Appendices

ACUCOBOLGT®

Version 8.1.3

Micro Focus

9920 Pacific Heights Blvd
San Diego, CA 92121
858.790.1900

© Copyright Micro Focs (IP) Ltd. 1998-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-AP-100501-Appendix-8.1.3

Contents

Appendix A: Specifications

AL COBOL MOUUIBSvveviiieiiee sttt ettt ettt sbe e s be b sbeenbesbeenrenas A-2
y AN g T ES3E Ta o Lo A-2
AL EXEENSIONS ...eivieiiee ettt e st e e tee et e s bbeeebe e s beesrbeeabeestbeenbeesaee s sbeesbeeerbeens A-4
AL RESITICHIONS ..ottt ettt ettt st e et e e sbeeebe e sbeeenbeesbeesbeeebeeetbeenns A-10

Appendix B: ACUCOBOL-GT Reserved Words

LS8 001 01 V/=T) 1o 1R B-2
B.2 RESEIVEA WOIT LiSt......eviiiiiiiiieiie sttt sttt s bt ebta e s st e s s ssta e s sabae s sabee s B-3

Appendix C: Changes Affecting Previous Versions

C.1 Changes Afecting Version 8.1.2......cccccivvieiiiiieii e se et C-2
C.2 Changes Affecting Version 8.1.1ccoiiiiiiiiiieieieceese et C-2
C.3 Changes Affecting Version 8.1 ...ttt C-3
C.4 Changes Affecting VErsion 8.0ccoouiiiiiiiiiiiiiieese e C-3
C.5 Changes AffECtiNg VEISION 7.2cvovieie ettt sre e C-4
C.6 Changes Affecting VErsiON 7.1c.coviivieiiiesesieieeeeee e sresne e C-5
C.7 Changes AfeCting Version 7.0cccvoeiiiieiiiiese et C-6
C.8 Changes AffECting VErsiON 6.2ccooiiiiiiiiiriieeee et C-6
C.9 Changes Affecting VErsion 6.1 ..ottt C-9
C.10 Changes Affecting VErsion 6.0ccoeereirciineienee st C-10
C.11 Changes Affecting VErSION 5.2ccccvccviieieiiricieceee e e e C-11
C.12 Changes Affecting VErsion 5.1cccoiiiiiiieiiciec e C-15
C.13 Changes Affecting VErsion 5.0ccccoveiiiiieiiiiieesiese e C-18
C.14 Changes AFfecting Version 4.3 ...t C-20
C.15 Changes Affecting VErSioN 4.2cccveiiiiinciineie et C-22
C.16 Changes Affecting VErsion 4.1ccoeiiiiincieneieneie e C-24
C.17 Changes Affecting Version 4.0cccccvvvvieiiviniecie e C-24
C.18 Changes Affecting VErSiON 3.2c.cocveiiiie et C-25
C.19 Changes Affecting VErsion 3.1........cccoveiiiieiiiieniceese et C-28
C.20 Changes AFfecting Version 2.4cocoiiiiiiiiieeeec et C-29
C.21 Changes Affecting VErsion 2.3 ..ot C-30
C.22 Changes Affecting VErsion 2.1cccveiiiineiineie et C-31
C.23 Changes Affecting Version 2.0ccoovivrieieniieeieee e C-34

C.24 Changes Affecting VErsion 1.5cccovi e C-34

Contents-ii

C.25 Changes Affecting VEISION 1.4ccccoveieiiiieie et C-37
C.26 Changes AFfecting VErsion 1.3 ...t C-40

Appendix D: Compiler Error Messages

[R T Ao Yo [0 Tt (o] o R D-2
D2 LISE OF EITOIS ettt ettt ettt et e st e s st e s s bt e s s bte e s sab e s e sbbas s sabaessabanessseassans D-2

Appendix E: File Status Codes

E.L INEFOTUCTION ..ottt ettt sb et eaeene E-2
E.2 TaDIE Of COUEBScueiti ittt e st e ettt eeaeennas E-2
E.3 Vision Secondary Error Codes for Error 98S..........coviiiiniiineie e E-8
E.4 Transaction ErrOr COUEScueviieieireii sttt s E-10

E.4.1 Primary Error COUES.......cviviiereiierieeee et sese e a st eneenas E-11

E.4.2 Secondary Error Codes for Error OL........cccoevvvveieiennsnnnse s E-12
E.5 IBM DOS/VS EITOr COUBSccvviuiieietiriesiestes ettt s e sn e E-13

Appendix F: Intrinsic Functions

I 1o (oo [0 Tox 1 o] o OO TEOOSEUT PRSPPSO F-2
F.2 Function Definitions and Returned ValUes...........ccceoiveiieeiii et F-3

F.2.1 FUNCEION DEfiNItIONScooiiiiiiiecieccte ettt ebe et F-4
F.3 ABSOLUTE-VALUE (ABS) FUNCIONcoviiiiiiiiiseisies e F-7
N (@ I3] T £ o o P F-8
F.5 ANNUITY FUNCHION c1ccttiiecicct ettt st sve sttt et sreere s F-9
F.B ASIN FUNCHIONecviiticiiece ettt ettt ettt s sre st sbeere e b e ebsebeeneenreenns F-10
F.7 ATAN FUNCLION ...ttt et ba e st e sbe e sbeeenbe e s teeebeennee s F-10
F.8 CHAR FUNCLION ...ttt ettt st s te e sbe e sbeeebe e taeeebeesaee s F-11
[(@ 3 U] 2T £ o o [P F-11
F.10 CURRENT-DATE FUNCLION......ccutiiiotiiiietiiesetiee st e stee st s e setaeesereee st e e sssaesesbenssereees F-12
F.11 DATE-OF-INTEGER FUNCLION......ccccitiitiitieiecte ettt st ere e F-13
F.12 DAY-OF-INTEGER FUNCHON.....c.ccoiiiiiieiic ittt F-14
F.13 FACTORIAL FUNCHION. ...ttt st sttt vt re e v e F-15
F.14 INTEGER FUNCHION ..c.viitiicii ettt ettt sttt sba bbb e b ens F-15
F.15 INTEGER-OF-DATE FUNCHIONccoitiiieie ettt ettt et e st n e svae e s srae e F-16
F.16 INTEGER-OF-DAY FUNCLION......coioitiitiieetie et stee e ste sttt s ettt e st ee s tes e seraaesereee e F-16
F.17 INTEGER-PART FUNCHION.....ccoiiiiiitiiie ittt et st sba e sre e F-17
F.18 LENGTH FUNCLION ..ottt ettt ettt sbe st sbe b b ens b ens F-18
F.L1O LOG FUNCHIONeitic ettt ettt et e et e s e e sbe e sbeeebe e stbeebeennee s F-19

F.20 LOGIL0 FUNCHION 1.ttt ettt ettt sttt s st e s s sbba e s sabas s snta s s saee e F-19

Contents-iii

F.21 LOWER-CASE FUNCHIONvcitiiice ettt ettt sresbe ettt sraens F-20
F.22 MAX FUNCHION......citiiiie ettt ettt ettt et ettt s abe e st e sab e e sbeeeate e sbeesaneenbeesens F-21
F.23 MEAN FUNCLION ...ttt ettt ettt st ettt e stbe e sbeeente e sbeesnaeenreeses F-22
F.24 MEDIAN FUNCLION c..ooviiitii ittt ettt ettt sbeeente s sbe e snaesnre e e F-22
F.25 MIDRANGE FUNCLION ...ttt sttt sve st sbe et be e sreennesbesnaesreaneens F-23
F.26 IMIN FUNCHIONveitiiiiicc ettt sttt st b et ebeebe e besneestesbeesbesraesresreens F-24
F.27 MOD FUNCHION......citiiiec ittt ettt et et e sb e s abe e s be e st e e s beesaee e sbeesnaeenreesees F-24
F.28 NUMVWAL FUNCLION 1.ttt sttt sttt sb et ebe st sts e sbe e srearaens F-25
F.29 NUMVWAL-=C FUNCLION ..ttt sttt sttt ebesrt b ste e sbe e sreanaens F-26
F.30 ORD FUNCHION......ccitiiiec ittt ettt ettt ettt et eb e s be e st e e sbeesate s sbe s saaeenbeesees F-28
F.31 ORD-MAX FUNCHIONcoiiiitiiticciect ettt sttt sbe bbb sbe e sbe et s be e F-28
F.32 ORD-MIN FUNCLION 1.ecuviitiiiiiteeiecte ettt sttt sbe et sbe et be b s be e sbesaesbeennens F-29
F.33 PRESENT-VALUE FUNCLIONcciiitiiiicee ittt sttt sve v sve e sbe s ne F-30
F.34 RANDOM FUNCHION 1...ooiiviiiiccii ittt sttt sb st be st stesaassbesaesteanae s F-31
F.35 RANGE FUNCLIONooitiiiii ittt ettt e e sbe e s naeenraeenes F-32
F.36 REM FUNCHIONveiitiiite ettt ettt ettt be s st et saa e s beeebae s be e ebeesnee e F-32
F.37 REVERSE FUNCLIONooitiiiiite ettt sttt be bbb sbe e sbe et sbe e F-33
F.38 SIN FUNCLION.viitiiiteci ettt sttt st e st e erbeebe e b e sbeenresbeeaesbeeneens F-33
F.39 SQRT FUNCHION......ciiiiicicisese sttt e et te st e b e st st et esae e eneeresrestesrens F-34
F.40 STANDARD-DEVIATION FUNCLIONcooiiiiiiiiece ettt F-34
F.A1 SUM FUNCHION ...ttt ettt ettt st et s tae e ebe e sabe s nbeeebeesbeesbaesnreeras F-35
[17 AN N\ I U Tox T SR F-36
F.A3 UPPER-CASE FUNCLIONccuiitiiiiiite ettt sttt st ve b sbe e aesbeenee s F-37
F.A4 VARIANCE FUNCHION ..ottt be b sbe e sbe et sbeene s F-37
F.45 WHEN-COMPILED FUNCLIONoovviviiiiicie ettt sttt ve s sbe v v sna e nne F-38

Appendix G: Reserved for Future Use

Appendix H: Configuration Variables

H.L INEFOQUCTION ...ttt H-2
H.1.1 Variabhle SYNTAX......ccoiiiiiiiiiiiiee et ettt e e H-2
H.1.2 Variable USAQ........cooiiriiiiie et H-3
H.1.3 Configuration filename ReSOIULION. ..o H-4
H.1.4 Nested configuration fileS.........ccccviiiiviieiininerccec e H-5

H.2 Configuration VariableS...........ccccveiiiiiccc e H-5
BD_LINES ..o bbb H-6
AGL_COLUMN_CASE ...ttt ettt bbb H-7
A = 1 OO P PP PP PP RPRTPPPN H-7

Contents-iv

A _DEBUG ..ottt bbbttt ettt eas H-8
ALDISPLAY .ottt bbbt ettt ettt et e H-8
A _EXTFH_FUNC ...ttt sttt st sne e H-9
F N = 1 T 1 SRS H-9
A_EXTFH_SIMPLE_OPEN_OUTPUT ...cccoitiiiniriniee e H-10
A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL,
A_EXTFH_VARIABLE_SEQcctiitiieienieie sttt H-11
A _JAVA _CHARSET ..ottt sttt H-11
A _JAVA_GC_COUNT ..ottt sttt n et H-12
A _JAVA_TRACE_FILENAMEccot ittt H-12
A JAVA TRACE_VALUE ...ttt H-12
A_LICENSE_RETRIES ..ottt H-14
A_OPERATING_SYSTEM ..ottt H-14
A_REMOVE_EMPTY_ERROR_FILEcceoiiiiiiiiisinicese e H-14
A _RETRY _DELAY .ottt sttt st bbb sb ettt H-15
A _SEQ _DEFAULT BLOCK _SIZEccciiiiiieiieisieiesiee et H-15
A _SYSLOG_HOSTNAME ..ottt et H-15
A_SYSLOG_ON_RUNTIME_ERROR.......cccctitiiiiiiiiniee et H-16
ACCEPT_AUTO ittt sttt H-16
ACCEPT _TIMEOUT ..ottt st st H-16
ACTIVE_BORDER_COLORcocciiieitiieiesieie ettt sttt a st H-16
ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH,
ACU_DUMP_TABLE_LIMIT oottt H-17
ACU_USER _DIR ..ottt sttt sttt ns H-18
ACUCOBOL ..ottt st s H-19
AGS_BLOCK _SLEEP_TIMEcocotiiiieiieitsee ettt H-19
AGS_MAX_SEND _SIZEoovitiieiiee ettt H-19
AGS_RECEIVE_BUFFER_SIZEccocoiitieit ettt H-20
AGS_SEND _BUFFER _SIZEco ottt H-20
AGS_SOCKET_COMPRESSoootitieiirienie ettt sttt eneenas H-21
AGS_SOCKET_ENCRYPT ..ottt ettt sttt H-21
AGS_TCP_NODELAY ..ottt st st sttt H-22
alfred Configuration Variablesccceiiiiie i H-22
ALLOW _FS_OVERRIDEccoiitietniee ettt H-22
ANSI_OQUTPUT _IN_DEBUGooiiiceitctcerereee et H-23
APPLY _CODE_PATH ..ottt sttt H-23
APPLY _FILE_PATH ..ottt H-24
AUTO _DECIMAL ..ottt st s bbb st H-24
AUTO _PROMPT .ottt ettt sttt sttt H-25

AXML_CREATE_SCHEMA ...t H-25

Contents-v

AXML_CREATE_STYLE . .oovoccoeiooeveeieeeeeeeeeeeeseessessseeseseseesseessesseesseesessessseeresssees H-25
AXML_ENCODING........eovveeeeeeeeeeeeeeeeesessseeeseessessseesssessesseessessessseesesesssssseesrssesees H-26
AXML_EXACT_TABLE_MATCH ...cooreooveeeeeeseeeeeeeseeeseeseeeseessessseesesseessee e H-27
AXML_IGNORE_EMPTY _DATA ..ocoeriorvecireeseeseeeosessssesseessessessseessesssssssesesssens H-27
AXML_SCHEMA_DOC ...ovvoooeeeeeeeeeeeesee oo seeeeseesseeseesseeesesseesseeseesseessee e H-27
AXML_SCHEMA_NAMEcomriveeeeeeesseeeeeeeeeeseeeeseeeseessesseesesseesseesessesssee e H-28
AXML_SCHEMA_NAMESPACE_DATAmomioeeeeeeseeeeeeeesesesesesesesssessseessesseenes H-28
AXML_STYLESHEET_HREF and AXML_STYLESHEET _TYPE ...evvvvvvvecrrrnen H-29
BACKGROUND_INTENSITY ..ovoccormieeveeeereeeeeeeeeeeesseesseeesesessssseessesssessseseesssesseees H-30
BELL ¢ooooevvveeeoeeeeeeeesesesesessessseseessssesseesessssesseessesssses s eseesssees e eseess e eeesessee s seees H-31
BOXED_FLOATING_WINDOWS.........ovvecoeereeeeeereesseseeeeseeeseeeseeesesseessseeeeesseeeeees H-31
BTRV_MASS_UPDATE ...coiioveeeeeeeeeeeeereesseeeeeeeseeessesseeesesssessseossessesesseesesssessenes H-31
BTRV_NOWRITE_WAIT ..o seeseee oo seeseesseeeeeeeseessseesesssessseeeesseeseees H-31
BTRV_USE_REPEAT _DUPS.......corioeveereeeeeeeeeeseesseesseeesesssessseesssssessseeseesssesseees H-32
BUFFERED_SCREENcoouioveeeoeeeeseeeeeseeseesseeesesssssseeesseeessssseeseesssssssessesssesseees H-32
CALL_HASH_SIZE oovvvoooeeeeeeeeoeeeeeseeeeseessessseesssessssssesssssssssessseessssssesessssssseseeeen H-32
CANCEL_ALL_DLLS....ccoooieveeereeseeeeeeeseesseeseeeeesesesseeeeseesessseseseesesssseeessesseseeens H-33
CARRIAGE_CONTROL_FILTER wovvvocooeeeeeeeeeeeeeeeeeeeeeseseeeseeseesseessesesssesssesseeen H-33
CBLHELP .o esees e esees s s sssese e ss e esessesees H-34
CGI_AUTO_HEADERoemvveeeeeeseseeeeeeeseseseseeeesssssseseesssssssseseeesssssssessessesssseens H-34
CGI_CLEAR_MISSING_VALUESommeorveeecreeeeseeeeeeseeseseeeeeseesessseesessessssesos H-35
CGI_CONTENT _TYPE cooootmemeoeeeoeeeesseseeseeessssseessessesssesssessessssesssesssssssessseesesssseeseons H-35
(1T I (e XN o7-Xo! 5 | H-37
CGI_STRIP_CR ceoooooeeeeeeeseeeeeeeeeeeseeeeeeseee e eseee e s s seeseeseseessese e esssee e seesesees H-37
CHAIN_IMENUS......oeovveeeeeeeeeeeeeeseeeseeseeeeseessseseeeeesssesseeeeesssessseseeessesssesesesessesees H-38
CHECK _USING.....oreovveeeeeseeeeeereeseseseseesesssesseeesseessessseesesesssssessseessessseeseessssssesseeen H-38
CISAM_COMPRESS_KEY'Socoerireoeeeseeeeseseeoeessessseesesssessssesssesssssssessessesssseens H-39
CLOSE_ON_EXIT teevvveeeeeeeeeeeeeseesssseseessesessssseessessessseessesssssssesssessssssssssseesessssseneons H-39
COBLPFORMcomrieereeeeeeseeeeeeseseeeeseeeseesseeseeeeeessessseeeeeeseessese e essseeeeeseesesees H-39
CODE_CASE ..ovvecooeeeeeeeeeeseeeeeveeseesseeseesseessseseeseeeeesseeessessssseeeseessessseeesesessseens H-40
(0200 = YN T=T | N T OO H-41
CODE_PREFIXootiitveeeeeseseseeeeeseeessssssessesssssssesssessssssessssessssssseseesssssssesesessesssseens H-42
(0300 =1 U= =1) OO H-43
CODE_SYSTEM...ooreivvveeeeeeeseeeeeeesesesseessoesssssssessessesssssssesssssssessseessssssssssessssssseseons H-43
COLOR_MAP ... eeeeeeeeeeeeeeeeesee e eseeeeeeeeesseeee e eessese e sesee e ssesees H-45
COLOR_IMODELooivvveeeeeeeeeeeeseeseeeeeeeseessseseeseesseesseesseesseessseseeessessseeesssesssseesns H-45
COLOR_TABLEoorivvveeeeeeeeeeeeeseseseeseeeseessseseeeeesssesseeeeeesssssseseeessesssseseesesesseeseons H-47
COLOR_TRANS.....ooetvvveeeeeeeeeeeeeeeeseseeseesseessseseeseeessssseeseesseessseseesssessseseeesesssseens H-48
(Lo ULV INIRSI YN =7 £ N H-49

COMPRESS_FACTOR. ... oottt H-49

Contents-vi

COMPRESS_FILESooroovvveceeeeeeseeeeeeesseeeseseesesessseessssseesssesesssesssseeeessesseseseeseseeeees H-50
CONTROL_CREATION_EVENTS ...oooivveeceeeeeeseeeesesesseeeeeesssesssseeeessessssesessessseees H-50
(o182 1=1=] N[0 TS H-51
CURSOR_IMODEcouevvveeseessessseesssessesssessesssesssesssessesssessesssessssessesssessssesesssesseees H-51
(181510 =T 17 IO H-51
DEBUG._NEWCOPYoooimveeeeeeeseeeeeeeeesseeeseeeeesseessseesessesseseeeesseeesesesesssesseesseene H-52
DECIMAL_POINT «.oovveooeeeeeeeeeeeeeeeeeeeeeseeeeseesessseeseseeeessessesee s esseee s H-52
DEFAULT_FILESYSTEM woovvecooeeeeeeoeeeseeseeeeeesseesseeeseessesseeseeessessseeessessssssee e H-53
DEFAULT_FONT w.oovvveooeeeeeeeeeeeese e e eeesseesesessssesseesseesesseseseesseseseeeesesssseee e H-54
DEFAULT _HOST weovvveooeeseseeeessessessseessessssessesssssessssessessessesessesssssssssesssssseessessnes H-55
DEFAULT_MAP_FILE ...oooovveeoeeeeeeeeeeeeeeeeeeeeeeeseeeeseeeseessessesees e seesseessee e H-55
DEFAULT_PROGRAM ...c.ovvvecoeieeeeeeeeeeee oo eeeeeesseeeseeseesesee s eeseeesesesessee e H-56
DEFAULT_TIMEOUT ...oooiveeeeeeeeeeeeeeeeeeeeeeeeeesessesseeesessesssseeeeesseeseee s seee e H-56
DISABLED_CONTROL_COLOR ...ovvcooeeeeeveeeeeeeeseeeseessesseeeeseeseessseessesssessee e H-56
DISPLAY_SWITCH_PERIODovvveeeeeeeeeeeeeeseeeeeeeesssesseseeeeseeseesseeeseessssseee s H-57
DLL_CONVENTION w.vcoooerveeeroeeeesseeessessessssessesssesssessssessssessessssssssesessssssseesseene H-57
DLL_SUB_INTERFACEovvecooeeeeeeeeeeseeseeeeeseseeseeessesseseseee s ssesesessee e H-58
DLL_USE_SYSTEM _DIR ..ovveeooieeeeeeseseeeseeeeeeseeeesseessessesseseessesseesseeessesseesseee e H-58
DOS_BOX_CHARS.......coeieteeeeeeeeeeeeeeeeeeseeseseeeessesesssessessesssseeeessseesseesesesessee e H-58
DOS_SYS_EMULATE ...ooomveeeeeeeeeseeeeeeeseeseseeesseessssessessesseseeeesssssseesssessssssee s H-60
DOUBLE_CLICK_TIME ..eevvvecooeeeeeeeeeoeeeseeseeeeesssessseeseesssssseessesssseseseseesesseees e H-60
DUPLICATES_LOG .ovvvcveeeseeeeeoeeessseessesssssssessssssesssessessessssessessessssssessssssesesesenes H-60
DYNAMIC_FUNCTION_CALLS ...ovooooeeeeeeeeeeseeeeeeeseeseeeeeee e H-61
DYNAMIC_MEMORY _LIMIT ...cooovoceeeeeeeeeeeeeeeeeeeseeseeseeeeseeseeeeeeessesssesseee e H-62
ECN-3699 ..o eeeeeeeeeeeseeeeeeseeseeeeeeeseeeseesseeeeeeseeseeeseeseseesees e seesee e seeee e H-63
EDIT _IMIODE ...ccoooeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeesessesseeeseesseeeeesessss e eeeeseseee e sseee e H-63
EF_UPPER_WIDEoovecoooeeeeeeooeeeeeseeeeeeeseesseeesesssessseeesessesseseeeesesssseeeseessssssee e H-64
=TV)] 4 = OO H-64
=0 = N=T0 =3 £ H-64
EOL_CHARcoooeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeesessessseeeessses e sesee e eeseee e H-65
ERRORS_OKcooomioeeeeeeeseeseeeeeeeseeseeeesesssssesseesessssesssessessesssseesessssesseesesesesseee e H-65
EXIT_CURSOR ...ooovveeeeeeseeeeeeeeeesessseeeseessssessessessssesssessessesssseeessessseeesesesssseeee e H-66
EXPAND_ENV_VARSoeovveeoeeeeseeeeeesessssssessossssesssessessessssessessssssssssesssssssesonenes H-66
EXTEND_CREATEScoeeevvveeoeeeesseeeseesssessseesesssesssessessesssssssessssssssesossssssssesseene H-67
EXTFH_KEEP_TRAILING_SPACESoovveeeeeereeeeeeeseeseeeeeeeessesseeeeeeesesesesseeesseeen H-67
EXTERNAL_SIZE w..oovvooooeeeeeeeeeeeeeeeeeeeeeesseeseeeseseesesseeesessesseseeseeesseseses e seee e H-67
EXTRA_KEYS_OK ..ovvecooeeeeeeeoeeeeeeeeeeeeeesseeeseoesessesssessessesssseesesssessseesesssessee e H-67
FLO_IS_IMENU ..o eeeeeeeeeeeeeeeeeesesessseesessesessses s sesee e seee s seee e H-68
FAST ESCAPEoooeovvveeeeeeseeeesesesessseesseesesessesssessesssesseesessesesseseessssseeessssseeeneesee H-68

FAST_SIGN_DECODE ..ottt e H-69

Contents-vii

FIELDS _UNBOXEDocotiiiiiiiiiiiisieise ettt H-69
FILE_ALIAS_PREFIX ..ottt ettt H-70
FILE_CASE ...ttt bbbttt sttt et H-71
FILE_CONDITIONcotiiieitietiest ettt ettt st st st nre s H-72
FILE_IO_PEEKS_MESSAGEScocoiiiieiiiiiesie e H-72
FILE_IO_PROCESSES_MESSAGES........ccccitiiiiniiiseine e H-73
FILE_PREFIX ..ottt sttt H-74
FILE_STATUS _CODES......cooiiiiiiiieriseis sttt H-75
FILE_SUFRFIX ..ottt ettt sttt H-75
FILE_TRARQCE ... oottt ettt be et st sbe et e nbe s H-75
FILE_TRACE_FLUSH ..ottt H-75
FILE_TRACE_TIMESTAMP....coiitiiiriitiriieiiet ettt H-76
FHHENAME <. H-76
fillename_DATA FMT ..ottt ne s H-77
filename_FILESYSTEM ..ottt sttt st H-79
FHENAME _HOST ...ttt H-79
filename_INDEX FMT ..ottt enen H-80
111 T=T = T 1 T LTS H-82
FILENAME_SPACES ...ttt H-82
filename_VERSIONooiioiicece e sreeneas H-83
fileSYStEM _DETACH ..ottt H-84
FLUSH _ALL .ttt st et st bbb s H-85
FLUSH_COUNT ...ttt sttt H-86
FLUSH_ON_ACCEPT .ttt sttt H-87
FLUSH_ON_CLOSE ..ottt ettt H-87
FLUSH_ON_COMMIT ..ottt ettt H-87
FLUSH_ON_OPEN ...oiiiteiitiisteise ettt sttt sttt et st H-87
]\ PSP H-88
FONT_AUTO_ADJIUST ..ottt sttt H-88
FONT _SIZE_ADJUST ..ottt et H-89
FONT_WIDE_SIZE_ADJUST ..ottt H-90
FOREGROUND _INTENSITY ..ottt H-91
FREEZE_AX_EVENTS. ..ottt e st et H-91
FULL_BOXES ... oottt sttt sttt H-92
GRID_BUTTONS_CAUSE_GOTO ..ottt H-92
GRID_NO_CELL_DRAGoctiitiiete ettt sttt H-93
GUI_CHARS ... bbb ettt sttt ettt st H-93
HELP_PROGRAM ..ottt ettt ettt H-94
HINTS _OFF ..t b ettt st s ste b H-94

HINTS _ON ot eneas H-95

HP_TERMINAL_ATTRIBUTE_HANDLING w..coovvvoveecereeeeeeseeeseeeeeeseessssseessseenees H-97
HTML_TEMPLATE_PREFIX ¢.oreeereeveeveeeoeoeesssssesessssesessssesssssssssssssessssesssssessssssseees H-97
ICOBOL_FILE_SEMANTICS ..oovvooeeeeeeeeeeeeeorieesesseeesssssseessesssessssesesssssssssssssssesseeees H-98
TCON ... eee oo eeese e ee s eee s ee e e ses e H-98
IMPORT _USES_CELL_SIZE ...ccoooreeeeeeeeeeeeeeieseessseeeseesseeeeseessssssesssssseeeeseessssseees H-99
INACTIVE_BORDER_COLOReeerrerereeeeeerseeesseessssseseeeeesesssssessssseeesnssssssseeees H-100
INCLUDE_PGM_INFO .oovoveeceoreeeeseeeeseeseeesseeeesssssessssssesesseseessssssssssseeeessesssseeees H-100
INPUT_STATUS_DEFAULT c..oooreeeeeeeeeeeeeeoesesesseessesssseeseesessessesssssseesesssssssseeees H-100
L= S (0]) =3 H-101
INTENSITY _FLAGS ...ooeeeeeeeeeeeereeeseseeeesesseeesesseesssssesssssseeesseessssesssssseeessessssneees H-101
IO _CREATES woovvvecoeeeeeeeeeeeeeeeeeesessesesseeeesssseeeesesesessssesssseseeesseesss e sssseee s H-103
1O _FLUSH_COUNT w.oooeeeeeeeeeeeeoseeeeeseeeesesseeeseseeesssssessssseeessesssssessssssecsnssesssseeees H-103
1O_READ_LOCK_TEST oovvvveveeeerreeeesseesesesseessesessssssssssssseesssseessssesssssseessssssssseeees H-103
1O_SWITCH_PERIOD w.ccevvveveeeeoreeeeseesesesseesnsesssssssesssssseeenssesssssessssssesenssesssseeees H-103
ISOLATE_FILE_CREATES ...vvcovvtoeeseeeeseeeeeesssesssssssessssssssesssesessesesssssssesssssssseee H-104
JAVA _LIBRARY _NAMEooovvveeeeerseesseseeeeseeeeeesessseseeessseseesesssssseesesssseeesee H-104
TNV o 1= 1 () NP H-105
JUSTIFY _NUM_FIELDS wecoeovvevveooeressessseeesseseseeeseeessessesssseeessesesssssssssssssseoeees H-105
=10 J OO H-105
KEY _IMAP ..o oo eeeseeeessseees s esssesess s s sssss e esessesesssseee e H-106
2 2= 107N o J H-106
KEY STROKEccooreseeeeeeeeeeeeeesesssssseeseseseeeesesesesssesessssseeseeseessseesesesseee s H-106
L ALL oo eeeseeeeees e seseeee e ee e H-106
LICENSE_ERROR_MESSAGE_BOXremrrerrreereeermremsssesesssssseeesesssssssessseees H-110
LISTS_UNBOXEDeeeeeveeveeeeoeseeeessesesseseseeessesessssessssssssessssseessssesssssseessssessseeees H-111
LITERAL_ENTRY eoooeoveeeeeeeeesseesssessssesesesseesssssssssssssssesseesesssssssssssesesssssssseeees H-111
LOCK _DIR - ovvvvveeeereeeesseeeseesssessssseesssssessesssessssesesssesssesssssessesssessessesesssseesessesssseeees H-111
1Yot 201U 1 11U & P H-111
LOCK_SORT wvvvveeooeeeeeeeeeseeseeeesssesssssssessseseesssesssssssesssssssesssesessessessssseeessessssseeees H-112
LOCKING_RETRIES w.coovvvvveeeeerereesseseeseseseeesssesessesssssssseessseseessssesssssseesosessssssseeees H-112
LOCKS_PER_FILE . .eeeovvveveeeeernesssessssseseeessssessssssessssssssessssesessssssssssseeesesssssseeees H-112
LOG_BUFFER_SIZE rovovvvveooooeeeeseeeeeseeseesssessessessesssssssssssesssseessssessssessessssssessseees H-112
1Y c T 5] =7 o1 =33 H-113
YT o) =S H-113
I YcT =1 N[l =2 =2 T N o H-113
1Y T = T =3O H-113
1T N H-114
LOGICAL_CANCELS .oovvvveeeeeoee e eeeseseeeoneessessesssssssssesseesesssssesesssssesesssessseeees H-114

MAKE_ZERO ..ottt H-115

Contents-ix

IMASS_UPDATEccooeeeeeeeeeeseseseeeeeesseeesseesesseeessseesessssessseesesessessseeeesesessssesseeseeees H-115
MAX_ERROR_AND_EXIT_PROCSovvocoeeeereeeeeeeseeseseeeeessessseesesssessssessssssesees H-116
MAX_ERROR_LINES w..ovveeooeeseeeeeessseeseeeeesseesseeesesssssssseeseessesssseseesssssssessesssesees H-116
IMAX_FILES ..ooooeovvveeeeeeeseeeeseeeesessseesesssessseessessessssesssesssssseeseesessssessesssssssessssssesees H-116
S o Yo T OO H-117
IMENU_ITEM ..o eeeeeee e s seeeeeseee s eesssee e sssee e seeesssee e H-117
MESSAGE_BOX_COLOR......oovveeeeeeeeeeeeeeesseesseeeeeessesssseeseessesssseeseesssesssessesesesees H-118
MESSAGE_QUEUE_SIZE........ovvveoeeeeeeeeeeeeeseeeseeeeeesssssssseeesssesssseseessssssseesssssesees H-118
IMIN_REC_SIZE ovvooooeeeeeeeeoeseseeeeeeeeessessseesesssssseeeseessssssseeeessesssseseessssssseeessssesees H-118
MONOGCHROMEcoeeervveereeeseseseeeesssessseessssseesseessesssessseeseesesssseesesssesssseesssesees H-118
Lo LU =S H-119
LU = =TI N 1 H-122
Lo T o) Tl N OO H-123
NO_LOG_FILE_OK weoorvvvooeeeeeeeeeeeeseeeeeseeessessseseeeessesssessesssessssessssesessseseesssesssees H-123
NO_TRANSACTIONSooorirrreeereeseeeeeeoseeseeeseeeseessssssseeeseessessseeeseessessseeeeesssesees H-123
NT_OPP_LOCK_STATUS...oevvveeereeeeeeseeoieessessseeesessssssssesssssessssessessssssssesesssesees H-124
NESTED_AX_EVENTS c.o.ocoreieeeeeoeeseeeeeeeesesseesseeesesssessseeeseessesssseeseesseesseeessesseeees H-124
NO_BARE_KEY _LETTERS ...vvvecceeeeeeeeeeeseeeeeeesesssessseesessseesssessesseessseesessssessees H-125
NUMERIC_VALIDATIONocovvvecoeeeeeeeecreeseeeeeeeeeeeseeeeeeeseessessseesseesssesseeessesseeees H-126
OLD_ARIAL_DIMENSIONS ...ccoormvveeeeeseeeseeeeesessessseeeessssssssessseesesssseeseessssssseeens H-126
(01T NI = T =T o) N o =S H-126
OPTIMIZE_CONTROL._RESIZE w..ovvvvooeeeeeeeeeeeeeesseseseeesesssssseesseessessssessssssessssesens H-127
OPTIMIZE_INDIVIDUAL_LINKAGEovvveceeeeeeeeeeceeeeeseeeeceseeseseseeesessseseneeens H-127
YXeT = =A[=ox 0] NI o] 1] = H-127
PAGED_LIST_SCROLL_BARmmieioreeereeseeeeeeeseeeseseeeeesesssessseeseesssssseeesesssesees H-128
PARAGRAPH_TRACEometoveveerieeeeeeeeeeseessesseeesseessssssseesesssessseoseesssssssesssssesees H-128
PERFORM_STACKovvveeeeeeeeeeeeeeeseseseseeeeseseesseeeeessessseeseessesssseseesesessseseesssesssees H-128
PRELOAD _JAVA_LIBRARY ..oovocoreieoeeeioeeseesseeesesssessseeessssssssesossssssssessssseessees H-129
PROFILE_TYPE ..cooomeeeeeeeeeeeeeeeeeeeeeseeeeseeeeseseeesseeeeesesssseseeseeeesseeeesesessseeseesnesesees H-129
PROMPTING ..o eesseeseeeseee e sseee e eseeeeesseesseee s sseee e sssesseeeeeeeseeees H-129
QUEUE_READERS.........coeemeeveeceeeeeeseseeeeeesessseeeessssssseeesesssessseseseesessssesseesssesseeons H-130
(o ULl Y T o) =3O H-130
QUIT_ON_FATAL_ERRORcmeerrrreeeessseesseesesssessseesesessessssessessesssssesessssssssesons H-132
QUIT_TO_EXIT wooooeeeeveeeeeeeseseeeseeesessssesseessesssesssessssssessssesssssssessesssssssesssessssssesens H-132
RECURSION.....coovecooeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeseeesseeseseeesssee e eessee e sseeeseeeeeeeeees H-132
RECURSION_DATA_GLOBAL ...ivoveeeeeeeeeeeeeeeeeeeeeeeeeeessseeeseeesessssessseseesseeeseees H-134
REL_DELETED _VALUE ...oivvveeoeeseeeeeeeeeeseeeeeeeeeeseeseeeseesseessseeeesesessseseesseeeseees H-134
REL_LOCK_READ_THROUGHeovvveeeeeeeeeeeeeeeeeeseeeoeesssessseeesessesesseeeesssesseees H-134
RENEW_ TIMEOUT w.ooovveeeeeeeeeeeeseeeseesseeseessessseesseessssssessesssesssesseesssssssesesssesees H-135

RESIZE_FRAMES ... s H-135

Contents-x

RESIZE_FREELY ..ottt bbbt e H-135
RESTRICTED_VIDEO_MODE ..ottt H-136
RMS NATIVE _KEYS ..ottt s H-136
SCREEN ...ttt ettt ae e H-137
SCREEN_COL_PLUS BASE ...ttt H-137
SCREEN_TRAGCE ... e H-137
SCRIPT_STATUS ..ot bbb bbb e H-138
SCRN Lttt bbbttt bbbt bbb bbb et ne e H-138
SCROLL 1ttt bbbttt be b e H-138
SEIVEI_MAP_FILE ..o H-139
SEIVEr _PASSWORD ..ottt sttt sttt et sna e e e H-140
SErver_POort_PASSWORD........ccooo ittt sttt nnas H-140
SHARED _CODE......coiiiiiieieese sttt bbb e H-141
SHARED_LIBRARY_EXTENSIONccooiiiiiiiiiiiiecee e H-142
SHARED_LIBRARY _LIST ..ottt s H-142
SHARED_LIBRARY _PREFIX ...ttt H-144
SHUTDOWN_MESSAGE_BOX ...ttt H-144
SORT_DIR ettt ettt b et b e r b nn e H-144
SORT _FILES. .. e e H-145
SORT_MEMORY .ottt bbb bbbt H-145
SPACES _ZEROQ ...ttt ettt bbb et H-146
SPOOL_FILE ..ot ettt sttt sttt H-146
STD_FIXED _FONT ..ottt H-147
STOP_RUN_ROLLBACK ...ttt H-147
STRIP_TRAILING_SPACES.coi it e H-148
SWITCH_PERIOD ...ttt bbb e H-148
SYSINTR_UNADME ...ttt et e H-148
TC_AUTO_UPDATE_FAILED _MESSAGE.......cccctnieieieiceee e H-149
TC_AUTO_UPDATE_FAILED_TITLE ..cooiiiiiiitieeeeeeee e H-149
TC_AUTO_UPDATE_NOTIFY _FAIL ..ottt H-149
TC_AUTO_UPDATE_QUERY ...ttt H-150
TC_AUTO_UPDATE_QUERY_MESSAGEccciiiiiiiiicieeee e H-150
TC_AUTO_UPDATE_QUERY _TITLE....cccctiotiirtiereeieeee e H-151
TC _AX EVENT _LIST ottt H-151
TC_CHECK_ALIVE_INTERVAL ..ottt H-152
TC_CHECK_INSTALLER_TIMESTAMPcooiiiiiiiiiie et H-152
TC_CONTINUITY_WINDOW ..ottt H-152
TC_CONTROL_SYNC _LEVEL ..ottt H-153
TC _DELAY _ACTIVATE ..ottt ettt H-154

TC_DELAY_PRE_EVENT_OPS ...t H-155

Contents-xi

TC_DISABLE_AUTO_UPDATE ...oovocoeeeeeeeeeeeseeeeeeseeseeseseeseeeseeseeessesssesseessean H-155
TC_DISABLE_SERVER_LOGovveceeeeeseeeeessseeseeeesesseesssessesesesseesesssesssesseen H-155
TC_DOWNLOAD_CANCEL_MESSAGEcmrorveeeeeeeseeseeeeseeseseseessesssssseeeons H-156
TC_DOWNLOAD_DESCRIPTIONo.ccccooreeseeeeeeeeeeeesesssseseeeesseeeeesessssseeessseeee H-156
TC_DOWNLOAD _DIALOGooroeveeeeeeeeeeeeereeesseeeeeeseesseesesessessseeseesesssesseesseeon H-157
TC_DOWNLOAD _DIALOG_TITLE ...oooovveeeeeeeeeeeeeeseeseeeeeeesseseeeeseeesessseseeesssenn H-157
KO Y=L 13 OO H-157
TC_EXCLUDE_EVENT _LIST wooteoveeooeeeeseeeoseesseeseeeeessesseseesesesesseeesesssesseeseenn H-158
TC_INSTALLER _ARGS. ... ovvecoeeeeeeeeeoeeseseseeeoseessessseesessesseseesesesessseesessssssse e H-158
TC_INSTALLER_CLIENT _FILE . ioovoveeeeeeeeeseeeeeeeeeeeeesesesseee e sesessseeeseeeeee H-158
TC_INSTALLER_RUN_ASYNC w..oovooeeeeeeeeeeeeeeeeeeeseesseeeeeeseeseeeeeeeseessesseee e H-159
TC_INSTALLER_SERVER_FILEiooeeeeeeeeseeeeeeeseesseeseeessessseeseessesssesseesseenn H-159
TC_INSTALLER_TARGET DIR...ovvocoeieeeeceeeeseeeeesoesseeseeessessseeseesesssesseesseenn H-160
TC_INSTALLER UL LEVEL....orovveeoeeeeeeeeeeeeeseseeeeeseessesseeeseesesssseesessssseeesseeen H-160
TC_IMAP_FILE w.ooooeveoeeeeeeeeeeeeeeee e eeeeessseee s ssses s sesee e see s H-161
TC_NESTED_AX_EVENTS....eroeeeeeeeeeeeseeseeseeeseeeseeeesseesssseesssseseessesssssseeseseeee H-161
LKoo LU 1 1 i, (] o) =SSO H-161
TC_REQUIRES_BUILD_NUMBERcovvveeeeimeeeeereesseeeeeeessesseeeseessessseseeeessenn H-162
TC_RESTRICT_AX_EVENTS w.oooovveeeeeeeeeeeeeeesseeseeeeesseeseseesseseseeseeesessseeseessenn H-162
TC_SERVER_LOG_FILE w.ovvvecoeeeeeeeeeeeeeeseeesesessseeeesesssesseseseesssssseesesssesseeesseen H-163
TC_SERVER_TIMEOUT ...covvecoeeeeeeeeeeseeeeeeeeeseseeeeeeeessesseseesesssesseeesesssesseeseeen H-163
TC_TV_SELCHANGINGcoooerrreeeeeeeeeeceseeseeeeeeeeeeeeeeeseessseeesesesseeesesessseseeeseenes H-164
LY L3) = T H-165
TEMPORARY _CONTROLScooomeevveeeesseeeeeeeeesseeseeeeesessesseeeseeseseseeesssseesseeeeos H-165
TEXT oo eeeeeeee e eeese e es e see e s e e e et H-165
TRACE_STYLEeooveeeeeeeeeeoeeeeeeeeessseeeeeseeseseseeesesssseseeeeessssseeseseesesssseseeesessseeees H-168
TRANSLATE_TO ANS woovvecoeeeeeeeeoeeseeeseeeeeeeeseeseeesessesseseesessseesseesesssesseee e H-168
TREE_ROOT _SPACEoovvvecooeeeeeeeeeeeeeeeeeeeseseesseeeeeeseeeeeessessseeesesesseee s H-169
RIS Nz 4 = H-170
TRX_HOLDS_LOCKSoeovveeeeeeeeeeeeeeeeseeseeeeessseeseeseesseeseseessesssesseesesesesseessseen H-170
UPPER_LOWER_MAPcoiiieveeeieeeseeeeeoeseesseeseeeeeessssssseeseessessseeseesseessees s H-171
USE_CICS ..ootoeevveeeoeeeseeseeeseeseesseeeseesssesseeeeesseesseesseese s s s eeesessseeeeeseeesseeeeeesesees H-172
USE_EXECUTABLE_MEMORYooooveveeeeeeieeeesseeeeeeeeeeeeessessssseeesessseeesessssenen H-172
USE_EXTSM oo eeeeeeeee e sesseseeeeeees e eessessseessesse e esssseee e H-173
USE_LARGE_FILE_APL....oiovooeeeeeeeeeeeeeeeeseseeeeeeeeeseeessseeeeseeeessee s ssseeeesseeeeeees H-173
USE_LOCAL_SERVERmerimereeereesseeseecseesseesseeesessssssseessessessseosseesssssseeesesssesees H-173
USE_MPE_REDIRECTIONc.ovvecooeeeeeceeeseeeeeeeeseesseeseeeeseessessseeeseesssesseeesesenesees H-173
USE_MOQSERIESoreevvveeeeeeeeseeeeeesssessseeeesesessseesseessessssessessessseeseesesssssesseesssesssees H-174
USE_SYSTEM_QSORT w.ccooveeeeeeeeeeeeeseeeeeseeeeeseesssseeeesseseeeesseessssesesssese s H-174

USE_WINSYSFILES ..ot e H-174

Contents-xii

V_BASENAME_TRANSLATION.......ieerveveeeeereressessseesssssseseseesssssssssssssseesseen H-175
AV =T = OO H-176
V_BUFFER_DATA c.oooooeeeeeeeeeeeeeeeonossessssssssssssesssseessssssssssssssesseessssssssssssssseneees H-176
V_BULK_MEMORY ..ooooroeeeeeeeeeeeenosossessssesssssssessssesssssssssssssssesssessssssssssssssssnnenens H-176
(V=10 =o = o =)= N H-177
V_INDEX_BLOCK_PERCENTccoommieeeeeeeeeeeeessessseesssssseeesssssssssssessssseeesseen H-177
V_INTERNAL_LOCKS weoooeovveeeeoooeeesessseessssseeeseseesssssessssssseeesesessssssssssssseesnseen H-178
V_LOCK_METHODorteeeeeeeeeeeeeeosossessseesssssesessssessssssssssssesesesesssssssssssssseenneeen H-178
V_MARK_READ_CORRUPT ...oooocoorieesseesssseeeeoeessssssssssssssesesessssssssssssssssennesees H-181
V_NO_ASYNC_CACHE_DATA ..orerrveeioeeeeeeeeesosesessssesiesssesssenseessesssessessessseees H-181
V_OPEN_STRICT ovvoooeereeeeeeeeeeeeeeeesossesssseessssesseessseseessssseesssseesessessssssesssssssesees H-182
V_READ_AHEAD.........coiimeeemeeeeeeeeeeiossessseseessseseeeseseesssseeessseeeseseesessesesssssssesee H-182
VI 4 =S H-182
V_STRIP_DOT_EXTENSION w...vvvecooooreeeeeesseeeeeeeesesessssssssssseesseesssesssssssssssesneees H-183
W VERSION weeeeoevvveeeeeeee s seseeessesssseessssssesesseeeessessssssssseseeeessssesesssssssenneees H-183
V23_GRAPHICS_CHARACTERSeoovvvoeeeeeeseeeereessesssseeeeesessssesesssssssesessseseees H-184
V30 MEASUREMENTS w..ccovveeveeeoeeeeessseessseeeeeeseesesssesessssseeesssessssssesessseeesee H-184
V31 FLOATING_POINT w.ccooovvveeeceoeeseessseeeseeeeeeeeeeseesssssesssseseeeesesesssssesssssseasses H-184
V42 _FLOATING_POINT w.cooeovveeveeeoeoesesseeeesseseeeeeseeesssssssssseeeesesesssssssssssssseoneeees H-185
V43 PRINTER_CELLS eeeoeoooveeeeoeoreeseseesseseseeessesesssssssssssesesseessssssssssssssessssssssssen H-185
V52 BITMAP_BUTTONS ... ovvvveeeeereeeesseeessssesessseessssesssssssssesesesssssesssssssssenneens H-185
V52 BITIMAPS .o ooooeeoooeeee e eesesseeessseeesssesssssssssesssesessesssesssssesesessessessssssssennees H-186
1Vi7 XK1 =11 s YK cTo) e YT H-186
VB0 LIST VALUE.eeeeeeeeeeeeeoeeiossesssseesssseeeeesessessssssssssseeesessessssssesssssssesee H-186
V62 MAX_WINDOW........orioreeeeeeerorseessssessssesseessesessssssesssseeesseesssssssssssssseeasesees H-187
V71 _ALIGNED_ENTRY _FIELD ..oovoeeeeeeeeeeeeeeoeeesesssesssessseeesesesssssssssssssseenneeen H-188
V7L FONT _WIDTHS e eeeeeveeeoeeeeeseseesseseseeessseessessssssssesesseessessssssssssseenessesesen H-188
VMS_COBOL oo eesesseesesssessseeessssssssessseeessesssesssssessseesessesssssssseenees H-189
WAIT_FOR_ALL_PIPES w...cooovveeeeeeeoseesseseeseeeeeeeeeeesesseseesssseeeeesessessseesssssseosees H-189
WAIT_FOR_FILE_ACCESS.....ovvvveeorreesesseeessssseeeseseesessssssssssseesssesssssssssssssseonseos H-189
WAIT_FOR_LOCKS ..oooorreeeeeeeeeeeeeeosossesssessssssesesesesesssssssssssseeseesessssssssssssssenneees H-190
WARNINGS ..o eeevveeeeoreeeesee e esseeessssesssesessssssesesseseessssssesssseeseeeessssesssssssseeneees H-191
WARNING_ON_RECURSIVE_ACCEPTS .vvveeoeeeeeeeeeeeeesessseeseesssssssesssssseseees H-192
WHITE_FILL oo eeeseeessseesssssessssssessssssesssesssssssssesesesssssesssssssssenneen H-192
WIN_ERROR_HANDLINGocccoooreseseeeeeeeeeoeessesseeeessesseeeseseesssssesssssseeesssseeen H-193
WIN_F4_DROPS_COMBOBOXmemmreerreeeeeeeesesssssssssssssseeesesesssssssssssssssennseo H-193
WIN_SPOOLER_PORT ...oeovoeveeeeeeosessesssesesssseseesssesesssssssssssseeseseesssssssssssssseasnees H-194
WINS_CLIP_CONTROLS . ooovveveeeeeeeesesseesssseseeesssssssssssssssssesesesesssssssssssssseenneeen H-195
VTR ==Y o] o) = o YO H-195

WINSB_GRID ..ot H-196

Contents-xiii

WINSBZ_3D ..o H-196
WINSBZ2_CTL_INPUT_STATUS ..ot H-197
WINSBZ2_NATIVECTLS ..ot e H-197
WINDOW _INTENSITY Lot H-198
WINDOW _TITLE ...t H-199
WINPRINT_NAMES_ONLY ..ot H-199
WRAP ..o H-201
XFD_DIRECTORY ..ottt H-201
XED_PREFIX ..o H-202
XTERM_PROGRAM ..ottt et H-202

Appendix I: Library Routines

1.1 General Syntax and Library LIStcoooeoeiiiiiiiiiiisese et I-2
ASCHIZHEX .ottt bbbt bbbt b et bt b I-2
ASCHZ20CTAL. oottt 1-3
CBL_AND ..ottt I-3
CBL_CLEAR _SCR ...ttt I-4
CBL_CLOSE_FILE ...ttt s I-5
CBL_COPY _FILE ...ttt bbbt 1-6
CBL_CREATE_DIR ..ottt 1-8
CBL_CREATE_FILE ..ottt 1-9
CBL_DELETE_DIR ..ottt I-11
CBL_DELETE_FILE ...ttt I-11
CBL_EQ ottt bbb bbb bbb bbb 1-12
CBL_ERROR_PROC.......cuiitiiiiicietsiisieie sttt I-13
CBL_EXIT_PROC ..ottt ettt st sn e 1-16
CBL_FLUSH_FILE ..ot 1-18
CBL_GET_CSR_POS..... .ottt 1-20
CBL_GET_EXIT_INFO ..ottt 1-21
CBL_GET_SCR_SIZE.......cotiiiiiiiteriete ettt e 1-22
CBL_INOT ittt bbb bbbt bbb bbbt bbbt e eb e b 1-23
CBL_OPEN_FILE ...ttt 1-24
CBL_OR ..ottt 1-26
CBL_READ_FILE ...ttt 1-27
CBL_READ_SCR_ATTRS ..ottt 1-29
CBL_READ_SCR_CHARS. ...ttt 1-30
CBL_READ_SCR_CHATTRS ..ottt 1-31
CBL_SET_CSR_POS ...ttt ettt ettt 1-33

CBL_SUBSYSTEM ..ottt 1-33

Contents-xiv

CBL_SWAP_SCR_CHATTRS .oovvvvvecceereessseeesseeeeeossessesssssesessseeessessssssssssssseeenssoen 1-35
CBL_WRITE_FILE ooovvveoeooroeeeeeeeeseeeeeesseeessssesssesssesssseessssssesssssseesssesssssssssssssesensesenn 1-37
CBL_WRITE_SCR_ATTRS ceerevvvvvveceerreeesesesssseseeesssssssessessssssessesessssssssssssseessssessssee 1-39
CBL_WRITE_SCR_CHARS ... oovveceeeseeseseesreessesssessessssssseesnessessssesesssesseeesesssssees 1-40
CBL_WRITE_SCR_CHARS_ATTR .cooemmrreoeeeeeeeeeeoressssseesssssseessssssssssessssseeeeessen 1-41
CBL_WRITE_SCR_CHATTRS oovvvvcocoreeeeeseeeeeeeeeeessessesseessssseesessesesssseesssseeeeesssssen 1-42
CBL_WRITE_SCR_N_ATTR oovvvvvveeeerreeeseseseeseeeessssssssesssssseeseessssssssesssseeenssesssen 1-44
CBL_WRITE_SCR_N_CHAR «.ovvvvvecooeeeseseeeeseeeeeosssssssssessssssseesesesssssssssssseseesessonn 1-45
CBL_WRITE_SCR_N_CHATTR covveccorrmeesseeeseeeeseeessessssssesssssseessssssssssssssssseeeseoen 1-46
CBL_WRITE_SCR_TTY ovovveoereeeeeeeessessessssessoesssssssessesssesssessesssessseesessssssssessessesseees 1-47
(03 I (o = SO |-48
CBASYNCPOLL v eeeee e seseseeesseese e essssees e seesseeeesesseeee s 1-50
CBASYNCRUN ..o eeeeeeeseessss e esssseeseeeessssesssseseesee e seesesssseeee s 1-50
(0107 I I = 0= 1 2O -51
CBCALLERR ... eevveeeeereseeeseesesseseesseesessesesesssssesseseessssssssssssesseeeeessesesssssseesnsies |-52
(02101 =X SO OO -53
(o101 x5 | = OO I-55
(010105 =35) =5 T -57
(031010 N[=1 [T 1-58
(03161012 220 59
[0:10) =T = 1 =3O 1-62
CODISCONNECT w.ovveovoeeeeeeeseeeeeeeesesseseessesesseeessssseeseesessesesseeesesesessesesessseeseeesesseees 1-63
(0120 (=11 | N1 =10 J OO 1-64
COEXITINFO ..o eeee e eesssees e sesees e seseee e 1-70
(oI [=31\ =0 J OO 1-71
oI I3 2 T 172
COFULLNAME ..o eeeeeeeeeessss e ssssseesseeesessesssseseesesseseessesssssseeensesesen 1-74
(0%:1c1 = K011 ST 1-75
CEGETERRORFILEcooooorneeeeeeeeeeeeoeeesssseeseesseeesseessssseessssseeseseessesseeesssseeee s 1-77
CEOETEVENTDATA ..o eeeeeeeeooeeeesesseessssseeesessssssesssseseesesessssssesssssseeeessessen 1-78
CEGETEVENTPARAMieeoveveecoeeeeeeseeeseesseeesessssssesssseseesseesssssesssssseesssessen 1-79
o1 = XSy 1 21| =0 = 1-81
CSGETNETEVENTDATA coooooreeeeeeeeeeeeeeeeeesreesseesssesssssessseeeseessessssessessessssesesssesees 1-83
(0%:1c =3 11 0 YOO OO -84
CBOETVARIANT ..o eeeeeeeeeee e eeseseeeseeee s seseeee e ssseeee s -85
CBIAVA ..o eeeeeeoee e ssssess e e se s s e s ses e 1-86
(O U153 1 (=2 220N 1-97
CBKEYMAP ... eeeeeeees e eeseseesee e s e ssseeess s s e e s sss e eseesssssseseeseees 1-98
COKEYPROGRESSooivvveeeeeeesseeeesseessessssesseesssssssessesssesssessessssssseesessssssssessessesseees 1-99

CELIST-DIRECTORY ..ottt ettt st 1-100

Contents-xv

CBLOCALPRINT .ottt 1-104
CBLOCKPID ...ttt bbbttt sttt bbb 1-107
CEMAKEDIR ...ttt bbbttt 1-107
CSMEMCPY (Dynamic Memory ROULINE).......c.cccrvueueiriieneeinesieiee s 1-108
COMYFILE ..o 1-109
CBNARG ..o 1-110
CBOPENSAVEBOX ..ottt 1-111
CEPARADMSIZE ...ttt bbbttt 1-119
CBPARSEXFD ...ttt ettt 1-121
CERECOVERoctiictesice ettt sttt s bttt sttt sttt 1-134
COREDIRECT ...ttt 1-136
CBREGEXP ..ottt n e 1-138
CBRERR ...ttt 1-145
CERERRINADME ...ttt ettt bbb 1-147
CBRESOURRCE ...ttt bttt bbbttt 1-147
CORUN ..ottt st s e bt ettt ettt be st e te st et sttt te st 1-150
CESETERRORFILE ...ttt 1-151
CESETEVENTDATA ..ottt 1-152
CESETEVENTPARAM ...ttt 1-153
CBSETVARIANT ..ottt bbb bbb bbbttt 1-155
CBSLEEP ...ttt bbbttt 1-157
CESOCKET ..ttt ettt ettt ettt ettt be st te st e te st te st et st 1-158
CBSYSLOG ..ttt 1-167
CBSYSTEM ..ottt 1-169
CSTOUPPER and CETOLOWER.........ccoitiiriiiiiiieee e 1-174
CBXIML ettt bbbt bbb bbbttt bbb 1-175
DISPLAY _REG_™ ...ttt ettt 1-195
Error and EXIit PrOCEAUIES.ciiiiiiieiseictee e 1-195
HEXZ2ASCH .ot 1-196
IB1O bbbt 1-196
LIBEGET_SYMBOL ...ttt 1-215
LIBSSET_SYMBOL ...ttt 1-216
Routines to Handle Dynamic MEemMOTYccoeeiiiniiniiniineesee e 1-217
MS$ALLOC (Dynamic Memory ROULING).........cccoeiiririeiiiririeieene s 1-217
M$COPY (Dynamic Memory ROULINE)cooerireeiriririiinieesenese e 1-218
MSFILL (Dynamic Memory ROULINE)........cccuvveeeirisicieiesisiseesesesissesess s sesenssessssens 1-219
MS$FREE (Dynamic Memory ROULING)cccvoveveieiesisieeesisieessesesisssesesssseessesnssens 1-220
MS$GET (Dynamic Memory ROULINE)cccoururueeiininieieie st 1-221
MS$PUT (Dynamic Memory ROULINE)cccouvrveueieiinirieierenisesieienesesisiesesesesisienesesneienas 1-222

OCTALZASCH ..ttt 1-223

Contents-xvi

Routines to Handle the Windows RegiStrycccvevireiiiiecie e 1-224
REG_CLOSE_KEY, DISPLAY_REG_CLOSE_KEYccccceetriiririririenisienieenieennns 1-225
REG_CREATE_KEY, DISPLAY_REG_CREATE_KEY ...ccccccosiviiniiinnieneiesieesnns 1-226
REG_CREATE_KEY_EX, DISPLAY_REG_CREATE_KEY EX ...cccceevvvrrrrrnnnn. 1-228
REG_DELETE_KEY, DISPLAY_REG_DELETE_KEYcccccosiviiniiniinieinieinnen, 1-231
REG_DELETE_VALUE, DISPLAY_REG_DELETE_VALUEccccocvrvvninnnn. 1-232
REG_ENUM_KEY, DISPLAY_REG_ENUM_KEYccccceoviirmririniiinnsieneense s 1-234
REG_ENUM_VALUE, DISPLAY_REG_ENUM_VALUE........ccocoovnniiniinnrinnans 1-235
REG_OPEN_KEY, DISPLAY_REG_OPEN_KEY ...cccccsviiririenieienisieneesee e 1-239
REG_OPEN_KEY_EX, DISPLAY_REG_OPEN_KEY EX....ccccoooovmrrrrmrrrrrrrrnnnns 1-240
REG_QUERY_VALUE, DISPLAY_REG_QUERY_VALUE......cccccccvviiririrnnnn. 1-242
REG_QUERY_VALUE_EX, DISPLAY_REG_QUERY_VALUE_EXcceu.... 1-244
REG_SET_VALUE, DISPLAY_REG_SET_VALUEcccccoviiiiiiireeeneee 1-247
REG_SET _VALUE_EX, DISPLAY_REG_SET _VALUE _EX.....ccceoevivnreierrinnnnns 1-248
RENAME ...ttt ettt et st b bt sa et b b et e s neee 1-251
REBIO ettt ettt sttt ettt et teere e eteerearearen 1-252
SYSTEM ettt e b bbb b ere e 1-261
SBIO bbbt nb b 1-263
WEBITIMIAP .. oottt bbbttt et et 1-269
WSEBROWSERINFO ..ottt 1-284
WWBFLUSH oottt eb et neenen 1-285
WWBFONT .ottt ettt et e et be et et e st e st et e st e s e st e e ensens et e ebeebeabe st ne 1-287
WBFORGET ...ttt bbbttt ettt 1-301
WWBGETC ..ottt e bbbt bbb et et et 1-301
WEBGETURL ..ottt bbbttt 1-302
BWINHELP ..ottt sb e b et sb e et et et 1-304
WEKEYBUFottt sttt b et ab e et et et 1-309
WBIMENU ...ttt ettt e e st et r e b et se et et 1-313
WEBIMOUSEooiitiiitiett bbbttt ettt 1-324

Mouse Handling: Sample COUe........ccocvvviireneiiceccese e 1-331
WBPALETTE ..ottt ettt 1-333
WEPROGRESSDIALOGcooviiiieiiiieiisieiisie sttt sttt ssens 1-340
WESTATUS ..ot b et b e sb et e b esb e et et et 1-346
WETEXTSIZE ..ottt snens 1-346
WINSPLAYSOUND ..ottt ettt sttt sttt bbbt sne e 1-348
Printing with theWindows Print Spooler (-Q and -P).......cccccevviviiviiviiienn v 1-352

O R o] 11 (=1 = U 1 1-354

=P SPOOLER ..ottt ettt 1-360

DiIrECE CONEIOL....viiieiicie e e e e 1-361

Printing Multiple Jobs SIMUltaneously.........c.cocvviviiininerer e 1-362

Contents-xvii

WINSPRINTER. ..ottt 1-363
WINSPRINTER OP-COUESccveiiieiiieiiieieieeste sttt st 1-370
Printer INfOrmation OP-COUES........cccveiiiiciice e 1-370
WINPRINT-GET-SETTINGS-SIZEccocctiiiicieinnie e 1-370
WINPRINT-SETUP ..ottt 1-371
WINPRINT-SETUP-USE-MARGINSccooiiiiiiiiieiniei e 1-372
WINPRINT-SUPPORTEDcoovitiiiiiiieiiise e 1-373
WINPRINT-GET-SPOOL-ERRccoitiiiiiiiiisenisisieciee e 1-374
WINPRINT-SET-JOB ..ottt 1-374
WINPRINT-UPDATE-PRINTERScooitiiirecee e 1-377
WINPRINT-DATA OP-COUES......ovruiiriiririirinienisienisenisieiseeste e sses s 1-377
WINPRINT-GET-CAPABILITIES ..ot 1-378
WINPRINT-GET-MARGINS.......ccocctiiiiiiisensiesinsesee e 1-378
WINPRINT-GET-PAGE-LAYOUT ...ttt 1-380
WINPRINT-GRAPH-DRAWccooitriiiiiiisinise s 1-381
WINPRINT-GRAPH-BRUSHccctiiiiiirtise e 1-387
WINPRINT-GRAPH-PENcceititititrireieese sttt 1-389
WINPRINT-PRINT-BITIMAP ..ottt s e 1-392
WINPRINT-SET-CURSOR ..ottt 1-397
WINPRINT-SET-TEXT-COLOR.......ccostiiiiiinisenieinisesiee e 1-401
WINPRINT-SET-FONT ..ottt e 1-403
WINPRINT-SET-LINES-PER-PAGEccooiitritriiirininiei e 1-404
WINPRINT-SET-MARGINS ..ottt 1-406
WINPRINT-SET-STD-FONTcceitiiiriiriiiiinenisenisesisesiee e 1-408
WINPRINT-SET-BKMODEccccotiiiiiiiiiinsieniseeiee e 1-410
WINPRINT-SELECTION OP-COUEScverviviriiririeiirierinierisieresiees et 1-411
WINPRINT-GET-CURRENT-INFO......coiiiiiniiiiiecec e 1-411
WINPRINT-GET-CURRENT-INFO-EXcccovniiiiiiiniieisiees e 1-413
WINPRINT-GET-NO-PRINTERSccoiiiiiiriiresesese e 1-415
WINPRINT-GET-PRINTER-INFO......cccotiiiieiieiceceee e 1-417
WINPRINT-GET-PRINTER-INFO-EXcccceevniiiriiiniiirieiniees e 1-419
WINPRINT-GET-PRINTER-STATUS ..ottt 1-421
WINPRINT-SET-PRINTERcotitiiiiiiiiisins e 1-423
WINPRINT-SET-PRINTER-EXccoiiiiiiiiinsienniee e 1-426
WINPRINT-SETUP-EX ..ottt st 1-428
WINPRINT-COLUMN OP-COUEScovveviiiriieninieisieisieesiesesie s 1-430
WINPRINT-SET-DATA-COLUMNS. ..ottt 1-431
WINPRINT-CLEAR-DATA-COLUMNS ..ottt 1-432
WINPRINT-SET-PAGE-COLUMN.....ccooiiiiiiniiiiineciecse e 1-433
WINPRINT-CLEAR-PAGE-COLUMNEScooiiiiiineinieses e 1-445
WINPRINT-GET-PAGE-COLUMNcoiiiiiiiiiiiiniiec e 1-445
WINPRINT-COLUMN-ALIGN-VERTccotiiiriiieriniennenee s 1-447

WINPRINT-JOB-STATUS 0P-COUEScoviviririiieniinnienneienrees e 1-448

WINPRINT-GET-JOB-STATUSci it 1-448

WINPRINT-SET-JOB-STATUS ..ottt 1-451
WINPRINT-MEDIA OP-COUEScviuiriiiriiiirisieinieisienis et 1-453
WINPRINT-GET-PRINTER-MEDIA ..ottt 1-453
USER-DATA OP-COUBS ...c.vreuviiteeieiteiiesieeseesaesieseestessaestesseessesseesaesnesseessasssnssanss 1-454
WINPRINT-GET-SETTINGS ..ottt e 1-455
WINPRINT-SET-SETTINGS ..ottt e 1-456
WINSVERSION ...ttt st sb e sbe bbb ettt 1-456

Index

Specifications

Key Topics

(010 =@] I |V, oo U1 [T SR A-2
Limits and RaANGES......ccovivieerieree st st A-2
=] 1Y [0 o 1 A-4

[T 1 o1 K T0] o YRR A-10

A-2 m Specifications

A.1 COBOL Modules

ACUCOBOL-GT is an ANSI-85 COBOL compiler and runtime system
(ANSI X3.23-1985 and the ANSI X3.23-1989 supplement). ANSI COBOL
is divided into a series of required and optional modules, each of which has
various levels of implementation. ACUCOBOL-GT conforms to the
following levels for each of the required modules (range of levels in

parentheses):
Nucleus (1-2) Level 2
Sequential 1-O (1-2) Level 2
Relative 1-O (0-2) Level 2
Indexed 1-O (0-2) Level 2
Inter-Program Communication (1-2) Level 2
Sort-Merge (0-1) Level 1
Source Text Manipulation (0-2) Level 2
Segmentation (0-2) Level 1

ACUCOBOL-GT does not support the optional modules: Report Writer,
Communication, or Debug.

The following sections summarize various extensions and limitations
ACUCOBOL-GT has with respect to the standard.

A.2 Limits and Ranges

ACUCOBOL-GT has the following limits:

Maximum Program Size: 16 MB code, 2 GB data
(compilation unit)

Maximum Program Size: Limited only by machine memory
(run unit)

Maximum Record Size: 64 MB (67,108,864)

Number of Indexed Keys: Primary + 119 alternates

Limits and Ranges m A-3

Number of Segments per Key:
Maximum Indexed Key Size:
Maximum Sort Key Size:
Maximum Number Sort Keys:
Maximum duplicate keys:

Maximum File Size:

Maximum Data Item Size
- Alphanumeric:

- Numeric:

- Edited

Maximum Table Indexes:
Maximum Open Files/Process:
Maximum Literal Size:
Maximum Paragraph Size:
Maximum Picture String:
SPECIAL-NAMES Switches:
Maximum number of OCCURS:
Maximum recursive CALL depth:

Maximum number of parameters in a
CHAIN statement

Maximum number in a “PERFORM
number TIMES” statement

16

250 bytes

32767 bytes

255

No limit (Vision)

Host system dependent

Logical limit: 128 terabytes, if Vision
Version 5 or 4 is used; for all other
Vision versions, the logical limit is
2048 MB

2GB

31 digits (default is 18, but can be set to
31 by using the “-Dd31” compiler
option. See Section 2.2.10 of the
ACUCOBOL-GT User’s Guide for
details).

255 bytes

15

32767

32767 characters
32767 bytes

100 Characters
26

2147483647
32767

50

2,147,483,647

A-4 m Specifications

Maximum number of Linkage Section 255
level-01 data items per program

Maximum number of ENTRY points 65536
per program

Maximum number of characters inan 2048
alphanumeric data item used in a
DISPLAY statement

A.3 Extensions

ACUCOBOL-GT contains many extensions to the ANSI standard. These are
summarized below:

» Terminal-oriented source format

e Compile-time modification of source by Identification Area flags
e The Identification Division is optional

¢ IS RESIDENT PROGRAM clause

< Anindex item may subscript a table other than the one it is associated
with. Index data items may be used any place a numeric data item is
allowed

* Apostrophes may be used to delimit nonnumeric literals. Hexadecimal
literals are allowed

« A procedure name may be the same as a data item name
< Initial paragraph name not required
« Paragraph names allowed in Area B

* Multiple-word SOURCE-COMPUTER and OBJECT-COMPUTER
names

e Data Division FILE SECTION header is optional

Extensions m A-5

The word ALPHABET is optional when you are declaring an
alphabet-name in the SPECIAL-NAMES paragraph

The ASSIGN TO clause may have a data item specified for the external
file name. Also, the external file name is optional in the clause

An optional device type may be specified in an ASSIGN clause

WITH COMPRESSION, WITH ENCRYPTION added to ASSIGN
clause

LINE and BINARY options in ORGANIZATION clause

COLLATING SEQUENCE clause

COMPRESSION CONTROL clause

LOCK MODE clause

LENGTH OF clause for data literals

RECORD-POSITION clause for data items

RESERVE clause with the NO or ALTERNATE options

Split key specification for indexed files

FILE STATUS clause for sort files

REDEFINES can reference an item that is itself a redefinition of an area

Additional SPECIAL-NAMES clauses: CONSOLE IS CRT, CRT
STATUS, CURSOR IS, EVENT STATUS, and NUMERIC SIGN
SEPARATE

SEGMENT-LIMIT clause (level 2 segmentation feature)
VALUE OF FILE-ID clause

USAGE COMP-1, COMP-2, COMP-3, COMP-4, COMP-5, COMP-6,
COMP-N, COMP-X, FLOAT, DOUBLE, and HANDLE

A-6 m Specifications

USAGE types:
SIGNED-SHORT UNSIGNED-SHORT
SIGNED-INT UNSIGNED-INT
SIGNED-LONG UNSIGNED-LONG

ADDRESS OF phrase in arithmetic expressions
Tables may contain up to 15 dimensions

A PICTURE string may contain up to 100 characters
Level 78 constant names

WHEN SET TO FALSE phrase for level 88 condition-names. A FALSE
phrase added to the SET statement

SCREEN SECTION

SCREEN SECTION BEFORE, AFTER, and EXCEPTION embedded
procedures

SCREEN SECTION EVENT procedures

IS SPECIAL-NAMES phrase in record description entry

CHAINING phrase added to Procedure Division header

Non-display data items may be specified in a NUMERIC class condition
USE statements may reference sort files

RETURN-CODE special register

ACCEPT with screen control

ACCEPT FROM SYSTEM-INFO, TERMINAL-INFO, INPUT
STATUS, LINE NUMBER, COMMAND-LINE, ESCAPE KEY,
CENTURY-DATE, CENTURY-DAY, STANDARD OBJECT, and
WINDOW HANDLE

ACCEPT FROM SCREEN

Extensions m A-7

ACCEPT CONTROL statement
ACCEPT ALLOWING messages phrase
ACCEPT external-form-item statement
ADD TABLE statement

CALL RUN statement

CALL PROGRAM statement

CALL THREAD statement

Literals allowed in the USING portion of a CALL statement. Also,
non-level 01 group items may be listed in the USING phrase

BULK-ADDITION phrase for OPEN statement
BY VALUE phrase for CALL statement
OMITTED/NULL phrase for CALL statement
NOT ON OVERFLOW accepted for CALL statement
ALL option for CANCEL statement

CHART option for CANCEL statement
CHAIN statement

CLOSE WINDOW statement

COMMIT statement

COPY RESOURCE statement

CREATE statement

DELETE FILE statement

DESTROY statement

DISPLAY with screen control

A-8 m Specifications

DISPLAY SUBWINDOW/WINDOW statement
DISPLAY FLOATING WINDOW statement
DISPLAY SCREEN statement

DISPLAY LINE statement

DISPLAY BOX statement

DISPLAY UPON WINDOW TITLE statement
DISPLAY UPON COMMAND-LINE statement
DISPLAY INITIAL WINDOW statement
DISPLAY INDEPENDENT WINDOW statement
DISPLAY TOOL-BAR statement

DISPLAY control-type statement

DISPLAY MESSAGE BOX statement
DISPLAY external-form-item statement
DRAW CHART statement

ENTER CHART DATA statement

ENTRY statement

GOBACK statement

INQUIRE CONTROL statement

INQUIRE WINDOW statement

LOCK THREAD statement

TRAILING option on INSPECT statement
MODIFY statement

NEXT SENTENCE statement

Extensions m A-9

WITH LOCK and ALLOWING phrases added to OPEN statement
MASS-UPDATE option on OPEN statement

WITH NO LOCK and ALLOWING phrases on READ statement
PERFORM THREAD statement

PREVIOUS option on READ statement

Literal allowed in FROM phrase of REWRITE and WRITE statements
SEND message statement

RECEIVE message statement

SET CHART ATTRIBUTE statement

SET FILE-PREFIX statement

SET ENVIRONMENT statement

SET EXCEPTION statement

SET TO ADDRESS OF statement

SET TO SIZE OF statement

SET HANDLE statement

SET THREAD statement

SET WINDOW statement

STOP THREAD statement

SUBTRACT TABLE statement

LESS THAN and LESS THAN OR EQUAL options on START
statement

UNLOCK statement

A-10 m Specifications

DECLARATIVE procedures may reference procedures outside of
DECLARATIVES

Recursive CALLs
Dynamically determined SORT keys
EXIT PERFORM, EXIT PARAGRAPH and EXIT SECTION

ROLLBACK clause for LOCK MODE phrase, on SELECT statement in
FILE-CONTROL paragraph

COMMIT statement may indicate end of transaction and cause changes
to be written to transaction log file

ROLLBACK statement

SET statement with ADDRESS OF clause sets address of linkage data
item to specified value

START TRANSACTION statement

SUPPRESS clause for the COPY statement

USE active_x_control_item and USE ole_object_item statements
USE FOR REPORTING statement

UNLOCK THREAD statement

WAIT statement

A.4 Restrictions

The current version of ACUCOBOL-GT has the following restrictions with
respect to the standard. Many of these will be lifted in future versions of
ACUCOBOL-GT.

The Procedure Division is required.

The ENTER statement is unsupported (obsolete feature).

Restrictions m A-11

e The RERUN clause is unsupported (obsolete feature).
e The COMMON clause of the PROGRAM-ID is unsupported.

 Nested source programs are unsupported.

ACUCOBOLGT Reserved

Wo

rds

Key Topics

Conventions

eIy A VZeTo YAV o] o I T

B-2 m ACUCOBOL-GT Reserved Words

B.1 Conventions

This appendix lists all the reserved words used by ACUCOBOL-GT. Words
that are reserved by ACUCOBOL-GT but not by the 1985 standard are
indicated as follows:

€)) Indicates that the word is reserved by a special feature of
ACUCOBOL-GT
(b) Indicates that the word is reserved by IBM DOS/VS. They are

treated as reserved words by ACUCOBOL-GT only if you
compile with the “-Cv” compiler option.

(h) Indicates that the word is reserved by HP COBOL. They are
treated as reserved words by ACUCOBOL-GT only if you
compile with the “-Cp” compiler option.

(i) Indicates that the word is reserved by both ACUCOBOL-GT and
Data General ICOBOL

n Indicates that the word is reserved by both ACUCOBOL-GT and
RM/COBOL

(s) Indicates that the word is reserved by ACUCOBOL-GT for use in
the Screen Section

(v) Indicates that the word is reserved by both ACUCOBOL-GT and
VAX COBOL

(8) Indicates that the word is reserved by the 1985 standard, but not
by the 1974 standard

*) Indicates that the word is reserved by the 1985 standard but not

used by ACUCOBOL-GT. These words are treated as user
symbols by the compiler. They may become reserved in the
future as more features of the 1985 standard are implemented, so
their use is not advised.

Reserved Word List m B-3

B.2 Reserved Word List

This section lists each reserved word in alphabetical order.A

ACCEPT ACCESS

ACTUAL (b,h) ADD

ADDRESS(a) ADVANCING

AFTER ALL

ALLOWING ALPHABET(8)
ALPHABETIC ALPHABETIC-LOWER(8)
ALPHABETIC-UPPER(8) ALPHANUMERIC(8)
ALPHANUMERIC-EDITED(8) ALSO

ALTER ALTERNATE

AND ANY(8)

APPLY (v) ARE

AREA AREAS

ASCENDING ASSEMBLY-NAME(a)
ASSIGN AT

ATTRIBUTE(a) AUTHOR

AUTO(i,s) AUTO-MINIMIZE(a)
AUTO-RESIZE(a) AUTO-SKIP(s)

AUTOMATIC(a) AUTOTERMINATE(v)

B-4 m ACUCOBOL-GT Reserved Words

BACKGROUND-COLOR(s) BACKGROUND-COLOUR(s)
BACKGROUND-HIGH(a) BACKGROUND-LOW(a)
BACKGROUND-STANDARD(a) BACKWARD(i)

BEEP(r,s) BEFORE
BELL(v,s) BIND(a)

BINARY (8,1) BLANK

BLINK(i,r,5) BLINKING(V)
BLOCK BOLD(v)

BOTTOM BOX(a)

BOXED(a) BULK-ADDITION(a)
BY

CALL CANCEL

CCOL(a) CD(*)

CELL(a) CELLS(a)
CENTERED(a) CENTURY-DATE(a)
CENTURY-DAY (a) CF(*)

CH(®) CHAIN(a)
CHAINING(a) CHARACTER
CHARACTERS CHART(a)
CLASS(8) CLASS-NAME(a)
CLINE(a) CLINES(a)
CLOCK-UNITS(*) CLOSE

COBOL(*¥) CODE(*)
CODE-SET COL(i,9)
COLLATING COLOR(a)

Reserved Word List m B-5

COLOUR(a)

COM-REG
COMMAND-LINE(a)
COMMUNICATION(*)
COMP-1(r,v)

COMP-3(r,v)

COMP-5(a)

COMP-N(a)
COMPRESSION(a)
COMPUTATIONAL-1(r,v)

COMPUTATIONAL-3(r,v)
COMPUTATIONAL-5(a)
COMPUTATIONAL-N(a)
COMPUTE
CONSOLE(s)
CONTAINS
CONTINUE(8)
CONTROLS(a)
CONVERT(r)

COPY

CORR

COUNT

CRT(s)

CULTURE(a)
CURRENT-DATE(b,h)
CYCLE(a)
CYL-OVERFLOW(b)

COLUMN
COMMA

COMMIT(a)

COMP

COMP-2(a)

COMP-4(r)

COMP-6(r)

COMP-X(a)
COMPUTATIONAL
COMPUTATIONAL-2(a)

COMPUTATIONAL-4(r)
COMPUTATIONAL-6(r)
COMPUTATIONAL-X(a)
CONFIGURATION
CONSTRUCTOR(a)
CONTENT(8)
CONTROL
CONVERSION(v)
CONVERTING(8)
CORE-INDEX(b)
CORRESPONDING
CREATE(a)

CSIZE(a)

CURRENCY
CURSOR(r)
CYL-INDEX(b)

B-6 m ACUCOBOL-GT Reserved Words

D

DATA
DATE-COMPILED

DATE
YYYYMMDD(a)

DAY-OF-WEEK(8)
DE(*)
DEBUG-ITEM(*)
DEBUG-NAME(*)
DEBUG-SUB-2(*)
DEBUGGING
DECLARATIVES
DELETE
DELIMITER
DESCENDING
DESTINATION(8)
DETAIL(*)
DISPLAY

DIVIDE
DOUBLE(a)
DRAW(a)
DYNAMIC

ECHO(r,v)
EJECT(b)
EMI(¥)
ENABLED
END

DATE
DATE-WRITTEN
DAY

DAY YYYYDDD(a)

DEBUG-CONTENTS(*)

DEBUG-LINE(*)
DEBUG-SUB-1(*)
DEBUG-SUB-3(*)
DECIMAL-POINT
DEFAULT(v)
DELIMITED
DEPENDING
DESCRIPTOR(v)
DESTROY (a)
DISABLE(¥)
DISPLAY-ST(b)
DIVISION
DOWN(a)
DUPLICATES

EGI(*)

ELSE
EMPTY-CHECK(s)
ENCRYPTION(a)
END-ACCEPT(a,r,v)

Reserved Word List m B-7

END-ADD(8)
END-CHAIN(a)
END-DELETE(8)
END-DIVIDE(8)
END-IF(8)
END-MOVE(a)
END-OF-PAGE
END-READ(8)
END-RETURN(S)
END-SEARCH(8)
END-STRING(8)
END-UNSTRING(8)
END-WAIT(a)
ENDING(a,b)
ENTRY(a, b)
EOL(r,s)

EOS(r,s)
ERASE(r,v)
ESCAPE(i,s)
EVALUATE(8)
EVERY(*)
EXCEPTION
EXIT
EXTENDED-SEARCH(r)

EXTERNAL-FORM(a)

END-CALL(8)
END-COMPUTE(8)
END-DISPLAY (a)
END-EVALUATE(8)
END-MODIFY (a)
END-MULTIPLY (8)
END-PERFORM(8)
END-RECEIVE(8)
END-REWRITE(8)
END-START(8)
END-SUBTRACT(8)
END-USE(a)
END-WRITE(8)
ENTER
ENVIRONMENT
EOP

EQUAL

ERROR

ESI(*)

EVENT(a)
EXAMINE(b,h)
EXCLUSIVE(h,i)
EXTEND
EXTERNAL(8)

B-8 m ACUCOBOL-GT Reserved Words

FALSE(8)

FILE

FILE-ID(v)

FILE-LIMITS(r)
FILE-PREFIX(a)

FINAL(*)

FLOAT(a)

FONT(a)

FOR
FOREGROUND-COLOUR(s)

FROM
FUNCTION

GENERATE(*)
GLOBAL(8)
GOBACK(r)

GREATER
GROUP(*)

HANDLE(a)
HEIGHT (a)
HIGH
HIGH-VALUES

FD

FILE-CONTROL
FILE-LIMIT(Y)
FILE-PATH(a)

FILLER

FIRST

FLOATING(a)

FOOTING
FOREGROUND-COLOR(S)
FREE(h)

FULL(i,s)

GIVING
GO
GRAPHICAL (a)

GRID(s)

HEADING(*)
HELP-1D(a)
HIGH-VALUE
HIGHLIGHT(s)

Reserved Word List m B-9

-0
ICON(a)
IDENTIFICATION
IF
INDEPENDENT (a)

INDEXED
INITIAL
INITIATE
INPUT-OUTPUT
INSPECT

INTO

IS

JUST
JUSTIFIED

KEPT(a)
KEY

LABEL
LAYOUT-DATA(a)
LEADING
LEFTLINE(s)

LENGTH-CHECK(s)

LIMIT(*)

I-O-CONTROL
ID
IDENTIFIED(a)
IN

INDEX

INDICATE(*)
INITIALIZE(8)
INPUT
INQUIRE(a)
INSTALLATION
INVALID

LAST

LAYOUT-MANAGER(a)

LEFT
LENGTH
LESS

LIMITS(*)

B-10 m ACUCOBOL-GT Reserved Words

LINAGE
LINE

LINES

LINKAGE
LOCK-HOLDING(v)
LOW-VALUE
LOWER(a)

MANUAL (a)
MASTER-INDEX(b)

MENU(a)
MESSAGE(a)
MODAL (a)
MODELESS(a)
MODULE(a)
MOVE
MULTIPLY

NAMESPACE(a)
NATIONAL-EDITED
NEGATIVE

NO

NOLIST(h)

NOT

NULL(a)

LINAGE-COUNTER
LINE-COUNTER(*)
LINK(a)

LOCK

LOW(r)
LOW-VALUES
LOWLIGHT(s)

MASS-UPDATE(a)
MEMORY

MERGE
MESSAGES(a)
MODE
MODIFY (a)
MODULES
MULTIPLE

NATIONAL
NATIVE
NEXT
NO-ECHO(s)
NOMINAL (b)
NOTE(b)
NULLS(a)

Reserved Word List m B-11

NUMBER
NUMERIC-EDITED(8)

OBJECT(a)
OCCURS

OFF

ON

OPEN

OR
ORGANIZATION

OTHERS(v)
OUTPUT
OVERLAPPED(a)

NUMERIC
NUMERIC-FILL(a)

OBJECT-COMPUTER
OF

OMITTED

ONLY(a)
OPTIONAL(8)
ORDER(8)
OTHER(8)

OTHERWISE(b)
OVERFLOW
OVERLINE(s)

PACKED-DECIMAL(8)

PAGE
PARAGRAPH(a)
PERFORM

PH(*)

PICTURE
PIXELS(a)
POINTER

POS(s)
POSITIONING(b)
PREVIOUS(a,i)
PRINTING(*)
PROCEDURE
PROCEED
PROGRAM
PROMPT(r,s)
PROTECTED(i,v)

QUEUE(¥)
QUOTE
QUOTES

RANDOM
READ

RECEIVE
RECORD-POSITION(a)

PADDING(8)

PAGE-COUNTER(*)
PASSWORD(b)
PF(*)

PIC

PIXEL(a)

PLUS

POP-UP(a)
POSITION
POSITIVE
PRINT-CONTROL (V)
PRIORITY (a)
PROCEDURES(*)
PROCESSING(b)
PROGRAM-ID
PROPERTY (a)
PURGE(*)

RD(*)
READERS(V)
RECORD
RECORDING(i)

Reserved Word List m B-13

RECORDS
REEL
REFERENCES(*)
RELEASE
REMARKS(a)
RENAMES
REPLACING
REQUIRED(i s)
REPORTING(*)
RERUN(*)

RESET(*)
RESIZABLE(a)
RETURNING
RETURN-UNSIGNED
REVERSE-VIDEO(s)
REWIND

RF(¥)

RIGHT

ROUNDED

SAME
SCROLL(a)
SEARCH
SECURE(i,s)
SEEK(r,h)
SEGMENT-LIMIT
SEND
SEPARATE

REDEFINES
REFERENCE(8)
RELATIVE
REMAINDER
REMOVAL
REPLACE(8)
REPORTING
REPORT(*)
REPORTS(*)
RESERVE
RESIDENT(a)
RETURN
RETURN-CODE
REVERSE(r)
REVERSED
REWRITE
RH(*)
ROLLBACK
RUN

SCREEN(i,s,v)
SD

SECTION
SECURITY
SEGMENT(*)
SELECT
SENTENCE
SEQUENCE

B-14 m ACUCOBOL-GT Reserved Words

SEQUENTIAL
SHADOW(a)
SIGNED-INT(a)
SIGNED-SHORT(a)
SKIP1(b)

SKIP3(b)
SORT-CORE-SIZE(b)
SORT-MERGE
SORT-RETURN(b)

SOURCE-COMPUTER

SPACES
STANDARD
STANDARD-2(8)
STATUS

STRING
STYLE(a)
SUB-QUEUE-2(*)
SUBTRACT
SUM(*)
SYMBOLIC(8)
SYNCHRONIZED
SYSTEM-INFO(a)

TAB()

TALLY (a)

TAPE
TERMINAL-INFO(a)

SET
SIGN
SIGNED-LONG(a)
SIZE

SKIP2(b)

SORT
SORT-FILE-SIZE(b)
SORT-MODE-SIZE(b)
SOURCE(*)

SPACE

SPECIAL-NAMES
STANDARD-1
START

STOP
STRONG-NAME(a)
SUB-QUEUE-1(*)
SUB-QUEUE-3(*)
SUBWINDOW(a)
SUPPRESS(b)
SYNC
SYSTEM(a)

TABLE(a)
TALLYING
TERMINAL(¥)
TERMINATE(*)

Reserved Word List m B-15

TEST(8)

THAN
THREAD(a)
THROUGH
TIME

TIMES
TITLE-BAR(3)
TOOL-BAR(3)
TRACK-AREA(b)
TRAILING
TRANSACTION-STATUS(a)

TRUE(8)

UN-EXCLUSIVE(h)
UNDERLINED(v)
UNLOCK(i,1,v)
UNSIGNED-LONG(a)

UNSTRING
UP
UPDATERS(v)
UPPER(a)
USE

VALUE
VALUES

TEXT
THEN(@®)
THREADS(a)
THRU
TIME-OF-DAY (b,h)
TITLE(a)

TO

TOP

TRACKS(b)
TRANSACTION(a)
TRANSFORM(b)

TYPE(a,*)

UNDERLINE(s)

UNIT
UNSIGNED-INT(a)
UNSIGNED-SHORT (a)

UNTIL
UPDATE(r,v)
UPON
USAGE
USING

B-16 m ACUCOBOL-GT Reserved Words

VARYING
VERSION(a)
VISIBLE(a)

WAIT () WHEN
WHEN-COMPILED(b)

WIDTH(a) WIDE(a)
WITH WINDOW(a)
WORKING-STORAGE WORDS

WRITE WRAP(a)
WRITE-VERIFY (b) WRITE-ONLY (b)
WRITERS(V)

YYYYDDD(8)
YYYYMMDD(8)

ZERO
ZERO-FILL(s)
ZEROES
ZEROS

Changes Affecting Previous
Versions

Key Topics

Changes Affecting Version 8.1.2cccccvecveevieriesnnnsnseseseeseeseeseeseeeens C-2
Changes Affecting Version 8.1.1cccccvecevieevevienie e C-2
Changes Affecting Version 8.1ccoeirinenenene et C-3
Changes Affecting Version 8.0cccceveeveevieriesinsnsesese e e C-3
Changes Affecting VErsion 7.2cccvvveceiie v sesce e C-4
Changes Affecting Version 7.1 ... e C-5
Changes Affecting Version 7.0ccccceveeeivieniesinsn e C-6
Changes Affecting Version 6.2ccccoceveceveevnvienie s e seesee e C-6
Changes Affecting Version 6.1coeoerirerienene e e C-9
Changes Affecting Version 6.0cccevveveerieneninninsesesese e C-10
Changes Affecting Version 5.2 ... v C-11
Changes Affecting Version 5.1 ..o C-15
Changes Affecting Version 5.0cccccerveeeienieniese e C-18
Changes Affecting Version 4.3ccccvvveiiie v C-20
Changes Affecting Version 4.2 ..o C-22
Changes Affecting Version 4.1cccceveeeievieniese s e seenee e C-24
Changes Affecting Version 4.0ccccovvveiivecnene e C-25
Changes Affecting Version 3.2 ... C-25
Changes Affecting Version 3.1ccccceveeeenieniese e C-28

Changes Affecting Version 2.4ccccvvevie v se e e C-29

C-2 m Changes Affecting Previous Versions

ACUCOBOL-GT is generally backwards compatible with prior versions of
ACUCOBOL-GT and ACUCOBOL-85. There are, however, some changes
that can affect existing programs. These changes are detailed in this

appendix.

C.1 Changes Affecting Version 8.1.2

Compiler - Decimal math now the default behavior

In version 7.2, a new math package called Binary Math (--bin) was added to
the compiler and became the default behavior over the previous Decimal
Math (--dec). See section C.5. for details.

Starting with Version 8.1.2, the compiler’s default behavior is reverted back
to decimal math.

C.2 Changes Affecting Version 8.1.1

XFD format and -Fe compiler option

By default the compiler will now generate XFDs in XML format, as opposed
to standard flat text, which was the default prior to Version 8.1.1. This
change also affects the -Fe compiler option. This option will now direct the
compiler to create XFDs in flat text format, as opposed to XML format,
which was the case in versions prior to 8.1.1.

Read-only entry fields
In Version 8.1, read-only entry fields were changed to conform to
standard Windows behavior in that the background color is always
gray (regardless of the COBOL program's Color setting). This is still
the case in Version 8.1.1; however, this behavior is now configurable.
If you need the ability to change the color of read-only entry fields, set
the runtime configuration variable "ECN_3699" to "0".

Changes Affecting Version 8.1 m C-3

C.3 Changes Affecting Version 8.1

$ Symbol in source code

In Version 8.1, COBOL source code can now contain lines with a dollar sign
($) in the indicator area, which may be used with the IF, ELSE, END,
DISPLAY, and SET statement to support conditional compiling.

The $ symbol is also a valid comment character. If a program uses $ as a
comment, and it is immediately followed by IF, ELSE, END, DISPLAY an
error will most likely be generated.

Read-only text fields

As of Version 8.1, read-only entry fields were changed to conform to
standard Windows behavior in that the background color is always
gray (regardless of the COBOL program's Color setting). If you need
the ability to change the color of read-only entry fields, set the runtime
configuration variable "ECN_3699" to "0".

C.4 Changes Affecting Version 8.0

Compiler
In previous versions, an END-PERFORM was required when the PERFORM

was nested in an EVALUATE statement. With Version 8.0, the compiler
accepts the WHEN verb as an implied END-PERFORM.

Interoperability

Comments in C$XML no longer include the expression:
"_* - generated by ACUCOBOL-GT v.*\n**

If you depend on having those comments, you will need to rework your
application in some way.

C-4 m Changes Affecting Previous Versions

For .NET, the type checking rules for using overloaded methods ina COBOL
program are more stringent now. You must use COBOL types that match the
NETDEFGEN COPY file method declaration.

SIGNED-INT - int32.
UNSIGNED-INT - uint32.
SIGNED-LONG - long.
SIGNED-SHORT - int16.
UNSIGNED-SHORT - uintl6.

PIC X(nn)- BSTR

pic 9- BOOLEAN

PIC X- BYTE

C.5 Changes Affecting Version 7.2

Compiler changes

In previous versions, ACUCOBOL-GT has performed the majority of its
arithmetic operations using a 40-digit decimal format (68 digits if using the
“-Dd31” compiler option). Starting with Version 7.3, ACUCOBOL-GT uses
a binary math package as its default. The decimal package remains in place
to handle certain high-precision cases and to maintain compatibility with
existing programs. Users of ACUCOBOL-GT can choose which package
they use: the binary package for enhanced performance or the decimal one for
compatibility with prior compilers. Use the “--decimalMath” (or “--dec”)
compiler option to use the decimal math format. Refer to section 2.1.13,
“Miscellaneous Options,” in ACUCOBOL-GT User’s Guide for more
information about these compiler options.

Prior to Version 7.3, cblutil produced instructions that ran under both
POWER and PowerPC architectures when generating PowerPC native code.
Starting with Version 7.3, this is no longer true. The reason is that the code
generator started using multiply and divide instructions in some important
cases, and some of these instructions changed. The existing “--ppc” compiler
option now produces 32-bit PowerPC code that is also compatible with
POWERS3, POWER4, and POWERS processors. This code does not run
correctly on POWER- or POWER2-based machines. A new “--power”
option produces code that is compatible with POWER and POWER2

Changes Affecting Version 7.1 m C-5

processors, as well as PowerPC and later POWER series processors. This
code can be significantly slower than code generated with “--ppc”, but it does
run on a wider range of machines. Please refer to section 2.1.2, “Native Code
Options,” in ACUCOBOL-GT User’s Guide for more information about
native code generation.

Two compilation switches provide compatibility with Version 7.2:

-C72 Causes the compiler to generate code according to the rules used
by Version 7.2.

-Z72 Creates object code that can be run with a \Version 7.2 runtime.

C.6 Changes Affecting Version 7.1

Compiler and runtime changes

Beginning with Version 7.2, the wheel mouse can be used for scrolling in a
center- or right-aligned entry field. To preserve the pre-7.2 behavior and
prevent scrolling in these situations, set the

V71 _ALIGNED_ENTRY_FIELD configuration variable to “1” (on, true,
yes) or compile your code for compatibility with a version older than Version
7.2. The default value of this variable is “0” (off, false, no).

In Version 7.2, the runtime uses a different font measuring algorithm when it
computes font widths in Windows. With this change, the runtime now
validates the data returned by the Windows GetTextMetrics function and
corrects it when it is too large. The V71 _FONT_WIDTHS configuration
variable setting allows you to use the pre-Version 7.2 rules. This variable can
have one of the following values:

-1 (default) The change is enabled for programs using Version 7.2 or later
semantics. In other words, the program has been compiled with Version
7.2 or later and the command line does not contain a compiler option for
pre-7.2 semantics.

0 The change is enabled.

1 The change is disabled and the Version 7.1 and earlier font measuring
code is used.

C-6 m Changes Affecting Previous Versions

Two compilation switches provide compatibility with Version 7.1:

-C71 Causes the compiler to generate code according to the rules used
by Version 7.1.

-Z71 Creates object code that can be run with a Version 7.1 runtime.

C.7 Changes Affecting Version 7.0

The following sections describe changes that can affect programs originally
written with ACUCOBOL-GT Version 7.0.

Compiler and runtime changes
Two compilation switches provide compatibility with Version 7.0:

-C70 Causes the compiler to generate code according to the rules used
by Version 7.0.

-Z70 Creates object code that can be run with a Version 7.0 runtime.

In Version 7.1, the total size of parameters passed BY CONTENT is
increased to 2GB. For Version 7.0 and earlier, the total size limit is 64K. If
you compile with “-Z70”, your program has the 64K limit for parameters

passed BY CONTENT.

The maximum number of REPLACING elements in an INSPECT statement
is increased to 256. For Version 7.0 and earlier, the limit is 30.

C.8 Changes Affecting Version 6.2

The following sections describe changes that can affect programs originally
written with ACUCOBOL-GT Version 6.2.

Changes Affecting Version 6.2 m C-7

UNIX: New default installation directory

On UNIX systems, the ACUCOBOL-GT development system (compiler,
runtime, utilities, etc.) has a new default directory location. The new location
is: “/opt/acucorp/720”. This change has been made to conform with the
Vfersion 2.3 Filesystem Hierarchy Standard (FHS). Installing into the FHS
standard location provides consistency and improves system integration. For
more information about the FHS standard, please visit “www.pathname.com/
fhs/pub/fhs-2.3.html”.

Initialization of external data items

Versions of ACUCOBOL-GT prior to Version 7.0 had the behavior of
initializing external data items to LOW-VALUES, even when the rest of
Working-Storage was initialized to spaces. Beginning with Version 7.0, all
Working-Storage data items are initialized to spaces or the value specified
with the “-Dv” compile option. This includes external data items.

To maintain compatibility with programs that rely on the old behavior, you
can compile for semantic compatibility with Version 6.2 or earlier. Use the
“-C##” compile option to do this (for example, “-C62” for Version 6.2
compatibility). When you compile for compatibility with Version 6.2 or
earlier, external data items are initialized to null bytes, regardless of how the
rest of Working-Storage is initialized.

C functions

Starting with Version 7.0, ACUCOBOL-GT has added significant new
features to the C interface, allowing you greater flexibility for calling
COBOL programs from C and C++.

For existing programs, this means:

» The cobol() and cobol_no_stop() functions are still supported but have
been deprecated. The new function, acu_cobol(), extends the options
available in the C interface.

» Information on the deprecated cobol() and cobol_no_stop() functions is
not documented in Version 7.0. Refer to Appendix F in previous
versions of the ACUCOBOL-GT documentation set for this information.

C-8 m Changes Affecting Previous Versions

Detailed descriptions of the current C functions are available in Chapter 6 of
A Guide to Interoperating with ACUCOBOL-GT.

Compiler changes
Two compilation switches provide compatibility with Version 6.2:

-C62 Causes the compiler to generate code according to the rules used
by Version 6.2.

-262 Creates object code that can be run with a \ersion 6.2 runtime.

Runtime changes

e The runtime now automatically corrects most reference modification
range errors. It applies the following rules:

a. A start reference less than 1 is treated as 1. For example, var(0:3)
is treated as var(1:3).

b. A length reference less than 0 is treated as 0. Moving a zero-byte
item is equivalent to moving spaces to the destination item. A
zero-byte destination is not affected by the move. Ina STRING
statement, a length of zero for a string source is treated as 1, not 0.

c. A start plus length reference that is past the end of the item is
treated as meaning to the end of the item. For example, if the var
is a PIC X(5) item, var(4:23) is treated as var(4:2).

The WARNINGS runtime configuration variable provides some control
over how reference modification range errors are handled. See its entry
in Appendix H.

« The behavior of the character-based tree view control has changed. In
previous versions, the MSG-TV-SELCHANGE message was not sent if
the COBOL program deleted an item. Nor was it sent when the COBOL
program first ACCEPTed a tree view control. Beginning with \ersion
7.0, the MSG-TV-SELCHANGE message is now sent in both cases.

e Beginning with Version 7.0, when the runtime reduces the size of a
window to fit the screen, it includes any fractional lines and columns that
fit, provided the COBOL program attempted to create a window with
fractional lines and columns. For example, if the program creates a 70.0

Changes Affecting Version 6.1 m C-9

line window, but only a 66.4 line window fits on the display, the runtime
detects that no fractional lines were attempted, and truncates the number
of lines to 66.0. However, if you attempt to create a 70.1 line window,
the runtime recognizes the fractional measurement and displays a 66.4
line window. In prior versions, the runtime always reduced the size of
the window to a whole number. To preserve the old behavior, set the
configuration variable V62_MAX_WINDOW to “1” (on, true, yes).

» Beginning with Version 7.0, the Web runtime uses
ANSI_FIXED_FONT as the standard font. Because some systems may
depend on the old font, this change is configurable. To use the font
standard from Versions 6.2 and earlier (SYSTEM_FIXED_FONT),
adjust the setting of the configuration variable STD_FIXED FONT,
described in Appendix H.

C.9 Changes Affecting Version 6.1

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 6.1.

Compiler changes

Programs that will be deployed on 64-bit Windows systems and that have
USAGE POINTER data items must be recompiled with Version 6.1.1 or
later. This is because, beginning with Version 6.1.1 (the introduction of
ACUCOBOL-GT for 64-bit Windows), the compiler and runtime
differentiate between USAGE LONG and USAGE POINTER data items.
This is necessary for 64-bit Windows.

Two compilation switches provide compatibility with Version 6.1:

-C61 Causes the compiler to generate code according to the rules
used by Version 6.1.

-Z61 Creates object code that can be run with a \Version 6.1 runtime.

C-10 = Changes Affecting Previous Versions

Runtime changes

e Beginning with Version 6.2, on the HP e3000, if a program is compiled
with the “-Cp” option, OPEN OUTPUT statements create temporary
files. This is consistent with the behavior of native HP COBOL on the
platform. Prior to Version 6.2, OPEN OUTPUT statements created
permanent files.

« Beginning with Version 6.2, CSOPENSAVEBOX makes use of the
OPNSAV-FLAGS field of OPENSAVE-DATA. Prior versions ignored
the field.

C.10 Changes Affecting Version 6.0

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 6.0.

Compiler changes
Two compilation switches provide compatibility with Version 6.0:

-C60 Causes the compiler to generate code according to the rules
used by Version 6.0.

-260 Creates object code that can be run with a Version 6.0
runtime.

Alignment of literals

The compiler uses a new algorithm for aligning literals in memory. The
alignment is the smaller of the alignment specified by the “-Da” option
(which has a default value of “4”) or the largest power of 2 that is less than or
equal to the literal’s size. For example, a literal that requires 3 bytes of
memory will have an alignment of 2. You can use the “--noAlignLit” option
to turn off the new algorithm. See section 2.1.9, “Data Storage Options,” in
Book 1, ACUCOBOL-GT User’s Guide, for additional information on
“--noAlignLit.”

Changes Affecting Version 5.2 m C-11

Runtime changes

* In Version 6.0 and earlier, the WIN$SPRINTER functions
WINPRINT-PRINT-BITMAP, WINPRINT-SET-CURSOR, and
WINPRINT-GRAPH-DRAW, ignored the form feed status of a pending
print job, causing images or text to print on the wrong page. In \ersion
6.1 and later, calls to these functions automatically test for a pending
form feed before printing.

* InVersion 6.1, when a program is compiled with the “-Cp” switch and
run on an HP 3000, all OPEN OUTPUT statements create MPE files.
In prior versions, byte stream files were created.

» InVersion 6.0 and earlier, if a program argument was preceded by a
double dash (two dashes) it was effectively treated as if preceded by a
single dash. For example, “runcbl --dle errfile iobench” was executed as
if it were “runcbl -dle errfile iobench”. Beginning with Version 6.1, an
argument preceded by two dashes generates a runtime startup error,
unless you specifically modify exam_args (in “sub.c”) to ignore
command-line errors.

C.11 Changes Affecting Version 5.2

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 5.2.

Vision Version 5

Version 6.0 introduces a new Vision file format: Vision Version 5. Vision
Version 5 supports records up to 64 megabytes in size, block sizes up to 8192
bytes, very large pre-allocate and extension factors, and a virtually
unrestricted number of records that allow duplicates. \Version 5 files cannot
be read by ACUCOBOL-GT Version 5.2.1 or earlier runtimes. For a
complete description of Vision Version 5, see section 6.1.3, “Indexed Files -
Vision” in Book 1, ACUCOBOL-GT User’s Guide.

C-12 = Changes Affecting Previous Versions

Windows console runtime

Version 6.0 introduces a new runtime for the Windows operating
environment that may be used to run applications originally deployed in the
Extended DOS environment, as well as other character-based applications.
The new runtime is called the console runtime. The name of the executable
is “crun32.exe”. The console runtime uses the Windows Console API and
runs in a virtual DOS window. The console runtime replaces the Extended
DOS runtime and is sold separately.

The console runtime can run ACUCOBOL-GT applications developed for
the Extended DOS environment provided that some minor changes are made.
For example, the console runtime supports printing capabilities based on the
Windows model. Program code that relies on DOS printing functions must
be modified.

The following runtime configuration variables are MS DOS-specific and are
not supported in Version 6.0:

132_MODE
A_WAIT_FOR_LICENSE
AUTO_BUFFER
DOS_OUTPUT_METHOD
DOS_WATCOM_10
LOCKED_RECORD_DELAY
USE_MOUSE

Web Plug-in discontinued

The browser industry has shifted away from its support of Internet plug-ins in
favor of ActiveX controls. For this reason, we developed and released an
ActiveX-based Web Runtime in ACUCOBOL-GT Version 5.2.1. Due to lack
of browser support, the ACUCOBOL-GT Web Plug-in is not offered or
supported in Version 6.0. For information on migrating from the Web Plug-in
to the Web Runtime, see section 5.11 of A Programmer’s Guide to the
Internet.

Changes Affecting Version 5.2 m C-13

List box and combo box handling of VALUE

In Version 5.2 and earlier, setting the VALUE of a combo box or list box
caused the first item in the list that started with the value of VALUE to be
selected, regardless of case. Beginning with Version 6.0, when a box’s
VALUE is set, the list is searched for an exact, case sensitive match with the
specified value. If the value is found, it is selected. If an exact match is not
found, the list is searched for an exact match regardless of case. If a match is
still not found, the list is searched again, this time for the first string that
contains the passed VALUE as a leading substring, regardless of case.

This change could affect the behavior of an existing application. The
configuration variable V60_LIST_VALUE allows you to select which search
algorithm, new or old, to use. See V60 LIST_VALUE in Appendix H.

Area A in RM COBOL compatibility mode

Starting with Version 6.0, when you compile for RM COBOL compatibility
(*-Cr”), in the Identification Division, Area A can start in either column 8 or
9 (ANSI format) or column 1 or 2 (terminal format). In prior versions, Area
A in the Identification Division started precisely in column 8 (ANSI format)
or column 1 (terminal format).

This change may cause warnings in programs that previously compiled
without warnings. To revert to the old rule, you can use the “--noRmMargin”
compiler option.

Image rendering for BITMAP controls

The image processing code used by Version 6.0 (and later) for BITMAP
controls is device-dependent. This may affect image rendering in some
programs, written for Version 5.2 or earlier, which rely on
device-independent bitmaps. If BITMAP controls are displaying incorrectly,
adjust the setting of the configuration variable, V52_BITMAPS, described
in Appendix H.

C-14 = Changes Affecting Previous Versions

Bitmap push button behavior change

If some event in the system forces the focus away from a text-based push
button after a click has been initiated but not finished, the click is voided.
Starting with Version 6.0, bitmap push buttons void the click just like a
text-based push button. This change applies only to programs compiled for
6.0 semantics or later.

Changes to data items used by C$REDIRECT

The definitions of the HANDLER-PRE-ALLOCATE-AMOUNT,
HANDLER-EXTENSION-AMOUNT, HANDLER-MAX-LREC-SIZE,
HANDLER-MIN-LREC-SIZE, and HANDLER-SEGMENT-OFFSETdata
items in “sample/handler.cpy” have changed.

Changes to data items used by I$10

The definitions of the PRE-ALLOCATION-AMOUNT,
EXTENSION-AMOUNT, MAX-REC-SIZE, MIN-REC-SIZE, and
KEY-OFFSET data items in “sample/def/filesys.def” have changed.

Compiler changes

« Two compilation switches provide compatibility with Version 5.2:

-Ch2 Causes the compiler to generate code according to the rules
used by Version 5.2.

-Z52 Creates object code that can be run with a Version 5.2
runtime.

* When compiling for Version 6.0 or later format, table indexes and
USAGE INDEX data items are treated as 32-bit signed native binary
data items. In versions prior to 6.0, the default for indexes is to act as
16-bit unsigned portable binary data items. In rare cases, this change
from 16-bit to 32-bit indexes may cause problems with an existing
program. One case where this could be a problem is if you place
USAGE INDEX items in a data file. Another case would be if you rely
on undefined overflow behavior with arithmetic on 16-bit indexes.

Changes Affecting Version 5.1 m C-15

If you need to preserve indexes as 16-bit items, you can either compile
for an object format prior to Version 6.0, or you can compile using the
“--nodata32bit” option. This option inhibits the new data addressing
features of 6.0 and causes indexes to be kept as 16-bit data items.

C.12 Changes Affecting Version 5.1

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 5.1.

Licensing changes

The licensing mechanism changed with the release of Version 5.0. In
Version 5.2, this mechanism has been simplified:

* Node IDs are no longer used.

* When the license is installed, the Windows version of the Activator
creates a separate license file for each product, in the same manner as
UNIX.

» The Activator utility is not backwards compatible. You must use the
version of the Activator utility that corresponds to the version of the
product you are installing in order to create a proper license file.

A complete description of the current licensing mechanism is available in the
Getting Started book.

Compiler changes

» Two compilation switches provide compatibility with Version 5.1:

-C51 Causes the compiler to generate code according to the rules used by
\ersion 5.1.

-Z51 Creates object code that can be run with a Version 5.1 runtime.

o Compiler switch “-Zt” is not supported in Version 5.2.

C-16 = Changes Affecting Previous Versions

In versions prior to 5.2, the grid would not pass a
MSG-GOTO-CELL-MOUSE event to the program when the user
clicked on the cell containing the grid cursor. This was done to prevent
extraneous messages from being sent to the program. However, this
message can be useful in some cases, for example, to allow a user to
deselect something that is already selected. Therefore, in \ersion 5.2
and later, the runtime no longer filters out MSG-GOTO-CELL-MOUSE
messages just because the destination cell is the same as the current cell.

Note: This change is active only for programs compiled for Version
5.2 or later. This means that the Version 5.2 runtime will use the old
behavior when executing programs compiled with versions prior to
5.2, or compiled with the “-C51” or the “-Z51” switch. You can
disable the new behavior by setting the configuration variable
“V52_GRID_GOTO” to “0”.

Version 5.2 introduces “ENTRY” as a new reserved word in
ACUCOBOL-GT. A program that compiled with a previous version of
the compiler will not compile with Version 5.2 if it uses “entry” in
certain places. For example:

If “entry” appears in a paragraph name in your program, the compiler
returns the error:

“Identifier expected, ENTRY found”

If “entry” appears in a variable in your program, the compiler returns the
error:

“syntax error scanning ENTRY”

See Book 3, ACUCOBOL-GT Reference Manual, section 6.6,
“Procedure Division Statements,” ENTRY Statement, for usage syntax
and rules.

Runtime changes

The ACUCOBOL-GT Version 5.2 runtime on SCO UNIX systems runs
in the ELF binary format. Prior to Version 5.2, the runtime ran in the
COFF format, but COFF does not support calling shared libraries so it

Changes Affecting Version 5.1 m C-17

was changed to ELF. If you have your own C routines that you used to
link to the runtime, you will need to recompile those C routines to create
ELF objects to link to the 5.2 runtime. For details on calling shared
library routines in UNIX environments, see Chapter 6 of A Guide to
Interoperating with ACUCOBOL-GT.

In versions prior to 5.2, the runtime would eliminate requests to resize a
screen control if the new size and position matched the control’s current
size and position on the screen. With the current version, the runtime
optimizes the control resize request using the SIZE and LINES indicated
(or implied) by your program instead of the current size and position.

These two ways of optimizing control resize requests produce nearly
identical results. However, there are a few cases where the results can
differ. For example, if you change the size of the subwindow that
contains the control in such a way that the control would crop differently,
then a comparison of the “actual” size shows a difference, while a
comparison of the “requested” size does not. In this case, earlier
versions of the runtime would resize the control, while the current
version will not.

This change was made to provide more predictable behavior and to
improve efficiency when the display service is on a remote machine.

If necessary, you can disable this behavior by setting
OPTIMIZE_CONTROL_RESIZE to “0” (off, false, no). This prevents
any optimization of control resizing operations. Note that this can result
in additional screen painting (in which controls may appear to flicker)
and should be used only as a short-term fix while any required coding
changes are made.

The way the runtime handles mouse click events in COBOL programs
that contain both bitmap push buttons and multiple windows under the
control of a single thread has changed.

In Version 5.1 and earlier, in some cases, simply clicking down on the
mouse button when a bitmap push button was selected, generated a
CMD-CLICK event. This was not consistent with the way Microsoft
Windows handles these events.

C-18 m Changes Affect

ing Previous Versions

In Version 5.2 and later, clicking down on a bitmap pushbutton on a
non-active window running in the same thread will cause the current
ACCEPT to terminate with CMD-ACTIVATE event. The pushbutton is
not considered clicked until the COBOL program performs some action
that allows it to activate, such as ACCEPTing some control in the newly
activated window. For self-activating pushbuttons, this allows the
pushbutton to self activate. For non-self-activating pushbuttons, the new
ACCEPT will terminate with a CMD-GOTO so that the COBOL
program can ACCEPT the correct control.

This change is only available in COBOL objects compiled for Version
5.2 or later and run with a Version 5.2 or later runtime. COBOL objects
compiled with Versions 5.1 or earlier will still exhibit the old behavior,
even if they are run with a Version 5.2 or later runtime.

The resolution of the ACCEPT BEFORE TIME timer has been
substantially increased in Version 5.2. In rare cases, this could affect
existing programs. To forestall any such problems, the runtime
automatically uses the pre-5.2 resolution when running pre-5.2 objects
and objects compiled for pre-5.2 compatibility (e.g. “-C51”).

C.13 Changes Affecting Version 5.0

The

following paragraphs describe changes that can affect programs

originally written with ACUCOBOL-GT Version 5.0.

Compiler changes

Two

compilation switches provide compatibility with Version 5.0:

-C50 Causes the compiler to generate code according to the rules used by

-Z50

Version 5.0.

Creates object code that can be run with a Version 5.0 runtime.

Changes Affecting Version 5.0 m C-19

Runtime changes

In versions prior to 5.1, a CMD-ACTIVATE event would be generated
only if there was an active ACCEPT statement running to receive it.
Under some (unusual) circumstances, this could cause the runtime to
enter a state where it believed the wrong window was active.

In Version 5.1, this rule is modified so that CMD-ACTIVATE events are
generated unless the window generating the event is in the process of
being built. It no longer matters whether or not an ACCEPT statement is
running. The new rule is needed to prevent the first ACCEPT in each
window from immediately terminating due to a queued
CMD-ACTIVATE event (generated by the window's own creation).

Note: This is a change in the rules for when CMD-ACTIVATE is
generated. As a result, it is possible for CMD-ACTIVATE events to
occur in cases where they did not previously. In order to prevent this
change from adversely affecting a working program, the new rule is
used only for programs compiled for 5.1 semantics. This means that
the 5.1 runtime will not behave any differently in this regard when
executing programs compiled with 5.0 or earlier (or compiled with the
“-C50” switch). You can explicitly enable this rule by setting the
configuration variable “ECN-1660" to “1” or disable it by setting it to
“0”. When the variable is set to “-1” (the default), the program
semantics apply as described above.

In Version 5.1, you can assign pop-up menus to labels. This change has
the side-effect that labels are now aware of mouse-clicks where
previously they were not. This matters only if you happen to have a label
and another control (like a push button) that overlap. Previously, the
push button would always get all the mouse events. In Version 5.1, the
label could start getting them. This can prevent the push button from
working (because it is not “seeing” the mouse clicks). Normally, you
would not overlap controls, but it can happen unintentionally if the label
contains only spaces.

C-20 = Changes Affecting Previous Versions

To correct this situation, make the controls not overlap or make label
invisible instead of setting it to spaces if you want to hide it. You can
inhibit this change by compiling for 5.0 or earlier semantics (this also
means that you must compile for 5.1 or later semantics if you want to
attach a pop-up menu to a label).

e The configuration variable V42_TRANSPARENT is now obsolete.
Transparent labels always appear transparently. If this variable is set in
your environment or in the runtime configuration file, it is simply
ignored.

C.14 Changes Affecting Version 4.3

Version 5.0 of ACUCOBOL-GT contains significant changes in the internal
workings of both the compiler and runtime. The following paragraphs
describe changes that can affect programs originally written with
ACUCOBOL-GT Version 4.3.

Licensing changes

With the Version 5.0 release, the licensing procedure for extend products has
been changed. All products still require a license file, but you no longer need
a separate license disk to install your products. Instead, you will receive a
pair of alphanumeric strings (keys) that must be entered to activate your
software. See your Getting Started book for details.

Compiler changes
Two compilation switches provide compatibility with Version 4.3:

-C43 Causes the compiler to generate code according to the rules used by
Version 4.3.

-Z43 Creates object code that can be run with a \ersion 4.3 runtime.

< Prior to Version 5.0, the width of a printer cell was based on the average
width of the selected printer font. Now, the width of a printer cell is
computed in the same way that cells are computed for the screen, based
on the width of the “0” (zero) character. Note that proportional fonts

Changes Affecting Version 4.3 m C-21

may contain wider characters. This may affect the horizontal placement
of a bitmap on the page, the width of bitmaps and margins if they are
specified in cells, and the number of columns reported by the
WINPRINT-GET-PAGE-LAYOUT call. See the WIN$PRINTER in
Appendix I, “Library Routines”, for details.

The Arial font shipped with Windows 98 Version 2 is different from the
Avial font shipped with earlier versions of Windows and Windows NT.
The new font has a character width of 35 pixels, instead of the previous
23 pixel width. This can cause field overlap or screen distortions in
programs that rely on the size of the Arial font. If you do not want to
adjust your applications to accommodate the new wider version of the
Arial font, a new configuration variable,
OLD_ARIAL_DIMENSIONS will force the runtime to use the 23
pixel measurement. See Appendix H, “Appendix H: Configuration
Variables,” for details.

In previous versions, the command-line option for the logutil utility date
filter “-d” had problems comparing dates when the specified 2-digit year
was “00” or greater. Now, logutil requires that years be specified in a
4-digit format. If you enter a year less than 1900, logutil will report
“logutil: use 4 digit year specification.”

Starting with ACUCOBOL-GT 5.0 release, the compiler no longer
automatically assigns the “MULTILINE” style to an entry field with
LINES value of “2” or greater. Although Version 5.0 correctly handles
cases compiled with 4.x versions, in order for that to happen you need to
specify an appropriate source-compatibility flag (such as “-Z43”). Note
that the flag is not required if you had explicitly set the “MULTILINE”
style in your 4.x-version program.

Runtime changes

In previous versions, the UNIX runtime would use the name of the user
that started a runtime process to identify the user to acushare and count
the number of processes a user was executing simultaneously. In
Version 5.0, the user is defined as a unique terminal name. Each
terminal is counted as a unique user and requires one user license.
Background processes adopt the name of the terminal which started
them. There are 1024 processes per user allowed for each terminal
name.

C-22 m Changes Affecting Previous Versions

acushare 5.0 can be used with older runtimes and will report the
maximum processes and processes per user settings for those runtimes as
long as they have different serial numbers from the 5.0 runtime installed
on the machine. If a Version 4.3 and a Version 5.0 runtimes on the same
machine have the same serial number, acushare 5.0 supports both but
does not report maximum processes or processes per user.

e Microsoft has changed standard input stream handling in Internet
Information Server 4.0. When you are running with the “-f” option or
when the A_CGI environment variable is set, the runtime reads only the
number of bytes set in the CONTENT_LENGTH environment variable
by the web server. The runtime no longer waits for an end of file
condition.

« The runtime no longer differentiates between “UNIX-4" and “UNIX-V”
in the OPERATING-SYSTEM field of the SYSTEM-INFORMATION
structure. Instead, it reports “UNIX” for all UNIX operating systems.

C.15 Changes Affecting Version 4.2

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.2.

Compiler changes
Two compilation switches provide compatibility with Version 4.2:

-C42 Causes the compiler to generate code according to the rules used by
Version 4.2.

-Z42 Creates object code that can be run with a Version 4.2 runtime.

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.2,

* The default ACCEPT size for a numeric-edited field now includes a
space for the sign only if the field is signed. You can set the program to
include a space for an implied sign by compiling for semantic
compatibility with an earlier version of ACUCOBOL-GT using a
compilation switch in the command line.

Changes Affecting Version 4.2 m C-23

One of the general rules for screen control entry has been modified: Prior
to Version 4.3, an ACCEPT statement used to set ACCEPT-CONTROL
to “1” if the event was a “message” (“MSG-...”) event. Starting with
version 4.3, if the reason for entry is a “notify” (“NTF-...”) event,
ACCEPT-CONTROL is set to “1”; otherwise it defaults to “0”).

The “-Fo” option has replaced the “-Zo0” option. Both compiler options
produce the same results, but the “-Zo” option should be considered
obsolete.

The compiler option “- Rw” has been expanded to allow, in addition to
reserved words, the suppression of some non-reserved words, such as
control names (e.g., “entry-field”, “label’) or property names (e.g.,
“max-text”, “bitmap-number”). If you tell the compiler to suppress a
non-reserved word, however, it will do so with the following warning:
“Unknown reserved word: non-reserved word.”

Runtime changes

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.2.

If a program is in the event procedure for an active control, and the
control activates and subsequently destroys another control, the control
whose event procedure is executing is reactivated. In previous versions,
the “active” control was left in an undefined state.

When using the library routine WIN$SPRINTER with the 32-bit runtime,
the newer Windows PageSetup dialog box will appear by default. If you
wish to use the old 16-bit PrintSetup dialog box, you must use the
operation code WINPRINT-SETUP-OLD.

In all releases up to and including the ACUCOBOL-GT 4.2 release,
anytime you created an Entry-Field control with a LINES value of “2” or
greater, it was treated as a multiline entry field. In version 4.3, this rule
is modified so that a LINES value of “2” or greater implies MULTILINE
only if the “CELLS” phrase is not also used or implied.

C-24 m Changes Affecting Previous Versions

Calling COBOL from other languages

C.16

C.17

e Windows 95/98 and NT sites that are calling COBOL routines from C
with the “cobol” routine need to be aware of a change to the calling
convention. The calling convention has changed from “__cdecl” (the C
calling convention) to “__stdcall” (the Pascal calling convention, used
by Windows API routines). This was done to make integration with
Visual Basic and Delphi more straightforward.

Programs that call the “cobol” routine must be sure to include “sub.h”
(included with ACUCOBOL-GT in the “lib” directory). This includes a
declaration of the “cobol” routine for all platforms. This ensures that
you use the correct calling convention when calling the “cobol” routine.
If you have established routines that call “cobol”, these must be
recompiled in order to use the new calling convention.

Changes Affecting Version 4.1

Two compilation switches provide compatibility with Version 4.1:

-C41 Causes the compiler to generate code according to the rules used by
Version 4.1.

-Z41 Creates object code that can be run with a \ersion 4.1 runtime.

Changes Affecting Version 4.0

Two compilation switches provide compatibility with Version 4.0:

-C40 Causes the compiler to generate code according to the rules used by
Version 4.0.

-Z40 Creates object code that can be run with a \ersion 4.0 runtime.

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.0.

Changes Affecting Version 3.2 m C-25

» The compiler option “-Zx” (while still supported) has been replaced with
“-Fx”. Both options cause the compiler to generate XFD files in a new
format (XFD Version 4). Version 4 XFD files include a list of all of the
fields contained in a file’s record description, including group items and
REDEFINES items. Items that are excluded from use by the rules of
XFD generation are marked with a condition number of 999. Versions of
AcudGL and alfred prior to Version 4.1 require the old format of XFD
files. If you want to generate XFDs in the old format, use the new
compiler option “-Fx3” or use “-Z40”.

e The compiler option “-Za” now causes the compiler to test table indexes
against the upper bound of the current table size when you compile for
Version 2.4 or later semantics. Thus, if you have an OCCURS
DEPENDING ON table that could hold 20 elements physically, but
whose current size is 10 elements, the runtime will produce an error if
you access elements 11--20 when compiling with “-Za”.

Compiling for Version 2.3 or earlier (“-C23”) causes the compiler to test
against the physical upper bound.

C.18 Changes Affecting Version 3.2

Two compilation switches provide compatibility with Version 3.2:

-C32 Causes the compiler to generate code according to the rules used by
Version 3.2.

-232 Creates object code that can be run with a \Version 3.2 runtime.

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 3.2.

» Under 32-bit Windows, the user name returned in ACCEPT FROM
SYSTEM-INFO is now retrieved from the system instead of from the
USER environment setting. The name retrieved is the user’s login name.
This change could affect installed programs in that a user’s name may
appear differently than it did with earlier runtimes. The runtime does not
provide a way to override this change, because doing so would present a
security hole under Windows NT.

C-26 = Changes Affecting Previous Versions

The default compile output file has been changed from “cbl.out” to
“{source-name}.acu”. This could affect the behavior of scripts used to
compile programs. Also, if no CODE-SUFFIX is specified, the runtime
tries a suffix of “.acu” before trying a blank suffix. This could affect
programs if you happen to use a blank suffix for objects and have files
named with the “.acu” extension in the same directory as your objects.
To work around this, simply set CODE-SUFFIX explicitly in your
configuration file. To specify a blank extension, simply add
“CODE-SUFFIX” with no value.

AUTO termination on a graphical screen now acts as if the “Tab” key
had been pressed.

Suppose a user is interacting with a screen that has an entry field
followed by a radio button group. Normally, when the user tabs to the
radio button group, control passes to the “group leader” (that is, the
button that is selected, or the first button in the group, if none is
selected). Prior to Version 4.0, if the entry field were defined with the
AUTO style, then when the field was full, control passed to the very next
item in the Screen Section. This might be a radio button that was not the
“group leader.”

The Version 4.0 runtime has been enhanced to treat this AUTO
termination case as if the “Tab” key had been pressed, so that control
passes to the “group leader” when the entry field becomes full.

If the program is compiled with the “-C##” option, where “##” is a
number less than 40 (such as “-C32” or “-C31"), this enhancement is
disabled, and the behavior reverts to that of earlier versions.

Starting with Version 4.0, the compiler uses a new rule when moving
LOW-VALUES or HIGH-VALUES to a numeric item.

Under standard COBOL, a MOVE of LOW-VALUES or
HIGH-VALUES to a numeric item has undefined effects. Prior to
Version 3.0, ACUCOBOL would treat these items as if they had legal
numeric values, convert them accordingly, and move the result. This
often results in a meaningless value, but can be useful for some numeric
data items.

Changes Affecting Version 3.2 m C-27

USAGE DISPLAY types, for example, would end up with
LOW-VALUES in their storage. Non-DISPLAY types ended up with
odd values. Some other COBOL systems would produce a value of zero
in binary numeric items when LOW-VALUES were moved to them.

In order to improve compatibility with these systems, ACUCOBOL-GT
was changed in Version 3.0 so that a MOVE of LOW-VALUES to a
numeric item moved ZERO to that item. There were two concerns with
this: (a) the compiler did not do this in every case, and (b) this changed
the behavior of some programs that were functioning under prior
versions of the runtime.

Starting with Version 4.0, the compiler uses the following rule when
moving LOW-VALUES or HIGH-VALUES to a numeric item:

When the constant LOW-VALUES or HIGH-VALUES is the source of
a MOVE statement whose destination is numeric, the move is treated as
if the destination were defined as class alphanumeric. This results in the
memory occupied by the numeric item being filled with LOW/
HIGH-VALUES.

This rule tends to produce the best results of both the pre-3.0 and
post-3.0 behavior--the useful cases work out the same. Also, this rule
expresses what most programmers believe should happen.

This new rule is used only for programs compiled for 4.0 semantics (this
is the default). If you use the “-C##” or “-Z##” option to compile for
earlier semantics, the compiler does not use this rule, and the runtime
adjusts to use the semantics that were in place for version “##”. For
example, if you compile with “-C24”, then the runtime will use the
pre-3.0 semantics for the meaning of MOVE LOW-VALUES to a
numeric item.

C-28 m Changes Affecting Previous Versions

C.19 Changes Affecting Version 3.1

Two compilation switches provide compatibility with Version 3.1:

-C31 Causes the compiler to generate code according to the rules used by

-Z231

Version 3.1.

Creates object code that can be run with a Version 3.1 runtime.

The following section describes changes that can affect programs originally
written with ACUCOBOL-GT Version 3.1.

The Vision Version 4 indexed file system uses a dual file format. \Version
4 files cannot be read by ACUCOBOL-GT Version 3.1 or earlier
runtimes. For a complete description of Vision Version 4, see section
6.1.3, “Indexed Files - Vision” in Book 1, ACUCOBOL-GT User’s
Guide. Note that runtimes beginning with Version 3.2 are able to read
any version of Vision file. To continue to use Vision Version 3 indexed
files, see the entry for the V_VERSION configuration variable in
Appendix H.

Recursive PERFORM s are automatically enabled when you compile
your programs with Version 3.2 or later. Recursive PERFORMs are
required for the use of EVENT PROCEDURES. In very rare cases, this
can affect the flow of control in a program. A program would be
affected, for example, if it performs paragraph “A”, which performs
paragraph “B” and then returns from “A” before returning from “B”. If
you want, you can disable recursive PERFORMSs with either the “-C31”
(or earlier) flag or the “-Zr0” flag.

Beginning with Version 3.2, data in a list box column can no longer
overflow into the adjacent column (causing all columns to shift to the
right). Instead, the data is truncated if it doesn’t fit in the allotted space
for that column. There is no way to prevent this change.

Beginning with Version 3.2, list box columns have a small buffer
between them, so that the columns do not merge together when they are
full. This can cause partial loss of the last character in a column if your
columns are very close together. To correct this, set the configuration
variable COLUMN-SEPARATION to zero.

Changes Affecting Version 2.4 m C-29

Beginning with Version 3.2, in environments that use system messages,
such as Microsoft Windows, message processing during file 1/0
operations is no longer performed by default. This is due to problems
that can occur in programs that use multithreading, modeless windows,
or event procedures. To restore the old behavior, use the
FILE-10-PROCESSES-MESSAGES configuration variable. Enabling
message processing should only be done under certain conditions. Fora
complete description, see the entry for

FILE_IO_PROCESSES MESSAGES in Appendix H.

The IS NUMERIC test for COMP-3 fields is more rigorous beginning
with Version 3.2. In prior versions, any bit pattern was allowed in the
sign field. The runtime treated any bit pattern, other than 0x0D, as
indicating a positive value. Starting with \ersion 3.2, only signs of
0x0C, 0x0D and OxOF are treated as legal values in the IS NUMERIC
test. These values are the normal values for signs (there are two positive
values to match various other COBOLS). You can suppress this change
by compiling for compatibility with Version 3.1 (i.e. “-C31").

Beginning with Version 3.2, the DESTROY handle-1 statement now
sets the value of handle-1 to NULL if the statement succeeds. In prior
versions the value of handle-1 was not changed. You can prevent the
setting of handle-1 to NULL by compiling for compatibility with
Vfersion 3.1 (i.e. “-C31").

C.20 Changes Affecting Version 2.4

The following section details changes that can affect programs originally
written with ACUCOBOL-85 Version 2.4.

Support for 16-bit MS-DOS compilers and runtimes has been
eliminated. Support remains for 32-bit (Extended) DOS systems and for
32-bit and 16-bit Windows systems. This change does not affect the
formal capabilities of ACUCOBOL-GT, but it does have some practical
consequences.

Primary among these is that ACUCOBOL-GT no longer supports the
dynamic loading and linking of assembly language routines. \ersion 2.4
runtimes (and earlier) for 16-bit MS-DOS provided support for calling
assembly language routines directly with the CALL verb. In

C-30 = Changes Affecting Previous Versions

ACUCOBOL-GT Version 3.1 and later, if you want to use an assembly
language routine you must link it directly into the ACUCOBOL-GT
runtime in the same way that C routines are included.

Users who require 16-bit DOS support should use Version 2.4.

C.21 Changes Affecting Version 2.3

The following section details changes that can affect programs originally
written for the Version 2.3 ACUCOBOL-85 compiler.

Compiler changes

New directory structure

Beginning with Version 3.0, a new directory structure is created when you
load your media. See the “READ_ME?” file for the location of all extend
files. Note that the new directory structure may not be compatible with
scripts you have in use at your site.

Runtime changes

Relinking the runtime

If you relink the runtime, be aware that the Makefile in the “lib” subdirectory
leaves the rebuilt runtime in the “lib” subdirectory. This change allows you
to rebuild the runtime system and test it without overwriting the original
runtime, and without renaming it. However, be sure to move the rebuilt
runtime to the “bin” subdirectory, or move it to a directory in your path.

Alternate file systems

Check the “RELEASE” notes to verify the compatibility of older versions of
extend interfaces to alternate file systems such as Btrieve and INFORMIX.

Changes Affecting Version 2.1 m C-31

C.22 Changes Affecting Version 2.1

The following section details changes that can affect programs originally
written for the Version 2.1 ACUCOBOL-85 compiler.

Compiler changes
MS-DOS requirements

For machines using MS-DOS, ACUCOBOL-GT Version 3.0 requires
MS-DOS version 3.0 or later. ACUCOBOL-85 Version 2.1 required only
MS-DOS version 2.0.

Support for 64-bit architectures

Beginning with Version 3.0, ACUCOBOL-GT fully supports 64-bit
machines without restriction. At the current time, the only machine that fits
this classification is the DEC Alpha machine running OSF (Open/VMS also
runs on the Alpha machine, but it runs in 32-bit mode). Version 2.1 of
ACUCOBOL-85 also runs on 64-bit machines, but it contains some
restrictions.

In Version 2.1, the following items are restricted:

e Since RETURN-CODE is only 32 bits in size, it cannot hold a “long”
value properly. This makes it inappropriate for receiving “pointer” or
“long” return values from a C subroutine.

* USAGE POINTER data items are also 32 bits, and so cannot actually
hold a real machine address.

» Thedirect C interface cannot be used for “pointer” or “long” parameters
since the 2.1 compiler does not allow you to pass a 64-bit item BY
VALUE.

Beginning with Version 3.0, these restrictions do not apply. We made certain
changes to the rules of ACUCOBOL-85, beginning with Version 2.3. These
changes affect only a few existing COBOL programs, but they have the

C-32 m Changes Affecting Previous Versions

potential of causing a working program to stop working. Because of this,
there is a method available to inhibit these changes. See the “-Dw” option in
section 2.1.9 of the ACUCOBOL-GT User’s Guide.

The specific changes are:

USAGE POINTER data items now occupy 8 bytes instead of 4 bytes.
This allows a USAGE POINTER item to hold a full address on any
machine architecture. Ona machine that is smaller than 64-bits, only the
first 32 bits of the POINTER item are used. The rest of the item is
treated as FILLER.

This is the change that is most likely to affect existing programs. You
can be affected if you have POINTER data items as part of a group item,
since the group item’s size will change. If you have this case, then either
allow the size of the group to change and adjust any external references
or redefinitions of it, or use the option described below to keep
POINTER items in 4 bytes.

The special register RETURN-CODE was changed from PIC S9(9)
COMP-5 to USAGE SIGNED-LONG. For a description of
SIGNED-LONG, see the ACUCOBOL-GT Reference Manual section
5.7.1.8, “USAGE clause.” This change allows RETURN-CODE to hold
64-bit values on 64-bit machines, and so it can be used to hold any return
value from a called routine. This change should not affect any existing
program.

You may now pass 8-byte data items BY VALUE to a called routine. If
you are on a 16- or 32-bit machine, then only the low-order 32 bits are
actually passed. On a 64-bit machine, all 64 bits are passed. This
provides a portable solution to the problem of passing “long” data. This
change does not affect any existing programs.

For related topics, see the

“-Dw” option in section 2.1.9 of the ACUCOBOL-GT User’s Guide.

“USAGE clause,” section 5.7.1.8 of the ACUCOBOL-GT Reference
Manual.

CALL RETURNING syntax in the entry for the CALL statement in
section 6.6 of the ACUCOBOL-GT Reference Manual.

Changes Affecting Version 2.1 m C-33

» next section on “RETURN-CODE Changes.”

RETURN-CODE changes

As discussed in the previous section, the special register RETURN-CODE
has changed. In versions of ACUCOBOL-85 prior to 2.3, RETURN-CODE
was implicitly defined as:

77 RETURN-CODE PIC S9(9) COMP-5, EXTERNAL.

In Version 2.3 and later, it is defined as:
77 RETURN-CODE SIGNED-LONG, EXTERNAL.

This change should have no noticeable effect on existing code, but it allows
RETURN-CODE to be used sensibly on 64-bit machines. This change is
inhibited if you compile for compatibility with a prior version of
ACUCOBOL-85. For example, if you use “-C21” to maintain source
compatibility with Version 2.1, then this change does not take place.

There is also a special register that redefines RETURN-CODE called
RETURN-UNSIGNED. Its definition is:

77 RETURN-UNSIGNED
REDEFINES RETURN-CODE UNSIGNED-LONG, EXTERNAL.

You should use RETURN-UNSIGNED when handling pointer or “unsigned
long” data types that are returned from an external routine. If you use
RETURN-CODE in these cases, you can get errors if the value is large
enough to set the high-order bit of RETURN-CODE. The problem is that
these values are negative when interpreted as signed values, therefore
COBOL will remove the sign if you move them to an unsigned destination.

The RETURN-UNSIGNED special register is not defined if you compile for
compatibility with prior versions of ACUCOBOL-85.

Runtime changes

For machines using MS-DOS, ACUCOBOL-GT Version 3.1 and later
versions do not run under standard 16-bit DOS but do support 32-bit
Extended DOS. Version 3.0 requires MS-DOS version 3.0 or later.
ACUCOBOL-85 Version 2.1 required only MS-DOS version 2.0.

C-34 m Changes Affecting Previous Versions

C.23 Changes Affecting Version 2.0

The following section details changes that can affect programs originally
written for the Version 2.0 ACUCOBOL-85 compiler.

Compiler changes
The “-Ca” compiler flag was still available in Version 2.0, but was not
documented. (It was synonymous with the “-Va” flag.) Since Version 2.1,
“-Ca” has a new and different meaning. So, you must now use “-Va” to

cause opposite video intensities to be used for ACCEPT and DISPLAY
statements.

C.24 Changes Affecting Version 1.5

The following sections detail changes that can affect programs compiled with
the Version 1.5 ACUCOBOL-85 compiler.

Compiler changes

Note: All of the changes described in this section can be inhibited with the
“-C5” compile-time option, which causes the compiler to use
ACUCOBOL-85 Version 1.5 semantics. The “-Z5” option (which
produces object files compatible with Version 1.5) will also inhibit these
changes.

« Since the release of Version 2.0, indexed, relative, and binary sequential
files can have variable-length records. You might have syntax in your
existing programs that implies variable-length records, even though your
files on disk are fixed-length. If this is the case, you will receive error
“39” when you try to open your existing files after recompiling your
programs. This type of error will occur most frequently with files that
have multiple records declared for them (more than one “01” entry in the
file’s FD). In order to prevent the error, compile with either the “-C5” or
“-Cf” compile-time option. The “-Cf” option causes the compiler to
assume fixed-length records for these kinds of files.

Changes Affecting Version 1.5 m C-35

» The function of the RETURN-CODE special register was expanded in
Version 2.0. This register is used to return a status value to the operating
system or calling program. The return status of the SYSTEM library
routine is also stored here. This can cause an existing program to behave
differently if you set RETURN-CODE to a particular value and then call
the SYSTEM routine. This can also cause programs that return zero to
the operating system (the default value of RETURN-CODE) to return a
non-zero value if they call SYSTEM. Note that this change affects
programs only after they have been recompiled with Version 2.0 or later.
You can inhibit the change with the “-C5” compile-time option.

e The CALL PROGRAM verb behaves differently since Version 2.1. If
you used CALL PROGRAM under Version 1.5, use the “-C5” option to
maintain compatibility when you compile with Version 3.0. Also note,
that since Version 2.1 the “-Ci” option implies the recursive PERFORM
switch “-Zr”.

» Under Version 1.5, the “-Vc” compile-time option caused ACCEPT
statements that entered numeric fields to be treated as if the CONVERT
phrase were specified for them. Since Version 2.1, this option also
implies the CONVERT phrase for numeric edited fields.

e Under Version 1.5, the WRITE and REWRITE verbs did not check the
length of the record for legality. Since Version 2.1, an illegally sized
record returns error “44”.

e The option “-Zz” causes spaces in a USAGE DISPLAY numeric item to
be treated as the value zero. Because this action was formerly handled
by the SPACES-ZERO runtime option, if you have a mix of object files
from Version 3.0 or later and from any versions prior to Version 2.0, then
you should use “-Zz” to create the new objects and should also add the
SPACES-ZERO option to your runtime configuration file to handle prior
versions.

Runtime changes

The changes described in this section take effect when you install the latest
runtime system.

» Important: Beginning with Version 2.0 and continuing through Version
3.1, the ACUCOBOL-GT runtime was delivered with Version 3 of the
Vision file system. Version 3.2 and later versions are delivered with

C-36 m Changes Affecting Previous Versions

Vision Version 4. The Vision file system is used on all ACUCOBOL-GT
implementations except VAX systems running VMS and Alpha Micro
systems running AMOS. Vision Version 3 introduced a new file format
that is portable across all machines, and is (generally) smaller. Vision
Version 4 introduced a dual file format, in which the indexes are kept in
a separate file from the data. When you are installing the latest version
of the runtime system, you have three choices:

a. You can leave your existing data files in place. ACUCOBOL-GT
will continue to use them. However, any new data files created by
Version 3.2 or later will have the new Vision Version 4 format.
This is the default behavior.

b. You can convert all of your files to the new format with the
“rebuild” option of “wvutil”. In particular, running “vutil -rebuild
-3” on your data files will convert them to the Vision Version 3
format, and running “vutil -rebuild -4” on your data files will
convert them to the Vision Version 4 format.

¢. You can continue to use the old format for all of your data files,
including any newly created ones. To do this, add the line:

V-VERSION 2

to your “cblconfig” file. This will ensure that any newly created
files use the old format.

* The default method of editing numeric and numeric edited fields on the
screen changed slightly when Version 2.0 was released. In Version 1.5,
when a user was editing an existing value, the user could type over the
value. This left any trailing digits in place, and sometimes caused
confusion. Beginning with Version 2.0, if the user starts typing over an
existing field, the current contents are erased first. If the user instead
starts by editing the field (by using an arrow key or an editing key), then
the default value remains on the screen and the user can modify it.

This behavior is controlled by the “NUMERIC-UPDATES” and
“EDITED-UPDATES” configuration options. If you already have the
following entries in your configuration file, then the default change will
not affect you. If you do not have these entries and want to maintain
exact compatibility with Version 1.5, then you should add the following
to your configuration file:

Changes Affecting Version 1.4 m C-37

SCREEN Numeric-Updates=Converted
Edited-Updates=Converted

C.25 Changes Affecting Version 1.4

The following sections describe changes that can affect programs compiled
with the Version 1.4 ACUCOBOL-85 compiler. These are the same changes
that occur when you move from Version 1.4 to Version 1.5.

Compiler changes

The following changes can affect programs when they are re-compiled. Note
that all of these changes can be suppressed by the “-C4” compile-time
option, which causes the compiler to use Version 1.4 semantics. Also note,
that the “-Z4” compile-time option (which produces 1.4 compatible object
files) will also inhibit these changes. Note that there are several important
changes, especially if you are using VAX COBOL compatibility mode. You
should use “-C4” until you can evaluate the extent to which these changes
affect your programs.

Important: Under Version 1.4, USAGE BINARY data items are treated
as identical to USAGE COMP-1 data items. Since Version 2.1, USAGE
BINARY items are treated as defined by the ANSI standard. This results
in data items that are different except for data items described as PIC S9,
S9(2), S9(3) or S9(4). If you have any USAGE BINARY data items in
files, you will need to specify “-C4” to maintain compatibility with your
existing files until you can change your programs.

Important: The internal format of COMPUTATIONAL data items is
different under the following circumstances:

a. You are using VAX COBOL compatibility mode; or

b. You use the “-Zb” or “-Db” compile-time options.

Under previous versions, a data item that fit one of these conditions is
stored as a COMP-1 data item if it is small enough (PIC S9(4) or
smaller), otherwise, it is stored as a COMP-2 data item. Since Version
2.1, these items are stored as BINARY. This is the same as COMP-1 for
the small data items, but is different for the larger ones. If either of these

C-38 m Changes Affecting Previous Versions

cases applies to your programs, and you store COMPUTATIONAL data
items in files, then you should use “-C4” to maintain compatibility with
your files until you can modify your programs.

e Inprevious versions of ACUCOBOL-85, COMP-3 data items are
always treated as signed. They are also rounded up to an odd number of
digits. Beginning with Version 2.0, they act as described by their picture
clauses.

e InVersion 1.4, COMP-6 data items always have an even number of
digits. Since Version 2.1, they have the number of digits specified in
their picture clauses.

« Since the release of Version 2.1, specifying CONVERT on a DISPLAY
of a numeric edited data item causes that item to have its leading spaces
stripped and causes the item to be justified according to the rules applied
to numeric data items. Under Version 1.4, output conversion of numeric
edited items has no effect.

e InVersion 1.4, specifying the CONTROL KEY phrase or the ON
EXCEPTION Key-Name phrase for an ACCEPT statement implies
automatic termination of a field when that field is filled. Since the
release of Version 2.1, this behavior is specified by the AUTO phrase.
Because of the nature of the ACCEPT rules, this change does not affect
programs using RM/COBOL compatibility mode.

» Versions of ACUCOBOL-85 prior to 2.1 do not support file errors 14 or
24 for relative files when the relative key data item is too small to hold
the relative record number. Version 2.1 and all later versions return the
appropriate error in this case.

e Since Version 2.1, assigning a file to the device name PRINTER without
explicitly assigning an external file name causes the file to be assigned to
“PRINTER” when you are using VAX COBOL compatibility mode.
Under previous versions, the file is assigned to the same name as its
internal file name.

e InVersion 1.4, the SYNCHRONIZED clause has no effect. Since
Version 2.1, data item synchronization occurs.

Changes Affecting Version 1.4 m C-39

The rules for the meaning of the ON EXCEPTION phrase of the
ACCEPT statement have changed. For versions prior to Version 2.0,
this phrase catches numeric conversion errors. If the Key-Name option
is used, it also catches exception keys. Since Version 2.0, it always
catches exception keys and does not catch numeric conversion errors
(these errors are handled automatically by the terminal manager).
Specifying “-C4” or “-\Ve2” retains the original meaning of this phrase.
Programs using RM/COBOL compatibility mode are unlikely to be
affected by this change.

Since Version 2.0, closing a window moves the cursor to the position it
occupied when that window was created. Before Version 2.0, the cursor
moved to the home position of the restored window.

Many new reserved words have been added since Version 2.0. Most of
these can be treated as user-defined words through use of the new “-Rs”
and “-Ri” compile-time options. A few new words not covered by these
options have also been added. If they conflict with your current
programs, you can individually treat them as user-defined words with the
“-Rw” option.

Several compile-time options were renamed in Version 2.0. The original
names are still supported, however, so this change does not affect
existing programs or compile scripts, except for the “-Ca” option
described earlier.

Runtime changes

The following changes occur when the latest runtime is installed.

The default meaning of the Tab key has changed. Under Version 1.4, the
Tab key is an exception key that has a key value of “9”. Beginning with
Version 2.0, the Tab key is a termination key with a key value of “9”.
The only difference is that under the previous version, the Tab key is
allowed only when exception keys are allowed and it causes the ON
EXCEPTION phrase to execute. 1f you depend on this behavior, you can
add the following line to your configuration file:

KEYSTROKE Exception=9 ~I

This change was made so that the Tab key could function as a “next
field” key when you are using the Screen Section.

C-40 m Changes Affecting Previous Versions

« Several other keys were redefined in Version 2.0 for use with the Screen
Section. These changes do not affect existing programs, however,
because the new defaults have the same effects as the old ones when used
with field-level ACCEPT statements.

e The maximum number of files that can be opened by the runtime was
reduced from 64 to 32 in Version 2.0. This was done to save memory. If
you need more than 32 files, you can set the maximum to any value you
want (up to 255) with the MAX_LOCKS configuration option. See
Appendix H for details.

« A subtle change has been made in the processing of the user’s
environment. In previous versions, an entry in the user’s environment
always takes precedence over an entry in the runtime’s local
environment. Beginning with Version 2.0, an entry in the user’s
environment takes precedence at the time the local environment is
initially created. This change allows the SET ENVIRONMENT verb to
have an affect on an entry initially defined in the user’s environment.

» Since Version 2.1 the cursor does not leave the field when the field is
filled. Instead, it stays in the last character position and inhibits further
data entry. This difference is cosmetic, but if you prefer the method used
by previous versions, you can add the following line to your
configuration file:

KEYBOARD Cursor-Past-End=Yes

C.26 Changes Affecting Version 1.3

If you are upgrading directly from Version 1.3, then several changes affect
you. These changes are the same as those you encounter when you move
from Version 1.3 to Version 1.4, except that the current runtime does not
support linked object files produced by the Version 1.3 compiler.

Changes Affecting Version 1.3 m C-41

Compiler changes

The following changes affect programs when they are re-compiled. You can
specify the “-C3” option to suppress these differences. Note that
specifying “-C3” also implies the “-C4” flag discussed above. You can also
produce Version 1.3 object files with the “-Z3” compile-time option.

Under Version 1.3, a line sequential file accessed by a program compiled
with RM/COBOL compatibility mode automatically has short records
padded with spaces to fill the record area. Beginning with Version 2.0,
only line sequential files with automatic trailing space removal have
their records padded with spaces. This change was made to
accommodate the behavior of RM/COBOL-85.

A numeric data item that is the object of a DISPLAY statement with the
CONVERT option is left-justified when RM/COBOL compatibility
mode is used under any version since 2.1. In Version 1.3, the data item
is right-justified. This change was made to accommodate the behavior
of RM/COBOL-85.

Under Version 1.3, the default SIZE of an ACCEPT field is always equal
to the number of assignable character positions in the data item, plus 1 if
the data item is signed, and plus another 1 if the data item contains digits
to the right of the decimal point. Beginning with Version 2.0, this
amount is used only if the destination is numeric or edited and the
CONVERT phrase is used. Otherwise, the default SIZE is the physical
size of the receiving field. The difference is subtle and is unlikely to
affect any current programs. This change was made to better simulate
the behavior of RM/COBOL.

In RM/COBOL compatibility mode, a field accepted with the ECHO
phrase is redisplayed in a converted form only if the UPDATE phrase is
also used. In \ersion 1.3, the field is redisplayed in a converted form
only if the CONVERT phrase is used. This change was made to better
simulate the behavior of RM/COBOL.

Certain line sequential files now have automatic trailing-space removal
applied to them. This depends on the device type specified in the file’s
ASSIGN clause. This will generally not affect existing programs except
that files with automatic trailing space removal may not be opened for I/
O (due to the unpredictable record size). This affects only those
programs that do REWRITES on sequential files. 1f you have a program

C-42 » Changes Affecting Previous Versions

that does REWRITES on a sequential file, you should check to make sure
that the device type is not one that specifies automatic trailing space
removal. For more information, see Book 3, ACUCOBOL-GT
Reference Manual, section 4.3.1, “FILE-CONTROL Paragraph,” under
General Rules.

Runtime changes

The following changes occur when the latest runtime is installed. These
changes can generally be compensated for by various configuration options.

Since Version 3.0, the runtime does not support linked object files
produced by the Version 1.3 compiler. If you have any linked object
files, then you must convert them to the library format introduced in
Version 1.4. Note that the normal object files produced by the 1.3
compiler are still supported.

The default keyboard configuration has changed. The new default is
very similar to the default RM/COBOL configuration. Also, the
KEY-MAP and EDIT-MODE configuration variables are no longer
supported. These have been replaced by the more powerful
KEYBOARD and KEYSTROKE entries. Most users of Version 1.3
ACUCOBOL-85 reconfigured the keyboard with the KEY-MAP
variable to simulate the RM/COBOL keyboard. Most will not need to
make any changes since this is the new default.

Users who used the default ACUCOBOL-85 keyboard under Version 1.3
will have to reconfigure the keyboard to meet the Version 1.3 standard.
Other users may need to make minor changes to match their previous
configuration. For details on the new default configuration and the
KEYBOARD and KEYSTROKE variables, see the ACUCOBOL-GT
User’s Guide, section 4.3.2, “Redefining the keyboard.” Also, see the
sample configuration file supplied with the compiler.

Under Version 1.3, files opened with the EXTEND phrase are
automatically created if they do not exist. Beginning with Version 2.1,
they are not. This change was made to match the ANSI standard. You
can maintain the Version 1.3 behavior by setting the configuration
variable “EXTEND-CREATES* to “1” in the configuration file.

Changes Affecting Version 1.3 m C-43

In VAX COBOL compatibility mode, a missing file opened for I/O is not
automatically created. Under Version 1.3, it was. This change was
made because the most recent release of the VAX COBOL compiler was
changed this way.

Several VAX COBOL file status codes have been changed. This change
was made to match changes made to the VAX COBOL compiler.

When you are using the RM/COBOL-85 or RM/COBOL version 2 file
status codes, a corrupted indexed file is now returned as file error “98”
instead of file error “30”.

A single DISPLAY may now wrap around more than one screen row.
Under Version 1.3, lines are truncated. If the 1.3 behavior is desired, set
the configuration variable “WRAP* to the value “0”.

An ACCEPT or DISPLAY statement that references a row past the
bottom edge of the window now causes that window to scroll. Under
Version 1.3, the statement is (largely) ignored. You can cause a similar
effect by setting the configuration variable “SCROLL" to “0”.

The syntax of the COLOR-MAP configuration variable has changed
slightly. See the ACUCOBOL-GT User’s Guide, section 4.4.1, “Adding
Color.”

Obiject files produced by versions of ACUCOBOL-85 prior to \Version
1.3 may not be executed by the latest runtime system. These programs
must be recompiled with a 1.3 (or later) compiler. This change was
made to reduce the size of the runtime system and to improve its
performance. You can use the “-info” option of “ccbl” to locate object
files created by a pre-1.3 version of ACUCOBOL-85. These will be
object files that contain a “vers” value of “2” or less.

C-44 =» Changes Affecting Previous Versions

D Compiler Error Messages

Key Topics

a1 010 18103 110 o HHT SRR
IS A0 = 0] R

D-2 m Compiler Error Messages

D.1 Introduction

The ACUCOBOL-GT compiler produces a wide range of informative
messages, including both Errors and Warnings. An Error message is more
severe than a Warning and, unlike a Warning, inhibits production of an object
file by the compiler.

The following list contains the Error messages produced by the compiler. In
many cases, the meaning of an error message is clear from the message itself.
Where this is not the case, a brief explanation follows the message. In this
listing, the term “%s” represents some string that will replace the “%s” before
you see the message. In most cases, the string will be a user-defined value,
such as a file name, a record name or an item name.

The listing is in alphabetical order. Note, however, that the first few pages
list messages that begin with dynamically generated strings. The
alphabetical ordering ignores the string (which replaces the “%s” in the
listings). Therefore, if an error message starts with a dynamic string, look it
up in this list by using the generic portion of the message that follows the
string.

D.2 List of Errors

$

%

“$SELSE without a corresponding SIF”

“$END without a corresponding $SIF”

Either $ELSE or $END was encountered, and there is no
corresponding $IF.

“%s: a section and a paragraph have the same name”

A section name may be the same as a data name, but must otherwise be
a unique user-defined word.

“%s and %s must be the same size”

List of Errors m D-3

“%s cannot be moved to ALPHABETIC”

“%s cannot be moved to ALPHANUMERIC”

“%s cannot be moved to ALPHANUMERIC EDITED”
“%s cannot be moved to NUMERIC”

“%s cannot be moved to NUMERIC EDITED”

“%s contains no input fields”

You have attempted to ACCEPT a screen item that includes no TO or
USING phrase.

“%s: Data item > 64K illegal here”

“%s: data item exceeds 2GB”

The maximum data item size in ACUCOBOL-GT is 2 GB. See
Section 5.1.6, “Large Data Handling,”, in Book 3, ACUCOBOL-GT
Reference Manual. For a list of compiler limits, see Section A.2,
“Limits and Ranges”.

“%s expected, %s found”

“%s: File record exceeds 64MB”
The maximum record size allowed in ACUCOBOL-GTprograms
compiled to Version 6.0 object format or later is 64 megabytes. See
Section A.2, “Limits and Ranges”.
“%s: File record exceeds 32K”
The maximum record size allowed in ACUCOBOL-GT programs
compiled to Version 5.2 or earlier object format is 32 kilobytes.
“%s ignored for OPEN INPUT”

“%s: illegal level 77"

Level-number 77 entries may not have subordinate items except for
level 88 items.

“%s: incorrect number of arguments”

“%s: incorrect size for KEY AREA”
The KEY AREA must be in multiples of seven.

D-4 m Compiler Error Messages

“%s is ambiguous”
The name here could be interpreted to be more than one thing.

“%s’ is an invalid destination”
Data cannot be stored in a literal value.

“%s is not a KEY of %s”

SEARCH ALL requires that the compared item be referenced in the
KEY IS phrase in the OCCURS clause of the searched table.

“*%1’ is not a property or method of ‘CLASS %2’ “
“%s is not a START key of %s”
“%s is not numeric”

“%s: key must not be in a table”

The data item specified in the KEY phrase of a SORT or MERGE
statement may not be subordinate to an OCCURS clause.

“%s may not be used as a CODE-SET”

A Format 2 Alphabet entry may be used in a COLLATING
SEQUENCE phrase, but not in a CODE SET phrase.

“%s may not belong to %s”
Key-table of the KEY AREA phrase of the SORT verb must name a
data item that is not located in the record for sort-file.

In an INSPECT CONVERTING statement, the convert-string must be
the same length as the compare-string.

“‘%1’ must be a ‘get’ property of ‘%2"”
“'%1’ must be a ‘put’ property or method of ‘%2"”

“%s must belong to %s”

The data item specified in the KEY phrase of a SORT or MERGE
statement must be a data item in the record description associated with
sort-file.

“%s: must have only one value for SEARCH ALL”

A level 88 referenced in a SEARCH ALL statement may not specify a
series or a range in its VALUE clause.

List of Errors m D-5

“%s: needs INDEXED BY phrase in declaration”

The subject of a SEARCH statement must be a data item that contains
an OCCURS clause including an INDEXED BY phrase.

“%s: no FALSE value defined”

You cannot SET cond-name TO FALSE unless cond-name has a
WHEN SET TO FALSE phrase associated with its defining level 88
entry.

“%s not a key of %s”

“%s: not a table”

The subject of a SEARCH statement must be a data item that contains
an OCCURS clause including an INDEXED BY phrase.

“%s not allowed here”

“%s not an ALPHABET name”

You have attempted to use something in a place where an ALPHABET
name must be specified. It has not been defined to be an ALPHABET
name.

“%s: not defined”

%s was used in a $IF, but is not defined either with a level 78 item or
with a “/CONSTANT” compile switch.

“%s not unique in first 18 characters”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This message occurs if a field name is not unique within the first 18
characters. The “%s” is the name found. You can either change the
field name or apply the NAME directive.

“%s: Procedure name not unique”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM has been defined more than once in the program.

D-6 m Compiler Error Messages

“%s record larger than %s record”

In the USING phrase of the SORT or MERGE statement, in-file
records may not be larger than sort-file records. In the GIVING
phrase, sort-file records may not be larger than out-file records.

“%s: requires version %s runtime”

Some compiler options (like “-Z4” and “-Z5") cause the compiler to
generate an object file that can be run on a version of the runtime that
is older than the compiler you are using. These compiler options won’t
allow you to compile new features that the old runtime can’t handle.
When you attempt to compile such features into an object file for an
older runtime, this error will be produced.

“%s: Screen name not allowed in this context”

You have attempted to use a form of the ACCEPT or the DISPLAY
verb that does not allow the use of a screen name from the Screen
Section.

“%s subject to DEPENDING ON phrase”

If the source or receiving item for a screen entry has an OCCURS
clause, it may not include the DEPENDING phrase.

“%s: unknown XFD directive”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The compiler did not recognize the directive you used. The “%s” is the
directive found. Check for a typographical error.

“*** %s overflow ***”

“This table currently allows %s entries”
“Sorry, you cannot make this table any bigger!”
or

“You can increase this with the “-T%s” option”

“For example, you might try ““-T%s %s”"”’

List of Errors m D-7

The compiler uses several internal tables to which it has given an
arbitrary maximum size. Your code requires a greater table size than
the default. This message tells you which table maximum has been
exceeded and whether you can try recompiling with an increased size.
The tables are:

Table Compile Flag Default Value

Identifiers/statement - the maximum td 4096
number of items in each statement

Subscripts/statement - the maximum te 256
size for OCCURS

The compiler always suggests double the default value in the error
message. Because higher values increase table size (using more
memory), the values should not be set any bigger than they need to be.

“ACCEPT FROM DATE only returns two-digit year data”
“ACCEPT FROM DAY only returns two-digit year data”
“ALL expected”

“ALL ignored here”

“ALL index not allowed here”

“alphanumeric value expected”

“ALTER para must start with GO TO: %s”

“Ambiguous identifier: %s”

The identifier here could be interpreted to be more than one thing. If
two group items use the same field name and the field is referred to in
the program, the field name must be qualified by the name of the next
higher group item with a unique name.

“Ambiguous symbol: %s”

“Arithmetic expression expected”

D-8 m Compiler Error Messages

“AT value must be 4 or 6 digits”

“Bad CHART STATUS definition”
“Bad CRT STATUS definition”
“Bad CURSOR definition”

“Bad picture”

“Bad picture for DATE: keyname”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The PICTURE in a DATE directive must be six or eight bytes in length,
either alphanumeric or numeric with no sign.

“Bad SCREEN CONTROL definition”
“Badly formed condition”

“Badly formed ID: %s”

See the rules for COBOL Words, in Section 2.1.1.1 of the
ACUCOBOL-GT Reference Manual.

“Badly formed number: %s”

See the rules for Numeric literals, in Section 2.1.2.1 of the
ACUCOBOL-GT Reference Manual.

“BY CONTENT parameters exceed maximum size”

For Version 7.0 and earlier, the maximum parameter size is 64K. For
later versions, the maximum limit is 2GB.

“BY expected”

The REPLACE statement and the REPLACING phrase require the
word BY.

“BY VALUE parameter %s illegal size”

List of Errors m D-9

“BY VALUE parameter %s illegal type”
“BY VALUE parameter %s mis-aligned”
“BY VALUE parameter may not be a literal”

“BY VALUE parameter must be an integer”

“Can’t recover from earlier error, Good bye!”

“Case sensitivity option repeated for same LIKE condition”
Only one of the CASE-SENSITIVE and CASE-INSENSITIVE options
should be specified in any one LIKE condition. If the case sensitivity
options are specified more than once, the last specification takes
precedence.

“CELL phrase used inconsistently”
The CELL phrase appears in either the LINE or CLINE phrase, but not
in both. Or, the CELL phrase appears in either the COL or CCOL
phrase, but not in both. The CELL phrase must be specified in each of
the LINE/CLINE or COL/CCOL phrases (or omitted from the pair).

“Class already specified”

The same category of data may not be specified more than once in the
REPLACING phrase of an INITIALIZE statement.

D-10 m Compiler Error Messages

“Class name not allowed here: %s”
“Clause repeated”

“COMP-X/N item too large”
“Compilation aborted”

“Compiled screen description too large”
“Compiler error: Picture”

“Condition name not allowed here: %s”
“Conditional expression expected”

“Configuration: %s"”

“Data item exceeds 2GB”

The maximum data item size allowed in ACUCOBOL-GTprograms is
2 GB. For a list of compiler limits, see section A.2, “Limits and
Ranges.”

“Data item exceeds 64K”

The maximum data item size allowed in ACUCOBOL-GT programs
compiled to Version 5.2 or earlier object format is 32 kilobytes.

“Data item not allowed here: %s”

“Data-item: Redefined data item with value moved”

The compiler generates this error when it detects that a data item with
value, already written into the object code, is being redefined too large
for the current data segment. If compiled, the resulting COBOL object
would attempt to force the runtime to write to memory it has not
allocated, likely resulting in a crash.

“Data missing from key segment keyname”

You have compiled with the “-Zx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

List of Errors m D-11

Some part of the named key could not be placed in the dictionary. This
usually occurs because of filler. For example:

01 my-record.
03 my-key.
05 filler pic XxX.
05 field-1 pic xx.
If my-key is declared as a record key, you will receive this error
because the area of the key described by “filler” is not included in the
dictionary.

To correct this error, ensure that every character that is part of the key
is included in some field that is part of the dictionary. Use an XFD to
give a field name to each filler, to ensure that fillers are included.

Example:

01 my-record.
03 my-key.
*((xFfd name=myFfiller))
05 filler pic xx.
05 field-1 pic xx.

“Dest may not be edited: %s”

“Different number of SYMBOLIC names and values”

There must be a one-to-one correspondence between occurrences of
“name” and “number” in the SYMBOLIC CHARACTERS clause of
the SPECIAL-NAMES paragraph.

“Directive word too long: keyname”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

With one exception, the words contained in a directive, including field
names, cannot exceed 30 characters. The value of a WHEN directive
may consist of up to 50 characters. You have exceeded the limit.

D-12 m Compiler Error Messages

“Disk full”
“Duplicate ACCESS”
“Duplicate ASSIGN”

“Duplicate ENTRY point name: %s”
The ENTRY point name has already been used in this program.

m

“Duplicate interface ‘%s

“Duplicate NOT %s phrase”

Various NOT phrases may be used in the context of specific statements
(READ ... NOT AT END, COMPUTE ... NOT ON SIZE ERROR).
The compiler has encountered more than one such NOT phrase in a
statement.

“Duplicate ORGANIZATION”

“Duplicate paragraph name: %s”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM has been defined more than once in the section.

“Duplicate RECORD KEY”

“Duplicate STATUS”

“edited item too large”
The maximum edited data item size in ACUCOBOL-GT is 255 bytes.

“ELSE, END-IF or ’." required after NEXT SENTENCE”

“END-PERFORM required”

The compiler has encountered code in which a scope delimiter is
required for a PERFORM statement.

“Entry for product ‘compiler’ in file ‘%2’ is corrupt”
The license file contains garbled information about the compiler

product. The compiler cannot be executed until the license file has
been repaired. Contact Technical Support.

List of Errors m D-13

“Error file name is the same as the source name”

Your ccbl command has instructed the compiler to name one of its
output files with the same name you’ve given for the source code file.

“Error: input file is Vision format”

You have specified a Vision format file as input to “vutil -load”. The
source file must be the name of the binary, relative, or line sequential
file. See Section 3.3.10 of the User’s Guide for details on this command.

“Errors found, size information suppressed”

“EVALUATE nesting level exceeded”
The maximum depth of EVALUATE statement nesting is 10 levels.

“Evaluation version - expires %1/%2/%3"

“Exception handlers require recursion (-Zr)”

“EXIT SECTION outside of SECTION”
EXIT SECTION must be used within a SECTION.

“Expecting condition after NOT”
“EXTERNAL file in SAME AREA illegal”

“EXTERNAL in REDEFINES”

The REDEFINES clause and the EXTERNAL clause may not be
applied to the same data item.

“EXTERNAL name must be unique”

The same name may not be given to more than one file or data item that
is declared EXTERNAL within a program.

“Extra segment exceeds 64K”

The “extra segment” is that part of the object file that contains
descriptors and other miscellaneous elements. This category is
restricted to 64 KB. The main factor here is the number of different
items that are referenced in the Procedure division.

D-14 m Compiler Error Messages

“FD already defined for file”

“Field xxx causes duplicate database data”

This is a warning message that can appear if you compiled with the
“-Fx” option. The data dictionary was built, and the interface will
operate correctly. The warning informs you that your record definition
should be restructured. Your current definition is set up in such a way
that:

« you have overlapping key fields, and

« both keys must be represented in the database as separate items.

The interface will handle this situation correctly. 1t will keep the
overlapping keys updated simultaneously, so that they always have the
same value. However, the warning alerts you that you have the same
data represented twice in the database. This is dangerous, because
someone at the site might access the database via SQL and accidentally
change only one of the keys.

Here’s an example of the problem, and a description of how to correct
it (the example assumes that both key-1 and key-2 have been declared

as keys):
01 order-record.
03 key-1.
05 field-a pic x(5).
05 field-b pic 9(5).-
05 key-2

redefines field-b pic x(3).
This example will generate the warning message.

Because “key-2” is a key, it must also be represented in the XFD. It
doesn’t correspond exactly to any other data field, so it must be entered
as a separate field in the XFD.

In the COBOL view of the file, “key-1" and “key-2” overlap. But the
requirements of XFD storage force the same data (known to COBOL
as “field-b”) to be physically represented twice in the XFD. Any
updates to the data from any ACUCOBOL-GT program will correctly
update both fields. Updates from outside of ACUCOBOL-GT carry no
such guarantee.

List of Errors m D-15

In this example, you can correct the situation by breaking “field-b” into
two columns, so that “key-2” corresponds exactly to another data field:

01 order-record.

03 key-1.
05 field-a pic x(5).
05 Tfield-b.
07 field-bl pic x(3).-
07 field-b2 pic 9(2)
05 key-2

redefines field-b pic x(3).

“Figurative constant not allowed: %s”

A figurative constant (zero, space, quote, etc.) cannot be used in this
context.

“Figurative constant not allowed here: %s”

“File %s in multiple areas”

The named file appears in more than one SAME RECORD AREA
clause.

“File %s undefined”

A file named in the 1-O-CONTROL paragraph must be defined by a
SELECT clause in the FILE-CONTROL paragraph.

“File must be a SORT file”

“FILLER cannot be EXTERNAL”
“Floating-point literal not allowed here”
“Floating-point VALUE not allowed here”
“FOOTING larger than page size”
“FOOTING must be > 0”

“FROM/TO/USING error”

FROM, TO, and USING can be used only once each in a particular
screen item description. USING cannot be used with either FROM or
TO in the same description.

D-16 m Compiler Error Messages

“Function argument %s must be alphanumeric”

“Function argument %s must be numeric”

“GIVING data item for file %s is too small”

“GROUP expected after USE”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The “use group” directive must include both words.

“ID greater than 60 characters: %s...”
“0bs” is truncated to 60 characters.

“Identifier expected, %s found”

“Identifier unresolved: %s OF %s”

An attempt to qualify an identifier, as in “field of record”, failed.
Check the spelling of the qualifier.

“lllegal ACCESS”

SEQUENTIAL is the only ACCESS MODE legal with
ORGANIZATION SEQUENTIAL.

“lllegal arithmetic expression”

“lllegal BLANK ZERO”

The BLANK WHEN ZERO clause can be used only for numeric or
numeric edited elementary items. The picture of the item may not

include “*” or “s”.

List of Errors m D-17

“lllegal class condition”
“Illegal clause(s) for sort file”

“lllegal color value”

The FOREGROUND-COLOR and BACKGROUND-COLOR phrases
take a literal in the range 0-7.

“lllegal COMPRESSION value”
The COMPRESSION factor may not be greater than 100.

“lllegal condition”

“lllegal hex literal”
Hexadecimal literals must consist of the digits “0”-“9” or “A”-“F".

“lllegal indicator: ‘%s’”

The indicator area of a COBOL line may contain ” *, -, “*” “g” “[”
“D”, or, in Terminal mode, “\D”.

“Illegal INITIALIZE item: %s”
The destination may not contain a RENAMES clause.

“lllegal JUSTIFIED clause”

The JUSTIFIED clause can be applied only to alphabetic and
alphanumeric data items. It must be applied to an elementary item,
rather than to the group item.

“Illegal KEY phrase”

The KEY phrase of a READ statement can be used only with
ORGANIZATION INDEXED files and cannot be used with a READ
NEXT or a READ PREVIOUS.

“Illegal level for OCCURS”
The OCCURS clause may not be used on a level 01 or a level 88 item.

“lllegal level number”

A level 77 item cannot be included in the File Section or in the Screen
Section. The Screen Section allows only levels 1-49 and level 78.

D-18 m Compiler Error Messages

“lllegal level number: %s”

“Illegal OCCURS value”

Ina Format 1 OCCURS, the table-size must be more than zero. “lllegal
or missing ASSIGN variable of %s”

“lllegal or missing BOTTOM variable of %s”
“lllegal or missing DEPENDING ON variable of %s”
“lllegal or missing FOOTING variable of %s”
“lllegal or missing KEY variable of %s”

“lllegal or missing LINAGE variable of %s”

“lllegal or missing PADDING variable of %s”
“lllegal or missing STATUS variable of %s”

“lllegal or missing TOP variable of %s”

“Illegal parameter: %s”

“lllegal parameter: literal”
Generated by the compiler if low-values or other figurative constants
are passed to ActiveX or COM methods or properties as parameters
where the method or property expects a "by reference"” parameter: This
is the same error message you get when passing a figurative constant as
a USING parameter in a CALL statement. One way to tell that the
ActiveX/COM method expects a "by reference" parameter is by
viewing the entry in the COPY file for that control or object. If the type
has "BYREF" or if the numeric value divided by 16384 is odd, then
you may not pass a figurative constant.

“lllegal picture: %s”
“Illegal POINTER: %s”

“lllegal receiver for source type: %s”
The compiler has encountered an illegal MOVE.

“lllegal REDEFINES”

List of Errors m D-19

“lllegal RENAMES”

“lllegal replacement size: %s”

Inan INSPECT REPLACING statement, the replace-string must be the
same length as the target-string.

“lllegal SD clause: %s”

“lllegal sign condition”
The sign condition can be applied only to an arithmetic expression.

“lllegal SIGN/USAGE for file with CODE-SET”

“Illegal source type for CONVERSION”

The compiler will allow MOVE WITH CONVERSION only of
alphanumeric items.

“Illegal statement in current declarative”

Occurs when a program attempts to execute a disallowed statement in
the context of a USE FOR REPORTING declarative or a file
declarative that has been triggered by a status “22” for a file open with
BULK-ADDITION. In both of these cases, the declarative is triggered
as part of the file operation (instead of after the operation completes)
and several restrictions apply. The program may not perform any file
operations or start or stop any run units (including chaining). In
addition, the program that contains the declarative may not perform an
EXIT PROGRAM.

Note: The program continues running after printing this statement
(halting the program at this point would corrupt the data file).

This error message indicates a programming error that should be
corrected. There is no way to disable the error message. You can find
the offending statement by running the program under the debugger.
When the statement executes, the runtime will break to the debugger
with this message and place the cursor at the statement.

“lllegal table size: %s”
Your compiler command line has specified an illegal value for a
user-resizable table (“-ta”, “-th”, etc.). See the internal table list near
the beginning of this section.

D-20 m Compiler Error Messages

“illegal USAGE”
“Inconsistent picture”

“INDEXED key not in record: %s"”
The key to an Indexed record must be defined within the record.

“INDEXED key outside of smallest record: %s”

In an Indexed file with variable record size, the offset of the end of the
key must be within the bounds of the smallest possible record size.
Multiple record definitions (01 levels) within a file description may
generate a variable length record file.

“Indexing not allowed in this context”

“INSPECT TRAILING syntax error”

“Interface definition ‘%s’ not found”

*k kI

“*** Internal error #%s

The compiler has encountered a syntax error for which it does not have
a useful descriptive message. Anytime you get such a message from
the compiler, notify Technical Support. If we are already aware of
your particular syntax problem, we can tell you what to fix in your
source. We may even have a more recent version of the compiler that
detects the error more elegantly. If we have not been made aware of
this oversight, your call will allow us to find and correct it.

“INTO identifier may not be reference modified”

Ina STRING ... INTO statement, the destination may not be in the
form “... INTO dest-field (2:4)”. If you want to start modifying the
destination field at a position other than the leftmost, use the POINTER
phrase.

“Invalid CODE-SET file type”
CODE-SET may be specified in the FD of sequential files only.

“Invalid CLSID “%s"”

“Invalid directive syntax”
The $SET directive was used incorrectly.

“Invalid GIVING data item for file %s”

List of Errors m D-21

“INVALID KEY illegal in this context”

The INVALID KEY phrase of the DELETE statement may not be used
with a file declared ACCESS MODE SEQUENTIAL. The INVALID
KEY phrase of the REWRITE statement may not be used for
ORGANIZATION SEQUENTIAL or ORGANIZATION RELATIVE
files if either uses ACCESS MODE SEQUENTIAL.

“Invalid switch number: %s”

The switch named in the SPECIAL-NAMES paragraph must be one of
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or
SWITCH “A” through SWITCH “Z”.

“Invalid syntax in COPY statement”

“Key bigger than 250 bytes: %s”
The maximum indexed key size in ACUCOBOL-GT is 250 bytes.

“KEY must be first: %s”

More than one KEY IS phrase is allowed in each OCCURS clause. If
one KEY IS phrase references the data-name of the entry that contains
the OCCURS clause, it must be the first KEY IS phrase in the clause.

“KEY not found in table: %s”

The key named in the KEY IS phrase of the OCCURS clause must be
contained within the table.

“Large REDEFINES of a regular variable with a value: %1 redefines %2”
“LENGTH ignored in this context”

“License file ‘%s’ inaccessible”

The license file cannot be located. The message displays the name of
the license file that the compiler is trying to locate. The compiler
cannot execute without a valid license file.

“License file ‘%s’ is invalid”

D-22 m Compiler Error Messages

“LINAGE must be > 0”

“LINAGE required for END-OF-PAGE processing”
“LINAGE requires SEQUENTIAL organization”
“LINAGE-COUNTER is a reserved data item”

“LINKAGE not listed in USING: %s”

An item defined in the Linkage Section is not referenced in the USING
phrase of the Procedure Division statement.

“Listing file name is the same as the source name”

Your ccbl command has instructed the compiler to name one of its
output files with the same name you’ve given for the source code file.

“literal expected”
“Literal must be alphanumeric”

“Literal too long”

Prior to version 1.5, an ALL literal not associated with another data
item had to be a single character.

“May not be a SEQUENTIAL file”

A Format 1 DELETE statement may not be used on a file with
ORGANIZATION SEQUENTIAL. “May not be alphanumeric: %s”

“May not be alphanumeric edited: %s”
“May not be edited: %s”

“May not be floating-point: %s”

“May not be numeric: %s”

“May not be numeric edited: %s”

List of Errors m D-23

“May not INQUIRE on style %s"”

You may not use a style name in the INQUIRE statement. You can
only inquire the value of an element of a control. Because styles do not
have values, using a style name with INQUIRE is not meaningful.

“May not modify or invoke ActiveX Controls in DISPLAY”

“May not specify both LINES and SIZE”

While it is acceptable to specify both height and length for a BOX, a
LINE can have only one dimension.

“meaningless WHEN phrase”
“MERGE illegal in DECLARATIVES”

“Mismatching OCCURS structure”

If an OCCURS clause applies to a screen entry with TO or USING, the
receiving item must have an OCCURS of the same number. With
FROM, the source item must have an OCCURS of the same number or
no OCCURS at all.

m

“Missing ‘)
“Missing ASSIGN clause”

“Missing closing quote”
A quoted string must have both opening and closing quotes.

“Missing continuation line quote”

If a continued line ends with a nonnumeric literal without a closing
quotation mark, the first non blank character in Area B of the
continuation line must be a quotation mark.

“Missing COPY file: “%s’”

The filename specified after the word COPY is not found in the
directory in which it is expected. Consider whether it is spelled
correctly, or check your COPYPATH environment variable.

“Missing COPY filename”

The filename specified after the word COPY is not found. Consider
putting the file name in quotes.

D-24 m Compiler Error Messages

“Missing directive”
The $SET directive was used incorrectly.
“Missing END-%s"
Several statements in COBOL, among them IF, SEARCH, PERFORM,
and EVALUATE, can have their scope delimited by the END-
(END-IF, END-SEARCH, END-PERFORM) phrase. The compiler
has encountered code in which such a scope delimiter is required.
“Missing exponent”
A digit in the range 0-9 must follow the E in a floating point literal.

“Missing field name after WHEN”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

A valid field name, or the word OTHER, must be specified with the
“when” directive.

“Missing KEY phrase in definition: %s”

“Missing library filename”
The OF phrase of the COPY statement has no pathname specified.

“Missing operand”

“Missing or invalid object expression”

“Missing PARA/SECTION” “Can’t recover, good bye!”
“Missing period”

“Missing RECORD KEY clause”

“Missing SELECT for this file”

“Missing switch number”

The switch named in the SPECIAL-NAMES paragraph must be one of
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or
SWITCH “A” through SWITCH “Z”.

List of Errors m D-25

“Missing value”

“Missing WHEN phrase”

The SEARCH statement and the EVALUATE statement always
require a WHEN phrase.

“Missing ‘=" in XFD directive”
You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The “name” directive requires an “=" sign. The “when” directive
requires a comparison operator.

“Mnemonic name required”

Each system-name in the SPECIAL-NAMES paragraph must be
associated with a mnemonic name.

“Modification of %s not allowed”

LINAGE-COUNTER may never be explicitly modified by the
program.

“Modification of screen item”

It is not legal to ACCEPT or DISPLAY an item defined in the Screen
Section using reference modification.

“More subscripts needed: %s”

An item subordinate to an OCCURS clause has been referenced with a
number subscripts or indexes less than its level of nesting.

“More than 64K of parameters illegal for this CALL”
“Multiple pictures”

“Mutltiple USE for %s mode”

The INPUT, OUTPUT, I-O, and EXTEND phrases may each be
specified in only one USE statement in a Procedure Division.

“Multiple USE for file: %s”

A particular file may not appear in more than one USE statement in a
program.

D-26 m Compiler Error Messages

“Multiple USE for OBJECT”

“Must be a GROUP item: %s”

Both the source and the destination of a MOVE CORRESPONDING
statement must be group items.

“Must be alphanumeric: %s”

“Must be in Working-Storage or Linkage: %s”
“Must be INDEXED file: %s”

“Must be integer: %s”

“Must be level 01 WORKING-STORAGE for EXTERNAL”

A data item can be declared EXTERNAL only if it is defined in the
Working Storage section. The item must be at level 01 or level 77.
(Except for the ability to take subordinate items, level 77 is often
implied where level 01 is specifically mentioned.)

“Must be SEQUENTIAL”

A file must be ORGANIZATION SEQUENTIAL to CLOSE REEL,
CLOSE UNIT, CLOSE NO REWIND, WRITE NO CONTROL, or
WRITE ADVANCING.

“Must be size 1 in this context: %s”
“Must be USAGE DISPLAY: %s"”

“Must not be subscripted: %s”

“Native character specified twice, ordinal value = %s”

When you specify an ALPHABET in the SPECIAL-NAMES
paragraph, each character may appear only once.

“Needs DELIMITED BY to use COUNT”
“Needs DELIMITED BY to use DELIMITER”

“NEXT/PREVIOUS illegal for RANDOM ACCESS”

List of Errors m D-27

“No entry for product ‘compiler’ in file ‘%2’

The license file does not contain an entry for the compiler product.
The compiler cannot be executed until the license file is corrected.
Contact Technical Support.

“No FD for %s”

“No records defined for file”

“No SELECT for file: %s”
“Non-native object file produced”

“Not a condition-name: %s”
Only level 88 items may be SET to TRUE or FALSE.

“Not a file: %s”

The USE statement must include INPUT, OUTPUT, I-0O, and
EXTEND or the name of a file described in the Data Division.

“Not a record of a file: %s”

“Not a record of a SORT file: %s”
The RELEASE statement may act only on the records of sort files.

“NOT, END-ACCEPT or *.’ required after NEXT SENTENCE”

“Null ENTRY point name”
The program has used

as an ENTRY point name.

“number too large”
The maximum numeric data item size in ACUCOBOL-GT is 18 digits.

“Number too large: %s”
“Numeric literal not allowed here”

“NUMERIC fest is constant, because of the type of variable being tested”

The compiler issues this warning in cases where the item being tested
isabinary item. This test should always return TRUE for binary items,
since binary items can't be non-numeric. You can optimize your
COBOL program by removing constant tests.

D-28 m Compiler Error Messages

“numeric value expected”

“Numeric VALUE not allowed here”

“Object file name is the same as the source name”

Your ccbl command has instructed the compiler to name one of its
output files with the same name you’ve given for the source code file.

“Object wrong type for subject”

If the subject of an EVALUATE statement is, or can be evaluated to
be, TRUE or FALSE, the object must be a phrase that is, or can be
evaluated to be, TRUE or FALSE (e.g., EVALUATE TRUE WHEN a
=b...,, or EVALUATE a > b WHEN FALSE ...). Otherwise, the object
must be something that would balance the subject in a conditional
expression (e.g., EVALUATE fieldl WHEN “a” ...).

“OCCURS DEPENDING illegal in Screen Section”
“OCCURS DEPENDING in OCCURS illegal”
“OCCURS DEPENDING must be last in group: %s”

“Offset too large: %s”

When you are using a subscript of the form “(data-item + integer)”, the
integer can be no greater than 32767.

“Only 1 level of OCCURS allowed”
Nested OCCURS are not permitted in the Screen Section.

List of Errors m D-29

“Operation has no effect”
“ORGANIZATION clash”

“*** Out of Main Memory! ***”

“Pic 'V’ illegal in COMP-X/N"
COMP-X and COMP-N items can be defined with only ‘9’ or only ‘X’
symbols.

“PICTURE and/or VALUE clash in Screen Section”

The PICTURE and VALUE clauses may not both be specified for the
same screen description entry, either explicitly or implicitly by the use
of FROM, TO, or USING.

“Picture required for floating-point in this context”

A screen item must have a picture. If you are using a FLOAT item with
USING or FROM, give it a picture within the Screen Section.

“Picture too long”
The maximum picture string in ACUCOBOL-GT is 100 characters.

“Pixel AT value must be 8 digits”

When using the AT verb together with the PIXEL verb, 8 digits are
mandatory to specify the position, or the variable being used must be a
PIC 9(8).

“Positive integer required”

The value for this field must be greater than zero and include no
decimal fraction. A subscript or index must be a positive integer.

“PREVIOUS illegal for sequential file”
This refers to ORGANIZATION SEQUENTIAL.

“Procedure name not allowed here: %s”

“Procedure name required”
GO TO must always be followed by a paragraph or section name.

D-30 m Compiler Error Messages

“Program code exceeds 1MB”

The maximum size of the code portion of an ACUCOBOL-GT object
file is 1 MB. The size of the program code is largely determined by the
size of the Procedure division of the program. If you cannot streamline
the instructions in the Procedure division to fit within this restriction,
you might split the logic into two programs, one called by the other.

“Program data exceeds 32 segments”

The 1 MB restriction on the program data is monitored in terms of
segments. The factors determining this size are as described above.

“Program data exceeds 64K”

The maximum size of the data portion of an ACUCOBOL-GT object
file for any version prior to 1.5 is 64 KB. Thus, this restriction might
be encountered when you are using the “-Z4” compiler option.
Starting with Version 1.5, the maximum program data size is 1 MB.
The size of the data is basically the sum of the sizes of the items in the
data division (including File Descriptions) and of the literal strings
used within the program (including the Procedure Division).

“Program-wide CURSOR already defined”

The CURSOR phrase of the ACCEPT statement may not be specified
if a CURSOR phrase is specified in the program’s Configuration
Section.

“Radio Buttons cannot have array elements in a VALUE or USING phrase”
This error is generated at the occurrence of a radio button control in the
screen section whose VALUE (or USING) is an array. This is not
allowed due to the internal functionality of how data is copied to
COBOL data items once the screen section terminates.

“Record belongs to SORT file: %s”

WRITE and REWRITE statements may not apply to records of files
described with an SD rather than an FD in the File Section.

List of Errors m D-31

“REDEFINES not allowed in Screen Section”
“REDEFINES of an OCCURS item illegal under ANSI”
“Reference modification of numeric function is illegal”
“Reference modifier illegal in this context”

“Reference modifier out of range”

Using reference modification, either the start position is beyond the
end of the referenced item, or the calculated end position would be.

“RELATIVE key in record: %s”
The key to a Relative record must be defined outside of the record.

“RELATIVE Key is required”

A relative key must be indicated if ACCESS DYNAMIC or ACCESS
RANDOM MODE is specified.

“RELATIVE key must be PIC 9: %s”

“REMAINDER may not be used if any operand is External Floating-Point”
“Repeated OCCURS”

“REPLACING LEADING/TRAILING requires literals”

“REPLACING not allowed on nested COPY”

“RETURN-CODE is a reserved data item”

“Screen item subject to OCCURS”

It is not legal to ACCEPT or DISPLAY an item defined in the Screen
Section with or subordinate to an OCCURS clause.

“SEARCH ALL must have only one WHEN”

“SEARCH statement missing WHEN phrase”
A SEARCH statement must have a WHEN phrase.

D-32 m Compiler Error Messages

“SECTION required”

The use of Declaratives is part of a Format 1 Procedure Division. The
Format 1 Procedure Division requires the use of Sections.

“Segment %s exceeds 64K”

When you are using segmentation, an individual segment may not be
larger than 64 KB.

“Segments must be in order”

When segment numbers are used on the SECTION header, they must
be used in ascending order.

“SELECT for this file inconsistent with a SORT file”

“SIZE or LINES phrase required”

A DISPLAY LINE statement requires that either the length or height
be specified.

“Sorry, multiple TALLYING counters not supported”

“Sorry, this compiler may not be used on a stand-alone basis”
Some of our customers are licensed to include a limited-use version of
the ACUCOBOL-GT compiler in their software application for sale to
their own customers. Any attempt to activate such a compiler from the
command line, rather than from inside the application, will produce an
error.

“SORT file not allowed here”

A Sort file is a file described with an SD rather than an FD in the File
Section.

List of Errors m D-33

“SORT illegal in DECLARATIVES”

“Source name too long: %s”

“Special name not allowed here: %s”
“START illegal for RANDOM ACCESS files”
“START illegal for SEQUENTIAL files”

“Statement too large at code address %s”

The maximum Paragraph size in ACUCOBOL-GT is 32767 bytes. (A
statement cannot be larger than the maximum paragraph.)

“Status name not allowed here: %s”
“STATUS variable %s should be X(2)”
“String must be 1 character in context: ‘%s’”
“Style name not allowed here”

“Subscript may not be table item: %s”

A data item used as a subscript may not itself be subordinate to an
OCCURS clause.

“Subscript out of bounds: %s”

The subscript or index on a table entry is less than 1 or greater than the
number in the OCCURS that defines the table.

“Subscript required: %s”

An item subordinate to an OCCURS clause has been referenced
without a subscript or index.

“Symbol not in LINKAGE: %s”
“Symbol not in WORKING-STORAGE: %s”

“SYMBOLIC name expected”

The SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES
paragraph must include at least one “name” naming a symbolic
character.

D-34 m Compiler Error Messages

“SYMBOLIC value must be between 1 and %s”

The “number” in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph must be in the range of ordinal positions
in the alphabet being referenced.

“SYNC not allowed in Screen Section”
“Syntax error”
“Syntax error: %s”

“syntax error scanning %s”

“This constant not allowed: %s”

“This evaluation copy of ACUCOBOL has expired!”

“Please call customer support if you would like to upgrade to a full
version or if you wish to extend your evaluation period.”

“TO value too small in OCCURS”

The maximum value cannot be less than the minimum value for a
Format 2 OCCURS clause.

“Too few parameters: %1 required, %2 found”
“Too many ALPHABETS (max 100)”

“Too many delimiters (max 30)”

“Too many destinations (max 30)”

“Too many destinations (max 50)”

“Too many ENTRY points (max 65536)"
The program has more than 65536 ENTRY statements.

“Too many ENTRY point pages (max 65536)”

It would take more than 65536 object file pages to write out the
ENTRY point table.

List of Errors m D-35

“Too many errors, compilation aborted”

The compiler has a limit on the number of errors it will track on any
one compile cycle. Please correct some of the errors encountered to
this point, and try again.

“Too many EXTERNAL items (max 256)”

“Too many files open by the current process”

Vision returns this system error (30) when its attempt to create an
additional file segment is stopped because the limit imposed by
MAX_FILES has been reached. Error code is one of the following:
94,10; 97; or 97,10; depending on the setting of
FILE-STATUS-CODES.

“Too many INITIALIZE destinations (max 50)”
“Too many key segments (max 6)”
“Too many keys (max 120)”

“Too many level 01 linkage items (max 255)”
The program has more than 255 level 01 linkage items.

“Too many operands (max 60)”
“Too many parameters: %1 is the maximum, %2 found”

“Too many REPLACING operands (max %s)”

For Version 7.0 and earlier, the maximum number is 30. For later
versions, the maximum limit is 256.

“Too many sending items (max 100)”
“Too many source items (max 50)”

“Too many subscripts: %s”

An item subordinate to an OCCURS clause has been referenced with a
number of subscripts or indexes greater than its level of nesting.

D-36 m Compiler Error Messages

“Too Many <symbols> (max <symbols>))”

Generated if compiling for debug and the number of symbols is larger
than 65535, or the number of bytes in all symbols is larger than
1048560. This latter limit only happens if compiling with -Znn with nn
< 80.

“Too many SYMBOLIC CHARACTERS in this clause (max 100)”
“Too many table dimensions (max 15)”

“Too many USING parameters (max 255)"

“Unable to find *“%s""”

“Undefined data item: %s”
The data item referred to has not been defined in the Data Division.

“Undefined procedure: %s”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM has not been defined in the program.

“Undefined procedure: %s OF %s”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM does not exist in the program within the qualifier you have
specified for it.

“Unknown mode: %s”

As part of our compatibility with other dialects of COBOL, the
ACUCOBOL-GT compiler allows the use of the RECORDING MODE
clause. Only “F”, “V”, “S” and “U” modes are permitted.

“Unknown reserved word: %s”

“Unknown special name: %s”

The mnemonic-name in a Format 6 ACCEPT statement or in a Format
9 DISPLAY statement has not been defined in the Special-Names
paragraph.

List of Errors m D-37

“Unknown switch: %s”

The switch named in the SPECIAL-NAMES paragraph must be one of
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or
SWITCH “A” through SWITCH “Z”.

“Unmatched ELSE”

The ELSE phrase must always be used in a one-to-one relationship
with IF in an IF statement.

“Unmatched END-%s”

Several statements in COBOL, among them IF, SEARCH, PERFORM,
and EVALUATE, can have their scope delimited by the END-
(END-IF, END-SEARCH, END-PERFORM) phrase. Such END-
phrases must exist in matched pairs with their companion verbs. The
compiler has encountered such a scope delimiter, but found no
matching verb preceding it.

“Unmatched NOT %s phrase”

Various NOT phrases may be used in the context of specific statements
(READ ... NOT AT END, COMPUTE ... NOT ON SIZE ERROR).
The compiler has encountered such a NOT phrase outside of its proper
statement.

“Unsupported operation”
“USAGE conflict”

“USAGE must be DISPLAY”
“USE statement missing”

USING parameter <name> not aligned and may cause problems in the called
subprogram
This is a warning message that can be generated if compiling with the
“-Wa” option. This warns that a passed parameter is a group or is
binary, and whose alignment is not an even multiple of the alignment
specified by the “-Da#” option.

D-38 m Compiler Error Messages

USING parameter <name> is not an 01-level item

This is a warning message that can be generated if compiling with the
“-W1” option. The ANSI COBOL standard requires that parameters
passed to subprograms be 01-level items. ACUCOBOL-GT does
restrict them as such; however, there are valid reasons for restricting
their use. See the ACUCOBOL-GT User’s Guide, chapter 2 for details
on this warning message.

“VALUE illegal on item > 64K”

“VALUE in EXTERNAL”
External data items may not have a VALUE phrase.

“VALUE in REDEFINES”

A Format 1 VALUE clause may not appear on a data item that is
subordinate to a REDEFINES clause.

“Value must be 80 or 132”

The DISPLAY SCREEN SIZE statement must specify either an
80-column or a 132-column display.

“Value should be a name: %s”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This error occurs when the item to the right of an “=" should be a name
and it isn’t. For example, it would be an error to use a quoted string
with the “name” directive: $XFD NAME="some text”.

The “%s” in the message is the value found.

“Value should be numeric: %s”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

List of Errors m D-39

This error occurs when the item to the right of an “=" should be
numeric and it isn’t. The “%s” in the message is the value found.

“Value should be a literal: %s”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This error occurs when the item to the right of an “=" should be a literal
and itisn’t. The “%s” in the message is the value found. A literal is
either a quoted string or a numeric integer.

“VALUE size error: %s"
All literals used in a VALUE clause must have a value which falls
within the range of allowed values for the item’s PICTURE clause.
Nonnumeric literals may not exceed the size of the item. Numeric
items must have numeric literals. Alphabetic, alphanumeric, group,
and edited items must have nonnumeric literals.

“VALUE specified for group”

When a VALUE clause is applied to a group item, no subordinate item
may contain a VALUE clause.

“Value too large for context: %s”

The number you are using is too large. There are many cases in which
64 KB is the maximum size.

“VALUE too long: %s”
The maximum length for a floating point literal is 30.

“VALUE type error: %s"

All literals used in a VALUE clause must have a value within the range
of allowed values for the item’s PICTURE clause. Nonnumeric literals
may not exceed the size of the item. Numeric items must have numeric
literals. Alphabetic, alphanumeric, group, and edited items must have
nonnumeric literals.

D-40 m Compiler Error Messages

“Variable file name requires “File” directive”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This message occurs when the compiler cannot assign a name to the
“.xfd” file because the ASSIGN phrase for the file names a variable file
name. In this case, you must use a “file” directive to name the “.xfd”
file.

“Verb expected, %s found”

“Warning: -Dem ignored when using -Z%s”

The data storage option “-Dcm” is being ignored because you are
generating object code for a runtime version that does not support that
storage convention.

“Warning: -Dcn ignored when using -Z%s”

The NCR sign coding convention indicated by “-Dcn” requires a
Version 2.4 or later runtime. The “-Dcn” flag has been ignored by the
compiler.

“Warning: cannot generate native code from pre-5.0 object, *-Z%1’ flag ig-
nored”

“Warning: COLLATING SEQUENCE ignored for non-INDEXED files”
“Warning: native code not supported on current host, ‘-n’ ignored”
“Warning: PADDING CHARACTER ignored for non-SEQUENTIAL files”
“Warning: Paragraph Name found in Area B.”

“WHEN OTHER must be last”

No other WHEN phrase may follow WHEN OTHER in an
EVALUATE statement.

“WHEN subiject may not be reference modified”

SEARCH ALL does not allow the compared item to be reference
modified.

List of Errors m D-41

“WHEN unexpected”

“WHEN variable xxx not found in record”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This happens if you have a “when” directive that mentions a variable
that doesn’t exist in the record.

“WHEN, END-SEARCH or *.’ required after NEXT SENTENCE”
“Writing %s code”

“Wrong number of parameters: %1 expected, %2 found”

File Status Codes

Key Topics

INTFOAUCTION ..ttt et sbe e s et E-2
TabIe Of COUEBS....cuveiviitiectecti e st be e E-2
Vision Secondary Error Codes for Error 98S.......ccccevvevvvveveneennnne. E-8
Transaction Error COUESccvvivieiieeiie ettt e re e E-10

IBM DOS/VS Error COUESccveieiiitiieee ettt st ses s sressne e E-13

E-2 m File Status Codes

E.1 Introduction

ACUCOBOL-GT conforms to five different standards regarding the values
of file status codes. These codes are those used by RM/COBOL-85 (ANSI
85), RM/COBOL version 2 (ANSI 74), Data General ICOBOL, VAX
COBOL, and IBM DOS/VS COBOL. By default, ACUCOBOL-GT uses the
RM/COBOL-85 set. You can change the current set by changing the
configuration variable FILE_STATUS CODES (see also the
ACUCOBOL-GT User’s Guide, Section 2.8.3, “File Status Codes”).

The table in the next section describes the various file status codes returned
by each condition. Some of the status values in the table have a second
two-character code listed. This code distinguishes between different causes
for the same FILE STATUS code. You can obtain this second code value by
calling the ACUCOBOL-GT library routine CSRERR described in
Appendix I. Where a second code is not listed, its value is “00”.

For file systems that support READ PREVIOUS, wherever READ NEXT is
mentioned, you may assume that READ PREVIOUS is also implied. Anend
of file for READ NEXT is analogous to a beginning of file for READ
PREVIOUS.

E.2 Table of Codes

Regardless of which set of status codes is being used:
* Any code that starts with a “0” is considered successful.
e Any code that starts with a “1” is considered to be an “at end” condition.

* Any code that starts with a “2” is considered to be an “invalid key”

condition.
85 74 Vax DG IBM Condition
00 00 00 00 00 Operation successful.

Table of Codes m E-3

85

74

Vax

DG

IBM

Condition

02

02

00

00

00

The current key of reference in the record just read
is duplicated in the next record. (read next)

02

02

02

00

00

The operation added a duplicate key to the file
where duplicates were allowed. (write, rewrite)

05

00

05

00

10

Optional file missing. If the open mode is I-O or
EXTEND, then the file has been created. This is

also returned by DELETE FILE if the file is not

found. (open, delete file)

07

00

07

00

00

A CLOSE UNIT/REEL statement was executed
for a file on a non-reel medium. The operation
was successful.

oM

oM

oM

oM

00

The operation was successful, but some optional
feature was not used. For example, if you opened
afile that specified an alternate collating sequence,
but the host file system did not support that
feature, then the open would succeed, but it would
return this status.

10

10

10

10

10

End of file. (read next)

14

00

14

00

00

A sequential READ statement was attempted for a
relative file, and the number of digits in the
relative record number is larger than the size of the
relative key data item. (read next)

21

21

21

21

21

Primary key was written out of sequence, or the
primary key on a rewrite does not match the last
record read. This error occurs only for an indexed
file open with the sequential access mode. (write,
rewrite)

22

22

22

22

22

Duplicate key found but not allowed. (write,
rewrite)

23

23

23

23

23

Record not found.

24

24

24

24

24

Disk full for relative or indexed file. (write)

E-4 m File Status Codes

85 74 Vax DG IBM Condition

24,01 | 00 24,01 | 00 24 A sequential WRITE statement was executed for a
relative file, and the number of digits in the
relative record number was larger than the size of
the relative key data item. (write)

30, xx | 30,xx | 30,xx [30,xx | 30 Permanent error. This is any error not otherwise
described.

The secondary code value is set to the host
system’s status value that caused the error. See
your operating system user manual for an
explanation, and C3RERR in Appendix .

34 34 34 34 34 Disk full for sequential file or sort file. (write,
sort)

35 94,20 | 35 91 93 File not found. (open, sort)

37,01 | 95,01 | 37,01 | 91,01 | 93 The file being opened is not on a mass-storage
device which is required for the file type or the
requested open mode. (open)

37,02 | 95,02 | 37,02 [91,02 | 93,02 | Attemptto open asequential file with fixed-length
records as a Windows spool file.

37,07 [90,07 | 39,07 | 91,07 | 93 User does not have appropriate access permissions
to the file. (open)

37,08 | 95,08 | 37,08 | 91,08 | 93 Attempt to open a print file for INPUT. (open)

37,09 | 95,09 | 37,09 [91,09 | 93 Attempt to open a sequential file for 1/0 and that
file has automatic trailing space removal specified.
(open)

37,99 | 95,99 | 37,99 [91,99 | 93,99 [A Windows or Windows NT runtime that is not
network-enabled tried to access a file on a remote
machine.

38 93,03 | 38 92 93 File previously closed with LOCK by this run unit.

(open)

Table of Codes m E-5

85 74 Vax DG IBM Condition

39, xx | 94, xx | 39,xx | 9A, xx | 95 Existing file conflicts with the COBOL
description of the file. (open)
The secondary error code may have any of these
values:
01 - mismatch found but exact cause unknown
(this status is returned by the host file system)
02 - mismatch found in file’s maximum record
size
03 - mismatch found in file’s minimum record size
04 - mismatch found in the number of keys in the
file
05 - mismatch found in primary key description
06 - mismatch found in first alternate key
description
07 - mismatch found in second alternate key
description
The list continues in this manner for each alternate
key.

41 92 41 91 93 File is already open. (open)

42 91 42 92 92 File not open. (close)

42 91 94 91 92 File not open. (unlock)

43 90,02 | 43 92 23 No current record defined for a sequential access
mode file. (rewrite, delete)

44 97 44 92 21 Record size changed. The record being rewritten

is a different size from the one existing in the file,
and the file’s organization does not allow this.
(rewrite)

This status code can also occur if the record is too
large or too small according to the RECORD
CONTAINS clause for the file. (write, rewrite)

E-6 m File Status Codes

85 74 Vax DG IBM Condition

46 96 46 92 21 No current record. This usually occurs when the
previous operation on the file was a START that
failed, leaving the record pointer undefined. (read
next)

47,01 | 90,01 | 47,01 | 92,01 | 13 File not open for input or I-O. (read, start)

47,02 | 91,02 | 47,02 | 92,02 | 13 File not open. (read, start)

48,01 | 90,01 | 48,01 | 92,01 | 13 A file that is defined to be access mode sequential
is open for I-O, or the file is open for INPUT only.
(write)

48,02 | 91,02 | 48,02 | 92,02 | 13 File not open. (write)

49,01 | 90,01 | 49,01 | 92,01 | 13 File not open for 1-O. (rewrite, delete)

49,02 | 91,02 | 49,02 | 92,02 | 13 File not open. (rewrite, delete)

93 93 91 94 93 File locked by another user. (open)

94,10 | 94,10 | 97 97,10 | 93 Too many files open by the current process.
(open)

94,62 | 94,62 | 39,62 [92,62 | 93 One of the LINKAGE values for this file is illegal
or out of range. (open, write)

94,63 | 94,62 | 39,62 [92,62 | 93 Key not specified (specifying a table whose size is
zero) in a SORT or MERGE statement

98, xx | 98, xx | 30,xx | 9B, xx | 93 Indexed file corrupt. An internal error has been
detected in the indexed file. The secondary status
code contains the internal error number. The file
should be reconstructed with the appropriate
utility.

99 99 92 94 23 Record locked by another user.

9A 9A 9A 9A 23 Inadequate memory for operation. This most

commonly occurs for the SORT verb, which
requires at least 64K bytes of free space. (any)

Table of Codes m E-7

85 74 Vax DG IBM Condition

9B 9B 9B 9B 23 The requested operation is not supported by the
host operating system. For example, a deferred
file system initialization failed, or a READ
PREVIOUS verb was executed and the host file
system does not have the ability to process files in
reverse order. (any)

If you are using AcuXML, this error results when
the program tries to open a file EXTEND or 1-O.
With AcuXML, programs are able to open files
INPUT or OUTPUT only.

9C 9C 9C 9C 23 There are no entries left in one of the lock tables.
The secondary error code indicates which table is
full:

01 - operating system lock table

02 - internal global lock table (see the
MAX_LOCKS configuration variable)

03 - internal per-file lock table (see the
LOCKS_PER_FILE configuration variable)

9D, xx | 9D, xx | 9D, xx | 9D, xx | 92 This indicates an internal error defined by the host
file system. The “xx” is the host system’s error
value. This is similar to error “30”, except that
“xx" is specific to the host file system instead of
the host operating system. For example:

02 - In Acu4GL or AcuXML, 9D,02 indicates that
an XFD file is corrupt. This could be the result of
a parsing error.

03 - In Acu4GL or AcuXML, 9D,03 indicates that
an XFD file is missing. This could be the result of
a parsing error.

05 - In AcuXML, 9D,05 indicates that there was
an XFD parsing error, so AcuXML was unable to
read a record.

Refer to the specific product documentation for
more details on the host file system’s error codes.

E-8 m File Status Codes

85

74

Vax

DG IBM Condition

9E, xx

9E, xx

9E, xx

9E, xx | 92 This indicates an error occurred in the transaction
system. The exact nature of the error is shown by
the contents of TRANSACTION-STATUS. See
section E.4, “Transaction Error Codes.”

9Z

9z

9z

9z 92 This indicates that you are executing the program
with a runtime that has a restriction on the number
of records it can process. You have exceeded the
record limit.

E.3 Vision Secondary Error Codes for Error 98s

Following is a brief description of the secondary error codes for error 98s for
the Vision file system.

01
02
03

04
05
06
07
08

09
12
13
20
21

The file size listed in the file’s header does not match the actual file size.
The header’s next record pointer points to an area that is invalid.

Unique ID used to distinguish duplicate keys has already been used and
cannot be used with a new key.

Missing tree terminator key.

An error was detected while performing a bulk read of a record.
The key being deleted from the tree was not found in the tree.
A child node was not found in its parent.

An 1/0O error occurred when the runtime was trying to read key
information out of the file’s header.

A pointer in a node points past the end of the file.

A node in the free node list was not marked as a free node.

A record in the deleted record list was not marked as a deleted record.
Non-zero key prefix on first key in node.

Key prefix larger than key size.

Vision Secondary Error Codes for Error 98s m E-9

22

31

42

68
69
81
82

83

84

85

86

87

89

90

99

Key prefix or key size larger than maximum key size.

A record pointer in a Vision Version 3 file points to a record-chain
value. In a Version 3 file, record pointers should always point to the
start of a record, never to a record-chain value.

The unique record counter has been exhausted. Rebuild the file to
correct the error.

A Vision 4 or 5 data segment is not found during an open.
A Vision 4 or 5 index segment is not found during an open.
Invalid data found in record header when a compressed record was read.

Invalid data found in record header when a non-compressed record was
read.

When a record was read, an /O error occurred or the record was too
short.

When a record link was read, an 1/O error occurred or the link was too
small.

Record contains invalid record compression codes--the record would
uncompress into a record that was larger than the maximum record size.

During a record write, a read of a record-chain value failed, probably
due to an end-of-file condition.

Vision Version 4 or 5 detects that it is about to write a record to an area
of a file that does not contain an appropriate record header. An
appropriate record header indicates that a record currently does not exist
at this address.

In Vision Version 4 or 5, on open, a data segment’s internal revision
number does not match the internal revision number stored in the header
of the first data segment.

In Vision Version 4 or 5, on open, an index segment’s internal revision
number does not match the internal revision number stored in the header
of the first data segment.

Vision Version 4 or 5 has tried to open the 65,537th data or index
segment for this file. Vision can only support 65,536 data segments and
65,536 index segments per logical file.

E-10 = File Status Codes

E.4 Transaction Error Codes

A transaction management error is one that follows a START
TRANSACTION, COMMIT, ROLLBACK or call to CSRECOVER, or one
that occurs during some other file operation within a transaction (resulting in
an error 9E). Error codes associated with these are stored in the
TRANSACTION-STATUS register. This section lists and describes the
primary and secondary transaction error codes.

Transaction Error Codes m E-11

E.4.1 Primary Error Codes

Following is a list of the primary error codes for the transaction management
system.

01 This is returned from a ROLLBACK statement or call to
C$RECOVER when an error occurs in an external routine. For a list
of the secondary codes for this error, see section E.4.2, “Secondary
Error Codes for Error 01.”.

02 An attempt to open the log file failed because the maximum number of
files per process would be exceeded. This is returned from a START
TRANSACTION or call to CSRECOVER.

03 An attempt to open the log file failed because some element of the
specified directory path is non-existent. This is returned from a START
TRANSACTION statement or call to CSRECOVER.

04 An attempt to open the log file failed because the user has insufficient
access privileges for the file. This is returned from a START
TRANSACTION statement or call to CSRECOVER.

05 This indicates an operating system error that is not otherwise covered by
one of the standard error conditions. You can determine the exact nature
of this error by examining the value of the secondary error code.

06 This indicates that the log file is corrupted. The error is returned when
the program encounters an unexpected end of file, or when an invalid
transaction type code is found during recovery.

07 An attempt to open the log file failed because the file is locked
(MS-DOS only). This is returned from a START TRANSACTION
statement or a call to CSRECOVER.

08 This indicates that the system ran out of dynamic memory.
09 This indicates that a write failed because the disk is full.
10 This is returned from a START TRANSACTION statement or call to

C$RECOVER when no log file was specified in the LOG-DIR
configuration variable.

11 This is returned from a ROLLBACK or COMMIT statement when an
unexpected end of file is reached while the rollback log file is being read.
12 A START TRANSACTION, ROLLBACK or COMMIT failed because

the last transaction in the log file is incomplete.

E-12 m File Status Codes

13 This error is returned in the TRANSACTION-STATUS register from a
WRITE, REWRITE, CLOSE, or DELETE if the file was not opened
within a transaction. Note that, if the FILE-CONTROL paragraph for
the file contains the WITH ROLLBACK phrase, all OPENs are
automatically performed within a transaction.

14 This is a file-system specific error that is not one of the standard errors,
and not an error returned by the operating system. The secondary and
tertiary error codes indicate the exact meaning, which is file-system
dependent.

16 This error is returned when the runtime is executing a START
TRANSACTION while another transaction is already active.

99 This warning indicates that the requested transaction operation is not
supported by a host file system. The transaction operation is still
attempted for other file systems.

E.4.2 Secondary Error Codes for Error 01

The following is a list of the secondary error codes for transaction error 01.

Secondary Error Corresponding
file-status error

01 operating system error (see tertiary code for 30
system-specific error code)

02 illegal parameter 39,01

03 attempt to open more files than system allows 94,10

04 open mode does not allow operation 48,01 or 49,01

05 requested record is locked 99

06 index file is corrupt 98,xx

07 duplicate key where duplicates not allowed 22

08 requested record not found 23

10 disk became full while adding a new record 24

11 file locked against requested open mode 93

12 record size mismatch during rewrite 44

IBM DOS/VS Error Codes m E-13

Secondary Error Corresponding
file-status error
14 out of dynamic memory 9A
15 requested file does not exist 35
16 inadequate access permissions to file 37,07
17 requested operation not supported 9B
18 out of lock-table entries 9C
19 file-system specific error 9D

E.5 IBM DOS/VS Error Codes

IBM DOS/VS COBOL has a form of the USE statement in the
DECLARATIVES section that is not normally recognized by
ACUCOBOL-GT:

USE AFTER STANDARD ERROR PROCEDURE ON file-name GIVING
data-name-1 [data-name-2]

This form is accepted by ACUCOBOL-GT when the “-Cv” option is in
effect.

When an error handler introduced by this statement is invoked, the runtime
puts special error codes into the eight-byte data item data-name-1. For more
information and the list of codes, see Chapter 5, “IBM DOS/VS COBOL
Conversions,” in the Transitioning Your COBOL Applications to
ACUCOBOL-GT book.

Intrinsic Functions

Key Topics

INtrodUCtiONeeeeiiie e

Function Definitions and Returned Values

F-2 m Intrinsic Functions

F.1 Introduction

Intrinsic functions are subprograms that are built into the ACUCOBOL-GT
library. They save time by simplifying common tasks that your COBOL
programs might need to perform. For example, intrinsic functions can
perform statistical calculations, convert strings from upper to lower case,
compute annuities, derive values for trigonometric functions such as sine and
cosine, and perform general utility tasks such as determining the compile date
of the current object file.

Intrinsic functions are sometimes called built-in or library functions.

To access an intrinsic function, you include it inside a COBOL statement
(typically a MOVE or COMPUTE statement). Here’s an example of a
statement that uses the “min” intrinsic function:

move function min(3,8,9,7) to my-minimum.

This COBOL statement can be translated into: move the result derived from
performing the “min” function on the literals “3, 8, 9, and 7” to the variable
“my-minimum.”

Note the presence of the required word “function,” followed by the name of
the function (“min”) and then its parameters.

Each intrinsic function is evaluated to a data value. This value is stored in a
temporary storage area that you cannot access directly in your program. The
only way to get the derived value of an intrinsic function is to provide the
name of a data item into which the resulting value should be placed. In the
example shown above, the variable “my-minimum” receives the derived
value of the “min” function.

In the example above, the parameters passed to the “min” function are
literals. It is also permissible to pass data items, as shown here:

compute my-sine = function sin(angle-a).

Function Definitions and Returned Values m F-3

Note: When the return value of a function is a double, the precision of the
return value is limited to that supported by the underlying hardware.

However, if your COBOL program is compiled for 31-digit support
(“-Dd31”), numeric functions are computed using special floating point
arithmetic that is accurate to approximately 33 digits, regardless of the
floating-point representation on the host machine.

The functions that return a double include: ABS, ABSOLUTE-VALUE,
ACOS, ANNUITY, ASIN, ATAN, COS, LOG, LOG10, MEAN,
MEDIAN, MIDRANGE, NUMVAL, NUMVAL-C, PRESENT-VALUE,
RANDOM, REM, SIN, SQRT, STANDARD-DEVIATION, TAN, and
VARIANCE.

F.2 Function Definitions and Returned Values

The definition of a function identifies the following:
» For alphanumeric functions, the size of the returned value

» For numeric and integer functions, the sign of the returned value and
whether the function is an integer

» For some other cases, the value returned

Data item functions are elementary data items and return alphanumeric,
numeric, or integer values. Data item functions are treated as elementary data
items and cannot be receiving operands. Types of data item functions are as
follows:

» Alphanumeric functions--these are of the class and category
alphanumeric. The number of character positions in this data item is
specified in the function definition. Alphanumeric functions have an
implicit usage of DISPLAY.

* Numeric functions--these are of the class and category numeric. A
numeric function is always considered to have an operational sign.

* A numeric function may be used only in an arithmetic expression.

F-4 m Intrinsic Functions

< A numeric function may not be referenced where an integer operand is
required, even though a particular reference may yield an integer value.

« Integer functions--these are of the class and category numeric. A
numeric function is always considered to have an operational sign.

« An integer function may be used only in an arithmetic expression.

« An integer function can be referenced where an integer operand is
required and where a signed operand is allowed.

F.2.1 Function Definitions

The table below summarizes the functions that are now available.

The Arguments column defines the type and number of arguments as

follows:
A alphabetic
I integer
N numeric

alphanumeric

The Type column defines the type of the function as follows:

I integer
N numeric

Z alphanumeric

Function Definitions and Returned Values m F-5

Function-name Arguments | Type Value returned
ABSOLUTE-VALUE | N1 N Absolute value of the
(or ABS) argument passed
ACOS N1 Arccosine of N1
ANNUITY N1, N2 Ratio of annuity paid
for 12 N2 periods at
interest rate of N1 to
initial investment of one
ASIN N1 Arcsine of N1
ATAN N1 Arctangent of N1
CHAR 11 Character in position 11
of program collating
sequence
COoSs N1 N Cosine of N1
CURRENT-DATE None Current date and time
and difference from
Greenwich Mean Time
DATE-OF-INTEGER | I1 | Standard date
equivalent
(YYYYMMDD) of
integer date
DAY-OF-INTEGER 11 | Julian date equivalent
(YYYYDDD) of
integer date
FACTORIAL 11 | Factorial of 11
INTEGER N1 | The greatest integer not
greater than N1
INTEGER-OF-DATE | 11 | Integer date equivalent
of standard date
(YYYYMMDD)
INTEGER-OF-DAY 11 | Integer date equivalent
of Julian date
(YYYYDDD)
INTEGER-PART N1 | Integer part of N1

F-6 m Intrinsic Functions

Function-name Arguments | Type Value returned
LENGTH AlorNlor | I Length of argument
X1
LOG N1 N Natural logarithm of N1
LOG10 N1 N Logarithm to base 10 of
N1
LOWER-CASE Alor X1 X All letters in the
argument are set to
lowercase
MAX Al..orll.. | Dependson | Value of maximum
or N1...or arguments.* [argument
X1...
MEAN N1... N Arithmetic mean of
arguments
MEDIAN N1... N Median of arguments
MIDRANGE N1... N Mean of minimum and
maximum arguments
MIN Al..orll.. | Dependson | Value of minimum
or N1...or arguments* | argument
X1...
MOD 11,12 | 11 modulo 12
NUMVAL X1 N Numeric value of
simple numeric string
NUMVAL-C X1, X2 N Numeric value of

numeric string with
optional commas and
currency sign

ORD Alor X1 | Ordinal position of the
argument in collating
sequence

ORD-MAX Al..or | Ordinal position of

N1... or maximum argument
X1...
ORD-MIN Al..or | Ordinal position of

N1...or X1 minimum argument

ABSOLUTE-VALUE (ABS) Function m F-7

Function-name Arguments | Type Value returned

PRESENT-VALUE N1, N2... N Present value of a series
of future period-end
amounts, N2n at a
discount rate of N1

RANDOM 11 N Random number

RANGE I11...or N1... | Dependson | Value of maximum

arguments argument minus value

of minimum argument

REM N1, N2 N Remainder of N1/N2

REVERSE Alor X1 X Reverse order of the
characters of the
argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD- N1... N Standard deviation of

DEVIATION arguments
SUM I11...or N1... | Dependson | Sum of arguments
arguments

TAN N1 N Tangent of N1

UPPER-CASE Alor X1 X All letters in the
argument are set to
uppercase

VARIANCE N1... N Variance of argument

WHEN-COMPILED None X Date and time program
was compiled

*A function that has only alphabetic arguments is type alphanumeric.

F.3 ABSOLUTE-VALUE (ABS) Function

The ABSOLUTE-VALUE (or ABS) function returns a single numeric value
which is the absolute value of the argument passed.

F-8 m Intrinsic Functions

Usage
FUNCTION ABSOLUTE-VALUE (argument-1)
or
FUNCTION ABS (argument-1)

Parameter

Argument-1 must be class numeric.
Returned Value

The returned value is a single numeric value which is the absolute value of
argument-1.

F.4 ACQOS Function

The ACOS function returns a numeric value in radians that approximates the
arccosine of argument-1. The type of this function is numeric.

Usage
FUNCTION ACOS (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to “-1” and less
than or equal to “+1”.

Returned Value

The returned value is the approximation of the arccosine of argument-1 and
is greater than or equal to zero and less than or equal to pi. This function will
produce results accurate to only about 17 digits, even when argument-1
contains more than 18 digits (for example, if you have compiled your
program for 31-digit support.)

ANNUITY Function = F-9

F.5 ANNUITY Function

Usage

The ANNUITY function (annuity immediate) returns a numeric value
representing the amount of each payment in a series of equal periodic
payments whose total value is 1.0, where argument-1 is the interest rate per
period, argument-2 is the number of periods (usually 12), and each payment
is applied at the end of its period. The type of this function is numeric.

a numeric value that approximates the ratio of an annuity paid at the end of
each period for the number of periods specified by argument-1 and is applied
at the end of the period before the payment. The type of this function is
numeric.

FUNCTION ANNUITY (argument-1 argument-2)

Parameters

1. Argument-1 must be class numeric.
2. The value of argument-1 must be greater than or equal to zero.

3. Argument-2 must be a positive integer.

Returned Values

1. When the value of argument-1 is zero, the value of the function is the
approximation of:

1 / argument-2

2. When the value of argument-1 is not zero, the value of the function is
the approximation of:

argument-1 / (1 - (1 + argument-1) ** (- argument-2))

Note: This function will produce results accurate to only about 17 digits,
even when argument-1 contains more than 18 digits (for example, if you
have compiled your program for 31-digit support.)

F-10 m Intrinsic Functions

F.6 ASIN Function

The ASIN function returns a numeric value in radians that approximates the
arcsine of argument-1. The type of this function is numeric.

Usage
FUNCTION ASIN (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to “-1” and less
than or equal to “+1”.

Note: This function will produce results accurate to only about 17 digits,
even when argument-1 contains more than 18 digits (for example, if you
have compiled your program for 31-digit support.)

Returned Value

The returned value is the approximation of the arcsine of argument-1 and is
greater than or equal to “-pi/2” and less than or equal to “+pi/2”.

F.7 ATAN Function

The ATAN function returns a numeric value in radians that approximates the
arctangent of argument-1. The type of this function is numeric.

Usage
FUNCTION ATAN (argument-1)

Parameter

Argument-1 must be class numeric.

CHAR Function m F-11

Returned Value

The returned value is the approximation of the arctangent of argument-1 and
is greater than “-pi/2” and less than “+pi/2”.

F.8 CHAR Function

The CHAR function returns a one-character alphanumeric value that is a
character in the program collating sequence having the ordinal position that
corresponds to the value of argument-1. The type of this function is
alphanumeric.

Usage
FUNCTION CHAR (argument-1)

Parameters

1. Argument-1 must be an integer.

2. The value of argument-1 must be greater than zero and less than or
equal to the number of positions in the collating sequence.

Returned Values

1. If more than one character has the same position in the program collating
sequence, the character returned as the function value is that of the first
literal specified for that character position in the ALPHABET clause.

2. If the current program collating sequence was not specified by an
ALPHABET clause, the value returned will be the character in the
ASCII character set occupying the ordinal position of the argument.

F.9 COS Function

The COS function returns a numeric value that approximates the cosine of an
angle or arc, expressed in radians that is specified by argument-1. The type
of this function is numeric.

F-12 m Intrinsic Functions

Usage
FUNCTION COS (argument-1)

Parameter
Argument-1 must be class numeric.
Returned Value

The returned value is the approximation of the cosine of argument-1 and is
greater than or equal to “-1” and less than or equal to “+1”.

F.10 CURRENT-DATE Function

The CURRENT-DATE function returns a 21-character alphanumeric value
that represents the calendar date, time of day, and local time differential
factor provided by the system on which the function is evaluated. The type
of this function is alphanumeric.

Usage
FUNCTION CURRENT-DATE

Returned Values

1. The character positions returned, numbered from left to right, are
described in the table below.

Character | Contents

Position

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range
01 through 12.

7-8 Two numeric digits of the day of the month, in the range
01 through 31.

9-10 Two numeric digits of the hours past midnight, in the
range of 00 through 23.

DATE-OF-INTEGER Function m F-13

Character | Contents

Position

11-12 Two numeric digits of the minutes past the hour, in the
range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the
range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past a
second, in the range 00 through 99. The value 00 is
returned if the system on which the function is evaluated
does not have the facility to provide the fractional part of a
second.

17 The character '0'. This is reserved for future use.

18-19 The characters '00'. This is reserved for future use.

20-21 The characters '00". This is reserved for future use

2. If the system does not have the facility to provide fractional parts of a
second, the value 00 is returned in character positions 15 and 16.

3. If the system does not have the facility to provide the local time
differential factor, the value 00000 is returned in character positions 17
through 21.

4. Currently, we do not support the information contained in positions 17-
through 21. These fields will contain 0.

5. The returned value can be reference modified. For example:
MOVE FUNCTION CURRENT-DATE (1:4) TO YEARDATE.

F.11 DATE-OF-INTEGER Function

The DATE-OF-INTEGER function converts a date in the Gregorian calendar
from integer date form to standard date form (YYYYMMDD). The type of
this function is integer.

Usage
FUNCTION DATE-OF-INTEGER (argument-1)

F-14 m Intrinsic Functions

Parameter

Argument-1 is a positive integer that represents a number of days succeeding
December 31, 1600 in the Gregorian calendar.

Returned Values

1. The returned value represents the 1ISO standard date equivalent to the
integer specified in argument-1.

2. The returned value is in the form YYYYMMDD, where YYYY
represents a year in the Gregorian calendar; MM represents the month
of that year; and DD represents the day of that month.

F.12 DAY-OF-INTEGER Function

The DAY-OF-INTEGER function converts a date in the Gregorian calendar
from integer date form to Julian date form (YYYYDDD). This type of
function is integer.

Usage
FUNCTION DAY-OF-INTEGER (argument-1)

Parameter

Argument-1 is a positive integer that represents a number of days succeeding
December 31, 1600, in the Gregorian calendar.

Returned Values

1. The returned value represents the Julian equivalent of the integer
specified in argument-1.

2. The returned value is an integer of the form YYYYDDD, where
YYYY represents a year in the Gregorian calendar, and DDD
represents the day of that year.

FACTORIAL Function m F-15

F.13 FACTORIAL Function

The FACTORIAL function returns an integer that is the factorial of
argument-1. The type of this function is integer.

Usage
FUNCTION FACTORIAL (argument-1)

Parameter

Argument-1 must be an integer greater than or equal to zero.
Returned Values

1. If the value of argument-1 is zero, the value “1” is returned.

2. If the value of argument-1 is positive, its factorial is returned.

F.14 INTEGER Function

The INTEGER function returns the greatest integer value that is less than or
equal to the argument.

Usage
FUNCTION INTEGER (argument-1)

Parameter
Argument-1 must be class numeric.
Returned values

1. When standard arithmetic is specified, argument-1 is not rounded.

2. The returned value is the greatest integer less than or equal to the value
of argument-1. For example, if the value of argument-1 is “ -1.5”,
“-2” is returned. If the value of argument-1 is “+1.5”, “+1” is
returned.

F-16 m Intrinsic Functions

F.15 INTEGER-OF-DATE Function

The INTEGER-OF-DATE function converts a date in the Gregorian calendar
from standard date form (YYYYMMDD) to integer date form. The type of
this function is integer.

Usage
FUNCTION INTEGER-OF-DATE (argument-1)

Parameter

Argument-1 must be an integer of the form YYYYMMDD, whose value is
obtained from the calculation (YYYY * 10,000) + (MM * 100) + DD.

* YYYY represents the year in the Gregorian calendar. It must be an
integer greater than 1600.

* MM represents a month, and must be a positive integer less than 13.

» DD represents a day, and must be a positive integer less than 32 provided
that it is valid for the specified month and year combination.

Returned Value

The returned value is an integer that is the number of days the date

represented by argument-1 succeeds December 31, 1600 in the Gregorian
calendar.

F.16 INTEGER-OF-DAY Function

The INTEGER-OF-DAY function converts a date in the Gregorian calendar

from Julian date form (YYYYDDD) to integer date form. The type of this
function is integer.

Usage
FUNCTION INTEGER-OF-DAY (argument-1)

INTEGER-PART Function m F-17

Parameter

Argument-1 must be an integer of the form YYYYDDD, whose value is
obtained from the calculation (YYYY * 1000) + DDD.

* YYYY represents the year in the Gregorian calendar. It must be an
integer greater than 1600.

» DDD represents the day of the year. It must be a positive integer less
than 367 provided that it is valid for the year specified.

Returned Value

The returned value is an integer that is the number of days the date

represented by argument-1 succeeds December 31, 1600 in the Gregorian
calendar.

F.17 INTEGER-PART Function

The INTEGER-PART function returns an integer that is the integer portion
of argument-1. The type of this function is integer.

Usage
FUNCTION INTEGER-PART (argument-1)

Parameter
Argument-1 must be class numeric.
Returned Values

1. If the value of argument-1 is zero, the returned value is zero.

2. If the value of argument-1 is positive, the returned value is the greatest
integer less than or equal to the value of argument-1. For example, if
the value of argument-1 is “+1.5”, then “+1” is returned.

F-18 m Intrinsic Functions

3.

If the value of argument-1 is negative, the returned value is the least
integer greater than or equal to the value of argument-1. For example,
if the value of argument-1 is “-1.5”, then “-1” is returned.

F.18 LENGTH Function

The LENGTH function returns an integer equal to the length of the argument
in character positions. This type of function is integer.

FUNCTION LENGTH (argument-1)

Usage

Parameters
1.
2.

Argument-1 may be a non-numeric literal or a data item of any class or
category.

If argument-1 (or any data item subordinate to argument-1) is
described with the DEPENDING phrase of the OCCURS clause, the
contents of the data item referenced by the data-name specified in the
DEPENDING phrase are used at the time the LENGTH function is
evaluated.

Returned Values

1.

If argument-1 is a non-numeric literal or an elementary data item, or if
argument-1 is a group data item that does not contain a variable
occurrence data item, the value returned is an integer equal to the length
of argument-1 in character positions.

If argument-1 is a group data item containing a variable occurrence
data item, the returned value is an integer determined by evaluation of
the data item specified in the DEPENDING phrase of the OCCURS
clause for that variable occurrence data item. This evaluation is
accomplished according to the rules in the OCCURS clause dealing
with the data item as a sending data item.

The returned value includes implicit FILLER characters, if any.

LOG Function m F-19

Note: This function is similar in functionality to the Format 8 Set SET
statement: “SET result-item TO SIZE OF data-item”.

F.19 LOG Function

The LOG function returns a numeric value that approximates the logarithm
to the base e (natural log) of argument-1. The type of this function is

numeric.
Usage

FUNCTION LOG (argument-1)
Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Value

The returned value is the approximation of the logarithm to the base e of
argument-1.

F.20 LOGI10 Function

The LOG10 function returns a numeric value that approximates the logarithm
to the base 10 of argument-1. The type of this function is numeric.

Usage
FUNCTION LOG10 (argument-1)

F-20 m Intrinsic Functions

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Value

Returned value is the approximation of the logarithm to the base 10 of
argument-1.

F.21 LOWER-CASE Function

The LOWER-CASE function returns a character string that is the same
length as argument-1 with each uppercase letter replaced by the
corresponding lowercase letter. The type of this function is alphanumeric.

Usage
FUNCTION LOWER-CASE (argument-1)

Parameter

Argument-1 must be class alphabetic or alphanumeric, and must be at least
one character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each
uppercase letter is replaced by the corresponding lowercase letter.

2. The character string returned has the same length as argument-1.

3. If the computer character set does not include lowercase letters, no
changes take place in the character string.

4. This function only translates characters with a numeric value of 0-128.
Anything above that (such as é, with a value of 130) must be mapped
to its associated upper- or lower-case character using the configuration
variable UPPER-LOWER-MAP.

MAX Function m F-21

Note: This function is similar to the library routine CSTOLOWER
except that the original data is not modified, and the entire string is
converted.

5. The returned value can be reference modified. For example:
MOVE FUNCTION LOWER-CASE(FILE-NAME)(1:4) TO TMP-STRING.

F.22 MAX Function

The MAX function returns the content of the argument-1 that contains the
maximum value. The type of this function depends upon the argument types

as follows:
Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric Numeric (some arguments may be integer)
Usage
FUNCTION MAX ({argument-1} ...)
Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1. The returned value is the content of the argument-1 having the greatest
value. The comparisons used to determine the greatest value are made
according to the rules for simple conditions.

F-22 m Intrinsic Functions

2. If more than one argument-1 has the same greatest value, the content
of the argument-1 returned is the leftmost argument-1 having that
value.

3. If the type of the function is alphanumeric, the size of the returned
value is the same as the size to the selected argument-1.

F.23 MEAN Function

The MEAN function returns a numeric value that is the arithmetic mean
(average) of its arguments. The type of this function is numeric.

Usage
FUNCTION MEAN ({argument-1} ...)

Parameters

Argument-1 must be class numeric.

Returned Values
1. The returned value is the arithmetic mean of the argument-1 series.

2. The returned value is defined as the sum of the argument-1 series
divided by the number of occurrences referenced by argument-1.

F.24 MEDIAN Function

The MEDIAN function returns the content of the argument whose value is
the middle value in the list formed by arranging the arguments in sorted
order. The type of this function is numeric.

Usage
FUNCTION MEDIAN ({argument-1} ...)

MIDRANGE Function m F-23

Parameters
Argument-1 must be class numeric.

Returned Values

1. The returned value is the content of the argument-1 having the middle
value in the list formed by arranging all the argument-1 values in sorted
order.

2. If the number of occurrences referenced by argument-1 is odd, the
returned value is such that at least half of the occurrences referenced by
argument-1 are greater than or equal to the returned value, and at least
half are less than or equal. If the number of occurrences referenced by
argument-1 is even, the returned value is the arithmetic mean of the
values referenced by the two middle occurrences.

3. The comparisons used to arrange the argument-1 values in sorted order
are made according to the rules for simple conditions.

F.25 MIDRANGE Function

The MIDRANGE (middle range) function returns a numeric value that is the
arithmetic mean (average) of the values of the minimum argument and the
maximum argument. The type of this function is humeric.

Usage
FUNCTION MIDRANGE ({argument-1} ...)

Parameters
Argument-1 must be class numeric.

Returned Values
The returned value is the arithmetic mean of the greatest argument-1 value
and the least argument-1 value. The comparisons used to determine the

greatest and least values are made according to the rules for simple
conditions.

F-24 m Intrinsic Functions

F.26 MIN Function

The MIN function returns the content of the argument-1 value that contains
the minimum value. The type of this function depends upon the argument
types as follows:

Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments may be integer) | Numeric

Usage
FUNCTION MIN ({argument-1} ...)

Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1. The returned value is the content of the argument-1 having the least
value. The comparisons used to determine the least value are made
according to the rules for simple conditions.

2. If more than one argument-1 has the same least value, the content of
the argument-1 returned is the leftmost argument-1 having that value.

3. If the type of the function is alphanumeric, the size of the returned
value is the same as the size of the selected argument-1.

F.27 MOD Function

The MOD function returns an integer value that is argument-1 modulo
argument-2. The type of this function is integer.

NUMVAL Function = F-25

Usage

FUNCTION MOD (argument-1 argument-2)

Parameters

1. Argument-1 and argument-2 must be integers.

2. The value of argument-2 must not be zero.

Returned Values

1. The returned value is argument-1 modulo argument-2. The returned

value is defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 /

argument-2))

2. The following illustrates the expected results for some values of
argument-1 and argument-2:

argument-1 argument-2 Return
11 5 1

-11 5 4

11 -5 -4

-11 -5 -1

F.28 NUMVAL Function

The NUMVAL function returns the numeric value represented by the
character string specified by argument-1. Leading and trailing spaces are

ignored. The type of this function is numeric.

Usage

FUNCTION NUMVAL (argument-1)

F-26 m Intrinsic Functions

Parameters

1. Argument-1 must be a non-numeric literal or alphanumeric data item
whose content has one of the following two formats:

[space] [+] [space] {digit [. [digit]]} [space]
[-1 {. digit }

or

[space] {digit [. [digit]]l} [space] [+] [space]

{. digit } -1

[CR]

[DB]
where space is a string of zero or more spaces, and digit is a string of one
to 18 digits.

2. The total number of digits in argument-1 must not exceed 18. If your
program has been compiled for 31-digit support (“-Dd31"),
argument-1 must not exceed 31.

3. If the DECIMAL-POINT IS COMMA clause is specified in the
SPECIAL-NAMES paragraph, a comma must be used in argument-1
rather than a decimal point.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18. If your program has been
compiled for 31-digit support (“-Dd31”), up to 31digits may be
returned.

F.29 NUMVAL-C Function

The NUMVAL-C function returns the numeric value represented by the
character string specified by argument-1. Any optional currency sign
specified by argument-2 and any optional commas preceding the decimal
point are ignored. The type of this function is numeric.

NUMVAL-C Function = F-27

Usage
FUNCTION NUMVAL-C (argument-1 [argument-2])

Parameters

1. Argument-1 must be a non-numeric literal or alphanumeric data item
whose content has one of the following formats:

[space] [+] [space] [cs] [space] {digit [, digit] ... [- [digit]]} [space]

[-] {. digit }
or
[space] [cs] [space] {digit [, digit] ... [- [digit]]} [space] [+ 1 [space]
{. digit } [-1
[CR]
o8]

where space is a string of zero or more spaces, cs is the string of one or
more characters specified by argument-2, and digit is a string of one or
more digits.

2. If the DECIMAL-POINT IS COMMA clause is specified in the
SPECIAL-NAMES paragraph, the functions of the comma and decimal
point in argument--1 are reversed.

3. The total number of digits in argument-1 must not exceed 18. If your
program has been compiled for 31-digit support (“-Dd31”),
argument-1 must not exceed 31.

4. Argument-2, if specified, must be a non-numeric value represented by
argument--1.

5. If argument-2 is not specified, the character used for cs is the currency
symbol specified for the program.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18. If your program has been
compiled for 31-digit support (“-Dd31”), up to 31digits may be
returned.

F-28 m Intrinsic Functions

F.30 ORD Function

The ORD function returns an integer value that is the ordinal position of
argument-1 in the collating sequence for the program. The lowest ordinal
position is “1”. The type of this function is integer.

Usage
FUNCTION ORD (argument-1)

Parameter

Argument-1 must be one character in length, and must be class alphabetic or
alphanumeric.

Returned Value

The returned value is the ordinal position of argument-1 in the collating
sequence for the program.

F.31 ORD-MAX Function

The ORD-MAX function returns a value that is the ordinal number of the
argument-1 that contains the maximum value. The type of this function is

integer.
Usage

FUNCTION ORD-MAX ({argument-1} ...)
Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1. The returned value is the ordinal number that corresponds to the position
of the argument-1 having the greatest value in the argument-1 series.

ORD-MIN Function m F-29

The comparisons used to determine the greatest valued argument are
made according to the rules for simple conditions.

If more than one argument-1 has the same greatest value, the number
returned corresponds to the position of the leftmost argument-1 having
that value.

F.32 ORD-MIN Function

The ORD-MIN function returns a value that is the ordinal number of the
argument that contains the minimum value. The type of this function is
integer.

Usage

FUNCTION ORD-MIN ({argument-1} ...)

Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1.

The returned value is the ordinal number that corresponds to the position
of the argument-1 having the least value in the argument-1 series.

The comparisons used to determine the least valued argument-1 are
made according to the rules for simple conditions.

If more than one argument-1 has the same least value, the number
returned corresponds to the position of the leftmost argument-1 having
that value.

F-30 m Intrinsic Functions

F.33 PRESENT-VALUE Function

The PRESENT-VALUE function returns a value that approximates the
present value of a series of future period-end amounts specified by
argument-2 at a discount rate specified by argument-1.

Usage
FUNCTION PRESENT-VALUE (argument-1 {argument-2} ...)

Parameters
1. Argument-1 and argument-2 must be of the class numeric.
2. The value of argument-1 must be greater than -1.

Returned Value

The returned value is an approximation of the summation of a series of
calculations with each term in the following form:

argument-2 / (1 + argument-1) ** n
There is one term for each occurrence of argument-2. The exponent, n, is

incremented increased from one by in increments of one for each term in the
series.

Example
COMPUTE RSULT = FUNCTION PRESENT-VALUE (DISCOUNT-RATE, 2000).

Note: In this example, DISCOUNT-RATE and RSULT are numeric data
items. I1f DISCOUNT-RATE has the value “0.08”, the value returned and
stored in RSULT is approximately “1851.85".

RANDOM Function = F-31

F.34 RANDOM Function

The RANDOM function returns a numeric value that is a pseudo-random
number (one of a sequence of numbers generated by an algorithm so as to
have an even distribution over a range of values and minimal correlation
between successive values) from a rectangular distribution. The type of this
function is numeric.

Usage
FUNCTION RANDOM [(argument-1)]

Parameters

1. Ifargument-1is specified, it must be zero or a positive integer. It is used
as the seed value to generate a sequence of pseudo-random numbers.

2. If a subsequent reference specifies argument-1, a new sequence of
pseudo-random numbers is started.

3. If the first reference to this function in the run unit does not specify
argument-1, a seed value will be provided by the runtime.

4. In each case, subsequent references without specifying argument-1
return the next number in the current sequence.

Returned Values

1. The returned value is greater than or equal to zero and less than one.

2. For a given seed value on a given implementation, the sequence of
pseudo-random numbers will always be the same.

Example
77 random_num pic s9(4)v99.

move function random() to random_num.

F-32 m Intrinsic Functions

F.35 RANGE Function

The RANGE function returns a value that is equal to the value of the
maximum argument minus the value of the minimum argument. The type of
this function depends on the argument types as follows:

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments may be integer) Numeric

Usage
FUNCTION RANGE ({argument-1} ...)

Parameters
Argument-1 must be class numeric.
Returned Value
The returned value is equal to the greatest value of argument-1 minus the

least value of argument-1. The comparisons used to determine the greatest
and least values are made according to the rules for simple conditions.

F.36 REM Function

The REM function returns a numeric value that is the remainder of
argument-1 divided by argument-2. The type of this function is numeric.

Usage
FUNCTION REM (argument-1 argument-2)

Parameters

1. Argument-1 and argument-2 must be class humeric.

2. The value of argument-2 must not be zero.

REVERSE Function m F-33

Returned Value

The returned value is the remainder of argument-1 / argument-2. It is
defined as the expression:

Argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1/
argument-2))

F.37 REVERSE Function

Usage

The REVERSE function returns a character string of exactly the same length
as argument-1 and whose characters are exactly the same as those of
argument-1, except that they are in reverse order. The type of this function
is alphanumeric.

FUNCTION REVERSE (argument-1)

Parameter

Argument-1 must be class alphabetic or alphanumeric, and must be at least
one character in length.

Returned Value

F.38 SIN

If argument-1 is a character string of length n, the returned value is a
character string of length n such that for 1< j < n, the character in position j
of the returned value is the character from position n-j+1 of argument-1.

Function

The SIN function returns a numeric value that approximates the sine of an
angle or arc, expressed in radians, that is specified by argument-1. The type
of this function is numeric.

F-34 m Intrinsic Functions

Usage
FUNCTION SIN (argument-1)

Parameter
Argument-1 must be class numeric.
Returned Value

The returned value is the approximation of the sine of argument-1 and is
greater than or equal to “-1” and less than or equal to “+1”.

F.39 SQRT Function

The SQRT function returns a numeric value that approximates the square
root of argument-1. The type of this function is numeric.

Usage
FUNCTION SQRT (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be zero or positive.
Returned Value

The returned value is the absolute value of the approximation of the square
root of argument-1.

F.40 STANDARD-DEVIATION Function

The STANDARD-DEVIATION function returns a numeric value that
approximates the standard deviation of its arguments. The type of this
function is numeric.

SUM Function m F-35

Usage
FUNCTION STANDARD-DEVIATION ({argument-1} ...)

Parameters
Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the standard deviation of the
argument-1 series.

2. The returned value is calculated as follows:

a. The difference between each argument-1 value and the arithmetic
mean of the argument-1 series is calculated and squared.

b. The values obtained are then added together. This quantity is
divided by the number of values in the argument-1 series.

c. The square root of the quotient obtained is then calculated. The
returned value is the absolute value of the square root.

3. If the argument-1 series consists of only one value, or if the
argument-1 series consists of all variable occurrence data items and the
total number of occurrences for all of them is one, the returned value is
zZero.

F.A41 SUM Function

The SUM function returns a value that is the sum of the arguments. The type
of this function depends upon the argument type as follows:

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments may be integer) | Numeric

F-36 m Intrinsic Functions

Usage
FUNCTION SUM ({argument-1} ...)

Parameters
Argument-1 must be class numeric.
Returned Values

1. The returned value is the sum of the arguments.

2. If the argument-1 series are all integers, the value returned is an
integer.

3. If the argument-1 series are not all integers, a numeric value is
returned.

F.42 TAN Function

The TAN function returns a numeric value that approximates the tangent of

an angle or arc, expressed in radians, that is specified by argument-1. The
type of this function is numeric.

Usage
FUNCTION TAN (argument-1)

Parameter

Argument-1 must be class numeric.

Returned Value

The returned value is the approximation of the tangent of argument-1.

UPPER-CASE Function m F-37

F.43 UPPER-CASE Function

The UPPER-CASE function returns a character string that is the same length
as argument-1 with each lowercase letter replaced by the corresponding
uppercase letter. The type of this function is alphanumeric.

Usage
FUNCTION UPPER-CASE (argument-1)

Parameter

Argument-1 must be class numeric or alphanumeric and must be at least one
character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each
lowercase letter is replaced by the corresponding uppercase letter.

2. The character string returned has the same length as argument-1.

3. This function only translates characters with a numeric value of 0-128.
Anything above that (such as é, with a value of 130) must be mapped
to its associated upper- or lower-case character using the configuration
variable UPPER-LOWER-MAP.

Note: This function is similar to the library routine CSTOUPPER
except that the original data is not modified, and the entire string is
converted.

4. The returned value can be reference modified. For example:
MOVE FUNCTION UPPER-CASE(FILE-NAME)(1:4) TO TMP-STRING.

F.44 VARIANCE Function

The VARIANCE function returns a numeric value that approximates the
variance of its arguments. The type of this function is numeric.

F-38 m Intrinsic Functions

Usage
FUNCTION VARIANCE ({argument-1} ...)

Parameters
Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the variance of the
argument-1 series.

2. The returned value is defined as the square of the standard deviation of
the argument-1 series.

3. If the argument-1 series consists of only one value, or if the
argument-1 series consists of all variable occurrence data items and the
total number of occurrences for all of them is one, the returned value is
zero.

F.45 WHEN-COMPILED Function

The WHEN-COMPILED function returns the date and time the program was
compiled as provided by the system on which the program was compiled.
The type of this function is alphanumeric.

Usage
FUNCTION WHEN-COMPILED

Returned Values

1. The character positions returned, numbered from left to right, are
described in the table below.

Character Positions | Contents

1-4 Four numeric digits of the year in the Gregorian
calendar.

WHEN-COMPILED Function m F-39

Character Positions | Contents

5-6 Two numeric digits of the month of the year, in the
range 01 through 12.

7-8 Two numeric digits of the day of the month, in the
range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in
the range of 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in
the range 00 through 59.

13-14 Two numeric digits of the seconds past the minute,
in the range 00 through 59.

15-16 Two numeric digits of the hundredths of a second

past a second, in the range 00 through 99. The
value 00 will be returned for all systems

17 The character ‘0°. This field is reserved for future
implementation.
18-19 The characters ‘00°. This field is reserved for

future implementation.

20-21 The characters ‘00°. This field is reserved for
future implementation.

The returned value is the date and time of compilation of the source
program that contains this function. If the program is a contained
program, the returned value is the compilation date and time associated
with the separately compiled program in which it is contained.

Note: The returned value must denote the same time as the
compilation date and time if provided in the listing of the source
program and in the generated object code for the source program,
although their representations and precisions may differ.

The returned value can be reference modified. For example:
MOVE FUNCTION WHEN-COMPILED (1:4) TO YEARDATE.

Reserved for Future Use

As a convenience to long-time ACUCOBOL-GT programmers and users, we
have retained this empty appendix so that Appendix H, “Runtime
Configuration Entries”, and Appendix I, “ACUCOBOL-GT Library
Routines” can continue to be located in their historic positions.

H Configuration Variables

Key Topics

g0 oTo [V Ty o] o ST
Configuration Variables.............ceviveeriiiene e

H-2 m Configuration Variables

H.1 Introduction

Many aspects of the runtime system can be controlled through runtime
configuration variables. This mechanism provides a great deal of flexibility,
because these variables can be modified by each runcbl site as well as
directly by an ACUCOBOL-GT program.

H.1.1 Variable Syntax

Configuration variables are maintained in a runtime configuration file. This
standard text file can be modified by the host system’s text editor. Each entry
in the runtime configuration file consists of a single line. All entries start
with a keyword, followed by one or more spaces or tabs, and then one or
more values. The limit for each configuration value entry is 4095 characters.

Some examples of runtime configuration variables are:

AUTO_PROMPT 0

BELL 1
COMPRESS_FACTOR 70
CURSOR_TYPE 3
MENU_ITEM Edit=Delete 200
SCROLL on

For all runtime configuration variables, “=" placed between the keyword and
the first value is optional, and is interchangeable with a space.

For the following configuration variables, a colon (:) may be used instead of
an equals sign (=) in the value portion of the entry:

COLOR-TABLE COLOR-MAP
FILE-CONDITION KEYBOARD
KEYSTROKE SCREEN
MENU-ITEM MOUSE

HOT-KEY

Introduction m H-3

H.1.2

In the above cases, allowing a colon instead of an equals sign in the value
portion of the entry makes it possible to specify these values in environment
variables. Thisaccommodates systems that do not allow an equals sign in the
environment variable.

For some runtime configuration variables, the words “on”, “true”, and “yes”
are synonyms for “1”, and the words “off”, “false”, and “no” are synonyms
for “0”. The entry for each variable in this appendix indicates when these
synonyms are allowed.

In the keyword, all lower-case characters are treated as upper-case and all
hyphens are treated as underscores. Keywords longer than 60 characters are
truncated to 60 characters.

Variable Usage

The configuration file is optional, as are all of its contents. For this reason,
no errors in the configuration file are ever reported. The “-I” runcbl option
can help debug configuration file problems.

In the descriptions of some runtime configuration variables, you will find
comments about behavior under the Windows environment; unless otherwise
noted, these comments apply to all 32-bit versions of the Windows operating
system.

Runtime configuration variables may be placed in either the runtime
configuration file or the machine’s environment. When they are placed in the
runtime configuration file, upper- and lower-case names are equivalent, as
are hyphens and underscores. When placed in the machine’s environment,
the keywords must be all upper case and must use underscores instead of
hyphens. For more details about the configuration process, see the
ACUCOBOL-GT User’s Guide, section 2.8, “Runtime Configuration.”

All configuration variables that have a default value are used by and affect
the runtime in the same way that they would if they were in the configuration
file. That is to say, a configuration variable that has a default value is treated
as if it appears in the configuration file set to the default value.

The values of many runtime configuration variables may be changed at
runtime with the SET ENVIRONMENT verb. The syntax is:

H-4 m Configuration Variables

SET ENVIRONMENT env-name TO env-value

Env-name may specify either the literal name of the variable or a data-item
whose value is the name of the variable. If you specify the actual name of the
variable, such as CODE_CASE, then you must enclose the name in quotes.
Env-value is the value to which env-name will be set. If it is a numeric data
item, then it is treated as if it were redefined as an alphanumeric data item.

Most configuration variables can be read with the ACCEPT FROM
ENVIRONMENT statement. If the variable to be read is numeric, then the
receiving field must be defined either as a numeric field or as an
alphanumeric field of five or more characters. If it is defined as
alphanumeric and is longer than five characters, then the value that is read
from the environment will occupy the leftmost five characters of the field and
the remainder will be space-filled.

H.1.3 Configuration filename Resolution

runcbl uses the following rules to decide what the configuration file is
called:

1. Ifthe “-c” runtime option is used, the configuration file is the one named
by that option; otherwise,

2. If the operating system environment variable “A_CONFIG” is defined,
its value is the name of the configuration file; otherwise,

3. The configuration file is named according to the host operating system.
This depends on the operating system used by the machine, as outlined
in the following table.

System Configuration File

Windows \etc\cblconfi

UNIX/Linux [etc/chlconfig

MPE/iX [etc/cblconfig

VMS SYS$LIBRARY:A_CONFIG.DAT

Configuration Variables m H-5

Caution: Do not give a data file a name that is the same as a configuration
variable name. Doing so can cause problems if you map the data filename
through a configuration entry. For example, if you have a data file named
“CURRENCY?™, the runtime may confuse the data file with the
configuration variable of the same name, inadvertently changing the default
currency character.

H.1.4 Nested configuration files

Itis possible to use multiple configuration files by nesting one inside another.
Within the configuration file, you can specify another file to process with the
following syntax:

ICOPY filename

No name expansion is done to filename (for example FILE_PREFIX is not
applied) so you must specify a file that the runtime can find. You can include
remote name syntax if you are using AcuServer® or AcuConnect®.
Otherwise, the file must be an absolute path or a path relative to the current
directory.

For example, if you have some configuration variables in a global place such
as “/etc/cblconfi”, then individual users can execute the runtime using this
configuration file instead of the usual one. The settings in the usual
configuration file take effect also, because their settings are copied in with
ICOPY:

#Get all the standard variables

Icopy /etc/cblconfi

#Now set personal settings
COMPRESS_FILES 1

H.2 Configuration Variables

This section contains an alphabetical list of the runtime configuration file
variables. Many of these variables are also described in other parts of the
documentation set.

H-6 m Configuration Variables

3D_LINES

This variable has meaning only on graphical systems such as Windows. Set
this variable to “1” (on, true, yes) to cause the runtime to display lines and
boxes with 3-D shading. This makes the lines appear to be inscribed into the
surface of the screen. The variable is especially helpful in giving a 3-D look
to a program originally designed on a character system. Only black lines on
a non-black background are shown with shading. Other lines are displayed
normally.

The set of colors available to ACUCOBOL-GT significantly impacts how
effective the shading will be. Normally, the shading is most effective when
the background is low-intensity white. The other low-intensity colors are
next best.

The shading is only marginally effective with a high-intensity background.
For this reason, the 3D_LINES setting is not used when a high-intensity
background is drawn. Note that, by default, ACUCOBOL-GT shows
background colors in high-intensity, so you will need to use at least one other
configuration variable to arrange for a low-intensity background color. For
example, the BACKGROUND_INTENSIT Yvariable could be set to “1” to
force a low-intensity background.

You may freely change the way lines are displayed in COBOL by using the
SET ENVIRONMENT verb to set 3D-LINES prior to displaying a line or a
box.

e Setting it to “1” (on, true, yes) gives you the 3-D effect.

e Setting it to “0” (off, false, no) gives you normal lines.

The runtime remembers which lines are drawn with 3-D, so you don’t need
to keep track of this yourself. Note, however, that if you attach a 3-D line to
a non-3-D line, the intersection will use the 3D-LINES setting currently in
effect.

The default value is “0”.

Configuration Variables m H-7

AGL_COLUMN_CASE

7_BIT

When set to “unchanged”, this variable causes the runtime to leave the case
and hyphen usage of the field names found in XFDs unchanged. XFDs are
used with the Acu4GL interface, AcuXDBC, or AcuXML. They are also
required for international character mapping with AcuServer and they pro-
vide useful information to the alfred record editor. By default, the runtime
converts all field names to lower case and all hyphens to underscores.

For AcuXML, the case and hyphen usage of the XFD must match the XML
file exactly, and 4GL_COLUMN_CASE should be set to “unchanged”. For
Acu4GL, however, you should be aware that most databases do not accept
hyphens in column names. If you set this variable to “unchanged” to protect
case, you may need to modify the XFD by hand to replace hyphens with
underscores.

When this configuration variable is set to “1” (on, true, yes),
ACUCOBOL-GT supports 7-bit communications instead of 8-bit. This
variable is designed specifically for machines that use 7-bit communications
with parity enabled. When 7_BIT is set to the default of “0” (off, false, no),
8-bit communications are used.

A_CHECKDIV

This variable allows you to specify an alternate runtime response to a divide
by zero condition when the statement does not include a SIZE ERROR
clause.

In COBOL, a division by zero produces a size error condition. The SIZE
ERROR clause allows the programmer to specify actions to take when this
condition occurs. If there is no SIZE ERROR clause, by default in
ACUCOBOL-GT the results are undefined. You can use the A CHECKDIV
configuration variable to specify alternate handling.

H-8 m Configuration Variables

A _CHECKDIV can be set to:

NONE “0” The default setting. This setting retains the
or: default behavior of the runtime: the results
are undefined.

ABEND or: “17, This setting causes the runtime to catch the
STOP, divide by zero condition and exit with the
ABORT error message: “Attempt to divide by zero”.

MOVE_ZERO or: “27, This setting causes the runtime to move
ZERO_RESULT zeroes to the destination item(s) and
, MOVE_ZEROS continue.

A_DISP

This variable is available for applications such as online transaction servers
that call ACUCOBOL-GT through the C API (see Chapter 6 of A Guide to
Interoperating with ACUCOBOL-GT). The default value is “0”. With the
default setting, the debugger launches when the debug_method flag in the C
interface is set to “1”.

Set this variable to “1” to turn on the ACUCOBOL-GT debugger in an xterm
window the first time you call the C interface. The debugger shuts down
when the program that caused it to launch shuts down.

LAY

This variable is available for applications such as online transaction servers
that call COBOL through the C API. The value of A_DISPLAY overrides
the value of the DISPLAY environment variable. Set A_DISPLAY to the
value of your X server host name or IP address in the runtime configuration
file (or /etc/cblconfig). For example:

A _DISPLAY myvpn123.myhostname.com:0

Configuration Variables m H-9

A_EXTFH_FUNC

The value of this variable is an EXTFH function name needed for the EXTFH
interface. If you are using a library that contains an EXTFH function name
other than “cics_xfh”, “cobol_extfh”, or “EXTFH”, you also need to set one
or more of these variables to specify the function name:

A_EXTFH_FUNC Specifies a function to be used by all file types
(indexed, relative, and sequential).

A EXTFH_IDX_FUNC Specifies a function name to be used by indexed
file types.

A EXTFH_REL_FUNC Specifies a function name to be used by relative
file types.

A EXTFH_SEQ FUNC Specifies a function name to be used by
sequential file types.

For example, to specify a function name to use for all file types:
A_EXTFH_FUNC=myExtfh

Or, to specify a different function for indexed, relative, and sequential files:

A_EXTFH_IDX_FUNC=my I dxExtFfh
A_EXTFH_SEQ_FUNC=mySeqgExtfh
A_EXTFH_REL_FUNC=myRelExtfh

If the library is a DLL, you can specify both the name of the DLL and the
calling convention to use. Any calling convention specified this way
overridesthe DLL._CONVENTION variable setting. For information about
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs
with Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

A_EXTFH_LIB

The value of this variable is an EXTFH shared library or DLL file name. You
can use this variable to dynamically load an EXTFH library without relinking
the ACUCOBOL-GT runtime. For example:

A_EXTFH_LIB libraryname.so

H-10 m Configuration Variables

You can also use the following variables to specify library names for
indexed, relative, and sequential files. The ACUCOBOL-GT runtime uses
A _EXTFH_LIB as the default EXTFH library for all three file types. If one
or more of these three variables is also set, the runtime uses its value instead
of A_EXTFH_LIB for the corresponding file type.

A_EXTFH_IDX_LIB Specifies the EXTFH library to use for indexed
files.

A_EXTFH_REL_LIB Specifies the EXTFH library to use for relative files.

A EXTFH_SEQ LIB Specifies the EXTFH library to use for sequential
files.

You can specify these variables in the runtime configuration file or as
operating system environment variables.

If the library is a DLL, you can specify both the name of the DLL and the
calling convention to use. Any calling convention specified this way
overrides the DLL_CONVENTION variable setting. For information about
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs
with Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

See section 11.6, “Working With an EXTFH Interface,” in A Guide to
Interoperating with ACUCOBOL-GT, for information on specifying
EXTFH library and function names to use with the EXTFH interface.

A_EXTFH_SIMPLE_OPEN_OUTPUT

This variable is only used in UniKix environments, and the UniKix
application automatically sets this variable to “1” (TRUE). When set to “1”
(TRUE), an OPEN OUTPUT statement will cause the EXTFH functions to
bypass the “make” process, and will open the file as OUTPUT. When set to
“0” (FALSE), or not set at all, the EXTFH functions will execute the “make”
process, and will open the file as EXTEND.

Configuration Variables m H-11

A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL,
A_EXTFH_VARIABLE_SEQ

These variables indicate whether the filesystem you are accessing with the
the EXTFH interface can or cannot handle variable length files. Setting this
variable to the default of “1” (on, true, yes) causes the EXTFH interface to
pass the minimum and maximum record lengths to the file system for
variable length files as defined in the COBOL program. Setting this variable
to “0” (off, false, no) causes the EXTFH interface to ignore the variable
record length defined in the COBOL program and instead pass a record
length equal to the maximum record length.

You can specify the variable separately for indexed, relative, and sequential
files. For example:

A_EXTFH_VARIABLE_I1DX=0
A_EXTFH_VARIABLE_REL=0
A_EXTFH_VARIABLE_SEQ=1

When the file system does not process variable length files, set these
configuration variables to “0” and the EXTFH interface treats variable length
records as fixed lengths.

If the file system does process variable length files, set the configuration
variables to “1” (or do not set them at all).

A_JAVA_CHARSET

This variable specifies the character set that the runtime should use when
mapping Java strings or PIC X data items containing characters outside of the
ISO-8859-1 range. The default setting is "1S0-8859-1". If you have data
outside the 1S0-8859-1 range (for example, an umlaut or Euro symbol),
specify a different character set that contains those characters.

Be aware of a common misconception that ISO-8859-1 is equivalent to
Windows-1252. This is mostly true, but there are characters in the range
0x80 — 0x9F that differ. Windows-1252 uses these numbers for letters and
punctuation, while the 1SO-8859-1 uses these for control codes.

H-12 m Configuration Variables

A_JAVA_GC_COUNT

A _JAVA_GC_COUNT is a 32-bit value that determines how often the
runtime calls the JVM garbage collector. The JVM garbage collector will run
at unknown times, in order to deallocate memory which is no longer being
used. Setting this to a non-zero value allows you to be a little more
intentional about running the garbage collector. The value is the number of
times C$JAVA is called before the runtime calls the JVM garbage collector.
The default value is 9883, so every 9883 calls to C3JAVA will explicitly call
the JVM garbage collector. (For more info on the JVM garbage collector, see
your JVM documentation.)

A_JAVA_TRACE_FILENAME

A JAVA_TRACE_FILENAME is the name of the file where the trace
information is sent. This filename can include all of the format specifiers that
the runtime error file can include. If this file can’t be opened for writing (for
any reason), no trace information is collected.

A_JAVA_TRACE_VALUE

To track calls to the JVM made on behalf of the COBOL program, you can
set one of the following three configuration variables:

A_JAVA TRACE_VALUE, A_JAVA TRACE_FILENAME, and
A_JAVA_GC_COUNT.

A_JAVA_TRACE_VALUE is a 32-bit value that determines the types of
calls to trace. Add any of the following values together to create a single
value to set.

1 - Show calls that return simple types (boolean, byte, character, short,
integer, long, float, double).

2 - Show method calls that return simple types.
4 - Show string calls that return string references (that must be released).

8 - Show string calls that return simple types.

Configuration Variables m H-13

16 - Show calls that return references to a Java object (that must be released).

32 - Show method calls that return references to a Java object (that must be
released).

64 - Show calls that return references to a Java array or array elements (that
must be released).

128 - Show calls that return other array information.
256 - Show calls to the exception routines (some of which must be released).
512 - Show calls to get IDs (Method Identifiers or Field Identifiers).

1024 - Show calls to field functions that return references to a Java object
(that must be released).

2048 - Show calls to field functions that return simple types.

4096 - Show other types of calls that return references to a Java object (that
must be released).

8192 - Show calls to release a reference to a Java object.
16384 - Show other calls to the Java runtime.

Note for there to be no memory leaks, any call that returns a reference to a
Java object (that must be released) needs to be paired with a call to release
that reference. If the COBOL program gets that reference, it is responsible
for releasing the reference. If the runtime gets the reference for internal
purposes, the runtime is responsible for releasing the reference.

For example, setting A_JAVA_TRACE_VALUE to 13684 shows all calls to
the JVM that obtain or release a reference to a Java object. Setting

A JAVA_TRACE_VALUE to -1 is equivalent to setting it to 32767 (which
is the sum of all the above values), and has the added benefit of tracing new
options that may be added in the future. However, for finding memory leaks,
this may be too much information.

H-14 m Configuration Variables

A_LICENSE_RETRIES

This variable affects UNIX networks with multiple-user licenses for the
runtime. When set to a positive, non-zero value, this entry causes the runtime
to retry (“value” times) any failed attempt to register with the network license
manager, acushare. The configuration variable A RETRY_ DELAY
specifies how many seconds the runtime will wait between retries.

The default value is “0” (no retries).

A_OPERATING_SYSTEM

As of Version 5.0, the runtime no longer differentiates between “UNIX-V”
and “UNIX-4" in the OPERATING-SYSTEM field of the
SYSTEM-INFORMATION data item. Instead, the value “UNIX” is used for
all UNIX platforms. If you have an existing program that depends on one of
the older values, set A_ OPERATING_SYSTEM to a value of “UNIX-V” or
“UNIX-4". Then, when an ACCEPT FROM SYSTEM-INFO statement is
executed, this value overrides the value returned by the function. The default
value is empty.

A_REMOVE_EMPTY_ERROR_FILE

Use this variable to prevent the accumulation of 0 byte files when using
format specifiers such as “%p” (to include the process id) in the error file
name. When this variable is set to “1” (on, true, yes), the runtime deletes its
error file if the runtime has never written to that file. Note that on some
operating systems, if your error file is shared by multiple processes (i.e., the
file name does not include the process id or some other unique session
information), setting A_REMOVE_EMPTY_ERROR_FILE to “1” may
cause error messages to be lost. For example, on UNIX if the error file is
empty when one runtime exits, that runtime would delete the file. The file
will remain deleted even if another runtime process subsequently writes a
message to it. The default value for this variable is “0” (off, false, no).

Configuration Variables m H-15

A_RETRY_DELAY

This variable affects UNIX networks with multiple-user licenses. If

A LICENSE_RETRIES is set to a positive integer value, then the value of
A _RETRY_DELAY determines how many seconds the runtime will wait
between repeated attempts to register itself with the network license
manager, acushare.

The default value is “10”.

A_SEQ_DEFAULT_BLOCK_SIZE

This configuration variable determines the size of the buffer to use when
accessing a sequential file whose definition has no BLOCK CONTAINS
clause. When set, A_ SEQ DEFAULT_BLOCK_SIZE specifies the size of
the buffer in characters, rounded up to the nearest power of 2 that is greater
than or equal to that value. The default value is “0”, which sets the block size
to one record. Note that this variable does not apply to print files or to files
with names that start with a hyphen followed by “D” or “P”.

Youcanset A_ SEQ DEFAULT BLOCK_SIZE in the environment to allow
the “vutil -load” command to buffer the input file according to the variable’s
value. The maximum buffer size is 1 GB. If this variable is not set, the
default buffer block size is 4096 bytes. If it is set to “0”, “vutil -load”
performs record-based 1/0 on a sequential file.

A_SYSLOG_HOSTNAME

This variable applies only on Windows and works in conjunction with the
A SYSLOG_ON_RUNTIME_ERROR configuration variable. Set
A_SYS HOSTNAME to the server name or IP address on which the event
log is located. Do not include any slashes with the server name. The default
value for this variable is empty. Then set
A_SYSLOG_ON_RUNTIME_ERROR to “1” (on, true, yes). Shutdown
messages will be sent to the event log on the local machine.

H-16 m Configuration Variables

A_SYSLOG_ON_RUNTIME_ERROR

When this variable is set to “1” (on, true, yes), on a fatal error, the runtime
will send its shutdown error message to the UNIX syslog daemon, console,
or Windows event log. The runtime uses the same logic as the C$SYSLOG
routine. (See C3SYSLOG in Appendix | for more information). The error
message also includes the name of the runtime error file so that the
administrator can view it for more information. The default value for this
variable is “0” (off, false, no).

ACCEPT_AUTO

This configuration variable applies only when running in HP COBOL
compatibility mode (with the “-Cp” compiler option). The ACCEPT_AUTO
configuration variable causes the runtime to treat all Format 1 ACCEPT
statements as if the AUTO phrase is used, whether or not AUTO appears in
the statement. Set this variable to “1” (on, true, yes) to enable this behavior.
The default value is “0” (off, false, no).

ACCEPT_TIMEOUT

This variable causes all ACCEPT statements to time out just as if there was a
BEFORE TIME phrase present in the ACCEPT statement. The value
assigned to ACCEPT_TIMEOUT is the timeout period, in seconds. This
timeout value is applied to every ACCEPT statement that can have a
BEFORE TIME phrase specified for it. If a particular ACCEPT statement
has a BEFORE TIME phrase explicitly coded for it, that phrase takes
precedence and ACCEPT_TIMEOUT does not apply to that statement. The
default value of ACCEPT_TIMEOUT is “0”, which indicates no timeout
value.

ACTIVE_BORDER_COLOR

This variable is used on character-based hosts to specify the color and video
attributes of the characters used to form the border (box) around the active
floating window. ACTIVE_BORDER_COLOR can be set to a variety of

Configuration Variables m H-17

numeric values that express combinations of color and video attributes. See
the documentation for the COLOR phrase in the “Common Screen Options”
section of the ACUCOBOL-GT Reference Manual (Section 6.4.9).

If ACTIVE_BORDER_COLOR is set to “0”, the active window’s border is
drawn with the colors and video attributes specified in the COBOL program
when the window is initially created. The default value is “0”.

ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH,
ACU_DUMP_TABLE_LIMIT

These configuration variables are used to enable and configure the Abend
Diagnostic Report (ADR) facility. For a complete description of the ADR,
see Section 3.1.9, in Book 1, ACUCOBOL-GT User’s Guide.

ACU_DUMP

This variable enables the Abend Diagnostic Report. The default value is “0”
(off, false, no). Set ACU_DUMP to “1” (on, true, yes) to turn on the ADR.

ACU_DUMP_FILE

This variable specifies the name of the report file. It allows the following
special parameters:

» If the file name starts with a plus sign (“+), the report is appended to the
specified file. By default, a new report overwrites the specified file.

 If the name contains the string “%p”, when the report is generated that
string is replaced with the process ID (PID) of the runtime from which
the report originates.

» If the name contains the string “%d”, that string is replaced with the
current date in the form YYYYMMDD where YYYY is the year, MM
month and DD day.

» If the name contains the string “%t”, that string is replaced with the
current time in the form HHMMSSTTT where HH is the hour, MM
minute, SS second and TTT milliseconds.

H-18 m Configuration Variables

« If the name contains the string “%u”, that string is replaced with the
username.

« If the name contains the string “%h”, that string is replaced with the
hostname.

The default value for ACU_DUMP_FILE is “acudump.%p”.
ACU_DUMP_WIDTH

This variable controls the width of the report and has a default value of 80
characters. The minimum allowed value is 79 and the maximum is 2048.
Note that because the report uses dynamically computed columns for its
hexadecimal data, making the report very wide can reduce readability by
introducing excessive white space.

ACU_DUMP_TABLE_LIMIT

This variable limits how many elements of each table item to list. The default
value is 1000. Note that if you increase this value substantially, and if you
have tables that allow for large numbers of elements, you may get very large
reports.

In the following example, ACU_DUMP_TABLE_LIMIT is set to 5:

01 MY-TABLE-R = (group)

05 TABLE-ENTRY (1) = 1 h20202020 31
05 TABLE-ENTRY(2) = 2 h20202020 32
05 TABLE-ENTRY(3) = 3 h20202020 33
05 TABLE-ENTRY(4) = 4 h20202020 34
05 TABLE-ENTRY(5) = 5 h20202020 35

Remaining table items suppressed due to ACU-DUMP-TABLE-LIMIT setting

ACU_USER_DIR

The ACU_USER_DIR configuration variable specifies the default location
of a user debugger settings file. In the past, the ACUCOBOL variable has
been used for this purpose. When set, ACU_USER_DIR specifies the
directory for the user’s debugger settings (“.adb”) file. The default value is
“NULL", which causes the runtime to use the ACUCOBOL variable.

Configuration Variables m H-19

ACUCOBOL

This variable holds the full path to the ACUCOBOL-GT installation
directory. For example, if the runtime is installed in “C:\Program
Files\Acucorp\AcucbI8xx\AcuGT\bin”, you would set this configuration
variable to:

ACUCOBOL C:\Program Files\Acucorp\AcucblI8xx\AcuGT

This variable is used to locate extensions to the runtime.

AGS_BLOCK_SLEEP_TIME

This variable is used to specify the amount of wait time before attempting to
retry writing data to a socket. It can improve file 1/0 peformance times for
large files (32K or larger). The value of this variable by default is 10
milliseconds. The default value should provide performance at par with pre
7.3 versions.

This variable only has impact on UNIX/Linux.

AGS_MAX_SEND_SIZE

This variable allows you to control the size of a basic socket packet
exchanged between extend applications that use sockets to communicate.
The default value is 16000. In the vast majority of cases, the default value
provides excellent results. However, when performance problems are traced
to packet size, you can change the size with AGS_MAX_SEND_SIZE. The
value of this variable is checked every time that data is sent to the socket.
When a program changes the value, the new value is applied the next time
that data is sent to the socket.

H-20 m Configuration Variables

AGS_RECEIVE_BUFFER_SIZE

This variable determines the size of the low-level receive buffer for a socket
connection. For the value to have an affect, it must be set before any sockets
have been created. The default value is 16384. The default value should be
sufficient for most cases. The receive-buffer-size is passed directly to a call
to setsockopt.

Note: The value of this variable is sent to a lower-level socket layer not
controlled by ACUCOBOL-GT. It may not have any noticeable effect.
Changes in this value are not seen in response to a “U” debugger command
listing the memory usage of the runtime.

AGS_SEND_BUFFER_SIZE

This variable determines the size of the low-level send buffer for a socket
connection. For the value to have an affect, it must be set before any sockets
have been created. The default value is 16384. The default value should be
sufficient for most cases. The send-buffer-size is passed directly to a call to
setsockopt.

Note: The value of this variable is sent to a lower-level socket layer not
controlled by ACUCOBOL-GT. It may not have any noticeable effect.
Changes in this value are not seen in response to a “U” debugger command
listing the memory usage of the runtime.

Configuration Variables m H-21

AGS_SOCKET_COMPRESS

This variable determines the type of data compression performed at the
internal socket layer. AGS_SOCKET_COMPRESS must be set before any
socket communication is done, and cannot be changed via SET
ENVIRONMENT. This variable has three possible values:

NONE

ZLIB

RUNLENGTH

This is the default setting. When
AGS_SOCKET_COMPRESS is set to
this value, no compression is performed.

When AGS_SOCKET_COMPRESS is
set to this value, socket data is
compressed using the same algorithm as
the gzip compression utility.

When AGS_SOCKET_COMPRESS is
set to this value, simple compression is
done, based on counting repeated bytes
of data.

RUNLENGTH compression tends to be very fast, while ZLIB compression
tends to compress the data more, but is slower as a result.

Windows supports ZLIB compression, but not all UNIX machines do. For
those machines that do not, RUNLENGTH compression will be used
whether this variable is set to ZLIB or RUNLENGTH. When the
compression algorithm is being negotiated with a server, the method that both
machines support will be used.

AGS_SOCKET_ENCRYPT

To turn on encryption at the internal socket-layer, set the configuration
variable AGS_SOCKET_ENCRYPT to “1” (on, true, yes). It must be set
before any socket communication is performed, and cannot be changed via a
SET ENVIRONMENT statement.

H-22 m Configuration Variables

Note: If the variables AS_CLIENT_ENCRYPT and/or
THIN_CLIENT_ENCRYPT are set to “1”, AGS_SOCKET_ENCRYPT is
also set to “1” automatically.

AGS_TCP_NODELAY

This variable determines whether the Nagle algorithm is used when sending
socket buffer messages. This algorithm automatically delays sending small
socket packets for a short period of time in order to increase network
efficiency by sending them in a batch. Setting this variable to the default of
“1” (on, true, yes) causes socket packets to be sent immediately (not using the
algorithm), while setting this variable to “0” (off, false, no) causes socket
packets to be delayed (using the algorithm). The TCP-NODELAY socket
option is used as follows:

setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &tcp_nodelay, sizeof(int));

The value of this variable is sent to a lower-level socket layer not controlled
by ACUCOBOL-GT. It may not have any noticeable effect.

alfred Configuration variables

As of Version 8.0, the Indexed File Record Editor (alfred) is provided as a
sample program and is located in the “sample” folder under “AcuGT”. You
can download detailed information on using and configuring alfred in PDF
format from the Support > Examples & Utilities >Acucorp Samples >
Acucorp Technical Articles and Tips section of the Micro Focus website
(www.microfocus.com).

ALLOW_FS_OVERRIDE

This variable enables you to determine if the actual EXTFH return status will
be returned, or if the return status should be translated by the runtime. The
default setting is “True” or “1” and will cause the actual EXTFH return status
to be returned to the user. Setting this variable to “False” or “0” will cause
the EXTFH return status to be translated by the runtime

Configuration Variables m H-23

ANSI_OUTPUT_IN_DEBUG

This variable prevents a COBOL program that uses ANSI-style DISPLAY
statements from interfering with the runtime debugger window. This
variable accepts two possible values: “CANVAS” or “TERMINAL”.

When set to “CANVAS” (the default setting) the runtime constructs a default
canvas on which to place the ANSI output. This prevents the ANSI output
from interfering with the debugger window. Note that if your COBOL
program sends escape sequences to the terminal, this mode will cause those
escape sequences to not have the intended result.

When set to “TERMINAL?”, the runtime will send ANSI output to the
terminal, possibly interfering with the view of the debugger window. This is
how the runtime behaved before the implementation of this new feature.

Note that this configuration variable must be set before the runtime initializes
the terminal manager, which means you cannot set this variable from a
COBOL program.

APPLY_CODE_PATH

When set to “1” (on, true, yes), this variable causes the CODE_PREFIX
variable to be applied to object files with full path names (those beginning
witha “/” (forward slash). Otherwise, CODE_PREFIX is not applied to files
with full path names. For example, if your application specifies the file:

/accounting/objects/payroll

and your CODE_PREFIX variable is set to:
CODE_PREFIX /master_obj

and APPLY_CODE_PATH is set to “on”, the runtime will look for your file
in:

/master_obj/accounting/objects/payroll

The default value of APPLY_CODE_PATH is “0” (off, false, no).

H-24 m Configuration Variables

APPLY_FILE_PATH

When set to “1” (on, true, yes), this variable causes the FILE_PREFIX
variable to be applied to data files with full path names (those beginning with
“/”, forward slash). Otherwise, FILE_PREFIX is not applied to files with full
path names. For example, if your application specifies the file:

/accounting/data/ind.dat

and your FILE_PREFIX variable is set to:
FILE_PREFIX /master_data

and APPLY_FILE_PATH is set to “on”, the runtime will look for your file
in:

/master_data/accounting/data/ind.dat

The default value of APPLY_FILE_PATH is “0” (off, false, no).

AUTO_DECIMAL

When set to “1” (on, true, yes), this variable checks the data item descriptions
of numeric entry fields with a decimal point for the number of digits that must
be filled to the right of the decimal point. When all the digits after the decimal
point are entered, the field will terminate if the AUTO_TERMINATE phrase
is specified. The number of digits to the right of the decimal point can vary,
depending on how many are indicated in the picture of each numeric entry
field. You must specify AUTO_TERMINATE phrase for this feature to
work.

The exception to this is when an entry field has an AUTO_DECIMAL
property specified, in which case, the coded value will be used.

The default value of this variable is “0” (off, false, no).

Configuration Variables m H-25

AUTO_PROMPT

When set to “1” (on, true, yes), this variable causes all ACCEPT statements
without a PROMPT clause to be treated as if they had a PROMPT SPACES
clause. This causes the screen to be erased at the field position prior to the
data’s being entered. This variable is provided for compatibility with
ACUCOBOL-85 Version 1.3 and earlier, which behaved this way. The
default setting is “0” (off, false, no).

AXML_CREATE_SCHEMA

This variable is designed for use with AcuXML for instances when you want
to include a schema or schema name with your XML output. In order for this
variable to have an effect, AXML_CREATE_STYLE must be set to
“schema” and AXML_SCHEMA_NAME must name the schema file.
Once these conditions are met, this variable tells AcuXML whether to create
a schema file with XML output, or simply include the name of a schema file
in the output.

By default, when AXML_CREATE_STYLE is set to schema, AcuXML
creates a schema file for all XML output. Because only one schema is
typically required, you should set AXML_CREATE_SCHEMA to “FALSE”
after the first time a schema is created. Then, only the name of the schema
file will be included in the output XML file. Similarly, if you already have a
schema file and don’t want AcuXML to overwrite it, set this variable to
“FALSE.”

AXML_CREATE_STYLE

This variable is designed for use with AcuXML. Use it to define the type of
XML output that ACUCOBOL-GT should generate when it creates XML
files. It can be setto “DTD”, “SCHEMA” or “NONE”. Set this variable to
“NONE” if you want the resulting XML file to be raw XML. Setitto “DTD”
if you want the output to include a Document Type Definition of the elements
in the document. Often, the party with whom you trade data may require that
your XML document include a DTD.

H-26 m Configuration Variables

Set this variable to “SCHEMA” if you want ACUCOBOL-GT to create a
schema to describe the XML documents that it writes. Schemas provide the
highest level of detail about the contents of the associated XML document,
and are typically required for development purposes. If you set this variable
to “SCHEMA”, you must use the AXML_SCHEMA_NAME variable to
name the schema file.

Please note that creating a schema for a file that was run through the xml2fd
utility with a schema won’t result in an identical schema. In addition, note
that setting this variable to “schema” causes a schema to be created for every
XML output file by default. Once the first schema is created, you should set
AXML_CREATE_SCHEMA to “FALSE” to prevent schemas from being
created on subsequent XML outputs.

AXML_ENCODING

This variable is designed for use with AcuXML. Use it when you want to
specify a character encoding method for the XML files that
ACUCOBOL-GT creates. By default, the XML output generated by
ACUCOBOL-GT is mapped to the UTF-8 encoding system (compatible with
the US-ASCII character set). If you want to use a different encoding system,
for instance a European encoding system that includes the British pound
character (£), change this variable to reflect the new system name. For
example:

AXML_ENCODING 1S0-8859-1

This variable causes encoding information to be added to the header of XML
files created by ACUCOBOL-GT. With the configuration file entry shown
above, the following header would be included:

<?xml version="1.0" encoding=""1S0-8859-1"7?>

This header causes the 1ISO-8859-1 Latin encoding system to be applied to
the data file as desired.

AcuXML supports the following encoding systems:

e UTF-8, default [8-bit Unicode Transformation Format, backwards
compatible with US-ASCII]

Configuration Variables m H-27

e US-ASCII
e UTF-16 [16-bit Unicode Transformation Format]

e 1S0O-8859-1 [Latin 1, European encoding]

AXML_EXACT_TABLE_MATCH

This variable affects the behavior of AcuXML. By default, all tables in an
FD must match data in the XML file with respect to the values of the indices.
Therefore, AXML_EXACT_TABLE_MATCH is setto “1” (on, true, yes) by
default. To disable this requi