
User’s Guide

AcuConnect®
Version 8.1.3

Micro Focus
9920 Pacific Heights Blvd.

San Diego, CA 92121
858.790.1900

© Copyright Micro Focus. 1998-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-UG-100501-AcuConnect-8.1.3

Contents

Chapter 1: Introduction
1.1 Overview.. 1-2

1.1.1 Distributed Processing with AcuConnect.. 1-2
1.1.2 Thin Client Technology with AcuConnect.. 1-4

1.2 Platform Support.. 1-5
1.2.1 Distributed Processing Platform Support .. 1-6
1.2.2 Thin Client Platform Support .. 1-6

1.3 How AcuConnect Works ... 1-7
1.3.1 Distributed Processing ... 1-7
1.3.2 Thin Client ... 1-9

1.4 Licensing.. 1-10
1.5 Security .. 1-11
1.6 Technical Services ... 1-13

Chapter 2: The AcuConnect Server
2.1 Getting Started with AcuConnect .. 2-2
2.2 Installing AcuConnect ... 2-2

2.2.1 Installing AcuConnect on a UNIX Server ... 2-3
2.2.2 Installing AcuConnect on a Windows Server.. 2-4
2.2.3 Installing AcuConnect in Thin Client on a VMS Server....................................... 2-7
2.2.4 Running AcuConnect in Thin Client on HP MPE/iX Systems 2-8
2.2.5 Installing the ACUCOBOL-GT Runtime.. 2-9
2.2.6 Relinking the Server Runtime in Distributed Processing 2-10

2.3 Establishing System Security... 2-10
2.3.1 Windows permissions.. 2-11
2.3.2 UNIX ownerships and permissions ... 2-12
2.3.3 The Server Access File .. 2-14
2.3.4 Access Record Composition.. 2-16
2.3.5 Using the Access File Manager ... 2-19

2.3.5.1 Starting the access file manager .. 2-20
2.3.5.2 Creating or opening an access file... 2-20
2.3.5.3 Adding an access record.. 2-21
2.3.5.4 Removing an access record ... 2-23
2.3.5.5 Modifying an access record... 2-24
2.3.5.6 Displaying an access record .. 2-25

2.4 Creating a Server Alias File in Thin Client ... 2-26

Contents-ii
2.4.1 Adding aliases..2-27
2.4.2 Removing aliases ...2-28
2.4.3 Modifying aliases...2-29
2.4.4 Displaying aliases ..2-30

2.5 Installing Server Programs...2-30
2.6 Starting AcuConnect ..2-30

2.6.1 Starting AcuConnect on a UNIX Server..2-31
2.6.2 Starting AcuConnect on a Windows Server ..2-35
2.6.3 Starting AcuConnect in Thin Client on MPE/iX ...2-35
2.6.4 Starting AcuConnect in Thin Client on a VMS Server2-36
2.6.5 Starting AcuConnect at System Startup...2-36

2.7 AcuConnect Connection Logic ..2-37
2.7.1 Passwords...2-38
2.7.2 Exiting the Access Manager ..2-39

Chapter 3: Server Configuration
3.1 Configuring the AcuConnect Server..3-2
3.2 Configuring the Environment ..3-2

ALIAS_FILE_IS_XML..3-2
3.3 Creating a Server Configuration File ...3-3

ACCESS_FILE...3-4
ACURCL_PORT ..3-5
AGS_BAD_SOCKET ..3-5
CHILD_WAIT..3-6
DEFAULT_USER ..3-7
FILE_TRACE...3-7
FILE_TRACE_FLUSH ..3-7
FILE_TRACE_TIMESTAMP..3-8
PASSWORD_ATTEMPTS ..3-8
PROVIDE_PASSWORD_MESSAGES ..3-8
SECURITY_METHOD..3-8
SERVER_ALIAS_FILE...3-10
SERVER_IP..3-11
SERVER_NAME ...3-11
SERVER_RUNTIME...3-12
TEXT_nnn ..3-12
USE_SYSTEM_RESTRICTIONS...3-13
USE_UNIX_SHELL ..3-13
WINNT_LOGON_DOMAIN...3-13

 Contents-iii
WINNT_EVENTLOG_DOMAIN ... 3-14
Sample “acurcl.cfg” File... 3-14

3.4 Creating a Runtime Configuration File for the Remote Server Component 3-15
AGS_MAX_SEND_SIZE .. 3-17
AGS_RECEIVE_BUFFER_SIZE.. 3-17
AGS_SEND_BUFFER_SIZE .. 3-18
AGS_SOCKET_COMPRESS.. 3-18
AGS_SOCKET_ENCRYPT .. 3-19
AGS_TCP_NODELAY.. 3-19
ENCRYPTION_SEED... 3-19
FREEZE_AX_EVENTS... 3-20
TC_AUTO_UPDATE_FAILED_MESSAGE ... 3-20
TC_AUTO_UPDATE_FAILED_TITLE... 3-21
TC_AUTO_UPDATE_NOTIFY_FAIL... 3-21
TC_AUTO_UPDATE_QUERY... 3-22
TC_AUTO_UPDATE_QUERY_MESSAGE.. 3-22
TC_AUTO_UPDATE_QUERY_TITLE ... 3-23
TC_AX_EVENT_LIST.. 3-23
TC_CHECK_ALIVE_INTERVAL.. 3-23
TC_CHECK_INSTALLER_TIMESTAMP... 3-24
TC_CONTINUITY_WINDOW... 3-24
TC_CONTROL_SYNC_LEVEL... 3-25
TC_DELAY_ACTIVATE.. 3-25
TC_DELAY_PRE_EVENT_OPS.. 3-26
TC_DISABLE_AUTO_UPDATE ... 3-26
TC_DISABLE_SERVER_LOG... 3-26
TC_DOWNLOAD_CANCEL_MESSAGE... 3-27
TC_DOWNLOAD_DESCRIPTION.. 3-27
TC_DOWNLOAD_DIALOG .. 3-27
TC_DOWNLOAD_DIALOG_TITLE ... 3-28
TC_EVENT_LIST.. 3-28
TC_EXCLUDE_EVENT_LIST... 3-28
TC_INSTALLER_ARGS... 3-29
TC_INSTALLER_CLIENT_FILE... 3-29
TC_INSTALLER_RUN_ASYNC ... 3-30
TC_INSTALLER_SERVER_FILE.. 3-30
TC_INSTALLER_TARGET_DIR... 3-31
TC_INSTALLER_UI_LEVEL... 3-31
TC_MAP_FILE .. 3-31
TC_NESTED_AX_EVENTS... 3-32

Contents-iv
TC_QUIT_MODE ..3-32
TC_REQUIRES_BUILD_NUMBER ..3-32
TC_RESTRICT_AX_EVENTS ...3-33
TC_SERVER_LOG_FILE ...3-33
TC_SERVER_TIMEOUT ..3-34
TC_TV_SELCHANGING..3-34
THIN_CLIENT_ENCRYPT ..3-35

Chapter 4: Preparing Your Application
4.1 Designing Your Application ..4-2

4.1.1 In Distributed Processing...4-2
4.1.2 With Thin Client Technology ..4-3

4.2 Distribution Considerations ...4-3
4.2.1 When to Use a “Thin” Client ...4-4
4.2.2 When to Use a “Thick” Client ...4-4
4.2.3 When to Use a “Smart” Client ...4-5

4.3 Distributed Processing Application Design ...4-5
4.3.1 Embedding COBOL CALLs ...4-5

4.3.1.1 Terminating the remote application...4-6
4.3.1.2 Exception handling ...4-7
4.3.1.3 CALLing multiple programs ...4-7

4.3.2 Synchronous or Asynchronous Execution ...4-8
4.3.2.1 CALLing C$ASYNCRUN ..4-8
4.3.2.2 CALLing C$ASYNCPOLL ..4-9

4.3.3 Memory and Environment Issues ..4-9
4.4 Thin Client Application Design ...4-11

4.4.1 Limitations in Thin Client Environments ...4-12
4.4.2 User Interface Work in Thin Client ...4-13

4.4.2.1 Building a new graphical display ..4-13
4.4.2.2 Working with character display limitations...4-13
4.4.2.3 Deploying a highly interactive program in a wide-area network4-14

4.4.3 Other Application Work in Thin Client ...4-14
4.4.3.1 Adjusting for certain Windows features ..4-14
4.4.3.2 Accessing the Windows registry on the client machine4-16
4.4.3.3 Printing in thin client ...4-16
4.4.3.4 Selecting a file from the client machine’s drives.......................................4-17
4.4.3.5 Using W$BITMAP print screen features ..4-18

4.5 International Character Handling...4-19
4.5.1 In Distributed Processing...4-19
4.5.2 In Thin Client...4-21

 Contents-v
Chapter 5: Preparing the Client(s) in Distributed Processing
5.1 Installing the ACUCOBOL-GT Runtime .. 5-2

5.1.1 Relinking the Client Runtime .. 5-2
5.1.2 Removing AcuConnect Client Support From the Runtime................................... 5-3
5.1.3 Passwords for Clients .. 5-3
5.1.4 Setting Up the Host Name ... 5-3
5.1.5 Confirming Network Services ... 5-3

5.2 Creating a Client Configuration File ... 5-4
5.2.1 Defining Remote Application Path.. 5-4

5.2.1.1 CODE_PREFIX .. 5-4
5.2.1.2 Code name aliases ... 5-6

5.2.2 Other Variables.. 5-6
5.2.2.1 ACUCONNECT_DEBUG_METHOD... 5-7
5.2.2.2 ACUCONNECT_DEBUG_METHOD_STRING 5-7
5.2.2.3 ACUCONNECT_CLOSE_AFTER_CANCEL .. 5-8
5.2.2.4 ACUCONNECT_RUNTIME_FLAGS... 5-9
5.2.2.5 ACURCL_PORT... 5-9
5.2.2.6 DEFAULT_MAP_FILE.. 5-10
5.2.2.7 server_MAP_FILE.. 5-10
5.2.2.8 SECURITY_METHOD .. 5-11
5.2.2.9 TEXT_nnn... 5-11

5.2.3 Sample “client.cfg” File... 5-12
5.3 Installing Client Programs ... 5-13
5.4 Executing Programs on the Client ... 5-13

5.4.1 Executing Non-COBOL Programs on the Client .. 5-13
5.4.2 Debugging in a Distributed Processing Environment ... 5-14

5.5 Sample Programs ... 5-15
5.6 Running the Sample Programs .. 5-19

5.6.1 Running the Sample Programs in UNIX ... 5-19
5.6.2 Running the Sample Programs in Windows.. 5-20
5.6.3 Results ... 5-20

Chapter 6: Preparing the Client(s) in Thin Client
6.1 Preparing the Client ... 6-2
6.2 Installing the ACUCOBOL-GT Thin Client ... 6-2
6.3 Installing ActiveX Files ... 6-3
6.4 Thin Client Splash Screen.. 6-4
6.5 Launching Remote Programs From the Client .. 6-4

6.5.1 The acuthin Command... 6-5
6.5.1.1 Debugging option .. 6-6

Contents-vi
6.5.1.2 Debugging in a transaction processing environment...................................6-7
6.5.1.3 Testing your AcuConnect connection ...6-7
6.5.1.4 Setting username and password...6-8

6.6 Launching Programs on the Internet ..6-8
6.7 Using the Client Cache Directory ..6-9

Chapter 7: Thin Client Special Topics
7.1 Introduction..7-2
7.2 Using Library Routines and DLLs in Thin Client ...7-2

7.2.1 Copying Files Between the Client and Server ...7-2
7.2.2 Executing Desktop Programs...7-5
7.2.3 Using Files Containing Keystrokes ...7-5
7.2.4 Selecting Files on the Client ..7-6
7.2.5 Accessing Local Resource Files ..7-6
7.2.6 Calling Dynamic Link Libraries (DLLs) ...7-7

7.2.6.1 Calling client-side DLLs..7-7
7.2.6.2 Related configuration variables ...7-8
7.2.6.3 Passing pointers in DLL calls ..7-8

7.2.7 Calling the DLL Version of the ACUCOBOL-GT Thin Client7-10
7.3 Launching Thin Client Applications From a Web Page ..7-11

7.3.1 Thin Client Command-line Files ...7-12
7.3.2 Using Anchor Tags ..7-13

7.4 Thin Client Automatic Update ...7-14
7.4.1 Automatic Update Overview ...7-14
7.4.2 Automatic Update Process...7-16
7.4.3 Enabling or Disabling the Automatic Update Feature...7-17
7.4.4 Informing the User When an Update Is Needed..7-17
7.4.5 Accepting the Automatic Update...7-18

7.4.5.1 “.msi” installer ...7-19
7.4.5.2 Other installers...7-20
7.4.5.3 Installer file locations ..7-21
7.4.5.4 Download progress dialog ...7-22
7.4.5.5 Microsoft Windows Installer ...7-23

7.4.6 Restarting the Application with the New Thin Client ...7-24
7.4.7 Automatic Update Failure..7-25

Chapter 8: Managing the System
8.1 Introduction..8-2
8.2 Managing the System: UNIX...8-2

 Contents-vii
8.2.1 The acurcl Command... 8-3
8.2.1.1 acurcl -access... 8-3
8.2.1.2 acurcl -alias.. 8-3
8.2.1.3 acurcl -config... 8-3
8.2.1.4 acurcl -info... 8-5
8.2.1.5 acurcl -install ... 8-6
8.2.1.6 acurcl -kill.. 8-7
8.2.1.7 acurcl -query.. 8-9
8.2.1.8 acurcl -remove ... 8-9
8.2.1.9 acurcl -start .. 8-10
8.2.1.10 acurcl -version ... 8-11

8.3 Managing the System: Windows ... 8-11
8.3.1 AcuConnect Control Panel .. 8-11

8.3.1.1 Access Tab... 8-12
8.3.1.2 Config Tab... 8-15
8.3.1.3 Alias Tab ... 8-18
8.3.1.4 Info Tab ... 8-21
8.3.1.5 Services Tab .. 8-24

8.4 Machine Failures.. 8-28
8.5 Event Logging.. 8-29
8.6 AcuConnect Error Messages ... 8-30
8.7 AcuConnect Distributed Processing: Troubleshooting.. 8-31

8.7.1 Error Messages .. 8-31
8.7.2 Unexpected User Name .. 8-32
8.7.3 Connection Refused... 8-35
8.7.4 Invalid Password.. 8-38
8.7.5 AcuConnect Fails to Start .. 8-39
8.7.6 Problems Starting and Stopping Services.. 8-40

8.8 AcuConnect Thin Client: Troubleshooting.. 8-40
8.8.1 Error Messages .. 8-41
8.8.2 Tuning System Performance.. 8-42

8.8.2.1 Buffer size considerations ... 8-43
8.8.2.2 File compression.. 8-43
8.8.2.3 TC_CONTROL_SYNC_LEVEL runtime configuration variable............ 8-44
8.8.2.4 TC_TV_SELCHANGING configuration variable.................................... 8-44
8.8.2.5 Graphical control event handling .. 8-45
8.8.2.6 Screen Section table handling ... 8-45
8.8.2.7 Grid control ... 8-46
8.8.2.8 Bitmaps.. 8-46
8.8.2.9 Multiline entry fields ... 8-47

8.8.3 Connecting to AcuServer... 8-47
8.8.4 Frequently Asked Questions... 8-48

Contents-viii
Index

1
 Introduction
Key Topics

Overview ... 1-2
Platform Support ... 1-5
How AcuConnect Works... 1-7
Licensing ... 1-10
Security.. 1-11
Technical Services.. 1-13

1-2 Introduction
1.1 Overview

Welcome to AcuConnect®! Part of the extend® family of solutions,
AcuConnect is a client/server technology that can help you distribute your
computing processes in the way that best suits your business needs, while
optimizing system performance and your existing resources. AcuConnect
lets you implement a client/server system in which the client component can
be as “thin” or as “thick” as you need.

AcuConnect can be deployed in two ways: in a distributed processing
environment or in an environment that uses our thin client technology.

With AcuConnect’s distributed processing deployment, users can distribute
application logic among client and server machines in a way that best suits
their needs. AcuConnect users who take advantage of our thin client
technology can run the user interface (UI) portion of an application on a
Windows graphical display host while the rest of the application and data
reside on a server.

This chapter introduces you to the basic concepts of these two AcuConnect
environments.

1.1.1 Distributed Processing with AcuConnect

With AcuConnect in a distributed processing environment, users or programs
on client machines can launch applications on server machines, whether
those servers are part of a local area network, wide area network, or global

Overview 1-3
Internet. While some portions of your application continue to run on the
client (for example, the user interface and some interactive programs), the
resource-intensive portion runs where it is most efficient . . . on the server.

Should users decide to run their programs on server1 one day and server2 the
next, they can do so without any changes to the application code. They can
even run the application locally if they choose, or “daisy chain” applications
together on multiple servers.

With server programs written accordingly, AcuConnect can also provide
users access to Vision data. If the data is on the same remote server as
AcuConnect, no special software is required to access the data from a local
client. If the data is on a separate data server, AcuConnect works in tandem
with our remote file server, AcuServer®, to provide seamless data access.
AcuConnect can also work with Acu4GL®, our COBOL-to-RDBMS bridge,
to provide seamless access to relational data wherever it resides.

By enabling you to distribute processing between the client and server,
AcuConnect helps you leverage your computing resources to the fullest in a
true distributed processing environment. For example, with AcuConnect, you
can take advantage of the power of your server machines while using
inexpensive client machines. AcuConnect
• Improves application performance by offloading major processing tasks

to the server.
• Decreases network traffic, especially for I/O-intensive applications.
• Lengthens the life of older computing equipment; users of slower, older

technology can use newer server components for the majority of their
processing.

• Lets you take advantage of existing resources, including the Internet.

You can also use AcuConnect to execute remote COBOL objects from client
applications developed in C, C++, Java, .NET, Delphi, or Visual Basic.
These applications run on the client and use the C, .NET, or Java API
contained in our COBOL Virtual Machine (CVM) to interact with the
COBOL object on the server. As instructed by a configuration file on the
client, AcuConnect executes the COBOL object remotely and shares data
with the client application through the CVM on the client. For information on
how to execute remote COBOL objects, refer to section 5.4.1, “Executing
Non-COBOL Programs on the Client,” in this manual.

1-4 Introduction
1.1.2 Thin Client Technology with AcuConnect

Our thin client technology enables you to display your ACUCOBOL-GT®
graphical server-based application on graphical display hosts.

The thin client technology is designed for two main purposes:

1. To allow ACUCOBOL-GT programs running on a UNIX, Linux, MPE,
or VMS server to present a full Windows graphical user interface (GUI)
on PCs networked with TCP/IP. The application screens may require
conversion to graphical, but your application stays in one piece on the
server.

2. To allow you to host your application on a UNIX, Linux, MPE, VMS,
or Windows server and enjoy the benefits of centralized application
maintenance and to adopt the performance characteristics of a “thin”
architecture. Many applications perform better when deployed in a thin
fashion compared to other networking techniques, such as remote file
access (“thick clients”) or distributed processing. This is because thin
client configurations execute COBOL programs on the server, where
data access is local.

The benefits of our thin client technology are plentiful:
• UNIX users can enjoy the best of two worlds: the stability and security

of the UNIX world in multi-user environments and the graphical nature
of Microsoft Windows. Previously, UNIX users could use terminal
emulation, move their applications to Windows and add a GUI or split
their applications into two or more pieces.

• UNIX applications can use ActiveX controls, Automation Servers (OLE
objects), and Windows Help systems on Windows clients. UNIX users
can also interact with .NET assemblies in thin client. An
ACUCOBOL-GT screen can include a mix of Win32, ActiveX, and
.NET graphical controls, if desired.

• Users can print locally on their Windows machine or on the remote
server. They can also choose whether to perform local or remote
debugging.

• You don’t have to separate your application into multiple tiers or deploy
any of your application logic on client machines.

Platform Support 1-5
• You can usually improve application performance by executing COBOL
programs on the server, where data access is local. Server processing
eliminates the need to perform file operations over the network, which
can be quite slow when many records are involved. This reduces
network traffic and often improves response time. (The thin client model
does perform screen I/O over the network, but usually at a lesser cost
than the file I/O that it replaces.)

• Administration is simplified when an application resides solely on a
server. Installation is easier, as are upgrades, distribution, and
management.

• Security is enhanced when an application resides centrally.
• The total cost of ownership for enterprise information systems is

reduced. With server-side processing, you remove many client
requirements, providing end users easier, more cost-effective access to
information.

• Users and enterprises enjoy increased flexibility with a choice of clients.
• The AcuConnect Thin Client solution can run on any TCP/IP network,

including the Internet.

Our thin client solution can work in conjunction with other technologies from
the extend family of solutions. If data will be stored on a separate data server
in a three-tier architecture, your thin client solution can use AcuServer to
provide transparent access to that data. If your application requires access to
relational databases like Oracle, Informix, and Sybase, your thin client
solution can use Acu4GL or AcuSQL® technologies on the server to provide
automatic data translation. You can migrate your character-based application
to ACUCOBOL-GT, display it on Windows hosts, and when you’re ready,
convert your screens to a full-featured graphical user interface. You can
develop your GUI in Windows using our integrated development
environment, AcuBench®.

1.2 Platform Support

Platform support for AcuConnect’s distributed processing deployment is
different from that in the thin client deployment. The following sections
outline the specific platforms supported in each environment.

1-6 Introduction
Unless otherwise indicated, the references to “Windows” in this manual
denote the following versions of the Windows operating systems: Windows
XP, Windows Vista, Windows 7, Windows 2003, Windows 2007, Windows
2008 R2. In those instances where it is necessary to make a distinction
among the individual versions of those operating systems, we refer to them
by their specific version numbers (“WindowsXP,” “Windows Vista,” etc.).

1.2.1 Distributed Processing Platform Support

AcuConnect’s distributed processing solution supports the following clients:
• UNIX
• Windows XP
• Windows Vista
• Windows 7

In this environment, AcuConnect supports the following servers:
• UNIX
• Linux
• Windows 2000, 2003, and 2008 R2

1.2.2 Thin Client Platform Support

The thin client technology supports the following client platforms:
• Windows XP
• Windows Vista
• Windows 7

The Thin Client technology supports the following server platforms:
• UNIX
• Linux
• VMS version 7.2 or later

How AcuConnect Works 1-7
• HP e3000 MPE
• Windows 2000, 2003, 2008 R2

1.3 How AcuConnect Works

This section describes in general terms how AcuConnect works in its various
environments. In all cases, AcuConnect runs as an independent resident
program (daemon) called acurcl.

1.3.1 Distributed Processing

In a distributed processing environment, AcuConnect is a runtime server that
handles user requests to start new runtimes on server machines. AcuConnect
supports multiple runtime instances so that users may start multiple
applications on the server at the same time. It also allows programs on one
server to start programs on another server, ad infinitum, as long as each
server has a copy of AcuConnect installed.

In distributed processing, both the client and the server have a copy of the
ACUCOBOL-GT runtime. The runtime version on the client should match
the version of the runtime on the server. If your application interfaces with
C-ISAM or other special library routines, you must relink the runtime with the
library routines you are using.

Because both the client and the server have an ACUCOBOL-GT runtime,
you decide how much of an application runs on the client and how much on
the server. The client can be as “thin” or as “thick” as you like. With
AcuConnect in distributed processing, the client is actually a “smart” client.

To launch a server program, the client uses standard COBOL CALL syntax.
You embed a CALL in the client application, and AcuConnect launches the
server application for you automatically. All application (and data) access is
completely transparent to the end user.

1-8 Introduction
Differentiation is achieved through configuration files and, more precisely,
through definition of either a CODE_PREFIX variable or a “code name
alias,” which defines the directory containing the object programs. Without
modifying or recompiling the original code, the same object can operate on
any server, client, or stand-alone machine.

The AcuConnect process can be described as follows:

1. A network administrator starts AcuConnect on the server. On Windows
servers, this can be accomplished through an application service. On
UNIX, the administrator uses the acurcl command along with options.
For instance, he or she may type:

acurcl -start -c acurcl.cfg -e server.err

2. The user starts the ACUCOBOL-GT client application on the client.
On Windows, the user clicks an icon. On UNIX, the user types a
runcbl command. For instance:

runcbl -c client.cfg prog1.acu

3. The client application, “prog1.acu” in this example, performs a remote
CALL to the server application. For instance:

CALL "prog2.acu" using customer-info.

4. AcuConnect automatically starts the remote application, “prog2.acu”,
on the server using the runtime flags and configuration file specified in
“client.cfg”.

5. The remote application performs the requested task and returns a
response to the client. If programmed accordingly, the remote
application may perform a CALL to another application on the same or
different server before sending back a response.

6. The client program processes the result, possibly displaying it to the
user.

Synchronous or Asynchronous Operation

In the example shown above, the client application waits in a suspended state
until the remote application performs its task and returns a result (that is, a
“synchronous” CALL is performed). If desired, you can allow the client
application to continue running by CALLing the C$ASYNCRUN library

How AcuConnect Works 1-9
routine along with the remote application. In this case, you specify the
“handle” of the remote application, as well as the application name itself. For
instance:

CALL "C$ASYNCRUN" using handle-of-prog2 "prog2.acu" customer-info.

C$ASYNCRUN tells AcuConnect to allow asynchronous processing. If you
use C$ASYNCRUN, you can check the status of the server application using
the companion routine, C$ASYNCPOLL. See section 4.3.2, “Synchronous
or Asynchronous Execution,” for more details.

1.3.2 Thin Client

Our thin client computing is a network-based approach to information
processing. With the thin client technologies, your software can display on
Windows front-end clients, access COBOL programs in practically any
server operating environment, permit local or remote printing, and allow
remote debugging from Windows.

Different from AcuConnect’s distributed processing environment, in which
some application components are processed on the client and some on the
server (and the application is engineered accordingly), thin client
configurations perform all processing on the server and pass simple screen
commands between the client and the server. Because server hardware is
usually faster, and because data access on the server is local, application
performance often improves when processing is performed on the server.

In a thin client configuration, your application comprises two logical layers:
a UI layer on the display host (client) and a COBOL layer on the application
host (server). The UI layer handles screen, mouse, and keyboard activity, and
the COBOL layer performs application processing. Because no application
components are required on the client (unless you want to use ActiveX
controls), it is considered to be truly “thin.”

Rather than forcing you to split your application into client and server
components, the ACUCOBOL-GT runtime has been split so that your
existing application can be displayed on the client. The runtime portion that
is installed on the thin client is known as the ACUCOBOL-GT Thin Client.
The thin client can be installed from your product media or downloaded from

1-10 Introduction
the support section of Micro Focus’s Web site (www.microfocus.com). Note
that you must be a registered user to access the download portion of this site.
The full ACUCOBOL-GT runtime is installed on the server.

To function, the split runtime makes use of AcuConnect as a “remote
COBOL listener” on the server. The role of the listener is to wait for requests
from clients to launch the ACUCOBOL-GT runtime on the server. When a
request is received, the AcuConnect listener starts a new runtime on the
server, connects that runtime with the client process, and removes itself from
the communication stream to wait for requests from other enabled
applications. Once initiated, the runtime on the server executes the COBOL
application and sends screen commands back to the client.

Together, the ACUCOBOL-GT Thin Client, the ACUCOBOL-GT runtime,
and the AcuConnect listener are the enabling technologies that make up our
thin client solution.

1.4 Licensing

The licensing scheme for AcuConnect allows AcuConnect to track both types
of client connection—distributed processing and thin client. The Activator
license utility creates “acurcl.alc” when generating licenses for thin client
connections and “acurcl.clc” when generating licenses for distributed
processing connections. See the Getting Started Guide, Section 2.1 License
Files for Windows for details on the Activator license utility.

AcuConnect is shipped with a product code and product key that defines the
licensing capabilities specified in your purchase agreement. When you
supply your key information during installation, the Activator creates a
license file that contains information such as the product’s version number,
serial number, expiration date, and server count. After installation,
AcuConnect must be able to locate the license file to function.

AcuConnect searches for “acurcl.alc” for thin client connections and
“acurcl.clc” for distributed processing connections in the same directory as
the acurcl executable. If you move the AcuConnect executable to a new
directory, be sure to move a copy of the license file as well. If no license file
is found, or if the information in the license file does not permit execution,
AcuConnect exits with an error message.

Security 1-11
When AcuConnect detects a client request to start a remote application
runtime, it checks the connection count to see if another connection is
permitted. If another connection is allowed, AcuConnect attempts to start a
runtime on the server and connect it with the client process. The runtime, in
turn, checks its usage count before it begins execution of the application.
When an AcuConnect user disconnects from the remote server by exiting the
COBOL program, the AcuConnect and runtime usage counts are
decremented and those slots are made available to subsequent users. If the
usage limit has been reached, the server runtime is not started and an
appropriate message is returned to the end user.

The ACUCOBOL-GT Thin Client, which is installed on client machines, is
available on your product media or as a download on Micro Focus’s
SupportLine Web site. You are required to accept a clickwrap license
agreement on installation.

The acushare utility is required for all UNIX installations that do not have an
unlimited license. The acushare utility monitors and enforces the site
runtime usage limits.

Please note that when accessing extend products on remote servers via the
Internet or a virtual private network, products or technologies from
third-party vendors like Microsoft may be invoked. Carefully review any
license agreements with these third-party vendors before proceeding with the
remote connection.

Nothing in this document is intended to amend the terms and conditions of
the applicable license agreement between you and Micro Focus. Rather, this
section is meant to summarize the various aspects of Micro Focus’s licensing
technology, which is required to operate the extend software. The terms and
conditions of your licensing of extend software shall continue to be governed
by the applicable license agreement between you and Micro Focus.

1.5 Security

AcuConnect system security is designed to address two fundamental issues:

1. Controlling access to data files

1-12 Introduction
2. Preventing unauthorized use of client components to perform
privileged activities (such as modifying privileged files)

The first issue, controlling access to data files, is addressed in two ways: first,
via a server access file known as AcuAccess (the same access file used by
AcuServer), and second, through the standard UNIX or Windows server file
access provisions. Whether an AcuConnect user can access to a given file on
the server depends on two things: (1) the user ID assigned the requester in the
server access file, and (2) either the Windows security set up for your files, or
the UNIX ownerships and permissions set on the particular file.

The second issue, preventing unauthorized privileged use, is addressed
through strict enforcement of the security measures that you have established
through the server’s operating system.

Achieving sound system security depends on the configuration and
management of the following security elements:
• The AcuAccess server access file (the database of authorized

AcuConnect users)
• The Windows server security protections set up for the acurcl

executable file, server configuration file, server access file, and remote
data files and directories. Microsoft recommends that you use the NT file
system (NTFS) for better security.

• The UNIX ownerships assigned to the acurcl executable file, server
configuration file, server access file, and remote data files and
directories

• The UNIX access permissions (read, write, and execute) set on the
acurcl executable file, server configuration file, server access file, and
remote data files and directories

When AcuConnect is running as a Windows service (NT/2000/2003/2008), it
belongs to an implicit group called “SYSTEM.” Make sure that the
“SYSTEM” group is added to your file permissions with “Full Control.”
(This is not necessary if you are using Windows NT security via the
SECURITY_METHOD configuration variable.)

Technical Services 1-13
UNIX ownerships and permissions can be set on key AcuConnect files. Note,
however, that your site could jeopardize security if you include entries in the
server access file that explicitly allow users running as root on the clients to
run as root on the server. We strongly discourage the inclusion of such
entries.

UNIX ownerships and permissions on the acurcl executable, server
configuration file, and server access file are described in section 2.3,
“Establishing System Security.” These specifications must be strictly
maintained. If the ownerships and permissions are more permissive than
those specified, AcuConnect will not start, halting system operations.

In addition to the AcuAccess file, AcuConnect offers internal socket layer
encryption to further enhance security. Encryption protects information
while it is in transit across the network. For information about the
configuration variables used to enable encryption, refer to section 3.4,
“Creating a Runtime Configuration File for the Remote Server Component.”

1.6 Technical Services

For the latest information on contacting customer care support services go to:

http://www.microfocus.com/about/contact

For worldwide technical support information, please visit:

http://supportline.microfocus.com/xmlloader.asp?type=home

http://supportline.microfocus.com/xmlloader.asp?type=home
http://www.microfocus.com/about/contact/
http://supportline.microfocus.com

1-14 Introduction

2
 The AcuConnect Server
Key Topics

Getting Started with AcuConnect.. 2-2
Installing AcuConnect... 2-2
Establishing System Security .. 2-10
Creating a Server Alias File in Thin Client... 2-26
Installing Server Programs .. 2-30
Starting AcuConnect ... 2-30
AcuConnect Connection Logic .. 2-37

2-2 The AcuConnect Server
2.1 Getting Started with AcuConnect

This chapter describes some of the steps you need to take before you start
using AcuConnect®. AcuConnect’s installation and start-up instructions are
included, along with detailed information about establishing system security.
The latter topic includes the creation of the server access file and server alias
file for thin client. Ownerships and permissions are also discussed.
Configuration file entries are covered in Chapter 3.

2.2 Installing AcuConnect

To prepare your server, you must first install AcuConnect. You also need to
install an ACUCOBOL-GT® runtime. The procedure for installing
AcuConnect varies, depending on whether you are installing on a UNIX
server or a Windows server. The following sections describe the process for
these systems.

For thin client architectures, you can also install AcuConnect on a VMS or
MPE/iX server. Some special considerations apply when you want to run
AcuConnect on MPE/iX systems. Refer to section 2.2.3, “Installing
AcuConnect in Thin Client on a VMS Server,” for VMS procedures, and to
section 2.2.4, “Running AcuConnect in Thin Client on HP MPE/iX
Systems,” for MPE/iX instructions.

For AIX version 5.1 and later, HP-UX version 11.11 and later, and Solaris
version 7.0 and later, ACUCOBOL-GT products are distributed as shared
object libraries. If you install AcuConnect as a shared object library, and you
choose not to install to the default location (/opt/acucorp/8xx), you need to
set an appropriate library search path variable specifying the location of the
shared objects. The exact library path variable to set depends on the
individual operating system. For example, on an AIX system, you would
need to set the LIBPATH environment variable. Note that if you log in as root
or superuser, this variable must also be set in root’s environment for
AcuConnect to start.

Installing AcuConnect 2-3
2.2.1 Installing AcuConnect on a UNIX Server

For UNIX platforms, AcuConnect software is shipped on the product
CD-ROM. Use the following procedures to install AcuConnect on a UNIX
server:

1. Create a directory on the server to hold the AcuConnect software. We
recommend that you install AcuConnect directly into the
ACUCOBOL-GT home directory.

2. Mount the product CD-ROM on your UNIX system and change
directory (“cd”) into the directory in which your product CD-ROM is
mounted and execute the install script as described on the Quick Start
card that came with your product.

Follow the instructions on the card, entering your product code and
product key when prompted.

If you want to use the server configuration file in its default location,
move “acurcl.cfg” into the /etc directory. This may require root or
superuser privileges. The “acurcl.cfg” file may remain in the current
directory or be copied or moved to some other directory. If “acurcl.cfg”
is not located in the default directory (/etc), the name and location of the
configuration file must be specified with the “-c” option each time
AcuConnect is started. See section 8.2.1.9, “acurcl -start,” for more
information.

3. On UNIX servers, you must create a server access file (default name
/etc/AcuAccess) before AcuConnect will start or establish connections
with clients. AcuConnect includes a utility program for creating and
maintaining the server access file. To create a minimal server access
file that allows any user of any client to use AcuConnect, perform the
following steps:

a. Log on to the server as root or become superuser.

b. Use the “acurcl -access” command to launch the server access file
manager utility.

c. When prompted for the path and name of the server access file,
accept the default /etc/AcuAccess.

d. Respond yes to the “Do you want to create it now?” prompt.

e. From the main menu, select option [1], “Add a security record.”

2-4 The AcuConnect Server
The manager presents a series of five prompts. Accept the default
for each prompt by pressing Return. After you accept the umask
field, the program reports that it has added the record.

f. Exit the utility by selecting option [5] from the main menu.

Please note that for the minimal server access file, the user should have
an account on the server by the same name as the account on the client.
For more details about the AcuAccess file and important information
about security, refer to section 2.3.3, “The Server Access File.”

AcuConnect is now fully installed and ready for configuration on the
UNIX server. See section 3.3, “Creating a Server Configuration File,”
for the settings that can be configured for the server.

Note that acushare is installed automatically as part of AcuConnect
installation.

2.2.2 Installing AcuConnect on a Windows Server

For Windows networks, AcuConnect software is also on the CD-ROM. Use
the following procedures to install AcuConnect on a Windows server. Note
that if you move or delete any installed “.dll” files, AcuConnect will not run.

1. Install and configure TCP/IP before installing AcuConnect.

2. Log on to your NT server using the Administrator account or an
account that belongs to the Administrators group.

3. Insert the product CD-ROM into your disk drive. If the installation
program does not start automatically, follow the steps below:

a. Click the Start button, select Run, and enter the following:

D:\setup.exe

replacing D with the device designation of your CD-ROM drive.

b. Follow the instructions on the screen, entering your product code
and product key when prompted.

Installing AcuConnect 2-5
c. During the installation procedure, you will be prompted to specify
an installation directory or to accept the default location. You will
also be prompted to select a component to install. Select
AcuConnect from the list of available products.

4. If you already have the files “c:\etc\AcuAccess” and
“c:\etc\acurcl.cfg,” the setup utility detects them and asks if you want
to overwrite them. Do not overwrite them unless you have a backup
copy. The AcuAccess file contains one access record that gives all
users access to AcuConnect. You can modify this file later, if desired.
The file “acurcl.cfg” contains the server configuration variables; when
the file is first installed, these variables are all commented out. You can
also modify this file later if desired.

5. If you want AcuConnect to start automatically on boot, it must be
installed and started as a Windows service. The setup program creates
a sample Start Menu folder, if desired, and asks if you want to install
and start these services.

You can use the graphical control panel to install and start AcuConnect
as a service. The Services tab in this interface lets you add, start, stop,
and remove services.

Please note that installing a service on a particular port resets all startup
options for the service on that port. You can use all valid “-start” options
when installing AcuConnect as a service. These options are stored so
that the service will use them when starting.

The default service is named “AcuConnect.” All other service names
include the port on which to run.

Note that service naming differences prevent AcuConnect from
administering services created by pre-Version 6.2 AcuConnect, and vice
versa.

If you choose to start AcuConnect during the installation process, a
Windows Command Prompt (DOS window) appears, showing the
status of the Windows services being started or restarted automatically.
You may see some error messages that can be ignored if the Windows
services are not already installed and running. For example, you might
see:

acurcl –kill
Open/Control Service failed

2-6 The AcuConnect Server
acurcl –remove
Open/Control Service failed
acurcl –install
AcuConnect service installed.
acurcl –start
STATE: START PENDING

6. The Windows services that are needed for AcuConnect can also be
started manually. You can start the required Windows services from
the command line (“acurcl -install”, “acurcl -start”) or from the
control panel.

In Windows, issuing the acurcl command without options causes a
graphical control panel to appear. You can start AcuConnect from the
Services tab in this interface.

Refer to Chapter 8 for information about other acurcl command-line
options.

Please note that when AcuConnect is started as a Windows service, all
paths used in the configuration file or on the command line are relative
to the Windows server system directory (for example,
c:\winnt\system32). For instance, if your current directory is
c:\acucorp\acucbl8xx\AcuGT\bin and you start AcuConnect with the
command “acurcl -start -le acurcl.log”, the log file is not created in the
current directory, but rather in the \winnt\system32 directory. If desired,
you can use full pathnames, which has the effect of using an explicit file.

7. After the services are installed and running, there should be no reason
to stop them. However, if you choose to stop them, you may do so
from the command line (“acurcl -kill”). You can also stop services by
clicking Stop in the Services tab on the graphical control panel.

You may perform start and stop operations from the Service Control
Applet. After the services are installed, there should be no reason to
delete them. However, if you decide to delete them, use the following
command from the command line:

acurcl -remove

or click Remove on the graphical control panel’s Services tab. Refer to
Chapter 8 for information about other acurcl command-line options.

Installing AcuConnect 2-7
This command deletes only the services and does not delete the
executables. To help in resolving service problems, you can check some
messages from these services in the Microsoft Event Viewer:

Start/Programs/Administrative Tools/Event
Viewer/Log/Application

Note: This location may vary, depending on your version of Microsoft
Windows.

2.2.3 Installing AcuConnect in Thin Client on a VMS
Server

For VMS platforms (version 7.2 or later), AcuConnect software is shipped in
BACKUP format. Select a directory on the server to hold the AcuConnect
software, and extract the files from the tape. Follow the installation
instructions on the Quick Start card that came with your product. You should
be logged in to the “SYSTEM” account or an account with “SYSPRV”
system privileges.

Please note that runtimes on VMS servers use RMS indexed files rather than
Vision.

Install AcuConnect on VMS as follows:

1. Define a symbol so users can access AcuConnect. Set up a symbol for
each AcuConnect user.

acurcl == "$disk:[directory]acurcl.exe"

2. Use the “acurcl -access” command that launches the access file utility
to create a server access file.

Refer to section 2.3.3, “The Server Access File,” for information about
creating and maintaining the server access file. Note that the server
access file in VMS is an RMS indexed file rather than Vision.

acurcl -access
Enter the name of the Server Access File
Filename [acuaccess.dat]: acuaccess.dat

2-8 The AcuConnect Server
3. Set up user account quotas to define each user’s capabilities. You can
always modify account quotas as needed, but we suggest the following
settings if you encounter quota errors:

Maxjobs: 0 Fillm: 300 Bytlm: 100000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 10000 JTquota: 4096
Prclm: 40 DIOlm: 10000 WSdef: 100000
Prio: 4 ASTlm: 400 WSquo: 100000
Queprio: 0 TQElm: 400 WSextent: 100000
CPU: (none) Enqlm: 4000 Pgflquo: 100000

AcuConnect is now installed and ready for configuration on the VMS server.
Refer to section 3.3, “Creating a Server Configuration File,” for possible
configuration variable settings. Refer to section 2.4, “Creating a Server Alias
File in Thin Client,” to learn how to create and maintain an alias file that
holds all the information needed to start the desired application on the server.
Section 2.6.4, “Starting AcuConnect in Thin Client on a VMS Server,”
describes how to start AcuConnect in this environment.

2.2.4 Running AcuConnect in Thin Client on HP MPE/iX
Systems

A limitation in the MPE/iX operating environment requires that sites
planning to use AcuConnect on an MPE/iX host carefully consider how they
will deploy the service. The remainder of this section describes this situation
and offers two management approaches for deploying on MPE/iX.

AcuConnect uses the same basic methods as AcuServer® to start the service,
validate a service request, and fulfill a request. AcuConnect runs as an
independent resident program (daemon) called acurcl. The running acurcl
process takes the user ID of the account that starts the program. The service
normally runs in the background, waiting for requests. When a service
request is received, acurcl determines the user ID of the requester, checks an
authorization file (AcuAccess) to determine if the requester is allowed to use
the service, and determines the proxy user ID to be used for the requester (the
requester user ID can be mapped to another ID; the mapped ID may be
unique or may be shared by a number of users). If authorization is successful,
acurcl temporarily assumes the proxy user ID to fulfill the request. On most
UNIX systems, the SETUID system function is used to assume the correct
user ID. A similar function is used in the Windows operating environment.

Installing AcuConnect 2-9
In the MPE/iX environment, the operating system doesn’t provide a way for
a program (in this case, acurcl) to change its user ID. Therefore, the service
always uses the ID of the account that started acurcl. Any action acurcl takes
is performed with that ID. This inability to change IDs imposes some
limitations and requires that MPE/iX sites carefully consider how they will
deploy AcuConnect.

Because acurcl takes the user ID of the account that starts it, and because it
uses that ID to access files and fulfill requests, that account must be able to
service all anticipated requesters. There are two approaches to managing this
issue; the approaches can be combined.

One approach is to start acurcl from an account that is accessible to all
requesters (a “group” account). Of course, such an account must have all of
the necessary access permissions to satisfy every requester. The limitation of
this approach is that all requesters have the same proxy user ID on the server,
and there is no way to identify a unique requester.

The second approach is to start a separate instance of acurcl for each unique
requester, or group of requesters (multiple group accounts). This approach
will work as long as the number of separate instances doesn’t over-tax system
resources (process space, processor capacity, and dynamic memory). The
number of instances that each system can handle will vary depending on the
resources of that machine. Some experimentation may be necessary to
determine the limits of a given machine. Note that when acurcl is not
executing a request, it waits on a socket in an efficient loop, consuming few
resources.

2.2.5 Installing the ACUCOBOL-GT Runtime

The process for installing the ACUCOBOL-GT runtime on your UNIX or
Windows server is basically the same as the process for installing
AcuConnect.

On UNIX, follow the instructions in section 2.2.1, “Installing AcuConnect on
a UNIX Server,” taking care to insert the ACUCOBOL-GT runtime
installation media and to select a target directory for the installation.

2-10 The AcuConnect Server
On Windows, follow the instructions for installing AcuConnect from the
product CD-ROM, but make sure to select “ACUCOBOL-GT runtime” from
the Product Selection screen.

2.2.6 Relinking the Server Runtime in Distributed
Processing

If your applications don’t interface with any special library routines, you
don’t need to relink your runtime. If, on the other hand, your applications
interface with C-ISAM or other special library routines, you must relink the
included runtime with these special routines. To execute the link, you must
have the appropriate C compiler for your host machine:
• On Windows servers, use Microsoft Visual Studio .NET 2005. Refer to

Chapter 5 in A Guide to Interoperating with ACUCOBOL-GT for more
information.

• On UNIX servers, use the C compiler supplied by the vendor of your
UNIX system. On some machines, this is supplied with UNIX; on
others, it is an add-on option.

For C-ISAM, follow the relinking procedure described in the add-on
module’s documentation.

For other special library routines, follow the procedures in Chapter 6 in A
Guide to Interoperating with ACUCOBOL-GT.

Note: Before relinking, modify “direct.c” (direct method) or “sub.c” and
“sub85.c” (interface method) to include your C routines (see Chapter 6 in A
Guide to Interoperating with ACUCOBOL-GT).

2.3 Establishing System Security

Proper ownerships and permissions on the acurcl executable file, server
configuration files, server access files, and existing data files and directories
are essential to establishing a secure and functional system. Whether an
AcuConnect user can access a given application depends on two things: (1)

Establishing System Security 2-11
the user ID assigned the requester in the server access file (discussed in detail
in section 2.3.3, “The Server Access File”), and (2) either the Windows or
UNIX native server security set up for your files, or the UNIX ownerships
and permissions set on the particular file. UNIX ownerships and permissions
on the acurcl executable, server configuration file, and server access file
must be strictly maintained. If the ownerships and permissions are more
permissive than those specified, AcuConnect does not start.

2.3.1 Windows permissions

After you set up your applications, you may set access permissions by using
the Windows server security features. Please refer to your Windows
documentation for more information about security procedures. Note that in
Windows, the AcuAccess and “AcuAccess.vix” files should be readable and
writable by “Administrator” and “System,” with no other access. Make sure
that the AcuAccess file and the “acurcl.cfg” file can be written only by those
accounts and groups that you want to have write privileges.

Note: We recommend that you use native system security rather than
AcuConnect system security. On Windows 2008 it is essentially required
that you use system security. To use native security, you set the
SECURITY_METHOD variable in both the runtime configuration file on
the client and server configuration file on the server. You still create a
server access file containing access records that define your user base, but
the server access file is used only to check if the user connecting to the
server is allowed to connect, and to check to which local account the
connection should be mapped.

We recommend that you install and run AcuConnect on an NTFS drive,
because FAT partitions offer no security to files or programs and are not
supported by Micro Focus. If you install AcuConnect on an NTFS partition,
be aware that the user connecting to AcuConnect needs all of the following:
• READ (RX) permissions on “wrun32.exe” and “acurcl.clc”
• READ on “wrun32.alc” (or other license files)
• The appropriate permissions to access any file

2-12 The AcuConnect Server
For example, if ACUCONNECT_RUNTIME_FLAGS contains “-e logfile”,
AcuConnect attempts to write “logfile” in the same directory as “acurcl.exe”.
In this case, the user would need CHANGE (RWXD) permissions to access
that directory.

If the user connecting to AcuConnect is mapped to DEFAULT_USER, then
DEFAULT_USER needs these permissions.

2.3.2 UNIX ownerships and permissions

Setting ownerships and permissions requires root privileges on UNIX
systems or Administrator privileges on Windows systems. On UNIX, use the
commands chown, chgrp, and chmod to set ownerships and permissions.

UNIX permission modes are specified by a series of three octal numbers.
These three numbers assign access privileges to user, group, and other,
respectively.

In each user, group, and other field, the following values provide the
following privileges:

The UNIX command “ls -l” will return the permissions, ownerships, file size,
and modification date of a file or directory. For example:

ls -l /usr2/bsmith/fio_seq

returns:
-rw-r--r-- 1 bsmith general 4870 Jan 18 2005
/usr2/bsmith/fio_seq

Value Permissions

7 read, write, and execute

6 read and write

5 read and execute

4 read only

Establishing System Security 2-13
For details regarding UNIX file permission masks and the use of chown,
chgrp, and chmod, see your UNIX operating system manuals.

Key file settings

UNIX ownerships and permissions must be assigned to key AcuConnect files
as specified in the following table:

The permissions specified in the above table are the least restrictive (most
permissive) settings allowed for each file. The specified permissions are the
optimal permissions for most installations. However, more restrictive
permissions may be assigned. (Note that more restrictive permissions could
prevent some users from using some AcuConnect functions. For example, if
the acurcl executable file were assigned permissions of 700, no user other
than root could execute the “acurcl -info” command to generate a report of
current AcuConnect system status.)

If the files named in the preceding table do not possess the specified
ownerships and permissions (or more restrictive permissions), AcuConnect
does not start.

You must also set appropriate ownerships and permissions on existing data
files and directories. Appropriate ownerships and permissions are those that
allow file access to the individuals and groups that require access and that
disallow access to all others. See your UNIX operating system
documentation for a discussion of file permissions and file security.

Caution: Your site could jeopardize security if you include entries in the
server access file that explicitly allow users running as root on the clients to
run as root on the server. We strongly discourage the inclusion of such
entries.

File name Owner Permissions

acurcl (executable file) root 755

AcuAccess (server access file) root 644

acurcl.cfg (server configuration file) root 644

2-14 The AcuConnect Server
Runtimes that are started by AcuConnect on the server inherit the
environment of the user who started AcuConnect. Therefore, we recommend
that you log on as the DEFAULT_USER and then use the “su” command to
gain root privileges and start up AcuConnect. This ensures that any users
mapped to the DEFAULT_USER account do not have any more privileges
than you intend.

Ownerships and permissions on new files or processes

When a client application makes its initial request to AcuConnect for
services, the requester is validated for permission to use AcuConnect. If the
requester is permitted to use AcuConnect, the runtime invoked for that user
runs in the context of that user. The runtime acts exactly as it would if the user
logged onto the server machine and started the runtime from a shell. All
access permissions and restrictions for the user apply to the runtime running
for the user.

umask

The umask of the runtime process started for the user is the umask given in
the AcuAccess file. Any new files created by the runtime have permissions
based on that umask.

The umask is a variable having a three-digit octal value, similar to that used
by chmod, but which describes the permissions that are not to be set on new
files. The value of each digit, subtracted from seven, gives the corresponding
chmod value. For instance a umask of 002 corresponds to a chmod value of
775 (however, because execute permission is not applicable to data files,
AcuConnect actually sets the chmod value to 664). A umask of 002 grants
read and write permissions to user and group, and read only permissions to
other. Another common umask is 007, which sets read and write permissions
for user and group and no permissions for other. For more information about
umask, see your UNIX operating system documentation.

2.3.3 The Server Access File

The foundation of AcuConnect system security is the server access file, an
encrypted Vision file named “AcuAccess” by default. This file contains a
database of access records that determine which machines and which users

Establishing System Security 2-15
are allowed to use AcuConnect. AcuConnect searches for this file in the /etc
directory on UNIX servers and the operating system drive:\etc directory on
Windows servers. You may rename the file if you like.

The server access file is designed to support a wide range of access security,
from very permissive to very restrictive. You choose the level of security
appropriate for your application.

Access records may include wild cards that allow all clients or all users
(except root under UNIX and Administrator under Windows) access to
AcuConnect. Or you can create individual access records for each user of
each client. By having individual access records, you can restrict access to
only those users specifically named in the access file.

The individual access records allow you to specify the user ID that
AcuConnect will use when executing requests for users matching the given
record. In this way, you can assign a user ID that has exactly the privileges
needed and no more (typical of group access accounts).

In addition, every access record can include a password entry that the
application or user must match before AcuConnect establishes a connection.
(However, if the SECURITY_METHOD configuration variable is set to
“LOGON”, the local account password can be used instead.)

Note: We recommend that you use native system security rather than
AcuConnect system security. On Windows 2008 it is essentially required
that you use system security. To use native security, you set the
SECURITY_METHOD variable in both the runtime configuration file on
the client and server configuration file on the server. You still create a
server access file containing access records that define your user base, but
the server access file is used only to check if the user connecting to the
server is allowed to connect, and to check to which local account the
connection should be mapped.

The security system is almost completely transparent to the end user. Only
when remote file access requires interactive password authentication is the
user made aware of the security system.

2-16 The AcuConnect Server
On UNIX servers, the access file must be owned by root. The access file
cannot be writable by anyone other than root. If the access file does not exist,
is not owned by root, or is writable by users other than root, AcuConnect does
not start.

On Windows servers, you should protect the access file by allowing only the
administrator or someone in the administrators group to have write access to
it. If the access file does not exist, is not owned by administrator or the
administrators group, or is writable by users other than administrator or the
administrators group, AcuConnect does not start.

Using an existing AcuAccess file

The server access file for AcuConnect is structured the same and named the
same as the server access file for AcuServer®. If you are using AcuServer for
UNIX, you can use your existing AcuAccess file in conjunction with
AcuConnect, or you can set up a separate file for AcuConnect, if desired. If
you do not want to modify your AcuServer AcuAccess file, you can set up a
separate file for AcuConnect.

2.3.4 Access Record Composition

The server access file contains one or more access records. Each access
record comprises the following fields:

Client Machine Name The official host name by which the client machine is
identified on the TCP/IP network. For distributed
processing on Windows, this name is found in the Host
field under Control Panel/TCP/IP Properties/DNS
Configuration. Under UNIX, use the “hostname” or
“uname -n” command to determine the name.

Client Username The user’s login name on the client system.

Local Username The local user name that AcuConnect will use when
fulfilling requests for the client user

Establishing System Security 2-17
A typical server access record might look like the following:

This record allows user bernie to connect from machine starling.
AcuConnect uses the local user name bsmith (Bernie’s account on the file
server) when executing requests for bernie. In this case, “.” represents
Bernie’s local Windows password, which is required if Windows security is
used.

Four fields—Client Machine Name, Client Username, Local Username, and
Password—each have a wild card value that is used to indicate a general
behavior. These wild cards are:

When the string “same as client” is specified in the Local Username field,
certain conditions apply. If Client Username is not a valid name on the server,
DEFAULT_USER is used. DEFAULT_USER is used also if the Local
Username field is blank.

Again, if DEFAULT_USER is used to connect to AcuConnect on an NTFS
partition under Windows NT, 2000 through 2008 be sure that
DEFAULT_USER has both READ (RX) permissions on “wrun32.exe” and
the appropriate permissions to access any file.

Password Optional password protection. When used, the requester
must supply a password that matches this field.

umask A three-digit file creation mask

Client
Machine
Name

Client
Username

Local
Username

Password umask

starling bernie bsmith 002

Field name Wild card Meaning

Client Machine Name * Match all client machines

Client Username (empty field) Match all client users

Local Username same as client Use the Client Username

Password * Deny access to user

2-18 The AcuConnect Server
Common access records example

For illustrative purposes, here is a set of common access records:

These entries are interpreted as follows:
• The entry for support-pc allows any user of support-pc to use

AcuConnect. AcuConnect will use the local user name techie when
executing requests for support-pc.

• The entry for warehouse-pc allows any user of warehouse-pc to use
AcuConnect. Because the Local Username field is empty, AcuConnect
will use the value of DEFAULT_USER as the local user name when
executing requests for warehouse-pc.

• The entry for president-pc allows user diamond to access AcuConnect.
Because the Local Username field holds “same as client,” AcuConnect
will attempt to use diamond as the Local Username. If diamond is not a
valid local user name, the value of DEFAULT_USER will be used.

• The entry for robin allows all users of robin to access AcuConnect. If the
requester has an account on the server by the same name, AcuConnect
will use that name; otherwise, AcuConnect will use the value of
DEFAULT_USER.

• The first entry for starling allows user felice to access AcuConnect.
AcuConnect will follow the same rules as the previous entry to assign a
local user name.

Client Machine
Name

Client
Username

Local Username Password umask

support-pc techie <none> 002

warehouse-pc <none> 002

president-pc diamond <same as client> <none> 002

robin <same as client> <none> 002

starling felice <same as client> <none> 002

starling baxter 002

swallow hartley hartley <none> 002

swallow acct <none> 002

raven * 002

Establishing System Security 2-19
• The second entry for starling allows user baxter to access AcuConnect.
AcuConnect will use the value of DEFAULT_USER when executing
requests for baxter. baxter will need to provide a password before a
connection will be established.

• The first entry for swallow allows user hartley to access AcuConnect.
AcuConnect will use the local user name hartley when executing
requests for hartley.

• The second entry for swallow allows all users of swallow to access
AcuConnect. AcuConnect will use the local user name acct for all users
of swallow, except hartley (or other records for swallow that explicitly
name a client user).

• The entry for raven denies any user of raven access to AcuConnect.

The most permissive access record that can be created is:

This record allows any user of any client to use AcuConnect, as long as the
user has an account on the server by the same name, or DEFAULT_USER is
defined with a valid user name (DEFAULT_USER cannot be defined to be
root). A client user running as root will be mapped to DEFAULT_USER.

2.3.5 Using the Access File Manager

Create and maintain the server access file with the access file manager utility.
To start this utility, use the “acurcl -access” command or the Access tab in the
AcuConnect graphical control panel in Windows. To use the access file
manager, you must be logged on to a UNIX server as root or superuser or on
to a Windows server from the administrator account or from an account that
belongs to the administrators group.

Note: To use the access file utility on Windows 2008 where User Access
Control (UAC) security is turned on (as it is by default), any user must
choose “Run as Administrator” in order to use the various AcuServer
utilities. UAC can be turned off, in which case the user must merely be a
member of the administrators group in order to fully operate the utility.

Client Machine
Name

Client
Username

Local Username Password umask

* <same as client> <none> 002

2-20 The AcuConnect Server
The access file manager is an interactive, menu-driven utility that allows you
to do the following:
• Create an access file
• Add an access record
• Remove an access record
• Modify an access record
• Display an access record(s)

When the access file manager displays a value inside a pair of square brackets
([]), that value is the default value for the field. To accept the default value,
press Return. In the following example, /etc/AcuAccess is the default value.

Enter the name of the Server Access File
Filename [/etc/AcuAccess]:

2.3.5.1 Starting the access file manager

To launch the access file manager, use the “acurcl -access” command, as
shown:

acurcl -access

2.3.5.2 Creating or opening an access file

When the access file manager starts, you are prompted for the path and name
of the server access file:

Enter the name of the Server Access File
Filename [/etc/AcuAccess]:

• To open an existing access file

Enter the path and file name of interest. If the specified server access file
is not found, the manager asks if you want to create the file:

'access-file' does not exist.
Do you want to create it [N]?

• To create a new access file

Enter “Y”. After opening or creating the access file, the manager
displays a menu of five options:

Establishing System Security 2-21
Server Access File Option:

1. Add a security record
2. Remove a security record
3. Modify a security record
4. Display one/all security records
5. Exit

Enter choice [4]:

2.3.5.3 Adding an access record

1. Start the access file manager.

2. Select option [1] from the main menu.

The manager presents a series of five prompts, one for each field in the
record. The first field is the Client Machine Name field. The prompt
looks something like this:

A value of "*" for client machine name means that
this record will match all clients for which there
are no other records. You cannot use alias names.
The name must be the official machine name. Enter
the official machine name [*]:

Enter a client machine name or accept the default value.

3. The second prompt is for the Client Username. If this field is blank,
any user name will match.

If no client user name is entered it implies any user.
Enter client user name []:

Enter a client user name or accept the default value.

4. The third prompt fills in the Local Username field. The Local
Username is the name that AcuConnect will use when executing access
requests for requesters that match the first two fields of this record.
Note that if the Local Username is not a valid name on the server, the
server will attempt to use the value of the server configuration variable
DEFAULT_USER (if defined). If DEFAULT_USER is not defined,
the connection will be refused (AcuConnect returns an error 9D,103).

2-22 The AcuConnect Server
A value of 'same as client' for local user name
means to use the client user name. If no local
user name is entered DEFAULT_USER is used.
Enter the local user name [same as client]:

Enter a local user name or accept the default value.

5. The fourth prompt allows you to specify a password that must be
supplied by requesters who match this record.

Enter a password up to 64 characters long. The set of allowable
characters includes upper and lower case letters, numbers, the space
character, and most special characters (all ASCII characters numbered
32 to126). Delete, escape, and other non-printable characters are not
allowed.

The password characters are not echoed on the screen when entered. You
are asked to enter the password a second time to verify that it was entered
correctly.

If no password is entered it implies none.
Enter password []:
Retype password for verification:

If the password verification fails, you see the following message:

Mismatch - try again.
If no password is entered it implies none.
Enter password []:

6. The final prompt allows you to specify a umask. Enter the umask of
the runtime process started for the user. Section 2.3, “Establishing
System Security,” provides more information on determining this
value.

The umask defines the file creation mask for all
files created by this user. It must be an octal
value between 000 and 777.
Enter umask [002]:

Enter a umask value or accept the default value. If you enter an invalid
umask value, you see this message:

Invalid value for umask - try again.

Establishing System Security 2-23
After you specify a valid umask, the access file manager adds the record
to the server access file.

Record added.
Press <Return> to continue...

If you accept all of the defaults when creating the record, the entry looks
like this:

This record entry matches any client and allows any user to connect to
the server, provided that:

• The user has an account of the same name on the server

or

• The DEFAULT_USER variable is defined with the name of a valid
user

Through inclusion or exclusion of wild cards, named entries, passwords,
and umasks, it is possible to construct a server access file that allows
open, unrestricted access; rigid, tightly controlled access; or almost any
level in between.

2.3.5.4 Removing an access record

1. Select option [2] from the main menu.

The manager presents two prompts:

Enter official client machine name:
Enter client user name:

2. At the first prompt, enter the official client machine name.

3. At the second prompt, enter the client user name.

If a matching record is found, it is removed and the following message
appears:

Client Machine
Name

Client
Username

Local Username Password umask

* <same as client> <none> 002

2-24 The AcuConnect Server
Record removed
Press <Return> to continue...

2.3.5.5 Modifying an access record

1. Select option [3] from the main menu.

The access file manager presents the following prompts:

Enter official client machine name:
Enter client user name:

2. At the first prompt, enter the official client machine name.

3. At the second prompt, enter the client user name.

If a matching record is found, the following message appears:

Here is the record that was found:
Client machine name:
Client user name:
Local user name:
Password
Umask:

Do you want to modify the local user name [N]:

4. Type “Y” to modify the local user name.

If you have a different local user name and want to change the record to
“same as client,” you can type “same as client” at this prompt.
Upper/lower case is ignored, but you must put a single space between the
words. Don’t enter brackets or quotes.

If you enter “Y” or “same as client” at this prompt, you are asked:

Do you want to modify the password [N]:

If you want to modify the password, enter a new one now.

5. After the password value is entered, you are prompted:

Enter a new umask [002]:

If you want to change the umask, enter the new value here.

Establishing System Security 2-25
After this series of prompts is answered, the record is updated.
Record modified
Press <Return> to continue...

2.3.5.6 Displaying an access record

1. Select option [4] from the main menu.

You can display records to the screen, or you can output all of the
records to a file. The manager first asks if you want to display the records
to the screen.

Display to the screen [Y]?

2. To display the records to the screen, type “Y”. The manager responds
with the following prompt:

Display all records [Y]?
Displaying all records...

a. To view an individual record, respond “N” (“no”) to “Display all
records?” and the manager displays the following prompts:

Enter official client machine name:
Enter client user name:

If a match is found, the record appears; otherwise, the manager
states that no match was found and returns to the main menu.

No matching record found.
Press <Return> to continue...

b. To copy all of the records to a file, respond “N” to the “Display to
the screen?” prompt. The manager then prompts for a file name.

Enter the name of the Server Report File
Filename [AcuAccess.rpt]:

c. Enter a file name or accept the default. The manager copies the
access records to the named file.

Creating 'AcuAccess.rpt'

2-26 The AcuConnect Server
2.4 Creating a Server Alias File in Thin Client

Before using AcuConnect for thin client operations, you must create a single
association file to hold all the information that will be needed to invoke the
appropriate application on the server. This file is in XML format.

Note: Alias files created prior to Version 7.0 are in “.ini” format. These
files are automatically converted to XML format on first use with Version
7.0 and beyond. If you would prefer your alias file to be in “.ini” format, set
the ALIAS_FILE_IS_XML variable to “FALSE” in your environment
when executing “acurcl -alias” (or “acurcl” with the graphical control
panel on Windows). Alias files in XML format are incompatible with all
AcuConnect versions prior to 7.0.

1. To create the server alias file, log on to the server as the superuser
(UNIX) or administrator (Windows) and type:

acurcl -alias

2. When you execute “acurcl -alias”, you are prompted for the necessary
information. First, you are asked for the file to modify or create:

Enter the name of the Alias file: [/etc/acurcl.ini]

In VMS, the following prompt appears:

Enter the name of the alias file: [acurcl.ini]

Type the name of the file you want to use, or press Return to use the
default file. If the file does not exist, AcuConnect asks if you want to
create it. If you answer “Yes”, it continues with processing as below, and
if you answer “No”, it asks for a new file name. The menu looks like this:

RCL Alias file options
1) Add an alias entry
2) Remove an alias entry
3) Modify an alias entry
4) Display alias entries
5) Exit
Enter Choice [4]:

In Windows, you can also perform these tasks in the graphical control panel’s
Alias tab.

Creating a Server Alias File in Thin Client 2-27
2.4.1 Adding aliases
1. To add an alias to the alias file, choose item [1] from the alias menu. You

will receive the following prompt:

Add an alias
Enter the alias name:

2. Enter the name of the alias you want to add. If the named alias already
exists in the alias file, a message displays:

Alias already exists

and you are returned to the alias menu. Otherwise, you are asked for the
working directory for the alias:

Enter the working directory:

3. Type an existing directory name. (Note that AcuConnect does not
verify that this directory actually exists.) You are then asked for a
command line for the runtime:

Enter the command line:

4. Type the command line that you would normally type when executing
the runtime, except do NOT include the runtime name. The command
line is parsed and the alias entry is added to the alias file. If there are
incorrect parameters in the command line, the parsing fails and the
alias is not added to the alias file. Note that if you inadvertently add a
space, tab, or special character to the name of your program, it may not
be found.

AcuConnect keeps track of when the file was last modified, and if the
modification date of the alias file is later than the tracked date, the file is
reread. This means that you can add information to the alias file while
AcuConnect is running, and the next time that alias is requested by a client it
uses the new information.

Example

To add an alias entry named “tour” that runs the tour program with the
command “runcbl -le err tour”, you would have the following interaction:

2-28 The AcuConnect Server
C:\Acucorp\AcuCBL8xx\AcuGT\bin> acurcl -alias
Enter the name of the Alias file: [/etc/acurcl.ini]
myalias.ini

'myalias.ini' does not exist. Do you want to create it [N]?
y

RCL Alias file options
1) Add an alias entry
2) Remove an alias entry
3) Modify an alias entry
4) Display alias entries
5) Exit

Enter Choice [4]: 1
Add an alias
Enter the alias name: tour
Enter the working directory:
C:\acucorp\acucbl8xx\acugt\sample
Enter the command line:
-le err tour
Press <Return> to continue...

RCL Alias file options
1) Add an alias entry
2) Remove an alias entry
3) Modify an alias entry
4) Display alias entries
5) Exit

Enter Choice [4]: 5

C:\Acucorp\AcuCBL8xx\AcuGT\bin>

2.4.2 Removing aliases
1. To remove an alias from the alias file, choose item [2] from the alias

menu.

You receive the following prompt:

Remove an alias
Enter the alias name:

Creating a Server Alias File in Thin Client 2-29
2. Enter the name of the alias that you want to remove.

If the named alias does not exist in the alias file, a message displays:

Alias does not exist

and you are returned to the alias menu. Otherwise, you see the current
working directory and command line for the alias, and are asked to
confirm deleting the entry:

Are you sure you want to remove this alias?

3. Enter “Y” or “N”.

In either case, you are returned to the alias menu. If you answered “Y”,
the alias is no longer an entry in the alias file.

2.4.3 Modifying aliases
1. To modify an alias in the alias file, choose item [3] from the alias menu.

You receive the following prompt:

Modify an alias
Enter the alias name:

2. Enter the name of the alias that you want to modify.

If the named alias does not exist in the alias file, a message displays:

Alias does not exist

and you are returned to the alias menu. Otherwise, you see the current
working directory and are asked for a new one.

3. Press Return to leave the working directory unchanged, or type the
name of a different directory.

4. After you enter a directory, you see the command line as it currently
exists in the alias file, and are asked for a new command line. Press
Return to leave the entry unchanged, or enter a new command line.
You are then returned to the alias menu.

2-30 The AcuConnect Server
2.4.4 Displaying aliases

To display an alias in the alias file, choose item [4] from the alias menu. You
receive the following prompt:

Display aliases
Enter the alias name:

Enter a valid alias name, or enter nothing to see a list of valid aliases
contained in the file. If you enter a valid alias name, you see the working
directory and the command line for that alias. You are then returned to the
alias menu.

Note: AcuConnect rewrites the command line before putting it into the
alias file, so when it is displayed, it might not be exactly the same as what
was originally entered. For example, displaying the “tour” alias above
shows that the command line is “-el err tour”.

2.5 Installing Server Programs

The last step in preparing your server for use with AcuConnect is copying the
server components of your COBOL application onto the server into the
desired directory. If you created a runtime configuration file for the server
application, you must copy this onto the server as well.

AcuConnect supports the following server platforms:
• UNIX
• Windows NT Server
• Windows 2000, 2003, 2008 Server

2.6 Starting AcuConnect

For a client process to access programs on the server, AcuConnect must be
running. To start and stop AcuConnect (as well as to perform several system
administration functions such as checking system status, maintaining the

Starting AcuConnect 2-31
server access file, or installing AcuConnect as a Windows service), you issue
the acurcl command on the server at the command line. In Windows, using
the acurcl command with no options brings up a graphical control panel. You
can start AcuConnect from the Services tab of this screen.

This section provides specific instructions for issuing the “acurcl -start”
command on the server. Chapter 8 describes AcuConnect’s systems
administrator functions and provides a complete reference to acurcl
command formats and options.

2.6.1 Starting AcuConnect on a UNIX Server
1. Log in as root or superuser.

2. Issue the “acurcl -start” command on the server command line. Valid
options to “-start” are listed in the following table:

Option Description

-c Specifies the name and path of the server configuration file. The “-c”
must be followed by a space and then the path and name of the server
configuration file.

When “-c” is not used, acurcl looks for the configuration file in its
default location: /etc/acurcl.cfg for UNIX or \etc\acurcl.cfg for
Windows.

-d Starts AcuConnect on the server machine in debug mode.
AcuConnect runs in the foreground. Note that you are limited to one
UNIX client connection when you use this option.

-e Causes error output from acurcl to be placed in the named file.
Follow “-e” with a space and then the path and name of the error
output file (use this same syntax for the “-ee” and “+e” options listed
below).

• If “-e” is not specified, acurcl attempts to direct error output to
/dev/console.

• If /dev/console cannot be opened, acurcl attempts to append to
a file named “acurcl.err” in the current directory.

• If the “acurcl.err” file doesn’t exist, or the file append fails,
acurcl prints the message “acurcl: can’t open error output file”
to standard output, and acurcl terminates.

2-32 The AcuConnect Server
You can use “-ee” to redirect the contents of stderr into the new error
file.

You can use “+e” to append error output from acurcl to the named
file.

-f By default, acurcl runs in the background. Use the “-f” option to run
acurcl in the foreground. When run in the oreground, the acurcl
process traps normal keyboard signals, such as Ctrl+C.

If combined with the “-t” option, the “-f” option causes acurcl to
display tracing and transaction messages directly to the screen.
However, if the “-e” switch is used, all messages are placed in the
named log file.

-g Causes the file specified by the “-e” option to be compressed using
the gzip compression method. Because the error file name is not
modified to reflect the compression, we recommend that you specify
a different file extension for the error file (for example, “.gz”) when
you use this option. To read the file, you must decompress it with
gzip.

-l Causes a listing of the server configuration file to be printed to
standard error output. This can be helpful when you are debugging
problems that may be related to configuration variables.

When this option is combined with the “-e” option, the listing is
captured in the error output file.

-n Assigns a port number to one instance of the acurcl daemon. The “-n”
must be followed by a space and then an integer, for example, “5633”.
This overrides the ACURCL_PORT value set in the server
configuration file.

Thin client applications can be assigned to a particular instance of the
acurcl daemon via the <server:port> notation on the acuthin
command line. Thin clients launched from a Web page can have the
port number specified by the atc-port variable in the thin client
command-line file (see section 7.3.1, “Thin Client
Command-line Files.”)

The acurcl daemon can work with privileged port numbers (from 0 to
1023), and with non-privileged port numbers (1024 and higher).
Privileged port numbers are useful for external, secure applications.

Option Description

Starting AcuConnect 2-33
You can stop AcuConnect at any time by issuing the “acurcl -kill” command.
See section 8.2.1.6, “acurcl -kill,” for a discussion of the “-kill” command
options.

AcuConnect returns a status code of “0” after a successful start. When
AcuConnect fails to start, it returns one of the following status codes to the
operating system, indicating the reason for the failure:

Note: If you start acurcl on two ports, you must also specify all
start-up arguments, including the configuration file, as in:

acurcl -start -n 5632 -c c:\etc\config1 [other options]
acurcl -start -n 5633 -c c:\etc\config2 [other options]

-t # Turns on the tracing function. When combined with the “-e” option,
trace information is placed in the named error file. The “#” symbol
represents the type of tracing or logging to be performed, as described
below:

• “1” provides information about access file match attempts. The
trace information buffer is flushed to the error file when the
buffer is filled or acurcl terminates.

• “2” provides information about runtime requests. The buffer is
flushed to the error file when the buffer is filled or acurcl
terminates.

• “3” provides the information described for “1” and “2”.
• “5” is equivalent to “1”, but the tracing buffer is flushed to the

error file each time an access file match is requested. (File trace
flushing can also be controlled with the
FILE_TRACE_FLUSH server configuration variable. See
section 3.3, “Creating a Server Configuration File.”)

• “6” is equivalent to “2”, but the tracing buffer is flushed to the
error file each time a runtime is requested.

• “7” provides the information described for “5” and “6”.

Option Description

Code Reason for failure

1 Invalid argument

2 Missing license

3 Expired license

2-34 The AcuConnect Server
How you get this status depends on your shell. When you use the Bourne
shell (or a compatible shell), echo $? to see the return status of any program
executed from the shell.

Setting the user environment in UNIX

With the use of USE_UNIX_SHELL configuration variable, you can direct
AcuConnect to attempt to read your UNIX shell login files based on the shell
named in /etc/passwd when AcuConnect starts a runtime. Setting this
variable to “true” means that AcuConnect can start a runtime through your
login files, and the environment variables you set in these files are therefore
available to the runtime.

AcuConnect tries to convince the shell to read the startup files by making the
first character of argv[0] = ‘-’, just as login(1) does. As a result, the following
environment variables are set:
• HOME (from /etc/passwd)
• SHELL (from /etc/passwd)
• PATH /usr/local/bin:/bin:/usr/bin:
• TERM dumb
• LOGNAME $USER

Your startup files may modify these variables or set other variables.

AcuConnect starts the shell as shown:
shell -c "'runcbl' . . ."

4 Unable to open the error log file

5 Unable to open the configuration file (writable by other than root)

6 Unable to open the AcuAccess file (missing or writable by other than root)

7 Unable to create a child process

8 Too many servers running

9 Unable to create a socket, because the socket is used by something other
than AcuConnect

10 AcuConnect is already running on this port.

Starting AcuConnect 2-35
where shell is the user’s shell and the ellipsis (“. . .”) designates the position
of the arguments that AcuConnect would normally use to start the runtime.
The full path to runcbl is also given. Make sure that the shell used supports
the “-c” option and the ability to set argv[0] to “-”. For example, the
following shells can be used: sh, ksh, and bash. The csh and tcsh shells are
not supported.

2.6.2 Starting AcuConnect on a Windows Server

Issue the “acurcl -start” command from the administrator account or from an
account that belongs to the administrators group. On Windows servers, it’s
best to specify “acurcl -start” with no options. Alternatively, you can click
the Start button on the Windows graphical control panel’s Services tab.

Note: To use the AcuServer Control Panel (UAC) on Windows 2008,
where User Access Control security is turned on (as it is by default), any
user must choose “Run as Administrator” in order to use the various
AcuServer utilities. UAC can be turned off, in which case the user must
merely be a member of the administrators group in order to fully operate
AcuServer.

You can stop AcuConnect at any time by issuing the “acurcl -kill” command
or by clicking Stop on the control panel’s Services tab. See section 8.2.1.6,
“acurcl -kill,” for a discussion of the “-kill” command options.

2.6.3 Starting AcuConnect in Thin Client on MPE/iX

To start the server process on an MPE/iX host, you need to run the process as
an MPE batch job. The job file might be called “JACURCLD” and might
look something like this:

!JOB JACURCLD,MGR.ACUCOBOL;PRI=CS
!RUN /ACUCOBOL/bin/acurcl;&
! INFO='-start -c /ACUCOBOL/etc/acurcl.cfg -le
 /ACUCOBOL/bin/acurcl.err -t3';&
! PRI=CS
!EOJ

2-36 The AcuConnect Server
• To stream the job, you could do the following, assuming you are in the
MPE group where the job file is:

MPE:

:STREAM JACURCLD

POSIX:

shell/iX> callci "STREAM ./JACURCLD"

• To stop the job, you would do the following:

MPE:

ABORTJOB #[job-number]

• Use SHOWJOB to obtain the job number, if necessary.

POSIX:

shell/iX> /ACUCOBOL/bin/acurcl -kill

2.6.4 Starting AcuConnect in Thin Client on a VMS Server

To start AcuConnect on VMS (version 7.2 or later) as a detached process, use
the following command line:

run/detached sys$system:loginout /input=acurcl.com -
/output=acurcl.out /process_name=acurcl

2.6.5 Starting AcuConnect at System Startup

On a UNIX server, to start AcuConnect whenever the server boots, add the
“acurcl -start” command to the system boot file. Your entry might be similar
to the following:

#
If the acurcl executable is present,
start acurcl
if (test -f /acucobol/acurcl) then
 echo Starting acurcl > /dev/console
 /acucobol/acurcl -start -e /acucobol/acurcl.log
fi

AcuConnect Connection Logic 2-37
On a Windows server, we recommend that AcuConnect be installed as a
Windows service. This causes the service to be started automatically each
time the system is booted. If you don’t install it as a service, it will stop
whenever you log out.

We provide an installation script that gives you the option to install the acurcl
daemon as a Windows service. If you choose not to install the service from
the installation script, you can install it as a service in the following way. You
must be logged on to an account that belongs to the administrators group.
From the command line, type:

acurcl -install

You can also click New in the graphical control panel’s Services tab. The
service will now be started automatically each time the system is booted.

Immediately following the installation, you can start the service from the
graphical control panel’s Services tab by clicking Start. As an alternative,
you can use the Start/Settings/Control Panel/Services menu option.

Please note that installing a service on a particular port resets all start-up
options for the service on that port. You can use all valid “-start” options
when installing AcuConnect as a service. These options are stored so that the
service will use them when starting.

2.7 AcuConnect Connection Logic

How the client connects to AcuConnect depends on the client application that
is attempting to connect. However, some common steps are involved with
any attempt, regardless of the client application. These are described here to
clarify the use of the server access file and the DEFAULT_USER
configuration variable.

To validate a requester’s access privileges, AcuConnect does the following
when a client process first makes a request to AcuConnect:

1. Opens the server access file.

2. Searches for a record that matches both the client machine name and
the client user name.

3. (If no match is found) searches for a record that matches the client
machine name and a “match all” (blank) client user name.

2-38 The AcuConnect Server
4. (If no match is found) searches for a record that has the “match all”
(“*”) client machine name and the client user name.

5. (If no match is found) searches for a record that has the “match all”
(“*”) client machine name and the “match all” (blank) client user
name.

6. (If no match is found) refuses the connection.

When a match is found:

1. If the Local Username is valid, it is used.

2. If the Local Username is not valid, DEFAULT_USER is used.

3. If the Local Username is not valid and DEFAULT_USER is not valid,
the connection is refused.

4. If the Local Username is valid and the password field is defined, a
message is sent back to the requester asking for a password.

When a connection is established, AcuConnect invokes the runtime based on
the information provided by the client making the request. AcuConnect
connects that child runtime with the client and then removes itself from the
communication loop between the two processes.

2.7.1 Passwords

When a password is assigned to an entry in the server access file, requesters
who match that entry must return a matching password to AcuConnect. In a
distributed processing environment, the client application has two options for
acquiring and sending a password back to AcuConnect. In thin client, only
option 2 applies.

Option 1: Program Variable

The requesting application may include code that checks for the program
variable acu_client_password. If defined, its value is considered an
unencrypted password, which is then encrypted and sent to AcuConnect for
verification. If the value does not match the value in the access record, the
connection is refused. Using acu_client_password, the COBOL programmer

AcuConnect Connection Logic 2-39
has a great deal of flexibility in setting and acquiring the password. The
programmer can supply a password to AcuConnect without requiring any
user interaction (the user may remain unaware that a password is required).

To use acu_client_password, declare an external pic x variable named
acu_client_password in Working-Storage:

ACU_CLIENT_PASSWORD PIC X(64) IS EXTERNAL

Assign a value to the variable before the program’s first access to a remote
file (or better, before the program’s first access to any file). Note that the
value of acu_client_password should be terminated by LOW-VALUES.

Option 2: User-entered Password

If acu_client_password is not defined, the client runtime opens a dialog
window requesting that the user enter a password.

A password is required to connect to host hostname.
Please enter a password:

The user must enter a password. The characters do not echo on the screen.

The password is then encrypted and sent to the server for verification. If the
password matches, a connection is established. If the password doesn’t
match, or if the user enters a blank password (for example, Enter or OK), the
user is prompted again to enter a password:

Invalid password
Please enter a password:

The password verification cycle is repeated until a valid password is entered,
or the value of the server configuration variable PASSWORD_ATTEMPTS
is exceeded (the default value is “3”). The text displayed by the runtime to
prompt for a password and report a failed verification can be modified with
the TEXT runtime configuration variable. See section 3.3, “Creating a Server
Configuration File,” for more information about these configuration
variables.

2.7.2 Exiting the Access Manager

To exit the manager, select option [5] from the main menu.

2-40 The AcuConnect Server

3
 Server Configuration
Key Topics

Configuring the AcuConnect Server ... 3-2
Configuring the Environment.. 3-2
Creating a Server Configuration File .. 3-3
Creating a Runtime Configuration File for the Remote Server Component....
3-15

3-2 Server Configuration
3.1 Configuring the AcuConnect Server

After you install AcuConnect, you need to configure the server. At a
maximum, this can entail configuring the environment, creating a server
configuration file for AcuConnect, and creating a runtime configuration file
for the server component of your COBOL program. If you accept the default
security file locations and other settings, however, no special configuration is
required.

The client machine also requires configuration; this is discussed in Chapter 5,
“Chapter 5: Preparing the Client(s) in Distributed Processing” and Chapter 6,
“Chapter 6: Preparing the Client(s) in Thin Client.”

3.2 Configuring the Environment

Environment variables are values maintained by the host operating system
that can be changed by the user. These values can be used to store
information such as the location of executable programs and header files.
Following is an environment variable that you may choose to set on your
AcuConnect server if you want to specify the format of your alias file. For
more information on environment variables, refer to the ACUCOBOL-GT
User’s Guide, section 1.5, “Environment Variables.”

ALIAS_FILE_IS_XML

Alias files are stored on disk as XML files by default. If you want the alias
files to be in INI format rather than in XML, set the ALIAS_FILE_IS_XML
environment variable to “FALSE”.

Note: Once the alias file is in XML format, setting this variable to FALSE
won’t revert it.

If you want to use this variable, you must set it in the environment when you
are executing “acurcl -alias” (or acurcl with the graphical control panel on
Windows), because AcuConnect reads no configuration files in this mode.

See your operating system documentation for how to set environment
variables.

Creating a Server Configuration File 3-3
3.3 Creating a Server Configuration File

The server configuration file, called “acurcl.cfg” throughout this book, tells
AcuConnect the location of the AcuAccess file, defines the default user, and
supplies other information. The server configuration file is completely
optional if you have stored AcuAccess in the default /etc or operating system
drive:\etc directory (\etc for UNIX/Linux).

When shipped, AcuConnect comes with a sample “acurcl.cfg” file. If you
choose to use a server configuration file, you can use the sample file as is
(complete with its default values), or you can modify the file to your
specification. By default, AcuConnect looks for “acurcl.cfg” in /etc or
operating system drive:\etc on the server. If the file is given another name or
is located in another directory, you must specify the full location and name of
the file with the “-c” option when you start AcuConnect. For more
information, see the description of the “-start” command in section 8.2.1.9,
“acurcl -start.”

The server configuration file can contain any or all of the following variables:

Name Default Value

ACCESS_FILE /etc/AcuAccess

ACURCL_PORT 5632

AGS_BAD_SOCKET undefined

ALIAS_FILE_IS_XML TRUE

CHILD_WAIT 50

DEFAULT_USER undefined

FILE_TRACE 0

FILE_TRACE_FLUSH FALSE

FILE_TRACE_TIMESTAMP FALSE

PASSWORD_ATTEMPTS 3

PROVIDE_PASSWORD_MESSAGES FALSE

SECURITY_METHOD NONE

SERVER_ALIAS_FILE /etc/acurcl.ini (thin client only)

3-4 Server Configuration
Note that values assigned to variables contained in the server configuration
file are applied solely to operations performed by AcuConnect. To gain a
context for using these variables, read section 2.6, “Starting AcuConnect.”

ACCESS_FILE

The ACCESS_FILE variable (along with DEFAULT_USER and
PASSWORD_ATTEMPTS) affects AcuConnect access security.

ACCESS_FILE must hold the full path and file name of the server access
file, if it is other than the default location (/etc/AcuAccess on UNIX systems;
\etc\AcuAccess on the root drive on Windows servers).

For example:
access_file c:\security\AcuAccess

SERVER_IP undefined

SERVER_NAME undefined

SERVER_RUNTIME wrun32.exe or runcbl in the acurcl
directory

TEXT_015 “A password is required to connect
to host %s.”

TEXT_016 “Please enter a password: ”

TEXT_017 “Invalid password.”

USE_SYSTEM_RESTRICTIONS FALSE

USE_UNIX_SHELL FALSE

WINNT_LOGON_DOMAIN undefined

WINNT_EVENTLOG_DOMAIN NULL

Name Default Value

Creating a Server Configuration File 3-5
ACURCL_PORT

The ACURCL_PORT variable specifies a particular port number to be used
for accessing AcuConnect on the server host machine. This is especially
helpful when the server host machine has a security firewall, because
firewalls generally allow access only to specific ports. With this variable, the
site can ensure that firewall restrictions are satisfied.

The acurcl daemon can work with privileged port numbers (from 0 to 1023)
and with non-privileged port numbers (1024 and higher, up to 32767).

The value of this variable is overridden by any port number assigned on the
command line (via the “-n” option) when the daemon is started.

Note: The ACURCL_PORT variable may be specified in the server
configuration file. It may also be specified on the server command line with
the “-n” option. If you specify a non-default value, you must use the same
value on the client side (using the <server:port> notation).

AGS_BAD_SOCKET

AcuConnect depends on the ability to pass an open socket descriptor to the
runtime for the client to communicate with the server. Some UNIX shells
don’t pass all file descriptors to a child process. You may be experiencing
such a problem if users can sometimes connect to the server, but other times
can no longer connect, even though there are sufficient licenses.

If you detect such problems, look for a line in the server runtime error file that
shows what descriptor the socket is using, as in the example below:

Runtime version 8.2.0
Configuration file = 'config'
Thin client socket uses descriptor 6
Loading map file
Unable to open TC-MAP-FILE '', error 0
Try loading 'testit.acu'...
testit.acu loaded

3-6 Server Configuration
Set the AGS_BAD_SOCKET variable to this socket descriptor to alleviate
the problem. You can set this variable multiple times, once for each bad
descriptor that you detect. Each time you set it, however, you should set it to
a single value. For example, if you find that descriptors “18” and “62” are
causing problems, you can add the following two lines to the runtime
configuration file:

AGS_BAD_SOCKET 18
AGS_BAD_SOCKET 62

Note: If the socket descriptor is in use at the time you attempt to set it, you
will not be able to use the “-config” option of acurcl.

Also, please note that there is a chance that the setting will fail when using
“-config”. You can determine whether this setting had any effect by looking
at the error file. You will see a line something like:

7431977 - CONFIG request - SET AGS_BAD_SOCKET to n
Set parameter 'AGS_BAD_SOCKET' to n

Instead of n, you will see the value you are trying to set. The most important
line is the second. If you don’t see that line, it means that acurcl has that
descriptor value open for some other purpose (perhaps another client is trying
and failing to connect). You should continue trying until you get the setting.

CHILD_WAIT

The CHILD_WAIT configuration variable lets you determine how long
AcuConnect waits for a child runtime to start successfully. This variable is
valid for Windows servers only. The default value (in milliseconds) is “50”.
When you set this variable to “0”, AcuConnect does not wait at all. The
maximum value is “32767”, or approximately 32 seconds.

This variable helps you determine whether you have reached a Windows
limit on the number of simultaneous child runtimes. Refer to section 8.7.3,
“Connection Refused,” for more information about this Windows limitation
and how to work around it.

Creating a Server Configuration File 3-7
DEFAULT_USER

DEFAULT_USER holds the default user name given to AcuConnect
requesters who are not specifically mapped to a local user name in the server
access file (as when the Local Username field of the access record is empty,
or the value of the field is an invalid user name). Definition of
DEFAULT_USER is optional. DEFAULT_USER cannot be defined as
“root” on UNIX systems or administrator (on Windows systems). For a
description of when AcuConnect assigns DEFAULT_USER to a requester,
see section 2.7, “AcuConnect Connection Logic.”

FILE_TRACE

This variable allows you to start the tracing function without specifying a
“-t #” option on the command line when you start AcuConnect. Setting this
variable to a value between “1” and “7” saves connection information. The
default value is “0”. Refer to section 2.6, “Starting AcuConnect,” for more
information about trace values.

FILE_TRACE_FLUSH

Setting FILE_TRACE_FLUSH to “1” (on) causes AcuConnect to flush the
error trace buffer to disk after every alias program execution. This function
also ensures that in the event that the acurcl daemon terminates abnormally,
all trace information, up to the last alias program execution, is captured in the
error file. If this configuration variable is not used (set to 0, false, or off), and
AcuConnect terminates unexpectedly, an undefined amount of trace
information is lost. FILE_TRACE_FLUSH is set to “false” by default. Note
that you can also enable trace flushing when you start the acurcl daemon by
including the “-t #” command-line switch in the start command (see section
2.6, “Starting AcuConnect,” for more information).

3-8 Server Configuration
FILE_TRACE_TIMESTAMP

Setting this variable to “true” allows you to turn on trace file timestamping.
The timestamp is added to the trace file at the beginning of every line. The
default value is “false”. Note that setting this variable to “true” may have a
negative impact on performance.

PASSWORD_ATTEMPTS

The variable PASSWORD_ATTEMPTS (along with DEFAULT_USER and
ACCESS_FILE) affects AcuConnect access security.

PASSWORD_ATTEMPTS holds a positive integer value specifying the total
number of password validation attempts a requester is allowed before a
connection attempt is terminated. The default value is “3”. If a value of less
than “1” is given, the value “1” is used. If a non-integer value is given, the
default value is used.

PROVIDE_PASSWORD_MESSAGES

This variable controls whether the server sends password messages to the
client when a remote connection is requested and passwords are required.
When you set this variable to “true”, the password messages defined in the
TEXT_nnn configuration variable are sent to the client when it requests a
connection to the server. If PROVIDE_PASSWORD_MESSAGES is set to
the default value of “false”, the client uses its own default values.

SECURITY_METHOD

This variable lets you determine the security method AcuConnect employs
for user logon. AcuConnect can use the operating system’s native logon
facility or the security provided by the AcuAccess file. Users can use their
regular passwords when they connect to servers, instead of having a different
password in the AcuAccess file or remembering to keep the password in the
AcuAccess file coordinated with the native password.

Creating a Server Configuration File 3-9
Note: We recommend that you use native system security rather than
AcuConnect system security. On Windows 2008 it is essentially required
that you use system security. To use native security, you set the
SECURITY_METHOD variable as described in this section. You still
create a server access file containing access records that define your user
base, but the server access file is used only to check if the user connecting
to the server is allowed to connect and to check to which local account the
connection should be mapped.

This feature works for Windows servers and for UNIX servers. For UNIX
servers, passwords can be stored in /etc/passwd or in /etc/shadow (in other
words, the machine uses shadow passwords). It does not use the newer
pluggable authentication module (PAM) libraries.

The default value of SECURITY_METHOD is “NONE”, which means that
AcuConnect’s AcuAccess file security is used. For information about using
the AcuAccess file, refer to section 2.3, “Establishing System Security.”

When this variable is set to “LOGON”, the operating system’s native logon
capability is used.

Windows

In Windows, AcuConnect attempts to log the user on to the domain specified
in the WINNT_LOGON_DOMAIN configuration variable. AcuConnect first
uses the password in the AcuAccess file to log the user onto the server. If the
AcuAccess password matches the user’s Windows domain password, the
login completes and the user is never prompted for a password. If the
password doesn’t match, or if the password field in the AcuAccess file is
empty, the user is prompted to supply a password. The password provided
must match the user’s network domain password on the Windows server. The
number of attempts the user has to supply the correct password is limited by
the value of the configuration variable PASSWORD_ATTEMPTS. A
successful logon grants users all the access rights they would have if they
were directly logged onto the server. AcuConnect allows Windows servers to
manage all issues pertaining to access permissions.

3-10 Server Configuration
UNIX

In UNIX, the AcuAccess password is checked against the password in the
system files. If the password matches, the login is completed. If it doesn’t
match, the user is asked for a password that is then checked against the
system password. If you want your UNIX machine to be able to restrict
access to the machine based on various parameters, set the
USE_SYSTEM_RESTRICTIONS configuration variable.

In distributed processing, SECURITY_METHOD must be set in both the
client and the server configuration files, and the values must match. If the
values don’t match, the security method reverts to “NONE”, which uses only
the AcuAccess password.

In a thin client environment, the initial behavior is different from that of
distributed processing. When the thin client establishes its configuration, it
has a default setting of “LOGON”. This value must match the
SECURITY_METHOD setting on the server. If the values don’t match, the
security method reverts to “NONE”, which uses only the AcuAccess
password.

A value of “NAMED-PIPE” is for AcuServer use only and we do not
recommend its use here.

Note: The SECURITY_METHOD configuration variable replaces the
NT_SECURITY variable (which has been removed). If you are upgrading
a Windows server, you must change your configuration file, replacing the
NT_SECURITY variable with the SECURITY_METHOD variable.

SERVER_ALIAS_FILE

This variable applies only in a thin client environment.
SERVER_ALIAS_FILE holds the name of the alias file to be used with the
thin client. When the thin client is invoked, it is not given the name of a
COBOL program to run. Rather, it is given the name of an alias to use. This
alias holds all the information for invoking the runtime, which will be used to
run the COBOL program. Refer to section 2.4, “Creating a Server Alias File
in Thin Client,” for information on creating the server alias file.

Creating a Server Configuration File 3-11
SERVER_IP

This variable is necessary only if your server interfaces with more than one
network. In this instance, you can use SERVER_IP to specify the exact
Internet Protocol (IP) address of the network interface card that you want
AcuConnect to use. For example:

SERVER_IP 192.215.170.107

starts AcuConnect using IP address 192.215.170.107. If you have already
assigned a host name to the desired IP address, you can use the
SERVER_NAME variable instead of SERVER_IP to specify the precise
network card to use.

Note that if both the SERVER_IP and SERVER_NAME configuration
variables are defined in the configuration file, AcuConnect uses the value of
the first valid entry in the file.

SERVER_NAME

You can use this variable in place of SERVER_IP to specify which network
interface card to use when starting AcuConnect. It is necessary only if your
server interfaces with more than one network, and it can be used only if you
have already assigned a host name to the desired IP address. In this instance,
you can use SERVER_NAME as follows:

SERVER_NAME <host-name>

where <host-name> is the host name assigned to the IP address of the
desired network card. For example:

SERVER_NAME nts2

starts AcuConnect using host name nts2.

Note that if both the SERVER_IP and SERVER_NAME configuration
variables are defined in the configuration file, AcuConnect uses the value of
the first valid entry in the file.

3-12 Server Configuration
SERVER_RUNTIME

This variable is used to specify the name of the runtime to use. The default is
to use the runtime that is in the same directory as AcuRCL.

TEXT_nnn

You can use a set of TEXT configuration variables to control the text of
selected AcuConnect messages. We have included three configuration
variables to support AcuConnect password handling. The default text for
each message is:

TEXT_015 "A password is required to connect to host %s."
TEXT_016 "Please enter a password: "
TEXT_017 "Invalid password."

Note that in message 15, the name of the AcuConnect host will be substituted
for the “%s” characters.

To change the text associated with a given message, perform the following
steps:

1. Place the word “TEXT” at the beginning of a line in the configuration
file

2. Follow this with:

a. An underscore

b. The message number

c. An “=” character (or a blank space or tab)

d. The text to be used when that message number is displayed.

For example:
TEXT_016=Enter your password now:

Note that to enable the display of the password messages, you set the
PROVIDE_PASSWORD_MESSAGES variable to “true” (1, on, yes).

The use of password protection is optional. If password protection is not
used, these messages will not be displayed.

Creating a Server Configuration File 3-13
USE_SYSTEM_RESTRICTIONS

This configuration variable applies only to UNIX systems. Some UNIX
machines can restrict access to the machine based on various parameters. If
you want to include those restrictions in AcuConnect, set the
USE_SYSTEM_RESTRICTIONS configuration variable to “true”. The
default value is “false”. This configuration variable is available only on
UNIX servers and is used only if the SECURITY_METHOD configuration
variable is set to “LOGON”. The server uses the loginrestrictions() function
to implement this feature. Ask your system vendor for information about this
function and how to establish restrictions.

USE_UNIX_SHELL

This configuration variable determines whether AcuConnect attempts to start
a runtime through the user’s UNIX login shell. When USE_UNIX_SHELL is
set to “true” (1, on, yes), AcuConnect reads the user’s login shell files based
on the shell named in /etc/passwd when it starts a runtime for that user. As a
result, the runtime has access to all the environment variables that the user
has set in the startup file. The default value is “false”.

Note: Running AcuConnect in debug mode when USE_UNIX_SHELL is
“on” in a distributed processing deployment may render the UNIX
debugger display unreadable. This behavior occurs because the TERM
environment variable is automatically set to “dumb” when
USE_UNIX_SHELL is on. To avoid this behavior, you can add a line to
your shell’s login script file (for example, “.profile”, “.bash_profile”, or
“.cshrc”) that sets either the TERM or A_TERM environment variable to
another value.

WINNT_LOGON_DOMAIN

This configuration variable applies only to Windows servers. When the
SECURITY_METHOD configuration variable is set to “LOGON”, you can
specify a domain name for user logon via another configuration variable.
Setting WINNT_LOGON_DOMAIN to the name of a Windows domain logs

3-14 Server Configuration
the user on to that domain. The user logs on to the NULL domain if this
variable is not set. Note that the WINNT_LOGON_DOMAIN setting applies
only when SECURITY_METHOD is “LOGON”.

WINNT_EVENTLOG_DOMAIN

This configuration variable applies only to Windows servers. Set
WINNT_EVENTLOG_DOMAIN to the Universal Naming Convention
(UNC) name of the computer to which event log messages should be sent.
This variable must be set in the configuration file and is not changeable. If
this variable is not set, system logging information is sent to the local
machine on which the server is executing. For information about event
logging, refer to section 8.5, “Event Logging.”

Sample “acurcl.cfg” File

The following file is included in the /sample directory on your AcuConnect
installation CD. Use this file as a starting point, then modify it for your needs.

"acurcl.cfg"
This is a sample AcuConnect configuration file
You should edit it to match your needs
The following lines are commented out to show you the
default values. If you want to use a different value,
then uncomment the line and change the value.
#Access_file /etc/AcuAccess
#default_user
#password_attempts 3
#server_port -1
Windows NT specific configuration variables
#server_start_6997 -l -e acuconnect.log -c \etc\server2.cfg

Creating a Runtime Configuration File for the Remote Server Component 3-15
3.4 Creating a Runtime Configuration File for the
Remote Server Component

Because at least some application logic executes on the server, you may want
to create a runtime configuration file for the remote server component of your
application. If you create this file, you will install it on the server machine
along with the remote application component. This file defines how the
remote application should behave at runtime.

To tell AcuConnect where to find this file in a distributed processing
environment, you must specify its full path using the
ACUCONNECT_RUNTIME_FLAGS variable in the client configuration
file, “client.cfg”.

Because the remote application is run using an ACUCOBOL-GT runtime,
you can use any runtime configuration file variable described in the
ACUCOBOL-GT User’s Guide. The following variables are significant for
the distributed processing environment:

Runtime configuration files have a similar function in a thin client
environment. The file is stored on the server along with the application, and
its name is specified in a server alias file that you establish when first setting
up the system. (See section 2.4, “Creating a Server Alias File in Thin Client,”
for details). In addition to the variables in the previous table, the following
variables are important for a thin client environment:

Name Default value

AGS_MAX_SEND_SIZE 16000

AGS_RECEIVE_BUFFER_SIZE 16384

AGS_SEND_BUFFER_SIZE 16384

AGS_SOCKET_COMPRESS NONE

AGS_SOCKET_ENCRYPT 0

AGS_TCP_NODELAY TRUE

3-16 Server Configuration
Name Default value

FREEZE_AX_EVENTS 1

TC_AUTO_UPDATE_FAILED_MESSAGE ACUCOBOL-GT Thin Client:
Automatic update was unsuccessful

TC_AUTO_UPDATE_FAILED_TITLE ACUCOBOL-GT Thin Client

TC_AUTO_UPDATE_NOTIFY_FAIL TRUE

TC_AUTO_UPDATE_QUERY 1

TC_AUTO_UPDATE_QUERY_MESSAGE See section 7.4.4, “Informing
the User When an Update Is
Needed.”

TC_AUTO_UPDATE_QUERY_TITLE ACUCOBOL-GT Thin Client

TC_AX_EVENT_LIST undefined

TC_CHECK_ALIVE_INTERVAL 300

TC_CHECK_INSTALLER_TIMESTAMP 0

TC_CONTINUITY_WINDOW 0

TC_CONTROL_SYNC_LEVEL 1

TC_DELAY_ACTIVATE 1

TC_DELAY_PRE_EVENT_OPS 0

TC_DISABLE_AUTO_UPDATE 0

TC_DISABLE_SERVER_LOG FALSE

TC_DOWNLOAD_CANCEL_MESSAGE Please wait while the download is
being cancelled . . .

TC_DOWNLOAD_DESCRIPTION Downloading installation file . . .

TC_DOWNLOAD_DIALOG 1

TC_DOWNLOAD_DIALOG_TITLE ACUCOBOL-GT Thin Client
Automatic Update

TC_EVENT_LIST undefined

TC_EXCLUDE_EVENT_LIST 0

TC_INSTALLER_ARGS undefined

Creating a Runtime Configuration File for the Remote Server Component 3-17
AGS_MAX_SEND_SIZE

This variable lets you tune socket performance by determining the maximum
size of each data packet sent across the network. The default value is
“16000”. Tips on how to use this variable in a thin client environment can be
found in section 8.8.2.1, “Buffer size considerations.”

AGS_RECEIVE_BUFFER_SIZE

This variable helps you tune one element of low-level socket communication
between a client and server. AGS_RECEIVE_BUFFER_SIZE controls the
size of the low-level receive buffer. The variable must be set before the
creation of any sockets. The default value is “16384”.

TC_INSTALLER_CLIENT_FILE <APPDATA>\ACUCOBOL-GT\
<installer_server_filename>

TC_INSTALLER_RUN_ASYNC 0

TC_INSTALLER_SERVER_FILE <runtime_path>\acuthin.msi

TC_INSTALLER_TARGET_DIR undefined

TC_INSTALLER_UI_LEVEL DEFAULT

TC_MAP_FILE undefined

TC_NESTED_AX_EVENTS 0

TC_QUIT_MODE -1

TC_REQUIRES_BUILD_NUMBER 0

TC_RESTRICT_AX_EVENTS 0

TC_SERVER_LOG_FILE autoupdate.%c.%p.log

TC_SERVER_TIMEOUT 20

TC_TV_SELCHANGING 1

THIN_CLIENT_ENCRYPT 0

Name Default value

3-18 Server Configuration
Note that because ACUCOBOL-GT does not control this buffer, changes in
its value are not displayed in response to a U debugger command to list
runtime memory usage. Changes to the default value may have little, if any,
noticeable effect. The default value is probably adequate in most situations.
Tips on how to use this variable in a thin client environment can be found in
section 8.8.2.1, “Buffer size considerations.”

AGS_SEND_BUFFER_SIZE

This variable helps you tune one element of low-level socket communication
between a client and server. AGS_SEND_BUFFER_SIZE controls the size
of the low-level send buffer. The variable must be set before the creation of
any sockets. The default value is “16384”.

Note that because ACUCOBOL-GT does not control this buffer, changes in
its value are not displayed in response to a U debugger command to list
runtime memory usage. Changes to the default value may have little, if any,
noticeable effect. The default value is probably adequate in most situations.
Tips on how to use this variable in a thin client environment can be found in
section 8.8.2.1, “Buffer size considerations.”

AGS_SOCKET_COMPRESS

This variable controls data compression by the internal socket layer. Setting
this variable to “ZLIB” means that data is compressed using the same
algorithm as the gzip compression utility. A value of “RUNLENGTH”
means that a simple compression based on counting repeated bytes of data is
performed. RUNLENGTH compression tends to be faster than ZLIB
compression, but tends not to compress as well, especially with large blocks
of data. The default value for this variable is “NONE”.

AGS_SOCKET_COMPRESS must be set before any socket communication
is done, and it cannot be changed via the SET ENVIRONMENT statement.
Tips on how to use this variable in a thin client environment can be found in
section 8.8.2.2, “File compression.”

Creating a Runtime Configuration File for the Remote Server Component 3-19
Note that Windows supports ZLIB compression, but not all UNIX machines
do. If ZLIB compression is not supported on a particular machine, a variable
value of “ZLIB” will be ignored. When the system must negotiate the
compression algorithm to be used with a server, the method that both
machines support is used.

AGS_SOCKET_ENCRYPT

The AGS_SOCKET_ENCRYPT variable lets you encrypt any data passed
over a socket. Set this variable to “1” (on, true, yes) if you want the internal
socket layer to perform encryption. The default value is “0”. You must set
this variable before any socket communication occurs, and you cannot
change it via the SET ENVIRONMENT statement. Note that if the
THIN_CLIENT_ENCRYPT variable is set to “1”,
AGS_SOCKET_ENCRYPT is also set to “1”. You can still use the
ENCRYPTION_SEED configuration variable with
AGS_SOCKET_ENCRYPT.

AGS_TCP_NODELAY

This variable helps you tune one element of low-level socket communication
between a client and server. The setting of AGS_TCP_NODELAY
determines whether the Nagle algorithm is used to affect the frequency of
socket communication. The Nagle algorithm is a method by which the
transmission of small socket packets is briefly delayed so several can be sent
at the same time. Setting this variable to “false” causes the algorithm to be
used.

The default value is “true”, which results in immediate individual packet
transmissions. The default value is probably adequate in most situations.

ENCRYPTION_SEED

The value of this variable initializes the encryption algorithm. You can
change the default value of this variable to any text string of your choice.
Note that AGS_SOCKET_ENCRYPT must be set to “true” for this variable
to have an effect. It is not required for encryption to be enabled.

3-20 Server Configuration
FREEZE_AX_EVENTS

This variable applies only in a thin client environment. During the processing
of an ActiveX event, the Windows and thin client runtimes attempt to
suspend subsequent ActiveX events until the first event has completed. By
default, the thin client runtime also attempts to suspend ActiveX events
whenever the application is not processing an ACCEPT statement. To
suspend and resume events, the runtime calls the ActiveX function
IOleControl::FreezeEvents().

You might want to disable calls to “FreezeEvents” for ActiveX controls that
discard events while in a “FreezeEvents” state. For example, if a user
double-clicks in an ActiveX control, the control might generate three events:
mouse-down, mouse-up, and double-click. If the COBOL program
terminates an ACCEPT statement in response to the mouse-down event, the
runtime calls FreezeEvents(), and the ActiveX control might discard the
mouse-up and double-click events.

You can disable the FreezeEvents() logic by setting the
FREEZE_AX_EVENTS runtime configuration variable to “0” (off, false,
no) in the configuration file or programmatically with the SET verb. The
default value of FREEZE_AX_EVENTS is “1” (on, true, yes).

Note that when this variable is set to “0”, the setting of
TC_RESTRICT_AX_EVENTS is ignored.

Note: The FreezeEvents() logic protects against unexpected nesting of
ActiveX events and against event procedures running unexpectedly during
a CREATE, DISPLAY, MODIFY, INQUIRE, or other operation that waits
for results from the thin client. Turning this feature off can cause
unexpected behavior.

TC_AUTO_UPDATE_FAILED_MESSAGE

This configuration variable applies only to the thin client automatic update
feature. If this process fails, the following message appears:

ACUCOBOL-GT Thin Client: Automatic update was
unsuccessful

Creating a Runtime Configuration File for the Remote Server Component 3-21
You can use the TC_AUTO_UPDATE_FAILED_MESSAGE configuration
variable to change the text of this message.

For more information about this variable, refer to section 7.4.7, “Automatic
Update Failure.”

TC_AUTO_UPDATE_FAILED_TITLE

This configuration variable applies only to the thin client automatic update
feature. If this process fails, the message specified either by default or by the
TC_AUTO_UPDATE_FAILED_MESSAGE configuration variable appears
with the following in the title bar:

ACUCOBOL-GT Thin Client

You can use the TC_AUTO_UPDATE_FAILED_TITLE configuration
variable to change this title bar text.

For more information about this variable, refer to section 7.4.7, “Automatic
Update Failure.”

TC_AUTO_UPDATE_NOTIFY_FAIL

This configuration variable applies only to the thin client automatic update
feature. If this process fails, a message appears informing the user of the
failure. In some cases, you may not want the thin client to inform the user that
the automatic update failed. If you don’t want this message to appear, set the
TC_AUTO_UPDATE_NOTIFY_FAIL configuration variable to “false” (0,
off, no). The default value of this variable is “true” (1, on, yes).

Note that the message box does not appear if the user cancels the Windows
installer download process.

For more information about this variable, refer to section 7.4.7, “Automatic
Update Failure.”

3-22 Server Configuration
TC_AUTO_UPDATE_QUERY

This configuration variable applies only to the thin client automatic update
feature. When an event triggers the update process, the thin client displays a
message box informing the user that an upgrade is required. The default
setting of “1” (on, true, yes) for the TC_AUTO_UPDATE_QUERY
configuration variable enables the display of that message box. Setting this
variable to “0” (off, false, no) prevents the message box from appearing.

For more information about this variable, refer to section 7.4.4, “Informing
the User When an Update Is Needed.”

TC_AUTO_UPDATE_QUERY_MESSAGE

This configuration variable applies only to the thin client automatic update
feature. When an event triggers the update process, the thin client displays a
message box informing the user that an upgrade is required. The value of the
TC_AUTO_UPDATE_QUERY_MESSAGE configuration variable
determines the message displayed in that message box. The default value of
the variable depends on the circumstances that triggered the automatic
update. For example, if the automatic update is initiated by a version or
protocol number mismatch, the default message displayed is the following:

Incompatible server version
Server version: <srvvers>, client <clntvers>
Server protocol: <srvproto>, client <clntproto>
Press OK to automatically correct this problem

where <srvvers>, <clntvers>, <srvproto>, and <clntproto> are replaced by
the server version, client version, server protocol number, and client protocol
number, respectively.

For more information about this variable, including other default values for
this configuration variable, refer to section 7.4.4, “Informing the User When
an Update Is Needed.”

Creating a Runtime Configuration File for the Remote Server Component 3-23
TC_AUTO_UPDATE_QUERY_TITLE

This configuration variable applies only to the thin client automatic update
feature. When an event triggers the update process, the thin client displays a
message box informing the user that an upgrade is required. You use the
TC_AUTO_UPDATE_QUERY_TITLE configuration variable to specify
the title bar text in that message box. The default value of this variable is

ACUCOBOL-GT Thin Client

For more information about this variable, refer to section 7.4.4, “Informing
the User When an Update Is Needed.”

TC_AX_EVENT_LIST

This configuration variable applies only in a thin client environment.
TC_AX_EVENT_LIST lets you control which events your program
receives, giving you more control over the rate of network traffic. It contains
the numeric value of a single .NET or ActiveX event type or a list of .NET or
ActiveX event types separated by non-numeric characters like spaces or
commas. Whether your program receives these events depends on the value
of TC_EXCLUDE_EVENT_LIST. If its value is “0”, your program receives
the events listed in TC_AX_EVENT_LIST. If the value of
TC_EXCLUDE_EVENT_LIST is “1”, the events listed in
TC_AX_EVENT_LIST are not sent to your program.

Note that this variable must be set in the configuration file and cannot be
changed programmatically via the SET statement.

An AX-EVENT-LIST common control property performs the same function
as this configuration variable. For more information, refer to section 8.8.2.5,
“Graphical control event handling.”

TC_CHECK_ALIVE_INTERVAL

This variable applies only in a thin client environment. Use it to specify how
long the runtime should wait (in seconds) for an inactive client (a “dead”
acuthin) before exiting the server runtime process. If you enter a value of

3-24 Server Configuration
“60”, the runtime checks for client activity for 60 seconds. Client activity
includes regular client user interaction or “ping” messages sent automatically
from the client to the server. If no client activity is detected during the
specified interval, the server runtime process exits. Valid values range from 1
to 32767. Set this variable to “0” to disable client checking. The default value
is “300” (5 minutes).

TC_CHECK_INSTALLER_TIMESTAMP

This configuration variable applies only to the thin client automatic update
feature. The value of the TC_CHECK_INSTALLER_TIMESTAMP
configuration variable determines whether the thin client compares the
modification times of the installer files on the client and on the server. If this
variable is set to “1” (on, true, yes) and the modification time of the client file
is older than the time of the server file, the automatic update process is
initiated. If the installer file does not exist on the client, the comparison is
made with the modification time of the thin client executable (acuthin)
currently running. The default value for this variable is “0” (off, false, no).

For more information about this variable, refer to section 7.4.1, “Automatic
Update Overview.”

TC_CONTINUITY_WINDOW

This variable applies only in a thin client environment.
TC_CONTINUITY_WINDOW can ensure that a given application does not
lose focus in Windows 2000 and Windows XP clients because the application
has destroyed all of its windows. Setting TC_CONTINUITY_WINDOW to
“1” (on, true, yes) causes the thin client to create an invisible, independent
window, which ensures that your application maintains focus. The default
value is “0”.

Creating a Runtime Configuration File for the Remote Server Component 3-25
TC_CONTROL_SYNC_LEVEL

This variable applies only in a thin client environment.
TC_CONTROL_SYNC_LEVEL lets you control which VALUE data items
are updated after an embedded procedure is executed. The setting of this
variable can affect performance.

For best performance, we recommend that this variable be set to the default
of “1”. You can directly INQUIRE the value of a control in an embedded
procedure if necessary.

TC_DELAY_ACTIVATE

This variable applies only in a thin client environment.
TC_DELAY_ACTIVATE lets you control whether the thin client delays
sending a CMD-ACTIVATE event to the server until after the Windows
notification that caused the event is complete. Note that ActiveX events are
never delayed, regardless of the setting of this variable. The default value of
“1” (on, true, yes) enables this behavior. Setting TC_DELAY_ACTIVATE
to “0” (off, false, no) turns off the delay mechanism.

 Setting Effect

1
(the default)

Only the VALUE data item associated with the current
field is updated when its AFTER or EXCEPTION
procedure executes.

2 Only the VALUE data item associated with the current
field is updated when its BEFORE, AFTER, or
EXCEPTION procedure executes.

3 All VALUE data items are updated when any BEFORE,
AFTER, or EXCEPTION procedure executes.
Note that this setting affects only BEFORE, AFTER, and
EXCEPTION procedures. Values of all variables are made
current any time an ACCEPT terminates

3-26 Server Configuration
TC_DELAY_PRE_EVENT_OPS

This variable applies only in a thin client environment. Using this
configuration variable, you can direct the thin client to buffer some requests
received from the server and process them later. When you set this variable
to “1”, the thin client buffers the requests received between the time that the
client sends an event to the server and the time that the server informs the
client that it has started the related event procedure. The events are processed
only after the event procedure starts to prevent the thin client from processing
requests that generate more events before the first event procedure has
started. The default value of TC_DELAY_PRE_EVENT_OPS is “0”.

Note: The buffering behavior described for this configuration variable was
introduced as the default behavior in Version 6.1. Beginning with Version
7.2, the buffering behavior is turned off by default.

TC_DISABLE_AUTO_UPDATE

This configuration variable applies only to the thin client automatic update
feature. You can disable the automatic update process by setting the
TC_DISABLE_AUTO_UPDATE configuration variable to “1” (on, true,
yes). The default value of this variable is “0” (off, false, no).

For more information about this variable, refer to section 7.4.3, “Enabling or
Disabling the Automatic Update Feature.”

TC_DISABLE_SERVER_LOG

This configuration variable applies only to the thin client automatic update
feature. If this process fails, a log file may be created on the server. This file
contains a log of the update operations and details about the failure. To
prevent the creation of this log file, set the TC_DISABLE_SERVER_LOG
configuration variable to “true” (1, on, yes). The default value of this variable
is “false” (0, off, no).

For more information about this variable, refer to section 7.4.7, “Automatic
Update Failure.”

Creating a Runtime Configuration File for the Remote Server Component 3-27
TC_DOWNLOAD_CANCEL_MESSAGE

This configuration variable applies only to the thin client automatic update
feature. During the automatic update installer file download process, a
progress dialog box appears. You can cancel the download at any time from
this dialog. Use the TC_DOWNLOAD_CANCEL_MESSAGE
configuration variable to specify the message that appears when the
download is cancelled. The default value for this variable is

Please wait while the download is being cancelled . . .

For more information about this variable, refer to section 7.4.5.4, “Download
progress dialog.”

TC_DOWNLOAD_DESCRIPTION

This configuration variable applies only to the thin client automatic update
feature. During the automatic update installer file download process, a
progress dialog box appears. You use the
TC_DOWNLOAD_DESCRIPTION configuration variable to specify the
text that appears in the middle of the download progress dialog. Its default
value is

Downloading installation file. . .

For more information about this variable, refer to section 7.4.5.4, “Download
progress dialog.”

TC_DOWNLOAD_DIALOG

This configuration variable applies only to the thin client automatic update
feature. During the automatic update installer file download process, a
progress dialog appears. The default value of “1” (on, true, yes) for the
TC_DOWNLOAD_DIALOG configuration variable allows the appearance
of this dialog box. If you set this variable to “0” (off, false, no), the progress
dialog does not appear.

For more information about this variable, refer to section 7.4.5.4, “Download
progress dialog.”

3-28 Server Configuration
TC_DOWNLOAD_DIALOG_TITLE

This configuration variable applies only to the thin client automatic update
feature. During the automatic update installer file download process, a
progress dialog appears. The TC_DOWNLOAD_DIALOG_TITLE
configuration variable is used to specify the title bar text in this dialog. The
default value of this variable is

ACUCOBOL-GT Thin Client Automatic Update

For more information about this variable, refer to section 7.4.5.4, “Download
progress dialog.”

TC_EVENT_LIST

This variable applies only in a thin client environment. TC_EVENT_LIST
lets you control which events your program receives, giving you more control
over the rate of network traffic. It contains the numeric value of a single event
type or a list of event types separated by non-numeric characters like spaces
or commas. Whether your program receives these events depends on the
value of TC_EXCLUDE_EVENT_LIST. If its value is “0”, your program
receives the events listed in TC_EVENT_LIST. If
TC_EXCLUDE_EVENT_LIST is “1”, the events listed in
TC_EVENT_LIST are not sent to your program. Note that this variable must
be set in the configuration file and cannot be changed programmatically via
the SET statement.

An EVENT-LIST common control property performs the same function as
this configuration variable. For more information, refer to section 8.8.2.5,
“Graphical control event handling.”

TC_EXCLUDE_EVENT_LIST

This variable applies only in a thin client environment. The value of
TC_EXCLUDE_EVENT_LIST determines whether the events listed in
TC_AX_EVENT_LIST or TC_EVENT_LIST are sent to your program. A

Creating a Runtime Configuration File for the Remote Server Component 3-29
value of “1” means the specified events are not sent to your program. The
default value is “0”. Note that this variable must be set in the configuration
file and cannot be changed programmatically via the SET statement.

An EXCLUDE-EVENT-LIST common control property performs the same
function as this configuration variable. For more information, refer to section
8.8.2.5, “Graphical control event handling.”

TC_INSTALLER_ARGS

This configuration variable applies only to the thin client automatic update
feature. The thin client uses the value of the TC_INSTALLER_ARGS
configuration variable as the command-line options passed to the installer
executable. For example, if you want “msiexec.exe” to log all of its
operations to a file named “msi.log”, then you could set
TC_INSTALLER_ARGS to /log msi.log. TC_INSTALLER_ARGS has no
default value.

For more information about this variable, refer to section 7.4.5, “Accepting
the Automatic Update.”

TC_INSTALLER_CLIENT_FILE

This configuration variable applies only to the thin client automatic update
feature. You use the TC_INSTALLER_CLIENT_FILE configuration
variable to specify the path and file name of the installer file that you want to
create on the client. The default value of this variable is

<APPDATA>\ACUCOBOL-GT\<installer_server_filename>

where <APPDATA> is a special directory name for C:\Documents and
Settings\<user>\Application Data.

For more information about this variable and special directory names like
<APPDATA>, refer to section 7.4.5, “Accepting the Automatic Update.”

3-30 Server Configuration
Note: If TC_INSTALLER_CLIENT_FILE is set to a non-existent
directory or to one on which the autoupdate process doesn’t have sufficient
permissions, no log file is written if the autoupdate process fails.

TC_INSTALLER_RUN_ASYNC

This configuration variable applies only to the thin client automatic update
feature. You use the TC_INSTALLER_RUN_ASYNC configuration
variable when you want to prevent the thin client from restarting after an
automatic update or when your installer file handles the automatic update
process to completion. When you set this variable to “1” (on, true, yes), the
thin client starts the installer process asynchronously and then exits
immediately. It does not wait for the automatic update process to complete
and does not restart the application. The default value is “0” (off, false, no).

For more information about this variable, refer to section 7.4.5, “Accepting
the Automatic Update.”

TC_INSTALLER_SERVER_FILE

This configuration variable applies only to the thin client automatic update
feature. You set the TC_INSTALLER_SERVER_FILE configuration
variable to the path and file name of the server installer file. Its default value
is

<runtime_path>/acuthin.msi

where <runtime_path> is the directory that contains the wrun32 or runcbl
runtime executable.

For more information about this variable, refer to section 7.4.5, “Accepting
the Automatic Update.”

Creating a Runtime Configuration File for the Remote Server Component 3-31
TC_INSTALLER_TARGET_DIR

This configuration variable applies only to the thin client automatic update
feature. You use the TC_INSTALLER_TARGET_DIR configuration
variable to specify the location where you want the updated thin client to be
installed. This variable has no default value.

For more information about this variable, refer to section 7.4.5, “Accepting
the Automatic Update.”

TC_INSTALLER_UI_LEVEL

This configuration variable applies only to the thin client automatic update
feature. The keywords or numeric values in the
TC_INSTALLER_UI_LEVEL configuration variable control the Windows
installer interface. Set TC_INSTALLER_UI_LEVEL to NONE or “0” if you
do not want the Windows installer to display a user interface. Set this variable
to UNATTENDED or “1” if you want the Windows installer to display
informational and progress messages, but to execute unattended. Set the
variable to INTERACTIVE, DEFAULT, or “2” if you want the Windows
installer to prompt for and accept user input for the installation process. Set
the variable to REDUCED or “3” if you want to use a reduced user interface.

For more information about this variable, refer to section 7.4.5, “Accepting
the Automatic Update.”

TC_MAP_FILE

This variable applies only in a thin client environment. Use this variable to
define the name and path of the map file to be used (if any) to map special
characters in your client character set to their decimal or hexadecimal
equivalent on the server. This file lets you reconcile the character encoding
between two machines that use different codes for the same characters and is
particularly useful for international character translation. (See section 4.5,
“International Character Handling,” for more information.) Note that only
single-byte alphanumeric characters are mapped.

3-32 Server Configuration
TC_NESTED_AX_EVENTS

This variable applies only in a thin client environment.
TC_NESTED_AX_EVENTS allows you to control whether the runtime
processes subsequent ActiveX events while it is already processing an
ActiveX event from the same control. Setting this variable to “1” enables this
behavior. The default value is “0”.

TC_QUIT_MODE

This variable applies only in a thin client environment. TC_QUIT_MODE
lets you control how your COBOL application shuts down when no client
activity occurs during the interval defined by
TC_CHECK_ALIVE_INTERVAL. Setting TC_QUIT_MODE to “-1” (the
default value) shuts your program down according to the value chosen for the
QUIT_MODE configuration variable. (Refer to ACUCOBOL-GT
Appendices, Appendix H, for details.) If you set this variable to “0”, the
runtime stops the program immediately. When this variable is set to a value
greater than “0” (up to “32767”), your application has a program-controlled
exit.

When the runtime determines that the thin client is no longer responding (no
user interaction and no pings during TC_CHECK_ALIVE_INTERVAL), the
MSG-MENU-INPUT event is sent to the program’s main window and
EVENT-DATA-2 contains the value defined by TC_QUIT_MODE. Your
program can detect this in the main window’s event procedure and you can
perform whatever code you desire. At this point, there is no connection to the
thin client, so user interface operations may not be performed. You must end
your shutdown code with “STOP RUN” to terminate the runtime.

TC_REQUIRES_BUILD_NUMBER

This configuration variable applies only to the thin client automatic update
feature. When the thin client executes, it compares its build number with the
value of the TC_REQUIRES_BUILD_NUMBER configuration variable. If
the value of this variable does not match the client’s build number, the

Creating a Runtime Configuration File for the Remote Server Component 3-33
automatic update process is initiated. Set this variable to the thin client build
number required by the application. The default value of this variable is “0”
(off, false, no).

For more information about this variable, refer to section 7.4.1, “Automatic
Update Overview.”

TC_RESTRICT_AX_EVENTS

This variable applies only in a thin client environment. The thin client
runtime suspends all ActiveX events when the application is not processing
an ACCEPT statement. However, some ActiveX controls do not support the
ability to suspend and resume events. As a result, in a thin client
environment, an event procedure may run unexpectedly during a CREATE,
DISPLAY, MODIFY, INQUIRE, or any other operation that waits for results
from the thin client.

With the TC_RESTRICT_AX_EVENTS configuration variable, you can
control whether your application ignores all ActiveX events between the
termination of one ACCEPT statement and the beginning of another. Setting
this variable to “1” (on, true, yes) enables this behavior. The default value for
this variable is “0” (off, false, no).

To determine if a particular ActiveX control supports suspending and
resuming events, check the control’s documentation or ask the control
vendor. Note that to support suspending and resuming events, the control
must implement the “IOleControl::FreezeEvents()” method.

TC_SERVER_LOG_FILE

This configuration variable applies only to the thin client automatic update
feature. If the automatic update process fails for any reason, a log file may be
created on the server. This file contains a log of the update operations and
details about the failure. The TC_SERVER_LOG_FILE configuration
variable can be used to configure the location and name of that log file. The
name can optionally include the hostname of the client machine and the
process ID of the server runtime that was managing the automatic update at
the time of the failure.

3-34 Server Configuration
By default, this file is named “autoupdate.%c.%p.log”, where %c is replaced
by the client hostname and %p is replaced by the process ID of the server
runtime. The default location is the working directory specified in the alias on
the server. Note that the directory must exist at the time of the failure for the
log file to be created.

For more information about this variable, refer to section 7.4.7, “Automatic
Update Failure.”

TC_SERVER_TIMEOUT

This variable applies only in a thin client environment.
TC_SERVER_TIMEOUT lets you determine how many seconds (from 0 to
32767) the client waits for a response from the server. If the client receives
no response from the server in the specified time period, the following
message box appears:

The remote host is not responding.
Press OK to close this program.
Press Cancel to wait another %s seconds.

where %s is the value of TC_SERVER_TIMEOUT. The default value is
“20”.

TC_TV_SELCHANGING

This variable applies only in a thin client environment. The
TC_TV_SELCHANGING variable lets you control how often
Msg-Tv-Selchanging events are generated in the thin client environment. A
setting of “0” means that the Msg-Tv-Selchanging event is never generated.
Setting this variable to “1” (the default) results in generation of a
Msg-Tv-Selchanging event only when a tree view selection is changed. A
setting of “2” means that Msg-Tv-Selchanging is always generated. For more
information on Msg-Tv-Selchanging, see the ACUCOBOL-GT User’s
Guide, section 6.3, “Control Events.”

Creating a Runtime Configuration File for the Remote Server Component 3-35
THIN_CLIENT_ENCRYPT

This variable applies only in a thin client environment. Use of this variable is
superseded by the AGS_SOCKET_ENCRYPT configuration variable.
Setting THIN_CLIENT_ENCRYPT to “1” means that
AGS_SOCKET_ENCRYPT is automatically set to “1”. Refer to information
about the AGS_SOCKET_ENCRYPT variable if you want to encrypt your
data.

3-36 Server Configuration

4
 Preparing Your Application
Key Topics

Designing Your Application.. 4-2
Distribution Considerations... 4-3
Distributed Processing Application Design .. 4-5
Thin Client Application Design .. 4-11
International Character Handling ... 4-19

4-2 Preparing Your Application
4.1 Designing Your Application

AcuConnect® is a client/server technology that lets you distribute your
computing processes in the way that best suits your business needs. How you
design your application for use with AcuConnect can affect system
performance and efficiency. Whether you choose the distributed processing
model or use our thin client technology with AcuConnect, you will want to
give some serious thought to your application design. Some issues for
consideration are covered in section 4.2, “Distribution Considerations.”

4.1.1 In Distributed Processing

To prepare your application for use in a distributed processing environment,
you need to divide the application into two main components: a client
component and a server component. If you are developing a new application,
you can consider the division during the design stage of development. If you
are modifying an existing application for use in a distributed processing
environment, you need to find a logical division point.

With distributed processing, we recommend that your client application
contain not only the user interface portion of the program, but also all of the
interactive components. The server application, on the other hand, should be
reserved for batch processing components (components that do not require
user interaction).

How much processing is performed on the client and how much on the server
is totally up to you. With AcuConnect’s distributed processing capabilities,
you can distribute the workload for maximum throughput. Be sure to
consider such issues as network I/O, performance, and security when
designing your application distribution.

If you change the location of your server application, all you need to do is
change the CODE_PREFIX setting or the code alias definition in the client
configuration file (for example, “client.cfg”). If you want to be able to access
your application on multiple machines, you can install the server component
in several locations, and then modify “client.cfg” on an as-needed basis.
More information regarding the design of a distributed processing
application can be found in section 4.3, “Distributed Processing Application
Design.”

Distribution Considerations 4-3
4.1.2 With Thin Client Technology

Applications for use in a thin client environment require some preparation as
well, even if you already have an ACUCOBOL-GT® program. Remember
that with our thin client technology, only the user interface portion of your
application resides on a Windows client or display host. Thin client supports
all ACUCOBOL-GT control types and classical ACCEPT and DISPLAY. It
also allows the use of ActiveX controls, provided the controls are installed on
the client machine.

If your ACUCOBOL-GT program is already graphical, full benefits are
immediately available in thin client. If your ACUCOBOL-GT program is
character-based, you can run it as is and convert to graphical over time using
AcuBench®, ACUCOBOL-GT, or the Character-to-GUI Wizard.

If you plan to redeploy Windows applications in a thin client environment,
you should be aware that your application will be running on a back-end
server rather than the desktop. The client machine provides screen and
printing services. Other operating system services are provided by the server.
If your program operates on the Windows registry, and the server is not a
Windows machine, then the registry does not exist. Calls to those library
routines return a “not supported” status. Information about thin client
application design issues can be found in section 4.4, “Thin Client
Application Design.”

4.2 Distribution Considerations

AcuConnect allows you to distribute your application components to best use
your enterprise resources. You can perform most of your processing on the
client (in a “thick” client arrangement), most on the server (in a “thin” client
arrangement), or divide the processing equally. The ability to choose between
these options or select anything in between makes the AcuConnect client a
“smart” client.

Like any paradigm, there are advantages and disadvantages to the thin and
thick client approaches. Deciding where to distribute your processing tasks
requires extensive knowledge of the network. Your decision should be based
on several issues, including:

4-4 Preparing Your Application
• Security—weighing ease of use against system integrity.
• Performance—scaling client speed versus the speed of the server.
• Physical location of program and data files, factoring in two-tier versus

three-tier applications.
• Number of users—planning for availability versus contention.
• Network bandwidth—intranet versus Internet, dial-up versus direct

access.
• User requirements—occasional use versus constant connection, and

batch processing versus real-time processing.

4.2.1 When to Use a “Thin” Client

For performance reasons, the “thin” client approach is ideal for
data-intensive applications such as reporting. Data-intensive applications
typically have a small number of screen I/Os and ACCEPTs, so they can
easily be executed on the server to reduce network traffic. The client in this
case is “thin”, because the server performs the bulk of the application
processing.

Our Thin Client technology can be an efficient architecture, with only the
user interface portion of your application residing on the client. This model
can also be a good choice if you want to develop a graphical user interface for
your non-Windows application. In this case, the user interface displays on a
Windows machine, while the rest of your application resides on a UNIX,
Linux, Windows, or VMS machine.

4.2.2 When to Use a “Thick” Client

The “thick” client approach is suitable for screen-intensive applications with
interactive data entry. Such applications would suffer performance
degradation if processing were performed on a server and passed across the
network. By keeping interactive applications on the client, network traffic
can be kept at a minimum.

You might also consider this arrangement if you want your client application
to interact with other desktop software using the client’s processor.

Distributed Processing Application Design 4-5
4.2.3 When to Use a “Smart” Client

In reality, most applications have a combination of screen and data I/O. To
maximize performance, you can divide your application into a client
component and a server component, splitting the processing responsibilities
between the client and the server where you see fit. The “smart” client
approach is the foundation of the AcuConnect deployment. AcuConnect lets
programmers or systems analysts design enterprise applications so that they
use the least amount of network resources and at the same time reduce
response time.

4.3 Distributed Processing Application Design

Preparing your application for use in a distributed processing environment
involves the consideration of several issues. Use of the CALL verb,
synchronous or asynchronous program execution, and various memory and
environment issues should be explored. The following sections describe
these areas of concern.

4.3.1 Embedding COBOL CALLs

AcuConnect in distributed processing achieves remote application access
with standard COBOL CALLs. Just as you would CALL a local application
component, you can CALL a remote application component using
AcuConnect.

For example, if the name of the remote program that you want to invoke is
“prog2.acu”, you embed the following statement into your client application:

CALL "prog2".

If you have not set the ACUCOBOL-GT configuration variable
CODE_SUFFIX, the runtime system first attempts to locate an object file
called “prog2.acu” and then an object file called “prog2” with no suffix.

Or, if you have added “CODE_SUFFIX obj” to the “client.cfg” file, the
runtime looks only for an object file called “prog2.obj” on the remote
machine.

4-6 Preparing Your Application
AcuConnect supports ACUCOBOL-GT’s standard usage of the CALL verb,
so you could embed:

CALL "prog2" USING {parameter} . . .
CALL "prog2" ON {EXCEPTION} statement-1.

Note: You can use all forms of CALL documented in the ACUCOBOL-GT
Reference Manual with AcuConnect, with the following exception:
AcuConnect does not support the use of CALL THREAD, CALL
PROGRAM, or CALL RUN to a remote server.

The configuration file on the client, “client.cfg”, specifies the complete
remote path of the CALLed program, so you don’t have to specify the path in
the application code. This way, you can redistribute the application in your
network as often as necessary without changing a single line in your code.

4.3.1.1 Terminating the remote application

By default, AcuConnect leaves the server runtime in memory with an open
connection until the client application exits. This allows you to CALL the
application as often as necessary without having to restart the server runtime.

If you want to close the connection after a CALL is completed, you must
embed a CANCEL or CANCEL ALL in your client program and set the
ACUCONNECT_CLOSE_AFTER_CANCEL configuration variable in the
“client.cfg” file. Set to “0”, this variable leaves the remote application open
until the client application exits. Set to “1”, this variable closes the remote
application whenever a CANCEL occurs in the program. Note that you
cannot set ACUCONNECT_CLOSE_AFTER_CANCEL from within a
program.

Note: If you make asynchronous CALLs using the C$ASYNCRUN
routine described in section 4.3.2.1, “CALLing C$ASYNCRUN,” you do
not need to embed a CANCEL in your client program. The routine used to
check application status, C$ASYNCPOLL, closes the remote application
automatically when it receives a “completed” status indicator.

Distributed Processing Application Design 4-7
4.3.1.2 Exception handling

As is the case with any CALL, if your remotely CALLed program encounters
an exception, the program terminates unless you use the “on exception”
phrase. You could then use the C$CALLERR routine to find out what went
wrong. If an ERR-CODE of “25” is returned, it means that the AcuConnect
server is not running.

For more information on the “on exception” phrase or the C$CALLERR
library routine, refer to the ACUCOBOL-GT documentation set.

4.3.1.3 CALLing multiple programs

With AcuConnect in distributed processing, you can start multiple
applications on the server at the same time by invoking multiple instances of
the runtime.

In addition, programs that have been CALLed using AcuConnect can CALL
other programs on the same server as normal, or on a different server using
AcuConnect. For example, program 1 on a client machine can CALL
program 2 on Server A. In turn, program 2 can CALL program 3 on Server
B, and program 3 could even CALL program 4 on Server C, and so on.

To start multiple programs in this fashion, you must design your application
components to perform remote CALLs, then provide the necessary
configuration files.

When CALLing multiple programs, be aware of the following:
• If a “second generation” AcuConnect program (such as program 3 on

Server B in the example above) requires a password from the first
generation program, the password must be supplied using the
acu_client_password variable coded into the CALLing program.
Otherwise, the authentication will fail, because the first generation
AcuConnect program has no way to handle an interactive password
screen. For more information on using passwords with AcuConnect, see
section 2.7.1, “Passwords.”

• Each successive generation of AcuConnect programs can have its
configuration file and runtime flags specified by its CALLing program
using the ACUCONNECT_RUNTIME_FLAGS variable.

4-8 Preparing Your Application
• Runtime configuration variables are not passed from one program to the
next when you use AcuConnect. So, instead of creating code name
aliases for all the programs in the client configuration file, you should
provide only the variables relevant to the first generation programs you
are CALLing. The first generation programs need their own
configuration variables to be used in CALLing second generation
programs, and so forth.

4.3.2 Synchronous or Asynchronous Execution

By default, AcuConnect performs synchronous CALLs to remote
applications. That is, the client application CALLs the remote application,
then waits for a response back from the server. Only when the client receives
a response from the server does the client application continue processing.

To perform asynchronous CALLs, you can CALL the C$ASYNCRUN
library routine along with the remote application name. This routine is
installed during normal AcuConnect installation.

4.3.2.1 CALLing C$ASYNCRUN

If desired, you call the C$ASYNCRUN library routine along with the remote
application name to achieve asynchronous processing. The syntax for this
CALL is:

CALL "C$ASYNCRUN" using handle-of-call program_name parameter-1
parameter-2

where:

For example, you might have the following line in the Working-Storage
section of your client program:

01 h-call-prog2 handle.

handle-of-call is a handle of the CALL defined in Working-Storage

program_name is the name of the CALLed program

parameter is a parameter of the CALL

Distributed Processing Application Design 4-9
and the following in the Procedure Division section:
CALL "C$ASYNCRUN" using h-call-prog2 "prog2.acu" customer-info.

C$ASYNCRUN tells AcuConnect to allow the client application to continue
processing even while the server application is active.

4.3.2.2 CALLing C$ASYNCPOLL

To check the status of the server program while the client is running, you can
call the C$ASYNCPOLL routine. The syntax for this CALL is:

CALL "C$ASYNCPOLL" using handle-of-call state-of-call parameter-1
parameter-2.

where:

For example:
CALL "C$ASYNCPOLL" using h-call-prog2 state-of-call
customer-info.

Note that any parameters given in C$ASYNCPOLL must match the
parameters given in C$ASYNCRUN. C$ASYNCPOLL tells AcuConnect to
query the server about the status of the remote application. AcuConnect
returns a status that you can DISPLAY on the client. If the status is “1”
(CALL completed), C$ASYNCPOLL terminates the connection with the
remote application.

4.3.3 Memory and Environment Issues

As you design your application for distributed processing, you should be
aware of certain memory/environment issues with the ACUCOBOL-GT
runtime.

handle-of-call is the handle of the CALL previously run with
C$ASYNCRUN

state-of-call is a PIC s(9) with value “0” if the run is not yet
completed, or “1” if the run is completed

parameter is the parameter of the CALL returned when
state-of-call is “1”

4-10 Preparing Your Application
Runtimes

Remotely CALLed programs cause the AcuConnect server to start a new
runtime on the server machine. Spawned runtimes can start runtimes on other
server machines, if desired, or they can call other programs on the same
server.

AcuConnect can spawn Acu4GL® or AcuServer® linked runtimes, even if the
client runtime is not so linked.

Memory

The remote program and remote runtime live in memory on the server
machine.

Environment

The runtime started by AcuConnect on the server takes on whatever
environment that the AcuConnect daemon itself was started in when it was
started on the server. For example, if you log on as root and start
AcuConnect, AcuConnect will inherit root’s environment. If you log on as
userX and then start AcuConnect by issuing the superuser account,
AcuConnect will inherit userX’s environment.

The important thing to note is that the CALLed program does not inherit the
client environment of the CALLing program.

Open connections

The runtime started by AcuConnect on the server in response to a CALL is
kept running until a “stop run” is encountered on the client. This has the
effect of maintaining any items in memory on the server machine until the
client program is shut down.

One exception to this is in the case of asynchronous program execution, when
the C$ASYNCPOLL library routine is called. In this case, the runtime on the
server is immediately shut down when a status of “1” (CALL completed) is
returned by C$ASYNCPOLL.

Thin Client Application Design 4-11
Another exception is in response to a CANCEL command (see section
4.3.1.1, “Terminating the remote application,” for more information).

EXTERNAL data items

Data items declared as EXTERNAL are not shared between client and
remote programs with AcuConnect.

CHAIN command

The CHAIN command cannot be used to start a remote program through
AcuConnect.

4.4 Thin Client Application Design

Designing an application for our Thin Client environment presents some
unique issues. In addition to user interface design concerns and certain issues
with Windows and printing, various technical limitations apply in this model.
The following sections cover these considerations.

Note that if your application is currently in a language other than
ACUCOBOL-GT, you must migrate your code to ACUCOBOL-GT before
you can implement our Thin Client solution. You can perform the migration
yourself, or hire a Micro Focus extend consultant.

No special preparation is needed for your data in a thin client environment.
Because your data resides on a server (either the same server as the
application or on a different data server) access to that data is the same as it
would be in a standard client/server environment using AcuServer or
Acu4GL. The server runtime passes the results back to the ACUCOBOL-GT
Thin Client for display. If the data resides on the same server as the
application runtime, no extra communication software is required.

4-12 Preparing Your Application
4.4.1 Limitations in Thin Client Environments

Note that there are some limitations to running a program with thin client.
You may need to make some adjustments to your program if you rely on
these features:
• The SCREEN EDITED-UPDATES=Formatted runtime configuration

variable is not supported. Generally speaking, you can continue to run
programs that use this feature without changing them. The user will
experience a formatting difference while entering data, but the final
result should be the same.

• Creating a graphical component does not move the cursor to the cell to
the component’s right. This restriction does not affect relative graphical
component placement in the Screen Section (for example, “col + 2”).

• The grid control does not generate the MSG-CELL-GOTO-DRAG
event. This is done for performance reasons. Because of this, you cannot
use the REGION-COLOR property to highlight an area when the mouse
is dragged over it. For a description of an alternate technique for doing
this, refer to section 8.8.2.7, “Grid control.”

• The runtime assumes that graphical components and windows are
successfully created in the thin client. If the client runs out of memory,
the creation succeeds, but subsequent operation is undefined.

• The CREATE statement can only create COM and .NET objects on
Windows-based servers. Refer to the CREATE statement documentation
in the ACUCOBOL-GT Reference manual for details.

• The JUSTIFY_NUM_FIELDS configuration variable is not
communicated to the thin client.

• The C$SETVARIANT library routine and OLE SAFEARRAY data
type are supported in thin client environments, regardless of the kind of
operating system on the server. The C$GETVARIANT library routine,
however, is not supported and returns a negative RESULT-CODE value
in thin client environments. To learn more about the C$SETVARIANT
routine, refer to Appendix I in ACUCOBOL-GT Appendices.

Note: You should be careful when using C$SETVARIANT in thin
client environments, because it generates network traffic and can affect
performance. When using this library routine in a thin client
environment, you should pass only small amounts of data.

Thin Client Application Design 4-13
• The WIN32_CTL_INPUT_STATUS configuration variable, which
affects ACCEPT FROM INPUT STATUS behavior, is not supported in
a thin client environment.

• The thin client environment provides limited support for the
SHARED_LIBRARY_LIST configuration variable and the “-y” runtime
option. Note that they do not load client-side dynamic link libraries
(DLLs) for thin client applications that make calls using the CALL verb
“@[DISPLAY]:” syntax. These applications must explicitly load the
DLL by calling it with the CALL verb before calling a function within
the DLL. For more information about SHARED_LIBRARY_LIST,
refer to Appendix H in ACUCOBOL-GT Appendices. To learn more
about the “-y” option, see Chapter 2 in ACUCOBOL-GT User’s Guide.

4.4.2 User Interface Work in Thin Client

Front-end work is necessary in the following situations:
• When you want a graphical display and haven’t built one yet
• When the limitations of the character display are unacceptable
• When your program is highly interactive and you want to deploy it in a

wide-area network like the Internet

4.4.2.1 Building a new graphical display

If you want your application to display a full Windows graphical user
interface (GUI) on the client, but it is currently character-based, you can
develop a GUI using our graphical workbench, AcuBench. ACUCOBOL-GT
includes a Character-to-GUI Wizard to assist in this process, and the
workbench is designed to automatically use many of the graphical features of
ACUCOBOL-GT.

4.4.2.2 Working with character display limitations

Because of certain limitations and restrictions, if you deploy a
character-based application in our Thin Client configuration, certain display
functions will not have the characteristics that you expect. Many will simply

4-14 Preparing Your Application
display in another fashion. But some unsupported display functions may be
ignored. If this is unacceptable to you, you can alter your code to work
around the limitations.

4.4.2.3 Deploying a highly interactive program in a wide-area network

Because highly interactive programs require frequent communication
between the client and server, they are not practical for thin client
configurations deployed over wide-area networks like the Internet. The more
interactive the program, the slower the performance is over slow connections.

If your program was coded with event procedures (handlers), for instance,
you should consider removing all but the events that your program really
cares about, because event procedures result in frequent “calls” from the UI
layer back to the COBOL layer. If your program tracks mouse movements or
watches for interactions with controls, you may want to make further
modifications. You can choose to redesign the screen or you can just simplify
your program’s interaction with the screen. The goal is to reduce the number
of times that the client and server have to communicate.

4.4.3 Other Application Work in Thin Client

We have identified some other situations that require modifications to an
application for use in a thin client environment. Issues involving certain
Windows features and printing, among others, are described in the following
sections.

4.4.3.1 Adjusting for certain Windows features

You may want to adjust your application for the individual Windows
characteristics described in the following sections.

Making direct calls to the Windows API

Windows applications that contain direct calls to the Windows API must be
modified to remove these calls, whether you deploy on a Windows or UNIX
server.

Thin Client Application Design 4-15
Deploying a Windows application on UNIX

ACUCOBOL-GT is so portable that you can deploy your Windows
application on a UNIX server, if you wish. As mentioned earlier, if your
application calls Windows API functions directly, you will need to remove
these calls. If it relies on DOS file naming conventions and directory
structures, you will need to modify your program with UNIX file names and
directories.

Testing the OS-IS-WINDOWS flag

Some programs that are intended to run under multiple operating systems
may test the OS-IS-WINDOWS flag to determine whether a graphical
display is available. If your server is not a Windows machine, these programs
assume that graphics are not available in thin client. Programs like this should
test the HAS-GRAPHICAL-INTERFACE flag rather than
OS-IS-WINDOWS. More information can be found in the descriptions of
ACCEPT FROM SYSTEM-INFO and ACCEPT FROM TERMINAL-INFO
in section 6.6 of the ACUCOBOL-GT Reference Manual.

Accessing Windows help from a UNIX application

Your UNIX applications can access Windows help via the ACUCOBOL-GT
$WINHELP library routine. Calling $WINHELP from your COBOL
program sends the given arguments to the thin client to process. The thin
client eventually calls the Windows help program with the arguments given
to $WINHELP. Note that the help file is not copied to the client machine, but
the client must be able to find this file. In a local office environment, help
files can be installed on a local hard drive or a shared drive. Remote users
should install the help files on the client machine. (More information about
$WINHELP can be found in Appendix I in ACUCOBOL-GT Appendices.)

Using certain $WINHELP op-codes

Some $WINHELP op-codes are not supported in a thin client environment. If
your application uses them, you may experience unexpected system
terminations. These op-codes are HELP_MULTIKEY,
HELP_SETWINPOS, HELP_CONTEXTMENU, HELP_SETPOPUP_POS,
and HELP_WM_HELP.

4-16 Preparing Your Application
4.4.3.2 Accessing the Windows registry on the client machine

A set of library routines lets you access and modify the Windows registry on
the client machine. The names of the routines all begin with “DISPLAY” to
distinguish them from similar routines that operate on the server’s registry if
the server is Windows. For example, you use
DISPLAY_REG_CREATE_KEY or DISPLAY_REG_CREATE_KEY_EX
to create a new registry key on the display host. Note that user authorization
is required to change the registry with any of the following routines:
• DISPLAY_REG_CREATE_KEY
• DISPLAY_REG_DELETE_KEY
• DISPLAY_REG_SET_VALUE
• DISPLAY_REG_CREATE_KEY_EX
• DISPLAY_REG_DELETE_VALUE
• DISPLAY_REG_SET_VALUE_EX

You authorize or cancel an operation in an authorization dialog.

Refer to ACUCOBOL-GT Appendices, Appendix I, for a description of all
the DISPLAY Windows registry library routines. Look for the section titled
“Routines to Handle the Windows Registry.”

4.4.3.3 Printing in thin client

Printing in a thin client environment presents the unique issues described in
the following sections. You may need to modify your application
accordingly.

Printing locally on Windows machines

If you’d like to allow end users to print locally on their Windows machines,
you can add calls to ACUCOBOL-GT’s WIN$PRINTER library routine to
your program. The thin client environment supports WIN$PRINTER
function calls, -P SPOOLER (DIRECT) and -Q printing. (Refer to the
Getting Started manual for more information.)

Thin Client Application Design 4-17
Note that the following WIN$PRINTER functions are not supported by thin
client because of variations in memory allocated by data types on the host and
the client:
• WINPRINT_GET_SETTINGS_SIZE
• WINPRINT_GET_SETTINGS
• WINPRINT_SET_SETTINGS

Instead of using these functions, you can make calls to
WINPRINT_GET_PRINTER_INFO_EX and WINPRINT_SET_PRINTER,
which are very similar. (Refer to Appendix I in ACUCOBOL-GT Appendices
for more information about these WIN$PRINTER functions.)

Note that if the UNIX server is not an active thin client host when a
WIN$PRINTER call is made, WIN$PRINTER returns a “0” (not supported).

Any COBOL logic that disables the WIN$PRINTER capability in non-32-bit
Windows environments should be removed to allow Windows client printing
to work.

Printing to -P SPOOLER automatically routes the print job to the client
printer.

Although it is possible to print directly to the server printer, font selection and
formatting capabilities are limited. These restrictions can have an impact on
form printing. We recommend that you send the print job to the client and let
the client send the job to the desired printer. Note that the desired printer must
be visible to the client.

4.4.3.4 Selecting a file from the client machine’s drives

A call to the C$OPENSAVEBOX library routine allows you to browse the
client machine’s drives and select a directory or file. This routine is used in
conjunction with other operations that have access to the client machine’s
drives, such as C$COPY, C$SYSTEM, DLL calls, and COM or ActiveX
components. The server machine’s file system does not appear in the box.

4-18 Preparing Your Application
If your server machine is Windows, you can navigate to the server using
Universal Naming Convention (UNC) notation. Set the C$OPENSAVBOX
parameter OPNSAV-DEFAULT-DIR to the desired mapped drive or server
directory using UNC notation.

4.4.3.5 Using W$BITMAP print screen features

Some elements of the W$BITMAP print screen feature deserve special
mention in the context of a thin client deployment, particularly the
WBITMAP-CAPTURE-IMAGE, WBITMAP-CAPTURE-DESKTOP, and
WBITMAP-CAPTURE-CLIPBOARD functions. Full details regarding all
W$BITMAP features can be found in Appendix I in ACUCOBOL-GT
Appendices.

WBITMAP-CAPTURE-IMAGE usage is as follows:
CALL "W$BITMAP"
 USING WBITMAP-CAPTURE-IMAGE
 filename
 [window-handle]
 [client]
 [colordepth]
 GIVING [result].

If filename is specified, the image is stored in the named file on the server,
not the client machine. For example, with the following code:

CALL "W$BITMAP" USING WBITMAP-CAPTURE-IMAGE
"c:\myfile.bmp".

the bitmap image is stored as “myfile.bmp” in the c:\ directory on the server.
In this example:

CALL "W$BITMAP" USING WBITMAP-CAPTURE-IMAGE
"myfile.bmp".

“myfile.bmp” is stored in the working directory specified in the alias file. If
you want the file stored on the client, use the C$COPY library routine to
transfer it to the client. (Refer to section 7.2.1, “Copying Files Between the
Client and Server,” for more information.)

If filename is not specified or is set to a space, the image is placed on the
client machine’s clipboard.

International Character Handling 4-19
The setting of colordepth is important to consider in a thin client deployment.
Because color density is a memory-intensive setting and the image may be
transferred over network connections, a combination of high resolution and
low bandwidth can have a negative effect on thin client application
performance. Consider how the image is being used and set the color density
only as high as needed.

The descriptions of filename and colordepth in the previous paragraphs also
apply to their usage in the WBITMAP-CAPTURE-DESKTOP function of
the W$BITMAP library routine.

The WBITMAP-CAPTURE-CLIPBOARD function copies the current
bitmap content of the client machine's clipboard. The description of filename
in the previous paragraphs also applies to its usage in
WBITMAP-CAPTURE-CLIPBOARD, except that for this function,
filename is mandatory.

4.5 International Character Handling

Often in client/server environments, the client and server machines may use
different character encoding, particularly if one machine is set up for foreign
language characters that use values outside the ASCII character set (decimal
values 128 and higher), or if the client is using a PC character set and the
server is using a UNIX character set. This presents a problem when programs
or data are passed between the environments, because the characters do not
translate directly.

4.5.1 In Distributed Processing

If you anticipate passing any items with special characters (such as vowels
with a grave accent, acute accent, circumflex, or tilde) during a remote
CALL, then you should create a map file to reconcile the character encoding
for you. You should also consider creating a map file if the client machine
uses a different character set from the server machine. The map file should
specify which client characters are to be converted to which values before
passing the CALL’s arguments to the server process or returning information
from the server process. The translation on returning data will affect items
that were passed to the server process as “BY REFERENCE” (the default).

4-20 Preparing Your Application
The map file should re-map only those values that vary between the two
character sets. It should contain two values per line: the first indicating the
decimal or hexadecimal value of the special character on the client machine,
and the second indicating the decimal or hexadecimal value of the
corresponding character on the server machine. You can check the values of
specific characters by using the Windows Character Map accessory in the PC
environment, or by referring to your UNIX man pages in the UNIX
environment.

In your character map, hexadecimal values should use the standard “0x”
notation. For instance:

0x90 0xC9

maps “E” (acute) in the IBM PC character set to “E” (acute) in the ISO8859-1
character set using hexadecimal notation.

144 201

gives the same mapping using decimal notation.

You can use the pound sign (#) to indicate a comment, if desired.

Note that the map will be used to translate only alphanumeric fields, but it
will translate all alphanumeric fields, including group items and items
subject to a REDEFINES clause. If this is not a desired behavior, you may
need to restructure your program to avoid these clauses by passing the
elementary items instead of the group item, or passing an item from the
REDEFINES clause instead of the first reference.

For example, if you pass the group-name in the following COBOL program:
01 group-name
 03 field-1 pic99 comp-5.
 03 field-2 pic99 comp-5.
call "sun3:/usr/obj/prog2" using group-name.

translation will occur on the elementary numeric items. If these numeric
items contain binary data that matches the value of mapped characters, the
data will be corrupted. To correct this situation, you could change the CALL
statement to:

call "*sun3:/usr/obj/prog2" using field-1, field-2.

International Character Handling 4-21
Or you could change the definition of the numeric items to a type that will not
conflict with potentially mapped characters, as in:

01 group-name
 03 field-1 pic99.
 03 field-2 pic99.

Defined this way, the numbers are stored as the ASCII representation of each
digit, which should not conflict with any character mapping.

Once the map file is created, you place it on the client, or if the client is
AcuServer enabled, you can place it on the client or server. Either way, you
specify the location of the map file using the DEFAULT_MAP_FILE or
server_MAP_FILE variable in the client configuration file (for example,
“client.cfg”). Refer to Chapter 5 for more information on using these
variables.

4.5.2 In Thin Client

International character handling in thin client is similar to that in distributed
processing. You create a simple text file that contains the mapping of
characters that may be different on the client than on the server, as described
in the previous section. You need to include only the character codes that
differ between the two machines.

After you create your map file, you need to point to it using a runtime
configuration variable. For a thin client environment, this variable is called
TC_MAP_FILE. Character mapping is triggered by the presence of the
TC_MAP_FILE variable. Refer to TC_MAP_FILE for more information
about this configuration variable.

You need to be sure that the configuration file that contains this variable is
referenced in the program’s alias definition. Information about the thin client
alias file can be found in section 2.4, “Creating a Server Alias File in Thin
Client.”

4-22 Preparing Your Application

5
 Preparing the Client(s) in
Distributed Processing
Key Topics

Installing the ACUCOBOL-GT Runtime.. 5-2
Creating a Client Configuration File... 5-4
Installing Client Programs... 5-13
Executing Programs on the Client... 5-13
Sample Programs... 5-15
Running the Sample Programs... 5-19

5-2 Preparing the Client(s) in Distributed Processing
5.1 Installing the ACUCOBOL-GT Runtime

For the distributed processing deployment, there is nothing on the
AcuConnect® distribution media to install on the client machine. However,
you should ensure that every client system that will use AcuConnect has a
licensed copy of the ACUCOBOL-GT® runtime that matches the version of
AcuConnect installed on the server. For example, if you have installed
AcuConnect Version 8.0 on the server, then the client should have the
ACUCOBOL-GT runtime Version 8.0 installed.

To check the version number of the client runtime, use the “-v” option on the
runtime command line. The runtime will display information similar to the
following:

ACUCOBOL-GT runtime version 8.0
Serial number 1234
Licensed for 2 user(s), 2 processes per user
Copyright (c) 2008, Micro Focus (IP) Ltd.

A “-vv” (double-v) option also displays the runtime’s version number, along
with extended information. The “-vvv” (triple-v) option, valid on UNIX
systems, results in the display of additional configuration information about
the UNIX port that is primarily useful to the our Development team. The
information displayed varies with individual UNIX systems and is subject to
change without notice.

If you have an earlier version of the runtime installed, or no version at all,
contact your Micro Focus extend® Sales Professional for information on
purchasing the latest version of the runtime. For instructions on installing an
ACUCOBOL-GT runtime, refer to the ACUCOBOL-GT User’s Guide.

5.1.1 Relinking the Client Runtime

No relinking is necessary to use AcuConnect. The regular runtime can call an
AcuConnect server program. If you need special extensions for which you
would normally relink the runtime, refer to Chapter 6 in A Guide to
Interoperating with ACUCOBOL-GT.

Installing the ACUCOBOL-GT Runtime 5-3
5.1.2 Removing AcuConnect Client Support From the
Runtime

The procedure for removing AcuConnect client support from your runtime
varies with your operating system. For Windows, delete the “aclnt.dll” file
from the bin subdirectory. For UNIX, use the following procedure:

1. Remove “sub.o”.

2. Set NO_ACUCONNECT=1 in “config85.c”.

3. Run the following make command:

make

5.1.3 Passwords for Clients

If you are requiring a client password to access the server machine, you can
prompt the user for this password and store it in the acu_client_password
variable, or you can let the runtime prompt for it.

5.1.4 Setting Up the Host Name

The runtime system on each client machine needs to know the name of the
server host machine. This is accomplished in the client configuration file,
“client.cfg.” You can either use the CODE_PREFIX variable to define the
remote pathname, or you can define code name aliases. Code name aliases
are faster, because the runtime does not have to search remote machines. If
you use CODE_PREFIX, we recommend that you place the remote paths at
the end of the variable. Refer to section 5.2.1, “Defining Remote Application
Path,” for details.

5.1.5 Confirming Network Services

Whether your client is running UNIX or Windows, confirm that your TCP/IP
software is loaded and running. On Windows clients, confirm that
“WSOCK32.DLL” is loaded.

5-4 Preparing the Client(s) in Distributed Processing
5.2 Creating a Client Configuration File

Once you have installed your client applications on the client(s), you must
create a special configuration file that tells AcuConnect the location of the
remote application component, the runtime flags to use when running the
remote application (if any), and the runtime configuration file to use. This file
can be named anything, but for clarity, it is called “client.cfg” in this manual.
The client configuration file should be placed in the /etc or operating system
drive:\etc directory on the client or specified using the “-c” command-line
option at runtime.

When AcuConnect is shipped, it includes a sample “client.cfg” file. If you
want to install this sample file on your client machine(s), you may do so. This
may be a good starting point for creating and modifying your own file.

The “client.cfg” file can contain any standard configuration file variable
defined in the ACUCOBOL-GT User’s Guide (for instance,
CODE_SUFFIX, ACUCOBOL, and TEXT). In addition, it can contain any
of several AcuConnect-specific variables discussed in this section.

Note: Many of these variables are used to specify the location of remote
programs and files. You can use either IP addresses or server names in the
“client.cfg” file.

5.2.1 Defining Remote Application Path

You can define the pathname of the remote application in the client
configuration file in two ways: by using the CODE_PREFIX variable or by
defining code name aliases.

5.2.1.1 CODE_PREFIX

If desired, you can use the CODE_PREFIX variable to define the location of
the object programs being called. In a distributed processing environment,
the CODE_PREFIX variable can be defined as follows:

CODE_PREFIX . /usr/prog1 *servername:/usr/prog2

Creating a Client Configuration File 5-5
where prog1 and prog2 are the directories containing the ACUCOBOL-GT
object code (for example, “prog1.acu” and “prog2.acu”). In this example,
whenever the client application tries to access a program’s object code, it first
looks for the code in the current directory (“.”), then in the local /usr/prog1
directory, and finally on the remote application server “servername” in the
directory /usr/prog2.

Because AcuConnect supports Transmission Control Protocol/Internet
Protocol (TCP/IP), it can also be used to launch application processes over
the Internet. In an Internet environment, the “servername” portion of
CODE_PREFIX would be the name of the application server on the Internet.

Notice that the remote server name is preceded by the character “*”. The
asterisk indicates that the program is located on the server and must be run on
the server as well.

When the client COBOL program executes a CALL, it verifies which
directory contains the program (by looking in CODE_PREFIX), and
executes the program either on the client or the server.

Note: When you use CODE_PREFIX to specify the location of your called
program, the runtime traverses the specified paths to locate the resource. If
you use this method, try to place remote notations toward the end of the file.
Generally, you achieve better performance by defining a code name alias,
because remote machines do not need to be searched using this method.

This architecture allows most existing COBOL programs to operate in a true
distributed processing environment without any code modification. You can
simply install AcuConnect and modify the “client.cfg” file according to your
needs. Even the parameter transfer is performed following standard COBOL
procedures (the USING clause after the CALL command).

For example, in a stand-alone environment, CODE_PREFIX could be
defined as follows in a Windows system:

CODE_PREFIX c:\prog1;c:\prog2

and as the following in a UNIX system:
CODE_PREFIX /usr/prog1:/usr/prog2

5-6 Preparing the Client(s) in Distributed Processing
5.2.1.2 Code name aliases

If you would rather specify the exact location of your called program (rather
than having AcuConnect search through CODE PREFIX for the location),
you can define code name aliases, also in the client configuration file. A
code name alias is a substitute name for the program that you’re calling.

For example, if you have this CALL statement in your application:
CALL "prog2" using customer-info.

You could create the alias “PROG2” in your client configuration file by
adding two lines:

PROG2 *servername:/usr/prog2/prog2.acu
CODE_MAPPING 1

The first line creates the alias “PROG2” to represent “prog2.acu” on the
application server in directory “/usr/prog2.” The second line turns the code
alias, and any other code aliases, “on.”

With these two lines in the “client.cfg” file, AcuConnect knows to look on
“*servername” for the remote application when it encounters the CALL.

By using aliases in the “client.cfg” file, you enable your users to change their
configuration file dynamically at runtime, and you enable them to improve
performance.

Note: To disable code aliases, set CODE_MAPPING to “0”. In this case,
remote program location is derived from the CODE_PREFIX variable. For
more information on the CODE_MAPPING variable, refer to Appendix H
in ACUCOBOL-GT Appendices.

5.2.2 Other Variables

Although the “client.cfg” file can contain any standard configuration file
variable defined in the ACUCOBOL-GT User’s Guide, the variables
described in the following sections have specific meaning to AcuConnect.

Creating a Client Configuration File 5-7
5.2.2.1 ACUCONNECT_DEBUG_METHOD

This configuration variable gives you some control over where remote
program debugging occurs. ACUCONNECT_DEBUG_METHOD is
undefined by default and may take one of the following values. These
settings also determine what values the
ACUCONNECT_DEBUG_METHOD_STRING configuration variable
takes.

5.2.2.2 ACUCONNECT_DEBUG_METHOD_STRING

This configuration variable is used in conjunction with
ACUCONNECT_DEBUG_METHOD to control remote program
debugging. This variable is undefined by default.

Value Description

XTERM The remote runtime creates an xterm and uses it for
interaction with the runtime debugger.

ACUCONNECT_DEBUG_METHOD_STRING
should be set to the name of the X server to which
the xterm is displayed.

TERMINAL The terminal named in
ACUCONNECT_DEBUG_METHOD_STRING is
used by the runtime to interact with the user for
debugging the remote COBOL program.

THIN or
THINCLIENT

The client runtime attempts to start an instance of
the thin client with the correct parameters using the
client machine name and port number specified in
ACUCONNECT_DEBUG_METHOD_STRING.

When
ACUCONNECT_DEBUG
_METHOD is set to...

ACUCONNECT_DEBUG_METHOD_STRING..
.

XTERM Should be set to the name of the X server to
which the xterm is displayed. If the latter
variable is not set, the xterm appears on the X
server defined by the A_DISPLAY or DISPLAY
environment variable.

5-8 Preparing the Client(s) in Distributed Processing
5.2.2.3 ACUCONNECT_CLOSE_AFTER_CANCEL

This variable lets you specify whether the connection to a remote application
should remain open or be closed after a CALL is complete.

TERMINAL Must be set to the name of a TTY that is running
a runtime started in a special mode
(“runcbl --wait”). The runtime uses the
specified terminal to interact with the user for
debugging the remote COBOL program.

THIN or THINCLIENT Must be set to <client:port>, where client is the
name of a Windows machine, and port is the port
to which the runtime attempts to connect in order
to control a thin client.

In this mode, the client runtime attempts to start
an instance of the ACUCOBOL-GT Thin Client
with the correct parameters. For example, if
ACUCONNECT_DEBUG_METHOD_STRIN
G is set to “rzack-xp:4444”, the client runtime
starts “acuthin --wait --port 4444”. Note that if
the client machine is not rzack-xp, you may have
a thin client instance that is not being used.

When
ACUCONNECT_DEBUG
_METHOD is set to...

ACUCONNECT_DEBUG_METHOD_STRING..
.

Value Description

“0” (off, false, no)
(the default)

Leaves the remote application open until the client
application exits.

“1” (on, true, yes) Closes the remote application whenever a CANCEL
occurs in the client program.

For example:

ACUCONNECT_CLOSE_AFTER_CANCEL 1

Creating a Client Configuration File 5-9
5.2.2.4 ACUCONNECT_RUNTIME_FLAGS

ACUCONNECT_RUNTIME_FLAGS are parameters that you would
normally put on the runtime command line when starting the remote
application. These are used when the runtime for the remote application
executes.

For example:
ACUCONNECT_RUNTIME_FLAGS *servername: -le errfile

Any runtime flag documented in the ACUCOBOL-GT User’s Guide can be
used, except “-d”. For information on how to run the remote application in
debug mode, see section 5.2.2.1, “ACUCONNECT_DEBUG_METHOD,”
and section 5.2.2.2, “ACUCONNECT_DEBUG_METHOD_STRING.”

Note: The server runtime runs in batch mode by default. It’s not necessary
to include “-b” in the runtime flags.

ACUCONNECT_RUNTIME_FLAGS also contains the name of the runtime
configuration file for the remote application. By default, this file is named
“cblconfig” and is located in the \etc directory in which you installed
AcuConnect.

5.2.2.5 ACURCL_PORT

The ACURCL_PORT variable specifies a particular port number to be used
for accessing AcuConnect on the server host machine. This is especially
helpful when the server host machine has a security firewall, because
firewalls generally allow access only to specific ports. With this variable, the
site can ensure that firewall restrictions are satisfied.

The acurcl daemon can work with privileged port numbers (from 0 to 1023)
and with non-privileged port numbers (1024 and higher, up to 32767).

The value of this variable is overridden by any port number assigned on the
command line (via the “-n” option) when the daemon is started.

5-10 Preparing the Client(s) in Distributed Processing
5.2.2.6 DEFAULT_MAP_FILE

Use this variable to define the name and path of the map file to be used (if
any) to map special characters in your client character set to their decimal or
hexadecimal equivalent on the server. This file lets you reconcile the
character encoding between two machines that use different codes for the
same characters. It is particularly useful for international character
translation. (See section 4.5, “International Character Handling,” for more
information.) For example:

DEFAULT_MAP_FILE=c:\etc\pc_iso

If desired, you can keep your map file on a remote machine and access it
using AcuServer®. Simply use remote name notation for your
DEFAULT_MAP_FILE entry to point to a server that is running the
AcuServer daemon. For example:

DEFAULT_MAP_FILE=@sun3:/user/data/pc_iso_map

Note that you are not required to keep your map files on the same remote
machine that you are calling with AcuConnect.

5.2.2.7 server_MAP_FILE

Similar to DEFAULT_MAP_FILE, this configuration variable lets you
specify a map file for use with international character translation. However,
this variable specifies a map file for use with a specific server. The map file
itself can be stored anywhere.

For example, if you include the following statement in your client
application:

CALL "prog2" using my-data.

and your client configuration file includes:
CODE_PREFIX *sun3:/usr/obj *sun4:/usr/obj

then:
sun3_MAP_FILE=c:\etc\pc_iso_map

Creating a Client Configuration File 5-11
causes the map file “pc_iso_map” to be applied if prog2 is found and run on
sun3 but not on sun4. As with DEFAULT_MAP_FILE, you may use
AcuServer remote name notation to point to a map file residing on a remote
server running AcuServer.

Note: You can have only one DEFAULT_MAP_FILE variable specified
in the client configuration file, but you can have as many
server_MAP_FILE variables as you want.

5.2.2.8 SECURITY_METHOD

This variable lets you determine the security method AcuConnect employs
for user logon. This variable must also be set in the server configuration file.
AcuConnect can use the operating system’s native logon facility or the
security provided by the AcuAccess file. It is recommend that you use native
system security rather than AcuConnect system security. On Windows 2008
it is essentially required that you use system security. To use native security,
you set the SECURITY_METHOD variable. You still create a server access
file containing access records that define your user base, but the server access
file is used only to check if the user connecting to the server is allowed to
connect, and to check to which local account the connection should be
mapped.

5.2.2.9 TEXT_nnn

A set of TEXT configuration variables is used to control the text of selected
AcuConnect messages. Three runtime messages support AcuConnect
password handling. The default text for each message is as follows:

TEXT_015 "A password is required to connect to host %s."
TEXT_016 "Please enter a password: "
TEXT_017 "Invalid password."

Note that in message 15, the name of the AcuConnect host will be substituted
for the “%s” characters.

To change the text associated with a given message, follow these steps:

1. Place the word “TEXT” at the beginning of a line in the configuration
file.

5-12 Preparing the Client(s) in Distributed Processing
2. Follow “TEXT” with the following, in this order:

a. an underscore

b. the message number

c. an “=” character (or a blank space or tab)

d. the text to be used when that message number is displayed.

For example:
TEXT_016=Enter your password now:

Note that to enable the display of the password messages, you set the
PROVIDE_PASSWORD_MESSAGES server configuration variable to
“true” (1, on, yes). This variable tells the remote listener to send these
messages to the client.

5.2.3 Sample “client.cfg” File

The following file is included in the sample directory on your AcuConnect
installation CD-ROM. You can use this file as a starting point and modify it
to suit your needs.

"client.cfg"
This is a sample configuration file used when starting your
program

on the client.
You should edit it to match your needs. (See the AcuConnect User's
Guide).
Use the "*" notation to point to the cobol object on the server.
code_prefix . *server1:c:\acuconnect\sample.
Allow code name aliases. A name alias is a substitute string for
the

literal name that appears in the CALL statement.
#code_mapping 1
#prog2 *server1:c:\acuconnect\sample\prog2.acu
runtime flags on the server
acuconnect_runtime_flags *server1: -c c:\acuconnect\etc\cblconfig
-le

errfile
action to be taken with the connection to the remote runtime after
a

CANCEL
acuconnect_close_after_cancel 0

Installing Client Programs 5-13
map special characters in client character set to their
equivalent

on server.
#default_map_file c:\etc\pc_iso

5.3 Installing Client Programs

The last step in preparing your client for use with AcuConnect in distributed
processing is copying the client components of your COBOL application
onto the client into the desired directory. If multiple clients will be used to
access the server application, then you must install the client application
components on each client machine.

5.4 Executing Programs on the Client

After AcuConnect is running on the server, all you have to do to access the
remote server application from the client is start the client program. If you
have designed your application properly (embedding synchronous or
asynchronous CALLs into the client application component, as described in
section 4.3.2, “Synchronous or Asynchronous Execution”), the client
program will automatically and seamlessly launch the server application for
you. The client configuration file, “client.cfg” or equivalent, defines the
location of the server, along with the runtime flags and configuration file to
be used at the server program run time.

When starting your client program, you can use any of the runtime options
available to a standard ACUCOBOL-GT runtime. If you want to provide
AcuConnect trace information for the client, specify “-le” plus the name of
the error file in which to store the data.

5.4.1 Executing Non-COBOL Programs on the Client

You don’t have to have a COBOL object running on the client. AcuConnect
can also be used to execute remote COBOL objects from client applications
developed in C, C++, Java, .NET, Delphi, or Visual Basic. This relies on the
C, Java, and .NET APIs contained in the ACUCOBOL-GT runtime.

To call a remote COBOL object from a non-COBOL program on the client:

5-14 Preparing the Client(s) in Distributed Processing
1. Install the runtime on the client, as described in section 5.1 of this
chapter.

2. In the runtime configuration file on the client, set CODE_PREFIX to
point to the AcuConnect server.

3. Use the C, Java, or .NET API contained in the runtime to call COBOL
functions from the non-COBOL program. Refer to A Guide to
Interoperating with ACUCOBOL-GT for information on each of these
APIs.

4. Set the u.pass_type member of the argument structure of the runtime’s
“sub85” interface to control how data is passed back and forth between
the non-COBOL program and the remote COBOL object: by reference,
by content, or by value. Refer to section 6.3.3.2 of A Guide to
Interoperating with ACUCOBOL-GT for more details.

5. Run the application developed in C, C++, Java, .NET, Delphi, or
Visual Basic on the client.

AcuConnect will execute a COBOL object remotely and share data with the
x client.

5.4.2 Debugging in a Distributed Processing Environment

You can interact with the runtime debugger and debug remote programs in
two ways.

The first way is to view a debugger window on the server itself: This is
accomplished by starting acuconnect with the “–d” flag, or example:

acuconnect –start –d.

When started with this flag, AcuConnect will run in the foreground. This
means that all logging messages will be sent to the console or command line
window. On UNIX, only one connection is allowed at a time. On Windows,
multiple users can connect simultaneously. When a server runtime is started
by AcuConnect, a debugger window will be displayed to the console. On
Windows, multiple debugger windows can be opened for multiple
connections. The server debugger is a fully functional.

Sample Programs 5-15
The second way to debug a remote program is to direct the debugger window
to be opened on a remote machine with a TTY, an xterm, or the thin client.

If you want to use an xterm, the remote runtime will create an xterm and use
it for interaction with the runtime debugger. Alternatively, you can specify
the name of a TYY that will be used by the runtime to interact with the
debugger. You can also specify a Windows client machine and port number.
The client runtime will then start an acuthin instance for interacting with the
debugger. For specific instructions in implementing these options refer to the
following AcuConnect configuration variables:
ACUCONNECT_DEBUG_METHOD and
ACUCONNECT_DEBUG_METHOD_STRING

5.5 Sample Programs

This section contains sample client and server programs: “prog1.cbl”,
“prog2.cbl”, and “asynch.cbl”. By default, these files were placed in your
acuconnect/sample directory during installation on the server. These
programs are included in the sample directory on your AcuConnect
installation media.

“prog1.cbl” is a client program that performs a synchronous CALL. Notice
the CALL statement in the Procedure Division section of this program. This
CALL invokes “prog2” on the server and displays the result on the client
workstation. Remember that the client configuration file (“client.cfg”, for
example) defines the location of the server. In this case, it also defines the
CODE_SUFFIX, “.acu”.

“asynch.cbl” is a client program that performs an asynchronous CALL.
Notice that in the Procedure Division section of this program, a CALL is
made to the C$ASYNCRUN library routine using “prog2” and some
parameters. This tells AcuConnect to allow processing on the client to
continue. Notice also that this program later calls the C$ASYNCPOLL
routine to check the status of “prog2”.

Both “prog1.cbl” and “asynch.cbl” start “prog2” on the server using the same
“client.cfg” file.

5-16 Preparing the Client(s) in Distributed Processing
After you have prepared your server and client, you can try running
“prog1.acu” and/or “asynch.acu” on the client to test your AcuConnect
connection. For instructions, refer to section 5.6, “Running the Sample
Programs.”

Note: The sample file “prog1.acu” was compiled with “ccbl32 -o @.acu
prog1.cbl”. “prog2.acu” was compiled with “ccbl32 -o @.acu prog2.cbl”.

“prog1.cbl”
identification division.
program-id. prog1.
working-storage section.
01 err-code pic x(2).
01 err-message pic x(60).
01 customer-info.
 05 requested-age.
 10 low-age pic x(2).
 10 high-age pic x(2).
 05 age-group-count pic 9(3).
procedure division.
main-logic.
 move "35" to low-age.
 move "39" to high-age.
 call "prog2" using customer-info
 on exception
 perform exception-handling
 end-call.
 display "Number of customers between " low-age " and "
 high-age ": " age-group-count.
 accept omitted.
 stop run.
exception-handling.
 call "C$CALLERR" using err-code, err-message.
 display "Error#: " err-code ", " err-message.
 accept omitted.
 stop run.

“prog2.cbl”
identification division.
program-id. prog2.
environment division.

Sample Programs 5-17
input-output section.
file-control.
select customer-file
 assign to "custfile"
 organization is line sequential
 file status is customer-status.
data division.
file section.
fd customer-file.
01 customer-record.
 05 customer-id pic 9(3).
 05 customer-name pic x(20).
 05 customer-age pic xx.
working-storage section.
01 customer-status pic xx.
 88 eof-customer-file value "10".
linkage section.
01 customer-info.
 05 requested-age.
 10 low-age pic x(2).
 10 high-age pic x(2).
 05 age-group-count pic 9(3).
procedure division using customer-info.
main-logic.
 perform count-customers.
 goback.
count-customers.
 move zero to age-group-count.
 open input customer-file.
 perform until eof-customer-file
 read customer-file next record
 at end
 continue
 not at end
 if customer-age >= low-age and
 customer-age <= high-age
 add 1 to age-group-count
 end-if
 end-read
 end-perform.
 close customer-file.

5-18 Preparing the Client(s) in Distributed Processing
“asynch.cbl”
identification division.
program-id. asynch.
author. MJE.
remarks.
 Used to test asynchronous calls. Need prog2 on server.

working-storage section.
01 h-call-prog2 usage handle.
01 state-of-call pic s9.
01 call-status pic xx.
 88 call-complete value "ok".
01 customer-info.
 05 requested-age.
 10 low-age pic x(2).
 10 high-age pic x(2).
 05 age-group-count pic 9(3).

procedure division.
main-logic.
 move "35" to low-age.
 move "39" to high-age.
 call "C$ASYNCRUN" using h-call-prog2 "prog2"
customer-info.

 if return-code not equal zero
 display "CALL ERROR#: " return-code
 accept omitted
 stop run
 end-if.
 display "age-group-count immediately after async call: "
 age-group-count.
 display "Begin sleep for 5".
 call "C$SLEEP" using 5.
 display "End sleep, call asyncpoll".
 perform until call-complete
 call "C$ASYNCPOLL" using
 h-call-prog2 state-of-call customer-info
 if return-code not equal zero
 display "CALL ERROR#: " return-code
 accept omitted
 stop run
 end-if
 if state-of-call = 1

Running the Sample Programs 5-19
 display "Number of customers between " low-age "
and "

 high-age ": " age-group-count
 set call-complete to true
 accept omitted
 end-if
 end-perform.
 stop run.

5.6 Running the Sample Programs

To test your AcuConnect connection between the client and server, you can
copy the sample client programs onto the client and try to run them. If the
connection succeeds, the server returns a response to the client, and that
response displays on the client workstation. The following sections describe
how to run the sample programs in UNIX and in Windows.

5.6.1 Running the Sample Programs in UNIX
1. Start AcuConnect on the server by going to the server and typing:

acurcl -start -c acurcl.cfg -e server.err

2. Copy the programs “prog1.acu” and “asynch.acu” from the sample
directory on the server to any directory on the client.

If you kept the installation defaults, these files can be found in the
/acuconnect/sample directory on the server. You may want to create a
new directory on the client to hold the samples.

3. Start the sample client program by changing to the directory in which
you installed the programs on the client and typing:

runcbl -c client.cfg prog1.acu

to test synchronous CALLs, or

runcbl -c client.cfg asynch.acu

to test asynchronous CALLs.

5-20 Preparing the Client(s) in Distributed Processing
5.6.2 Running the Sample Programs in Windows
1. Start AcuConnect on the server by using the “acurcl -start” command or

by clicking Start on the graphical control panel’s Services tab.

2. Copy the programs “prog1.acu” and “asynch.acu” from the sample
directory on the server to any directory on the client.

If you kept the installation defaults, these files can be found in the
c:\Program Files\acucorp\acucbl8xx\AcuGT\sample directory on the
server. You may want to create a new directory on the client to hold the
samples.

3. Start the sample client program by opening a Windows Command
Prompt (DOS window) and changing to the directory in which you
installed the programs on the client. From the prompt, type:

wrun32 -c client.cfg prog1.acu

to test synchronous CALLs, or

wrun32 -c client.cfg asynch.acu

to test asynchronous CALLs.

5.6.3 Results

Whether you are working in Windows or UNIX, you can expect the same
results from the sample programs. If the connection is unsuccessful, you
receive an error message. Refer to section 8.7, “AcuConnect Distributed
Processing: Troubleshooting,” for advice.

Synchronous sample

When “prog1” CALLs “prog2”, AcuConnect automatically starts “prog2” on
the server with the runtime flags and configuration file specified in the
sample “client.cfg” file. This is equivalent to typing, “wrun32 -b -le prog2.err
-c cblconfig prog2.acu” on a Windows server or “runcbl -b -le prog2.err -c
cblconfig prog2.acu” on a UNIX server.

If the connection is successful, the following displays on the client:

Running the Sample Programs 5-21
Number of customers between 35 and 39: 003

Asynchronous sample

When “asynch.acu” CALLs “prog2”, AcuConnect automatically starts prog2
on the server with the runtime flags and configuration file specified in the
sample “client.cfg” file. Since C$ASYNCRUN was called as well, however,
AcuConnect allows the client program, “asynch.acu”, to continue running
this time.

If the connection is successful, the following displays on the client:
age-group-count immediately after async call:
Begin sleep for 5
End sleep, call asyncpoll
Number of customers between 35 and 39: 003

5-22 Preparing the Client(s) in Distributed Processing

6
 Preparing the Client(s) in Thin
Client
Key Topics

Preparing the Client... 6-2
Installing the ACUCOBOL-GT Thin Client ... 6-2
Installing ActiveX Files .. 6-3
Thin Client Splash Screen ... 6-4
Launching Remote Programs From the Client.. 6-4
Launching Programs on the Internet ... 6-8
Using the Client Cache Directory .. 6-9

6-2 Preparing the Client(s) in Thin Client
6.1 Preparing the Client

In the AcuConnect® Thin Client environment, the client is also known as the
display host. This is where screen, mouse, and keyboard handling is
performed, but no actual application processing is performed on the client.
Unlike servers (or application hosts), which are considered to be “thick,”
display host clients are “thin” because of their lack of application
components and substantive processing work. Thin clients communicate
with their application hosts through a split runtime, the thin portion of which
is installed on the client.

The following two steps are all you need to do to prepare the client for
AcuConnect Thin Client operation:

1. Install client software.

2. Run the ACUCOBOL-GT® Thin Client.

6.2 Installing the ACUCOBOL-GT Thin Client

For in-house installations, the ACUCOBOL-GT Thin Client installation files
are included on the product media. A self-extracting installation program
(“atcinst.exe”) can be found in the REDIST directory on either the Windows
or the UNIX CD-ROM. In accordance with the applicable license agreement,
this file can be distributed within your organization or placed on a shared
network drive. Users double-click this file and follow the on-screen
instructions to install the thin client. The thin client can also be selected as an
installed product from the Windows CD-ROM.

Once it is installed, you can invoke the ACUCOBOL-GT Thin Client from a
command line or you can set up an icon for it. We recommend that you create
an icon for the thin client, specifying command parameters as desired.
Command parameters for the thin client are described in section 6.5.1, “The
acuthin Command.” For information on establishing program icons, refer to
your Windows documentation.

Installing ActiveX Files 6-3
You can also download and install the ACUCOBOL-GT Thin Client from
Micro Focus’s Web site. Click the link for Micro Focus’s download page,
then click the link for the ACUCOBOL-GT Thin Client. Follow the
displayed instructions to download the file. When the download is complete,
follow the instructions on the screen to install the thin client.

When you install the thin client from “atcinst.exe” or from Micro Focus’s
Web site, the system displays the terms and conditions for using the
ACUCOBOL-GT Thin Client. You must agree to the terms of the agreement
to install or use the thin client.

Note: Vista’s UAC mechanism blocks the installation of ActiveX controls,
such as the Thin Client, onto systems that are not running Internet Explorer
7 in administrator mode. Vista includes an ActiveX installer service that
allows IT administrators to use Group Policy to specify Web sites from
which standard users will be allowed to install ActiveX controls.

6.3 Installing ActiveX Files

If the server application uses ActiveX resource files or ActiveX controls,
these resources and controls must be installed on the thin client machine
before the application can be executed. This is because there is no way to
send such resources along with screen commands to the UI layer in a single
network message, and if they are sent separately, the UI layer doesn’t “know”
anything about how to group them into a Screen Section item.

End users can usually install and register ActiveX controls and resources by
downloading the controls from the control vendor’s Web site and running the
accompanying setup program.

For simple controls, end users can usually accomplish installation and
registration by downloading or copying the ActiveX control files (at least an
“.ocx” or “.dll” file) to their hard disk and executing the following command:

regsvr32 <ocx or dll name>

6-4 Preparing the Client(s) in Thin Client
“regsvr32.exe” is normally located in the \windows\system directory and
may not be in the end user’s search path. Even if the control is already
installed on the machine (for instance, if it came with other software that’s
been installed), the user may still need to register the control with
“regsvr32.exe.”

Note that the ability to load and destroy ImageList data types used by
ActiveX controls is supported in thin client via the W$BITMAP library
routine. Information about this function can be found in Appendix I in
ACUCOBOL-GT Appendices.

6.4 Thin Client Splash Screen

The ACUCOBOL-GT Thin Client displays a splash screen on startup. This
screen remains in place until the application’s initial window appears. You
can disable the splash screen by using the “--nosplash” option in the acuthin
command line. For example:

acuthin --nosplash myserver:5764 myprog

Another method for suppressing the splash screen is to include the following
in your “.atc” or “.acutc” command file:

atc_splash_screen off

where off can also be “0”, “no”, or “false”.

You can also use a splash screen of your own design. Simply name it
“acuthinsplash.bmp” and place it in the same directory as “acuthin.exe”.

6.5 Launching Remote Programs From the Client

Assuming that AcuConnect has been started on the server, you can launch
remote server programs from a Windows client by issuing the acuthin
command, either on the command line or from an icon. To point the client
machine to the remote application host, specify a server name and port
number along with an alias name and arguments.

Launching Remote Programs From the Client 6-5
6.5.1 The acuthin Command

The acuthin command parameters can be specified as follows:
acuthin server[:port] [rarg1 [rarg2 . . .]] alias [carg1 [carg2 .
. .]]

or
acuthin acurcep://server[:port]/alias[?carg1[&carg2 . . .]]

where:

For example:
acuthin myserver:5633 –d myprog1 10 20 30

or
acuthin acurcep://myserver:5633/myprog1?10&20&30

If you execute the acuthin command with an invalid argument, AcuConnect
displays a standard “Usage:” error message. For example:

Usage: acuthin [--ping | -p] server:port
acuthin --accept
acuthin --register
acuthin --unregister
acuthin [-t [n]] server[:port] [runtime options] ALIAS
[COBOL arguments]

[] optional parameters

server server name

port port number

rarg1 an argument passed on the runtime command line before the
program name

carg1 an argument passed on the runtime command line after the
program name

acurcep ACUCOBOL-GT Remote COBOL Execution Protocol

alias an alias that identifies a COBOL application on the server

6-6 Preparing the Client(s) in Thin Client
Other acuthin command-line options allow you to perform specific
functions. The “-d” debugging option is described in the following section.
For a description of debugging a COBOL program from within a transaction
processing environment, refer to section 6.5.1.2, “Debugging in a transaction
processing environment.” Information about command-line options to test
your connection (“-p” or “--ping”) can be found in section 6.5.1.3, “Testing
your AcuConnect connection.” Options for designating username and
password (“--user” and “--password”) are described in section 6.5.1.4,
“Setting username and password.”

6.5.1.1 Debugging option

If you want to test and debug your application in a thin client configuration,
you can run the ACUCOBOL-GT Thin Client with the “-d” argument. This
causes the server to be started in debug mode. For example, the following
command line:

acuthin server[:port] -c <path>\configfile –dlxe trace <progname>

would create a file named “trace” on the server in the directory specified by
the alias. You can specify a full path, but it must be for the server, not for the
client. For example:

acuthin server[:port] -c <path>\configfile –dlxe <path>\trace
<progname>

If the problem is slow screen display when the debugger window appears on
the client screen, use the “ts” command to trace screen control creation.

You may also use the “Ctrl-Break” command to enter the debugger program
(this works even if the program is not running an ACCEPT statement, as long
as the program periodically makes requests to the user interface or is doing
file I/O). If the thin client program is busy (such as looping around calls to
external software or performing lengthy computations), insert some
ACCEPT var FROM INPUT STATUS statements if you want to be able to
use <Ctrl-Break> to enter the debugger in that part of your program. For
further information on using Ctrl-Break to enter the debugger, see
ACUCOBOL-GT book 2, User Interface Programming, section 11.5
“Regarding Debugging.”

Launching Remote Programs From the Client 6-7
You should not attempt to execute a shell command (!) while your program
is in debug mode. If you do, you receive the error message “Unable to start
shell in thin-client mode.”

6.5.1.2 Debugging in a transaction processing environment

You can debug your program from within a transaction processing
environment, as long as this capability is supported by the vendor of that
environment. Please see your vendor’s documentation for details.

Use the following acuthin command-line syntax from your Windows
machine:

acuthin --wait [--port nnnn]

where nnnn is the desired port number. When this option is used, the thin
client waits for the transaction server to start the runtime, after which you can
debug your application in the runtime debugger screen.

In this mode, the acuthin command has an additional option, “--restart”.
With this option, the thin client restarts itself after each debug session, so if a
transaction requires multiple COBOL programs to run, you can debug all of
them. To terminate the thin client after your debugging session, use the
Windows Task Manager.

On UNIX servers, an environment variable setting is required before the
transaction server can start the runtime. A_DEBUG_USING_THIN must be
set to a nonzero numeric value for debugging on thin client in transaction
processing to occur. No additional environment settings are required for
Windows servers.

Information about transaction processing environments can be found in
Chapter 9 of A Guide to Interoperating with ACUCOBOL-GT.

6.5.1.3 Testing your AcuConnect connection

To test your initial AcuConnect setup, you can add a command-line option to
the acuthin command. Add the “-p” or “--ping” option to test whether
AcuConnect is running on the server. The command-line syntax is as follows:

acuthin -p [servername]

6-8 Preparing the Client(s) in Thin Client
If a connection is established, the program shows results for message ID,
time at client, time at server, and round trip time. If the client doesn’t have the
proper runtime installed, a message displays to this effect.

6.5.1.4 Setting username and password

Two acuthin command-line arguments let you send a username and a
password for AcuConnect to use when it reads the AcuAccess file. The
“--user <username>” option allows you to log into the server as “username”
rather than as the current logged-on user. The “--password <password>”
option lets you send the given password to the server without being asked for
it. If the password is not valid, the thin client does not allow the connection
to occur. These options should appear before the server:port designation in
the acuthin command line.

These options can also be set in a thin client command-line file. Use the
“atc-user” and “atc-password” options described in section 7.3.1, “Thin
Client Command-line Files.”

You are required to set a password on the server if you use the “--user”
command-line option. In this situation, a prompt for the password appears
after username is passed. If a password is not required, the “--user” option
does not work.

6.6 Launching Programs on the Internet

The ACUCOBOL-GT Thin Client works in an Internet environment as well
as a local-area or wide-area network environment. When end users invoke the
thin client in an Internet environment, they simply enter the server name and,
optionally, the port number of the server they are accessing over the Internet.

For example:
acuthin myserver.acucorp.com:5633 myprog1 10 20 30

Note that clients must have a live Internet connection when they execute this
command, and the server name that they enter must be resolvable by the
Internet name server used by their service provider. (The Internet name
server then resolves the name with its IP address.)

Using the Client Cache Directory 6-9
If the server name is not exposed to Internet name servers, end users can enter
the explicit IP address on the acuthin command line, as in the following
example:

acuthin 128.110.121.42:5633 myprog1 10 20 30

If the server is in a Virtual Private Network (VPN), the user must connect to
the network before entering the acuthin command.

If you include your application on a Web site as described in section 7.3,
“Launching Thin Client Applications From a Web Page,” end users can
launch your program from their browsers rather than typing command-line
syntax. When they visit your Web site and click a link, the ACUCOBOL-GT
Thin Client is automatically invoked on their machine, initiating thin client
communication with the server.

6.7 Using the Client Cache Directory

When the thin client needs to use a bitmap (“.bmp”), wave (“.wav”), or
ActiveX resource file, it downloads the file from the server to a local cache
directory. This directory is the one identified by the value in the TEMP
environment variable. If no directory is designated in the TEMP variable, the
file is downloaded to the client’s current working directory.

The client downloads a particular bitmap, wave, or resource file on
subsequent requests only if the file on the server is a different size or has a
later timestamp than the corresponding file in the client cache directory, or
the file in the cache is deleted for any reason.

The thin client assigns a unique name to each file that it downloads to the
cache. This name includes characters from the server name, port number,
alias name, COBOL program archive or library name, server path, and server
file name. For example, two bitmap files with the same name might be
uniquely identified in the cache directory as shown:

myserver5764myalias,library1.acu,image.bmp
myserver5764myalias,library2.acu,image.bmp

If your application calls the WIN$PLAYSOUND library routine, and the
named sound refers to a disk file on the server or a resource in the program or
a library, the client downloads the file to its cache directory, even from a
UNIX server. Another use for the cache directory includes storing keystroke
files from the W$KEYBUF library routine. (Refer to section 7.2.3, “Using
Files Containing Keystrokes,” for information about the use of
W$KEYBUF.)

If your application calls the W$BITMAP routine, there may be a limit to the
number of characters you may use in a file name. You are limited to 127
characters if the name passed to W$BITMAP is a file name and extension
only AND you want W$BITMAP to search for a matching file in the
following directories and the order shown below:

1. The directory in which an application is loaded.

2. The current directory.

3. The Windows system directory.

4. The 16-bit Windows system directory.

5. The Windows directory.

6. The directories that are listed in the PATH environment variable.

7
 Thin Client Special Topics
Key Topics

Introduction ... 7-2
Using Library Routines and DLLs in Thin Client..................................... 7-2
Launching Thin Client Applications From a Web Page.......................... 7-11
Thin Client Automatic Update ... 7-14

7-2 Thin Client Special Topics
7.1 Introduction

This chapter covers several topics of interest for thin client users:
• Calls to some ACUCOBOL-GT library routines and dynamic link

libraries (DLLs) in thin client involve special procedures
• Instructions for starting a thin client application from a Web page
• A highly configurable automatic update feature for the

ACUCOBOL-GT Thin Client piece is described in detail

7.2 Using Library Routines and DLLs in Thin Client

Calls to some library routines and dynamic link libraries (DLLs) may have
some unique characteristics in thin client environments, as opposed to
distributed processing deployments. Implementations of the C$COPY,
C$SYSTEM, and W$KEYBUF library routines, among others, are included
in this category. The method for calling DLLs on the display host as well as
on a Windows application host (server) is also somewhat different for thin
client deployments. The following sections describe these functions for the
thin client.

7.2.1 Copying Files Between the Client and Server

The C$COPY library routine allows the transfer of files between the
application host and the display host in thin client and between directories on
the display host. A special name notation of “@[DISPLAY]:” indicates that
a particular file is located on the display host, or client. Use this designation
for the source file or the destination file in the call to C$COPY. If the copy
operation is performed entirely on the client side, the “@[DISPLAY]:”
notation appears in both the source and destination file parameters. As an
example, for a file transfer from the server to the client, “@[DISPLAY]:”
precedes the destination file name, as shown:
C$COPY "/usr/data/file1.ext" "@[DISPLAY]:C:\My Documents\file1.ext"

For a file transfer from the client to the server, “@[DISPLAY]:” precedes the
source file name. For example:
C$COPY "@[DISPLAY]:C:\My Documents\file1.ext" "/usr/data/file1.ext"

Using Library Routines and DLLs in Thin Client 7-3
Path specifications on the client are relative to the directory identified in the
TEMP user environment variable. On the server, they are relative to the
working directory specified in the application’s alias definition. For example,
if TEMP is C:\Documents and Settings\joe\Local Settings\Temp and the
application’s working directory on the server is /usr/apps/app1, then the
following statement:

C$COPY "@[DISPLAY]:file1.ext" "file2.ext"

uploads “C:\Documents and Settings\joe\Local Settings\Temp\file1.ext”
from the client to “/usr/apps/app1/file2.ext” on the server.

Access to files on the display host is also accomplished via a set of directory
specifiers. If the file name on the client starts with a special directory
specifier, the thin client attempts to locate those files in special Windows
directories. The special directory names are as follows:

Note that these directories are not necessarily the same for all versions of
Windows, and may in fact be on network drives.

If further directory information is specified, the thin client attempts to create
the directories added. For example, when attempting to access
<APPDATA>\ACUCOBOL-GT\settings.dat, the thin client ensures that the
ACUCOBOL-GT directory actually exists as a subdirectory of the
Application Data directory.

Identifier Directory

<APPDATA> C:\Documents and Settings\<user>\Application
Data

<COMMON_APPDATA> C:\Documents and Settings\All
Users\Application Data

<COMMON_DOCUMENTS> C:\Documents and Settings\All
Users\Documents

<DESKTOP> C:\Documents and Settings\<user>\Desktop

<LOCAL_APPDATA> C:\Documents and Settings\<user>\Local
Settings\Application Data

<MYDOCUMENTS> C:\Documents and Settings\<user>\My
Documents

7-4 Thin Client Special Topics
If the syntax for files on the display host is
C$COPY "@[DISPLAY]:"<APPDATA>/filename

the thin client would attempt to locate the specified file in
C:\Documents and Settings\<user>\Application Data

For security purposes, user authorization is required to allow a file transfer to
the server using C$COPY. Copying a file to a location other than the
directory named in the TEMP user environment variable also needs user
authorization. The thin client displays a dialog box requesting the
authorization.

Note that when the “@[DISPLAY]:” notation appears in the first or second
parameter in the call to C$COPY, the optional parameter FILE-TYPE is not
used. Only the single file named as the source file is copied. When an
application is not running in the thin client, the “@[DISPLAY]:” notation is
ignored.

Using C$COPY with AcuServer

A technical limitation in AcuConnect affects the ability to copy a file from a
remote AcuServer server directly to the client in a thin client environment.
The following code, for example, does not accomplish the desired copy
function:

CALL "C$COPY" USING "@SERVER:c:\serverpath\test.dat"
"@[DISPLAY]:c:\clientpath\test.dat"

A recommended workaround involves the use of three CALL statements in
your code. First, have the AcuConnect server runtime copy the file from
AcuServer to a temporary file. Use the “@[DISPLAY]:” notation to copy
that file to the thin client. Finally, delete the temporary file on the server. For
example:

CALL "C$COPY" USING "@SERVER:e:\serverpath\test.dat" "tempfile"
CALL "C$COPY" USING "tempfile" "@[DISPLAY]:e:\clientpath\test.dat"
CALL "C$DELETE" USING "tempfile"

Using Library Routines and DLLs in Thin Client 7-5
7.2.2 Executing Desktop Programs

Your server application can execute desktop programs via the
ACUCOBOL-GT C$SYSTEM library routine. To achieve this functionality,
add the CSYS-DESKTOP flag to the set of flags passed to C$SYSTEM. This
flag indicates that the application wants to run the program on the client
machine rather than the application server.

Note that the thin client appears “frozen” while the command executes in
order to return the termination status to the application correctly. To avoid
this behavior, run the command asynchronously by specifying the
CSYS-ASYNC flag.

For example, the following code fragment starts Notepad on the client
machine:

77 flags pic 9(4) comp

add csys-desktop, csys-async giving flags
call "c$system" using "notepad", flags

Because C$SYSTEM can perform harmful actions on the desktop (like
removing files), the thin client asks the user for permission to run the
command. The user can choose not to see the question again for a specific
application host.

For detailed information about C$SYSTEM, refer to Appendix I in
ACUCOBOL-GT Appendices.

7.2.3 Using Files Containing Keystrokes

W$KEYBUF library routine behavior is slightly different in thin client
environments than in the distributed processing environment. This routine
lets you create files of keystrokes that can be played back to simulate user
input. Specifically, W$KEYBUF op-codes 7, 8, and 9 have a different
implementation in thin client. In a thin client environment, these files of
keystrokes are created in a temporary cache file on the thin client machine,
then uploaded to the server when recording stops (op-codes 7 and 8). When a
file is to be played back, the thin client requests that the file be downloaded
from the server to the client’s temporary cache directory, as specified in the

7-6 Thin Client Special Topics
TEMP environment variable. If TEMP is not set, the files are stored in the
thin client’s current working directory. The file is not downloaded again
unless it is changed on the server or deleted from the client.

More information about the W$KEYBUF library routine can be found in
Appendix I in ACUCOBOL-GT Appendices.

7.2.4 Selecting Files on the Client

A call to the C$OPENSAVEBOX library routine allows you to browse the
client machine’s drives and select a directory or file. This routine is used in
conjunction with other operations that have access to the client machine’s
drives such as C$COPY, C$SYSTEM, DLL calls, and COM or ActiveX
components.

Note that the server machine’s files do not appear in the dialog. However, if
your server machine is Windows, you can navigate to the server using
Universal Naming Convention (UNC) notation. Set the C$OPENSAVBOX
parameter OPNSAV-DEFAULT-DIR to the desired mapped drive or server
directory using UNC notation.

7.2.5 Accessing Local Resource Files

You can access a local resource file on the display host in thin client by
adding the “@[DISPLAY]:” notation to the file name in calls to the
W$BITMAP, WIN$PLAYSOUND, W$KEYBUF, or C$RESOURCE
library routine. When a file name that you pass to one of these routines begins
with “@[DISPLAY]:”, the routine attempts to access the file in the display
host’s file system. It does not download the file from the server. This function
is helpful when your application uses many or large resource files and you
want to avoid the download delay that occurs when you first run your
application.

You can distribute any number of resource files with the thin client
executable. You can specify absolute paths or paths relative to the directory
location of “acuthin.exe”. For example, if you distribute the wave file
“MyApp\sounds\sound1.wav”, you can access it on the display host with the
following statement:

Using Library Routines and DLLs in Thin Client 7-7
CALL "WIN$PLAYSOUND" USING
 "@[DISPLAY]:../../MyApp/sounds/sound1.wav",
 SND-SYNC.

Note that if you change a distributed resource file, you need to distribute the
updated file to all your users.

7.2.6 Calling Dynamic Link Libraries (DLLs)

In a thin client environment, you can call subroutines in DLLs on the display
host (client), as well as on the application host, when the application host is a
Windows server. DLL calls to the display host involve some special
considerations, which are described in this section. Calling DLLs on the
Windows application host uses the COBOL syntax and configuration
variables described in Chapter 3 in A Guide to Interoperating with
ACUCOBOL-GT. However, DLLs that are called on the server side and that
interact with the user interface may be of limited use to thin client
applications.

7.2.6.1 Calling client-side DLLs

Calling a DLL on the display host requires special notation. The name of the
DLL called on the display host must begin with “@[DISPLAY]:”. For
example, to call a DLL named “MYLIB” on the client, you would use the
following code:

CALL "@[DISPLAY]:MYLIB.DLL"

The file path for a called DLL is relative to the directory that contains
“acuthin.exe”. For example, if “acuthin.exe” is located in C:\Program
Files\Acucorp\Acucbl8xx\AcuGT\bin, then the following call:

CALL "@[DISPLAY]:MYAPP\MYLIB.DLL"

refers to C:\Program
Files\Acucorp\Acucbl8xx\AcuGT\bin\MYAPP\MYLIB.DLL. Note that the
CALL statement ignores CODE_PREFIX when it searches for DLLs on the
client. CODE_PREFIX is applied only to actions on the application host.

7-8 Thin Client Special Topics
7.2.6.2 Related configuration variables

You can use the CODE_MAPPING configuration variable (see
ACUCOBOL-GT Appendices, Appendix H) to map CALLs to DLLs on the
display host. For example, the following configuration file entry:

CODE_MAPPING 1
MYLIB.DLL @[DISPLAY]:MYLIB.DLL

causes a call to MYLIB.DLL to execute on the client. In addition to mapping
the DLL name, you should map the name of each function contained in the
DLL in the configuration file, as shown below for FuncA and FuncB in
MYLIB:

FuncA @[DISPLAY]:FuncA
FuncB @[DISPLAY]:FuncB

It is important that you use the DLL_CONVENTION configuration variable
to specify the appropriate calling convention. Refer to ACUCOBOL-GT
Appendices, Appendix H, for more details about DLL_CONVENTION.

7.2.6.3 Passing pointers in DLL calls

Passing a pointer as a parameter of a DLL call that executes on the display
host requires some special handling in code, because the pointer value refers
to a memory address on the application host. In certain cases, you may safely
pass a pointer BY VALUE. You may never pass a pointer BY REFERENCE.
This section includes some guidelines for passing pointers BY VALUE.

Using M$ALLOC

The runtime knows the size of allocated memory and can pass the contents of
that memory to the thin client if the pointer is returned by a call to the
M$ALLOC library routine. Then, if the DLL call on the client modifies the
memory, the display host returns the modified memory back to the
application host. As an example, assume you have DLL routines named
SetData and GetData that take size and pointer arguments. You may use the
following code:

77 PTR USAGE POINTER.
77 ITEM-1 PIC X(100).
...
CALL "M$ALLOC" USING 100, PTR.
CALL "M$PUT" USING PTR, "Hello World".

Using Library Routines and DLLs in Thin Client 7-9
CALL "@[DISPLAY]:SetData" USING 100, BY VALUE PTR.
...
CALL "@[DISPLAY]:GetData" USING 100, BY VALUE PTR.
CALL "M$GET" USING PTR, ITEM-1.
CALL "M$FREE" USING PTR.

The application host sends the 100-byte contents of memory to the client on
the CALL to SetData. After the client fills the 100 bytes of memory with
GetData, it returns the contents to the server.

Using the “-Zm” compiler option

You can use a new compiler option with the Format 7 SET statement to pass
pointers to client-side DLL calls. Use this option if you don’t want to add the
WITH MEMORY SIZE phrase for each pointer parameter in a CALL
statement. (WITH MEMORY SIZE is described in the next section.) If your
Format 7 SET statement returns a pointer value and you compile with the
“-Zm” option, the compiler generates additional code that provides the
runtime with the size of the item specified in the SET statement. Once the
runtime has this information, it can pass the memory contents to the thin
client and then retrieve the contents after the thin client modifies them. Note
that the “-Zm” option adds runtime overhead for each Format 7 SET
statement. For information about the SET statement, refer to
ACUCOBOL-GT Reference Manual, section 6.6, “Procedure Division
Statements.”

Using the CALL statement

The USING phrase in the Format 1 CALL statement includes a size-phrase
item with which you can pass the size of a memory item along with the
pointer value. Use size-phrase when the runtime and the thin client cannot
automatically determine the size of the memory being pointed to. This can
occur if, for example, a pointer is passed through the Linkage section or is an
external item. The syntax is

[USING { [BY {REFERENCE}] {parameter} size-phrase ...} ...]
 {CONTENT } {OMITTED }
 {VALUE } {NULL }

where size-phrase is:
[WITH MEMORY SIZE { = } memory-size]
 { IS }

7-10 Thin Client Special Topics
Memory-size is a numeric literal or data item.

As an example, assume you have pointer PTR that points to 1024 bytes of
memory. You can pass this pointer to a DLL called SetData on the display
host with the following code:

CALL "@[DISPLAY]:SetData" USING BY VALUE PTR
 WITH MEMORY SIZE 1024.

Detailed information about the CALL statement can be found in
ACUCOBOL-GT Reference Manual, section 6.6, “Procedure Division
Statements.”

7.2.7 Calling the DLL Version of the ACUCOBOL-GT Thin
Client

A DLL interface to the ACUCOBOL-GT Thin Client is designed to be called
from languages that don’t support ActiveX or when a DLL interface is
preferable to ActiveX. If you decide that a DLL interface is the best method
of accessing the Thin Client from your program, you call the thin client DLL,
“acuthin.dll”.

In order to call the ACUCOBOL-GT Thin Client DLL from another
programming language, you must add a single declaration to the source
program. This example shows what you would use in C/C++:

int PASCAL AcuThinMain(const char *pCmdLine);

To start the thin client, you must pass AcuThinMain a single parameter that
specifies a command-line string using the same syntax as required by the
“acuthin.exe” command line. For example, in C/C++ you would use the
following syntax to start an application on “myserver” using port 5764 with
an acurcl alias named “myappalias”:

int iRetVal = AcuThinMain("myserver:5764 -d myappalias");

AcuThinMain returns “1” on success, “0” on failure.

The thin client DLL depends on “acme.dll”, “aclnt.dll”, and “atermmgr.dll”.
If your program uses “.jpg” files, you also need “ajpg32.dll”.

Launching Thin Client Applications From a Web Page 7-11
7.3 Launching Thin Client Applications From a Web
Page

If you want thin client users to launch your application from a Web page, you
can do the following:

1. Install your COBOL application on your application server host. This
machine must also contain the ACUCOBOL-GT runtime, AcuConnect,
and the other required software components. Note that your application
does not need to reside on the same host as your Web server.

2. Create a thin client command-line file that contains all the information
needed by the ACUCOBOL-GT Thin Client to launch your
application. This file should have an “.atc” or “.acutc” extension. The
format of this file is described in the following section.

3. Place the thin client command-line file on your Web server and create
a link to it from an appropriate Web page. Your users click on this link
to launch your thin client application.

4. To ensure that your thin client is recognized across a wide variety of
browsers, configure your Web server to generate an HTTP
“Content-type” response header field, which is included with the thin
client command-line file. This field should contain the MIME type
“application/vnd.acucorp.thincommandline”. Refer to your Web server
documentation for instructions on adding a MIME type.

After you set up your hyperlink, end users who visit your Web page can run
the program by clicking on the program’s link. The display occurs in an
application window outside of the user’s browser. Note that users who start
the thin client from an “.atc” or “.acutc” file that was downloaded from the
Internet are presented with a security dialog asking them to authorize the
action.

Note: A Windows XP Service Pack 2 user may receive a File Download
dialog before the thin client application can execute. If the user clears the
“Always ask before opening this type of file” check box the first time it
appears, then subsequent requests for this thin client application proceed
immediately.

7-12 Thin Client Special Topics
Another way to launch thin client applications from a Web page is the
ACUCOBOL-GT Web Thin Client. The Web thin client is an ActiveX
control that encapsulates the functionality of the ACUCOBOL-GT Thin
Client. It is designed for browsers that support ActiveX controls, particularly
Microsoft Internet Explorer. More information about the Web thin client can
be found in A Programmer’s Guide to the Internet.

Users can also launch the ACUCOBOL-GT Thin Client by entering the host
name of the application server or an Internet IP address on the “acuthin.exe”
command line. Refer to section 6.6, “Launching Programs on the Internet,”
for more information.

7.3.1 Thin Client Command-line Files

When users install the ACUCOBOL-GT Thin Client on a Windows display
host, the “.atc” and “.acutc” file extensions are automatically associated with
the thin client executable (acuthin.exe). As a result, when your browser
downloads one of these files, it uses these associations to invoke acuthin.exe.
The thin client uses the contents of this file to establish its command-line
parameters. The thin client command-line file has a format that resembles
other configuration files. It may contain the following variables:

Variable name Description

atc-auto-update Lets you disable the thin client automatic update
feature with a setting of “off” (0, false, no)

atc-user The logon user name (no default value)

atc-password The password given to the server (a required
variable when atc-user is used; no default value)

atc-splash-screen The option that lets you disable the thin client splash
screen with a setting of “off” (0, false, no)

atc-trace The trace level (default value is “0”)

atc-server The name or IP address of the server to connect to (a
required variable with no default value)

atc-port The TCP port number to use (default value is 5632)

atc-runtime-options Runtime options passed to the runtime via
AcuConnect (no default value)

Launching Thin Client Applications From a Web Page 7-13
Note that comment lines (preceded by the “#” character) are allowed in this
file, as they are in other configuration files.

The contents of the “.atc” or “.acutc” file are interpreted by the thin client as
the following command line:

acuthin [atc-user atc-password atc-splash-screen atc-trace]
<atc-server>[:<atc-port>] [atc-runtime-options] <atc-alias>

[<atc-cobol-args>]

As an example, assume the following command-line file components:

These command-line file contents are interpreted as the following command
line:

acuthin myserver:5633 -lxe runtime.err myprog 10 20 30

7.3.2 Using Anchor Tags

Use the HTML anchor tags <a> and to create a link to your COBOL
application. Anchor tags are closed elements that highlight text or images,
making them clickable. When users click on a highlighted item on your Web
page, they are transferred to the linked document. Because the link in this
case is a thin client command-line file, when users click on the highlighted
item, the thin client is automatically invoked.

atc-alias The alias to execute (a required variable with no
default value)

atc-cobol-args COBOL arguments passed to your COBOL
program via AcuConnect (no default value)

atc-server myserver

atc-port 5633

atc-runtime-options -lxe runtime.err

atc-alias myprog

atc-cobol-args 10 20 30

Variable name Description

7-14 Thin Client Special Topics
To turn text into a hypertext anchor, enclose the clickable text in the anchor
tags. For example:

Click here to run the application

7.4 Thin Client Automatic Update

The ACUCOBOL-GT Thin Client has an automatic update feature that
determines whether the acuthin executable on the client is compatible with
the server components (the AcuConnect executable acurcl and the
ACUCOBOL-GT runtime executable wrun32 or runcbl) and triggers an
automatic update of the client piece if it is not. This feature is especially
helpful if you need to upgrade a large number of clients after you update your
server components. With the automatic update, users do not see an error
message regarding a version mismatch, and they can use the application
immediately after the update.

With this feature, the thin client can automatically download and install a
new version of the client piece that matches the server version. It can then
restart the user’s application using the newly installed thin client.

Note that if your server is running AcuConnect Version 7.2 or later, it cannot
automatically update a thin client that is earlier than Version 7.2. However,
Version 7.2 can be upgraded from one product build to another via the
TC_CHECK_INSTALLER_TIMESTAMP or
TC_REQUIRES_BUILD_NUMBER configuration variable. (This function
may be useful when installing a patched product.) You can also test the
automatic update process by using the “--testautoupdate” acuthin
command-line option. More information about the configuration variables
and command-line options that control the update process appears in the
following sections.

7.4.1 Automatic Update Overview

The thin client first connects to the AcuConnect executable, acurcl, which is
running on the server. This executable looks up the specified alias and starts
the ACUCOBOL-GT runtime on the server, which takes over the
communication with the thin client. The runtime sends the thin client

Thin Client Automatic Update 7-15
information about itself, including its version number and thin client protocol
number. It also sends several configuration variables that control the thin
client automatic update behavior.

You specify these configuration variables in the runtime configuration file
for your application rather than in the acurcl configuration file. As a result,
you can have a different automatic update configuration for each application
alias managed by a single AcuConnect server. More information about the
automatic upgrade configuration variables can be found in the following
sections.

Each of the following five events can cause an automatic update of the thin
client:

1. The client’s major and minor version numbers do not match the server’s.

2. The client’s protocol number does not match the server’s.

3. The TC_REQUIRES_BUILD_NUMBER configuration variable is a
nonzero value, and the client’s build number does not match this value.

4. The TC_CHECK_INSTALLER_TIMESTAMP configuration variable
is set to “on”, and the modification time of the installer file on the
server is later than the modification time of the installer file on the
client. If the installer file does not exist on the client, the modification
time of the running “acuthin.exe” is used.

5. The acuthin command has been executed with the “--testautoupdate”
command-line option.

The TC_REQUIRES_BUILD_NUMBER configuration variable facilitates
the automatic update of the thin client via a comparison of the client’s build
number with the variable value. You set this variable to the thin client build
number required by the application. The default value of this variable is “0”
(off, false, no).

When thin client executes, it compares its build number with the value of
TC_REQUIRES_BUILD_NUMBER. If the value of this variable does not
match the client’s build number, the automatic update process is initiated. For
example, suppose you have a patched version of the thin client containing
some enhancements needed by your application, and you want to use the
automatic update feature to deliver the patched thin client to users. Run
“acuthin -v” to get the build number of the patched thin client, then set

7-16 Thin Client Special Topics
TC_REQUIRES_BUILD_NUMBER to that build number in the runtime
configuration file set up for your application. Even though the version and
protocol numbers have not changed, the different build number triggers the
automatic update. Note that if the value of
TC_REQUIRES_BUILD_NUMBER does not match either the old or the
new thin client build number, the automatic update process is initiated each
time the user launches the acuthin executable.

The value of the TC_CHECK_INSTALLER_TIMESTAMP configuration
variable determines whether the thin client compares the modification times
of the installer files on the client and on the server. If this variable is set to “1”
(on, true, yes) and the modification time of the client file is older than the
time of the server file, the automatic update process is initiated. If the installer
file does not exist on the client, then the comparison is made with the
modification time of the thin client executable (acuthin) currently running.
The default value for this variable is “0” (off, false, no). To use this automatic
update method, you should ensure that your client and server clocks are
synchronized to avoid unnecessary automatic updates. Times are converted
to UTC (Coordinated Universal Time)—formerly known as Greenwich
Mean Time (GMT)—so the comparison works across world time zones.

The “--testautoupdate” acuthin command-line option lets you test the
automatic update feature with your configuration. You need to specify a
server, port number, and alias when you use this option.

7.4.2 Automatic Update Process

When the server runtime determines that a thin client automatic update is
needed, it triggers the following process (optional steps are enabled by
default):

1. The thin client checks to see if the automatic update feature is enabled.

2. If the feature is enabled, the thin client informs the user that an update
is required and asks the user to proceed with or cancel the update
(optional). If the user accepts the update, the thin client downloads a
single “installer” file while displaying a download progress dialog.

3. If the installer file has an “.msi” extension, then the thin client launches
the Microsoft Windows Installer (“msiexec.exe”) to complete the thin
client installation using the contents of the “.msi” file.

Thin Client Automatic Update 7-17
4. Thin client waits for the installer process to exit and then starts the
newly installed thin client with the same command-line parameters or
“.atc” (or “.acutc”) file passed to the original thin client process
(optional).

5. If the automatic update fails for any reason, the thin client informs the
user of that fact (optional).

7.4.3 Enabling or Disabling the Automatic Update Feature

The thin client automatic update feature is enabled by default. The feature
can be disabled in one of three ways. You can
• set the atc-auto-update thin client command-line variable in the “.atc” (or

“.acutc”) file to “0” (off, false, no). The default value is “1” (on, true,
yes).

• set the TC_DISABLE_AUTO_UPDATE runtime configuration variable
to “1” (on, true, yes). Default value is “0” (off, false, no).

• use the “--noautoupdate” acuthin command-line option.

7.4.4 Informing the User When an Update Is Needed

When a thin client event triggers the update process, the thin client displays a
message box informing the user that an update is required. The appearance of
the box may be triggered by a version or protocol number mismatch or a
build number mismatch. At this point, the user may choose to proceed with
or cancel the update. Three runtime configuration variables control the
message box’s appearance.

The default setting of “1” (on, true, yes) for the
TC_AUTO_UPDATE_QUERY configuration variable enables the display
of the query message box. Setting this variable to “0” (off, false, no) prevents
the message box appearance.

You use the TC_AUTO_UPDATE_QUERY_TITLE configuration variable
to specify the title bar text in the automatic update query message box. The
default value of this variable is

ACUCOBOL-GT Thin Client

7-18 Thin Client Special Topics
The value of the TC_AUTO_UPDATE_QUERY_MESSAGE configuration
variable determines the message displayed in the query message box. The
default value depends on the circumstances that triggered the automatic
update. For example, if the automatic update is triggered by a version or
protocol number mismatch, the message displayed is:

Incompatible server version
Server version: <srvvers>, client <clntvers>
Server protocol: <srvproto>, client <clntproto>
Press OK to automatically correct this problem

where <srvvers>, <clntvers>, <srvproto>, and <clntproto> are replaced by
the server version, client version, server protocol number, and client protocol
number, respectively.

If the automatic update is triggered by a build number mismatch, the message
displayed is:

This application requires a newer version of ACUCOBOL-GT Thin
Client
Build required: <reqbld>, current <curbld>
Press OK to automatically update this software

where <reqbld> is the value of the TC_REQUIRES_BUILD_NUMBER
configuration variable, and <curbld> is the build number of the currently
running thin client.

If the automatic update is triggered by any other condition, the following
message appears:

This copy of ACUCOBOL-GT Thin Client is out of date
Press OK to automatically update this software

7.4.5 Accepting the Automatic Update

If the user proceeds with the thin client automatic update, the thin client
downloads an installer file. we provide a default “.msi” installer file called
“acuthin.msi” in the REDIST directory on our product CD. This file contains
all of the information needed to update the thin client, including installation
instructions and properties. To use this file as your installer file, you should
copy it to the directory that contains the wrun32 or runcbl runtime

Thin Client Automatic Update 7-19
executable. If you rename this file or install it in any other directory, you
must set the TC_INSTALLER_SERVER_FILE configuration variable to the
path and file name of the installer file.

You may use Microsoft® Visual Studio®, InstallShield®, Wise installer, or a
similar tool to create your own “.msi” file if you want to customize the thin
client automatic update installation.

You can also create an “.exe”, “.html”, “.doc”, “.pdf”, “.bat”, or “.cmd” file
to run instead of a “.msi” installer. If the installer file ends with “.msi” or
“.exe”, the thin client executes the file directly. If the installer file does not
have either extension, the thin client uses the Windows ShellExecute() API to
run it as if the user had double-clicked on the file or opened the file using
Windows Explorer. Other issues apply if you use an installer file that does
not have the “.msi” extension. (Refer to the description of the
TC_INSTALLER_RUN_ASYNC configuration variable in section 7.4.6 for
details.)

7.4.5.1 “.msi” installer

When the installer file has an “.msi” extension, the location specified in the
TC_INSTALLER_TARGET_DIR configuration variable is used for setting
the installation directory that appears in the installer dialog. The
“acuthin.msi” file distributed with AcuConnect defines a default location of

C:\Program Files\Acucorp\Acucbl8xx\AcuGT\bin

If the installation directory for the new version of thin client is the same as the
location of the currently running thin client, the installer cannot overwrite the
executables and DLLs because they are in use. To avoid this problem, set
TC_INSTALLER_TARGET_DIR to a unique name that includes the version
number and build number, if necessary.

Note that if you set TC_INSTALLER_RUN_ASYNC (described in section
7.4.6), you may install the new thin client in the same directory as the
currently running thin client. The system allows the executable and DLLs to
be overwritten as soon as the current thin client exits, which with
TC_INSTALLER_RUN_ASYNC, happens immediately after the thin client
starts the installer. However, in this instance, the thin client does not
automatically restart the application.

7-20 Thin Client Special Topics
7.4.5.2 Other installers

If your installer file does not have a “.msi” extension, it needs to choose or
allow the user to choose the installation directory. After the new directory is
chosen, your installer needs to update the “.atc” file type association in the
registry so that the thin client can locate the newly installed executable after
your installer finishes. If you want to install the thin client in a directory
relative to the location of the existing thin client, you can determine the
location by querying the registry entries for the “.atc” (or “.acutc”) file type
association.

The thin client examines the “.atc” file type association in the registry by first
reading the value of HKEY_CLASSES_ROOT\.atc to identify the
version-specific name of the current thin client. It then reads the value of
HKEY_CLASSES_ROOT\<current_version>\shell\open\command to get
the absolute directory path to the “acuthin.exe” executable.

For example, after a Version 7.2 thin client installation,
HKEY_CLASSES_ROOT\.atc has the value

Acucorp.ThinClient.72

HKEY_CLASSES_ROOT\Acucorp.ThinClient.72\shell\open\command
may have the value

"C:\Program Files\AcuThin\acuthin.exe" "%1"

This value starts with the absolute directory path for the thin client. Your
installer should change this value if you install the new thin client in a
different directory.

If the value of TC_INSTALLER_CLIENT_FILE is an executable (“.exe”
file), the thin client uses the value of the TC_INSTALLER_ARGS
configuration variable as the command-line options passed to that
executable. For example, if you want “msiexec.exe” to log all of its
operations to a file named “msi.log”, then you could set
TC_INSTALLER_ARGS to “/log msi.log”. (See the Microsoft Windows
Installer documentation for more details.) TC_INSTALLER_ARGS has no
default value.

Note that if the TC_INSTALLER_ARGS configuration variable is set, the
TC_INSTALLER_UI_LEVEL configuration variable (see section 7.4.5.5) is
ignored.

Thin Client Automatic Update 7-21
7.4.5.3 Installer file locations

Two configuration variables specify the locations of the client and server
installer files. You set the TC_INSTALLER_SERVER_FILE configuration
variable to the path and file name of the server installer file. Its default value
is

<runtime_path>/acuthin.msi

where <runtime_path> is the directory that contains the wrun32 or runcbl
runtime executable. As mentioned earlier, you can substitute another type of
file for the “.msi” file (for example, an “.exe”, “.html”, “.doc”, “.pdf”, or
“.cmd”).

Note that on Windows servers, you should not use drive letters mapped to
network shares in TC_INSTALLER_SERVER_FILE. Problems can occur if
you try to use a drive letter that is mapped in a different security context.
Instead, use Universal Naming Convention (UNC) names to access
resources. The format looks like the following:

TC_INSTALLER_SERVER_FILE
\\MyServer\filesharename\directoryname\filename

Note: To access network shares, you must either set the AcuConnect
SECURITY_METHOD configuration variable to “LOGON” or use the
control panel to set the AcuConnect Service “Log On As” property to an
account that can access the network share.

Use the TC_INSTALLER_CLIENT_FILE configuration variable to specify
the path and file name of the installer file that you want to create on the client.
You may use the following special directory names for Windows to specify
the value of TC_INSTALLER_CLIENT_FILE:

Identifier Directory

<APPDATA> C:\Documents and
Settings\<user>\Application Data

<COMMON_APPDATA> C:\Documents and Settings\All
Users\Application Data

<COMMON_DOCUMENTS> C:\Documents and Settings\All
Users\Documents

7-22 Thin Client Special Topics
More information about these special directory names can be found in section
7.2.1, “Copying Files Between the Client and Server.”

The default value of TC_INSTALLER_CLIENT_FILE is
<APPDATA>\ACUCOBOL-GT\<installer_server_filename>

where <installer_server_filename> is the file name specified in the
TC_INSTALLER_SERVER_FILE configuration variable. By default, the
specified file name is “acuthin.msi”. As an example, if user Bob has
TC_INSTALLER_SERVER_FILE set to the default, the default value of
TC_INSTALLER_CLIENT_FILE is

C:\Documents and Settings\Bob\Application
Data\ACUCOBOL-GT\acuthin.msi

7.4.5.4 Download progress dialog

During the installer file download process, a progress dialog appears. You
can cancel the download at any time from this dialog. Four configuration
variables control the behavior of the download progress dialog.

The default value of “1” (on, true, yes) for the TC_DOWNLOAD_DIALOG
configuration variable enables the appearance of the progress dialog. If you
set this variable to “0” (off, false, no), the progress dialog does not appear.

The TC_DOWNLOAD_DIALOG_TITLE configuration variable is used to
specify the title bar text in the download progress dialog. The default value of
this variable is

ACUCOBOL-GT Thin Client Automatic Update

<DESKTOP> C:\Documents and Settings\<user>\Desktop

<LOCAL_APPDATA> C:\Documents and Settings\<user>\Local
Settings\Application Data

<MYDOCUMENTS> C:\Documents and Settings\<user>\My
Documents

Identifier Directory

Thin Client Automatic Update 7-23
You use the TC_DOWNLOAD_DESCRIPTION configuration variable to
specify the text that appears in the middle of the download progress dialog.
Its default value is

Downloading installation file. . .

Use the TC_DOWNLOAD_CANCEL_MESSAGE configuration variable to
specify the message that appears if the download process is cancelled. The
Cancel push button is disabled immediately after the user clicks it, the
description line in the middle of the dialog disappears, and the message
specified in this configuration variable appears. The default value for
TC_DOWNLOAD_CANCEL_MESSAGE is

Please wait while the download is being cancelled . . .

7.4.5.5 Microsoft Windows Installer

After the installer file downloads successfully, the thin client executes the
Microsoft Windows Installer (“msiexec.exe”), which installs the new
ACUCOBOL-GT Thin Client. Note that “msiexec.exe” is available on, and
the “.msi” file extension is automatically recognized by, later generations of
Microsoft operating systems. However, Windows NT may require the
installation of a patch from Microsoft to execute the “.msi” file. These patch
files are “InstMsiW.exe” for Windows NT Service Pack 6 and later.

Distributed with AcuConnect, these two files are located in the REDIST
directory on the product CD. For the automatic download to work, you need
to copy the appropriate patch file to the same directory as the installer file on
the server, that is, the directory containing the runtime executable wrun32 or
runcbl or the directory specified in TC_INSTALLER_SERVER_FILE.

The “acuthin.msi” file contains a default location for the install. If you want
to install to a different location, use the TC_INSTALLER_TARGET_DIR
configuration variable.

Note that on Windows servers, you should not use drive letters mapped to
network shares in TC_INSTALLER_TARGET_DIR. Problems can occur if
you try to use a drive letter that is mapped in a different security context.
Instead, use UNC names to access resources. The format looks like the
following:

TC_INSTALLER_TARGET_DIR \\MyServer\sharename\directoryname

7-24 Thin Client Special Topics
The keywords or numeric values in the TC_INSTALLER_UI_LEVEL
configuration variable control the Windows installer interface. Set
TC_INSTALLER_UI_LEVEL to NONE or “0” if you do not want
“msiexec.exe” to display a user interface. This setting adds the msiexec “/qn”
command-line option.

Set this variable to UNATTENDED or “1” if you want “msiexec.exe” to
display informational and progress messages but to execute unattended. This
setting adds the msiexec “/passive” command-line option.

Set TC_INSTALLER_UI_LEVEL to INTERACTIVE, DEFAULT, or “2” if
you want “msiexec.exe” to prompt for and accept user input for the
installation process. For example, the user could choose the directory
location for thin client installation. This setting adds the msiexec “/qf”
command-line option, which is the default msiexec option.

Set the variable to REDUCED or “3” if you want “msiexec.exe” to use a
reduced user interface. This setting adds the msiexec “/qr” command-line
option.

7.4.6 Restarting the Application with the New Thin Client

After the installer process is complete, the newly installed thin client is
started with the same command line parameters or “.atc” (or “.acutc”) file
passed to the original process. The thin client examines the “.atc” file type
association in the registry to find the new thin client version. If the registry
entries are properly set, when you open the “.atc” file from Windows
Explorer, a desktop shortcut, or the start menu, the updated version of thin
client is automatically found.

The thin client also adds the “--noautoupdate” acuthin command-line option,
which prevents an infinite loop in the event an error causes the new thin client
to detect that it needs another update. This could happen if, for instance, the
automatic update was configured with an incorrect version of the installer
that installs an older thin client than required.

You use the TC_INSTALLER_RUN_ASYNC configuration variable when
you want to prevent the thin client from restarting after an automatic update
or when your installer file handles the automatic update process to
completion. When you set this variable to “1” (on, true, yes), the thin client

Thin Client Automatic Update 7-25
starts the installer process asynchronously and then exits immediately. It does
not wait for the automatic update process to complete and does not restart
using the same command line parameters or “.atc” file. The default value is
“0” (off, false, no).

You may also use TC_INTALLER_RUN_ASYNC to install the new thin
client in the same directory as the currently running thin client. When this
variable is set to “1”, the system allows the executable and DLLs to be
overwritten as soon as the current thin client exits, which happens
immediately after the thin client starts the installer.

This variable is useful if you want to run an “.exe”, “.html”, “.doc”, “.pdf”,
“.cmd”, or other file instead of a “.msi” installer. For example, you could set
TC_INSTALLER_SERVER_FILE to “AutoUpdate.html” and
TC_INSTALLER_RUN_ASYNC to “1”. The thin client downloads
“AutoUpdate.html” and runs it. The original thin client process would exit
and leave Internet Explorer (or the default Web browser or application
associated with “.html”) displaying the contents of “AutoUpdate.html”.
“AutoUpdate.html” could include scripting code, redirect the Web browser
to a Web site, or simply display an informational message to the user.

7.4.7 Automatic Update Failure

If the thin client automatic update process fails for any reason, a message box
appears and a log file is created on the server by default. This file contains a
log of the update operations and details about the failure. The configuration
variables that affect the failure notification process are described in the
following paragraphs.

The TC_AUTO_UPDATE_FAILED_TITLE configuration variable lets you
set the title bar text for the message box that appears on update failure. Its
default value is

ACUCOBOL-GT Thin Client

The TC_AUTO_UPDATE_FAILED_MESSAGE configuration variable lets
you specify the text in this message box. Its default value is

ACUCOBOL-GT Thin Client: Automatic update was unsuccessful

7-26 Thin Client Special Topics
In some cases, you may not want the thin client to inform the user that the
automatic update failed. Set the TC_AUTO_UPDATE_NOTIFY_FAIL
configuration variable to “false” (0, off, no) to configure the thin client so it
does not notify the user if the automatic update fails. The default value of
TC_AUTO_UPDATE_NOTIFY_FAIL is “true” (1, on, yes).

Note that the message box does not appear if the user cancels the Windows
installer download process.

You can use the TC_SERVER_LOG_FILE configuration variable to
configure the location and name of the log file created on the server. The
name can optionally include the hostname of the client machine and the
process ID of the server runtime that was managing the automatic update at
the time of the failure.

By default, this file is named “autoupdate.%c.%p.log”, where %c is replaced
by the client hostname and %p is replaced by the process ID of the server
runtime. The default location is the working directory specified in the alias on
the server.

The directory must exist at the time of the failure. Otherwise, this file is not
created. The location of the log file is relative to the working directory
specified in the alias. For example, the following setting:

TC_SERVER_LOG_FILE updatefailed/%c.%p.log

configures the log files to be created in a directory named “updatefailed”
relative to the working directory. The files are named with the hostname of
the client followed by a dot and the process ID of the server runtime, ending
with the “.log” file extension.

The client and server may be in different time zones. You can look at the
file’s creation date to see what time the update failed according to the clock
on the server, and view the timestamps at the beginning of the lines in the log
file to see what time it failed according to the clock on the client.

Set the TC_DISABLE_SERVER_LOG configuration variable to “true” (1,
on, yes) to prevent the creation of a log file for a thin client automatic update
failure. The default value of TC_DISABLE_SERVER_LOG is “false” (0,
off, no).

8
 Managing the System
Key Topics

Introduction ... 8-2
Managing the System: UNIX.. 8-2
Managing the System: Windows... 8-11
Machine Failures ... 8-24
Event Logging ... 8-25
AcuConnect Error Messages... 8-26
AcuConnect Distributed Processing: Troubleshooting 8-27
AcuConnect Thin Client: Troubleshooting .. 8-36

8-2 Managing the System
8.1 Introduction

This chapter discusses some system management issues to consider when
you oversee AcuConnect® operations. Most UNIX system management
functions are performed using the acurcl command described in section 8.2,
“Managing the System: UNIX.” Windows users have two methods for
performing management functions: the acurcl command or a graphical
control panel, described in section 8.3, “Managing the System: Windows.”

This chapter also discusses machine failures, event logging, and
troubleshooting for both the distributed processing and thin client
environments.

8.2 Managing the System: UNIX

The acurcl command is your control and maintenance interface to
AcuConnect. The acurcl command is used on the server at the command line
(or with the graphical control panel under Windows) and initiates the
following actions:
• starts and stops the AcuConnect program and installs and removes

AcuConnect as a Windows service
• controls the configuration of running instances of AcuConnect
• reports AcuConnect system status
• creates and maintains the server access and server alias files

When the acurcl command is entered with no options, a list of options (or a
graphical control panel in Windows) appears.

The acurcl command formats on UNIX servers are:
acurcl
acurcl –access
acurcl -alias
acurcl -config [server] [-n port]
acurcl -info [server] [-n port]
acurcl -kill [server] [-f] [-n port] [-p PID]
acurcl -start [-c config_file] [-d] [-e error_file]
[-l] [-t #] [-n port]
acurcl -version

Managing the System: UNIX 8-3
In addition to these command formats, the following formats are available on
Windows servers:

acurcl -install [server] [-depends ServiceDependency].
 [any valid start options]
acurcl -query [server] [-n port]
acurcl -remove [server] [-n port]

8.2.1 The acurcl Command

The following sections describe the acurcl command options in detail.

8.2.1.1 acurcl -access

The “acurcl -access” command starts the server access file manager utility.
The access file manager is used to create and maintain the database of
authorized AcuConnect clients and users. To use “-access” on a UNIX
server, you must be logged in as root or superuser. On a Windows server, you
must use “-access” from the Administrator account or from an account that
belongs to the Administrators group. For a description of how to use this tool,
see section 2.3.3, “The Server Access File.”

8.2.1.2 acurcl -alias

The “acurcl -alias” command starts the server alias file manager utility. This
utility is used to create and maintain the alias file required on the server only
for thin client operations. This file holds all the information that is needed to
invoke the appropriate runtime on the server. To use “-alias” on a UNIX
server, you must be logged in as root or superuser. On a Windows server, you
must use “-alias” from the Administrator account or from an account that
belongs to the Administrators group. For a description of how to use this tool,
see section 2.4, “Creating a Server Alias File in Thin Client.”

8.2.1.3 acurcl -config

You can configure server configuration variables on the fly using the
“acurcl -config” command. The “acurcl -config” command allows you to
change the configuration of a running AcuConnect server, for instance, to
turn tracing on or off or to change configuration variables such as

8-4 Managing the System
PASSWORD_ATTEMPTS. When you enter this option, you start
communicating with the server running on the named server and named port.
If no server name is given, the local server is assumed. If no port number is
given, the default port is assumed.

Optional arguments to “-config” include:

After you have entered the “-config” option, the prompt “rclcfg>” appears.
At this prompt, enter any of the following commands:

Argument Description

server Specifies the name of the server machine to be configured. If no
server is specified, the server is assumed to be the local host.

-n Identifies a particular instance of the AcuConnect program by port
number. The “-n” must be followed by a space and then an integer,
for example, “6524”. If no port number is specified, the default
port is configured.

GET
variable-name

Gets the value of a single variable. For example:

rclcfg> get password_attempts
PASSWORD_ATTEMPTS: 3

SET variable-name
new-value

Sets a variable in the server. For example:

rclcfg> set password_attempts 5

Note that if given an invalid variable name, the remote
AcuConnect sets a variable of that name with the given
value, even though that variable will not have any effect
on the remote AcuConnect. For a list of valid server
variables, refer to section 3.3, “Creating a Server
Configuration File.”

Setting certain variables has no effect on the remote
AcuConnect, since the variable is used at initialization
time and never checked again.

For example, trying to set ACURCL_PORT,
SERVER_IP, or SERVER_NAME results in an error
message such as:

rclcfg> set SERVER_IP 192.215.170.34
Setting the SERVER_IP has no affect
rclcfg> get SERVER_IP
SERVER_IP: 192.215.170.34

Managing the System: UNIX 8-5
8.2.1.4 acurcl -info

The “acurcl -info” command returns a report of AcuConnect system status
for the current host (unless another machine is specified). This report
includes all child runtimes that have not yet terminated, including the
working directory the runtime was started from, the list of runtime arguments
used to start the runtime, and the date and time that each child runtime was
started (in HH:MM:SS.FF format, where FF is hundredths of a second).

The status report contains the following fields:

Note that a GET command shows the new value, but it is
not used.

LIST [{>|>>} file] Lists the names and current values of all variables of
which AcuConnect is aware, including some that do not
directly affect AcuConnect. Use the optional “{>|>>}
file” syntax to send the output to a named file instead of
the screen. “>” creates a new file of the specified name,
and “>>” appends the output to an existing file.

! cmd Causes the command “cmd” to be executed.

HELP Prints a quick synopsis of available commands. It looks
very similar to the above list.

QUIT

EXIT

These commands exit the configure mode.

Field Description

Client Identifies the client machine associated with the child
runtime.

User Identifies the client user name associated with the child
runtime.

PID The process ID of the child runtime. Because these PIDs are
local to the server machine, they are unique.

Directory The working directory changed to before executing the
child runtime.

8-6 Managing the System
Optional arguments to “-info” include:

8.2.1.5 acurcl -install

The “acurcl -install” command is for Windows servers only. It installs
AcuConnect as a Windows service. Optional arguments to “-install” include:

Command The full command line with which the child runtime was
invoked. This will include all the options given to the
runtime. This command line is not truncated and may
wrap around on some screens, depending on how many
options are used.

Argument Description

server Specifies the name of the server machine whose status is to be
reported.

-n Identifies a particular instance of the AcuConnect program by
port number. The “-n” must be followed by a space and then an
integer, for example, “6524”. If no port number is specified, then
status for the default port is reported.

Field Description

Argument Description

server Specifies the name of the server machine. If no server is
specified, the server is assumed to be the local host.

depends You can add Windows service dependencies to the installation
of AcuConnect as a service. You may include multiple
dependencies; simply use the “-depends” option for each one.
The name of the service should be used as the argument
following “depends” on the command line.

For information on service dependencies, consult your
Microsoft Windows documentation.

Managing the System: UNIX 8-7
If you plan to have multiple instances of the AcuConnect service running at
the same time, each instance will have a unique name. The name of an
installed service will be “AcuConnect X”, where X is the port number. If you
do not use the “-n” option, the name of the service will be “AcuConnect”.

In a thin client configuration, clients can be assigned to a particular instance
of the AcuConnect service via the <server:port> notation of the “acuthin”
command.

8.2.1.6 acurcl -kill

The “acurcl -kill” command causes the AcuConnect process to halt. If no
server is specified, the AcuConnect process is halted on the current host;
otherwise, the process is halted on the named host.

To use “-kill” on a UNIX server, you must be logged in as root or superuser.
On a Windows server, you must use “-kill” from the Administrator account
or from an account that belongs to the Administrators group.

any valid start
options

Any valid “-start” option can be used for “-install”. (Refer to
“acurcl -start” below for a list of options.) Note that these
options are stored for service start-up on this particular port.
For example, to run the service with the arguments “-c
c:\etc\server1.cfg -le c:\tmp\server1.log” on start-up, you
would use the following “-install” command:

acurcl -install -c c:\etc\server1.cfg -le
c:\tmp\server1.log

Installing a service on a particular port resets all start-up
options for the service on that port.

If no options are stored for a service, starting the server on a
particular port automatically installs a service on that port and
stores the options used. In other words, you can install and run
a service with one set of arguments, and then occasionally run
the service with different arguments by using “acurcl -start”.

Argument Description

8-8 Managing the System
Note that although files are not broken when you use this command, they
may not be consistent. If a child runtime is terminated between two file
updates that are both required for consistency, the runtime shuts down
between them.

Unless the “-f” option is specified, AcuConnect prompts for confirmation
before the halt action is executed.

Shutting down acurcl on: condor
Do you really want to shut down acurcl [N]?

Respond by entering “Y” or “N”.

Optional arguments to “-kill” include:

Caution: The AcuConnect process can also be terminated from the
command line. For example, on UNIX you could use the command
“kill -9” (signal #9). However, a signal #9 prevents AcuConnect from
performing an orderly shutdown and should never be used when clients are
actively using AcuConnect.

Argument Description

server Specifies the name of the server machine to kill. If no server is
specified, the server is assumed to be the local host.

-f Causes the AcuConnect process to terminate immediately,
without prompting for confirmation. “-f” should be used when
“acurcl -kill” is included in a program or script.

-n Identifies a particular instance of the AcuConnect program by port
number. The “-n” must be followed by a space and then an integer,
for example, “6524”. If no port number is specified, the default
port is terminated.

-p Causes AcuConnect to terminate an individual child process. The
“-p” must be followed by a space and the process ID of the child
process to be terminated.

Managing the System: UNIX 8-9
8.2.1.7 acurcl -query

The “acurcl -query” command is for Windows servers only. It allows you to
query whether or not the specified Windows service is installed.

Optional arguments to “-query” include:

When you enter this option, you receive a message stating whether or not the
service is installed, and if it is, whether or not the service is currently running.
The “-query” command also displays the start-up parameters that have been
stored for the service, if any. For example:

C:> acurcl -query
Service AcuConnect (AcuConnect 8.0 on the default port
(5632)) exists
Start Up: Automatic
Program: C:\AcucblGT\bin\acurcl.exe
Startup arguments: '-c c:\etc\server1.cfg -le
c:\tmp\server1.log'
Status: running
C:>

Note that the start-up arguments listed are the arguments used to install the
service, and not the arguments given to the currently running server.

8.2.1.8 acurcl -remove

The “acurcl -remove” command is for Windows servers only. It shuts down
AcuConnect (if it is not already shut down), removes the Windows service
for AcuConnect, and removes the service’s stored start-up parameters.

Argument Description

server Specifies the name of the server machine. If no server is
specified, the server is assumed to be the local host.

-n Identifies a particular instance of the AcuConnect program by
port number. The “-n” must be followed by a space and then an
integer, for example, “6524”. If no port number is specified, the
default port (which has the service name “AcuConnect”) is
removed.

8-10 Managing the System
Optional arguments to “-remove” include:

8.2.1.9 acurcl -start

The “acurcl -start” command starts AcuConnect. On Windows servers, this
option also installs AcuConnect as a Windows service, if it is not already
installed. In addition, if no start-up options are stored, “acurcl -start” stores
the start-up options to be used as the default options.

To use “-start” on a UNIX server, you must be logged in as root or superuser.
On a Windows server, you must use “-start” from the Administrator account
or from an account that belongs to the Administrators group.

Unless the “-f” option is specified, AcuConnect starts in background. If
AcuConnect is already running, it outputs the following message:

acurcl is already running on hostname

and a new AcuConnect process is not started. If you want to start
AcuConnect with new options, you must stop and then restart it.

Note: On Windows NT, 2000 to 2008 systems, it is best to specify “acurcl
-start” with no options. This causes it to use the start-up parameters that
have been stored for the service. Typically, if you specify options with
“acurcl -start”, these options are in effect only until the AcuConnect
service is started again. The exception to this is if no start-up parameters
have been stored for the service. In this case, the parameters that you start
AcuConnect with are stored for future start-up use.

Argument Description

server Specifies the name of the server machine. If no server is specified,
the server is assumed to be the local host.

-n Identifies a particular instance of the AcuConnect program by
port number. The “-n” must be followed by a space and then an
integer, for example, “6524”. If no port number is specified, the
default port (which has the service name “AcuConnect”) is
removed. See the “acurcl -install” option above for more
information about port numbers.

Managing the System: Windows 8-11
A detailed description of valid arguments to the “-start” command can be
found in section 2.6, “Starting AcuConnect.”

8.2.1.10 acurcl -version

The “acurcl -version” command causes the version number of AcuConnect
to be output. “-version” must be the only argument on the command line.

8.3 Managing the System: Windows

Windows administrators can manage AcuConnect through a graphical
control panel. To access the control panel, enter the acurcl command on the
server command line with no options. The control panel has five tabs, which
correspond to the various actions available from the command line. You can
access help from the graphical control panel by pressing the F1 key, as well
as by clicking the Help button.

Note: To use the Control Panel on Windows 2008 where User Access
Control security is turned on (as it is by default), any user must choose
“Run as Administrator” in order to use the various Acuserver utilities. UAC
can be turned off, in which case the user must merely be a member of the
administrators group in order to fully operate the control panel.

Please note that some of the tabs on the control panel are available only if you
have Administrator privileges.

8.3.1 AcuConnect Control Panel

The AcuConnect control panel comprises five tabs:
• Access Tab
• Config Tab
• Alias Tab
• Info Tab
• Services Tab

8-12 Managing the System
These tabs are described in detail in this section.

8.3.1.1 Access Tab

The Access tab, shown below, allows you to maintain the AcuAccess file
through the access file manager. To use the access file manager from the
control panel, you must be logged onto a Windows server from the
Administrator account or from an account that belongs to the Administrators
group. For detailed information about the AcuAccess file, refer to section
2.3.3, “The Server Access File.”

You can use the Access tab to:
• create an access file
• add an access record
• remove an access record
• modify an access record
• display an access record

Access Tab

Managing the System: Windows 8-13
The following table describes the contents of each of the fields on this tab.

For an example of common access records, see section “Common access
records example” in Chapter 2.

To create a new access file

1. On the Access tab, click Open.

2. Browse to the directory in which the new access file will reside (the
default is c:\etc).

3. In the File Name text box, enter the name of your new access file and
click Open.

4. Because this is a new file name, you will get a message stating:

‘C:\etc\filename’ does not exist. Do you want to create it [N]?

Field Description

Client Machine
Name

The official host name by which the client machine is
identified on the TCP/IP network. For distributed
processing on Windows, this name is found in the Host field
under Control Panel/TCP/IP Properties/DNS Configuration.
An asterisk (*) in this field means “match all client
machines.”

Client Username The user’s login name on the client system. An empty field
means “match all client users.”

Local Username The local user name that AcuConnect will use when
fulfilling requests for the client user. An entry of “same as
client” means “use the client username.”

When the string “same as client” is specified, certain
conditions apply. If Client Username is not a valid name on
the server, DEFAULT_USER is used. In addition, if the
Local Username field is blank, DEFAULT_USER is used.
If DEFAULT_USER is used to connect to AcuConnect on
an NTFS partition under Windows NT, 2000, or 2003, 2008
be sure that DEFAULT_USER has both READ (RX)
permissions on “wrun32.exe” and the appropriate
permissions to access any file.

Umask A three-digit file creation mask.

8-14 Managing the System
Enter Yes to create a new access file.

The New button is now available for you to use to add records to the new
access file.

To display a record in an access file

1. On the Access tab, click Open.

2. Browse to the access file that contains the record you wish to display.

 The records of the selected access file appear in the list box.

To add an access record to an access file

1. On the Access tab, click New.

The Access User dialog appears, as shown below.

Access User Dialog

2. In the Client Machine text box, enter the client machine identification
name.

3. In the Client User Name text box, enter the user’s login name on the
client system.

4. In the Local User Name text box, enter the local user name that
AcuConnect will use when fulfilling requests for the client user.

Managing the System: Windows 8-15
5. In the Password text box, specify a password that must be supplied by
requesters who match this record., then enter it again in the Confirm
Password text box.

6. The Umask text box contains the default umask of the runtime process
started for the user. You may change this to another valid value, if you
wish.

7. Click OK to add the record to the access file.

To modify a record in an access file

1. On the Access tab, select from the list box the record you wish to modify.

The Access User dialog appears, with the selected record’s information
in the Client Machine and Client User Name text boxes.

2. Select a text box to modify and enter the desired information.

3. When you have finished modifying the information in the text box(es),
click OK to apply your changes.

To remove an access record from an access file

1. On the Access tab, select from the list box the record you wish to
remove.

Caution:Be certain that you want to delete the record you select—you
will not be asked if you are sure, and the action cannot be undone.

2. Click Delete to remove the selected record.

8.3.1.2 Config Tab

The Config tab, shown below, allows you to view and set the status of the
current configuration settings of a running server.

You can use the Config tab to:
• change the server and port
• add variables to the running server
• modify the values of variables

8-16 Managing the System
Config Tab

The list box on the Config tab displays the variables and their values
associated with the server and port shown in the fields at the top of the tab.
The following table describes the contents of each of the fields on this tab.

To change the server and port you are viewing

1. On the Config tab, click Query.

Field Description

Variable Name The name of a configuration variable that has been added
to the server configuration file.

Value The value that has been assigned the variable.

Managing the System: Windows 8-17
The Connect to server dialog appears, as shown below.

Connect to server Dialog

2. Enter or select from the Server drop-down list the name of the server
you wish to view.

3. Enter or select from the Port drop-down list the name of the port you
wish to view on the server.

4. Click OK to apply your selections.

The information for the new server and port appears in the list box.

To add a variable to the running server

1. On the Config tab, click New.

The Configuration Variable dialog appears with blank fields.

2. In the Name field, enter the name of the variable you wish to add.

3. In the Value field, enter the value for the variable you added.

4. Click OK to add the variable to the server.

To modify the value of a variable

1. In the list box on the Config tab, select the variable you want to modify.

2. Click Modify.

8-18 Managing the System
The Configuration Variable dialog appears with the selected variable in
the Name field and its value in the Value field, as shown below.

Configuration Variable Dialog

3. In the Value field, enter the value you want for the variable.

4. Click OK to apply the new value.

8.3.1.3 Alias Tab

Before using AcuConnect for thin client operations, you must create a single
association file—an alias file—to hold all the information that will be
needed to invoke the appropriate application on the server. To create thin
client aliases from the control panel, you must be logged onto a Windows
server from the Administrator account or from an account that belongs to the
Administrators group.

The Alias tab, shown below, allows you to maintain AcuConnect thin client
aliases.

You can use the Alias tab to:
• create an alias file
• modify an alias record
• delete an alias record

Managing the System: Windows 8-19

Alias Tab

The following table describes the contents of each of the fields on this tab.

Click Open to select an alias file to maintain. The information for the
selected file appears in the list box.

To create an alias file

1. On the Alias tab, click Open and browse to the folder in which you want
to save the file.

2. Enter a file name.

Field Description

Alias Name The name of an alias.

Working Directory The default directory in which the runtime looks for all
files specified on the alias command line.

Command Line The full command line used to invoke the alias, including
all the options given to the runtime.

8-20 Managing the System
3. You will be told the file does not exist and asked if you want to create
it. Click Yes.

4. Click New to add a new alias entry to the alias file.

The Alias Properties dialog appears with blank fields.

5. In the Alias Name text box, enter the name of the alias you want to
add.

For example, you might enter “reserve” for an airline reservation
service.

6. In the Working Directory text box, enter the directory in which the
COBOL object files for this alias can be found. (This must be an
existing directory.)

7. In the Command Line text box, enter the full command line you want
the runtime to use, including all options, to invoke the alias file.

8. Click OK to add this entry to the alias file.

9. Repeat steps 2–8 for each record that you want to add to the alias file.

10. Click OK to apply these options.

To modify an alias record

1. In the list box on the Alias tab, select the alias you want to modify. If you
want to modify a record in a different alias file, open the alias file first.

2. Click Modify.

Managing the System: Windows 8-21
The Alias Properties dialog appears, displaying the properties of the
selected alias, as shown below.

Alias Properties Dialog

3. To change the properties of the alias’ working directory, enter the
information you want to appear in the Working Directory text box.

4. To change the properties of the command line for the alias, enter the
information you want to appear in the Command Line text box.

5. Click OK to apply these changes.

To delete an alias record

1. In the list box on the Alias tab, select the alias you want to delete.

2. Click Delete.

8.3.1.4 Info Tab

The Info tab, shown below, allows you to list and terminate child processes.

Use the Info tab to:
• list child processes
• update the list box display
• automatically update the list box display
• terminate child processes

8-22 Managing the System
Info Tab

The following table describes the contents of each of the fields on this tab.

To list child processes

1. On the Info tab, click Query.

Field Description

Client The name of the client machine associated with the child
runtime.

User The client user name associated with the child runtime.

PID The process ID (PID) of the child runtime.

Startdate/time The date and time the runtime started.

Working Directory The default directory in which the runtime looks for all
files specified on the alias command line.

Command Line The full command line used to invoke the child runtime,
including all the options given to the runtime.

Managing the System: Windows 8-23
The Connect to server dialog appears, as shown below.

Connect to server Dialog

2. From the Server drop-down list, select a server for the child process.

3. From the Port drop-down list, select a port for the child process.

4. Click OK to apply your selections.

The server you selected appears in the Server field, the port you selected
appears in the Port field, and the child processes for the selected
server/port combination are now listed in the Info tab list box.

To update the list box display

On the Info tab, click Refresh to update the information displayed.

To update the list box display automatically

1. On the Info tab, click Query.

The Connect to server dialog appears, as shown above.

2. Check the Auto Refresh checkbox.

3. In the list box, specify the number of seconds between updates.

4. Click OK to apply your selections.

To terminate a child process

1. In the list box, select a child process to terminate (Kill).

8-24 Managing the System
2. Click Kill to terminate the process.

8.3.1.5 Services Tab

The Services tab, shown below, allows you to add, start, stop, and remove
services, as well as view or modify the properties of an existing service.
When you choose this tab, services that are currently running are marked
with a green bullet and services that are currently stopped are marked with a
red bullet.

Use the Services tab to:
• add services
• start, stop, and remove services
• add dependencies

Services Tab

Managing the System: Windows 8-25
The following table describes the contents of each of the fields on this tab.

The Service Properties dialog

For most operations on the Services tab, the Service Properties dialog opens,
as shown below.

Service Properties Dialog

You can perform the following actions in the Service Properties dialog:

Field Description

Port The port number on which AcuConnect is running.

Command line The full command line used to invoke the runtime,
including all the options.

Field Description

Configuration file Use Browse to specify the name and
path of the configuration file for the
server.

Error file Use Browse to specify an error file for
the server.

8-26 Managing the System
Trace level Selecting a trace level from this
drop-down list box turns on the tracing
function. If you have specified an error
file in the Error file field, trace
information is placed in the named error
file.

Trace level can be “1” through “7”:

“1” provides information about access
file match attempts. The trace
information buffer is flushed to the error
file when the buffer is filled or the
service terminates.

“2” provides information about runtime
requests. The buffer is flushed to the
error file when the buffer is filled or the
service terminates.

“3” provides the information described
for “1” and “2”.

“5” is equivalent to “1”, but the tracing
buffer is flushed to the error file each
time an access file match is requested.
(File trace flushing can also be
controlled with the
FILE_TRACE_FLUSH server
configuration variable. See section 3.3,
“Creating a Server Configuration
File.”)

“6” is equivalent to “2”, but the tracing
buffer is flushed to the error file each
time a runtime is requested.

“7” provides the information described
for “5” and “6”.

Compress trace output Causes the file specified in Error file to
be compressed using the gzip
compression method.

Field Description

Managing the System: Windows 8-27
To add a service

1. On the Services tab, click New.

2. In the Service Properties dialog, select the options you wish to add to
your new service (see the options and their descriptions in the table
above.)

To start, stop, or remove a service

1. On the Services tab, in the list box, select the service you wish to start,
stop, or remove.

2. Perform one of the following actions:

• To start a selected service, click Start.

• To stop a selected service, click Stop.

List configuration variable settings Selecting this checkbox causes a listing
of the server configuration file to be
printed to standard error output. This
can be helpful when you are debugging
problems that may be related to
configuration variables. If you have
specified an error file, the listing is
captured in this file.

Dependencies You can add the name of a Windows
service or service group on which
AcuConnect depends. (You may
include multiple dependencies.) Click
Add to display a list of possible services
and service groups.

Note that if you enter dependencies in
this field, AcuConnect will not start
unless each service named is currently
installed on the server as a service.

For information on service
dependencies, consult your Microsoft
Windows documentation.

Field Description

8-28 Managing the System
• To remove a selected service, click Remove.

Caution: Be certain that you in fact want to remove the record you
select—you will not be asked if you are sure, and the action cannot be
undone.

To add dependencies to a service

1. In the Service Properties dialog, click Add to the right of the
Dependencies list.

The Service Dependencies dialog appears, as shown below.

Service Dependencies Dialog

2. From the list, select a dependency you want to add to this service.

3. Click OK to add this selection.

4. Repeat steps 2 and 3 until you have added all of the dependencies you
want for this service.

5. In the Service Properties dialog, click OK to apply the selected
dependencies to the service.

8.4 Machine Failures

Two major concerns regarding client and server machine failures are:
• What happens to open files/programs when a server crashes?
• How are other clients and servers affected by a crash?

Event Logging 8-29
When a client application or connection is terminated with Ctrl+C or a kill
command (other than a “kill -9”), AcuConnect detects the termination and
closes all files/programs held open for that client process. However, other
terminal software and hardware failures are not detected. Note that although
files are not broken when you use this command, they may not be consistent.
If a child runtime is terminated between two file updates that are both
required for consistency, the runtime shuts down between them.

Should the server go down, all clients actively using AcuConnect get access
errors when attempting to communicate with the server. Client systems must
terminate their current applications and wait for the return of the server. All
files that were open on the server at the time of the termination are left in an
unknown state and may be corrupt. If AcuConnect is automatically started
when the server boots, AcuConnect should be immediately halted.
Before you start AcuConnect, you should check all files that might have been
affected by the termination and, if necessary, rebuild them. After you have
verified all files, you can start the acurcl daemon.

To view an AcuConnect system status report, issue the “acurcl -info”
command. In Windows, you can use the graphical control panel’s Info tab to
check the status of active child runtimes. Click Query to select a server/port
combination and list the child processes running on the selected server.

8.5 Event Logging

AcuConnect can write to the Windows event notification system or the UNIX
system log when information or error messages need to be reported to the
System Administrator. Such information might be generated when an
unexpected termination occurs or a broken file is detected. If your operating
system supports it, the UNIX version of AcuConnect writes to the syslog
facility. If your operating system does not support syslog, it writes this
information to the console.

The Windows version can write to the event log of other machines in the
network. Set the WINNT_EVENTLOG_DOMAIN configuration variable to
the UNC name of the computer to which all event log messages should be
sent. This variable must be set in the configuration file and is not changeable.
Note that if this variable is not set, system logging information is sent to the
local machine on which the server is executing.

8-30 Managing the System
You should be aware that some Windows administration expertise may be
required to implement this feature on a complex Windows network. For
example, you can start AcuConnect on one server and send event log
information to a different server. If you are Administrator on one machine but
not on the other machine, however, the log file is not created and no error
message informs you of that fact.

8.6 AcuConnect Error Messages

In the course of operations, AcuConnect may produce error messages that
inform you of system problems. Error messages that appear when
AcuConnect cannot be started are seen on the server by the system
administrator who is trying to start AcuConnect, or on a client by a user who
is trying to establish a connection to AcuConnect and start a client runtime.

Error messages that appear when a remote program cannot be started via
AcuConnect may be different depending on whether AcuConnect is deployed
in a distributed processing or thin client environment. Refer to section 8.7.1
for distributed processing and section 8.8.1 for thin client environments for
the various messages that are generated when a remote application cannot be
started.

acurcl start-up errors

Messages generated as a result of the inability to start AcuConnect are
different depending on the operating system. Two conditions can be
responsible for the set of messages that appear when AcuConnect does not
start: a missing or expired AcuConnect license file or a missing AcuAccess
file.

In a UNIX/Linux environment, the following message may be produced
when the license file is missing:

License file ‘./acurcl.alc’ inaccessible.

The following message indicates that the user license is expired:
This license for the AcuConnect product has expired.
Please contact your software vendor for assistance.

AcuConnect Distributed Processing: Troubleshooting 8-31
For a missing server access file in a UNIX/Linux environment, the
AcuConnect log file displays the following:

Access file ‘/etc/AcuAccess’ not found.

From the graphical control panel in Windows, the following message may
indicate that the AcuConnect license file is missing or expired, or that the
server access file is missing:

The AcuConnect service failed to start.
Invalid or missing license.

8.7 AcuConnect Distributed Processing:
Troubleshooting

This section is a collection of error messages and step-by-step diagnostic
procedures for finding and resolving common system problems in
AcuConnect’s distributed processing configuration. Many of these
procedures require access to root or administrator privileges and are intended
for use by your site’s system administrator.

8.7.1 Error Messages

In distributed processing, AcuConnect generates the following set of error
messages after an unsuccessful attempt to start a program via the
AcuConnect remote listener.

Program missing or inaccessible.

This error message indicates that the program would not start, possibly
because
• The called program cannot be found or permissions to execute the

program do not exist.
• The ACUCONNECT_RUNTIME_FLAGS variable contains incorrect

parameters, such as an invalid error file path.
• Permission to write to the server runtime error file does not exist.
• AcuConnect cannot find the server runtime.

8-32 Managing the System
• The server runtime license is expired or missing (Windows servers
only).

• The called program’s return code indicates a failed call.

Connection refused - perhaps acuconnect is not running.
Unable to start the server runtime.

Possible explanations for this message include:
• AcuConnect is running on a port other than the one specified in the

connection attempt.
• The server runtime license is expired or missing (UNIX/Linux servers

only).
• The AcuAccess file does not allow access or it is missing.

The following message means the number of users allowed by the runtime or
distributed processing license has been exceeded:

Connection refused - User count exceeded on remote
server.

When the “acurcl.clc” license file is missing, the following message appears:

Invalid license or license not found for this
connection type.

Various file status codes may also be returned to the client as error messages.
Refer to Book 4, Appendix E, in the ACUCOBOL-GT® documentation set
for information about file status messages.

Refer to the following sections for tips on resolving some of the system
problems that can cause these error messages to appear.

8.7.2 Unexpected User Name

AcuConnect establishes a connection with the client, but uses an unexpected
user name (Local Username). There are two common reasons for getting an
unexpected Local Username on the server:

AcuConnect Distributed Processing: Troubleshooting 8-33
1. The client machine/client user combination doesn’t match the expected
access record.

2. The client machine/client user combination matches an access record
that specifies an unexpected Local Username (perhaps the name of a
group account, or an account with restricted privileges).

To investigate and correct this situation, you must be familiar with
AcuConnect server access configuration and have access to root or
Administrator privileges. We recommend that you work with your
AcuConnect system administrator.

UNIX diagnostics

1. Confirm your client user name.

Log on to the client system using the same user name and UNIX
environment that resulted in the unexpected user name. At the UNIX
prompt, enter:

who am i

Is the user name returned the name you expected?

2. Confirm the name of the client system. Enter:

hostname

The system will return its official network host name.

3. On the server, examine the server access file for the record that
matches the client machine name/client user name combination. This
requires root privileges on a UNIX server and Administrator group
privileges on a Windows server. It should be done by the AcuConnect
system administrator.

Run the server access file manager utility:

acurcl -access

a. Be sure to enter the name of the working server access file when
prompted.

b. Select menu item [4], “Display one/all security records.”

c. Respond “N” to the “Display all records?” prompt.

8-34 Managing the System
d. To the next two prompts, provide the client machine name and
client user name, respectively. The matching record will be
displayed.

The AcuConnect system administrator should be able to determine
whether this is the appropriate and expected access record for the client
machine name/client user name combination and take any necessary
steps to modify the record, or add a new one.

Windows diagnostics

1. Confirm the name of the client system.

Under Windows XP, the runtime uses the host name that is set in the
Control Panel.

a. In the Control Panel/Network/Configuration menu, select TCP/IP.

b. Then choose Properties/DNS Configuration/Host. The name you
specify for the “Host” entry is the one that the runtime uses.

c. Under Windows NT/2000/2003/2008, navigate to
Start/Settings/Control Panel/Network/Protocols.

d. Select TCP/IP, and then choose Properties/DNS/Host Name. The
name you specify for the “Host Name” entry is the one that the
runtime uses.

2. On the server, examine the server access file for the record that
matches the client machine name/client user name combination. This
requires root privileges on a UNIX server, and Administrator group
privileges on a Windows server. It should be done by the AcuConnect
system administrator.

Run the server access file manager utility:

acurcl -access

a. Be sure to enter the name of the working server access file when
prompted.

b. Select menu item [4], “Display one/all security records.”

c. Respond “N” to the “Display all records?” prompt.

AcuConnect Distributed Processing: Troubleshooting 8-35
d. To the next two prompts, provide the client machine name and
client user name, respectively. The matching record will be
displayed.

The AcuConnect system administrator should be able to determine
whether this is the appropriate and expected access record for the client
machine name/client user name combination and take any necessary
steps to modify the record, or add a new one.

8.7.3 Connection Refused

Attempts to connect to the server fail, possibly returning a 9D, 103,
connection refused error. Connection refused errors occur for a variety of
reasons:

1. The matching access record specifies an invalid Local Username, or
DEFAULT_USER holds an invalid user name. Note that the use of
“same as client” in the Local Username field of the access record can
lead to the attempted use of an invalid user name (“same as client”
directs AcuConnect to use the Client Username as the Local Username).

2. There is no matching access record for the client machine name/client
user name combination.

3. If connecting to a UNIX server, the AcuConnect license on the server
may require that the acushare license manager be running, and
AcuConnect was not able to start acushare automatically.

4. If connecting to a Windows server, various limitations in Windows can
prevent a child runtime from starting.

UNIX diagnostics

1. Confirm your client user name.

Log on to the client system using the same user name and UNIX
environment that resulted in the unexpected user name. At the UNIX
prompt, enter:

who am i

Is the user name returned the name you expected?

8-36 Managing the System
2. Confirm the name of the client system. Enter:

hostname

The system will return its official network host name.

3. Examine the server access file for the record that matches the client
machine name/client user name combination (this should be performed
by the AcuConnect system administrator).

To do this, become superuser or log on as root and run the server access
file manager utility:

acurcl -access

a. Be sure to enter the name of the working server access file in
response to the utility’s first prompt.

b. Select menu item [4], “Display one/all security records.”

c. Respond “N” to the “Display all records?” prompt.

d. Respond to the next two prompts with the client machine name
and client user name, respectively. The matching record will be
displayed.

If there is no matching entry, you need to add one.

• If the Local Username field contains the name of a user (a string),
check the UNIX password file (/etc/passwd) for the presence of a
valid entry for that name. If no entry exists, the name is not valid.

• If the Local Username field is “same as client”, Local Username is
set to the value of Client Username. Check the UNIX password file
(/etc/passwd) for the presence of a valid entry for that name.

• If the Local Username field is blank, Local Username is set to the
value of the server configuration variable DEFAULT_USER. The
value of DEFAULT_USER is defined in the server configuration
file. Check the UNIX password file (“/etc/passwd”) for the presence
of a valid entry for that name.

4. Confirm that acushare is running on the UNIX server by issuing the
“acushare” command with no arguments. If you receive a usage
message, acushare is not running, and may be manually started using
the “acushare -start” command.

AcuConnect Distributed Processing: Troubleshooting 8-37
5. Determine whether you have reached the Windows limit on the number
of simultaneous child runtimes. The CHILD_WAIT configuration
variable contains a value for the number of milliseconds that
AcuConnect waits for a child runtime to start successfully. If the child
runtime subsequently stops, check the trace file for the entry “Child
runtime stopped!! Exit code is nnn.” If nnn is “128”, the Windows
limit has been reached and no additional child runtimes are allowed
until another runtime process is terminated. Please refer to Microsoft
Knowledge Base article 184802, “User32.dll or Kernel32.dll Fails to
Initialize,” to learn how to work around this limitation. Refer to
CHILD_WAIT in this manual for information about how to set the
configuration variable.

Windows diagnostics

1. Confirm the name of the client system.

Under Windows XP, the runtime uses the host name that is set in the
Control Panel.

a. In the Control Panel/Network/Configuration menu, select TCP/IP.

b. Then choose Properties/DNS Configuration/Host. The name you
specify for the “Host” entry is the one that the runtime uses.

Under Windows NT/2000/2003/ 2008, navigate to Start/Settings/Control
Panel/Network/Protocols.

a. Select TCP/IP.

b. Then choose Properties/DNS/Host Name. The name you specify
for the “Host Name” entry is the one that the runtime uses.

2. Examine the server access file for the record that matches the client
machine name/client user name combination (this should be performed
by the AcuConnect system administrator).

To do this, log in as Administrator or from an account that belongs to the
Administrators group, then run the server access file manager utility
(“acurcl -access”).

a. Be sure to enter the name of the working server access file in
response to the utility’s first prompt.

b. Select menu item [4], “Display one/all security records.”

8-38 Managing the System
c. Respond “no” (“N”) to the “Display all records?” prompt.

d. Respond to the next two prompts with the client machine name
and client user name, respectively. The matching record will be
displayed.

If there is no matching entry, you need to add one.

• If the Local Username field contains the name of a user (a string),
check the Windows server User Manager for the presence of a valid
entry for that name. If no entry exists, the name is not valid.

• If the Local Username field is “same as client”, Local Username is
set to the value of Client Username. Check the Windows server User
Manager for the presence of a valid entry for that name.

• If the Local Username field is blank, Local Username is set to the
value of the server configuration variable DEFAULT_USER. The
value of DEFAULT_USER is defined in the server configuration
file. Check the Windows server User Manager for the presence of a
valid entry for that name.

3. Confirm that acushare is running on the UNIX server by issuing the
“acushare” command with no arguments. If you receive a usage
message, acushare is not running, and may be manually started using
the “acushare -start” command.

4. Determine whether you have reached the Windows limit on the number
of simultaneous child runtimes. The CHILD_WAIT configuration
variable contains a value for the number of milliseconds that
AcuConnect waits for a child runtime to start successfully. If the child
runtime subsequently stops, check the trace file for the entry “Child
runtime stopped!! Exit code is nnn.” If nnn is 128, the Windows limit
has been reached and no additional child runtimes are allowed until
another runtime process is terminated. Please refer to Microsoft
Knowledge Base article 184802, “User32.dll or Kernel32.dll Fails to
Initialize,” to learn how to work around this limitation. Refer to
CHILD_WAIT in this manual for information about how to set the
configuration variable.

8.7.4 Invalid Password

Attempts to connect to the server fail with an invalid password error:

AcuConnect Distributed Processing: Troubleshooting 8-39
Invalid connection password specified by client

Invalid password errors occur for two reasons:

1. The password supplied via interactive input does not match the password
in the access record.

2. The password supplied by the application via the acu_client_password
variable does not match the password in the access record.

Because password transactions involving acu_client_password are invisible
to the user, the cause of these failures is not immediately obvious. If you are
getting the error message given above, but you’re not being prompted for a
password, the application is using acu_client_password. The value of
acu_client_password is set when the application is installed. (Note that the
value of acu_client_password should terminate with LOW-VALUES.) Refer
to section “Option 1: Program Variable” for more information about
acu_client_password.

Diagnostics

1. If the error occurred after a password prompt, work with your
AcuConnect system administrator to establish a new password or to have
the password requirement removed.

2. If no password prompt occurred, ask the application’s technical support
group to change or remove the acu_client_password. Contact your
application vendor.

8.7.5 AcuConnect Fails to Start

AcuConnect fails to start.

1. Verify that Windows and UNIX permissions are set correctly on the files.
See section 2.3, “Establishing System Security.”

2. In Windows, verify the status of the service. To do this, enter:

sc query acurcl

The system should display the current state of AcuConnect and should
say “RUNNING”. If the service is not running, the system will return an
error message similar to the following:

8-40 Managing the System
[sc]EnumQueryServiceStatus:OpenService failed 1060

Another method for verifying the status of the service is to select:

Start/Settings/Control Panel/Services

and then check the AcuConnect service status. You should see “Started”
under “Status”. You may also check the Event Viewer for more
information. Select these options:

Start/Programs/Administrative Tools/Event
Viewer/Log/Application

3. Examine AcuConnect service events to determine if there were any
errors at startup.

8.7.6 Problems Starting and Stopping Services

You have problems starting or stopping the services or receive a message that
the service has stopped when it has not.
• A service started using the Server Manager interface should be stopped

using the same interface.
• A service started on the command line should be stopped using the

command line.

Diagnostics

Be sure to stop services the same way you start them.

8.8 AcuConnect Thin Client: Troubleshooting

Many things can affect the way the server application and the
ACUCOBOL-GT Thin Client interact. For example, computers can crash,
networks can get interrupted, or other errors can occur. This section outlines
some areas you should be aware of as you use our Thin Client technology.
(Limitations and restrictions involved in running your application in the thin

AcuConnect Thin Client: Troubleshooting 8-41
client are described in section 4.4.1, “Limitations in Thin Client
Environments.”) The following paragraphs also include some frequently
asked questions.

8.8.1 Error Messages

Error messages are produced in a thin client environment as a result of the
following basic scenarios: AcuConnect cannot be started, a server connection
cannot be made, or a remote application cannot be started via AcuConnect.
Refer to section 8.6 for the messages generated when AcuConnect cannot be
started. The following paragraphs describe the messages in the other two
categories.

If you try to connect to a Windows server, limitations in Windows can
prevent a child runtime from starting, resulting in a “Connection failed” error
message. Section 8.7.3, “Connection Refused,” contains information for
determining whether you have reached this Windows limit and how to work
around it.

When a server connection cannot be established, possibly because the socket
on the server is busy, the following message appears:

Connection failed. General socket error.

The following message also appears as a result of a failed server connection:
Connection failed. Connection to server refused.

Specific reasons for this error message include a missing or invalid license
file (“acurcl.alc”), an AcuAccess file that is missing or not allowing access
for this particular user, or the use of a port number that is not available for
some reason.

A non-existent alias file or an alias file that does not contain the requested
alias causes the following message to appear:

Connection failed. Alias does not exist.

If you are running on VMS and you specify an invalid working directory in
your alias file, you receive the following error message:

Connection failed. Unknown error.

8-42 Managing the System
If you receive the following message, check to make sure you have a valid
error file path and name in the alias definition:

Connection failed. Server failed to start remote
process. Check messages on the server.

Inability to start the specified remote application results in the following
message:

prog-name: Program missing or inaccessible.

where prog-name is the name of the called program. This message may be
the result of
• an alias record that contains an invalid working directory.
• a called program that may not exist in the working directory.

The following message indicates that the maximum number of runtime users
in thin client has been exceeded:

You have exceeded the licensed number of users for
ACUCOBOL-GT. If you would like to add users, please
contact your customer service representative.

8.8.2 Tuning System Performance

The nature of our Thin Client technology may make some functions
expensive in terms of system performance. Certain adjustments have been
made to minimize the amount of message traffic between the client and the
server. For example, if a program resizes a window to be larger than the
available screen space, the operation succeeds, because checking for failure
is an expensive operation.

Frequent message traffic as a result of communications between screen
controls on the display host and an application on the server can negatively
affect thin client performance. To identify operations that may be causing
performance issues for the thin client, you can establish a screen trace to
monitor network message traffic on a slow screen. You can start with a trace
of a frequently used screen if it is not clear which screen is causing your
performance issue.

AcuConnect Thin Client: Troubleshooting 8-43
One way to improve system performance is to recompile your programs to
the Version 5.2 or later object format. In older object files that use MODIFY
to set control properties frequently, the thin client must return status to the
runtime after each MODIFY statement that sets a property value. When you
recompile, thin client sends status back to your program only if the program
uses that status value.

The following sections describe other specific issues in thin client system
performance and tips for handling these situations.

8.8.2.1 Buffer size considerations

Configuration variables that let you adjust internal network buffer sizes can
help to improve thin client performance by increasing the amount of data that
travels across the network at any one time.

The AGS_RECEIVE_BUFFER_SIZE and AGS_SEND_BUFFER_SIZE
variables control the internal network buffers in the low-level socket routines.
The ACUCOBOL-GT thin client and runtime call these routines to send data
across the network. Every time data is sent across the network, it must be
acknowledged from the other side. So increasing the size of these buffers
may enhance performance, because sending more data at a time means fewer
acknowledgement messages. Making these buffers larger has the most
impact when a large amount of data is sent back and forth. Note that the
buffer size won’t change the performance characteristics in situations where
data must be sent immediately.

The AGS_MAX_SEND_SIZE variable can work in tandem with the two
BUFFER_SIZE variables mentioned above to help with performance. This
variable works best if its value matches the BUFFER_SIZE values. For
example, if AGS_MAX_SEND_SIZE is 8000 bytes and
AGS_SEND_BUFFER_SIZE is 16000 bytes, the send buffer does not fill
completely before the socket layer decides that data should be sent.

8.8.2.2 File compression

File compression is another factor to consider in system performance, and the
AGS_SOCKET_COMPRESS variable can help address this issue. If the
speed of your computer is much higher than the speed of the network, then
the “ZLIB” setting for this variable may work well for you. However, if the

8-44 Managing the System
latency caused by compression time is higher than the latency in the network,
you may not gain much. RUNLENGTH compression is faster, but much less
is compressed.

As an example, suppose you need to send 10000 bytes over a network that
can transfer 1000 bytes per second. With no compression, the data can be sent
in 10 seconds. If ZLIB compression can compress that 10000 bytes to 1000
bytes in 20 seconds, then total time for this operation is 21 seconds (20
seconds to compress plus 1 to send). In this case, no compression is the better
option. However, if ZLIB can compress that 10000 bytes to 2000 bytes in 2
seconds, then the total time with ZLIB is 4 seconds (2 seconds to compress
plus 2 to send). In this situation, the compression option is the better choice.

Note that Windows supports ZLIB compression, but not all UNIX machines
do. If ZLIB compression is not supported on a particular machine, a variable
value of “ZLIB” will be ignored.

8.8.2.3 TC_CONTROL_SYNC_LEVEL runtime configuration variable

Normal runtime behavior ensures that VALUE data items in a Screen section
are updated whenever a BEFORE, AFTER, or EXCEPTION procedure
executes. This can result in decreased performance under the thin client. You
can determine which VALUE data items are updated by the setting of the
TC_CONTROL_SYNC_LEVEL configuration variable. Limiting updates
can mean improved performance. For more information about this
configuration variable, refer to TC_CONTROL_SYNC_LEVEL.

8.8.2.4 TC_TV_SELCHANGING configuration variable

The tree view control normally generates a Msg-Tv-Selchanging event in
some unexpected circumstances. For example, this event is generated when a
tree view becomes active, even if the selection in the tree view is not
changing. The frequency with which these events are passed between the
client and the server can cause performance issues.

The TC_TV_SELCHANGING configuration variable lets you control how
often Msg-Tv-Selchanging events are generated in a thin client environment.
Different values for this variable enable you to suppress the generation of this
message event to varying degrees. For more information about this
configuration variable, refer to TC_TV_SELCHANGING.

AcuConnect Thin Client: Troubleshooting 8-45
8.8.2.5 Graphical control event handling

Three runtime configuration variables give you some control over which
events your application receives. Letting the thin client filter out some events
can reduce network traffic and enhance performance. TC_EVENT_LIST and
TC_AX_EVENT_LIST can contain the numeric value of an event type or a
list of event types separated by non-numeric characters.
TC_AX_EVENT_LIST is for .NET or ActiveX event types. If the value of
TC_EXCLUDE_EVENT_LIST is “1”, the specified events are not sent to
your program. For more information about these variables, refer to section
3.4, “Creating a Runtime Configuration File for the Remote Server
Component.”

Three common control properties perform the same functions for individual
graphical controls. EVENT-LIST and AX-EVENT-LIST properties allow
you to specify a list of event types to either send or block from the program,
depending on the value of the EXCLUDE-EVENT-LIST property. By
default, listed events are sent to the program. For detailed information about
these properties, refer to section 6.4.9, “Common Screen Options,” in the
ACUCOBOL-GT Reference Manual.

One advantage to using the configuration variables for these functions is that
you don’t have to change your application code. For example, if program
performance is affected by a single ActiveX control type or events that have
unique type numbers, these are easily specified in a configuration file. Using
the configuration variables is also an easy way to test whether this feature can
improve system performance.

8.8.2.6 Screen Section table handling

The compiler produces some internal data items to hold intermediate values
when a Screen Section USING, TO, or FROM data item is indexed or
reference modified. In the thin client, this behavior is extended so that it uses
the same intermediate item when both the FROM and TO items refer to the
same data item, consuming slightly less memory. As a result, a program with
a Screen Section that stores its values in tables may be able to use the
performance benefit of a lower TC_CONTROL_SYNC_LEVEL
configuration setting. For more information about this configuration variable,
refer to TC_CONTROL_SYNC_LEVEL.

8-46 Managing the System
8.8.2.7 Grid control

Because the performance of some controls may be affected in a thin client
environment, some control properties may need to be changed. The grid
control experiences performance delays when the user clicks and drags the
mouse to highlight several cells in the grid. To avoid this, the thin client does
not generate the MSG-GOTO-CELL-DRAG event. This prevents you from
highlighting a region of the grid during drag operations via the
REGION-COLOR property.

The grid control supports a DRAG-COLOR property, which allows you to do
highlighting during a drag operation. You can use this with both the thin
client and with the stand-alone runtime. You replace REGION-COLOR
references with DRAG-COLOR and remove any
MSG-GOTO-CELL-DRAG handling. Note that REGION-COLOR is often
located in the MSG-GOTO-CELL-DRAG handling code, and it will need to
be moved when you change it to DRAG-COLOR. Most commonly, you can
place the DRAG-COLOR reference in the code (or Screen section) where the
grid is created.

For more information about the DRAG-COLOR property, refer to the grid
control description in Book 2, ACUCOBOL-GT User Interface
Programming, of the ACUCOBOL-GT documentation set.

8.8.2.8 Bitmaps

A program that uses bitmaps can be slower than one that does not. The first
time a bitmap is displayed, it must be transferred from the server to the client.
The bitmap is then placed in a memory cache on the client so that it doesn’t
have to be downloaded again. However, network messages travel between
client and server regardless of whether the bitmap has already been
downloaded to the client.

Bitmap download performance can be enhanced via the W$BITMAP library
routine WBITMAP-LOAD process. Setting the WBITMAP-LOAD
parameter FLAGS to WBITMAP-NO-DOWNLOAD optimizes bitmap
handling. When WBITMAP-NO-DOWNLOAD is used, the server assumes
that the bitmap is already in the client’s cache directory and that the client can
successfully load the bitmap. The server need not wait for a result code from

AcuConnect Thin Client: Troubleshooting 8-47
the client that the bitmap is successfully loaded. For more information about
W$BITMAP and the WBITMAP-LOAD function, refer to ACUCOBOL-GT
Appendices, Appendix I.

Using “.jpg” files instead of “.bmp” files can also improve system
performance, because “.jpg” files are compressed and therefore are smaller
and transfer more quickly over the network.

8.8.2.9 Multiline entry fields

A multiline entry field with a compressed size larger than the value of
AGS_MAX_SEND_SIZE (see AGS_BAD_SOCKET) may experience
degraded performance in thin client. Although the default value of
AGS_MAX_SEND_SIZE should be adequate in most situations, large
multiline entry field performance may improve if the value is increased from
its default of 16000 characters. Note that if compression is enabled, it is
performed before the calculation of maximum packet size.

8.8.3 Connecting to AcuServer

It is possible that the ACUCOBOL-GT runtime may appear to hang if the
application host needs to open files on a remote (third) machine using
AcuServer® and a password is needed. The problem may appear in one of two
ways.

1. If the runtime is on a UNIX machine and the remote file is an error file
or a configuration file, the runtime and the ACUCOBOL-GT Thin Client
both hang. Note that in this instance, if the remote file is requested after
the COBOL program has started, the password dialog appears as
expected.

2. If the runtime is running on a Windows machine, the runtime and the
ACUCOBOL-GT Thin Client both hang.

You can avoid this behavior by not requiring passwords on machines running
AcuServer if the files on the AcuServer machine are needed by the
ACUCOBOL-GT runtime serving the thin client.

8-48 Managing the System
8.8.4 Frequently Asked Questions

Question: Can AcuConnect load object files on mapped server drives?

Answer: AcuConnect starts a new instance of the ACUCOBOL-GT runtime for each
client request for an application to be executed. This runtime can locate
object files on a Windows server mapped drive only if the drive mapping has
occurred at an administrator level at system startup.

To load object files on a Windows server mapped drive in this way, you must
ensure that the SECURITY_METHOD configuration variable defines the
type of Windows security to be used for the connection. For information
about the SECURITY_METHOD variable, refer to SECURITY_METHOD.

Question: Is the Windows print spooler supported in the thin client?

Answer: Generally speaking, all functionality of the Windows print spooler is
supported except the following WIN$PRINTER functions:
WINPRINT_GET_SETTINGS_SIZE
WINPRINT_GET_SETTINGS
WINPRINT_SET_SETTINGS

These functions are not supported because of variations in memory allocated
by data types on the client and the server (for example, a 64-bit UNIX server
versus a 32-bit Windows client). Instead, you can make calls to
WINPRINT_GET_PRINTER_INFO_EX and WINPRINT_SET_PRINTER,
which are similar.

For information about these functions, refer to section 4.4.3.3.

Question: I am using ACCEPT user-id FROM SYSTEM-INFO to return details
about the user that is running a specific copy of the application, but the
returned user ID is “root”. How can I ensure that the correct user
information is returned?

Answer: To return the actual user ID of the user who is executing the application on a
UNIX server, AcuConnect must be started automatically at server startup or
by a user that logs into the server as root and then logs out of the system.
When a subsequent client user starts an application that executes ACCEPT
user-id FROM SYSTEM-INFO, the correct user ID is returned.

AcuConnect Thin Client: Troubleshooting 8-49
To return the correct user ID when a program is running on a Windows server,
AcuConnect must be started as a Windows service and
SECURITY_METHOD must be set to LOGON.

Information about starting AcuConnect automatically at system startup or as
a Windows service can be found in section 2.6.5.

Question: I have an application that contains branching code, which is used when
the application is executed on either UNIX or Windows servers. The
code relies on information that is returned about the operating system by
ACCEPT FROM SYSTEM-INFO.

However, with the thin client, the information returned is from the
server side of the configuration. How can I obtain information about the
client side, so that the application is executed using the correct client-side
information?

Answer: ACCEPT FROM SYSTEM-INFO returns server-side information for the
thin client environment. To obtain client-side information, you should
modify your existing code to perform an ACCEPT FROM
TERMINAL-INFO.

Question: If a thin client application is launched from a Web browser, does that
application have Web browser access? We may want to include a
hyperlink on the screen.

Answer: The thin client does not run in a Web browser. However, you could use the
Web browser control inside your application to allow Web browser access, or
include your links on the same Web page that launches the application.

Question: Are there any restrictions regarding the use of ActiveX or COM objects?

Answer: You can use ActiveX controls. However, they must be installed on the client
machine. (Refer to section 6.3, “Installing ActiveX Files.”) Note that some
controls may generate too many messages to be usable over the Internet.

COM and Distributed COM objects may be used with Thin Client.

8-50 Managing the System

Index

-c 3-3
-n 3-5
-t # 3-7

Symbols
$WINHELP op-codes not supported in thin client 4-15

A
A_DEBUG_USING_THIN environment variable 6-7
ACCEPT FROM INPUT STATUS 4-13
ACCEPT FROM SYSTEM-INFO 8-44
ACCEPT FROM TERMINAL-INFO 8-45
access file manager 2-19, 8-3

creating an access file 2-20
default values 2-20
displaying a record 2-25
exiting 2-39
modifying a record 2-24
removing a record 2-23
starting 2-20

access file match attempts 2-33
access file records

passwords for 2-22
umask 2-22

access file, creating a new 8-13
access records

adding 2-21
adding to an access file 8-14
defined 2-16
displaying 2-25

Index-2
examples 2-18
fields in 2-16
most permissive example 2-19

Access tab, control panel 8-12
ACCESS_FILE configuration variable 3-4
accessing local resource files in thin client 7-6
ActiveX controls, installing on thin client 6-3
ActiveX events 3-33

freezing 3-20
ActiveX resource files in thin client 6-9
acu_client_password program variable 2-38
acu_client_password variable 8-35
AcuAccess

using existing file from AcuServer 2-16
AcuAccess file

and system security 2-14
data security and 1-12
defining location of 3-3
designating the default 2-20
privileges and 2-11

ACUCOBOL-GT runtime, installing 2-9
ACUCOBOL-GT Thin Client 1-9

and ActiveX controls 6-3
connecting to AcuConnect 2-37
creating an icon for 6-2
in an Internet environment 6-8
installing 6-2
starting 6-4

ACUCOBOL-GT Web Thin Client 7-12
AcuConnect

connection logic 2-37
connection refused 8-31
failure to start 2-33
installing

on a UNIX server 2-3

 Index-3
on a Windows server 2-4
on VMS in thin client 2-7

invalid password 8-34
license file 1-10
password handling 3-12
starting 2-30
starting automatically on Windows 2-37
system management 8-2
system status 8-5, 8-25
technical limitation 7-4
testing the connection in thin client 6-7
unexpected user name 8-28
UNIX ownerships and permissions 2-13
with MPE/iX 2-8

AcuConnect messages
changing the text of 3-12

ACUCONNECT_CLOSE_AFTER_CANCEL configuration variable 5-8
ACUCONNECT_DEBUG_METHOD configuration variable 5-7
ACUCONNECT_DEBUG_METHOD_STRING configuration variable 5-7
ACUCONNECT_RUNTIME_FLAGS configuration variable 5-9
acurcl

Windows 2008 2-19
acurcl 8-2

and system management 8-2
as a Windows service

automatically on booting 2-5, 2-37
installing AcuConnect as 8-6
installing AcuConnect as, -start 8-10

running in foreground 2-32
UNIX formats 8-2
Windows formats 8-3

acurcl commands
-access 2-3, 8-3
-alias 2-26, 8-3
-config 8-3

Index-4
-info 8-5, 8-25
-install 8-6
-kill 2-33, 8-7
-query 8-9
-remove 8-9
-start 2-31, 8-10
-version 8-11

acurcl daemon, associating a port with 2-32
ACURCL_PORT configuration variable 3-5, 5-9
AcuServer 8-43
acushare 1-11
acuthin

debugging in transaction processing 6-7
setting a password 6-8
setting the username 6-8
splash screen 6-4

acuthin command 6-5
--noautoupdate option 7-24

acuthin command-line files 7-12
acuthin.msi installer file, using to update the thin client 7-18
adding access records to access files 8-14
adding an access record 2-21
adding an alias to an alias file 2-27
adding dependencies to a service 8-24
adding services 8-23
adding variables to a running server 8-16
AGS_BAD_SOCKET configuration variable 3-5
AGS_MAX_SEND_SIZE configuration variable 3-17, 8-39, 8-43
AGS_RECEIVE_BUFFER_SIZE configuration variable 3-17, 8-39
AGS_SEND_BUFFER_SIZE configuration variable 3-18, 8-39
AGS_SOCKET_COMPRESS configuration variable 3-18, 8-39
AGS_SOCKET_ENCRYPT configuration variable 3-19
AGS_TCP_NODELAY configuration variable 3-19
Alias control panel tab 8-16
alias file 3-10, 8-3

 Index-5
adding an alias to 2-27
creating an alias 2-26, 8-16
modifying an alias in 2-29
removing an alias from 2-28

ALIAS_FILE_IS_XML configuration variable 2-26, 3-2
anchor tags 7-13
application design 4-2
application distribution 4-3
application user information on UNIX 8-44
association file 8-16
association file, creating 2-26
asynchronous CALLs 1-8, 4-8
atc-splash-screen option 6-4
automatic update

accepting the update 7-18
download progress dialog 3-28, 7-22
enabling or disabling 7-17
failure 3-33, 7-25
installer file 7-19
log file 3-33, 7-26
Microsoft Windows Installer 7-23
overview 7-14
query message box 7-17
restarting the application 7-24
thin client 7-14
triggers 7-15
updating the registry 7-20
Windows installer interface 3-31, 7-24

automatically updating the child process list box 8-19
AX_EVENT_LIST configuration variable 3-23

B
batch processing 4-2, 4-4

Index-6
benefits of thin client 1-4
bitmaps in thin client 8-42
building a graphical display 4-13

C
-c option 3-3
-c option to -start command 2-31
C$ASYNCPOLL library routine 4-6, 4-9, 5-15
C$ASYNCRUN library routine 4-6, 4-8, 5-15
C$CALLERR library routine 4-7
C$COPY library routine 4-17, 4-18, 7-2

special directories 7-3
TEMP user environment variable 7-3
with AcuServer 7-4

C$OPENSAVEBOX library routine 4-17, 7-6
C$RESOURCE library routine 7-6
C$SYSTEM library routine 4-17

executing desktop programs in thin client 7-5
cache directory in thin client 6-9
cache file naming in thin client 6-9
CALL verb 4-5
CALL, forms of not supported by AcuConnect to a remote server 4-6
calling a remote COBOL object from a non-COBOL program on a client 5-13
calling DLLs in thin client 7-7

CODE_MAPPING configuration variable 7-8
passing pointers 7-8

calling the thin client DLL 7-10
calling the Windows API 4-14
CANCEL 5-8
CANCEL ALL 4-6
cancelling download of thin client automatic update 3-27
CHAIN command 4-11
changing an alias record 8-18

 Index-7
changing records in access files 8-14
character limitations in thin client 4-12, 4-14
character mapping in thin client 4-21
chgrp command 2-12
child processes, listing 8-19
CHILD_WAIT configuration variable 3-6, 8-32, 8-34
chmod command 2-12
client configuration file

creating 5-4
locating runtime config file for remote server 3-15
name of server host machine 5-3
specifying remote path of CALLed programs 4-6

client platforms supported 1-6
client software installation 5-2
client-side components 4-2
COBOL objects, executing remotely 5-13
COBOL Virtual Machine 1-3
code name alias 5-3, 5-6
CODE_MAPPING configuration variable 5-6, 7-8
CODE_PREFIX configuration variable 5-4
compressing error files 2-32, 8-22
compression, data 3-18
Config control panel tab 8-15
configuration file, specifying for the server 8-21
configuration variables 5-4, 5-6

debugging problems with 2-32
printing a list of server 8-23
server 3-3

configuration variables, list of
ACCESS_FILE 3-4
ACUCONNECT_CLOSE_AFTER_CANCEL 5-8
ACUCONNECT_DEBUG_METHOD 5-7
ACUCONNECT_DEBUG_METHOD_STRING 5-7
ACUCONNECT_RUNTIME_FLAGS 5-9
ACURCL_PORT 3-5, 5-9

Index-8
AGS_BAD_SOCKET 3-5
AGS_MAX_SEND_SIZE 3-17, 8-39, 8-43
AGS_RECEIVE_BUFFER_SIZE 3-17, 8-39
AGS_SEND_BUFFER_SIZE 3-18, 8-39
AGS_SOCKET_COMPRESS 3-18, 8-39
AGS_SOCKET_ENCRYPT 3-19
AGS_TCP_NODELAY 3-19
ALIAS_FILE_IS_XML 2-26, 3-2
AX_EVENT_LIST 3-23
CHILD_WAIT 3-6, 8-32, 8-34
CODE_MAPPING 5-6, 7-8
CODE_PREFIX 5-4
DEFAULT_MAP_FILE 5-10
DEFAULT_USER 2-17, 2-18, 3-7, 8-13
ENCRYPTION_SEED 3-19
FILE_TRACE 3-7
FILE_TRACE_FLUSH 3-7
FILE_TRACE_TIMESTAMP 3-8
FREEZE_AX_EVENTS 3-20
PASSWORD_ATTEMPTS 2-39
PROVIDE_PASSWORD_MESSAGES 3-8
SECURITY_METHOD 2-15, 3-8, 5-11
SERVER_ALIAS_FILE 3-10
SERVER_IP 3-11
server_MAP_FILE 5-10
SERVER_NAME 3-11
SHARED_LIBRARY_LIST 4-13
TC_AUTO_UPDATE_FAILED_MESSAGE 3-20, 7-25
TC_AUTO_UPDATE_FAILED_TITLE 3-21, 7-25
TC_AUTO_UPDATE_NOTIFY_FAIL 3-21, 7-26
TC_AUTO_UPDATE_QUERY 3-22, 7-17
TC_AUTO_UPDATE_QUERY_MESSAGE 3-22, 7-18
TC_AUTO_UPDATE_QUERY_TITLE 3-23, 7-17
TC_AX_EVENT_LIST 3-23, 8-41
TC_CHECK_ALIVE_INTERVAL 3-23, 3-32

 Index-9
TC_CHECK_INSTALLER_TIMESTAMP 3-24, 7-16
TC_CONTINUITY_WINDOW 3-24
TC_CONTROL_SYNC_LEVEL 3-25, 8-40
TC_DELAY_ACTIVATE 3-25
TC_DELAY_PRE_EVENT_OPS 3-26
TC_DISABLE_AUTO_UPDATE 3-26, 7-17
TC_DISABLE_SERVER_LOG 3-26, 7-26
TC_DOWNLOAD_CANCEL_MESSAGE 3-27, 7-23
TC_DOWNLOAD_DESCRIPTION 3-27, 7-23
TC_DOWNLOAD_DIALOG 3-27, 7-22
TC_DOWNLOAD_DIALOG_TITLE 3-28, 7-22
TC_EVENT_LIST 3-28, 8-40
TC_EXCLUDE_EVENT_LIST 3-23, 3-28, 8-41
TC_INSTALLER_ARGS 3-29, 7-20
TC_INSTALLER_CLIENT_FILE 3-29, 7-20, 7-21
TC_INSTALLER_RUN_ASYNC 3-30, 7-24
TC_INSTALLER_SERVER_FILE 3-30, 7-19, 7-21
TC_INSTALLER_TARGET_DIR 3-31, 7-19, 7-23
TC_INSTALLER_UI_LEVEL 3-31, 7-24
TC_MAP_FILE 3-31, 4-21
TC_NESTED_AX_EVENTS 3-32
TC_QUIT_MODE 3-32
TC_REQUIRES_BUILD_NUMBER 3-32, 7-15
TC_RESTRICT_AX_EVENTS 3-33
TC_SERVER_LOG_FILE 3-33, 7-26
TC_SERVER_TIMEOUT 3-34
TC_TV_SELCHANGING 3-34, 8-40
TEXT 2-39, 3-12, 5-11
THIN_CLIENT_ENCRYPT 3-35
USE_SYSTEM_RESTRICTIONS 3-13
USE_UNIX_SHELL 2-34, 3-13
WIN32_CTL_INPUT_STATUS 4-13
WINNT_EVENTLOG_DOMAIN 3-14, 8-25
WINNT_LOGON_DOMAIN 3-13

configuring the remote application runtime 3-15

Index-10
configuring the runtime configuration file 3-15
connecting to AcuConnect 2-37
connecting to AcuServer (thin client) 8-43
connection refused 8-31
control panel tabs

Access 8-12
Alias 8-16
Config 8-15
Info 8-18
Services 8-20

control performance 8-41
controlling access to data files 1-12
copying AcuServer files to thin client 7-4
creating a client configuration file 5-4
creating a new access file 8-13
creating a server access file 2-3
creating an alias file 8-16, 8-17
creating an association file 8-16
creating an icon for the ACUCOBOL-GT Thin Client 6-2

D
-d option to -start command 2-31
data compression 3-18
data encryption 1-13, 3-19, 3-35
debug mode 2-31
debugging

ACUCONNECT_DEBUG_METHOD 5-7
ACUCONNECT_DEBUG_METHOD_STRING 5-7
in a distributed processing environment 5-14
in thin client 6-6
in transaction processing 6-7
remote 5-7

DEFAULT_MAP_FILE configuration variable 5-10

 Index-11
DEFAULT_USER configuration variable 2-17, 2-18, 3-7, 8-13
deleting access records from access files 8-14
deleting an alias record 8-18
dependencies, adding for AcuConnect 8-23
deploying a Windows application on UNIX 4-15
designing a splash screen in thin client 6-4
disabling automatic update 7-17
displaying an access file record 2-25
displaying an alias 2-30
distributed processing

calling multiple programs 4-7
client platforms 1-6
defined 1-7
embedding COBOL CALLs 4-5
environment 4-3
error messages 8-27
installing client applications 5-13
preparing the client 5-2
preparing your application 4-2
process flow 1-8
relinking the client runtime 5-2
relinking the server runtime 2-10
remote debugging 5-7
sample programs 5-15
server platforms 1-6
troubleshooting 8-27

DLL thin client 7-10
download progress dialog in thin client automatic update 3-27, 3-28, 7-22
downloads, cancelling 3-27
DRAG-COLOR control property 8-42

E
-e, -ee, and +e options to -start command 2-31

Index-12
embedded procedures 3-25
enabling automatic update 7-17
encryption 1-13, 3-19, 3-35
encryption of data 1-13
ENCRYPTION_SEED configuration variable 3-19
environment configuration variable, ALIAS_FILE_IS_XML 3-2
environment inheritance 4-10
error file, specifying for the server 8-21
error messages 8-26

distributed processing 8-27
thin client 8-37

error output
location of 2-31
printing server configuration file to 2-32

event handling 8-40
event logging 8-25
event notification system 8-25
exception handling 4-7
executing client programs 5-13
executing desktop programs in thin client 7-5
exiting the access file manager 2-39
EXTERNAL data items 4-11

F
-f option to -start command 2-32
failure to start, AcuConnect 2-33
FILE_TRACE configuration variable 3-7
FILE_TRACE_FLUSH configuration variable 3-7
FILE_TRACE_TIMESTAMP configuration variable 3-8
files

compressing 2-32
tracing 8-3

firewalls and server ports 3-5

 Index-13
foreign language characters 4-19
FREEZE_AX_EVENTS configuration variable 3-20
freezing ActiveX events 3-20
frequently asked questions (thin client) 8-44

G
-g option to -start command 2-32
getting started 2-2
graphical control event handling 8-40
graphical control panel 8-11
grid control

DRAG-COLOR control property 8-41
performance issues in thin client 8-41

gzip compression 2-32, 8-22

H
HAS-GRAPHICAL-INTERFACE flag 4-15

I
ImageList data types 6-4
Info control panel tab 8-18
installing ActiveX controls in thin client 6-3
installing AcuConnect 2-2

as a shared object library 2-2
in thin client on VMS 2-7
on a UNIX server 2-3
on a Windows server 2-4

installing client applications, distributed processing 5-13
installing server programs 2-30
installing the ACUCOBOL-GT runtime 2-9, 5-2

Index-14
installing the ACUCOBOL-GT Thin Client 6-2
international character handling 4-19, 5-10

thin client 4-21
Internet usage 5-5
invalid passwords 8-34
invoking the ACUCOBOL-GT Thin Client in an Internet environment 6-8

L
-l option to -start command 2-32
launching thin client applications from a Web page 7-11
libraries, shared object 2-2
library routines

$WINHELP 4-15
C$ASYNCPOLL 4-9
C$ASYNCRUN 4-8
C$COPY 7-2
C$OPENSAVEBOX 7-6
C$RESOURCE 7-6
C$SYSTEM 4-17, 7-5
M$ALLOC 7-8
W$BITMAP 4-18, 6-4, 6-10, 7-6
W$KEYBUF 7-5
WIN$PLAYSOUND 6-10, 7-6
WIN$PRINTER 4-16, 8-44

library search path variable for a shared object library 2-2
licensing 1-10

limits on 1-11
limitation, technical in AcuConnect 7-4
limitations in thin client 4-12

building a graphical display 4-13
character display 4-13
deploying a Windows application on UNIX 4-15
OS-IS-WINDOWS flag 4-15

 Index-15
using a highly interactive program 4-14
Windows API calls 4-14

limits to licensing 1-11
listing child processes 8-19

M
M$ALLOC library routine 7-8
machine failures 8-24
maintaining thin client aliases 8-16
map file, character 3-31, 4-19, 5-10
memory/environment issues

CHAIN command 4-11
environment inheritance 4-10
EXTERNAL data items 4-11
memory usage 4-10
open connections 4-10
runtime usage 4-10

messages
changing the text of 3-12

Microsoft Windows Installer 7-23
modifying an access file record 2-24
modifying an alias 2-29
modifying an alias record 8-18
modifying variable values in the control panel 8-16
MPE/iX operating environment 2-35

limitation in 2-8
multiline entry field 8-43
multiple runtime instances 1-7, 4-7

N
-n option 3-5
-n option to -start command 2-32

Index-16
Nagle algorithm 3-19
native system security 3-8, 5-11
nested ActiveX events 3-20
network services 5-3

O
"on exception" phrase 4-7
open connections 4-10
OS-IS-WINDOWS flag 4-15
overview

passwords in server access file 2-38
ownerships and permissions

new files 2-14
UNIX 2-12

P
P_SPOOLER 4-17, 8-44
passing pointers in DLL calls 7-8
password, field in server access file 2-17
PASSWORD_ATTEMPTS configuration variable 2-39, 3-8
passwords

client 5-3
handling 3-12
invalid, connection refused 8-34
levels of access and 2-23
specifying for access file records 2-22

passwords in server access file, overview 2-38
performance

negative impacts on 3-8
platform support

servers 1-6
platform support for clients 1-6

 Index-17
port number, specifying for server host 3-5
ports

assigning to acurcl 2-32
changing 8-15
specifying for the server 8-20

preparing data for thin client 4-11
preparing the client

distributed processing 5-2
thin client 6-2

preparing the server
Internet access 7-11

preparing thin client applications 4-3
printing a screen 4-18
printing on Windows machines in thin client 4-16, 8-44
privileged port numbers 2-32
problems connecting to server, UNIX 3-5
PROVIDE_PASSWORD_MESSAGES configuration variable 3-8

R
records in access files

displaying 8-13
modifying 8-14

registry entries for thin client automatic update 7-20
registry library routines for the client 4-16
relinking the runtime

client 5-2
server 2-10

remote AcuServer server, copying files from in thin client 7-4
remote application path 5-4
remote COBOL listener 1-10
remote COBOL objects

calling from non-COBOL programs 5-13
executing from clients 5-13

Index-18
remote program debugging 5-7
remote servers, unsupported forms of CALL 4-6
removing access records from access files 8-14
removing an alias 2-28
removing an alias record 8-18
removing client support 5-3
resource files in thin client 7-6
restrictions in thin client 4-12
return status codes in UNIX 2-33
RUNLENGTH compression 8-39
running AcuConnect on HP MPE/iX systems 2-8
running distributed processing sample programs 5-19
runtime configuration file 3-15, 5-9
runtime options, "-y" 4-13
runtime requests 2-33
runtime usage 4-10
runtime usage limits, acushare 1-11

S
sample configuration file

client 5-12
server 3-14

sample program
distributed processing 5-15
results 5-20
running 5-19

Screen Section table handling in thin client 8-41
screen trace 8-38
security 1-11

access 3-4, 3-8
AcuAccess file 2-15
ownerships and permissions 2-10
TEXT configuration variables 3-12

 Index-19
using native system 3-8, 5-11
SECURITY_METHOD configuration variable 2-15, 3-8, 5-11, 8-44

using native security 5-11
server

adding variables to while running 8-16
changing 8-15

server access file
access records 2-16
default name 2-14

server access file on a UNIX server 2-3
server access file, creating 2-20
server components, distributed processing 4-2
server configuration file

and DEFAULT_USER 8-32
location of 2-31
ownerships and permissions 2-10
printing to standard error output 2-32

server configuration variables 3-3
server platforms supported 1-6
server programs

installing 2-30
SERVER_ALIAS_FILE configuration variable 3-10
SERVER_IP configuration variable 3-11
server_MAP_FILE configuration variable 5-10
SERVER_NAME configuration variable 3-11
service dependencies, adding 8-24
service error files, compressing 8-22
Service Properties dialog 8-20
Services control panel tab 8-20
services, adding, starting, stopping, removing 8-23
setting a username in thin client 6-8
shared object library 2-2
SHARED_LIBRARY_LIST configuration variable and thin client limitations 4-13
smart client

defined 4-3

Index-20
when to use 4-5
socket descriptors and UNIX shells 3-5
socket performance

tuning maximum size of data packets 3-17
tuning one element 3-17, 3-18, 3-19

special characters 4-19
special directory identifiers 7-21
splash screen for thin client 6-4
-start command options 3-3, 3-5, 3-7
-start options 2-31
starting AcuConnect

at system startup 2-36
UNIX 2-31
Windows 2-35

starting AcuConnect in thin client
MPE/iX 2-35
VMS 2-36

starting acurcl in UNIX 2-31
return status codes 2-33

starting or stopping a service 8-23
starting the access file manager 2-20
starting the ACUCOBOL-GT Thin Client 6-4
starting Windows services 2-5
start-up failure 8-35
status reports 8-5

viewing 8-25
stderr, redirecting contents into new error file 2-31
"stop run" command 4-10
stopping Windows services 2-6

problems with 8-36
support, technical 1-13
suppressing the splash screen in thin client 6-4
suspending ActiveX events 3-33
synchronous CALLs 1-8, 4-8
syslog facility 8-25

 Index-21
system management 8-2
machine failures 8-24
system status report 8-25

system performance
bitmaps and (thin client) 8-42
buffer size 8-39
connecting to AcuServer with thin client 8-43
Screen Section table handling in thin client 8-41
TC_CONTROL_SYNC_LEVEL configuration variable 8-40
thin client and

buffer size 8-39
tuning 8-38

tree view control and (thin client) 8-40
system security 2-30
system terminations in thin client 4-15

T
-t # option 3-7
-t # option to -start command 2-33
TC_AUTO_UPDATE_FAILED_MESSAGE configuration variable 3-20, 7-25
TC_AUTO_UPDATE_FAILED_TITLE configuration variable 3-21, 7-25
TC_AUTO_UPDATE_NOTIFY_FAIL configuration variable 3-21, 7-26
TC_AUTO_UPDATE_QUERY configuration variable 3-22, 7-17
TC_AUTO_UPDATE_QUERY_MESSAGE configuration variable 3-22, 7-18
TC_AUTO_UPDATE_QUERY_TITLE configuration variable 3-23, 7-17
TC_AX_EVENT_LIST configuration variable 3-23, 8-41
TC_CHECK_ALIVE_INTERVAL configuration variable 3-23, 3-32
TC_CHECK_INSTALLER_TIMESTAMP configuration variable 3-24
TC_CONTINUITY_WINDOW configuration variable 3-24
TC_CONTROL_SYNC_LEVEL configuration variable 3-25, 8-40, 8-41
TC_DELAY_ACTIVATE configuration variable 3-25
TC_DELAY_PRE_EVENT_OPS configuration variable 3-26
TC_DISABLE_AUTO_UPDATE configuration variable 3-26

Index-22
TC_DISABLE_SERVER_LOG configuration variable 3-26, 7-26
TC_DOWNLOAD_CANCEL_MESSAGE configuration variable 3-27, 7-23
TC_DOWNLOAD_DESCRIPTION configuration variable 3-27, 7-23
TC_DOWNLOAD_DIALOG configuration variable 3-27, 7-22
TC_DOWNLOAD_DIALOG_TITLE configuration variable 3-28, 7-22
TC_EVENT_LIST configuration variable 3-28, 8-40
TC_EXCLUDE_EVENT_LIST configuration variable 3-23, 3-28, 8-41
TC_INSTALLER_ARGS configuration variable 3-29, 7-20
TC_INSTALLER_CLIENT_FILE configuration variable 3-29, 7-20, 7-21
TC_INSTALLER_RUN_ASYNC configuration variable 3-30, 7-24
TC_INSTALLER_SERVER_FILE configuration variable 3-30, 7-19, 7-21
TC_INSTALLER_TARGET_DIR configuration variable 3-31, 7-19, 7-23
TC_INSTALLER_UI_LEVEL configuration variable 3-31, 7-24
TC_MAP_FILE configuration variable 3-31, 4-21
TC_NESTED_AX_EVENTS configuration variable 3-32
TC_QUIT_MODE configuration variable 3-32
TC_REQUIRES_BUILD_NUMBER configuration variable 3-32
TC_RESTRICT_AX_EVENTS configuration variable 3-33
TC_SERVER_LOG_FILE configuration variable 3-33, 7-26
TC_SERVER_TIMEOUT configuration variable 3-34
TC_TV_SELCHANGING configuration variable 3-34, 8-40
technical support 1-13
terminating a child process 8-20
terminating the remote application 4-6
terminations, unexpected 3-7
testing the AcuConnect connection in thin client 6-7
TEXT configuration variable 2-39
TEXT configuration variables 3-12, 5-11
text of messages

changing 3-12
thick client

distributing application components and 4-3
when to use 4-4

thin client
ActiveX resource files 6-9

 Index-23
alias file
creating 2-26, 8-16
manager utility 8-3
naming 3-10

assigning to acurcl daemon 2-32
automatic update. See thin client automatic update
benefits of 1-4
bitmap files and 6-9
bitmaps and performance 8-42
cache directory 6-9
cache file naming 6-9
calling DLLs 7-7
character mapping 4-21
client platforms suported 1-6
client-side information, obtaining 8-45
command-line files 7-12
connecting to AcuServer 8-43
creating an alias file 2-26, 8-16
creating an icon for 6-2
debugging 6-6
debugging in transaction processing 6-7
desktop programs, executing in 7-5
distributing application components and 4-3
DLL version 7-10
error messages 8-37
file transfers 7-2
installing ActiveX controls 6-3
licensing 1-10
limitations 4-12
maintaining aliases for 8-16
OS-IS-WINDOWS flag and 4-15
performance and screen trace 8-38
preparing data 4-11
preparing the client 6-2
preparing your application 4-3

Index-24
printing to local Windows machine 4-16
resource files 7-6
restrictions 4-12
Screen Section table handling 8-41
security 1-11
setting a password 6-8
setting a username 6-8
special directory identifiers 7-3, 7-21
splash screen 6-4
starting AcuConnect

on MPE/iX 2-35
on VMS 2-36

system performance 8-38, 8-39
testing the AcuConnect connection in 6-7
tree view performance in 8-40
troubleshooting 8-36
tuning performance 3-25, 4-19
unexpected system terminations in 4-15
wave files 6-9
when to use 4-4
Windows registry 4-16

thin client automatic update
accepting 7-18
comparing modification times between client and server 3-24
disabling 3-26, 7-17
download progress dialog 3-27, 7-22
enabling 7-17
failure log file

location of 3-33
preventing creation of 3-26

failure message
changing 3-20
changing for title bar 3-21
disabling 3-21

failure notification process 7-25

 Index-25
installer file 7-19
limitations 7-14
log file 3-33, 7-26
Microsoft Windows Installer 7-23
overview 7-14
process 7-16
query message box

controlling appearance of 7-17
determining message displayed in 3-22
enabling or disabling 3-22
specifying title bar text in 3-23

restarting the application 7-24
triggers 7-15
updating the registry 7-20
Windows installer interface 3-31, 7-24

thin client platforms supported 1-6
THIN_CLIENT_ENCRYPT configuration variable 3-35
trace function 3-7
trace levels, defined 8-22
tracing

adding to services 8-22
displaying directly to screen 2-32
turning on 2-33

tracing files 3-7
transaction processing, debugging 6-7
tree view performance in thin client 8-40
troubleshooting

AcuConnect fails to start 8-35
connecting to AcuConnect 1-11
connection refused 8-31
error messages and diagnostic procedures 8-27
invalid password 8-34
problems starting/stopping services 8-36
thin client 8-36
unexpected user name 8-28

Index-26
tuning network performance 3-23, 3-28
tuning socket performance

maximum size of data packets 3-17
Nagle algorithm 3-19
size of low-level receive buffer 3-17
size of low-level send buffer 3-18

tuning system performance 8-38
tuning thin client performance

color density and 4-19
delaying sending of events 3-25

U
umask

defined 2-14
specifying for access file records 2-22

unexpected system terminations in thin client 4-15
unexpected user name on server 8-28
UNIX

access restrictions 3-13
acushare utility 1-11
and ZLIB compression 8-40
application user information 8-44
debug mode 2-31
login shell 3-13
ownerships and permissions 2-12
problems with socket descriptors 3-5
return status codes 2-33
setting the user environment 2-34
shell login files 2-34
system log 8-25

updating the child process list box 8-19
usage limits and licensing 1-11
USE_SYSTEM_RESTRICTIONS configuration variable 3-13

 Index-27
USE_UNIX_SHELL configuration variable 2-34, 3-13
user access control 2-19
user environment

setting in UNIX 2-34
using a highly interactive Windows program 4-14
using the anchor tags 7-13
utilities

acushare 1-11

V
variables

modifying values of in the control panel 8-16
See also configuration variables

viewing status reports 8-25
Virtual Machine, COBOL 1-3
Virtual Private Network (VPN) 6-9
VMS

defining a symbol for AcuConnect 2-7
installing AcuConnect in thin client 2-7
RMS indexed file 2-7
starting AcuConnect 2-36
user account quotas 2-8

W
$WINHELP library routine 4-15
W$BITMAP library routine 4-18, 6-4, 6-10, 7-6
W$KEYBUF library routine 6-10, 7-5, 7-6
Web Thin Client 7-12
wildcards in access records 2-17
WIN$PLAYSOUND library routine 6-10, 7-6
WIN$PRINTER library routine 4-16, 8-44
WIN32_CTL_INPUT_STATUS configuration variable 4-13

Index-28
Windows
API calls 4-14
event notification system 8-25
help 4-15
installation 2-4
limitations, simultaneous child runtimes 3-6, 8-34, 8-37

UNIX and 8-32
on UNIX 4-15
registry 4-16
special directory identifiers 7-3, 7-21

Windows 2008
accessing AcuConnect utilities 2-19

Windows services, adding as dependencies to AcuConnect 8-23
WINNT_EVENTLOG_DOMAIN configuration variable 3-14, 8-25
WINNT_LOGON_DOMAIN configuration variable 3-13
WINPRINT_GET_PRINTER_INFO_EX 4-17, 8-44
WINPRINT_GET_SETTINGS 8-44
WINPRINT_GET_SETTINGS_SIZE 8-44
WINPRINT_SET_PRINTER 4-17, 8-44
WINPRINT_SET_SETTINGS 8-44

X
xterm 5-7

Y
"-y" runtime option, thin client limitations 4-13

Z
ZLIB compression 8-39

	Contents
	Introduction
	1.1 Overview
	1.1.1 Distributed Processing with AcuConnect
	1.1.2 Thin Client Technology with AcuConnect

	1.2 Platform Support
	1.2.1 Distributed Processing Platform Support
	1.2.2 Thin Client Platform Support

	1.3 How AcuConnect Works
	1.3.1 Distributed Processing
	1.3.2 Thin Client

	1.4 Licensing
	1.5 Security
	1.6 Technical Services

	The AcuConnect Server
	2.1 Getting Started with AcuConnect
	2.2 Installing AcuConnect
	2.2.1 Installing AcuConnect on a UNIX Server
	2.2.2 Installing AcuConnect on a Windows Server
	2.2.3 Installing AcuConnect in Thin Client on a VMS Server
	2.2.4 Running AcuConnect in Thin Client on HP MPE/iX Systems
	2.2.5 Installing the ACUCOBOLGT Runtime
	2.2.6 Relinking the Server Runtime in Distributed Processing

	2.3 Establishing System Security
	2.3.1 Windows permissions
	2.3.2 UNIX ownerships and permissions
	2.3.3 The Server Access File
	2.3.4 Access Record Composition
	2.3.5 Using the Access File Manager
	2.3.5.1 Starting the access file manager
	2.3.5.2 Creating or opening an access file
	2.3.5.3 Adding an access record
	2.3.5.4 Removing an access record
	2.3.5.5 Modifying an access record
	2.3.5.6 Displaying an access record

	2.4 Creating a Server Alias File in Thin Client
	2.4.1 Adding aliases
	2.4.2 Removing aliases
	2.4.3 Modifying aliases
	2.4.4 Displaying aliases

	2.5 Installing Server Programs
	2.6 Starting AcuConnect
	2.6.1 Starting AcuConnect on a UNIX Server
	2.6.2 Starting AcuConnect on a Windows Server
	2.6.3 Starting AcuConnect in Thin Client on MPE/iX
	2.6.4 Starting AcuConnect in Thin Client on a VMS Server
	2.6.5 Starting AcuConnect at System Startup

	2.7 AcuConnect Connection Logic
	2.7.1 Passwords
	2.7.2 Exiting the Access Manager

	Server Configuration
	3.1 Configuring the AcuConnect Server
	3.2 Configuring the Environment
	ALIAS_FILE_IS_XML

	3.3 Creating a Server Configuration File
	ACCESS_FILE
	ACURCL_PORT
	AGS_BAD_SOCKET
	CHILD_WAIT
	DEFAULT_USER
	FILE_TRACE
	FILE_TRACE_FLUSH
	FILE_TRACE_TIMESTAMP
	PASSWORD_ATTEMPTS
	PROVIDE_PASSWORD_MESSAGES
	SECURITY_METHOD
	SERVER_ALIAS_FILE
	SERVER_IP
	SERVER_NAME
	SERVER_RUNTIME
	TEXT_nnn
	USE_SYSTEM_RESTRICTIONS
	USE_UNIX_SHELL
	WINNT_LOGON_DOMAIN
	WINNT_EVENTLOG_DOMAIN
	Sample “acurcl.cfg” File

	3.4 Creating a Runtime Configuration File for the Remote Server Component
	AGS_MAX_SEND_SIZE
	AGS_RECEIVE_BUFFER_SIZE
	AGS_SEND_BUFFER_SIZE
	AGS_SOCKET_COMPRESS
	AGS_SOCKET_ENCRYPT
	AGS_TCP_NODELAY
	ENCRYPTION_SEED
	FREEZE_AX_EVENTS
	TC_AUTO_UPDATE_FAILED_MESSAGE
	TC_AUTO_UPDATE_FAILED_TITLE
	TC_AUTO_UPDATE_NOTIFY_FAIL
	TC_AUTO_UPDATE_QUERY
	TC_AUTO_UPDATE_QUERY_MESSAGE
	TC_AUTO_UPDATE_QUERY_TITLE
	TC_AX_EVENT_LIST
	TC_CHECK_ALIVE_INTERVAL
	TC_CHECK_INSTALLER_TIMESTAMP
	TC_CONTINUITY_WINDOW
	TC_CONTROL_SYNC_LEVEL
	TC_DELAY_ACTIVATE
	TC_DELAY_PRE_EVENT_OPS
	TC_DISABLE_AUTO_UPDATE
	TC_DISABLE_SERVER_LOG
	TC_DOWNLOAD_CANCEL_MESSAGE
	TC_DOWNLOAD_DESCRIPTION
	TC_DOWNLOAD_DIALOG
	TC_DOWNLOAD_DIALOG_TITLE
	TC_EVENT_LIST
	TC_EXCLUDE_EVENT_LIST
	TC_INSTALLER_ARGS
	TC_INSTALLER_CLIENT_FILE
	TC_INSTALLER_RUN_ASYNC
	TC_INSTALLER_SERVER_FILE
	TC_INSTALLER_TARGET_DIR
	TC_INSTALLER_UI_LEVEL
	TC_MAP_FILE
	TC_NESTED_AX_EVENTS
	TC_QUIT_MODE
	TC_REQUIRES_BUILD_NUMBER
	TC_RESTRICT_AX_EVENTS
	TC_SERVER_LOG_FILE
	TC_SERVER_TIMEOUT
	TC_TV_SELCHANGING
	THIN_CLIENT_ENCRYPT

	Preparing Your Application
	4.1 Designing Your Application
	4.1.1 In Distributed Processing
	4.1.2 With Thin Client Technology

	4.2 Distribution Considerations
	4.2.1 When to Use a “Thin” Client
	4.2.2 When to Use a “Thick” Client
	4.2.3 When to Use a “Smart” Client

	4.3 Distributed Processing Application Design
	4.3.1 Embedding COBOL CALLs
	4.3.1.1 Terminating the remote application
	4.3.1.2 Exception handling
	4.3.1.3 CALLing multiple programs

	4.3.2 Synchronous or Asynchronous Execution
	4.3.2.1 CALLing C$ASYNCRUN
	4.3.2.2 CALLing C$ASYNCPOLL

	4.3.3 Memory and Environment Issues

	4.4 Thin Client Application Design
	4.4.1 Limitations in Thin Client Environments
	4.4.2 User Interface Work in Thin Client
	4.4.2.1 Building a new graphical display
	4.4.2.2 Working with character display limitations
	4.4.2.3 Deploying a highly interactive program in a wide-area network

	4.4.3 Other Application Work in Thin Client
	4.4.3.1 Adjusting for certain Windows features
	4.4.3.2 Accessing the Windows registry on the client machine
	4.4.3.3 Printing in thin client
	4.4.3.4 Selecting a file from the client machine’s drives
	4.4.3.5 Using W$BITMAP print screen features

	4.5 International Character Handling
	4.5.1 In Distributed Processing
	4.5.2 In Thin Client

	Preparing the Client(s) in Distributed Processing
	5.1 Installing the ACUCOBOLGT Runtime
	5.1.1 Relinking the Client Runtime
	5.1.2 Removing AcuConnect Client Support From the Runtime
	5.1.3 Passwords for Clients
	5.1.4 Setting Up the Host Name
	5.1.5 Confirming Network Services

	5.2 Creating a Client Configuration File
	5.2.1 Defining Remote Application Path
	5.2.1.1 CODE_PREFIX
	5.2.1.2 Code name aliases

	5.2.2 Other Variables
	5.2.2.1 ACUCONNECT_DEBUG_METHOD
	5.2.2.2 ACUCONNECT_DEBUG_METHOD_STRING
	5.2.2.3 ACUCONNECT_CLOSE_AFTER_CANCEL
	5.2.2.4 ACUCONNECT_RUNTIME_FLAGS
	5.2.2.5 ACURCL_PORT
	5.2.2.6 DEFAULT_MAP_FILE
	5.2.2.7 server_MAP_FILE
	5.2.2.8 SECURITY_METHOD
	5.2.2.9 TEXT_nnn

	5.2.3 Sample “client.cfg” File

	5.3 Installing Client Programs
	5.4 Executing Programs on the Client
	5.4.1 Executing Non-COBOL Programs on the Client
	5.4.2 Debugging in a Distributed Processing Environment

	5.5 Sample Programs
	5.6 Running the Sample Programs
	5.6.1 Running the Sample Programs in UNIX
	5.6.2 Running the Sample Programs in Windows
	5.6.3 Results

	Preparing the Client(s) in Thin Client
	6.1 Preparing the Client
	6.2 Installing the ACUCOBOLGT Thin Client
	6.3 Installing ActiveX Files
	6.4 Thin Client Splash Screen
	6.5 Launching Remote Programs From the Client
	6.5.1 The acuthin Command
	6.5.1.1 Debugging option
	6.5.1.2 Debugging in a transaction processing environment
	6.5.1.3 Testing your AcuConnect connection
	6.5.1.4 Setting username and password

	6.6 Launching Programs on the Internet
	6.7 Using the Client Cache Directory

	Thin Client Special Topics
	7.1 Introduction
	7.2 Using Library Routines and DLLs in Thin Client
	7.2.1 Copying Files Between the Client and Server
	7.2.2 Executing Desktop Programs
	7.2.3 Using Files Containing Keystrokes
	7.2.4 Selecting Files on the Client
	7.2.5 Accessing Local Resource Files
	7.2.6 Calling Dynamic Link Libraries (DLLs)
	7.2.6.1 Calling client-side DLLs
	7.2.6.2 Related configuration variables
	7.2.6.3 Passing pointers in DLL calls

	7.2.7 Calling the DLL Version of the ACUCOBOLGT Thin Client

	7.3 Launching Thin Client Applications From a Web Page
	7.3.1 Thin Client Command-line Files
	7.3.2 Using Anchor Tags

	7.4 Thin Client Automatic Update
	7.4.1 Automatic Update Overview
	7.4.2 Automatic Update Process
	7.4.3 Enabling or Disabling the Automatic Update Feature
	7.4.4 Informing the User When an Update Is Needed
	7.4.5 Accepting the Automatic Update
	7.4.5.1 “.msi” installer
	7.4.5.2 Other installers
	7.4.5.3 Installer file locations
	7.4.5.4 Download progress dialog
	7.4.5.5 Microsoft Windows Installer

	7.4.6 Restarting the Application with the New Thin Client
	7.4.7 Automatic Update Failure

	Managing the System
	8.1 Introduction
	8.2 Managing the System: UNIX
	8.2.1 The acurcl Command
	8.2.1.1 acurcl access
	8.2.1.2 acurcl alias
	8.2.1.3 acurcl config
	8.2.1.4 acurcl info
	8.2.1.5 acurcl install
	8.2.1.6 acurcl kill
	8.2.1.7 acurcl query
	8.2.1.8 acurcl remove
	8.2.1.9 acurcl start
	8.2.1.10 acurcl version

	8.3 Managing the System: Windows
	8.3.1 AcuConnect Control Panel
	8.3.1.1 Access Tab
	8.3.1.2 Config Tab
	8.3.1.3 Alias Tab
	8.3.1.4 Info Tab
	8.3.1.5 Services Tab

	8.4 Machine Failures
	8.5 Event Logging
	8.6 AcuConnect Error Messages
	8.7 AcuConnect Distributed Processing: Troubleshooting
	8.7.1 Error Messages
	8.7.2 Unexpected User Name
	8.7.3 Connection Refused
	8.7.4 Invalid Password
	8.7.5 AcuConnect Fails to Start
	8.7.6 Problems Starting and Stopping Services

	8.8 AcuConnect Thin Client: Troubleshooting
	8.8.1 Error Messages
	8.8.2 Tuning System Performance
	8.8.2.1 Buffer size considerations
	8.8.2.2 File compression
	8.8.2.3 TC_CONTROL_SYNC_LEVEL runtime configuration variable
	8.8.2.4 TC_TV_SELCHANGING configuration variable
	8.8.2.5 Graphical control event handling
	8.8.2.6 Screen Section table handling
	8.8.2.7 Grid control
	8.8.2.8 Bitmaps
	8.8.2.9 Multiline entry fields

	8.8.3 Connecting to AcuServer
	8.8.4 Frequently Asked Questions

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

