEXT-READ, SOCKET-HANDLE-1,
TIMEOUT.

Calling COBOL from Java m 2-19

*1f have a connection request. Accept the connection.
CALL "C$SOCKET"™ USING AGS-ACCEPT, SOCKET-HANDLE-1.

*Read data from the connecting socket.

CALL "C$SOCKET'" USING AGS_READ, SOCKET-HANDLE-2,
SOCKET-IN, IN-DATA-LENGTH

GIVING READ-AMOUNT .

*Write outgoing data back to the client socket:
CALL "C$SOCKET" USING AGS-WRITE, SOCKET-HANDLE-2,
SOCKET-OUT, OUT-DATA-LENGTH.

Refer to Appendix | in ACUCOBOL-GT Appendices for information on the
C$SOCKET library routine.

2.2.4 Using ACUCOBOL-GT’s CGl Extensions

ACUCOBOL-GT offers extensions designed to simplify communication
with Web servers using the Common Gateway Interface (CGI) standard.
These CGI extensions can be used to connect a Java program to an
ACUCOBOL-GT program.

You develop a CGI program to act as an interface between the Web server and
the ACUCOBOL-GT program. The CGI program can be written in
ACUCOBOL-GT. (Section 4.5 of A Programmer’s Guide to the Internet
details how you accomplish this.)

From Java, you then open an HTTP connection to the Web server with a
URL. The URL must have a pointer to the CGI program in it, encoded using
CGl encoding.

Through CGI extensions to ACCEPT and DISPLAY syntax, your CGI
program accepts CGl input data from the Java program; launches or
subsumes your ACUCOBOL-GT application; and generates HTML, WML,
or XML output forms from the results—whatever the Java program requires.
The output could be considered a service, it could use SOAP, or it could be
simple markup language output.

2-20 m Working with Java Technology

When you place your CGI program and ACUCOBOL-GT application on the
Web server, along with the necessary configuration, license, and data files,
your ACUCOBOL-GT application becomes immediately available to end
users of the Java application. Conceptually, you’re using CGI to do a remote
procedure call.

Refer to Chapter 4 of A Programmer’s Guide to the Internet for full details
on using ACUCOBOL-GT’s CGI syntax.

2.2.5 Using the Java Native Interface (JNI)

Java programs can also call COBOL programs through a C calling interface
known as the JNI. You can use JNI to call the ACUCOBOL-GT runtime
DLL in Windows or a shared library that contains COBOL code routines in
UNIX.

Windows

To simplify the process of calling an ACUCOBOL-GT program from other
programming languages in a Windows environment, the ACUCOBOL-GT
runtime is encapsulated in a DLL file, “wrun32.dll”.

To call the ACUCOBOL-GT runtime DLL from JNI, you add declarations to
the source program for the DLL’s initialization, shutdown, and call libraries.
Then you call those libraries to initialize the runtime, call the COBOL
program, and shut down when you are finished.

For more information on calling the ACUCOBOL-GT runtime DLL, refer to
Chapter 3 of this guide.

UNIX

To access COBOL from Java in UNIX environments, you can place native
COBOL code routines in shared libraries and call them from your Java
programs via JNI.

Calling COBOL from Java m 2-21

2.2.6 Using Named Pipes

Another way to pass data between COBOL and Java programs is through
named pipes. Named pipes are a method for exchanging information
between two unrelated processes.

Note: To communicate via named pipes, the COBOL and Java programs
must be on the same host machine.

Technically, named pipes are files with known pathnames. Because a named
pipe is associated with a pathname, unrelated processes can open the file to
begin communications with one another. Because a Java program can open
a named pipe just as it would a normal file, no special Java or JNI code is
required. By opening the file for reading, a process has access to the reading
end of the pipe, and by opening the file for writing, a process has access to the
writing end of the pipe. In effect, named pipes allow independent processes
to “rendezvous” their 1/O streams.

Named pipes can be created in two ways—via the command line or from
within a program.

In UNIX, to create a named pipe with the file named “npipe” you can use the
following command on the command line:

% mkfifo npipe

Alternatively, you could create the named pipe from within your program
using:
int mkfifo(const char *path, mode_t mode)

where “path” is the path of the file and “mode_t” is the mode (permissions)
with which the file should be created.

A named pipe can be opened using the open() system call or the fopen()
standard C library function. (Refer to Chapter 6 of this guide for
information on interfacing ACUCOBOL-GT programs to C routines.)

2-22 m Working with Java Technology

As with normal files, if the call succeeds, you get either a file descriptor or a
“FILE” structure pointer, depending on how you opened the file. You can
then use this information for reading or writing, depending on the parameters
you passed to open() or fopen().

Reading from and writing to a named pipe are very similar to reading from
and writing to a normal file. You can use the standard C library function calls
read() and write().

Named pipes can also be used on Windows systems. You create Windows
pipes with the CreateNamedPipe() API. You can then use the OpenFile()
API to access the other end of the newly created named pipe.

Although named pipes can be very effective for communicating between
COBOL and Java applications, bear in mind the following issues:

< Named pipes work only for processes on the same host machine.
* Named pipes can be created only in the local file system of the host.
« Named pipe data is a byte stream, and no record identification exists.

« Named pipes provide only a half-duplex flow of data. They are also
known as “fifos” for their method of “first in, first out” communication.
To establish full-duplex communication, you must create and manage
two pipes, which can be complicated and result in file deadlocks if you
are not careful.

2.2.7 Using AcuXUI

AcuXUI is a cross-platform user interface engine that allows graphical
ACUCOBOL-GT programs to exhibit their user interface on UNIX and
Linux platforms as well as Windows platforms.

Graphical controls—such as windows, entry fields, and radio buttons—are
described in the COBOL program with ACUCOBOL-GT. However, with
AcuXUI, rather than directing the Windows operating system to create the
controls, the runtime directs the Java Runtime Environment (JRE) to create

Calling Java from COBOL = 2-23

the controls on a Java desktop. For this reason, the controls can run on most
operating systems, including UNIX, Linux, and Macintosh. The Java
desktop can also run on Windows.

With AcuXUI, you do not directly execute your COBOL program using the
runtime, “runcbl” or “wrun32.exe”. Rather you run your graphical
application by issuing a Java command on the server command line
indicating the AcuXUI Java archive (JAR) file and resources to use to run the
COBOL program. Here is an example command line:

jJava com.acucorp.acuxui .AcuXUl --acucobolgt C:\acucorp\AcucbI8\AcuGT\bin\wrun32 -d -c
V:\Dev\Source\Config\cblconfig -1 -e errorfile V:\Dev\Source\programl.acu

Refer to ACUCOBOL-GT User Interface Programming Guide, Chapter 11,
for more information on using AcuXUI.

2.2.8 Using AcuXDBC

If you want to access COBOL Vision data from a Java Database Connectivity
(JDBC)-enabled application, you can use AcuXDBC Enterprise Edition.
AcuXDBC is a data management system, designed to integrate
ACUCOBOL-GT data files into a relational database-like environment. In
addition to database-like features, the enterprise editions of AcuXDBC can
give users of JDBC-enabled Java applications seamless access to
ACUCOBOL-GT Vision files.

Refer to the AcuXDBC User’s Guide for more information.

2.3 Cadlling Java from COBOL

To call Java from your COBOL application, you can:

» Call the C$JAVA library routine. You can use configuration variables
to preload the JVM and pass command-line options to it.

* Use the C$SOCKET library routine to facilitate interprocess
communication via sockets

» Call the Java Virtual Machine (JVM) DLL or shared library

2-24 m Working with Java Technology

e Use the C$SYSTEM library routine to send a Java command line to
the host machine

e Use named pipes to pass data between your COBOL and Java
applications if they reside on the same host machine

2.3.1 Calling the C$JAVA Routine

An easy, effective way to call Java from COBOL is via the C$JAVA library
routine. A call to C3JAVA causes the JVM to be loaded (if it is not already)
and the specified Java class to be loaded.

The COBOL statement used to make a call to Java from COBOL has the
following syntax:

CALL ""C$JAVA™
USING OP-CODE, CLASS-NAME, METHOD-NAME, METHOD-SIGNATURE,
FIELD-INT, FIELD-RETURN
GIVING STATUS-VAL.

For example:

CALL "C$JAVA"
USING CJAVA-NEW, "acuCobolGT/CAcuCobol™, (V"
GIVING OBJECT-HANDLE.

The default CALL “C$JAVA” statement is designed to call a Java method. It
requires a class name fully qualified with the package name if necessary. It
also requires a method name and a method signature describing the parameter
types and return types. (See section 2.3.1.1 for more information on the
method signature.) After the method signature, pass the parameters that the
method requires, and finally pass a parameter to hold the Java return value
from the method. If the method is void, no return parameter is required. A
giving value is returned to pass any other error code that may have occurred.

Refer to Appendix | in ACUCOBOL-GT Appendices for complete
information on the C$JAVA library routine and its op-codes. Section 2.3.1.8
contains information about configuration variables related to the use of the
C$JAVA routine.

Calling Java from COBOL m 2-25

2.3.1.1

Note: To call Java from COBOL, HP-UX users must relink the runtime so
that it is statically linked to “libjvm.sI”. For instructions, refer to section
section 2.3.1.12.

Method signatures

Parameter signatures are used by the JNI functions to get the method ID of a
method in a Java class so that it can be called by non-Java programs. Two
examples are “(1)I” and “(Z2)Z”. The first one describes a Java method taking
an int parameter and returning an int value. The second is a Java method
taking a boolean parameter and returning a boolean value. For a Java method
like this:

int MyJavaMethod(boolean paraml, int param2, long
param3, double param4)

The signature would look like this:
(Z1JD)1.

The return value comes last after the close parenthesis. “Z” was chosen to
represent boolean because “B” is used to describe a byte data value.

Section 2.3.1.2 shows a list of the parameter types supported by
ACUCOBOL-GT. An “L” represents some object type. “J” is used for longs.
Everything else in Java is an object (strings, arrays, etc.), and the signatures
look like this:

Object Types Signature

String Ljava/lang/String
Object Ljava/lang/Object
Array of strings [Ljava/lang/String

2-26 m Working with Java Technology

Example syntax is shown in the following table:

Signature Description

0\% Java-defined void method
taking no parameters

(4] Takes boolean, returns int

(zISsDJ)z Takes boolean, int, short,

double, long, returns boolean

(B[I[HX Takes byte, long array, int
array, returns string

(XLjava/lang/Object;)Ljava/lang/String; | Takes string, object, returns
string

(©)cC Takes char, returns char

Comments on syntax

The type for Java Strings in a method signature can be either “Ljava/lang/
String;” or “X”, but there is no need to specify length since the convert data
routine will determine length from the COBOL declaration of the particular
variable. So an appropriate method_signature could be “Ljava/lang/
String;Ljava/lang/String;L java/lang/String;” or “XXX” (both mean the same
thing), but “X3X4X5” will be treated as three Strings and the digits will be
ignored.

The method_signature for a data item that will be converted to a java char
type is “C” not “X” even though the COBOL variable is declared PIC X —the
important consideration is how it is declared in Java. If it is declared as a
String, use “X”, if it is declared as char, use “C”.

The use of JNI functions for String conversion require the use of C or null
terminated strings. If you need 10 characters for your string, then declare the
PIC X item with a length of at least 11 and ensure the value for the last
position is a low value. If you declare the string as 10 and use all ten positions
for character data, the 10th item will be overwritten during conversion.

Calling Java from COBOL m 2-27

2.3.1.2

Finding a method signature

A Java utility that comes with the Java JRE produces all the parameter
signatures of a given JAR file or class automatically so that it is not necessary
to determine the signature manually. Use this utility, called “javap.exe”, to
get the exact signature to use with your CALL “C3$JAVA” statement.

Here is the output from running “javap” on “acuUltilities/AcuJavaTest”. The
part following the word “Signature” could be cut and pasted into a CALL
“C$JAVA” for a given method.

D:\cobol7\bin>javap -s acuUtilities/AcuJavaTest
Compiled from "AcuJavaTest.java"
public class acuUtilities.AcuJavaTest extends
Java.lang.Object{
public acuUtilities.AcuJavaTest();
Signature: QV
public static void main(Java.lang.String[]) throws
Java.io. I0Exception;
Signature: ([Ljava/lang/String;)V
public static int executeCommand(java.lang.String);
Signature: (Ljava/lang/String;)l
}

Supported parameter types

Following is a list of Java parameter types that are supported by
ACUCOBOL-GT:

V — void

Z - boolean

B - byte

C - char

S - short

I - iInt

J - long

F - float

D - double

X - string
LString;
Ljava/lang/String;
Ljava/lang/Object;

[Z - boolean array

2-28 m Working with Java Technology

[B - byte array

[C - char array

[S - short array

[1 - int array

[J - long array

[F - float array

[D - double array

[X - string array

[LString; - string array
[Ljava/lang/String; - string array
[Ljava/lang/Object; - object array

2.3.1.3 Creating and using Java objects in COBOL

Using the C$JAVA routine, you can create new Java objects in COBOL,
call methods on Java objects, and destroy Java objects. The following
sections describe how.

Creating a new Java object

Create a new Java object using the CJAVA-NEW op-code to the CSJIAVA
routine. Be sure to pass a fully qualified package/class name and a
constructor signature. Use the GIVING statement to return the object handle.
Here is an example of how to create a new Java object:

CALL "C$JAVA" USING CJAVA-NEW, **acuCobolGT/CAcuCobol™, "QV"
GIVING OBJECT-HANDLE.

Calling methods on Java objects

You can call Java methods as static methods, virtual methods, or non-virtual
methods by using op-codes 8-10 of the C$JAVA routine, or you can call a
Java main method using op-code 29. If you do not use an op-code when you
call C$JAVA, the default runtime behavior is to try to call the method
statically, and then virtually by trying to create an object using a default
constructor. A non-virtual method is called on the specific object that is
being used. A virtual method can be called on a method that is inherited from
one of the object’s superclasses. Here are examples of each of the types of
calls.

Calling Java from COBOL = 2-29

Default:

CALL "C$JAVA™ USING "acuCobolGT/CAcuCobol™,
"CobolCallingJavaChar”, *"(C)C", FIELD-CHAR, FIELD-CHARRET
GIVING STATUS-VAL.

Virtual:

CALL "C$JAVA"™ USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol*, "CobolCallingJavalLong", "(J)J", FIELD-LONG,
FIELD-LONGRET GIVING STATUS-VAL.

Non-virtual:

CALL "C$JAVA"™ USING CJAVA-CALLNONVIRTUAL, OBJECT-HANDLE,
"acuCobolGT/CAcuCobol™, "CobolCallingJavaBoolean", "(2)Z",
FIELD-BOOL, FIELD-BOOLRET GIVING STATUS-VAL.

Static:

CALL "C$JAVA™ USING CJIAVA-CALLSTATIC, "acuCobolGT/CAcuCobol",
"CobolCallingJavaDouble™, (D)D", FIELD-DOUBLE,
FIELD-DOUBLERET GIVING STATUS-VAL.

Main:

CALL "C$JAVA" USING CJAVA-CALLJAVAMAIN, '‘CobolCallingJava',
"StrParaml",
"StrParam2', "StrParam3', ''StrParam4'™ GIVING STATUS-VAL.

This example calls a Java main method with the following signature:
public static void main(String[] args);

Additional examples:

CALL "C$JAVA™ USING CJIAVA-CALLNONVIRTUAL, OBJECT-HANDLE,
""acuCobolGT/CAcuCobol™, *""CobolCallingJavaVoid”, "(QV" GIVING
STATUS-VAL.

CALL "C$JAVA™ USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol™, "CobolCallingJavaStringV", "(X)X", FIELD-STRING,
FIELD-STRINGRET GIVING STATUS-VAL.

2-30 m Working with Java Technology

2.3.1.4

Destroying Java objects

To destroy a Java object, use C$JAVA's CJAVA-DESTROY op-code, and
pass a valid object handle:

CALL "C$JAVA™ USING CJAVA-DESTROY, OBJECT-HANDLE GIVING
STATUS-VAL.

Creating and using Java arrays in COBOL

You can use the C$JAVA routine to create and pass Java arrays of primitive
types, objects, and strings; to get and set array elements; to clear arrays;
and to convert COBOL tables to Java arrays and vice versa.

Creating and passing arrays of primitive types

To create Java arrays, use the op-code CJAVA-CREATEARRAY and pass in
the type of the array and the size of the array. Return the array handle through
the GIVING statement.

In the example below, an array of ints is created, and ARRAY-SIZE is
declared USAGE IS SIGNED-INT VALUE 10. An object method that
would take this array would have a parameter in its signature of type [l such
as “([N1”. The primitives array types are documented in section 2.3.1.1.

CALL "C$JAVA™ USING CJAVA-CREATEARRAY, CJAVA-INTARRAY,
ARRAY-SIZE GIVING ARRAY-HANDLE.

Creating and passing arrays of objects

You can create an object array as shown here:

CALL "C$JAVA™ USING CJAVA-CREATEARRAY, CJAVA-OBJECTARRAY, 10
GIVING ARRAY-HANDLE.

In this case, the array consists of an array of object handles. Here is an
example of calling a Java method that takes an array of objects:
CALL "C$JAVA"™ USING CJAVA-CALL, OBJECT-HANDLE, 'acuCobolGT/

CAcuCobol™, "CobolCallingJavaObjectArray”, "([Ljava/lang/
Object;)X", ARRAY-HANDLE, FIELD-STRINGRET GIVING STATUS-VAL.

Calling Java from COBOL m 2-31

Creating and passing arrays of strings

Even though strings in Java are objects, they are treated separately for the
convenience of using them with PIC X tables. Here is an example of creating
a string array:

CALL "C$JAVA™ USING CJIAVA-CREATEARRAY, CJAVA-STRINGARRAY, 10
GIVING ARRAY-HANDLE.

Here are examples of setting a string array element. In this example,
STRING-TABLE is declared PIC X(20) OCCURS 10.

MOVE ''99999999999999999999" TO STRING-TABLE(10)

CALL "C$JAVA™ USING CJIAVA-SETARRAYELEMENT, ARRAY-HANDLE, 1,
STRING-TABLE(10), GIVING STATUS-VAL.

This example demonstrates how to call a Java method that takes an array of
strings as a parameter:

CALL "C$JAVA™ USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol™, "CobolCallingJavaStringArray”, "([Ljava/lang/
String;)X", ARRAY-HANDLE, FIELD-STRINGRET GIVING STATUS-VAL.

Getting and setting array elements

You set array elements using the CJAVA-SETARRAYELEMENT op-code
and passing in an array handle, the position in the array to set, and the value
to set. In the following example, the first element of an array is set with the
first value from an integer table that is USAGE IS SIGNED-INT OCCURS
10.

CALL "C$JAVA"™ USING CJAVA-SETARRAYELEMENT, ARRAY-HANDLE, 1,
INT-TABLE(1), GIVING STATUS-VAL.

Getting array elements is done using a similar syntax with the op-code
CJAVA-GETARRAYELEMENT. This call requires an array handle, the
position in the array to get, and the variable into which the array value will be
placed. Here is an example:

CALL "C$JAVA™ USING CJIAVA-GETARRAYELEMENT, ARRAY-HANDLE, 5,
INT-TABLE(1), GIVING STATUS-VAL.

In this case, we are getting element 5 from the array and placing it in the first
element of an integer table.

2-32 m Working with Java Technology

Getting and setting array regions

You set array regions using the CJAVA-SETARRAYREGION op-code. This
op-code takes a Java array object copies the elements from a COBOL table
data item into a specified range. Getting array regions is done using a similar
op-code, CJAVA-GETARRAYREGION. This op-code takes a Java array
object, gets the specified range of elements, and copies them into a COBOL
table data item.

Clearing arrays

Clearing arrays is straightforward. Use the op-code CJAVA-CLEARARRAY
and pass in the array handle of the array to be cleared, as shown:

CALL "C$JAVA™ USING CJIAVA-CLEARARRAY, ARRAY-HANDLE GIVING
STATUS-VAL.

Implicit COBOL table/Java array conversion

With ACUCOBOL-GT, it is possible to pass a COBOL table directly to a
method that requires a Java array. The contents of the table are automatically
converted to an array of the type the Java method expects. When the method
completes, the contents of the table are updated with what is in the array. You
do not have to explicitly convert the COBOL table to a Java array and convert
it back again. No special op-code is required to do the conversion. When the
runtime sees the array type in the signature, it tries to convert that table
parameter to an array. Here is an example of a table being passed to a Java
method that takes an array parameter:

CALL "C$JAVA™ USING CJAVA-CALL, OBJECT-HANDLE, "“acuCobolGT/

CAcuCobol™, "CobolCallingJavalntArray™, "([1)I", INT-GROUP,
FIELD-RET GIVING STATUS-VAL.

In the above example, INT-GROUP is declared:

01 INT-GROUP.
03 INT-DATA occurs 10 times.
05 INT-ELEMENT signed-int.

The values for INT-GROUP are set as follows:

MOVE 1111 to INT-ELEMENT(1)
MOVE 2222 to INT-ELEMENT(2)
MOVE 3333 to INT-ELEMENT(3)

Calling Java from COBOL = 2-33

2.3.1.5

MOVE 4444 to INT-ELEMENT(4)
MOVE 5555 to INT-ELEMENT(5)

It should be noted that the type of the table passed into the Java method
should be the appropriate type, that is, data of the same element size (in bits).
The size of the Java array will be the number of elements in the table.

Explicit COBOL table/Java array conversion

With ACUCOBOL-GT, you can also use C$JAVA op-codes to explicitly
convert Java arrays to COBOL and COBOL tables to Java. This
functionality gives you more precise control over the conversion process.

The op-code to convert a Java array to a table is
JAVA-CONVERTARRAYTOTABLE. Here is an example of an array of
Java ints being converted to a USAGE SIGNED-INT OCCURS 10 COBOL
table:

CALL "CS$JAVA"™ USING CJAVA-CONVERTARRAYTOTABLE, ARRAY_HANDLE,
10, O, INT-TABLE(1) GIVING STATUS-VAL.

The call takes the array handle, the number of elements to convert, the
starting element position in the array, and the COBOL table variable in which
to place the converted array.

To explicitly convert a COBOL table to Java, you can use the C$JAVA
op-code CJAVA-CONVERTTABLETOARRAY. Here is an example of a
call that converts a table to an array:

CALL "C$JAVA™ USING CJIAVA-CONVERTTABLETOARRAY, INT-TABLE(1),
10, O, ARRAY-HANDLE, GIVING STATUS-VAL.

In this case, the call requires the COBOL table from which the values are

taken, the number of elements, the position of the first element, and the
handle of the destination array.

Using Java logging from COBOL

With the C$JAVA routine, you can also log Java messages and configure
the Java log.

2-34 m Working with Java Technology

Logging messages

If you want to log Java messages from a COBOL program, use the
CJAVA-LOGMESSAGE op-code as follows:

CALL "C$JAVA™ USING CJIAVA-LOGMESSAGE, "Message to log™.

The advantage of using the Java log is that it is thread-safe, and all of the
messages from a given thread of execution are written to the same log
whether that thread is executing COBOL or Java. Also, logs in Java are
highly configurable. Note that the sample log output shown below is
formatted to report date, time, class, method, and log level before the

message.

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> COBOL LOG --> Entered

TestJavaToCobol

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> COBOL LOG --> Exiting

TestJavaToCobol

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
exit.code = 0, signal.number = 0

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CvM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CvM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
11/30/04 2:13:57 PM acuCobolGT.CAcuCobol cblLog
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CvM
CobolCallingJavaReentrantTest)V

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
exit.code = 0, signal.number = 0

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CvM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM

acu_cobol INFO --> call.error = 0,

acu_cobol INFO --> exit message =
cblLog INFO --> Call error: O

cblLog INFO --> Exit code: O

cblLog INFO --> Signal number: 0
cblLog INFO --> Exit message:

INFO --> CobolCallingJavaTest: Complete
acu_cobol INFO -->

acu_cobol INFO --> call.error = 0,

acu_cobol INFO --> exit message =
cblLog INFO --> Call error: O
cblLog INFO --> Exit code: 0
cblLog INFO --> Signal number: O
cblLog INFO --> Exit message:

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_shutdown INFO --> shutdown called -

shutdown param: O

11/30/04 2:13:57 PM acuUtilities.AcuJavaTest main INFO --> shutdown complete
11/30/04 2:13:57 PM acuUtilities.AcuJavaTest main INFO --> calling cobol end

Calling Java from COBOL = 2-35

Configuring the Java log

To configure the Java log created with the CJAVA-LOGMESSAGE op-code,
modify the “logging.properties” file that is located in the runtime directory.
The output location of the log (console or file) can be specified, as well as the
log level, for example, INFO or SEVERE. Below is a sample of the
“logging.properties” file:

setting to limit messages printed to the console.
-level= INFO
#._level= FINEST

HHHHHHHH A
Handler specific properties.

Describes specific configuration info for Handlers.

HH B T R R R

default file output is in user®s home directory.
#java.util._logging.FileHandler._pattern = %h/java%u.log
Java.util_logging.FileHandler_pattern = CVM.log
Java.util._logging.FileHandler.limit = 500000
Java.util._logging.FileHandler.count = 1
jJava.util.logging.FileHandler.append = false
Java.util._logging.FileHandler.level = INFO
#java.util._logging.FileHandler.formatter =
Java.util_logging.XMLFormatter
#java.util.logging.FileHandler.formatter
jJava.util._logging.SimpleFormatter
jJava.util.logging.FileHandler.formatter =
com.acucorp.acucobolgt. logFormat

Limit the message that are printed on the console to INFO and
above.

#java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.level = INFO
#java.util._logging.ConsoleHandler.formatter =
jJava.util._logging.SimpleFormatter
Java.util_logging.ConsoleHandler._formatter =
com.acucorp.acucobolgt. logFormat

HHHHH
Facility specific properties.

Provides extra control for each logger.
W T

2-36 m Working with Java Technology

2.3.1.6

For example, set the com.acucorp.acucobolgt.CVM logger to
only log SEVERE

messages:

#com.acucorp.acucobolgt.CVM. level = SEVERE
com.acucorp.acucobolgt.CVM.level = INFO
#acuCobolGT.CAcuCobol . level = SEVERE
acuCobolGT.CAcuCobol . level = INFO
#acuUtilities.AcuJavaTest.level = SEVERE
acuUtilities.AcuJavaTest.level = INFO

Alternate logging

Rather than using the CJAVA-LOGMESSAGE op-code, COBOL developers
could use the C$JAVA routine to call log4j from COBOL. log4j is an open
source tool developed for putting log statements into a Java application. It
provides a robust, reliable and easy to implement framework for logging Java
applications for debugging and monitoring purposes.

This form of logging should only be considered if you are running a Java
application server and AcuConnect on the same machine and if the COBOL
program already uses C$JAVA routine.

Creating and using a JDBC ResultSet

With ACUCOBOL-GT, there are two ways to create and use a Java Database
Connectivity (JDBC) ResultSet in COBOL.:

e Using aclass called DBConnect that is included in ACUCOBOL-GT’s
COBOL Virtual Machine Java archive file, “CVM.jar”. (See section
2.2.2.1 for more information on ACUCOBOL-GT’s CVM class.)

e Using the CJAVA-DBCONNECT and CJAVA-DBQUERY op-codes
to the CSJAVA routine

Using DBConnect class to get a ResultSet object

ACUCOBOL-GT’s “CVM.jar” package contains a class for connecting to
JDBC data sources, and querying those data sources for ResultSet objects.
The class is called DBConnect.

Calling Java from COBOL m 2-37

The DBConnect class has two public static methods called “connect” and
“query”. The “connect” method takes two string parameters: a JDBC driver
string, and a JDBC connection string, and returns a java.sql.Connection
object. The “query” method takes two parameters: a query string, and a
java.sgl.Connection object, and returns a ResultSet object. The ResultSet
object can then be used to access and update the data.

Here is an example of using the DBConnect class in COBOL.:

MOVE "'sun.jdbc.odbc.JdbcOdbcDriver™ to DB-DRIVERSTR.

MOVE "jdbc:odbc:DefaultDir=D:\cobol7\bin;Driver={Microsoft
Text Driver (*.txt; *.csv)};Driverld=27;UID=admin;Initial
Catalog=D:\cobol7\bin" to DB-CONNECTSTR.

MOVE "SELECT * FROM dataFile.csv" to DB-QUERY.

CALL "C$JAVA" USING CJAVA-NEW, "java/lang/Object™, "QV"
GIVING DB-CONNECT.

CALL "C$JAVA" USING CJAVA-NEW, "java/lang/Object”, "QV"
GIVING DB-RESULTSET.

CALL "C$JAVA" USING '‘com/acucorp/acucobolgt/DBConnect"”,
"connect", "(XX)Ljava/sql/Connection;", DB-DRIVERSTR,
DB-CONNECTSTR, DB-CONNECT GIVING STATUS-VAL.

CALL "C$JAVA" USING '‘com/acucorp/acucobolgt/DBConnect”,
"query", "(XLjava/sql/Connection;)Ljava/sql/ResultSet;",
DB-QUERY, DB-CONNECT, DB-RESULTSET GIVING STATUS-VAL

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet”, "next”, "()Z", FIELD-BOOLRET GIVING STATUS-VAL.

CALL "CS$JAVA"™ USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet”, "getRow", "I, FIELD-RET GIVING STATUS-VAL.

MOVE 1 to FIELD-INT.
CALL "C$JAVA™ USING CJAVA-CALL, DB-RESULTSET, "java/sql/

ResultSet”, "getString"”, "(1)X", FIELD-INT, FIELD-STRINGRET
GIVING STATUS-VAL.

2-38 m Working with Java Technology

CALL "C$JAVA™ USING CJIAVA-DELETE, DB-CONNECT GIVING
STATUS-VAL.

CALL "C$JAVA™ USING CJAVA-DELETE, DB-RESULTSET GIVING
STATUS-VAL.

In this example, the JDBC driver used was the jdbc:odbc bridge that ships
with the Java SDK. The ODBC driver is the Microsoft Text driver, and a text
CSV file was used as the data source. Two new object handles are created to
contain the Connection and ResultSet handles. The ResultSet method “next”
is called to move to the first row, the “getRow” method is called to find the
current row number, and the “getString” method is called to get the value in
column one which happens to be of type string. Finally, the two objects are
deleted.

Using op-codes to get a ResultSet object

Another way to access JDBC ResultSet objects is to issue a call to the
C$JAVA routine using the op-codes CJAVA-DBCONNECT and
CJAVA-DBQUERY. To do this, you must include the “java.def” file that
comes with ACUCOBOL-GT in the COBOL program’s working storage
section. “java.def” is located in the sample/def directory where you installed
ACUCOBOL-GT.

This method is somewhat more efficient than using the CVM’s DBConnect
class, because the Connection and ResultSet handles do not have to be
created prior to being used. Here is an example of using the op-codes:

MOVE *'sun.jdbc.odbc.JdbcOdbcDriver™ to DB-DRIVERSTR

MOVE "jdbc:odbc:DefaultDir=D:\\cobol7\\bin;Driver={Microsoft
Text Driver (*.txt; *.csv)};Driverld=27;UlD=admin;Initial
Catalog=D:\\cobol7\\bin" to DB-CONNECTSTR

MOVE ""SELECT * FROM dataFile.csv" to DB-QUERY.

CALL "C$JAVA"™ USING CJAVA-DBCONNECT, DB-DRIVERSTR,
DB-CONNECTSTR GIVING DB-CONNECT.

CALL ""C$JAVA"™ USING CJAVA-DBQUERY DB-QUERY, DB-CONNECT GIVING
DB-RESULTSET.

Calling Java from COBOL = 2-39

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, “java/sql/
ResultSet”, "next”, "()Z", FIELD-BOOLRET GIVING STATUS-VAL.

CALL "C$JAVA™ USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet”, "getRow", "I, FIELD-RET GIVING STATUS-VAL.

MOVE 1 to FIELD-INT.

CALL "C$JAVA™ USING CJAVA-CALL, DB-RESULTSET, "java/sqgl/
ResultSet”, "getString"”, "(1)X", FIELD-INT, FIELD-STRINGRET
GIVING STATUS-VAL.

CALL "C$JAVA™ USING CJAVA-DELETE, DB-CONNECT GIVING
STATUS-VAL.

CALL "C$JAVA™ USING CJIAVA-DELETE, DB-RESULTSET GIVING
STATUS-VAL.

2.3.1.7 Java Remote Method Invocation (RMI) interoperability

The following sections describe how to use the ACUCOBOL-GT runtime
class, CVM, as a RMI client and RM1 server. They also describe how to
use the C$JAVA routine to connect to an RMI server.

Using the runtime as a Java RMI Client

ACUCOBOL-GT’s “CVM.jar” package contains a class for connecting to an
RMI server and returning an object through which remote methods can then
be called on the RMI server. The class is called RemoteConnect. (See
section 2.2.2.1 for more information on the CVM class.)

The RemoteConnect class has a public static method called
“CreateRemoteObject” that takes two strings and an int as parameters and
returns a java.rmi.Remote object handle. The strings it requires are the host
name of the server, the name of the RMI server object, and the int is the port
number on which the server is listening. Once the remote object handle has
been returned, remote methods on that object can be called in the same way
as methods as any other Java object handle. Here is an example of using the
RemoteConnect class in COBOL:

CALL "C$JAVA" USING CJAVA-NEW, "java/lang/Object™, "QV"
GIVING REMOTE-OBJ.

2-40 m Working with Java Technology

CALL "C$JAVA™ USING '"com/acucorp/acucobolgt/RemoteConnect”,
""CreateRemoteObject™, "(XXI)Ljava/rmi/Remote;", "localhost",
"TestRemotelnterface™, PORT-NUMBER, REMOTE-OBJ GIVING
STATUS-VAL.

CALL "C$JAVA"™ USING CJAVA-CALL, REMOTE-OBJ, “acuUtilities/
TestRemotelnterface', "TestRemoteMethod", "(X",
FIELD-STRINGRET GIVING STATUS-VAL.

CALL "C$JAVA™ USING CJAVA-DELETE, REMOTE-OBJ GIVING
STATUS-VAL.

In this example, an instance of the object is created, and then the method
“CreateRemoteObject” in RemoteConnect is called. In this case, the host is
localhost, and the name of the remote interface is “TestRemotelnterface”.
“TestRemotelnterface” extends Remote and has one remote method called
“TestRemoteMethod”. The port number is “0” here. Passing in “0” causes
the method to look for the object on the default RMI port, 1099. Note that for
this to work, the RMI registry needs to have been previously started using the
command “start rmiregistry” from the command line, and then the server
object must be registered with the RMI registry.

Using an op-code to connect to an RMI Server

Itis also possible to connect to an RMI server by calling the CSJAVA routine
with op-code CJAVA-NEWREMOTEOBJECT. It is very much like the
CJAVA-NEW op-code, but instead of creating an object in the local JVM, it
creates an instance of a remote object. This op-code takes three parameters:
the host name, the server name, and the port number. Here is an example of
the call:

CALL "C$JAVA"™ USING CJAVA-NEWREMOTEOBJECT, "localhost",
"TestRemotelnterface', PORT-NUMBER GIVING REMOTE-OBJ.

CALL "C$JAVA"™ USING CJAVA-CALL, REMOTE-OBJ, "acuUtilities/
TestRemotelnterface', "TestRemoteMethod", "(X",
FIELD-STRINGRET GIVING STATUS-VAL.

CALL "C$JAVA™ USING CJIAVA-DELETE, REMOTE-OBJ GIVING
STATUS-VAL.

Calling Java from COBOL m 2-41

Using the runtime as a Java RMI Server

To create and use a Java RMI server object, you must first create a class for
the object. This takes two steps. First, you must create an interface that
extends the Java interface “java.rmi.Remote”. Not only does the interface
need to extend Remote, all the methods that can be called remotely must
throw the RemoteException. Second, you must write a class that implements
the interface. Once this is done, you can create an RMI server object and
register it for use with the Java RMI Registry.

Here is a very simple illustration of this concept. First, an interface must be
created in Java:

public interface TestRemotelnterface extends Remote {
String TestRemoteMethod() throws RemoteException;
}

Next, a class that implements the TestRemotelnterface must be written. In
the case of the methods of this class, you do not need to throw
RemoteException, because the interface method declarations have that. Here
is an example of such a class in Java:

public class TestRMIServer implements TestRemotelnterface {
public TestRMIServer() {}

public String TestRemoteMethod() {

return "TestRemoteMethod successfully called.";
}

}

Once this has been written, compiled, and packaged, you can register the
server with the RMI registry. First, you must start the RMI registry on the
host that will be the RMI server. You can do this using the command “start
rmiregistry”. Next, you can use a COBOL program to start the RMI server.
In this COBOL program, make a call to the C$JAVA routine with the op-code
CJAVA-STARTREMOTESERVER.

Here is an example of the code required to start an RMI server which uses the
interface and server classes shown above:

CALL "CS$JAVA"™ USING CJAVA-NEW, "acuUtilities/TestRMIServer"”,
"OV" GIVING REMOTE-SERVER.

2-42 m Working with Java Technology

2.3.1.8

23.1.9

CALL "C$JAVA"™ USING CJIAVA-STARTREMOTESERVER, REMOTE-SERVER,
"TestRemotelnterface™, PORT-NUMBER GIVING STATUS-VAL.

The first step is to create the server object. The second step is to start the
server. CJAVA-STARTREMOTESERVER takes the remote server object
handle just created, the name of the remote server to register, and the port
number on which the server will listen. Once the server has started, that
instance of the runtime that started it will block and remain running, listening
for requests for the server from RMI clients.

Handling Java exceptions

The C$JAVA library routine includes two op-codes for handling exceptions
that are thrown by Java: CJAVA-EXCEPTIONOCCURRED and
CJAVA-GETEXCEPTIONOBJECT.

CJAVA-EXCEPTIONOCCURRED is returned by any call to C$JAVA that
returns a status value, but during which an exception was thrown.

CJAVA-GETEXCEPTIONOBJECT returns the exception object of the last
exception thrown. Once the exception object is returned, you can call any of
the methods on the exception object that are documented in the Java
documentation.

In addition, exception information is now written to stderr or the error file
specified by the “-le” command line option when a Java exception occurs.
This information is formatted like a normal Java stack trace.

Releasing memory

The Java Virtual Machine (JVM) doesn’t have an explicit method to allocate
and free memory. For this reason, if the COBOL program gets a reference to
an object f