
Reference Manual

ACUCOBOL-GT®

Version 8.1.3

Micro Focus
9920 Pacific Heights Blvd.

San Diego, CA 92121
858.790.1900

© Copyright Micro Focus (IP) Ltd. 1998-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-RM-100501-ACUCOBOL-GT-8.1.3

Contents

Chapter 1: Introduction
1.1 Overview of Reference Manual ... 1-2
1.2 Conventions ... 1-2

1.2.1 Upper-case and Special-character Words.. 1-2
1.2.2 Lower-case Words ... 1-3
1.2.3 Brackets, Braces and Vertical Bars ... 1-3
1.2.4 Ellipses... 1-3
1.2.5 Shading .. 1-3

1.3 Acknowledgment ... 1-4

Chapter 2: Program Structure
2.1 Language Elements.. 2-2

2.1.1 COBOL Words .. 2-2
2.1.1.1 User-defined words ... 2-2

2.1.2 Literals ... 2-2
2.1.2.1 Numeric literals ... 2-2
2.1.2.2 Nonnumeric literals ... 2-6
2.1.2.3 Figurative constants... 2-7

2.1.3 Picture Strings.. 2-8
2.1.4 Separators .. 2-8
2.1.5 Comment Entries ... 2-9

2.2 Source Format.. 2-9
2.2.1 ANSI Format ... 2-10
2.2.2 Terminal Format .. 2-11
2.2.3 Line Continuation .. 2-12
2.2.4 Blank Lines and Comment Lines .. 2-12

2.3 Compiler Compatibility Modes ... 2-13
2.3.1 ANSI ACCEPT and DISPLAY Verbs .. 2-13

2.4 Source Management Statements .. 2-14
2.4.1 COPY Statement.. 2-15
2.4.2 ++INCLUDE Statement .. 2-23
2.4.3 REPLACE Statement .. 2-24

2.5 Conditional Compilation.. 2-28
2.5.1 $DISPLAY Statement ... 2-29
2.5.2 $END Statement .. 2-30
2.5.3 $ELSE Statement... 2-30

Contents-2
2.5.4 $IF Statement ...2-31
2.5.5 $SET Statement ...2-32

2.6 Program Organization ..2-34
2.6.1 Program Elements..2-34

2.6.1.1 Division header..2-34
2.6.1.2 Section header..2-35
2.6.1.3 Paragraph header ...2-35
2.6.1.4 Clauses and entries ..2-36
2.6.1.5 Statements..2-36
2.6.1.6 Sentences ...2-36

Chapter 3: Identification Division
3.1 Identification Division ...3-2
3.2 PROGRAM-ID Paragraph ...3-3

Chapter 4: Environment Division
4.1 Environment Division ..4-2
4.2 Configuration Section ..4-2

4.2.1 Source-Computer Paragraph..4-3
4.2.2 Object-Computer Paragraph ..4-3
4.2.3 Special-Names Paragraph ..4-5

4.3 Input-Output Section..4-23
4.3.1 File-Control Paragraph ..4-23
4.3.2 I-O-Control Paragraph ...4-34

Chapter 5: Data Division
5.1 Data Structures ...5-2

5.1.1 Record Description ..5-2
5.1.2 Level-Numbers ..5-2
5.1.3 Classes of Data...5-4
5.1.4 Standard Alignment Rules ...5-4
5.1.5 Table Handling ..5-5
5.1.6 Large Data Handling..5-6
5.1.7 File Types ..5-7
5.1.8 Floating-Point Data..5-9

5.1.8.1 Using floating-point data ...5-10
5.2 Data Names ..5-10

5.2.1 Qualification ..5-10
5.2.2 Subscripting ...5-12

 Contents-3
5.2.3 Reference Modification ... 5-13
5.2.4 Condition-Name (Level 88)... 5-17
5.2.5 RECORD-POSITION.. 5-19

5.3 Data Division Format... 5-21
5.4 File Section .. 5-23

5.4.1 File Description Entry.. 5-23
5.4.2 Sort File Description Entry.. 5-25
5.4.3 IS EXTERNAL Clause.. 5-26
5.4.4 BLOCK CONTAINS Clause... 5-27
5.4.5 RECORD Clause ... 5-28
5.4.6 LABEL RECORDS Clause ... 5-30
5.4.7 VALUE OF LABEL Clause.. 5-30
5.4.8 VALUE OF FILE-ID Clause... 5-30
5.4.9 CODE-SET Clause .. 5-31
5.4.10 DATA RECORDS Clause... 5-31
5.4.11 LINAGE Clause... 5-32

5.5 WORKING-STORAGE Section ... 5-34
5.6 LINKAGE Section... 5-35
5.7 Record Description Entry .. 5-36

5.7.1 Data Description Entry .. 5-36
5.7.1.1 Level-number .. 5-39
5.7.1.2 The data-name or FILLER clause ... 5-41
5.7.1.3 REDEFINES clause... 5-42
5.7.1.4 IS EXTERNAL clause .. 5-44
5.7.1.5 IS SPECIAL-NAMES clause .. 5-45
5.7.1.6 IS EXTERNAL-FORM clause.. 5-46
5.7.1.7 PICTURE clause ... 5-51
5.7.1.8 USAGE clause... 5-60
5.7.1.9 SIGN clause... 5-75
5.7.1.10 OCCURS clause .. 5-76
5.7.1.11 SYNCHRONIZED clause ... 5-78
5.7.1.12 JUSTIFIED clause... 5-80
5.7.1.13 BLANK WHEN ZERO clause.. 5-81
5.7.1.14 VALUE clause... 5-82
5.7.1.15 RENAMES clause ... 5-86

5.8 Screen Section.. 5-88
5.9 Screen Description Entry ... 5-89

5.9.1 PICTURE, FROM, TO, and USING Clauses.. 5-108
5.9.2 VALUE Clause.. 5-110
5.9.3 OCCURS Clause ... 5-110
5.9.4 LINE Clause .. 5-114

Contents-4
5.9.5 COLUMN Clause ..5-115
5.9.6 PROCEDURE Clause..5-116

Chapter 6: Procedure Division
6.1 Organization...6-2

6.1.1 Statements and Sentences ..6-2
6.1.1.1 Scope of statements ...6-3

6.1.2 Flow of Control...6-4
6.2 Arithmetic Expressions ..6-5

6.2.1 Evaluation of Arithmetic Expressions ...6-6
6.2.2 ADDRESS OF Phrase in Expressions ...6-7

6.3 Conditional Expressions ..6-8
6.3.1 Relation Conditions ...6-8

6.3.1.1 Comparison of numeric operands..6-9
6.3.1.2 Comparison of nonnumeric operands..6-10

6.3.2 Class Condition..6-10
6.3.3 Sign Condition ...6-11
6.3.4 Condition-Name Condition..6-11
6.3.5 Switch-Status Condition ..6-12
6.3.6 Complex Conditions ..6-13

6.3.6.1 Combined conditions ...6-13
6.3.7 Order of Evaluation ...6-14
6.3.8 Abbreviated Combined Relation Conditions ...6-15

6.4 Common Statement Rules..6-16
6.4.1 Arithmetic Operations..6-16
6.4.2 Multiple Receiving Fields..6-17
6.4.3 ROUNDED Option..6-18
6.4.4 SIZE ERROR Option...6-18
6.4.5 CORRESPONDING Option..6-19
6.4.6 Unpredictable Results ..6-20
6.4.7 I/O Status ...6-20
6.4.8 AT END and INVALID KEY Phrases ..6-21
6.4.9 Common Screen Options ...6-22

AUTO Phrase...6-22
BACKGROUND-HIGH, BACKGROUND-LOW, and BACKGROUND-STAN-
DARD Phrases ..6-22
BELL Phrase ..6-23
BLINK Phrase ...6-23
CCOL, CLINE, CLINES, and CSIZE Phrases ..6-24
COLOR Phrase ..6-25

 Contents-5
COLUMN NUMBER Phrase .. 6-27
CONTROL Phrase... 6-28
CONVERT Phrase ... 6-29
DEFAULT Phrase ... 6-32
ECHO Phrase ... 6-32
ENABLED Phrase ... 6-33
ERASE Phrase ... 6-33
EVENT-LIST, AX-EVENT-LIST, EXCLUDE-EVENT-LIST Phrases 6-34
FONT Phrase ... 6-35
FOREGROUND-COLOR and BACKGROUND-COLOR Phrases 6-36
FULL Phrase ... 6-37
HELP-ID Phrase .. 6-38
HIGH, LOW, and STANDARD Phrases .. 6-38
IDENTIFICATION Phrase ... 6-39
KEY Phrase ... 6-39
LAYOUT-DATA Phrase .. 6-41
LINE NUMBER Phrase .. 6-41
LINES Phrase .. 6-43
MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, MIN-WIDTH Phrases 6-43
NO ADVANCING Phrase .. 6-44
NO ECHO Phrase ... 6-45
OUTPUT Phrase .. 6-45
PROMPT Phrase ... 6-45
PROPERTY and Property-Name Phrases ... 6-46
REQUIRED Phrase ... 6-50
REVERSED Phrase ... 6-51
SAME Phrase .. 6-51
SCROLL Phrase .. 6-51
SIZE Phrase (with a text entry field) .. 6-52
SIZE Phrase (with Windows and Controls) ... 6-53
STYLE Phrase and Style-Name .. 6-54
TAB Phrase ... 6-55
TITLE Phrase .. 6-55
UNDERLINED Phrase .. 6-55
UPON Phrase ... 6-56
UPPER and LOWER Phrases ... 6-57
VALUE Phrase .. 6-57
VISIBLE Phrase .. 6-58
ZERO-FILL and NUMERIC-FILL Phrases .. 6-58

6.5 Procedure Division Format .. 6-59
6.6 Procedure Division Statements .. 6-63

ACCEPT Statement .. 6-63
ADD Statement... 6-104

Contents-6
ALTER Statement...6-108
CALL Statement ...6-109
CANCEL Statement ...6-118
CHAIN Statement...6-119
CLOSE Statement...6-121
COMMIT Statement ...6-123
COMPUTE Statement ..6-125
CONTINUE Statement ...6-125
CREATE Statement ..6-126
DELETE Statement ..6-130
DESTROY Statement ...6-132
DISPLAY Statement...6-136
DISPLAY src-item ...6-137
DISPLAY screen-name ..6-141
DISPLAY WINDOW ...6-143
DISPLAY SCREEN SIZE..6-152
DISPLAY LINE ...6-153
DISPLAY BOX ..6-156
DISPLAY UPON WINDOW TITLE ...6-159
DISPLAY UPON COMMAND LINE ...6-160
DISPLAY src-item (ANSI format)...6-160
DISPLAY UPON GLOBAL TITLE ..6-163
DISPLAY FLOATING WINDOW ..6-164
DISPLAY INITIAL WINDOW ...6-183
DISPLAY TOOL-BAR ..6-193
DISPLAY control-type-name ...6-197
DISPLAY MESSAGE BOX ..6-205
DISPLAY external-form-item ..6-209
DISPLAY UPON ENVIRONMENT-NAME ..6-212
DISPLAY assembly-name..6-213
DIVIDE Statement..6-216
ENTRY Statement ..6-219
EVALUATE Statement ..6-220
EXHIBIT Statement ...6-226
EXIT Statement ..6-226
GOBACK Statement...6-229
GO TO Statement ...6-230
IF Statement ..6-231
INITIALIZE Statement...6-232
INQUIRE Statement ...6-234

 Contents-7
INSPECT Statement ... 6-245
LOCK Statement .. 6-256
MERGE Statement ... 6-256
MODIFY Statement.. 6-267
MOVE Statement.. 6-283
MULTIPLY Statement ... 6-286
NEXT SENTENCE Statement ... 6-288
OPEN Statement... 6-288
PERFORM Statement... 6-293
READ Statement .. 6-299
RECEIVE Statement .. 6-305
RELEASE Statement.. 6-308
RETURN Statement ... 6-309
REWRITE Statement.. 6-310
ROLLBACK Statement.. 6-313
SEARCH Statement ... 6-314
SEND Statement... 6-325
SET Statement .. 6-327
SORT Statement ... 6-336
START Statement... 6-350
STOP Statement ... 6-354
STRING Statement... 6-355
SUBTRACT Statement .. 6-360
UNLOCK Statement... 6-363
UNSTRING Statement ... 6-365
USE Statement.. 6-373
WAIT Statement... 6-382
WRITE Statement... 6-384
XML GENERATE Statement .. 6-389
XML PARSE Statement ... 6-397

Index

1
 Introduction
Key Topics

Overview of Reference Manual.. 1-2
Conventions.. 1-2
Acknowledgment .. 1-4

1-2 Introduction
1.1 Overview of Reference Manual

ACUCOBOL-GT® is part of the extend® family of Micro Focus solutions.
ACUCOBOL-GT is an implementation of the COBOL-1985 programming
language (ANSI X3.23-1985 and the ANSI X3.23a-1989 supplement). This
manual provides a full technical description of the ACUCOBOL-GT
language. It is written in a style similar to the official ANSI definition of
COBOL and is designed for experienced COBOL programmers. Intended as
a reference, it does not try to teach programming or the COBOL language.
Readers interested in a more general introduction to COBOL may want to
consider classes or commercially available textbooks.

Note: Software installation instructions are located in a separate Getting
Started guide.

1.2 Conventions

This manual uses a meta-language to describe the ACUCOBOL-GT syntax.
This meta-language follows the conventions used in most COBOL manuals
as well as the ANSI standard. These conventions are described below.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

1.2.1 Upper-case and Special-character Words

Underlined upper-case words are keywords. A keyword is required when it
is encountered in the syntax. The following special characters are not
underlined but are required when they appear: +, -, <, >, *, /, **, <=, >=, =,
colon and period.

Conventions 1-3
Upper-case words that are not underlined are optional. They serve only to
improve the readability of the source program.

1.2.2 Lower-case Words

Lower-case words serve as generic items. They can indicate COBOL
variables, literals, PICTURE elements, or other syntactical elements. When
referred to in the text, a generic item is shown in italics.

1.2.3 Brackets, Braces and Vertical Bars

Brackets ([]) enclose optional elements. When several bracketed entries are
stacked vertically, then you can select one (but not more than one) of these
entries.

Braces ({}) indicate that you must select one (but not more than one) of the
enclosed vertically stacked entries. If only one entry appears, then the braces
serve as delimiters for repetition (see Ellipses below).

1.2.4 Vertically stacked entries enclosed in vertical bars indicate that you may select

one or more of the entries. Any number of entries can be selected, but no

entry may be selected more than once. Ellipses

Ellipses (. . .) indicate repetition. The immediately preceding element may
be repeated any number of times. If an element consists of a required phrase,
the phrase is enclosed in braces.

1.2.5 Shading

Shaded areas are not currently used in the syntax.

1-4 Introduction
1.3 Acknowledgment

Much of the material in this manual is from the ANSI X3.23-1985 COBOL
standard and the ANSI X3.23a-1989 supplement. The following statement is
required by the standards document.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein
are: FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the UNIVAC (R) I and II, Data Automation Systems copyrighted 1958,
1959 by Sperry Rand Corporation; IBM Commercial Translator Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. Such authorizations extend to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

2
 Program Structure
Key Topics

Language Elements ... 2-2
Source Format ... 2-9
Compiler Compatibility Modes.. 2-13
Source Management Statements .. 2-14
Conditional Compilation .. 2-28
Program Organization ... 2-34

2-2 Program Structure
2.1 Language Elements

This chapter describes the basic language elements that make up a COBOL
program. These elements are described fully in the following sections.

2.1.1 COBOL Words

A COBOL word is a string of not more than 60 characters, which forms a
user-defined word or a reserved word. Each character of a COBOL word is
selected from the set of letters, digits, underscores, and hyphens. Hyphens or
underscores may not appear as the first or last character. When used in
COBOL words, lower-case letters are treated as if they were upper-case, and
underscores are treated as if they were hyphens.

2.1.1.1 User-defined words

A user-defined word is a COBOL word that is created by the programmer.
Except for section-names, paragraph-names, segment-numbers, and
level-numbers, all user-defined words must contain at least one alphabetic
character. User-defined words may not be any of the reserved words. See
Appendix B of Book 4 for a complete list of reserved words.

All user-defined words must be unique except as specified in the rules for
uniqueness of reference. However, segment-numbers and level-numbers
need not be unique.

2.1.2 Literals

A literal is a character string that defines a value. There are two types of
literals: numeric and nonnumeric.

2.1.2.1 Numeric literals

A numeric literal is a character string selected from the digits, the plus sign,
the minus sign, and the decimal point. Numeric literals may contain up to 18
digits. [This increases to 31 digits if 31-digit support (-Dd31) is in effect.]
The following rules govern the formation of numeric literals.

Language Elements 2-3
1. A literal must contain at least one digit.

2. It must contain no more than one sign character and, if one is used, it
must be the leftmost character of the string.

3. A literal must not contain more than one decimal point. The decimal
point is treated as an assumed decimal point and may appear anywhere
within the literal except as the rightmost character.

If a literal conforms to the rules for formation of a numeric literal, but is
enclosed in quotation marks, it is a nonnumeric literal.

Numeric literals may also be specified using binary, octal, or hexadecimal
notation. To specify a numeric literal in one of these forms, preface the
number with one of the following prefixes:

For example:

Leading zeroes after the “#” are ignored. For example, X#00FF and X#FF
are equivalent.

The compiler converts each numeric literal specified in this way to an
unsigned long integer. In most cases, this is a 32-bit unsigned number, so the
maximum value of a numeric literal that can specified with this notation is
4294967295, or (2**32) -1.

Binary “B#”

Octal “O#”
“%” is accepted in HP COBOL compatibility mode (“-Cp”)

Hexadecimal “X#” or “H#”

Number Binary Octal Hexadecimal

3 B#11 O#3 X#3 or H#3

8 B#1000 O#10 X#8 or H#8

12 B#1100 O#14 X#C or H#C

128 B#10000000 O#200 X#80 or H#80

255 B#11111111 O#377 X#FF or H#FF

2-4 Program Structure
“LENGTH OF” expression

The “LENGTH OF” expression can be used anywhere you would use a
numeric literal, except as a subscript or reference modifier. The compiler
treats this expression as if you have coded a numeric literal. The “LENGTH
OF” expression is written as follows:

LENGTH OF data-name

Data-name can be a numeric or nonnumeric literal or the name of a data item
of any type. Data-name may include subscripts if it refers to a table item.
The compiler calculates the value of the “LENGTH OF” expression and
replaces it with a numeric literal equivalent to the current number of bytes of
storage used by the data item or literal referenced in “LENGTH OF.” For
example:

77 my-item PIC x(10).
78 my-item-length value LENGTH OF my-item.

becomes:
77 my-item PIC x(10).
78 my-item-length value 10.

The LENGTH OF expression can also be used in the procedure division as
demonstrated in this example:

01 my-data.
 03 my-table occurs 20 times.
 05 my-element-1 pic x(10).
05 my-element-2 pic 99.

MOVE LENGTH OF my-element-1 TO data-size.
MOVE LENGTH OF my-table TO data-size.
MOVE LENGTH OF my-table(1) TO data-size.

In this example the compiler treats the first MOVE as MOVE 10 TO
data-size, the second MOVE as MOVE 240 TO data-size, and the third
MOVE as MOVE 12 TO data-size.

Language Elements 2-5
Note: This expression (when used on a table) works differently in
ACUCOBOL-GT than in other COBOL compilers, such as IBM Enterprise
COBOL. ACUCOBOL-GT returns the size of the entire table, while IBM
returns the size of a single element of the table. You can use the IBM
method by compiling the program with “-Cv”, which turns on the
compiler’s IBM compatibility mode. Refer to ACUCOBOL-GT User’s
Guide, Section 2.2.5 for details on the -Cv compiler option.

Floating-Point Literals

1. A floating-point literal has the following format:

[+] k.m { E } [+] n
[-] { e } [-]

In the above:

• “k.m” represents a number with at least one digit.

• “n” represents one or more digits.

• If the functions of the decimal point and comma are switched with
DECIMAL IS COMMA, then “k.m” will be “k,m”.

Here are a few examples of floating-point numbers:

-12.345e12
.0123E-6
123.E1

2. Floating-point literals in the Procedure Division are stored internally as
USAGE DOUBLE.

3. The legal range of floating-point values is determined by the target
machine. If you express a literal that is out of range for a particular
machine, the runtime reports a warning message and substitutes the
closest boundary value--either zero or the maximum floating-point
value for the machine.

4. On some computers, floating-point computations may give imprecise
results. This is a hardware limitation; some floating point numbers
cannot be precisely represented on some machines.

2-6 Program Structure
2.1.2.2 Nonnumeric literals

A nonnumeric literal (sometimes called an alphanumeric literal) is a
character string delimited at the beginning and at the end by quotation marks
or apostrophes. The beginning and ending delimiters must be the same (that
is, either both quotes or both apostrophes).

Nonnumeric literals may be up to 4096 characters in length. The characters
contained in the delimiters may be selected from all characters available on
the host computer.

To place the delimiter character in a nonnumeric literal, use two contiguous
delimiter characters (either two quotes or two apostrophes). These two
characters represent a single occurrence of that character.

You can also specify nonnumeric literals by supplying the hexadecimal value
of the characters desired using the native character set. This can be used, for
example, to encode device control codes. Any of the following formats are
recognized:

X"hex-values"
X'hex-values'
H"hex-values"
H'hex-values'

The initial “H” or “X” may be either upper- or lower-case. The hex-values
consist of one or more hexadecimal digits. These digits are drawn from the
set of characters ‘0’ - ‘9’ and ‘A’ - ‘F’. Every two hexadecimal digits
represent one character position, with the first digit encoding the high-order
4 bits of the character, and the second digit encoding the low-order 4 bits. If
an odd number of hexadecimal digits is specified, then the low-order 4 bits of
the last character are treated as zeros.

Example: the following pairs of nonnumeric literals are equivalent (when the
native character set is ASCII):

X”414243” “ABC”

h’32313’ “210”

H”6E” “n”

x”22” ““““

Language Elements 2-7
2.1.2.3 Figurative constants

Figurative constants are literals that are generated by the compiler through
the use of reserved words. These words are described below. The singular
and plural forms of the words are equivalent and may be used
interchangeably.

1. ZERO, ZEROS, ZEROES Represents the numeric value “zero” or
one or more occurrences of the character 0, depending on whether the
constant is treated as a numeric or nonnumeric literal.

2. SPACE, SPACES Represents one or more space characters.

3. HIGH-VALUE, HIGH-VALUES Represents one or more characters
with the highest ordinal position in the program collating sequence.
Usually this is the hexadecimal value “FF”.

4. LOW-VALUE, LOW-VALUES Represents one or more characters
with the lowest ordinal position in the program collating sequence.
Usually this is the binary value 0.

5. QUOTE, QUOTES Represents one or more quotation mark
characters. These words may not be used in place of quotation marks
for delimiting nonnumeric literals.

6. ALL Literal Represents all or part of the string generated by
successive concatenations of the characters comprising the literal. The
literal must be nonnumeric.

7. Symbolic Character Represents one or more of the characters
defined as the value of this symbolic character in the SYMBOLIC
CHARACTERS clause of the SPECIAL-NAMES paragraph.

8. NULL, NULLS Represents the numeric value “zero” or one or more
occurrences of a character whose underlying representation is binary
zero. This also represents an invalid memory address when it is used
in conjunction with POINTER data types.

The word “ALL” may be placed in front of any of the preceding forms
(except the ALL literal. Its use is redundant in this case.)

2-8 Program Structure
When a figurative constant represents a string of one or more characters, the
length of the string is determined by the compiler from the context according
to the following rules.

1. When a figurative constant is specified in a VALUE clause, or when it is
associated with another data item (for example, when it is moved or
compared to another data item), the string of characters specified by the
figurative constant is repeated character by character on the right until
the size of the resultant string is equal to the number of character
positions in the associated data item.

2. When a figurative constant is not associated with another data item (for
example in a DISPLAY, STRING, or UNSTRING statement), the
length of the string is one occurrence of the ALL literal or one
character in all other cases.

A figurative constant is valid anywhere a literal is. However, ZERO and
NULL are the only valid figurative constants for a literal restricted to numeric
literals.

2.1.3 Picture Strings

A PICTURE character-string defines the size and category of an elementary
data item. A PICTURE character-string consists of certain symbols, which
are composed of the currency symbol and certain other characters in the
COBOL character set. A full description of the format of a PICTURE string
is given when the PICTURE clause is described.

Any punctuation character that appears as part of a PICTURE string is not
considered a punctuation character, but rather as a symbol used in the
specification of that PICTURE string.

2.1.4 Separators

A separator is a character or two contiguous characters formed according to
the following rules.

1. The space character is a separator. Anywhere a space is used as a
separator, more than one space may be used.

Source Format 2-9
2. The comma and semicolon characters, immediately followed by a
space, are separators that may be used anywhere the separator space is
used. They can be used to improve program readability.

3. The period character, followed by a space, is a separator. It must be
used only to indicate the end of a sentence or where required by the
ACUCOBOL-GT syntax.

4. The left and right parentheses are separators. They must be used in
balanced pairs.

5. The quotation mark character is a separator. An opening quotation
mark must be immediately preceded by a space or left parenthesis; a
closing quotation mark must be immediately followed by one of the
separators space, comma, semicolon, period, or right parenthesis.
Apostrophes may be substituted for quotation marks in balanced pairs.

6. The colon character is a separator that may be used only when required
by the ACUCOBOL-GT syntax.

7. Spaces may immediately precede or follow any separator unless they
would be enclosed by matching quotation marks. In this case, the
spaces would be treated as part of the nonnumeric literal.

2.1.5 Comment Entries

A comment entry is an entry in the Identification Division that may be any
combination of characters from the computer’s character set. A
comment-entry ends with the first line that contains text in Area A.

2.2 Source Format

The ACUCOBOL-GT compiler recognizes two source program formats:
ANSI and terminal. The ANSI format conforms to the standard COBOL
source format. The “terminal” format is designed for ease-of-use when you
are programming from an interactive terminal. It is upward compatible with
VAX COBOL terminal format.

2-10 Program Structure
The selection of which format to use is made at compile time. For details, see
Book 1, section 2.4, “Source Formats.” The two formats are described in the
following sections.

2.2.1 ANSI Format

The ANSI source format divides an input line into several fields. These are
determined by character position. Each input line must be 80 characters.
Input lines that are shorter than 80 characters are padded with spaces to make
80 characters, while lines longer than 80 characters are truncated on the right.
Tab characters are converted into spaces such that the “tab stops” are eight
characters apart.

The ANSI format has five fields. These are:

Sequence Number Area (columns 1 - 6) This area is ignored by the compiler
and may contain any characters. It is traditionally used for sequence numbers
to re-order a scrambled card deck.

 Indicator Area (column 7) This column must contain one of the following
characters:

Space Default. The compiler processes the line normally.

Hyphen Continuation. The compiler processes the line as a
continuation of the previous line.

Asterisk Comment. The compiler ignores the contents of the
line.

Dollar sign Comment. The compiler ignores the contents of the
line.

Slash New page. Same as asterisk, except that in the source
listing created by the compiler this line starts on a new
page.

“D” Conditional debugging line. The compiler treats this
line as a comment line unless the compiler is run with
the option to include debugging lines, in which case
the line is treated normally.

Source Format 2-11
Area A (columns 8 - 11) Area A contains division headers, section headers,
paragraph names, and some level indicators.

Area B (columns 12 - 72) Area B contains all other COBOL text.

Identification Area (columns 73 - 80) Any desired text may be placed here.
However, the compiler can conditionally compile lines based on patterns
found in this area. For details, see Book 1, section 2.7, “Source Code
Control.”

2.2.2 Terminal Format

Terminal format is convenient for interactive programming. Lines may be
longer or shorter than 80 characters. Tab characters are expanded to every
eight spaces. The terminal format divides the source line into four fields as
follows:

Indicator Area (column 1) The contents of this area are identical to the
contents of the ANSI format area of the same name, with two exceptions. If
the conditional debugging indicator “D” is used, it must be preceded by a
backslash (\). This places the “D” in column 2. If a normal COBOL line is
desired, then the indicator area is eliminated (a space is not used).

Area A Starts immediately after the indicator area (either column 1, 2, or 3).
It extends for 4 characters. For a standard source line, Area A starts in
column 1.

Area B Starts after Area A, in column 5 or later, and extends to the end of the
line or the start of the Identification Area.

Identification Area Starts when “|” or “*>” is encountered, provided it is
not part of a literal. The Identification Area extends to the end of the line.
This can be used to introduce in-line comments.

ACUCOBOL-GT allows up to 320 characters per line. If a line goes over the
limit, the compiler issues a warning and truncates the line to 320 characters.
If truncation causes an error, the compiler reports the error.

The following sample COBOL text is in terminal format:

2-12 Program Structure
* The following paragraph is a sample of terminal
* format. Notice how comments and Area A both start
* in column 1

TEST-PARAGRAPH.
 MOVE SAMPLE-1-VALUE TO SAMPLE-1.
\D DISPLAY "SAMPLE-1 = ", SAMPLE-1.
 PERFORM EDIT-SAMPLE.

2.2.3 Line Continuation

Sentences, entries, phrases, and clauses that continue in Area B of subsequent
lines are called continuation lines. A hyphen in a line’s indicator area causes
the first nonblank character in Area B to be the immediate successor of the
last nonblank character of the preceding line. This continuation excludes
intervening comment lines and blank lines.

If the continued line ends with a nonnumeric literal without a closing
quotation mark, the first nonblank character in Area B of the continuation
line must be a quotation mark. The continuation starts immediately after the
quotation mark. All spaces at the end of the continued line are part of the
literal.

If the indicator area of the continuation line is blank, then the compiler treats
the last nonblank character of the preceding line as if it were followed by a
space.

2.2.4 Blank Lines and Comment Lines

A blank line is one that contains only spaces in Area A and Area B. A
comment line is one that contains an asterisk, dollar sign, or slash character
in the indicator area. Conditional debugging lines are also considered
comment lines unless the program is compiled with the conditional
debugging option. Blank lines and comment lines may appear anywhere in
the source program and have no effect. They will appear in the source listing.
If a comment line contains a slash in the indicator area, then the source listing
will contain a page eject prior to that line.

Compiler Compatibility Modes 2-13
2.3 Compiler Compatibility Modes

The ACUCOBOL-GT compiler accepts certain variants of the COBOL
language. These variants are designed to make it easier to compile programs
written using other COBOL compilers. The variants, or alternate
compatibility modes, are based on the following popular compilers: VAX
COBOL version 4.0, Ryan McFarland COBOL version 2.X, ICOBOL, and
HP COBOL II/XL. Limited compatibility with IBM DOS/VS COBOL is
also available.

ACUCOBOL-GT documentation refers to these modes respectively as VAX
COBOL compatibility mode, RM/COBOL compatibility mode, ICOBOL
compatibility mode, HP COBOL compatibility mode, and IBM DOS/VS
COBOL compatibility mode.

The compatibility mode to use for a program is selected when that program
is compiled. For more information, see Book 1, section 2.2.5,
“Compatibility Options.” Different programs may use different
compatibility modes, even if they are part of the same run unit.

Differences in these modes are detailed in the appropriate sections in this
manual. Their differences primarily lie in the handling of files and the
ACCEPT and DISPLAY verbs. Unless otherwise noted, any comments
applying to VAX COBOL compatibility mode also apply to ICOBOL
compatibility mode.

2.3.1 ANSI ACCEPT and DISPLAY Verbs

The ACCEPT and DISPLAY verbs have ANSI formats that provide strict
compatibility with the ANSI definition of these verbs. ACCEPT and
DISPLAY also have expanded ACUCOBOL-GT formats that are not
ANSI-compliant but offer more functionality. The ANSI definition is quite
limited in that it does not provide any screen control facilities. However,
these verbs can be useful when you are:

• converting programs from other COBOL compilers

• directing messages to the runtime’s error file

2-14 Program Structure
• providing low-level control of the user’s console

The ANSI formats of ACCEPT and DISPLAY are subsets of the extended
ACUCOBOL-GT formats. Thus, the compiler needs guidance in
determining which format is desired. This is important because different
formats result in different behavior. When examining an ACCEPT or
DISPLAY statement, the compiler applies the following rules, in order:

1. If you specify FROM CRT or UPON CRT, the compiler uses
ACUCOBOL-GT format.

2. If you specify a FROM or UPON phrase for a device other than CRT,
the compiler uses ANSI format.

3. If you use any ACUCOBOL-GT extensions, the compiler uses
ACUCOBOL-GT format.

4. If you place the phrase “CONSOLE IS CRT” in Special-Names, the
compiler uses ACUCOBOL-GT format.

5. If you use the compile-time option “-Ca” (ANSI compatibility), the
compiler uses ANSI format.

6. Otherwise, the compiler uses ACUCOBOL-GT format.

Note: By default, the compiler uses ACUCOBOL-GT format.

2.4 Source Management Statements

The COPY, ++INCLUDE, and REPLACE statements allow you to modify
the program’s source text at compile time. Conditional compiling statements
such as $IF and $SET statements can be used to specify whether or not
certain lines of code are compiled or skipped. See Section 2.5, “Conditional
Compilation” for details on these statements.

Source Management Statements 2-15
2.4.1 COPY Statement

The COPY statement copies text or a resource (static data such as a bitmap)
into the source program from the specified file immediately prior to
compilation. The text or resource is inserted for compilation only and does
not permanently replace the COPY statement in the program source.
Resources and COPY files that are inserted in this way into the object code
are loaded from the object file at runtime. If you change the resource (such
as a bitmap) or the COPY file, you must recompile for the change to be
reflected in the object code.

The REPLACING phrase allows word and substring substitutions to be made
in the inserted text prior to compilation.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format

Format 1
COPY INDEXED library-name [{IN} path-name] [SUPPRESS]
 {OF}

[REPLACING { { old-text BY new-text } } ...] .
 { { {LEADING } literal-1 BY {literal-2} } }
 { { {TRAILING} {SPACE } } }
 { { {SPACES } } }

Format 2
COPY RESOURCE resource-name [{IN} path-name] .
 {OF}

Syntax Rules

1. The COPY statement must be terminated by a period. The period is part
of the COPY statement and does not otherwise affect the program.

2-16 Program Structure
2. Library-name must be a nonnumeric literal or user-defined word.
Path-name must be a nonnumeric literal or a user-defined word. Note
that a nonnumeric literal may reference an environment variable by
placing a “$” in the name, as described in General Rule 2. To preserve
the case of library-name and path-name, you must place them within
quotation marks, otherwise they will be treated as uppercase by case
sensitive operating systems. For more information, see the
ACUCOBOL-GT User’s Guide, section 2.6, “COPY Libraries.”

3. The COPY statement may be used anywhere a separator may occur. It
may be placed in Area A or Area B.

4. Old-text and new-text may be any of the following:

a. A series of text words placed between “==” delimiters. For
example “==WORD-1 WORD-2==” specifies a two-word
sequence. In old-text, at least one word must be specified. In
new-text, zero words may be used.

b. A numeric or nonnumeric literal.

c. A data name, including qualifiers, subscripts, and reference
modification.

d. Any single text word.

5. For purposes of the COPY statement, a “text word” is a contiguous
sequence of characters in Area A or Area B that form one of the
following:

a. A separator, except for: space, a pseudo-text delimiter (“==”), and
the opening and closing delimiters for nonnumeric literals.

b. A numeric or nonnumeric literal.

c. Any of a sequence of characters except comment lines and the
word “COPY”, bounded by separators, which is neither a separator
nor a literal.

6. Literal-1 and literal-2 are nonnumeric literals.

7. The phrases SPACE and SPACES are equivalent. When one of these is
used instead of literal-2, literal-1 is deleted and no spaces are actually
substituted.

Source Management Statements 2-17
8. The format of the COPY file must conform to one of the allowed
ACUCOBOL-GT source formats (either terminal or ANSI). This
format need not be the same as that used in the rest of the program.
Book 1, section 2.5, contains details about which source format is used
for COPY files.

9. Resource-name must be an alphanumeric literal or a user-defined
word. A resource name with a hyphen is equivalent to the same name
with an underscore in place of the hyphen. For example, “MY-FILE”
is treated as being identical to “MY_FILE”. To preserve the case of
resource-name, you must place it within quotation marks; otherwise, it
will be treated as uppercase by case-sensitive operating systems.

10. COPY statements may be nested in other COPY libraries. Any one of
the COPY statements in this structure can include the REPLACING
phrase.

Depending on the scope of each statement, the REPLACING phrases
might affect subsidiary COPY statements. For example, if
“program-a.cbl” contains a copy/replace as follows:

COPY "program-b.cpy"
 REPLACING ==genericitems== BY ==myitems==.

and “program-b.cpy” contains a nested copy/replace statement:

COPY "program-c.cpy"
 REPLACING ==variabledata== BY == specificdata==.

The replace performed in “program-b.cpy” by the copy/replace
statement in “program-a.cbl” will affect “program-c.cpy.” If you do not
want the copy/replace statement in “program-a.cbl” to cascade to
“program-c.cpy”, you must add the following statement to
“program-b.cpy”, so that the copy/replace performed in
“program-b.cpy” will not be performed in “program-c.cpy.”

COPY "program-c.cpy"
 REPLACING ==genericitems== BY ==genericitems==.

General Rules

1. Library-name and path-name identify a source file to be included at the
location of the COPY statement. The text of the source file logically
replaces the COPY statement, including the terminating period. The

2-18 Program Structure
rules for interpreting these names are described in Book 1, Section 2.6.
The “-Ce” compile option can be used to specify an alternate default
filename extension. See Book 1, Section 2.2.5.

2. You may use operating system environment variables in the OF phrase
of a COPY statement. To reference an environment variable, place a
“$” in front of it. For example, if you assign “MYLIB” to
“C:\MYFILES\MYLIB”, then the statement:

COPY "FILE1" OF "$MYLIB"

would use the file C:\MYFILES\MYLIB\FILE1”.

You may use multiple environment variables by preceding each one with
a $ symbol. Symbol names may contain alphanumeric characters,
hyphens, underscores, and dollar signs. If the symbol name is not found
in the environment, then it is left unchanged (including the initial $
symbol). Symbols are not processed recursively--if the value of a
symbol contains a $, the dollars sign is used literally in the final file
name.

3. When INDEXED appears after the word COPY, it is ignored by the
compiler. It may be included to provide compatibility with some older
COBOL dialects.

4. If the word SUPPRESS appears after library-name and path-name,
then the program listing file will not include the contents of the COPY
file or any other COPY files that may be nested within. This word
provides compatibility with one feature of IBM DOS/VS COBOL. It
is not a reserved word in ACUCOBOL-GT and may be used in other
contexts as a user-defined name.

5. The text of the COPY file is copied unchanged into the source program
unless the REPLACING option is used. If the REPLACING option is
used, then elements of the COPY file that match old-text or literal-1
are replaced by new-text or literal-2. The comparison operation that
determines text replacement is done as follows:

a. The leftmost library text word that is not a separator comma or
semicolon is the first text word used for comparison. Starting with
this word, and the first old-text specified, the entire old-text
sequence is compared with an equivalent number of contiguous
library text words.

Source Management Statements 2-19
b. Old-text matches the library text only if the ordered sequence of
text words of old-text is identical to the ordered sequence of
library text words. For purposes of matching, a separator
semicolon, comma, or space is considered a space, and a sequence
of one or more spaces is considered a single space. Also,
lower-case characters are considered the same as upper-case
characters in all text words except for nonnumeric literals.

c. If no match occurs, the comparison is repeated for each old-text
specified until a match is found or each old-text has been tried.

d. After all old-text comparisons have been tried and no match has
occurred, the leftmost library text word is copied into the source
program. The next text word is then considered as the leftmost
word and the cycle is repeated.

e. Whenever a match occurs between the library text and old-text, the
corresponding new-text is placed in the source program. The
library text word that follows the rightmost word that participated
in the match then becomes the new leftmost word for subsequent
cycles.

f. When you are using the LEADING/TRAILING option, the
replacement process differs slightly. When a match occurs
between library text and literal-1, the only characters replaced by
literal-2 are the specific LEADING or TRAILING characters
indicated in the COPY statement. These characters can be a
substring or a whole word. If a SPACE or SPACES phrase is used,
the LEADING or TRAILING characters are deleted. For
example, if you have the following COPY library named
“MY-COPY.CPY”:

 01 dummy-rec.
 03 dummy-number-null PIC X(10)

and you used this COPY statement:

 COPY "MY-COPY.CPY" REPLACING
 LEADING "dummy" by "employee"
 TRAILING "null" by SPACES.

Then the replacement will result in:

 01 employee-rec.

2-20 Program Structure
 03 employee-number PIC X(10)

Note that when using ALPHANUMERIC strings such as "02" in the
LEADING BY phrase, it is best to use the == delimiters rather than
surrounding with quotes.

g. The comparison cycle continues until the rightmost text word in
the library has either participated in a match or has been the
leftmost word of a comparison cycle.

6. Comment lines and blank lines occurring in the library or in old-text
are ignored for purposes of matching. Comment lines and blank lines
occurring in library text that is matched by a REPLACING operand are
not copied into the source program.

7. Debugging lines may appear within the library text and in old-text.
Text words appearing in a debugging line participate in the matching
rules as if the line were a normal text line.

8. When new-text is copied into the source program, the first word of
new-text is copied into the same Area as the leftmost word of the
replaced text. Subsequent words of new-text are copied into Area B.

9. It is possible to use the REPLACING phrase to replace substrings.
This allows you to construct COPY libraries in which several strings
have a uniform substring that you plan to modify.

For example, the substring “individual” might occur in the COPY library
in “individual”-name, “individual”-address, “individual”-state,
“individual”-city, “individual”-zip, and “individual”-title. The
REPLACING phrase could be used to replace “individual” with specific
substrings such as employee, owner, student, teacher, professor, or
advisor.

To make use of this, delimit the substring that will be replaced in the
COPY library with quotes. Then use the standard COPY syntax to
replace the quoted substring by another substring. The resulting
sequence of characters is re-evaluated by the compiler to make a new
string.

For example, suppose you have a COPY library (called “MYLIB”) that
contains the following:

77 MY-'DUMMY'-DATA-ITEM PIC X(10).

Source Management Statements 2-21
and you used this COPY statement:

COPY "MYLIB" REPLACING =='DUMMY'== BY ==REAL==.

Then the text of “MYLIB” is effectively treated as:

77 MY-REAL-DATA-ITEM PIC X(10).

You should use hyphens rather than underscores in this instance.

In addition to the use of single and double quotes to delimit the substring,
the following delimiters are also allowed:

==(XYZ)==
==|XYZ|== (in HP COBOL compatibility mode)
==*XYZ*==
==:XYZ:==
==XYZ*==
==XYZ&==
==XYZ#==

10. Resource-name and path-name identify a resource file to be included
in the resulting object file. The rules for interpreting these names are
described in Book 1, Section 2.6. Note that the compiler’s “COPY
path” applies to resources (Format 2) as well as to source files
(Format 1).

11. The effect of a COPY RESOURCE statement is to add resource-name
to a list of resources that the compiler embeds into the resulting
COBOL object file. The resources are added to the end of the COBOL
object in the same order as the corresponding COPY statements.
Because the resources are added to the end of the object, the location
of the corresponding COPY RESOURCE statement in the COBOL
program is irrelevant. Conventionally, COPY RESOURCE statements
are placed either in Working-Storage or at the end of the program, but
any location is acceptable.

12. If resource-name resolves to a COBOL object or library file, the
compiler includes this object or library in the resulting object in a
manner similar to “cblutil -lib”. These are not considered resources,
but are embedded COBOL objects. Note that we recommend using
“cblutil -lib” to create libraries containing multiple COBOL objects
instead of using COPY RESOURCE. There are two advantages to
using “cblutil”. The first is that you do not need to worry about the

2-22 Program Structure
order in which COBOL objects are compiled (if you use COPY
RESOURCE, you must ensure that the copied object is compiled first),
and “cblutil” also checks for duplicated program names; COPY
RESOURCE does not.

Code Examples

Assume the existence of disk directory CODELIB. In directory CODELIB is
file ENROLLREC. The contents of ENROLLREC are:
01 ENROLLMENT-RECORD.
 05 STUDENT-NAME PIC X(30).
 05 STUDENT-ADDR PIC X(50).
 05 STUDENT-GPA PIC 99V9.
 05 SID PIC 9(7).

Code example 1:
IDENTIFICATION DIVISION.
PROGRAM-ID. COPY-EXAMPLE-1.
...
DATA DIVISION.
FILE SECTION.
FD SCIENCE-DEPT-ENROLLMENT-FILE.
COPY ENROLLREC IN "LIBRARY/CODELIB".
...

Code compiled after COPY substitutions:
...
DATA DIVISION.
FILE SECTION.
FD SCIENCE-DEPT-ENROLLMENT-FILE.
01 ENROLLMENT-RECORD.
 05 STUDENT-NAME PIC X(30).
 05 STUDENT-ADDR PIC X(30).
 05 STUDENT-GPA PIC 99V9.
 05 SID PIC 9(7).
...

Code example 2:
IDENTIFICATION DIVISION.
PROGRAM-ID. COPY-EXAMPLE-2.
...
DATA DIVISION.

Source Management Statements 2-23
FILE SECTION.
FD SCIENCE-DEPT-ENROLLMENT-FILE.
COPY ENROLLREC
 IN "LIBRARY/CODELIB"
 REPLACING ==SID== BY ==STUDENT-ID==,
 ==9(7)== BY ==9(9)==.
...

Compiled code after COPY/REPLACING substitutions:
...
DATA DIVISION.
FILE SECTION.
FD SCIENCE-DEPT-ENROLLMENT-FILE.
01 ENROLLMENT-RECORD.
 05 STUDENT-NAME PIC X(30).
 05 STUDENT-ADDR PIC X(30).
 05 STUDENT-GPA PIC 99V9.
 05 STUDENT-ID PIC 9(9).
...

Highlights for first-time users

1. COPY will always import the entire contents of the named COPY file.

2. The REPLACING text does not appear in the listing produced by the
ACUCOBOL-GT compiler (“-Lo filename” compiler argument). This
is a common source of confusion for users who check the compilation
listing file for verification that the replacing action occurred. You can,
however, use the “-Lp” compiler option to create an output file that
includes the REPLACING text. See “-Lp” in Section 2.2.3 of Book 1.

2.4.2 ++INCLUDE Statement

To provide more compatibility with other COBOLs, ACUCOBOL-GT also
supports the ++INCLUDE statement. This statement is very similiar in
function, format, and syntax to the COPY statement described in Section
2.4.1 The differences from the COPY statement are:

• A terminating period is not required in ++INCLUDE.

• ++INCLUDE can refer to only a single file, not to a library.

2-24 Program Structure
• ++INCLUDE does not allow SUPPRESS.

• ++INCLUDE does not allow NOLIST.

• ++INCLUDE does not allow REPLACING.

Filenames referenced by ++INCLUDE are searched for in the same way as
COPY files.

2.4.3 REPLACE Statement

The REPLACE statement provides the ability to modify source text
selectively. Text replacement is accomplished by the compiler immediately
prior to source compilation.

REPLACE is frequently used to help facilitate single source code
maintenance across multiple COBOL versions or multiple hardware or
operating system environments. REPLACE may be used wherever there is a
need to make temporary text substitutions for compilation purposes.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format

Format 1
REPLACE { { old-text BY new-text } } ...] .
 { { {LEADING } literal-1 BY {literal-2} } }
 { { {TRAILING} {SPACE } } }
 { { {SPACES } } }

Format 2
REPLACE OFF.

Source Management Statements 2-25
Syntax Rules

1. The REPLACE statement must be terminated by a period. The period is
part of the REPLACE statement and does not otherwise affect the
program.

2. The REPLACE statement may be used anywhere a separator may
occur. It may be placed in Area A or Area B.

3. Old-text and new-text may be any of the following:

a. A series of text words placed between “==” delimiters. For
example “==WORD-1 WORD-2==” specifies a two-word
sequence. In old-text, at least one word must be specified. In
new-text, zero words may be used.

b. A numeric or nonnumeric literal.

c. A data name, including qualifiers, subscripts, and reference
modification.

d. Any single text word.

4. For purposes of the REPLACE statement, a “text word” is a contiguous
sequence of characters in Area A or Area B that form one of the
following:

a. A separator, except for: space, a pseudo-text delimiter (“==”), and
the opening and closing delimiters for nonnumeric literals.

b. A numeric or nonnumeric literal.

c. Any of a sequence of characters except comment lines and the
word “COPY,” bounded by separators, which is neither a separator
nor a literal.

5. Literal-1 and literal-2 are nonnumeric literals.

6. The phrases SPACE and SPACES are equivalent. When one of these is
used instead of literal-2, literal-1 is deleted and no spaces are actually
substituted.

2-26 Program Structure
General Rules

1. The REPLACE statement specifies conversion of source statements
containing old-text into new-text. The scope of a REPLACE statement
continues from the first text word following the REPLACE statement to
the beginning of the next REPLACE statement, or the end of the
program. A Format 2 REPLACE statement terminates the scope of any
preceding REPLACE statement.

2. REPLACE statements are processed after COPY statements. The text
produced by the action of a REPLACE statement must not contain a
REPLACE statement.

3. Within the scope of a REPLACE statement, any source text that
matches old-text is logically replaced by new-text. The comparison
operation that determines text replacement is done as follows:

a. The leftmost source text word is the first text word used for
comparison. Starting with this word, and the first old-text
specified, the entire old-text sequence is compared with an
equivalent number of contiguous source text words.

b. Old-text matches the source text only if the ordered sequence of
text words of old-text is identical to the ordered sequence of
source text words. For purposes of matching, a separator
semicolon, comma, or space is considered a space, and a sequence
of one or more spaces is considered a single space. Also,
lower-case characters are considered the same as upper-case
characters in all text words except for nonnumeric literals.

c. If no match occurs, the comparison is repeated for each old-text
specified until a match is found or each old-text has been tried.

d. After all old-text comparisons have been tried and no match has
occurred, the next source text word is then considered as the
leftmost word and the cycle is repeated.

e. Whenever a match occurs between the source text and old-text, the
corresponding new-text replaces old-text in the source program.
The source text word that follows the rightmost word that
participated in the match then becomes the new leftmost word for
subsequent cycles.

Source Management Statements 2-27
f. When you are using the LEADING/TRAILING option, a match
between library text and literal-1 will replace only the specific
LEADING or TRAILING characters indicated in the REPLACE
statement with the text in literal-2. These characters can be a
substring or a whole word. If a SPACE or SPACES phrase is used,
the LEADING or TRAILING characters are deleted.

g. The comparison cycle continues until the rightmost text word in
the REPLACE scope has either participated in a match or has been
the leftmost word of a comparison cycle.

4. Comment lines and blank lines occurring in old-text are ignored for
purposes of matching.

5. Debugging lines may appear in old-text. Text words appearing in a
debugging line participate in the matching rules as if the line were a
normal text line.

6. When new-text is copied into the source program, the first word of
new-text is copied into the same Area as the leftmost word of the
replaced text. Subsequent words of new-text are copied into Area B.

7. It is possible to use the REPLACE statement to replace substrings. In
addition to the use of single and double quotes to delimit the substring,
the following delimiters are also allowed:

==(XYZ)==
==*XYZ*==
==:XYZ:==

Code Examples
REPLACE
 ==STANDARD-ALPHA== BY ==ALPHA-UPPER-CASE==
 ==TABLE-SIZE== BY ==MAX-TABLE-SIZE==
 ==PAGE-BUFFER-SIZE== BY ==SHORT-PAGE-SIZE==
 ==WITH-DEBUG-MODE== BY ====.
*delete matched text
...
REPLACE OFF.
*turns off REPLACE

2-28 Program Structure
Highlights for first-time users

1. Multiple REPLACE statements are permitted. The REPLACE
statement can appear anywhere in the program source.

2. The substitution actions of the REPLACE statement continue to affect
the program source until the REPLACE statement is either superseded
by a new REPLACE statement or turned off by the REPLACE OFF
statement.

3. REPLACE statements are processed after COPY statements.

4. REPLACE statements can not contain COPY statements. COPY
statements may contain REPLACE statements.

5. The replaced text does not appear in the listing produced by the
ACUCOBOL-GT compiler (“-Lo filename” compiler argument). This
is a common source of confusion for users who check the compilation
listing file for verification that the replacing action occurred. You can,
however, use the “-Lp” compiler option to create an output file that
includes the replaced text. See “-Lp” in section 2.1.3 of Book 1.

2.5 Conditional Compilation

Conditional compilation provides a mechanism for selectively compiling part
or all of the COBOL source. Conditional compilation is controlled by $IF,
$ELSE, and $END constructs, which behave in a similar way to the COBOL
IF construct. Conditional compilation also supplies the $DISPLAY
Statement, which can be used to display a message during compilation or
include a version number in the object file. The $SET statement can be used
to define compiler directives for use in $IF statements.

Note: The compiler has special conditional compilation options that turn
on compiler directives and set constants to values. There is also a compiler
option (-Cg) that turns of conditional compiling features. See the
ACUCOBOL-GT Users Guide, section 2.2.15 for details.

Conditional Compilation 2-29
Syntax Rules

1. Conditional compilation statements are indicated by a dollar sign ($) in
the indicator area of the source line followed by one of the key words IF,
DISPLAY, ELSE, END, and SET.

2. Conditional compilation should not be used to split a COBOL
character string; that is, continuation lines should not be split by
conditional compilation controls.

2.5.1 $DISPLAY Statement

The $DISPLAY statement displays a message on the standard output device
during compilation, or includes a version number in the object. There are two
formats.

Format 1
$DISPLAY text-data

Format 2
$DISPLAY VCS = version-number

Syntax

1. The entire $DISPLAY statement must appear on a single line.

General rules

1. If a $DISPLAY statement is encountered on a source line that is ignored
by conditional compilation, there is neither a compile-time nor a runtime
effect.

Format 1

2. Text-data is displayed on the standard output device during
compilation. There is no runtime effect.

Format 2

2-30 Program Structure
3. Version-number is the content of the entire source line following the
"=", excluding leading and trailing spaces.

4. The character string formed by concatenating "@(#)", version-number,
and a null character (binary zero) is included in the object file. If
version-number begins with the characters "@(#)", the compiler does
not concatenate these characters when forming the character string. In
other words, only a single "@(#)" will be included in the object file,
whether version-number includes that string or not.

Note: Version-number can be any text string, but it is intended to contain
a version number for which a pattern matching tool, such as the UNIX sccs
"what" command, can search the object file.

2.5.2 $END Statement

The $END Statement is used in conjunction with the $IF Statement to
control conditional compilation. There is a single format:

$END

Syntax

1. The whole statement must appear on a single line.

General rules

1. The innermost $IF statement is terminated. The now active $IF
condition is considered. If the active condition is "true", the source lines
following the $END are processed. If the condition is "false", COBOL
source lines are ignored until the next conditional compilation line is
encountered.

2.5.3 $ELSE Statement

The $ELSE Statement is used in conjunction with the $IF Statement to
control conditional compilation. There is a single format:

Conditional Compilation 2-31
$ELSE

Syntax

1. The whole statement must appear on a single line.

General rules

1. The most recent $IF condition is reversed. If the now active $IF
condition is "true", the source lines following the $ELSE are processed.
If the $IF condition is "false", COBOL source lines are ignored until the
next conditional compilation line is encountered.

2.5.4 $IF Statement

The $IF Statement provides the ability to conditionally include or exclude
text based on the state of certain variables. There are three formats:

Format 1
$IF constant-name-1 [NOT] {< > =} literal-1

Format 2
$IF constant-name-2 [NOT] DEFINED

Format 3
$IF directive-setting SET

Syntax

1. Constant-name-1 is defined by a level 78 item or a CONSTANT
compiler flag.

2. Directive-setting is specified in the same format as it is given in the
$SET statement and may be preceded by NO. However, the format
used in the $IF statement differs from the format used in the $SET
statement as follows:

• No spaces are allowed between the NO and the directive name

2-32 Program Structure
• Case must be preserved in the directive

Directive-setting may also be specified at compile time by using the “-/”
(forward slash) compiler option. See the User’s Guide, Section 2.2.15
for details on this and other conditional compiler options.

3. The entire statement must appear on a single line.

4. $IF can be nested within another $IF.

General rules

1. constant-name-2 is DEFINED if it is the name of a level 78 item or a
CONSTANT compiler flag. Otherwise it is NOT DEFINED.

2. Directive setting SET evaluates "true" if the given string matches the
actual directive setting.

3. The comparison between directive-setting and the actual directive is
case-sensitive.

4. If the condition evaluates "true", the source lines following the $IF
statement are processed. If the condition evaluates "false", COBOL
source lines are ignored until the next conditional compilation line is
encountered.

2.5.5 $SET Statement

The $SET statement can be used to define compiler directives for use in $IF
Statement. The directives set with this method have no value, they are only
set. The $SET statement can also be used to set values for COBOL variables
in the same way as a level 78 data item.

There are two formats for the $SET statement.

Format 1
$SET [NO]compiler-directive

Format 2
$SET CONSTANT identifier value

Conditional Compilation 2-33
Syntax

1. The whole statement must appear on a single line.

General rules

Format 1

1. The sole effect of the Format 1 $SET statement is to set a directive name
in the compilation unit. Alternatively, you can use the “-/” (forward
slash) compiler option to set a directive name. Refer to the
ACUCOBOL-GT User’s Guide, Section 2.2.15, Conditional Compiling
Options for details. If a later Format 3 $IF statement is encountered, this
statement will evaluate "true" if the compiler-directive set by $SET
matches the directive-setting in the $IF statement. Preceding the
compiler directive with NO turns off the setting.

Format 2

2. "identifier" must be a valid COBOL identifier.

3. "value" is any valid value for a COBOL identifier.

4. If "value" is surrounded by single (') or double (") quotes, it is a string
literal. "identifier" can be used anywhere a string literal can be used.

5. If "value" is surrounded by parentheses (()), it is a numeric literal.

6. "identifier" can be used anywhere a numeric literal can be used.

7. If "value" is neither quoted nor surrounded by parentheses, it will be
considered a numeric literal if all of the characters in the value are
digits. Otherwise it is considered a string literal.

8. A format 2 $SET statement is equivalent to the following line:

 77 identifier VALUE value.

with the exception that the level "77" line doesn't allow numeric values
to be surrounded with parentheses.

2-34 Program Structure
2.6 Program Organization

A COBOL program is divided into four parts, called divisions. The divisions
are the Identification Division, the Environment Division, the Data Division,
and the Procedure Division. Divisions can contain sections, which in turn
can contain paragraphs. Paragraphs are composed of sentences, clauses,
statements and entries.

The general format of a program is:
[identification division]

[environment division]

[data division]

procedure division

[END PROGRAM string_literal.]

Each of these divisions is described in detail in the following chapters. The
END PROGRAM statement is optional. If used, it must appear in Area A.

2.6.1 Program Elements

A program can consist of many types of elements. These elements are
described in the following sections.

2.6.1.1 Division header

A division header names and marks the beginning of a division. The formats
for particular divisions are described in the appropriate syntax charts.
Division headers must appear in Area A.

The following division headers are optional and may be included or excluded
at your option. The compiler determines which division it is processing by
other COBOL syntax.

• Identification Division

Program Organization 2-35
• Environment Division

• Data Division

2.6.1.2 Section header

A section header marks the beginning of a section in the Environment, Data,
and Procedure Divisions. In the Environment and Data Divisions, the
formats of the allowed section headers are described in the appropriate syntax
charts in Chapter 4 and Chapter 5, respectively. In the Procedure Division, a
section header is a user-defined word followed by the word “SECTION” and
an optional segment number. A period always follows a section header.
Section headers must appear in Area A.

2.6.1.3 Paragraph header

A paragraph header names a paragraph in the Identification, Environment,
and Procedure Divisions. In the Identification and Environment Division, a
paragraph header is a reserved word followed by a period. These are detailed
in the appropriate syntax charts.

In the Procedure Division, a paragraph header is a user-defined word
followed by a period. A paragraph header can be placed in Area A or Area B.
When a paragraph header is placed in Area B, the compiler produces the
following warning message, unless the “-w” compile switch is specified:

Warning: Paragraph Name found in Area B

An initial paragraph header, immediately following the Procedure Division
header, is not required. If no initial paragraph header is present, the compiler
creates a dummy header named “ACU-MAIN”.

The first entry or sentence of a paragraph begins on either the same line as the
paragraph header or in Area B of succeeding lines. Subsequent entries or
sentences must be in Area B.

2-36 Program Structure
2.6.1.4 Clauses and entries

An entry is an item of descriptive nature composed of separate clauses. Each
clause specifies some attribute of its entry. Clauses are separated by spaces
(or commas or semicolons). An entry is terminated by a period. The format
of clauses and entries is described in the appropriate syntax diagrams.

2.6.1.5 Statements

A statement is a COBOL key word (called a verb) followed by its operands.
A statement directs either the compiler or the object program to take some
action. There are four types of COBOL statements:

1. Compiler-directing statements specify an action to be taken by the
compiler. Only COPY, REPLACE, and USE statements fit this
classification.

2. Imperative statements specify an unconditional action to be taken by
the object program at run time. Whenever an imperative statement is
allowed, it may consist of a sequence of consecutive imperative
statements.

3. Conditional statements specify an action to be taken by the object
program that is dependent on the truth value of some condition.

4. Delimited-scope statements specify their explicit scope terminator.
This scope terminator always has “END-” as the first four letters of its
word. A delimited-scope statement contains elements of a conditional
nature. Because of the scope-delimiter, however, these statements may
be used anywhere an imperative statement may be.

2.6.1.6 Sentences

A sentence is a sequence of one or more statements terminated by a period.
An imperative sentence is one that contains only imperative statements. A
conditional sentence consists of a conditional statement optionally preceding
a sequence of imperative statements.

3
 Identification Division
Key Topics

Identification Division... 3-2
PROGRAM-ID Paragraph.. 3-3

3-2 Identification Division
3.1 Identification Division

The Identification Division marks the beginning of a COBOL program. It
serves to name and comment the program.

General Format
[IDENTIFICATION DIVISION.]

[ID DIVISION.]

[PROGRAM-ID. program-name [IS {INITIAL } PROGRAM] .]
 {RESIDENT}

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

[REMARKS. [comment-entry] ...]

Syntax Rules

1. A comment-entry can consist of any set of characters over any number
of lines. It ends with the next line that starts in Area A.

2. “ID DIVISION” is interchangeable with “IDENTIFICATION
DIVISION”.

3. The AUTHOR, INSTALLATION, DATE_WRITTEN,
DATE_COMPILED, SECURITY, and REMARKS paragraphs may be
placed in any order.

General Rule

The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED,
and SECURITY paragraphs are used solely for commentary.

PROGRAM-ID Paragraph 3-3
3.2 PROGRAM-ID Paragraph

General Format
[PROGRAM-ID. program-name [IS {INITIAL } PROGRAM] .]
 {RESIDENT}

Syntax Rule

Program-name is a user-defined word or a reserved word. It must be unique
among separately compiled programs. If a reserved word is used, it is treated
as if it were not reserved. The maximum number of characters is 30.

General Rules

1. The program-name identifies the name of the program. It is used by the
ACUCOBOL-GT runtime system and debugger to identify a program.

2. The INITIAL PROGRAM clause specifies an initial program.
Whenever an initial program is called, it is placed in its initial state.
Data contained in an initial program is set to its starting value every
time the program is called. Note that the “-Zi” compiler option causes
the program to be compiled as if it had the IS INITIAL PROGRAM
phrase specified. See Book 1, Section 2.2.16, “Miscellaneous
Options” for details on the -Zi compiler option.

3. Files contained in the program are not in the open mode:

a. the first time the program is called,

b. the first time the program is called after it has been the target of a
CANCEL statement,

c. every time the program is called if it is an INITIAL program.

4. On all other entries, the files contained in the program are in the same
state and position as when the program last exited.

5. INITIAL programs are removed from memory when they exit.
Non-initial programs remain in memory until they are the targets of a
CANCEL statement.

3-4 Identification Division
6. The RESIDENT clause specifies that the program is to remain resident
in memory after its first execution. A program with the RESIDENT
clause cannot be affected by a CANCEL statement. Note that the
RESIDENT clause shields selected programs from the effects of a
CANCEL Statement.

7. The IBM DOS/VS COBOL “-Cv” compatibility mode allows the name
to be enclosed in quotation marks. See the IBM DOS/VS COBOL
chapter in Transitioning to ACUCOBOL-GT for more information.

8. If you omit the PROGRAM-ID paragraph, the program’s name is
derived from the source file name as follows:

a. All directory information is removed from the file name and only
the base file name is used.

b. If the file name includes a period (“.”) or space, that portion of the
file name (including the period or space) is truncated.

c. The name is translated to upper case for letters in the ASCII
alphabet range.

d. Characters not in the ASCII alphabet are left unchanged.

9. If the PROGRAM-ID paragraph is omitted, the program does not have
an INITIAL or RESIDENT state.

4
 Environment Division
Key Topics

Environment Division ... 4-2
Configuration Section ... 4-2
Input-Output Section ... 4-23

4-2 Environment Division
4.1 Environment Division

The Environment Division describes the program’s physical environment,
primarily through the descriptions of the files it uses.

General Format
[[ENVIRONMENT DIVISION.]

[[CONFIGURATION SECTION.]

[SOURCE-COMPUTER. source-computer-entry]

[OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. [special-names-entry]]]

[[INPUT-OUTPUT SECTION.]

 [FILE-CONTROL.] { file-control-entry } ...

[I-O-CONTROL. [i-o-control-entry]]]]

Syntax Rule

The division header is optional for the Environment Division.

General Rule

The Environment Division entries are described in the following sections.

4.2 Configuration Section

The Configuration Section contains information about the machine
environment for the program. The section header for the Configuration
Section is optional.

Configuration Section 4-3
4.2.1 Source-Computer Paragraph

The SOURCE-COMPUTER paragraph identifies the computer on which the
source program is compiled.

General Format
SOURCE-COMPUTER. computer-name

 [WITH DEBUGGING MODE] .

Syntax Rule

Computer-name is a user-defined word, or multiple words separated by
spaces, that names the source computer.

General Rules

1. Computer-name is for documentation purposes only.

2. If the WITH DEBUGGING MODE clause is used, then conditional
debugging lines in the source program will be treated as standard
source lines, not comment lines. This can also be accomplished by
compiling with the “-Sd” compiler option.

4.2.2 Object-Computer Paragraph

The OBJECT-COMPUTER paragraph names the computer on which the
program is to be run.

General Format
OBJECT-COMPUTER. computer-name

 [MEMORY SIZE integer {WORDS }]
 {CHARACTERS}
 {MODULES }

 [PROGRAM COLLATING SEQUENCE IS alphabet-name]

 [SEGMENT-LIMIT IS seg-val] .

4-4 Environment Division
Syntax Rules

1. Computer-name is a user-defined word, or multiple words separated by
spaces, that names the object computer.

2. Alphabet-name is a user-defined word that describes the collating
sequence of the object machine.

3. Seg-val is an integer literal between 1 and 49 inclusive.

General Rules

1. Computer-name is for documentation purposes only.

2. The MEMORY SIZE clause is for documentation only.

3. The COLLATING SEQUENCE clause specifies the collating sequence
for any alphanumeric comparisons done in the program.
Alphabet-name must be an alphabet described in SPECIAL-NAMES.
The sequence of the characters in the alphabet determines the sequence
for character comparisons. It also specifies the default collating
sequence for SORT and MERGE verbs. The character that is first in
the program collating sequence is treated as the LOW-VALUES
character for the program. The character that is last in the program
collating sequence is treated as the HIGH-VALUES character for the
program. (The one exception to this is that in Special-Names,
LOW-VALUES and HIGH-VALUES always refer to the first and last
characters in the native collating sequence.)

4. The SEGMENT-LIMIT clause defines which Procedure Division
sections are to be placed in overlays. If the SEGMENT-LIMIT clause
is not specified, then any section with a segment number of 50 or
greater is placed in overlays. When the SEGMENT-LIMIT clause is
used, then any section with a segment number of seg-val or greater is
placed in overlays.

Configuration Section 4-5
4.2.3 Special-Names Paragraph

The SPECIAL-NAMES paragraph describes several miscellaneous aspects
of the operating environment. The phrases may be listed in any order, with
two exceptions. The switch declarations must come first, and alphabets must
be defined before they are referenced in SYMBOLIC CHARACTERS
phrases.

General Format
SPECIAL-NAMES.

 [{switch-name} [IS mnemonic-name]
 {system-name}

 [{ON } STATUS IS cond-name] ...] ...
 {OFF}

 [{alphabet-entry } ...]

 [SYMBOLIC CHARACTERS

 { {name} ... {IS } {number} ... } ...
 {ARE}

 [IN alphabet-name]]

 [CLASS class-name IS

 { lit-1 [{THROUGH} lit-2] } ...] ...
 {THRU }

 [CURRENCY SIGN IS char]

 [DECIMAL-POINT IS COMMA]

 [NUMERIC SIGN IS TRAILING SEPARATE]

 [CONSOLE IS CRT]

 [CURSOR IS cursor-name]

 [CRT STATUS IS status-name]

4-6 Environment Division
 [SCREEN CONTROL IS control-name]

 [EVENT STATUS IS event-status].

Alphabet Entry

Format 1
ALPHABET alphabet-name IS (STANDARD-1}
 {STANDARD-2}
 {NATIVE }
 {EBCDIC }

Format 2
ALPHABET alphabet-name IS
 {literal-1 [THROUGH literal-2] } ...
 [THRU literal-2]
 [{ALSO literal-3} ...]

Syntax Rules

1. Switch-name must be one of the system names: SWITCH-1,
SWITCH-2, ... SWITCH-26 or the word “SWITCH” followed by a
switch number (a numeric literal 1 through 26 or an alphanumeric literal
“A” through “Z”). It represents one of the 26 program switches.

2. Mnemonic-name is a user-defined word that may be used in a SET
statement to change the state of the associated program switch or to
refer to a device in an ACCEPT or DISPLAY statement.

3. Each system-name must be associated with a mnemonic-name. Also,
no system-name may be given an ON or an OFF STATUS.
System-name must be one of the following: CONSOLE, SYSIN,
SYSIPT, SYSOUT, SYSLIST, SYSLST, SYSOUT-FLUSH, or
SYSERR.

4. Cond-name is a user-defined word that can be used to test the status of
a program switch.

5. For each switch-name, at least one mnemonic-name or one cond-name
must be specified. No more than one ON STATUS and one OFF
STATUS phrase may be specified for a particular switch-name.

Configuration Section 4-7
6. Name is a user-defined word that names a symbolic character.

7. Number is an integer literal that must be in the range of ordinal
positions in the alphabet being referenced.

8. There must be a one-to-one correspondence between occurrences of
name and number. The relationship between each name and number is
by position in the SYMBOLIC CHARACTERS clause. The first name
is paired with the first number, the second with the second, and so on.

9. Class-name is a user-defined word that defines a class name.

10. Lit-1 and lit-2 are numeric or alphanumeric literals.

11. Char is a one-character nonnumeric literal that specifies a currency
symbol.

12. Cursor-name must be the name of a data item appearing in the Data
Division that is 4 or 6 characters in length. Cursor-name must
describe an elementary unsigned numeric integer or a group item
containing two such elementary data items.

13. Status-name must name a group item in the Data Division that is three
characters in length or must name an elementary numeric data item.

14. Control-name must name a group item with the following structure:

01 SCREEN-CONTROL.
 03 ACCEPT-CONTROL PIC 9.
 03 CONTROL-VALUE PIC 999.
 03 CONTROL-HANDLE USAGE HANDLE.
 03 CONTROL-ID PIC X(2) COMP-X.

You must use the preceding structure, but you may use your own names
for the variables.

15. Event-status must refer to a group item with the following structure:

01 EVENT-STATUS.
 03 EVENT-TYPE PIC X(4) COMP-X.
 03 EVENT-WINDOW-HANDLE USAGE HANDLE OF WINDOW.
 03 EVENT-CONTROL-HANDLE USAGE HANDLE.
 03 EVENT-CONTROL-ID PIC X(2) COMP-X.
 03 EVENT-DATA-1 USAGE SIGNED-SHORT.
 03 EVENT-DATA-2 USAGE SIGNED-LONG.
 03 EVENT-ACTION PIC X COMP-X.

4-8 Environment Division
You can find a copy of this format in the COPY library “crtvars.def”.
You may name the data items in the EVENT-STATUS declaration
arbitrarily, but the data types, storage, and group structure must match
the example given. (For compatibility with older source code, the
compiler accepts an EVENT-STATUS item that does not have
EVENT-ACTION. The runtime behaves as if EVENT-ACTION
contains the value “0”, indicating normal event handling.) The
SIGNED-LONG data item, EVENT-DATA-2, may be compiled with
any “-Dw” setting (“-Dw” limits the word-size of the target machine). If
you use “-Dw16” or “-Dw32”, then you should not run the generated
object on a 64-bit machine.

16. Alphabet-name is a user-defined word that defines an alphabet name.

17. The optional word “ALPHABET” is required in an alphabet
declaration if it immediately follows a SYMBOLIC CHARACTERS
declaration.

18. Literal-1, literal-2, and literal-3 may be any literal, but if they are
numeric, they must be in the range of 1 through 256.

19. Literal-2 and literal-3 must have a size of one character if they are
alphanumeric literals.

20. Literal-1 must also have a size of one character if it is associated with
a THROUGH or ALSO phrase.

General Rules

1. The switch-name clause associates status names (cond-name) and
switch names (mnemonic-name) with a particular program switch.
These can be used to test the on/off status of a switch or to change the
switch’s status.

2. The system-name clause associates a user-defined mnemonic-name
with one of the predefined system devices. These names may be used
in the ACCEPT and DISPLAY statement to refer to the following
devices:

System Name ACCEPT DISPLAY

CONSOLE system input system output

Configuration Section 4-9
The “system input” and “system output” devices are normally the
console’s keyboard and screen, but may be redirected with operating
system commands or with the “-i” and “-o” runtime options. The “error
output” device is normally the console screen, but may be redirected
with the “-e” runtime option.

3. The SYMBOLIC CHARACTERS clause defines symbolic characters.
A symbolic character is a user-defined figurative constant and can be
used anywhere a figurative constant may be. For each name, the
character it represents is set to the character whose ordinal position in
the native character set is specified by the corresponding number. Note
that the ordinal position of a character is one greater than its internal
representation. Thus a carriage-return character in ASCII (internal
value of “13”) would be specified as ordinal position “14”.

4. The CLASS clause defines a class name. A class name is used in a
class test to determine whether or not a data item entirely consists of a
certain set of characters.

The class name must be unique in the source context. Make sure that
there is no name clash between the class name and reserved COBOL
words, user-defined variables, enumerators, events, or methods. This is
particularly important for COM objects, ActiveX controls, and .NET
assemblies, which may have enumerators that use the same identifier as
a class name they define. If there is a name clash, rename the class, or if
possible, the other element to make the class name unique. Otherwise
compiler errors may result. We suggest prepending ActiveX and .NET
class names with an “@” sign to avoid ambiguities.

SYSIN system input (illegal)

SYSIPT system input (illegal)

SYSOUT (illegal) system output

SYSLST (illegal) system output

SYSLIST (illegal) system output

SYSOUT-FLUSH (illegal) system output

SYSERR (illegal) error output

System Name ACCEPT DISPLAY

4-10 Environment Division
For each numeric literal specified in the CLASS clause, the value of the
literal specifies the ordinal number of the character in the native
character set to include in the class. For example, “33” would refer to the
space character (decimal value 32) in the ASCII character set.

For each alphanumeric literal, the value of the character or characters in
the literal specifies the characters to include in the class.

If the THROUGH phrase is used, then lit-1 and lit-2 must be numeric
literals or alphanumeric literals containing only one character. The set of
contiguous characters between lit-1 and lit-2 (inclusive) is included in
the class. The two literals may be specified in either ascending or
descending order.

5. The CURRENCY SIGN clause specifies the PICTURE clause
currency symbol. It can be any character from the computer’s
character set.

6. If no CURRENCY SIGN clause is present, the dollar sign is used.

7. The DECIMAL-POINT IS COMMA clause exchanges the functions of
the comma and the period in PICTURE clauses and numeric literals.

8. The NUMERIC SIGN clause specifies that all USAGE DISPLAY
numeric data items in the program that do not have an explicit SIGN
clause should be treated as if they had a SIGN TRAILING
SEPARATE clause. A compile-time option exists to do the same
thing. This is usually done to match the behavior of other COBOL
systems.

9. The CONSOLE IS CRT clause causes the compiler to assume that:

• “UPON CRT” is specified for every DISPLAY statement that does
not have an UPON phrase.

• “FROM CRT” is specified for every ACCEPT statement that does
not have a FROM phrase.

This causes DISPLAY and ACCEPT statements without explicit UPON
or FROM phrases to interact with the ACUCOBOL-GT Window
Manager instead of with the low-level (ANSI-style) console driver. Note

Configuration Section 4-11
that CONSOLE IS CRT is automatically implied by the compiler unless
the “-Ca” compiler option is used. If CONSOLE IS CRT is present in a
program compiled with “-Ca”, CONSOLE IS CRT takes precedence.

10. The CURSOR clause specifies the name of a data item that will be
used to control the console’s cursor position throughout the program.
If the cursor-name data item is four characters long, then the first two
characters are the cursor’s line number, and the last two characters are
the column number. If cursor-name is six characters long, then the
row and column numbers are each three characters long.

At the beginning of each ACCEPT statement, cursor-name should
specify a location in one of the fields being entered. If it does, then the
cursor will begin the ACCEPT statement at that location. If
cursor-name does not specify a valid position, and more than one field
is being entered by the ACCEPT statement, the cursor will start at the
beginning of the next valid field (the next field described in the Screen
Section definition of the screen-name referenced in this ACCEPT). If
the cursor position is past the last field, or before the first field, then the
cursor will be placed at the beginning of the first field.

At the conclusion of the ACCEPT statement, the cursor’s final location
will be placed in cursor-name.

Note: The ACUCOBOL-GT runtime system will limit the placement
of the cursor in some circumstances. It will not place a cursor past the
end of valid data in a field. In this case, the cursor will be placed as
close to the requested position as possible. Also note that if you
specify a CURSOR clause in SPECIAL-NAMES, then you must
initialize the cursor location prior to every ACCEPT statement.

If you specify a CURSOR clause in SPECIAL-NAMES, you may not
use the CURSOR phrase of the ACCEPT statement, because this would
lead to multiple specification of the initial cursor position.

If you don’t initialize cursor-name with numeric data, you’ll receive a
“nonnumeric data” warning message on your first ACCEPT statement.

The cursor may not start over a prompt character (except at the
beginning of a field), unless that prompt character is a space.

4-12 Environment Division
The following code demonstrates how a CURSOR clause could be used
with a Format 1 ACCEPT statement:

identification division.
program-id. testcurs.
*** This program shows how the CURSOR clause
*** can be used with a Format 1 ACCEPT statement.
environment division.
configuration section.
special-names.
 cursor is cursor-name.
data division.
working-storage section.

01 cursor-name.
 05 c-line pic 9(3).
 05 c-col pic 9(3).

01 accept-field pic x(10) value "abcdefghij".
procedure division.
main-logic.

display window erase.

display accept-field line 6 col 6.

*** Position the cursor over the "c" in the value
*** of accept-field, which is the eighth column
*** on the screen.

 move 6 to c-line.
 move 8 to c-col.
 accept accept-field line 6 col 6 update.
 stop run.

11. The CRT STATUS phrase provides a method for returning the
termination status of every ACCEPT statement. At the end of each
ACCEPT statement, status-name is filled in with information regarding
how the ACCEPT terminated. Two forms of status values are
supported. One form is a three-character group item where each
character is treated as a “key” that contains various information. The
second form is a simple numeric value where each status condition is
identified by a unique numeric value. The next two rules describe
these two forms.

Configuration Section 4-13
12. If status-name is a numeric data item, then a unique value will be
moved to this item at the end of each ACCEPT statement. This value
is the same as the CONTROL KEY value described in the ACCEPT
statement. For details on which values are returned, see the discussion
of the CONTROL KEY phrase in section 6.6 of this manual.

13. If status-name is a group item, then the first two characters are
assigned values according to the following table:

If Key 1 is “1”, then Key 2 contains the exception key value of the key
that was pressed. For a table of key values, see the heading “CONTROL
KEY Phrase” under the ACCEPT Statement in section 6.6.

The third character always contains the same value that is returned by the
CONTROL KEY phrase of the ACCEPT statement, if this value is in the
range of 0 to 255. This is the same value returned when status-name
refers to a numeric data item instead of a group item (rule 12 above).

When Key 1 is set to “0”, a normal termination has occurred. Any other
value indicates an exception condition.

Note: This form of the CRT STATUS phrase is provided for
compatibility with the X/Open COBOL specification as well as for
compatibility with some other COBOL systems. This method of
determining the status of an ACCEPT statement differs in several
details from the other methods of determining the ACCEPT status
supported by ACUCOBOL-GT. In particular, the other methods return
a single numeric value to describe the status (same as the value stored

Key 1 Key 2 Meaning

‘0’ ‘0’ Termination key pressed

‘0’ ‘1’ Auto-skip out of last field

‘1’ x’00’ - x’FF’ Exception key pressed

‘2’ x’00’ End-of-file key pressed

‘3’ x’00’ Statement timed out

‘9’ x’00’ No items fall within screen

4-14 Environment Division
in Key 3). We recommend that only one technique be used to test for
the ACCEPT status to avoid confusion. The following table
summarizes the various statements and phrases available to return an
ACCEPT statement’s status.

Also note that the formation of Key 2 is tricky. In the case of a normal
termination, Key 2 will contain a normal COBOL character digit, but in
the other cases, it will contain a binary value. The easiest way to test the
status value is to use hexadecimal constants to express the binary value.
Alternately, you can declare Key 2 to be COMP-X and test the exception
values against numeric literals. Note that some other COBOL systems
define Key 2 to be “PIC 99 COMP”. If you convert programs that use
this construct, be sure to use the “-D1” or “-Dm” compile-time flags to
cause this data item to be stored in one character. If you do not do this,
then Key 2 will occupy two characters and return invalid values.

14. The ALPHABET clause specifies the alphabet to be used for character
translations and collating sequences.

An alphabet may be used in the following circumstances:

a. In the CODE-SET phrase of a sequential file’s FD. The alphabet
specifies a character translation map. A Format 2 alphabet may
not be used for this purpose.

b. In the COLLATING SEQUENCE phrase of an indexed file’s
SELECT. This specifies an alternate collating sequence for the
file’s keys.

c. In the COLLATING SEQUENCE phrase of a SORT or MERGE
statement. Here the alphabet specifies the collating sequence to
use for key comparisons.

Status Statement Status Type

CRT STATUS group-item 3-byte key

CRT STATUS numeric-item Numeric value

CONTROL KEY IS item Numeric value

ACCEPT item FROM ESCAPE Numeric value

ON EXCEPTION item Numeric value

Configuration Section 4-15
d. In the PROGRAM SEQUENCE phrase of the
OBJECT-COMPUTER paragraph. This specifies the collating
sequence for any alphanumeric comparisons done in the program.
It also specifies the default collating sequence for SORT and
MERGE verbs. The character that is first in the program collating
sequence is treated as the LOW-VALUES character for the
program. The character that is last in the program collating
sequence is treated as the HIGH-VALUES character for the
program. The one exception to this is that in Special-Names,
LOW-VALUES and HIGH-VALUES always refer to the first and
last characters in the native collating sequence.

e. In a SYMBOLIC CHARACTERS clause in SPECIAL-NAMES,
to indicate the alphabet to which the symbolic character belongs.

A Format 2 alphabet is used to describe a collating sequence. Explicitly
named characters are listed in the order of their positions in the new
collating sequence.

Any characters in the native collating sequence that are not explicitly
named in the ALPHABET clause assume a position greater than any of
the explicitly named characters. The relative order of these unnamed
characters remains the same as in the native collating sequence.

If a literal in the ALPHABET clause is numeric, it designates a character
by specifying that character’s ordinal position in the native character set.
For example, 66 would designate the letter A in the ASCII character set.

If the literal is alphanumeric, it is the actual character. For alphanumeric
literals that contain more than one character, the characters are assigned
successive ascending positions in the new collating sequence.

Here’s an example :

 ALPHABET TINY IS "01", "Z", "AB", SPACE

This alphabet contains 6 characters. Character 0 is the first character in
the sequence, character 1 is the second. Character “Z” is the third, and
characters “A” and “B” are the fourth and fifth. The space character is
the sixth character. If you were to sort a file using this alphabet, all items
that started with “Z” would appear before items that started with “A” or
“B”. Anything that started with a space would be last.

4-16 Environment Division
Any characters in the native collating sequence that are not explicitly
named assume a position in the new collating sequence greater than any
of the explicitly named characters. The relative order of these characters
remains unchanged from the native collating sequence. In the example
above, this means that anything that starts with “C” comes after anything
that starts with spaces, and anything starting with “D” comes after “C”.

If the THROUGH phrase is specified, the set of contiguous characters in
the native character set beginning with literal-1 and ending with
literal-2 are assigned successive ascending positions in the new
collating sequence. The THROUGH phrase may specify characters in
ascending or descending sequence.

For example, the following alphabet will sort the alphabetic characters
backwards:

 ALPHABET REV-ALPHA IS "Z" THROUGH "A",
 "z" THROUGH "a"

If the ALSO phrase is specified, then literal-1 and literal-3 are assigned
the same position in the collating sequence. This is one of the most
useful capabilities of the Format 2 ALPHABET clause. For example,
the following alphabet will cause the upper case and lower case of each
letter to be treated as the same character for sorting:

ALPHABET NO-CASE IS 1 THRU 65, 'A' ALSO 'a',
'B' ALSO 'b', 'C' ALSO 'c', 'D' ALSO 'd',
'E' ALSO 'e', 'F' ALSO 'f', 'G' ALSO 'g',
'H' ALSO 'h', 'I' ALSO 'i', 'J' ALSO 'j',
'K' ALSO 'k', 'L' ALSO 'l', 'M' ALSO 'm',
'N' ALSO 'n', 'O' ALSO 'o', 'P' ALSO 'p',
'Q' ALSO 'q', 'R' ALSO 'r', 'S' ALSO 's',
'T' ALSO 't', 'U' ALSO 'u', 'V' ALSO 'v',
'W' ALSO 'w', 'X' ALSO 'x', 'Y' ALSO 'y',
'Z' ALSO 'z'

The “1 THRU 65” phrase causes the portion of ASCII that exists in front
of “A” to be sorted in its normal sequence (“A” is the 66th character in
ASCII). Then each lower-case character is mapped to its corresponding
upper-case character. The remaining characters then follow implicitly.

15. The following IBM DOS/VS COBOL system names are supported by
ACUCOBOL-GT in the SPECIAL-NAMES paragraph if the “-Cv”
compiler option is used:

Configuration Section 4-17
 SYSPCH
 SYSPUNCH
 C01 through C12
 CSP
 S01 through S05

To enable printing to printer channels C01-C12, set the runtime
configuration variable called “COBLPFORM” as described in
Appendix H in the ACUCOBOL-GT Appendices manual.

See Chapter 5, “IBM DOS/VS COBOL Conversions,” in Transitioning
to ACUCOBOL-GT for more information.

16. The following HP COBOL special names are supported by
ACUCOBOL-GT in the SPECIAL-NAMES paragraph if the “-Cp”
compiler option is used:

 NO SPACE CONTROL
 TOP

See Chapter 4, “HP COBOL Conversions,” in Transitioning to
ACUCOBOL-GT for more information.

General Rules - Screen Control Entry

In the following rules, the four elementary items belonging to the SCREEN
CONTROL group item are referenced by the names in this example:

01 SCREEN-CONTROL.
 03 ACCEPT-CONTROL PIC 9.
 03 CONTROL-VALUE PIC 999.
 03 CONTROL-HANDLE USAGE HANDLE.
 03 CONTROL-ID PIC X(2) COMP-X.

1. The following statement allows an embedded procedure to control its
ACCEPT statement:

[SCREEN CONTROL IS control-name]

For more information, see Section 5.9.6, “PROCEDURE Clause,” and
Book 1, Section 6.5.5, “Using Screen Section Embedded Procedures.”

2. Input and update fields in a Screen Section entry are given field
numbers.* The compiler computes the field number for any Screen
Section entry by examining all of the input and update fields in that

4-18 Environment Division
entry’s level 01 group item. Each input and update field in a level 01
Screen Section entry is numbered sequentially, starting at one. For
example, consider the following Screen Section entry:

01 SCREEN-1.
 03 LITERAL-1 VALUE "Field 1: ".
 03 FIELD-1, PIC X(5) TO WS-1.
 03 LITERAL-2 VALUE "Some data: ", LINE + 1.
 03 DATA-1, PIC X(5) FROM WS-2.
 03 LITERAL-3 VALUE "Field 2: "., LINE + 1.
 03 FIELD-2, PIC X(5) USING WS-3.

This Screen Section entry has two input or update fields: FIELD-1 and
FIELD-2. In this case, FIELD-1 is field number 1 and FIELD-2 is field
number 2. Note that LITERAL-1, LITERAL-2, and DATA-1 do not
receive field numbers because they do not contain a TO or USING
phrase—DATA-1 is a display-only (FROM) field. The literals prompt
the end user for entries.

*Graphical controls in the Screen Section are also assigned field
numbers. The rules that govern how field numbers are assigned to
graphical controls are given in general rule 6 of the Format 2 Screen
Description, in section 5.9, “Screen Description Entry.”

3. Prior to executing an embedded procedure (see section 5.9.6), an
ACCEPT statement initializes the SCREEN CONTROL variable. It
sets ACCEPT-CONTROL depending on the reason for entry (if it is a
notify (“NTF-…”) event, ACCEPT-CONTROL is set to “1”; otherwise,
the default is “0”), and it sets CONTROL-VALUE to the field number
of the Screen Section entry that is executing the embedded procedure.

On entry to an embedded procedure, CONTROL-HANDLE contains the
handle of the current control, and the CONTROL-ID field contains its
ID. If the current Screen Section item (the one that names the embedded
procedure) is not a graphical control, CONTROL-HANDLE and
CONTROL-ID are set to NULL and “0”, respectively.

When the ACCEPT statement terminates, it sets ACCEPT-CONTROL
to 0 and sets CONTROL-VALUE to the field number of the last field to
have the cursor. This will be zero if the Screen Section entry contains no
fields. CONTROL-HANDLE and CONTROL-ID fields contain the

Configuration Section 4-19
handle and ID of the graphical control that was active when the
ACCEPT terminated. If the ACCEPT terminated while in a textual (i.e.,
non-graphical) field, they are set to NULL and “0”, respectively.

4. When an after procedure or exception procedure returns control to its
ACCEPT statement, the value of SCREEN CONTROL determines
what happens next. By setting this value in your after or exception
procedure, you can cause the program to skip fields, continue
ACCEPTING data, or terminate the ACCEPT with or without an
exception. ACCEPT-CONTROL serves as a flag that is checked to
determine how to proceed; SCREEN-CONTROL provides a needed
value, as shown in this list:

a. If ACCEPT-CONTROL is 0, the ACCEPT statement continues
normally.

b. If ACCEPT-CONTROL is 1, the ACCEPT statement moves the
cursor to the field identified by the value of CONTROL-VALUE.
The ACCEPT statement then continues from there.

c. If ACCEPT-CONTROL is 2, the ACCEPT statement terminates
normally. The value of CONTROL-VALUE determines the
termination value of the ACCEPT statement. You can determine
its value by examining CRT STATUS or by using the ACCEPT
FROM ESCAPE KEY verb.

d. If ACCEPT-CONTROL is 3, the ACCEPT statement terminates
with an exception, assuming that exceptions are allowed. The
value of CONTROL-VALUE sets the exception value of the
ACCEPT statement. You may use CRT STATUS or the ACCEPT
FROM ESCAPE KEY verb to determine the statement’s exception
value.

e. If ACCEPT-CONTROL is 4, control is transferred to the graphical
control whose ID matches CONTROL-ID. This works identically
to setting ACCEPT-CONTROL to “1”, except that the
CONTROL-ID field is used and the search is made using the
control’s ID instead of the field numbers.

f. If none of the preceding applies, the ACCEPT statement continues
normally.

5. If you set ACCEPT-CONTROL to 1, several special cases exist:

4-20 Environment Division
a. If you set CONTROL-VALUE to zero, the ACCEPT statement
will remain in the current field.

b. If you set CONTROL-VALUE to a field number that does not
exist, the ACCEPT statement will terminate. In this case, the CRT
STATUS value for the ACCEPT statement will be zero for a
numeric CRT STATUS or “0”, “2”, x“00” for a group-item CRT
STATUS.

c. If you set CONTROL-VALUE to the field number of a protected
field, control will pass to the first unprotected field with a higher
field number. If no such field exists, the ACCEPT statement will
terminate as in case (b) above.

6. When a Screen Section ACCEPT statement executes, it examines the
value of SCREEN CONTROL. If the ACCEPT-CONTROL field is 1,
then the ACCEPT statement starts at the field identified by
CONTROL-VALUE. This overrides any initial field identified by the
CURSOR Special-Names entry. Note that this is usually easier than
using the CURSOR clause to identify a starting point in a Screen
Section ACCEPT. If the specified field does not exist (or is protected)
the cursor is placed at the numerically closest legal field. If two fields
are equally close, the one with the larger field number is used.

General Rules - Event Status Entry

EVENT-STATUS is used to identify which data item is to receive
information about screen events.

In the description below, the seven elementary items belonging to the
EVENT-STATUS group item are referenced by the names in this example:
01 EVENT-STATUS.
 03 EVENT-TYPE PIC X(4) COMP-X.
 03 EVENT-WINDOW-HANDLE USAGE HANDLE OF WINDOW.
 03 EVENT-CONTROL-HANDLE USAGE HANDLE.
 03 EVENT-CONTROL-ID PIC X(2) COMP-X.
 03 EVENT-DATA-1 USAGE SIGNED-SHORT.
 03 EVENT-DATA-2 USAGE SIGNED-LONG.
 03 EVENT-ACTION PIC X COMP-X.

When a system event occurs during an ACCEPT statement, the
EVENT-STATUS data item is filled with the following information:

Configuration Section 4-21
EVENT-TYPE

Holds a value that uniquely identifies the kind of event that occurred.
The valid types are described in Chapter 6 of Book 2, User Interface
Programming.

EVENT-WINDOW-HANDLE

Holds the handle of the floating window in which the event occurred.
If the event occurred in a control, this will be the handle of the floating
window that contains the control.

EVENT-CONTROL-HANDLE

Holds the handle of the control in which the event occurred. If the
event did not occur in a control, this item is set to NULL.

EVENT-CONTROL-ID

Holds the ID of the control in which the event occurred. IDs are
assigned by the application when each control is created. If the event
did not occur in a control, this item will have the value zero.

EVENT-DATA-1

Holds information about the event that is unique for each
EVENT-TYPE. For many events, this value will always be zero.

EVENT-DATA-2

Also holds information about the event that is unique for each
EVENT-TYPE. For many events, this value will always be zero.

4-22 Environment Division
EVENT-ACTION

Holds a value that determines the continued handling of an event when
an event procedure terminates. On entry to the procedure,
EVENT-ACTION is set to zero. The following values are meaningful
on exit from the procedure (symbolic names in “acugui.def”):

EVENT-ACTION-NORMAL (value 0) The event is
processed normally, causing
the control to terminate for
terminating events.

EVENT-ACTION-TERMINAT
E

(value 1) The event is
processed normally, and then it
terminates the active control.
This action forces termination
of events that do not normally
terminate.

EVENT-ACTION-CONTINUE (value 2) The event is
processed normally, but it does
not terminate the active control,
even if it would ordinarily do
so.

EVENT-ACTION-IGNORE (value 3) The event is not
processed further, but it does
not terminate the active control.
We do not recommend this
action because it short-circuits
the runtime’s event handler.
Events receive a certain
amount of processing before
the event procedure is entered.
Ignoring an event does not
prevent this processing from
occurring.

Input-Output Section 4-23
4.3 Input-Output Section

The INPUT-OUTPUT Section describes the I/O environment that the
program will be using. The header for this section is optional.

4.3.1 File-Control Paragraph

The FILE-CONTROL paragraph contains descriptions of the physical
aspects of the files the program uses.

General Format
[FILE-CONTROL.] { file-control-entry } ...

or
{ file-control-entry } ...

EVENT-ACTION-FAIL (value 4) This setting is used
in response to certain events to
indicate that a specific action
should be taken, usually to
prevent the event from taking
its normal action. Events that
use this setting state that they
do so in the event description,
along with a description of the
effects of setting it.

EVENT-ACTION-FAIL
-TERMINATE

(value 7) The effect of this
setting is exactly the same as
that of
EVENT-ACTION-FAIL with
the additional effect of
EVENT-ACTION-TERMINA
TE: after performing the “fail”
operation, the control
terminates with an exception
status of W-EVENT.

4-24 Environment Division
File-control-entry has one of the following formats:

Format 1 - Sequential Files
SELECT [OPTIONAL] file-name

 ASSIGN TO [DYNAMIC] [device] [file-spec]
 [EXTERNAL]

 [[ORGANIZATION IS] [BINARY] SEQUENTIAL]
 [RECORD]
 [LINE]

 [ACCESS MODE IS SEQUENTIAL]

 [RESERVE {number} [ALTERNATE] [AREA]]
 {NO } [AREAS]

 [LOCK MODE IS {EXCLUSIVE}
 {AUTOMATIC}
 {MANUAL }

 [RECORD DELIMITER IS [STANDARD-1]
 [FILE STATUS IS status-variable [status-variable-2]]

 [PADDING CHARACTER IS pad-char] .

Format 2 - Relative Files
SELECT [OPTIONAL] file-name

 ASSIGN TO [DYNAMIC] [device] [file-spec]
 [EXTERNAL]

 [ORGANIZATION IS] RELATIVE

 [ACCESS MODE IS

 { SEQUENTIAL [RELATIVE KEY IS rel-key] }]
 { RANDOM [RELATIVE] KEY IS rel-key }
 [ACTUAL]
 { DYNAMIC RELATIVE KEY IS rel-key }

 [LOCK MODE IS { EXCLUSIVE }
 { AUTOMATIC [multiple-option] }

Input-Output Section 4-25
 { MANUAL [multiple-option] }

 [RESERVE {number} [ALTERNATE] [AREA]]
 {NO } [AREAS]

 [FILE STATUS IS status-variable [status-variable-2]] .

See the multiple-option format at the end of the formats.

Format 3 - Indexed Files
SELECT [OPTIONAL] file-name

 ASSIGN TO [DYNAMIC] [device] [file-spec]
 [EXTERNAL]

 [WITH {COMPRESSION} ...]
 {ENCRYPTION }

 [COMPRESSION CONTROL VALUE IS factor]

 [ORGANIZATION IS] INDEXED

 [ACCESS MODE IS {SEQUENTIAL}]
 {RANDOM }
 {DYNAMIC }

 [RECORD KEY IS key-name [= seg-name ...]
 [WITH [NO] DUPLICATES]] ...

 [ALTERNATE RECORD KEY IS alt-name [= seg-name ...]
 [WITH [NO] DUPLICATES]] ...

 [LOCK MODE IS { EXCLUSIVE [WITH MASS-UPDATE] }
 { AUTOMATIC [multiple-option] }
 { MANUAL [multiple-option] }

 [RESERVE {number} [ALTERNATE] [AREA]]
 {NO } [AREAS]

 [FILE STATUS IS status-variable [status-variable-2]]

 [COLLATING SEQUENCE IS alphabet-name] .

4-26 Environment Division
Format 4 - Sort Files
SELECT file-name

 ASSIGN TO [DYNAMIC] [device] [file-spec]
 [EXTERNAL]

 [FILE STATUS IS status-variable [status-variable-2]] .

Note: multiple-option has the following format for both Format 2 and
Format 3.

WITH { { LOCK ON } [MULTIPLE] { RECORD } } [WITH ROLLBACK]

 { ROLLBACK }

Syntax Rules

1. File-spec must be either a nonnumeric literal or the name of an
alphanumeric Working-Storage data item. See Book 1, section 6.1.3, for
information about creating Vision indexed files.

2. Device must be one of these words: INPUT, OUTPUT,
INPUT-OUTPUT, RANDOM, DISK, DISC, PRINT, PRINTER,
PRINTER-1, TAPE, CASSETTE, CARD-PUNCH, CARD-READER,
CONSOLE, MAGNETIC-TAPE, DISPLAY, KEYBOARD, SORT,
MERGE, SORT-MERGE or SORT-WORK. The last four may be used
only with sort files.

3. If DYNAMIC is specified, file-spec must be specified and must be the
name of a data item. This data item need not be defined in the
program, although it can be.

4. If EXTERNAL is specified, file-spec must be specified and must be a
user-defined COBOL word.

5. Status-variable must be the name of an alphanumeric (or USAGE
DISPLAY numeric) Working-Storage or Linkage data item with a size
of 2 characters. Status-variable-2 must be the name of a group item
that is 6 characters (this is not checked by the compiler).

6. Rel-key must name an unsigned integer data item. It must not be in the
record description entry for the same file.

Input-Output Section 4-27
7. Factor must be a numeric literal from zero to 100, inclusive.

8. The key of an indexed file may have any PICTURE and USAGE.
Regardless of the PICTURE and USAGE specified, the key is always
treated as an alphanumeric data item when the sort order of the file is
determined (the individual bytes are compared with the collating
sequence).

9. Seg-name must name a data item in the same file’s record description
entry. A seg-name may not be a group item that contains
variable-occurrence data items.

10. If seg-name is used to define a split RECORD KEY, then key-name is
a user-defined word. Otherwise, key-name must name a data item in
the same file’s record description entry. It may not be a group item
that contains variable-occurrence data items.

11. If seg-name is used to define a split ALTERNATE RECORD KEY,
then alt-name is a user-defined word. Otherwise, alt-name must name
a data item in the same file’s record description entry. It may not be a
group item that contains variable-occurrence data items.

12. Number must be an integer literal.

13. Alphabet-name is the name of an alphabet declared in the
Special-Names paragraph.

14. Pad-char must be either a single-character literal or a single-character
alphanumeric data item. When a PADDING CHARACTER is
specified, the last block of the file is padded with pad-char. When the
file is read, any final portion of a block that consists solely of padding
characters is skipped.

15. SELECT must be the first clause in a FILE-CONTROL entry. The
other clauses may follow in any order. The SELECT clause may
appear in Area A; all other clauses must appear in Area B.

16. Each file described in the Data Division must be specified exactly once
in the FILE-CONTROL paragraph.

17. Each file described by a SELECT clause must have exactly one
corresponding file description in the Data Division.

18. ORGANIZATION IS RECORD SEQUENTIAL is synonymous with
ORGANIZATION IS BINARY SEQUENTIAL.

4-28 Environment Division
General Rules

1. When the FILE STATUS clause is specified, a value will be moved into
status-variable after the execution of every statement that references the
corresponding file. This value indicates the status of the statement. (See
section 6.4.7, “I/O Status.”) Status-variable-2 is treated as commentary
by the compiler.

2. The ACCESS MODE clause specifies the order in which records are
read or written. If it is not specified, SEQUENTIAL is implied.

3. For sequential access, the records are accessed according to the
organization of the file:

• Sequential files - The sequence is the same as that established by the
execution of WRITE statements that created the file.

• Relative files - The sequence is the order of ascending relative
record numbers for the file’s existing records.

• Indexed files - The sequence is the order of ascending record key
values for the file’s current key of reference.

4. Random access indicates that the file will be accessed only by key
value.

5. Dynamic access indicates that the file will be accessed both randomly
and sequentially.

6. RELATIVE KEY results in record key numbers that are one-based.
ACTUAL KEY may be specified for RANDOM access mode and
when compiling version 8.1 and greater objects in IBM DOS/VS
("-cv") and HP3000 ("-cp") compatibility modes. For such files, the
record key numbers will be zero-based. For example, if you have a
relative file with a fixed record length of 3 bytes and a relative file with
the following contents:

AAABBBCCC

the record keys for the different modes are:

 RELATIVE ACTUAL
AAA: 1 0
BBB: 2 1
CCC: 3 2

Input-Output Section 4-29
7. The ASSIGN clause specifies the association of the file to a storage
device. The rules for interpreting the ASSIGN clause are described in
Book 1, section 2.8. If the file-spec phrase is missing, then file-name
will be treated as an alphanumeric literal and substituted for it
(exception: rule 8.a below). In this case, file-name should conform to
the host operating system’s rules for file names. Note that the
ASSIGN clause is required even if both device and file-spec are
missing.

8. The device phrase of the ASSIGN clause is not required. If it is
specified, it can affect the processing of the file in a variety of ways. If
the file is not a sequential file, then the device phrase is ignored. If it
is a sequential file, then the following applies depending on the device
phrase used:

a. PRINT, PRINTER, PRINTER-1 - A sequential file marked with
one of these device phrases will be treated as a “print” file. Print
files may not be opened for INPUT or I/O. When records are
written to a print file, trailing spaces are first removed from the
record. Print files have printer carriage control information added
to them as specified by the WRITE statements that add records to
the file. If “PRINTER” or “PRINTER-1” is specified, and no
file-spec is specified, then the external file name is treated as
“PRINTER” or “PRINTER-1” (unless RM/COBOL compatibility
mode is being used, in which case rule 7 applies instead).
Normally, these names are translated at runtime to the name of the
system spooler. This is an exception to rule 7 above.

b. CARD-PUNCH, CARD-READER, CASSETTE, INPUT,
INPUT-OUTPUT, MAGNETIC-TAPE, OUTPUT - Any of
these device phrases indicates that trailing spaces should be
removed from records before they are added to the file. This will
have effect only if the file is a “line” sequential file. When records
are read from one of these files, the records are automatically
padded with spaces to reach the maximum record size. A file with
one of these designators may not be opened for I/O.

c. DISPLAY, KEYBOARD - Causes the default file type to be
“line” sequential. You may override this by specifying the file
type explicitly in the ORGANIZATION clause. This rule is
provided for compatibility with ICOBOL, which uses this method
for specifying line sequential files.

4-30 Environment Division
d. RANDOM, DISK, DISC, TAPE, CONSOLE - Indicates no
additional processing. This is the same as if the device phrase
were omitted.

e. MERGE, SORT, SORT-MERGE, SORT-WORK - Also
indicates no additional processing. These device phrases may be
associated with a sort file only.

9. The word DYNAMIC in an ASSIGN phrase indicates that file-spec is
the name of a variable that contains the file’s name. Because this is the
normal meaning of file-spec when it refers to a variable, the word
DYNAMIC is largely commentary.

10. When DYNAMIC is specified, if file-spec refers to a variable that is
not otherwise defined, the compiler creates a Working-Storage variable
by that name that is PIC X(256). It is the program’s responsibility to
move a valid file name to this data item prior to opening the file.

11. The word EXTERNAL in an ASSIGN phrase indicates that the
COBOL word that makes up file-spec is the name of the file itself.
This name is processed first by ignoring any characters that appear
before the last hyphen in the word (including the hyphen itself). For
example:

 ASSIGN TO EXTERNAL UT-S-MYFILE

results in “MYFILE” being used for the file name. In other COBOL
systems, this name is normally assigned to a specific file name using
environment variables. This kind of name mapping occurs
automatically under ACUCOBOL-GT. There is no special meaning
associated with ASSIGN phrases containing the EXTERNAL option.
Such files have name mapping applied through the environment just like
all other files.

Note: If neither DYNAMIC nor EXTERNAL is included in the
ASSIGN clause, you can use the “--fileAssign=” compiler option to
specify DYNAMIC or EXTERNAL at compile time. See Section
2.2.7, in Book 1, ACUCOBOL-GT User’s Guide.

12. The WITH COMPRESSION phrase of the ASSIGN clause specifies
that file record compression is desired. This phrase must be specified
before the ORGANIZATION IS INDEXED phrase. The Vision file

Input-Output Section 4-31
system supports compression, but not all file systems do. The WITH
COMPRESSION phrase takes effect only when the file is initially
created or re-created via the OPEN statement. When no compression
factor is specified (see next paragraph), WITH COMPRESSION uses
the default compression factor (70).

A compression factor other than the default may be selected via the
COMPRESSION CONTROL VALUE IS clause. The factor must be a
numeric literal from zero (meaning no compression) to 100 (maximum
compression). A compression factor of 1 is equivalent to the default
compression.

The exact meaning of the compression factor depends upon the host file
system. See Book 1, section 6.1.3, for specifics about the Vision file
system.

13. The WITH ENCRYPTION phrase specifies that record encryption is
desired on the file. Encryption is currently available with the Vision
indexed file system only. The ENCRYPTION clause takes effect only
when the file is initially created or re-created via the OPEN statement.

14. The ORGANIZATION clause specifies the logical structure of the file.
This is established when a file is first created and may not be changed.
If it is absent, then SEQUENTIAL organization is implied. Records
stored in an ORGANIZATION IS RELATIVE file are uniquely
identified by record number. The relative record number of a given
record specifies the record’s ordinal position in the file. The first
record has a relative record number of one.

15. Records in an ORGANIZATION IS INDEXED file are uniquely
identified by the values in the record’s primary key.

16. The primary key is identified by the RECORD KEY clause. Records
are ordered in ascending collating sequence by the primary key. If the
WITH DUPLICATES phrase is present, the primary key may contain
duplicate values, if the indexed file system supports them. Vision
supports duplicate primary key values. If WITH DUPLICATES is
used with a file system that does not support them, when the file is
created via the OPEN statement a status of “0M” is returned, indicating
that the file was successfully created but that duplicate primary keys
are not supported. When WITH DUPLICATES is used with Vision

4-32 Environment Division
and other file systems that support it, the rules that govern how
REWRITE and DELETE operations are handled are determined by the
file system. The rules for Vision are as follows:

a. If the last record locked via a READ statement is still locked and
it matches the primary key value specified in a REWRITE or
DELETE statement, that record is the record rewritten or deleted.

b. Otherwise, the first record with the matching key value is rewritten
or deleted.

For information about how HP e3000 KSAM handles REWRITE and
DELETE with duplicate primary keys, see Chapter 4, “HP COBOL
Conversions,” in Transitioning to ACUCOBOL-GT.

The WITH NO DUPLICATES phrase is commentary. By default,
duplicate primary key values are not allowed.

17. The ALTERNATE RECORD KEY clause specifies additional record
keys for an indexed file. If the WITH DUPLICATES phrase is present,
then these key values may contain duplicated values. Otherwise, each
key value must be unique for a given key.

You may specify the word “NO” in front of the word “DUPLICATES”
in a declaration of an alternate indexed file key. This is useful for
ICOBOL compatibility mode where, by default, alternate keys allow
duplicates.

18. Up to 16 seg-names may be specified in Vision Version 4 to indicate
that a primary or alternate key consists of non-contiguous data
elements. In Vision Version 3, up to six seg-names may be specified,
and in Version 2, only one seg-name may be specified. The key-name
or alt-name is then a user-defined word that can be used in READ and
START.

19. The OPTIONAL phrase, if specified, indicates that the file need not be
present when the program is run. The exact effects of this phrase are
detailed in the discussion of the OPEN Statement. Note that the “-Fp”
compile option causes all files to be treated as if the OPTIONAL
phrase is present.

20. The LOCK MODE clause specifies how file and record locking should
be handled for the file. Each mode has the following characteristics:

Input-Output Section 4-33
AUTOMATIC Each time a record is read from a file open for I/O, that
record is locked unless the WITH NO LOCK option is
used on the READ statement. Files open for INPUT
do not lock records.

MANUAL Records read from a file with manual locking are
locked only if the WITH LOCK option is used on the
READ statement. Like automatic mode, files open for
INPUT do not lock records even if WITH LOCK is
specified.

EXCLUSIVE Exclusive mode files are opened with a lock on the
entire file. No locking options may be specified on an
OPEN statement associated with an exclusive mode
file. Instead, files opened for INPUT are treated as if
they were opened with the ALLOWING READERS
phrase, and files opened for OUTPUT, I-O, or
EXTEND are treated as if they were opened with the
ALLOWING NO OTHERS phrase. If the WITH
MASS-UPDATE phrase is used, then the
MASS-UPDATE option is implied for each OPEN
(except for OPEN INPUT). See the OPEN Statement
for details on these options.

21. If the COLLATING SEQUENCE phrase is used, the alphabet-name is
the name of an alphabet declared in Special-Names. This alphabet can
be standard or can be a custom alphabet defined by the programmer to
allow special handling. For example, upper-case and lower-case letters
could be mapped together so that two keys that are alphabetically the
same (but differ in case) would be treated as the same letter. European
character sets can also be re-ordered in Special-Names (so that keys are
sorted alphabetically).

22. If the LOCK ON MULTIPLE RECORDS phrase is used, then the
program may lock more than one record in the file at once. If the
MULTIPLE option is not used, then each I-O statement automatically
unlocks the currently locked record before executing. When the
MULTIPLE option is used, then record locks are released only when
an UNLOCK or a CLOSE statement is executed for the file. The
ROLLBACK clause is useful when you compile with “-Fl”, which

4-34 Environment Division
enables single locking rules as the lock mode default. When the
ROLLBACK clause is used with this phrase, multiple locking rules are
enabled for the file, regardless of the compiler option used.

23. If the LOCK phrase is omitted, LOCK MODE IS AUTOMATIC is
implied, unless the “-Fm” compiler option is used, in which case
LOCK MODE IS MANUAL is implied. In ICOBOL compatibility
mode (“-Ci”), the default is LOCK MODE IS MANUAL WITH
MULTIPLE RECORDS.

24. The RECORD DELIMITER and RESERVE AREA clauses are treated
as commentary by the compiler.The RESERVE AREA clause is
treated as commentary by the compiler.

25. If the ROLLBACK clause is specified, then WITH LOCK ON
MULTIPLE RECORDS will automatically be in effect. However, if
you compile with the “-Fl” option, then you must specify multiple
locking rules for the files that need them.

26. If the ROLLBACK clause is specified, the runtime will automatically
effect a START TRANSACTION before opening the file, and a
COMMIT after opening it. Thus, every OPEN of the file will
automatically be done within a transaction; the COBOL code need not
explicitly include the START TRANSACTION and COMMIT.

27. It is possible that a RECORDING MODE clause may appear in the
IBM DOS/VS COBOL “-Cv” compatibility mode and be ignored by
the ACUCOBOL-GT compiler. See Chapter 5, “IBM DOS/VS
COBOL Conversions,” in Transitioning to ACUCOBOL-GT for more
information.

4.3.2 I-O-Control Paragraph

The I-O-CONTROL paragraph specifies input-output techniques to be used
for the program’s files.

General Format
I-O-CONTROL

 [APPLY {LOCK-HOLDING } ... ON {file} ...] ...

Input-Output Section 4-35
 {PRINT-CONTROL}

 [SAME [RECORD] AREA FOR {file} ...] ...
 [SORT]
 [SORT-MERGE]

 [MULTIPLE FILE TAPE CONTAINS

 { tape-file [POSITION pos] } ...]

Syntax Rules

1. File and tape-file name a file described by a SELECT clause in the
FILE-CONTROL paragraph.

2. A file name cannot appear in more than one SAME RECORD AREA
clause.

3. If file is a sort file, one of the RECORD, SORT, or SORT-MERGE
options must be used in a SAME AREA clause.

4. SORT and SORT-MERGE are equivalent.

5. At least one file must be a sort file if the SORT or SORT-MERGE
option is used.

6. Pos must be an integer literal.

7. You may put APPLY clauses of the IBM DOS/VS COBOL type into
the I-O-CONTROL paragraph, but only when the compiler is in the
IBM DOS/VS COBOL compatibility mode. The clauses of the
I-O-CONTROL paragraph may be arranged in any order, and the
existing APPLY clause may be used, regardless of the compiler mode.
See Chapter 5, “IBM DOS/VS COBOL Conversions,” in Transitioning
to ACUCOBOL-GT for more information.

General Rules

1. The APPLY clause modifies various characteristics of each file.

a. If the PRINT-CONTROL option is specified, then the named file
must be a sequential file. This option causes the file to be treated
as a print file. This has the same effect as specifying “PRINT” in
the file’s ASSIGN clause.

4-36 Environment Division
b. If the LOCK-HOLDING option is used, then record locks on the
file will not be automatically released by any I-O statement.
Instead, only the UNLOCK and CLOSE statements will release
any record locks held on the file. This option has the same effect
as the LOCK ON MULTIPLE RECORDS phrase in the file’s
SELECT.

2. The SAME AREA clause indicates that the compiler should share file
information areas for the named files. ACUCOBOL-GT automatically
applies the most efficient use of memory possible for file information
areas and treats this clause as commentary. In ICOBOL compatibility
mode, the SAME AREA clause is treated as a SAME RECORD AREA
clause (see below).

3. The SAME RECORD AREA clause indicates that the named files
should share the same memory area for their current logical records.

4. The SAME RECORD AREA clause is identical to an implicit
redefinition of the shared files’ record areas.

5. The SAME SORT AREA clause indicates that the same memory
should be used for each file. Because ACUCOBOL-GT dynamically
allocates memory to sort files as needed and then discards the memory
when finished, this phrase is treated as commentary by the compiler.

6. The MULTIPLE FILE TAPE clause is treated as commentary.

5
 Data Division
Key Topics

Data Structures .. 5-2
Data Names .. 5-10
Data Division Format.. 5-21
File Section ... 5-23
WORKING-STORAGE Section .. 5-34
LINKAGE Section... 5-35
Record Description Entry... 5-36
Screen Section .. 5-89
Screen Description Entry... 5-90

5-2 Data Division
5.1 Data Structures

The Data Division describes the data used by the program in both physical
and logical terms.

COBOL data structures are defined and described in the following sections.

5.1.1 Record Description

All user-defined data used in a COBOL program belongs to one or more
logical records. A logical record is defined by a record description entry.
Logical records may correspond to actual disk records (by being defined in
the File Section), or they may simply be areas of computer memory used by
the program. A record description entry is itself composed of one or more
data description entries. Each data description entry defines one COBOL
data item.

Logical records can be divided into a hierarchy of individual data items.
Subdivision can continue for each of the record’s parts. The lowest level
subdivision of a record is the elementary data item. Elementary data items
are never subdivided. A logical record is either an elementary data item or a
set of elementary data items.

A group item is a piece of data that contains other subordinate data items.
These subordinate items may be either elementary data items or other group
items. The lowest level group item is always a sequence of one or more
elementary data items.

5.1.2 Level-Numbers

Level-numbers are used to describe the hierarchical organization of a record.
Level-numbers that describe this hierarchy range from 01 through 49.

The topmost data item is the record. It always has a level-number of 01.
Items that are included in the record have greater (although not necessarily
consecutive) level-numbers.

Data Structures 5-3
All items subordinate to a group item must have level-numbers greater than
the group’s level-number. The end of a group item is delimited by the next
data description entry that has a level-number less than or equal to the
group’s level-number.

Four special level-numbers are used to specify special types of data. They
are never used in a hierarchical structure. Instead, they define the following
special types:

• Level-number 66 identifies a RENAMES item that regroups other data
items.

• Level-number 77 identifies an elementary data item in the
Working-Storage or Linkage sections. These are essentially identical to
a level 01 elementary data item. The level-number is used to emphasize
that the data item is not part of a hierarchy and cannot itself be
subdivided.

• Level-number 78 associates a value with the name of a constant.

• Level-number 88 identifies a condition-name and its values.

The following example shows how level-numbers define a record’s hierarchy
and shows how records, groups, and elementary items interact. The items are
indented to display the hierarchy. This is a recommended programming
practice but is not required by COBOL.
01 EMPLOYEE-RECORD. (record)
 03 EMPLOYEE-KEY. (group)
 05 DEPARTMENT-CODE (elementary)
 05 EMPLOYEE-NUMBER (elementary)
 03 EMPLOYEE-IDENTIFICATION. (group)
 05 EMPLOYEE-NAME (elementary)
 05 EMPLOYEE-ADDRESS. (group)
 07 STREET-ADDRESS-1 (elementary)
 07 STREET-ADDRESS-2 (elementary)
 07 CITY (elementary)
 07 STATE (elementary)
 07 ZIP-CODE (elementary)
 05 EMPLOYEE-RACE (elementary)
 05 MARRIAGE-STATUS (elementary)
 03 PAYROLL-INFORMATION. (group)
 05 SALARY (elementary)
 05 PAY-FREQUENCY (elementary)
 05 DEDUCTION-CODE-1 (elementary)

5-4 Data Division
 05 DEDUCTION-CODE-2 (elementary)
 05 SICK-ACCRUAL-RATE (elementary)
 05 VACATION-ACCRUAL-RATE (elementary)

5.1.3 Classes of Data

Depending on how a data item is defined, it belongs to one of the five
following categories:

1. Alphabetic

2. Alphanumeric

3. Alphanumeric Edited

4. Numeric

5. Numeric Edited

These categories are further grouped into the following classes:

1. Alphabetic class: alphabetic

2. Numeric class: numeric

3. Alphanumeric class: alphanumeric, alphanumeric edited, numeric
edited

Every elementary item is classified into one of these classes and categories by
its PICTURE clause. Elementary items that do not have a PICTURE clause
are in the numeric category.

Group items always belong to the alphanumeric category regardless of the
categories of any elementary items they contain. A group item may be used
in any place an alphanumeric item is allowed.

5.1.4 Standard Alignment Rules

The standard alignment rules define how characters are positioned in a data
item when the item is receiving data. Positioning depends on the category of
the receiving item.

Data Structures 5-5
1. For a numeric receiving item, the data is aligned by decimal point.
Truncation or zero fill occurs as necessary. If no decimal point is
explicitly stated, then the item is treated as if it had a decimal point after
its rightmost character.

2. For a numeric edited item, the data is aligned by decimal point with
zero fill or truncation as needed. Editing requirements can replace
leading zeros with some other symbol.

3. For alphabetic, alphanumeric, and alphanumeric edited items, the data
is aligned at the leftmost character position in the item. Space fill or
truncation occurs on the right as needed.

The JUSTIFIED clause can change the standard alignment rules. For details,
see the JUSTIFIED clause in section 5.7.1.12. The “--TruncANSI” compile
option alters the truncation rules for COMP-5 items. See Section 2.2.10.1 in
Book 1.

5.1.5 Table Handling

Tables of data are common components of business data processing
problems. You define tables of data items in COBOL by including the
OCCURS clause in their data description entries. This clause specifies that
the item is to be repeated as many times as stated. The item is considered to
be a table element, and its name and description apply to each repetition or
occurrence. Because each occurrence of a table element does not have a
unique data name assigned to it, you can refer to a desired occurrence only by
specifying the data-name of a table element, along with the occurrence
number of the desired element. The occurrence number is known as a
subscript.

The number of occurrences of a table element may be specified as fixed or
variable. Although the number of occurrences of a table may be variable, the
physical size of the table in computer memory is always fixed.

To define a one-dimensional table, use an OCCURS clause as part of the data
description of the table element. The OCCURS clause must not appear in the
description of group items that contain the table element. The following
example shows a one-dimensional table defined by the item
TABLE-ELEMENT.

5-6 Data Division
01 TABLE-1.
 03 TABLE-ELEMENT OCCURS 20 TIMES.
 05 SUB-ELEMENT-1 ...
 05 SUB-ELEMENT-2 ...

In the preceding example, the complete set of occurrences of
TABLE-ELEMENT has been assigned the name TABLE-1. However, you
need not give a group name to a table unless you want to refer to the complete
table as a unit. In the preceding example, TABLE-ELEMENT,
SUB-ELEMENT-1, and SUB-ELEMENT-2 are all repeated data items and
require subscripts.

Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table gives rise to a two-dimensional table. For
example:
01 TABLE-2.
 03 BAKER OCCURS 20 TIMES.
 05 CHARLIE ...
 05 DOG OCCURS 5 TIMES ...

In the preceding example, DOG is a two-dimensional table; BAKER and
CHARLIE are both one-dimensional.

Repeat this pattern to form multi-dimensional tables. Tables may have no
more than 15 dimensions.

5.1.6 Large Data Handling

All COBOL data items may be larger than 64 KB in size, with some minor
limitations:

• A file's maximum record size is 64 MB, so no data item in the FILE
SECTION may exceed 64 MB.

• A data item with a size greater than 64 KB may not be given a VALUE
phrase.

Data items larger than 64 KB may be used with most verbs, and data items
larger than 64 KB may be reference modified.

Data Structures 5-7
Note: Earlier versions of ACUCOBOL-GT have different limitations.
Refer to the appropriate version of your ACUCOBOL-GT documentation
for details.

5.1.7 File Types

ACUCOBOL-GT manages four types of file organization. These are:

1. Sequential Files - are ordered by the historical order in which records
are written to the file.

2. Relative Files - contain records that are identified by their record
number, where the first record in the file is record number one.
Relative files are ordered by ascending record numbers.

3. Indexed Files - contain records that have one or more key fields.
Records in an indexed file are ordered by ascending values in these key
fields. Each key of an indexed file represents an ordered sequence by
which the records can be accessed. One of the key fields, known as the
primary key, must contain a unique value for each record and is used
to identify records uniquely.

4. Sort Files - are used only by the SORT, MERGE, RELEASE, and
RETURN verbs. These are used to sort and merge records.

There are also four record types. These are:

1. Fixed-length Records - these records are a constant size.

2. Variable-length Records - these records contain information about the
length of each record, which may vary.

3. Text Records - are sequential file records that contain text data. Text
files should generally contain only USAGE DISPLAY fields, because
the binary information contained in other types of fields may
inadvertently resemble line-length delimiters used by the host
computer system (e.g., carriage return or line-feed characters). Text
records may optionally have trailing spaces automatically removed
from them by the runtime system. This is determined by the device
type named in the file’s ASSIGN phrase.

5-8 Data Division
4. Print Records - are text records that additionally contain printer
carriage control information. Only sequential files may be print files.
Print records have trailing blanks removed from them when they are
written to the file. This is done to improve printing performance for
printers that use serial communications. Unless otherwise noted, a
print file follows the same rules as a text file.

The organization of a file is determined by the file’s SELECT clause of the
Environment Division and its FD or SD clause of the Data Division. The
record type is determined by the first of the following rules that applies:

1. If the file’s ASSIGN clause has the PRINT option, print records are
used.

2. If any WRITE statement that references the file contains the
ADVANCING phrase, print records are used.

3. If LINAGE is specified for the file, print records are used.

4. If PRINT-CONTROL is specified, print records are used.

5. If the file’s SELECT has the LINE SEQUENTIAL clause, text records
are used.

6. If the file’s device type is DISPLAY or KEYBOARD, text records are
used.

7. In RM/COBOL compatibility mode, if the file is sequential and “-Cb”
is not specified, text records are used.

8. If the file’s FD or SD contains a RECORD clause, variable-length
records are used if the IS VARYING IN SIZE phrase is used or if both
a minimum and maximum record size is specified. If only a single
record size is specified, then fixed-length records are used.

Note: The compiler has an internal restriction of at least 6 bytes for
SORT FILE records. If a record is shorter than that, the compiler
detects it and pads the record to 6 bytes. Note also that in versions
prior to 5.0, using SORT FILE with records shorter than 6 bytes would
cause crashes.

9. If multiple record layouts are declared for the file and these records are
not all the same size, variable-length records are used.

Data Structures 5-9
10. If the “-Cf” flag is used, then any variable-length record is made
fixed-length.

11. If none of the preceding rules applies, then fixed-length records are
used.

5.1.8 Floating-Point Data

A floating-point item is a numeric data item that allows for a very wide range
of values. However, compared to other numeric data types in COBOL,
floating-point data is less accurate. Most computer languages use
floating-point to represent non-integer values. This makes floating-point a
good method for sharing non-integer data with these other languages.

Floating-point data items differ in several ways from normal numeric data
items:

• Floating-point items are stored in a machine-dependent format. In
particular, they are stored in a format that is “native” to each machine.
There are many floating-point formats currently in use by different
machines, so floating-point data should not be considered portable.

• Floating-point items do not have pictures associated with them. Instead,
floating-point items are either 4 or 8 bytes in size. The size of the item
determines the range of values it can hold.

• The range of values that can be stored in a floating-point item is
machine-dependent.

Because floating-point items do not maintain accuracy very well, you should
limit their use. Some examples where floating-point is appropriate are:

• You need to share non-integer data with another language such as C or
FORTRAN.

• You need to hold very large or very small values that exceed the usual 18
digits available in COBOL.

• You need to process existing data that contains floating-point values.

5-10 Data Division
5.1.8.1 Using floating-point data

Generally speaking, you may use a floating-point data item anywhere that
you can use a non-integer data item. Data moved to or from a floating-point
item is converted to the appropriate format.

If you use a floating-point item in an arithmetic expression, then that
expression is computed by converting all the values to double-precision
floating-point and doing the arithmetic using the machine’s conventions for
double-precision math. The result is then converted to the type appropriate
for the destination.

5.2 Data Names

The programmer assigns data names to COBOL data items in order to refer
to those items in the program. Data names typically must be unique so that
the compiler can know which data item the programmer is referring to. Data
names that do not uniquely identify a data item may be made unique through
qualification and subscripting. The programmer may also create new data
names by reference modification. These three techniques are explained in
the next three subsections.

5.2.1 Qualification

Every user-defined name explicitly referenced in a COBOL program must be
uniquely defined in one of these ways:

1. No other name has the same spelling and hyphenation.

2. The name is unique within the context of a REDEFINES clause.

3. The name exists within a hierarchy of names, and reference to the
name can be made unique by mentioning one or more of the higher
level names in the hierarchy.

Data Names 5-11
These higher-level names are called qualifiers. Identical user-defined names
may appear in a source program; however, uniqueness must then be
established through qualification for each user-defined name explicitly
referenced. All available qualifiers need not be referenced as long as
uniqueness is established.

General Format

Format 1
{data-name-1} { {OF} name-2 } ... [{OF} file-name]
{cond-name } {IN} {IN}

Format 2
{data-name-1} {OF} file-name
{cond-name } {IN}

Format 3
paragraph-name {OF} section-name
 {IN}

Format 4
lib-name {OF} dir-name
 {IN}

Format 5
LINAGE-COUNTER {OF} file-name
 {IN}

Syntax Rules

1. For each non-unique user-defined name that is explicitly referenced,
uniqueness must be established through a sequence of qualifiers that
precludes any ambiguity.

2. A name may be qualified even though it does not need qualification.

3. IN and OF are equivalent.

5-12 Data Division
4. In Format 1, each qualifier must be the name associated with a group
item to which the item being qualified is subordinate, or the name of a
condition-variable with which the condition-name being qualified is
associated. Qualifiers are specified in the order of successively more
inclusive levels in the hierarchy.

5. If the program contains explicit references to a paragraph-name, the
paragraph-name cannot appear more than once in the same section. A
paragraph-name need not be qualified in a reference from within the
same section that contains paragraph-name.

6. The LINAGE phrase of a file’s FD creates an implicit data item called
LINAGE-COUNTER. If more than one file in a program contains a
LINAGE phrase, then reference to a file’s LINAGE-COUNTER must
be qualified by the name of the file.

7. If both qualification and subscripting are used in a data reference, the
qualification is done first.

8. If both qualification and reference modification are used in a data
reference, the qualification is done first.

9. A Format 4 form of qualification is used with the COPY statement. It
is described in that section.

5.2.2 Subscripting

Subscripting is used when reference is made to an individual element of a
table.

General Format
{data-name } ({ index-val [{+} integer] } ...)
{condition-name} {-}

Syntax Rules

1. Index-val must be either an integer literal, an integer elementary data
item, or an index name. It may be qualified.

2. Data-name and condition-name must be subordinate to an OCCURS
clause.

Data Names 5-13
3. Integer must be an integer literal.

4. The number of subscripts must equal the number of OCCURS clauses
in the description of the table element being referenced. When more
than one subscript is required, they are written in the order of
successively less inclusive dimensions of the table.

5. If both qualification and subscripting of a data name are being used,
the qualification is done first.

6. If both subscripting and reference modification of a data name are
being used, the subscripting is done first.

General Rules

1. The value of the subscript must be a positive integer. The lowest
occurrence value is represented by the value “1”. Each successive
element of a table within a dimension is referenced by occurrence
numbers of 2, 3, 4, and so on. The highest permissible occurrence
number for any given dimension of a table is the maximum number of
occurrences of the item as specified by the associated OCCURS clause.

2. If integer is specified, the value of the subscript is determined by
adding or subtracting the integer from index-val. This modified value
is subject to all of the conditions of rule 1 above.

3. By default, it is not an error to reference a table element beyond the
last one in the table, but the results are undefined and may adversely
affect your program. In fact, this is the single most frequent cause of
“memory access violation” errors. Use the “-Za” compiler option to
cause an error message to appear whenever an out-of-bounds table
element is referenced. The error text is: “Index out of bounds.” This
error is an intermediate runtime error that can trigger the execution of
installed error procedures. See the entry for CBL_ERROR_PROC in
Book 4, Appendix I.

5.2.3 Reference Modification

Reference modification is a syntax for referencing a portion (substring) of a
data item. The reference defines a temporary, unique data item. Reference
modification may be used anywhere in the Procedure Division.

5-14 Data Division
Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format
data-name (leftmost-position : [length])

Syntax Rules

1. Leftmost-position and length are arithmetic expressions.

2. Unless otherwise specified, reference modification is allowed
anywhere a data item of the class alphanumeric is permitted.

3. Data-name may be qualified or subscripted. Reference modification is
done after both qualification and subscripting.

General Rules

1. Each character of the data item referenced by data-name is assigned an
ordinal number starting at one for the leftmost position and incrementing
by one for each character in the item.

2. Reference modification for an operand is evaluated as follows:

a. If subscripting is specified, the reference modification is evaluated
immediately after the evaluation of the subscripts.

b. If subscripting is not specified, the reference modification is
evaluated at the time subscripting would have been evaluated if
subscripts had been specified.

3. Reference modification creates a unique data item that is a subset of
data-name. This unique data item is defined as follows:

a. The evaluation of leftmost-position specifies the leftmost character
of the unique data item relative to the start of data-name.
Evaluation of leftmost-position must result in an integer greater
than zero and less than or equal to the number of characters
contained in data-name.

Data Names 5-15
b. The evaluation of length specifies the size of the unique data item.
The evaluation of length must result in a positive integer. The
sum of leftmost-position and length must be less than or equal to
the number of characters contained in data-name, plus one. If
length is not specified, the unique data item extends through the
rightmost character of data-name.

4. The unique data item is considered an elementary data item without the
JUSTIFIED clause. It has the same class and category as data-name
except that categories numeric, numeric edited, and alphanumeric
edited are treated as class and category alphanumeric.

5. If the reference modification start or length parameter is out of range
for the item it references, a runtime error occurs. How the runtime
responds depends on the value of the WARNINGS configuration
variable (see Book 4, Appendix I). By default, the runtime attempts to
correct the error (see rule 6, below), and the warning message
“Reference modifier range error” is displayed or sent to the error file.
This error is an intermediate runtime error that can trigger the
execution of installed error procedures (see the entry for
CBL_ERROR_PROC in Book 4, Appendix I).

6. By default, the runtime silently corrects reference modification range
errors by applying the following rules:

a. A start reference less than 1 is treated as 1. For example, var(0:3)
is treated as var(1:3).

b. A length reference less than 0 is treated as 0. Moving a zero-byte
item is equivalent to moving spaces to the destination item. A
zero-byte destination is not affected by the move. In a STRING
statement, a length of zero for a string source is treated as 1, not 0.

c. A start plus length reference that is past the end of the item is
treated as meaning to the end of the item. For example, if the var
is a PIC X(5) item, var(4:23) is treated as var(4:2).

The WARNINGS runtime configuration variable provides some control
over how the runtime handles reference modification range errors. See
the WARNINGS entry in Appendix H of Book 4.

5-16 Data Division
Caution: Reference modification is allowed on source-item and dest-item of
a Format 1 MOVE statement. However, when reference modification is
used, source-item and dest-item should not reference the same item (or
memory location). See general rule 7 of the MOVE Statement in Chapter 6.

Code Examples

Reference modification is akin to substringing in other programming
languages. Reference modification is very useful for referencing a
component part of a composite string. For example, it might be used to
reference the area code digits of a 10-character string containing a phone
number (area code + seven digits):
01 PHONE-NUMBER PIC 9(10) VALUE 3017728134.
{ . . . }
PHONE-NUMBER (1:3).
*The reference modification begins at position 1
*of string PHONE-NUMBER and has a length of 3.
*The reference modification value = "301"

For the following code examples, assume these data items:
01 ACCOUNT-CODE PIC X(20) VALUE "AB700648xSMITHxxCLA1".
01 ACCOUNT-NAME PIC X(6) VALUE ALL SPACES.
01 ACCT-CLASS-1 PIC X(4) VALUE "CLA1".

Code example 1:
MOVE ACCOUNT-CODE (10:6) TO ACCOUNT-NAME.
*This reference modification selects the
*characters that form the name portion of
*ACCOUNT-CODE. The reference starts at position
*10 and has a length of 6 characters.
*The ACCOUNT-CODE substring = "SMITHx"

Code example 2:
IF ACCOUNT-CODE (17:) = ACCT-CLASS-1 THEN
*When the reference modification does not
*include a length, the reference begins at the
*value specified and extends to the end of the
*data item.
*The ACCOUNT-CODE substring = "CLA1"

Data Names 5-17
Highlights for first-time users

1. Reference modification may be used anywhere in the program where an
alphanumeric data item may be referenced.

2. A reference modification does not create a persistent data item. Unless
the result of the reference modification is assigned to a compatible data
object, you can refer to the value of the reference modification later in
the program only by repeating the reference modification.

3. The reference-modified data item is treated as an alphanumeric field.

5.2.4 Condition-Name (Level 88)

Level-number 88 designates a condition-name entry. Level 88s are used to
assign names to values at execution time. Thus, a condition-name is not the
name of an item, but rather the name of a value. A level 88 doesn’t reserve
any storage area.

Each level 88 must be associated with a data item and must immediately
follow that item in the Data Division. The associated data item is called a
condition-variable. A level 88 may name a specific value, a set of values, or
a range of values. For example:
05 student-status pic 9(2).
 88 kindergarten value 0.
 88 elementary values are 1 through 6.
 88 jr-high values 7, 8, 9.
 88 high-school values are 10 through 12.

Condition-names are often used in the Procedure Division as a test (usually
with an IF statement) to specify conditions under which control will pass to
another part of the program. They can make sentences much more
meaningful to the reader. For example, if you’ve defined the
condition-names shown above, then you could write this code:

if kindergarten
 perform assign-half-day-schedule.

Without the condition-name, you would have to write:
if student-status = "0"
 perform assign-half-day-schedule.

5-18 Data Division
If you defined this condition-name:
07 priority-code pic x.
 88 highest-priority value "d".

then you could write this easily understood code:
if highest-priority perform fill-order-at-once.

Without the condition-name, you would have to write:
if priority-code = "d" perform fill-order-at-once.

Thus, real benefit comes from choosing a meaningful name for each value or
set of values.

Setting a condition-name to TRUE is equivalent to moving any one of its
values to the associated condition-variable. For example, note how the SET
verb is used below to establish the truth of the condition:
05 end-of-shipping-file pic x value "n".
 88 no-more-shipments value "y".

...

perform process-daily-arrivals
 until no-more-shipments.

...

read shipping-file
 at end set no-more-shipments to true.

The same result could have been achieved with this code:
read shipping-file
 at end move "y" to end-of-shipping-file.

If explicitly referenced, a condition-name must be unique or must be made
unique through qualification or subscripting. If qualification is used to make
a condition-name unique, the associated condition-variable may be used as
the first qualifier. The hierarchy of names associated with the
condition-variable may be used in further qualification. If references to a
condition-variable require subscripting, then references to the associated
condition-name also require the same combination of subscripting.

Data Names 5-19
For more information about condition-names, see section 5.7.1, “Data
Description Entry,” section 5.7.1.14, “VALUE clause,” and the SET
Statement section.

5.2.5 RECORD-POSITION

The RECORD-POSITION construct allows you to refer to a data item by
creating a numeric literal representing the location of the data item within a
record.

General Format
RECORD-POSITION OF data-name

Syntax Rules

1. Data-name must refer to a data item with a level number of 01 through
50 or 77. Data-name may be qualified, but may not be subscripted or
reference modified.

2. The RECORD-POSITION phrase is allowed anywhere a numeric
literal data item may appear.

General Rules

1. The RECORD-POSITION phrase creates a numeric literal whose value
is the character position of data-name within its record, as follows:

a. If data-name is a level 01 or 77 data item, then the value is “1”.

b. Otherwise, the value is the character position of the start of
data-name within its containing level 01 group item. Character
positions start numbering at “1”.

2. If data-name refers to a table item, the value is computed from the first
occurrence of that item.

3. The format of the resulting literal is the same as a PIC 9(9) DISPLAY
data item.

5-20 Data Division
Code Examples

Code example 1:

If you assume the following group item:
01 GROUP-1.
 03 ELEM-1 PIC X(10).
 03 ELEM-2 PIC X(10).
 03 GROUP-2.
 05 ELEM-3
 OCCURS 10 TIMES PIC X(10).
 05 ELEM-4 PIC X(10).

the following procedure division code:
DISPLAY RECORD-POSITION OF ELEM-1, CONVERT, LEFT
DISPLAY RECORD-POSITION OF ELEM-2, CONVERT, LEFT
DISPLAY RECORD-POSITION OF ELEM-3, CONVERT, LEFT
DISPLAY RECORD-POSITION OF ELEM-4, CONVERT, LEFT

would produce the following output:
1
11
21
121

Code example 2:

The RECORD-POSITION construct is particularly useful with the
DATA-COLUMNS property of the list box and grid controls. For example,
in a list box control, you might have a line that reads:
data-columns - (1, 13, 24, 33)

changing the line to:
data-columns = (
 record-position of data-key-1,
 record-position of data-city,
 record-position of data-state,
 record-position of data-amount)

Data Division Format 5-21
makes it easier to understand. With this syntax, changes to the record format
do not need to be echoed in the data-columns format, so this is also easier to
maintain.

5.3 Data Division Format

General Format
[DATA DIVISION.]

[FILE SECTION.
 [file-desc { record-description } ...] ...]
 [sort-desc { record-description } ...]

[WORKING-STORAGE SECTION.
 [record-description] ...]

[LINKAGE SECTION.
 [record-description] ...]

[SCREEN SECTION.
 [screen-description] ...]

Syntax Rules

1. The division header is optional for the Data Division.

2. The FILE SECTION header is optional.

General Rules

The Data Division entries are described in the following sections.

1. The File Section defines the structure of data files.

2. A file-desc entry and its associated record-descriptions specify the
format, layout, and sizes of a file’s logical records. A sort-desc entry
specifies the layout and sizes of a sort file’s logical records.

3. For each file described by a SELECT in the Environment Division, a
corresponding file-desc or sort-desc must be made in the Data
Division.

5-22 Data Division
4. The Working-Storage Section describes the records and independent
data items that are not part of data files but are developed and
processed by the program internally.

5. Each record-description in Working Storage describes the format,
layout, and size of an internal data item.

6. Data items in Working Storage can be given initial values (see
VALUE clause). Items that are not explicitly initialized are set to
spaces, or the value specified with the “-Dv” compile option, when the
program is in its initial state. This may or may not be a valid value for
the data item.

7. The Linkage Section is used only in a called program. It defines the
data available from the calling program. Both the called and calling
program can use this data.

8. To access data described in the Linkage Section, the called program
may specify a USING phrase in its Procedure Division header. An
alternative way to do this is through the SET ADDRESS OF statement.
In the example below, note that the USING phrase has been omitted
from the Procedure Division header.

LINKAGE SECTION.
01 my-var pic x(30).

PROCEDURE DIVISION.
main-logic.
 if switch-1
 set address of my-var to msg-1
 else
 set address of my-var to msg-2
 end-if.
 display my-var.

See section 6.6 for additional information on the SET Statement.

9. The Screen Section describes the format, layout, and behavior of
console screen items. These screen items are used with the ACCEPT
and DISPLAY verbs to perform single- and multi-field console I/O.

File Section 5-23
5.4 File Section

The File Section describes the record-level information about the files that
the program uses.

General Format
FILE SECTION.

 [file-desc { record-description } ...] ...
 [sort-desc { record-description } ...]

General Rules

1. The File Section header is followed by a series of file-desc entries and
sort-desc entries.

2. A file-desc entry consists of a level indicator (FD), a file name, and a
series of independent clauses. These clauses specify various logical
and physical record attributes. They are described fully in the
following sections.

3. A sort-desc entry consists of a level indicator (SD), a file name, and a
series of independent clauses. These clauses specify various record
attributes, which are described fully in the following sections.

5.4.1 File Description Entry

A file description entry describes the physical structure, identification, and
record names for a program’s data files.

General Format
FD file-name [IS EXTERNAL] [IS GLOBAL]

 [BLOCK CONTAINS [min TO] max {RECORDS }]
 {CHARACTERS}

 [RECORD { CONTAINS [min TO] max CHARACTERS }]
 { IS VARYING IN SIZE [FROM min] }
 { [TO max] CHARACTERS }
 { [DEPENDING ON depend] }

5-24 Data Division
 [LABEL { RECORD IS } {STANDARD}]
 { RECORDS ARE } {OMITTED }

 [VALUE OF LABEL IS label-lit]

 [VALUE OF { FILE-ID } IS id-name]
 { ID }

 [CODE-SET IS alphabet]

 [DATA { RECORD IS } {record-name} ...]
 { RECORDS ARE }

 [LINAGE IS page-size LINES

 [WITH FOOTING AT footing-line]

 [LINES AT TOP top-lines]

 [LINES AT BOTTOM bottom-lines]] .

Syntax Rules

1. File-name must refer to a file name contained in a SELECT clause in the
Environment Division.

2. The clause IS EXTERNAL must immediately follow the file-name in
each program that declares the file.

3. An external file must have the same file-name in each COBOL
program that declares it, and must be described the same way in each
program.

4. The other clauses following file-name can appear in any order.

5. One or more record description entries must follow a file description
entry.

6. The LINAGE phrase may be specified only for an FD associated with
a sequential file.

File Section 5-25
General Rule

The file description entry clauses are described separately in the following
sections.

5.4.2 Sort File Description Entry

A sort file description entry describes the physical structure for a sort file.

General Format
SD file-name
 [RECORD { CONTAINS [min TO] max CHARACTERS }]
 { IS VARYING IN SIZE [FROM min] }
 { [TO max] CHARACTERS }
 { [DEPENDING ON depend] }

 [DATA { RECORD IS } {record-name} ...]
 { RECORDS ARE }

 [VALUE OF FILE-ID IS id-name]

Syntax Rules

1. File-name must refer to a file name contained in a SELECT clause in the
Environment Division. That SELECT clause may contain only ASSIGN
and FILE STATUS clauses. However, a PASSWORD clause,
TRACK-AREA clause, PROCESSING MODE clause, RECORDING
MODE clause, FILE-LIMIT clause, VALUE OF clause, and APPLY
clause may appear when the compiler is in the IBM DOS/VS COBOL
compatibility mode. These phrases are scanned, but otherwise they are
ignored.

2. The clauses following file-name may appear in any order.

3. Id-name must be either a non-numeric literal or the name of an
alphanumeric data item in Working Storage. The value of this name is
used as the file’s external name.

4. If a file-spec is specified in the file’s ASSIGN clause, id-name must be
identical to file-spec.

5-26 Data Division
5. One or more record description entries must follow a sort file
description entry.

General Rules

1. No I/O statement may refer to a file described by a sort file description
entry. Only the SORT and MERGE statements may refer to file-name.

2. The sort file description entry clauses are described in the following
sections.

Note: The compiler has an internal restriction of at least 6 bytes for SORT
FILE records. If a record is shorter than that, the compiler detects it and
pads the record to 6 bytes.

5.4.3 IS EXTERNAL Clause

The IS EXTERNAL clause specifies that the file is shared by more than one
program in a run unit.

General Format
IS EXTERNAL

Syntax Rules

1. The IS EXTERNAL declaration must be made in all the programs that
access the file or item externally. The file must be declared external by
each program in the run unit that will share a file’s current state and
record area.

2. The COBOL name of the file must be the same for all the programs
that declare the file.

3. Each program that declares an external file must describe the file the
same way.

File Section 5-27
General Rules

1. If one program opens the file, it is open for all programs that declare the
same file.

2. If one program moves the record pointer, the record pointer moves in
all the programs that declare the file.

3. Any data placed in the record area is accessible by all the programs
that declare the file.

5.4.4 BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format
BLOCK CONTAINS [min-block TO] max-block {RECORDS }
 {CHARACTERS}

Syntax Rules

1. Min-block is an integer literal that specifies the minimum block size.

2. Max-block is an integer literal that specifies the maximum block size.

General Rules

1. The BLOCK CONTAINS clause specifies the physical record size.

2. The min-block specification is treated as commentary by the compiler.
However, if RM/COBOL compatibility mode is being used, and
min-block is specified, then the entire BLOCK CONTAINS clause is
ignored by the compiler.

3. The compiler ignores the BLOCK CONTAINS clause for relative files.

4. For Vision files, max-block should be a multiple of 512 up to 8192 (the
value is the block size in bytes). For Version 3 and 2 files, max-block
should not exceed 1024. If it does, Vision automatically reduces it to
1024.

5. For sequential files, all input and output is done by blocks.

5-28 Data Division
6. The RECORDS phrase specifies the physical record size in terms of
logical records. If the file contains variable-length records, then the
exact block size will vary from machine to machine depending on how
variable-length records are stored on the host machine. The record size
used to compute the block size is equal to the largest logical record.

7. The CHARACTERS phrase specifies the physical record size in terms
of characters.

8. The final block of a file may contain fewer characters than specified by
the BLOCK CONTAINS clause.

9. If no BLOCK CONTAINS clause is specified, the block size is set to
one record. For files with variable-length records, the block size is set
to the current record size (not necessarily the largest).

10. Records read from a file with variable-length records are internally
blocked by ACUCOBOL-GT if no BLOCK CONTAINS clause is
specified. This allows for efficient processing of these files on input
while still allowing for line-by-line control over an output device (such
as a printer).

Book 1, User’s Guide, section 6.1, has more details on the handling of file
blocking.

5.4.5 RECORD Clause

The RECORD clause describes the size of the logical records.

General Format
RECORD { CONTAINS [min-rec TO] max-rec CHARACTERS }
 { IS VARYING IN SIZE [FROM min-rec] }
 { [TO max-rec] CHARACTERS }
 { [DEPENDING ON depend] }

Syntax Rules

1. Min-rec is an integer literal that defines the smallest record size.

2. Max-rec is an integer literal that defines the largest record size.

File Section 5-29
3. Depend is a numeric data item described in Working Storage or in
Linkage. Depend cannot be in the File Section.

General Rules

1. This clause is never required, because the minimum and maximum
record sizes of a file are computed by the compiler from the file’s record
descriptions. However, you may want to use this clause to indicate
variable-length records.

Note: The compiler has an internal restriction of at least 6 bytes for
SORT FILE records. If a record is shorter than that, the compiler
detects it and pads the record to 6 bytes.

2. No record description for a file can contain more characters than
specified by max-rec or fewer characters than specified by min-rec.

3. If min-rec is omitted, it is set to be equal to max-rec.

4. If the VARYING phrase is used, then the file has variable-length
records. If the CONTAINS phrase is used, and both min-rec and
max-rec are specified, the file will contain variable-length records. If
the CONTAINS phrase is used and only max-rec is specified, then the
file will contain fixed-length records.

5. If the DEPENDING ON phrase is used, the size of the record written
or rewritten to the file is set according to the value of depend. When a
record is read from the file, depend is set to the size of the record
found. Using the DEPENDING ON phrase automatically implies that
the file has variable-length records.

Note: Other source statements may take precedence over the RECORD
clause in determining the record type. The complete rules for determining
a file’s record type are described in section 5.1.7, “File Types.”

5-30 Data Division
5.4.6 LABEL RECORDS Clause

The LABEL RECORDS clause describes how file labels should be processed
by the compiler.

General Format
LABEL { RECORD IS } {STANDARD}
 { RECORDS ARE } {OMITTED }

General Rule

This clause is ignored by the compiler.

5.4.7 VALUE OF LABEL Clause

This clause describes the values contained in a file’s label records.

General Format
[VALUE OF LABEL IS label-lit]

Syntax Rule

Label-lit must be a non-numeric literal.

General Rule

This clause is ignored by the compiler.

5.4.8 VALUE OF FILE-ID Clause

The VALUE OF FILE-ID clause specifies the file’s external name. (This
can also be accomplished by the file’s ASSIGN clause. The VALUE OF
FILE-ID clause is provided for compatibility with other COBOL compilers.)

General Format
[VALUE OF { FILE-ID } IS id-name]

File Section 5-31
 { ID }

Syntax Rules

1. Id-name is either a non-numeric literal or the name of an alphanumeric
data item in Working-Storage. The value of this name is used as the
file’s external name.

2. If a file-spec is specified in the file’s ASSIGN clause, id-name must be
identical to file-spec.

5.4.9 CODE-SET Clause

The CODE-SET clause specifies the alphabet to use for a sequential file.

General Format
CODE-SET IS alphabet

Syntax Rules

1. Alphabet is the name of an alphabet declared in the SPECIAL-NAMES
section.

2. The CODE-SET clause may be associated only with a sequential file.

3. If the CODE-SET clause is used, then only USAGE DISPLAY items
may appear in the file’s record description entry. Furthermore, every
signed numeric field must have a SIGN IS SEPARATE clause.

General Rule

The CODE-SET clause associates a character set with a sequential file. If the
character set is not the native character set, then a translation to the native set
is also implied.

5.4.10 DATA RECORDS Clause

This clause names the record descriptions used by the file.

5-32 Data Division
General Format
DATA { RECORD IS } {record-name} ...
 { RECORDS ARE}

Syntax Rule

Record-name must name level 01 record descriptions associated with the
file.

General Rule

This clause is never required, because the compiler can determine which
records are associated with each file.

5.4.11 LINAGE Clause

The LINAGE clause is used to specify the number of lines on a logical page,
and optionally provide margin information.

General Format
LINAGE IS page-lines LINES

 [WITH FOOTING AT footing-line]

 [LINES AT TOP top-lines]

 [LINES AT BOTTOM bottom-lines]

Syntax Rules

1. Page-lines is a numeric literal or numeric data item whose value must be
a positive integer. It specifies the number of lines on the logical page.
Page-lines may be qualified.

2. Footing-line is a positive integer or numeric data item. Its values must
be greater than zero and less than or equal to page-lines. It specifies
the line number where the footing area begins on the page.
Footing-line may be qualified.

File Section 5-33
3. Top-lines and bottom-lines are integers or numeric data items. Their
values must be greater than or equal to zero. They represent the
numbers of lines in the top and bottom margins, respectively.
Top-lines and bottom-lines may be qualified.

4. The LINAGE clause may be specified for a sequential file only.

General Rules

1. The LINAGE clause specifies the number of lines on a logical page. The
total page size is the sum of page-lines, top-lines, and bottom-lines. If
the TOP or BOTTOM phrase is omitted, the corresponding value is
treated as zero. Note that footing-line is not added to the page size.

2. Page-lines specifies the size of the page body. This is the area of the
logical page in which the program can write or space lines.

3. Each logical page follows the preceding logical page with no additional
spacing. ACUCOBOL-GT does not provide physical page ejects
(form-feeds) when the LINAGE clause is used. Device positioning
occurs by line spacing rather than by page ejection.

4. The footing area is composed of the area between footing-line and
page-lines, inclusive. The footing area causes a page-overflow
condition when written in. If the FOOTING phrase is omitted, there is
no footing area.

5. Evaluation of the logical page size occurs as follows:

a. When the file is opened with the OUTPUT or EXTEND phrases,
the LINAGE clause values are evaluated and applied to the first
logical page. The device is assumed to be positioned at the
beginning of the logical page.

b. When the program executes a WRITE statement with the
ADVANCING PAGE option, or when a page-overflow condition
occurs, the LINAGE clause values are evaluated and applied to the
next logical page.

6. For each file that has a LINAGE clause associated with it, the compiler
creates an implicit data item called LINAGE-COUNTER associated
with that file. If more than one file in the program specifies a LINAGE
clause, reference to a LINAGE-COUNTER will have to be qualified by

5-34 Data Division
the appropriate file name. The LINAGE-COUNTER is an elementary
numeric data item that contains the same number of digits as
page-lines.

7. At any time, the value of LINAGE-COUNTER is the line number in
the current page body at which the device is positioned.

8. LINAGE-COUNTER may be treated as a normal numeric data item,
except that it may never be explicitly modified by the program.

9. The LINAGE-COUNTER is set to one when the file is opened.

10. Every WRITE statement that refers to a file with a LINAGE clause
affects the associated LINAGE-COUNTER in the following manner:

a. If the WRITE statement has the ADVANCING PAGE phrase, the
LINAGE-COUNTER is set to one.

b. If the WRITE statement has the ADVANCING LINES phrase, the
LINAGE-COUNTER is incremented by the value in the
ADVANCING phrase.

c. If the WRITE statement does not have an ADVANCING phrase,
the LINAGE-COUNTER is incremented by one.

5.5 WORKING-STORAGE Section

The Working-Storage Section is used to define data items local to the
program that do not reside in files.

General Format
WORKING-STORAGE SECTION.

 [record-description] ...

General Rules

1. Storage level 01, 77, and 78 data descriptions in Working-Storage must
be unique since they cannot be qualified.

LINKAGE Section 5-35
2. Subordinate data names need not be unique if they can be made unique
through qualification.

3. Unless given a value by a VALUE clause, each data item defined in
Working-Storage is initialized to spaces or the value specified with the
“-Dv” compile option.

4. Level 01 and 77 data items in Working-Storage may be declared to be
external, which means they are shared by more than one program.

Each program of a run unit that declares an external data item may access
that item. Any change to the item made by one program is automatically
seen by all the other programs. External data items may be shared
between COBOL and C programs.

5.6 LINKAGE Section

The Linkage Section is used to define data items that are passed from a
calling program.

General Format
LINKAGE SECTION.

 [record-description] ...

General Rules

1. Each level 01 and 77 data item described in Linkage must be uniquely
named.

2. Subordinate data names need not be unique if they can be made unique
through qualification.

3. Each level 01 and 77 data item declared in Linkage should be named in
a USING phrase of the Procedure Division header. Data items that are
REDEFINES of other data items should not be named, however.

4. There is a limit of 255 level 01 Linkage data items per program. There
is no limit for the number of subordinate items allowed for each of
these level 01 items.

5-36 Data Division
Note: There are two runtime configuration variables that relate to linkage
items: CHECK_USING for specifying paramater size-matching testing,
and OPTIMIZE_INDIVIDUAL_LINKAGE that perform address
optimizations on each Linkage item individually.

5.7 Record Description Entry

A record description entry describes the name, size, and format of a COBOL
logical record or data item.

General Format
{ data-description-entry } ...

Syntax Rule

The first data description entry of a record must have a level-number of 01 or
77 and start in Area A.

General Rules

1. Any data description entry that is not further subdivided is called an
elementary item. A record itself may consist of an elementary item
consisting of a single level 01 data description entry. A non-elementary
entry is called a group item.

2. An elementary data item that is not part of a larger record must have a
level-number of 01 or 77.

3. A group item that is not part of an enclosing group item must have a
level-number of 01.

5.7.1 Data Description Entry

A data description entry specifies the attributes of one data item.

Record Description Entry 5-37
General Format

Format 1
level-number [data-name]
 [FILLER]

 [REDEFINES prev-data-name]

 [IS EXTERNAL]
 [IS GLOBAL]
 [IS SPECIAL-NAMES {CURSOR }]
 {CRT STATUS }
 {CHART STATUS }
 {SCREEN CONTROL}
 {EVENT STATUS }

[IS EXTERNAL-FORM [IDENTIFIED BY template-file-name]]
 [IS IDENTIFIED BY external-name]

 [{PICTURE} IS picture-string]
 {PIC }

 [[USAGE IS] usage-type]

 [[SIGN IS] {LEADING } [SEPARATE CHARACTER]]
 {TRAILING}

 [OCCURS
 { table-size TIMES }
 { min TO max TIMES DEPENDING ON dep-item }

 [{ASCENDING } KEY IS {key-name} ...] ...
 {DESCENDING}

 [INDEXED BY {index-name} ...]]

 [{SYNCHRONIZED} [LEFT]]
 {SYNC } [RIGHT]

 [{JUSTIFIED} RIGHT]
 {JUST }

 [BLANK WHEN ZERO]

5-38 Data Division
 [VALUE IS value-lit] .

Format 2
66 new-name RENAMES name-start [{THRU } name-end] .
 {THROUGH}

Format 3
78 user-name VALUE IS {literal-1} [{+} literal-2] .
 {NEXT } {-}
 {*}
 {/}

Format 4
88 cond-name {VALUE IS } { low [{THRU } high] } ...
 {VALUES ARE} {THROUGH}

 [WHEN SET TO FALSE false-val] .

Syntax Rules

1. Level-number in Format 1 can be any number from 01 through 49, or 77.

2. Data description clauses may appear in any order, with two exceptions:

a. The optional data-name or FILLER clause must immediately
follow the level-number.

b. The optional REDEFINES clause must immediately follow the
data-name or FILLER clause.

3. Only level 01 and level 77 Working Storage data items may be
declared EXTERNAL. Each program that declares an external data
item must use the same name for that item, and the item must occupy
the same number of bytes. External data items may not have a
VALUE phrase.

4. The phrase IS GLOBAL is accepted by the compiler as a commentary.

5. Template-file-name and external-name are alphanumeric literals or
unqualified data names. If a data name is used, it must refer to an
unambiguous data item.

Record Description Entry 5-39
6. Format 1 data description entries that specify a PICTURE clause, or a
USAGE clause that allows a PICTURE clause, are elementary items.
All other Format 1 entries are group items.

7. There must be a PICTURE clause for all Format 1 elementary items
except those that specify a USAGE clause that does not allow a
PICTURE clause (for details, see section 5.7.1.8, “USAGE clause”).

8. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO clauses can appear only in a record description for an
elementary item.

9. A level 78 entry associates a value with the name of a constant.
User-name names the constant, and literal may be any literal.

10. Each cond-name requires a separate Format 4 entry. The level 88
entry associates a set of values with cond-name. All cond-name
entries for a data item must immediately follow that data item’s record
description.

11. A cond-name can be associated with any data item except the
following:

a. another cond-name

b. a level 66 or 78 data item

c. a group item that contains items with JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY)
clauses.

d. an index data item

General Rule

The individual clauses are described in the following sections.

5.7.1.1 Level-number

The level-number of a data item shows the hierarchy of that data item within
its logical record. It is also used to denote individual data items and condition
names.

5-40 Data Division
Syntax Rules

1. Data description entries subordinate to an FD entry must have
level-numbers with the values 01 through 49, 66, 78, or 88.

2. Data description entries in Working-Storage may have level-numbers
with the values 01 through 49, 66, 77, 78, or 88.

3. Data description entries in Linkage may have level-numbers with the
values 01 through 49, 66, 77, 78, or 88.

General Rules

1. The level-number 01 indicates the first entry in a record description.

2. Each data description entry in a record description can be subdivided
into multiple data description entries, each having the same
level-number. This level-number must be greater than the
level-number of the subdivided entry, but less than 50. These
level-numbers do not have to be successive. Thus you construct a
record hierarchy of data items by using level-numbers.

3. An elementary data item may not be immediately followed by a data
item with a higher level-number (except for levels 66, 77, 78, and 88).

4. Multiple level 01 entries subordinate to a file description entry
represent implicit redefinitions of the same area.

5. Level-number 66 may be used to identify only RENAMES entries
(Format 2 data description entry).

6. Level-number 77 identifies a non-contiguous data item entry.
Level-number 77 entries may not have subordinate data description
entries except for level 88 items.

7. A level 78 entry associates a value with the name of a constant. The
name of the constant can be used anywhere the corresponding literal
can be used.

8. You may use a level 78 named constant as a repeat count in a
PICTURE string. This means that, in a PICTURE string, you may
substitute a level 78 for a number in parentheses. In the following
example, DATA-1 and DATA-2 are both the same size:

 78 LENG-20 VALUE 20.

Record Description Entry 5-41
 01 DATA-1 PIC X(20).
 01 DATA-2 PIC X(LENG-20).

The PICTURE string that results from the substitution of the level 78 for
its value must be legal. Use this in programs when several data items
must be the same size and you want to be able to easily change the size
in the future.

9. Level-number 88 defines a condition name. It can be used only in a
Format 4 data description entry.

5.7.1.2 The data-name or FILLER clause

The data-name clause specifies the name of the data area.

General Format
[data-name]
[FILLER]

Syntax Rules

1. The data-name or FILLER clause must appear immediately after the
level-number in a data description entry.

2. Data-name is a user-defined word.

3. A FILLER data item may not be declared EXTERNAL.

General Rules

1. If there is no data-name or FILLER clause, the FILLER clause is
implied.

2. The FILLER clause names a data item that the program cannot
explicitly refer to.

3. The FILLER clause can name a data item that is the object of a level
88 condition name.

5-42 Data Division
5.7.1.3 REDEFINES clause

The REDEFINES clause allows the same computer memory area to be
described by different data items. ACUCOBOL-GT extends ANSI-85
COBOL by allowing a REDEFINES phrase to reference an item that is itself
a redefinition of an area.

General Format
level-number [data-name] REDEFINES prev-data-name
 [FILLER]

Syntax Rules

1. The level-number, data-name, and FILLER phrases in the General
Format are not actually part of the REDEFINE clause. They are
included for clarity.

2. The level-numbers of the subject of a REDEFINES clause and
prev-data-name must be the same. They may not be 66 or 88.

3. REDEFINES is allowed in a level 01 entry in the File Section, but it
will generate a warning message.

4. The number of character positions described by prev-data-name need
not be the same as the number of character positions in the subject of
the REDEFINES clause. The compiler generates a warning, however,
if the number of character positions is greater in the subject of the
REDEFINES clause than in prev-data-name and the level-number of
the two data items is not 01 or 77 (this case is not allowed under ANSI
COBOL).

5. The data item being redefined may be qualified, but any qualification
specified is ignored.

Example: 01 MY-FILLER REDEFINES THIS-FIELD OF
THIS-GROUP.

The phrase in the example compiles, but the qualification “OF
THIS-GROUP” is ignored.

6. Several data items can redefine the same memory area.

Record Description Entry 5-43
7. No entry with a level-number lower than that of prev-data-name can
occur between the data description entry for prev-data-name and the
redefinition.

8. All entries redefining the storage area of a data item must immediately
follow the entries describing that data item. No intervening entries that
define additional storage may appear.

9. The IS EXTERNAL clause may not be used with the FILLER or
REDEFINES clauses.

General Rules

1. Storage allocation for the redefining data item starts at the location of
prev-data-name.

2. Storage allocation continues until it defines the number of character
positions described by the redefining entry.

3. Prev-data-name may contain the OCCURS clause, although this is not
compatible with ANSI COBOL. If such a situation exists, the compiler
will return a “caution” warning indicating a non-ANSI construct.
Cautions are shown only when you compile with the “-a” option.
When you REDEFINE a data item with an OCCURS clause, the
redefining item starts at the same memory location as the first
occurrence of the redefined item.

4. In large model programs, certain REDEFINES could cause VALUE
clauses to be lost. This happens when the VALUEs are set in a data
item that is not a large data item, and then that data item is redefined as
a large data item. When that occurs, the compiler detects the situation
and issues a warning message:

Warning: Large redefines of a regular variable with a
value: desc2 redefines desc1

When you see this warning message, you should modify your COBOL
program to add FILLER to the first data item in order to make it a large
data item. For example, the following code:

01 small-group-item.
 03 small-data-item pic x(100) value "this is a test".

01 large-group-item redefines small-group-item.
 03 free-form-text pic x(100) occurs 1000 times.

5-44 Data Division
will compile, but the value of small-data-item will be spaces when the
program starts. To work around this, add:

03 filler pic x(65000).

to the small-group-item after the small-data-item. The resulting code
should look like this:

01 small-group-item.
 03 small-data-item pic x(100) value "this is a test".
 03 filler pic x(65000).

5.7.1.4 IS EXTERNAL clause

The IS EXTERNAL clause declares that a data item is shared by two or more
programs.

General Format
[IS EXTERNAL]

Syntax Rules

1. Only level 01 and 77 data items in Working-Storage may be declared to
be external.

2. Each program that declares an external data item must use the same
name for that item, and the item must occupy the same number of
bytes.

3. External data items may not have a VALUE phrase.

4. The IS EXTERNAL clause may not be used with the REDEFINES
clause.

General Rules

1. The phrase IS EXTERNAL must be included in the data description of
the item in each program that accesses the item externally. Each
program of a run unit that declares an external data item may access that
item. Any change to the item made by one program is automatically
seen by all the other programs. External data items may be shared
between both COBOL and C programs.

Record Description Entry 5-45
2. An external data item belongs to the run unit, not to any of the
programs that are part of the run unit. This means that an external data
item is allocated for the duration of the run, regardless of the action of
CANCEL verbs.

The one exception to this rule is external data items that are also C data
items. These belong to the runtime system itself, not to the run unit. The
distinction is that you can initiate another run unit with the CALL RUN
verb, but this does not initiate another runtime system. In this case, you
get new copies of the COBOL-only external data items, but keep the
same data items that are shared with C programs.

3. Instructions for declaring a C data item external can be found in the file
“direct.c” supplied with the runtime system. External data items may
not have a VALUE phrase. They are initialized to binary zeros
(NULL) by the runtime.

5.7.1.5 IS SPECIAL-NAMES clause

The IS SPECIAL-NAMES clause allows you to identify select
Special-Names directly in the Data Division.

General Format
 [IS SPECIAL-NAMES {CURSOR }]
 {CRT STATUS }
 {CHART STATUS }
 {SCREEN CONTROL}
 {EVENT STATUS }

Syntax Rule

The syntax is identical to declaring data-name in Special-Names with the
indicated phrase. See section 4.2.3.

General Rule

Only one data item can be declared for each Special-Names type. Items
identified in the IS SPECIAL-NAMES phrase cannot appear in the
Special-Names paragraph of the Environment Division. If there is a
corresponding item, the declaration must be identical.

5-46 Data Division
The advantage of the IS SPECIAL-NAMES syntax over naming the items in
Special-Names is that a single COPY library can be used to include all of
your commonly used Special-Names items. For example, you might have a
COPY library that reads:
* Declare commonly used screen handling items

01 SCREEN-CONTROL IS SPECIAL-NAMES SCREEN CONTROL.
 03 ACCEPT-CONTROL PIC 9.
 03 CONTROL-VALUE PIC 999.

01 CURSOR-POSITION IS SPECIAL-NAMES CURSOR.
 03 CURSOR-ROW PIC 999.
 03 CURSOR-COL PIC 999.

77 CRT-STATUS IS SPECIAL-NAMES CRT STATUS PIC 9(5).

5.7.1.6 IS EXTERNAL-FORM clause

The IS EXTERNAL-FORM clause associates a group item with HyperText
Markup Language (HTML) data using the Common Gateway Interface
(CGI) specification. It allows you to define input and output records for
HTML forms and is useful when your COBOL code is part of an
Internet-based application.

General Format
[IS EXTERNAL-FORM [IDENTIFIED BY template-file-name]]
[IS IDENTIFIED BY external-name]

Syntax Rule

Template-file-name and external-name are alphanumeric literals or
unqualified data names. If a data name is used, it must refer to an
unambiguous data item.

General Rules

1. The EXTERNAL-FORM clause associates a group item with HTML
data using the Common Gateway Interface (CGI) specification. It
allows you to define input and output records for HTML forms. The

Record Description Entry 5-47
EXTERNAL-FORM clause affects the way ACCEPT and DISPLAY
process the data item. It does not put any restrictions on the way that the
data item may be used in your program.

2. An EXTERNAL-FORM data item is called an “output form” if the
IDENTIFIED BY clause is used in the description of the group item.
This clause associates the data item with an HTML template file. If
the IDENTIFIED BY clause is omitted from the group item, the
EXTERNAL-FORM data item is called an “input form”.

3. For “input forms,” the IDENTIFIED BY clause establishes an
association between an elementary data item and a CGI variable. The
value of external-name is the name of the CGI variable. If the
IDENTIFIED BY phrase is omitted, then data item’s own name
(data-name) is used as the name of the CGI variable. If both the
IDENTIFIED BY phrase and data-name are omitted, then the data
item has no corresponding CGI variable.

4. CGI variables are case-sensitive. The runtime matches CGI names
according to their case. However, if a CGI variable is not found using
a case-sensitive match, then the runtime tries a case-insensitive match.
Note that data-name is always treated as if it were upper case
regardless of the case used in the COBOL source. The case of the
value specified by the IDENTIFIED BY phrase is preserved.

5. The ACCEPT verb treats input forms and output forms in the same
manner. ACCEPT sets the value of each elementary item, in order, to
the value of its associated CGI variable. The CGI data is retrieved
from the program’s standard input. ACCEPT automatically decodes
and translates the CGI input data before moving it to the elementary
data item. The value of each CGI variable is converted to the
appropriate COBOL data type when it is moved. If the CGI variable is
empty or does not exist, ACCEPT sets the value of numeric data items
to zero, and nonnumeric data items to spaces.

6. To receive a CGI variable that is repeated (this occurs when multiple
items have been selected in a “choose many” list), you should use an
elementary data item that is part of a table. Each occurrence of the
data item receives one of the repeated values. The first occurrence
receives the first repeated CGI item; the second occurrence receives the
second repeated item; and so forth. Occurrences that do not
correspond to repeated CGI items are set to zero if the data item is
numeric, or spaces otherwise.

5-48 Data Division
7. Data items are matched to CGI variables immediately before the
particular CGI data item is retrieved. Thus it is possible for a form to
have CGI variable names supplied by the CGI input itself. Consider:

01 MY-FORM IS EXTERNAL-FORM
 03 CGI-VAR1 PIC X(20) IDENTIFIED BY "Name".
 03 CGI-VAR2 PIC X(50) IDENTIFIED BY CGI-VAR1.

In this example, an ACCEPT MY-FORM statement would first locate
the CGI variable called “Name” and move its value to CGI-VAR1. It
would then locate a CGI variable identified by that value and move the
corresponding value to CGI-VAR2. Note that, for this to work, you must
specify CGI-VAR1 before CGI-VAR2 in MY-FORM, because
ACCEPT updates the elementary data items in order.

8. The DISPLAY verb treats input and output forms differently. For
output forms, DISPLAY merges the data contained in the elementary
items into the associated HTML template file and sends the result to
the standard output stream in conformance with the CGI specification.
To do this, DISPLAY scans the HTML template file for data names
delineated by two percentage signs on either side (i.e.
%%data-name%%). It then replaces those data names with the
contents of the associated elementary items from the output form,
stripping trailing spaces. The maximum length of a single line in the
template file is 256 bytes. There is virtually no limit to the length of a
single HTML output line. No conversion is performed on the output
form items before they are merged with the HTML template file.

9. When an input form is specified in a DISPLAY statement, the names
and values of each elementary item are sent to the standard output
stream in HTML format. One line is generated for each elementary
item. The line consists of the name of the item followed by “ = “,
followed by the first 100 bytes of the item’s value. This can be useful
when you are testing and debugging your CGI program.

10. Template-file-name specifies the name of the HTML template file.
You can specify a series of directories for locating HTML template
files. To do this, use the HTML_TEMPLATE_PREFIX configuration
variable. This variable is similar to FILE_PREFIX and
CODE_PREFIX. It specifies a series of one or more directories to be
searched for the desired HTML template file. The directories are
specified as a sequence of space-delimited prefixes to be applied to the

Record Description Entry 5-49
file name. All directories in the sequence must be valid names. The
current directory can be indicated by a period (regardless of the host
operating system).

11. You can omit the suffix if it is either “.html” or “.htm”. If the suffix is
omitted or is something other than “.html” or “.htm”, DISPLAY first
appends “.html” to the specified file name and tries to open it. If that
fails, DISPLAY appends “.htm” to the file name and tries to open it. If
that fails, DISPLAY tries to open the file exactly as specified. If these
attempts fail, the following error message is sent to the standard output
stream in HTML format:

Can't open HTML template "template-file-name"

12. When the Web Server executes your CGI program, the current working
directory depends on the configuration of the specific Web Server that
is running. In many cases it is the same as the Web Server’s “root”
directory. As part of the CGI specification, when the Web Server
executes your CGI program, it sets an environment variable called
PATH_TRANSLATED to the directory containing your CGI program.
You may want to use this information to locate your HTML template
files.

For example, if your template files are in the same directory as your CGI
programs, then set the HTML_TEMPLATE_PREFIX configuration
variable to the value of PATH_TRANSLATED as follows:

01 CGI-DIRECTORY PIC X(100).

ACCEPT CGI-DIRECTORY FROM ENVIRONMENT "PATH_TRANSLATED"
SET CONFIGURATION "HTML_TEMPLATE_PREFIX" TO
 CGI-DIRECTORY.

13. The output from a CGI program must begin with a “response header”.
DISPLAY automatically generates a “Content-Type” response header
when template-file-name specifies a local file (i.e., not a URL - see
rule #15 below).

14. You may specify the EXTERNAL-FORM clause for an item that has
no subordinate items. This is useful for displaying static Web pages.
To do this, specify the name of the static Web page in
template-file-name. For example, if you have a Web page called
“webpage1.html”, add the following lines to your COBOL program:

5-50 Data Division
01 WEB-PAGE-1 IS EXTERNAL-FORM,
 IDENTIFIED BY "webpage1".

DISPLAY WEB-PAGE-1.

15. You may also specify a complete URL in template-file-name. In this
case, DISPLAY generates a “Location” response header that contains
the URL. This header specifies that the data you’re returning is a
pointer to another location. To determine whether template-file-name
is a URL, DISPLAY scans it for the string “://”. DISPLAY does not
apply HTML_TEMPLATE_PREFIX when template-file-name is a
URL. For example, if your program determines that the information
the user has requested is on another Web server, and its URL is “http:/
/www.theinfo.com”, add the following lines to your COBOL program:

01 THE-INFO-URL IS EXTERNAL-FORM
 IDENTIFIED BY "http://www.theinfo.com"

DISPLAY THE-INFO-URL.

The length of the URL must not exceed 256 bytes. Only one response
header is sent to the standard output stream. Your CGI program should
exit immediately after sending a location header (i.e., after displaying an
external form identified by a URL).

16. You may use as many HTML template files as you like in a single
program. A common way to use multiple HTML template files is to
have three output forms: a header, body, and footer. Each of these has
a corresponding HTML template file. You first display the header
form, then move each row of data to the body form and display it, and
finally display the footer form.

17. Data items that do not have EXTERNAL-FORM specified are treated
as regular data items by ACCEPT and DISPLAY, even if they are
subordinate to an external form. For example:

01 MY-FORM IS EXTERNAL-FORM.
 03 CGI-VAR1 PIC X(10)
 03 CGI-VAR2 PIC 9(5).

Using this data structure, an ACCEPT of MY-FORM would fill in
CGI-VAR1 and CGI-VAR2 with CGI data. An ACCEPT of CGI-VAR1
would simply get data from the user just as it does for any regular data
item.

Record Description Entry 5-51
5.7.1.7 PICTURE clause

The PICTURE clause describes the general characteristics and editing
formats of an elementary item.

General Format
{PICTURE} IS picture-string
{PIC }

Syntax Rules

1. A PICTURE clause can appear for elementary items only.

2. The maximum size of the picture-string is 100 characters.

3. A PICTURE clause is required for every elementary data item except
for those items with a USAGE clause that disallows a PICTURE, or
those items that are the subject of a RENAMES clause. A PICTURE
clause is prohibited for these items.

4. PIC and PICTURE may be used interchangeably.

5. A picture is invalid if it specifies more than 31 digits to the left of the
decimal point or more than 32 digits to the right of the decimal point,
including assumed zero digits represented by “P” and floating insertion
positions that may hold digits. If a picture exceeds these scaling
limitations, a compile-time error message is produced.

General Rules

The PICTURE clause defines a data item as belonging to one of five
categories and determines what the item can contain. The five categories are:

• Alphabetic

• Numeric

• Alphanumeric

• Alphanumeric Edited

• Numeric Edited

5-52 Data Division
Alphabetic:

1. An item is alphabetic when its picture-string consists solely of “A”
symbols.

2. An alphabetic item may contain only one or more alphabetic
characters.

Note: The alphabetic declaration show’s the programmer’s intent to store
only alphabetic data, however the system does not provide any checks to
ensure compliance.

Numeric:

1. An item is numeric when its picture-string contains only the symbols
“9”, “P”, “S”, and “V”. The number of digit positions described by
picture-string must range from 1 to 18 inclusive. This increases to 31
digit positions if 31-digit support (-Dd31 compiler option) is in effect.

2. If unsigned, its contents must be one or more numeric characters. If
signed, then the item may also contain a “+” or “-” (or other
representation of the sign--see section 5.7.1.9, “SIGN clause”).

3. The numeric category of the PICTURE clause includes an external
floating-point data item, which is defined by a picture that strongly
resembles a floating-point numeric literal. For more information about
External Floating-Point, see section 5.5 in Transitioning to
ACUCOBOL-GT.

Alphanumeric:

1. An item is alphanumeric when its picture-string consists solely of the
symbols “A”, “X”, and “9”. A picture-string containing all “A” or all
“9” symbols is not alphanumeric. When used in an alphanumeric item,
the “A” and “9” symbols are treated as if they were “X” symbols.

2. Its contents may contain one or more characters in the computer’s
character set.

Record Description Entry 5-53
Alphanumeric edited:

1. An item is alphanumeric edited when its picture-string contains certain
combinations of the symbols “A”, “X”, “9”, “B”, “0”, and “/”. The
picture-string must contain at least one “A” or “X” symbol and at least
one “B”, “0”, or “/” symbol.

2. Its contents may contain two or more characters in the computer’s
character set.

Numeric edited:

1. An item is numeric edited when its picture-string contains certain
combinations of the symbols “B”, “/”, “P”, “V”, “Z”, “0”, “9”, comma,
period, “*”, “+”, “-”, “CR”, “DB”, and the currency symbol. The
number of digit positions that can be represented by the picture-string
must range between 1 and 18 inclusive. This increases to 31 digit
positions if 31-digit support (-Dd31) is in effect. The picture-string must
contain at least one “0”, “B”, “/”, “Z”, “*”, “+”, comma, period, “-”,
“CR”, “DB”, or currency symbol.

2. The content of each character position must be consistent with the
corresponding PICTURE symbol.

All types:

1. Some PICTURE symbols represent character positions and some do not.
A data item’s size is determined by adding up all the symbols that
represent character positions.

2. A picture-string may contain repeat counts for its symbols. You
denote this by placing the repeat count in parentheses immediately
after the symbol that is being repeated. For example, “X(4)” and
“XXXX” are equivalent PICTURE strings.

3. Only one “S” may appear in a PICTURE string, and it must be the
leftmost character. Only one of the following symbols may appear in a
PICTURE string: “V” or the period character. It may appear only
once. At least one of the symbols “A”, “X”, “Z”, “9”, or “*” or at least
two occurrences of the symbols “+”, “-”, or the currency symbol must
be present in a PICTURE string.

5-54 Data Division
The PICTURE symbols and their functions are the following:

A Represents a character position that can contain only an
alphabetic character. It is counted in the size of an item. An
alphabetic character is any character “A” through “Z”, “a”
through “z”, or a space.

B Represents a character position where a space will be
inserted. It is counted in the size of an item.

E A delimiter directly preceding the (signed or unsigned)
exponent part of an External Floating-Point notation. The
exponent is always exactly two digits long, so the last two
characters of the picture must be “99”. This delimiter is
counted in the size of an item.

P This symbol is used to specify an assumed scaling position
in a number. The “P” character is not counted in the size of
the data item. Instead, each “P” represents a scaling of the
data item by a power of ten. “P” elements can appear only as
a contiguous string of “P”s in either the leftmost or rightmost
digit positions of a picture-string. If the “V” character is
used, it must be to the left of all leading “P”s or to the right
of all trailing “P”s. The assumed decimal point for the item
is located at the point where the “V” character may be
placed. For example, the PICTURE string “9P” is a
one-digit item that can have numeric values of “10”, “20”, ...,
“90”, and a PICTURE string of “PPP9” is a one-digit item
that can have numeric values of “0.0001” though “0.0009”.
The “.” character may not be specified in the same
picture-string as a “P” character. When a data item is
treated as a numeric value, each “P” position acts as if it were
a digit position that contained a zero. When a data item is
not treated as a numeric value, then its “P” positions are
ignored.

Record Description Entry 5-55
S Indicates the presence of an operational sign for a numeric
item. It does not specify the sign representation or position.
Only one “S” may appear in a PICTURE string, and it must
be the leftmost character. It does not count in the size of the
data item unless the SIGN IS SEPARATE clause is also
specified.

Note that the PICTURE definition for a PIC X(n) COMP-5
cannot be signed.

V Specifies the location of an assumed decimal point. It may
appear only once in a PICTURE string. It does not represent
a character position and is not counted in the size of the data
item.

X Represents a character position that can contain any
character from the computer’s character set. It is counted in
the size of an item.

Z Represents a leading digit position that is replaced by a space
when its value and the digit positions to its left are all zero.
It is counted in the size of an item.

9 Represents a digit position which is counted in the size of an
item.

0 Represents a digit position where a zero will be inserted. It
is counted in the size of an item.

/ Represents a character position where a slash will be
inserted. It is counted in the size of an item.

, The comma character represents a character position where a
comma will be inserted. It counts in the size of an item.

. The period character represents a character position where a
decimal point will be inserted. It also implies an operational
decimal point for alignment purposes. It counts in the size of
an item. Note that the functions of comma and period are
exchanged if the DECIMAL-POINT IS COMMA clause is
stated in the program’s SPECIAL-NAMES paragraph.

+ - Represent editing sign control symbols. These can occur
more than once. Each counts in the size of an item.

5-56 Data Division
Editing Rules

1. The two methods of editing

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement.

2. The four types of insertion editing:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

3. The two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

4. Types of editing allowed:

CR Represents an editing sign control symbol. It may be used
only once on the rightmost side of the PICTURE string. It
adds two to the size of a data item.

DB Represents an editing sign control symbol. It may be used
only once on the rightmost side of the PICTURE string. It
adds two to the size of a data item.

* Represents a leading digit that is replaced by asterisks when
its value and all of the digits to its left are zero. It is counted
in the size of an item.

$ Represents a character position into which the currency
symbol is inserted. It is counted toward the size of an item.
Note that the dollar sign is the default currency symbol. It
may be changed by the CURRENCY clause of the
SPECIAL-NAMES paragraph.

Record Description Entry 5-57
The type of editing that may be performed on an item is dependent on the
category of that item. No editing may be performed on alphabetic,
numeric, or alphanumeric items. Simple insertion of types “0”, “B”,
and “/” may be performed on alphanumeric edited types. All forms of
editing are allowed on numeric edited items.

5. Floating insertion, zero suppression, and the PICTURE clause

Floating insertion and zero suppression and replacement are mutually
exclusive in a PICTURE clause. Only one type of zero suppression and
replacement may be used in a PICTURE clause.

6. Simple Insertion Editing

The comma, “B”, “0”, and “/” are used as simple insertion characters.
The insertion characters represent positions in an item where those
characters will be inserted. If the comma is the last symbol in a
PICTURE clause, the PICTURE clause must be the last clause in its data
description entry, and the clause must be immediately followed by a
period.

7. Special Insertion Editing

The period is used as an insertion character, as it is in simple insertion.
In addition to being used as an insertion character, it also represents the
operational decimal point of the item. The period may not appear in the
same PICTURE clause as the “V” symbol. If the period is the last
symbol in the PICTURE clause, then the PICTURE clause must be the
last clause in its data description entry, and the clause must be
immediately followed by a period.

8. Fixed Insertion Editing

The currency symbol and the editing sign control symbols “+”, “-”,
“CR”, and “DB” are the insertion characters. Only one currency symbol
and only one of the editing sign control symbols can be used in a given
PICTURE clause. The symbols “CR” and “DB”, when used, must
appear as the rightmost symbols in the PICTURE string. The symbol
“+” or “-”, when used, must either be the leftmost or rightmost character
position to be counted in the size of the item. The currency symbol must
be the leftmost character except that it may be preceded by either a “+”
or “-” symbol.

5-58 Data Division
Fixed insertion editing results in the insertion character’s occupying the
same character position in the edited item as it occupied in the PICTURE
string. Editing sign control symbols produce the following results
depending on the value of the data item:

9. Floating Insertion Editing

The currency symbol and editing sign control symbols “+” and “-” are
the floating insertion characters. They are mutually exclusive in a
PICTURE clause. You indicate floating insertion by using a string of at
least two of the floating insertion characters. This string may contain
any of the simple insertion characters or have the simple insertion
characters immediately to the right. These simple insertion characters
are part of the floating string.

The leftmost character of the floating insertion string represents the
leftmost limit of the floating symbols in the data item. The rightmost
character represents the rightmost limit. The second floating character
from the left represents the leftmost limit of the numeric data that can be
stored in the data item. Non-zero numeric data may replace all the
characters at or to the right of this limit.

In a PICTURE string, there are only two ways of representing floating
insertion editing. One way is to represent any or all of the leading
numeric character positions on the left of the decimal point by the
insertion character. The other way is to represent all of the numeric
character positions by the insertion character.

If the insertion character positions are only to the left of the decimal
point, the result is that a single floating insertion character will be placed
into the character position immediately preceding either the decimal

Editing Symbol Zero or Positive Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Record Description Entry 5-59
point or the first non-zero digit in the data represented by the insertion
symbol string, whichever is leftmost. The character positions preceding
the insertion character are replaced by spaces.

If all numeric character positions in the PICTURE string are represented
by the insertion character, the results depend on the value of the data. If
the value is zero, the entire data item will contain spaces. If the value is
not zero, then the results are the same as when the insertion character is
only to the left of the decimal point.

The character inserted for the “+” symbol is “+” if the value is zero or
positive and “-” if it is negative. The character inserted for the “-”
symbol is “-” if the value is negative and space otherwise.

10. Zero Suppression and Replacement Editing

The suppression of leading zeros in numeric character positions is
indicated by the use of the “Z” and “*” symbols. These symbols are
mutually exclusive in a PICTURE clause. If a “Z” is used, the
replacement character is a space. If “*” is used, the replacement
character is an asterisk.

You indicate zero suppression and replacement by using a string of one
or more of the allowable symbols to represent leading numeric character
positions which are to be replaced when the associated character position
in the data contains a leading zero. Any of the simple insertion
characters embedded in the string of symbols or to the immediate right
of this string are part of the string.

In a PICTURE string, there are only two ways of representing zero
suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression
symbols. The other is to represent all of the numeric character positions
by suppression symbols.

If the suppression symbols appear only to the left of the decimal point,
any leading zero in the data that corresponds to a symbol in the
suppression string is replaced by the replacement character.

If all numeric positions in the PICTURE string are represented by
suppression symbols and the value of the data is not zero, the result is the
same as if the suppression characters were only to the left of the decimal

5-60 Data Division
point. If the value is zero and the suppression symbol is “Z”, the entire
data item is set to spaces. If the suppression symbol is “*” instead, the
entire data item is set to asterisks except for the decimal point (if any),
which will appear in the data item.

11. The symbols “+”, “-”, “*”, “Z”, and the currency symbol, when used as
floating replacement characters, are mutually exclusive in a given
PICTURE clause.

5.7.1.8 USAGE clause

The USAGE clause specifies the format of a data item in computer memory
or in a file record.

In some circumstances, a data item’s file-record format may differ from its
computer-memory format as specified by the USAGE clause. This can occur
when non-COBOL file systems with different data storage formats are being
accessed through an interface. For example, Acu4GL uses SQL to access
non-COBOL file systems, and in the process a translation occurs on the data.

Note: There are numerous compiler options for affecting data storage
behavior. See Section 2.2.10, “Data Storage Options” of the
ACUCOBOL-GT User’s Guide for details on these options.

General Format
[USAGE IS] {COMPUTATIONAL }
 {COMP }
 {COMPUTATIONAL-1 }
 {COMP-1 }
 {COMPUTATIONAL-2 }
 {COMP-2 }
 {COMPUTATIONAL-3 }
 {COMP-3 }
 {COMPUTATIONAL-4 }
 {COMP-4 }
 {COMPUTATIONAL-5 }
 {COMP-5 }
 {COMPUTATIONAL-6 }
 {COMP-6 }
 {COMPUTATIONAL-X }
 {COMP-X }

Record Description Entry 5-61
 {COMPUTATIONAL-N }
 {COMP-N }
 {BINARY }
 {PACKED-DECIMAL }
 {DISPLAY }
 {INDEX }
 {POINTER }
 {FLOAT }
 {DOUBLE }
 {SIGNED-SHORT }
 {UNSIGNED-SHORT }
 {SIGNED-INT }
 {UNSIGNED-INT }
 {SIGNED-LONG }
 {UNSIGNED-LONG }
 {HANDLE [OF {WINDOW }] }
 {SUBWINDOW }
 {FONT [font-name] }
 {control-type }
 {THREAD }
 {MENU }
 {VARIANT }
 {LAYOUT-MANAGER [layout-name] }

Syntax Rules

1. The column on the left shows the accepted abbreviations for the terms on
the right:

COMP COMPUTATIONAL
COMP-1 COMPUTATIONAL-1
COMP-2 COMPUTATIONAL-2
COMP-3 COMPUTATIONAL-3
COMP-4 COMPUTATIONAL-4
COMP-5 COMPUTATIONAL-5
COMP-6 COMPUTATIONAL-6
COMP-X COMPUTATIONAL-X
COMP-N COMPUTATIONAL-N

2. A USAGE clause may be used in any data description entry except
those with level-numbers 66, 78, and 88.

3. A USAGE clause may not be used with an external floating-point data
item.

5-62 Data Division
4. If a USAGE clause is in the data description entry for a group item,
then any USAGE clauses that appear for subordinate entries must be of
the same type.

5. The PICTURE string of a COMP, COMP-1, COMP-2, COMP-3,
COMP-4, COMP-5, COMP-6, BINARY, or PACKED-DECIMAL item
can contain only the symbols “9”, “S”, “V”, and “P”. COMP-6 items
may not use the “S” symbol.

6. The PICTURE string of a COMP-X or COMP-N item may contain
only all “9” symbols or all “X” symbols.

7. The data description entry for a USAGE IS INDEX data item cannot
contain any of the following clauses: BLANK WHEN ZERO,
JUSTIFIED, PICTURE, and VALUE IS.

8. Level 88 items may not be specified for a USAGE IS INDEX data
item.

9. The data description entry for a USAGE IS POINTER data item cannot
contain any of the following clauses: BLANK WHEN ZERO,
JUSTIFIED, or PICTURE. A POINTER data item may have a value
clause specified for it, but the value must be the word NULL.

10. The data description entry for a USAGE IS FLOAT or a USAGE IS
DOUBLE data item cannot contain any of the following clauses:
BLANK WHEN ZERO, JUSTIFIED, or PICTURE. FLOAT or
DOUBLE data items may have a value clause. The value may be a
floating point literal, a numeric literal, or the word ZERO. Here is an
example of a Working-Storage Section data item:

01 F-DATA-1 USAGE IS FLOAT
 VALUE IS 3.97E+24.

11. The following are collectively called the “C-style” data types:
SIGNED-INT, UNSIGNED-INT, SIGNED-SHORT,
UNSIGNED-SHORT, SIGNED-LONG, UNSIGNED-LONG. These
data types are similar to the data types found in the C programming
language.

The data description entry for a C-style data type cannot contain any of
the following clauses: BLANK WHEN ZERO, JUSTIFIED, or
PICTURE.

Record Description Entry 5-63
12. Control-type is one of the graphical control type names known to the
compiler, such as LABEL or ENTRY-FIELD, or the name of an
ActiveX, COM, or .NET control.

13. The data description entry for USAGE HANDLE data items may not
contain any of the following clauses: BLANK WHEN ZERO,
JUSTIFIED, or PICTURE. If it contains a VALUE clause, the value
specified must be the word NULL.

14. Font-name is one of the following identifiers: DEFAULT-FONT,
FIXED-FONT, TRADITIONAL-FONT, SMALL-FONT,
MEDIUM-FONT, LARGE-FONT.

15. It should be noted that either the “-Df” option or the “-Cv” option will
cause the compiler to treat COMP-1 and COMP-2 as FLOAT and
DOUBLE, respectively. For more information, see section 5.4 in
Transitioning to ACUCOBOL-GT.

16. Layout-name is the name of one of the system’s standard layout
managers. Currently, this can only be LM-RESIZE.

General Rules

1. A USAGE clause written at a group level applies to every elementary
item subordinate to that group item.

2. If no USAGE clause is specified, then USAGE IS DISPLAY is
implied.

3. The internal format of a USAGE IS DISPLAY item is ASCII.

4. The format of an index item is 32-bit signed binary. Its size is always
four, and it holds a range of values from -2147483647 to 2147483647.
When using a compile switch for compatibility with versions prior to
6.0.0 (-Z52 for example) an index item is 16-bit unsigned binary, size
is always two, and it holds values from 0 to 65535.

5. The format of a COMP-1 data item is 16-bit signed binary. The legal
values range from -32767 to 32767. The size of the data item is always
two bytes, and the high-order half of the data is stored in the leftmost
byte. The PICTURE string that describes the item is irrelevant. Unlike
other numeric data types, a size error will occur on a COMP-1,

5-64 Data Division
COMP-X, or COMP-N data item only when the value exceeds the
physical storage of the item (in other words, the number of “9”s in the
item’s PICTURE is ignored when size error is determined).

6. For COMP-2 (decimal storage), each digit is stored in one byte in
decimal format. If the value is signed, then an additional trailing byte
is allocated for the sign. The storage of COMP-2 is identical with
USAGE DISPLAY with the high-order four bits stripped from each
byte.

7. For COMP-3 (packed-decimal storage), two digits are stored in each
byte. An additional half byte is allocated for the sign, even if the value
is unsigned. The sign is placed in the rightmost position, and its value
is 0x0D for negative; all other values are treated as positive (but see
rule 18 below). The size of an item (including one for the implied
sign) is divided by two to arrive at its actual size (rounding fractions
up).

8. The format of a COMP-4 item is two’s-complement binary (the value
without its decimal point). COMP-4 values are stored in a
machine-independent format. This format places the highest-order part
of the value in the leftmost position and follows down to the low-order
part in the rightmost position. The number of bytes a data item
occupies depends on the number of “9”s in its PICTURE and on the
presence of various compile-time options. For example, you may
include more than eighteen “9”s only if your program has been
compiled for 31-digit support. This is summarized in the following
table:

of “9”s Default -D1 -Dm -D7

1-2 2 1 1 1

3-4 2 2 2 2

5-6 4 4 3 3

7 4 4 4 3

8-9 4 4 4 4

10-11 8 8 5 5

12 8 8 6 5

13-14 8 8 6 6

Record Description Entry 5-65
Note: Where two values are given, the smaller value applies to
unsigned data items, and the larger value applies to signed data items.

9. COMP-5 is primarily used to communicate with external programs that
expect native data storage.

The format of a COMP-5 data item is identical to a COMP-4 data item,
except that the data is stored in a machine-dependent format. It is stored
in an order that is natural to the host machine. For example, a PIC S9(9)
COMP-5 data item is equivalent to a 32-bit binary word on the host
machine, and a PIC S9(20) COMP-5 item is equivalent to a 64-bit word.

15-16 8 8 7 7

17-18 8 8 8 8

19 12 12 9 8,9

20 12 12 9 9

21 12 12 9 9

22 12 12 10 10

23 12 12 10 10

24 12 12 11 10,11

25 12 12 11 11

26 12 12 11 11

27 12 12 12 12

28 12 12 12 12

29 16 16 13 13

30 16 16 13 13

31 16 16 13 13

of “9”s Default -D1 -Dm -D7

5-66 Data Division
Note: Data stored in a COMP-5 field may not be transportable to other
machines because different machines have different natural
byte-orderings. On many machines (68000, most RISC), COMP-5 is
identical to COMP-4. On others (80x86, VAX), it is the same with the
bytes in the reverse order.

A VALUE clause for a COMP-5 data item is stored in a
machine-independent format and is adjusted when it is loaded into the
data item. This ensures that the value is the same from machine to
machine.

On arithmetic and non-arithmetic stores into COMP-5 items, if
truncation is required, by default ACUCOBOL-GT truncates in decimal
to the number of digits given in the PICTURE clause. You can use the
“--TruncANSI” compiler option to force truncation in binary to the
capacity of the allocated storage of COMP-5 items. The “-Dz” and
“--noTrunc”options also affect truncation. See Book 1, section 2.1.9,
“Data Storage Options,” for more information.

Level 01 and level 77 data items that are COMP-5 are automatically
synchronized to an appropriate machine boundary, regardless of any
compile-time settings. This allows you to pass these items safely to C
subroutines without having to concern yourself with alignment.

If COMP-5 is used with a PIC X(n) data item and assigned an
alphanumeric value, the results are undefined. For example, the
following code fragment causes NUM to have an undefined number and
the resulting value for the last line will be “100”:

NUM PIC X(5) COMP-5.
ALPHANUM PIC X(9).
MOVE "ABC" TO NUM.
MOVE "1,000" TO NUM.
MOVE ALPHANUM TO NUM.
MOVE "100" TO NUM.

A PIC X(n) data item used with COMP-5 cannot be signed.

10. The format of a COMP-6 item is identical to a COMP-3 item except
that it is unsigned and no space is allocated for the sign. If the number
of digits is odd, a zero is added to the left end of the number before it

Record Description Entry 5-67
is packed. Thus there are two decimal digits per byte, and the actual
size of the item is determined by dividing its PICTURE size by two
and rounding up.

11. A COMP-X data item must be described with a picture string
consisting of only “9” or only “X” symbols. In either case, the data
item is treated as an unsigned binary integer, with internal storage
similar to that of a COMP-4 data item. If “X” symbols are used to
describe the item, then the number of bytes allocated to the item is the
same as the number of “X” symbols in the picture string. If “9”
symbols are used instead, then the number of bytes allocated is the
least number of bytes required to hold a number of that size. For
example, a “PIC 99” data item will be allocated 1 byte; a “PIC 9(9)”
data item will be allocated 4 bytes.

Regardless of the number of “9” symbols in the item’s picture string, the
maximum value that can be stored in a COMP-X item is determined by
the number of bytes allocated to it (to a maximum of 18 digits, or a
maximum of 31 digits if 31-digit support is in effect). For example, a
COMP-X item consisting of 1 byte can hold a range of numbers from 0
to 255. A 2-byte COMP-X number can hold from 0 to 65535. A size
error occurs on a COMP-X item only when the value is larger than the
data item can physically hold. When COMP-X is used with a PIC(X)
data item, the maximum is PIC X(8). (This maximum is increased to PIC
X(16) when 31-digit support is in effect.)

12. A COMP-N data item is identical to a COMP-X data item, except that
the data is stored in the host machine’s native format, instead of
machine-independent format.

13. Data items described as PACKED-DECIMAL are identical to
COMP-3. You can cause unsigned PACKED-DECIMAL to be treated
as COMP-6 by using a compile-time option.

14. By default, a BINARY data item is identical to a COMP-4 data item.
The compile-time option “-D5” treats BINARY data items as COMP-5
items instead.

15. In VAX/COBOL compatibility mode, a COMP data item is the same as
COMP-4 and is treated as binary data. In RM/COBOL compatibility
mode, COMP is the same as COMP-2. You can use compile-time
options to change the default behavior.

5-68 Data Division
16. A pointer data item is treated as an unsigned numeric data item. The
internal format differs for each machine. Pointer data items are
intended to hold addresses of other data items (see the SET
Statement.) A pointer data item may have a VALUE clause specified
for it, but the specified value must be the word NULL. This indicates
that the pointer does not currently point to any item. If a pointer is not
explicitly given an initial value, then its initial value is arbitrary.

Pointer data items occupy 8 bytes. This provides enough space to hold
an address on a 64-bit machine. If you are on a smaller machine, the
runtime uses only the first 4 bytes of pointer data items (the trailing 4
bytes remain in memory, they are just left unused). You can do this to
conserve storage if you know you will not be running on a 64-bit
machine.

Pointers may be used in conditional expressions, where they can be
compared to each other or to the value NULL. A comparison involving
a pointer must be either “equals” or “not equals” (“greater” and “less
than” comparisons are not allowed).

Level 01 and level 77 data items that are POINTER items are
automatically synchronized to an appropriate machine boundary,
regardless of any compile-time settings. This allows you to pass these
items safely to C subroutines without having to concern yourself with
alignment.

Except for the automatic synchronization, USAGE POINTER data items
are treated in all respects like USAGE UNSIGNED-LONG data items.
This handles all current machines correctly. This behavior may change
to meet the requirements of some future machine.

17. Floating-point data items are stored in a machine-dependent format.
USAGE FLOAT items have 4 bytes allocated to them. USAGE
DOUBLE items occupy 8 bytes.

Level 01 and level 77 data items that are USAGE FLOAT or DOUBLE
are automatically synchronized to appropriate machine boundaries,
regardless of any compile-time settings. This allows you to pass these
items safely to C subroutines without having to concern yourself with
alignment.

Record Description Entry 5-69
18. The ANSI definition of COBOL does not state how signs should be
stored in numeric fields (except for the case of SIGN IS SEPARATE).
ACUCOBOL-GT lets you select alternate sign-storage conventions by
using the compile-time options “-Dca”, ‘-Dcb”, “-Dci”, “-Dcm”,
“-Dcn”, “-Dcr”, and “-Dcv”. Specifying a sign-storage convention is
sometimes useful when you are exporting and importing data. For
additional information, see the User’s Guide, section 2.2.10, “Data
Storage Options.”

The storage convention affects how data appears in USAGE DISPLAY,
COMP-2, and COMP-3 data types. In USAGE DISPLAY, standard
ASCII storage, if the sign is incorporated into a digit position, the digit is
encoded according to the following table:

USAGE DISPLAY

DIGIT
VALU
E

-Dca,
-Dcb,
-Dcm,
-Dcr
Positive

-Dci,
-Dcn

Positive

-Dca,
-Dci,
-Dcn

Negative

-Dcb

Negative

-Dcm

Negative

-Dcr

Negative

0 ‘0’ ‘{‘ ‘}’ ‘@’ ‘p’ ‘ ’
(space)

1 ‘1’ ‘A’ ‘J’ ‘A’ ‘q’ ‘!’

2 ‘2’ ‘B’ ‘K’ ‘B’ ‘r’ ‘”’
(double-
quote)

3 ‘3’ ‘C’ ‘L’ ‘C’ ‘s’ ‘#’

4 ‘4’ ‘D’ ‘M’ ‘D’ ‘t’ ‘$’

5 ‘5’ ‘E’ ‘N’ ‘E’ ‘u’ ‘%’

6 ‘6’ ‘F’ ‘O’ ‘F’ ‘v’ ‘&’

7 ‘7’ ‘G’ ‘P’ ‘G’ ‘w’ ‘’’
(single-
quote)

8 ‘8’ ‘H’ ‘Q’ ‘H’ ‘x’ ‘(‘

9 ‘9’ ‘I’ ‘R’ ‘I’ ‘y’ ‘)’

5-70 Data Division
Note: For import compatibility with some systems that do not have the
symbols “{” and “}”, the symbols “[” and “?” are considered
equivalent to “{”, and the symbols “]”, “:”, and “!” are considered
equivalent to “}”, when an item with USAGE DISPLAY is read.

The next two tables show sign representation for COMP-2 and COMP-3
items, when you are using the “-Dca”, “-Dcb”, “-Dci”, “-Dcm”, “-Dcn”,
“-Dcr”, and “-Dcv” storage conventions. For COMP-2, the trailing byte
is reserved for the sign. For COMP-3, the trailing half-byte is reserved
for the sign.

USAGE COMP-2

USAGE COMP-3

19. There are six USAGE types for integer data that simplify
communications with other programming languages such as C. These
types are designed to provide a portable method for handling
machine-dependent data. The six USAGE types handle three classes of
machine data: “short words,” “words,” and “long words.” These three
correspond to the C data types: “short”, “int”, and “long”. There are
signed and unsigned versions of each of these data types.

These USAGE types are specified without a PICTURE clause (like
USAGE INDEX and POINTER).

-Dca Positive x’0B’

-Dcb/-Dci/-Dcm/-Dcn/-Dcr Positive x’0C’

-Dca/-Dcb/-Dci/-Dcm/-Dcn/-Dcr Negative x’0D’

-Dca Positive x’0F’

-Dcb/-Dci/-Dcm/-Dcr Positive x’0C’

-Dca/-Dcb/-Dci/-Dcm/-Dcr Negative x’0D

-Dca/-Dcb/-Dci/-Dcm/-Dcr Unsigned x’0F’

-Dcv Unsigned x’0C’

Record Description Entry 5-71
The names of the types are:

Each of these represents a binary value that is stored using the machine’s
native byte ordering. Since there is no PICTURE phrase, size checking
for these items is performed only on byte boundaries. These data types
are automatically SYNCHRONIZED.

The unusual characteristic of these data types is that their size is not
necessarily set at compile time. Instead, the size of these items is
determined at execution time. This allows them to match the working
characteristics of the host machine. For example, a SIGNED-LONG
data item will contain 64 bits when run on a DEC Alpha machine, but it
will have 32 bits when run on an Intel 80486-based machine. This lets
you write one program that can communicate effectively with an
external routine written in another language (such as C), regardless of
the target environment.

In order to lay out memory, the compiler assigns a maximum size to each
of these data types. This is the number of bytes that the item will occupy.
At run time, these items may be reduced in size to match the host
machine’s characteristics. Any remaining bytes are then treated as
FILLER. The “-Dw” compile option (see the User’s Guide section
2.2.10, “Data Storage Options.”) determines the maximum size of
these types:

SIGNED-SHORT UNSIGNED-SHORT

SIGNED-INT UNSIGNED-INT

SIGNED-LONG UNSIGNED-LONG

USAGE -Dw32 -Dw64

SIGNED-SHORT

UNSIGNED-SHORT

2* 2*

SIGNED-INT

UNSIGNED-INT

4 4

SIGNED-LONG

UNSIGNED-LONG

4* 8

5-72 Data Division
Table entries marked with an asterisk indicate fixed-size items. A
fixed-size item is the same size regardless of the target machine. Entries
without an asterisk are variable in size. These items will occupy space
up to the number of bytes listed in the table.

Note: The sizes listed in the table above cover all current and
anticipated machines that run ACUCOBOL-GT. Future architectures
may require changes to the maximum size assigned to these items.

In the execution environment, these items act in all ways as if they were
fixed-size data items of the appropriate size.

For example, the following code fragment:

 77 LONG-1 SIGNED-LONG.
 77 SIZE-1 PIC 9.

 SET SIZE-1 TO SIZE OF LONG-1.
 DISPLAY SIZE-1.

will print “4” when run on a 32-bit machine, but it will print “8” when
run on a 64-bit machine.

Examples

In the following examples, each byte is represented by two hexadecimal
digits or by a single quoted character. Each value is shown in the various
formats. Also shown is USAGE DISPLAY using the various SIGN
options. The following examples use the default ACUCOBOL-GT
sign-storage conventions.

PIC 9(3) VALUE 123.

TRAILING '1' '2' '3'
TRAILING SEPARATE '1' '2' '3'
LEADING '1' '2' '3'
LEADING SEPARATE '1' '2' '3'
COMP-1 00 7B
COMP-2 01 02 03
COMP-3 12 3F
COMP-4 00 7B
COMP-5(68000) 00 7B
COMP-5(8086) 7B 00

Record Description Entry 5-73
COMP-6 01 23

PIC S9(3) VALUE -123.

TRAILING '1' '2' 'L'
TRAILING SEPARATE '1' '2' '3' '-'
LEADING 'J' '2' '3'
LEADING SEPARATE '-' '1' '2' '3'
COMP-1 FF 85
COMP-2 01 02 03 0D
COMP-3 12 3D
COMP-4 FF 85
COMP-5(68000) FF 85
COMP-5(8086) 85 FF
COMP-6 illegal

PIC 9(5)V9 VALUE 12345.6.

TRAILING '1' '2' '3' '4' '5' '6'
TRAILING SEPARATE '1' '2' '3' '4' '5' '6'
LEADING '1' '2' '3' '4' '5' '6'
LEADING SEPARATE '1' '2' '3' '4' '5' '6'
COMP-1 illegal
COMP-2 01 02 03 04 05 06
COMP-3 01 23 45 6F
COMP-4 00 01 E2 40
COMP-5(68000) 00 01 E2 40
COMP-5(8086) 40 E2 01 00
COMP-6 12 34 56

PIC S9(5)V9 VALUE -12345.6.

TRAILING '1' '2' '3' '4' '5' '0'
TRAILING SEPARATE '1' '2' '3' '4' '5' '6' '-'
LEADING 'J' '2' '3' '4' '5' '6'
LEADING SEPARATE '-' '1' '2' '3' '4' '5' '6'
COMP-1 illegal
COMP-2 01 02 03 04 05 06 0D
COMP-3 01 23 45 6D
COMP-4 FF FE 1D C0
COMP-5(68000) FF FE 1D C0
COMP-5(8086) C0 1D FE FF

5-74 Data Division
COMP-6 illegal

20. HANDLE data items make up their own data class and category in
COBOL. Internally they are stored as integer values, and behave like
numbers when used. A HANDLE data item is normally used to store
the handle of a dynamically created object such as a floating window
or a graphical control.

HANDLE data items come in two forms: typed and generic. You create
a generic handle when you omit the OF phrase. You create a typed
handle when you include the OF phrase.

21. You may use HANDLE data items only when explicitly allowed, or as
part of a MOVE statement, a CALL statement (as a parameter), or in a
Boolean expression.

22. Generic handles may be used in any situation where handles are
allowed. When you use a generic handle as the source of a MODIFY
statement, you will not be able to use any control-specific property or
style names in that statement. This is because the generic handle could
be associated with any type of control. In this case, the compiler
cannot determine which set of style and property names is valid.

23. Typed handles may be used in statements where any handle is allowed,
or when you are referring to an object of a matching type. For
example, a HANDLE OF WINDOW cannot be used as the handle in a
DISPLAY LABEL statement. Instead, you must use either a generic
handle or a HANDLE OF LABEL. Typed handles allow the compiler
to recognize associated style and property names when appropriate.
Typed handles also improve the readability of your program by
providing additional information about the intended use of the handle,
in addition to providing compile-time checking to ensure that you are
using the handles in appropriate situations.

24. Handles may be used in comparisons. There are only two meaningful
comparisons: checking for equality or inequality to NULL, and
comparison to another handle data item. A handle value of NULL
always indicates an invalid handle.

Record Description Entry 5-75
25. Handles are stored internally as 4-byte binary integers. This
information can be useful when you are debugging a program (you can
examine the values of handles in the debugger). You should not rely
on this definition in your program, however, because it is subject to
change in the future.

26. Handle data items are automatically SYNCHRONIZED on a 4-byte
boundary. Note that this occurs regardless of the setting of the “-Dl”
compile-time option (which limits the amount of synchronization).
The runtime system requires this level of alignment to avoid generating
bus errors on some machines.

27. If font-name is specified, then the data item described by the USAGE
clause is initialized at program startup with the corresponding font
handle. This acts identically to placing the statement:

ACCEPT data-item FROM STANDARD OBJECT “font-name”

at the beginning of your program, where data-item is the data item
described by the USAGE clause and font-name is the same as font-name
in the USAGE clause.

5.7.1.9 SIGN clause

The SIGN clause specifies the location and format of an item’s operational
sign.

General Format
[SIGN IS] {LEADING } [SEPARATE CHARACTER]
 {TRAILING}

Syntax Rules

1. The SIGN clause may appear only in a numeric data description entry
whose PICTURE string contains the “S” symbol, or on a group item that
contains such an entry.

2. The item must have USAGE DISPLAY.

3. A SIGN clause may not be used with an external floating-point data
item.

5-76 Data Division
General Rules

1. If the SIGN clause is omitted for a data item, then the operational sign is
incorporated into the final digit of the data item. The “S” symbol does
not occupy any space in the data item in this case.

2. If the SIGN clause is specified, but without the SEPARATE
CHARACTER phrase, then the sign is incorporated into the first or last
digit of the data item as specified.

3. If the SEPARATE CHARACTER phrase is specified in the SIGN
clause, then the “S” symbol represents a separate character position and
it adds one to the size of the data item. This character is located as the
first or last character of the data item as specified in the clause. The
sign is represented with a “+” or “-” character as appropriate. The zero
value may have either sign.

4. If the SIGN phrase is specified for a group item, then it applies to each
subordinate elementary numeric data item. A SIGN phrase specified
for an elementary data item takes precedence over a SIGN phrase
specified for one of its group items. If more than one group item has a
SIGN phrase specified for it in a hierarchy, the lowest level one takes
precedence.

5.7.1.10 OCCURS clause

The OCCURS clause allows for the creation of tables or arrays.

General Format

Format 1
OCCURS table-size TIMES

 [{ASCENDING } KEY IS {key-name} ...] ...
 {DESCENDING}

 [INDEXED BY {index-name} ...]

Format 2
OCCURS [min-size TO] max-size TIMES DEPENDING ON dep-item

 [{ASCENDING } KEY IS {key-name} ...] ...

Record Description Entry 5-77
 {DESCENDING}

 [INDEXED BY {index-name} ...]

Syntax Rules

1. Table-size is a positive integer that specifies the exact number of
occurrences.

2. Min-size is an integer that specifies the minimum number of
occurrences. Its value must be greater than or equal to zero. If
omitted, it has a default value of one.

3. Max-size is an integer that specifies the maximum number of
occurrences. Its value cannot be less than min-size; it cannot be larger
than 2147483647.

4. Dep-item is the name of an elementary unsigned integer data item. Its
value specifies the current number of occurrences.

5.

6. Key-name is the data-name of the entry that contains the OCCURS
clause, or an entry subordinate to it. Key-name may be qualified.
Each key-name after the first must name a subordinate item to the entry
containing the OCCURS clause. A key-name may not contain an
OCCURS clause unless that key-name is the name of the subject of the
current OCCURS clause.

7. If a Format 2 OCCURS clause appears in a record description for a
file, dep-item must appear in the same record.

8. An item described by a Format 2 OCCURS clause can be followed, in
the same record description, only by items subordinate to it.

9. An OCCURS clause may not appear in a data description entry that has
a level-number of 66, 78, or 88. A variable occurrence data item (one
that has a Format 2 OCCURS clause) may not be subordinate to
another data item that has an OCCURS clause.

10. The dep-item may not occupy any character positions subordinate to
the data item described by that OCCURS clause.

5-78 Data Division
General Rules

1. The OCCURS clause defines tables. All items subordinate to an
OCCURS clause must be referenced with subscripting or indexing.

2. Except for the OCCURS clause itself, all data description clauses
associated with that data item apply to each occurrence of the item.

3. A Format 1 OCCURS clause defines a fixed-size table.

4. A Format 2 OCCURS clause defines a table that contains a variable
number of occurrences. The current number of occurrences depends
on dep-item. Only the number of occurrences is variable; the table’s
size is fixed (max-size). Dep-item must fall in the range from min-size
to max-size. Values contained in the table that are beyond the current
number of occurrences (dep-item) are unpredictable.

5. The size occupied by a table is the size of one of its occurrences
multiplied by the maximum number of occurrences in the table
(max-size in Format 2).

6. If a group item containing a subordinate data item with a Format 2
OCCURS clause is involved in an operation, the operation uses only
that part of the table specified by dep-item.

7. Index names are treated in all respects as USAGE INDEX data items
by the compiler.

8. The KEY IS phrase indicates that the data is arranged in ascending or
descending order according to the values in the data items named by
key-name. The position of each key-name in the list determines its
significance. The first key-name is the most significant, the last is the
least significant. The KEY IS phrase is used by the SEARCH ALL
verb.

5.7.1.11 SYNCHRONIZED clause

The SYNCHRONIZED clause specifies elementary item alignment on word
boundaries of the computer’s memory.

General Format
{SYNCHRONIZED} [LEFT]
{SYNC } [RIGHT]

Record Description Entry 5-79
Syntax Rules

1. SYNC is an abbreviation of SYNCHRONIZED.

2. The SYNCHRONIZED clause can be used for elementary items only.

3. A SYNCHRONIZED clause may not be used with an external
floating-point data item.

General Rules

1. The SYNCHRONIZED clause is used to specify that word boundary
alignment should be performed for the data item. Normally, data
contained in records is aligned on byte boundaries. Only data items
whose underlying representation is binary are affected by the
SYNCHRONIZED clause.

2. The SYNCHRONIZED clause causes the data item to be placed on a
boundary that is an even multiple of the natural size of the data item.
The following table lists the boundary used for each size of data item:

3. A group item that contains a synchronized data item is also
synchronized on the same boundary. Regardless of the effects of
synchronization, a group item always begins at the same location as its
first elementary data item.

4. Synchronization may result in the creation of filler bytes. These bytes
count in the size of any group item that contains them. For this reason,
a group item that contains synchronized data may be larger than the
total size of its elementary items.

5. Level 01 and level 77 data items that are not otherwise synchronized
are placed on a boundary that can be selected at compile time. By
default, these items are placed at word boundaries that are divisible by
two.

Data Size Boundary Multiple

1-2 2

3-4 4

5-8 8

5-80 Data Division
6. Level 01 and level 77 data items that are POINTER or COMP-5 items
are automatically synchronized to an appropriate machine boundary,
regardless of any compile-time settings. All C-style data types are
automatically synchronized regardless of their level. This allows you to
pass these items safely to C subroutines without having to concern
yourself with alignment.

7. A compile-time (“-Dl”) option can be used to cut back the maximum
boundary multiple. For example, “-Dl4” would cause items of size 1
or 2 to be synchronized on 2-byte boundaries, and all other items
synchronized on 4-byte boundaries. If this option is not specified, then
the maximum boundary multiple depends on the compatibility mode
being used:

A limit of 1 effectively inhibits synchronization.

8. The LEFT and RIGHT options are treated as commentary. They have
the same effect as a SYNCHRONIZED clause without either option.

5.7.1.12 JUSTIFIED clause

The JUSTIFIED clause specifies alternate data positioning rules for
alphanumeric data.

General Format
{JUSTIFIED} RIGHT
{JUST }

Syntax Rules

1. JUST is an abbreviation for JUSTIFIED.

2. The JUSTIFIED clause may be used for elementary items only.

Mode Boundary Limit

VAX COBOL 8

RM/COBOL 2

ICOBOL 1

Record Description Entry 5-81
3. The JUSTIFIED clause may not be used on index, numeric, or edited
data items. It may be used only on alphabetic and alphanumeric data
items.

General Rules

When an operation transfers data to an item described with the JUSTIFIED
clause, the standard alignment rules are altered.

1. If the sending item is larger than the receiving item, excess characters are
truncated from the left.

2. If the sending item is smaller than the receiving item, data is aligned at
the rightmost character position of the receiving item. The excess
characters on the left are filled with spaces.

5.7.1.13 BLANK WHEN ZERO clause

The BLANK WHEN ZERO clause causes the data item to be filled with
spaces when its value is zero.

General Format
BLANK WHEN ZERO

Syntax Rules

1. The BLANK WHEN ZERO clause may be used only for a numeric or
numeric edited elementary item whose picture does not contain “S” or
“*”.

2. The data item must have USAGE DISPLAY.

Note: The compiler accepts any sign designation other than “S”
without declaring an error. That includes “+”, “-”, “CR”, and “DB”.

General Rules

1. The BLANK WHEN ZERO clause causes an item to be filled with
spaces when its value is zero.

5-82 Data Division
2. Any numeric item described with a BLANK WHEN ZERO clause
becomes a numeric edited item.

5.7.1.14 VALUE clause

The VALUE clause defines the initial value of Working-Storage. It also
describes the values associated with conditionals.

General Format

Format 1
VALUE IS value-lit

Format 2
{VALUE IS } { low-val [{THROUGH} high-val] } ...
{VALUES ARE} {THRU }

 [WHEN SET TO FALSE false-val]

Format 3
78 user-name VALUE IS {literal-1} [{+} literal-2] .
 {NEXT } {-}
 {*}
 {/}

Syntax Rules

1. Value-lit is a numeric or non-numeric literal that defines the initial value
of a Working-Storage item.

2. Low-val is a numeric or non-numeric literal that defines the value of a
condition, or the lower value of a condition range.

3. High-val is a numeric or non-numeric literal that defines the upper
value of a condition range. It must be the same type as low-val and
must have a value greater than low-val.

4. False-val is a numeric or non-numeric literal that defines the FALSE
value for the corresponding data item.

Record Description Entry 5-83
5. Literal-1 is a numeric or alphanumeric literal. If literal-2 is specified,
then literal-1 must be a numeric, non-floating-point literal. Literal-1
can also be a “LENGTH OF” expression, as described in section
2.1.2.1, “Numeric literals.”

6. Literal-2 is a numeric, non-floating point literal or a “LENGTH OF”
expression.

7. The VALUE clause may not be used for any item whose size is
variable.

8. A VALUE clause may not be used with an external floating-point data
item.

9. All literals used in a VALUE clause must have a value which falls
within the range of allowed values for the item’s PICTURE clause.
Non-numeric literals may not exceed the size of the item. Numeric
items must have numeric literals. Alphabetic, alphanumeric, group,
and edited items must have non-numeric literals.

10. The words THROUGH and THRU are equivalent.

11. The Format 2 VALUE clause may be used only in a condition-name
(level 88). Its use is required in this case.

12. VALUE clauses may appear in the File Section and the Linkage
Section. They have no effect in these sections unless they are part of
condition-name entries (level 88s) or named constants (level 78s).

Their presence in these two sections simplifies the management of
COPY libraries. For example, if you plan to use the same COPY library
in Working Storage in program-A and in Linkage in program-B, you
need not remove the VALUE clauses in the Linkage Section.

13. The VALUE clause may not be specified for a group item that contains
subordinate items with any of the following clauses: JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY).

14. A Format 1 VALUE clause may not appear on a data item that is
subordinate to a REDEFINES clause.

15. A level 78 entry associates a value with the name of a constant, and
user-name is a user-defined word that names the constant. User-name
must be unique, because it may not be qualified.

5-84 Data Division
General Rules

1. A Format 1 VALUE clause specifies the initial state of a
Working-Storage item or the value of a named constant. A Format 2
VALUE clause defines a condition-name. A Format 3 VALUE clause
defines a constant.

2. When a VALUE clause is applied to an edited item, that item is treated
as if it were alphanumeric. Editing characters in the PICTURE clause
count toward the size of the item but have no effect on initialization.
The literals must therefore appear in edited form.

Initialization (Format 1)

1. A Format 1 VALUE clause takes effect only when the program enters its
initial state.

2. The VALUE clause initializes its data item to the value of value-lit.

3. If no VALUE clause is specified, the initial value of a Working-Storage
item is set to spaces, or the value specified with the “-Dv” compile
option. This may, or may not, be a legal value for the item.

4. When a VALUE clause appears on a data item that is subordinate to an
x OCCURS clause, every occurrence of that data item is initialized to
the specified value.

5. When a VALUE clause is applied to a group item, that item is
initialized as if it were an alphanumeric item. It is not affected by
characteristics of any subordinate items to the group. No subordinate
item may contain a VALUE clause within this group.

6. The BLANK WHEN ZERO and JUSTIFIED clauses do not affect
initialization.

Condition-Name (Format 2)

1. The VALUE clause is required in a condition-name entry. The only
clauses allowed in a condition-name entry are the level-number (88), the
condition-name itself, and its VALUE clause. See section 5.2.4 for
examples of condition-name entries.

Record Description Entry 5-85
2. The characteristics of the condition-name are implicitly the same as
those of its condition-variable. The condition-variable is the
immediately preceding completed record description entry.

3. The VALUE clause describes the values of the condition-variable that
imply a “true” state for the associated condition-name. This consists of
a single value, a range of values, or a set of both single values and
ranges. For example “VALUES ARE 1, 2, 4 THRU 7” would define a
condition-name that was “true” when its associated condition-variable
had any of the values “1”, “2”, “4”, “5”, “6”, and “7”.

4. The WHEN SET TO FALSE phrase defines the “false” value for the
condition-name. The SET statement cannot set the condition-name to
FALSE unless a “false” value is specified here.

Level 78 Constant (Format 3)

1. When it is used with a level 78 item, the VALUE clause associates a
literal with a user-defined word. The user-defined word is then called a
named constant. A named constant may be used anywhere the
corresponding literal may be used. The compiler replaces each
occurrence of the named constant with the literal.

2. The literal is constructed as follows:

a. If literal-1 is specified (without literal-2), then user-name acts as
a synonym for that literal in the remainder of the program.

b. If NEXT is specified (without literal-2), then user-name acts as an
integer numeric constant whose value is the virtual address of the
first byte past the end of the immediately preceding data item.
However, if the immediately preceding data item is a group item,
then the value is the virtual address of the beginning of the group
item. Note that the effect of synchronization and data alignment
may mean that the next data item does not start at the same virtual
address as the first byte past the end of the previous data item.
This construct has undefined effects if the immediately
preceding data item is, or is part of, a data item greater than
64KB in size.

5-86 Data Division
Caution:The use of NEXT is designed for compatibility with other
COBOL compilers. The effects of data alignment and data space
segmentation make this feature difficult to use with standard
ACUCOBOL-GT code. We do not recommend its use except when
you are migrating code that already contains similar syntax.
ACUCOBOL-GT provides other techniques for address manipulation
(e.g. POINTER data items) and size computation (e.g. SET TO SIZE
OF statement).

c. If literal-2 is specified, then user-name is an integer numeric
constant whose value is the same as it would be without literal-2
specified, acted upon by the specified operation. For example, the
following two level 78s have the same value:

 78 THREE VALUE 3.
 78 THREE-AGAIN VALUE 1 + 2.

In some cases, literal-1 and literal-2 may, themselves, be level 78s.
For example:

 78 ONE VALUE 1.
 78 TWO VALUE ONE + 1.
 78 THREE VALUE TWO + 1.

When literal-2 is used, both literal-1 and literal-2 are evaluated as
integers, and the arithmetic is done using 32-bit integer arithmetic.
The result is always an integer.

3. You may use a level 78 named constant as a repeat count in a
PICTURE string. This means that, in a PICTURE string, you may
substitute a level 78 for a number in parentheses. In the following
example, DATA-1 and DATA-2 are both the same size:

78 LENG-20 VALUE 20.
01 DATA-1 PIC X(20).
01 DATA-2 PIC X(LENG-20).

5.7.1.15 RENAMES clause

The RENAMES clause provides an alternate data name for a set of data
items.

Record Description Entry 5-87
General Format
66 new-name RENAMES rename-1 [{THRU } rename-2]
 {THROUGH}

Syntax Rules

1. The level-number (66) and new-name are not actually part of the
RENAMES clause. They are included in the General Format for clarity.

2. New-name is a user-defined word that is the name of the item being
described.

3. Rename-1 is the data name of the leftmost data item in the area.

4. Rename-2 is the data name of the rightmost data item in the area.

5. All RENAMES entries referring to data items in a logical record must
immediately follow the last data description entry of that record.

6. New-name may not be used as a qualifier.

7. New-name must be unique, because it may not be qualified.

8. Rename-1 and rename-2 must be the names of items in the same
logical record.

9. The data description entries for rename-1 and rename-2 may not
contain or be subordinate to an OCCURS clause.

10. A level 66 entry may not rename another level 66 entry. Nor can it
rename a level 78, 88, level 01, or level 77 entry.

11. None of the items in the range from rename-1 to rename-2 may
contain variable occurrence items.

12. The words THRU and THROUGH are equivalent.

13. Rename-2 may not be subordinate to rename-1. The beginning of
rename-2 cannot be to the left of the beginning of rename-1. The end
of rename-2 must be to the right of the end of rename-1.

General Rules

1. If rename-2 is used, new-name contains all the character positions
between the start of rename-1 and the end of rename-2.

5-88 Data Division
2. If rename-2 is used, new-name is treated as a group item. If rename-2
is not used, all the data attributes for rename-1 become attributes of
new-name. In this case, you are providing an alternate name for a
single data item.

5.8 Screen Section

The Screen Section describes the format, layout, and behavior of console
screens. It contains one or more uniquely named screen description entries.

A screen item in the Screen Section is analogous to a data item in the
Working-Storage Section. The terms “screen item” or “Screen Section entry”
may refer to an elementary item or a group item.

Screen Section entries:

• provide “form level” ACCEPT and DISPLAY, which means a single
ACCEPT or DISPLAY statement can activate any number of elements
on the screen.

• are referenced by Format 2 ACCEPT and DISPLAY statements in the
Procedure Division.

• define one or more controls, data fields, or literals, and their associated
attributes.

ACCEPT and DISPLAY statements that reference a Screen Section entry
include built-in features that greatly simplify programming. A single
ACCEPT statement will reference the controls and input fields that you
named and defined in a Screen Section entry, and a single DISPLAY
statement will display the corresponding collection of prompts for the user.
When you code your programs with Format 2 ACCEPT and DISPLAY, the
tab and arrow keys (or their substitutes if you have customized the keyboard)
are automatically functional so the user can move from field to field during
data entry.

See the User’s Guide Section 6.5 for an extended discussion of the Screen
Section.

Screen Description Entry 5-89
Note: Since Screen Section entries are defined in the Data Division but
acted upon in the Procedure Division, you will want to read the information
given here with that for the Format 2 ACCEPT and DISPLAY described in
section 6.6.

General Format
SCREEN SECTION.

 [screen-description] ...

Syntax Rules

1. Each level 01 screen item described in the Screen Section must be
uniquely named.

2. Subordinate screen names need not be unique if they can be made
unique through qualification.

5.9 Screen Description Entry

A screen description entry specifies the characteristics of a single screen
item. Many of the phrases permitted in a Screen Description Entry are
explained in section 6.4.9, “Common Screen Options.”

General Format

Format 1
level-number [screen-name]
 [FILLER]

Remaining phrases are optional, can appear in any order.
GRAPHICAL
CHARACTER

{PICTURE} IS picture-string
{PIC }

5-90 Data Division
[[FROM from-item] [TO to-item]]
[USING using-item]

[USAGE IS] DISPLAY

[SIGN IS] {LEADING } SEPARATE CHARACTER
 {TRAILING}

OCCURS table-size TIMES

{JUSTIFIED} RIGHT
{JUST }

BLANK WHEN ZERO

VALUE IS value-lit

{BLANK} {SCREEN}

{ERASE} {LINE }
 {EOS }
 {EOL }

LINE [NUMBER IS [PLUS] line-no]
 [+]
 [-]

{COLUMN } [NUMBER IS [PLUS] col-no]
{COL } [+]
{POSITION} [-]
{POS }

SIZE IS length

COLOR IS color-val
COLOUR

FOREGROUND-COLOR IS fg-color
FOREGROUND-COLOUR

BACKGROUND-COLOR IS bg-color
BACKGROUND-COLOUR

{BACKGROUND-HIGH }
{BACKGROUND-LOW }

Screen Description Entry 5-91
{BACKGROUND-STANDARD }

{BELL}
{BEEP}

{UNDERLINED}
{UNDERLINE }

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

{BLINKING}
{BLINK }

{REVERSE-VIDEO}
{REVERSED }
{REVERSE }

SAME

OUTPUT {LEFT }
 {RIGHT }
 {CENTERED}

{NO-ECHO}
{NO ECHO}
{SECURE }
{OFF }

PROMPT [CHARACTER IS prompt-lit]

{UPPER}
{LOWER}

{AUTO }
{AUTO-SKIP }
{AUTOTERMINATE}
{TAB }

{REQUIRED }
{EMPTY-CHECK}

5-92 Data Division
{FULL }
{LENGTH-CHECK}

{ZERO-FILL }
{NUMERIC-FILL}

HELP-ID {IS} help-id
 {= }

ENABLED {IS} enabled-state
 {= }

VISIBLE {IS} visible-state
 {= }

{BEFORE } PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
{AFTER } {THRU }

{EXCEPTION} { NULL }

Format 2
level-number [screen-name]
 [FILLER]

{control-type-name}
{OBJECT control-type}

[title]

Remaining phrases are optional, can appear in any order.
GRAPHICAL
CHARACTER

{IDENTIFICATION} {IS} control-id
{ID } {= }

{PICTURE } IS picture-string
{PIC}

{FROM } [MULTIPLE] from-item
{VALUE} [TABLE]

TO [MULTIPLE] to-item

Screen Description Entry 5-93
{USING} [MULTIPLE] using-item
{VALUE} [TABLE]

OCCURS table-size TIMES

LINE [NUMBER IS [PLUS] line-no] [CELL]
 [+] [CELLS]
 [-] [PIXEL]
 [PIXELS]

{COLUMN } [NUMBER IS [PLUS] col-no] [CELL]
{COL } [+] [CELLS]
{POSITION} [-] [PIXEL]
{POS } [PIXELS]

CLINE NUMBER cline-num

CCOL NUMBER ccol-num

SIZE {IS} length [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

LINES {IS} height [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

CSIZE {IS} clength [CELL]
 {= } [CELLS]

CLINES {IS} cheight [CELL]
 {= } [CELLS]

MAX-HEIGHT {IS} max-height
 {= }

MAX-WIDTH {IS} max-width
 {= }

MIN-HEIGHT {IS} min-height
 {= }

5-94 Data Division
MIN-WIDTH {IS} min-width
 {= }

TITLE {IS} title
 {= }

KEY {IS} key-letter
 {= }

STYLE {IS} style
 {= }

{style-name} ...

FONT {IS} font-handle
 {= }

{COLOR } IS color-val
{COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

{BACKGROUND-HIGH }
{BACKGROUND-LOW }
{BACKGROUND-STANDARD }

{BELL}
{BEEP}

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

{REVERSE-VIDEO}
{REVERSED }
{REVERSE }

{REQUIRED }

Screen Description Entry 5-95
{EMPTY-CHECK}

LAYOUT-DATA {IS} layout-data
 {= }

ENABLED {IS} {enabled-state}
 {= }

VISIBLE {IS} {visible-state}
 {= }

HELP-ID {IS} help-id
 {= }

EVENT-LIST {IS} (event-value { event-value ... })
 {= }

AX-EVENT-LIST {IS} (ax-event-value { ax-event-value ... })
 {= }

EXCLUDE-EVENT-LIST {IS} list-state
 {= }

{property-name } {IS } { property-value }
{PROPERTY property-type } {ARE} { ({property-value} ...) }
 {= } { {MULTIPLE} property-table }
 {TABLE }

{BEFORE } PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
{AFTER } {THRU }
{EXCEPTION} { NULL }
{EVENT }

Format 3
level-number [screen-name]
 [FILLER]

{assembly-name}
{OBJECT assembly-name}

[title]

NAMESPACE { IS } "namespace"

5-96 Data Division
CLASS-NAME { IS } "class-name"

Remaining phrases are optional.
HANDLE { IS } handle-1

VERSION { IS } "version"

CULTURE { IS } "culture"

STRONG-NAME { IS } "strong-name"

CONSTRUCTOR { IS } CONSTRUCTOR[n] parameters...

MODULE { IS } "module"

FILE-PATH { IS } "file-path"

SIZE {IS} length [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

LINES {IS} height [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

Syntax Rules

1. Each screen description entry must start with a level-number from 01
through 49.

2. Each level 01 screen description entry must have a screen-name
specified. Screen-name is a user-defined word.

3. A screen-name may be referenced only in those contexts where it is
explicitly allowed.

4. An ACCEPT statement may reference only a screen-name that has a
TO or USING clause specified for it, or is a group item that contains
such a screen entry.

5. From-item and using-item are data items.

Screen Description Entry 5-97
6. To-item is a literal or a data item.

7. Table-size is an integer literal.

8. Fg-color, bg-color, cline-num, ccol-num, clength, cheight, color-val,
control-id, layout-data, enabled-state, visible-state, and help-id are
integer literals or data items.

9. Max-height, max-width, min-height, and min-width are numeric data
items or numeric literals.

10. Line-no, col-no, length, and height are numeric literals or data items.
In Format 1, these must be integer values.

11. Value-lit is a alphanumeric literal or a figurative constant.

12. Prompt-lit is a single-character alphanumeric literal or the figurative
constant SPACE, ZERO, or QUOTE.

13. Control-type-name is one of the control type reserved words known by
the compiler.

14. Control-type is a numeric literal or data item. It may not be
subscripted or reference modified.

15. Title and key-letter are alphanumeric literals or data items.

16. Font-handle is a USAGE HANDLE or HANDLE OF FONT data item
that contains a valid font handle.

17. Style-name is the name of a style associated with the class of control
being described. If the control-type-name phrase is omitted, then you
may not use the style-name phrase. The STYLE phrase may be used
instead.

18. Property-name is the name of a property specific to the type of control
being referenced. If the type of control is unknown to the compiler (as
in a “DISPLAY OBJECT object-1” statement), then property-name
may not be used. You must use the PROPERTY property-type option
instead.

19. Property-type is a numeric literal or data item. It may not be
subscripted or reference modified. It identifies the property to use.
The numeric values that identify the various control properties can be
found in the COPY library “controls.def”.

5-98 Data Division
20. Property-value is a literal or data item. Note that the parentheses in
the phrase are required.

21. Property-table is a data item that appears in a one-dimensional table.
No index should be specified.

22. In Format 1, if the PICTURE clause is used, then at least one of the
FROM, TO, or USING clauses must also be used. The VALUE clause
cannot be used. In Format 2, if the PICTURE clause is used, then you
must specify one of the FROM, TO, USING, or VALUE phrases.

23. The MULTIPLE option and the PICTURE phrase cannot be used in the
same entry.

24. The JUSTIFIED and BLANK WHEN ZERO clauses may be specified
only if the PICTURE clause is also specified.

25. The COLOR clause may not be specified if either the
FOREGROUND-COLOR or BACKGROUND-COLOR clause is
specified.

26. You may not use either the FROM or TO phrase if you use the USING
phrase.

27. In a Format 1 entry, if the VALUE phrase is used, then its meaning
depends on the following data element. If it is a literal, then VALUE is
synonymous with FROM. Otherwise, it is synonymous with USING.

28. If you use the MULTIPLE option of either the FROM, TO, or USING
phrase, the following data element must contain an OCCURS clause or
be subordinate to an OCCURS clause. The corresponding table must
be one-dimensional. The data element should not be subscripted.

29. The following items may reference a table containing the appropriate
type of data items, providing its entry is subordinate to an OCCURS
clause: COLOR, HELP-ID, VISIBLE, ENABLED, ID, STYLE,
FONT, TITLE, LINE, COL, SIZE, LINES, CCOL, CLINE, CSIZE,
CLINES, KEY, and PROPERTY. See the description of the
OCCURS Clause.

30. In Format 1, HELP-ID, VISIBLE, and ENABLED may be specified
only for group items. The effect is to apply the phrase to each control
contained in the group. You can override the setting for a particular

Screen Description Entry 5-99
control or sub-group by specifying another HELP-ID, VISIBLE, or
ENABLED phrase. These phrases have no effect on screen items that
are not controls.

31. Event-value and ax-event-value are numeric literals or data items that
identify an event type. List elements must be enclosed by parentheses.
Elements must be separated by a space. If the list contains a single
element, the parentheses can be omitted.

32. List-state is an integer literal or numeric data item. Valid values are
“0” and “1”.

33. Assembly-name is the name of a .NET assembly defined in a COPY
file created by NETDEFGEN. This must be the DLL name of a
graphical control, not an executable file. Graphical controls are
generated by Visual Studio when a developer selects a “Windows
Control Library” project type.

34. Handle-1 is a USAGE HANDLE or PIC X(10) data item.

35. A value surrounded by quotation marks is an alphanumeric literal and
is case-sensitive. Literal values for assembly parameters are located in
the COPY file generated by NETDEFGEN. The same COPY file must
be included in the SPECIAL-NAMES paragraph of your program.

36. The optional phrases may be specified in any order.

37. CELL(S) and PIXEL(S) are mutually exclusive for the same phrase.

38. In Format 2, the PLUS phrase requires PIXEL(S) to follow if the
preceding LINE Number or COLUMN Number also used PIXEL(S).

39. You may mix PIXEL and conventional coordinates/sizing in the same
statement, as shown here:

DISPLAY push-button AT 00100200 PIXELS
 LINES 50 PIXELS
 SIZE 5.

40. CELL and CELLS are equivalent.

41. PIXEL and PIXELS are equivalent.

42. IS and “=“ are synonymous.

5-100 Data Division
Note: Because the Screen Section is not part of ANSI-standard
COBOL, there is substantial variation in the syntax supported by
various COBOL vendors. ACUCOBOL-GT supports a superset of
most other Screen Section implementations. This situation results in a
large number of reserved words with the same meaning. These
synonyms are detailed in each of the following rules. We recommend
that you restrict yourself to one of the synonyms for each option in
order to improve your program’s clarity.

43. AUTO, AUTO-SKIP, and AUTOTERMINATE are equivalent.

44. NO-ECHO, NO ECHO, OFF, and SECURE are equivalent.

45. PIC is an abbreviation for PICTURE.

46. JUST is an abbreviation for JUSTIFIED.

47. BLANK and ERASE are equivalent.

48. COLUMN, COL, POSITION, and POS are equivalent.

49. BELL and BEEP are equivalent.

50. UNDERLINE and UNDERLINED are equivalent.

51. HIGHLIGHT, HIGH, and BOLD are equivalent.

52. LOWLIGHT and LOW are equivalent.

53. BLINK and BLINKING are equivalent.

54. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

55. REQUIRED and EMPTY-CHECK are equivalent.

56. FULL and LENGTH-CHECK are equivalent.

57. MULTIPLE and TABLE are equivalent.

Screen Description Entry 5-101
General Rules

1. When a screen-name is referenced by an ACCEPT or DISPLAY
statement, that screen entry and all subordinate screen entries are acted
upon at once. This allows you to accept or display many fields with one
statement.

2. The word NULL in the PROCEDURE phrase indicates that there is no
procedure. It has the same effect as omitting the PROCEDURE phrase
altogether and is essentially commentary.

3. Screen Section entries may include the labels “GRAPHICAL” and
“CHARACTER”. These markings have the effect of restricting the
display of the elements nested within them. The elements contained in
a GRAPHICAL Screen Section entry are displayed only when the
program is run on a graphical system. The contents of a
CHARACTER Screen Section entry are displayed only when the
program is run on a character-based system. When the program
attempts to execute a marked entry on a system of the opposite type,
that entry is ignored.

The purpose of these phrases is to better allow you to develop and
support two distinct user interfaces in one program; a user interface for
graphical systems, and a user interface for character-based systems. The
GRAPHICAL and CHARACTER labels allow you to place and
maintain all of the screen definition code in one place (the Screen
Section), while also allowing you to customize the look and function of
the user interface for these two classes of systems. For many developers,
this approach is easier and produces more satisfying results than
attempting to develop a single, generic user interface that works well on
both types of systems.

The following code provides an example of this approach. Suppose you
want a label that describes a set of function keys to be displayed along
the bottom of the screen. However, when you run the program on a
graphical system you want to display push buttons instead.

A Screen Section entry to do this might look like:

01 function-key-screen.
 03 line 24.
 03 character.
 05 "F1 = Exit, F2 = Lookup, F3 = Help".

5-102 Data Division
 03 graphical.
 05 push-button, "E&xit", self-act,
 exception-value = 1,
 column 3.
 05 push-button, "&Lookup", self-act,
 exception-value = 2,
 column + 3.
 05 push-button, "&Help", self-act,
 exception-value = 3,
 column + 3.

When the program executes a “DISPLAY FUNCTION-KEY-SCREEN”
statement, it displays the line of text on character-based systems, or the
set of push buttons on a graphical system.

Note: The use of these labels also allows you to create two screen
description entries with the same name. In statements where a Screen
Section name is allowed, you may now reference an ambiguous
(duplicate) Screen Section name. When you do so, the name must
resolve to exactly two Screen Section items, one having the
CHARACTER attribute and the other having the GRAPHICAL
attribute. The compiler constructs conditional code for these cases.
The Screen Section item with the CHARACTER attribute is used when
the program runs on a character-based system; the GRAPHICAL item
is used on graphical host systems. One use for this feature is to keep a
program’s original screen layouts for use on character systems while
creating all new screens for graphical systems. By giving the screens
the same name, you can keep the existing processing logic unchanged.

Format 1

1. A Format 1 statement describes any of three types of screen description
entries:

a. If a VALUE clause is specified, the screen entry is a display
literal.

b. If a PICTURE, TO, FROM, or USING clause is specified, then the
screen entry is a data field.

c. If VALUE, PICTURE, TO, FROM, or USING is not specified,
then the screen entry is a group item.

Screen Description Entry 5-103
2. A LINE, COLUMN, BLANK, or BELL clause specified for a group
item is acted upon immediately when that group item is accessed by an
ACCEPT or DISPLAY statement. All other clauses specified for a
group item are applied to each screen entry subordinate to that group
item.

3. If the same clause is specified more than once for a particular screen
entry, the clause specified at the lowest level within the hierarchy is the
one which takes effect.

4. The level-number, screen-name, USAGE, SIGN, JUSTIFIED, and
BLANK WHEN ZERO clauses follow the rules for data items
appearing in Working Storage. These rules appear in section 5.7.1,
“Data Description Entry.”

5. The PICTURE, OCCURS, and VALUE clauses have meanings similar
to those clauses in Working Storage, but have some additional
properties when used in the Screen Section. These clauses, along with
the LINE and COLUMN clauses, are detailed in separate sections
below.

6. The HELP-ID, VISIBLE, and ENABLED phrases may be specified
only for group items. The effect is to apply the phrase to each control
contained in the group. You can override the setting for a particular
control or sub-group by specifying another HELP-ID, VISIBLE, or
ENABLED phrase. These phrases do not affect screen items that are
not controls.

7. All other clauses are described in detail in section 6.4.9, “Common
Screen Options.”

Format 2 (SCREEN CONTROLS)

1. A Format 2 Screen Section entry defines a screen control.

2. Control-type-name identifies the type of the control (the exact set of
controls and their types is discussed in Chapter 5 of Book 2, User
Interface Programming). Use the OBJECT control-type phrase when
the type of the control is not known at compile time. Control-type
must contain the identifying number of a control type known to the
system. If it does not correspond to any control type, the Screen
Section entry is ignored. The identifying number of each control type
is defined in the “controls.def” file.

5-104 Data Division
3. When you DISPLAY a Screen Section control, the following steps are
performed:

a. If this is the first DISPLAY of this control, the runtime builds a
new control of the specified type.

b. The various properties specified by the Screen Section control
phrases are set. Unspecified properties are then assigned default
values when the control is initially created. Properties are
assigned in the order listed in the Screen Section, except that the
VALUE property is always assigned last.

c. The control is displayed or updated on the screen.

d. The cursor is positioned after the control.

4. When you ACCEPT a Screen Section control, that control receives the
input focus, and the runtime system processes user actions until the
user terminates the ACCEPT according to the rules for the ACCEPT
verb.

5. When you DISPLAY a Screen Section group item, each subsidiary
Screen Section entry is displayed. This can be a mix of textual fields
and graphical controls. When you ACCEPT a Screen Section group
item, the cursor (or input focus) is placed according to the rules for the
ACCEPT verb, and the runtime proceeds to accept data from the user
for each field or control. The runtime automatically handles cursor
movements between the fields and controls.

6. Screen Section controls are assigned field numbers in the same way as
Format 1 Screen Section entries. If the control is activatable (the user
can interact with the control), it is given a field number. Controls that
cannot take user input (e.g., LABEL controls) are not given field
numbers. Field numbers are assigned sequentially, starting with “1”,
for each appropriate Format 1 or Format 2 Screen Section entry
subordinate to a given 01-level group item. For Screen Section
controls that omit the ID phrase, but have an implied field number, the
corresponding control is given that field number as its ID. Note that
the field number is not assigned until the control is created.

7. If you specify a PICTURE, the memory for that picture is allocated in
the Screen Section entry. Each DISPLAY of that entry moves the data
in the FROM or USING data item to itself using the standard MOVE
rules. That entry is then used as the value of the control. Each

Screen Description Entry 5-105
ACCEPT of that entry stores the control’s value in the Screen Section
entry and then moves the entry into the TO or USING data item in
accordance with the standard MOVE rules. If you omit the PICTURE
phrase, the control’s value is retrieved directly from the FROM or
USING item and stored directly in the TO or USING item. Note that
specifying a PICTURE allocates additional memory. As a result, it is
preferable to specify a PICTURE only in cases where you need to
reformat the data (e.g., by specifying a numeric-edited PICTURE).

8. The MULTIPLE phrase in the FROM, TO, or USING clause indicates
that you want the control’s value to be mapped to the corresponding
data item on a line-by-line basis. Each line of data in the control
corresponds to one element in the data table. This should be used only
with controls that have the concept of multiple lines of data (e.g., an
ENTRY-FIELD that contains multiple lines of text). For example, the
following Working-Storage and Screen Section definitions would
construct a five-line entry field on the screen, and place each line of
input into a separate data item in the Working-Storage table:

WORKING-STORAGE SECTION.
01 ENTRY-LINES OCCURS 5 TIMES PIC X(30).

SCREEN SECTION.
01 ENTRY-FIELD, USING MULTIPLE ENTRY-LINES,
 LINES 5, SIZE 30.

9. If you specify a FROM or USING item, and you do not specify a title,
the runtime will substitute the from-item or using-item for the title if
the corresponding control type does not take a value (i.e., is a LABEL,
PUSH-BUTTON, or FRAME). This allows you to associate a
PICTURE with a LABEL control. Because the picture formats the
value of the control, and because a LABEL does not take a value, this
rule allows the picture-string to set the value of the label’s title.

10. The REQUIRED phrase is meaningful only for controls that take
alphanumeric input (e.g., entry fields). When specified, it forces the
user to enter non-space data into the control before the ACCEPT will
terminate. The user can also terminate the ACCEPT by generating an
exception. See section 6.4.9 for more information about the
REQUIRED phrase.

5-106 Data Division
11. The EVENT option of the PROCEDURE phrase establishes an event
procedure for the control. Event procedures are different from the
other Screen Section embedded procedures in that an event procedure
becomes part of the control when it is created, and is executed directly
by the control (the BEFORE, AFTER, and EXCEPTION procedures
execute as part of the flow of control of the Screen Section). An event
procedure can potentially execute any time after its owning control has
been created, even when the defining Screen Section item is not being
ACCEPTed. For more about event procedures, see section 5.9.6.

12. All phrases not described here or in section 6.4.9, “Common Screen
Options” are treated in the same manner as in a Format 1 Screen
Section entry.

Format 2 Screen Section example:
SCREEN SECTION.

01 SEARCH-SCREEN.
 03 LABEL "Search for", LINE 1, COL 5.
 03 ENTRY-BOX USING SEARCH-TEXT, COL + 1,
 SIZE 30.
 03 PUSH-BUTTON, TITLE "Ok", LINE 3, COL 10,
 DEFAULT-BUTTON, TERMINATION-CODE IS 13.
 03 PUSH-BUTTON, TITLE "Cancel", COL 25,
 CANCEL-BUTTON, EXCEPTION-CODE IS 27.

Format 3 (.NET ASSEMBLIES)

1. A Format 3 Screen Section entry defines a graphical .NET assembly.

2. Literal values for assembly parameters are located in the COPY file
generated by the NETDEFGEN utility. The same COPY file must be
included in the SPECIAL-NAMES paragraph of your program.

Screen Description Entry 5-107
3. Graphical assemblies show the keyword “VISUAL” in the COPY file
after the CLASS keyword. If the word “VISUAL” does not appear,
use the CREATE statement to instantiate the assembly. A Format 3
Screen Section is for graphical .NET assemblies only.

4. Assembly-name is the name of a .NET assembly defined in the
NETDEFGEN COPY file. This must be the DLL name of a graphical
control, not an executable file. Graphical controls are generated by
Visual Studio when a developer selects a “Windows Control Library”
project type.

5. Namespace is a NameSpace in the assembly, as it appears in the COPY
file.

6. Class-name is a class in the NameSpace.

7. Handle-1 receives a handle to the assembly when it is created.

8. Version is the version number of the assembly.

9. Culture is cultural information related to the assembly.

10. Strong-name is the cryptographic key required to access the assembly,
if any. If the assembly requires such a key, as all assemblies in the
Global Assembly Cache (GAC) do, it is shown in the COPY file under
the keyword STRONG.

11. All classes that result in an object have a CONSTRUCTOR, which is a
unique method. If you see a CONSTRUCTOR identifier in the COPY
file without a parameter list, then the field may be omitted from your
COBOL program. If all listed CONSTRUCTORs have parameters,
then you must choose which CONSTRUCTOR and parameters to use.
Constructor(n) is the constructor that you want to use followed by its
parameter data.

12. Module identifies a file where a combination of NameSpaces and
Classes resides. It is used when the assembly is constructed of other
assemblies.

13. File-path is the path of an XML file, and that XML file contains the
path where the .NET assembly is located. Use FILE-PATH when the
assembly that you want to access does not reside in the GAC or in the
same directory as “wrun32.exe”. Assemblies that reside in the GAC
will have the STRONG keyword in the NETDEFGEN COPY file.

5-108 Data Division
14. LINES and SIZE default to the design control height and width.

Format 3 Screen Section example:
SCREEN SECTION.
01 screen-1.
 03 SOME-NETCONTROL, "@My.Assembly",
 LINE 1, COL 2,
NAMESPACE IS "My.Test.Namespace",
CLASS-NAME IS "UserControl1",
 CONSTRUCTOR IS CONSTRUCTOR2(PARM1, PARM2, PARM3,
 PARM4, PARM5, PARM6, PARM7),
EVENT PROCEDURE IS USERCONTROL-EVENTS.

5.9.1 PICTURE, FROM, TO, and USING Clauses

These Screen Section clauses describe the format, storage, and action of a
screen data field.

General Format
[{PICTURE} IS picture-string]
 {PIC }

[[FROM out-item] [TO in-item]]
[USING update-item]

Syntax Rules

1. The rules for the Screen Section PICTURE clause are the same as the
rules for the standard PICTURE clause detailed in section 5.7.1.6.

2. If the PICTURE clause is specified, then a VALUE clause may not be
specified.

3. Out-item is a literal or an identifier referencing a data item in the File,
Working-Storage, or Linkage sections. Out-item may be subscripted
and reference modified.

4. In-item and update-item are identifiers referencing data items in the
File, Working-Storage, or Linkage sections. These items may be
subscripted and reference modified.

Screen Description Entry 5-109
5. In-item, out-item and update-item must be such that a MOVE specified
between them and the screen entry is legal according to the rules of the
MOVE statement.

General Rules

1. Because of the difficulty in viewing the internal storage of certain classes
of numeric items, you should avoid using the picture symbol “V” in a
screen entry. If you use the picture symbol “S”, you should also specify
the SIGN SEPARATE clause. Alternately, you can use a numeric edited
screen entry to display these types of data items in a sensible format.

2. A screen entry specifying the FROM phrase is an output field. A
screen entry specifying the TO phrase is an input field. A screen entry
specifying both the FROM and TO phrases is an update field.

3. A screen entry with the USING phrase is equivalent to a screen entry
specifying both the FROM and TO phrases referencing the same data
item.

4. When a DISPLAY verb executes, each output and update field
referenced is sent to the screen. When this occurs, each out-item and
update-item is first moved to the corresponding screen entry using the
standard rules of the MOVE statement. These fields are then displayed
on the user’s screen.

5. Input fields are initialized when a DISPLAY verb executes. Numeric
and numeric-edited fields have ZERO moved to them, all other fields
have SPACES moved to them. These moves occur using the standard
rules of the MOVE statement. The appearance of input fields on the
screen when a DISPLAY verb executes is configurable by various
runtime options. Note that the screen entry is initialized; the
corresponding in-item or update-item is not.

6. When an ACCEPT verb executes, each input and update field
referenced is input by the user. After the user is done, each screen
entry is moved to the corresponding in-item or update-item using the
standard rules of the MOVE statement.

7. If the PICTURE phrase is omitted, then the screen entry derives its
PICTURE from the in-item, out-item, or update-item specified. The
derived PICTURE is identical to the PICTURE for the specified item.

5-110 Data Division
If both in-item and out-item are specified, then the PICTURE is
derived from out-item. Note that only the PICTURE is derived; other
clauses such as the SIGN clause are not inherited.

5.9.2 VALUE Clause

The Screen Section VALUE clause specifies a literal screen item.

General Format
VALUE IS value-lit

Syntax Rules

1. Value-lit is any alphanumeric literal or figurative constant.

2. If a VALUE clause is specified, a PICTURE clause may not be
specified.

General Rules

1. A VALUE clause specifies a literal display field.

2. When a DISPLAY verb executes that references a screen entry with a
VALUE clause, value-lit is sent to the user’s screen.

3. If value-lit is a figurative constant, one occurrence of that constant is
sent.

5.9.3 OCCURS Clause

The Screen Section OCCURS clause simplifies the handling of repeated data
items.

General Format
OCCURS table-size TIMES

Screen Description Entry 5-111
Syntax Rules

1. Table-size is an integer that specifies the number of occurrences of the
screen entry.

2. An OCCURS clause may not be specified for a screen entry that has a
level-number of 01.

3. An OCCURS clause may be subordinate to a group item with an
OCCURS clause to create a two-dimensional table. An OCCURS
clause may not be nested more than two deep (three dimensional or
greater tables are not allowed).

4. If an OCCURS clause applies to a screen output or update field, then
one OCCURS clause specifying the same number of occurrences, or no
OCCURS clause at all, must apply to the source item. This OCCURS
clause must not include the DEPENDING phrase.

5. If an OCCURS clause applies to a screen input or update field, then
one OCCURS clause specifying the same number of occurrences must
apply to the receiving item. This OCCURS clause must not include the
DEPENDING phrase.

6. If a COLOR clause is specified for a screen description entry that
contains or is subordinate to an OCCURS clause, that COLOR clause
may reference a table of numeric data items. The number of
occurrences in the color table must match the number of occurrences in
the screen entry.

General Rules

1. The general rules that apply to an OCCURS clause specified for a data
item in the File, Working-Storage, or Linkage sections also apply to an
OCCURS Clause specified in the Screen Section.

2. Each screen entry affected by an OCCURS clause is repeated
table-size times.

3. If line or column numbers are given to screen items in a table, at least
one of these numbers should specify relative positioning. If absolute
positioning is used, then every occurrence of the screen item will
appear in the same place.

5-112 Data Division
4. If the screen item is an output or an update field, and no OCCURS
clauses apply to the sending item, then a DISPLAY verb causes the
sending item to be moved to every occurrence of the screen item.

5. If the screen item is an output or an update field with an OCCURS
clause applying to the sending item, then a DISPLAY verb causes each
occurrence of the sending item to be moved to the corresponding
occurrence of the screen item.

6. If the screen item is an input or an update field, then an ACCEPT verb
causes each occurrence of the screen item to be moved to the
corresponding occurrence of the receiving item.

7. If a COLOR clause that references a table is specified, each occurrence
of the table specifies the color for the corresponding occurrence of the
screen item. For example:

DATA DIVISION.
WORKING-STORAGE SECTION.

01 DATA-TABLE.
 03 DATA-ELEMENT OCCURS 5 TIMES PIC X(5).

01 COLOR-TABLE.
 03 COLOR-ELEMENT OCCURS 5 TIMES PIC 9(5).

SCREEN SECTION.

01 SCREEN-1.
 03 OCCURS 5 TIMES, USING DATA-ELEMENT
 COLOR COLOR-ELEMENT.

Examples

Table on one line

This program accepts a simple table on one line:
IDENTIFICATION DIVISION.
PROGRAM-ID. OCCURS-SAMPLE-1.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 TABLE-1.
 03 TABLE-ITEM OCCURS 5 TIMES PIC X(5).

Screen Description Entry 5-113
SCREEN SECTION.

01 SCREEN-1.
 03 "TABLE ITEMS:".
 03 OCCURS 5 TIMES USING TABLE-ITEM, COLUMN + 2.

PROCEDURE DIVISION.

MAIN-LOGIC.

 DISPLAY WINDOW ERASE.
 DISPLAY SCREEN-1.
 ACCEPT SCREEN-1.
 STOP RUN.

Two-element table

This program accepts a two-element table, each pair on its own line:
IDENTIFICATION DIVISION.
PROGRAM-ID. OCCURS-SAMPLE-2.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 TABLE-1.
 03 TABLE-GROUP OCCURS 5 TIMES.
 05 ITEM-1 PIC X(5).
 05 ITEM-2 PIC 9(5).

SCREEN SECTION.

01 SCREEN-1.
 03 "TEXT NUMBER".
 03 OCCURS 5 TIMES.
 05 USING ITEM-1, LINE + 1.
 05 USING ITEM-2, COLUMN + 2.

PROCEDURE DIVISION.
MAIN-LOGIC.
 DISPLAY WINDOW ERASE.
 DISPLAY SCREEN-1.
 ACCEPT SCREEN-1.
 STOP RUN.

5-114 Data Division
Example with output

You don’t have to use a table data-item when you’re doing output:
SCREEN SECTION.
01 LINES-SCREEN.
 03 "-" OCCURS 10 TIMES.

This would cause “----------” to be displayed. This is an example of rule 4,
where no OCCURS clause applies to the source item.

5.9.4 LINE Clause

The LINE clause specifies the row on which the screen entry is to be placed.

General Format
LINE [NUMBER IS [PLUS] line-no]
 [+]
 [-]

Syntax Rules

1. Line-no is a numeric literal or data item.

2. Line-no may not be subscripted or reference modified.

General Rules

1. The LINE clause specifies the screen row on which to place the screen
entry. Line number 1 is the line number specified in the AT phrase of the
ACCEPT or DISPLAY statement. If the AT phrase is not specified, then
line number 1 is the first line of the current screen window.

2. The LINE clause without the PLUS option specifies an absolute line
number.

3. The LINE clause with the PLUS option specifies a line number relative
to the previous screen entry in the group. If the PLUS or “+” option is
used, line-no is added to the previous line number. If the “-” option is
used, line-no is subtracted from the previous line number.

Screen Description Entry 5-115
4. If relative positioning is specified for a level 01 screen entry, the
position is relative to LINE 1.

5. If line-no is not specified, then LINE PLUS 1 is implied.

6. If the LINE clause is omitted:

a. If no previous screen item has been defined, LINE 1 is assumed.

b. If a previous screen item has been defined, the line of that previous
item is used.

5.9.5 COLUMN Clause

The COLUMN clause specifies which screen column to use for a screen
entry.

General Format
{COLUMN } [NUMBER IS [PLUS] col-no]
{COL } [+]
{POSITION} [-]
{POS }

Syntax Rules

1. Col-no is a numeric literal or data item.

2. Col-no may not be subscripted or reference modified.

3. COLUMN, COL, POSITION, and POS are equivalent.

General Rules

1. The COLUMN clause specifies the screen column on which to place the
screen entry. Column number 1 is the column number specified in the
AT phrase of the ACCEPT or DISPLAY statement. If the AT phrase is
not specified, then column number 1 is the first column of the current
screen window.

2. The COLUMN clause without the PLUS option specifies an absolute
column number.

5-116 Data Division
3. The COLUMN clause with the PLUS option specifies a column
number relative to the end of the previous screen entry in the group. If
the PLUS or “+” option is used, col-no is added to the previous column
number. If the “-” option is used, col-no is subtracted from the
previous column number.

4. If relative positioning is specified for a level 01 screen entry, the
position is relative to COLUMN ZERO (in other words, COLUMN
PLUS 1 is the same as COLUMN 1).

5. If col-no is not specified, then COLUMN PLUS 1 is implied.

6. If the COLUMN clause is omitted:

a. If a LINE clause is specified, COLUMN 1 is implied.

b. If the LINE clause is omitted, COLUMN PLUS 1 is implied.

7. In ICOBOL compatibility mode, the COLUMN phrase is interpreted
slightly differently. Relative positioning is based from the character
just to the right of the previous data item. This causes “COLUMN
PLUS 1” to place a space between the end of the last data item and the
beginning of the next one. Also, if the COLUMN phrase is omitted
and would normally default to COLUMN PLUS 1, then COLUMN
PLUS ZERO is used instead.

5.9.6 PROCEDURE Clause

A Screen Section entry may refer to paragraphs and sections in the Procedure
Division. The reference describes a procedure that the runtime will execute
when a Format 2 ACCEPT statement transfers control to or from that field.
The procedure temporarily suspends the operation of the ACCEPT statement.
When the procedure finishes, control returns to the ACCEPT statement.

Procedures named in the Screen Section in this way are called embedded
procedures. You can use embedded procedures to perform immediate
validation of user-supplied data.

Another type of procedure named in the Screen Section is an event
procedure, which is tied to a screen control. When a control generates
events, it executes its event procedure as one of its first operations. When the
procedure terminates, the control resumes execution. You can use event

Screen Description Entry 5-117
procedures to detect and act on desired events. Event procedures are
explained in detail in the General Rules section below. For a description of
the specific events that can be generated in an event-driven environment, see
section 4.2 of Book 2, User Interface Programming.

General Rule 1 describes when an AFTER or EXCEPTION procedure is
executed.

You create embedded procedures or event procedures by using syntax in the
Screen Section. On any Screen Section entry, you may use the following
syntax.

General Format
{BEFORE } PROCEDURE IS {proc-1 [{THROUGH} proc-2]}
{AFTER } {THRU }
{EXCEPTION} {NULL }
{EVENT }

Syntax Rules

1. Proc-1 and proc-2 must be names of paragraphs or sections defined in
the Procedure Division of the program.

2. THROUGH and THRU are synonymous.

3. You may have one event procedure and up to three embedded
procedures defined for each Screen Section entry—one BEFORE, one
AFTER, and one EXCEPTION. You may not have more than one of
each type in any one Screen Section entry.

General Rules

Embedded Procedures

1. An ACCEPT statement executes embedded procedures when the cursor
reaches the field defined by the associated Screen Section entry. The
type of an embedded procedure defines exactly when it will execute:

a. BEFORE procedures execute when control is transferred to the
associated field, before the user can enter any data.

5-118 Data Division
b. AFTER procedures execute when the user attempts to leave the
field normally. This can be due to typing a termination key, filling
an auto-terminate field, or typing a field-movement key such as
the Tab key. Keys that serve as both movement and exception
keys, such as the default definition of the Up arrow key, always
cause the AFTER procedure to execute.

As pertains to this rule, the movement actions are defined as:

Default-Next, Down, Erase-All, Erase-Next, First, Last, Left, Next,
Next-Line, Numeric-Next, Previous, Previous-Line, Right, and Up.

In the default keyboard configuration, this affects the handling of
the Up and Down arrows in the first and last fields of a Screen
Section item.

To avoid having keys that are both movement keys and exception
keys, you can make the affected keys movement and termination
keys. In the default keyboard configuration, you would change the
Up and Down arrows to be:

 KEYBOARD Edit=Up Terminate=52 ku
 KEYBOARD Edit=Down Terminate=53 kd

c. EXCEPTION procedures execute when the user types an
exception key (assuming that exception keys are allowed) or when
some other exception condition exists.

2. The word NULL in the PROCEDURE phrase indicates that no
procedure exists. It has the same effect as omitting the PROCEDURE
phrase and is essentially commentary.

3. When the ACCEPT statement executes an embedded procedure, it
treats proc-1 and proc-2 in the same manner that a PERFORM
statement does. That is, it begins execution at proc-1 and continues to
the end of proc-2 (or proc-1 if you omit proc-2). When the embedded
procedure completes, control returns to the ACCEPT statement.

4. An embedded procedure may contain other ACCEPT statements,
which, in turn, can contain embedded procedures. This is handled in
the same fashion as nested PERFORMS. Embedded procedures may
CALL subprograms. An embedded procedure remains active until one
of the following occurs:

Screen Description Entry 5-119
a. The embedded procedure finishes and returns control to its
ACCEPT statement.

b. The program containing the embedded procedure does an implicit
or explicit EXIT PROGRAM.

c. The run-unit containing the embedded procedure does an implicit
or explicit STOP RUN.

5. Prior to executing an embedded procedure, the ACCEPT statement
moves the contents of each input and update field to its corresponding
data item. In addition, each control is INQUIREd for its current
VALUE (unless the TC_CONTROL_SYNC_LEVEL configuration
variable is set to a value that contradicts this behavior). This allows
you to examine the current Screen Section data from inside an
embedded procedure.

6. The ACCEPT statement updates any CURSOR variable that you have
declared in Special-Names. It does this prior to executing any AFTER
or EXCEPTION procedure. Note that BEFORE procedures do not
update the variable. This is due to the fact that the cursor does not
actually move to the field being entered until the BEFORE procedure
returns control to the ACCEPT statement.

7. The ACCEPT statement updates any CRT STATUS variable that you
have declared prior to executing an AFTER or EXCEPTION
procedure. This allows you to determine what key the user typed to
leave the field. You may also use the ACCEPT FROM ESCAPE KEY
verb inside an embedded procedure for this purpose.

a. If the user leaves the field due to the action of an editing key (such
as an arrow key or a “next field” key), the CRT STATUS will be
set to zero (for a numeric CRT STATUS) or to “0”, “0”, x”00”
(for a group item CRT STATUS). For the format of a group item
CRT STATUS, see section 4.2.3, “Special-Names Paragraph.”

b. Note that some keys are both editing keys and termination keys.
For example, by default, the Tab key is set up to be a “next field”
key until the last field of the Screen Section, when it becomes a
termination key. These keys are treated as editing keys until their
termination condition applies. Therefore, their CRT STATUS
value will change depending on whether the key is being treated as
an editing key or a termination key.

5-120 Data Division
8. After completing an embedded procedure, the ACCEPT statement
re-computes all variable information contained in the Screen Section
entry being accepted. This allows you to change colors and other
aspects of the Screen Section entry dynamically.

a. Note, however, that data is not automatically moved to update
(USING) fields from their corresponding data items. If you want
to change the contents of an update field from inside an embedded
procedure (to provide a new default, for example), you must
DISPLAY the changed field. The DISPLAY verb moves data to
the Screen Section and shows it on the screen.

b. In an embedded procedure, you may “protect” screen fields by
changing their COLOR value (see section 6.4.9, “Common
Screen Options”). As a result, the ACCEPT statement may
terminate when the embedded procedure returns control because
there are no remaining fields to enter. If this occurs, the CRT
STATUS is left unchanged from the value it had when the
embedded procedure returned.

9. An embedded procedure can alter the behavior of its controlling
ACCEPT statement. See section 4.2.3 for details on the SCREEN
CONTROL data item.

10. You may specify an embedded procedure for a group item in the
Screen Section. The effect is to apply that procedure to each
elementary item contained in the group. Subsidiary items may specify
their own embedded procedures, which take precedence over the
group’s embedded procedures. For more information, see the User’s
Guide, section 6.5.5, “Using Screen Section Embedded
Procedures.”

Event Procedures

1. The EVENT option of the PROCEDURE phrase establishes an event
procedure for a control. Event procedures are different from Screen
Section embedded procedures in that an event procedure becomes part of
the control when it is created, while embedded procedures do not. An
event procedure is executed directly by the control. Embedded
procedures execute as part of the flow of control of the Screen Section.

Screen Description Entry 5-121
An event procedure can potentially execute any time after its owning
control is created, even when the defining Screen Section item is not
being ACCEPTed.

2. By default, a control does not have an event procedure, which is like
specifying an event procedure of NULL.

3. When a control invokes an event procedure, the EVENT-STATUS data
item reflects the invoking event. When the procedure terminates, the
previous contents of the EVENT-STATUS item are restored (this is
important when nested events exist). If the program does not contain
an EVENT-STATUS data item, then the event is processed normally.
For more information about the EVENT-STATUS data item, see
section 4.2.3, “Special-Names Paragraph.”

4. Event procedures are similar to embedded procedures (for example, the
AFTER procedure). However, you should note the following
differences:

a. Unlike embedded procedures, the values of data elements
corresponding to a control’s values are not updated when an event
procedure is entered. You must use the INQUIRE verb to examine
the current value of a control inside an event procedure.

b. Unlike embedded procedures, the event procedure executes while
processing the control, instead of after the control terminates.
Every event that occurs in the control is passed to the event
procedure. When the event procedure terminates, the event is
processed by the control and the control continues normal
processing as dictated by the value of the EVENT-ACTION
element of EVENT-STATUS (see section 4.2.3). An advantage of
event procedures is that they receive all events. You do not need
to remember if the event should be processed in the AFTER or
EXCEPTION procedure.

c. Event procedures can be executed any time the control receives
events. The Screen Section embedded procedures receive control
only during an ACCEPT of the corresponding Screen Section.
This behavior can be important with tool bar controls, which
normally are not ACCEPTed.

5-122 Data Division
d. Events classified as messages (whose symbolic names start with
“MSG-”) are sent only to event procedures. They cannot be
detected by the Screen Section embedded procedures. See
Chapter 6 of Book 2, User Interface Programming, for detailed
information about messages.

e. You can change a control’s event procedure via the MODIFY verb.
The Screen Section’s embedded procedures are fixed.

5. Event procedures are unique in that they can receive control when the
owning COBOL program is otherwise inactive. The following rules
cover the activation of an event procedure:

a. If the current program contains the event procedure, then it is
executed as if it were the subject of the PERFORM statement.

b. If the program containing the event procedure is active, but is not
the current program, control flows to the containing program at the
point of the event procedure. This situation is not considered a
recursive call, because the transfer of control is not via CALL.
When the event procedure terminates, control returns to the
original program.

c. If the program containing the event procedure is not active, but is
resident in memory, it is made active with the following
conditions:

• It has no USING items passed to it, so program parameters are
not defined and should not be used.

• While active, the program is not affected by CANCEL (just like
all active programs).

• When the event procedure terminates, the program is made
inactive again.

• On entry to the event procedure, all other states of the program
(e.g., the values of variables) are unchanged from the time
when the program was last active.

• The program retains any changes made to its state (variables
and file state) when the procedure exits.

Screen Description Entry 5-123
d. If the program containing the event procedure is not memory
resident, then the event procedure is removed from the control.

e. For recursive programs, the copy of the program at the depth that
registered the procedure is the one that counts for determining
which program contains the event procedure.

f. While an event procedure is active (due to an event), an EXIT
PROGRAM statement is ignored in the event procedure’s
controlling program.

6. When programming an event procedure, you should avoid using the
ACCEPT statement to allow input from controls. Most graphical host
systems are not designed to expect input events while in the process of
handling another input event. This situation stresses the host system
and can lead to situations where the results are unpredictable.

If you want to place an ACCEPT statement inside an event procedure,
one way to avoid this situation is to turn the event to a terminating event
and then perform the ACCEPT in the corresponding exception
procedure. Exceptions occur after event handling is complete, so this
avoids the “nested input events” syndrome. To turn an event into a
terminating event, see the description of EVENT-STATUS, in section
4.2.3, “Special-Names Paragraph.” Another effective technique is to
run the procedure that performs the ACCEPT in a separate thread. This
allows the original event to complete and also avoids the situation.
Typically you can do this by placing the desired event-handling code in
a separate paragraph and then using PERFORM THREAD to run that
paragraph from the control’s event handler.

6
 Procedure Division
Key Topics

Organization .. 6-2
Arithmetic Expressions ... 6-5
Conditional Expressions ... 6-8
Common Statement Rules .. 6-16
Procedure Division Format .. 6-60
Procedure Division Statements.. 6-64

6-2 Procedure Division
6.1 Organization

The Procedure Division holds the COBOL statements that the program
executes. This chapter describes the general rules covering COBOL
statements and covers each statement type in detail.

The Procedure Division is organized as a series of paragraphs made up of
sentences. These sentences describe the desired behavior of the program.
Paragraphs may optionally be organized into sections. Most paragraphs in
the Procedure Division contain statements that are executed in the normal
course of the program. Paragraphs may also be placed in Declaratives.
Declarative paragraphs execute only in response to some external condition,
such as failure of a file input/output statement.

6.1.1 Statements and Sentences

A COBOL statement is always introduced by a reserved word called a verb.
A verb and its operands describe some action to be taken when the program
runs. A sentence is one or more statements that are terminated by a period.

There are four types of statements:

1. Compiler-directing statements specify an action to be taken by the
compiler. Only the COPY, REPLACE, and USE statements fit this
classification.

2. Imperative statements specify an unconditional action to be taken by
the object program. Whenever an imperative statement is allowed, it
may consist of a sequence of consecutive imperative statements.

3. Conditional statements specify an action to be taken by the object
program that is dependent on the truth value of some condition.

4. Delimited-scope statements specify their explicit scope delimiter. A
delimited-scope statement contains elements of a conditional nature.
Because of the scope-delimiter, however, these statements may be used
anywhere an imperative statement may be.

Organization 6-3
An imperative sentence is one that contains only imperative and
delimited-scope statements. A conditional sentence consists of a single
conditional statement optionally preceded by a sequence of imperative
statements.

Several verbs can be either imperative, conditional, or delimited-scope. For
example, a simple READ statement is imperative. If the AT END clause is
included, it becomes conditional. On the other hand, if the END-READ
phrase is also included, then it is a delimited-scope statement.

6.1.1.1 Scope of statements

The scope of a statement designates when a statement ends. A period
terminates all currently active statements. In a delimited-scope statement, the
scope delimiter ends the statement. An imperative statement ends at the
beginning of the next statement.

Conditional and delimited-scope statements can contain other statements.
These statements can be terminated implicitly by elements of the containing
statement. In the following example, the ELSE clause terminates the ADD
and DISPLAY statements. The period terminates the MOVE and IF
statements.
 IF VAR-1 = VAR-2
 ADD VAR-X TO VAR-Y
 ON SIZE ERROR DISPLAY "OVERFLOW"
 ELSE
 MOVE VAR-2 TO VAR-1.

Clauses or scope-delimiters that terminate a statement always terminate the
statement that begins with the closest preceding unpaired verb of the
appropriate type. In the following example, the first ELSE terminates the
DISPLAY statement, the second ELSE terminates the MOVE statement and
the second IF statement, and the period terminates the ADD statement and
the first IF statement.
 IF VAR-1 = VAR-2
 IF VAR-3 = VAR-4
 DISPLAY "CONDITION 1"
 ELSE
 MOVE "CONDITION 2" TO VAR-5
 ELSE
 ADD 1 TO VAR-3.

6-4 Procedure Division
A delimited-scope statement is one that contains a scope-delimiter. A
scope-delimiter is always a reserved word that begins with “END-” and
finishes with a verb name. For example, END-ADD and END-START are
scope delimiters for the ADD and START statements. The presence of a
scope-delimiter converts a conditional statement into a delimited-scope
statement. A delimited-scope statement may be used anywhere an
imperative statement can appear.

Note: Only imperative statements may be nested within another statement,
unless the other statement is an IF statement.

 The following is illegal:
ADD VAR-1 TO VAR-2 ON SIZE ERROR
 IF VAR-1 < ZERO
 DISPLAY "VAR-1 IS NEGATIVE"
 ELSE
 DISPLAY "VAR-1 TOO LARGE".

Since the IF statement is conditional, it may not be nested within the ADD
statement. The correct version of this construct is:
 ADD VAR-1 TO VAR-2 ON SIZE ERROR
 IF VAR-1 < ZERO
 DISPLAY "VAR-1 IS NEGATIVE"
 ELSE
 DISPLAY "VAR-1 TOO LARGE"
 END-IF.

The presence of the END-IF converts the conditional IF statement into a
delimited-scope statement which may be used in place of an imperative
statement. Thus it may appear nested within the ADD statement.

6.1.2 Flow of Control

Execution of a program begins at the first paragraph encountered outside of
Declaratives. Statements are executed in order except when an explicit or
implicit transfer of control occurs. The program halts when there is no next
statement available to execute.

The following methods of implicit control are used by COBOL.

Arithmetic Expressions 6-5
1. If a paragraph is being executed under control of another COBOL
statement (such as a PERFORM) and the paragraph is the last in the
range of the controlling statement, then an implied transfer of control
occurs from the last statement in the paragraph to the control mechanism
of the controlling statement.

2. When any COBOL statement is executed which results in the
execution of a Declarative section, an implicit transfer of control to that
Declarative section occurs. After the section completes, another
implicit transfer of control occurs to the statement immediately after
the statement that caused the Declarative to execute.

An explicit transfer of control occurs in response to certain COBOL
statements such as GO TO and PERFORM. The rules for transfer are
described under the appropriate verbs. All conditional and delimited-scope
statements also perform explicit transfer of control based on some condition.

6.2 Arithmetic Expressions

Arithmetic expressions are used in COBOL to represent a fixed or computed
numeric value. An arithmetic expression can be one of the following:

1. a numeric elementary data item

2. a numeric literal

3. the address of a data item (ADDRESS OF phrase)

4. two or more of the above, separated by arithmetic operators

5. two or more arithmetic expressions, separated by arithmetic operators

6. an arithmetic expression enclosed in parentheses

7. an arithmetic expression preceded by a unary operator (a sign)

6-6 Procedure Division
Arithmetic expressions can use five binary and two unary arithmetic
operators. A space must precede and follow each operator. The operators
are:

Note: Spaces are often required before and after minus signs to prevent
ambiguity.

6.2.1 Evaluation of Arithmetic Expressions

Parentheses may be used in expressions to specify the order of evaluation.
Expressions within parentheses are evaluated first. When parentheses are
nested, the innermost set of parentheses is evaluated first, and then
successively more inclusive parentheses are evaluated.

When an expression contains no parentheses, the expression evaluates the
arithmetic operators in the following hierarchical order:

1. unary plus and minus

2. exponentiation

3. multiplication and division

4. addition and subtraction

Binary Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

Unary Operator Meaning

+ Multiplication by +1

- Multiplication by -1

Arithmetic Expressions 6-7
When the sequence of execution is not specified by parentheses and two or
more operators exist at the same hierarchical level, the order of evaluation is
from left to right.

An arithmetic expression can begin with only a left parenthesis, a plus sign,
a minus sign, an identifier, or a literal. It can end only with a right
parenthesis, an identifier, or a literal. Each left parenthesis in an expression
must have a matching right parenthesis, and each right parenthesis must have
a matching left parenthesis. If the first operator is unary, it must be preceded
by a left parenthesis if the expression immediately follows an identifier or
another arithmetic expression.

Operands in an arithmetic expression may be any format or USAGE.

6.2.2 ADDRESS OF Phrase in Expressions

In an arithmetic expression, you may use the address of a data item anywhere
you can normally place a numeric data item. The address is treated as an
unsigned integer with sufficient range to express any address in the host
machine’s address space.

To create an address, you use the following syntax:
ADDRESS OF data-item-1

where data-item-1 is a data item.

For example, the following statement produces a pointer that points one
character position past the beginning of ITEM-1:
COMPUTE PTR-1 = ADDRESS OF ITEM-1 + 1

If a data item has not been given an address by the program, then the data
item’s address acts as if its uppermost parent item (or itself if it has no
parent) has an address of zero. This makes it possible to test for a NULL
address without generating a runtime exception. For example:
SET POINTER-1 TO ADDRESS OF LINK-ITEM-1
IF POINTER-1 = NULL
 SET ADDRESS OF LINK-ITEM-1 TO WS-ITEM-1

This rule only applies to ADDRESS OF calculations.

6-8 Procedure Division
6.3 Conditional Expressions

Conditional expressions specify a condition the program must evaluate to
determine the program’s behavior. Conditional expressions have a value of
“true” or “false”. Conditional expressions can either be simple or complex.
The simple conditional expressions are the relation, class, sign, and
condition-name conditions. The complex conditions are formed with the
logical operators AND, OR, and NOT.

6.3.1 Relation Conditions

A relation condition specifies a comparison of two operands, each of which
may be a data item or a literal. A relation condition has the value “true” if the
relation exists between the operands. Comparison of two numeric operands
is permitted regardless of the formats specified by their respective USAGE
clauses. For all other comparisons, the operands must have the same
USAGE.

The format of a relation condition is:
value1 IS [NOT] { GREATER THAN } value2
 { > }
 { LESS THAN }
 { < }
 { EQUAL TO }
 { = }
 { <> }
 { GREATER THAN OR EQUAL TO }
 { >= }
 { LESS THAN OR EQUAL TO }
 { <= }

Conditional Expressions 6-9
 In the preceding format, value1 and value2 may be either
an arithmetic expression, a data name, or a literal (including NULL or
NULLS). The relational operators have the following meanings:

6.3.1.1 Comparison of numeric operands

For operands whose class is numeric, a comparison is made with respect to
the algebraic value of the operands. The size of the operands (in terms of
number of digits) is not significant. Zero is a unique value regardless of sign.
Comparison is allowed regardless of the USAGE of the operands. Unsigned
operands are considered positive or zero.

Index data items are compared as if they were numeric operands.

Meaning Operators

Greater than IS GREATER THAN
IS >
IS NOT <=
IS NOT LESS THAN OR EQUAL TO

Equal to IS EQUAL TO
IS =

Less than IS LESS THAN
IS <
IS NOT >=
IS NOT GREATER THAN OR EQUAL TO

Greater than or equal IS NOT LESS THAN
IS NOT <
IS >=
IS GREATER THAN OR EQUAL TO

Not equal to IS NOT EQUAL TO
IS NOT =
IS <>

Less than or equal IS NOT GREATER THAN
IS NOT >
IS <=
IS LESS THAN OR EQUAL TO

6-10 Procedure Division
6.3.1.2 Comparison of nonnumeric operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a
comparison is made with respect to the program’s collating sequence of
characters.

If one of the operands is numeric, it must be an integer data item or an integer
literal. The numeric operand is treated as though it were moved to an
alphanumeric data item of the same size as the numeric data item. This
alphanumeric item is then used in the comparison. A non-integer numeric
operand may not be compared to a nonnumeric operand.

When the comparison is performed, the shorter operand (if any) is treated as
though it were extended on the right with spaces to make the operands of
equal size. Characters are then compared in corresponding positions starting
from the left end and continuing until either a pair of unequal characters is
encountered or the right end of the operand is reached. If all the characters
are the same, then the operands are considered equal. Otherwise, the operand
with the smaller character in the first unequal pair is considered less than the
other operand.

6.3.2 Class Condition

The class condition tests whether or not an operand contains a particular type
of data. The general format of the class condition is:
variable IS [NOT] {NUMERIC }
 {ALPHABETIC }
 {ALPHABETIC-UPPER}
 {ALPHABETIC-LOWER}
 {class-name }

Variable must name a data item with USAGE DISPLAY. If class-name is
used, it must be a name defined in a CLASS clause in the SPECIAL-NAMES
paragraph.

The NUMERIC test cannot be used with an elementary item whose class is
alphabetic or a group item composed of elementary items which contain
operational signs. If the item being tested is not described as having an
operational sign, the item is considered numeric only if the content consists

Conditional Expressions 6-11
of the digits “0” through “9”. If the item is described as having an operational
sign, the item is considered numeric only if the content consists of the digits
“0” through “9” and a valid operational sign.

The ALPHABETIC test cannot be used with an item whose class is numeric.
The test is true if the content of the data item consists entirely of the
characters “A” through “Z”, “a” through “z”, and space. The
ALPHABETIC-LOWER and ALPHABETIC-UPPER tests are similar to the
ALPHABETIC test except that only lower-case or upper-case characters are
allowed respectively.

If class-name is used, then variable may not be numeric. The test is true if
variable consists solely of characters named in the CLASS clause that
defined class-name. See section 4.2.3, “Special-Names Paragraph,” for a
description of the CLASS clause.

If the NOT option is specified, then the test is true if and only if the same
condition without the NOT option is false.

6.3.3 Sign Condition

The sign condition tests whether an arithmetic expression is positive,
negative, or zero. The format of a sign condition is:
arithmetic-expression IS [NOT] {POSITIVE}
 {NEGATIVE}
 {ZERO }

An arithmetic expression is POSITIVE if it is greater than zero, NEGATIVE
if it is less than zero. If the NOT option is specified, the truth value of the test
is reversed.

6.3.4 Condition-Name Condition

A condition-name condition tests whether a condition-variable has one of the
values associated with the condition-name. The format of the
condition-name condition is simply the condition-name.

6-12 Procedure Division
If the condition-name is associated with a range or ranges of values, then the
condition-variable is tested to determine whether or not its value falls in this
range, including the end values. The rules of comparison are the same as
those for a relation condition.

6.3.5 Switch-Status Condition

A switch-status condition tests the value of one of the external program
switches. Program switches can be set at the command line when the
program is run, or may be set with the SET verb. By default, each switch is
initially set to “off”.

The STATUS clause of the SPECIAL-NAMES paragraph associates a
switch-status name with either the “on” or “off” setting of a particular switch.
When a switch is set, the corresponding ON STATUS name is “true” and the
OFF STATUS name is “false”. When the switch is reset, the reverse is true.
In a conditional expression, you can test a switch’s on/off status by simply
specifying the desired switch-status name.

An example of code involving switches follows:
identification division.
program-id. testit.
environment division.
special-names.
 switch 1 is switch-1 on status is first-on off status is
first-off
 switch 2 is switch-2 on status is second-on off status is
second-off
 switch 3 is switch-3 on status is third-on off status is
third-off
data division.
procedure division.
main.
 display window erase.
 set switch 3 to off.

 if first-on
 display "First Switch On. . ." line 5 col 4
 else
 display "First Switch Off. . ." line 5 col 4.

Conditional Expressions 6-13
 if second-on
 display "Second Switch On. . ." line 7 col 4
 else
 display "Second Switch Off. . ." line 7 col 4.

 if third-on
 display "Third Switch On. . ." line 9 col 4
 else
 display "Third Switch Off. . ." line 9 col 4.

 accept omitted.
 stop run.

6.3.6 Complex Conditions

A complex condition is formed by combining conditions (either simple or
complex) with logical connectors (AND and OR) or by negating these
conditions with logical negation (NOT). The truth value of a complex
condition depends on the interaction of the logical operators and their
component conditions.

The logical operators and their meanings are:

A condition is negated by the logical operator NOT, which reverses the truth
value of the condition to which it is applied. In other words, a negated
condition is true when its component condition is false, and is false when its
component condition is true. The format of a negated condition is:

NOT condition

6.3.6.1 Combined conditions

A combined condition results from connecting conditions with one of the
logical operators AND or OR. The general format is:

Operator Meaning

AND true when both components true

OR true when either component true

NOT true when condition false

6-14 Procedure Division
condition { {AND} condition } ...
 {OR }

In the general format, condition may be any of the following:

1. a simple condition

2. a negated simple condition

3. a combined condition

4. a negated combined condition; that is, a “NOT” followed by a
combined condition enclosed in parentheses

Parentheses may be used in a complex condition to alter the rules of
evaluation. Parentheses must be made in matched pairs and must be placed
in such a way so that the enclosed symbols constitute a well-defined
condition.

The truth value of a combined condition using AND is true only when both
component conditions are true. The truth value of a combined condition
using OR is true when either or both of the component conditions are true.

6.3.7 Order of Evaluation

A condition is evaluated according to the following hierarchy:

1. Components contained in parentheses are evaluated first. For those
components in parentheses, the most deeply nested are evaluated first,
followed by those that are less deeply nested. Evaluation always
progresses from the most to the least deeply nested components.

2. NOT conditions are evaluated next. Thus NOT A OR B is equivalent
to (NOT A) OR B.

3. AND conditions are evaluated next.

4. OR conditions are evaluated next.

5. Conditions are evaluated from left to right.

Here are some examples of equivalent conditions:

Conditional Expressions 6-15
NOT A AND B OR C AND D ((NOT A) AND B) OR (C AND D)
NOT A AND B AND C ((NOT A) AND B) AND C
A AND B OR NOT (C OR D) (A AND B) OR (NOT (C OR D))
NOT (NOT A OR B OR C) NOT (((NOT A) OR B) OR C)

Evaluation of a condition halts as soon as its truth value is determined. For
example, in the condition A AND B, the condition ‘B’ would not be
evaluated if ‘A’ were false.

6.3.8 Abbreviated Combined Relation Conditions

When simple or negated simple conditions are combined in a consecutive
sequence, the relation conditions may be abbreviated. You can do this by
either:

1. omitting the subject of the relation condition (the left-hand component
condition).

2. omitting both the subject and the relational operator.

The format for an abbreviated combined relation condition is:
condition { {AND} [NOT] [relation] object } ...
 {OR }

Within a sequence of relation conditions, both of the above forms of
abbreviation may be used. When you use such abbreviations, it is as if the
last preceding stated subject were inserted in place of the omitted subject, and
the last stated relational operator were inserted in place of the omitted
relational operator. The insertion of an omitted subject or relational operator
terminates once a complete simple condition is encountered within a complex
condition. Except for the source of the initial relation condition, no
parentheses may appear in the sequence of abbreviated conditions.

If the word NOT is used in an abbreviated combined relation condition, it has
the following meaning:

1. If the word immediately following NOT is GREATER, “>”, LESS, “<”,
EQUAL, “<=”, “>=”, or “=”, then the NOT participates as part of the
relational operator.

6-16 Procedure Division
2. Otherwise, the NOT is interpreted as a logical operator and the implied
insertion of the subject or relational operator results in a negated
relation condition.

The following are examples of abbreviated combined relation conditions and
their expanded equivalents:
A > B AND NOT < C (A > B) AND (A NOT < C)
(A > B AND NOT < C) (A > B) AND (A NOT < C)
A NOT = B OR C (A NOT = B) OR (A NOT = C)
NOT A = B OR C (NOT (A = B)) OR (A = C)
NOT (A > B OR < C) NOT ((A > B) OR (A < C))

--newARC compiler option

With "--newARC" compiler option,the syntax rules for Abbreviated
Combined Relation conditions become relaxed to allow for parenthesis to
appear immediately after the relation.

For example:
IF A = (B OR C OR D)

would now be accepted by the compiler.

6.4 Common Statement Rules

The following sections cover rules that apply to several verb types.

6.4.1 Arithmetic Operations

The arithmetic statements are ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT. They have several common features.

1. The data descriptions of the operands need not be the same. Any
necessary conversion and decimal point alignment is supplied
throughout the calculation.

Common Statement Rules 6-17
2. The maximum size of each operand is 18 digits. This increases to 31 if
31-digit support (-Dd31) is in effect. If the composite of operands
contains more than 18 digits, the results will be undefined. The
composite of operands is a hypothetical data item resulting from the
superposition of the operands aligned on their decimal point.

3. A calculation may result in the compiler’s constructing a temporary
data item to hold an intermediate result. The temporary item holds the
20 most significant digits of the intermediate result. (If 31-digit support
(-Dd31) is in effect, the temporary data item holds 33 digits.) The
truncated low-order digits (if any) are treated as zeros.

4. When the final value of the operation is stored in the receiving field(s),
it is transferred to maintain its arithmetic value. If the receiving field is
too small to hold the result, leading digits before the decimal point and
trailing digits after the decimal point are removed as needed (but see
the ON SIZE ERROR phrase for an exception). If the receiving field
is unsigned and the value is negative, the results are undefined.

5. An attempt to use non-numeric data in a field defined as numeric
results in an intermediate runtime error. Intermediate errors call
installed error procedures. See Book 4, Appendix I, “Library
Routines,” for detailed discussion of the runtime Error and Exit
Procedures.

Note: In division operations, the remainder is calculated before the
quotient is moved to the destination item(s). The remainder will
almost always be 0 if the dividend or divisor is floating-point. This is
because all of the arithmetic is performed using floating-point
variables. The remainder will be non-zero only if precision is lost
during the calculation.

6.4.2 Multiple Receiving Fields

The arithmetic statements may have multiple resultant fields specified for
them. These statements are evaluated as if they were written as a series of
statements involving a temporary data item.

The following example illustrates the process.

6-18 Procedure Division
The statement
ADD A, B, C TO C, D(C), E

is equivalent to
ADD A, B, C GIVING TEMP
ADD TEMP TO C
ADD TEMP TO D(C)
ADD TEMP TO E

6.4.3 ROUNDED Option

The arithmetic statements allow for the ROUNDED phrase to be optionally
specified. The results of an arithmetic statement depend on whether this
phrase is present or not. When this phrase is specified, the operation adds 1
to the absolute value of the low-order digit of the resultant data item, if the
absolute value of the next least significant digit of the intermediate result is
greater than or equal to 5. If the ROUNDED phrase is not specified, all
excess digits in the intermediate result are truncated when it is moved to the
resultant data item. (See section 6.4.1, “Arithmetic Operations,” and see
the DIVIDE Statement in section 6.6, “Procedure Division Statements,”
for relevant information.)

6.4.4 SIZE ERROR Option

The SIZE ERROR clause allows the programmer to specify actions to be
taken when a size error occurs in an arithmetic statement. A size error
condition exists under the following circumstances:

1. The absolute value of an operation’s result exceeds the largest value the
resultant data item can contain.

2. A division by zero is performed.

3. The value zero is raised to a power of zero.

4. A negative number is raised to a non-integer power.

Common Statement Rules 6-19
The size error condition exists only for those resultant data items to which it
applies. If the ROUNDED phrase is specified, it is applied before the size
error condition is checked.

If a size error occurs, the results depend on whether or not the SIZE ERROR
(or NOT SIZE ERROR) clause is specified. If the SIZE ERROR clause is
present, the values of the data items on which a size error occurs remain
unchanged. If there are multiple resultant data items in the statement, the
ones on which size errors occur will be unchanged while the ones in which no
size error occurs will be updated to the computed values. If a size error
occurs and no SIZE ERROR clause is specified, the results are undefined. In
cases where the size error is a divide by zero condition, by default the results
are still undefined, however, the A_CECKDIV configuration variable can be
used to specify either of two alternate runtime behaviors. For more
information, see A_CHECKDIV in Book 4, Appendix H.

If the SIZE ERROR clause is present and a size error occurs, the
corresponding statement is executed. If the NOT SIZE ERROR clause is
present, its statement is executed if no size errors occur during the
computation.

If the CORRESPONDING option is used in an ADD or SUBTRACT
statement, any individual operation can cause a size error to occur. The SIZE
ERROR clause is not executed, however, until all individual operations are
completed.

6.4.5 CORRESPONDING Option

The CORRESPONDING option of the MOVE, ADD, and SUBTRACT
verbs allows the programmer to specify group items as operands in order to
use their corresponding subordinate data items. All identifiers in a
CORRESPONDING phrase must refer to group items.

The operation specified by the statement acts on each pair of corresponding
items in the specified group items. If two or more source data items have the
same name, or two or more destination items have the same name, the
operation may be performed more than once on some items.

6-20 Procedure Division
Data items are considered to correspond if they match the following rules. In
these rules, ident-1 and ident-2 refer to the two group items specified in the
CORRESPONDING phrase.

1. The data items in ident-1 and ident-2 must have the same data-name
(which may not be FILLER).

2. They must have the same qualifiers up to but not including ident-1 and
ident-2.

3. At least one of the data items must be elementary, and the resulting
operation must be legal under the rules of the statement being
executed. A violation to this rule causes a compile-time error; it does
not exclude the item from the operation.

4. In ADD or SUBTRACT statements, both of the data items must refer
to an elementary numeric data item.

5. Data items subordinate to a REDEFINES, RENAMES, OCCURS, or
USAGE IS INDEX clause are ignored.

6.4.6 Unpredictable Results

When a sending and a receiving item in any statement share a part or all of
their storage areas, the result of the statement is undefined.

6.4.7 I/O Status

After the execution of any file I/O verb (CLOSE, DELETE, OPEN, READ,
REWRITE, START, UNLOCK, or WRITE), information about the I/O is
available in the form of a status number. This number is placed in the FILE
STATUS variable for the appropriate file if one has been declared.

Status-variable must be the name of an alphanumeric (or USAGE DISPLAY
numeric) Working-Storage or Linkage data item with a size of 2 characters.
(The compiler also allows status-variable to be a numeric item; however, in
this case it emits a Warning.) The first digit indicates a general classification
of the status, while the second digit provides detail information. Any file
status whose first digit is “0” is considered a successful I/O. Any non-zero
initial digit indicates failure.

Common Statement Rules 6-21
Appendix E, Book 4, covers the exact values returned for each I/O condition.

6.4.8 AT END and INVALID KEY Phrases

Several of the I/O statements can take an optional AT END phrase and NOT
AT END phrase. Both of these phrases are followed by a statement that is
conditionally executed, depending on the result of the I/O statement. The
discussion of each I/O statement that can take the AT END phrase specifies
the conditions that cause the “at-end” condition to be in effect. If the at-end
condition is in effect, one of the following happens:

1. If the AT END phrase is present, the statement it contains is executed;
otherwise

2. If an appropriate Declarative section exists, it is executed; otherwise

3. The program prints a message and halts. Note, however, that the
runtime can be configured to ignore the error and keep running. See
the configuration variables ERRORS_OK and EOF_ABORTS in
Appendix H, Book 4. See also the additional information on
ERRORS_OK in Section 2.8.5 of Book 1, ACUCOBOL-GT User’s
Guide.

If the NOT AT END phrase is present, it is executed if the I/O statement is
successful. Note that it is possible to execute neither the AT END nor NOT
AT END phrases if an I/O error occurs that does not set the at-end condition.
In this case, the AT END phrase is not executed (because the at-end condition
is not in effect) and the NOT AT END phrase does not execute (because the
I/O statement is not successful).

All of the preceding comments about the AT END and NOT AT END
phrases also apply to the INVALID KEY and NOT INVALID KEY phrases
(except that the invalid-key condition is tested instead of the at-end
condition).

6-22 Procedure Division
6.4.9 Common Screen Options

The ACCEPT, DISPLAY, and MODIFY verbs, along with screen entries
defined in the Screen Section, have several options in common. The syntax
details for these options are presented in the individual sections where they
are allowed. See:

• section 5.9, “Screen Description Entry”

• section 6.6 for the ACCEPT, DISPLAY, and MODIFY statements

The following subheadings describe the effects of these options.

Note: Options that are specific to a single statement or have specialized
meanings are described under those statements.

AUTO Phrase
{AUTO }
{AUTO-SKIP }
{AUTOTERMINATE}

1. The AUTO phrase causes a field entry to automatically terminate as soon
as the field is filled with data. If the field is the last field in a group of
screen items (or the only field), then the ACCEPT statement will
terminate when this occurs.

2. If the AUTO phrase is not specified, then the field entry must be
terminated by the user’s typing a valid termination key (such as the
enter key).

3. When you are using RM/COBOL compatibility mode, AUTO is
implied by default for any Format 1 ACCEPT statement. This may be
overridden with the TAB phrase (see below).

BACKGROUND-HIGH, BACKGROUND-LOW, and
BACKGROUND-STANDARD Phrases

{BACKGROUND-HIGH }
{BACKGROUND-LOW }

Common Statement Rules 6-23
{BACKGROUND-STANDARD}

1. Specifying BACKGROUND-HIGH causes the background color to be
shown in high-intensity. BACKGROUND-LOW causes it to be shown
in low intensity.

2. BACKGROUND-STANDARD causes fields and controls to use the
current subwindow’s background intensity. When a window is created,
BACKGROUND-STANDARD causes the window to use the default
background intensity for the host system. See the
BACKGROUND_INTENSITY runtime configuration variable in
Appendix H for more details.

3. If no background intensity is specified, the current subwindow’s
intensity is used.

Note: Most character-based systems cannot control the background
intensity.

BELL Phrase
WITH [NO] {BELL}
 {BEEP}

The BELL phrase causes the terminal’s bell to ring prior to performing the I/
O. The NO BELL phrase inhibits the bell from ringing. The default is NO
BELL except that in RM/COBOL compatibility mode, a Format 1 ACCEPT
statement defaults to BELL. See also the information on the BELL
configuration variable in Appendix H, Book 4.

BLINK Phrase
WITH {BLINKING}
 {BLINK }

Specifying the BLINK phrase causes the field to have the “blink” video
attribute set for it. If the terminal hardware does not support blinking, this
phrase is ignored. Note that many implementations of ACUCOBOL-GT will
set the foreground and background colors for a field with the BLINK phrase
to white-on-black. Note also that BLINK cannot be combined with
UNDERLINED. Microsoft Windows does not support blinking.

6-24 Procedure Division
CCOL, CLINE, CLINES, and CSIZE Phrases
AT CLINE NUMBER cline-num

AT CCOL NUMBER ccol-num

CSIZE {IS} clength [CELL]
 {= } [CELLS]

CLINES {IS} cheight [CELL]
 {= } [CELLS]

1. The CCOL, CLINE, CLINES, and CSIZE phrases provide an alternate
method for specifying the placement (row and column) or size (height
and width), or both, of a control for display on a non-graphical system.
Together these phrases are called the character coordinate phrases. In
any context where the COL, LINE, LINES, and SIZE phrases can be
specified for a control, you can also specify the corresponding character
coordinate phrase. These phrases make it easier to use controls on both
graphical and non-graphical systems (see also section 3.5 of Book 2,
ACUCOBOL-GT User Interface Programming).

2. You specify the character coordinate phrases in exactly the same
fashion as their regular counterparts (i.e., CLINE is similar to LINE,
CCOL to COL, etc.). All of the syntax supported by one phrase works
in the corresponding phrase. For example, a Screen Section control
item that has a twin set of column offsets is:

entry-field, col + 2, ccol + 1, ...

When the application is run on a graphical host system, the character
coordinate phrases have no effect (exception: in some contexts the
values are evaluated, so any relevant table indexes should be set to legal
values to prevent access violations). When the application is run on a
character-based host, the character coordinate phrases substitute for their
counterparts. For example, if you specify both LINE and CLINE for a
control, the CLINE specification will be used as the line number on a
character-based system. Omitting a character coordinate phrase causes
the regular counterpart to be used instead.

3. If you specify the CELLS option in either the SIZE or CSIZE phrase,
then you must use the CELLS option in both phrases. The same rule
applies to the use of the CELLS option with the LINES and CLINES
phrases.

Common Statement Rules 6-25
COLOR Phrase
{COLOR } IS color-val
{COLOUR}

1. The COLOR phrase provides an alternate method for setting video
attributes. It also allows the specification of colors for screen fields and
controls.

2. color-val can be set to different numeric values to express various
combinations of colors and video attributes. You may make
combinations by adding the appropriate values together. The following
color values are accepted:

You may specify other video attributes by adding the following values:

Color Foreground Background

Black 1 32

Blue 2 64

Green 3 96

Cyan 4 128

Red 5 160

Magenta 6 192

Brown 7 224

White 8 256

Reverse video 1024

Low intensity 2048

High intensity 4096

Underline 8192

Blink 16384

Protected 32768

Background low-intensity 65536

Background high-intensity 131072

6-26 Procedure Division
You may also specify high intensity by adding “8” to the foreground
color value.

3. Only one foreground color and one background color may be specified.
High intensity and low intensity may not both be specified. If neither
is specified, the default intensity is used. If either the foreground or
background color value is missing, then the corresponding default for
the current subwindow is used. (Exception: some control types follow
different rules for selecting the default color. These rules are described
in Chapter 5, Book 2, ACUCOBOL-GT User Interface Programming
in the sections that describe each control type).

When a control is assigned a non-zero foreground or background color,
that component will no longer revert to the default when assigned the
value “0” (zero). Instead, assigning “0” simply reassigns the current
color. The runtime uses this behavior to preserve one component
(foreground or background) when changing the other.

4. Other video attribute clauses (such as the REVERSED clause) may be
specified along with the COLOR clause. The effects of all such
clauses are used together. If any conflict exists, the COLOR clause
takes precedence.

5. Reverse video exchanges the foreground and background colors.

6. If a terminal does not support color, then all non-black colors are
mapped to white at runtime. If this results in a white-on-white
combination, then the background color is set to black. However, if
you explicitly specify identical foreground and background colors, then
the characters will be invisible.

7. The “Protected” attribute applies to only Format 1 Screen Section
entries. Any input or update field that has the “Protected” attribute set
for it is ignored during an ACCEPT statement. This enables you to
selectively allow entry of certain data fields. The “Protected” attribute
does not affect the behavior of the DISPLAY statement.

8. The “Protected” attribute cannot be applied with the MODIFY
statement and the COLOR phrase. For example, the following will not
set the field to “Protected”:

01 my-field, ENTRY-FIELD, LINE 1, COL 1.

MODIFY my-field, COLOR=32768

Common Statement Rules 6-27
Instead, use a color variable to accomplish the effect, as in:
01 my-color PIC 9(5) VALUE ZERO.

01 my-field, ENTRY-FIELD, LINE 1, COL 1,
 COLOR my-color.

ADD 32768 TO my-color.

9. When the COLOR phrase is used with controls, each control type
determines the allowable set of colors. Each control class defines its
own method of assigning default colors. Note that many host systems
limit the ability to define a control’s colors. The colors used will be as
close to the requested colors as the host system allows.

COLUMN NUMBER Phrase
AT {COLUMN } NUMBER col-num
 {COL }
 {POSITION}
 {POS }

1. The COLUMN phrase specifies the terminal column to use. Column
number one (1) indicates the leftmost column of the current subwindow.
A column number of zero (0) indicates the current cursor column.

2. When the COLUMN phrase is used with controls and floating
windows, the COLUMN NUMBER refers to the left edge of the
control or window. You may use CELL(S) or PIXEL(S) to specify the
coordinates of controls. With cells, non-integer values are allowed,
and with pixels, non-integer values are not allowed.

3. If the COLUMN phrase is missing, the results depend on the
compatibility mode being used.

a. In VAX COBOL and ICOBOL compatibility modes, the current
cursor position is used unless the LINE phrase is specified. In this
case, column one is used. This rule is always applied when
controls are placed, regardless of the compatibility mode being
used.

b. In RM/COBOL compatibility mode, column one is used for the
first ACCEPT or DISPLAY operand. For subsequent operands,
the current cursor position is used (implies COLUMN 0).

6-28 Procedure Division
4. If the column number specifies a column value greater than the number
of columns in the current window, then one is added to the line number
used, and the column number is reduced by the width of the window.
This is repeated until the column number specifies a value that is
contained within the window.

Note: This rule is not used when you are placing controls on the
screen. If a control is placed outside of the subwindow, the control is
not created.

5. The COLUMN NUMBER phrase used for entries in the Screen Section
has a different format. See section 5.9.5, “COLUMN Clause,” for
details.

CONTROL Phrase
CONTROL cntrl-string

1. The CONTROL phrase provides the ability to modify the static
attributes of the ACCEPT or DISPLAY statement at runtime. The
CONTROL data item is treated as a series of comma-separated
keywords that control the action of the statement. Within the
CONTROL data item, spaces are ignored and lower-case letters are
treated as if they were upper-case. When a CONTROL item conflicts
with the statically declared attributes of the ACCEPT or DISPLAY
statement, the actions specified in the CONTROL item take precedence.

The keywords allowed in cntrl-string are listed in the following groups.
If more than one keyword from within a group appears in cntrl-string,
only the rightmost one in the data item is used:

• ERASE, ERASE EOL, ERASE EOS, NO ERASE.

• BEEP, NO BEEP

• HIGH, LOW, STANDARD, OFF

• BLINK, NO BLINK

• REVERSE, NO REVERSE

• TAB, NO TAB

Common Statement Rules 6-29
• PROMPT, NO PROMPT

• CONVERT, NO CONVERT

• UPDATE, NO UPDATE

• ECHO, NO ECHO

• UPPER, NO UPPER, LOWER, NO LOWER

• UNDERLINED, NO UNDERLINE

• LEFT, RIGHT, CENTERED, NO JUST

• SAME

• FCOLOR

• BCOLOR

2. Each of the keywords performs the same action as the statically
declared attribute of the same name. The “NO” forms (NO ERASE,
NO BLINK, etc.) cancel the effects of the named attribute.

The FCOLOR and BCOLOR keywords are used to set foreground and
background colors respectively. These keywords must be followed by
an equals sign and the name of a color taken from the following list:
BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN, and
WHITE. The named color becomes the default foreground or
background color for the window. Note that this is different from the
COLOR phrase, which sets the color only for the current ACCEPT or
DISPLAY statement. The FCOLOR and BCOLOR keywords set the
default colors for every subsequent ACCEPT and DISPLAY until
explicitly changed.

CONVERT Phrase
WITH {CONVERSION}
 {CONVERT }

1. Specifying the CONVERT phrase allows non-USAGE DISPLAY items
to be accepted or displayed. It also allows for automatic conversion of
entered data into the internal format of the destination field.

6-30 Procedure Division
2. In a DISPLAY statement, the CONVERT phrase affects only numeric
and numeric edited data items. For numeric data items, leading zeros
are converted into spaces, a decimal point is inserted (if needed), and a
leading minus sign is inserted (if the value is negative). The result is
then left-justified if RM/COBOL compatibility mode is being used.
Numeric edited items are not converted, but they are justified in the
same manner as numeric items. This form of the CONVERT phrase is
called output conversion.

Floating-point data items are converted from internal format to
E-notation. The format of E-notation is as follows:

• FLOAT items have eight digits, one of which is before the decimal
point.

• DOUBLE items have 17 digits, one of which is before the decimal
point.

• A leading sign is shown for negative values, otherwise there is a
leading space.

• The exponent is shown as an “E”, followed by a sign if negative,
followed by one or more digits.

• The decimal point is shown using the program’s current decimal
point character.

3. In an ACCEPT statement, the action of the CONVERT phrase depends
on the data type of the receiving field:

a. A nonnumeric field receives the entered data as if it were the
destination of a MOVE statement with an alphanumeric source.
This causes justification and editing to have their normal effect.

b. A numeric or numeric edited field causes the ACCEPT statement
to first check the data for correctness. Legal characters for
numeric items include any characters that can appear in a numeric
edited data item (digits, plus and minus sign, period, comma,
currency symbol, “CR”, “DB”, “/”, and “*”). Characters that are
legal but have no meaning in an arithmetic literal are simply
ignored (space, “*”, “/”, currency symbol, currency comma). Any

Common Statement Rules 6-31
other non-space character is an error. Legal values are then
assigned to the receiving field such that the algebraic value
remains the same.

c. The input format for floating-point numbers consists of the
following components in the order given:

(1) An optionally signed string of digits (possibly containing a
decimal point)

(2) An optional exponent field consisting of:

(a) “E” or “e”

(b) an optional + or -

(c) an integer

See section 2.1.2.1, “Numeric literals,” for additional information.

4. If the CONVERT phrase is not specified, the accepted data is placed in
the receiving field from left to right with no editing or justification. In
RM/COBOL compatibility mode, however, a numeric receiving field
causes the data to be assigned from right to left instead.

5. For entries in the Screen Section, conversion is automatically used
during input and not used during output. For this reason, Screen
Section entries for non-integer numeric fields should specify a numeric
edited PICTURE so that the decimal point is visible. Likewise, signed
numeric fields should either specify SIGN SEPARATE or be
represented by numeric edited items. Note that conversion occurs
automatically for all controls that reference numeric, numeric edited,
right justified, or wide character data.

6. If a conversion error occurs, the runtime system prints an error
message and forces the user to correct the field. This behavior can be
modified. For more information, see Book 1, ACUCOBOL-GT User’s
Guide, section 4.3.2.1 (subsection 3) “The KEYBOARD variable.”

7. Several compile-time and run-time options are available to change
various aspects of the CONVERT phrase, including the behavior of
conversion errors and justification of the output of numeric items. For
details, see Book 1, ACUCOBOL-GT User’s Guide, section 2.2.11,

6-32 Procedure Division
“Video Options” (specifically the “-Vc” and “-Ve” options). Also, see
the Terminal Manager chapter of the ACUCOBOL-GT User’s Guide,
section 4.4.2, “The SCREEN Option.”

DEFAULT Phrase
{DEFAULT [IS default]}
{UPDATE }

1. The DEFAULT phrase allows for a default value to be displayed in an
input field ready for editing by the user. It is displayed in a form that can
be accepted with the CONVERT phrase. For numeric receiving fields,
this will cause leading spaces to be removed. If a default value is
specified, then it is the value displayed. Otherwise the current value of
the receiving field is used. The UPDATE phrase is equivalent to the
DEFAULT phrase with no default value specified.

2. If the PROMPT phrase is also specified, then the prompt character
replaces any trailing spaces in the field.

3. The DEFAULT phrase is automatically implied for any update field
specified in the Screen Section. The DEFAULT phrase implies the
CONVERT phrase in a Format 1 ACCEPT statement.

Note: The “-Vu” compiler option allows you to imply the UPDATE
phrase for all Format 1 ACCEPT statements that do not have an
explicit UPDATE or DEFAULT phrase specified for them.

ECHO Phrase
ECHO

1. This causes the data entered to be redisplayed in the field. This allows
for the action of the OUTPUT phrase to take place. Data will also be
redisplayed with output conversion under the following circumstances:

a. in VAX COBOL and ICOBOL compatibility modes, if the
CONVERT or UPDATE phrase is used;

b. in RM/COBOL compatibility mode, if the UPDATE phrase is
used.

Common Statement Rules 6-33
Note: NO ECHO is not the opposite of ECHO. See the NO ECHO
phrase below for more details.

2. For entries specified in the Screen Section, the ECHO phrase is
automatically implied. Output conversion does not occur, however.

3. See the CONVERT phrase above for details on the effects of output
conversion.

ENABLED Phrase
ENABLED {IS} {TRUE }
 {= } {FALSE }
 {enabled-state}

The ENABLED phrase determines whether or not the control can be used.
When a control is enabled, it can be used normally. When it is disabled, it can
be seen on the screen (if it is also visible), but the user cannot interact with it.
If the TRUE phrase is used, then the control is enabled. The FALSE phrase
makes the control disabled. If enabled-state is used instead, then its value
determines whether the control is enabled. Any non-zero value enables the
control; a value of zero (0) disables it. If the ENABLED phrase is omitted,
the control is initially created enabled.

Disabled controls are displayed differently than enabled controls. For
example, under Windows, disabled controls usually have dimmed text. See
the configuration variable DISABLED_CONTROL_COLOR in Appendix
H for information on how to configure the appearance of a disabled control
when running on a character-based system.

Note: Under Microsoft Windows, the appearance of disabled controls can
change depending on whether the program is running under the 16- or
32-bit runtime. The differences are intrinsic to the Windows API and
cannot be worked around.

ERASE Phrase
{ERASE} [TO END OF] {LINE } (VAX, ICOBOL)
{BLANK} {SCREEN}
{ERASE} [EOS] (RM)
{BLANK} [EOL]

6-34 Procedure Division
1. The ERASE phrase specifies that some or all of the current line or screen
should be cleared to spaces. The spaces will use the currently selected
background color for the active window, unless the “-Vi” compiler
option was used (see Book 1, ACUCOBOL-GT User’s Guide, section
2.1.10, “Video Options”). Cursor positioning occurs before the ERASE
clause takes effect.

2. The ERASE LINE phrase causes the current line to be erased. The
ERASE TO END OF LINE and ERASE EOL phrases both erase the
line from the current cursor position to the end of the current window.

3. The ERASE and ERASE SCREEN phrases cause the current window
to be cleared. The ERASE TO END OF SCREEN and ERASE EOS
phrases cause the window to be erased from the current cursor position
to the end of the window.

4. The cursor is not moved by these operations except in RM/COBOL
compatibility mode, where ERASE (without the EOL or EOS phrases)
specified on a Format 1 ACCEPT or DISPLAY verb causes the default
cursor location to be line 1, column 1.

5. When ERASE SCREEN is specified in a Screen Section entry, and that
entry either contains or is subordinate to a COLOR phrase, then the
default window colors are changed to match that COLOR phrase. This
also applies to the FOREGROUND-COLOR and
BACKGROUND-COLOR phrases.

6. If a control has the TEMPORARY style and its upper-left location is
within the erased area, the control will be destroyed. PERMANENT
controls, however, are not affected.

EVENT-LIST, AX-EVENT-LIST, EXCLUDE-EVENT-LIST Phrases
EVENT-LIST {IS} (event-value { event-value ... })
 {= }

AX-EVENT-LIST {IS} (ax-event-value { ax-event-value ... })
 {= }

EXCLUDE-EVENT-LIST {IS} list-state
 {= }

Common Statement Rules 6-35
1. These phrases provide a mechanism for specifying a list of event types to
either send or withhold (block) from the program depending on the value
of EXCLUDE-EVENT-LIST. By default, listed events are sent to the
program.

2. Event-value and ax-event-value are numeric literals or data items that
identify an event type. List elements must be enclosed by parentheses
and separated by a space. If the list contains a single element, the
parentheses can be omitted.

3. List-state is an integer literal or numeric data item. Valid values are
“0” and “1”.

4. EVENT-LIST and AX-EVENT-LIST hold a list of numeric values that
correspond to event types.

5. EVENT-LIST is used with ACUCOBOL-GT graphical controls. See
Book 2, Chapter 6, “Events Reference” for a discussion of events
related to graphical controls, including a description of each event and
its value.

6. AX-EVENT-LIST is used with ActiveX and .NET controls. ActiveX
and .NET events associated with a given control are listed in the COPY
file (“.def”) created for that control with the AXDEFGEN or
NETDEFGEN utility.

7. The value of EXCLUDE-EVENT-LIST determines whether the event
types in EVENT-LIST and AX-EVENT-LIST are sent to or withheld
from the program. When EXCLUDE-EVENT-LIST is set to “0”, the
default value, events in the list are sent to the program. When
EXCLUDE-EVENT-LIST is set to “1”, events in the list are blocked
(not sent to the program).

8. Three runtime configuration variables, TC_EVENT_LIST,
TC_AX_EVENT_LIST, and TC_EXCLUDE_EVENT_LIST,
augment this facility in thin client deployments. For more information,
see Chapter 6 of the AcuConnect User’s Guide.

FONT Phrase
FONT {IS} font-handle
 {= }

6-36 Procedure Division
Font-handle identifies the font to use for the control. If the font phrase is
omitted, the window’s default font for controls is used.

If you change a control’s font after the control has been created, and its size
is based on its font (true for controls that do not use the CELLS phrase), the
control’s dimensions are recomputed using the new font.

FOREGROUND-COLOR and BACKGROUND-COLOR Phrases
{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

1. These phrases allow the specification of the foreground or background
color. The color is a literal value taken from the following table:

Value Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White

8 Dark-Gray

9 Bright-Blue

10 Bright-Green

11 Bright-Cyan

12 Bright-Red

13 Bright-Magenta

14 Yellow

Common Statement Rules 6-37
Note: The values in this table are not the same as the Background
Color and Foreground Color values in the “acucobol.def” file.

2. Fg-color and bg-color can also be used to set a control’s colors . They
specify both foreground and background colors in the same manner as
they do for textual screen fields.

Each control type determines the allowable set of colors and the
interpretation of foreground color and background color. If either the
foreground color or background color is omitted (or its particular value
is not meaningful), then default colors are used. Each control class
defines its own method of assigning default colors. Note that many host
systems limit the ability to define a control’s colors. The colors used will
be as close to the requested colors as the host system allows.

3. If both the COLOR phrase and the FOREGROUND-COLOR or
BACKGROUND-COLOR phrase appear in the statement, the COLOR
phrase takes precedence.

4. These phrases are provided for compatibility with other COBOL
systems. Note that the color value must be an integer literal or a
numeric data item, and it may be an arithmetic expression. Also note
that the color number is one less than the corresponding color value in
the COLOR phrase (this is done to maintain compatibility with other
COBOLs). For a method of assigning colors that can be variable, see
the COLOR phrase above.

Note: The “-Vi” compiler option changes the behavior of a Screen
Section ERASE (and BLANK) phrase with respect to color handling.
See Section 2.2.11, “Video Options”of the ACUCOBOL-GT User’s
Guide for details.

FULL Phrase
{FULL }
{LENGTH-CHECK}

6-38 Procedure Division
1. The FULL phrase applies only to input and update fields. When it is
specified, the user must either leave the field blank or must enter
non-space data into both the first and last character positions of the
screen field. The user will not be able to leave the field until these
requirements are met.

2. If the user types an exception key (and exception keys are allowed),
then the ACCEPT will terminate without forcing the user to meet the
requirements of the FULL phrase.

HELP-ID Phrase
HELP-ID {IS} help-id
 {= }

The HELP-ID phrase establishes help-id as the control’s help ID. The help
ID is used in conjunction with certain events to provide context-sensitive
application help. Usually, each control is given a unique, system-wide value
so that it can be easily identified by the help processor. The maximum value
of help-id is 2,147,483,647. For more information about HELP-ID and help
automation, see Chapter 10, Book 2, User Interface Programming.

HIGH, LOW, and STANDARD Phrases
{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

1. The HIGH, LOW, and STANDARD phrases set the high/low video
attributes for the input field. If the terminal hardware does not support
high/low intensity, then these phrases are ignored.

2. HIGH sets the video attribute to high intensity. LOW sets the video
attribute for the field to low intensity.

3. STANDARD sets the video attribute for the field to be the default
intensity for the terminal type being used. This will either be high or
low intensity depending on the terminal.

Common Statement Rules 6-39
4. If none of these phrases is specified, STANDARD is used. This may
be overridden by compile time options to set the default to either HIGH
or LOW. For details, see Book 1, ACUCOBOL-GT User’s Guide,
section 2.1.10, “Video Options.”

IDENTIFICATION Phrase
{IDENTIFICATION} {IS} control-id
{ID } {= }

1. Use control-id to assign a unique identifier to a control. This identifier
is used any time that control must communicate with your program. It is
returned with any messages from the control. You can examine the ID to
distinguish which control sent the message. This can be more
convenient than using the control’s handle because you can assign a
fixed identifier that is the same in every run of the program.

2. If control-id is omitted, then it will be treated as if it were zero (0),
unless the control is defined in the Screen Section. In this case it will
be assigned the same value as the control’s field number (see section
5.9, General Rules for Format 2, for a description of how Screen
Section field numbers are assigned). Control IDs must be in the range
of 0 to 32767.

KEY Phrase
KEY {IS} key-letter
 {= }

1. The KEY phrase assigns a key letter to the control. The user can activate
the control by typing its key letter in combination with some other
special key. Under Microsoft Windows, key letters are typed in
conjunction with the “Alt” key. The first character in key-letter becomes
the control’s key letter. The key letter can be given in lower- or
upper-case.

2. If the KEY phrase is omitted, the control’s key letter is derived from its
title. (See the TITLE phrase for details.) If a key letter is not indicated
in the title, the control does not have a key letter. If a key letter is
designated in both the title and the KEY phrase, the KEY phrase takes
precedence. If the letter specified in the KEY phrase is not the same as

6-40 Procedure Division
the letter indicated in the title, the letter indicated in the title is
highlighted and the letter specified in the KEY phrase is the key letter
(this could be confusing to the user).

3. The activation technique for key letters is shared with the menu bar
handler on most systems. You should avoid assigning duplicate key
letters in any one floating window, or assigning key letters that conflict
with key letters used by the window’s menu bar.

4. Controls that cannot be activated, such as a label, may have key letters
(see the example that follows). In this case, the runtime system uses
the following rules to determine which control to activate when the key
letter is typed:

a. if another control has the same key letter, then the first control
created with that key letter is activated when that key letter is
pressed; otherwise,

b. the next control that can be activated (in the same floating
window) is activated. The runtime uses the order in which the
controls were created to determine which control is next.

In practice, these rules mean that you can usually assign a key letter in
the title of a label and use rule b) to associate that key letter with a
corresponding entry field. In this case, you do not need to use the KEY
phrase. If rule (b) does not give you the effect you desire, you can use
the KEY phrase and rule (a) to explicitly state the effect you want.

For example, the following Screen Section segment:

 03 LABEL "&Customer: ".
 03 ENTRY-FIELD USING CUST-NO, COLUMN + 2."

would assign a key letter of “C” to the label (using the implied key letter
assignment from the label’s title). Since labels cannot be activated,
typing Alt-C would activate the CUST-NO entry field because it is the
next control that can be activated.

Note: If you use “&” in the control title, the letter that directly follows
it becomes the accelerator key for this control, indicated by an
underline. If you use the KEY IS construct to specify the accelerator
key, that letter is not underlined in the control’s title.

Common Statement Rules 6-41
5. A control’s key letter is assigned when the control is created. It cannot
be changed.

LAYOUT-DATA Phrase
LAYOUT-DATA {IS} layout-data
 {= }

The LAYOUT-DATA phrase sets the control’s LAYOUT-DATA property.
Some layout managers use this property to determine how to manage certain
attributes of the control, such size and position. See the documentation for
the specific layout manager for a description of layout-data and its accepted
values. Layout managers are documented in Book 2, section 4.8, “Layout
Managers.”

LINE NUMBER Phrase
AT LINE NUMBER line-num

1. The LINE NUMBER phrase is used to position the cursor on a specific
line or cell row of the terminal. A line number value of one indicates the
top line of the current subwindow. To support fine positioning of
controls in graphical environments, non-integer values are allowed. On
text-mode systems, non-integer values are rounded down to the nearest
whole number.

2. When used with controls and floating windows, the line number
positions the top edge of the control or window.

3. If the LINE NUMBER phrase is missing or zero, then the results
depend on the compatibility mode being used.

a. In VAX COBOL and ICOBOL compatibility modes, the current
cursor line is used. This is used in all cases when the statement
refers to controls.

b. In RM/COBOL compatibility mode, the current line is used if the
COLUMN phrase specifies a value of zero or the NO
ADVANCING phrase is used. Otherwise, the next line is used. In
any case, if ERASE is also specified (without EOL or EOS), then
line 1 is used instead.

6-42 Procedure Division
4. If the line number results in a value greater than the number of lines in
the current window, the current window is scrolled up one line, and the
line number is set to be the bottom line of the current window.

This rule does not apply to controls. If a control is positioned outside of
the current subwindow, it is not created.

5. You may use LINE NUMBER with different units, such as CELLS or
PIXELS. PIXELS apply only with controls, and not with windows.
Non-integer values are allowed with cells, but they are not allowed
with pixels.

6. The LINE NUMBER phrase used for entries in the Screen Section has
a different format. See section 5.9.4, “LINE Clause,” for details.

Common Statement Rules 6-43
LINES Phrase
LINES {IS} height
 {= }

1. The LINES phrase is used to set a window or control’s height. Note that
each control type defines exactly how this value is interpreted.

Typically, the height field represents the logical height of the control.
Frequently, this is based on the size of the control’s title or value. For
example, a LABEL control’s height of “1” would specify a one-line
label. If this phrase is omitted, the control type employs its own method
of determining a default size.

2. The CELLS option of the LINES phrase causes the
HEIGHT-IN-CELLS control style to be used. This means that the
height of the control is specified exactly using the cell size of the
owning window. For example:

LINES = 15 CELLS

causes the control to have a height of 15 cells, where the exact height of
a cell is inherited from the parent window.

3. You may employ the PIXELS option with the LINES phrase to specify
the control’s size more precisely using the pixel size of the owning
window. For example:

LINES = 60 PIXELS

MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, MIN-WIDTH Phrases
MAX-HEIGHT {IS} max-height
 {= }
MAX-WIDTH {IS} max-width
 {= }
MIN-HEIGHT {IS} min-height
 {= }
MIN-WIDTH {IS} min-width
 {= }

1. MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, and MIN-WIDTH are
common properties of all graphical controls. They are unique from other
common properties in that their names are reserved by the compiler only
when they appear in the context of acting on a control: in a Screen

6-44 Procedure Division
Section entry, or a DISPLAY, MODIFY, or INQUIRE statement. (For
more about how the compiler reserves style and property names, see
section 4.4, “Styles and Special Properties,” in Book 2, ACUCOBOL-GT
User Interface Programming.)

2. The MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, MIN-WIDTH
phrases are used to specify a control’s maximum and minimum height
and width. These values are used by layout managers when resizing a
control (see section 4.8, “Layout Managers,” in Book 2,
ACUCOBOL-GT User Interface Programming).

3. max-height is the maximum height of the control. It’s value is in the
same units as the control’s LINES setting. The default value, zero,
indicates no maximum height.

4. max-width is the maximum width of the control. It’s value is in the
same units as the control’s SIZE setting. The default value, zero,
indicates no maximum width.

5. min-height is the minimum height of the control. It’s value is in the
same units at the control’s LINES setting. The default value, zero,
indicates no minimum height.

6. min-width is the minimum width of the control. It’s value is in the
same units at the control’s SIZE setting. The default value, zero,
indicates no minimum width.

NO ADVANCING Phrase
WITH NO ADVANCING

1. This phrase inhibits the normal carriage-return, line-feed sequence that
is sent to the terminal. In VAX COBOL and ICOBOL compatibility
modes, this sequence is normally sent after the ACCEPT or DISPLAY
statement executes. In RM/COBOL mode, this sequence is sent before
the statement executes. These characters can cause the current terminal
window to scroll if the current line is the last line in the window.

2. This phrase is automatically implied when the LINE phrase is used. In
VAX COBOL compatibility mode, this phrase is also implied when the
COLUMN phrase is used. In RM/COBOL mode, this phrase is also
implied when the COLUMN phrase is used with a zero value.

Common Statement Rules 6-45
NO ECHO Phrase
{WITH NO ECHO}
{NO-ECHO }
{SECURE }
{OFF }

The NO ECHO phrase enables data to be entered without being displayed on
the terminal screen. This can be used to enter passwords and other secure
data.

OUTPUT Phrase
OUTPUT {JUSTIFIED} {LEFT }
 {JUST } {RIGHT }
 {CENTERED}

1. The OUTPUT phrase affects the alignment of displayed data. It has no
effect in a Format 1 ACCEPT statement unless the ECHO phrase is also
specified.

2. The LEFT option causes data to be justified to the left edge of the field,
the RIGHT option causes right-justification, and the CENTERED
option causes the displayed data to be centered in the field.

3. When the OUTPUT phrase is used, leading and trailing spaces are
removed from the data before it is displayed. This is also done before
the default size of the field is computed (except for Screen Section
entries). Thus the three forms of justification are the same unless the
SIZE phrase is also specified with a size larger than the data’s length.
Computing the default size after stripping the leading and trailing
spaces allows fields to be concatenated together on the screen without
computing column positions.

PROMPT Phrase
PROMPT [CHARACTER IS prompt-lit]

1. The PROMPT phrase causes the input field to be filled with the specified
prompt character prior to entry. If the prompt character is omitted,
underscores are used.

2. If the DEFAULT phrase is also used, then the prompt character
replaces any trailing spaces in the field.

6-46 Procedure Division
3. The PROMPT phrase is automatically used for every entry in the
Screen Section. Thus this phrase is treated as commentary in the
Screen Section unless it specifies a prompt character other than
underscores.

PROPERTY and Property-Name Phrases
{ property-name } {IS }
 { prop-option [GIVING result-1] }...
{ PROPERTY property-type } {ARE}
{ method-name } {= }
{ object-expression }

where prop-option is one of the following:
{ property-value [LENGTH {IS} length-1] }
{ {= } }
{)
{ ({property-value} ...) }
{ }
{ { MULTIPLE } property-table }
{ { TABLE } }
{ }
{ parameter }
{ }
{ ({ parameter } ...) }

1. The PROPERTY phrase assigns a value to one of a control’s special
properties or invokes a control-specific method. The PROPERTY
phrase takes the types of only special properties and methods for controls
(for a discussion of Common and Special properties, see section 5.1,
Book 2, ACUCOBOL-GT User Interface Programming; for a
discussion of Methods, see section 4.5 of that book). Each type of
control has its own set of special properties and methods. These are
described in the sections documenting each control type. Property-type
specifies which special property to modify or which method to invoke
(each of a control’s special properties and methods is uniquely identified
by a number). Property-value is the value to assign to that special
property. Property-value must be a data type that is appropriate for the
specified property. If property-type specifies a special property that
does not exist, it is ignored for most control types. If the control type is
ACTIVE-X, then an exception is raised (for a discussion of the ActiveX

Common Statement Rules 6-47
control types, see section 5.3, Book 2, ACUCOBOL-GT User Interface
Programming). Each property’s unique value is defined in the file
“controls.def” or in the ActiveX control’s COPY file.

2. Property-name and method-name provide an alternate method for
identifying which special property to modify or which method to
invoke. The compiler knows the names of the special properties and
methods that belong to each control type. In situations where the
compiler knows which type of control is being acted upon, you can use
the appropriate property-name or method-name directly instead of
using the special property’s or method’s identifying number in the
PROPERTY phrase.

For example, the MAX-TEXT special property of entry fields is property
number “1”. You can set the value of this property to “10” with either of
the following phrases:

PROPERTY 1 = 10
MAX-TEXT = 10

The second method can be used only when your code makes it clear to
the compiler that you’re acting on an entry field.

You can use either the PROPERTY phrase or method-name to specify
which method to invoke. For example, the LoadFile method of the
Microsoft Rich Textbox Control is method number “37”. You can
invoke this method with either of the following phrases:

PROPERTY 37 ("myfile.rtf", rtfRtf)
LoadFile ("myfile.rtf", rtfRtf)

The second method can be used only when your code makes it clear to
the compiler that you’re acting on a Microsoft Rich Textbox Control.

3. Some properties return specific values when set. These values are
placed in result-1 of the GIVING phrase. The meaning of the value
depends on the property being set; see the documentation for the
specific property. Properties that do not have a pre-defined return
value set result-1 to “1” if the property was set successfully, or “0” if
not. When a property is being given multiple values in a single
assignment (for example: “Display-Columns = (1, 10, 30)”), then
result-1 is set in response to the last value assigned.

6-48 Procedure Division
4. When multiple special property assignments are made in a single
statement, those assignments are performed in the order listed in the
statement.

5. If more than one property-value is specified, each one is applied to the
property in the order listed. This is normally used for cumulative
properties. These are properties that perform some special action each
time they have a value assigned to them. For example, you can set
three columns in a list box with “DISPLAY-COLUMNS = (1, 20,
35)”. In the case of the DISPLAY-COLUMNS property, each time it
is assigned a value, it sets a new column location. Note that the
parentheses are required.

When you specify property-table, then each element of the table is
assigned to the property. The elements are assigned in ascending
occurrence order. For example, the following code fragment fills a list
box with the names of three colors:

01 COLOR-NAMES.
 03 PIC X(10) VALUE "Red".
 03 PIC X(10) VALUE "Green".
 03 PIC X(10) VALUE "Blue".

01 COLOR-TABLE REDEFINES COLOR-NAMES
 OCCURS 3 TIMES
 PIC X(10).

PROCEDURE DIVISION.
MAIN-LOGIC.
 DISPLAY LIST-BOX, SIZE 10, LINES 3,
 ITEM-TO-ADD = TABLE COLOR-TABLE.

Note: The current size of the table is used, so you can use OCCURS
DEPENDING ON tables when you want to have a variable number of
items in a table.

You should use caution when specifying property tables in the Screen
Section. Remember that each DISPLAY statement of a Screen Section
item reloads all of that item’s properties into the control. This can be
inefficient if the property table is large, and it can cause duplicate entries
if you are not careful. To avoid this, you can create your controls in the
Screen Section, but use the MODIFY statement to set any table-oriented

Common Statement Rules 6-49
properties at the appropriate point in your program. In this way, the
tables are not referenced in the Screen Section and a DISPLAY will not
cause those tables to be reprocessed.

6. When the LENGTH option is specified, length-1 establishes the exact
size of property-value. The text value presented to the control must
not contain trailing spaces or have trailing spaces added. When you
specify the LENGTH option, the control uses exactly the number of
characters of length-1. However, if length-1 is a value larger than the
size of the data item it is modifying, the size of the data item is used
instead. If length-1 is negative, it is ignored and the default handling
occurs.

7. {parameter}... is a list of parameters to pass when invoking one of a
control’s methods or setting a multiple-parameter property. When
setting a multiple-parameter property, the first parameters identify
which aspect of the property to set. The last parameter is the actual
property value. For example, to set the Microsoft Chart Control
DataGrid::RowLabel property you must specify the row number and
label index. You could use the following phrase:

DataGrid::RowLabel(ROW-NUMBER, ROW-LABEL-INDEX,
 "My Row Label")

8. Object-expression can only be used in the procedure division, not the
screen section. It has the following format:

{ {^} property-1 [(param-1 ...)]
 [:: property-2 [(param-2 ...)]]... }

Object-expression specifies a property or method of an object referenced
by another object. This object in turn can be referenced by yet another
object. The “root” object can be an ActiveX control or COM object or a
graphical control. “^” can only be used in conjunction with Format 5
USE verb (see the documentation for the USE verb for more
information). Property-1 is the name of a property of the ActiveX
control or COM object. Property-1 must not be a write-only property.
Property-2 is the name of a property of the ActiveX control or COM
object which is the value of property-1. Property-2 must not be a
write-only property. Param-1 and param-2 are literals, data items or
numeric expressions. Param-1 is the first parameter passed when getting
the value of property-1 and param-2 is the first parameter passed when
getting the value of property-2.

6-50 Procedure Division
For example, to set the Microsoft Chart Control legend, you get the value
of the Legend property. This value is an object that you may then modify
to change the legend. The Legend object has properties whose values are
other objects, and so on. The following phrases set properties and invoke
methods of the Microsoft Chart Legend object:

Legend::Location::Visible = 1
Legend::Location::LocationType = VtChLocationTypeRight
Legend::TextLayout::HorzAlignment =
 VtHorizontalAlignmentRight
Legend::VtFont::VtColor::Set (255, 255, 0)
Legend::BackDrop::Fill::Style = VtFillStyleBrush
Legend::BackDrop::Fill::Brush::Style = VtBrushStyleSolid
Legend::BackDrop::Fill::Brush::FillColor::Set (255, 0, 255)

or assuming the handle to the Microsoft Chart Control is MS-CHART-1:

USE MS-CHART-1 Legend
 MODIFY ^Location::Visible = 1
 ^Location::LocationType = VtChLocationTypeRight
 ^TextLayout::HorzAlignment =
 VtHorizontalAlignmentRight
 ^VtFont::VtColor::Set (255, 255, 0).
USE MS-CHART-1 Legend::BackDrop::Fill
 MODIFY ^Style = VtFillStyleBrush
 ^Brush::Style = VtBrushStyleSolid
 ^Brush::FillColor::Set (255, 0, 255).

REQUIRED Phrase
{REQUIRED }
{EMPTY-CHECK}

1. The REQUIRED phrase applies only to input and update fields. When it
is specified, the user may not leave the field empty--some non-blank data
must be entered. If the receiving field is numeric or numeric edited (and
input conversion is being used), then the entered value may not be zero.
The user will not be able to leave the field without meeting these
requirements.

2. In a Screen Section, the REQUIRED phrase forces the user to enter
data in the field before terminating the ACCEPT.

Common Statement Rules 6-51
This prevents the user from jumping to the last field with the mouse, and
thus bypassing a required field. If the user attempts to terminate an
ACCEPT while required fields are still blank, an error message is
displayed and the cursor is positioned at the first required field that is
blank.

3. If the user types an exception key (and exception keys are allowed), the
ACCEPT will terminate without forcing the user to meet the
requirements of this phrase. Note that leaving a field by clicking on
another control with the mouse will cause the REQUIRED check to
occur. Therefore, “CANCEL” buttons should always have the
SELF-ACT style. The SELF-ACT style does not cause the runtime to
change the focus of the current control - the input or update field is not
left - and the REQUIRED phrase is not triggered. Without the
SELF-ACT style, the CANCEL button will cause focus to shift to
itself, triggering the REQUIRED check and preventing the user from
“canceling” without first entering some data.

REVERSED Phrase
{REVERSE-VIDEO}
{REVERSE }
{REVERSED }

The REVERSED phrase causes the field to have reversed foreground and
background colors. If the terminal hardware does not support reverse-video,
then this phrase is ignored.

SAME Phrase
SAME

1. The SAME phrase causes the field to use the video attributes currently
present at the field’s screen location. This allows data on the screen to be
changed without changing the screen’s video attributes.

2. The SAME phrase may not be specified along with the
UNDERLINED, BLINK, REVERSED, HIGH, LOW, STANDARD,
COLOR, FOREGROUND-COLOR, or BACKGROUND-COLOR
phrases.

SCROLL Phrase
SCROLL [UP] [BY scrl-num {LINE }]

6-52 Procedure Division
 [DOWN] {LINES}

1. The SCROLL phrase specifies the number of lines to scroll the current
window. Scrolling is the first operation performed by the ACCEPT or
DISPLAY statement--it occurs before any cursor positioning or the
operation of any ERASE clauses. Scrolling does not affect the current
cursor position.

2. If the UP phrase is specified, the contents of the current window are
scrolled upward (normal scrolling). If DOWN is used, then the
contents are moved downward (reverse scrolling). A blank line with
the default video attributes for the window is introduced at the top or
bottom of the window (as appropriate). Upward scrolling is used if
neither the UP nor DOWN phrase is specified.

3. If a scrolling value is specified, its value is the number of lines to scroll
the screen. If this value is not positive, no scrolling occurs. If the
scrolling value is omitted, one line is scrolled.

SIZE Phrase (with a text entry field)
WITH PROTECTED SIZE length

1. The SIZE phrase specifies the size (length) of the field. After the
ACCEPT or DISPLAY is finished, the cursor is placed immediately after
the field defined by this clause, unless this would place the cursor outside
of the current terminal window. In this case, the cursor is wrapped
around to the beginning of the next line (scrolling the window if
necessary).

2. If the SIZE phrase is not used, then the field length defaults to the size
of the item being accepted or displayed. If the CONVERT phrase is
used, however, then the size of the field depends on the data type of the
item and the verb being used:

a. If the DISPLAY verb is executing, then the size is the same as if
the CONVERT phrase were not specified except for numeric
items. For numeric items, the size is the number of digits in the
item, plus one if it is not an integer, plus one if it is signed. This
rule also applies to the action of the ECHO phrase of the ACCEPT
statement (see below). The remaining cases cover the size when
an ACCEPT statement is used.

Common Statement Rules 6-53
b. If the item is numeric or numeric edited, then the size is the
number of digits in the item, plus one if it is not an integer, plus
one if it is signed.

c. If the item is alphanumeric edited, then the size is set to the
number of “A” or “X” positions specified in its PICTURE clause.

d. For all other data types, the field size is set to the size of the item
(same as if CONVERT were not specified).

Note: You cannot supply the CONVERT phrase in the Screen Section.
Thus the size of a Screen Section field is always the size of its screen
entry unless the SIZE phrase is specified.

3. Note that the OUTPUT phrase changes the way in which the default
field size is computed. See that heading above for details. Also note
that the OUTPUT phrase affects only the way items are displayed on
the screen; the internal format of accepted data is not affected.

SIZE Phrase (with Windows and Controls)
SIZE {IS} length [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

1. The SIZE phrase is used to set a window or control’s width (length).
Non-integer values are allowed. Note that each control type defines
exactly how this value is interpreted.

Typically, the length field represents the logical width of the control.
Frequently, this is based on the size of the control’s title or value. For
example, an ENTRY-FIELD’s width of “8” would specify a field large
enough to enter eight (average size) characters. If this phrase is omitted,
the control type employs its own method of determining a default size.

2. The CELLS option of the SIZE phrase causes the WIDTH-IN-CELLS
control style to be used. This means that the width of the control is
specified exactly using the cell size of the owning window. For
example:

SIZE = 15 CELLS

6-54 Procedure Division
causes the control to have a width of 15 cells, where the exact width of a
cell is inherited from the parent window.

3. You may use the SIZE phrase with PIXELS when defining controls.
This means that the width of the control is specified exactly using the
pixel size of the owning window. For example:

SIZE = 150 PIXELS

causes the control to have a width of 150 pixels, where the exact width
of a pixel is inherited from the parent window. Non-integer values are
not allowed with pixels.

STYLE Phrase and Style-Name
STYLE {IS} style-flags
 {= }

{style-name} ...

1. In the STYLE phrase, style-flags is a numeric field that holds a value
that specifies the styles to apply to the control. Each control type defines
its own set of styles and how the style-flags value is interpreted.
Style-flags holds the sum of the numbers that represent the desired
styles. Each style’s identifying number is defined in the file
“controls.def”. If style-flags is omitted, the default style attributes are
applied to the control.

2. A style-name is the name of a valid style for the type of control being
acted upon. For example, some of the styles that apply to a
radio-button include: BITMAP, FRAMED, and NOTIFY. Each
style-name causes that style to be applied to the control.

3. You may use both the STYLE phrase and individual style-names for a
particular control. The effect is to add the set of specified styles
together. You would typically use the STYLE phrase to specify styles
that may change at runtime, and style-name for those styles that are
fixed.

For more information about control styles, and the STYLE and
style-name phrases, see section 4.4, Book 2, ACUCOBOL-GT User
Interface Programming.

Common Statement Rules 6-55
TAB Phrase
TAB

The TAB phrase forces the user to finish entering data by typing a valid
termination key. It is the opposite of the AUTO phrase. The TAB phrase is
the default behavior except in a Format 1 ACCEPT statement when you are
using RM/COBOL compatibility mode.

TITLE Phrase
TITLE {IS} title
 {= }

1. The value of title sets the control’s title. If title is omitted, then the
control does not have a title. Some controls (such as entry fields, list
boxes, and combo boxes) do not have titles. In these cases, any specified
title is ignored.

2. If you change the title of a control and that control was created with the
default sizing rules (did not have a size explicitly specified for it), the
control is resized based on the length of the new title.

3. You can specify a key letter in a title by including the “&” character
immediately before the key letter. The key letter is usually highlighted
by the host system (under Windows, the key letter is underlined). The
“&” character both defines the key letter and performs the highlighting.
The key letter indicates that the user can go to the appropriate field by
typing the key letter in combination with another key. Exactly how
this occurs is system dependent. Under Windows, the user presses the
“Alt” key in conjunction with the key letter. Some systems do not
support key letters, in which case the first “&” character in a title is
ignored. When the KEY phrase is used and an “&” character appears
in title, the KEY phrase specifies the key letter and the character
following the “&” indicates the highlighted character.

UNDERLINED Phrase
{UNDERLINE }
{UNDERLINED}

6-56 Procedure Division
The UNDERLINED phrase causes the field to have the underscore video
attribute applied to it. If the terminal hardware does not support underlining,
then this phrase is ignored. UNDERLINED cannot be combined with
BLINK.

UPON Phrase
UPON new-window

1. The UPON phrase is used to update a floating window that is not the
current floating window. In this phrase new-window is a USAGE
HANDLE or PIC X(10) data item that contains a valid floating window
handle. The floating window specified by new-window becomes the
current window for the duration of the DISPLAY statement.

2. If you create a new floating window while in the scope of the UPON
phrase, the new window becomes the current window after the
DISPLAY statement terminates. Otherwise, the window that was
current before the DISPLAY UPON statement executed is restored to
the current window. For example, if the main application window is
current and you execute:

DISPLAY FLOATING WINDOW UPON MAIN-WINDOW, ...

when the DISPLAY statement terminates, the new floating window
becomes the current window, instead of the main application window.

Note: new-window is always the current window for the entire
remaining DISPLAY statement, even if you mix DISPLAY formats.
For example:

DISPLAY SUBWINDOW UPON WINDOW-1,
 AT 0504, LINES 5, SIZE 30, BOXED
 "Line 1", LINE 1,
 "Line 2", LINE 2.

The above code creates a new subwindow in WINDOW-1 and then
displays two lines in the new subwindow. The UPON WINDOW-1
phrase applies to both the DISPLAY SUBWINDOW operation and the
display of the subsequent text items because they are all specified in one
DISPLAY statement.

Common Statement Rules 6-57
3. When you mix several DISPLAY formats, the logic to determine the
current window is applied sequentially through the statement. Here is
a complex example:

DISPLAY FLOATING WINDOW UPON WINDOW-1
 LINES 10, SIZE 40, BOXED,
 HANDLE IN WINDOW-99;
 "Line 1", LINE 1,
 "Line 2", UPON WINDOW-2, LINE 2
 "Line 3", LINE 3.

In this example, the new floating window (WINDOW-99) is created with
WINDOW-1 as its parent (because of the first UPON phrase). Normally,
this UPON phrase would cause “Line 1” to display in WINDOW-1 too,
but the DISPLAY FLOATING WINDOW operation causes the new
window to become the current window. So, “Line 1” is shown in
WINDOW-99 instead. This would apply to “Line 2” also, but it
specifies its own UPON phrase, so it displays in WINDOW-2. “Line 3”
also displays in WINDOW-2 because that was the last window specified.
At the end of the DISPLAY statement, the new floating window,
WINDOW-99, is made the current window.

UPPER and LOWER Phrases
{UPPER}
{LOWER}

When the UPPER phrase is specified, all lower-case characters received by
the ACCEPT statement are converted to upper-case. If the LOWER phrase is
specified, all upper-case characters are converted to lower-case. If the ECHO
phrase is also specified, the redisplayed data will be in the converted form.

Note: It may be necessary for you to use the configuration variable
UPPER_LOWER_MAP to ensure correct translation.

VALUE Phrase
VALUE {IS} [MULTIPLE] value
 {= } [TABLE]

1. Value sets the value of the control. If the control does not take a value,
then the VALUE phrase is ignored. The exact interpretation of value
depends on the type of control. A control’s value is either an integer or

6-58 Procedure Division
an alphanumeric string. If the control takes an integer value, then value
should specify a numeric literal or data item. If the control takes an
alphanumeric string, then value may be either numeric or alphanumeric.
If value is numeric, it is converted to an alphanumeric string that
represents its numeric value.

2. The MULTIPLE phrase is used only with certain control types that
allow for multiple values. Its use is described in the sections that
discuss those controls. The Screen Section VALUE phrase has some
additional rules. See section 5.9 for details. TABLE is a synonym for
MULTIPLE.

VISIBLE Phrase
VISIBLE {IS} {TRUE }
 {= } {FALSE }
 {visible-state}

The VISIBLE phrase determines whether or not the control is shown on the
screen. If the VISIBLE phrase is set to TRUE, the control is shown. If it is
set to FALSE, the control is invisible. If visible-state is used instead, then its
value determines whether the control is shown. Any non-zero value indicates
that the control is visible; zero indicates that it is invisible. Controls that are
invisible do not appear on the screen and cannot be used. They continue to
exist, however, and can be made visible subsequently in the program. If the
VISIBLE phrase is omitted, then the control is initially made visible.

ZERO-FILL and NUMERIC-FILL Phrases
{ZERO-FILL }
{NUMERIC-FILL}

1. The ZERO-FILL and NUMERIC-FILL phrases may be applied only to
alphanumeric input or update fields. These phrases are ignored for
output fields. Only one of these options may be specified for a single
field.

2. The ZERO-FILL phrase causes trailing spaces in the entered data to be
replaced by the “0” character. If the destination is JUSTIFIED, then
leading spaces will be replaced instead.

3. The NUMERIC-FILL phrase causes the runtime system to examine the
entered data. If the entered value consists entirely of digits and trailing
spaces, then the entered digits are right justified and the leading

Procedure Division Format 6-59
character positions are replaced by the “0” character. If the entered
data is empty, or contains any non-digit characters, the data is left
alone.

6.5 Procedure Division Format

General Format

Format 1
PROCEDURE DIVISION

 [{USING } {parameter} ...] .
 {CHAINING}

[DECLARATIVES.

{ section-name SECTION [segment-no] .

 declarative-sentence

[paragraph-name.

[sentence] ...] ... } ...

 END DECLARATIVES.]

{ section-name SECTION [segment-no] .

[paragraph-name.

 [sentence] ...] ... } ...

Format 2
PROCEDURE DIVISION

 [{USING } {parameter} ...] .
 {CHAINING}

{ paragraph-name.

6-60 Procedure Division
 [sentence] ...] ... } ...

Syntax Rules

1. If one paragraph is in a section, all paragraphs must be in sections.

2. A section consists of a section header followed by zero or more
paragraphs.

3. A paragraph consists of a paragraph header followed by zero or more
sentences.

4. A sentence is one or more statements terminated by a period.

5. Parameter must refer to a data item defined with a level-number of 01
or 77. If the USING phrase is used, then each parameter must be
declared in the Linkage Section. If the CHAINING phrase is used,
then each parameter must be declared in the File or Working-Storage
Section.

6. Each parameter may not appear more than once in a USING/
CHAINING phrase.

7. Declarative-sentence must be a USE statement followed by a period.

8. Segment-no must be a number between zero and 99.

9. Each segment-no in the Declaratives must be less than 50.

10. If the segment-no is absent, it is treated as if it were zero.

11. Each section-name must be a unique user-defined word (exception: a
section-name may be the same as a data name).

General Rules

1. The USING phrase is used only for programs that are invoked by a
CALL statement with a USING phrase.

2. The USING phrase identifies the names used in the program to refer to
arguments passed from the calling program. In the calling program,
the USING phrase of the CALL statement identifies the arguments.
The two USING lists correspond positionally.

Procedure Division Format 6-61
3. References to USING phrase parameters operate according to the data
description entries in the program’s Linkage Section independent of
their descriptions in the calling program.

4. A Linkage Section data item can be referred to in the Procedure
Division only if it satisfies one of the following conditions:

a. It is named in the Procedure Division’s USING phrase.

b. The address of the data item is assigned to another data item or a
pointer. This is accomplished through the SET ADDRESS OF
statement. See the Linkage Section in section 5.3 and the SET
Statement for additional information.

c. It is subordinate to a parameter named in the USING phrase.

d. It is a data item defined by a REDEFINES or RENAMES clause
whose object is named in the USING phrase. Data items
subordinate to such items may also be referenced.

e. It is a condition-name or index-name associated with any data item
that satisfies any of the previous conditions.

5. Any changes made to the data items referred to in the USING phrase
are reflected in the calling program when the current program exits.

6. The CHAINING phrase is used only for a program that is the first
program executed in a run unit (a “main” program). Each parameter
has its initial value set according to the following rules:

a. If the program is initiated from the host operating system, each
parameter is initialized to the corresponding command-line
argument.

b. If the program is initiated by a CHAIN statement, then each
parameter receives the value of the corresponding USING item
specified by that CHAIN statement.

c. Values are assigned to each parameter as if the value were the
alphanumeric source for an elementary MOVE to parameter. If
parameter is not alphanumeric, then it is treated as if it were
implicitly redefined as alphanumeric before this MOVE occurs.

6-62 Procedure Division
d. If there are fewer arguments than parameters, then the excess
parameters are initialized according to the rules that would apply
if they were not listed in the CHAINING phrase.

e. If there are more arguments than parameters, the excess
arguments are ignored.

7. Segment-numbers describe the segments of the program. If
segmentation is used, then sections must be placed so that a particular
segment number is never smaller than the segment number for any
previous section (in other words, all the sections belonging to a
particular segment must be placed together).

8. Unless altered by the SEGMENT-LIMIT phrase of the Configuration
Section, segment numbers less than 50 are placed in the program’s
fixed memory space. The fixed memory space is loaded when the
program first starts and remains resident until the program is canceled.

9. Segment numbers of 50 or greater reside in the swapped memory
space. The swapped memory space contains only one segment at a
time. If the program’s flow of control requires that a different segment
be executed than the one that is currently residing in the swapped
memory space, then it is loaded from the program’s object file. This
reduces the amount of memory space required by the program, at the
expense of performing additional disk reads when new segments are
needed. This swapped memory space applies only to Version 7.2 and
earlier. Later versions treat segmentation as commentary.

10. Sections with the same segment-no are considered to be part of the
same segment. They are all loaded together when that segment is read
into memory.

11. The functional behavior of a program with segmentation is identical to
that same program without segmentation. The only difference is that
the program requires less memory but (potentially) more time to run.
It is legal for the flow of control to pass directly or indirectly from one
swapped segment to another.

12. When using segmentation, take care that the program’s flow of control
does not cause excessive swapping. If it does, the performance of the
program may be substantially degraded.

13. An individual segment may not exceed 64 KB.

Procedure Division Statements 6-63
6.6 Procedure Division Statements

Every statement in COBOL is started with a reserved word called a verb. The
following sections cover the verbs available in ACUCOBOL-GT.

ACCEPT Statement

The ACCEPT statement makes low-volume data available to the program.
See section 6.4.9, “Common Screen Options,” for more information on
many of the optional clauses shown below.

The different forms of the ACCEPT statement perform the following
functions:

• Format 1, ACCEPT (an individual field)

• Format 2, ACCEPT (a Screen Section item, one or more fields)

• Format 3, ACCEPT FROM (returns selected data from the operating
environment)

• Format 4, ACCEPT SCREEN (accepts data found on screen)

• Format 5, ACCEPT ENVIRONMENT (accepts value of variable
from user’s environment or from ACUCOBOL-GT’s runtime
configuration settings)

• Format 6, ACCEPT (ANSI style)

• Format 7, ACCEPT (activates a specific control)

• Format 8, ACCEPT (accepts HTML forms)

• Format 9, ACCEPT EVENT (accepts an "event")

• Format 10, ACCEPT (HP COBOL)

• Format 11, ACCEPT (HP COBOL)

• Format 12, ACCEPT (HP COBOL)

6-64 Procedure Division
• Format 13, ACCEPT FROM ENVIRONMENT-VALUE (returns
the value of the special register ENVIRONMENT-NAME)

Depending on the Format and options used, an ACCEPT statement can return
the following predefined exception values. The numbers listed here are the
actual values that are returned. Exception values can be found in the file
“acugui.def”. The names given here are the level 78 data items found in that
file.

Please note that ACCEPT works differently on Windows and character-based
systems. In Windows, an entry field is automatically in insert mode—that is,
typing characters moves other characters instead of overwriting them. In
character-based systems, entry fields start in overwrite mode, so typing new
characters overwrites characters that already exist.

General Format

Format 1
ACCEPT {dest-item}
 {OMITTED }

Remaining phrases are optional, can appear in any order.
AT screen-loc

{FROM} LINE NUMBER line-num
{AT }

{FROM} {COLUMN } NUMBER col-num
{AT } {COL }

95 W-MESSAGE - message received

 (ACCEPT ALLOWING MESSAGES)

96 W-EVENT - ACCEPT terminated by an event

97 W-NO-FIELDS - no input fields, or all fields protected or
hidden

98 W-CONVERSION-ERROR - numeric conversion error

99 W-TIMEOUT - ACCEPT timed out

 (ACCEPT BEFORE TIME)

Procedure Division Statements 6-65
 {POSITION}
 {POS }

WITH PROTECTED SIZE length

WITH NO ADVANCING

{ERASE} [TO END OF] {LINE } (VAX, ICOBOL)
{BLANK} {SCREEN}

{ERASE} [EOS] (RM)
{BLANK} [EOL]

WITH [NO] {BELL}
 {BEEP}

{UNDERLINE }
{UNDERLINED}

WITH {BLINKING}
 {BLINK }

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

{REVERSE-VIDEO}
{REVERSE }
{REVERSED }

SAME

WITH {COLOR } color-val
 {COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

SCROLL [UP] [BY scrl-num {LINE }]

6-66 Procedure Division
 [DOWN] {LINES}

OUTPUT {JUSTIFIED} {LEFT }
 {JUST } {RIGHT }
 {CENTERED}
WITH {CONVERSION}
 {CONVERT }

{WITH NO ECHO}
{NO-ECHO }
{SECURE }
{OFF }

PROMPT [CHARACTER IS prompt-lit]

{DEFAULT [IS default]}
{UPDATE }

ECHO

{AUTO }
{AUTO-SKIP }
{AUTOTERMINATE}
{TAB }

{UPPER}
{LOWER}

CURSOR curs-offset

CONTROL cntrl-string

{REQUIRED }
{EMPTY-CHECK}

{FULL }
{LENGTH-CHECK}

{ZERO-FILL }
{NUMERIC-FILL}

CONTROL KEY IN key-dest

BEFORE TIME timeout

Procedure Division Statements 6-67
ALLOWING MESSAGES FROM { THREAD thread-1 }
 { LAST THREAD }
 { ANY THREAD }

[{ ON EXCEPTION [key-dest] } {statement-1 }]
 { ON ESCAPE [key-dest] } {NEXT SENTENCE}
 { AT END }

[NOT { ON EXCEPTION } statement-2]
 { ON ESCAPE }
 { AT END }

[END-ACCEPT]

Format 2
ACCEPT screen-name

Remaining phrases are optional, can appear in any order.
AT screen-loc

{FROM} LINE NUMBER line-num
{AT }

{FROM} {COLUMN } NUMBER col-num
{AT } {COL }
 {POSITION}
 {POS }

BEFORE TIME timeout

ALLOWING MESSAGES FROM { THREAD thread-1 }
 { LAST THREAD }
 { ANY THREAD }

[UNTIL condition-1]

[ON {EXCEPTION} statement-1]
 {ESCAPE }

[NOT ON {EXCEPTION} statement-2]
 {ESCAPE }

[END-ACCEPT]

6-68 Procedure Division
Format 3
ACCEPT dest-item FROM {DATE }
 {DAY }
 {CENTURY-DATE }
 {DATE YYYYMMDD }
 {CENTURY-DAY }
 {DAY YYYYDDD }
 {TIME }
 {DAY-OF-WEEK }
 {TERMINAL-INFO }
 {SYSTEM-INFO }
 {INPUT STATUS }
 {ESCAPE KEY }
 {LINE NUMBER }
 {COMMAND-LINE }
 {STANDARD OBJECT object-name}
 {THREAD HANDLE }
 {WINDOW HANDLE }

Format 4
ACCEPT dest-item FROM SCREEN

Remaining phrases are optional, can appear in any order.
AT screen-loc

{FROM} LINE NUMBER line-num
{AT }

{FROM} {COLUMN } NUMBER col-num
{AT } {COL }
 {POSITION}

SIZE length

Format 5
ACCEPT dest-item FROM {CONFIGURATION} env-name
 {ENVIRONMENT }

 [ON EXCEPTION statement-1]

 [NOT ON EXCEPTION statement-2]

Procedure Division Statements 6-69
 [END-ACCEPT]

Format 6
ACCEPT dest-item [FROM mnemonic-name]

Format 7
ACCEPT {control-handle}
 {CONTROL }

Remaining phrases are optional, can appear in any order.
VALUE IN [MULTIPLE] value

AT screen-loc [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT LINE NUMBER line-num [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT {COLUMN } NUMBER col-num [CELL]
 {COL } [CELLS]
 {POSITION} [PIXEL]
 {POS } [PIXELS]

AT CLINE NUMBER cline-num [CELL]
 [CELLS]

AT CCOL NUMBER ccol-num [CELL]
 [CELLS]

WITH {BELL}
 {BEEP}

BEFORE TIME timeout

CONTROL KEY IN key-dest

ALLOWING MESSAGES FROM { THREAD thread-1 }
 { LAST THREAD }
 { ANY THREAD }

6-70 Procedure Division
ON {EXCEPTION} [key-dest] statement-1
 {ESCAPE }

NOT ON {EXCEPTION} statement-2
 {ESCAPE }

END-ACCEPT

Format 8
ACCEPT external-form-item

Format 9
ACCEPT EVENT

Remaining phrases are optional.
BEFORE TIME timeout
ALLOWING MESSAGES FROM { THREAD thread-1 }
 { LAST THREAD }
 { ANY THREAD }

[{ ON EXCEPTION [code-dest] } {statement-1 }]
 { ON ESCAPE [code-dest] } {NEXT SENTENCE}
 { AT END }

[NOT { ON EXCEPTION } statement-2]
 { ON ESCAPE }
 { AT END }

[END-ACCEPT]

Format 10 (HP COBOL)
ACCEPT identifier [FREE] [FROM { SYSIN }]
 { CONSOLE }
 { mnemonic-name }

Format 11 (HP COBOL)
ACCEPT identifier FREE [FROM { SYSIN }]
 { CONSOLE }
 { mnemonic-name }

[ON INPUT ERROR imperative-statement-1]

Procedure Division Statements 6-71
[NOT ON INPUT ERROR imperative-statement-2]

[END-ACCEPT]

Format 12 (HP COBOL)
ACCEPT identifier FROM { DATE }
 { DAY }
 { DAY-OF-WEEK }
 { TIME }

Format 13
ACCEPT value FROM ENVIRONMENT-VALUE

Syntax Rules

Note: For Syntax Rules and General Rules specific to Formats 10, 11,
and 12, see Chapter 5, “HP COBOL Conversions,” in Transitioning to
ACUCOBOL-GT.

1. Dest-item is a data item that receives the accepted data. It must be
USAGE DISPLAY unless the WITH CONVERSION phrase is also
used.

If the Format 3 STANDARD OBJECT, THREAD HANDLE, or
WINDOW HANDLE phrase is used, dest-item must be a USAGE
HANDLE data item of the appropriate type. If the WINDOW HANDLE
phrase is used, dest-item can also be a PIC X(10) item.

2. Screen-name is the name of a screen entry declared in the program’s
Screen Section. See section 5.8, “Screen Section,” for more
information.

3. Screen-loc is a numeric literal or data item containing either 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

4. In Format 7, the AT, LINE, COLUMN, CLINE, and CCOL phrases
may be used only if the CONTROL phrase is also used.

6-72 Procedure Division
5. Line-num, col-num, cline-num, and ccol-num are numeric data items
or literals. Note that they may be non-integer, unless the value is in
pixels.

6. Length, color-val, curs-offset, timeout, and scrl-num are numeric
literals or data items. They must specify non-negative integers. You
may also specify the value of line-num, col-num, length, and color-val
with an arithmetic expression.

7. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. They may not be subscripted or
reference modified. See section 6.4.9, “FOREGROUND-COLOR and
BACKGROUND-COLOR Phrases,” for a more detailed discussion of
color settings and values.

8. Prompt-lit is a single-character alphanumeric literal or the figurative
constant SPACE, ZERO, or QUOTE.

9. Default is a literal or data item. It specifies the default entry value.

10. Key-dest is a numeric data item. It receives the value of the key that
terminated input.

11. Thread-1 is a USAGE HANDLE or HANDLE OF THREAD data
item.

12. Statement-1 and statement-2 are any imperative statements.

13. Condition-1 is any conditional expression.

14. Cntrl-string and env-name are nonnumeric literals or data items.

15. Mnemonic-name must be a user-defined word declared in
Special-Names that refers to a display device, or it must be the name of
the display device itself. See section 4.2.3, “Special-Names
Paragraph,” for a list of valid devices.

16. Object-name must be an alphanumeric literal or data item.

17. Control-handle must be USAGE HANDLE. If control-handle is a
typed handle, it must be associated with a control. It should hold a
handle returned by a DISPLAY Control-Type (Format 14) statement.

18. Value can be any data item. It receives the current value of the control
when the ACCEPT statement terminates.

Procedure Division Statements 6-73
19. Code-dest is a numeric data item.

20. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

21. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

22. The CURSOR phrase may not be specified if a CURSOR phrase is
specified in the program’s Configuration Section.

23. AUTO, AUTO-SKIP, and AUTOTERMINATE are equivalent.

24. NO-ECHO, NO ECHO, OFF, and SECURE are equivalent.

25. BLANK and ERASE are equivalent.

26. BOLD, HIGH, and HIGHLIGHT are equivalent.

27. LOWLIGHT and LOW are equivalent.

28. COLUMN, COL, POSITION, and POS are equivalent.

29. BELL and BEEP are equivalent.

30. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

31. BLINK and BLINKING are equivalent.

32. UNDERLINE and UNDERLINED are equivalent.

33. CONVERSION and CONVERT are equivalent.

34. REQUIRED and EMPTY-CHECK are equivalent.

35. FULL and LENGTH-CHECK are equivalent.

36. EXCEPTION and ESCAPE are equivalent.

37. If the OMITTED option is used, then none of the following phrases
may be specified: SIZE, JUSTIFIED, CONVERT, NO ECHO,
PROMPT, DEFAULT, ECHO, UPPER, LOWER, REQUIRED,
FULL, ZERO-FILL, NUMERIC-FILL or any of the attribute setting
phrases (such as COLOR or REVERSE).

6-74 Procedure Division
38. The ERASE phrase has two forms. In VAX COBOL and ICOBOL
compatibility modes, the ERASE LINE/SCREEN form must be used.
In RM/COBOL mode, the ERASE EOS/EOL form must be used. This
is indicated in the General Format by the symbols “(VAX, ICOBOL)”
and “(RM)”.

39. A NOT AT END phrase may not be paired with an ON EXCEPTION
phrase, nor may a NOT ON EXCEPTION phrase be paired with an AT
END phrase.

40. In a Format 6 ACCEPT statement, if you omit the FROM phrase, you
must use the “-Ca” compile-time option. Otherwise, the compiler
treats the statement as a Format 1 ACCEPT instead.

41. If the CONTROL KEY phrase is used, the key-dest option of the ON
EXCEPTION phrase may not be specified.

42. You may add FROM CRT to a Format 1 ACCEPT statement to
distinguish it from a Format 6 ACCEPT statement. You need to do this
only if you use the “-Ca” compile-time option.

43. External-form-item is an input record for an HTML form when used in
a Common Gateway Interface (CGI) program. It is a group data item
(declared with the IS EXTERNAL-FORM clause) that has one or more
elementary items associated with CGI variables. The association is
made with the IS IDENTIFIED BY clause in the description of the
elementary item(s).

External-form-item may also be an output record for an HTML form. In
this case, the group item is declared with both the IS
EXTERNAL-FORM and IDENTIFIED BY clauses.

See the IS EXTERNAL-FORM clause for more information about
declaring external forms.

44. For Format 13, value is a Working-Storage data item of the type
needed to receive the value of the environment or configuration value
stored in ENVIRONMENT-NAME (see DISPLAY Format 17).

Procedure Division Statements 6-75
General Rules

Format 1 (ACCEPT dest-item)

1. The ACCEPT statement accepts data typed by the user. The data
accepted is placed in dest-item. If the OMITTED option is used instead
of dest-item, then the user is required to enter a termination key, and no
data is transmitted to the program. This can be used if you want to enter
a function key only and do not need any other data from the user.

2. The precise action of the ACCEPT statement depends both on the
various clauses specified and the compatibility mode that the compiler
is using. The compiler is run in RM/COBOL, VAX COBOL, or
ICOBOL compatibility mode.

3. Use of the AUTO phrase causes a field to terminate as soon as it is
filled with data--this is the default mode in RM COBOL. Use of the
TAB phrase forces the user to finish with a termination key--this is the
standard mode except for RM COBOL.

The effects of the CURSOR, CONTROL KEY, BEFORE TIME,
ALLOWING MESSAGES, ON EXCEPTION, and AT END clauses
are described below. The effects of the remaining optional clauses are
described in section 6.4.9, “Common Screen Options.”

CURSOR Phrase

1. The CURSOR phrase specifies the initial cursor offset from the
beginning of the field. The leftmost position of the ACCEPT field is
offset one. If the CURSOR phrase is omitted or zero, then an offset of
one is used.

2. The offset specified is reduced as needed to keep the cursor in the
bounds of the field. Also, the offset is reduced to keep the cursor
within the data contained in the field. This means that an offset of one
will always be used if the DEFAULT (or UPDATE) phrase is not used.

3. If curs-offset is a numeric data item, then the ending cursor offset will
be assigned to it when the ACCEPT statement terminates. This can be
used to find the current cursor location (field column + curs-offset - 1).

6-76 Procedure Division
4. If a CURSOR clause is specified in the program’s Configuration
Section, then that clause is used to determine the cursor’s initial offset.
See section 4.2.3, “Special-Names Paragraph,” for details.

CONTROL KEY Phrase

1. The CONTROL KEY clause allows for the entry of special keys and the
recording of which key terminated input. (For additional information,
see ACUCOBOL-GT User’s Guide, section 4.3, “The Keyboard
Interface.”) When the CONTROL KEY clause is specified, all of the
special keys named in the following table can be used.

2. Key-dest is a numeric item that receives the value of the key that
terminated input. The keys allowed by the CONTROL KEY phrase
and their returned values are:

Control keys may also be used. They return their underlying ASCII
value (for example, Control-B returns the value 2). If a field is entered
in AUTO mode and the ACCEPT terminates because the field was filled

Key Value Key Value

Enter/Return 13 F-13 13*

Tab 9 F-14 14*

F-1 1* F-15 15*

F-2 2* F-16 16*

F-3 3* F-17 17*

F-4 4* F-18 18*

F-5 5* F-19 19*

F-6 6* F-20 20*

F-7 7* Do (Command) 40*

F-8 8* Up Arrow 52*

F-9 9* Down Arrow 53*

F-10 10* Page Up 67*

F-11 11* Page Down 68*

F-12 12* Help 90*

Procedure Division Statements 6-77
with data, then key-dest receives the value zero. If the BEFORE TIME
phrase is specified and a time-out occurs, then key-dest receives the
value “99”.

3. The keys marked with “*” are exception keys. These keys may be
used only if a CONTROL KEY or ON EXCEPTION phrase is
specified for the ACCEPT statement (alternately, the “-Vx”
compile-time option can be used). If these keys are not allowed, then
the runtime system will ignore them when they are typed. Note that if
you use the “-Ve” compile-time option to disable the ON EXCEPTION
phrase for exception keys, then using the ON EXCEPTION phrase will
not enable exception keys. (See also rule number 2 under
ALLOWING MESSAGES Phrase.)

4. By using the “-Ve” compile-time option, you can cause
ACUCOBOL-GT to return numeric conversion errors to the program.
If you use this option to enable program handling of conversion errors,
then key-dest will be assigned the value “98” whenever a conversion
error occurs. See ACUCOBOL-GT User’s Guide, section 4.3.2.1,
“The Keyboard Variable,” subsection 3, “CHECK-NUMBERS.”

5. For compatibility with programs written under other systems, the
values returned by these keys may be changed at runtime. Also, other
keys may be added or removed from this table. See section 4.3.2,
“Redefining the Keyboard,” in Book 1, ACUCOBOL-GT User’s
Guide, for details on how to do this.

BEFORE TIME Phrase

1. The BEFORE TIME phrase allows you to automatically terminate an
ACCEPT statement after a certain amount of time has passed. The
timeout value specifies the time to wait in hundredths of a second. For
example, “BEFORE TIME 500” specifies a timer value of 5 seconds.

2. The user must enter data to the ACCEPT statement before the timer
elapses. As soon as the user starts entering data, the timer is canceled
and the user may take as much time as desired to complete the entry.
If the user does not enter any data before the timer elapses, then the
ACCEPT statement terminates and returns a value exactly as if the user
had typed the “enter” key. An exception condition is then raised and
the exception key value is set to “99”.

6-78 Procedure Division
3. The precise amount of time waited can vary significantly from machine
to machine. Factors involved include the rate of the system clock and
the current load on the machine. For example, some UNIX systems
update the system clock only once every second. The
ACUCOBOL-GT runtime system takes the specified value and rounds
it up to a whole number of “ticks” of the system clock. It then calls the
system’s alarm mechanism to interrupt the ACCEPT after this many
“ticks” have elapsed. Different operating systems will handle this
interrupt with varying degrees of accuracy. You should think of the
timeout value as only an approximate one.

Note: If you want to program a task that executes at a regular interval,
such as updating an on-screen clock, it is best to program the task in a
separate thread (as opposed to timing out all of your ACCEPT
statements). The periodic task would be placed inside a loop in a
separate thread. The task would sleep for some period, wake and
perform the update, and then loop back to the sleep state. This
approach allows the runtime’s thread manager to schedule the update,
and ensures that no input, such as a mouse click, is missed when the
update takes place. For more about threads, see Book 1,
ACUCOBOL-GT User’s Guide, section 6.8.

ALLOWING MESSAGES Phrase

1. The ALLOWING MESSAGES phrase causes the ACCEPT statement to
terminate when a message is sent from the appropriate thread, as
follows:

a. The THREAD thread-1 option allows messages from the thread
identified by thread-1.

b. The LAST THREAD option allows for messages from the “last”
thread (see section 6.8.1, Book 1, ACUCOBOL-GT User’s Guide
for a discussion of the last thread).

c. The ANY THREAD option allows messages from any thread.

2. If an allowed message is available when the ACCEPT begins, or one
arrives while the ACCEPT is active, the ACCEPT terminates with an
exception value of “95”. The exception occurs even if exceptions are
not otherwise allowed in the ACCEPT.

Procedure Division Statements 6-79
3. When an ACCEPT terminates due to a message, the target data item is
not updated with the data entered by the user up to that point. This
affects the following cases:

a. In Format 1, dest-item is not updated.

b. In Format 2, any VALUE, USING, or TO data items in the Screen
Section are not updated.

c. In Format 7, value is not updated.

Note: Testing of the data item is not performed (such as the
REQUIRED phrase). Essentially, you get the termination status, but
no other information. This allows you to share a data item between two
controls. When the user changes one of them, it can send a message to
the other to have that control update its appearance. If this rule was not
in place, the message would terminate any ACCEPT on that control,
and that control’s current contents would overwrite the correct data in
the shared data item. If you need to determine the current value of a
control in response to a message, you can INQUIRE the control’s value
directly.

4. An ACCEPT statement that is suspended (because another thread has
an active ACCEPT) terminates when an allowed message arrives.

5. If the ALLOWING MESSAGES phrase is omitted, messages will not
terminate the ACCEPT. Instead, they are queued as normal.

ON EXCEPTION Phrase

Note: The “-Ve” compiler option alters the rules that determine which
conditions cause an ON EXCEPTION phrase to receive control in a
Format 1 ACCEPT statement. See Section 2.2.11, “Video Options” of
the ACUCOBOL-GT User’s Guide for details.

1. When this phrase is used, statement-1 is executed when an exception
condition occurs. An exception condition occurs under the following
circumstances:

a. An end-of-file condition occurs on the console.

6-80 Procedure Division
b. A BEFORE TIME phrase was specified and the ACCEPT
statement timed out.

c. An exception key was used to terminate input. This may be
disabled with the “-Ve” compile-time option.

d. A conversion error occurred when numeric data was entered with
the CONVERSION phrase. You must use the “-Ve” compile-time
option to enable program handling of conversion errors for this
exception condition to be used. Normally, the ACUCOBOL-GT
runtime system does not allow invalid numeric data to be entered.

e. A message terminates the ACCEPT.

f. An event terminates the ACCEPT.

g. the screen contains no input fields, or all input fields are protected
or disabled.

2. Key-dest, if specified, causes this phrase to have all of the effects of
the CONTROL KEY phrase in addition to its normal effects. See the
CONTROL KEY phrase above for details. If you specify key-dest,
then exception keys will cause statement-1 to execute even if you have
used the “-Ve” compile-time option to turn off handling of exception
keys by the ON EXCEPTION phrase.

3. If you specify an ON EXCEPTION phrase, then exception keys will be
allowed for the ACCEPT statement. Otherwise exception keys will be
disabled unless you use the CONTROL KEY phrase or the “-Vx”
compile-time option. However, if you use the “-Ve” compile-time
option to disable exception key handling, then an ON EXCEPTION
phrase will not enable exception keys unless the key-dest option is also
used.

4. If the NEXT SENTENCE option is used, then control will pass to the
next executable sentence when an exception condition exists. Note that
the ANSI standard states that “NEXT SENTENCE is an archaic feature
and its use should be avoided.”

5. If the NOT ON EXCEPTION phrase is specified, then statement-2
executes if no exception condition exists.

Procedure Division Statements 6-81
6. The ON EXCEPTION phrase may not be specified if the AT END
phrase is used. The key-dest option may not be used if the CONTROL
KEY phrase is specified.

AT END Phrase

1. The AT END phrase causes the following statement-1 to execute if an
end-of-file occurs during the ACCEPT.

2. If NEXT SENTENCE is specified instead of statement-1, control
passes to the next executable sentence if an end-of-file occurs. Note
that the ANSI standard states that “NEXT SENTENCE is an archaic
feature and its use should be avoided.”

3. If the NOT AT END phrase is used, then statement-2 executes if an
end-of-file does not occur during the ACCEPT.

4. By default, ACUCOBOL-GT does not have a method of generating
end-of-file conditions from a terminal. The runtime system can be
reconfigured, however, to generate an end-of-file for selected keys.
For details, see section 4.3.2, “Redefining the Keyboard,” in Book 1,
ACUCOBOL-GT User’s Guide.

5. The AT END phrase may not be specified when the ON EXCEPTION
phrase is.

Format 2 (ACCEPT screen-name)

1. This is a form level ACCEPT. A Format 2 ACCEPT statement allows
the user to enter data into all of the input and update fields (as well as
every control that can be activated) contained in screen-name.
Screen-name must be a screen item declared in the program’s Screen
Section. After the user finishes, each input and update field is moved to
its corresponding data item. See section 5.8, “Screen Section,” for a
complete description of a screen item.

2. The AT, LINE, and COLUMN phrases describe the starting location of
the screen item. These phrases are described in detail in section 6.4.9,
“Common Screen Options.” If either the line or column number is
missing or zero, then line or column number 1 is used.

6-82 Procedure Division
3. The BEFORE TIME phrase works in the same manner as described
above for a Format 1 ACCEPT. If multiple input fields are being
entered, then the timer is set only for the first field. As soon as the
user starts entering data, as much time as desired may be taken to enter
the screen.

4. The ALLOWING MESSAGES phrase works in the same manner as
described above for a Format 1 ACCEPT.

5. If an exception condition occurs, the ON EXCEPTION phrase causes
control to be transferred to statement-1. (Exception codes are stored in
the variable named in SPECIAL-NAMES with the CRT STATUS
phrase.) See rule number 1 under ON EXCEPTION phrase (above) for
a list of the conditions that cause an exception. Exception keys are
listed under the heading “CONTROL KEY Phrase” above. If an
exception does not occur, and the NOT EXCEPTION phrase is
specified, then statement-2 executes.

6. Specifying the EXCEPTION phrase allows the user to terminate input
with an exception key. Otherwise, exception keys are disabled unless
the program is compiled with the “-Vx” option.

Note: You can code Screen Section entries that reference embedded
procedures or an event procedure for Format 2 ACCEPT statements.
See section 5.9.6, “PROCEDURE Clause,” for more information.

You can also code a Special-Names entry that allows an embedded
procedure to control an ACCEPT statement. See section 4.2.3,
“Special-Names Paragraph,” for more information.

7. If condition-1 is specified, then the ACCEPT statement executes
repeatedly until condition-1 evaluates “true”. The effect is exactly the
same as coding:

PERFORM, WITH TEST AFTER, UNTIL condition-1
 ACCEPT screen-name, accept options
END-PERFORM

This can be convenient when you are retrieving data from a graphical
screen. For example, you could use a statement like the following to get
data from a dialog box until the user presses the box’s “OK” button:

ACCEPT screen-1, UNTIL ok-button-pressed

Procedure Division Statements 6-83
Format 3 (ACCEPT FROM)

1. The Format 3 ACCEPT statement causes information to be transferred to
dest-item according to the rules for the MOVE statement.

2. The DATE option causes the current date to be moved to dest-item.
The date is composed of the year of the century, the month of the year,
and the day of the month. Each element occupies two digits. For
example, December 25, 1998, would be expressed “981225”. DATE is
treated as if it were described by a PICTURE 9(6) clause.

3. The DAY option causes the current date to be moved to dest-item. The
format of the date is the year of the century (2 digits) followed by the
day of the year (3 digits). For example, December 25, 1998, is
“98359”. DAY acts as if it were described by a PICTURE 9(5) clause.

4. ACCEPT FROM CENTURY-DATE returns the current date in the
format “YYYYMMDD” (year/month/day). ACCEPT FROM DATE
YYYYMMDD is equivalent to ACCEPT FROM CENTURY-DATE.
ACCEPT FROM CENTURY-DAY returns the current date in the
format “YYYYDDD” (year/day-of-year). ACCEPT FROM DAY
YYYYDDD is equivalent to ACCEPT FROM CENTURY-DAY.
These are the same as ACCEPT FROM DATE and ACCEPT FROM
DAY, except that the year field is 4 digits instead of 2 digits.

The compiler option “-Zy” lets you treat ACCEPT FROM DATE as
ACCEPT FROM CENTURY-DATE, and ACCEPT FROM DAY as
ACCEPT FROM CENTURY-DAY. For details, see the
ACUCOBOL-GT User’s Guide section 2.1.13, “Miscellaneous
Options.”

5. The TIME option causes the current time of day to be moved to
dest-item. The format of the time is the hour (24-hour clock), the
minutes, the seconds and the hundredths of a second. Each element
occupies two digits. For example, 2:41 PM would be expressed
“14410000”. TIME acts as if it were described by a PICTURE 9(8)
clause.

Generally speaking, older UNIX machines keep time only to the nearest
second. Thus the hundredths portion of the value returned by ACCEPT
FROM TIME is typically zero on UNIX machines. However, System V
Release 4 and some other UNIX versions have an alternate method for

6-84 Procedure Division
determining the time with greater precision. The runtime system will
use this alternate method if it is available, and then the hundredths
portion will be filled in.

6. The DAY-OF-WEEK option causes the current day of the week to be
moved to dest-item. The format of this item is a single digit where 1
represents Monday, 2 represents Tuesday, up through 7 for Sunday.
DAY-OF-WEEK acts as if it were described by a PICTURE 9 clause.

7. The TERMINAL-INFO option causes information about the user’s
terminal to be moved to dest-item. This information is returned in the
following format, as contained in the TERMINAL-ABILITIES group
item defined in “acucobol.def”:

01 TERMINAL-ABILITIES.
 03 TERMINAL-NAME PIC X(10).
 03 FILLER PIC X.
 88 HAS-REVERSE VALUE "Y".
 03 FILLER PIC X.
 88 HAS-BLINK VALUE "Y".
 03 FILLER PIC X.
 88 HAS-UNDERLINE VALUE "Y".
 03 FILLER PIC X.
 88 HAS-DUAL-INTENSITY VALUE "Y".
 03 FILLER PIC X.
 88 HAS-132-COLUMN-MODE VALUE "Y".
 03 FILLER PIC X.
 88 HAS-COLOR VALUE "Y".
 03 FILLER PIC X.
 88 HAS-LINE-DRAWING VALUE "Y".
 03 NUMBER-OF-SCREEN-LINES PIC 9(3).
 03 NUMBER-OF-SCREEN-COLUMNS PIC 9(3).
 03 FILLER PIC X.
 88 HAS-LOCAL-PRINTER VALUE "Y".
 03 FILLER PIC X.
 88 HAS-VISIBLE-ATTRIBUTES VALUE "Y".
 03 FILLER PIC X.
 88 HAS-GRAPHICAL-INTERFACE VALUE "Y".
 03 USABLE-SCREEN-HEIGHT PIC X(2) COMP-X.
 03 USABLE-SCREEN-WIDTH PIC X(2) COMP-X.
 03 PHYSICAL-SCREEN-HEIGHT PIC X(2) COMP-X.
 03 PHYSICAL-SCREEN-WIDTH PIC X(2) COMP-X.
 03 FILLER PIC X.
 88 IS-REMOTE VALUE "Y".
 03 CLIENT-MACHINE-NAME PIC X(64).

Procedure Division Statements 6-85
 03 FILLER PIC X.
 88 ACU-NO-TERMINAL VALUE "Y".
 03 CLIENT-USER-ID PIC X(20).

a. The TERMINAL-NAME field contains a short descriptive name
of the terminal type being used (e.g., “vt100”, “tvi925”,
“pc-color”). For the Windows runtime and thin client, the
TERMINAL-NAME field contains the string “Windows”. The
number-of-lines and number-of-columns fields contain the number
of lines and columns the screen contains in its current
configuration. The remaining fields contain a “Y” if the user’s
terminal has the named feature and an “N” if it does not.

b. The NUMBER-OF-SCREEN-LINES and
NUMBER-OF-SCREEN-COLUMNS fields hold the number of
whole lines and columns (respectively) in the current floating
window. If no window has been created, these values are set to
the size of the default application window.

c. The HAS-VISIBLE-ATTRIBUTES field is set to “Y” if setting a
video attribute on the terminal causes a character to be taken up on
the screen. Terminals that behave in this fashion have additional
restrictions over the terminals that have “hidden” attributes. For
additional information on these restrictions, see ACUCOBOL-GT
User’s Guide, section 4.5, “Restricted Attribute Handling.”

d. The HAS-GRAPHICAL-INTERFACE item is set to TRUE (value
“Y”) if the runtime is using a graphical user interface. Otherwise,
it is FALSE (value “N”). You can generally assume that graphical
systems can support non-integer row/column positions and
window/control sizes.

e. Non-graphical (i.e., character-based) systems will truncate
non-integer row and column positions, along with window and
control sizes to the nearest integer that is smaller (e.g., “line 1.5”
will be treated as “line 1”).

f. The USABLE-SCREEN-HEIGHT field holds the height of the
usable portion of the user’s display device in “base units.” This
value represents character cells for character-based systems or
pixels for graphical systems. On graphical systems, this value can
be larger than the area used by your program (it is the largest area
that a program could conceivably use). Under Windows 98, this

6-86 Procedure Division
value excludes the Taskbar if the user has set the “Always on top”
Taskbar option. On character-based systems, this value is the size
of the actual screen, or the current application window if you are
running in a character-emulator such as the Windows
console-mode (DOS box) or an X-term.

g. USABLE-SCREEN-WIDTH is the same as
USABLE-SCREEN-HEIGHT except that it returns the width
instead of the height.

h. PHYSICAL-SCREEN-HEIGHT is the same as
USABLE-SCREEN-HEIGHT except that it includes the entire
screen instead of just the usable portion of the screen. Under
Windows 98, this is the actual screen resolution. Under
character-based systems, this value is normally the same as
USABLE-SCREEN-HEIGHT because most character-based
systems do not provide a method for measuring the physical
screen.

i. PHYSICAL-SCREEN-WIDTH is the same as
PHYSICAL-SCREEN-HEIGHT except that it returns the screen’s
width instead of the screen’s height.

j. IS-REMOTE is set to TRUE (value “Y”) if the program is running
with either the Thin Client. When IS-REMOTE is true:
CLIENT-MACHINE-NAME is set to the name of the client that is
running either acuthin plus a hyphen (“-”) and the hex value of
the client process ID. For example:

 techxp-2ef1

CLIENT-USER-ID is set to the client-side login name of the current
user. This is the name the user entered when logging in to the client
that is running acuthin. If it is not set, acuthin looks for the
environment variable “USERNAME”. If that is not set, then the
literal “USER” is placed in the field.

k. ACU-NO-TERMINAL is set to TRUE if the runtime was started
with the “-b” option (“-b” inhibits terminal initialization and
implies that no terminal is attached to the process). In this
scenario, terminal I/O is undefined and should be avoided. When
ACU-NO-TERMINAL is TRUE, other fields in
TERMINAL-ABILITIES return their default value.

Procedure Division Statements 6-87
On many UNIX systems, the runtime can use ACCEPT FROM
TERMINAL-INFO to determine the initial size of its window when it is
running under the X Window system, Motif, OpenLook, or Sunview. It
uses this information to set the number of rows and columns available to
the program, and to scroll the screen correctly. The size found overrides
the size specified in the “a_termcap” entry for the terminal. If you need
to, you can override these settings with the LINES and COLUMNS
environment variables.

8. The SYSTEM-INFO option causes some general information about the
runtime to be moved to dest-item. The information is returned in the
following format (SYSTEM-INFORMATION is defined in
“acucobol.def”):

01 SYSTEM-INFORMATION.
 03 OPERATING-SYSTEM PIC X(10).
 88 OS-IS-MSDOS VALUE "MS-DOS".
 88 OS-IS-OS2 VALUE "OS/2".
 88 OS-IS-VMS VALUES "VMS",
 "VAX/VMS".
 88 OS-IS-UNIX VALUES "Unix",
 "Unix-V",
 "Unix-4",
 "UNOS".
 88 OS-IS-AOS VALUE "AOS/VS".
 88 OS-IS-WINDOWS VALUE "WINDOWS".
 88 OS-IS-WIN-NT VALUE "WIN/NT".
 88 OS-IS-WIN-FAMILY VALUES "WINDOWS",
 "WIN/NT".
 88 OS-IS-AMOS VALUE "AMOS".
 88 OS-IS-MPE VALUE "MPE/iX".
 88 OS-IS-MPEIX VALUE "MPE/iX".
 03 USER-ID PIC X(12).
 03 STATION-ID PIC X(12).
 03 FILLER PIC X.
 88 HAS-INDEXED-READ-PREVIOUS VALUE "Y".
 03 FILLER PIC X.
 88 HAS-RELATIVE-READ-PREVIOUS VALUE "Y".
 03 FILLER PIC X.
 88 CAN-TEST-INPUT-STATUS VALUE "Y".
 03 FILLER PIC X.
 88 IS-MULTI-TASKING VALUE "Y".
 03 RUNTIME-VERSION.
 88 VERSION-PRIOR-TO-2-2 VALUE SPACES.

6-88 Procedure Division
 05 RUNTIME-MAJOR-VERSION PIC 99.
 05 RUNTIME-MINOR-VERSION PIC 99.
 05 RUNTIME-RELEASE PIC 99.
 03 FILLER PIC X.
 88 IS-PLUGIN VALUE "Y".
 03 SERIAL-NUMBER PIC X(20).
 03 FILLER PIC X.
 88 HAS-LARGE-FILE-SUPPORT VALUE "Y".

a. The OPERATING-SYSTEM field returns information about the
operating system the runtime is ported to. It may contain one of
the following values:

These values are intended to give the program fundamental
information about the runtime.

Note: The sample copy library “acucobol.def” includes some
useful level 88 descriptions of operating system labels. For
example, “OS-IS-UNIX” covers all UNIX platforms. For a
complete list, see “acucobol.def” in the “samples” directory of
your ACUCOBOL-GT installation.

b. The USER-ID field is filled in with the login name of the current
user. If it is not set, the runtime looks for the symbol
“USERNAME”. If it is not set, the literal “USER” is placed in
this field.

c. The STATION-ID field is filled in with the station name of the
video terminal attached to the executing program. For UNIX
systems, the initial “/dev/” is removed from the name first.

Value Host System

Unix Any version of Unix

MPE/iX Running on HP machines

VMS VMS or OpenVMS

WINDOWS Microsoft Windows 98

WIN/NT Microsoft Windows NT 4.0, or
Windows 2000

Procedure Division Statements 6-89
On Windows machines, the value of the symbol “STATION” will
be returned if it is set in the host environment. If it is not set, then
the literal “CON” will be placed in this field.

If the program is displaying on a thin client, STATION-ID is filled
with “at<pid>” where pid is the process ID of the runtime running
on the server.

d. The HAS-INDEXED-READ-PREVIOUS field is “Y” if the
READ PREVIOUS and START LESS THAN verbs are available
for indexed files on the host system. If these verbs are not
available, this field is set to “N”. If more than one indexed file
system is being used, then this field is set to “Y” only if all of the
file systems support READ PREVIOUS.

e. The HAS-RELATIVE-READ-PREVIOUS field is “Y” if the
READ PREVIOUS and START LESS THAN verbs are available
for relative files on the host system. If these verbs are not
available, this field is set to “N”.

f. The CAN-TEST-INPUT-STATUS field is “Y” if the ACCEPT
FROM INPUT STATUS verb is available on the host system. If
not, it is set to “N”. Most machines can use this verb, but a few
cannot. On these machines, executing this verb will return a
constant value that you can pre-select with a configuration file
option. There is a runtime configuration variable called
SCRIPT_STATUS that controls the behavior of ACCEPT FROM
INPUT STATUS when the input is not attached to a terminal.

g. The IS-MULTI-TASKING field is “Y” if the host system can run
multiple tasks at once and has record locking facilities installed.
This can be used to determine whether or not multiple copies of
the runtime system can be run with correct file handling.

h. RUNTIME-VERSION fields are filled in with numbers that
identify the major version number, minor version number, and
release number. For example, ACUCOBOL-GT Version 3.2.0
would return 03 as the major version, 02 as the minor version, and
00 as the release number.

6-90 Procedure Division
i. The IS-PLUGIN field is “Y” if the runtime is the Web Runtime
running within a Web browser. Otherwise, it is set to “N”. See
the separate book titled A Programmer’s Guide to the Internet for
more information about the Web Runtime.

j. The SERIAL-NUMBER field is filled with the serial number of
the runtime.

k. The HAS-LARGE-FILE-SUPPORT field is “Y” if the UNIX port
in question has extended support for large sequential and relative
files. Otherwise, it is set to “N”.

9. The INPUT STATUS form of the ACCEPT statement returns a value
that indicates whether or not there is data currently available from the
standard input. Normally, when an ACCEPT statement executes, the
program pauses until the user types in some data. The INPUT
STATUS option can be used to test to see if the user has entered some
data before executing an ACCEPT.

This can be useful in a loop that constantly updates information while
still allowing for user input.

The INPUT STATUS option causes this information to be moved to
dest-item. It is treated as if the source item were described as PICTURE
9(1). The value is 1 if input is currently available, 0 if not.

If the input is being redirected, by default the value returned is zero. You
can control this with the configuration variables
INPUT_STATUS_DEFAULT and SCRIPT_STATUS.

A small number of hardware platforms do not have the ability to test for
pending input. On these machines, this verb returns a constant value. By
default, this value is zero, but it may be set to another value via the
configuration variable INPUT_STATUS_DEFAULT.

Note: Another method of waiting for input while performing another
operation is to use threads. A separate thread is used to perform the
regular ACCEPT (for example), while the original thread performs the
ongoing operation. For more about threads, see Section 6.8, “Multiple
Execution Threads” of Book 1, ACUCOBOL-GT User’s Guide.

Procedure Division Statements 6-91
When you use the INPUT STATUS phrase of the ACCEPT verb with
controls, and especially with ActiveX controls, the results may be
undefined. A much better way of handling detection of user input in
programs using controls is to employ event procedures or a separate
thread for that purpose.

10. The ESCAPE option of the ACCEPT statement returns the termination
key value of the last Format 1 or Format 2 ACCEPT statement. These
values are listed under the heading “CONTROL KEY Phrase” above.
The value is treated as a COMP-1 data item that is moved to dest-item
using the standard rules for a numeric move (exception: in ICOBOL
compatibility mode, the value is treated as a PIC 99 data item).

11. The ACCEPT FROM LINE NUMBER option returns a 3-digit number
corresponding to the console device that is controlling the executing
program. Because most of the machines that run ACUCOBOL-GT do
not use device numbers, but use alphanumeric names instead,
ACUCOBOL-GT computes the device number by the following
procedure. First the device name is converted to upper case and
hyphens are converted to underscores (on UNIX systems, the initial “/
dev/” is removed). This name is then searched for in the environment
(including the configuration file). If it is found, then the value of the
name is returned. This allows you to assign a customized value for
each device. If the name is not found in the environment, then a
number is formed from any digits found in the original device name
(for example, “tty15” would return as “15”). If there are no digits in
the device name, the value 0 is used.

If the program is displaying on a thin client, ACCEPT FROM LINE
NUMBER returns the last three digits of the process ID of the runtime
running on the server.

12. The ACCEPT FROM COMMAND-LINE option causes the contents
of the original command line to be moved to dest-item. Only those
elements of the command line that appear after the program name are
returned. No parsing is done; you must parse the command line into
separate arguments yourself.

On Windows machines, the command line is limited to 1024 characters.
The command line remains unchanged regardless of the actions of any
CHAIN, CALL PROGRAM, or CALL RUN verbs (which all start new
run units).

6-92 Procedure Division
For an alternate method in which the runtime system parses the
arguments for you, see the CHAIN Statement.

To change the contents of the command-line buffer, see the DISPLAY
UPON COMMAND-LINE statement (Format 8) in this section. You
can also access the command-line buffer from a C program. The buffer
is an external data array named Acmd_line.

13. The STANDARD OBJECT option returns a handle to one of the
system’s pre-defined resources. The resource returned depends on the
value of object-name, as described in the following table:

Object-Name Resource

FIXED-FONT The host system’s default fixed-size font. This
is the default font used for textual displays.
Under Microsoft Windows, this font is
Windows’ SYSTEM-FIXED-FONT.

TRADITIONAL-FONT Also a fixed-size font. This font uses the
standard character set associated with the host
hardware (as opposed to the host graphical
system). On many systems, this font is the same
as FIXED-FONT. Under Microsoft Windows,
this font is Windows’ OEM-FIXED-FONT and
uses the “OEM” character set instead of the
“ANSI” character set.

DEFAULT-FONT This is the default font used by controls. On a
graphical system, this font is usually a
proportional font, and usually the same as
SMALL-FONT. On non-graphical systems, this
is the same as the FIXED-FONT. You can
specify the default font with the
DEFAULT_FONT configuration variable (see
DEFAULT_FONT in Appendix H, Book 4,
Appendices).

LARGE-FONT A moderately large font that is appropriate for
controls. On graphical systems, this is a
proportionally spaced font. Under Microsoft
Windows, this is Windows’ SYSTEM-FONT.
On non-graphical systems, this is the same as
FIXED-FONT. On some systems, this is the
same as MEDIUM-FONT.

Procedure Division Statements 6-93
You may use either upper-case or lower-case values in object-name. If
object-name does not match any of the allowed values, dest-item is set
to NULL.

14. The ACCEPT FROM THREAD statement moves the thread ID of the
executing thread to dest-item.

15. The WINDOW HANDLE option causes dest-item to receive the
handle of the initial or current floating window. Note that this is the
only way to get the handle of the default main application window.
You do this by performing an ACCEPT FROM WINDOW HANDLE
prior to creating any floating windows in your application.

Format 4 (ACCEPT SCREEN)

1. The ACCEPT FROM SCREEN verb returns data present on the user’s
terminal. This differs from the Format 1 ACCEPT statement in that the
user does not enter the data. Instead, the data is what is already present
on the screen. This can be used to obtain an image of the user’s current
screen. Note however that screen attributes such as underlines and
reverse colors are not returned.

MEDIUM-FONT An average size font that is appropriate for
controls. On graphical systems, this is a
proportionally spaced font. Under Microsoft
Windows, this font is a boldface version of
Windows’ ANSI-VAR-FONT. On
non-graphical systems, this is the same as
FIXED-FONT.

SMALL-FONT A small font that is appropriate for controls. On
graphical systems, this is a proportionally
spaced font. Under Microsoft Windows, this
font is Windows’ ANSI-VAR-FONT. On
non-graphical systems, this is the same as
FIXED-FONT. On some systems, this is the
same as MEDIUM-FONT.

LM-RESIZE A standard layout manager that assists in
moving or resizing controls when a window
changes size. See Book 2, section 4.8, “Layout
Managers.”

Object-Name Resource

6-94 Procedure Division
On graphical systems, this verb does not return any information
contained in controls. To determine the current value of a control, use
the INQUIRE verb.

2. Dest-item must specify an alphanumeric data item without the
JUSTIFIED phrase. It is filled with the returned screen contents.
Dest-item is space-filled on the right if it is larger than the returned
screen contents.

3. The LINE phrase specifies the screen line to use for the ACCEPT.
Line one refers to the top line of the current window. If the LINE
phrase is missing or line-num is zero, the current cursor line is used.

4. The COLUMN phrase specifies the screen column to use. Column one
refers to the leftmost column of the current window. If the COLUMN
phrase is missing or zero, then the column depends on the following:

a. If the LINE phrase is used (and is not zero), then column one is
used.

b. Otherwise, the current cursor column is used.

5. The SIZE phrase specifies the number of screen positions to return. If
the SIZE phrase is missing, then the size of dest-item is used. If the
SIZE phrase specifies fewer characters than the size of dest-item, then
dest-item is space-filled on the right.

6. The ACCEPT FROM SCREEN verb does not change the cursor
position or modify the screen in any way. A single ACCEPT FROM
SCREEN can “wrap around” the right edge of the window to return
characters from multiple screen lines.

7. Except as specified in the following rule, all characters on the terminal
screen are returned using the underlying representation of the character
in the native character set. This is usually the ASCII value of the
character.

Procedure Division Statements 6-95
8. The ACUCOBOL-GT Terminal Manager returns consistent values for
certain special characters, regardless of the hardware being used. This
is done for certain characters used by the Terminal Manager that do not
have an ASCII representation. These special characters are the
following:

The “Unknown” value is returned for any screen position that cannot be
determined by ACUCOBOL-GT. The “Visible Attribute” character is
used by certain types of terminals when they are displaying video
attributes. On these types of terminals, video attributes take up screen
positions. They usually appear as spaces on the screen. The remaining
special characters are various line segments used by the DISPLAY
WINDOW, DISPLAY LINE, and DISPLAY BOX verbs.

Character Value

Unknown 1

Horizontal Line 2

Vertical Line 3

Upper Left Corner 4

Upper Right Corner 5

Lower Left Corner 6

Lower Right Corner 7

“Tee” Up 8

“Tee” Right 9

“Tee” Down 10

“Tee” Left 11

4-Way Intersection 12

Bottom Endpoint 13

Left Endpoint 14

Top Endpoint 15

Right Endpoint 16

Visible Attribute 17

6-96 Procedure Division
9. Technical Note: It is often desirable to translate the special case
characters into ASCII values. You can do this easily with the
INSPECT CONVERTING verb. For example, the following statement
converts the line-drawing characters into hyphens, vertical bars, and
plus signs, and translates the “unknown” and “visible attribute”
characters into spaces:

INSPECT ... CONVERTING
 X'0102030405060708090A0B0C0D0E0F1011'
 TO " -|+++++++++|-|- "

Format 5 (ACCEPT ENVIRONMENT)

1. A Format 5 ACCEPT statement returns values from the user’s
environment or the ACUCOBOL-GT runtime system’s configuration
settings. Env-name is the name of the environment setting whose value
is to be returned. If you provide the literal name of this item (such as
CURSOR-MODE), you must enclose it in quotes. The value returned
from this item is moved to dest-item.

2. This verb will search for env-name in the following places:

a. First, the runtime system sees if env-name matches any of its
configuration variables. If it does, the configuration variable’s
current setting is moved to dest-item. Not all configuration
variables can be returned by the ACCEPT verb, because some of
them have multiple settings. The list of configuration variables
that can be returned is detailed in Appendix H, Book 4,
Appendices.

b. Next, env-name is searched for in the runtime system’s local
environment. This environment consists of all of the entries in the
ACUCOBOL-GT configuration file plus any entries made with the
SET ENVIRONMENT verb. This excludes the runtime system’s
configuration variables that are covered in rule (a) above. Note
that any entry in the ACUCOBOL-GT configuration file that is
also in the user’s host environment has its initial value set the
same as the entry in the user’s environment.

c. Finally, on machines that have a user-maintained environment,
that environment is searched for env-name. A description of the
user’s environment for each machine is given in section 1.4 of the
ACUCOBOL-GT User’s Guide.

Procedure Division Statements 6-97
When the runtime system searches for env-name, only the first 30
characters are used. Also, any lower-case characters in env-name
are treated as upper-case, and any hyphens are treated as
underscores. If the truncated name is not found, the runtime
searches again, this time looking for env_name exactly as specified.

3. If an entry is found, then its value is moved to dest-item. For numeric
configuration variables, the source item is treated as if it were a
COMP-1 data item. For all other entries, the source item is treated as
an alphanumeric data item. The value is moved to dest-item according
to the rules for the MOVE statement. Note that if the source item is
numeric, then dest-item may be defined either as a numeric field or as
an alphanumeric field of five or more characters. If dest-item is
alphanumeric and is larger than five characters, the value that is
returned will occupy the leftmost five characters of dest-item.

4. If no matching entry is found, or if the env-name is the name of a
configuration variable whose value cannot be returned, spaces are
moved to dest-item and statement-1, if specified, is executed.

5. If a legal matching entry is found, then statement-2 (if specified) is
executed.

Format 6 (ANSI ACCEPT)

1. A Format 6 ACCEPT statement reads a line of input from the standard
input device (usually the user’s console). This data is then moved into
dest-item. If the data is longer than the size of dest-item, it is truncated
on the right. If it is smaller, then it is space-filled on the right.

2. Prior to reading the line, the runtime system places the user’s terminal
into the state it normally occupies when it is used by the operating
system. The runtime then requests the input from the operating
system. The operating system usually provides some form of input
editing, such as backspacing. The exact editing available depends on
the host operating system.

3. Technical Note: Because this verb requests input directly from the
operating system, ACUCOBOL-GT’s Terminal Manager is not aware
of the changes that are occurring to the screen. This can cause
problems if you mix ANSI-style and ACUCOBOL-GT-style ACCEPT
and DISPLAY verbs in the same program. On many machines,
ACUCOBOL-GT’s Terminal Manager maintains an image of the

6-98 Procedure Division
user’s screen. (This improves efficiency by removing redundant screen
output and is also used to implement “pop-up” windows.) Bypassing
the Terminal Manager can cause the Terminal Manager’s screen image
to become incorrect. This can cause strange effects when it is mixed
with an ACUCOBOL-GT-style ACCEPT or DISPLAY verb,
including:

• lost data

• incorrect functioning of CLOSE WINDOW

• incorrect cursor position

• incorrect character attributes

• incorrect display in debugger

For these reasons, you must be careful when using ANSI ACCEPT.
Here are some useful guidelines:

a. If your statement does not affect the screen image, then it can be
used safely. For example, sending a control sequence to an
attached cash register is safe.

b. If you use only ANSI-style ACCEPT and DISPLAY verbs, then
you should not experience any problems except that the debugger
will not be able to show the user’s screen.

c. If you must mix formats, then you can use the library routine
“W$FORGET” to correct the behavior of the Terminal Manager.
This routine causes the Terminal Manager to enter its initial state.
It will assume that it does not know the screen image or current
attribute settings. Calling this routine after a series of ANSI-style
ACCEPT or DISPLAY verbs will place the Terminal Manager
into a state where it can operate correctly. See Appendix I, Book
4, Appendices for additional information.

d. You can safely use the verb if your ANSI-style ACCEPT or
DISPLAY sends data to a device other than the user’s console,
such as the standard error file.

Procedure Division Statements 6-99
Note: When you are running a 32-bit Windows CGI program with the
“-f” option or with the A_CGI environment variable set, the runtime
reads only the number of bytes specified by the web server in the
CONTENT_LENGTH environment variable. The runtime does not
wait for an end of file condition. If you are running without the “-f”
option and have not set the A_CGI environment variable, then the
runtime reads until an end of file condition occurs. Note that some web
servers such as Microsoft Internet Information Server 4.0 do not
terminate input to a CGI program with an end of file condition.
Instead, they rely upon the CGI program to read exactly the number of
bytes specified in the CONTENT_LENGTH variable. When running
an ANSI ACCEPT style CGI program using these web servers, you
must use the “-f” option or set the A_CGI environment variable.

Format 7 (ACCEPT control-handle)

1. The ACCEPT Control-Handle statement activates the control identified
by control-handle. The user interacts with the control until some
terminating event occurs. The event that caused the termination is then
stored in key-dest, and the control’s current value is stored in value. The
ACCEPT statement then terminates.

2. If the CONTROL phrase is used, the runtime activates the control
located at the screen position specified by the AT, LINE, and
COLUMN phrases in the current window (on non-graphical systems,
the CLINE and CCOL phrases also apply). The runtime maintains a
list of controls in each window. When attempting to activate a control
at a specific location, the runtime searches this list, using the first
control it finds that exactly matches the given location. The list is
maintained in order in which the controls are created. If the runtime
does not find a control at the specified location, it returns an exception
value of “96” (the same as doing an ACCEPT of a invalid control
handle).

The following example creates an anonymous entry field and then
ACCEPTs it, using its screen position.

DISPLAY ENTRY-FIELD, LINE 2, COL 5, SIZE 15.
ACCEPT CONTROL, VALUE MY-DATA, LINE 2, COL 5.

6-100 Procedure Division
3. Key-dest names a data item that will receive a code indicating the
terminating event. The program’s CRT STATUS (if any) also receives
the termination code.

4. When the ACCEPT statement terminates, the current value of the
control is moved to value in accordance with the rules for the MOVE
statement. The type of control determines the source format of the
value.

5. The BEFORE TIME phrase operates in the same manner as it does in a
Format 1 ACCEPT statement.

6. The WITH BELL phrase causes the station’s bell to sound when the
control is initially activated.

7. The ALLOWING MESSAGES phrase works in the same manner as
described above for a Format 1 ACCEPT.

8. The ACCEPT statement can terminate in several different ways. These
ways are classified as either normal terminations or as exceptions. If
an exception caused the termination, then statement-1 is executed.
Otherwise, statement-2 is executed. If you do not specify the ON
EXCEPTION phrase, then the ACCEPT statement ignores exception
keys (function keys). You can override this behavior with the “-Vx”
compile-time option.

If you attempt to ACCEPT a disabled or otherwise invalid control, or if
the active control is hidden during the ACCEPT either by an event
procedure or by code running in a different thread, the ACCEPT will
immediately terminate, returning a CRT STATUS value of “97”. For a
Screen Section ACCEPT, this will occur only if all of the referenced
controls are disabled.

9. You may also activate a control with a Format 2 ACCEPT statement (a
Screen Section ACCEPT) . If the referenced Screen Section entry
defines any controls, they are activated as appropriate.

Format 8 (ACCEPT external-form-item)

1. The “external form” of Format 8 is called an “output form” if the
IDENTIFIED BY clause is used to associate it with an HTML template
file. If the IDENTIFIED BY clause is omitted, it is called an “input
form”.

Procedure Division Statements 6-101
For example, the following is an input form:

01 CGI-FORM IS EXTERNAL-FORM.
 03 CGI-VAR1 PIC X(10).
 03 CGI-VAR2 PIC X(10).

and this is an output form:

01 HTML-FORM IS EXTERNAL-FORM IDENTIFIED BY
 "tmplate1".
 03 HTML-VAR1 PIC X(10).
 03 HTML-VAR2 PIC X(10).

2. The ACCEPT verb treats input and output forms the same. ACCEPT
sets the value of each elementary item, in order, to the value of its
associated CGI variable, padding with trailing spaces. ACCEPT
automatically decodes and translates the CGI input data before moving
it to the elementary items of external-form-item. The value of each
CGI variable is converted to the appropriate COBOL data type when it
is moved to the external form.

CGI variable names are case-sensitive. However, for convenience, if
ACCEPT cannot identify a CGI variable, it will repeat the search for the
variable ignoring the case.

3. If the CGI variable is empty or does not exist, ACCEPT sets the value
of numeric data items to zero and nonnumeric data items to spaces.
This behavior is configurable. If you do not want ACCEPT to clear
the value of the data item when its CGI variable does not exist in the
CGI input data, set the CGI_CLEAR_MISSING_VALUES
configuration variable to “0” (off, false, no). See the entry for
CGI_CLEAR_MISSING_VALUES in Appendix H for more details.

4. If the CGI variable is repeated in the CGI input data (as it would be in
the case where multiple items have been selected from a
“choose-many” list), the external form item that is identified with the
CGI variable must be in a table. Otherwise, only the first CGI value is
moved to the external form item.

For example:

01 CGI-FORM IS EXTERNAL-FORM.
 03 CGI-TABLE OCCURS 10 TIMES.
 05 CGI-VAR1 PIC X(10).

6-102 Procedure Division
 05 CGI-VAR2 PIC X(10).

or

01 CGI-FORM IS EXTERNAL-FORM.
 03 CGI-VAR1 PIC X(10) OCCURS 10 TIMES.
 03 CGI-VAR2 PIC X(10) OCCURS 10 TIMES.

ACCEPT moves the values of the CGI variable to the items in the table.
After all of the CGI values have been moved to items in the COBOL
table, the remaining items in the table are set to 0 if they are numeric
items, and set to spaces otherwise.

Format 9 (ACCEPT EVENT)

1. The ACCEPT EVENT statement waits for a terminating event to occur.
The event that caused the termination is stored in code-dest. The
ACCEPT statement then terminates.

2. Code-dest names a data item that will receive a code indicating the
terminating event. The program’s CRT STATUS (if any) also receives
the termination code.

3. The BEFORE TIME phrase operates in the same manner as it does in a
Format 1 ACCEPT statement.

4. The ALLOWING MESSAGES phrase works in the same manner as
described above for a Format 1 ACCEPT.

5. ACCEPT EVENT is similar to ACCEPT OMITTED except that it does
not display a default initial window and it does not detect keyboard
termination or exception keys.

6. The ACCEPT EVENT statement is designed for use in programs
without a user interface. However, if the program has a user interface
and interacting with it causes a terminating event to occur, ACCEPT
EVENT will terminate. In the debugger, ACCEPT EVENT will
terminate if the user presses the Enter key.

7. The ACCEPT EVENT statement can terminate in several different
ways. These ways are classified as either normal terminations or as
exceptions. If an exception caused a termination, then statement-1 is
executed. Otherwise, statement-2 is executed.

Procedure Division Statements 6-103
Code Example

Format 9:

The following program uses the Microsoft Agent Control (ActiveX) to create
a “genie” character and then directs it to speak “Hello World”. It does not
have a visible initial window or a user interface that allows keyboard or
mouse input.
identification division.
program-id. no-ui.
environment division.
special-names.
copy "msagent.def".
 .
data division.
working-storage section.

77 genie1-handle usage handle of Agent.
77 request-handle usage handle of IAgentCtlRequest.
77 request-status pic 9.

procedure division.
Main-Logic.

 display initial window visible = 0.

 display Agent of AgentObjects handle in genie1-handle.

 modify genie1-handle
 Characters::Load("Genie1", "genie.acs").

 use genie1-handle Characters::Item("Genie1")

 modify ^LanguageID 1033
 ^Show()
 ^Speak "Hello World" giving request-handle

 perform until request-status = 1
 ACCEPT EVENT BEFORE TIME 1000
 inquire request-handle status in request-status
 end-perform

 destroy request-handle

6-104 Procedure Division
 modify ^Hide()

 end-use.

 destroy genie1-handle.

 stop run.

Formats 10, 11, 12

See Chapter 4, “HP COBOL Conversions,” of Transitioning to
ACUCOBOL-GT.

Format 13 (ACCEPT FROM ENVIRONMENT-VALUE)

1. Use a Format 13 ACCEPT to fetch the value of an environment or
configuration variable stored with a Format 17 DISPLAY statement
(DISPLAY UPON ENVIRONMENT-NAME).

2. The value data item should be of a size and type that will
accommodate the value of the environment or configuration variable.

ADD Statement

The ADD statement performs arithmetic addition.General Format

Format 1
ADD {num} ... TO { result [ROUNDED] } ...

 [ON SIZE ERROR statement-1]

 [NOT ON SIZE ERROR statement-2]

 [END-ADD]

Format 2
ADD {num} ... TO num GIVING { result [ROUNDED] } ...

 [ON SIZE ERROR statement-1]

Procedure Division Statements 6-105
 [NOT ON SIZE ERROR statement-2]

 [END-ADD]

Format 3
ADD {CORRESPONDING} group-item TO group-item [ROUNDED]
 {CORR }

 [ON SIZE ERROR statement-1]

 [NOT ON SIZE ERROR statement-2]

 [END-ADD]

Format 4
ADD TABLE src-table TO dest-table [ROUNDED]

 [FROM INDEX src-start TO src-end]

 [DESTINATION INDEX dest-start]

 [ON SIZE ERROR statement-1]

 [NOT ON SIZE ERROR statement-2]

 [END-ADD]

Syntax Rules

1. Num is a numeric literal or elementary numeric data item.

2. Result is an elementary numeric data item or, in Format 2, an
elementary numeric edited data item.

3. Group-item is a group item containing one or more elementary
numeric data items.

4. Statement-1, and statement-2 are imperative statements.

5. CORR is an abbreviation of CORRESPONDING.

6-106 Procedure Division
6. Src-table and dest-table are numeric data items that are table elements.
The low-order subscript of these items must be omitted. For example,
if “SRC-1” was an element of a one-dimensional table, then you would
just use “SRC-1” in the statement. If “SRC-2” was an element of a
two-dimensional table, and you wanted to add all the elements in row
“2”, you would use “SRC-2(2)”.

7. Src-start, src-end and dest-start are numeric literals or data items.
These items may not be subscripted.

General Rules

1. Note that pertinent additional information is located in the sections
covering Arithmetic Operations (6.4.1), Multiple Receiving Fields
(6.4.2), the ROUNDED Option (6.4.3), the SIZE ERROR Option
(6.4.4), and the CORRESPONDING Option (6.4.5).

2. In Format 1, all nums are added together and their sum is then added to
each result in turn.

3. In Format 2, all nums are added together and their sum is moved to
each result field.

4. In Format 3, each pair of corresponding elementary numeric items in
the two group-items are added together. The results are moved to the
corresponding items in the second group-item.

5. In Format 4, a range of src-table elements is added to a range of
dest-table elements. The results are stored in dest-table. The first
element of the src-table range is added to the first element of the
dest-table range, the second element to the second, and so on.

6. Src-start specifies the first element of the source range. If omitted, the
value defaults to “1”. Src-end specifies the last element of the range
(inclusive). If omitted, it is set to the current upper bound of the source
table. In a multidimensional table, the range of elements varies over
the innermost OCCURS.

7. Dest-start indicates the first element of the destination range. If
omitted, it defaults to “1”. Note that the last element of the destination
range is dest-start + src-end -1.

Procedure Division Statements 6-107
8. If the SIZE ERROR phrase is used, elements for which the size error
condition occurs are not updated; other elements are updated. When an
add results in a size error, statement-1 executes, otherwise statement-2
executes.

Note: A Format 4 ADD TABLE statement is usually substantially
faster than an equivalent PERFORM loop. The degree of improvement
depends on the size of the range (larger ranges show better
improvement). The SIZE ERROR and ROUNDED phrases typically
add significant overhead. The runtime always performs table
boundary checking in ADD TABLE, even if the program is not
compiled with “-Za”.

Code Example

Format 4:

The following definitions will be used in the examples:
01 SOURCE-TABLE OCCURS 20 TIMES PIC S9(9)V99.
01 DEST-TABLE OCCURS 20 TIMES PIC S9(9)V99.

01 ROLL-UP-TABLE.
 03 TOTALS OCCURS 10 TIMES.
 05 REPORT-SUM
 OCCURS 20 TIMES PIC S9(9)V99.
77 CTR PIC 99.

To add all the elements of SOURCE-TABLE to DEST-TABLE:
ADD TABLE SOURCE-TABLE TO DEST-TABLE

To add the first five elements of SOURCE-TABLE to the last five elements
of DEST-TABLE:

ADD TABLE SOURCE-TABLE TO DEST-TABLE
 FROM INDEX 1 TO 5
 DESTINATION INDEX 16

To add all the REPORT-SUM elements in the last TOTALS row to the row
“above” it (second to last row):

ADD TABLE REPORT-SUM(10) TO REPORT-SUM(9)

6-108 Procedure Division
To perform the same operation using a PERFORM loop you would have to
write the following code:

PERFORM VARYING CTR FROM 1 BY 1 UNTIL CTR > 20
 ADD REPORT-SUM(10, CTR) TO REPORT-SUM(9, CTR)
END-PERFORM

ALTER Statement

The ALTER statement changes the destination of a GO TO statement.

General Format
ALTER { goto-proc TO [PROCEED TO] new-proc } ...

Syntax Rules

1. Goto-proc is the name of a paragraph consisting of a single GO TO
statement without the DEPENDING phrase.

2. New-proc is a procedure name.

General Rules

1. The ALTER statement changes the destination of the GO TO statement
in goto-proc.

2. After execution of the ALTER statement, the GO TO in goto-proc
causes control to transfer to new-proc.

3. The ALTER verb has been declared an obsolete element of COBOL by
the COBOL standards committee. It is recommended that instances of
ALTER be replaced by the GO TO verb using the DEPENDING ON
phrase.

Procedure Division Statements 6-109
CALL Statement

The CALL statement causes control to be transferred to another program.
For a discussion of how the runtime handles program calls, see section 2.9,
“Calling Subprograms,” in Book 1. For information about calling
subroutines in DLLs and UNIX shared libraries, see Chapters 3 and 6 of
A Guide to Interoperating with ACUCOBOL-GT.

General Format

Format 1
CALL [IN THREAD] program-name

 [HANDLE IN handle-1]

 [{RETURNING} INTO return-val]
 {GIVING }

 [ON {EXCEPTION} statement-1]
 {OVERFLOW }

 [NOT ON {EXCEPTION} statement-2]
 {OVERFLOW }

 [END-CALL]

where size-phrase is:
[WITH MEMORY SIZE {= } memory-size]
 {IS}

Format 2
CALL RUN program-name

 [USING {parameter} ...]

 [ON {EXCEPTION} statement-1]
 {OVERFLOW }

 [NOT ON {EXCEPTION} statement-2]
 {OVERFLOW }

6-110 Procedure Division
 [END-CALL]

Format 3
CALL PROGRAM program-name

 [USING {parameter} ...]

 [ON {EXCEPTION} statement-1]
 {OVERFLOW }

 [END-CALL]

Format 4 (HP COBOL)
CALL { identifier-1 } [USING { \\ } ...]
 { [INTRINSIC] literal-1 } { @identifier-2 }
 { identifier-2 }
 { literal-2 }
 { \identifier-2\ }
 { \literal-2\ }

 [GIVING identifier-3]

 [ON {EXCEPTION} statement-1]
 {OVERFLOW)

 [NOT ON {EXCEPTION} statement-2]
 {OVERFLOW)

 [END-CALL]]

Syntax Rules

Note: For Syntax Rules and General Rules specific to Format 4, see
Chapter 4, “HP COBOL Conversions,” in Transitioning to
ACUCOBOL-GT.

1. Program-name is a nonnumeric literal or an alphanumeric data item.

2. Handle-1 must be a USAGE HANDLE or HANDLE OF THREAD
data item.

3. The NULL and OMITTED options are synonymous.

Procedure Division Statements 6-111
4. Memory-size is a numeric literal or data item.

5. Parameter is any non-level 88 data item or a literal. It may be
subscripted and reference modified. It may be the SELECT name of
an open COBOL file.

6. Statement-1 and statement-2 are imperative statements.

7. EXCEPTION and OVERFLOW are equivalent.

8. The NOT EXCEPTION phrase may not be used when the PROGRAM
option is used.

9.

10. RETURNING and GIVING are synonymous.

General Rules

1. Program-name specifies the name of the called program. The exact
procedure for resolving this name into the name of a program to call is
described in Book 1, ACUCOBOL-GT User’s Guide, section 2.9.

2. The THREAD option starts a new thread before calling the target
program. The called program executes in the new thread. The calling
program continues to execute in parallel. When the called program
exits, its thread is terminated.

3. The HANDLE phrase stores the ID of the thread in handle-1
immediately after the new thread starts. This occurs before the USING
parameters are evaluated, so that it is possible to pass handle-1 to the
called program.

4. The parameters’ order of appearance in the USING phrases of the
CALL verb, and the called program’s Procedure Division header,
determine the correspondence between the data names used in the
called and calling programs. This correspondence is established by
position, not by name.

5. The SIZE phrase is used when the parameter in the USING phrase is a
memory address (pointer to memory) and you need to specify the size
of the piece of memory that is located at that address. The SIZE phrase

6-112 Procedure Division
supports the calling of DLLs on the display host by thin client
applications. For complete information, see section 7.2.6, “Calling
Dynamic Link Libraries (DLLs),” in the AcuConnect User’s Guide.

6. The BY phrase controls how parameters are passed to the called
program. The default method is BY REFERENCE. This method
causes the address of the data item to be passed to the receiving
program. This is the only method of passing data available in versions
of ACUCOBOL-GT prior to 2.0.

The BY CONTENT phrase is similar to BY REFERENCE, except that
the address of a copy of the data item is sent. This has the effect that any
changes made to the parameter in the called program are not seen by the
caller. Starting with Version 2.0, literals passed as parameters are
automatically passed BY CONTENT.

The BY VALUE method causes the contents of the data item to be
passed to the receiving program (the actual data, not its address). This
may not be specified if the receiving program is a COBOL program
(results are undefined in this case). This method is typically used to pass
numeric data to C subprograms. For optimal portability we recommend
that parameters being passed by this method be level 01 or 77 items
described as SIGNED-INT, UNSIGNED-INT, SIGNED-SHORT,
UNSIGNED-SHORT, SIGNED-LONG, UNSIGNED-LONG, or
POINTER.

When the name of an open COBOL file is given as a parameter, the
operating system’s file handle is passed. One possible reason for doing
this is to call an operating system function that allows the file to retrieve
some information that is not available through COBOL. Several special
rules apply to this usage. See rules 30 through 35 below.

7. The NULL and OMITTED options are synonymous. They allow you
to skip a parameter in a USING phrase. The corresponding parameter
in the called program must not be referenced. If the called program is
a C program, then a NULL value is passed to the corresponding
parameter.

8. Index names referred to in the Linkage Section of the called program
do not correspond to any index names in the calling program. Index
data items are always stored in the local memory of their programs.

Procedure Division Statements 6-113
9. If the called program does not have the INITIAL attribute, then it is in
its initial state the first time it is called, and the first time it is called
after a CANCEL verb has referred to it. On all other calls, the program
is in the same state as when it last exited.

10. If the called program has the INITIAL attribute, it is in its initial state
every time it is called.

11. Files contained in the called program are not open whenever the called
program is in its initial state. Otherwise, the status and positioning of
the contained files is the same as when the program last exited.

12. If the ON EXCEPTION phrase is present and the called program
cannot be initiated, statement-1 executes. If the called program cannot
be initiated when there is no EXCEPTION phrase, a runtime error
occurs and the program halts. A program cannot be initiated if
program-name cannot be resolved using the rules described in
ACUCOBOL-GT User’s Guide section 2.9, “Calling Subprograms.”

13. If the NOT ON EXCEPTION phrase is present and the called program
is successfully initiated, statement-2 executes when the called program
returns.

14. The ON EXCEPTION and NOT ON EXCEPTION phrases execute in
the original (parent) thread. The parent thread suspends long enough to
determine whether or not the CALL will succeed. This allows it to
determine whether to execute the EXCEPTION or NOT EXCEPTION
case.

15. A called program’s file state and data items are distinct for each thread
that exists at the time of the call (including the thread created by the
CALL THREAD). Thus, if thread-1 calls program-a, and thread-2
calls program-a, there will be two copies of the data from program-a
in memory, one set for each thread. Threads created in the called
program, or any of its subprograms, share the called program’s data
and file state.

16. The CALL PROGRAM verb is similar to the CHAIN verb. It causes
the current run unit to terminate and initiates a new run unit. However,
USING parameters are passed to data items specified in Linkage, just
as they are for a standard CALL verb.

6-114 Procedure Division
Some (incorrect) usages of the CALL statement USING parameters
from the Linkage section of the called program can result in so-called
“intermediate” runtime errors that call installed error procedures. There
currently are two such related errors: “Use of a LINKAGE data item not
passed by the caller,” and “Passed USING item smaller than
corresponding LINKAGE item.” A passed USING item that is larger
than the corresponding Linkage item does not generate an error.

Another runtime error can occur when the CALL statement attempts
USING parameters of invalid structure or missing parameters. That kind
of error is announced as “Invalid or missing parameter,” and it is also an
“intermediate” type of runtime error that calls installed error procedures.

See Book 4 Appendices, Appendix I “Library Routines,” for detailed
discussion of the runtime error and exit procedures.

17. When a CALL PROGRAM verb succeeds, all program switches are set
to their “off” state. You can specify switches to be set “on” in the
CALL PROGRAM statement. You accomplish this by specifying the
switch names immediately after the program name in the statement.
Each switch name must be alphabetic and must be preceded by a slash
(/). For example, to turn on switches “A” and “B” you could use this
statement:

CALL PROGRAM "MYPROG/A/B" USING ...

18. If the CALL PROGRAM verb cannot find the called program, and no
EXCEPTION phrase has been specified, control passes to the next
executable statement.

19. The CALL PROGRAM verb accepts the presence of routines whose
name begins with a “#” sign. When one of these routines is specified,
the CALL PROGRAM statement is ignored. In ICOBOL, routines
with these names are special-purpose system routines.

20. If the RUN option is used, then program-name refers to the main
program of another run unit. This run unit is initiated and continues
until it executes a STOP RUN. At that point, control is returned to the
next executable sentence in the calling program. Parameters are passed
to the called run unit in the same manner as specified for the CHAIN
statement.

Procedure Division Statements 6-115
The called run unit is logically distinct from the calling run unit. It may
call programs that are active in the calling unit without generating an
error. External areas are associated with a logical run unit, so that a new
run unit does not have access to external areas created by the calling run
unit. Take care that file records locked by the calling run unit do not
interfere with the called run unit, because there will be no opportunity for
the caller to release its records while the called unit is active.

Type-ahead is retained both when the new run unit is called and upon
return from it.

The precise amount of memory required for the runtime varies by
platform and is affected by configuration variables such as
V_BUFFERS and by any products or C routines you have linked in.
When the CALL RUN executes, the memory associated with the new
run unit is allocated, and the old run unit (with its attendant memory)
remains active. Memory allocated by the runtime for program code is
freed automatically at the STOP RUN in the called program. Memory
used for open windows and V_BUFFERS is not freed until the runtime
exits. You should explicitly free any memory that you allocated with the
M$ALLOC (Dynamic Memory Routine) otherwise this memory is not
freed until the runtime exits.

21. A special register named RETURN-CODE is automatically created by
the compiler and is shared by all programs of a run unit. This special
register is defined as:

77 RETURN-CODE SIGNED-LONG, EXTERNAL.

If you call a C program via the “direct” interface, the return value of the
C function is placed into this register. If you call the SYSTEM library
routine, the status of the call is placed into this register. The verbs EXIT,
STOP, and GOBACK can also place a value into the RETURN-CODE
register.

The compiler also creates an unsigned version of the return code called
RETURN-UNSIGNED. It has the following implied definition:

77 RETURN-UNSIGNED
 REDEFINES RETURN-CODE
 UNSIGNED-LONG, EXTERNAL.

6-116 Procedure Division
22. If the RETURNING phrase is used, then the “return value” of the
called program is moved to return-val. This is accomplished by the
following rule:

a. If return-val is a signed data item, then the value of
RETURN-CODE is moved to return-val according to the rules of
the MOVE statement.

b. If return-val is unsigned, then RETURN-UNSIGNED is moved
instead.

23. You should avoid using RETURN-CODE or RETURN-UNSIGNED
for return-val. This is pointless because, after assigning a value to
return-val, the CALL statement restores the previous value of
RETURN-CODE.

24. On Windows systems, if you CALL a DLL, the runtime assumes that
the DLL returns a “long” (at least 32 bits of data). This ensures that all
of the data returned from the DLL is captured. However, in situations
where the DLL returns less than 32 bits of data (such as a DLL that
returns a “short”), some of the data might be random. To get the right
size for the return value of DLLs, use the RETURNING phrase and set
the receiving variable to the same size as the DLL’s return value. The
easiest way to do this is to declare the receiving variable to be the same
type as the DLL’s return type. For example, if the DLL “MYDLL”
returns an “int,” you could do the following:

77 RETURN-VAL SIGNED-INT.
CALL "MYDLL" RETURNING RETURN-VAL.

25. After return-val is set, RETURN-CODE is set to the value it had
immediately prior to the CALL statement. Thus the called program
does not affect the value of RETURN-CODE in the calling program.

26. If the CALL statement fails with an exception, then return-val is not
updated.

27. You may pass floating-point data to subroutines normally with the
CALL verb. Note that you may not pass a floating-point item BY
VALUE. This restriction exists for portability reasons (some machines
pass floating-point using a convention different from that used for
integer items). You should pass floating-point items BY
REFERENCE. This will pass a pointer to the item, which the
receiving routine can then retrieve by “de-referencing” the pointer.

Procedure Division Statements 6-117
28. A program may directly or indirectly call itself. A CALL statement
that calls the active program (itself) is a recursive call. For more
information, see the RECURSION configuration variable in Appendix
H, Book 4, Appendices. For information on sharing data in recursively
called programs (such as in the HP COBOL environment), see the
RECURSION_DATA_GLOBAL configuration variable. See also
Section 2.10.1 in Book 1, ACUCOBOL-GT User’s Guide.

29. Errors that occur as a result of the CALL statement USING parameters
from the Linkage section of the called program belong to an
“intermediate” type of runtime errors that call installed error
procedures. There are two such errors: “Use of a LINKAGE data item
not passed by the caller,” and “Passed USING item smaller than
corresponding LINKAGE item.”

Passing file handles

1. For compatibility with HP COBOL, a file handle is automatically passed
BY VALUE unless it is immediately preceded by a BY REFERENCE or
BY CONTENT specification. File handles passed to COBOL
subroutines must be preceded with BY REFERENCE or BY CONTENT
because COBOL routines cannot take BY VALUE parameters.

2. If the called subroutine is a COBOL routine, the handle passed is PIC
S9(4) COMP-5. You can override this with the compiler option
“--fileIdSize=#” where “#” is either “2”, “4”, or “8” to specify the
number of bytes you want in the passed integer.

3. If the called subroutine is not COBOL, the handle is passed as a signed
native integer using the host’s default integer size.

4. The file handle passed is the host file system’s identifying value for the
open file. For all current implementations, this is the value returned by
the C “open” function. If the host file system does not have this
information available, then “-1” is used instead. This can happen if the
host system is not a file (e.g. Acu4GL for Oracle) or the host system
does not provide a way of obtaining the handle (e.g. C-ISAM
interface). Files served by AcuServer® also use “-1” because there is
no useful way to use a remote process’ open file handle.

5. For Vision files in the multi-file format (Version 5 and 4), the handle
used is the handle of the first data segment (this is the same file used
when opening the file).

6-118 Procedure Division
6. It is best to avoid performing actual I/O on the file using this file
handle because the COBOL file system will be unaware of any state
changes to the file and may perform incorrectly. It is possible to
corrupt data this way.

CANCEL Statement

The CANCEL verb places a program into its initial state.

General Format

Format 1
CANCEL {program-name} ...

Format 2
CANCEL ALL

Format 3
CANCEL SORT

Syntax Rule

Program-name is a nonnumeric literal or an alphanumeric data item. It may
not be an ALL literal.

General Rules

1. After a CANCEL verb executes, the affected programs are placed into
their initial states. This closes any open files contained in the canceled
program and ensures that any VALUE clauses are in effect when those
programs are called again. By default, memory used by the programs is
released. If the mechanism for logical cancels is enabled, the programs
are cached in memory. For information about the effects and use of
logical cancels, see section 6.3, “Memory Management,” in Book 1.

2. In Format 1, each program-name refers to the CALL name of a
program to cancel. For more information, see the entry in this section
for the “CALL Statement,” and Book 1, ACUCOBOL-GT User’s
Guide, section 2.9, “Calling Subprograms.”

Procedure Division Statements 6-119
3. In Format 2, every program that has been called but is not active is
canceled. A program is active if it has been called (or is the initial
program of the run) and has not yet exited.

Note: The CANCEL_ALL_DLLS configuration variable can be used
to exclude DLLs and shared object libraries from the results of the
CANCEL ALL statement. See the listing for CANCEL_ALL_DLLS
in Appendix H for details.

4. A CANCEL statement is ignored if it refers to an active program. A
CANCEL statement may also refer to a program that has never been
active. Such a reference has no effect.

5. A CANCEL statement has no effect on a program that has a
RESIDENT phrase in its PROGRAM-ID paragraph.

6. When you cancel a program that exists in more than one thread, it is
canceled only in the current thread. CANCEL ALL cancels only
programs in the current thread. If a program is active in any thread that
it shares data with, the CANCEL will have no effect.

7. In Format 3, any active sort is terminated. Only one sort may be active
at a time; using Format 3 guarantees that no sort is active, and thus
prepares you to initiate a new sort safely.

CHAIN Statement

The CHAIN statement provides a method for starting another run unit.

General Format
CHAIN program-name [USING {parameter} ...]

 [ON {EXCEPTION} statement]
 {OVERFLOW }

 [END-CHAIN]

Syntax Rules

1. Program-name is a nonnumeric literal or an alphanumeric data item.

6-120 Procedure Division
2. Parameter is any non-level 88 data item or a nonnumeric literal. No
more than 50 parameters may be specified.

3. Statement is an imperative statement.

4. If a CHAIN statement appears in a consecutive sequence of imperative
statements within a sentence, it must be the last statement in that
sequence, unless the EXCEPTION phrase is specified.

General Rules

1. The CHAIN statement causes the current run unit to terminate and
initiates a new run unit. Executing a CHAIN statement has the following
effects:

a. The current run unit is halted as if a STOP RUN statement were
executed.

b. The run unit specified by program-name is initiated.
Program-name is resolved into an executable program name using
the same rules specified for the CALL statement.

2. If the EXCEPTION phrase is used, then statement executes if the
CHAIN statement is unable to load program-name. This is usually
caused by program-name being either absent or not readable by the
runtime system. Certain types of errors cannot be caught by the ON
EXCEPTION phrase because of the nature of the CHAIN statement. If
the EXCEPTION phrase is not present when an error occurs, the
runtime system prints a message and halts.

3. If the USING phrase is specified, each parameter is transferred to the
new run unit. Each parameter is mapped to the corresponding
CHAINING argument in the new run unit. See section 6.5,
“Procedure Division Format,” for a description of the CHAINING
phrase.

CLOSE Statement

The CLOSE statement is used to terminate the processing of a file or files, to
change the current video-terminal window, or to close a floating window.

Procedure Division Statements 6-121
General Format

Format 1
CLOSE { file-name [REEL] [WITH {NO REWIND}] } ...
 [UNIT] {LOCK }

Format 2
CLOSE WINDOW window-handle [WITH NO DISPLAY]

Syntax Rules

1. File-name must be the name of a file described in the Data Division. It
may not be a sort file.

2. If the REEL or UNIT option is used, then file-name must refer to a
sequential file.

3. Window-handle can be either a PIC X(10) data item or a HANDLE
data item. If used with a SUBWINDOW, window-handle must have
been the object of a POP-UP AREA phrase in a DISPLAY statement.

General Rules

Format 1 (CLOSE File)

1. A file referred to by a CLOSE statement must be in the open state. After
the execution of a successful CLOSE statement, each file-name is in the
closed state. All record and file locks held by those files are released.

2. Any FILE STATUS variables associated with the file-names are
updated by the CLOSE verb.

3. The NO REWIND option lets you hold a pipe open when closing its
corresponding file. This allows you to gather multiple reports into a
single job for the print spooler. To use NO REWIND in this way,
create a configuration file entry as described in Appendix H, Book 4,
Appendices under SPOOL_FILE.

4. The LOCK option prevents the affected files from being opened again
by this run unit in its current execution.

6-122 Procedure Division
5. If the UNIT or REEL option is specified, then the file remains open
and the next reel of the multi-reel file is mounted. Since
ACUCOBOL-GT does not directly support multi-reel files, specifying
this option causes the CLOSE statement to have no effect other than to
update the FILE STATUS variable.

Format 2 (CLOSE WINDOW)

1. The CLOSE WINDOW verb is used to remove floating windows and
subwindows.

2. Window-handle must be a handle returned by a DISPLAY
FLOATING WINDOW statement, or the object of a POP-UP phrase of
a DISPLAY WINDOW statement that executed in the current run unit.
Furthermore, it cannot have been the object of a CLOSE WINDOW
verb nor may it have been otherwise modified.

3. The CLOSE WINDOW verb restores the contents of the screen
covered by the window that is being destroyed. In other words, the
window that was created by that DISPLAY FLOATING WINDOW or
DISPLAY WINDOW statement is removed from the screen and
replaced by the contents of the screen that was “under” that window.
Any memory associated with the closed window is then freed.

4. The window that was current when the terminating window was
created becomes the active window. The cursor is positioned to the
location it occupied when the window was created.

5. The WITH NO DISPLAY option causes the closed window to remain
on the screen. The effect is the same as a normal CLOSE WINDOW
verb, except that no updating of the console takes place. This can be
used to free memory used by a window when you do not want to
physically remove it from the screen. For example, suppose you want
to remove a series of nested windows and want to reduce the amount of
screen activity that occurs. In this case, you can close all of the nested
windows with the NO DISPLAY option and then close the outermost
window in the normal manner.

WITH NO DISPLAY is ignored when a floating window is closed. It is
effective only when pop-up windows are closed.

6. CLOSE WINDOW window-handle is synonymous with DESTROY
window-handle.

Procedure Division Statements 6-123
COMMIT Statement

The COMMIT statement unlocks locked records and (optionally) flushes
buffers to disk. COMMIT may also indicate the end of a transaction, and
cause the changes to be written to the transaction log file.

General Format
COMMIT TRANSACTION

General Rules

1. When this statement is executed, all locked records owned by the current
run-unit are unlocked.

2. COMMIT also causes a request to be made to the host operating
system to flush all buffers to disk. The exact effect of flushing disk
buffers depends on the host operating system. Some systems do not
ensure that buffers are fully flushed when the COMMIT verb finishes.
For example, UNIX only schedules a flush, which occurs over the next
few seconds. VAX/VMS already flushes after each write (except for
locked files).

3. You can prevent the buffers from being flushed to disk by using the
FLUSH-ON-COMMIT line in your runtime configuration file.

4. The function of COMMIT depends on whether or not it ends a
transaction. The following rules describe how transaction management
operates with Vision and relative files. For other file systems linked
with the runtime, each system’s native mechanism for transaction
management is invoked. See the interface document for the specific
file system for more details.

5. When ROLLBACK is enabled in the FILE-CONTROL entry for a file,
the record and file locking rules are extended for that file. Every
record updated as part of a transaction is locked until that transaction is
committed or rolled back. The COMMIT verb removes these locks.
Record locks applied when the file is read are kept until the end of the
transaction, if ROLLBACK is enabled for the file.

Record locks are held during a transaction in order to prevent another
process from updating the records in a way which might make rollback
impossible. Note, however, that a record may be deleted during a

6-124 Procedure Division
transaction, and another process is allowed to write a record with the
same record key to the file. If this happens, and duplicates are
disallowed on that record key, then the ROLLBACK will fail with a
duplicate key error.

6. During a transaction involving Vision or relative files, a CLOSE of a
file that is locked, or that has locked records, is postponed until the
transaction is committed or rolled back.

If the same physical file is opened again within the transaction, even if
a different logical file (different SELECT) is used, the postponed
CLOSE is canceled. Note that the mode of the original OPEN is
retained. (For example, if the file were originally OPEN I-O, and if the
CLOSE were canceled, then an OPEN OUTPUT on the same file within
the same transaction would not empty the file.) When the second OPEN
is encountered, the file position is reset to the beginning so that a READ
NEXT would read the first file in the record. CLOSE is handled in this
special way so that record locks are held--these locks are necessary for
rollback.

7. COMMIT locks the log file, checks its integrity, then writes the
changes and unlocks the log file. The log file is specified with the
filename_LOG or LOG_FILE configuration variable. See
ACUCOBOL-GT User’s Guide, Chapter 5, Section 5.1.6.

8. There is an implicit COMMIT before a STOP RUN or before the end
of the program, unless the STOP_RUN_ROLLBACK configuration
variable is set to 1. Then, an implicit ROLLBACK occurs.

COMPUTE Statement

The COMPUTE statement provides the ability to perform general arithmetic
computations.

General Format
COMPUTE { result [ROUNDED] } ... { = } arithmetic-expr
 { EQUAL }

 [ON SIZE ERROR statement]

 [NOT ON SIZE ERROR statement]

Procedure Division Statements 6-125
[END-COMPUTE]

Syntax Rules

1. Result is an elementary numeric or numeric-edited data item.

2. Arithmetic-expr is any arithmetic expression.

3. Statement is an imperative statement.

General Rules

1. The arithmetic-expr is evaluated and assigned to each result variable.

2. Additional information can be found in the sections covering
Arithmetic Operations (6.4.1), Multiple Receiving Fields (6.4.2), the
ROUNDED option (6.4.3), and the SIZE ERROR option (6.4.4).

CONTINUE Statement

The CONTINUE statement is a “no action” statement.

General Format
CONTINUE

General Rule

The CONTINUE statement performs no actions. It can be used in any case
where a statement is required but no action is wanted.

CREATE Statement

The CREATE statement creates a new instance of a non-graphical object
such as a COM object or .NET assembly. Use it specifically for objects or
assemblies that are not visual in nature. Use the Screen Section or DISPLAY
statement to create an instance of a graphical .NET assembly or an ActiveX
control.

6-126 Procedure Division
Note: CREATE can be used with thin client applications to create
instances of an object on the client or on remote Windows servers.
CREATE cannot be used to create an object on a non-Windows server such
as UNIX or VMS; however, non-Windows servers running AcuConnect
can provide connectivity to Windows servers in a multitiered configuration.

The formats of the CREATE statement include:

• Format 1: CREATE object-name

• Format 2: CREATE assembly-name

General Format

Format 1

CREATE object-name creates a COM object.

CREATE object-name

HANDLE { IN } object-handle
 { IS }

Remaining phrases are optional.
SERVER-NAME { IS } server-name
 { = }
LICENSE-KEY { IS } license-key
 { = }
EVENT PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
 {THRU }
 { NULL }

Format 2

CREATE assembly-name creates a non-graphical .NET object.

CREATE “assembly-name”

NAMESPACE { IS } “namespace”

Procedure Division Statements 6-127
CLASS-NAME { IS } “class-name”

HANDLE { IN } object-handle
 { IS }

Remaining phrases are optional.
VERSION { IS } “version”

CULTURE { IS } “culture”

STRONG-NAME { IS } “strong-name”

CONSTRUCTOR { IS } CONSTRUCTOR[n] parameters...

MODULE { IS } “module”

FILE-PATH { IS } “file-path”

Syntax Rules

1. Object-name is an optionally qualified name of a COM object defined in
the special-names paragraph.

2. Server-name is an alphanumeric literal or data item.

3. License-key is an alphanumeric literal or data item.

4. Object-handle is a USAGE HANDLE data item.

5. Proc-1 and proc-2 are procedure names relating to COM events. (For
more information on COM events and event procedures, see section
4.4 in A Guide to Interoperating with ACUCOBOL-GT.)

6. Any value surrounded by quotation marks is an alphanumeric literal
and is case-sensitive.

6-128 Procedure Division
General Rules

Format 1 (CREATE object-name)

1. In a non-Thin Client environment the COM object is registered and
instantiated on the same machine the runtime is executing on. In a Thin
Client scenario the COM object is registered and instantiated on the
client machine rather than the server where the runtime is executing.

2. Server-name identifies a remote machine on which to create and
execute the COM object. It can be specified as a UNC, DNS name, or
IP address. Server-name must be the name of a Windows machine.
CREATE cannot create objects on non-Windows servers. When a
server-name is provided - the COM object's interface is instantiated on
the machine where the application is executing and the back-end is
instantiated on the specified server where the work is done and
resources can be accessed. In this case the COM object must be
registered on both machines.

3. In a Thin Client environment the customer may also specify the
Server-name with the prefix, Local: e.g. CREATE COM_object
SERVER-NAME "Local:the_server_name". In this case the COM
object is wholly instantiated on the specified server where the COM
object is registered, all the work is done and all resources must reside.

4. Some COM objects are licensed for run time using a license key that is
provided to you by the object vendor. This license key is a text string
usually located in a “.lic” file. By setting the value of the
LICENSE-KEY property to this license key, you embed this license
key in your COBOL program. Then when you run your COBOL
program, the license key is passed to the COM object for verification.
You do not send the “.lic” file or license key to the end-user. Set
LICENSE-KEY when you create the object (i.e., in the CREATE
statement). The default value is “ ”. When LICENSE-KEY is “ ”
(i.e., the default) and the COM object supports the licensing
mechanism, the control performs its own license verification. Some
objects require a “.lic” file to do this. Others may check the system
registry or hard disk for other properly installed and licensed software.

Procedure Division Statements 6-129
Format 2 (CREATE assembly-name)

1. Literal values for assembly parameters are located in the COPY file
generated by the NETDEFGEN utility. The same COPY file must be
included in the SPECIAL-NAMES paragraph of your program.

2. Assembly-name is the name of a .NET assembly defined in the
NETDEFGEN COPY file. This must be the DLL name of a
non-graphical control, not an executable file. Non-graphical controls
are generated by Visual Studio when a developer selects a “Class
Library” project type.

3. Namespace is a NameSpace in the assembly.

4. Class-name is a class in the NameSpace.

5. Version is the version number of the assembly.

6. Culture is cultural information related to the assembly.

7. Strong-name is the cryptographic key required to access the assembly,
if any. If the assembly requires such a key, as all assemblies in the
Global Assembly Cache (GAC) do, it is shown in the COPY file under
the keyword STRONG.

8. All classes that result in an object have a CONSTRUCTOR, which is a
sort of method. If you see a CONSTRUCTOR identifier in the COPY
file without a parameter list, the field may be omitted from your
COBOL program. If all listed CONSTRUCTORs have parameters,
then you must choose which CONSTRUCTOR and parameters to use.
Constructor(n) is the constructor that you want to use followed by its
parameter data.

9. Module identifies a file where a combination of NameSpaces and
Classes resides. It is used when the assembly is constructed of other
assemblies.

10. File-path is the path of an XML file, and that XML file contains the
path where the .NET assembly is located. Use FILE-PATH when the
assembly that you want to access does not reside in the GAC or in the
same directory as “wrun32.exe”. Assemblies that reside in the GAC
will have the STRONG keyword in the NETDEFGEN COPY file.

6-130 Procedure Division
DELETE Statement

The DELETE statement logically removes a record from a file or a file from
the host system.

General Format

Format 1
DELETE file-name RECORD

 [INVALID KEY statement-1]

 [NOT INVALID KEY statement-2]

 [END-DELETE]

Format 2
DELETE FILE file-name

Syntax Rules

1. File-name must refer to a file described in the Data Division. It may not
be a sort file. In Format 1, it cannot be the name of a sequential file.

2. Statement-1 and statement-2 are imperative statements.

3. The INVALID KEY and NOT INVALID KEY clauses must not be
specified for a DELETE statement that references a file that is in the
sequential access mode.

General Rules

Format 1 - DELETE RECORD

1. The file must reside on a mass-storage device and be open in the I/O
mode when the DELETE statement executes.

2. For files in the sequential access mode, the last I/O statement executed
for the file prior to the execution of the DELETE statement must have
been a successful READ statement. The DELETE statement deletes
that record from the file.

Procedure Division Statements 6-131
3. For a relative file in the random or dynamic access mode, the DELETE
statement removes the record identified by the file’s RELATIVE KEY
data item. If that record does not exist, an invalid key condition exists.

4. For an indexed file in the random or dynamic access mode, the
DELETE statement removes the record identified by that file’s
RECORD KEY data item. If that record does not exist, an invalid key
condition exists.

5. After a successful DELETE, the deleted record has been logically
removed from the file and may no longer be accessed.

6. The execution of the DELETE statement does not affect the file’s
record area.

7. The current file position is not changed by the DELETE statement.

8. The FILE STATUS variable of the file is updated.

9. If there is an applicable USE AFTER EXCEPTION procedure, it
executes whenever a non-zero I/O status applies to the DELETE.
However, it does not execute if an invalid key condition exists and the
INVALID KEY phrase is used. If a USE AFTER EXCEPTION
procedure would normally execute, but none has been specified, then
the program prints an error message and halts.

10. Statement-1 is executed if it is specified and the invalid key condition
exists.

11. Statement-2 is executed if it is specified and the DELETE statement is
successful.

Format 2 - DELETE FILE

1. The DELETE FILE statement removes a file from the host computer
system. The file named by file-name must be closed and reside on a
mass-storage device.

2. With one exception, the organization and record layout of file-name
need not match the file being deleted, although it is highly
recommended that they do. For Vision Version 5 and 4 files, the
organization and record layout of file-name must match the file being
deleted.

6-132 Procedure Division
3. If you match the type of the file referenced (sequential, relative, or
indexed) with the type of the file being removed, your programs will
consistently work with versions of ACUCOBOL-GT based on different
file systems. For example, C-ISAM and Vision Versions 5 and 4
implement indexed files using two physical disk files for each COBOL
indexed file. An ACUCOBOL-GT runtime using Vision Version 5, 4,
or C-ISAM needs to know if an index file is being removed so that it
will look for both physical files when an indexed file is removed.

When the DELETE statement executes, file-name is translated as for the
OPEN statement, and the corresponding file is removed from the system.

4. The FILE STATUS data item is updated by the DELETE FILE
statement.

DESTROY Statement

The DESTROY statement eliminates windows, controls, threads, fonts,
layout managers, and menus.

Note: The DESTROY verb cannot destroy the main application window.
If you attempt to use the DESTROY verb to destroy the main application
window, the statement is ignored. The main application window is
destroyed automatically when the program terminates.

General Format

Format 1
DESTROY { screen-name-1 } ...
 { handle-1 }

Format 2
DESTROY ALL CONTROLS

Format 3
DESTROY { CONTROL

Remaining phrases are optional and can appear in any order.

Procedure Division Statements 6-133
AT screen-loc [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT LINE NUMBER line-num [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT {COLUMN } NUMBER col-num [CELL]
 {COL } [CELLS]
 {POSITION} [PIXEL]
 {POS } [PIXELS]

AT CLINE NUMBER cline-num [CELL]
 [CELLS]

AT CCOL NUMBER ccol-num [CELL]
 [CELLS]
 } . . .

Syntax Rules

1. Screen-name-1 is the name of a screen description entry found in the
Screen Section.

2. Handle-1 is a USAGE HANDLE or PIC X(10) data item.

3. Screen-loc is an integer data item or literal that contains exactly 4 or 6
digits.

4. Line-num, col-num, cline-num and ccol-num are numeric data items or
literals. These may contain non-integer values.

5. Format 1 and Format 3 statements can be mixed into a single
DESTROY statement.

General Rules

1. The DESTROY verb removes from memory the items it acts on. It also
removes those items from the screen if that is appropriate. The exact
meaning of the DESTROY verb depends on the type of item it is acting
upon, as described below.

6-134 Procedure Division
2. If the statement is a Format 1 DESTROY handle-1 statement, the
handle is valid, and the DESTROY statement succeeds, handle-1 is set
to the value NULL (binary zeros).

3. If handle-1 contains a valid handle to a control, then the control is
removed from the screen (if it is visible) and any memory associated
with the control is released.

4. If handle-1 contains the valid handle of a floating window or
subwindow, the DESTROY statement acts the same as a CLOSE
WINDOW statement acting on handle-1 (with no additional options),
except that DESTROY sets the value of handle-1 to NULL. When you
destroy (close) a floating window, every control contained in that
window is also destroyed. Also, any other floating windows that are
children of that window are destroyed.

Note: Attempting to DESTROY the main application window has no
effect. However, this behavior is subject to change in a future release
and should not be relied on.

5. If handle-1 is a handle of a font, that font is removed from memory. If
handle-1 is a standard font (that is, one retrieved by ACCEPT from
STANDARD OBJECT), destroying it has no effect. Destroying a font
that is actively in use by a control or window is an error with
unpredictable consequences. If you are destroying a set of controls and
their associated fonts, you should destroy the controls first, and then
destroy their fonts.

6. If handle-1 is a handle to a thread, “DESTROY handle-1” has the
same affect as a “STOP THREAD handle-1” statement, except that the
DESTROY statement also sets the value of handle-1 to NULL.

7. If handle-1 is the handle of a menu, then that menu is destroyed, and
any memory associated with it is freed. It is an error (not caught) to
destroy a menu that is currently associated with a window or a control.
A menu that is displayed as the menu bar of a window is automatically
destroyed when the corresponding window is destroyed. A menu
displayed as the menu bar of a window should not be explicitly
destroyed by your program (unless you remove it from the window
first). Menus associated with windows or controls as pop-up menus

Procedure Division Statements 6-135
are not automatically destroyed when the corresponding window or
control is destroyed. This makes it easier to use the same pop-up menu
in more than one control or window.

8. If handle-1 is a handle to a layout manager, the layout manager is
removed from memory. A layout manager that is actively being used
by a window should not be destroyed. You should first destroy the
window or remove the layout manager from the window.

9. If handle-1 contains a value other than a valid handle to a window,
control, thread, font, menu, or layout manager, the DESTROY verb has
no effect.

10. If screen-name-1 is a Format 2 screen description entry (i.e., it
describes a control), that control is removed from the screen, and any
memory associated with it is released. Screen-name-1 no longer refers
to an existing control.

11. If screen-name-1 is an elementary Format 1 screen description entry
(i.e., it describes a textual field), the DESTROY verb has no effect.

12. If screen-name-1 is a group item, each subsidiary elementary item is
destroyed (i.e., the controls are destroyed and the textual fields are left
alone).

13. A Format 2 DESTROY statement (DESTROY ALL CONTROLS)
destroys every control contained in the current window. This includes
controls created by Screen Section entries as well as controls created
directly with a DISPLAY Control verb.

14. A Format 3 DESTROY statement destroys the control located at the
screen position specified by the AT, LINE, and COLUMN phrases in
the current window (on non-graphical systems, the CLINE and CCOL
phrases also apply). The runtime system maintains a list of controls in
each window. When attempting to destroy a control at a specific
location, the runtime searches this list, using the first control it finds
that exactly matches the location. The list is maintained in the order in
which the controls are created. If the runtime does not find a control at
the specified location, then nothing happens.

15. Use Format 1 “DESTROY handle” to destroy non-graphical .NET
controls or assemblies. For graphical .NET controls, you can use either
Format 1 “DESTROY handle” or Format 2 “DESTROY ALL”.

6-136 Procedure Division
DISPLAY Statement

The DISPLAY statement provides for low-volume output from the program.
The formats of the DISPLAY statement include:

• Format 1: DISPLAY src-item

• Format 2: DISPLAY screen-name

• Format 3: DISPLAY WINDOW

• Format 4: DISPLAY SCREEN SIZE

• Format 5: DISPLAY LINE

• Format 6: DISPLAY BOX

• Format 7: DISPLAY UPON WINDOW TITLE

• Format 8: DISPLAY UPON COMMAND LINE

• Format 9: DISPLAY src-item (ANSI format)

• Format 10: DISPLAY UPON GLOBAL TITLE

• Format 11: DISPLAY FLOATING WINDOW

• Format 12: DISPLAY INITIAL WINDOW

• Format 13: DISPLAY TOOL-BAR

• Format 14: DISPLAY control-type-name

• Format 15: DISPLAY MESSAGE BOX

• Format 16: DISPLAY external-form-item

• Format 17: DISPLAY UPON ENVIRONMENT-NAME

• Format 18: DISPLAY assembly-name

Procedure Division Statements 6-137
Note: Different formats of the DISPLAY statement may be mixed together
in one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

DISPLAY src-item

Format 1

DISPLAY src-item displays an individual field to the screen.
DISPLAY { {src-item}
 {OMITTED }

 [UPON new-window]

Remaining phrases are optional, can appear in any order.
AT screen-loc

AT LINE NUMBER line-num

AT {COLUMN } NUMBER col-num
 {COL }
 {POSITION}
 {POS }

WITH SIZE length

WITH NO ADVANCING

{ERASE} [TO END OF] {LINE } (VAX, ICOBOL)
{BLANK} {SCREEN}

{ERASE} [EOS] (RM)
{BLANK} [EOL]

WITH {BELL}
 {BEEP}

{UNDERLINED}
{HIGHLIGHT }

6-138 Procedure Division
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

WITH {BLINKING}
 {BLINK }

{REVERSE-VIDEO}
{REVERSE }
{REVERSED }

SAME

WITH {COLOR } color-val
 {COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

SCROLL [UP] [BY scrl-num {LINE }]
 [DOWN] {LINES}

OUTPUT {JUSTIFIED} {LEFT }
 {JUST } {RIGHT }
 {CENTERED}

WITH {CONVERSION}
 {CONVERT }

CONTROL cntrl-string

UPON CRT

} ...

Procedure Division Statements 6-139
Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Src-item is a literal or data item. It must be USAGE DISPLAY unless
the CONVERSION phrase is also specified. Src-item specifies the
data to be displayed.

3. New-window is a USAGE HANDLE or PIC X(10) data item.

4. Screen-loc is an integer data item or literal containing exactly 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

5. Line-num, col-num, and length are numeric data items or literals.
They may be non-integer values. You can also specify the value with
an arithmetic expression.

6. Color-val and scrl-num are numeric data items or literals. Color-val
can also be an arithmetic expression, except when used in the Screen
Section.

7. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. See section 6.4.9,
FOREGROUND-COLOR and BACKGROUND-COLOR phrases, for
a more detailed discussion of color settings and values.

8. Cntrl-string is a nonnumeric literal or data item.

9. If the UPON phrase is used it must be the first optional phrase
specified.

10. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

11. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

12. IS and “=” are synonymous.

13. COLUMN, COL, POSITION, and POS are equivalent.

6-140 Procedure Division
14. BELL and BEEP are equivalent.

15. BLANK and ERASE are equivalent.

16. HIGHLIGHT, HIGH and BOLD are synonymous.

17. LOWLIGHT and LOW are equivalent.

18. UNDERLINE and UNDERLINED are equivalent.

19. BLINK and BLINKING are equivalent.

20. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

21. CONVERT and CONVERSION are equivalent.

22. COLOR and COLOUR are synonymous.

23. FOREGROUND-COLOR and FOREGROUND-COLOUR are
synonymous.

24. BACKGROUND-COLOR and BACKGROUND-COLOUR are
synonymous.

25. The ERASE phrase has two forms. In VAX COBOL and ICOBOL
compatibility modes, the ERASE SCREEN/LINE form must be used.
In RM/COBOL mode, the ERASE EOS/EOL form must be used. This
is indicated in the General Format by the symbols “(VAX, ICOBOL)”
and “(RM)”

26. You may add “UPON CRT” to a Format 1 DISPLAY statement to
distinguish it from a Format 9 DISPLAY statement. You need to do
this only if you use the “-Ca” compiler option.

General Rules

1. The DISPLAY statement sends each of its src-items to the video
terminal attached to the executing program. If more than one src-item is
specified, each is treated as if it were in a separate DISPLAY statement
in the order listed. Note, however, in VAX COBOL and ICOBOL
compatibility mode, NO ADVANCING is automatically implied for
each src-item except for the last one.

Procedure Division Statements 6-141
2. The precise action of the DISPLAY statement depends both on the
various clauses specified and the compatibility mode that the compiler
is run in. These actions are detailed in the following rules.

3. The effects of the various optional phrases are described in section
6.4.9, “Common Screen Options.”

4. If the OMITTED option is used, then no src-item is sent to the screen.
This can be used to cause the action of various optional phrases
without sending any actual data. For example, “DISPLAY OMITTED,
BELL” will cause the terminal’s bell to ring. If a SIZE phrase is
specified, then the OMITTED phrase will act like an alphanumeric
src-item of the specified size whose value is identical to the characters
located on the screen where the DISPLAY will occur. This can be used
to modify the video attributes of the screen without changing the
displayed data. For example,

DISPLAY OMITTED, SIZE 5, REVERSE

will cause the five characters located at the current cursor location to be
changed to reverse-video.

5. The DISPLAY statement can be used with the “-Cv” IBM DOS/VS
COBOL compatibility command line. See DISPLAY UPON
SYSPUNCH in section 5.2 of Transitioning to ACUCOBOL-GT.

DISPLAY screen-name

Format 2

DISPLAY screen-name displays a Screen Section item defining one or more
fields to the screen.
DISPLAY screen-name

 [UPON new-window]

Remaining phrases are optional, can appear in any order.
AT screen-loc

AT LINE NUMBER line-num

6-142 Procedure Division
AT {COLUMN } NUMBER col-num
 {COL }
 {POSITION}
 {POS }

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Screen-name is the name of a screen entry declared in the program’s
Screen Section.

3. New-window is a USAGE HANDLE or PIC X(10) data item.

4. Screen-loc is an integer data item or literal containing exactly 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

5. Line-num and col-num are numeric data items or literals. They may be
non-integer values. You can also specify the value with an arithmetic
expression.

6. If the UPON phrase is used, it must be the first optional phrase
specified.

7. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

8. COLUMN, COL, POSITION, and POS are equivalent.

General Rules

1. A Format 2 DISPLAY statement causes all of the output and update
fields in screen-name to be displayed on the user’s screen. Screen-name
must be a screen item declared in the program’s Screen Section. Before
the fields are displayed, each field has its corresponding data item moved
to it. Any controls described in screen-name are either created or
updated as appropriate.

Procedure Division Statements 6-143
2. When a Format 2 DISPLAY statement executes, spaces are moved to
each alphabetic, alphanumeric, and alphanumeric edited input field.
Zeros are moved to each numeric and numeric edited input field. Input
fields are identified by the word “TO” in their Screen Section entry.

3. The AT, LINE, and COLUMN phrases describe the starting location of
the screen item. These phrases are described in detail in section 6.4.9,
“Common Screen Options.” If either the line or column number is
missing or zero, line or column number 1 (one) is used.

DISPLAY WINDOW

Format 3

DISPLAY WINDOW creates and displays a subwindow.
DISPLAY {SUBWINDOW}
 {WINDOW }

 [UPON new-window]

Remaining phrases are optional, can appear in any order.
AT screen-loc

AT LINE NUMBER line-num

AT {COLUMN } NUMBER col-num
 {COL }
 {POSITION}
 {POS }

SIZE length

LINES height

{ERASE} SCREEN
{BLANK}

{REVERSE-VIDEO}
{REVERSE }
{REVERSED }

6-144 Procedure Division
WITH {COLOR } color-val
 {COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

{BACKGROUND-HIGH }
{BACKGROUND-LOW }
{BACKGROUND-STANDARD}

BOXED

SHADOW

[TOP] [CENTERED] TITLE IS title
[BOTTOM] [LEFT]
 [RIGHT]

WITH NO SCROLL

WITH NO WRAP

CONTROL VALUE IS control-val

POP-UP AREA IS save-area

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. New-window is a USAGE HANDLE or PIC X(10) data item. If used,
the UPON phrase must be the first optional phrase specified.

Procedure Division Statements 6-145
3. Screen-loc is an integer data item or literal containing exactly 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

4. Line-num, col-num, length, and height are numeric data items or
literals. They may be non-integer values. You can also specify the
value of any of these items with an arithmetic expression.

5. Color-val is a numeric data item or literal. It can also be an arithmetic
expression, except when used in the Screen Section.

6. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. See section 6.4.9,
“FOREGROUND-COLOR and BACKGROUND-COLOR Phrases,”
for a more detailed discussion of color settings and values.

7. Title is an alphanumeric literal or data item.

8. Control-value is a numeric expression.

9. Save-area is a USAGE HANDLE or PIC X(10) data item.

10. If the UPON phrase is specified, it must be the first optional phrase.

11. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

12. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

13. The POP-UP phrase may be specified anywhere in the statement after
the required initial elements.

14. WINDOW and SUBWINDOW are synonymous. The SUBWINDOW
synonym is available to improve code clarity. Its use makes it clear
that a SUBWINDOW is created.

15. IS and “=” are synonymous.

16. COLUMN, COL, POSITION, and POS are equivalent.

17. BLANK and ERASE are equivalent.

18. HIGHLIGHT, HIGH, and BOLD are synonymous.

6-146 Procedure Division
19. LOWLIGHT and LOW are equivalent.

20. UNDERLINE and UNDERLINED are equivalent.

21. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

22. COLOR and COLOUR are synonymous.

23. FOREGROUND-COLOR and FOREGROUND-COLOUR are
synonymous.

24. BACKGROUND-COLOR and BACKGROUND-COLOUR are
synonymous.

25. The LINES phrase can take a numeric expression.

General Rules

1. The DISPLAY SUBWINDOW verb creates or modifies the current
subwindow. The subwindow is a rectangular region of the screen. In
essence, the current subwindow defines a virtual terminal screen that
occupies some area of the user’s physical screen. Line and column
numbers for ACCEPT and DISPLAY statements are computed from the
upper left-hand corner of the current subwindow. For example, the
statement DISPLAY SPACE, ERASE SCREEN erases only the current
subwindow.

2. When used with floating windows (Format 11), this verb creates a
subwindow in the current floating window. Note that every floating
window has an implicit subwindow. Each time a floating window is
made current, its subwindow is also made current.

3. When used with floating windows, subwindow coordinates are relative
to the current floating window. Initially, this is the main application
window. The subwindow never extends past the boundaries of the
current floating window.

4. The initial subwindow is set to the entire screen. When created inside
a floating window, the subwindow is set to the floating window’s
display area (the area inside the borders, menu bar, toolbar, and title
bar).

5. Any subwindows contained in a floating window are automatically
closed if the floating window is closed.

Procedure Division Statements 6-147
LINE NUMBER Phrase

1. The LINE NUMBER phrase sets the top line of the subwindow. In this
context, line number one refers to the top line of the current floating
window.

2. If this phrase is missing, then the top line of the current floating
window is used.

COLUMN NUMBER Phrase

1. The COLUMN NUMBER phrase sets the leftmost column of the
window. Column number one refers to the left side of the current
floating window.

2. If this phrase is not specified, column number one is used.

AT Phrase

The AT phrase sets both the starting line and column number. It is described
in section 6.4.9, “Common Screen Options.” The line and column numbers
arrived at are interpreted as described in the LINE NUMBER and COLUMN
NUMBER sections described above.

SIZE Phrase

1. The SIZE phrase sets the number of columns the subwindow will
contain. If this causes the window to extend past the right edge of the
current floating window, the subwindow’s width is adjusted to fit.

2. If this phrase is missing, the subwindow extends to the right edge of
the current floating window.

LINES Phrase

1. The LINES phrase sets the number of rows the subwindow will contain.
If this causes the window to extend past the bottom of the current
floating window, the height will be adjusted to fit.

2. If this phrase is missing, the subwindow extends to the bottom edge of
the current floating window.

6-148 Procedure Division
3. The LINES phrase of a DISPLAY WINDOW, DISPLAY LINE, or
DISPLAY BOX verb can take a numeric expression.

ERASE Phrase

1. When the ERASE phrase is specified, the window will be cleared
immediately after it is created. Otherwise the window’s contents will not
be changed. When a window is cleared, it is set to spaces with the
current foreground and background colors.

2. This phrase is implied by the BOXED and REVERSED phrases.

BOXED Phrase

1. The BOXED phrase causes a box to be drawn around the new window.
The box is drawn outside of the window. Any portions of the box that
lie off the screen will not be drawn.

2. The terminal’s line drawing set is used to draw the box. If the terminal
does not have a line drawing set, hyphens and vertical bar characters
are used.

3. If the POP-UP phrase is also specified, the box will overlay any other
boxes on the screen. If this phrase is not specified, the box drawn will
be attached to any other boxes it intersects.

4. This phrase implies the ERASE phrase.

REVERSED Phrase

1. The REVERSED phrase exchanges the window’s foreground and
background colors. This will affect every ACCEPT and DISPLAY
statement in the new window.

2. This phrase implies the ERASE phrase. Note that this will usually
cause the entire window to be set to reverse video spaces when it is
initially created.

COLOR Phrase

1. The COLOR phrase sets the window’s foreground and background
colors. These colors are used whenever the window is erased and as
default colors for future ACCEPT and DISPLAY statements. Color-val

Procedure Division Statements 6-149
contains a numeric representation of the colors to use. See section 6.4.9,
“Common Screen Options” COLOR Phrase, for detailed information
on setting numeric values for colors.

2. If the foreground color is not specified, the new window inherits the
current window’s foreground color. If the background color is not
specified, the new window inherits the current window’s background
color.

3. You may use the WINDOW_INTENSITY configuration variable to
control whether the intensity information in the COLOR setting should
be used or ignored (see Appendix H for details).

HIGH, LOW, and STANDARD Phrases

The HIGH, LOW, and STANDARD phrases set the foreground intensity of
the subwindow. This affects any drawing done to the subwindow itself (such
as its border or title). In addition, they set the default intensity for any future
ACCEPT/DISPLAY statements made to this window.

The STANDARD option indicates that a system-dependent default value
should be used. You can affect this value with the
FOREGROUND-INTENSITY configuration option.

If no option is given, the current subwindow’s foreground intensity is used
(inherit the foreground intensity of the parent).

BACKGROUND-HIGH, BACKGROUND-LOW, and
BACKGROUND-STANDARD Phrases

The BACKGROUND-HIGH, BACKGROUND-LOW, and
BACKGROUND-STANDARD phrases set the background intensity for the
subwindow. This works in a fashion analogous to the foreground intensity
described above. Note that the COLOR phrase, if present, takes precedence
over the BACKGROUND phrases.

CONTROL VALUE Phrase

6-150 Procedure Division
The CONTROL VALUE phrase provides a method for specifying certain
window characteristics at run time. Control-value must be a numeric
expression that contains one or more of the following values added together:

TITLE Phrase

1. The TITLE phrase causes a title to be printed in the window’s border.
This has effect only if the BOXED phrase is also specified.

2. One top title and one bottom title may be specified for each window.
Top titles can be placed in one of three positions in the border region:
top left, top center, or top right. Bottom titles can be placed in the
bottom left, bottom center, or bottom right. If TOP or BOTTOM is not
specified, TOP is used. If LEFT, CENTERED, or RIGHT is not
specified, CENTERED is used.

NO SCROLL and NO WRAP Phrases

1. Specifying NO SCROLL disables automatic scrolling for the new
window. Normally, when the cursor is moved past the bottom edge of
the window, the window is scrolled up one line. If NO SCROLL is
specified, then the window will not be scrolled. The bottom line will be
overwritten instead. When NO SCROLL is specified, then the only way
to scroll a window is explicitly with a SCROLL phrase on a Format 1
DISPLAY statement.

2. Specifying NO WRAP disables line wrap for the window. Normally, a
line that extends past the right edge of the window is wrapped around
to the next line. If NO WRAP is specified, then the line is truncated
instead. This will leave the cursor logically positioned on the same
line just to the right of the window’s edge. Further output will not be
visible until the cursor is repositioned inside the window.

Boxed 1

Shadow 2

No Scroll 4

No Wrap 8

Reverse 16

Procedure Division Statements 6-151
3. The scroll and wrap states of the current window are saved when a
pop-up window is created. When that pop-up window is closed, the
scroll and wrap states of the old window are restored.

4. Note that the ACUCOBOL-GT runtime system contains two
configuration variables, SCROLL and WRAP, that control the scroll
and wrap states of all windows. When these variables are set to zero,
then scrolling or wrapping for all windows is disabled regardless of the
scroll and wrap states of the individual windows. When these variables
are non-zero, then the window’s individual states determine the use of
scrolling and wrapping.

POP-UP AREA Phrase

1. The POP-UP AREA phrase causes the screen manager to save
information about the current subwindow prior to creating the new
window. This information can be used by the screen manager later to
remove the new window and restore the saved window. This is meant to
be used to create “pop-up” windows.

2. Boxed pop-up windows are automatically detached slightly from any
intersecting line segments, such as the borders of other windows.

3. The save-area is an elementary data item described by a PICTURE
X(10) clause. It is filled in with information about the current window
dimensions and contents before the new window is created. This data
item is required for restoration of a window and must not be
subsequently modified in any way. It can be referenced in a CLOSE
WINDOW verb to restore the saved window to the screen and
re-establish the saved window as the current window.

4. Pop-up subwindows are an older technology that is not compatible
with graphical controls. You should avoid using pop-up windows if
you also use controls. Use floating windows instead.

SHADOW Phrase

The SHADOW phrase causes the window to appear to float over the screen,
giving it a three-dimensional effect.

The way the shadow is displayed is determined by the SHADOW-STYLE
setting of the SCREEN option in your runtime configuration file.

6-152 Procedure Division
When a shadow is specified for a window, that window is automatically
detached slightly from any intersecting line segments, such as the borders of
other windows.

Note: Phrases not described above are described in section 6.4.9,
“Common Screen Options.”

DISPLAY SCREEN SIZE

Format 4

DISPLAY SCREEN SIZE shifts the display between 80 and 132 column
mode
DISPLAY SCREEN SIZE {80 }
 {132}

 [ON EXCEPTION statement-1]

 [NOT ON EXCEPTION statement-2]

 [END-DISPLAY]

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Statement-1 and statement-2 are imperative statements.

General Rules

1. The DISPLAY SCREEN verb is used to shift between the 80-column
mode and 132-column mode of the terminal. On character-based
systems, the terminal is physically set to either 132- or 80-column mode.
For all systems, the main application window is then set to 132 columns
wide; it is cleared, and its subwindow set to cover the entire interior.
Some graphical systems simulate 132-column mode by scrolling the
main application window.

Procedure Division Statements 6-153
In graphical environments, the MODIFY verb is the preferred method
for changing the size of a graphical screen.

2. If the terminal hardware does not support the mode shifted to, the
screen and current window do not change and the EXCEPTION phrase
statement-1 (if specified) executes. If the mode change is successful
and the NOT EXCEPTION phrase is used, statement-2 executes.

DISPLAY LINE

Format 5

DISPLAY LINE draws a horizontal or vertical line on the screen.
DISPLAY LINE

 [UPON new-window]

 { SIZE length }
 { LINES height }

Remaining phrases are optional, can appear in any order.
AT screen-loc

AT LINE NUMBER line-num

AT {COLUMN } NUMBER col-num
 {COL }
 {POSITION}
 {POS }

{REVERSE-VIDEO}
{REVERSE }
{REVERSED }

WITH {COLOR } color-val
 {COLOUR}

[CENTERED] TITLE IS title
[LEFT]
[RIGHT]

6-154 Procedure Division
Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. New-window is a USAGE HANDLE or PIC X(10) data item. If used,
the UPON phrase must be the first optional phrase specified.

3. Screen-loc is an integer data item or literal containing exactly 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

4. Line-num, col-num, length, and height are numeric data items or
literals. They may be non-integer values. You can also specify the
value of any of these items with an arithmetic expression.

5. Color-val is a numeric data item, literal, or arithmetic expression.

6. Title is an alphanumeric literal or data item.

7. If the UPON phrase is specified, it must be the first optional phrase.

8. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

9. Exactly one of the SIZE or LINES phrases must be specified. The
selected phrase may appear anywhere in the statement.

10. The LINES phrase can take a numeric expression.

11. IS and “=” are synonymous.

12. COLUMN, COL, POSITION, and POS are equivalent.

13. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

14. COLOR and COLOUR are synonymous.

Procedure Division Statements 6-155
General Rules

1. The DISPLAY LINE verb provides the ability to draw horizontal and
vertical lines in a machine- and terminal-independent fashion. The lines
are drawn using the best mode available on the display device. Used
together with the DISPLAY BOX verb, this verb provides the ability to
draw forms on the user’s screen.

DISPLAY LINE is an older, character-based technology. If you want
fine control over lines displayed on graphical systems, use the BAR
control instead. See chapter 5, Book 2, User Interface Programming.

2. The appropriate intersection character (corner or three-way
intersection) is used when drawn lines intersect other lines on the
screen.

3. If the SIZE phrase is specified, the line drawn is horizontal. The value
of length gives the size of the line in screen columns. If the LINES
phrase is used instead, the line drawn is a vertical line and height
describes the number of screen rows to use.

4. Lines never wrap around or cause scrolling. If the LINES or SIZE
phrase would cause the line to leave the current window, the line is
truncated at the edge of the window.

AT, LINE, and COLUMN Phrases

1. The value of line-num gives the starting row of the line. The value of
col-num gives the starting column. The value of screen-loc gives the
starting row and column. (For details, see section 6.4.9, “Common
Screen Options.”) Lines are always drawn to the right or downwards as
appropriate. Screen-loc, line-num, and col-num must specify a position
that is contained in the current window.

2. If the LINE NUMBER phrase is not specified, line one is used. If the
COLUMN NUMBER phrase is missing, column one is used.

TITLE Phrase

1. The TITLE phrase has effect only when you are drawing horizontal
lines. When it is specified, title-string is printed in part of the line.

6-156 Procedure Division
2. The title may be printed near the right side, near the left side, or in the
center of the line depending whether the RIGHT, LEFT, or
CENTERED phrase is specified. If none is specified, CENTERED is
used.

COLOR and REVERSE Phrases

The COLOR and REVERSE phrases operate in the same manner as
described in section 6.4.9, “Common Screen Options.” Note, however, that
the COLOR value may not specify blinking, underlining, or an intensity.
Lines are always drawn in a terminal-dependent intensity.

Note: Phrases not described above are described in section 6.4.9,
“Common Screen Options.”

DISPLAY BOX

Format 6

DISPLAY BOX draws a box on the screen.
DISPLAY BOX

 [UPON new-window]

Remaining phrases are optional, can appear in any order.
AT screen-loc

AT LINE NUMBER line-num

AT {COLUMN } NUMBER col-num
 {COL }
 {POSITION}
 {POS }

SIZE length

LINES height

{REVERSE-VIDEO}

Procedure Division Statements 6-157
{REVERSE }
{REVERSED }

WITH {COLOR } color-val
 {COLOUR}

[TOP] [CENTERED] TITLE IS title
[BOTTOM] [LEFT]
 [RIGHT]

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. New-window is a USAGE HANDLE or PIC X(10) data item. If used,
the UPON phrase must be the first optional phrase specified.

3. Screen-loc is an integer data item or literal containing exactly 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

4. Line-num, col-num, length, and height are numeric data items or
literals. They may be non-integer values, but only the integer value
will be applied. You can also specify the value of any of these items
with an arithmetic expression.

5. Color-val is a numeric data item, literal, or arithmetic expression.

6. Title is an alphanumeric literal or data item.

7. If the UPON phrase is specified, it must be the first optional phrase.

8. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

9. The LINES phrase can take a numeric expression.

10. IS and “=” are synonymous.

11. COLUMN, COL, POSITION, and POS are equivalent.

12. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

13. COLOR and COLOUR are synonymous.

6-158 Procedure Division
General Rules

1. The DISPLAY BOX verb provides the ability to draw a box in a
machine- and terminal-independent manner. The best drawing mode of
the display device is used. If the lines used in drawing a box intersect
other lines already present on the screen, the appropriate intersection
characters are used.

2. DISPLAY BOX is an older, character-based technology. For fine
control of boxes on graphical systems, use the FRAME control. See
Chapter 5, Book 2, User Interface Programming.

3. You specify the location of the box by providing the location of the
upper-left corner. You specify the size of the box by providing a height
and a width.

AT, LINE, and COLUMN Phrases

The AT, LINE NUMBER, and COLUMN NUMBER phrases operate in the
same manner as they do when they are used in a DISPLAY LINE statement
(Format 5).

SIZE and LINES Phrases

The SIZE phrase specifies the width of the box. The LINES phrase specifies
its height. Length and height must specify values greater than one. If the
SIZE phrase is absent, the box will extend to the right edge of the current
window. If the LINES phrase is missing, the box will extend to the bottom of
the current window.

COLOR and REVERSE Phrases

The COLOR and REVERSE phrases operate in the same manner as
described in section 6.4.9, “Common Screen Options.” Note that the
COLOR value may not specify blinking, underlining, or an intensity (boxes
are always drawn in a terminal-dependent intensity).

TITLE Phrase

The TITLE phrase operates in the same manner as it does for a DISPLAY
WINDOW verb (Format 3).

Procedure Division Statements 6-159
Note: Phrases not described above are described in section 6.4.9,
“Common Screen Options.”

DISPLAY UPON WINDOW TITLE

Format 7

DISPLAY UPON WINDOW TITLE modifies a subwindow’s title
DISPLAY source UPON WINDOW [TOP] [CENTERED] TITLE
 [BOTTOM] [LEFT]
 [RIGHT]

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Source is an alphanumeric data item or nonnumeric literal.

General Rules

1. The DISPLAY UPON WINDOW TITLE verb is used to modify a boxed
subwindow’s title. Either the top or bottom title may be modified.

2. If any of the positioning phrases is used, the new title is placed in the
indicated position.

3. If neither the TOP/BOTTOM nor the CENTERED/LEFT/RIGHT
option is used, then the window’s title is modified in its current
position. If the window has both a top and bottom title, the top title is
modified.

4. If the TOP/BOTTOM phrase is omitted, TOP is implied.

5. If the CENTERED/LEFT/RIGHT phrase is not used, CENTERED is
implied.

6-160 Procedure Division
DISPLAY UPON COMMAND LINE

Format 8

DISPLAY UPON COMMAND LINE changes the contents of the
command-line buffer
DISPLAY cmd-line UPON COMMAND-LINE

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Cmd-line is an alphanumeric data item or nonnumeric literal.

General Rules

1. The DISPLAY UPON COMMAND-LINE verb is used to move the
contents of an alphanumeric data item into the buffer where the
command line is stored. The command line is not re-executed. The only
effect of this verb is that it changes the value that will be returned by
subsequent ACCEPT FROM COMMAND-LINE statements.

2. You can also access the command-line buffer from a C program. The
buffer is an external data array named Acmd_line.

DISPLAY src-item (ANSI format)

Format 9

DISPLAY src-item (ANSI format) sends data directly to the screen without
using the ACUCOBOL-GT window manager.
DISPLAY {src-item} ... [UPON mnemonic-name] [WITH NO ADVANCING]

Procedure Division Statements 6-161
Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Src-item is a literal or data item that specifies the data to be displayed.
It must be USAGE DISPLAY unless the CONVERSION phrase or the
“-Vd” compiler option is specified. Note that by default the screen is
cleared when the program starts. If you specify the “-Ca” compiler
option, the screen is not cleared until the first DISPLAY statement with
the CONVERSION phrase is executed. If you want the conversion to
take place without the screen being cleared, you must specify the “-Ca”
and “-Vd” options without the CONVERSION phrase on the
DISPLAY statement.

3. Mnemonic-name must be a user-defined word declared in
Special-Names that refers to a display device, or it must be the name of
the display device itself. See section 4.2.3, “Special-Names
Paragraph,” for a list of valid devices.

4. If the UPON phrase is specified it must be the first optional phrase.

5. If the UPON phrase is omitted, then the “-Ca” compiler option must be
specified. If it is not, then the statement is treated as a Format 1
DISPLAY statement instead.

General Rules

1. The data contained in src-item is sent to the output device named by the
UPON phrase. If the UPON phrase is omitted, the output device is
assumed to be the user’s console.

2. If the WITH NO ADVANCING phrase is omitted, then the device is
advanced to the next line after the last src-item is displayed. If WITH
NO ADVANCING is specified, no additional action takes place after
the data is sent to the output device. If line advancing is used, trailing
spaces are removed from the last src-item before it is sent to the
device.

3. If the output device is any of the following, the data is sent to the
user’s console:

CONSOLE, SYSOUT, SYSLST, SYSLIST

6-162 Procedure Division
This data may be redirected with the “-o” runtime option or with
operating system commands. If line advancing is used, the system’s
output buffer is flushed, but if NO ADVANCING is specified, then the
buffer is not flushed. When data is sent to these devices, no editing or
formatting of the data occurs.

4. If the output device is SYSOUT-FLUSH, the data is sent to the user’s
console. After the last src-item is sent, the output buffer is flushed,
forcing the data to be sent immediately. No editing or formatting of
the data occurs.

5. If the output device is SYSERR, the data is sent to the runtime’s error
output. This is either the user’s screen or the file specified in the “-e”
runtime option.

6. Technical Note: This form of the DISPLAY statement sends data
directly to the user’s screen without using ACUCOBOL-GT’s window
manager. On many machines, the window manager maintains an
image of the user’s screen in memory. (This improves efficiency by
omitting redundant screen displays and is used to implement “pop-up”
windows.) By sending data directly to the screen, you can cause the
window manager’s screen image to be in error. This can cause strange
effects when mixed with ACUCOBOL-GT-specific DISPLAY
statements, including:

• lost data

• incorrect functioning of CLOSE WINDOW

• incorrect cursor position

• incorrect character attributes

• incorrect display in debugger

For these reasons, you must be careful when using ANSI DISPLAY.
Here are some useful guidelines:

• If your DISPLAY does not affect the screen image, then it’s OK to
use it. For example, you can use ANSI DISPLAY to send a control
sequence to an attached printer or cash register.

Procedure Division Statements 6-163
• If you use only ANSI DISPLAY statements, then you should not
experience any problems (except that the debugger will not be able
to restore the user’s screen). With this approach, you should avoid
all DISPLAY statements except for Format 9.

• If you must mix formats, then you can use the library routine
“W$FORGET” to correct the behavior of the window manager.
This routine causes the window manager to enter its initial state,
where it does not know the screen image or current attribute
settings. If you call this routine after a series of Format 9 DISPLAY
statements, the window manager will be set to a state where it can
correctly manage the screen. Note that this routine will cause the
cursor to be positioned to the last line on the screen.

• You can always use UPON SYSERR safely. When sent to the
screen, the output is directed through the window manager.
Normally, you would use this with the “-e” runtime option to direct
error messages to an error log file.

• In the DOS/VS COBOL compatibility mode, output may be sent to
a simulated card punch. See “DISPLAY UPON SYSPUNCH” in
section 5.2 of Transitioning to ACUCOBOL-GT.

DISPLAY UPON GLOBAL TITLE

Format 10

DISPLAY UPON GLOBAL TITLE changes the title of the application
window in a graphical user interface, or the title of a floating window.
DISPLAY title-1 UPON { FLOATING WINDOW handle-1 } TITLE
 { GLOBAL WINDOW }

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Title-1 is an alphanumeric literal or identifier that contains the new
title.

6-164 Procedure Division
3. Handle-1 is the handle of the floating window in which the new title is
applied.

4. If the UPON phrase is specified, it must be the first optional phrase.

General Rules

1. DISPLAY UPON FLOATING WINDOW TITLE is used to change the
title of the main application window or floating window. When you are
changing a floating window’s title, handle-1 identifies which window to
change.

2. The case of the title will be exactly as given in title-1.

3. Alternatively, you can use the MODIFY verb to change a window’s
title.

DISPLAY FLOATING WINDOW

Format 11

DISPLAY FLOATING WINDOW creates and displays a floating window.
DISPLAY FLOATING [GRAPHICAL] WINDOW

 [UPON parent-window]

Remaining phrases are optional, can appear in any order.
{MODELESS}
{MODAL }

{LINK} TO THREAD
{BIND}

SCREEN LINE NUMBER screen-line

SCREEN {COLUMN } NUMBER screen-col
 {COL }
 {POSITION}
 {POS }

AT screen-loc

Procedure Division Statements 6-165
AT LINE NUMBER line-num

AT {COLUMN } NUMBER col-num
 {COL }
 {POSITION}
 {POS }

SIZE length

LINES height

FONT {IS} font-1
 {= }

CONTROL FONT {IS} font-3
 {= }

CELL
 {SIZE } [IS] {cell-units }
 {HEIGHT} [=] {control-type-name FONT font-2 [SEPARATE]}
 {WIDTH } {control-type-name FONT [OVERLAPPED]}

{ERASE} SCREEN
{BLANK}

{REVERSE-VIDEO}
{REVERSE }
{REVERSED }

WITH {COLOR } color-val
 {COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

6-166 Procedure Division
{BACKGROUND-HIGH }
{BACKGROUND-LOW }
{BACKGROUND-STANDARD}

{ [USER-GRAY] [USER-WHITE] }
{ USER-COLORS }

BOXED

SHADOW

TITLE-BAR

[TOP] [CENTERED] TITLE IS title
[BOTTOM] [LEFT]
 [RIGHT]

WITH SYSTEM MENU

WITH NO SCROLL

WITH NO WRAP

{NO-CLOSE}

{AUTO-RESIZE}

{RESIZABLE }

MIN-SIZE {= } min-size
 {IS}
MAX-SIZE {= } max-size
 {IS}
MIN-LINES {= } min-lines
 {IS}
MAX-LINES {= } max-lines
 {IS}

CONTROL VALUE {IS} control-val
 {= }

LAYOUT-MANAGER {IS} manager
 {= }

Procedure Division Statements 6-167
VISIBLE {IS} {TRUE }
 {= } {FALSE }
 {visible-state}

POP-UP MENU {IS} {menu-1}
 {= } {NULL}

{POP-UP AREA IS } handle-name
{HANDLE {IS} }
 {IN}

CONTROLS-UNCROPPED

EVENT PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
 {THRU }
 { NULL }

ACTION {IS} action
 {= }

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Parent-window is a USAGE HANDLE or PIC X(10) data item. If
used, the UPON phrase must be the first optional phrase specified.

3. Screen-line and screen-col are numeric expressions.

4. Screen-loc is an integer data item or literal containing exactly 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

5. Line-num, col-num, length, and height are numeric data items or
literals. They may be non-integer values. You can also specify the
value of any of these items with an arithmetic expression.

6. Font-1, font-2 and font-3 are data items described as USAGE
HANDLE or HANDLE OF FONT. They should contain valid handles
to screen fonts.

7. Cell-units is a positive integer data item or literal.

6-168 Procedure Division
8. Control-type-name is one of the control type reserved words known by
the compiler.

9. Color-val is a numeric data item or literal. Color-val can also be an
arithmetic expression, except when used in the Screen Section.

10. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. See section 6.4.9,
“FOREGROUND-COLOR and BACKGROUND-COLOR Phrases”,
for a more detailed discussion of color settings and values.

11. Min-size, max-size, min-lines and max-lines are integer literals or data
items.

12. Title is an alphanumeric literal or data item.

13. Control-value is a numeric expression.

14. The word “NO-CLOSE” is reserved by the compiler only when it
appears in a Format 11 or 12 DISPLAY statement.

15. Manager is a USAGE HANDLE or HANDLE OF
LAYOUT-MANAGER that contains a valid reference to a layout
manager.

16. Visible-state is a numeric literal or data item.

17. Menu-1 is a USAGE HANDLE or HANDLE OF MENU data item.

18. Handle-name is a USAGE HANDLE, HANDLE OF WINDOW, or
PIC X(10) data item.

19. Proc-1 and proc-2 are procedure names.

20. Action is a numeric literal or data item.

21. You must compile allowing for recursive paragraphs in order to specify
the EVENT PROCEDURE phrase. Compiling for recursive
paragraphs is allowed by default, but can be turned off with the “-Zr0”
compiler option.

22. If the UPON phrase is specified, it must be the first optional phrase.

23. The SCREEN LINE phrase and the SCREEN COLUMN phrase must
be used together. If they are used, you cannot use the AT, LINE, or
COLUMN phrases.

Procedure Division Statements 6-169
24. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

25. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

26. The POP-UP/HANDLE phrase may be specified anywhere in the
statement after the required initial elements.

27. IS and “=” are synonymous.

28. COLUMN, COL, POSITION, and POS are equivalent.

29. BLANK and ERASE are equivalent.

30. HIGHLIGHT, HIGH, and BOLD are synonymous.

31. LOWLIGHT and LOW are equivalent.

32. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

33. COLOR and COLOUR are synonymous.

34. FOREGROUND-COLOR and FOREGROUND-COLOUR are
synonymous.

35. BACKGROUND-COLOR and BACKGROUND-COLOUR are
synonymous.

General Rules

1. The syntax for DISPLAY FLOATING WINDOW is a superset of the
DISPLAY WINDOW verb. This simplifies conversion of DISPLAY
WINDOW statements to DISPLAY FLOATING WINDOW statements.

2. The DISPLAY FLOATING WINDOW verb creates a new floating
window and stores a handle to the window in handle-name. Use the
value of handle-name with other verbs (such as DESTROY) when you
need to refer to the window.

3. After the new window is created, it becomes both the current and
active window.

6-170 Procedure Division
4. The window created may be either modal or modeless. A modal
window is a window that the user cannot leave until it is closed. A
modeless window is a window that the user can leave (switch to
another window) while it is still open. These names are derived from
the idea that a modal window enters a new mode in the program (for
example, selecting a file to open) while a modeless window does not
(since the user can continue working on tasks in other windows).

5. The DISPLAY FLOATING WINDOW verb also creates a new
subwindow that exactly covers the interior of the floating window.
This is identical to an implied DISPLAY SUBWINDOW statement
(with no options). Any HIGH, LOW, STANDARD,
BACKGROUND-HIGH, BACKGROUND-LOW,
BACKGROUND-STANDARD, REVERSE, COLOR, NO SCROLL,
or NO WRAP phrases specified in the DISPLAY FLOATING
WINDOW verb are inherited by the implied subwindow.

6. Each window has a controlling thread. A window’s controlling thread
is the most recent thread to have created that window or done an
ACCEPT from that window. When a thread performs an ACCEPT
from a window, and that thread is not the controlling thread of the
active window, the thread suspends. The thread remains suspended
until the window it is accessing becomes active (either because the user
activates it or the program does).

7. Most of the optional phrases have the same meaning as they do for
DISPLAY SUBWINDOW. However, note the following exceptions:

a. The ERASE SCREEN phrase is always implied by DISPLAY
FLOATING WINDOW, so specifying this phrase has no
additional effect.

b. Most GUIs (including Windows) cannot display shadowed pop-up
windows. On these systems, the SHADOW phrase has no effect.
On character-based systems, the SHADOW phrase has its normal
effect.

c. All GUIs create borders around their windows. If there is a choice
of border thickness, specifying BOXED will select a thicker
border than omitting BOXED. Under character-based systems, the
BOXED phrase determines whether or not there will be a border.

Procedure Division Statements 6-171
d. The HIGH, LOW, STANDARD, BACKGROUND-HIGH,
BACKGROUND-LOW, BACKGROUND-STANDARD,
REVERSE, COLOR, NO WRAP, and NO SCROLL phrases do
not directly affect the created window. Instead, they are passed on
to the initial subwindow as described in Rule 5, above.

e. Most GUIs (including Windows) cannot display more than one
window title and do not give you a choice of title position. On
these systems, the specified TITLE appears in the location
determined by the GUI (usually top center, or top left). If you
specify more than one title, the TOP title is the one used. If you
specify only one title (either TOP or BOTTOM), it is used
regardless of the title location.

GRAPHICAL Phrase

The optional GRAPHICAL phrase directs the compiler to use a default
CELL phrase equivalent to:

CELL SIZE = LABEL FONT

This phrase establishes the window’s coordinate space based on the font used
by controls that occupy the window. The CELL phrase can still be used and
any values set in that phrase take precedence over the default value
established with GRAPHICAL option. In other words, if you specify only a
CELL HEIGHT or CELL WIDTH, then the other dimension receives the
default assignment.

The intent of the GRAPHICAL option is to make it easier to consistently
establish an appropriate coordinate space for windows that contain only
controls (see the discussion of cell sizing and coordinate space that is
included with the CELL phrase rules, below).

For example, the window that is specified with:
DISPLAY FLOATING WINDOW,
 CELL SIZE = LABEL FONT

can be more simply specified with:
DISPLAY FLOATING GRAPHICAL WINDOW

UPON Phrase

6-172 Procedure Division
The UPON phrase specifies the parent of the new floating window.
Parent-window must be a valid floating window handle. If the UPON phrase
is omitted, the current window is used as the parent. If you create a new
floating window in the scope of an UPON phrase, the new window becomes
the current window when the DISPLAY statement terminates.

MODAL and MODELESS Phrases

1. The word MODAL makes a floating window modal. Floating windows
are modal by default, so this word is just commentary. When a modal
window is active, all other windows are disabled. The user cannot
activate another window, including any of its components (such as its
menu or close button). Note, however, that while a user cannot activate
another window, the program can (see Format 10 of the SET statement).

2. The word MODELESS makes a window modeless. When a modeless
window is active, the user can activate another window by using the
host system’s techniques for doing so (for example, by clicking on
another window with the mouse). When this happens, any ACCEPT
that is active is terminated by a CMD-ACTIVATE event. Your
program should respond by performing an ACCEPT in the window
requested by the user. Alternatively, you can link your modeless
window to a thread, see rule 1 under LINK TO THREAD and BIND
TO THREAD Phrases (below).

LINK TO THREAD and BIND TO THREAD Phrases

1. The LINK TO THREAD phrase allows the runtime to automate the
handling of the CMD-ACTIVATE event. If the user activates a window
created with the LINK TO THREAD phrase, the runtime will examine
that window to see if it has a controlling thread different from the current
thread. If it does, then the current thread suspends and the thread
controlling the newly active window is allowed to run. The runtime
handles all aspects of the window activation. The CMD-ACTIVATE
event is not returned to the program in this case. If the controlling thread
of the new window is the same as the current thread, then the runtime
does not perform any special handling and the CMD-ACTIVATE event
is passed on to your program. In order to get the best benefit from the
LINK TO THREAD phrase, you should arrange to have a separate
thread control each modeless window in your program.

Procedure Division Statements 6-173
2. The BIND TO THREAD phrase has the same effect as the LINK TO
THREAD phrase. In addition, the window is automatically destroyed
when its controlling thread terminates.

SCREEN LINE and SCREEN COLUMN Phrases

The SCREEN LINE and SCREEN COLUMN phrases determine the initial
location of the window on the screen. Screen-line and screen-col give the
coordinates of the upper left corner of the window in screen base units.
Screen base units are machine dependent. On character systems, they are
character cells. On graphical systems, they are pixels. The upper left corner
of the screen is location “1,1”. Under Windows, the runtime ensures that the
initial window is fully visible, so the specified location may not be used if
that would place a portion of the window off the screen (the closest allowed
location is used). Windows other than the initial window may be placed
arbitrarily. On graphical systems, the location of a floating window is
interpreted to mean the location of its exterior. On character systems, the
location is the same as it is for subwindows: the location of the window’s
interior.

LINE, COLUMN, and AT Phrases

1. The LINE phrase indicates the starting row of the new window. This is
always relative to the first line of the parent window. Non-integer values
are allowed. If the LINE phrase is omitted, then the new window is first
centered vertically over the parent window and then adjusted to be fully
on the screen.

Note: This rule differs from the handling of DISPLAY
SUBWINDOW. With DISPLAY SUBWINDOW, omitting the LINE
phrase is the same as specifying “LINE 1”.

In all cases, the positioning is relative to the parent window as physically
displayed on the screen, ignoring any aspect of the window not currently
displayed. Thus, if the current window is the main application window,
and that window has been scrolled by the user, line “1” refers to the first
line of the physical window--not the (undisplayed) first line of the main
application window.

6-174 Procedure Division
2. The COLUMN phrase works analogously to the LINE phrase, except
that it controls the horizontal positioning.

3. The AT phrase screen-loc item must be either a 4-digit or 6-digit
number. The first half of this number is the starting row, the second
half the starting column. These values are interpreted in the same
manner as they are for the LINE and COLUMN phrases. A value of
zero is treated as zero (i.e., AT 0000 is equivalent to ROW 0, COL
0).

SIZE and LINES Phrases

1. The SIZE phrase indicates the width of the interior of the new window.
If it is omitted, then the width is the same as the main application
window. If there is no main application window available, the default
size of the floating window is the same as the current window.

Note: A non-integer SIZE is allowed. If the SIZE is not an integer,
then the partial column created cannot be used to display textual
characters; however, graphical controls can be located there. The
partial column is always shown as spaces with the floating window’s
background color. The minimum SIZE value allowed is “1”. The
runtime currently limits the maximum size to 132 columns.

2. The LINES phrase indicates the height of the new window’s interior.
If it is omitted, then the height is the same as the main application
window. As with the SIZE phrase, a non-integer number of lines may
be specified. Any partial lines created are always displayed as spaces
with the background color. The minimum value for LINES is “1”
(one). The runtime currently limits the maximum size to 50 lines.

FONT Phrase

The FONT phrase assigns the font that will be used for all textual ACCEPT
and DISPLAY statements used in the window. This also sets the default cell
size to the size of the “0” (zero) character described by font-1. The cell size
determines the height of one row and the width of one column. The font
described by font-1 must be a fixed-width font. If it is not, or if the FONT
phrase is not specified, then the font used is the same as the one used by the
parent window.

Procedure Division Statements 6-175
CONTROL FONT Phrase

The CONTROL FONT phrase specifies the default font to use for any
graphical controls displayed in this window. If you omit the CONTROL
FONT phrase, a system default is used (the font “DEFAULT-FONT”).

CELL Phrase

The CELL phrase defines the height, or width, or height and width of one cell
in the window. A cell defines the height of one row and the width of one
column. The default cell size is set by the size of the font used in the window.

The cell size is described in terms of cell units. The exact meaning of a cell
unit is machine-dependent. Typically, for character-based systems, one cell
unit is equal to the height or width (as appropriate) of one screen character.
On graphical systems, a cell unit is typically one pixel in size. When
developing programs, you should avoid writing code that depends on fixed
(hard-coded) values for cell units.

The HEIGHT option of the CELL phrase defines the cell height for the new
window. The WIDTH option defines the width. The SIZE phrase defines
both the height and width together.

The cell-units option sets the cell’s height, or width, or both, to the value of
cell-units.

The control-type-name phrase causes the cell height, or width, or both, to be
based on a particular font and control type. The system measures the size of
font-2 when it is used in a control described by control-type-name, and sets
the cell size accordingly. This option is typically used to set the coordinate
space of the window to one that is convenient for aligning several controls of
a particular type and font. Note that the font handle (font-2) is not required.
When it is omitted, the window’s CONTROL FONT is used. Also note that
if the font handle is omitted, the optional word FONT is required (in order to
avoid ambiguity with the FONT phrase).

If the SEPARATE option is specified, then a system-dependent amount is
added to the measured font height to provide for some vertical separation
between controls. This is typically used to provide some space between

6-176 Procedure Division
boxed entry-fields on adjacent rows. On the other hand, if OVERLAPPED is
specified, the height is reduced by the size of the top border of a boxed entry
field. This causes boxed fields on adjacent rows to share a common border.

The runtime currently limits control-type-name to be either a “LABEL” or
“ENTRY-FIELD”. If another control type name is used, the runtime treats it
as if it were type “LABEL”.

If a window’s cell width does not match the width of its font, or if its cell
height is less than the height of its font, then the effects of a textual ACCEPT
or DISPLAY statement in that window are undefined. If its cell height is
larger than its font’s height, then the characters are positioned at the top of
each cell, and the lower portion of the cell is filled with the text’s background
color.

Note: The purpose of the CELL phrase is to simplify the construction of
windows that contain only controls. We strongly recommend that you use
it (or the GRAPHICAL phrase described above) whenever you create a
window that will only contain controls. If you do not, your screens will be
less portable.

In particular, if the relative size of the font you use in your controls changes
in relation to the system’s fixed font, then you will experience problems,
including overlapping controls. This is because the default cell size that
defines the coordinate space is based on a fixed-size font in order to maintain
compatibility with character-based applications. The size relationship
between the variable-pitch font used in controls and the default fixed-font
that defines the coordinate space determines the appearance of the screen. If
the relationship changes, the appearance of the screen changes. One way that
this can happen is if the end user’s machine is missing one of the fonts. In
this case, Windows will substitute a different font, which may be a different
size. To avoid these problems, define your coordinate space based on the
same font that your controls use (with the CELL phrase). Then if the font
changes the entire screen is rescaled uniformly.

For example, the following statement defines the coordinate space based on
the font used with entry fields. This definition allows you to easily position
entry fields vertically with “LINE 1”, “LINE 2”, etc., and have it look right.

CELL SIZE IS ENTRY-FIELD FONT SEPARATE

Procedure Division Statements 6-177
USER-GRAY, USER-WHITE, and USER-COLORS Phrases

The USER-GRAY, USER-WHITE, and USER-COLORS phrases provide a
convenient way of matching your application’s normal colors to those chosen
by the user. The USER-GRAY option causes the palette manager to map
color number “8” (low-intensity white) to the color that the user has chosen
to use with 3-D objects on the host system. Similarly, USER-WHITE maps
color number “16” (high-intensity white) to the color the user has chosen to
be the normal background color for application windows. If you arrange
your application so that it uses color number “8” as the background for
regions populated with graphical controls, and color number “16” for plain
text regions, your application will look much like other applications on the
system.

The USER-COLORS phrase indicates that you want to apply both the
USER-GRAY and USER-WHITE options. These phrases are effective only
on host graphical systems that have a palette manager. On other systems,
these phrases have no effect. Also, note that the palette applies to the entire
application. Because of this, you usually specify these options only on the
first window you create.

Note: Because Windows make abundant use of 3-D effects in displaying
controls, we strongly suggest that you use the USER-GRAY or
USER-COLORS options for programs with graphical controls that run
under Windows. Graphical controls look best when placed on a “gray”
background (color number “8”). Other color choices may make 3-D
controls look odd.

TITLE-BAR Phrase

The TITLE-BAR phrase indicates that you want to have a title bar placed
along the top edge of the new window. This phrase is automatically implied
by the TITLE phrase (exception: this is not true if you also use the
CONTROL VALUE phrase). Under some GUIs (including Windows), you
must place a title bar in order to move the floating window with the mouse.
Without a title bar, the user’s ability to move the window depends on the host
GUI. Note that you can have a title bar without specifying a title.

SYSTEM MENU Phrase

6-178 Procedure Division
The SYSTEM MENU phrase causes a system menu (also known as a close
box) to appear on the created window. This menu allows the user to close the
floating window. It may also have additional properties depending on the
host system. Under Windows, this menu contains the Move and Close
operations. If you include a system menu, your program must be ready to act
on a close window event (cmd_close) at any time. See section 4.2, and
Chapter 6, Book 2, User Interface Programming, for additional information.
See also the QUIT_MODE configuration variable in Appendix H, Book 4,
for shutdown handling options. Note that the SYSTEM MENU phrase also
implies the TITLE-BAR phrase.

NO-CLOSE Phrase

The NO-CLOSE phrase causes the window’s “Close” menu option to be
disabled. This option can be applied only when the window is created and its
effects cannot be reversed (the associated window’s “Close” option is
permanently disabled). The NO-CLOSE option takes precedence over other
settings, including the setting of the QUIT_MODE configuration variable.

AUTO-RESIZE and RESIZABLE Phrases

1. The AUTO-RESIZE phrase specifies that the window be displayed with
resizable borders. When the window is created, it is displayed full size
as defined by the SIZE and LINES phrases. By dragging the resizable
borders the user can reduce or increase the size of the window. The
runtime automatically adds scroll bars as needed and manages any
required scrolling. The window also has a maximize button that allows
the user to immediately resize the window to its full size. The exact
representation and functioning of the resizable borders and the maximize
button is host system dependent. Although the user can change the
physical size of the window, the logical size does not change. Neither do
controls in the window change size or position. If AUTO-RESIZE is
omitted, the window is a fixed size.

2. The RESIZABLE phrase creates a window that the user can resize but
omits the automatic handling provided by the AUTO-RESIZE phrase.
When the user resizes the window, the size of the logical window is
changed to match the new physical window. Any area that is new is
displayed with spaces in the window’s background color. Any area
that has been removed is lost (although any permanent controls in that
area will still exist). The window’s subwindow is resized to fill the

Procedure Division Statements 6-179
interior of the resized window. The subwindow’s background color is
changed to match the window’s background color. Other traits of the
subwindow remain unchanged. The program receives a
NTF-RESIZED event to inform it of the new size. See the section on
events for details. Windows that have the RESIZABLE attribute can
use a resize layout manager to help handle the resizing and positioning
of controls in the window. See section 4.8.4, “The Resize Layout
Manager,” in Book 2 for details.

3. For windows with the RESIZABLE phrase, min-size and min-lines set
the windows’ smallest width and height respectively. This value is
expressed in character cells (fractional cells are ignored). If omitted, or
set to zero, the smallest window size is determined by the host system.
Similarly, the max-size and max-lines values set the window’s largest
width and height. If omitted, or set to zero, the host system determines
the largest size (usually the entire screen). For windows without the
RESIZABLE phrase, these values are ignored.

Note: Adding or removing a menu or toolbar from a window normally
causes the window to be resized to maintain its interior dimensions.
For windows with the RESIZABLE phrase, the window is not resized.
Instead, the interior dimensions are reduced or increased as needed.
You should either modify the window to be the desired size, or inquire
the current dimensions when you add or remove a menu or toolbar for
resizable windows.

6-180 Procedure Division
ACTION Phrase

The ACTION phrase allows you to programmatically maximize, minimize,
or restore a window. To use ACTION, assign it one of the following values
(these names are found in acugui.def):

4. If you assign an ACTION value that is not allowed, then there is no
effect other than to trigger the ON EXCEPTION phrase of the
MODIFY statement (if present). Note that you can use the ACTION
phrase to create a window that is initially maximized or minimized.

ACTION-MAXIMIZE maximizes the window. It has the same
effect as if the user clicked the
“maximize” button. Allowed only for
windows that have RESIZABLE or
AUTO-RESIZE specified or implied for
them.

ACTION-MINIMIZE minimizes the window. Allowed only
with INDEPENDENT windows that
have the AUTO-MINIMIZE property set
to true. It is not supported with other
types of floating windows; if set, it is
ignored by the runtime.

ACTION-MINIMIZE has the same
effect as if the user clicked the
“minimize” button.

ACTION-RESTORE If the window is currently maximized or
minimized, restores the window to its
previous size and position; otherwise, it
has no effect. Allowed only for windows
that can be maximized or minimized.

Procedure Division Statements 6-181
CONTROL VALUE Phrase

The CONTROL VALUE phrase allows you to specify certain attributes of
the new window at run time instead of at compile time. Control-val must be
a numeric expression. In it, you can specify certain floating window traits by
adding together any of the following values:

For each value specified, the corresponding attribute is given to the new
window. When a value is not specified, the presence or absence of that trait
depends on the other phrases included in the DISPLAY FLOATING
WINDOW statement. Note that you can only give traits to a window with the
CONTROL VALUE phrase; you cannot negate traits specified by the
DISPLAY FLOATING WINDOW statement. For example, if you want to
specify at run time whether or not a window gets a shadow, you should omit
the SHADOW phrase from the DISPLAY FLOATING WINDOW statement
and use a CONTROL VALUE phrase to add shadowing when you want it.

LAYOUT-MANAGER Phrase

The LAYOUT-MANAGER phrase attaches a layout manager to the window.

VISIBLE Phrase

The VISIBLE option determines whether the window created is visible or
invisible. If the FALSE option is used, or visible-state is the value zero, then
the window is invisible. Otherwise, the window is visible. If the VISIBLE
phrase is omitted, then the window is visible.

Boxed 1

Shadow 2

No Scroll 4

No Wrap 8

Reverse 16

Title-Bar 32

System Menu 64

User-Gray 128

User-White 256

6-182 Procedure Division
POP-UP MENU Phrase

The POP-UP MENU phrase associates a pop-up menu with the window. If
menu-1 is specified, then the menu associated with menu-1 becomes the
pop-up menu. If NULL is specified, the window is not given a pop-up menu.
Pop-up menus are activated by a machine-dependent technique. Under
Windows, the technique is to right-click on the window’s background.

CONTROLS-UNCROPPED Phrase

Normally, when you create a control in a window, the control is cropped to
fit the current subwindow’s dimensions. In addition, if the control’s home
position is outside of the current subwindow, the control is not created.
Adding the phrase CONTROLS-UNCROPPED overrides these rules. When
this phrase is used, the control is created with the specified location and
dimensions, regardless of whether the control will be physically in the
window.

This can be useful when you are dealing with RESIZABLE windows.
Sometimes a resizable window is too small to show all of the controls that
your program creates. Normally, these controls either would not be created
or would be cropped. This could produce odd results when the window is
later resized larger by the user. Although the resized window is now large
enough to show everything, the controls still show their cropped appearance,
because their (cropped) creation size is recorded in the controls as their actual
size. Specifying CONTROLS-UNCROPPED avoids the cropping behavior.

This style is useful also when you want to place a combo-box near the bottom
of a window. Because the size of the drop-down portion of the combo-box is
determined by the control’s overall height, cropping the control limits the
drop-down box to the window’s boundaries. If you want the box to drop
down beyond the edge of the window, you need to use the
CONTROLS-UNCROPPED window style to allow this.

EVENT PROCEDURE Phrase

1. A window’s event procedure is executed whenever an event is processed
for that window. The event procedure is executed as if it were the target
of a PERFORM statement. Only the window’s own events trigger the
event procedure. Events generated by controls contained in the window
do not trigger the window’s event procedure (they trigger the control’s

Procedure Division Statements 6-183
event procedure instead). The event procedure executes while the event
is being processed, before the event causes termination of any executing
ACCEPT statement. See section 5.9.6, “PROCEDURE Clause,” for
more information about event procedures.

2. Specifying proc-1 assigns that procedure as the window’s event
procedure. Flow of control returns at the end of proc-1, unless proc-2
is specified, in which case flow of control returns at the end of proc-2.
If you specify the NULL option, the window does not have an event
procedure. This is the default, so the NULL option is treated as
commentary.

Note: Phrases not described above are described in section 6.4.9,
“Common Screen Options.”

DISPLAY INITIAL WINDOW

Format 12

DISPLAY INITIAL WINDOW creates and displays the main application
window and independent windows.
DISPLAY {INITIAL } [GRAPHICAL] WINDOW
 {STANDARD }
 {INDEPENDENT}

Remaining phrases are optional, can appear in any order.
MODELESS

LINK TO THREAD

SCREEN LINE NUMBER screen-line

SCREEN {COLUMN } NUMBER screen-col
 {COL }
 {POSITION}
 {POS }

AT screen-loc (independent only)

6-184 Procedure Division
AT LINE NUMBER screen-line (independent only)

AT {COLUMN } NUMBER screen-col (independent only)
 {COL }
 {POSITION}
 {POS }

SIZE length

LINES height

FONT {IS} font-1
 {= }

CONTROL FONT {IS} font-3
 {= }

CELL
 {SIZE } [IS] {cell-units }
 {HEIGHT} [=] {control-type-name FONT font-2 [SEPARATE]}
 {WIDTH } {control-type-name FONT [OVERLAPPED]}

{ERASE} SCREEN
{BLANK}

{REVERSE-VIDEO}
{REVERSE }
{REVERSED }

WITH {COLOR } color-val
 {COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

Procedure Division Statements 6-185
{BACKGROUND-HIGH }
{BACKGROUND-LOW }
{BACKGROUND-STANDARD}

{ [USER-GRAY] [USER-WHITE] }
{ USER-COLORS }

TITLE-BAR

[TOP] [CENTERED] TITLE IS title
[BOTTOM] [LEFT]
 [RIGHT]

WITH SYSTEM MENU

WITH NO SCROLL

WITH NO WRAP

{NO-CLOSE}

{AUTO-RESIZE}
{RESIZABLE }

MIN-SIZE {= } min-size
 {IS}
MAX-SIZE {= } max-size
 {IS}
MIN-LINES {= } min-lines
 {IS}
MAX-LINES {= } max-lines
 {IS}

AUTO-MINIMIZE

CONTROL VALUE {IS} control-val
 {= }

LAYOUT-MANAGER {IS} manager
 {= }

VISIBLE {IS} {TRUE }
 {= } {FALSE }
 {visible-state}

6-186 Procedure Division
POP-UP MENU {IS} {menu-1}
 {= } {NULL}

{POP-UP AREA IS } handle-name
{HANDLE {IS} }
 {IN}

CONTROLS-UNCROPPED

EVENT PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
 {THRU }
 { NULL }

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Screen-line and screen-col are numeric expressions.

3. Screen-loc is an integer data item or literal containing exactly 4 or 6
digits. It may also be a group item of 4 or 6 characters. If a numeric
item is used, it must be a non-negative integer.

4. Line-num, col-num, length, and height are numeric data items or
literals. They may be non-integer values. You can also specify the
value of any of these items with an arithmetic expression.

5. Font-1, font-2 and font-3 are data items described as USAGE
HANDLE or HANDLE OF FONT. They should contain valid handles
to screen fonts.

6. Cell-units is a positive integer data item or literal.

7. Control-type-name is one of the control type reserved words known by
the compiler.

8. Color-val is a numeric data item or literal. Color-val can also be an
arithmetic expression, except when used in the Screen Section.

9. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. See section 6.4.9,
“FOREGROUND-COLOR and BACKGROUND-COLOR Phrases,”
for a more detailed discussion of color settings and values.

Procedure Division Statements 6-187
10. Title is an alphanumeric literal or data item.

11. Min-size, max-size, min-lines and max-lines are integer literals or data
items.

12. Control-value is a numeric expression.

13. The word “NO-CLOSE” is reserved by the compiler only when it
appears in a Format 11 or 12 DISPLAY statement.

14. Manager is a USAGE HANDLE or HANDLE OF
LAYOUT-MANAGER that contains a valid reference to a layout
manager.

15. Visible-state is a numeric literal or data item.

16. Menu-1 is a USAGE HANDLE or HANDLE OF MENU data item.

17. Handle-name is a USAGE HANDLE, HANDLE OF WINDOW, or
PIC X(10) data item.

18. Proc-1 and proc-2 are procedure names.

19. You must compile allowing for recursive paragraphs in order to specify
the EVENT PROCEDURE phrase. Compiling for recursive
paragraphs is allowed by default, but can be turned off with the “-Zr0”
compiler option.

20. The SCREEN LINE phrase and the SCREEN COLUMN phrase must
be used together. If they are used, you cannot use the AT, LINE, or
COLUMN phrases.

21. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

22. The POP-UP/HANDLE phrase may be specified anywhere in the
statement after the required initial elements.

23. IS and “=” are synonymous.

24. COLUMN, COL, POSITION, and POS are equivalent.

25. BLANK and ERASE are equivalent.

26. HIGHLIGHT, HIGH, and BOLD are synonymous.

6-188 Procedure Division
27. LOWLIGHT and LOW are equivalent.

28. REVERSE-VIDEO, REVERSE, and REVERSED are equivalent.

29. COLOR and COLOUR are synonymous.

30. FOREGROUND-COLOR and FOREGROUND-COLOUR are
synonymous.

31. BACKGROUND-COLOR and BACKGROUND-COLOUR are
synonymous.

General Rules

1. The DISPLAY INITIAL WINDOW verb creates the main application
window. The main application window has several special properties. If
it is minimized, all other windows in the application are also minimized.
If it is closed, the application terminates. A program can have only one
main application window.

2. If you attempt to create a main application window after one already
exists, the DISPLAY INITIAL WINDOW statement will have no
effect other than to set handle-name to NULL.

3. The runtime automatically constructs the main application window if
needed. This occurs any time a screen operation is dictated by the
program and the program has not yet constructed a main application
window. When this occurs, the runtime executes the following implied
statement:

DISPLAY INITIAL WINDOW
 TITLE-BAR,
 SYSTEM MENU,
 AUTO-MINIMIZE,
 AUTO-RESIZE.

4. The main application window is always modeless. A modeless
window is one where the user can switch to another window while the
current window is still open. You can include the word MODELESS
in the statement as commentary.

5. The INDEPENDENT phrase creates an independent window.
Independent windows act like additional main application windows.
Independent windows have the following traits:

Procedure Division Statements 6-189
a. Independent windows do not have a parent. As a result, any other
window in the application can be placed over them. Also,
destroying another window in the application will not destroy the
independent window.

b. Although they do not have a parent, independent windows use the
current window to determine their default fonts, cell size, and
colors. Also, independent windows use the current window when
determining their position. This is computed in the same manner
as it is for floating windows.

c. Independent windows can be minimized separately. Under
Windows and Windows NT, each visible independent window has
its own button on the task bar.

d. Independent windows process their close box in the same manner
as floating windows--by generating a CMD-CLOSE event.

e. Independent windows can be created before the main window. In
this case, there is no current window to provide defaults, so the
independent window uses the same defaults as the main
application window would. The window is located on the screen
as follows:

According to SCREEN LINE and SCREEN COL, if specified;
otherwise

If the window has a title bar, the host system places the window as
if it were a new application; otherwise

The window is centered in the screen.

Note that LINE and COL (without the SCREEN option) are ignored
in these cases.

f. If an independent window is current when the main application
window is created, the defaults for the main window are derived
from the independent window.

6. Most of the phrases allowed for DISPLAY INITIAL WINDOW work
in exactly the same way that they work in a DISPLAY FLOATING
WINDOW (format 11) statement. The following rules are
supplemental.

6-190 Procedure Division
SCREEN-LINE and SCREEN-COLUMN Phrases

Under Windows, the runtime ensures that the initial window is fully visible,
so the location specified by screen-line and screen-col may not be used if
that would place a portion of the window off the screen (the closest allowed
location is used).

TITLE-BAR Phrase

If you specify a TITLE-BAR but do not give a TITLE, the default title is the
name of the program (PROGRAM-ID in the IDENTIFICATION
DIVISION).

AUTO-MINIMIZE Phrase

1. The AUTO-MINIMIZE phrase indicates that a minimize button should
be displayed. The runtime handles the minimizing and restoring of the
application automatically. If you do not specify AUTO-MINIMIZE, the
user is not allowed to minimize the application.

2. In addition, the AUTO-MINIMIZE phrase implies the SYSTEM
MENU and TITLE-BAR phrases.

Window location and size

1. The window’s location on the screen is determined by the host system,
as are its initial dimensions if it is resizable. You can use the The
SCREEN Option runtime configuration variable to specify the initial
window dimensions (including whether it is maximized or minimized).

On a character-based system, the initial window always occupies the
entire terminal surface. Setting the various sizing options has no effect.

2. If you do not use the LINES and SIZE phrases, the lines and size
values are taken from the SIZE option of the SCREEN runtime
configuration variable. If SCREEN is not set, the default size is 25
lines by 80 columns. The host system may provide a smaller default
(for example, 24-line character-based terminals will default to 24
lines).

STANDARD Phrase

Procedure Division Statements 6-191
The STANDARD option is identical to the INITIAL option except that it
automatically implies the following options:

1. TITLE-BAR

2. SYSTEM MENU

3. AUTO-MINIMIZE

4. USER-COLORS

5. For graphical systems, a black foreground on a white background. For
character-based systems, a white foreground on a black background.
You may override these default colors with the various color setting
phrases.

GRAPHICAL Phrase

The GRAPHICAL phrase has the same effect as in the DISPLAY
FLOATING WINDOW statement.

VISIBLE Phrase

The VISIBLE option determines whether the window created is visible or
invisible. If the FALSE option is used, or visible-state is the value zero, then
the window is invisible. Otherwise, the window is visible. If the VISIBLE
phrase is omitted, then the window is visible.

POP-UP MENU Phrase

The POP-UP MENU phrase associates a pop-up menu with the window. If
menu-1 is specified, then the menu associated with menu-1 becomes the
pop-up menu. If NULL is specified, the window is not given a pop-up menu.
Pop-up menus are activated by a machine-dependent technique. Under
Windows, the technique is to right-click on the window’s background.

CONTROLS-UNCROPPED Phrase

Normally, when you create a control in a window, the control is cropped to fit
the current subwindow’s dimensions. In addition, if the control’s home
position is outside of the current subwindow, the control is not created.
Adding the phrase CONTROLS-UNCROPPED overrides these rules. When

6-192 Procedure Division
this phrase is used, the control is created with the specified location and
dimensions, regardless of whether the control will be physically in the
window.

This can be useful when you are dealing with RESIZABLE windows.
Sometimes a resizable window is too small to show all of the controls that
your program creates. Normally, these controls either would not be created
or would be cropped. This could produce odd results when the window is
later resized larger by the user. Although the resized window is now large
enough to show everything, the controls still show their cropped appearance,
because their (cropped) creation size is recorded in the controls as their actual
size. Specifying CONTROLS-UNCROPPED avoids the cropping behavior.

This style is useful also when you want to place a combo-box near the bottom
of a window. Because the size of the drop-down portion of the combo-box is
determined by the control’s overall height, cropping the control limits the
drop-down box to the window’s boundaries. If you want the box to drop
down beyond the edge of the window, you need to use the
CONTROLS-UNCROPPED window style to allow this.

EVENT PROCEDURE Phrase

1. A window’s event procedure is executed whenever an event is processed
for that window. The event procedure is executed as if it were the target
of a PERFORM statement. Only the window’s own events trigger the
event procedure. Events generated by controls contained in the window
do not trigger the window’s event procedure (they trigger the control’s
event procedure instead). The event procedure executes while the event
is being processed, before the event causes termination of any executing
ACCEPT statement. See section 5.9.6, “PROCEDURE Clause,” for
more information about event procedures.

2. Specifying proc-1 assigns that procedure as the window’s event
procedure. Flow of control returns at the end of proc-1, unless proc-2
is specified, in which case flow of control returns at the end of proc-2.
If you specify the NULL option, the window does not have an event
procedure. This is the default, so the NULL option is treated as
commentary.

Procedure Division Statements 6-193
Tip: The Support area of the Micro Focus Web site includes a sample
program that demonstrates how a main application window can be coded to
detect the system display’s screen resolution and then size itself to fill the
entire screen. To download the program, go to: http://
supportline.microfocus.com/xmlloader.asp?type=home. Select
Examples and Utilites > Acucorp examples > Graphical User Interface
Sample Programs > WIN-START-MAX.cbl.

DISPLAY TOOL-BAR

Format 13

DISPLAY TOOL-BAR adds a toolbar to the current window.
DISPLAY TOOL-BAR

HANDLE {IS} handle-name
 {IN}

Remaining phrases are optional, can appear in any order.
LINES {IS} height [CELL]
 {= } [CELLS]

CONTROL FONT {IS} font-1
 {= }

CELL
 {SIZE } [IS] {cell-units }
 {HEIGHT} [=] {control-type-name FONT font-2 [SEPARATE]}
 {WIDTH } {control-type-name FONT [OVERLAPPED]}

WITH {COLOR } color-val
 {COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

http://supportline.microfocus.com/xmlloader.asp?type=home
http://supportline.microfocus.com/xmlloader.asp?type=home
http://supportline.microfocus.com/xmlloader.asp?type=home

6-194 Procedure Division
{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

{BACKGROUND-HIGH }
{BACKGROUND-LOW }
{BACKGROUND-STANDARD}

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Height is a numeric data item or literal. It may be a non-integer value.
You can also specify the value as an arithmetic expression.

3. Color-val is a numeric data item, numeric literal, or arithmetic
expression

4. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. See section 6.4.9,
“FOREGROUND-COLOR and BACKGROUND-COLOR Phrases”,
for a more detailed discussion of color settings and values.

5. Font-1 is a USAGE HANDLE or HANDLE OF FONT data item. It
should contain a valid handle to a screen font.

6. Handle-name is a USAGE HANDLE, HANDLE OF WINDOW, or
PIC X(10) data item.

7. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

8. The HANDLE phrase may be specified anywhere in the statement after
the required initial elements.

9. IS and “=” are synonymous.

10. HIGHLIGHT, HIGH and BOLD are synonymous.

Procedure Division Statements 6-195
11. LOWLIGHT and LOW are equivalent.

12. COLOR and COLOUR are synonymous.

13. FOREGROUND-COLOR and FOREGROUND-COLOUR are
synonymous.

14. BACKGROUND-COLOR and BACKGROUND-COLOUR are
synonymous.

15. Cell-units is a positive integer data item or literal.

General Rules

1. DISPLAY TOOL-BAR adds a toolbar to the current floating or
main-application window. A toolbar is a region of the window that is
devoted to holding buttons and other controls that are used as mouse
accelerators that the user can activate with the mouse to quickly specify
a program operation. Toolbars extend across the entire width of the
window. They appear at either the top or the bottom of the window
depending on the host system. Under Microsoft Windows, toolbars
appear at the top of the window.

On character-based systems, toolbars are created but are always
invisible. This is done to simplify cross-platform support: you can
unconditionally create toolbars in your application. They will seem to
behave properly on character-based systems, but they will not actually
show up.

2. You may have more than one toolbar associated with a particular
window. All toolbars associated with a window are stacked vertically
in the order that they are created. You may have a maximum of five
toolbars associated with each window.

3. Like menu-bars, the space that a toolbar occupies is not part of the
body (client area) of the window. When you create a toolbar, the
window it is attached to is enlarged to accommodate the space required
by the toolbar (unless the window is RESIZABLE; see the description
of the RESIZABLE phrase in the General Rules section of the Format
11 DISPLAY statement). You do not lose any application space when
adding a toolbar to a window, except as constrained by the physical
screen. Toolbars do not scroll when the body of the window is

6-196 Procedure Division
scrolled. Instead, the toolbar remains accessible at the top of the
window. Toolbars automatically grow and shrink horizontally to match
the width of the owning window.

4. In several respects, toolbars act like windows. Because of this, they
are called child windows of the window they are attached to. When
you create a toolbar, a handle that identifies it is returned in
handle-name. Like other window handles, you can use handle-name
in an UPON phrase of a DISPLAY statement to direct output to the
toolbar. You can also use handle-name in a DESTROY statement to
remove the toolbar. Unlike other windows, toolbars are not made
current or active when they are created. This means that the only way
to place a control on the toolbar is with the UPON phrase.

5. Toolbars cannot take textual output (i.e., text-style ACCEPT and
DISPLAY statements cannot refer to a toolbar). You can only place
graphical controls on a toolbar. However, any type of graphical control
may be placed on a toolbar. Most commonly, push buttons appear on
toolbars (either text or bitmap buttons), as well as bitmap check-boxes
and radio-buttons.

6. Font-1 identifies the default font to use for any controls shown in the
toolbar. If font-1 is not specified, DEFAULT-FONT is used.

7. Height specifies the height of the toolbar. Height units are derived
from the height of font-1 (or DEFAULT-FONT if font-1 is not used).
If height is omitted, then the toolbar uses a host-dependent default
height.

8. The color and intensity phrases have their usual meaning as described
in section 6.4.9, “Common Screen Options.” The toolbar directly
uses the background-color and background-intensity only when it is
drawn. The foreground-color and intensity are used as defaults for
controls displayed on the toolbar (see the relevant sections of
Chapter 5, Book 2, ACUCOBOL-GT User Interface Programming, for
information about how a particular control type uses the default
foreground color and intensity). Any color and intensity elements that
are omitted from the DISPLAY TOOL-BAR statement are inherited
from the window that the toolbar is attached to.

9. Programmer’s Note: The easiest way to make effective use of a
toolbar is to populate it with controls that can act like function keys.
When you do this, the toolbar acts in a manner that is very similar to a

Procedure Division Statements 6-197
menu bar. This simplifies other programming because you do not need
to attempt to directly activate the controls on the toolbar. Controls that
can act like function keys are push buttons, check boxes and radio
buttons. For push buttons, use the SELF-ACT style. For check boxes
and radio buttons, use both the SELF-ACT and NOTIFY styles. This
ensures that these controls behave like function keys (i.e., they activate
themselves when clicked, and inform your program).

DISPLAY control-type-name

Format 14

DISPLAY control-type-name creates a graphical control, including a
graphical ActiveX or COM control.
DISPLAY {control-type-name }
 {OBJECT control-type}

 [title]

 [UPON new-window]

Remaining phrases are optional, can appear in any order.
{IDENTIFICATION} {IS} control-id
{ID } {= }

AT screen-loc [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT LINE NUMBER line-num [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT {COLUMN } NUMBER col-num [CELL]
 {COL } [CELLS]
 {POSITION} [PIXEL]
 {POS } [PIXELS]

AT CLINE NUMBER cline-num [CELL]

6-198 Procedure Division
 [CELLS]

AT CCOL NUMBER ccol-num [CELL]
 [CELLS]

SIZE {IS} length [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

LINES {IS} height [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

CSIZE {IS} clength [CELL]
 {= } [CELLS]

CLINES {IS} cheight [CELL]
 {= } [CELLS]

MAX-HEIGHT {IS} max-height
 {= }

MAX-WIDTH {IS} max-width
 {= }

MIN-HEIGHT {IS} min-height
 {= }

MIN-WIDTH {IS} min-width
 {= }

TITLE {IS} title
 {= }

KEY {IS} key-letter
 {= }

{COLOR } IS color-val
{COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

Procedure Division Statements 6-199
{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

{BACKGROUND-HIGH }
{BACKGROUND-LOW }
{BACKGROUND-STANDARD}

STYLE {IS} style-flags
 {= }

{style-name} ...

VALUE {IS} [MULTIPLE] value [LENGTH {IS} length-1]
 {= } [TABLE] {= }

FONT {IS} font-handle
 {= }

HANDLE {IN} control-handle
 {IS}

LAYOUT-DATA {IS} layout-data
 {= }

ENABLED {IS} {TRUE }
 {= } {FALSE }
 {enabled-state}

VISIBLE {IS} {TRUE }
 {= } {FALSE }
 {visible-state}

POP-UP MENU {IS} {menu-1}
 {= } {NULL}

HELP-ID {IS} help-id
 {= }

6-200 Procedure Division
EVENT-LIST {IS} (event-value { event-value ... })
 {= }

AX-EVENT-LIST {IS} (ax-event-value { ax-event-value ... })
 {= }

EXCLUDE-EVENT-LIST {IS} list-state
 {= }

EVENT PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
 {THRU }
 { NULL }

{{property-name } {IS } property-option
 [GIVING result-1]}. ...
 {PROPERTY property-type} {ARE}

where property-option is one of the following:
 { property-value [LENGTH {IS} length-1] }
 { {= } }
 { ({property-value} ...) }
 { }
 { {MULTIPLE} property-table }
 { {TABLE } }

Syntax Rules

1. Different formats of the DISPLAY statement may be mixed together in
one DISPLAY statement, as long as no ambiguity results. The effect is
the same as specifying each DISPLAY statement separately.

2. Control-type-name is one of the control type reserved words known by
the compiler.

3. Control-type is a numeric literal or data item.

4. New-window is a USAGE HANDLE or PIC X(10) data items. If used,
the UPON phrase must be the first optional phrase specified.

5. Control-id is an integer numeric literal or data item. Its value should
be in the range of 0 to 32767.

Procedure Division Statements 6-201
6. Screen-loc is an integer data item or literal containing exactly 4, 6, or 8
digits. It may also be a group item of 4, 6, or 8 characters. If a
numeric item is used, it must be a non-negative integer.

7. Line-num, col-num, cline-num, ccol-num, length, height, clength, and
cheight are numeric data items or literals. They may be non-integer
values, except when pixels are specified. You can also specify the
value of any of these items with an arithmetic expression.

8. Max-height, max-width, min-height, and min-width are numeric data
items or literals.

9. Color-val is a numeric data item or literal. Color-val can also be an
arithmetic expression.

10. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. See section 6.4.9,
“FOREGROUND-COLOR and BACKGROUND-COLOR Phrases”,
for a more detailed discussion of color settings and values.

11. Title is an alphanumeric literal or data item. In Format 14, title may
appear only once, either in a TITLE phrase or the initial title option.
The title option must be the first option specified.

12. Key-letter is an alphanumeric literal or data item.

13. Font-handle is a data item of type USAGE HANDLE or HANDLE OF
FONT.

14. Style-flags is a numeric expression.

15. Style-name is the name of a style associated with the class of control
being described. If control-type-name is omitted, then you may not
use the style-name phrase. You may use the STYLE phrase instead.

16. Value is a literal or data item. If the MULTIPLE option is specified,
then value must be a one-dimensional table. In this case, value is not
subscripted.

17. Length-1 is a numeric literal or data item. The LENGTH phrase may
be specified only if the immediately preceding value or property-value
is an alphanumeric literal or data item, and not a figurative constant. In
addition, the MULTIPLE option may not be specified along with the
LENGTH phrase.

6-202 Procedure Division
18. Control-handle is a USAGE HANDLE data item.

19. Layout-data is an integer literal, data item, or expression.

20. Enabled-state, visible-state, and help-id are integer numeric literals or
data items.

21. Menu-1 is a USAGE HANDLE or HANDLE OF MENU data item.

22. Event-value and ax-event-value are numeric literals or data items that
identify an event type. List elements must be enclosed in parentheses.
Elements must be separated by a space. If the list contains a single
element, the parentheses can be omitted.

23. List-state is an integer literal or numeric data item. Valid values are
“0” and “1”.

24. Proc-1 and proc-2 are procedure names.

25. Property-name is the name of a property specific to the type of control
being referenced. If the type of control is unknown to the compiler (as
in a “DISPLAY OBJECT object-1” statement), then property-name
may not be used. You must use the PROPERTY property-type option
instead.

26. Property-type is a numeric literal or data item. It identifies the
property to modify. The numeric values that identify the various
control properties can be found in the COPY library “controls.def”.

27. Property-value is a literal or data item. Property-value may also be a
numeric expression (however, only the first property-value in a phrase
may be an expression, subsequent values must be literals or data
items). When multiple values are specified, the parentheses are
required. An example of their use is: DISPLAY-COLUMNS = (1, 20)

28. Property-table is a data item that appears in a one-dimensional table.
No index should be specified.

29. Result-1 is a numeric data item.

30. If the title option is used, it must be the first optional phrase.

31. If the UPON phrase is specified, it must be the first optional phrase,
except when the title option is used, then the UPON phrase must be
second, following the title phrase.

Procedure Division Statements 6-203
32. If the AT phrase is specified, neither the LINE nor the COLUMN
phrase may be specified.

33. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

34. If the CELLS option is used in either the SIZE or CSIZE phrase, it
must be present in both phrases if both are specified. The same rule
applies to the CELLS option in the LINES and CLINES phrases.

35. The HANDLE phrase may be specified anywhere in the statement after
the required initial elements.

36. IS and “=” are synonymous.

37. COLUMN, COL, POSITION, and POS are equivalent.

38. HIGHLIGHT, HIGH, and BOLD are synonymous.

39. LOWLIGHT and LOW are equivalent.

40. COLOR and COLOUR are synonymous.

41. FOREGROUND-COLOR and FOREGROUND-COLOUR are
synonymous.

42. BACKGROUND-COLOR and BACKGROUND-COLOUR are
synonymous.

43. MULTIPLE and TABLE are synonymous.

General Rules

1. The DISPLAY control-type-name verb creates a new control and
displays it on the screen. A handle to the new control is returned in
control-handle. The handle is used in future references to the control. If
control-handle is not specified, the control is an anonymous control.
Anonymous controls can be referenced in future statements only by
position.

2. Control-type-name identifies the type of the control. The exact set of
controls available and their types are discussed in Chapter 5, Book 2,
User Interface Programming. Use OBJECT control-type when the
control type is not known at compile time. At run time, control-type

6-204 Procedure Division
must contain the identifying number of a control type known to the
system. If it does not correspond to any control type, the DISPLAY
statement is ignored and control-handle is set to NULL. The
identifying number of each control type is defined in the “controls.def”
COPY file.

3. The LENGTH option of the VALUE and property phrases establishes
the exact size of the source data to use. Without the LENGTH option,
a text value presented to the control is the data contained in the
COBOL data element with trailing spaces removed. When you specify
the LENGTH option, exactly length-1 characters of the data are used
instead. No trailing space removal occurs. This is useful in a few
cases when you need to treat trailing spaces as data.

If length-1 is a value larger than the size of the data item it is modifying,
then the size of the data item is used instead. If length-1 is negative, it is
ignored and the default handling occurs.

4. Some properties return specific values when set. These values are
placed in result-1 of the GIVING phrase. The meaning of the value
depends on the property being set; see the documentation for the
specific property. Properties that do not have a pre-defined return
value set result-1 to “1” if the property was set successfully, or “0” if
not. When a property is being given multiple values in a single
assignment (for example: “Display-Columns = (1, 10, 30)”), then
result-1 is set in response to the last value assigned.

5. After the DISPLAY statement is executed, the cursor is positioned at
the first whole column immediately to the right of the control. If this
column is past the right edge of the current subwindow, the cursor is
not moved from its previous location.

6. Once created, a control remains in existence until one of the following
events:

a. The control is explicitly destroyed with a DESTROY verb; or,

b. if the control has the TEMPORARY style, the control is
“overwritten” (as defined in section 5.2, “Data Names”); or

c. the window containing the control is destroyed.

Procedure Division Statements 6-205
7. Under some systems, controls do not interact properly with pop-up
subwindows. This is due to the fact that the controls are maintained by
the GUI directly while pop-up subwindows are managed by the
ACUCOBOL-GT runtime system. Since the GUI is not aware of the
pop-up nature of the subwindow, it displays the control over the
subwindow, even if the program’s intent is to have the pop-up
subwindow on top. For this reason, pop-up subwindows are not
recommended for programs that will be using graphical controls. You
should use floating windows instead.

8. The POP-UP MENU phrase associates a pop-up menu with the control.
If menu-1 is specified, then the menu associated with menu-1 becomes
the pop-up menu. If NULL is specified, the control is not given a
pop-up menu. Pop-up menus are activated by a machine-dependent
technique. Under Windows, the technique is to right-click on the
control.

9. See section 6.4.9, “Common Screen Options,” for a description of
the remaining optional phrases. Any phrases not described there
behave in the same manner as in a Format 1 DISPLAY statement.

10. The runtime ignores events from all controls while it is creating an
ActiveX control, via the DISPLAY statement or otherwise. If you are
using a control that delivers significant information using events and
you don’t want to miss those events while you are creating a new
control, set the CONTROL_CREATION_EVENTS runtime
configuration variable to “1” (On, True, Yes). Alternatively, you could
avoid creating an ActiveX control when you are expecting an event.

DISPLAY MESSAGE BOX

Format 15

DISPLAY MESSAGE BOX creates a simple message box
DISPLAY MESSAGE BOX

 { text } . . .

Remaining phrases are optional and may be used in any order.

6-206 Procedure Division
TITLE {IS} title
 {= }

TYPE {IS} type
 {= }

ICON {IS} icon
 {= }

DEFAULT {IS} default
 {= }

{GIVING } value
{RETURNING}

Syntax Rules

1. Text is a literal or data item.

2. Title is an alphanumeric literal or data item.

3. Type, icon, and default are numeric literals or data items.

4. Value is a numeric data item.

General Rules

1. Format 15 (DISPLAY MESSAGE BOX) creates a simple modal pop-up
window with a title-bar, a text message, an icon (on some systems) and
one or more push buttons. It then waits for the user to push one of the
buttons and returns the results. The window is then destroyed. Message
boxes come in “OK” and “Yes/No” formats, with an optional “Cancel”
button in each format. Message boxes are a programming convenience
when you need to create a simple dialog box that can fit one of these
predefined formats.

2. Text forms the body of the message box. It is the string of text that the
user will see. When more than one text item is specified, they are
concatenated together to form a single string that the user sees. The
limit on the length of the message string is host dependent. The host
system wraps the text as needed to fit the message box. If you want to
force the text to a new line, you can embed an ASCII line-feed

Procedure Division Statements 6-207
character (h”0A” in COBOL) where you want the new line to start.
For example, the following code produces a message box with two
lines of text:

78 NEWLINE VALUE H"0A".

DISPLAY MESSAGE BOX,
 "This is line 1", NEWLINE,

 "and this is line 2" .

3. When text is numeric, it is converted to a text string using the
CONVERT phrase rules. Leading spaces in the resulting string are
suppressed in the message. When text is numeric-edited, leading
spaces are suppressed in the message, and the rest of the item is
displayed without modification. For all other data types, text is
displayed without modification.

4. Title is displayed in the message box’s title bar. If title is omitted, the
message box displays the same title as the application’s main window.

5. Type, icon, default and value use a set of constants to describe the type
of message box and the buttons it contains. These constants have level
78 definitions for them in the COPY library “acugui.def” supplied with
the compiler. These constants are as follows:

78 MB-OK VALUE 1.
78 MB-YES-NO VALUE 2.
78 MB-OK-CANCEL VALUE 3.
78 MB-YES-NO-CANCEL VALUE 4.
78 MB-YES VALUE 1.
78 MB-NO VALUE 2.
78 MB-CANCEL VALUE 3.
78 MB-DEFAULT-ICON VALUE 1.
78 MB-WARNING-ICON VALUE 2.
78 MB-ERROR-ICON VALUE 3.

6. Type describes the set of buttons contained in the box. The possible
values are:

Type Value Buttons

MB-OK “OK” button

MB-YES-NO “Yes” and “No” buttons

6-208 Procedure Division
If type is omitted, or if it contains an invalid value, then MB-OK is used.
The text that appears on the buttons is set by the current language
installed for Windows. For non-Windows systems, the text is
configurable by the TEXT configuration entry.

7. Icon describes the icon that will appear. The icon appears only under
Windows. On other systems, the icon selected is ignored. If icon is set
to MB-ERROR-ICON, then a “stop” icon is shown. If icon is set to
MB-WARNING-ICON, then an “exclamation” icon displays. If icon
is set to MB-DEFAULT-ICON, then boxes with “OK” buttons will
display an “information” icon, and boxes with “Yes/No” buttons will
display a “question mark” icon. If icon is omitted or contains an
invalid value, then MB-DEFAULT-ICON is used.

8. Default describes which button will be the default button (i.e., the
button used if the user simply presses “return”). The possible values
are:

If default is omitted, or contains an invalid value, then the default button
will be the “OK” button or the “Yes” button.

9. Value will contain the identity of the button the user pressed to leave
the message box. It uses the same values as default does, described
above. For example, if the user presses the “No” button, then value
will contain MB-NO.

MB-OK-CANCEL “OK” and “Cancel” buttons

MB-YES-NO-CANCEL “Yes”, “No” and “Cancel” buttons

Value Button

MB-OK “OK” button

MB-YES “Yes” button

MB-NO “No” button

MB-CANCEL “Cancel” button

Type Value Buttons

Procedure Division Statements 6-209
Note: For each invocation of the message box, only one keystroke entry is
picked up. If you want to drive the message box from your defined
keystroke file (or from the COPY library “acugui.def”), make sure that you
make this one entry a valid character for the message box, such as “Y” or
“N” for a message requiring a “Yes” or a “No” response.

DISPLAY external-form-item

Format 16

DISPLAY external-form-item merges data into an HTML template file and
sends the result to standard output.
DISPLAY external-form-item

Syntax Rules

external-form-item is an output record for an HTML form when used in a
Common Gateway Interface (CGI) program. It is a group data item, declared
with the IS EXTERNAL-FORM and IDENTIFIED BY clauses. It may have
one or more elementary items associated with HTML template fields. The
association is made with the IS IDENTIFIED BY clause.

external-form-item may also be an input record for an HTML form. In this
case, the group item is declared with only the IS EXTERNAL-FORM clause.
This is used primarily when you are debugging your CGI program. See the
General Rules below for more details. See section 5.7.1, “Data Description
Entry,” for information about how to declare external forms.

General Rules

1. An “external form” is called an “output form” if the IDENTIFIED BY
clause is used to associate it with an HTML template file. If the
IDENTIFIED BY clause is omitted, it is called an “input form”. For
example, the following is an input form:

01 CGI-FORM IS EXTERNAL-FORM.
 03 CGI-VAR1 PIC X(10).
 03 CGI-VAR2 PIC X(10).

6-210 Procedure Division
And here is an output form:

01 HTML-FORM IS EXTERNAL-FORM
 IDENTIFIED BY "tmplate1".
 03 HTML-VAR1 PIC X(10).
 03 HTML-VAR2 PIC X(10).

The DISPLAY verb treats input and output forms differently. Input
forms are discussed in rule 7, below. For output forms, DISPLAY
merges the data contained in the elementary items into the associated
HTML template file and sends the result to the standard output stream in
conformance with the CGI specification. To do this, DISPLAY scans the
HTML template file for data names delineated by two percentage signs
on either side (i.e. %%data-name%%). It then replaces those data
names with the contents of the associated elementary items from the
output form, stripping trailing spaces.

2. The maximum length of a single line in the template file is 256 bytes.
The maximum length of a single HTML output line is 512 bytes. No
conversion is performed on the output form items before they are
merged with the HTML template file.

3. You may specify a series of directories for locating HTML template
files. To do this, use the HTML_TEMPLATE_PREFIX
configuration variable. This variable is similar to FILE-PREFIX and
CODE-PREFIX. It specifies a series of one or more directories to be
searched for the desired HTML template file. The directories are
specified as a sequence of space-delimited prefixes to be applied to the
file name. All directories in the sequence must be valid names. The
current directory can be indicated by a period (regardless of the host
operating system).

You may omit the template file suffix if it is either “.html” or “.htm”. If
the suffix is omitted or is something other than “.html” or “.htm”,
DISPLAY first appends “.html” to the specified file name and tries to
open it. If that fails, DISPLAY appends “.htm” to the file name and tries
to open it. If that fails, DISPLAY tries to open the file exactly as
specified. If these attempts fail, the following error message is sent to
the standard output stream in HTML format:

Can't open HTML template "template-file-name"

Procedure Division Statements 6-211
When the Web Server executes your CGI program, the current working
directory depends on the configuration of the specific Web Server that is
running. In many cases the current working directory is the same as the
Web Server’s “root” directory. As part of the CGI specification, when
the Web Server executes your CGI program, it sets an environment
variable called PATH_TRANSLATED to the directory containing your
CGI program. You may want to use this information to locate your
HTML template files. For example, if your template files are in the same
directory as your CGI programs, then set the
HTML-TEMPLATE-PREFIX configuration variable to the value of
PATH_TRANSLATED as follows:

01 CGI-DIRECTORY PIC X(100) VALUE SPACES.

...

ACCEPT CGI-DIRECTORY FROM ENVIRONMENT "PATH_TRANSLATED".

SET CONFIGURATION "HTML-TEMPLATE-PREFIX" TO CGI-DIRECTORY.

The output from a CGI program must begin with a “response header”.
DISPLAY automatically generates a “Content-Type” response header if
the specified template file is a local file (i.e., not a URL--see rule 5
below).

4. You may specify the EXTERNAL-FORM clause for an item that has
no subordinate items. This is useful for displaying static Web pages.
To do this, specify the name of the static Web page in the
IDENTIFIED BY clause. For example, if you have a Web page called
“webpage1.html”, add the following lines to your COBOL program:

01 WEB-PAGE-1 IS EXTERNAL-FORM
 IDENTIFIED BY "webpage1".

...

 DISPLAY WEB-PAGE-1.

5. You may also specify a complete URL instead of a template file name
in the IDENTIFIED BY clause. In this case, DISPLAY generates a
“Location” response header that contains the URL. This header
specifies that the data you’re returning is a pointer to another location.

6-212 Procedure Division
To determine whether the template file name is a URL, DISPLAY
scans it for the “://” string. DISPLAY does not apply the
HTML-TEMPLATE-PREFIX when the template file name is a URL.

For example, if your program determines that the information the user
has requested is on another Web server, and its URL is “http://
www.theinfo.com”, add the following lines to your COBOL program:

01 THE-INFO-URL IS EXTERNAL-FORM
 IDENTIFIED BY "http://www.theinfo.com"

...

 DISPLAY THE-INFO-URL.

The length of the URL must not exceed 256 bytes.

Only one response header is sent to the standard output stream. Your
CGI program should exit immediately after sending a location header
(i.e., after displaying an external form identified by a URL).

6. You may use as many HTML template files as you like in a single
program. A common way to use multiple HTML template files is to
have three output forms: a header, body, and footer. Each of these has
a corresponding HTML template file. You first display the header
form, then move each row of data to the body form and display it, and
finally display the footer form.

7. When an input form is specified in a DISPLAY statement, the names
and values of each elementary item are sent to the standard output
stream in HTML format. One line is generated for each elementary
item. The line consists of the name of the item followed by “ = ”,
followed by the first 100 bytes of the item’s value. This can be useful
when you are testing and debugging your CGI program.

DISPLAY UPON ENVIRONMENT-NAME

Format 17

DISPLAY UPON ENVIRONMENT-NAME sets the value of the specified
environment variable in the ENVIRONMENT-NAME register.

Procedure Division Statements 6-213
DISPLAY name UPON ENVIRONMENT-NAME

Syntax Rules

name is an alphanumeric Working-Storage data item that is the name of an
environment variable or configuration variable.

General Rules

DISPLAY UPON ENVIRONMENT-NAME sets
ENVIRONMENT-NAME to the value of the environment variable or
configuration variable specified by name. The value of
ENVIRONMENT-NAME can be queried with a Format 13 ACCEPT
statement.

DISPLAY assembly-name

Format 18

DISPLAY assembly-name instantiates a graphical .NET control or assembly.
DISPLAY {assembly-name }
 {OBJECT assembly-name}

NAMESPACE { IS } "namespace"

CLASS-NAME { IS } "class-name"

Remaining phrases are optional.
HANDLE { IS } handle-1

VERSION { IS } "version"

CULTURE { IS } "culture"

STRONG-NAME { IS } "strong-name"

CONSTRUCTOR { IS } CONSTRUCTOR[n] parameters...

MODULE { IS } "module"

6-214 Procedure Division
FILE-PATH { IS } "file-path"

AT LINE NUMBER line-num [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT {COLUMN } NUMBER col-num [CELL]
 {COL } [CELLS]
 {POSITION} [PIXEL]
 {POS } [PIXELS]

SIZE {IS} length [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

LINES {IS} height [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

Syntax Rules

1. Assembly-name is the name of a .NET assembly defined in a COPY file
created by NETDEFGEN. This must be the DLL name of a graphical
control, not an executable file. Graphical controls are generated by
Visual Studio when a developer selects a “Windows Control Library”
project type.

2. Handle-1 is a USAGE HANDLE or PIC X(10) data item assigned to
the graphical .NET assembly. The HANDLE phrase can be specified
anywhere in the statement after the initial elements.

3. A value surrounded by quotation marks is an alphanumeric literal and
is case-sensitive. Literal values for assembly parameters are located in
the COPY file generated by NETDEFGEN. The same COPY file must
be included in the SPECIAL-NAMES paragraph of your program.

4. Line-num, col-num, length, and height are numeric data items or
literals. They may be non-integer values, except when pixels are
specified. They may be numeric expressions.

Procedure Division Statements 6-215
General Rules

1. The Format 18 DISPLAY statement is only for graphical .NET
assemblies. Graphical assemblies show the keyword “VISUAL” in the
COPY file after the CLASS keyword. If the word “VISUAL” does not
appear, use the CREATE statement to instantiate the assembly.

2. Assembly-name is the name of a .NET assembly defined in the
NETDEFGEN COPY file. This must be a DLL name or a control
name, not an executable.

3. Namespace is a NameSpace in the assembly, as it appears in the COPY
file.

4. Class-name is a class in the NameSpace.

5. Version is the version number of the assembly.

6. Culture is cultural information related to the assembly.

7. Strong-name is the cryptographic key required to access the assembly,
if any. If the assembly requires such a key, as all assemblies in the
Global Assembly Cache (GAC) do, it is shown in the COPY file under
the keyword STRONG.

8. All classes that result in an object have a CONSTRUCTOR, which is a
sort of method. If you see a CONSTRUCTOR identifier in the COPY
file without a parameter list, then the field may be omitted from your
COBOL program. If all listed CONSTRUCTORs have parameters,
then you must choose which CONSTRUCTOR and parameters to use.
Constructor(n) is the constructor that you want to use followed by its
parameter data.

9. Module identifies a file where a combination of NameSpaces and
Classes reside. It is used when the assembly is constructed of other
assemblies.

10. File-path is the path of an XML file, and that XML file contains the
path where the .NET assembly is located. Use FILE-PATH when the
assembly that you want to access does not reside in the GAC or in the
same directory as “wrun32.exe”. Assemblies that reside in the GAC
will have the STRONG keyword in the NETDEFGEN COPY file.

11. LINES and SIZE default to the design control height and width.

6-216 Procedure Division
DIVIDE Statement

The DIVIDE statement performs arithmetic division.General Format

Format 1
DIVIDE divisor INTO { result [ROUNDED] } ...

 [ON SIZE ERROR statement]

 [NOT ON SIZE ERROR statement]

 [END-DIVIDE]

Format 2
DIVIDE divisor INTO dividend

 GIVING { result [ROUNDED] } ...

 [ON SIZE ERROR statement]

 [NOT ON SIZE ERROR statement]

 [END-DIVIDE]

Format 3
DIVIDE dividend BY divisor

 GIVING { result [ROUNDED] } ...

 [ON SIZE ERROR statement]

 [NOT ON SIZE ERROR statement]

 [END-DIVIDE]

Format 4
DIVIDE divisor INTO dividend GIVING result [ROUNDED]

 REMAINDER remainder

 [ON SIZE ERROR statement]

Procedure Division Statements 6-217
 [NOT ON SIZE ERROR statement]

 [END-DIVIDE]

Format 5
DIVIDE dividend BY divisor GIVING result [ROUNDED]

 REMAINDER remainder

 [ON SIZE ERROR statement]

 [NOT ON SIZE ERROR statement]

 [END-DIVIDE]

Syntax Rules

1. Divisor is a numeric literal or numeric data item. It represents the
number to be divided by.

2. Dividend is a numeric literal or numeric data item. It represents the
number to be divided into.

3. Result is a numeric or numeric-edited data item. In Format 1, result
must be a numeric data item.

4. Remainder is a numeric or numeric-edited data item.

5. Statement is an imperative statement.

6. The REMAINDER phrase may not be used if any operand or result is
an external floating-point data type.

Note: Avoid mixing external floating-point types with other numeric types
in DIVIDE statements, because mixed-type DIVIDE operations are not
completely reliable.

6-218 Procedure Division
General Rules

Format 1

The divisor is individually divided into each result and the quotient stored
there.

Format 2 and 3

The divisor is divided into the dividend. The quotient is stored in each result.

Format 4 and 5

1. The divisor is divided into the dividend, the quotient is stored in result,
and the remainder is stored in remainder.

2. If the ROUNDED phrase is not specified, the quotient is truncated to
fit into the result and the remainder is computed by subtracting the
product of the truncated quotient and divisor from the dividend. If the
ROUNDED phrase is specified, the quotient is rounded to fit the result,
but the remainder is still computed by subtracting the product of the
truncated quotient and the divisor from the dividend.

3. If the SIZE ERROR clause is specified, and a size error occurs during
the computation of the quotient, the remainder is not computed and
remainder remains unchanged. If a size error occurs during the
computation of the remainder, the result is updated, but the remainder
is left unchanged. The SIZE ERROR statement executes in either case.

Note: In division operations, the remainder is calculated before the
quotient is moved to the destination item(s).

The remainder will almost always be 0 if the dividend or divisor is
floating-point. This is because all of the arithmetic is performed using
floating-point variables. The remainder will be non-zero only if
precision is lost during the calculation.

4. Additional information can be found in the sections covering
Arithmetic Operations (6.4.1), Multiple Receiving Fields (6.4.2), the
ROUNDED Option (6.4.3), and the SIZE ERROR Option (6.4.4).

Procedure Division Statements 6-219
ENTRY Statement

The ENTRY statement is used to establish an alternate entry point in the
program.

General Format
ENTRY entry-name [USING {parameter} ...]

Syntax Rules

1. entry-name is a non-numeric literal. The maximum number of
characters is 30.

2. parameter is a data item defined with a level-number of 01 or 77 and it
must appear in the Linkage Section.

3. Each parameter cannot appear more than once in the USING phrase.

4. An ENTRY statement can begin in Area A. The compiler will not
recognize this as an error. This provides compatibility with other
compilers that support the ENTRY statement.

General Rules

1. entry-name must be unique within the program. No duplicates are
allowed.

2. The maximum number of parameters that may be passed to an ENTRY
point is 255.

3. If the USING phrase is used, then each parameter must be declared in
the Linkage Section.

4. The constraints on the parameters are the same as those for the
Procedure Division USING items. See Section 6.5, “Procedure
Division Format,” for details.

5. There is a limit of 255 level 01 Linkage data items per program.

6. An ENTRY point can be called just like any other program; however,
the program containing the ENTRY point must be loaded and present
in memory at the time of the CALL. Once loaded, COBOL objects

6-220 Procedure Division
may be called by any of their ENTRY point names. See
ACUCOBOL-GT User’s Guide, section 2.9, “Calling Subprograms,”
for details.

7. The CALL succeeds if the specified program-name finds an exact
entry-name match. By default, the matching logic is case sensitive and
distinguishes between hyphens and underscores. The matching logic
can be configured to be case insensitive and to not distinguish between
hyphens and underscores with the LITERAL_ENTRY configuration
variable described in Appendix H.

8. When a program is called by one of its ENTRY point names, the
execution begins immediately after the ENTRY statement. The
ENTRY point parameters are initialized in the same way as the
Procedure Division parameters.

Note: Care should be taken not to enter a COBOL program in the
middle of a control flow statement like a loop or a conditional
statement. Doing so will result in undefined behavior.

9. Execution of the program passes through entry points with no effect.

10. There is a limit of 65536 ENTRY points per program, including the
main entry point at the beginning of the Procedure Division.

EVALUATE Statement

The EVALUATE statement causes multiple conditions to be evaluated. The
subsequent action of the program depends on the results of these evaluations.

The EVALUATE statement is very similar to the CASE construct common in
many other programming languages. The EVALUATE/CASE construct
provides the ability to selectively execute one of a set of instruction
alternatives based on the evaluation of a set of choice alternatives.

EVALUATE extends the power of the typical CASE construct by allowing
multiple data items and conditions to be named in the EVALUATE phrase
(see code example 2).

Procedure Division Statements 6-221
Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format
EVALUATE {subject} [ALSO {subject}] ...
 {TRUE } {TRUE }
 {FALSE } {FALSE }

 { { WHEN obj-phrase [ALSO obj-phrase] ... } ...

 statement-1 } ...

 [WHEN OTHER statement-2]

 [END-EVALUATE]

obj-phrase has the following format:
 { ANY }
 { TRUE }
 { FALSE }
 { [=] cond-obj }
 { [NOT =] obj-item [{THRU } obj-item]}
 { {THROUGH} }
 { < obj-item }
 { IS LESS THAN obj-item }
 { <= obj-item }
 { IS LESS THAN OR EQUAL TO obj-item }
 { = obj-item }
 { IS EQUAL TO obj-item }
 { EQUALS obj-item }
 { > obj-item }
 { IS GREATER THAN obj-item }
 { EXCEEDS obj-item }
 { >= obj-item }
 { IS GREATER THAN OR EQUAL TO obj-item }
 { <> obj-item }
 { IS UNEQUAL TO obj-item }

6-222 Procedure Division
Syntax Rules

1. Subject may be a literal, data item, arithmetic expression, or conditional
expression.

2. Cond-obj is a conditional expression.

3. Obj-item may be a literal, data item, or arithmetic expression.

4. Statement-1 and statement-2 are imperative statements.

5. Before the first WHEN phrase, subject and the words TRUE and
FALSE are called “subjects,” and all the subjects together are called
the “subject set”.

6. The operands and the words TRUE, FALSE, and ANY which appear in
a WHEN phrase are called “objects,” and the collection of objects in a
single WHEN phrase is called the “object set”.

7. The words THROUGH and THRU are equivalent. Two obj-items
connected by a THROUGH phrase must be of the same class. They
are treated as a single object.

8. The number of objects within each object set must match the number
of subjects in the subject set.

9. Each object within an object set must correspond to the subject having
the same ordinal position as in the subject set. For each pair:

a. Obj-item must be a valid operand for comparison to the
corresponding subject.

b. TRUE, FALSE, or cond-obj as an object must correspond to
TRUE, FALSE, or a conditional expression as the subject.

c. ANY may correspond to any type of subject.

General Rules

1. The EVALUATE statement operates as if each subject and object were
evaluated and assigned a value or range of values. These values may be
numeric, nonnumeric, truth values, or ranges of numeric or nonnumeric
values. These values are determined as follows:

Procedure Division Statements 6-223
a. Any subject or object that is a data item or literal, without either
the THROUGH or the NOT phrase, is assigned the value and class
of that data item or literal.

b. Any subject or object that is an arithmetic expression, without
either the THROUGH or the NOT phrase, is assigned a numeric
value according to the rules for evaluating arithmetic expressions.

c. Any subject or object that is a conditional expression is assigned a
truth value according to the rules for evaluating conditional
expressions.

d. Any subject or object specified by the words TRUE or FALSE is
assigned a truth value corresponding to that word.

e. Any object specified by the word ANY is not evaluated.

f. If the THROUGH phrase is specified for an object, without the
NOT phrase, the range of values includes all permissible values of
the corresponding subject that are greater than or equal to the first
operand and less than or equal to the second operand, according to
the rules for comparison.

g. If the NOT phrase is specified for an object, the values assigned to
that object are all permissible values of the corresponding subject
not equal to the value, or range of values, that would have been
assigned had the NOT phrase been omitted.

2. The EVALUATE statement then proceeds as if the values assigned to
the subjects and objects were compared to determine if any WHEN
phrase satisfies the subject set. Each object within the object set for
the first WHEN phrase is compared to the subject having the same
ordinal position within the subject set. The comparison is satisfied if
one of the following is true:

a. If the items being compared are assigned numeric or nonnumeric
values, the comparison is satisfied if the value (or one of the range
of values) assigned to the object is equal to the value assigned to
the subject.

b. If the items being compared are assigned truth values, the
comparison is satisfied if the truth values are the same.

c. If the object is the word ANY, the comparison is always satisfied.

6-224 Procedure Division
3. If the comparison is satisfied for every object within the object set, the
corresponding WHEN phrase is selected.

4. If the comparison is not satisfied for one or more objects within the
object set, the procedure repeats for the next WHEN phrase. This is
repeated until a WHEN phrase is selected or all the object sets have
been tested.

5. If a WHEN phrase is selected, the corresponding statement-1 is
executed.

6. If no WHEN phrase is selected and a WHEN OTHER phrase is
specified, statement-2 is executed. If no WHEN OTHER phrase is
present, control transfers to the end of the EVALUATE statement.

7. The WHEN verb is accepted as an implied END-IF or
END-PERFORM for any and all preceding IF and PERFORM
statements that do not have corresponding END- statements.

8. The scope of execution of the EVALUATE statement is terminated
when the end of statement-1 or statement-2 is reached, or when no
WHEN phrase is selected and no WHEN OTHER phrase is specified.

Code Examples

Example 1:
EVALUATE AGE
 WHEN 56 THRU 99 PERFORM SENIOR_PROSPECT
 WHEN 40 THRU 55 PERFORM MATURE_PROSPECT
 WHEN 21 THRU 39 PERFORM YOUNG_PROSPECT
 WHEN OTHER PERFORM NOT_A_PROSPECT
END-EVALUATE.

Example 2:
EVALUATE INCOME ALSO TRUE
 WHEN 20000 THRU 39999 ALSO RISK_CLASS = "A"
 PERFORM LOW_INCOME_PROSPECT
 WHEN 40000 THRU 59999 ALSO RISK_CLASS = "A"
 PERFORM MID_INCOME_PROSPECT
 WHEN 60000 THRU 999999 ALSO RISK_CLASS = "A"
 PERFORM HIGH_INCOME_PROSPECT
 WHEN 60000 THRU 999999 ALSO NOT RISK_CLASS = "A"
 PERFORM HIGH_INCOME_HIGH_RISK_PROSPECT

Procedure Division Statements 6-225
 WHEN OTHER
 PERFORM UNCLASSIFIED_PROSPECT
END-EVALUATE.

Highlights for first-time users

1. Statement subjects (associated with the EVALUATE phrase) and
statement objects (associated with the WHEN phrase) must be equal in
number, correspond by position and be valid operands for comparison.
Note the number and order of subjects in example 2 and the
correspondent number and position of WHEN objects.

2. If all of the conditions in a WHEN phrase match, the associated
imperative statement is executed. None of the remaining WHEN
phrases is evaluated. Program execution then falls through to the end
of the EVALUATE statement.

3. The WHEN OTHER phrase is an optional phrase for the handling of
all remaining cases (the set of possible conditions not explicitly tested
for by the preceding WHEN phrases). The WHEN OTHER phrase, if
present, must be the last WHEN phrase in the statement.

4. The words TRUE and FALSE may be used in the subject or object
phrase to specify a literal truth condition.

5. The word ANY may be used in the WHEN phrase to specify an
unconditional match with the corresponding item in the subject phrase.

6. The word NOT may be used in the WHEN phrase to negate its
associated condition.

7. The word THROUGH or THRU may be used in the WHEN phrase to
describe a range of values. When combined with NOT, THRU
describes an excluded set of values. For example, NOT 10 THRU
20 means that any object holding a value from 10 to 20, including the
numbers 10 and 20, will result in a FALSE, or no match evaluation.

6-226 Procedure Division
EXHIBIT Statement

The EXHIBIT statement causes an (optionally conditional) display of the
literals, and/or variables (optionally preceded by the variable name) specified
in the statement. This statement is only supported when a program is
compiled in IBM OSVS compatibility mode (-Cv or -Cv=OSVS).

General Format
EXHIBIT [NAMED] [CHANGED] {literal | variable} ...

General Rules

1. If neither NAMED nor CHANGED is used, each literal and variable
value is displayed.

2. If only NAMED is used, each literal is displayed, and each variable is
displayed. Variables are preceded by “variable-name=” (where
“variable-name” is replaced with the name of the variable in the
EXHIBIT statement).

3. If only CHANGED is used, each literal is displayed, and each variable
is displayed if its value is different from the last time this EXHIBIT
verb was executed.

4. If both NAMED and CHANGED are used, each literal is displayed,
and each variable is displayed if its value is different from the last time
this EXHIBIT verb was executed. In addition, each variable is
preceded by “variable-name=” (where “variable-name” is replaced
with the name of the variable in the EXHIBIT statement).

5. As a compatibility issue, its recommended that you modify your source
code to use actual DISPLAY statements, and that you not add new
EXHIBIT statements to your COBOL program.

EXIT Statement

The EXIT statement returns control to a calling program or provides a
common logical end point for a series of procedures.

Procedure Division Statements 6-227
Format 1
EXIT

Format 2
EXIT PROGRAM [{RETURNING} return-value]
 {GIVING }

Format 3
EXIT PERFORM [CYCLE]

Format 4
EXIT {PARAGRAPH}
 {SECTION }

Syntax Rules

1. A Format 1 EXIT statement must be in a sentence by itself, and that
sentence must be the only sentence in its paragraph.

2. Return-value must be a numeric literal or data item.

3. An EXIT PERFORM statement must occur within the scope of an
in-line PERFORM statement.

4. An EXIT SECTION statement must be contained within a section.

General Rules

Format 1

A Format 1 EXIT statement associates a paragraph name with a point in the
program. It has no effect on program execution. A paragraph containing a
Format 1 EXIT statement is equivalent to an empty paragraph.

Format 2

1. An EXIT PROGRAM statement has no effect if executed in a program
that is the first program of a thread or any program that was not called by
another. Neither does it have any effect if it is executed within the scope
of an EVENT procedure, unless the return point is also within the scope
of the EVENT procedure.

6-228 Procedure Division
2. In a called program, the EXIT PROGRAM statement causes the
current program to exit, and execution resumes at the next executable
statement after the CALL statement in the calling program.

3. If the exiting program has the initial attribute, it is immediately
canceled (see the entry in this section for the “CANCEL Statement”).
If it does not have the initial attribute, it retains its current state the next
time it is called.

4. If return-value is specified, then it is assigned to the special register
RETURN-CODE before the program is exited. This special register is
defined as:

77 RETURN-CODE SIGNED-LONG, EXTERNAL.

It is implicitly shared by all programs of a run unit and is automatically
created by the compiler. The final value of RETURN-CODE is returned
to the host operating system when the run unit completes.

The compiler also creates an unsigned version of the return code called
RETURN-UNSIGNED. It has the following implied definition:

77 RETURN-UNSIGNED
 REDEFINES RETURN-CODE UNSIGNED-LONG, EXTERNAL.

Format 3

1. An EXIT PERFORM statement causes control to pass to a point just past
the END-PERFORM that matches the innermost PERFORM statement
containing the EXIT PERFORM. This causes the program to jump out
of the innermost in-line PERFORM.

2. If the CYCLE option is given, then control is passed to a point just
prior to the matching END-PERFORM instead. For PERFORM
constructs that imply looping, this will cause control to pass to the next
iteration of the loop (note that the loop-terminating condition will be
tested).

Format 4

1. An EXIT PARAGRAPH statement causes control to pass to an
imaginary CONTINUE statement placed at the end of the current
paragraph.

Procedure Division Statements 6-229
2. An EXIT SECTION statement causes control to pass to an imaginary
CONTINUE statement placed at the end of the last paragraph in the
current section.

GOBACK Statement

The GOBACK statement exits the current program regardless of whether or
not it is a called program.

General Format
GOBACK { [{RETURNING} return-value] }
 {GIVING }

Syntax Rules

1. If a GOBACK statement is in a consecutive sequence of imperative
statements in a sentence, it must be the last statement in that sentence.

2. Return-value must be a numeric literal or data item.

General Rules

1. The GOBACK statement is equivalent to the statement sequence

EXIT PROGRAM; STOP RUN

This causes the current program to return to the caller if it is a called
program or causes the run unit to halt if the program is not a called
program.

2. If return-value is specified, then it is assigned to the special register
RETURN-CODE before the program is exited. This special register is
defined as:

77 RETURN-CODE SIGNED-LONG, EXTERNAL.

It is implicitly shared by all programs of a run unit and is automatically
created by the compiler. The final value of RETURN-CODE is returned
to the host operating system when the run unit completes.

6-230 Procedure Division
The compiler also creates an unsigned version of the return code called
RETURN-UNSIGNED. It has the following implied definition:

77 RETURN-UNSIGNED
 REDEFINES RETURN-CODE UNSIGNED-LONG, EXTERNAL.

GO TO Statement

The GO TO statement provides for a direct transfer of control in the
Procedure Division.

General Format

Format 1
GO TO procedure-name

Format 2
GO TO {procedure-name} ... DEPENDING ON depend-item

Syntax Rules

1. Procedure-name is the name of a paragraph or section in the program.

2. Depend-item is an integer elementary numeric data item.

3. A Format 1 GO TO that is in a consecutive sequence of imperative
statements in a sentence must be the last statement in that sentence.

General Rules

Format 1

The GO TO statement transfers control to procedure-name. No return
mechanism is implied.

Procedure Division Statements 6-231
Format 2

1. The GO TO DEPENDING statement transfers control to one of the
procedure-names depending on the value of depend-item. A
depend-item value of “1” refers to the first procedure-name, a value of
“2” refers to the second, and so on.

2. If depend-item is less than or equal to zero, or is greater than the
number of procedure-names, no control transfer occurs. In this case,
the GO TO statement has no effect.

IF Statement

The IF statement provides for conditional action by the program.

General Format
IF condition THEN { {statement-1} }
 { NEXT SENTENCE }

 [ELSE {statement-2 } [END-IF]]
 [ELSE NEXT SENTENCE]
 [END-IF]

Syntax Rules

1. Statement-1 and statement-2 are imperative or conditional statements.
An imperative statement can precede a conditional statement.

2. Condition is any conditional expression.

3. The ELSE NEXT SENTENCE phrase is optional if it immediately
precedes a period ending a sentence.

4. If END-IF is specified, NEXT SENTENCE must not be specified.

General Rules

1. The IF statement provides a method for selecting alternate sets of
statements to execute depending on the truth value of condition.

6-232 Procedure Division
2. The scope of an IF statement ends when one of the following is
encountered:

a. A period ending a sentence.

b. An END-IF phrase at the same nesting level.

c. An ELSE phrase associated with an IF statement at a higher
nesting level.

3. If condition is “true”, then statement-1 executes. Statement-2 is not
executed. If NEXT SENTENCE is used instead of statement-1,
control immediately passes to the next executable sentence. Note that
the ANSI standard states that “NEXT SENTENCE is an archaic feature
and its use should be avoided.”

4. If condition is “false”, statement-2 executes. Statement-1 is not
executed. If the ELSE NEXT SENTENCE phrase is used, control
immediately passes to the next executable sentence. If the ELSE
phrase is not present, then control passes to the end of the IF statement.

5. OTHERWISE is a synonym for ELSE in the IBM DOS/VS COBOL
“-Cv” compatibility mode. See Chapter 5, “IBM DOS/VS COBOL
Conversions,” in Transitioning to ACUCOBOL-GT for more
information.

INITIALIZE Statement

The INITIALIZE statement sets selected types of elementary data items to
chosen values.

General Format
INITIALIZE { destination } ... [WITH FILLER]

[REPLACING { {ALPHABETIC } DATA BY value }...]
 {ALPHANUMERIC }
 {NUMERIC }
 {ALPHANUMERIC-EDITED}
 {NUMERIC-EDITED }

Procedure Division Statements 6-233
Syntax Rules

1. Destination is a data item.

2. Value is a literal or a data item. It must be a legal source for a MOVE
to the corresponding category of data. For example, a value appearing
in a REPLACING ALPHABETIC BY clause must have a category of
alphabetic, alphanumeric, or alphanumeric-edited.

3. The same category cannot be repeated in a REPLACING phrase.

4. Destination may not be an index data item.

5. Destination may not contain a RENAMES clause.

General Rules

1. Whether destination references an elementary item or a group item, all
operations are performed as if a series of MOVE statements had been
written, each of which has an elementary item as its receiving field
according to the following rules:

a. If destination is a group item, any elementary item contained in
destination is initialized only if it belongs to a category specified
by the REPLACING phrase.

b. If destination is an elementary item, that item is initialized only if
it belongs to a category specified in the REPLACING phrase.

c. Each data item that is initialized is treated as the receiving operand
of an implicit MOVE statement with the corresponding value as
the sending field.

d. All elementary receiving fields, including all table occurrences, are
affected, except as specified in the following rules.

2. Index data items and elementary FILLER data items are not affected by
the INITIALIZE statement, unless the optional WITH FILLER phrase
is specified, in which case FILLER data items are initialized.

3. Any item that is subordinate to destination and which contains a
REDEFINES clause, or any item that is subordinate to such an item, is
excluded from this operation. Destination itself, however, may be
subordinate to a REDEFINES clause.

6-234 Procedure Division
4. If no REPLACING phrase is specified, alphabetic, alphanumeric, and
alphanumeric-edited data items are initialized to SPACES; numeric and
numeric-edited data items are initialized to ZEROS.

5. If multiple destinations are specified, they are initialized in the order
written.

6. Destinations that are or contain OCCURS DEPENDING ON items
will use the maximum number of occurrences when being initialized.

INQUIRE Statement

The INQUIRE verb allows you to retrieve information from a control, or retrieve the
dimensions of a window. General Format

Format 1
INQUIRE { control-item } [({index-1} ...)]
 { CONTROL }

Remaining phrases are optional, can appear in any order.
AT screen-loc [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT LINE NUMBER line-num [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT {COLUMN } NUMBER col-num [CELL]
 {COL } [CELLS]
 {POSITION} [PIXEL]
 {POS } [PIXELS]

AT CLINE NUMBER cline-num [CELL]
 [CELLS]

AT CCOL NUMBER ccol-num [CELL]
 [CELLS]

Procedure Division Statements 6-235
TITLE {IN} title
 {= }

VALUE {IN} [MULTIPLE] value [LENGTH {IN} length-1]
 {= } [TABLE] {= }

STYLE {IN} style-flags
 {= }

HELP-ID {IN} help-id
 {= }

{{property-name } [({param-expr}...)] {IN} property-value ...
 {PROPERTY property-name} {= }
 {object-expression }
 [LENGTH {IN} length-1] }
 {= }

SYSTEM HANDLE {IN} system-handle
 {= }

POP-UP MENU {IN} {menu-1}
 {= }

LINE NUMBER {IN} line-num
 {= }

{COLUMN } NUMBER {IN} col-num
{COL } {= }
{POSITION}
{POS }

SIZE {IN} width
 {= }

LINES {IN} height
 {= }

MAX-HEIGHT {IN} max-height
 {= }

MAX-WIDTH {IN} max-width
 {= }

6-236 Procedure Division
MIN-HEIGHT {IN} min-height
 {= }

MIN-WIDTH {IN} min-width
 {= }

ID {IN} id
 {= }

CLASS {IN} class-code
 {= }

EXCLUDE-EVENT-LIST {IN} list-state
 {= }

LAYOUT-DATA {IN} layout-data
 {= }

ENABLED {IN} enabled-state
 {= }

VISIBLE {IN} visible-state
 {= }

where param-expr is one of the following:
{ param } [AS type_num]

{ {BY} NAME parameter-name {IS} param }
{ {= } }

{ parameter-name {IS} param }
{ {= } }

object-expression has the following format:
{ {^} property-1 [(param-expr ...)]
 [:: property-2 [(param-expr ...)] ... }

Format 2
INQUIRE { window-handle }
 { WINDOW [generic-handle] }

Remaining phrases are optional, can appear in any order.

Procedure Division Statements 6-237
LINE NUMBER {IN} line-no
 {= }

{COLUMN } NUMBER {IN} col-num
{COL } {= }
{POSITION}
{POS }

TITLE {IN} title
 {= }

SCREEN LINE NUMBER {IN} screen-line
 {= }

SCREEN {COLUMN } NUMBER {IN} screen-col
 {COL } {= }
 {POSITION}
 {POS }

SIZE {IN} width
 {= }

LINES {IN} height
 {= }

SYSTEM HANDLE {IN} system-handle
 {= }

LAYOUT-MANAGER {IN} layout-manager
 {= }

VISIBLE {IN} visible-state
 {= }

POP-UP MENU {IN} menu-1
 {= }

Syntax Rules

1. Control-item is a USAGE HANDLE data item that identifies the control
to be inquired. If it is a typed handle, then it must be associated with a
control. Control-item can also be an elementary Screen Section item
that describes a control.

6-238 Procedure Division
2. Index-1 is a numeric expression. The parentheses surrounding index-1
are required.

3. The AT, LINE, COLUMN, CLINE, and CCOL phrases must appear in
conjunction with the CONTROL phrase.

4. Screen-loc is an integer data item or literal that contains exactly 4, 6, or
8 digits.

5. Line-num, col-num, cline-num, and ccol-num are numeric data items
or literals. Note that they may contain non-integer values, except when
pixels are specified.

6. Title is an alphanumeric data item.

7. Value may be any data item.

8. Style-flags is a numeric data item capable of holding 10 or more digits.

9. Help-id is a numeric data item.

10. Property-name is the name of a property specific to the type of control
being inquired. If control-item refers to a generic handle, or if the
CONTROL option is specified, then property-name cannot be used.
Use the PROPERTY phrase instead.

11. Property-type is a numeric literal or data item.

12. Property-value is a data item. Its data type should be appropriate for
the specified property.

13. In param-expr:

a. Param is a literal, data-item, or numeric expression used when
inquiring the property value of an ActiveX control or COM object.

b. Type-num is a numeric data item or numeric literal.

14. In object-expression:

a. ^ can only be used in conjunction with a Format 5 USE verb for an
ActiveX control or COM object.

b. Property-1 is the name of a property of the ActiveX control or
COM object. Property-1 cannot be a write-only property.

Procedure Division Statements 6-239
c. Property-2 is the name of a property of the ActiveX control or
COM object that is the value of property-1. Property-2 cannot be
a write-only property.

15. Length-1 is a numeric data item. The LENGTH phrase may be
specified only if the value or property-value immediately preceding it
is an alphanumeric data item.

16. Window-handle is a USAGE HANDLE OF WINDOW or PIC X(10)
data item.

17. Generic-handle is a USAGE HANDLE, HANDLE OF WINDOW, or
PIC X(10) data item.

18. Line-no, col-no, screen-line, screen-col, width, height, max-height,
max-width, min-height, and min-width are numeric data items.
Line-no and col-no should be signed and have at least two digits after
the decimal point to get the best results. Screen-line and screen-col
should be signed to get the best result.

19. System-handle, visible-state, and layout-data are numeric data items.

20. Menu-1 is a USAGE HANDLE or HANDLE OF MENU data item.

21. Id, class-code and enabled-state are numeric data items.

22. List-state is a numeric data item.

23. Layout-manager is a HANDLE or HANDLE OF
LAYOUT-MANAGER data item.

24. In Format 1, the LINE IN phrase and the COLUMN IN phrase may be
used only if the control-item option is specified.

General Rules

Format 1 (INQUIRE CONTROL)

1. The INQUIRE CONTROL statement retrieves some or all of a control’s
current properties, and stores them as data items. It can also be used to
retrieve property data from ActiveX controls, COM objects, and .NET
controls (also known as assemblies). Control-item identifies the control
to inquire. If the CONTROL phrase is used instead, the runtime inquires
the control located at the screen position specified by the AT, LINE, and

6-240 Procedure Division
COLUMN phrases in the current window (on non-graphical systems, the
CLINE and CCOL phrases also apply). The runtime system maintains a
list of controls in each window. When you are attempting to inquire
from a control at a specific location, the runtime searches this list,
inquiring the first control it finds that exactly matches the given location.
The list is maintained in the order in which the controls are created.

2. If control-item does not refer to a valid control, or if the runtime
cannot locate a control at the specified screen location, the INQUIRE
statement has no effect.

3. If index-1 is specified, then certain properties in the control being
inquired are modified to match the value of index-1. This modification
occurs before any inquiry occurs. The exact set of properties modified
depends on the control’s type. Three controls have properties that are
modified in this way:

Each occurrence of index-1 modifies one property. The first occurrence
modifies the first property in the list presented in the preceding table.
The second occurrence modifies the second property. For example, the
statement fragment

INQUIRE grid-1(2, 3)

Would have the effect of setting the grid property “Y” to “2” and “X” to
“3”.

Supplying more index values than the control supports has no additional
effect. You may omit trailing indexes; this leaves the corresponding
properties unchanged.

This feature can be used to simplify inquiry on specific elements of
controls that hold multiple values. For example, you can retrieve the
contents of row 2, column 3 in a grid with the statement:

INQUIRE grid-1(2, 3), CELL-DATA IN data-1

Control Type Properties Affected

List Box QUERY-INDEX

Grid Y, X

Tree View ITEM

Procedure Division Statements 6-241
This is exactly equivalent to the more cumbersome:

MODIFY grid-1, Y = 2, X = 3
INQUIRE grid-1, CELL-DATA IN data-1

4. When the runtime is storing data items, the rules for the MOVE
statement are applied. The source for the title is alphanumeric. The
type of control determines the source format of the value. The source
format for a property is either numeric or alphanumeric depending on
the specific property.

5. When used with an ActiveX control or COM object, INQUIRE gets the
value of a property or gets the style flags.

6. When the PROPERTY phrase is used to set an ActiveX control or
COM object, the runtime automatically converts parameters to the
appropriate styles.

7. When the LENGTH option is specified, length-1 gives you the exact
number of characters that were placed by the control in value or
property-value. This option is useful in determining how long the
logical data is in value or property-value, or if there are trailing spaces.
If, for example, you inquired the SELECTION-TEXT property in an
entry-field and specified the LENGTH option, you could tell if the
user’s selection contains trailing spaces. If you do not use the
LENGTH option, your program will not distinguish between the
trailing spaces in the selection and the trailing spaces added by the
runtime.

8. The SYSTEM HANDLE phrase retrieves the host graphical system’s
handle that corresponds to the control and stores this value in
system-handle. This value is the way the host graphical system
identifies the control. You usually need it if you want to affect the
control from some other language such as C. There is no use for the
host system’s handle if you are using only ACUCOBOL-GT; the
handle is useful only when you need to have another language interact
with an ACUCOBOL-GT screen.

9. Each host system defines its own technique for identifying graphical
components. Under Windows, the Windows API uses the “HWND”
type, which is a 32-bit unsigned value. You can use UNSIGNED-INT
as an appropriate USAGE type for system-handle to cover these two
cases portably.

6-242 Procedure Division
10. If the control does not have a corresponding host handle, then
system-handle is set to zero. This indicates that either the host system
does not have an underlying graphical system, or that the particular
control does not use the host’s notion of a control in its
implementation.

11. The POP-UP MENU option returns the handle of the pop-up menu
associated with the control in menu-1. If the control has no pop-up
menu, menu-1 is set to NULL.

12. The LINE NUMBER IN and COLUMN NUMBER IN phrases return
the location of the control in line-num and col-num respectively. The
SIZE IN and LINES IN phrases return the dimensions of the control in
width and height respectively. These values have the same meaning
and units that they have in a DISPLAY or MODIFY statement.

Note: In order for the LINES IN and SIZE IN phrases to return a
value, the control must have been created with its LINE and SIZE
dimensions specified. Then the value returned is in the units used to
create the control. If the control was not given dimensions when it was
created, the INQUIRE statement has no effect.

13. The MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, and
MIN-WIDTH phrases return the value of the control’s current
maximum and minimum size restrictions in max-height, max-width,
min-height, and min-width, respectively. These values have the same
meaning and units that they have in a DISPLAY or MODIFY
statement.

14. The ID IN phrase returns the control’s ID if it has one. If it does not
(or the control does not exist), id is set to zero.

15. The CLASS IN phrase returns the type of the control (label, entry field,
etc). This is coded as a unique number for each class. The appropriate
values can be found in the COPY library “controls.def”.

16. The LAYOUT-DATA IN phrase sets layout-data to the current value
of the control’s LAYOUT-DATA property.

17. The ENABLED IN phrase sets enabled-state to “1” if the control is
enabled and “0” if the control is disabled.

Procedure Division Statements 6-243
18. The VISIBLE IN phrase sets visible-state to “1” if the control is
visible and “0” if it is invisible.

19. You cannot use named parameters to avoid entering required
parameters. You can omit optional parameters only.

20. You must specify only unnamed parameters before the BY NAME
clause, and only named parameters after the BY NAME clause.

21. You can use one- and two-dimensional COBOL tables as property and
method parameters for use in COM SAFEARRAYs. The runtime
automatically converts the table to an COM SAFEARRAY, as long as
it contains only one elementary item that is USAGE HANDLE or
USAGE HANDLE OF VARIANT. See section 4.3 in A Guide to
Interoperating with ACUCOBOL-GT.

22. Use the “AS type-num” phrase in the parameter expression if you want
to force the parameter to be converted to a particular VARIANT type
before it is passed to a property or method of an ActiveX control or
COM object. You can tell from the object’s documentation and the
name of the parameter whether the object expects a particular
VARIANT type, such as boolean.

Use the AS phrase if the ActiveX or COM object requires a method or
property parameter to be something different from the default VARIANT
type chosen by the runtime for the particular COBOL data item or literal.
(See section 4.3 in A Guide to Interoperating with ACUCOBOL-GT for
the rules that the runtime uses to determine the VARIANT type).
Specify the word “AS” followed by a numeric literal or level 78 numeric
constant that indicates the variant type to which you want the parameter
converted. The “activex.def” COPY file in the ACUCOBOL-GT
sample/def directory contains predefined level 78 constants for each of
the VARIANT types.

Format 2 (INQUIRE WINDOW)

1. The INQUIRE WINDOW statement returns one or more attributes of the
window identified by window-handle or generic-handle. If the
WINDOW phrase is used and generic-handle is omitted, information is
retrieved from the current window.

6-244 Procedure Division
2. The LINE NUMBER and COLUMN NUMBER phrases return the
position of the window relative to the interior of its parent. For the
initial window, this will always be line “1”, column “1”. Note that the
position returned can be negative, or larger than the parent window,
indicating that the window’s upper left corner is outside of its parent’s
interior.

3. The TITLE phrase returns the title of the current window.

4. The SCREEN LINE and SCREEN COLUMN phrases return the
position of the window on the screen. This is an absolute position, not
relative to any other window. The position is expressed in the screen’s
base units, with “1, 1” being the upper left corner of the screen. Screen
base units are machine dependent. Under character systems, the base
unit is a character cell, for graphical systems, the base unit is a pixel.
A negative value indicates that the window’s home location (the upper
left corner) is off the screen.

5. The SIZE and LINES phrases return the window’s width and height,
respectively.

6. The SYSTEM HANDLE phrase retrieves the host graphical system’s
handle that corresponds to the window and stores this value in
system-handle. This value is the way the host graphical system
identifies the window. You usually need it if you want to affect the
window from some other language such as C. There is no use for the
host system’s handle if you are using only ACUCOBOL-GT; the
handle is useful only when you need to have another language interact
with an ACUCOBOL-GT screen.

7. Each host system defines its own technique for identifying graphical
components. Under Windows, the Windows API uses the “HWND”
type, which is a 32-bit unsigned value. You can use UNSIGNED-INT
as an appropriate USAGE type for system-handle to cover these two
cases portably.

8. If the window does not have a corresponding host handle, then
system-handle is set to zero. This indicates that either the host system
does not have an underlying graphical system, or that the particular
window does not use the host’s notion of a control in its
implementation.

Procedure Division Statements 6-245
9. The LAYOUT-MANAGER phrase sets layout-manager to the handle
of the layout manager currently attached to the window.

10. The VISIBLE option returns in visible-state whether the window is
visible or invisible. Visible-state is set to “1” if the window is visible,
or “0” if it is invisible.

Note: A “visible” window may actually be hidden behind other
windows on the screen, and thus may not actually be viewable by the
user.

11. The POP-UP MENU option returns the handle of the pop-up menu
associated with the window in menu-1. If the window has no pop-up
menu, menu-1 is set to NULL.

INSPECT Statement

The INSPECT statement supports counting and modification of single
characters or groups of characters within a data item. INSPECT performs its
operations on strings and requires that the source data item be designated
USAGE DISPLAY.

INSPECT performs three basic functions: TALLYING, REPLACING, and
CONVERTING. (CONVERTING is a specialized, shorthand form of
REPLACING).

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format

Format 1
INSPECT source

 [TALLYING { counter FOR { { {ALL } comp-val }
 { {LEADING} }
 { CHARACTERS }

6-246 Procedure Division
 [delim] } ... } ...] ...

 [REPLACING

 { CHARACTERS BY repl-char [delim] }
 { {ALL } }
 { {LEADING} { targ BY repl [delim] } ... }
 { {FIRST } }
 ...]

Format 2
INSPECT source
 CONVERTING comp-chars TO conv-chars [delim]

delim has the following format:
 { {BEFORE} INITIAL delimiter } ...
 {AFTER }

Format 3
INSPECT source

 [TALLYING counter FOR TRAILING comp-value]
 [REPLACING TRAILING target BY replace]

Syntax Rules

1. Source is a data item with USAGE DISPLAY.

2. Counter is an elementary numeric data item.

3. Comp-val is a nonnumeric literal (other than an ALL literal) or an
elementary alphabetic, alphanumeric, or numeric data item with
USAGE DISPLAY.

4. Repl-char is a one-character item with the same restrictions as
comp-val.

5. Targ, delimiter, repl, comp-chars, and conv-chars have the same
restrictions as comp-val.

6. In Formats 1 and 3, at least one of the TALLYING or REPLACING
phrases must be specified.

Procedure Division Statements 6-247
7. Any delim phrase may have no more than one AFTER and one
BEFORE phrase in it.

8. The sizes of the data referred to by targ and repl must be the same. If
repl is a figurative constant, its size is set equal to the size of targ.

9. When the CHARACTERS phrase of the REPLACING clause is used,
delimiter (if specified) must have a data size of one character.

10. The sizes of the data referred to by comp-chars and conv-chars must
be the same. When conv-chars is a figurative constant, its size equals
that of comp-chars.

11. The same character cannot appear more than once in the data referred
to by comp-chars.

12. Comp-value, target, and replace are nonnumeric literals or
single-character alphanumeric data items.

General Rules

1. Inspection starts at the leftmost character of source and proceeds
character by character until it reaches the rightmost character.

2. Source, comp-val, delimiter, targ, repl, repl-char, comp-chars, and
conv-chars are treated as if they were redefined by an alphanumeric
elementary data item. The data referred to by these items is treated as
a character string.

3. If the size of source is zero characters, no inspection occurs.

4. If the size of comp-val or targ is zero characters, no match in source
by these items is successful.

5. Comp-val and targ are matched in the source string according to the
following rules:

a. Comparison starts at the leftmost character and proceeds character
by character until the rightmost character of source is reached.

b. The first comp-val or targ item is checked at the current character
location for a match. A match occurs if every character of
comp-val or targ is the same as the corresponding characters in
source starting at the current character position.

6-248 Procedure Division
c. If no match occurs, successive comp-val or targ items are checked
at the current character position until a match occurs or the list of
items is exhausted. The next character position is then checked
and the process repeats.

d. When a match occurs, the specified tallying or replacement is
performed. Further checking for matching items at this character
position is not performed. The new next character position to use
for matching is set to be the character to the immediate right of the
rightmost character position that matched in the preceding
comparison.

e. Inspection halts when the rightmost character of source has served
as the current matching character position or has been successfully
matched in the preceding rule.

f. When the CHARACTERS phrase is present, inspection proceeds
as if a single-character value were being compared and it
successfully matches every character in source.

6. The BEFORE phrase modifies the character position to use as the
rightmost position in source for the corresponding comparison
operation. Comparisons in source occur only to the left of the first
occurrence of delimiter. If delimiter is not present in source, then the
comparison proceeds as if there were no BEFORE phrase.

7. The AFTER phrase modifies the character position to use as the
leftmost position in source for the corresponding comparison
operation. Comparisons in source occur only to the right of the first
occurrence of delimiter. This character position is the one immediately
to the right of the rightmost character of the delimiter found. If
delimiter is not found in source, the INSPECT statement has no effect
(no tallying or replacement occurs).

8. If both the TALLYING and REPLACING phrases are present, the
TALLYING option is performed first, and then the REPLACING
option is performed as if it were written as a separate INSPECT
statement.

TALLYING Option

1. The INSPECT statement does not initialize counter.

Procedure Division Statements 6-249
2. If the ALL phrase is present, counter is incremented by one for each
occurrence of comp-val in source.

3. If the LEADING phrase is present, counter is incremented by one for
each contiguous occurrence of comp-val in source. These occurrences
must start at the position in source where comparison begins.
Otherwise, no tallying occurs.

4. If the CHARACTERS phrase is present, counter is incremented by one
for each character in source that is matched (see General Rule 5f
above).

5. If the FOR TRAILING phrase is present, counter is incremented by
one for each contiguous occurrence of comp-value in source, starting
at the rightmost (trailing) character and scanning leftwards. If the
rightmost character is not comp-value, then counter is not incremented.

REPLACING Option

1. The adjectives ALL, LEADING, and FIRST apply to succeeding
compare items until the next such adjective appears.

2. If the CHARACTERS phrase is used, each character matched in
source is replaced by the single character repl-char.

3. When the ALL phrase is present, each occurrence of targ matched in
source is replaced by repl.

4. If the LEADING phrase is present, each contiguous occurrence of targ
matched in source is replaced by repl. These occurrences must begin
at the leftmost position in source used for comparison.

5. When the FIRST phrase is present, the leftmost occurrence of targ
matched in source is replaced by repl.

6. If the TRAILING phrase is present, the REPLACING option causes all
contiguous occurrences of target to be replaced by replace, provided
that these occurrences end in the rightmost character position of
source.

7. It is possible for a size mismatch between the INSPECT and
REPLACING data items to occur during program execution. This
could happen when reference modification is used, because in that case
the length of a data item is not known at compile time. If such a

6-250 Procedure Division
mismatch occurs, the runtime generates the “INSPECT REPLACING
size mismatch” error. This error belongs to the “intermediate” class of
runtime errors which call installed error procedures. See Book 4,
Appendices, Appendix I “Library Routines,” CBL_ERROR_PROC for
details.

CONVERTING Option

1. The CONVERTING form of the INSPECT statement has the effect of
replacing every character in source found in comp-chars with the
corresponding character in conv-chars. This is done according to the
following rules:

a. The INSPECT statement is treated as if it were specified with the
REPLACING option containing a series of ALL phrases, one for
each character of comp-chars.

b. The targ item in each ALL phrase refers to a single character of
comp-chars.

c. The repl item in each ALL phrase refers to a single character of
conv-chars.

d. The individual characters of comp-chars and conv-chars
correspond by ordinal position.

2. INSPECT CONVERTING is usually more efficient than the
corresponding INSPECT REPLACING statement.

Code Examples

Example 1:

Use INSPECT to count the number of occurrences of a character or string:
01 CHAR-COUNT PIC 99 VALUE 0.

*count all "b"s
INSPECT INPUT-ITEM
 TALLYING CHAR-COUNT FOR ALL "B".

Value of INPUT-ITEM CHAR-COUNT

#BB44@#AL23#AL88#xx#CC12 2

Procedure Division Statements 6-251
*count all "#"s found after the first "@"
*and before the first "x"
INSPECT INPUT-ITEM
 TALLYING CHAR-COUNT FOR ALL "#":
 AFTER "@" BEFORE "x".

*count all characters
INSPECT INPUT-ITEM
 TALLYING CHAR-COUNT FOR CHARACTERS.

Example 2:

Use INSPECT to replace matching characters or strings:
INSPECT NAME-LIST REPLACING
*if the first characters in the string are "a"
*replace the "a"s with "A"s
 LEADING "a" BY "A"
*replace all "T"s found after the first "/"
*with "t"
 ALL "T" BY "t" AFTER "/"
*replace all "/"s with ":"
 ALL "/" BY ":"
*after the first "-" replace all characters
*in the string with "Z"

#BB@#BBBB#CCCC#xxDD 6

BB@#BB#BB 6

Value of INPUT-ITEM CHAR-COUNT

#BB44@#AL23#AL88#xx#CC12 3

#BB@#BBBB#CCCC#xxDD 3

BB@#BB#BB 2

Value of INPUT-ITEM CHAR-COUNT

#BB44@#AL23#AL88#xx#CC12 24

#BB@#BBBB#CCCC#xxDD 19

BB@#BB#BB 9

Value of INPUT-ITEM CHAR-COUNT

6-252 Procedure Division
 CHARACTERS BY "Z" AFTER "-".

Example 3:

Use INSPECT to both tally and replace characters or strings:
INSPECT PART-LIST
*count all "P-"
 TALLYING P-COUNT FOR ALL "P-"
*replace all "xx" by "__"
 REPLACING ALL "xx" BY "__".

Example 4:

Use INSPECT/CONVERT to convert every occurrence of the specified
characters in the input string (equivalent to a series of REPLACE ALL
phrases). The list of characters following the words CONVERT and TO is
not a string, but, rather, a list of individual characters. INSPECT/CONVERT
replaces every occurrence of each character in the CONVERT list with the
character in the matching ordinal position of the TO list. AFTER and
BEFORE can be used to bracket a portion of the source string.
*convert all occurrences of:
*"-" to "0", "l" to "L",
*"a" to "A" and "/" to ":"
INSPECT PART-LIST
 CONVERTING "-la/" TO "0LA:".

Input value NAME-LIST Output value NAME-LIST

TED/TRAVIS/UREY/VENNEY TED:tRAVIS:UREY:VENNE
Y

aVERY/BLAZE/TERI AVERY:BLAZE:tERI

MAVIS-GUS-HAL-WESTON MAVIS-ZZZZZZZZZZZZZZ

Value of PART-LIST P-COUNT

P-BOLTxxP-WASHERxxP-NUT 3

Input value PART-LIST Output value PART-LIST

P-BOLTxxP-WASHERxxP-NUT P-BOLT__P-WASHER__P-NUT

Procedure Division Statements 6-253
This INSPECT/CONVERT statement is equivalent to:
INSPECT PART-LIST
 REPLACING ALL "-" BY "0"
 ALL "l" BY "L"
 ALL "a" BY "A"
 ALL "/" BY ":".

Highlights for first-time users

1. How the matching process works:

In all formats of the INSPECT statement there must be a set of specified
“match” values. The match values may be single characters or strings,
or a mix of both. The match values are the arguments specified after the
TALLYING/FOR, REPLACING, or CONVERTING key words, and
before the BY or TO key words (for further clarification see the example
that follows).

INSPECT attempts to locate the match values in the source data item.
The match values are searched for, in order of appearance in the code, at
each position in the source string. Inspection starts at the leftmost
character of the source data item and proceeds, character by character, to
the rightmost character.

Match process example:

INSPECT source-data-item
 REPLACING "cd" BY "QP"
 "e" BY "T"
 "f" BY "V".

Source data item: “abcdefg”

Set of match values: “cd”, “e”, “f”

The search begins at the leftmost character:

"abcdefg"
 ^

Input value PART-LIST Output value PART-LIST

Yla-1/Yla-2/Yla-3/Yla21 YLA01:YLA02:YLA03:YLA21

6-254 Procedure Division
The first value in the match set is “cd”. The first element, “c”, is
compared to the value “a” for a match. No match. The second value in
the match set is “e”. “e” is tested for a match with “a”. No match. The
third value in the match set is “f”. “f” is tested for a match with “a”. No
match. There are no untested values remaining in the match set. The
current position in the source data item is advanced one position to the
right.

"abcdefg"
 ^

The sequential testing of the members of the match set to the value of the
current position in the source data item is repeated. None matches. The
current position in the source data item is advanced one position to the
right.

"abcdefg"
 ^

The first match value is “cd”. “c” is tested for a match with the current
position in the source data item and there is a match. “d” is tested against
the value of 1 + the current position (“d”) and, again, there is a match.
There are no more characters in the match value (“cd”). The first value
in the match set results in a complete match at the current position in the
source data item. Remaining values in the match set are not tested. The
specified REPLACING action is performed. The current position in the
source data item is advanced the length of the match value (“cd”), two
places to the right.

"abQPefg"
 ^

Sequential testing of the members of the match set to the value of the
current position in the source data item is repeated. The second member
of the match set, “e”, is a match. The REPLACING action is performed
and the current position in the source data item is advanced the length of
the match value, one position to the right.

"abQPTfg"
 ^

Notice that, if we had replaced “cd” with “ef” instead of “QP”, the “e”
and “f” would not be subsequently replaced with “T and “V”.

Procedure Division Statements 6-255
Sequential testing of the members of the match set to the value of the
current position in the source data item is repeated. The third member of
the match set, “f”, is a match. The REPLACING action is performed and
the current position in the source data item is advanced the length of the
match value, one position to the right.

"abQPTVg"
 ^

Sequential testing of the members of the match set to the value of the
current position in the source data item is repeated. None matches. The
current position in the source data item is the rightmost character;
therefore, the inspection halts.

For a more concise description of the matching process, see General
Rule 5 above.

2. All replacement actions must replace the same number of characters as
matched. The source data item may not change in size.

3. Use AFTER and BEFORE to bracket (define) a substring in the source
data item.

4. Use ALL to match all occurrences of the specified value in the string.

5. Use CHARACTERS to match every character in the source data item
that hasn’t already been matched. Because CHARACTERS matches
all elements of the source data item, CHARACTERS usually appears
as the last phrase in the statement.

6. Use LEADING to find the leading occurrence, or set of leading
contiguous occurrences, in the source data item.

7. Use TRAILING (ACUCOBOL-GT extension) to find the rightmost
occurrence, or set of contiguous occurrences, in the source data item.
If a TRAILING occurrence is found, a right to left scan of the source
data item is made to find contiguous occurrences.

8. Use FIRST to specify a match of the first occurrence only.

9. Many COBOL programming texts caution against writing involved and
complicated INSPECT statements, because complex statements are
difficult to understand and maintain.

6-256 Procedure Division
LOCK Statement

The LOCK THREAD statement prevents other threads from running.

General Format
LOCK THREAD

General Rules

1. The LOCK THREAD statement prevents other threads from running.
The thread that executes the LOCK statement is the only thread allowed
to run until an UNLOCK THREAD statement is executed, or the thread
terminates. Locking a thread ensures that other threads will not modify
a critical piece of data or other shared resource.

2. A thread can be locked multiple times. Each time a thread executes a
LOCK THREAD statement, the number of locks held by the thread
increases by one. In order to unlock a thread with multiple locks, an
equal number of UNLOCK THREAD statements must execute.

This allows a thread to lock itself, call a subroutine that also locks itself,
and remain locked when that subroutines unlocks itself. See UNLOCK
THREAD.

MERGE Statement

The MERGE statement combines two or more identically ordered files by
selected ASCENDING or DESCENDING key fields.

Unlike SORT, MERGE doesn’t allow you to manipulate the records before
they are merged. Like SORT, MERGE does allow you to modify records
after they are merged via the OUTPUT PROCEDURE phrase.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

Procedure Division Statements 6-257
General Format
MERGE merge-file

 { KEY AREA IS key-table }

 { ON {ASCENDING } KEY {key-name} } ...
 {DESCENDING}

 [COLLATING SEQUENCE IS alpha-name]

 USING {in-file} ...

 { OUTPUT PROCEDURE IS proc-name }
 { GIVING {out-file} ... }

proc-name has the following format:
 start-proc [{THRU } end-proc]
 {THROUGH}

Syntax Rules

1. Merge-file names a sort file described by an SD entry in the Data
Division.

2. Key-table must name a data item that is not located in the record for
merge-file. Key-table may not be subordinate to an OCCURS clause,
nor may it be reference modified.

3. Key-table must reference a data item whose size is an even multiple of
7. Key-table is processed as if it had the following structure:

01 KEY-TABLE.
 03 MERGE-KEY OCCURS N TIMES.
 05 KEY-ASCENDING PIC X COMP-X.
 05 KEY-TYPE PIC X COMP-X.
 05 KEY-OFFSET PIC XX COMP-X.
 05 KEY-SIZE PIC XX COMP-X.
 05 KEY-DIGITS PIC X COMP-X.

Typically, programs will declare key-table with a similar format.

6-258 Procedure Division
4. Key-name is a data item in the record description associated with
merge-file. It may not be subordinate to an OCCURS clause, nor may
it be a group item containing variable occurrence data items. The
maximum number of keys allowed is 23.

5. Alpha-name is an alphabet-name defined in the SPECIAL-NAMES
paragraph of the Environment Division.

6. In-file and out-file are files described by FD entries in the Data
Division. They may not be sort files. The maximum number of input
and output files allowed is 25.

7. Start-proc and end-proc are paragraph or section names in the
Procedure Division.

8. A MERGE statement may not appear in Declaratives or in the input or
output procedure of a SORT or MERGE statement.

9. If merge-file contains variable length records, in-file records must not
be smaller than the smallest record in merge-file nor larger than the
largest. If merge-file contains fixed length records, in-file records may
not be larger than the size of merge-file’s records.

10. If out-file contains variable length records, merge-file records must not
be smaller than the smallest record in out-file nor larger than the
largest. If out-file contains fixed length records, merge-file records
may not be larger than the size of out-file’s records.

11. If merge-file contains more than one record description, key-name
need appear in only one of them. The character positions referenced
by key-name are used as the key for all the file’s records.

12. If out-file is an indexed file, the first key-name must be ASCENDING
and must specify the same character positions in its record as the
primary record key for out-file.

13. THRU is an abbreviation for THROUGH.

General Rules

1. The MERGE statement merges all the records in the in-file files into
merge-file and then either writes these records to each out-file or makes
these records available to the specified OUTPUT PROCEDURE.

Procedure Division Statements 6-259
2. If merge-file contains fixed length records, any shorter in-file records
are space-filled on the right to match the record size.

3. If out-file contains fixed length records, any shorter merge-file records
are space-filled on the right to match the record size.

4. The first key-name is the major key, and the next key-name is the next
most significant key. This pattern continues for each key-name
specified.

5. The ASCENDING phrase specifies that key values are to be ordered
from lowest to highest. The DESCENDING phrase specifies the
reverse ordering. Once ASCENDING or DESCENDING is specified,
it applies to each key-name until another ASCENDING or
DESCENDING adjective is encountered.

6. Use the KEY AREA option when you do not know the specifics of the
merge key until the program is run. You can use this to allow users to
enter merge key specifications, typically in conjunction with some
form of data dictionary.

7. Your program must fill in a table of information that describes the
merge keys. This table, key-table, should have the format described by
Syntax Rule 3 above. The number of merge keys is determined by the
number of occurrences in the table. The keys are listed in order of
precedence: table entry 1 describes the highest precedence key, table
entry 2 the second highest, and so on. If you need to process a variable
number of keys, use a variable-size table (by using OCCURS
DEPENDING ON).

8. For each key, you must specify the following information:

KEY-ASCENDING: This should be 0 or 1. Enter 1 to have an ascending
merge sequence, 0 for descending.

KEY-TYPE: Describes the underlying data format. The allowed
values are listed in the next rule.

KEY-OFFSET: Describes the distance (in standard character
positions) from the beginning of the merge record
to the beginning of the key field. The first field in a
merge record is at offset 0.

6-260 Procedure Division
9. The KEY-TYPE field uses a code to describe the type and internal
storage format of the data item. Select from the following values:

KEY-SIZE: Describes the size of the key field in standard
character positions.

KEY-DIGITS: This is used only for numeric keys. It describes the
number of digits contained in the key (counting
digits on both sides of the decimal point).

0 Numeric edited

1 Unsigned numeric (DISPLAY)

2 Signed numeric (DISPLAY, trailing separate)

3 Signed numeric (DISPLAY, trailing combined)

4 Signed numeric (DISPLAY, leading separate)

5 Signed numeric (DISPLAY, leading combined)

6 Signed COMP-2

7 Unsigned COMP-2

8 Unsigned COMP-3

9 Signed COMP-3

10 COMP-6

11 Signed binary (COMP-1, COMP-4, COMP-X)

12 Unsigned binary (COMP-1, COMP-4, COMP-X)

13 Signed native (COMP-5, COMP-N)

14 Unsigned native (COMP-5, COMP-N)

15 Floating point (FLOAT, DOUBLE)

16 Alphanumeric

17 Alphanumeric (justified)

18 Alphabetic

19 Alphabetic (justified)

20 Alphanumeric edited

22 Group

Procedure Division Statements 6-261
This coding is the same one used by the C interface, and is also used by
Acu4GL. When specifying the key type, you may safely use
“alphanumeric” for all nonnumeric keys. (The merge rules are the same
for each of these types). For numeric data, however, you must specify
the correct type or you may get merging errors.

10. The results are undefined if you provide invalid data in the key-table.
If you fail to specify any keys (by specifying a table whose size is
zero), you receive a file error on merge-file. Under the default file
status codes, this is file error 94 with a secondary status of 63.

11. For nonnumeric keys, the COLLATING SEQUENCE phrase
establishes the ordering. If this phrase is omitted, the NATIVE
collating sequence is used. For numeric keys, the ordering is specified
by the algebraic value of the key.

12. When the contents of all key fields in one input record equal the
contents of the key fields in another, the order of return:

a. follows the order of the associated in-files in the MERGE
statement

b. causes all records with equal key values from one input file to be
returned before any are returned from another

13. The MERGE statement transfers all records from each in-file to
merge-file. When the MERGE statement executes, in-file must not be
open. The results of the MERGE statement are undefined if the in-file
records are not ordered according to the KEY clause of the MERGE
statement.

14. For each in-file, the MERGE statement:

a. opens the file as if it had been the object of an OPEN INPUT
statement with no options. This occurs before any associated
output procedure executes.

b. retrieves the records of the file and releases them to the merge
operation. The retrieval is performed as if the program had
executed a READ statement with the NEXT and AT END phrases.

c. closes the file as if it were the object of a CLOSE statement with
no options. This occurs after any associated output procedure has
finished execution.

6-262 Procedure Division
These actions cause any associated USE procedures to execute if an
exception condition occurs.

15. The OUTPUT PROCEDURE, if specified, is executed by the MERGE
statement when the records are ready to be processed in merged order.
The statements in the range of the output procedure must contain one
or more RETURN statements to retrieve the merged records. Control
is passed to the output procedure by the MERGE statement according
to the rules of the PERFORM statement. When the last statement of
the output procedure is executed, control returns to the MERGE
statement. The MERGE statement then closes the in-files and
terminates.

16. If the MERGE statement is in a fixed segment, the range of the output
procedure must be contained completely in the fixed segments and no
more than one independent segment. If the MERGE statement is in an
independent segment, the range must be completely contained in the
fixed segments and the same independent segment.

17. If the GIVING phrase is used, the MERGE statement writes all merged
records to each out-file. Out-file must not be open when the MERGE
statement executes.

18. The MERGE statement writes records to out-file with the following
steps:

a. Out-file is opened as if it were the object of an OPEN OUTPUT
statement with no options.

b. Each merged record is retrieved and written to out-file as if it were
the object of a WRITE statement.

c. Out-file is closed as if it were the object of a CLOSE statement
with no options.

19. The implicit OPEN, WRITE, and CLOSE operations cause associated
USE procedures to execute if an exception condition occurs. If the
MERGE statement tries to write beyond the boundaries of out-file, the
applicable USE procedure executes. If that procedure returns, or no
USE procedure is specified, the processing of that out-file terminates
with an implied CLOSE operation.

Procedure Division Statements 6-263
20. If out-file is a relative file, the value of the RELATIVE KEY data item
is updated to contain the record number of each record after it is
written.

21. The MERGE statement updates the value of the FILE STATUS data
item associated with merge-file.

22. If a MERGE statement is executed in a wrong context, the runtime
displays the error “Illegal MERGE.” This error belongs to the class of
“intermediate” runtime errors that, upon occurrence, call installed error
procedures. See Book 4, Appendices, Appendix I “Library Routines,”
CBL_ERROR_PROC for details.

Code examples

Example 1:
*Merge sales prospects lists.
 MERGE NATIONAL-MERGE-FILE
 ON ASCENDING KEY PROSPECT-CLASS
 SALES-REP-NUMBER
 USING WESTERN-REGION-FILE,
 EASTERN-REGION-FILE,
 SOUTHERN-REGION-FILE
 GIVING NATIONAL-PROSPECT-FILE.

Example 2:

(An extended code sample of this example may be found at the end of this
reference entry.)
*Merge sales prospects lists and use an
*OUTPUT PROCEDURE to do processing on the list
*before writing it to the output file.
 MERGE NATIONAL-MERGE-FILE
 ON ASCENDING KEY PROSPECT-CLASS
 SALES-REP-NUMBER
 USING WESTERN-REGION-FILE,
 EASTERN-REGION-FILE,
 SOUTHERN-REGION-FILE
 OUTPUT PROCEDURE IS PROCESS-PROSPECT-LIST.

6-264 Procedure Division
Highlights for first-time users

1. MERGE can be thought of as a specialized version of SORT that has
been optimized to give better processing performance than can be
achieved using SORT. Bear in mind, however, that MERGE, like SORT,
does all of its I/O on disk files and will, therefore, take a variable amount
of time to complete, depending on the size of the input files, the number
of records in the files and the speed of the disk subsystems.

2. MERGE does not allow the use of an input procedure for manipulating
records before they are merged.

3. The files to be merged must have identical record formats and be
identically ordered by the same key fields.

4. The result of the merge may be written directly to an output file or
made available to an output procedure.

5. The output procedure may not reference any of the input files or their
records. You can access the records contained in the input files, in
merged order, by using RETURN to fetch records from the merge file.

6. The KEY AREA phrase is a means for defining the merge keys at
runtime. When you use KEY AREA, it is not required that the merge
file record descriptor contain entries for potential sort keys. Definition
of the sort key(s) in the merge file is handled internally by the MERGE
routine, using the key table. See syntax rules 2 and 3 and general rules
6 through 10.

7. Summary of the merge process:

a. At the beginning of the MERGE process all input files (in-files)
and the temporary merge file (merge-file) are opened and
positioned at the head of the file. The input files cannot already be
open when the MERGE statement begins.

b. The records of each input file are sequentially READ and released
to the merge operation.

c. When all of the records in all of the input files have been read, the
input files are closed and MERGE completes its merging process.

Procedure Division Statements 6-265
d. Following merge processing, if OUTPUT PROCEDURE is
specified, control is passed to the output procedure. In the output
procedure, each record in the merge file is fetched, in sort order,
by the RETURN verb for processing (see the entry for the
RETURN statement in this section). When the last statement of
the output procedure is executed, control returns to the MERGE
statement.

e. If the GIVING phrase is used, the merged records are written to
the specified output file(s).

Extended code example 2:
IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-FILE-MERGE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT WESTERN-REGION-FILE
 ASSIGN TO
 SELECT EASTERN-REGION-FILE
 ASSIGN TO
 SELECT SOUTHERN-REGION-FILE
 ASSIGN TO
 SELECT NATIONAL-PROSPECT-FILE
 ASSIGN TO
 SELECT NATIONAL-MERGE-FILE
 ASSIGN TO
DATA DIVISION.
FILE SECTION.
FD WESTERN-REGION-FILE.
01 W-REGION-RECORD PIC X(30).
FD EASTERN-REGION-FILE.
01 E-REGION-RECORD PIC X(30).

FD SOUTHERN-REGION-FILE.

01 S-REGION-RECORD PIC X(30).

SD NATIONAL-MERGE-FILE.

01 SORT-DATA.
 05 PROSPECT-NUMBER PIC X(5).
 05 PROSPECT-NAME PIC X(7).
 05 PROSPECT-CLASS PIC X.

6-266 Procedure Division
 05 ESTIMATED-VALUE PIC 9999V9.
 05 SALES-REP-NUMBER PIC X(3).
 05 SALES-REP-NAME PIC X(7).
 05 FILLER PIC XX.
FD NATIONAL-PROSPECT-FILE.
01 NATIONAL-RECORD PIC X(30).
WORKING-STORAGE SECTION.
01 FLAGS.
 05 MERGE-LIST-EMPTY PIC X VALUE "N".
 88 NO-MORE-RECORDS VALUE "Y".
...
PROCEDURE DIVISION.
PROSPECT-LIST-MERGE-PROCEDURE.
 MERGE NATIONAL-MERGE-FILE
 ON ASCENDING KEY PROSPECT-CLASS
 SALES-REP-NUMBER
 USING WESTERN-REGION-FILE,
 EASTERN-REGION-FILE,
 SOUTHERN-REGION-FILE
 OUTPUT PROCEDURE IS PROCESS-PROSPECT-LIST.

PROCESS-PROSPECT-LIST SECTION.
CREATE-NATIONAL-PROSPECT-FILE.
 OPEN OUTPUT NATIONAL-PROSPECT-FILE.
 RETURN NATIONAL-MERGE-FILE
 AT END MOVE “Y” TO MERGE-LIST-EMPTY.
 PERFORM UPDATE-PROSPECT-DATA
 UNTIL NO-MORE-RECORDS.
 CLOSE NATIONAL-PROSPECT-FILE.
 GO TO EXIT-MERGE-OUTPUT-PROCESSING.

UPDATE-PROSPECT-DATA.
*do not write records tagged "TestRep"
 IF SALES-REP-NAME NOT = "TestRep"
*write the record to the output file
 WRITE NATIONAL-RECORD FROM SORT-DATA.
 END-IF.
*fetch the next record
 RETURN NATIONAL-MERGE-FILE
 AT END MOVE “Y” TO MERGE-LIST-EMPTY.

EXIT-MERGE-OUTPUT-PROCESSING.
 EXIT.

Procedure Division Statements 6-267
MODIFY Statement

The MODIFY verb is used to change the characteristics of an existing screen
control item or window. It acts on control handles, elementary Screen
Section control items, and window handles.

General Format

Format 1
MODIFY {control-item} [({index-1} ...)]
 {CONTROL }

Remaining phrases are optional, can appear in any order.
AT screen-loc [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT LINE NUMBER line-num [CELL]
 [CELLS]
 [PIXEL]
 [PIXELS]

AT {COLUMN } NUMBER col-num [CELL]
 {COL } [CELLS]
 {POSITION} [PIXEL]
 {POS } [PIXELS]

AT CLINE NUMBER cline-num [CELL]
 [CELLS]

AT CCOL NUMBER ccol-num [CELL]
 [CELLS]

SIZE {IS} length [CELL]
 {= } [CELLS]
 [PIXEL]
 [PIXELS]

LINES {IS} height [CELL]
 {= } [CELLS]
 [PIXEL]

6-268 Procedure Division
 [PIXELS]

CSIZE {IS} clength [CELL]
 {= } [CELLS]

CLINES {IS} cheight [CELL]
 {= } [CELLS]

MAX-HEIGHT {IS} max-height
 {= }

MAX-WIDTH {IS} max-width
 {= }

MIN-HEIGHT {IS} min-height
 {= }

MIN-WIDTH {IS} min-width
 {= }

TITLE {IS} title
 {= }

{COLOR } IS color-val
{COLOUR}

{FOREGROUND-COLOR } IS fg-color
{FOREGROUND-COLOUR}

{BACKGROUND-COLOR } IS bg-color
{BACKGROUND-COLOUR}

{HIGHLIGHT}
{HIGH }
{BOLD }
{LOWLIGHT }
{LOW }
{STANDARD }

{BACKGROUND-HIGH}
{BACKGROUND-LOW}
{BACKGROUND-STANDARD}

STYLE {IS} style-flags
 {= }

Procedure Division Statements 6-269
{ [NOT] style-name } ...

VALUE {IS} [MULTIPLE] value [LENGTH {IS} length-1]
 {= } [TABLE] {= }

LAYOUT-DATA {IS} layout-data
 {= }

FONT {IS} font-handle
 {= }

ENABLED {IS} {TRUE }
 {= } {FALSE }
 {enabled-state}

VISIBLE {IS} {TRUE }
 {= } {FALSE }
 {visible-state}

POP-UP MENU {IS} {menu-1}
 {= } {NULL }

EVENT-LIST {IS} (event-value { event-value ... })
 {= }

AX-EVENT-LIST {IS} (ax-event-value { ax-event-value ... })
 {= }

EXCLUDE-EVENT-LIST {IS} list-state
 {= }

EVENT PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
 {THRU }
 { NULL }

{ property-name } {IS } { prop-option
 [GIVING result-1] }...
{ PROPERTY property-type } {ARE}
{ method-name } {= }
{ object-expression }

prop-option is one of the following:
{ property-value [LENGTH {IS} length-1] }

6-270 Procedure Division
{ {= } }
{)
{ ({property-value} ...) }
{ }
{ { MULTIPLE } property-table }
{ { TABLE } }
{ }
{ parameter-expression }
{ }
{ ({ parameter-expression } ...) }

parameter-expression is one of the following:
{ parameter } [AS type-num]
{ }
{ {BY} NAME parameter-name {IS} parameter }
{ {= } }
{ parameter-name {IS} parameter }
{ {= } }

object-expression has the following format:
{ {^} property-1 [(param-expr ...)]
 [:: property-2 [(param-expr ...)] ... }

Format 2
MODIFY {window-handle }
 {WINDOW [generic-handle] }

Remaining phrases are optional, can appear in any order.
AT screen-loc

LINE NUMBER line-num

{COLUMN } NUMBER col-num
{COL }
{POSITION}
{POS }

SCREEN LINE NUMBER screen-line

SCREEN {COLUMN } NUMBER screen-col
 {COL }
 {POSITION}

Procedure Division Statements 6-271
 {POS }

SIZE width

LINES height

TITLE title

ON EXCEPTION statement-1

NOT ON EXCEPTION statement-2

LAYOUT-MANAGER {IS} manager
 {= }

VISIBLE {IS} {TRUE }
 {= } {FALSE }
 {visible-state}

POP-UP MENU {IS} {menu-1}
 {= } {NULL }

ENABLED {IS} {TRUE }
 {= } {FALSE }
 {enabled-state}

EVENT PROCEDURE IS { proc-1 [{THROUGH} proc-2] }
 {THRU }
 { NULL }

ACTION {IS} action
 {= }

END-MODIFY

Syntax Rules

1. Control-item is a USAGE HANDLE data item or elementary Screen
Section item that describes a control.

2. Index-1 is a numeric expression. The parentheses surrounding index-1
are required.

6-272 Procedure Division
3. Window-handle is a USAGE HANDLE OF WINDOW or PIC X(10)
data item.

4. Generic-handle is a USAGE HANDLE, HANDLE OF WINDOW or
PIC X(10) data item.

5. Screen-loc is an integer data item or literal that contains exactly 4, 6,
or 8 digits, or a group item of 4, 6, or 8 characters.

6. Line-num, col-num, cline-num, ccol-num, length, height, width,
clength, and cheight are numeric data items or literals. They can be
non-integer values, except when pixels are specified.

7. Screen-line and screen-col are numeric expressions. They should be
integer values.

8. If the CELLS option is used with either the SIZE or CSIZE phrase,
then it must be present in both phrases if both are specified. The same
is true for use of the CELLS option in the LINES and CLINES
phrases.

9. Max-height, max-width, min-height, and min-width are numeric data
items, literals, or expressions.

10. Color-val is an integer data item or literal.

11. Fg-color and bg-color are integer literals or numeric data items. They
may be arithmetic expressions. See section 6.4.9,
“FOREGROUND-COLOR and BACKGROUND-COLOR Phrases”,
for a more detailed discussion of color settings and values.

12. If you use the AT phrase, you may not use the LINE, COLUMN,
SCREEN LINE, or SCREEN COLUMN phrases.

13. The SCREEN LINE and SCREEN COLUMN phrases must be used
together. If used, the AT, LINE, and COLUMN phrases may not be
used.

14. If the COLOR phrase is specified, neither the
FOREGROUND-COLOR nor the BACKGROUND-COLOR phrase
may be specified.

15. Style-flags is a numeric expression.

Procedure Division Statements 6-273
16. Style-name is the name of a style associated with the class of control
being described. The style-name phrase adds the named style to the
control. If control-handle refers to a generic handle, or if the
CONTROL phrase is used, you may not use the style-name phrase.
Use the STYLE phrase instead. If the NOT option is used with the
style-name phrase, the named style is removed from the control
instead. When a style is added, any conflicting styles are removed
first. For example, if you add the FRAMED style to a button, then the
UNFRAMED style is removed first.

17. Value is a literal or data item. If the MULTIPLE option is specified,
then value must be a one-dimensional table. In this case, value is not
subscripted.

18. Length-1 is a numeric literal or data item. The LENGTH phrase may
be specified only if the value or property-value immediately preceding
it is an alphanumeric literal or data item, and not a figurative constant.
In addition, the MULTIPLE option may not be specified along with the
LENGTH phrase.

19. Title is an alphanumeric literal or data item.

20. Layout-data is an integer literal, data item, or expression.

21. Manager is a USAGE HANDLE or HANDLE OF
LAYOUT-MANAGER data item that contains a valid reference to a
layout manager.

22. Font-handle is a USAGE HANDLE data item that identifies a font.

23. Enabled-state and visible-state are integer numeric literals or data
items.

24. Menu-1 is a USAGE HANDLE or HANDLE OF MENU data item.

25. Event-value and ax-event-value are numeric literals or data items that
identify an event type. List elements must be enclosed by parentheses.
Elements must be separated by a space. If the list contains a single
element, the parentheses can be omitted.

26. List-state is an integer literal or numeric data item. Valid values are
“0” and “1”.

27. Proc-1 and proc-2 are procedure names.

6-274 Procedure Division
28. You must allow recursive paragraphs in order to specify the EVENT
PROCEDURE phrase. Compiling for recursive paragraphs is allowed
by default, but you can turn it off if you use the “-Zr0” option.

29. Property-name is the name of a property specific to the type of control
being referenced. If the type of control is unknown to the compiler (as
in a “DISPLAY OBJECT object-1” statement), then property-name
may not be used. You must use the PROPERTY property-type option
instead.

30. Property-type is a numeric literal or data item. It identifies the
property to modify. The numeric values that identify the various
control properties can be found in the COPY library “controls.def”.

31. Method-name is the name of method specific to the type of ActiveX
control or COM object being referenced. If the type of the control or
object is unknown to the compiler, then method-name cannot be used.
You must use the PROPERTY property-type option instead.

32. Property-value is a literal or data item. In the Procedure Division,
property-value may also be a numeric expression (however, only the
first property-value in a phrase may be an expression, subsequent
values must be literals or data items). Note that the parentheses are
required.

33. Property-table is a data item that appears in a one-dimensional table.
No index should be specified.

34. Result-1 is a numeric data item.

35. In parameter-expression:

a. Parameter is a literal, data-item, or numeric expression used when
invoking methods or setting properties of an ActiveX control or
COM object.

b. Type-num is a numeric data item or numeric literal.

36. In object-expression:

a. ^ can only be used in conjunction with a Format 5 USE verb for an
ActiveX control or COM object.

b. Property-1 is the name of a property of the ActiveX control or
COM object. Property-1 cannot be a write-only property.

Procedure Division Statements 6-275
c. Property-2 is the name of a property of the ActiveX control or
COM object that is the value of property-1. Property-2 cannot be
a write-only property.

37. Statement-1 and statement-2 are imperative statements.

38. Action is a numeric literal or a data item.

General Rules

Format 1 (MODIFY CONTROL)

1. A Format 1 MODIFY statement updates an existing control or invokes a
method on an ActiveX control, COM object, or .NET control (also
known as an assembly). Control-item should contain a handle returned
by a DISPLAY Control-Type statement, or the name of an elementary
Screen Section control item. If control-item does not refer to a valid
control, the MODIFY statement has no effect. Note that controls
referenced in the Screen Section are not valid until they have been
created via a DISPLAY statement. If control-item refers to a valid
control, the effect of the statement is to update the specified properties of
the control and to redisplay it.

2. If index-1 is specified, then certain properties in the control being
modified are changed to match the value of index-1. This occurs
before any modification occurs. The exact set of properties changed by
the index-1 depends on the control’s type. Currently, two controls
have properties that are changed in this way:

Each occurrence of index-1 changes one property. The first occurrence
changes the first property in the list presented in the preceding table. The
second occurrence changes the second property. For example, the
statement fragment

MODIFY grid-1(2, 3), color is red

Control Type Properties Affected

List Box QUERY-INDEX

Grid Y, X

6-276 Procedure Division
would have the effect of setting the grid property “Y” to “2” and “X” to
“3” before changing the cell color to red.

Supplying more index values than the control supports has no additional
effect. You may omit trailing indexes; this leaves the corresponding
properties unchanged.

This feature can be used to simplify modification of specific elements of
controls that hold multiple values. For example, you can modify the
contents of row 2, column 3 in a grid with the statement:

MODIFY grid-1(2, 3), CELL-DATA = data-1

This is exactly equivalent to the more cumbersome:

MODIFY grid-1, Y = 2, X = 3
MODIFY grid-1, CELL-DATA = data-1

3. The meaning of each of the phrases is the same as for a Format 14
DISPLAY statement. Note that you can move a control by changing
its row or column property.

4. MODIFY simply locates the corresponding control and makes the
specified modifications. This process does not examine any phrases
specified in the Screen Section.

This capability is particularly convenient when you want to make one or
two changes to a Screen Section control. For example, if you want to
add an item to a list box, you can simply modify the list box specifying
the “item-to-add” property. For example:

* Screen Section
01 list-box-1, list-box, value list-item, line 5,
 column 15, size 20, lines 6.

* Procedure Division
modify list-box-1, item-to-add = new-list-item.

By using the MODIFY verb, you do not need to specify an “item-to-add”
property in the Screen Section, and thus you do not need to closely
manage the “item-to-add” variable.

5. If the CONTROL phrase is used, the runtime modifies the control
located at the screen position specified by the AT, LINE, and
COLUMN phrases in the current window (on non-graphical systems,

Procedure Division Statements 6-277
the CLINE and CCOL phrases also apply). The runtime maintains a
list of controls in each window. When attempting to modify a control
at a specific location, the runtime searches this list, using the first
control it finds that exactly matches the location. The list is maintained
in the order in which the controls are created. If the runtime does not
find a control at the specified location, then the statement has no effect.

6. Note that you cannot move a control with a MODIFY statement if it
includes the CONTROL phrase. This is due to the fact that the AT,
LINE, and COLUMN phrases are used to find the control instead of
specifying its new position. To move a control, you must use the
control-handle phrase instead. Also note that when you use the
CONTROL phrase, the compiler does not know the type of control
being modified. This means that the compiler will not recognize any
control-type specific style and property names. If you need to specify
these, you will need to use their numeric equivalents found in the
“controls.def” COPY library.

The following example creates an anonymous list box and adds two
items to it. Note the use of the PROPERTY phrase in the MODIFY
statement: the compiler does not know that the control is a list box so it
does not recognize the list-box specific property names. As a result, the
generic PROPERTY phrase is used in the example, specifying the level
78 data name that corresponds to the ITEM-TO-ADD property (found in
“controls.def”).

COPY "controls.def".

DISPLAY LIST-BOX, LINE 5, COL 30, LINES 5.
MODIFY CONTROL, LINE 5, COL 30,
 PROPERTY LBP-ITEM-TO-ADD =
 ("Item 1", "Item 2").

7. The style-name phrase adds the named style to the control. If the NOT
option is used with the style-name phrase, the named style is removed
from the control instead. When a style is added, any conflicting styles
are removed first. For example, if you add the FRAMED style to a
button, then the UNFRAMED style is removed first.

8. When the LENGTH option is specified, length-1 establishes the exact
size of the value or property-value. The text value presented to the
control may have no trailing spaces or may have trailing spaces added.
When you specify the LENGTH option, the control uses exactly

6-278 Procedure Division
length-1 characters of data with or without trailing spaces. However,
when length-1 is a value larger than the size of the data item it is
modifying, then the size of the data item is used instead. If length-1 is
negative, it is ignored and the default handling occurs.

9. The POP-UP MENU option changes the pop-up menu for the control.
If menu-1 is specified, then the corresponding menu becomes the new
pop-up menu. If NULL is specified, any existing pop-up menu is
removed (but not destroyed).

10. The EVENT PROCEDURE phrase adds, changes, or removes a
control’s event procedure. Specifying NULL removes any event
procedure. Otherwise, proc-1 (through proc-2, if specified) becomes
the control’s new event procedure.

11. When properties return specific values, these values are placed in
result-1 of the GIVING phrase. If the property does not have a
pre-defined return value, result-1 is set to “1” if the property is set
successfully, otherwise, result-1 is set to “0”. When a property is
being given multiple values in a single assignment, as shown here,

DISPLAY COLUMNS = (1, 10, 30)

then result-1 is set in response to the last value assigned. In the example
above, result-1 is set to 30. Because the meaning of each value depends
on the property being set, you should consult the documentation on the
specific property for the exact meaning.

12. You can also change the properties of most controls described in the
Screen Section with a Format 2 DISPLAY statement. You must use
MODIFY to change special properties of an ActiveX or .NET control.

13. To invoke (call) a method, you use the MODIFY verb in much the
same way as you set a property or style. Note that unlike common
properties and styles, you cannot use the DISPLAY statement to invoke
an ActiveX method specified in the Screen Section. You must use the
MODIFY verb. ActiveX methods can take any number of parameters
or no parameters. They can also take optional parameters (i.e.,
parameters that can be omitted). You specify the parameters in COBOL
by enclosing them in parentheses. The optional parameters are always
last. To invoke a method with no parameters, use empty parentheses
().

Procedure Division Statements 6-279
14. Each property or method name can be followed by ‘::’ and then another
property or method name to invoke methods in-line.
“MethodName1::MethodName2” means invoke the method
“MethodName1” of the current object and set the current object to the
return value. When a property or method name is followed by a token
other than ‘::’, then it means to actually invoke the method on the
current object passing the specified arguments or set the property to the
specified value and reset the current object to null.

15. The MODIFY verb takes a control’s home position (upper left corner),
its handle, the name of an elementary Screen Section item, or ‘^’, as its
first parameter. Only the properties of the control that are specified in
the MODIFY statement are updated.

16. The runtime automatically converts parameters to the appropriate
types.

17. If a method has a return value, the runtime converts and moves it to the
item specified in the GIVING clause.

18. You cannot use named parameters to avoid entering required
parameters. You can omit optional parameters only.

19. You must specify only unnamed parameters before the BY NAME
clause, and only named parameters after the BY NAME clause.

20. You can use one- and two-dimensional COBOL tables as property and
method parameters for use in COM SAFEARRAYs. The runtime
automatically converts the table to an COM SAFEARRAY, as long as
it contains only one elementary item that is USAGE HANDLE or
USAGE HANDLE OF VARIANT. See section 4.3.1 in A Guide to
Interoperating with ACUCOBOL-GT.

21. Use the “AS type-num” phrase in the parameter expression if you want
to force the parameter to be converted to a particular VARIANT type
before it is passed to a property or method of an ActiveX control or
COM object. You can tell from the object’s documentation and the
name of the parameter whether the object expects a particular
VARIANT type, such as boolean.

Use the AS phrase if the ActiveX or COM object requires a method or
property parameter to be something different from the default VARIANT
type chosen by the runtime for the particular COBOL data item or literal.

6-280 Procedure Division
(See section 4.3 in A Guide to Interoperating with ACUCOBOL-GT for
the rules that the runtime uses to determine the VARIANT type).
Specify the word “AS” followed by a numeric literal or level 78 numeric
constant that indicates the variant type to which you want the parameter
converted. The “activex.def” COPY file in the ACUCOBOL-GT
sample/def directory contains predefined level 78 constants for each of
the VARIANT types.

Format 2 (MODIFY WINDOW)

1. A Format 2 MODIFY statement changes one or more attributes of an
existing FLOATING or INITIAL WINDOW (not a subwindow).
Attributes that are not specifically changed remain unchanged, except
when a window is made larger, in which case it may also be repositioned
in order to keep it on the screen. Window-handle or generic-handle
identify the window to modify. If the WINDOW phrase is used and
generic-handle is omitted, the current window is modified.

2. The LINE and COLUMN phrases specify the location of the window
on the screen. The coordinates are relative to the interior space of the
parent window. If the window being modified is the initial window,
the coordinates are relative to its own interior. If either phrase is
omitted, the corresponding row or column position is unchanged.

3. The AT phrase specifies both the row and column position. The first
two or three digits of screen-loc, depending on the size of screen-loc,
specify the row position. The remaining digits specify the column
position. The values are treated in the same manner as in the LINE and
COLUMN phrases. If either half of screen-loc is zero, the
corresponding coordinate remains unchanged.

4. The SCREEN LINE and SCREEN COLUMN phrases set the location
of the window. The coordinates indicate the absolute position desired
on the screen. Screen-line and screen-col are given in the screen’s
base units. Base units are machine dependent. For character systems,
the base unit is a character cell. For graphical systems, the base unit is
a pixel. The upper left corner of the screen is position “1,1”. The
SCREEN LINE and SCREEN COLUMN phrases cannot be used if the
LINE, COLUMN, or AT phrases are used.

Procedure Division Statements 6-281
5. The SIZE and LINES phrases change the size of the window. The
dimensions indicate the interior of the window. The requested size
must fit on the screen. If it does not, the size is not changed. After
resizing the window, the runtime ensures that the window is fully
visible on the screen. Resizing a window that has the RESIZABLE
property will not change the window’s physical dimensions if that
window is not maximized. Note that only the window’s logical
dimensions are changed (thus increasing the scrolling region). The
user will see the new size only if he or she later maximizes the
window.

6. The TITLE phrase specifies a new title for the window. For this
phrase to have an effect, the window must have a title area.

7. Statement-1 executes if any part of the operation fails. An exception
may be caused by one of the following situations:

• The specified window size does not fit the screen. Note that this
error occurs only on a non-Windows host. Because Windows
allows you to have a desktop that is larger than the physical screen,
you do not get an exception in this instance on Windows. You
should use ACCEPT FROM TERMINAL-INFO to determine the
maximum physical window size on a Windows host.

• The window cannot be created, either because of an out-of-memory
situation or the operating system fails to create it.

• A window that has no input is activated.

• An external window error occurs. For example, the window does
not exist or cannot be created for some reason.

• An illegal instruction is used.

8. Statement-2 executes if the MODIFY statement succeeds.

9. The LAYOUT-MANAGER option attaches manager to the window.

10. The VISIBLE option makes a window visible or invisible. If the
TRUE phrase is used, or visible-state is non-zero, then the window is
made visible. Otherwise, it is made invisible.

6-282 Procedure Division
11. The POP-UP MENU option changes the pop-up menu for the window.
If menu-1 is specified, then the corresponding menu becomes the new
pop-up menu. If NULL is specified, any existing pop-up menu is
removed (but not destroyed).

12. The Format 2 ENABLED phrase can be used to disable or enable a
window. A user cannot interact with a disabled window.

13. The Format 2 EVENT PROCEDURE phrase changes the window’s
event procedure to proc-1 (through proc-2, if specified). If the NULL
option is used, then the window’s event procedure, if any, is removed
from the window. Additional information can be found in the
DISPLAY Statement above and in section 5.9.6.

14. The ACTION phrase allows you to programmatically maximize,
minimize, or restore a window. To use ACTION, assign it one of the
following values (these names are found in acugui.def):

If you assign an ACTION value that is not allowed, then there is no
effect other than to trigger the ON EXCEPTION phrase of the MODIFY
statement (if present). Note that you can use the ACTION phrase to
create a window that is initially maximized or minimized.

ACTION-MAXIMIZE maximizes the window. It has the same effect as if
the user clicked the “maximize” button. Allowed
only for windows that have RESIZABLE or
AUTO-RESIZE specified or implied for them.

ACTION-MINIMIZE minimizes the window. Allowed only with
INDEPENDENT windows that have the
AUTO-MINIMIZE property set to true. It is not
supported with other types of floating windows; if
set, it is ignored by the runtime.

ACTION-MINIMIZE has the same effect as if the
user clicked the “minimize” button.

ACTION-RESTORE If the window is currently maximized or
minimized, restores the window to its previous size
and position; otherwise, it has no effect. Allowed
only for windows that can be maximized or
minimized.

Procedure Division Statements 6-283
MOVE Statement

The MOVE statement transfers data to data items.

General Format

Format 1
MOVE source-item TO {dest-item} ...

Format 2
MOVE {CORRESPONDING} source-group TO dest-group
 {CORR }

Format 3
MOVE alpha-item TO dest-item WITH {CONVERSION}
 {CONVERT }

 [ON EXCEPTION statement-1]

 [NOT ON EXCEPTION statement-2]

 [END-MOVE]

Syntax Rules

1. Source-item is a literal or data item that represents the sending area.

2. Dest-item is a data item that receives the data.

3. Source-group and dest-group must be group items.

4. Alpha-item is a literal or data item of class alphanumeric.

5. CORR is an abbreviation for CORRESPONDING.

6. If dest-item is numeric or numeric edited, source-item may not be
HIGH-VALUES, LOW-VALUES, SPACES, or QUOTES.

7. Source-item and dest-item must be of a compatible category. See
General Rule 9 below.

8. Statement-1 and statement-2 are imperative statements.

6-284 Procedure Division
General Rules

1. A Format 1 MOVE statement moves source-item to each dest-item in
the same order in which they appear in the statement.

2. Subscript evaluation for source-item occurs once before the move to
the first dest-item.

3. Subscript evaluation for dest-item occurs immediately before the move
to that item.

4. The length of source-item is computed once immediately before the
move to the first dest-item. The compiler option “-Dz” modifies size
checking rules for numeric moves.

5. The length of dest-item is computed immediately before the MOVE to
that item.

6. Reference modification is allowed on source-item and dest-item.

7. Source-item and dest-item should not overlap (reference the same
location in memory). The compiler does not detect this condition. The
results of such a move are undefined. One possible outcome is a
memory access violation. For example:

 MOVE myStr(2:myLen - 1) to myStr(1:myLen)

attempts to move part of myStr to myStr, which gives undefined results.
Another mistake is to create an overlap by moving the value of an item
to a REDEFINES of the same item.

8. When the CORRESPONDING phrase is used, selected elementary
items in source-group are moved to corresponding items in
dest-group. This is treated as a series of Format 1 MOVE statements,
one for each corresponding pair of data items.

9. The effects and legality of a MOVE statement depend on the category
of the source-item and dest-item. Data items are assigned a category
according to their PICTURE clause. Literals are assigned a category
based on the following rules:

a. Numeric literals are numeric. Nonnumeric literals are
alphanumeric.

Procedure Division Statements 6-285
b. The figurative constant ZERO is numeric when dest-item is
numeric or numeric edited, otherwise it is alphanumeric.

c. The figurative constant SPACE is alphabetic.

d. All other figurative constants are alphanumeric.

10. Any Format 1 MOVE statement that has a group item as either a
source or destination item is treated as a simple alphanumeric to
alphanumeric move. (No implied conversion is implied.) Any
category of data may be the source or destination of a group item
MOVE.

11. The following table outlines the combinations of source-item and
dest-item that are allowed by the MOVE statement. The numbers in
the table are the “General Rules” numbers in this section where each
combination is described:

12. When dest-item is alphabetic, justification and space filling occur
according to the standard alignment rules.

13. When dest-item is alphanumeric or alphanumeric edited, justification
and space filling occur according to the standard alignment rules. If
source-item is signed numeric, the operational sign is not moved. If
the sign occupies a separate character position, that sign character is
not moved, and the size of source-item is treated as being one less.

Sending
Category:

Receiving Item Category:

Alphabetic Alphanumeric/
Alphanumeric
Edited

Numeric /
Numeric Edited

Alphabetic Yes (12) Yes (13) No (15)

Alphanumeric Yes (12) Yes (13) Yes (14)

Alphanumeric
Edited

Yes (12) Yes (13) No (15)

Numeric Integer No (15) Yes (13) Yes (14)

Numeric
Non-integer

No (15) No (15) Yes (14)

Numeric Edited No (15) Yes (13) Yes (14)

6-286 Procedure Division
14. When dest-item is numeric or numeric edited, decimal point alignment
and zero filling occur according to the standard alignment rules. If
source-item is unsigned, it is treated as being positive. If dest-item is
unsigned, the absolute value of source-item is moved. If dest-item is
signed, its sign is set to the sign of source-item. If source-item is
numeric edited, it is “de-edited” first such that dest-item receives the
same numeric value.

15. The following moves are illegal:

a. An alphabetic or alphanumeric edited data item may not be moved
to a numeric or numeric edited data item.

b. A numeric or numeric edited data item may not be moved to an
alphabetic item.

c. A non-integer numeric data item cannot be moved to an
alphanumeric or alphanumeric edited data item.

16. A Format 3 MOVE statement performs a logical conversion of
alpha-item into the format of dest-item. Dest-item may be any type of
data item. This is normally done to convert a character representation
of a number into the corresponding numeric value. The rules of
conversion are the same as the rules used by the CONVERT option of
the ACCEPT statement. For a detailed description of these rules, see
section 6.4.9, “Common Screen Options,” under the subheading
“CONVERT phrase.”

17. If the ON EXCEPTION phrase is specified, then statement-1 executes
when a conversion error occurs. If a conversion error occurs, then the
value assigned to dest-item is the value determined by ignoring the
illegal characters in alpha-item. If the NOT ON EXCEPTION phrase
is specified, then statement-2 executes when no conversion error
occurs.

MULTIPLY Statement

The MULTIPLY statement performs arithmetic multiplication.

Procedure Division Statements 6-287
General Format

Format 1
MULTIPLY source BY { result [ROUNDED] } ...

 [ON SIZE ERROR statement]

 [NOT ON SIZE ERROR statement]

 [END-MULTIPLY]

Format 2
MULTIPLY source BY source

 GIVING { result [ROUNDED] } ...

 [ON SIZE ERROR statement]

 [NOT ON SIZE ERROR statement]

 [END-MULTIPLY]

Syntax Rules

1. Source is a numeric literal or numeric data item.

2. Result is a numeric or numeric edited data item. In Format 1, result
may not be numeric edited.

3. Statement is an imperative statement.

General Rules

1. In Format 1, each result is multiplied by source. The product is stored
back in result.

2. In Format 2, the two source operands are multiplied together. The
product is stored in each result variable.

3. Additional information can be found in the sections covering
Arithmetic Operations (section 6.4.1), Multiple Receiving Fields
(section 6.4.2), the ROUNDED option (section 6.4.3), and the SIZE
ERROR option (section 6.4.4).

6-288 Procedure Division
NEXT SENTENCE Statement

The NEXT SENTENCE statement causes control to be transferred to the next
COBOL sentence (following the next period). This is distinct from the
logically next COBOL verb, which is the result of a CONTINUE statement.
Note that the ANSI standard states that “NEXT SENTENCE is an archaic
feature and its use should be avoided.”

General Format

NEXT SENTENCE

Syntax Rules

A NEXT SENTENCE statement is allowed anywhere a conditional
statement or imperative-statement is allowed.

General Rules

A NEXT SENTENCE statement transfers the flow of execution to the
logically next COBOL verb following the next period.

OPEN Statement

The OPEN statement initiates processing of a file.

General Format
OPEN [EXCLUSIVE]

 { {INPUT } { file [WITH NO REWIND] } ... } ...
 {OUTPUT} [lock-option]
 {I-O }
 {EXTEND}

 lock-option may be either of these formats:
 { ALLOWING {NO OTHERS} }
 {READERS }
 {WRITERS }
 {UPDATERS }

Procedure Division Statements 6-289
 {ALL }

 { {WITH} {LOCK } }
 {FOR } {MASS-UPDATE }
 {BULK-ADDITION}

Syntax Rules

1. File is the name of a file described in the Data Division. It may not be a
sort file.

2. The I-O phrase can be specified only for files that reside on disk.

3. The MASS-UPDATE and BULK-ADDITION phrases may be
specified only for indexed files and may not be specified along with the
INPUT phrase.

4. The WITH NO REWIND phrase may be specified only for sequential
files opened with the INPUT or OUTPUT phrase.

5. If EXCLUSIVE is specified, then lock-option may not be specified.

General Rules

1. A successful OPEN statement prepares the file for further processing by
other I/O statements and puts the file in its open mode.

2. An OPEN may not be performed on a file that is already open. A file
is not open when the program is in its initial state or when the last I/O
statement on the file was a successful CLOSE statement.

3. Except for the OUTPUT option, and as noted in rule 19 below, a file’s
organization and data description must match those used when the file
was created.

4. The following table indicates the effects of the various OPEN types on
files that are and are not available. A file is not available if it does not
exist on the host computer. Note that different results occur for
missing files if the file’s SELECT contains the OPTIONAL phrase.

Mode Available Unavailable

INPUT Open succeeds Open fails

6-290 Procedure Division
5. The different OPEN types allow for different I/O statements to be used.
This is summarized in the following chart.

6. After a successful OPEN statement, the file is positioned at its first
logical record. (The only exception to this rule is that a sequential
access file opened with the EXTEND phrase is positioned after its last
record. Records written to such a file are appended to the file.)

7. A file opened with the OUTPUT phrase is logically recreated. This is
equivalent to physically removing the file (if it exists) and creating it
anew.

8. If a file is not available, the OPTIONAL phrase is specified in the file’s
SELECT and the file is opened with the INPUT phrase, then the first
READ on the file will return an end-of-file status condition.

9. The execution of the OPEN statement causes the I-O status associated
with file to be updated. Note that opening an OPTIONAL file when
that file does not exist will return a different status code than opening it
if it does exist.

 - Optional Open succeeds Open succeeds

I-O Open succeeds Open fails

 - Optional Open succeeds Open creates file

OUTPUT Open recreates file Open creates file

EXTEND Open succeeds Open fails

 - Optional Open succeeds Open creates file

Mode Available Unavailable

Statement Input Output I-O Extend

READ X X

WRITE X X X

REWRITE X

START X X

DELETE X

UNLOCK X X

Procedure Division Statements 6-291
10. An OPEN statement with multiple files is equivalent to a series of
OPEN statements referencing the files in the order named.

11. The open state of a file is not affected by other instances of the same
file in other run units or other programs of the same run unit. These
other files may be opened or closed without affecting the ability of the
current program to open the same file, except as modified by the file
locking rules below.

12. The EXCLUSIVE, WITH, and ALLOWING phrases allow for various
forms of file locking. There are three forms of file locking:
ALLOWING ALL, ALLOWING READERS, and ALLOWING NO
OTHERS. File locking is enforced for all file types residing on disk
but may not be enforced for non-disk files for some operating systems.

Note: The “-Fn” compiler option specifies file locking as the default
behavior for files that do not have locking or sharing already specified
or implied from within the program. See the Users’ Guide, section
2.2.7, “File Options” for details on this and other options related to file
locking.

13. The following phrases imply the ALLOWING ALL form of file
locking:

a. No lock-option specified

b. ALLOWING ALL

c. ALLOWING WRITERS

d. ALLOWING UPDATERS

This file locking mode indicates that other programs can access the
file without restriction except that another program may not execute
an OPEN OUTPUT while this program keeps the file open.

14. The following phrases imply the ALLOWING READERS form of file
locking:

a. ALLOWING READERS

b. EXCLUSIVE or WITH LOCK specified with the INPUT phrase

6-292 Procedure Division
A file open in this mode does not allow any other program to open
this file other than with the INPUT phrase. Furthermore, this OPEN
will fail if any other programs currently have the file open unless the
INPUT phrase was used by all of these other programs.

15. These phrases imply the ALLOWING NO OTHERS form of file
locking:

a. ALLOWING NO OTHERS

b. EXCLUSIVE or WITH LOCK specified with the OUTPUT, I-O,
or EXTEND phrases

c. WITH MASS-UPDATE

d. BULK-ADDITION

This form of file locking does not allow any other programs to open
the file, and this OPEN will fail if any other programs currently have
the file open.

16. The WITH MASS-UPDATE phrase is equivalent to the WITH LOCK
phrase with some additional effects. It may be specified only for
indexed files. This phrase indicates to the runtime system that the file
in question will be heavily updated by this program. The runtime
system may be able to use this information to access the file more
efficiently. Book 1, ACUCOBOL-GT User’s Guide, section 6.1.6,
“Indexed File Considerations,” contains more information about the
effects of this phrase and advice on when it should be specified.

17. The BULK-ADDITION phrase is equivalent to the MASS-UPDATE
phrase with some additional effects. For Vision files, the
BULK-ADDITION phrase opens the file in “bulk addition” mode,
which substantially increases efficiency when you are writing a large
number of new records to the file. BULK-ADDITION has several
significant effects, including some changes to standard COBOL file
handling rules. See section 6.1.6.3 of ACUCOBOL-GT User’s Guide
for details. For host file systems other than Vision, specifying
BULK-ADDITION has the same effect as specifying MASS-UPDATE.
In this case, none of the special handling dictated by
BULK-ADDITION applies.

Procedure Division Statements 6-293
18. A file with a LOCK MODE IS EXCLUSIVE phrase in its SELECT
treats all OPEN statements as if they were written with the
EXCLUSIVE option.

19. The configuration variable EXTRA_KEYS_OK allows you to open an
indexed file without specifying all of that file’s alternate keys. For
more information, see the listing for EXTRA_KEYS_OK in Appendix
H, Book 4, Appendices.

20. Note that the IBM DOS/VS COBOL “-Cv” compatibility mode
supports Reversed File Reads.

PERFORM Statement

The PERFORM statement executes a procedure with optional loop control.

General Format

Format 1
PERFORM [IN THREAD]

 [procedure-1 [{THROUGH} procedure-2]]
 {THRU }

 [HANDLE IN handle-1]

 [statement END-PERFORM]

Format 2
PERFORM [IN THREAD]

 [procedure-1 [{THROUGH} procedure-2]]
 {THRU }

 [HANDLE IN handle-1]

 number TIMES

 [statement END-PERFORM]

6-294 Procedure Division
Format 3
PERFORM [IN THREAD]

 [procedure-1 [{THROUGH} procedure-2]]
 {THRU }

 [HANDLE IN handle-1]

 [WITH TEST {BEFORE}] UNTIL condition
 {AFTER }

 [statement END-PERFORM]

Format 4
PERFORM [IN THREAD]

 [procedure-1 [{THROUGH} procedure-2]]
 {THRU }

 [HANDLE IN handle-1]

 [WITH TEST {BEFORE}]
 {AFTER }

 VARYING counter FROM starting-val

 BY increment UNTIL condition

 [AFTER counter FROM starting-val

 BY increment UNTIL condition] ...

 [statement END-PERFORM]

Syntax Rules

1. Handle-1 is a HANDLE or HANDLE OF THREAD data item.

2. Procedure-1 and procedure-2 are paragraph or section names in the
Procedure Division.

3. Statement is an imperative statement.

Procedure Division Statements 6-295
4. Number is an integer numeric literal or data item. The value of
number cannot exceed 2,147,483,647.

5. Condition is a conditional expression.

6. Counter is a numeric data item.

7. Starting-val is a numeric literal or data item.

8. Increment is a non-zero numeric literal or data item.

9. A PERFORM statement must have exactly one of the procedure-1 or
the statement END-PERFORM phrases specified or a period (“.”) for
an implied END-PERFORM.

10. The words THRU and THROUGH are interchangeable.

General Rules

1. A PERFORM statement that contains procedure-1 is an out-of-line
PERFORM. When statement is used instead, then it is an in-line
PERFORM.

2. An in-line PERFORM statement functions according to the same rules
for an otherwise identical out-of-line PERFORM except that statement
is executed in place of the statements in the range of procedure-1
(through procedure-2 if specified).

3. When the PERFORM executes, control transfers to the first statement
of procedure-1. Control might not transfer, however, depending on the
evaluation of condition (if specified). The PERFORM statement also
establishes an implicit transfer of control to the end of the PERFORM
statement according to the following rules:

a. If procedure-1 is a paragraph name, and procedure-2 is not
specified, the return is after the last statement of procedure-1.

b. If procedure-1 is a section name, and procedure-2 is not specified,
the return is after the last statement of the last paragraph of
procedure-1.

c. If procedure-2 is specified and is a paragraph name, the return is
placed after the last statement of procedure-2.

6-296 Procedure Division
d. If procedure-2 is specified and is a section name, the return is
placed after the last statement of the last paragraph of
procedure-2.

e. If an in-line PERFORM is specified, an execution of the
PERFORM statement is completed after statement has executed.

4. Procedure-1 and procedure-2 are not necessarily related except that
control starts at procedure-1 and returns when it reaches the end of
procedure-2. In particular, GO TO and PERFORM statements may
occur between procedure-1 and the end of procedure-2.

5. Control can pass to statements that are inside the range of procedure-1
through procedure-2 by mechanisms other than PERFORM. In this
case, the implicit return to the PERFORM referencing these statements
is not made. An implicit return occurs only for an active PERFORM.

6. The range of a PERFORM statement consists of those statements that
are executed as a result of executing that PERFORM. This includes
statements that are executed as the result of GO TO and PERFORM
statements included in the range of the PERFORM statement.

7. If that range of a PERFORM statement includes another PERFORM
statement, the range of the included PERFORM must be either totally
included in or totally excluded from the logical sequence of the first
PERFORM statement. Thus an active PERFORM included in the
range of another active PERFORM may not allow control to pass to the
return point of the first PERFORM. Furthermore, two or more active
PERFORM statements may not have a common return point.

8. Within a thread, a paragraph under the control of a PERFORM
statement may (directly or indirectly) PERFORM itself only if the
compile-time option “-Zr1” is specified (this option is specified by
default).

9. If the TEST phrase is not specified, TEST BEFORE is implied.

10. When the THREAD option is used, a new thread is created by the
PERFORM statement. Once control returns to the end of the
PERFORM statement, the thread is terminated. Note that all of the
statements contained in the scope of the PERFORM are executed in the
new thread. This includes any loop control operations implied by the
PERFORM. For example, the statement:

Procedure Division Statements 6-297
PERFORM THREAD, PARA-1 5 TIMES

creates a single thread the performs PARA-1 five times (as opposed to
creating five separate threads, each of which executes PARA-1 once).

11. If handle-1 is specified, the new thread’s unique ID is stored in
handle-1.

Format 1

A Format 1 PERFORM statement executes its range exactly once.

Format 2

A Format 2 PERFORM statement executes its range a fixed number of times.
If number is zero or negative, control passes to the end of the PERFORM
statement. Otherwise the range of the PERFORM statement executes
number times. Changing the value of number during the execution of the
PERFORM statement does not change the number of times that range is
executed.

Format 3

A Format 3 PERFORM statement executes its range until condition
evaluates “true”. If TEST BEFORE is specified or implied, the evaluation of
condition occurs prior to any executions of the PERFORM range. Thus if
condition is true when the PERFORM starts, the range will not be executed.
If TEST AFTER is specified, the evaluation of condition does not occur until
after the first execution of the PERFORM range.

Format 4

1. A Format 4 PERFORM statement executes its range a variable number
of times while systematically changing the value of one or more
variables.

2. If TEST BEFORE is specified or implied and only one counter is
specified:

a. Counter is set to the value of starting-val when the PERFORM
statement begins.

6-298 Procedure Division
b. If condition is false, the PERFORM range executes once. Then
increment is added to counter and condition is evaluated again.
This cycle repeats until condition is true.

c. If condition is true when the PERFORM statement begins
executing, control is passed to the end of the statement after
counter is set to starting-val.

3. If TEST BEFORE is specified or implied and two or more counters are
used:

a. Each counter is set to the value of the corresponding starting-val.

b. If the first condition is true, control transfers to the end of the
PERFORM statement.

c. If the last condition is false, the range of the PERFORM executes
once. The final counter is incremented by the corresponding
increment and the last condition is evaluated again. This cycle
continues until the last condition is true.

d. When the last condition is true, the last counter is set again to the
corresponding starting-val. The preceding counter is then
incremented by the corresponding increment and the preceding
condition is evaluated. If the condition is false, step (c) is
performed again.

e. When the condition in step (d) is true, the cycle repeats for the
next higher-level counter. These cycles continue repeating in this
hierarchical manner until the topmost (VARYING) counter is
cycled. For each level, all levels underneath it are reinitialized and
run through a full cycle each time the corresponding counter is
incremented.

f. The PERFORM statement ends when the uppermost (the first)
condition evaluates true.

4. At the end of a PERFORM with the TEST BEFORE phrase, the value
of the first counter exceeds the last-used value by one addition of
increment. The values of all other counters are equal to their
corresponding starting-val.

5. If the TEST AFTER phrase is specified and only one counter is used:

a. Counter is set to the value of starting-val.

Procedure Division Statements 6-299
b. The range executes once. Then condition is evaluated. If it is
false, increment is added to counter and the range executes again.
This cycle continues until condition is true.

6. If the TEST AFTER phrase is specified and two or more counters are
used:

a. Each counter is set to its corresponding starting-val.

b. The PERFORM range executes once. The last condition is then
evaluated. If it is false, the last counter is incremented by its
corresponding increment and the PERFORM range executes
again. This continues until the last condition evaluates true.

c. When the last condition is true, the preceding condition is
evaluated. If it is false, the value of the corresponding counter is
incremented by its increment, the last counter is set to its
corresponding starting-val, and step (b) is performed through
another cycle.

d. When the condition in step (c) is true, the cycle repeats for the
next higher-level counter. These cycles continue repeating in this
hierarchical manner until the topmost (VARYING) counter is
cycled. For each level, all levels underneath it are reinitialized and
run through a full cycle each time the corresponding counter is
incremented.

e. The PERFORM statement ends when the topmost (VARYING)
condition is true.

7. At the end of a PERFORM statement with the TEST AFTER phrase,
the value of each counter is the same as at the end of the most recent
execution of the PERFORM range.

READ Statement

The READ statement makes records available to the program from the
program’s data files.

6-300 Procedure Division
General Format

Format 1
READ file-name [NEXT] RECORD
 [PREVIOUS]
 [BACKWARD]

 [WITH [NO] LOCK]
 [KEPT]

 [INTO dest]

 [ALLOWING UPDATERS]

 [AT END statement-1]

 [NOT AT END statement-2]

 [END-READ]

Format 2
READ file-name RECORD

 [WITH [NO] LOCK]
 [KEPT]

 [INTO dest]

 [ALLOWING UPDATERS]

 [KEY IS key-name]

 [INVALID KEY statement-1]

 [NOT INVALID KEY statement-2]

 [END-READ]

Syntax Rules

1. File-name is the name of a file described in the Data Division. It may
not be a sort file.

Procedure Division Statements 6-301
2. Dest is a data item.

3. Key-name is the name of a data item specified as a record key for
file-name.

4. Statement-1 and statement-2 are imperative statements.

5. Format 1 must be used for sequential access files.

6. The KEY phrase can be used only for indexed files.

7. Dest may not occupy any of the storage area used by the record area of
file-name.

8. BACKWARD and PREVIOUS are equivalent.

9. The NEXT or PREVIOUS phrase must be specified for a Format 1
READ for dynamic access mode files.

10. The PREVIOUS phrase may not be specified for a sequential
organization file.

11. The word KEPT is treated as commentary.

12. The LOCK, INTO and ALLOWING phrases may appear in any order.

General Rules

1. The file referenced by a READ statement must be open in the INPUT or
I-O mode when the statement executes.

2. For sequential access mode files, if neither NEXT nor PREVIOUS is
used, NEXT is implied.

3. A successful READ statement causes the file’s record area to be filled
with the record retrieved from the file.

4. If the record read is smaller than the record area, the excess characters
are left unmodified unless the file has automatic trailing space removal
specified. In this case, the record is padded with spaces.

5. The READ statement updates the value of the associated FILE
STATUS variable.

6. A successful Format 1 READ statement retrieves a record from the file
according to the following rules:

6-302 Procedure Division
a. The last OPEN, READ, or START verb used for the file
determines which record is retrieved. Other file operations do not
affect which record is retrieved.

b. If an OPEN verb was the last verb to affect the file position, then
the first record is retrieved if the NEXT phrase is used (or
implied). If the PREVIOUS phrase is used, an end-of-file
condition occurs.

c. If the last verb to affect the file position was a successful START
statement, then the record selected by that START statement is
returned, regardless of whether the NEXT or PREVIOUS phrase
was used.

d. If the last verb to affect the file position was a successful READ
statement, then the following or the preceding record is retrieved,
depending on the NEXT or PREVIOUS phrase used.

e. For sequential and relative files, the record ordering is based on
the physical ordering of the records in the file (relative files are
physically ordered by ascending record numbers).

f. For indexed files, the record ordering is based on the logical
ordering of the current Key of Reference. The Key of Reference is
set by the last successful OPEN, READ, or START statement
executed for the file.

7. When a Format 1 READ statement executes, the preceding rule may
indicate that no next logical record exists. When this happens, the
following occurs:

a. The at-end condition is set and the appropriate FILE STATUS is
set.

b. If the AT END phrase is specified, statement-1 executes. Control
does not proceed to a USE AFTER EXCEPTION statement.

c. If no AT END phrase is specified, but an appropriate USE AFTER
EXCEPTION procedure exists, that procedure is executed with an
implied return to the end of the READ statement.

d. If neither case (b) nor (c) applies, then an error message is printed
and the program halts.

Procedure Division Statements 6-303
8. If the at-end condition does not occur, and no other exception causes
the USE AFTER EXCEPTION procedure to execute, the NOT AT
END phrase (if any) is used and statement-2 is executed.

9. For a relative file, a Format 1 READ updates the contents of the file’s
RELATIVE KEY data item to reflect the record number of the
returned record.

10. When the program is sequentially accessing records from an indexed
file that contains records with duplicated alternate key values, those
records are returned in the same order in which they were created.
These duplicate values can be created by WRITE or REWRITE
statements. (These records may be reordered in the process of
rebuilding the file on another key.)

For sites using the RMS file system, please note that when a set of
records having duplicate keys is encountered, RMS returns only the first
record in the set.

11. A Format 2 READ statement provides you with the ability to read
records in random order by specifying appropriate key values. A
Format 2 READ statement on a relative file retrieves the record whose
record number is specified by the file’s RELATIVE KEY data item.

12. For indexed files, a Format 2 READ statement retrieves the record that
contains the same key value as the corresponding data item in the file’s
record area. The key used is the one named in the KEY phrase of the
READ statement. If no KEY phrase is used, the file’s primary key is
implied. The key used becomes the file’s current Key of Reference for
future Format 1 READ statements. For key values that are duplicated,
the record that corresponds to the first of the sequence of duplicated
values (as described in General Rule 10 above) is returned.

13. After successfully retrieving a record, a Format 2 READ statement sets
the file’s File Position Indicator to the next logical record according to
General Rule 6.

14. If a Format 2 READ cannot find a record with the appropriate key
value, the invalid-key condition exists. When this happens the
following occurs:

6-304 Procedure Division
a. If the INVALID KEY phrase is specified, statement-1 executes.
Control does not proceed to a USE AFTER EXCEPTION
statement.

b. If no INVALID KEY phrase is specified, but an appropriate USE
AFTER EXCEPTION procedure exists, that procedure is executed
with an implied return to the end of the READ statement.

c. If neither case (a) nor (b) applies, then an error message is printed
and the program halts.

15. If the NOT INVALID KEY phrase is used and the invalid-key
condition does not exist, and no other condition causes a USE AFTER
EXCEPTION procedure to execute, statement-2 is executed.

16. If an applicable USE AFTER EXCEPTION procedure exists, it
executes whenever a condition occurs that results in a non-zero file
status. However, it does not execute if the condition is invalid-key and
an INVALID KEY phrase is used, or if the condition is at-end and an
AT END phrase is used.

17. If a READ statement is unsuccessful, the current file position and the
current Key of Reference are both set to be undefined. See General
Rules 22 and 23 for exceptions.

18. The INTO phrase causes the contents of the file’s record area to be
moved to dest according to the rules of the MOVE statement. This
move occurs after the record is retrieved, but only if the statement is
successful.

19. The WITH NO LOCK and ALLOWING UPDATERS phrases are
equivalent. They both cause the record to be read without record
locking. In the default mode, any successful READ on a file open in
the I-O mode causes the retrieved record to be locked. A locked record
may not be read (with lock) or updated by another program. Once
locked, a record remains locked until any other I/O statement in the
program that locked it is executed for the file. (An exception to this is
files that hold multiple record locks--see section 4.3.1, “File-Control
Paragraph,” for details.) Once another I/O statement is executed for
the file, the currently locked record becomes unlocked, even if the I/O
is unsuccessful.

20. The WITH NO LOCK and ALLOWING UPDATERS phrases are
implied for a file open in the INPUT mode, and thus have no effect.

Procedure Division Statements 6-305
21. For files with manual record locking mode (see section 4.3.1,
“File-Control Paragraph,”) the WITH NO LOCK phrase is implied.
For such a file to place a record lock, it must specify WITH LOCK on
the READ statement.

22. Normally, a read that fails due to a record lock will return the
appropriate FILE STATUS. In RM/COBOL compatibility mode,
however, if the file has no applicable USE AFTER EXCEPTION
procedure available, the program will wait until the record becomes
unlocked. It will then read the record and proceed normally. Note that
this can result in deadlock. This feature is provided for RM/COBOL
compatibility. Because of the danger in using it, it is not
recommended.

23. The current Key of Reference and current file position are not modified
by a record locked condition. This allows a program to wait an
appropriate amount of time for the record to become unlocked and then
try executing the same READ statement without having to re-establish
the current file position. Because of the nature of RMS, this rule is not
followed for a program running under the VMS operating system. In
this case, the File Position Indicator is undefined.

24. If the end of a file is reached by a READ NEXT statement, a
subsequent READ PREVIOUS statement will return the last record in
the file. Similarly, if the beginning of a file is reached by a READ
PREVIOUS statement, a READ NEXT statement will retrieve the first
record of the file.

25. If the NEXT SENTENCE option is used, control passes to the next
executable sentence. Note that the ANSI standard states that “NEXT
SENTENCE is an archaic feature and its use should be avoided.”

26. The IBM DOS/VS COBOL “-Cv” compatibility mode supports
Reversed File Reads.

RECEIVE Statement

The RECEIVE statement retrieves messages sent by other threads.

General Format
RECEIVE dest-item FROM { THREAD thread-1 }

6-306 Procedure Division
 { LAST THREAD }
 { ANY THREAD }

Remaining phrases are optional, can appear in any order.
{ BEFORE TIME timeout }
{ WITH NO WAIT }

THREAD IN thread-2

SIZE IN size-item

STATUS IN status-item

[ON EXCEPTION statement-1]

[NOT ON EXCEPTION statement-2]

[END-RECEIVE]

Syntax Rules

1. Dest-item is any data item.

2. Thread-1 and thread-2 are usage HANDLE or HANDLE OF
THREAD data items. Thread-2 may not be indexed or reference
modified.

3. Timeout is a numeric literal or data item.

4. Size-item is a numeric data item. It may not be indexed or reference
modified.

5. Status-item is a two-character group item, PIC XX, or PIC 99 data
item. It may not be indexed or reference modified.

6. Statement-1 and statement-2 are any imperative statements.

General Rules

1. The RECEIVE statement returns the next available message into
dest-item. Only messages from the proper source are allowed as
follows:

Procedure Division Statements 6-307
a. FROM THREAD thread-1 specifies that only messages from the
thread identified by thread-1 are allowed.

b. FROM LAST THREAD specifies that only messages from the last
thread are allowed (see section 6.8.1, Book 1, ACUCOBOL-GT
User’s Guide for a discussion of the last thread).

c. FROM ANY THREAD specifies that all messages are allowed.

2. Messages are received in the order sent. If a message is available
when the RECEIVE statement executes, the RECEIVE statement
finishes immediately. Otherwise, the RECEIVE statement waits for a
message to become available. This provides an efficient method for
threads to synchronize with each other.

3. When BEFORE TIME is specified, the RECEIVE statement will time
out after the specified (timeout) number of hundredths of seconds. If
the RECEIVE statement times out before receiving a message, it
terminates with an exception condition and does not modify dest-item,
thread-2, or size-item. If timeout is zero, then the RECEIVE statement
times out immediately if a message is not available. Specifying NO
WAIT is equivalent to specifying a timeout value of zero.

4. If no message is available and the sending thread (as specified by rule1
above) does not exist or terminates before sending a message, the
RECEIVE statement terminates with an exception condition and does
not modify dest-item or size-item. This condition is reflected in the
status placed in status-item. Note that the test occurs before the
time-out test in the case that timeout is zero or NO WAIT is specified.

5. The RECEIVE statement places the thread ID of the sending thread in
thread-2.

6. The size of the message sent is placed in size-item. The size is
expressed in standard character positions (bytes). If the message is
longer than dest-item, it is truncated. If the message is shorter than
dest-item, it is padded on the right with spaces.

6-308 Procedure Division
7. The status of the RECEIVE statement is placed in status-item. The
following values are possible (these approximate the standard file
status codes):

8. If the RECEIVE statement is successful (as indicated in rule 7 above),
statement-2 executes. If an exception condition is returned,
statement-1 executes.

RELEASE Statement

The RELEASE statement makes records available to the initial phase of a
sort operation.

General Format
RELEASE record [FROM source-rec]

Syntax Rules

1. Record is the name of a record of a sort file described in an SD entry in
the File Section.

2. Source-rec is a data item.

3. A RELEASE statement can appear only in an input procedure to a
SORT verb.

4. Record and source-rec may not have overlapping storage.

General Rules

1. The RELEASE statement makes record available to the input phase of a
sort operation. For details, see the entry in this section for the “SORT
Statement.”

“00” Success - message received

“04” Success - message received, but it was truncated

“10” Exception - sending thread does not exist or
terminated

“99” Exception - timed out

Procedure Division Statements 6-309
2. The RELEASE statement may be executed only while the program is
executing an input procedure for a SORT verb that is sorting the file
associated with record. Any other use causes a runtime error.

3. If the FROM phrase is used, source-rec is moved to record according
to the rules of the MOVE statement before record is released to the
sort operation.

4. The size of the record released to the sort operation is determined by
the size of record.

5. If a RELEASE statement is executed in a wrong context, e.g., outside
an input procedure, the runtime displays the error “Illegal RELEASE.”
This error belongs to the class of “intermediate” runtime errors that,
upon occurrence, call installed error procedures. See Book 4,
Appendices, Appendix I “Library Routines,” CBL_ERROR_PROC for
details.

RETURN Statement

The RETURN statement retrieves records from sort or merge operations.

General Format
RETURN file-name RECORD [INTO dest-record]

 AT END statement-1

 [NOT AT END statement-2]

 [END-RETURN]

Syntax Rules

1. File-name is the name of a sort file described by an SD entry in the Data
Division.

2. Dest-record is a data item.

3. Statement-1 and statement-2 are imperative statements.

6-310 Procedure Division
4. A RETURN statement may appear only in an output procedure
associated with a SORT or MERGE statement. A RETURN statement
may not be placed in Declaratives.

5. The record area associated with file-name and dest-record may not
have overlapping storage.

General Rules

1. The RETURN statement returns the next record from the output phase of
a SORT or MERGE statement and places this record in the record area
associated with file-name. The RETURN statement may be executed
only while the program is executing an output procedure of a SORT or
MERGE statement.

2. Any area in the record area associated with file-name that is beyond
the end of the returned record is left unchanged.

3. If the INTO phrase is specified, the record area associated with
file-name is moved to dest-record according to the rules of the MOVE
statement. This move occurs after the record is retrieved, but only if
the statement is successful.

4. When no more records are available from the SORT or MERGE
operation, statement-1 is executed. Otherwise, statement-2, if
specified, is executed.

5. The RETURN statement does not update the FILE STATUS variable
associated with file-name.

6. If a RETURN statement is executed in a wrong context, the runtime
displays the error “Illegal RETURN.” This error belongs to the class
of “intermediate” runtime errors that, upon occurrence, call installed
error procedures. See Book 4, Appendices, Appendix I “Library
Routines,” CBL_ERROR_PROC for details.

REWRITE Statement

The REWRITE statement logically replaces a record in a file.

Procedure Division Statements 6-311
General Format
REWRITE record [FROM source-field]

 [INVALID KEY statement-1]

 [NOT INVALID KEY statement-2]

 [END-REWRITE]

Syntax Rules

1. Record must be the name of a logical record in the Data Division File
Section. The associated file may not be a sort file.

2. Source-field is a data item or literal.

3. Statement-1 and statement-2 are imperative statements.

4. The INVALID KEY and NOT INVALID KEY phrases may not be
specified for sequential files or relative files with sequential access.

5. Record and source-field may not share any storage area.

General Rules

1. The file associated with record must be a mass storage file and must be
open in the I-O mode.

2. For files with sequential access mode, the preceding I/O statement
executed for the file must have been a successful READ statement.
The REWRITE statement replaces the last record read by the contents
of record. If the file is an indexed file, the primary key must not have
been changed since the last READ.

3. For random or dynamic access mode files, the REWRITE statement
replaces the record specified by the file’s key.

For relative files, this is the record specified by its RELATIVE KEY data
item. For indexed files, the record identified by the primary key is
replaced.

4. For an indexed file with alternate keys, the order in which duplicated
keys are subsequently returned is affected as follows:

6-312 Procedure Division
a. If the value of an alternate key has not changed, its order of
retrieval is unchanged.

b. If the value is changed, and the new value is a duplicated value,
the record’s logical position is unpredictable within the set of
records with that value.

5. The REWRITE statement does not affect the current file position.

6. The following occurrences cause the invalid-key condition:

a. The access mode is sequential and an indexed file’s primary key is
not identical to the value returned from the preceding READ
statement.

b. The record being replaced does not exist in the file.

c. The value of an alternate key that does not allow duplicates equals
that of another record already in the file.

The invalid-key condition causes the REWRITE to fail and does not
update the file.

7. If the invalid-key condition occurs, and there is an INVALID KEY
phrase, statement-1 executes. If there is no INVALID KEY phrase, but
there is an appropriate USE AFTER EXCEPTION procedure, that
procedure executes. Otherwise, an invalid-key condition causes a
message to be printed and the program halts.

8. If the NOT INVALID KEY phrase is specified, statement-2 executes if
the REWRITE statement is successful.

9. For a sequential file, the size of the record must be the same as the one
it is replacing. The size of the record written is determined by the size
of record.

10. The REWRITE statement updates the value of the FILE STATUS data
item for the file.

11. If the FROM phrase is specified, it is identical to first moving the value
of source-field to record using the rules of the MOVE statement and
then performing the REWRITE as if there were no FROM phrase.

Procedure Division Statements 6-313
ROLLBACK Statement

The ROLLBACK TRANSACTION verb causes a transaction to be rolled
back or “canceled.”

General Format
ROLLBACK TRANSACTION

General Rules

The following rules describe how transaction management operates with
Vision and relative files. For other file systems linked with the runtime, each
system’s native mechanism for transaction management is invoked. See the
interface document for the specific file system for more details.

1. ROLLBACK locks the log file, checks its integrity, then writes a
ROLLBACK notation to the log file and unlocks it.

2. When ROLLBACK is enabled in the FILE-CONTROL entry for a file,
the record and file locking rules are extended for that file. Every
record updated as part of a transaction is locked until that transaction is
committed or rolled back. The ROLLBACK verb removes these locks.
Record locks applied when reading the file are also kept until the end
of the transaction.

3. During a transaction involving Vision or relative files, a CLOSE of a
file that is locked, or that has locked or deleted records, is postponed
until the transaction is committed or rolled back. If the same physical
file is opened again within the transaction, even if the program is using
a different logical file (different SELECT), the postponed CLOSE is
canceled. Note that the mode of the original OPEN is retained. (For
example, if the file were originally OPEN I-O, and if the CLOSE were
canceled, then an OPEN OUTPUT on the same file within the same
transaction would not recreate the file.) When the second OPEN is
encountered, the file position is reset to the beginning so that a READ
NEXT would read the first file in the record. CLOSE is handled in this
special way so that record locks are held—these locks are necessary for
rollback.

4. If the runtime system is killed by the user or encounters a fatal error
prior to completing a transaction, an automatic rollback occurs.

6-314 Procedure Division
5. Unless the LOGGING configuration variable is set to “0”, file
operations that occur in transactions are logged and recoverable
regardless of whether the files have rollback capability.

6. Temporary files used for rollback are created in the working directory,
or in the directory specified by the LOG_DIR configuration variable
of the runtime.

7. The first write or rewrite on a sequential access mode file after a
ROLLBACK TRANSACTION will be successful even if the primary
key was written out of sequence, and even if the primary key on a
rewrite does not match the last record read. No file error 22 will occur.
This allows the program to continue where it left off after a rollback.

8. If the STOP_RUN_ROLLBACK configuration variable is set to 1, an
implicit ROLLBACK occurs before a STOP RUN or before the end of
the program.

SEARCH Statement

The SEARCH statement searches an indexed table for a specific table entry.
The search may be sequential or binary (SEARCH or SEARCH ALL). The
search terminates when either a match is found (first match), or when the
entire table has been searched.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format

Format 1
SEARCH table-name [VARYING index-item]

 [AT END statement-1]

 { WHEN srch-cond {statement-2 } } ...
 {NEXT SENTENCE }

 [END-SEARCH]

Procedure Division Statements 6-315
Format 2
SEARCH ALL table-name

 [AT END statement-1]

 WHEN { tbl-item {IS EQUAL TO} value }
 { {IS = } }
 { cond-name }

 [AND { tbl-item {IS EQUAL TO} value }] ...
 { {IS = } }
 { cond-name }

 { statement-2 }
 { NEXT SENTENCE }

 [END-SEARCH]

Syntax Rules

1. Table-name is a data item that must contain an OCCURS clause
including an INDEXED BY phrase. Table-name must not be
subscripted in the SEARCH statement. In Format 2, table-name must
also contain the KEY IS phrase in its OCCURS clause.

2. Index-item is a numeric integer data item or an index name. It may not
be subscripted by the first index name in the INDEXED BY phrase in
the OCCURS clause of table-name.

3. Srch-cond is a conditional expression.

4. Statement-1 and statement-2 are imperative statements.

5. Value may be a data item, a literal, or an arithmetic expression. It must
be legal to compare value with tbl-item. No data item in value may be
referenced in the KEY IS phrase in the OCCURS clause of
table-name, nor may it be subscripted by the first index-name
associated with table-name.

6. Cond-name is a condition-name (level 88) that must be defined as
having only a single value. The condition-variable associated with
cond-name must appear in the KEY IS phrase in the OCCURS clause
of table-name.

6-316 Procedure Division
7. Tbl-item must be subscripted by the first index-name associated with
table-name along with other subscripts as required. It must be
referenced in the KEY IS phrase in the OCCURS clause of
table-name. Tbl-item may not be reference modified.

8. In Format 2, when a tbl-item or a cond-name is referenced, all
preceding data-names in the KEY IS phrase in the OCCURS clause of
table-name (or their associated condition-names) must also be
referenced.

General Rules

Format 1

1. The Format 1 SEARCH statement searches a table serially starting with
the current index setting.

a. If the index-name associated with table-name contains a value that
is higher than the highest occurrence number for table-name, the
search terminates immediately. If the AT END phrase is specified,
statement-1 executes. Control then passes to the end of the
SEARCH statement.

b. If the index-name associated with table-name contains a valid
occurrence number, the SEARCH statement evaluates the WHEN
conditions (srch-cond) in the order they appear. If no condition is
satisfied, the index-name associated with table-name is set to the
next occurrence number. The evaluation process is then repeated.
This process ends when a condition is satisfied or an occurrence
number outside of the range of table-name is generated. In this
second case, processing continues as in step (1a) above.

c. When a srch-cond is satisfied, the SEARCH terminates and the
associated statement-2 executes (or control passes to the next
sentence if NEXT SENTENCE is used). The index-name
associated with table-name remains set at its current value.
Control then passes to the end of the SEARCH statement.

2. If there is no VARYING phrase specified, the index-name used for the
search is the first index-name in the INDEXED BY phrase associated
with table-name. Other index-names associated with table-name
remain unchanged.

Procedure Division Statements 6-317
3. If the VARYING phrase is specified, and index-item names an
index-name associated with table-name, then that index-name is used
for the search operation. If index-name names some other index-name
or a numeric data item, that item is incremented by 1 every time the
index-name associated with the search operation is incremented. The
index-name specified in rule 2 is used for the search procedure.

Format 2

1. A Format 2 SEARCH performs a binary search of an ordered table. It
yields predictable results only when:

a. the data in the table has the same order as specified by the KEY IS
phrase associated with table-name

b. the contents of the keys in the WHEN phrase identify a unique
table element

2. The initial value of the table-name index-name is ignored. It is varied
in a non-linear manner by the SEARCH operation until the WHEN
conditions are satisfied or the table has been searched.

3. If the WHEN phrase conditions are not satisfied for any index setting,
control passes to the AT END phrase statement-1, if any, or to the end
of the SEARCH statement. The setting of the table-name index-name
is not predictable in this case.

4. If all of the WHEN phrase conditions are satisfied for an index setting,
control passes either to the associated statement-2 or to the next
sentence, whichever is specified. The table-name index-name
indicates the occurrence number that satisfied the conditions.

5. The index-name used for the search is the first index-name listed in the
INDEXED BY phrase associated with table-name. Other index-names
remain unchanged.

6-318 Procedure Division
Code examples

Example 1:

In this example SEARCH is used to conduct a sequential search of the table
for the first match. The index data item must be assigned an initial value by
the program. Note that subsequent searches of the table for additional
matches may be made if the value of the search index is saved after a match.

Assume the following table data item:
01 FRUIT-TREE-INVENTORY.
 05 FRUIT-TREE-TABLE
 OCCURS 100 TIMES
 INDEXED BY FTT-INDEX.
 10 FT-NAME PIC X(25).
 10 FT-CODE PIC X(5).
 10 FT-PRICE PIC 9(5)V99.
 10 FT-COUNT PIC 999.
*05 table name is specified by SEARCH
*OCCURS and INDEXED BY required for SEARCH

Assume that FRUIT-TREE-TABLE has been loaded.
*use SET to initialize the index
SET FTT-INDEX TO 1.
SEARCH FRUIT-TREE-TABLE
*handle no match in table
 AT END DISPLAY "Variety not found."
*test for match
 WHEN FT-NAME (FTT-INDEX) = TREE-NAME
*match found, perform action
 PERFORM DISPLAY-INVENTORY-ITEM
END-SEARCH.

Example 2:

In this example a WHEN clause is used in a sequential search to test for an
“end of table” (AT END equivalent) condition. Note that when the table
being searched is not full (has table elements at the end that have not been
filled), searching the table into the unfilled space will give unpredictable
results. You can search a partially filled table by determining the position of

Procedure Division Statements 6-319
the last valid entry in the table and then using a WHEN clause in the
SEARCH statement to test for when the search process traverses past the last
valid entry.

Assume the same table declaration as in example 1. Assume, also, that the
program has verified the table entries and has saved the subscript value of the
last valid entry in a variable named LAST-VALID-ENTRY.
*initialize the search index
SET FTT-INDEX TO 1.
SEARCH FRUIT-TREE-TABLE
*test for match
 WHEN FT-NAME (FTT-INDEX) = TREE-NAME
*match found, perform action
 PERFORM DISPLAY-INVENTORY-ITEM
*test for indexing into unfilled table space
 WHEN FTT-INDEX > LAST-VALID-ENTRY
*exit the SEARCH statement
 NEXT SENTENCE.

if ftt-index > last-valid-entry
 display " variety not found".

Example 3:

In this example SEARCH ALL is used to conduct a binary search of an
ordered table. Binary searches require sequential, ordered tables. The
table definition must include an ASCENDING or DESCENDING KEY
clause. The search terminates upon first match, and there is no way to
continue the search to find a second match. Binary searches are best suited
to large tables (typically 50 records or more). When used to search large
tables, the binary search method will, on average, find a table record much
more quickly than will a sequential search. For example, a table containing
1000 records will need to perform no more than ten comparisons to find a
match.

Assume the following table data item:
01 FRUIT-TREE-INVENTORY.
 05 FRUIT-TREE-TABLE
*OCCURS required for SEARCH
 OCCURS 100 TIMES
*ASCENDING/DESCENDING KEY required
*for SEARCH ALL

6-320 Procedure Division
 ASCENDING KEY IS FT-NAME
*INDEXED BY required for SEARCH
 INDEXED BY FTT-INDEX.
 10 FT-NAME PIC X(25).
 10 FT-CODE PIC X(5).
 10 FT-PRICE PIC 9(5)V99.
 10 FT-COUNT PIC 999.

Assume the table has been loaded.
*FTT-INDEX is initialized by SEARCH ALL
SEARCH ALL FRUIT-TREE-TABLE
*Handle no match in table.
 AT END DISPLAY "Variety not found"
*Test for match
 WHEN FT-NAME (FTT-INDEX) = TREE-NAME
*Match found, perform action
 PERFORM DISPLAY-INVENTORY-ITEM
END-SEARCH.

Example 4:

This example demonstrates how to use SEARCH or SEARCH ALL to search
multi-dimensional tables:

SEARCH is not, by itself, equipped to perform multi-dimensional table
searches. One approach to accomplishing multi-dimensional table searches
is to use SEARCH in conjunction with PERFORM/VARYING (as the
following example will illustrate). When used together, SEARCH handles
lookups at the innermost level (dimension) of the table structure and
PERFORM/VARYING is used to manage stepping through the outer levels
of the table.

Assume the following table data item:
01 TREE-INVENTORY.
 05 NURSERY-YARD |inventory location,
 OCCURS 10 TIMES |"outer" table
 INDEXED BY YARD-IDX.
 10 TREE-TABLE |tree type,
 OCCURS 100 TIMES |"inner" table
 INDEXED BY TT-IDX.
 15 FT-NAME PIC X(25).
 15 FT-CODE PIC X(5).

Procedure Division Statements 6-321
 15 FT-PRICE PIC 9(5)V99.
 15 FT-COUNT PIC 999.

Assume the table has been loaded.
MOVE "N" TO TREE-FOUND.
PERFORM SEARCH-TREE-INVENTORY
*step through the outer table
 VARYING YARD-IDX FROM 1 BY 1
 UNTIL YARD-IDX > 10 OR TREE-FOUND = "Y".

IF TREE-FOUND = "N" |note that this code
 PERFORM NO-TREE-FOUND. |executes after the
END-IF. |search is complete
{ . . . }
SEARCH-TREE-INVENTORY.
 SET TT-IDX TO 1.
 SEARCH TREE-TABLE
 WHEN TREE-TABLE(YARD-IDX,TT-IDX) = TREE-NAME

*note that both the inner and outer table
*indexes are required
 PERFORM DISPLAY-INVENTORY-ITEM
 MOVE "Y" TO TREE-FOUND
 END-SEARCH.

If the inner table is ordered and large enough to benefit from a binary search,
use SEARCH ALL.

Highlights for first-time users

General notes:

1. The table name identifier used in SEARCH must be the table name
specified in the OCCURS phrase of the table declaration. You cannot
use the 01 table label that starts the table declaration.

2. If END-SEARCH is used NEXT SENTENCE cannot be used. Where
possible it is best to use the sentence terminator, END-SEARCH.
Unintended logic errors are often introduced by the use of NEXT
SENTENCE and are easily avoided by the use of END-SEARCH.

6-322 Procedure Division
Notes regarding sequential searches (SEARCH):

1. A sequential search is conducted as follows:

a. The search cycle begins by verifying that the value of the index
data item falls within the range of the table size (the range is from
1 to the value specified in the OCCURS clause of the record
definition).

b. If the index value is valid, then each WHEN condition phrase is
evaluated until either a match is found or until all WHEN
conditions have been tested.

c. If there is no match, the value of the index is incremented by one,
validated (as in step a), and the WHEN condition evaluation cycle
is repeated.

d. Steps a - c iterate until either a match is found or the value of the
index exceeds the table range, indicating that the entire table has
been searched.

e. If a match is found, the search terminates and the imperative
statement associated with the WHEN clause is executed. Program
execution then resumes immediately after the SEARCH statement.
Note that the value of the index data item remains set to the value
of the subscript of the matched entry.

f. If the value of the search index ever becomes less than one or
greater than the table size, the search terminates, the optional AT
END statement, if present, is executed, and program execution
continues immediately after the SEARCH statement.

2. The index data item named in the INDEXED BY clause is used to
index the table in the sequential search and must be explicitly
initialized in the program. Use SET to assign the initial value. When
the search results in a match, the index data item remains set to the
table subscript of the matching entry. Saving or preserving this value
makes it possible to make another search of the table for a subsequent
match.

Initializing the index data item:

Procedure Division Statements 6-323
a. If the entire table is to be searched, the index data item should be
assigned, using SET, the value 1, thereby starting the search with
the first record.

b. If the search is to begin with an entry other than the first, then the
index data item should be assigned the value of the position of the
first table entry to be checked. For example, to start the search at
table entry 10, assign the value 10 to the index data item.

c. If, after a search finds a match, you want to make an additional
search of the table to find a subsequent match, the value of the
index data item should be preserved and then reassigned so that
the next search begins at 1 + index-item.

3. When searching tables that are not full (do not contain valid entries for
every occurrence in the table), use a WHEN clause to test for the actual
end-of-table condition. If the search is allowed to proceed into the
unused portion of the table, garbage values in the unfilled table space
will give unpredictable results. See code example 2.

4. The relational match conditions associated with each WHEN clause
may be connected with the logical connectors AND or OR thereby
specifying multiple or alternate match conditions. For example:

WHEN NAME = SEARCH-NAME OR SIZE < MAX-SIZE

5. Use of the VARYING phrase: The VARYING phrase allows alternate
or multiple indexes to be incremented by the search loop. If
VARYING is omitted, the first index-item defined in the INDEXED
BY phrase of the OCCURS clause (for the table) is incremented.

If the VARYING phrase is included, the index item named after
VARYING is incremented, as well as the first named index in the
INDEXED BY phrase, with one exception. If the index named after
VARYING is also named in the INDEXED BY phrase, then it is the only
index incremented.

Notes regarding binary searches (SEARCH ALL):

1. The binary search is conducted as follows:

a. The search begins at the midpoint of the table (for example, 50 of
100) and compares the value of the table entry with the search
item to determine if there is a match.

6-324 Procedure Division
b. If there is no match, SEARCH determines whether the search item
is logically located in the upper or lower half of the table (0-49, or
51-100).

c. SEARCH then finds the midpoint of the half that logically
contains the search item and determines if the table element at the
midpoint matches the search item.

d. If there is no match, SEARCH again determines whether the
search item is logically located in the upper or lower half of the
remaining range.

e. This process iterates until the search item is found or until it is
determined that the table does not contain the search item (the
remaining table range becomes null).

f. If at any time a match is found, the search immediately terminates
and the imperative statement associated with the WHEN clause is
executed. Program execution then resumes immediately after the
SEARCH statement.

2. Binary searches require sequential, ordered tables (via use of the
ASCENDING/DESCENDING KEY phrase). The table must be
ordered as specified by the KEY IS phrase of the table definition.

3. The matching conditions of the WHEN clause must identify a unique
table entry.

4. Binary searches are best suited to large tables (typically 50 records or
more) where the binary search algorithm significantly reduces the
average number of lookups per match.

5. Unlike a sequential search, the binary search format permits only one
WHEN clause.

6. Because only one WHEN clause is permitted and because the index
value is automatically set by the program, it is not possible to
SEARCH partially full tables.

7. The SEARCH ALL match conditions are very restrictive. Match
condition evaluation is restricted to evaluation of a condition-name,
which can represent only a single value (no range or sequence of
values permitted), or a condition which tests for equality.

Procedure Division Statements 6-325
8. The table data item and the index must be on the left side of the
condition statement.

9. Multiple condition tests are permitted but can be connected only with
an AND (no OR).

10. Any table item or condition-name referenced must be named in the
KEY IS phrase of the OCCURS clause of the table definition.

11. The VARYING option is not permitted.

12. When a match is found, the index retains the value of the table
subscript of the matched entry. If no match is found the value of the
index is unpredictable.

SEND Statement

The SEND statement sends a message to other threads.

General Format
SEND src-item TO { { THREAD dest-thread } ... }
 { LAST THREAD }
 { ALL THREADS }

Syntax Rules

1. Src-item is a literal or data item.

2. Dest-thread is a USAGE HANDLE or HANDLE OF THREAD data
item.

General Rules

1. The SEND statement sends a message containing the data in src-item to
one or more threads. Which threads receive the message depends on the
following:

a. THREAD dest-thread causes the message to be sent to the thread
identified by dest-thread. More than one dest-thread can be
specified.

6-326 Procedure Division
b. LAST THREAD causes the message to be sent to the last thread
(see section 6.8.1, Book 1, ACUCOBOL-GT User’s Guide for a
discussion of the last thread).

c. ALL THREADS causes the message to be sent to all currently
existing threads, except the sending thread.

2. The size of the message is equal to the size of src-item.

3. The THREAD dest-thread and LAST THREAD options create a
directed message. Directed messages are sent to the specified threads
or last thread and are guaranteed to be delivered to the specified
threads. Directed messages are held in a queue. If there is not enough
space in the queue to place the message (because of other messages
that have not yet been received), the sending thread suspends until
space becomes available in the queue. Messages are received in the
order sent. See the listing for MESSAGE_QUEUE_SIZE runtime
configuration variable located in Appendix H for options on setting the
queue size.

4. The ALL THREADS option creates a broadcast message. Broadcast
messages can be picked up by any thread. Receiving a broadcast
message does not remove it from the message queue, it remains queued
to be received by other threads. Broadcast messages are removed from
the queue when either

a. all threads have received it, or

b. there is not enough space to hold the next broadcast message. In
this case, broadcast messages are removed from the queue (oldest
first) until there is enough space to place the new message in the
queue. This allows the queue to empty when there are threads that
never look for messages. It also means that a broadcast message
may not be delivered to a particular thread if other broadcast
messages are sent before the first is received. To avoid this
problem, use broadcast messages sparingly.

5. Broadcast messages can be missed under certain circumstances. To
track which messages a thread has read, each thread remembers the
number of the last broadcast message it has read. Messages are
numbered sequentially starting at one. If a thread skips an earlier
broadcast message (because the message does not meet the thread’s
delivery requirements) and then receives a later broadcast message, the

Procedure Division Statements 6-327
earlier message will never be received because it has an earlier
message number. For example, MESSAGE-1 will be missed in the
following sequence of events:

SEND MESSAGE-1 TO ALL THREADS (in thread A)
SEND MESSAGE-2 TO ALL THREADS (in thread B)
RECEIVE MSG-2 FROM THREAD B (in thread C)
RECEIVE MSG-1 FROM ANY THREAD (in thread C)

The last RECEIVE in this example does not receive MESSAGE-1
because it was sent earlier than the last broadcast message it received
(MESSAGE-2 in this case). This is caused by the first RECEIVE which
picked up a broadcast message while asking for messages from a
particular thread. To avoid this, pick up broadcast messages with the
RECEIVE FROM ANY THREAD phrase. This will prevent you from
skipping a message.

SET Statement

The SET statement sets the values of various types of data items, allows you
to control the current and active windows, and allows you to set the priority
of a thread.

General Format

Format 1
SET {result} ... TO value

Format 2
SET {result} ... {UP } BY value
 {DOWN}

Format 3
SET { {cond-name} ... TO {TRUE } } ...
 {FALSE}

Format 4
SET { {switch-name} ... TO {ON } } ...
 {OFF}

6-328 Procedure Division
Format 5
SET FILE-PREFIX TO file-prefix

Format 6
SET {CONFIGURATION} { env-name TO env-value } ...
 {ENVIRONMENT }

Format 7
SET pointer TO { ADDRESS OF data-item }
 { NULL }

Format 8
SET result-item TO SIZE OF data-item

Format 9
SET ADDRESS OF linkage-item TO { pointer }
 { ADDRESS OF data-item}
 { NULL }

Format 10
SET {INPUT } WINDOW TO window-1
 {INPUT-OUTPUT}
 {I-O }
 {OUTPUT }

Format 11
SET {handle-1} ... TO HANDLE OF {screen-1 }
 {CONTROL ID id-1}

Format 12
SET THREAD {thread-id} PRIORITY TO priority

Format 13
SET EXCEPTION {VALUE } { exc-value TO {ITEM-HELP } } ...
 {VALUES} {HELP-CURSOR }
 {CUT-SELECTION }
 {COPY-SELECTION }
 {PASTE-SELECTION }
 {DELETE-SELECTION }
 {UNDO }

Procedure Division Statements 6-329
 {SELECT-ALL-SELECTION}

Syntax Rules

1. Result is a numeric data item or index name.

2. Value is a numeric literal, a numeric data item, or an index name.

3. File-prefix is a nonnumeric literal or alphanumeric data item.

4. Cond-name is any condition-name (level 88 item). If the FALSE
option is used, then cond-name must have a WHEN SET TO FALSE
phrase in its definition.

5. Switch-name must be a mnemonic name associated with an external
switch in the SPECIAL-NAMES section of the Environment Division.

6. Env-name is a nonnumeric literal or data item.

7. Env-value is a USAGE DISPLAY numeric or nonnumeric literal or
data item. If numeric, it must be an integer.

8. CONFIGURATION and ENVIRONMENT are equivalent.

9. Pointer must be a data item with USAGE POINTER.

10. Result-item must be a numeric data item.

11. Linkage-item must be declared in the Linkage section.

12. Window-1 is a USAGE HANDLE or PIC X(10) data item that refers to
a floating window or the main application window.

13. Handle-1 is a USAGE HANDLE data item. When the control is an
ActiveX, COM, or .NET control, handle-1 must be a typed handle that
matches the control; i.e., handle-1 must be declared with the “USAGE
HANDLE OF control-type” syntax. See section 5.7.1.8, “USAGE
clause.”

14. Screen-1 must refer to an elementary Screen Section item that
describes a graphical control.

15. Id-1 and Priority are numeric literals or data items.

16. Thread-id is a USAGE HANDLE or HANDLE OF THREAD data
item.

6-330 Procedure Division
17. Exc-value is an integer literal or data item.

General Rules

Format 1

Each result is set to value. This assignment is done such that the numeric
values of result and value will be the same.

Format 2

Value is either added to (UP BY) or subtracted from (DOWN BY) each
result item. No size error checking is done.

Format 3

1. When the TRUE phrase is used, the literal in the VALUE clause for
cond-name is moved to its associated condition-variable. If the VALUE
clause contains more than one literal, the first one is used.

2. When the FALSE phrase is used, the literal defined in the WHEN SET
TO FALSE phrase of cond-name is moved to its associated
condition-variable.

Format 4

Format 4 of the SET statement alters the on/off status of external switches.
These switches are initially “off” unless otherwise specified when the
program is run.

Format 5

1. The FILE-PREFIX is a special register maintained by ACUCOBOL-GT
to aid in translating COBOL ASSIGN names to actual file names on the
host computer. A complete description of its function is located in
section 2.8, “File Name Interpretation,” of the ACUCOBOL-GT User’s
Guide.

2. A Format 5 SET statement is equivalent to this Format 6 SET
statement:

SET ENVIRONMENT "FILE-PREFIX" TO file-prefix

Procedure Division Statements 6-331
Format 6

1. ACUCOBOL-GT maintains a set of configuration variables that can
affect various aspects of the runtime system. These variables can be
initially set in the ACUCOBOL-GT runtime configuration file described
in Chapter 2 of the User’s Guide. The Format 6 SET statement can be
used to modify these values at runtime.

2. Env-name is the name of the configuration variable to set. In it,
lower-case characters are treated as upper case, and underscores are
treated as hyphens. The first space character delimits the name.
Env-name may specify either the literal name of the variable or a
data-item whose value is the name of the variable. If you specify the
actual name of the variable, such as COMPRESS-FILES, then you
must enclose the name in quotes. Env-value is the value to set the
variable to. If it is a numeric data item, then it is treated as if it were
redefined as an alphanumeric data item.

3. If env-name does not match the name of one of the runtime system’s
configuration variables, then env-name and env-value are placed in the
runtime system’s local environment. These entries are used to do file
name translations—see the ACUCOBOL-GT User’s Guide, section
2.9, “File Name Interpretation.”

4. The complete list of environment variables used by ACUCOBOL-GT
can be found in Appendix H, Book 4, Appendices.

Format 7

If the ADDRESS OF option is used, then the address of data-item is stored in
pointer. If the NULL option is used, then pointer is set to point to no data
item.

Note that the “-Zm” compiler option Causes the compiler to generate code
that tells the runtime the size of a data item specified in the SET statement.
See Book 1, Section 2.2.16, “Miscellaneous Options” for details on the -Zm
option.

Format 8

The number of standard character positions occupied by data-item is stored
in result-item.

6-332 Procedure Division
Format 9

1. If pointer is specified, then the address of the linkage-item is set to
pointer. If the ADDRESS OF option is used, then the address of the
linkage-item is set to the address of data-item. If the NULL option is
used, then the address of the linkage-item is set to point to no data item.

2. The level of linkage-item must be either 01 or 77.

3. If the linkage-item is not listed in the PROCEDURE DIVISION
USING phrase and is referenced before the SET ADDRESS OF
statement, then the runtime will abort with the message, “Use of a
LINKAGE data item not passed by the caller”.

Format 9 is helpful if you want to allocate a sizable piece of memory for
temporary use, access this memory via a COBOL table, and then free the
memory. For example:

• Use the library routine M$ALLOC to allocate the memory.

• SET the address of a Linkage section table to the pointer returned from
M$ALLOC.

• Complete the desired procedures.

• Free the memory with M$FREE.

The code sample that follows shows how Format 9 works.
identification division.

program-id. sample-program.

data division.

working-storage section.

linkage section.

* item-a and ptr-a are passed in by the calling
* program

 01 item-a pic x(10).

Procedure Division Statements 6-333
* ptr-a is set to the address of item-a
* in the calling program

 01 ptr-a usage pointer.

* item-b is used in the SET Statement.
* It is not passed in by the calling program.

 01 item-b pic x(10).

procedure division using item-a, ptr-a.
main-logic.

* Assuming item-a has a value of "ABCDEFGHIJ",
* and ptr-a points to item-a,
* the following will display "ABCDEFGHIJ" three
* times

 display item-a.

* "ABCDEFGHIJ" is displayed

 set address of item-b to ptr-a.
 display item-b.

* "ABCDEFGHIJ" is displayed

 set address of item-b to address of item-a.
 display item-b.

* "ABCDEFGHIJ" is displayed

 stop run.

Format 10

1. Format 10 of the SET verb makes window-1 the current, or current and
active window. The current window is the window to which DISPLAY
statements refer. The active window is the window that is highlighted
and the one to which user input is directed. Window-1 must be a handle
to a valid floating window. If window-1 does not refer to a valid floating
window, the SET statement has no effect.

6-334 Procedure Division
2. INPUT, INPUT-OUTPUT, and I-O are synonymous. They cause
window-1 to become both the current and active window.

3. OUTPUT causes window-1 to become the current window.

Format 11

A Format 11 SET statement retrieves the handle to the control described by
screen-1 or id-1 and stores it in handle-1. Id-1 must specify a value greater
than zero. If a matching control is found, handle-1 is set to the handle of that
control. If no matching control is found, handle-1 is set to NULL. If more
than one control has a matching ID, then handle-1 is arbitrarily set to one of
those controls. Note that the handle can be used in any statement that can use
control handles. One reason you might want this handle is if you need to pass
a control to a subprogram. You cannot pass Screen Section names to
subprograms, but you can pass the handle instead.

Format 12

1. A Format 12 SET statement sets the execution priority of a thread.
Execution switches between threads at various points in the program.
Each opportunity to change the active thread is called a switch point.
The execution priority determines which thread gets control at each
switch point.

2. The execution priority is an integer. The higher the priority, the more
often that thread gets control at a switch point. By default, threads start
with a priority value of 100. Threads receive control in proportion to
their priority. Thus, a thread with a priority of 50 gains control half as
often as a thread with a priority of 100. Of course, if a thread is paused
for any reason (waiting for input, for example), then it does not gain
control.

3. If thread-id is specified, then the priority for the thread identified by
thread-id is set to priority. Otherwise, the current thread’s priority is
set to priority. If thread-id does not correspond to an existing thread,
then the SET statement has no effect.

4. The minimum priority for a thread is “1”. The maximum is 32767.

Procedure Division Statements 6-335
Format 13

A Format 13 SET statement associates the exception value specified in
exc-value with an automated action that the runtime can perform. Any
keystroke, menu item, or control that produces the exc-value exception value
will automatically cause the associated action to be performed (you do not
have to code the action; it happens automatically). If the runtime handles the
exception in this way, then the exception is not passed on to the COBOL
program.

The ITEM-HELP action produces context-sensitive help for the control with
the current input focus. The HELP-CURSOR action places the mouse into
help mode. For a description of the ITEM-HELP and HELP-CURSOR
actions, see section 10.4, Book 2, ACUCOBOL-GT User Interface
Programming.

The remaining actions take effect if the current control is an entry field
(otherwise, they have no effect). These actions cause the entry field to do the
following:

The cut, copy, paste, delete, and undo effects are accomplished automatically
via the ACTION property of entry fields. Usually, you will want to assign
these exception values to various menu items and toolbar push buttons.
When you are setting up a push button to correspond to one of these actions,

CUT-SELECTION Cuts the current selection to the
clipboard

COPY-SELECTION Copies the current selection to the
clipboard

PASTE-SELECTION Pastes the clipboard into the entry
field at the current location
(replaces any existing selection)

DELETE-SELECTION Deletes the current selection

UNDO Undoes the last change

SELECT-ALL-SELECTION Selects all the text in the entry field.
In a multi-line entry field, this
includes the text in all lines.

6-336 Procedure Division
you should ensure that you make the push button a SELF-ACT button
(otherwise the act of pushing the button makes the button the current control,
not the entry field).

SORT Statement

The SORT statement sorts records according to selected key fields. Record
content can be modified before and after the actual sort process using INPUT
PROCEDURE and OUTPUT PROCEDURE.

ACUCOBOL-GT also including a sorting utility called AcuSort. See chapter
3 of the ACUCOBOL-GT User’s Guide for details on this utility. There is
also a runtime configuration variable that instructs the runtime to use the
system’s Quicksort algorithm (if present) instead of the built-in algorithm
specified by the SORT statement. See the USE_SYSTEM_QSORT variable
in Appendix H of the ACUCOBOL-GT Appendices manual.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section. In the highlights list,
item four discusses ways to improve SORT performance.

General Format
SORT sort-file

 { KEY AREA IS key-table }
 { ON {ASCENDING } KEY {key-name} } ...
 {DESCENDING}

 [WITH DUPLICATES IN ORDER]

 [COLLATING SEQUENCE IS alpha-name]

 { INPUT PROCEDURE IS proc-name }
 { USING {in-file} ... }

 { OUTPUT PROCEDURE IS proc-name }
 { GIVING {out-file} ... }

Note that proc-name has the following format:

Procedure Division Statements 6-337
 start-proc [{THRU } end-proc]
 {THROUGH}

Syntax Rules

1. Sort-file names a sort file described by an SD entry in the Data Division.

2. Key-table must name a data item that is not located in the record for
sort-file. Key-table may not be subordinate to an OCCURS clause, nor
may it be reference modified.

3. Key-table must reference a data item whose size is an even multiple of
7. Key-table is processed as if it had the following structure:

01 KEY-TABLE.
 03 SORT-KEY OCCURS N TIMES.
 05 KEY-ASCENDING PIC X COMP-X.
 05 KEY-TYPE PIC X COMP-X.
 05 KEY-OFFSET PIC XX COMP-X.
 05 KEY-SIZE PIC XX COMP-X.
 05 KEY-DIGITS PIC X COMP-X.

Typically, programs will declare key-table with a similar format.

4. Key-name is a data item in the record description associated with
sort-file. It may not be subordinate to an OCCURS clause, nor may it
be a group item containing variable occurrence data items. It may not
be reference modified. The maximum number of keys allowed is 23.

5. Alpha-name is an alphabet-name defined in the SPECIAL-NAMES
paragraph of the Environment Division.

6. In-file and out-file are files described by FD entries in the Data
Division. They may not be sort files. The maximum number of input
and ouput files is 25.

7. Start-proc and end-proc are paragraph or section names in the
Procedure Division.

8. A SORT statement may not appear in Declaratives or in the input or
output procedure of a SORT or MERGE statement.

6-338 Procedure Division
9. If sort-file contains variable length records, in-file records must not be
smaller than the smallest record in sort-file nor larger than the largest.
If sort-file contains fixed length records, in-file records may not be
larger than the size of sort-file’s records.

10. If out-file contains variable length records, sort-file records must not
be smaller than the smallest record in out-file nor larger than the
largest. If out-file contains fixed length records, sort-file records may
not be larger than the size of out-files records.

11. If sort-file contains more than one record description, key-name need
appear in only one of them. The character positions referenced by
key-name are used as the key for all the file’s records.

12. If out-file is an indexed file, the first key-name must be ASCENDING
and must specify the same character positions in its record as the
primary record key for out-file.

13. THRU is an abbreviation for THROUGH.

General Rules

1. The SORT statement sorts records received from the INPUT
PROCEDURE or found in the in-files. It then either makes these sorted
records available to the OUTPUT PROCEDURE or writes them to each
out-file.

2. Sort records must be at least six bytes in size.

3. If sort-file contains fixed length records, any shorter in-file records are
space-filled on the right to match the record size.

4. If out-file contains fixed length records, any shorter sort-file records
are space-filled on the right to match the record size.

5. The first key-name is the major key, and the next key-name is the next
most significant key. This pattern continues for each key-name
specified.

6. The ASCENDING phrase specifies that key values are to be ordered
from lowest to highest. The DESCENDING phrase specifies the
reverse ordering. Once ASCENDING or DESCENDING is specified,
it applies to each key-name until another ASCENDING or
DESCENDING adjective is encountered.

Procedure Division Statements 6-339
7. Use the KEY AREA option when you do not know the specifics of the
sort key until the program is run. You can use this to allow users to
enter sort key specifications, typically in conjunction with some form
of data dictionary.

8. Your program must fill in a table of information that describes the sort
keys. This table, key-table, should have the format described by
Syntax Rule 3 above. The number of sort keys is determined by the
number of occurrences in the table. The keys are listed in order of
precedence: table entry 1 describes the highest precedence key, table
entry 2 the second highest, and so on. If you need to process a variable
number of keys, use a variable-size table (by using OCCURS
DEPENDING ON).

9. For each key, you must specify the following information:

10. The KEY-TYPE field uses a code to describe the type and internal
storage format of the data item. Select from the following values:

KEY-ASCENDING: This should be 0 or 1. Enter 1 to have an
ascending sort sequence, 0 for descending.

KEY-TYPE: Describes the underlying data format. The
allowed values are listed in the next rule.

KEY-OFFSET: Describes the distance (in standard character
positions) from the beginning of the sort
record to the beginning of the key field. The
first field in a sort record is at offset 0.

KEY-SIZE: Describes the size of the key field in standard
character positions.

KEY-DIGITS: This is used only for numeric keys. It
describes the number of digits contained in
the key (counting digits on both sides of the
decimal point).

0 Numeric edited

1 Unsigned numeric (DISPLAY)

2 Signed numeric (DISPLAY, trailing separate)

3 Signed numeric (DISPLAY, trailing combined)

6-340 Procedure Division
This coding is the same one used by the C interface, and is also used by
Acu4GL to interface to relational DBMSs. When specifying the key
type, you may safely use “alphanumeric” for all nonnumeric keys. (The
sort rules are the same for each of these types). For numeric data,
however, you must specify the correct type or you may get sorting errors.

11. The results are undefined if you provide invalid data in the key-table.
If you fail to specify any keys (by specifying a table whose size is
zero), you receive a file error on sort-file. Under the default file status
codes, this is file error 94 with a secondary status of 63.

4 Signed numeric (DISPLAY, leading separate)

5 Signed numeric (DISPLAY, leading combined)

6 Signed COMP-2

7 Unsigned COMP-2

8 Unsigned COMP-3

9 Signed COMP-3

10 COMP-6

11 Signed binary (COMP-1, COMP-4, COMP-X)

12 Unsigned binary (COMP-1, COMP-4, COMP-X)

13 Signed native (COMP-5, COMP-N)

14 Unsigned native (COMP-5, COMP-N)

15 Floating point (FLOAT, DOUBLE)

16 Alphanumeric

17 Alphanumeric (justified)

18 Alphabetic

19 Alphabetic (justified)

20 Alphanumeric edited

21 Not used

22 Group

Procedure Division Statements 6-341
12. For nonnumeric keys, the COLLATING SEQUENCE phrase
establishes the ordering. If this phrase is omitted, the NATIVE
collating sequence is used. For numeric keys, the ordering is specified
by the algebraic value of the key.

13. The DUPLICATES phrase affects the return order for records whose
key-name values are equal.

a. When there is a USING phrase, the return order is the same as the
order of appearance of in-file names in the SORT statement.
Within a given in-file, the order is that in which the records are
accessed from that file.

b. When there is an INPUT PROCEDURE, the return order is the
same as the order in which records were released. If the
DUPLICATES phrase is not used, the return order for records with
equal key values is unpredictable.

14. The execution of a SORT statement consists of three distinct phases.
These are:

a. Records are made available to the sort-file. This is achieved either
by executing RELEASE statements in the input procedure or by
implicit execution of READ statements for each in-file. When this
phase starts, in-file must not be open. When it finishes, in-file will
not be open.

b. The sort-file is sequenced according to the KEY phrase and the
DUPLICATES clause. No processing of in-files or out-files takes
place during this phase.

c. The records in sort-file are made available in sorted order. The
sorted records are either written to the out-files or are made
available to an output routine through execution of a RETURN
statement. When this phase starts, out-file must not be open.
When it finishes, out-file will be closed.

15. If the INPUT PROCEDURE phrase is used, the named procedure is
executed by the SORT statement according to the rules for the
PERFORM verb. This procedure must make records available to the
input phase of the sort operation by executing RELEASE statements.
When this procedure returns, the sort operation proceeds to the
sequencing phase. The range of the input procedure may not cause the
execution of a MERGE, RETURN, or SORT statement.

6-342 Procedure Division
16. If the USING phrase is specified, all records in each in-file are
transferred to sort-file. For each in-file, the following actions occur:

a. The file is opened as if it were the object of an OPEN INPUT
statement with no options.

b. The records are obtained and released to the sort operation. Each
record is obtained as if a READ statement with the NEXT and AT
END phrases had been executed. For relative files, the
RELATIVE KEY data item is undefined at the end of this phase.

c. The file is closed as if it were the object of a CLOSE statement
with no options. This occurs prior to the sequencing of sort-file.

These implicit functions are performed such that any associated
USE procedures are executed. These USE procedures must not
access in-file or its record area.

17. If an output procedure is specified, control passes to it after the
sort-file has been sequenced. Control passes to the output procedure
according to the rules of the PERFORM statement. The output
procedure must execute RETURN statements to retrieve the sorted
records. When the output procedure returns, the SORT statement
terminates and control passes to the next executable statement. The
range of the output procedure must not execute any MERGE,
RELEASE, or SORT statements.

18. If the GIVING phrase is used, all the sorted records are written to each
out-file. For each of these files, the following steps occur:

a. Out-file is opened as if it were the object of an OPEN OUTPUT
statement with no options.

b. The sorted records are returned and written to the file. The records
are written as if a WRITE statement without any options had been
executed. For a relative file, the value of the RELATIVE KEY
data item is updated to reflect the record number written.

c. The file is closed as if it were the object of a CLOSE statement
without any options.

These implicit functions are performed such that any associated USE
procedures are executed. Such a USE procedure may not refer to out-file
or its record area. On the first attempt to write beyond the externally

Procedure Division Statements 6-343
defined boundaries of the file, any applicable USE procedure is
executed. If control is returned from that USE procedure, or no USE
procedure is applicable, the processing of that out-file is terminated.

19. If the SORT statement is in a fixed segment, the range of any input and
output procedures must be contained completely in the fixed segments
and no more than one independent segment. If the MERGE statement
is in an independent segment, the range must be completely contained
in the fixed segments and the same independent segment.

20. The SORT statement updates the value of the sort-file’s FILE STATUS
data item.

21. Only one SORT may be active at a time. See also “CANCEL SORT.”

22. If a SORT statement is executed in a wrong context, the runtime
displays the error “Illegal SORT.” This error belongs to the class of
“intermediate” runtime errors that, upon occurrence, call installed error
procedures. See Book 4, Appendices, Appendix I “Library Routines,”
CBL_ERROR_PROC for details.

23. For compatibility with other COBOLs, ACUCOBOL-GT includes
special registers known as SORT-RETURN and SORT-MESSAGE.
SORT-RETURN can be used for two purposes.

a. To determine the status of a SORT that’s just finished. You can
determine the success or failure of a SORT by examining this
variable after the SORT returns. A value of “0” indicates success,
and a non-zero value indicates failure.

b. To interrupt a SORT that is currently running. By setting this
variable in an input or output procedure, you stop SORT
processing immediately after the next RELEASE or RETURN
statement is performed. By setting this variable in a
DECLARATIVES paragraph (if you are not using input or output
procedures), you stop SORT processing immediately after the next
implicit RELEASE or RETURN is performed.

The special register SORT-RETURN is of type SIGNED-INT. Please
note that this register is primarily for compatibility purposes, and there
are better ways to perform these functions in ACUCOBOL-GT. For
instance, to get status on a SORT, use the FILE STATUS variable of the

6-344 Procedure Division
SORT file. This gives more information than just success or failure. And
if you are using input procedures, you can halt a SORT more simply by
returning from the procedure as if you had reached the end of file.

When compiling for IBM compatibility (“-Cv”), the SORT-MESSAGE
behaves just like it is declared in every program, for example:

01 SORT-MESSAGE PIC X(8) EXTERNAL.

This variable is used in mainframe environments to help control the
SORT operation. In ACUCOBOL-GT, the variable has no particular
effect.

24. The SORT statement can be used to sort elements of a working-storage
table. The syntax is:

SORT data-name-2 [ON ASCENDING/DESCENDING KEY
data-name-1 ...]
 [WITH DUPLICATES IN ORDER]
 [COLLATING SEQUENCE IS alphabet-name]

Code examples

Example 1:
SORT PRODUCT-SORT-FILE |temporary SD file
 ON ASCENDING KEY MODEL-TYPE, |major sort key
 MODEL-NUMBER |minor sort key
 USING ATHLETIC-SHOES-LIST, |input data file
 DRESS-SHOES-LIST |input data file
 GIVING PRODUCT-LIST. |permanent output data file

Example 2

(An extended version of this example appears after the Highlights for
First-Time Users section.):
SORT PRODUCT-SORT-FILE |temporary SD file
*duplicates sorted in the order acquired
 ON ASCENDING KEY MODEL-TYPE |major sort key
 ON DESCENDING KEY MODEL-NUMBER |minor sort key
 WITH DUPLICATES IN ORDER
 INPUT PROCEDURE IS WEED-PRODUCT-LIST
 OUTPUT PROCEDURE IS UPDATE-PRODUCT-LIST.

Procedure Division Statements 6-345
Highlights for first-time users

1. SORT is used to order records according to a set of key fields (sort keys).
Records may be stored in sequential, relative, or indexed files, or records
may be acquired by use of an INPUT PROCEDURE. Once ordered, the
record set may be further processed by use of an OUTPUT
PROCEDURE, or the records may be written directly to the named
output file(s).

2. SORT is most often used to order records stored in disk files.
However, by using an INPUT PROCEDURE you can acquire records
from other input sources such as output from batch processes, internal
application data structures, or screen input.

3. SORT creates a special temporary disk file (the sort file) as a work
space for collecting, sorting, and holding ordered records. The sort file
is defined by an SD entry in the DATA DIVISION. The sort file
record definition must immediately follow the SD entry and must
include definitions for each sort key used, except when the KEY
AREA phrase is used. You can place temporary files used by the
SORT verb in a specified directory—see the SORT_DIR configuration
variable in Appendix H, Book 4. The sort file is removed when the
SORT statement completes.

4. Runtime performance: Most SORT procedures involve the reading,
sorting, and writing of records stored in disk files. These disk I/O
processes can be relatively slow and, therefore, the SORT process can
take a lot of time. However, you can tune performance. To get the
best runtime performance, give the process as much memory and as
many temporary files as possible, without wasting resources or
adversely affecting other processes running on the system. You can
use the runtime configuration variables SORT_MEMORY and
SORT_FILES to specify the amount of memory and the number of
temporary files available to the process. The default values are
relatively small. Determining the optimal values depends on the
number and size of the records being sorted, the amount of available
memory, and the needs of other processes on the system. Some
experimentation may be necessary.

By default, the SORT routine uses a built-in sort function. Alternatively,
if your system has a qsort() function, you can specify its use by setting
the runtime configuration variable called "USE_SYSTEM_QSORT" to

6-346 Procedure Division
the value of “1”. Some systems have qsort() functions that perform
better than the built-in function. Consider experimenting with this
variable to determine if this option yields better performance on your
system. Pay particular attention to the number of comparisons done
during the sort, which can be seen in the runtime trace output.

5. The three basic steps of the SORT procedure are:

a. Acquiring and placing the records to be sorted in the sort file:

When the USING phrase is used, SORT opens each named input
file, reads the data records, one at a time, into the sort file and closes
the input file. Input files must not be open before the SORT
statement begins.

When an INPUT PROCEDURE is used the RELEASE verb is used
to pass records to the sort file. If records are acquired from disk
files, it is the responsibility of the input procedure to open, read,
process, RELEASE each individual record, and close the files. For
more information, see the RELEASE Statement.

b. Sorting the records:

Using the sort file, and a set of temporary files, records are sorted
according to the key phrase, the DUPLICATES clause, and the
COLLATING clause. See also the configuration variables in
Appendix H, Book 4, under SORT_DIR, SORT_MEMORY.

c. Disposition of the sorted records:

When the GIVING phrase is used, the sorted records are written to
the named permanent output file(s).

When an OUTPUT PROCEDURE is used, the sorted records are
made available to the output procedure for processing and writing to
a permanent file(s). The output procedure uses the verb RETURN
to acquire the ordered records from the sort file. It is the
responsibility of the output procedure to open, write, and close the
output file(s). For more information see the description of the
RETURN Statement.

Procedure Division Statements 6-347
6. A SORT statement may not appear in a DECLARATIVES section or in
an INPUT or OUTPUT PROCEDURE that is part of a SORT
statement (nesting of SORT statements is not permitted).

7. The KEY AREA phrase is a means for defining the sort keys at
runtime, as the application is running. When you use KEY AREA, it is
not required that the sort file record descriptor contain entries for
potential sort keys. Definition of the sort key(s) in the sort file is
handled internally by the SORT routine using the key table. See syntax
rules 2 and 3 and general rules 6 through 10.

8. If the KEY AREA phrase is not used, the sort keys must be defined in
the record description of the sort file.

9. Use of INPUT PROCEDURE or OUTPUT PROCEDURE requires
that all file I/O operations and record disposition be handled by the
input or output procedure. This means that the input and output
procedures must explicitly perform the OPEN, READ, RELEASE
(input), RETURN (output), WRITE, and CLOSE actions. As with any
I/O management, the procedure should consider and account for the
handling of all I/O related errors.

10. Use the DUPLICATES phrase when you want duplicate records to be
sequenced in the same order that they are read in or RELEASEd.
Duplicate records are those that have identical key values. In the
absence of the DUPLICATES phrase sequencing of duplicate records is
not predictable (see General Rule 12).

11. Use the COLLATING SEQUENCE phrase to alter the ordering of
nonnumeric keys. The named collating sequence must be defined in
the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.
In the SPECIAL-NAMES paragraph the user may define a unique
character order, or the user may select one of the four predefined
character sequences: STANDARD-1, STANDARD-2, NATIVE, and
EBCDIC. See section 4.2.3, “Special-Names Paragraph.”

If no COLLATING SEQUENCE phrase is used, the default collating
sequence is used. The default collating sequence is whatever is native to
the operating system (usually the same as the predefined type NATIVE).

6-348 Procedure Division
12. Use the STATUS variable to hold the execution status of the SORT
operation. The status variable is named in the SELECT/ASSIGN
phrase of the FILE-CONTROL paragraph of the INPUT-OUTPUT
SECTION. See section 4.2.3, “Special-Names Paragraph.”

For a complete list and description of file status codes, see Appendix E,
Book 4.

13. To specify the disk directory in which SORT will place any temporary
files, set the SORT_DIR runtime configuration variable, located in the
runtime configuration file.

Extended version of code example 2:

For simplicity, only one input file will be used.
IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-FILE-SORT.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
*SORT input file
SELECT ATHLETIC-SHOES-LIST
 ASSIGN TO
*SORT output file
 SELECT PRODUCT-LIST
 ASSIGN TO
*sort file (SD)
 SELECT PRODUCT-SORT-FILE
 ASSIGN TO
DATA DIVISION.
FILE SECTION.
FD ATHLETIC-SHOES-LIST.
01 A-SHOE-RECORD PIC X(38).
FD PRODUCT-LIST.
01 B-SHOE-RECORD PIC X(38).
SD PRODUCT-SORT-FILE.
01 SORT-DATA.
 05 MODEL-NAME PIC X(10).
 05 MODEL-TYPE PIC X(3).
 05 MODEL-NUMBER PIC X(3).
 05 STOCK-NUMBER PIC X(7).
 05 DESIGN-YEAR PIC 99.
 05 UNIT-COST PIC 999V99.

Procedure Division Statements 6-349
 05 UNIT-PRICE PIC 999V99.
 05 FACTORY-NUM PIC 999.
WORKING-STORAGE SECTION.
01 FLAGS.
 05 SHOE-LIST-EMPTY PIC X VALUE "N".
 88 NO-MORE-SHOE-RECORDS VALUE "Y".
 05 SORT-FILE-EMPTY PIC X VALUE "N".
 88 NO-MORE-SORT-RECORDS VALUE "Y".
01 HONG-KONG-NUMBER PIC 99.
01 TAIWAN-NUMBER PIC 99.
...
PROCEDURE DIVISION.
PRODUCT-LIST-SORT.
*temporary SD file used by sort
 SORT PRODUCT-SORT-FILE
 *major sort key
 ON ASCENDING KEY MODEL-TYPE
*minor sort key
 ON DESCENDING KEY MODEL-NUMBER
 *duplicates sorted in the order acquired
 WITH DUPLICATES IN ORDER
 INPUT PROCEDURE IS WEED-PRODUCT-LIST
 OUTPUT PROCEDURE IS UPDATE-PRODUCT-LIST.

WEED-PRODUCT-LIST SECTION.
OPEN-LIST-FILE.
 OPEN INPUT ATHLETIC-SHOES-LIST.
 PERFORM WEED-LIST
 UNTIL NO-MORE-SHOE-RECORDS.
 CLOSE ATHLETIC-SHOES-LIST.
 GO TO EXIT-WEED-PRODUCT-LIST.

WEED-LIST.
 READ ATHLETIC-SHOES-LIST NEXT
 AT END MOVE "Y" TO SHOE-LIST-EMPTY
 NOT AT END
*stock numbers beginning with "X" are obsolete
*do not RELEASE
 IF STOCK-NUMBER(1:1) = "X" THEN
 NEXT SENTENCE
 ELSE
*otherwise release the record to SORT
 RELEASE SORT-DATA
 END-IF.

6-350 Procedure Division
EXIT-WEED-PRODUCT-LIST.
 EXIT.

UPDATE-PRODUCT-LIST SECTION.
CREATE-PRODUCT-LIST.
 OPEN OUTPUT PRODUCT-LIST.
 PERFORM UPDATE-RECORD
 UNTIL NO-MORE-SORT-RECORDS.
 CLOSE PRODUCT-LIST.
 GO TO EXIT-UPDATE-PRODUCT-LIST.

UPDATE-RECORD.
 RETURN PRODUCT-SORT-FILE INTO SORT-DATA
 AT END MOVE "Y" TO SORT-FILE-EMPTY
 NOT AT END
 IF FACTORY-NUM = HONG-KONG-NUMBER THEN
 MOVE TAIWAN-NUMBER TO FACTORY-NUM
 END-IF
 WRITE B-SHOE-RECORD FROM SORT-DATA.

EXIT-UPDATE-PRODUCT-LIST.
 EXIT.

START Statement

The Format 1 START statement modifies the current file position for a
relative or indexed file. It defines a beginning point for retrieval of records
from a file.

The Format 2 START statement identifies the beginning of a transaction.

General Format

Format 1
START file-name

[KEY IS { EQUAL TO } key-name]
[{ = }]
[{ GREATER THAN }]
[{ > }]
[{ NOT LESS THAN }]

Procedure Division Statements 6-351
[{ NOT < }]
[{ GREATER THAN OR EQUAL TO }]
[{ >= }]
[{ LESS THAN }]
[{ < }]
[{ NOT GREATER THAN }]
[{ NOT > }]
[{ <= }]
[{ LESS THAN OR EQUAL TO }]

[SIZE key-size]

[INVALID KEY statement-1]

[NOT INVALID KEY statement-2]

[END-START]

Format 2
START TRANSACTION

Syntax Rules

1. File-name is the name of a relative or indexed file with sequential or
dynamic access mode.

2. For a relative file, key-name is the name of the RELATIVE KEY for
the file. For an indexed file, key-name must either be the name of one
of the file’s record keys or the name of a data item that starts at the
beginning of one of the file’s record keys and is not longer than that
key.

3. Statement-1 and statement-2 are imperative statements.

4. Key-size is a numeric literal or data item that specifies the maximum
number of characters of the key to be examined when setting the new
current file position. With this phrase, the program uses only the first
“n” characters of the key to find a matching record. If “n” is zero or
greater than the key size, then the entire key is used. If “n” is less than
zero, the results are undefined.

5. START and TRANSACTION are required words.

6-352 Procedure Division
General Rules

Format 1

1. The START statement changes the current file position for a file in
sequential or dynamic access mode. This allows a subsequent READ
NEXT or READ PREVIOUS statement to access a different record.

2. File-name must be open in INPUT or I-O mode when the START
statement executes.

3. If the KEY phrase is missing, the implied operation is EQUAL and the
implied key-name is the primary record key for the file (or the
RELATIVE KEY for relative files).

4. The START statement changes the current file position and updates the
FILE STATUS data item for file-name. It does not modify the record
area for file-name.

5. The comparison specified by the KEY phrase occurs between the
contents of key-name and the records in the file. The current file
position is set according to the following rules:

a. For EQUAL, “=”, NOT LESS, NOT “<”, GREATER OR EQUAL,
“>=”, GREATER, and “>”, the current file position is set to the
record with the smallest key that satisfies the given condition.

b. For LESS, “<”, NOT GREATER, NOT “>”, LESS OR EQUAL,
and “<=”, the current file position is set to the record with the
largest key that satisfies the given condition.

6. For relative files, the comparison uses the relative record numbers of
the records in the file and the current value of the RELATIVE KEY
data item.

7. For indexed files, the comparison uses the current value of key-name
and the values of the corresponding data area for the records in the file.

8. If no record is found that satisfies the comparison:

a. The invalid key condition exists.

b. The START statement is unsuccessful.

c. The current file position is undefined.

Procedure Division Statements 6-353
9. If the invalid-key condition exists, then one of the following actions
occurs:

a. If the INVALID KEY phrase is specified, statement-1 executes.

b. Otherwise, if an appropriate USE AFTER EXCEPTION procedure
exists, it is executed.

c. Otherwise, a message is printed and the program halts.

10. If the NOT INVALID KEY phrase is specified and the START
statement is successful, statement-2 executes.

11. If the START statement is not successful, the current file position and
the current Key of Reference are undefined.

Note: The ability to START LESS, “<”, NOT GREATER, NOT “>”, LESS
OR EQUAL, or “<=” is dependent on the host file system. Some file
systems cannot process records in reverse order. These KEY phrases are all
used to initiate reverse processing. If you execute one of these START
statements on a machine that does not support READ PREVIOUS, you will
get a file error “9B”. You can test whether or not a machine has the ability
to process files in this manner with the ACCEPT FROM SYSTEM-INFO
verb. For details, the entry in this section for the ACCEPT Statement.

Format 2

1. The START TRANSACTION statement identifies the beginning of a
transaction. The following rules describe how transaction management
operates with Vision and relative files. For other file systems linked with
the runtime, each system’s native mechanism for transaction
management is invoked. See the interface document for the specific file
system for more details.

2. The first START TRANSACTION in a program attempts to open the
log file for appending. If the log file does not exist, it is created.
START TRANSACTION locks the log file, checks its integrity, then
writes a START TRANSACTION notation to the log file and unlocks
it.

6-354 Procedure Division
3. After the START TRANSACTION, each Vision or relative file update
operation is recorded until the next COMMIT or ROLLBACK. At that
point, the record of changes is either written to the log file (COMMIT)
or discarded (ROLLBACK).

4. If you compile with the “-Fs” option, an implied START
TRANSACTION is in effect. Therefore, if you use this option, and
then issue a START TRANSACTION, the compiler will report an
error.

For more information on transaction management, see Chapter 5 of the
User’s Guide.

STOP Statement

The STOP statement terminates or suspends the program.

General Format

Format 1
STOP RUN [{RETURNING} return-value]
 {GIVING }

Format 2
STOP literal

Format 3
STOP THREAD [thread-id]

Syntax Rules

1. Return-value must be a numeric literal or data item.

2. Literal is a numeric or alphanumeric literal.

3. Thread-id must be a USAGE HANDLE or HANDLE OF THREAD
data item.

Procedure Division Statements 6-355
4. If a STOP RUN statement is in a consecutive sequence of imperative
statements in a sentence, it must be the last statement in that sequence.
Any statements after STOP RUN in a sentence will not execute.

5. The optional word “GIVING” or “RETURNING” may be specified
before the return value in a STOP RUN statement. In this context,
“GIVING” and “RETURNING” are merely commentary.

General Rules

1. A Format 1 STOP RUN statement terminates the program. Any files in
the open mode are closed. This is done just as if they were the object of
a CLOSE statement with no options.

2. A Format 2 STOP literal statement suspends execution of the program
and passes control to the ACUCOBOL-GT debugger. The debugger
prints the literal on the screen before accepting debugging commands.
Note, however, that you cannot do source level debugging unless you
compiled with the “-Zd” option and run with the “-d” option.

3. If return-value is specified, then it is assigned to the special register
RETURN-CODE before the program is exited. This special register is
defined as:

77 RETURN-CODE SIGNED-LONG, EXTERNAL.

It is implicitly shared by all programs of a run unit and is automatically
created by the compiler. The final value of RETURN-CODE is returned
to the host operating system when the run unit completes.

4. A Format 3 STOP THREAD statement cancels (destroys) a thread.
Thread-id identifies the thread to cancel. If thread-id is omitted, the
currently executing thread is canceled. If the current thread is the only
thread, the STOP THREAD statement behaves like STOP RUN, except
that it shuts down the runtime even if there are nested run units (see
CALL RUN).

STRING Statement

The STRING statement concatenates data items.

6-356 Procedure Division
Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format
STRING { {source} ... [DELIMITED BY {delimiter}] } ...
 [{SIZE }]

 INTO destination

 [WITH POINTER ptr-var]

 [ON OVERFLOW statement-1]

 [NOT ON OVERFLOW statement-2]

 [END-STRING]

Syntax Rules

1. Source and delimiter are nonnumeric literals or data items with USAGE
DISPLAY. The “ALL literal” construct may not be used.

2. The compiler allows source to be a numeric literal, in which case it
treats source as a string literal, displaying the following Warning at
compilation time:

Warning: Literal is numeric - treated as alphanumeric

In such cases, leading zeros are stripped from the numeric literal to form
the string literal.

3. Destination is a data item with USAGE DISPLAY. It may not be
JUSTIFIED or edited, but may be reference modified.

4. Ptr-var is an integer numeric data item.

5. Statement-1 and statement-2 are imperative statements.

6. The size of ptr-var must allow it to contain a value one greater than the
size of destination.

7. The DELIMITED phrase may be omitted only immediately before the
INTO phrase. If omitted, DELIMITED BY SIZE is implied.

Procedure Division Statements 6-357
General Rules

1. The STRING statement concatenates the source values and places the
result in destination. There are no limitations (other than available
memory) on the number of source items allowed.

2. The STRING statement moves characters from source to destination
according to the rules for alphanumeric to alphanumeric moves.
However, no space filling occurs.

3. The contents of each source item are moved to destination in the order
they appear. Data is moved from the left, character by character, until
the end of source is reached. The end point of each source item is
determined by the DELIMITED phrase according to the following
rules:

a. Transfer stops when the end of source is reached.

b. Transfer stops when the end of destination is reached.

c. If delimiter is specified, transfer stops when the characters
specified by delimiter are found in source. The delimiter is not
included in the characters transferred.

d. If the SIZE option is used, transfer ends only when the end of
source or destination is reached.

e. When source or delimiter is a figurative constant, it represents a
size of one character.

f. If source is a variable size item, the current size is used to
determine the end of source. If the current size is zero characters,
no transfer occurs for that source item.

4. When the POINTER phrase is specified, ptr-var must be set by the
program to a value greater than zero before the STRING statement
executes. The transfer to destination starts at the character position in
destination indicated by ptr-var. The leftmost character of destination
is position “1”. If no POINTER phrase is used, an implied pointer is
created and set to the value “1”.

5. Ptr-var (or the implied pointer) is incremented by one for each
character transferred to destination. The transfer to destination always
occurs at the character position indicated by the current pointer value.

6-358 Procedure Division
6. When the STRING statement ends, only those parts of destination
referenced during execution change.

7. Before moving each character to destination, the STRING statement
tests the value of ptr-var (or the implied pointer if ptr-var is not
specified). If this value is less than one or greater than the size of
destination, the overflow condition is set and the following happens:

a. No more data is transferred to destination.

b. If the ON OVERFLOW phrase is used, statement-1 executes.

c. The STRING statement ends.

8. If the NOT ON OVERFLOW phrase is specified, statement-2 executes
after the STRING statement is finished if the overflow condition has
not occurred (see general rule 7).

9. Subscripting for source and delimiter occurs just before the
corresponding item is used.

10. Subscripting for ptr-var and destination occurs just before the
STRING statement executes.

Code examples

Assume the following data items:
01 CLAIM-CODE PIC X(20). |destination data item,
 |initialize before use
01 CUSTOMER-ID PIC X(8). |source data item
01 ORDER-NO PIC X(10). |source data item
01 ORDER-DATE PIC 9(6). |source data item
01 STRING-PTR PIC 99. |concatenation pointer,
 |initialize before use

Assume the program assigns the following values before the STRING
statement executes:
CLAIM-CODE = SPACES
(destination item gets space filled)
CUSTOMER-ID = C077/W12
(customer number "/" region code)
ORDER-NO = W12-A00234
(region code "-" order number)
ORDER-DATE = 060199

Procedure Division Statements 6-359
(mmddyy)

Example 1:
STRING ORDER-DATE DELIMITED BY SIZE
 ORDER-NO DELIMITED BY SIZE
 INTO CLAIM-CODE
END-STRING.
*CLAIM-CODE = "060199W12-A00234 "
*spaces appear at the end of concatenated string
*because CLAIM-CODE was assigned SPACES before the
*STRING concatenation statement executed

Example 2:

Use POINTER to coordinate multiple STRING statements into a common
concatenation object.
SET STRING-PTR TO 1.
MOVE SPACES TO CLAIM-CODE.
STRING ORDER-DATE DELIMITED BY SIZE
 INTO CLAIM-CODE
 POINTER STRING-PTR
END-STRING.
*CLAIM-CODE now contains: "060199"
*Reassign the value of STRING-PTR so as to
*eliminate the year digits by overwriting
*positions 5 & 6 in the destination string
SUBTRACT 2 FROM STRING-PTR.
...
*build the remainder of the string
*start by adding a hyphen delimiter,
*add all characters before "/" in CUSTOMER-ID
*add another hyphen delimiter
*add all of ORDER-NO
STRING "-",
 CUSTOMER-ID DELIMITED BY "/",
 "-",
 ORDER-NO DELIMITED BY SIZE
 INTO CLAIM-CODE
 POINTER STRING-PTR
 ON OVERFLOW
 DISPLAY "Claim-Code OVERFLOW"
 NOT ON OVERFLOW
 PERFORM PROCESS-CLAIM-CODE

6-360 Procedure Division
END-STRING.
*CLAIM-CODE = "0601-C077-W12-A00234"

Highlights for first-time users

1. A clear, concise description of the concatenation transfer process is
contained in entry 3 of the preceding General Rules section.

2. Use DELIMITED BY to concatenate a portion of the source item up
to, but not including, the delimiter. The delimiter may be a single
character or a string.

3. Use OVERFLOW to do special processing in the event that the size of
the concatenation overflows the destination data item. The
OVERFLOW phrase should always be included when an overflow
condition is possible.

4. Use NOT ON OVERFLOW to do special processing in the event that
the concatenation succeeds (does not result in an overflow).

5. Use POINTER to place data into a common destination when
concatenation requires multiple STRING statements. See code
example 2, above.

6. The STRING statement does not space fill the target data item. You
must initialize the destination data item. For example:

01 CLAIM-CODE PIC X(20) VALUE ALL SPACES.

SUBTRACT Statement

The SUBTRACT statement performs arithmetic subtraction.

General Format

Format 1
SUBTRACT {number} ... FROM { result [ROUNDED] } ...

 [ON SIZE ERROR statement-1]

 [NOT ON SIZE ERROR statement-2]

Procedure Division Statements 6-361
 [END-SUBTRACT]

Format 2
SUBTRACT {number} ... FROM number

 GIVING { result [ROUNDED] } ...

 [ON SIZE ERROR statement-1]

 [NOT ON SIZE ERROR statement-2]

 [END-SUBTRACT]

Format 3
SUBTRACT {CORRESPONDING} group-1 FROM group-2 [ROUNDED]
 {CORR }

 [ON SIZE ERROR statement-1]

 [NOT ON SIZE ERROR statement-2]

 [END-SUBTRACT]

Format 4
SUBTRACT TABLE src-table FROM dest-table [ROUNDED]

 [FROM INDEX src-start TO src-end]

 [DESTINATION INDEX dest-start]

 [ON SIZE ERROR statement-1]

 [NOT ON SIZE ERROR statement-2]

 [END-SUBTRACT]

Syntax Rules

1. Number is a numeric literal or elementary numeric data item.

2. Result is an elementary numeric data item or, in Format 2, an
elementary numeric edited data item.

6-362 Procedure Division
3. Group-1 and group-2 are group items containing one or more
elementary numeric data items.

4. Statement-1 and statement-2 are imperative statements.

5. CORR is an abbreviation of CORRESPONDING.

6. Src-table and dest-table are numeric data items that are table elements.
The low-order subscript of these items must be omitted. For example,
if “SRC-1” was an element of a one-dimensional table, you would use
“SRC-1” in the statement. If “SRC-2” was an element of a
two-dimensional table, and you wanted to add all the elements in row
“2”, you would use “SRC-2(2)”.

7. Src-start, src-end and dest-start are numeric literals or data items.
These items may not be subscripted.

General Rules

1. In Format 1, the numbers are added together and the result is then
subtracted from each result in turn.

2. In Format 2, the numbers before the word FROM are added together
and the result is subtracted from the number following the word
FROM. The results are then moved to each result item.

3. In Format 3, elementary numeric items in group-1 are subtracted from
the corresponding items in group-2. The values are then stored in
group-2.

4. Additional information can be found in the sections covering
Arithmetic Operations (6.4.1), Multiple Receiving Fields (6.4.2), the
ROUNDED Option (6.4.3), the SIZE ERROR Option (6.4.4), and
the CORRESPONDING Option (6.4.5).

5. A Format 4 SUBTRACT statement subtracts a range of src-table
elements from a range of dest-table elements. The results are stored in
dest-table. The first element of the src-table range is subtracted from
the first element of the dest-table range, the second element from the
second, and so on.

Procedure Division Statements 6-363
6. Src-start indicates the first element of the source range. If omitted, it
defaults to “1”. Src-end indicates the last element of the range
(inclusive). If omitted, it is set to the current upper bound of the source
table. In a multidimensional table, the range of elements varies over
the innermost OCCURS.

7. Dest-start indicates the first element of the destination range. If
omitted, it defaults to “1”. Note that the last element of the destination
range is dest-start + src-end - 1.

8. If the SIZE ERROR phrase is used, elements for which the size error
condition exists are not updated, while the remaining elements are. If
any element gets a size error, then statement-1 executes, otherwise
statement-2 executes.

Note: SUBTRACT TABLE is usually substantially faster than the
equivalent PERFORM loop. The degree of improvement depends on the
size of the range (larger ranges show better improvement). The runtime
always performs table boundary checking in SUBTRACT TABLE, even if
you do not compile with “-Za”. The boundaries are tested only at the end
points (this is a fast test and there is nothing to be gained from not
performing it).

UNLOCK Statement

The UNLOCK statement removes file record locks.

General Format

Format 1
UNLOCK file-name ALL {RECORD }
 {RECORDS}

Format 2
UNLOCK ALL RECORDS

Format 3
UNLOCK THREAD

6-364 Procedure Division
Syntax Rule

File-name is a relative or indexed file described in the Data Division.

General Rules

Format 1

1. File-name must be in the open mode when the UNLOCK statement
executes.

2. When the UNLOCK statement executes, the currently locked records
(if any) for file-name are unlocked and made available to other users.
The statement has no effect if there are no records locked for
file-name.

3. The UNLOCK statement will fail only when the file is not open. The
UNLOCK statement updates the file’s associated FILE STATUS data
item.

4. During a transaction, the UNLOCK statement affects only those files
for which rollback has not been enabled. In the case where the
UNLOCK statement is ineffective because rollback has been enabled
for the file, the file status will be set to 00 (success).

Format 2

1. A Format 2 UNLOCK statement releases all records locked by all of the
open files in the program.

2. A Format 2 UNLOCK always succeeds. No file status data items are
updated by this verb and no Declarative procedures are ever executed.

Format 3

A Format 3 UNLOCK THREAD statement removes the last lock applied to
the thread. If the thread has only one lock (only one LOCK THREAD
statement has executed in the thread), then the UNLOCK THREAD
statement has the effect of allowing other threads to run. If more than one
lock has been applied to the thread, then the UNLOCK THREAD statement
removes the last lock applied to the thread and the thread remains locked until
it has been unlocked as many time as it was locked. This allows a thread to

Procedure Division Statements 6-365
lock itself, call a subroutine that also locks itself, and remain locked when
that subroutine unlocks itself. See the entry in this section for LOCK
THREAD.

If the current thread is not locked, the UNLOCK THREAD statement has no
effect.

UNSTRING Statement

The UNSTRING statement separates a data item into one or more receiving
fields. Delimiters may be used to specify the ends of fields. Substring values
are assigned to unique destination data items.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format
UNSTRING source

 [DELIMITED BY [ALL] delim

 [OR [ALL] delim] ...]

 INTO { dest [DELIMITER in delim-dest]

 [COUNT IN counter] } ...

 [WITH POINTER ptr-var]

 [TALLYING IN tally-var]

 [ON OVERFLOW statement-1]

 [NOT ON OVERFLOW statement-2]

 [END-UNSTRING]

6-366 Procedure Division
Syntax Rules

1. Source is an alphanumeric data item. Source may be reference modified.

2. Dest is a USAGE DISPLAY data item. It may not be edited.

3. Delim is a nonnumeric literal or an alphanumeric data item. The “ALL
literal” construct may not be used.

4. The compiler allows source and delim to be numeric literals, in which
case it treats them as string literals, displaying the following Warning
at compile time:

Warning: Literal is numeric - treated as alphanumeric

In such cases, leading zeros are stripped from the numeric literal to form
the string literal.

5. Delim-dest is an alphanumeric data item.

6. Counter, ptr-var, and tally-var are integer numeric data items.

7. Statement-1 and statement-2 are imperative statements.

8. Ptr-var must be large enough to contain a value one greater than the
size of source.

9. The DELIMITER IN and COUNT IN phrases can appear only if there
is a DELIMITED BY phrase.

General Rules

1. UNSTRING breaks up source into the various dest fields. Source is the
sending field and dest is the receiving field. Up to 50 dest items are
allowed.

2. Counter represents the count of the number of characters within source
isolated by the delimiters for the move to dest. This does not include a
count of the delimiter characters.

3. Ptr-var represents the relative character position within source to
move from. The leftmost position is position “1”. If no POINTER
phrase is specified, examination begins with the leftmost character
position.

Procedure Division Statements 6-367
4. Tally-var is a counter which is incremented by 1 for each dest item
accessed during the UNSTRING operation.

5. Neither ptr-var nor tally-var is initialized by the UNSTRING
statement.

6. Each delim represents one delimiter. When a delimiter contains two or
more characters, all the characters must be present in contiguous
positions in source to be recognized as a delimiter. When delim is a
figurative constant, it stands for a single nonnumeric literal.

7. When the ALL phrase is specified, one or more contiguous occurrences
of delim in source are treated as if they were only one occurrence for
the remaining General Rules. Only one occurrence of delim is moved
to delim-dest in this case.

8. When two or more delimiters are specified, an OR condition exists
between them. Each delimiter is compared to the sending field in the
order written. If a match occurs, the characters in the sending field are
considered to be a single delimiter. No characters in source can be
considered a part of more than one delimiter.

9. When an examination encounters two contiguous delimiters, the
current receiving area is space-filled if it is alphabetic or alphanumeric,
or zero-filled if it is numeric.

10. When the UNSTRING statement initiates, the current receiving area is
the first dest item. Data is transferred from source to the receiving
area according to the following rules:

a. Examination starts at the character position indicated by ptr-var, or
the leftmost position if ptr-var is not specified.

b. If the DELIMITED BY phrase is specified, the examination
proceeds left-to-right until a delimiter is encountered. If the
DELIMITED BY phrase is not specified, the number of characters
examined is equal to the size of the receiving area. The sign
character of the receiving item (if any) is not included in the size.
If the end of source is encountered before the delimiting condition
is met, the examination stops with the last character of source.

6-368 Procedure Division
c. The characters examined (excluding the delimiting characters, if
any) are treated as an elementary alphanumeric item. These
characters are moved to the current receiving field according to the
rules for the MOVE statement, including space filling.

d. If the DELIMITER IN phrase is specified, the delimiting
characters are moved to delim-dest as if they were the
alphanumeric source of a MOVE statement. If the delimiting
condition is the end of source, then delim-dest is space-filled.

e. If the COUNT IN phrase is specified, the number of characters
examined (excluding the delimiter) is moved to counter as if the
count were the numeric source of a MOVE statement.

f. If the DELIMITED BY phrase is specified, the source item is
further examined beginning with the first character to the right of
the delimiter found. If the DELIMITED BY phrase is not
specified, the source item is further examined beginning with the
character to the right of the last character examined.

g. The current receiving area is then set to the next dest item and the
cycle specified in steps (b) through (g) is repeated until either all
the characters in source are examined or there are no more dest
items.

11. The ptr-var (if any) is incremented by 1 for each character in source
examined.

12. An overflow condition occurs in either of the following situations:

a. The value of ptr-var is less than one or greater than the size of
source when the UNSTRING statement starts.

b. During execution, all dest items have been acted upon and source
contains unexamined characters.

13. When the overflow condition exists, statement-1 (if any) executes and
the UNSTRING statement terminates.

14. If statement-2 is specified, it executes after the UNSTRING statement
has finished if the overflow condition has not occurred.

Procedure Division Statements 6-369
Code examples

Use UNSTRING to decompose strings containing multiple data elements.
For example, a string data item might contain a person’s name, using commas
to separate the name fields: “last-name,first-name,middle-initial”. Using
UNSTRING, and specifying “,” (comma) as the delimiter, you could separate
the name string into three data items, each containing an element of the full
name.

Example 1:

Assume the following data items:
01 CUSTOMER-NAME PIC X(40) VALUE ALL SPACES.
01 LAST-NAME PIC X(25) VALUE ALL SPACES.
01 FIRST-NAME PIC X(14) VALUE ALL SPACES.
01 MIDDLE-I PIC X VALUE ALL SPACES.
{ . . . }
PROCEDURE DIVISION.
{ . . . }
 DISPLAY 'Enter name: LAST,FIRST,MIDDLE-INITIAL'.
 DISPLAY 'Use a comma to separate each name entry'.
 ACCEPT CUSTOMER-NAME.

{ . . . }

UNSTRING CUSTOMER-NAME
 DELIMITED BY ","
 INTO LAST-NAME, |characters to first comma
 FIRST-NAME, |characters to second comma
 MIDDLE-I |gets only the first character
 |of the remaining string. No
 |overflow is raised.
 |See general rule 12.
 ON OVERFLOW
 DISPLAY 'OVERFLOW on UNSTRING'
END-UNSTRING.

For code examples 2 and 3 assume the following data items:
01 COLOR-LIST PIC X(22) VALUE "RED:BLUE/GREEN YELLOW".
01 COLOR-1 PIC X(6) VALUE ALL SPACES.
01 COLOR-2 PIC X(6) VALUE ALL SPACES.
01 COLOR-3 PIC X(6) VALUE ALL SPACES.

6-370 Procedure Division
01 COLOR-4 PIC X(6) VALUE ALL SPACES.
01 DELIMIT-1 PIC X(3) VALUE ALL SPACES.
01 COUNT-1 PIC 9 VALUE 0.

Example 2:
UNSTRING COLOR-LIST
 DELIMITED BY ":" OR "/" OR ALL SPACE
*ALL SPACE treats contiguous spaces
*as one delimiter.
 INTO COLOR-1,
 COLOR-2,
 COLOR-3,
 COLOR-4
END-UNSTRING.
*COLOR-1 = "RED "
*COLOR-2 = "BLUE "
*COLOR-3 = "GREEN "
*COLOR-4 = "YELLOW"

Example 3:
MOVE 0 TO COUNT-1.

UNSTRING COLOR-LIST
 DELIMITED BY ":" OR "/" OR ALL SPACE
*DELIMIT-1 and COUNT-1 will hold only
*the values associated with COLOR-1.
 INTO COLOR-1
 DELIMITER IN DELIMIT-1
 COUNT IN COUNT-1,
 COLOR-2,
 COLOR-3,
 COLOR-4
 ON OVERFLOW
 DISPLAY "overflow: unstring colors"
 NOT ON OVERFLOW
*do when UNSTRING succeeds.
 PERFORM SORT-COLORS
END-UNSTRING.
*COLOR-1 = "RED "
*COLOR-2 = "BLUE "
*COLOR-3 = "GREEN "
*COLOR-4 = "YELLOW"
*DELIMIT-1 = ": "

Procedure Division Statements 6-371
*COUNT-1 = 3 count-1 holds the number of characters in RED

Example 4:

When the string does not contain delimiters between the data elements, but
the size and position of each string data element is known, the string can be
deconstructed without a DELIMITED BY phrase.

Assume the following data items:
01 COLOR-LIST PIC X(7) VALUE "REDBLUE".
01 COLOR-1 PIC X(3) VALUE ALL SPACES.
01 COLOR-2 PIC X(4) VALUE ALL SPACES.
{ . . . }
PROCEDURE DIVISION.
{ . . . }
UNSTRING COLOR-LIST
 INTO COLOR-1,
*first substring must be three characters.
 COLOR-2
*second substring must be four characters.
END-UNSTRING.
*COLOR-1 = "RED"
*COLOR-2 = "BLUE"

Example 5:

Use POINTER and a PERFORM loop to extract and process string elements.

Assume the following data items:
01 COLOR-LIST PIC X(21) VALUE "RED BLUE GREEN YELLOW".
01 COLOR-LIST-SIZE PIC 999.
01 COLOR-1 PIC X(6) VALUE SPACES.
01 STRING-PTR PIC 99.
01 FLAGS.
 05 COLOR-STRING-EMPTY PIC X VALUE "N".
 88 NO-MORE-COLORS VALUE "Y".
{ . . . }
PROCEDURE DIVISION.
{ . . . }
*string pointer must be initialized
MOVE 1 TO STRING-PTR.
SET COLOR-LIST-SIZE TO SIZE OF COLOR-LIST.

6-372 Procedure Division
PERFORM PROCESS-COLOR UNTIL NO-MORE-COLORS.
{ . . . }
PROCESS-COLOR.
 UNSTRING COLOR-LIST
 DELIMITED BY ALL SPACE
 INTO COLOR-1
 POINTER STRING-PTR
 ON OVERFLOW
*An OVERFLOW condition will be raised every time
*through the loop, except when extracting the last
*substring. When the overflow is the result of
*having unexamined characters at the end of the
*input string, take no action. When the overflow
*is due to the pointer value exceeding the length
*of the string, set COLOR-STRING-EMPTY.
 IF STRING-PTR > COLOR-LIST-SIZE THEN
 MOVE "Y" TO COLOR-STRING-EMPTY
 END-IF
*process the value
 PERFORM STORE-COLOR-1
*initialize COLOR1 before fetching the next color
 MOVE SPACES INTO COLOR-1
 END-UNSTRING.

Highlights for first-time users

1. UNSTRING is best suited for separating string components that share a
common delimiter. The delimiter must not appear as an element of the
components’ values.

2. DELIMITED BY is optional. If it’s omitted, each destination data item
is completely filled. Effectively, the respective size of each destination
data item is the respective delimiter.

3. Assignment to the destination data item is done with an implied
MOVE. The MOVE operation will truncate the substring or space fill
the destination data item, as required. Truncation of the substring, or
space filling of the destination data item resulting from the implicit
MOVE, does not raise an OVERFLOW condition.

4. The OVERFLOW condition is raised if: (a) all destination data items
are used and characters still remain in the source data item; or (b)
POINTER is used and the value of the pointer variable is less than 1 or
greater than the length of the source data item.

Procedure Division Statements 6-373
5. Use the ALL option to treat contiguous occurrences of a delimiter, such
as spaces, as a single occurrence.

6. Use DELIMITER IN to place the delimiting character(s) of the current
substring into the named data item.

7. Use the COUNT IN option to save the length of the current substring
into the named data item.

8. Use TALLYING to tally the number of destination data items assigned
by the UNSTRING statement.

9. Use the POINTER option to specify a numeric holder (ptr-var) for the
current position in the source data item. By pre-assigning a value to
the pointer variable you can start the examination of the source data
item at any position in the string. Ptr-var is incremented by one for
each character in the source data item that is examined. POINTER
allows the programmer to use multiple UNSTRING statements to
process the source data item. Note, however, that an overflow
condition will be raised if the value of ptr-var is less than the length of
the string when the UNSTRING statement terminates.

You must initialize the tallying and pointer variables or results are
unpredictable.

10. Use the OVERFLOW option to do special processing when the
UNSTRING process does not examine every character in the source
data item, or when the pointer variable has a value of less than one or
more than the length of the source data item. When the overflow
condition exists, the associated imperative statement (if any) executes
and program execution continues immediately after the UNSTRING
statement.

11. Use the NOT ON OVERFLOW option to do special processing when
the UNSTRING statement processes the entire source data item.

USE Statement

The USE statement specifies procedures for handling Input/Output errors and
other errors. USE is a comprehensive error handling construct. The USE
statement locates all error routines centrally within the DECLARATIVES

6-374 Procedure Division
section of the PROCEDURE DIVISION when used to specify I/O error
handling routines. USE is a valuable supplement to the AT END and
INVALID KEY I/O error handling phrases.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format

Format 1
USE AFTER STANDARD {EXCEPTION} PROCEDURE ON { {file}... }
 {ERROR } { INPUT }
 { OUTPUT }
 { I-O }
 { EXTEND }
 { TRANSACTION }

Format 2
USE AFTER STANDARD {EXCEPTION} PROCEDURE ON OBJECT
 {ERROR }

Format 3
USE FOR REPORTING ON {index-file} ...

Format 4
USE AFTER STANDARD ERROR PROCEDURE ON file-name GIVING
 data-name-1 [data-name-2]

Format 5
USE { active-x-control-item }
 { com-object-item }
 { property-1 [(param-1 ...)]
 [:: property-2 [(param2 ...)]] ... }
 { statement }
[END-USE]

Format 6
USE AT PROGRAM {START}
 {END }

Procedure Division Statements 6-375
Syntax Rules

1. File is a file described in the Data Division. It may be a sort file.

2. Index-file is a file described in the Data Division. It must be an
indexed file.

3. Data-name-1 is an eight-byte data item of the type PICTURE 9(8)
USAGE DISPLAY. A compile-time error message is generated if
data-name-1 is not of that type.

4. Data-name-2 may be of any type but must be at least as long as the file
buffer. A compile-time error message is generated if this is not the
case.

5. When used, a USE statement must immediately follow a section header
in the Declaratives portion of the Procedure Division and must appear
in a sentence by itself. The remainder of the section must consist of
zero, one, or more paragraphs that define the exception procedure to be
used.

6. ERROR and EXCEPTION are interchangeable.

7. The INPUT, OUTPUT, I-O, and EXTEND and TRANSACTION
phrases may each be specified in only one USE statement in a
Procedure Division.

8. A particular file may not appear in more than one Format 1 USE
statement in a program.

9. A particular index-file may not appear in more than one Format 3 USE
statement in a program.

10. Active-x-control-item and com-object-item must be USAGE HANDLE
OF class-name, where class-name is defined as an ActiveX control or
an COM object in SPECIAL-NAMES.

11. Statement is an imperative statement.

12. Property-1 is the name of a property of the ActiveX control or COM
object. Property-1 must not be a write-only property.

13. Property-2 is the name of a property of the ActiveX control or COM
object which is the value of property-1. Property-2 must not be a
write-only property.

6-376 Procedure Division
14. Param-1 and param-2 are literals, data items, or numeric expressions.

General Rules

1. The USE statement is not executed; it merely defines the conditions
calling for the execution of the USE procedure. The USE procedure
consists of all the paragraphs contained in the section the USE statement
appears in.

2. The procedure associated with a Format 1 USE statement is executed
after the unsuccessful execution of an I/O operation unless an AT END
or INVALID KEY phrase takes precedence. It also executes during an
I/O operation when a duplicate key error is detected for a file open for
BULK-ADDITION. The following rules apply:

a. If file is specified, the associated procedure is executed when an
unsuccessful I/O operation occurs for that file.

b. If the INPUT phrase is specified, the procedure executes when the
OPEN operation is unsuccessful for a file being opened in INPUT
mode, unless that file is specified by file in another USE
statement. This also applies to a file being opened for INPUT.

c. The OUTPUT, I-O, and EXTEND phrases operate as described in
rule b), except that they apply to files opened in the corresponding
mode.

d. If TRANSACTION is specified, the procedure executes when an
error occurs during a START TRANSACTION, COMMIT,
ROLLBACK, or call to C$RECOVER. Note that the status-code
will be in the TRANSACTION-STATUS variable. See
Appendix E, Book 4, Appendices for a list of transaction status
codes.

3. After the USE procedure executes, control is returned to the next
executable statement after the I/O statement that caused the USE
procedure to execute. If the USE procedure executed during a file
operation, the control returns to that file operation instead.

4. Within a USE procedure, no statement may be executed that would
result in the execution of a USE procedure that has been invoked but
has not yet returned.

Procedure Division Statements 6-377
5. The procedure associated with a Format 2 USE statement is executed
after an object exception occurs.

6. After the Format 2 USE statement executes, control is returned to the
next executable statement after the statement that caused the USE
procedure to execute.

7. A Format 2 USE statement executes when an object exception is
“raised” during a DISPLAY, MODIFY, INQUIRE or calls to
C$GETEVENTDATA, C$SETEVENTDATA, C$GETEVENTPARAM
or C$SETEVENTPARAM.

An object exception can either be raised by the object itself or by the
runtime to indicate that an error has occurred. ActiveX controls and
COM objects are currently the only objects that can raise exceptions.
These are called COM exceptions in Microsoft terminology.

Information about an object exception can be retrieved with the
C$EXCEPINFO routine.

8. Within a Format 2 USE statement, no statement can be executed that
would result in the execution of a USE procedure that has been
invoked but has not yet returned.

9. A Format 3 USE statement executes at periodic times for files opened
with the BULK-ADDITION phrase. The purpose of this procedure is
to report to the user the progress of writing keys for a large number of
records written to index-file. See section 6.1.6.3 of the
ACUCOBOL-GT User’s Guide for more details.

10. When a Format 1 USE procedure executes due to a duplicate key error
for a file open with BULK-ADDITION, no file I/O statements may be
executed. This also applies to Format 3 USE procedures. In addition,
no run units may be started or stopped, and the program containing the
declarative may not perform an EXIT PROGRAM.

11. A Format 4 USE procedure is valid only when the “-Cv” option is in
effect. When an error handler introduced by this statement is invoked,
the runtime puts special error codes into the eight-byte data item
data-item-1. See Chapter 5, “IBM DOS/VS COBOL Conversions,” in
Transitioning to ACUCOBOL-GT for complete information on DOS/
VS COBOL compatibility mode. See Appendix E.5 for the IBM DOS/
VS COBOL error codes.

6-378 Procedure Division
12. If data-name-2 is present, when the error handler is invoked, it will
also load data-name-2 with the contents of the file buffer.
ACUCOBOL-GT always loads data-name-2, and if the data-item is
larger than the file buffer, the excess bytes at the right end are left
unchanged.

13. The Format 5 USE verb sets up a context for more efficient coding and
processing of MODIFY and INQUIRE statements that operate on
ActiveX controls or objects. It allows you to execute a series of
MODIFY and INQUIRE statements on a specified object without
respecifying the object. For example, to change a number of different
properties on a single object, place the MODIFY statement within the
USE statement, referring to the object once instead of referring to it in
each MODIFY clause.

USE MyChart Legend::Font
MODIFY ^Size = 10
 ^Name = “Courier”
 ^Bold = 1
END-USE

14. Param-1 is the first parameter passed when getting the value of
property-1.

15. Param-2 is the first parameter passed when getting the value of
property-2.

16. Runtime errors announced as “Use of a LINKAGE data item not
passed by the caller” and “Passed USING item smaller than
corresponding LINKAGE item” belong to the class of “intermediate”
runtime errors that, upon occurrence, call installed error procedures.

17. When placed in a program’s Declarative section, a Format 6 USE
statement creates a START or END procedure for the program. Each
program may contain no more than one START and one END
procedure. Every program in a run unit may contain such procedures.

a. A START procedure executes immediately before the first normal
COBOL statement in the Procedure Division when the program is
in its initial state. The START procedure executes only once
regardless of the number of times the program is entered, until the
program is returned to its initial state (e.g. via CANCEL). A

Procedure Division Statements 6-379
START procedure executes regardless of which entry point is used
to start the program when a program contains multiple entry points
(see the ENTRY statement).

b. An END procedure executes immediately before a program is
placed into its initial state or it is about to leave memory, providing
the program has been entered at least once. An END procedure
executes before open files are closed as part of the shutdown
process.

c. You can call the C$EXITINFO library routine from an END
procedure to obtain information about the program exit. For
example, you can determine if the exit is the result of a STOP
RUN or a fatal error. Please refer to Appendix I in
ACUCOBOL-GT Appendices for detailed information about this
library routine.

d. It is normal for an END procedure to execute when the program
that contains it is inactive. For example, if a program is canceled,
its END procedure will execute when the program is otherwise
inactive. For this reason, an END procedure should not reference
data passed to the program through Linkage. This data will not be
defined in many cases.

e. END procedures are executed during abnormal shutdown when
possible. However, certain operating system errors (such as a fatal
memory error) cannot be caught in some operating environments,
and in these cases the END procedures will not be able to execute.
If a fatal error occurs during an END procedure, that procedure
stops, but other unprocessed END procedures execute where
possible.

f. When multiple END procedures execute (e.g. STOP RUN when
several programs are in memory), the order of their execution is
arbitrary.

Code example

Format 1:
PROCEDURE DIVISION.
DECLARATIVES.
NAMED-FILE-IO-ERROR-HANDLING SECTION.

6-380 Procedure Division
 USE AFTER STANDARD ERROR PROCEDURE ON
 REPORT-FILE.
NAMED-FILE-IO-ERROR-HANDLER.
{ . . . }
IO-INPUT-ERROR-HANDLING SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
IO-INPUT-ERROR-HANDLER.
{ . . . }
IO-OUTPUT-ERROR-HANDLING SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON OUTPUT.
IO-OUTPUT-ERROR-HANDLER.
{ . . . }
END DECLARATIVES.
MAIN-PROGRAM SECTION.
{ . . . }

Highlights for first-time users

1. The USE statement can be used to handle program file I/O errors. USE
is not executed, but, rather, describes the conditions under which the
contained procedures are to be executed.

2. The USE statement is located in a DECLARATIVES section in a
program’s PROCEDURE DIVISION. The USE statement may contain
one or many error handling procedures. Each USE statement may
specify a file, set of files or OPEN mode for which the enclosed
procedures apply. No file name or OPEN mode (INPUT, OUTPUT,
I-O, EXTEND) may be named more than once in the
DECLARATIVES section of that PROCEDURE DIVISION. If an I/O
error raises an ambiguity between an error handling procedure that
names the file and an error handling procedure with a matching OPEN
mode description, the procedure naming the file takes precedence.

3. Detecting and handling I/O errors:

Every I/O operation returns a two-digit status code that indicates the
result of the operation. A status code that begins with “0” indicates a
successful operation. A status code that begins with a number other than
“0” indicates that the I/O operation failed. For a complete list of file
status codes see Appendix E, Book 4, Appendices.

When an I/O operation takes place, the file status code is set and sent
back to the calling statement.

Procedure Division Statements 6-381
• If the status code begins with the number “1”, an AT END error has
occurred.

• If the status code begins with a “2”, an INVALID KEY error has
occurred.

• If the programmer has included a corresponding AT END or
INVALID KEY phrase in the I/O statement (where supported), the
respective clause is executed and the program, if not terminated,
continues after the I/O statement that raised the error.

• If the status code begins with any other number (except “0”), or
there is no AT END or INVALID KEY phrase, the system searches
for an applicable USE statement in the DECLARATIVES section.

• If an applicable USE statement is found, the search stops, the
applicable error handler is executed, and if the program has not been
terminated, program execution continues after the I/O statement that
raised the error.

• If no applicable USE statement is found, the runtime determines the
action. Usually, a message is presented and the program halts.

For more about file status and the AT END, and INVALID KEY phrases,
see section 6.4.8.

4. The set of I/O verbs that return a status code includes: CLOSE,
DELETE, OPEN, READ, REWRITE, START, UNLOCK, WRITE.

5. There are five different standards specifying the values of file status
codes: ANSI85, ANSI74, DG ICOBOL, VAX COBOL, and IBM
DOS/VS COBOL. See Appendix E, Book 4, for the complete
definitions of the status codes corresponding to each standard. By
default, ACUCOBOL-GT uses the ANSI85 status code standard. You
can change to any of the alternate standards by changing the setting of
the “FILE_STATUS_CODES“ runtime configuration variable.

The ANSI85 (default) definitions of the major error classes are:

Status Code Status

0x I/O operation succeeded

6-382 Procedure Division
Note: Some errors such as 30, 98, and 9D also return additional
information in the secondary or tertiary file codes. These may be
retrieved with the library routine C$RERR.

WAIT Statement

 The WAIT statement synchronizes operations between threads.

General Format
WAIT FOR { THREAD thread-ID }
 { LAST THREAD }
 { ANY THREAD }

Remaining phrases are optional, can appear in any order.
 { BEFORE TIME timeout }
 { TEST ONLY }

 THREAD IN thread-2

 SIZE IN size-item

 STATUS IN status-item
 [ON EXCEPTION statement-1]

 [NOT ON EXCEPTION statement-2]

 [END-WAIT]

1x AT END ERROR

2x INVALID KEY ERROR

3x PERMANENT ERROR

4x LOGIC ERROR

9x ACUCOBOL-GT DEFINED

Status Code Status

Procedure Division Statements 6-383
Syntax Rules

1. Thread-ID and thread-2 are usage HANDLE or HANDLE OF
THREAD data items. Thread-2 may not be indexed or reference
modified.

2. Timeout is a numeric literal or data item.

3. Size-item is a numeric data item. It may not be indexed or reference
modified.

4. Status-item is a two-character group item, PIC XX, or PIC 99 data
item. It may not be indexed or reference modified.

5. Statement-1 and statement-2 are any imperative statements.

General Rules

1. The WAIT statement waits for a thread to terminate or send a message.
The thread waited on is determined as follows:

a. FOR THREAD thread-ID specifies the thread identified by
thread-ID.

b. FOR LAST THREAD specifies the last thread (see section 6.8.1,
Book 1, ACUCOBOL-GT User’s Guide for a discussion of the last
thread).

c. FOR ANY THREAD specifies all threads. The first one to
terminate or send a message satisfies the WAIT statement

2. If a message is available when the WAIT statement executes, then
WAIT statement finishes immediately.

3. When BEFORE TIME is specified, the WAIT statement will time-out
after the specified (timeout) number of hundredths of seconds. If the
WAIT statement times out before receiving a message, it terminates
with an exception condition and it does not modify thread-2 or
size-item. If timeout is zero, then the WAIT statement times-out
immediately if a message is not available. Specifying TEST ONLY is
equivalent to specifying a timeout value of zero.

6-384 Procedure Division
4. If the thread waited for does not exist or terminates before sending a
message, then the WAIT statement terminates with an exception
condition and does not modify size-item. Such a condition is reflected
in the status code placed in status-item. Note that the test occurs
before the time-out test in the case that timeout is zero or TEST ONLY
is specified.

5. The WAIT statement places the thread ID of the sending or terminating
thread in thread-2.

6. The size of the message sent is placed in size-item. The size is
expressed in standard character positions (bytes).

7. The status of the WAIT statement is placed in status-item. The
following values are possible (these approximate the standard file
status codes):

8. If the WAIT statement is successful (as indicated in rule 7), it executes
statement-1. If an exception condition exists, it executes statement-2
instead.

WRITE Statement

The WRITE statement adds a record to a file.

General Format

Format 1
WRITE record-name [FROM source]

 [{BEFORE} ADVANCING { number [LINE] }]
 {AFTER } { [LINES] }
 { PAGE }
 { mnemonic-name } (HP COBOL)

“00” Success - message received

“10” Exception - thread does not exist or terminated

“99” Exception - timed-out

Procedure Division Statements 6-385
 [AT {END-OF-PAGE} statement-1]
 {EOP }

 [NOT AT {END-OF-PAGE} statement-2]
 {EOP }

 [END-WRITE]

Format 2
WRITE record-name [FROM source]

 [INVALID KEY statement-1]

 [NOT INVALID KEY statement-2]

 [END-WRITE]

Format 3
WRITE record-name [FROM source] WITH NO { CONTROL }
 { CONVERSION }

Syntax Rules

1. Record-name is the name of a record associated with a file described in
the File Section of the Data Division. The associated file may not be a
sort file.

2. Source is a data item or literal. It may not share any storage area with
record-name.

3. Number is an integer numeric literal or data item. It must be
non-negative.

4. Mnemonic-name is a user-defined word that may be assigned to
Special Names in the ADVANCING clause of the WRITE statement.
(This is a feature of HP COBOL. For details, see section 4.3.2,
“Special Names Paragraph,” in Transitioning to ACUCOBOL-GT.)

5. Statement-1 and statement-2 are imperative statements.

6. A Format 1 WRITE statement must be associated with a sequential
file. A Format 2 WRITE statement must be associated with a relative
or indexed file.

6-386 Procedure Division
7. The words END-OF-PAGE and EOP are equivalent.

8. If the END-OF-PAGE phrase is used, the file description entry
containing record-name must have a LINAGE clause.

9. The ADVANCING PAGE and END-OF-PAGE phrases cannot both be
used in the same WRITE statement.

10. A Format 3 WRITE statement must be associated with a sequential
file.

General Rules

1. The file associated with record-name must be open when the WRITE
statement executes. For sequential access mode files, the file must be
open in the OUTPUT or EXTEND modes. For random and dynamic
access mode files, the file must be open in the OUTPUT, I-O, or
EXTEND mode.

2. The WRITE statement adds the contents of record-name to the file
according to the following rules:

a. For sequential access mode files, the record is added to the end of
the file. If the file is indexed, the record’s primary key must
contain a value that is larger than all of the primary keys currently
in the file. If a relative file has a RELATIVE KEY data item
specified for it, the record number of the added record is moved to
this data item when the WRITE statement completes.

b. For random and dynamic access mode files, the record is inserted
into the file according to its key value. For relative files, the
record is placed at the record number described by the file’s
RELATIVE KEY data item. For indexed files, the values of
record-name’s key items are used to insert the record in the file to
maintain the correct key orderings.

3. If the FROM phrase is used, the source item is moved to record-name
according to the rules of the MOVE statement before record-name is
written to the file.

4. The FILE STATUS data item is updated by the WRITE statement.

Procedure Division Statements 6-387
5. Some sequential files are considered to be print files. A print file has
page positioning information specified in it along with the record data.
A file with the PRINT option of the ASSIGN clause specified for it is
a print file. A file that is referenced by any WRITE statement that
contains an ADVANCING phrase is also a print file.

6. If the ADVANCING phrase is specified, the file is treated as a print file
and the following occurs:

a. If number is positive, the representation of the printed page is
advanced a number of lines equal to that value.

b. If number is zero, no repositioning of the representation of the
printed page is performed.

c. If the PAGE phrase is used, the representation of the printed page
is advanced to the next page boundary. If the associated file has a
LINAGE clause specified for it, this is done by spacing the
appropriate number of lines. Otherwise this is done by physically
advancing the device to the top of the next physical page.

d. If the BEFORE phrase is specified, the page advancement
specified occurs after record-name is added to the file.

e. If the AFTER phrase is used, the page advancement specified
occurs before record-name is added to the file.

f. If no ADVANCING phrase is specified, and the file is a print file,
AFTER ADVANCING 1 LINE is implied.

7. The invalid key condition exists when any of the following occur:

a. A relative file record is written in the random or dynamic access
modes, and the record number indicated by the RELATIVE KEY
data item is already used by another record.

b. An indexed file record is written and the primary key value in
record-name is used by another record already in the file.

c. An alternate key value in record-name is already being used by a
record in the file, and that alternate key does not allow for
duplicates.

8. When the invalid-key condition exists, the WRITE statement is
unsuccessful and the following occurs:

6-388 Procedure Division
a. If the INVALID KEY phrase is specified, statement-1 executes;
otherwise

b. If an appropriate USE AFTER EXCEPTION procedure exists, that
error procedure executes; otherwise

c. A message is printed and the program halts.

9. If the WRITE statement is successful and the NOT INVALID KEY
phrase is specified, statement-2 is executed.

10. The ordering of indexed file keys for alternate keys that allow
duplicates is the order in which the records are written to the file for
those duplicated values.

11. The current file position is not modified by the WRITE statement.

12. The logical size of the record written to the file is the size of
record-name. The physical size may be different due to physical
characteristics of the file.

13. If the file associated with record-name has a LINAGE clause, the
following rules apply:

a. An automatic page overflow condition occurs when the WRITE
statement cannot be fully accommodated in the page body. This
occurs when the WRITE statement would cause the
LINAGE-COUNTER to exceed the number of lines in the page
body specified by the LINAGE clause. When this happens, the
line is presented before or after (depending on the phrase used) the
device is positioned to the first line of the next logical page.

b. An end-of-page condition occurs when the WRITE statement
causes printing or spacing in the footing area of the page body.
This occurs when the WRITE statement causes the
LINAGE-COUNTER to equal or exceed the value of the
FOOTING phrase of the associated LINAGE clause. If no
FOOTING phrase is present, then the end-of-page condition
cannot occur. Note that the end-of-page condition does not imply
any automatic device positioning.

c. If the END-OF-PAGE phrase is used, then statement-1 executes if
either an automatic page overflow or an end-of-page condition
exists. Otherwise statement-2 executes (if specified).

Procedure Division Statements 6-389
14. The WRITE statement removes trailing spaces from record-name if the
file specifies trailing-space suppression. For related information, see:

• General Rule number 7b (above)

• Section 4.3.1, “File-Control Paragraph”

• Section 5.1.7, “File Types” under “Text Records”

• Appendix H, Book 4, under the subheading
STRIP_TRAILING_SPACES

15. A Format 3 WRITE statement writes the data in record-name to its file
without any additional carriage-control information. In addition, if the
NO CONVERSION option is specified, no trailing spaces are removed
from the record, even if they otherwise would be. Use this to send
information to devices when carriage-control is inappropriate, for
example, when sending a form to a laser printer.

16. Depending on the host environment, it is possible that records written
with a Format 3 WRITE statement cannot later be retrieved with a
READ statement.

For configuration variables related to the WRITE statement, see Appendix H,
Book 4, Appendices under:
CARRIAGE_CONTROL_FILTER
COMPRESS_FACTOR
FLUSH_COUNT
FLUSH_ON_ACCEPT
MIN_REC_SIZE
PAGE_EJECT_ON_CLOSE
STRIP_TRAILING_SPACES
V_BUFFERS
V_BUFFER_DATA

XML GENERATE Statement

The XML GENERATE statement generates an XML document from
existing, COBOL data (i.e., it translates COBOL data to XML format). It is
an implementation of the IBM Enterprise COBOL verb of the same name and

6-390 Procedure Division
is provided to simplify IBM migrations; however, any customer wishing to
write XML data can use this verb. See A Guide to Interoperating with
ACUCOBOL-GT, Chapter 11 for additional information on working with
XML data.

General Format
XML GENERATE identifier-1 FROM identifier-2 [COUNT [IN] identifier-3]
 [[ON] EXCEPTION imperative-statement-1]
 [NOT [ON] EXCEPTION imperative-statement-2]
 [END-XML]

Syntax Rules

1. identifier-1 is the receiving area for the XML document. It must be an
alphanumeric data item, and it must not overlap identifier-2 or
identifier-3.

2. identifier-1 must be large enough to contain the generated XML
document. Typically, it should be from five to eight times the size of
identifier-2, depending on the length of the data-name or data-names
within identifier-2. If identifier-1 is not large enough, an error
condition exists at the end of the XML GENERATE statement.

3. identifier-2 is the source of the data to be converted to an XML
document. It must not overlap with identifier-1 or identifier-3.

4. identifier-3 is a numeric data item. It may not overlap with
identifier-1 or identifier-2.

General Rules

1. XML GENERATE ignores certain data items when they are specified by
identifier-2. These include:

• Unnamed elementary data items or elementary FILLER items.

• Slack bytes inserted for SYNCHRONIZED items.

• Data items subordinate to identifier-2 that are described by the
REDEFINES clause, or that are subordinate to such a redefining
item.

Procedure Division Statements 6-391
• Data items subordinate to identifier-2 that are described with the
RENAMES clause.

• Group data items whose subordinate data items are all ignored.

2. All data items specified by identifier-2 that are not ignored as defined
above must satisfy the following conditions:

• Each elementary data item must either have class alphabetic,
alphanumeric, numeric, or be an index data item.

• There must be at least one such elementary item.

• Each non-FILLER data name must be unique within any
immediately superordinate group data item.

3. The COUNT IN phrase indicates that the count of generated XML
characters (in bytes) should be stored in identifier-3, the data count
field. identifier-3 must be an integer data item without the symbol "P"
in its picture string. identifier-3 must not overlap identifier-1 or
identifier-2.

4. ON EXCEPTION phrase. When an error occurs during XML
document generation, an exception condition exists. An example of
this is when identifier-1 is not large enough to contain the generated
XML document. In this case, XML generation stops and the content of
the receiver, identifier-1, is undefined. If the COUNT IN phrase was
specified, identifier-3 contains the number of character positions that
were generated. This can range from zero to the length of identifier-1.

If the ON EXCEPTION phrase is specified, control is transferred to
imperative-statement-1. If it is not specified, NOT ON EXCEPTION
phrases are ignored, and control is transferred to the end of the XML
GENERATE statement.

6-392 Procedure Division
At termination of an XML GENERATE statement, special register
XML-CODE contains either “0”, indicating successful completion of
XML generation, or a non-zero error code, indicating that an exception
occurred during XML generation. Following are the possible exception
codes that you may encounter:

5. NOT ON EXCEPTION phrase. If no exception conditions arise during
generation of the XML document, control is passed to
imperative-statement-2, if specified, or to the end of the XML
GENERATE statement. If an ON EXCEPTION phrase is specified, it is
ignored. Special register XML-CODE contains a zero after the XML
GENERATE statement has finished executing.

6. The END-XML phrase is an explicit scope terminator that delimits the
scope of both XML GENERATE and XML PARSE statements. With
END-XML, conditional XML GENERATE or XML PARSE
statements can be nested in other conditional statements. Conditional
XML GENERATE or XML PARSE statements specify the ON
EXCEPTION or NOT ON EXCEPTION phrase.

The scope of a conditional XML GENERATE or XML PARSE
statement is terminated by:

• An END-XML phrase at the same level of nesting

• A separator period

Code Description

400 The receiver was too small to contain the
generated XML document. The COUNT
IN data item, if specified, contains the
count of character positions that were
actually generated.

600 – 699 Internal error. Please report the error to
your customer support analyst.

Procedure Division Statements 6-393
Operation of XML GENERATE

Eligible elementary data items in identifier-2 are converted to character
format. (See “Data conversion” and “Data trimming” for details.) Only
the first definition of each storage area is processed. Redefinitions are not
included, nor are data items that are effectively defined by the RENAMES
clause.

Once the data content is converted, it is inserted as element character content
in XML markup. The XML element names are derived from the data-names
in identifier-2. (See “Element naming” for more information.) The names
of group items that contain the selected elementary items are retained as
parent elements. No extra white space is inserted to make the generated XML
more readable. An XML declaration is not generated.

If the receiving area specified by identifier-1 is not large enough to contain
the resulting XML document, an error condition arises. See the ON
EXCEPTION phrase, General Rule #4, for details.

Caution: If identifier-1 is longer than the generated XML document, only
the initial part of identifier-1 changes. The rest of identifier-1 contains the
data that was present before this execution of the XML GENERATE
statement. To avoid referring to that data, either initialize identifier-1 to
spaces before the XML GENERATE statement or specify the COUNT IN
phrase.

Use the COUNT IN phrase to determine the total number of character
positions, in bytes, that were generated. identifier-3 will then contain this
information after XML GENERATE executes. You can use identifier-3 as a
reference modification length field to refer to the part of identifier-2 that
contains the generated XML document.

After execution of the XML GENERATE statement, special register
XML-CODE contains either zero, indicating successful completion, or a
non-zero exception code.

6-394 Procedure Division
Please note that the XML PARSE statement also uses special register
XML-CODE. Therefore, if you code an XML GENERATE statement in the
processing procedure of an XML PARSE statement, save the value of
XML-CODE before that XML GENERATE statement executes and restore
the saved value after the XML GENERATE statement terminates.

Data conversion

How elementary data items are converted to character format depends on the
type of data item:

• Alphabetic, alphanumeric, alphanumeric-edited, external floating-point,
and numeric-edited items are not converted.

• Fixed-point numeric data items are converted as if they were moved to a
numeric-edited item that has:

• An explicit decimal point, if the numeric item has at least one
decimal position

• The same number of decimal positions as the numeric item

• A leading ‘-’ picture symbol if the data item is signed and has an S
in its PICTURE clause

For COMPUTATIONAL-5 (COMP-5) binary data items, the number of
integer positions depends on the number of ‘9’ symbols in the picture
character string. If the data item has one to four ‘9’ picture symbols, the
number of integer positions is five minus the number of decimal places.
If the data item has five to nine ‘9’ picture symbols, the number of
integer positions is ten minus the number of decimal places. If the data
item has 10 to 18 ‘9’ picture symbols, the number of integer positions is
20 minus the number of decimal places.

All other fixed-point numeric data items will have as many integer
positions as the numeric item, but with at least one integer position.

• Internal floating-point data items are converted as if they were moved to
a data item as follows:

• For COMP-1: an external floating-point data item with PICTURE
-9.9(8)E+99

Procedure Division Statements 6-395
• For COMP-2: an external floating-point data item with PICTURE
-9.9(17)E+99 (illegal because of the number of digit positions)

• Index data items are converted as if they were declared USAGE
COMP-5 PICTURE S9(9). After conversion, leading and trailing spaces
and leading zeroes are removed, as described under “Data trimming.”

After conversion, if a data item contains characters that are illegal in XML,
the value in the data item before conversion or trimming is represented in
hexadecimal, and an element tag name with the prefix “hex.” is substituted
for the regular tag name. For example, if data item Customer-Name is found
at run time to contain LOW-VALUES, the XML element tag name
‘hex.Customer-Name’ is used instead of the normal ‘Customer-Name’, and
the content is represented as a string of pairs of zero digits.

Any remaining instances of the five characters & (ampersand),
’ (apostrophe), > (greater-than sign), < (less-than sign), and “ (quotation
mark) are converted into the equivalent XML references ‘&’, ‘'’,
‘>’, ‘<’, and ‘"’, respectively.

Data trimming

Data values are trimmed after they are converted to character format.
(Conversion is described under “Data conversion.”) Values converted from
signed numeric values have their leading space removed if the value is
positive. Values converted from numeric items have leading zeroes
eliminated (after any initial minus sign). This is up to but not including the
digit immediately before the actual or implied decimal point. Trailing zeroes
after a decimal point are retained. For example:

• -012.340 becomes -12.340.

• 0000.45 becomes 0.45.

• 0013 becomes 13.

• 0000 becomes 0.

Character values from alphabetic, alphanumeric data items have either
trailing or leading spaces removed, depending on whether the corresponding
data items have left or right justification, respectively--left being the default.
Trailing spaces are removed from values whose corresponding data items do

6-396 Procedure Division
not specify the JUSTIFIED clause. Leading spaces are removed from values
whose data items do specify the JUSTIFIED clause. If a character value
consists solely of spaces, all spaces are removed but one.

Element naming

The element tag names in the XML documents generated from identifier-2
are derived from the name of the data item specified by identifier-2 and from
any eligible data-names that are subordinate to identifier-2. The following
rules apply:

• The exact mixed-case spelling of data-names from the data description
entry is retained. The spellings from any references to that data item (for
example, in an OCCURS DEPENDING ON clause) are not used.

• Data-names beginning with a digit are prefixed by an underscore. For
example, the data-name “4C” becomes XML tag name “_4C”.

• Names of data items that contain characters that are illegal in XML
version 1.0 are prefixed by “hex.”, and the content itself is expressed in
hexadecimal.

Nested XML GENERATE statements

When a given XML GENERATE statement appears as
imperative-statement-1 or imperative-statement-2, or as part of
imperative-statement-1 or imperative-statement-2 of another XML
GENERATE statement, that given XML GENERATE statement is a nested
XML GENERATE statement.

Nested XML GENERATE statements are considered to be matched XML
GENERATE and END-XML combinations proceeding from left to right.
For this reason, when END-XML phrases are encountered, they are matched
with the nearest preceding XML GENERATE statements that have not
already been terminated.

Procedure Division Statements 6-397
XML PARSE Statement

The XML PARSE statement parses an XML document so that it can be
processed by the COBOL program. It is an implementation of the IBM
Enterprise COBOL verb of the same name and is provided to simplify IBM
migrations; however, any customer wishing to read XML data can use this
verb.

XML PARSE is similar to C$XML in that you parse (read) the XML data and
move it into the appropriate working storage item. The difference is that with
C$XML, if you know that the data lies in a certain element or attribute, you
can retrieve that attribute directly. With XML PARSE, you set up a
processing procedure so that when you encounter a new element or attribute,
you can specify how and where you want to store that data.

See A Guide to Interoperating with ACUCOBOL-GT, Chapter 11 for
additional information on working with XML data.

General Format
XML PARSE identifier-1 PROCESSING PROCEDURE [IS]
 procedure-name-1 [THROUGH procedure-name-2]
 THRU
 [[ON] EXCEPTION imperative-statement-1]
 [NOT [ON] EXCEPTION imperative-statement-2]
 [END-XML]

Syntax Rules

1. identifier-1 is an alphanumeric data item that contains the XML
document character stream.

2. The PROCESSING PROCEDURE phrase specifies the name of a
procedure to handle the various events that the XML parser generates.

3. procedure-name-1, procedure-name-2 names a section or paragraph in
the procedure division. Procedure-name-1 and procedure-name-2 must
not name a procedure name in a declarative section.

4. procedure-name-1 specifies the first (or only) section or paragraph in
the processing procedure.

6-398 Procedure Division
5. procedure-name-2 specifies the last section or paragraph in the
processing procedure.

General Rules

1. For each XML event, the parser transfers control to the first statement of
the procedure named procedure-name-1. Control is always returned
from the processing procedure to the XML parser. The point from which
control is returned is determined as follows:

• If procedure-name-1 is a paragraph name and procedure-name-2 is
not specified, the return is made after the last statement of the
procedure-name-1 paragraph is executed.

• If procedure-name-1 is a section name and procedure-name-2 is
not specified, the return is made after the last statement of the last
paragraph in the procedure-name-1 section is executed.

• If procedure-name-2 is specified and it is a paragraph name, the
return is made after the last statement of the procedure-name-2
paragraph is executed.

• If procedure-name-2 is specified and it is a section name, the return
is made after the last statement of the last paragraph in the
procedure-name-2 section is executed.

This procedure is the same as if the COBOL program executed the
PERFORM verb on the same paragraph(s).

2. procedure-name-1 and procedure-name-2 must define a consecutive
sequence of operations to execute, beginning at the procedure named
by procedure-name-1 and ending with the execution of the procedure
named by procedure-name-2.

If there are two or more logical paths to the return point, then
procedure-name-2 can name a paragraph that consists of only an EXIT
statement; all the paths to the return point must then lead to this
paragraph.

3. The processing procedure consists of all the statements at which XML
events are handled. The range of the processing procedure includes all
statements executed by CALL, EXIT, GO TO, GOBACK, MERGE,
PERFORM, and SORT statements that are in the range of the

Procedure Division Statements 6-399
processing procedure, as well as all statements in declarative
procedures that are executed as a result of the execution of statements
in the range of the processing procedure.

The range of the processing procedure must not cause any GOBACK or
EXIT PROGRAM statement to be executed, except to return control
from a program to which control was passed by a CALL statement that
is executed in the range of the processing procedure.

The range of the processing procedure must not cause an XML PARSE
statement to be executed, unless the XML PARSE statement is executed
in an outermost program to which control was passed by a CALL
statement that is executed in the range of the processing procedure.

A program executing on multiple threads can execute the same XML
statement or different XML statements simultaneously. However, the
compiler generates LOCK THREAD / UNLOCK THREAD statements
immediately before or after the XML PARSE statement, so effectively
only a single thread is executing during the entire execution of the XML
PARSE.

The processing procedure can terminate the run unit with a STOP RUN
statement.

For more details about the processing procedure, see “Control Flow.”

4. ON EXCEPTION phrase. The ON EXCEPTION phrase specifies
imperative statements to be executed when an exception condition is
raised by XML PARSE.

An exception condition exists when the XML parser detects an error
while processing an XML document. The parser first signals the
exception by passing control to the processing procedure with special
register XML-EVENT containing the word, ‘EXCEPTION’. The parser
also provides a numeric error code in special register XML-CODE.
Error codes are listed in the special register section.

An exception condition also exists when the processing procedure sets
XML-CODE to “-1” before returning to the parser for a normal XML
event. This is done by the user to deliberately terminate parsing. In this
case, the parser does not signal an XML exception event. If the ON
EXCEPTION phrase is specified, control is transferred to

6-400 Procedure Division
imperative-statement-1. If it is not specified, NOT ON EXCEPTION
phrases are ignored, and control is transferred to the end of the XML
PARSE statement. Special register XML-CODE contains the numeric
error code for the XML exception or “-1” after execution of the XML
PARSE statement. See “Special Registers” later in this section for
details.

If the processing procedure handles the XML exception event and sets
XML-CODE to zero before returning control to the parser, the exception
condition no longer exists. If no other unhandled exceptions occur prior
to the termination of the parser, control is transferred to
imperative-statement-2 of the NOT ON EXCEPTION phrase, if
specified.

5. NOT ON EXCEPTION phrase. The NOT ON EXCEPTION phrase
specifies imperative statements to be executed when no exception
conditions exist at the conclusion of XML PARSE processing.

When no exception conditions exist, control is transferred to
imperative-statement-2, if specified, or to the end of the XML PARSE
statement. If an ON EXCEPTION phrase is specified, it is ignored.
Special register XML-CODE contains a zero after the XML PARSE
statement has finished executing.

6. END-XML phrase. The END-XML phrase is an explicit scope
terminator that delimits the scope of both XML GENERATE and XML
PARSE statements. With END-XML, conditional XML GENERATE
or XML PARSE statements can be nested in other conditional
statements. Conditional XML GENERATE or XML PARSE
statements specify the ON EXCEPTION or NOT ON EXCEPTION
phrase.

The scope of a conditional XML PARSE statement is terminated by:

• An END-XML phrase at the same level of nesting

• A separator period

Procedure Division Statements 6-401
Nested XML PARSE Statements

When a given XML PARSE statement appears as imperative-statement-1 or
imperative-statement-2, or as part of imperative-statement-1 or
imperative-statement-2 of another XML PARSE statement, that given XML
PARSE statement is a nested XML PARSE statement.

Nested XML PARSE statements are considered to be matched XML PARSE
and END-XML combinations proceeding from left to right. For this reason,
when END-XML phrases are encountered, they are matched with the nearest
preceding XML PARSE statements that have not already been terminated.

Control Flow

When the XML parser receives control from an XML PARSE statement, it
analyzes the XML document and transfers control to procedure-name-1 at the
following points:

• At the start of the parsing process

• When a document fragment is found

• When the parser detects an error in parsing the XML document

• At the end of processing the XML document

Control returns to the XML parser when the end of the processing procedure
is reached.

The exchange of control between the parser and the processing procedure
continues until either:

• The entire XML document has been parsed, ending with the
END-OF-DOCUMENT event.

• The parser detects an exception and the processing procedure does not
reset special register XML-CODE to zero prior to returning to the parser.

• The processing procedure terminates parsing deliberately by setting
XML-CODE to -1 prior to returning to the parser.

6-402 Procedure Division
Then, the parser terminates and returns control to the XML PARSE statement
with the XML-CODE special register containing the most recent value set by
the parser or the processing procedure.

The XML-CODE, XML-EVENT, and XML-TEXT special registers contain
information about each XML event passed to the processing procedure. The
content of XML-CODE is defined during and after execution of an XML
PARSE statement. The contents of all other XML special registers are
undefined outside the range of the processing procedure.

For normal XML events, XML-CODE contains zero when the processing
procedure receives control. For exception events, XML-CODE contains one
of the exception codes specified later in this document. XML-EVENT is set
to the event name, such as “START-OF-DOCUMENT”. XML-TEXT
contains the piece of the document corresponding to the event, as described
in XML-EVENT. For more information about the XML special registers, see
“Special Registers” below.

For all kinds of XML events, if XML-CODE is not zero when the processing
procedure returns control to the parser, the parser terminates without a further
EXCEPTION event. Setting XML-CODE to “-1” before returning to the
parser for an event other than EXCEPTION forces the parser to terminate
with a user-initiated exception condition. For some EXCEPTION events, the
processing procedure can handle the event, then set XML-CODE to zero to
force the parser to continue, although subsequent results are unpredictable.
When XML-CODE is zero, parsing continues until the entire XML document
has been parsed or an exception condition occurs.

Special Registers

XML-CODE

When used in the XML PARSE statement, the XML-CODE special register
is used to communicate status between the XML parser and the processing
procedure.

For each event, the XML parser sets XML-CODE before transferring control
to the processing procedure. It also does this at parser termination. You can
reset XML-CODE before returning control to the parser.

The XML-CODE special register has the implicit definition:

Procedure Division Statements 6-403
01 XML-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When the XML parser encounters an XML event, it sets XML-CODE and
then passes control to the processing procedure. For all events except
EXCEPTION, XML-CODE contains zero when the processing procedure
receives control.

For an EXCEPTION event, the parser sets XML-CODE to an exception code
that indicates the nature of the exception. Exception codes are listed below.
Note that these are different than IBM COBOL’s exception codes.

XML PARSE
Exception Code

Description

101 Out of memory

102 Syntax error in XML

103 No elements

104 Invalid token

105 Unclosed token

106 Partial character

107 Tag mismatch

108 Duplicate attribute

109 Junk after the doc element

110 Error in the parameter entity reference

111 Undefined entity

112 Recursive entity reference

113 Asynchronous entity

114 Bad character reference

115 Binary entity reference

116 Attribute external entity reference

117 Misplaced XML processing instructions

118 Unknown encoding

119 Incorrect encoding

6-404 Procedure Division
If you want the parser to terminate after normal events without causing an
EXCEPTION, set XML-CODE to “-1” before returning control to the parser.
If you set XML-CODE to any other value, results are undefined. IBM
customers should note that ACUCOBOL-GT ignores XML-CODEs of “0”.
This is because unlike the IBM COBOL parser, there are no exceptions that
allow continuation of parsing in ACUCOBOL-GT. Our XML parser cannot
continue once it has detected an error.

In ACUCOBOL-GT, no further events are returned from the parser. Control
is passed to the statement that you specify in the ON EXCEPTION phrase, or
to the end of the XML PARSE statement if you did not code an ON
EXCEPTION phrase.

When the parser returns control to the XML PARSE statement, XML-CODE
contains the most recent value set either by the parser or by the processing
procedure.

XML-EVENT

The XML parser uses the XML-EVENT special register to communicate
event information to the processing procedure. The information that is
communicated is identified in the XML PARSE statement. Before passing
control to the processing procedure, the XML parser sets XML-EVENT to
the name of the XML event, as described in Table 1 at the end of this topic.

XML-EVENT has the implicit definition:
01 XML-EVENT USAGE DISPLAY PICTURE X(30) VALUE SPACE.

XML-EVENT cannot be used as a receiving data item.

120 Unclosed cdata section

121 External entity handling required

122 Not standalone

123 unexpected error

124 entity declared in wrong place

XML PARSE
Exception Code

Description

101 Out of memory

Procedure Division Statements 6-405
XML-TEXT

The XML-TEXT special register is defined during XML parsing to contain
document fragments that are of class alphanumeric. XML-TEXT is an
elementary alphanumeric data item of the length of the contained XML
document fragment. The length of XML-TEXT can vary from 0 through
16,777,215 bytes. There is no equivalent COBOL data description entry.

The parser sets XML-TEXT to the document fragment associated with an
event before transferring control to the processing procedure when the
operand of the XML PARSE statement is an alphanumeric data item.

Use the LENGTH function for XML-TEXT to determine the number of bytes
that XML-TEXT contains.

XML-TEXT cannot be used as a receiving item.

Table 1. Contents of XML-EVENT and XML-TEXT Special Registers

XML event (content of XML-EVENT) Content of XML-TEXT

ATTRIBUTE-CHARACTERS The value within quotes or apostrophes. If the value
includes an entity reference, this can be a substring of
the attribute value.

ATTRIBUTE-NAME The attribute name; the string to the left of “=”.

COMMENT The text of the comment between the opening
character sequence “<!--” and the closing character
sequence “-->”.

CONTENT-CHARACTER The single character corresponding with the
predefined entity reference in the element content.

CONTENT-CHARACTERS The element content between start and end tags. This
can be a substring of the element content if the content
contains an entity reference or another element.

DOCUMENT-TYPE-DECLARATION The entire document type declaration including the
opening and closing character sequences,
“<!DOCTYPE” and “>”.

ENCODING-DECLARATION The value, between quotes or apostrophes, of the
encoding declaration in the XML declaration.

END-OF-CDATA-SECTION Always contains the string “]]>”.

END-OF-DOCUMENT Null, zero-length.

END-OF-ELEMENT The name of the end element tag or empty element tag.

EXCEPTION The part of the document successfully scanned, up to
and including the point at which the exception was
detected. Special register XML-CODE contains the
unique error code identifying the exception.

PROCESSING-INSTRUCTION-DATA The rest of the processing instruction, not including the
closing sequence, “?>”, but including trailing, not
leading, white space characters.

PROCESSING-INSTRUCTION-TARGET The processing instruction target name that occurs
immediately after the processing instruction opening
sequence, “<?”.

STANDALONE-DECLARATION The value between quotes or apostrophes of the
stand-alone declaration in the XML declaration

START-OF-CDATA-SECTION Always contains the string “<![CDATA[“.

START-OF-DOCUMENT The entire document.

START-OF-ELEMENT The name of the start element tag or empty element
tag, also known as the element type.

VERSION-INFORMATION The value between quotes or apostrophes of the
version declaration in the XML declaration.

Table 1. Contents of XML-EVENT and XML-TEXT Special Registers

XML event (content of XML-EVENT) Content of XML-TEXT

Index

Symbols
$DISPLAY 2-29
$ELSE 2-31
$END 2-30
$IF 2-31
$SET 2-32
++INCLUDE statement 2-24

Numerics
132-column mode via DISPLAY verb 6-155
80-column mode via DISPLAY verb 6-155

A
abbreviated combined relation conditions 6-15
accelerator key 6-40
ACCEPT 6-64

ANSI ACCEPT 6-99
CONTROL phrase 6-29
control value 6-102
control-handle statement 6-101
CURSOR clause 4-11
dest-item 6-66
embedded procedures 5-118
ENVIRONMENT 6-98
exception values, predefined 6-65
formats summarized 6-64
FROM 6-69
FROM CENTURY-DATE 6-85
FROM COMMAND-LINE 6-93

Index-2
FROM ENVIRONMENT-VALUE 6-106
FROM INPUT STATUS 6-92
FROM LINE NUMBER 6-93
FROM SCREEN 6-95
FROM SYSTEM-INFO 6-89
FROM TERMINAL-INFO 6-86
general rules 6-76
key-dest data item 6-102
ON EXCEPTION phrase with ACCEPT control-handle (Format 7) 6-102
ON EXCEPTION phrase with ACCEPT dest-item (Format 1) 6-81
preassign a font handle 5-75
screen options 6-22
Screen Section 6-83
screen-name 6-68
STANDARD OBJECT 6-94
syntax rules 6-72
termination, normal and exceptions 6-102
WINDOW HANDLE option 6-95

ACCESS MODE 4-28
ActiveX event lists 6-36
ActiveX statements

ACCEPT EVENT 6-104
CREATE 6-128
INQUIRE 6-239
MODIFY 6-273
PROPERTY and property-name phrases 6-47
USE 6-380

ACTUAL KEY 4-29
ACU-MAIN paragraph header 2-35
ACU-NO-TERMINAL 6-88
ADD arithmetic operator 6-16
ADD statement 6-106

CORRESPONDING option 6-19
general rules 6-108
syntax rules 6-107

Addition operator 6-6
ADDRESS OF phrase in an arithmetic expression 6-7

 Index-3
ADVANCING, in WRITE statement 6-394
AFTER procedures 5-119

screen section 5-118
alignment rules 5-4
ALL literal, figurative constant 2-7
allocating dynamic memory 6-339
ALLOWING

ALL, OPEN statement 6-297
MESSAGES phrase, ACCEPT statement 6-80, 6-102

alphabet
CODE-SET clause 5-31
specifying 4-8
specifying for sorting 4-4

ALPHABET clause 4-15
alphabetic category, PICTURE clause 5-52
ALPHABETIC condition 6-11
ALPHABETIC-LOWER condition 6-11
ALPHABETIC-UPPER condition 6-11
alphabet-name 4-34
alphanumeric 5-52

edited 5-52
literals 2-6, 4-16

ALSO phrase, of ALPHABET entry 4-16
ALTER statement 6-110
alternate ENTRY points in a program 6-223
ALTERNATE RECORD KEY clause 4-32
AND operator 6-13
ANSI

ACCEPT 6-99
ACCEPT and DISPLAY 2-13
ACCEPT, useful guidelines for 6-100
ACCEPT, W$FORGET routine 6-100
DISPLAY, useful guidelines for 6-165
source format 2-10
standard COBOL 1-4

ANSI-VAR-FONT 6-95
ANY THREAD, WAIT statement 6-390

Index-4
APPLY clause, I-O Control Paragraph 4-36
Area A and Area B 2-11
arithmetic expressions 6-5

ADDRESS OF phrase 6-7
floating-point data 5-10

arithmetic operators 6-16
ASCENDING, in SORT 6-345
ASSIGN phrase 4-29
AT END phrase 6-21

for ACCEPT 6-82
AT phrase

DISPLAY BOX 6-161
AUTO phrase 6-23
automatic locking 4-33
AUTO-SKIP 6-74
AUTOTERMINATE 6-74
AX-EVENT-LIST phrase 6-36

B
Background

high- and low-intensity values 6-27
BACKGROUND-COLOR phrase 6-37
BACKGROUND-HIGH phrase 6-24
BACKGROUND-LOW phrase 6-24
BACKGROUND-STANDARD phrase 6-24
BCOLOR keyword 6-30
BEFORE

procedures 5-119
TIME phrase for ACCEPT 6-79

BELL phrase 6-24
BINARY data item 5-68
binary notation for numeric literals 2-3
binary, LOW-VALUES 2-7
BIND TO THREAD 6-176
blank line 2-12

 Index-5
BLANK WHEN ZERO 5-82
BLINK phrase 6-24
Blink value 6-27
BLOCK CONTAINS 5-27
block size, Vision files 5-27
blocking 5-27
BOLD phrase 6-39
BOXED, DISPLAY WINDOW option 6-151
braces (use in manual) 1-3
brackets (use in manual) 1-3
BY phrase, CALL statement 6-114

C
C compatible data types 5-63
CALL statement 6-111

general rules 6-113
RUN, memory considerations 6-117
syntax rules 6-113

CALL, EXIT statement to return to the calling program 6-231
calling programs

Linkage Section 5-35
passing parameters 6-114

CANCEL statement 6-120
case, of words in manual 1-2, 1-3
CCOL phrase 6-25
CELL phrase, to define a cell in a floating window 6-178
CELLS phrase, with LINES and SIZE phrases 6-44
CGI programs, merging data with HTML templates 6-213
CGI, retrieving a CGI variable 5-46
CHAIN statement 6-121
CHAINING phrase 6-62
character, converting to numeric value 6-292
class condition 6-10
class name 4-7
CLASS phrase 4-10

Index-6
class-name condition 6-10
clauses 2-36
CLIENT-MACHINE-NAME, SYSTEM-INFORMATION 6-88
CLIENT-USER-ID 6-88
CLINE phrase 6-25
CLINES phrase 6-25
CLOSE statement 6-123

CLOSE WINDOW format 6-124
general rules 6-123

COBOL
ANSI standard 1-4
program elements 2-34
program organization 2-34
words, defined 2-2

CODE-SET 5-31
collating sequence 4-4
COLOR

in Common Screen Options 6-26
in DISPLAY BOX 6-161
in DISPLAY WINDOW 6-152
in ERASE SCREEN in Screen Section 6-35
in line drawing 6-159

color
customizing for controls 6-37
FCOLOR and BCOLOR keywords 6-30
inherited by a new window 6-152
REVERSED phrase 6-52
values, combinations of 6-26

COLUMN clause in Screen Section 5-116
COLUMN phrase

DISPLAY BOX 6-161
line drawing 6-158
NUMBER, DISPLAY WINDOW 6-150

COLUMN-NUMBER phrase 6-28
combined conditions 6-13

abbreviated 6-15
command line

 Index-7
argument 6-62
buffer, changing contents of 6-94
DISPLAY UPON COMMAND-LINE 6-163

comment line in COBOL source 2-12
comment-entry in COBOL source 2-9
COMMIT statement 6-125
Common Gateway Interface (CGI) 5-46
common screen options 6-22

AUTO phrase 6-23
AX-EVENT-LIST phrase 6-36
BACKGROUND phrases 6-24
BACKGROUND-COLOR phrase 6-37
BELL phrase 6-24
BLINK phrase 6-24
character coordinate phrases (CCOL, CLIN, CLINES, CSIZE) 6-25
COLOR phrase 6-26
COLUMN NUMBER phrase 6-28
CONTROL phrase 6-29
CONVERT phrase 6-31
DEFAULT phrase 6-33
ECHO phrase 6-34
ENABLED phrase 6-34
ERASE phrase 6-35
EVENT-LIST phrase 6-36
EXCLUDE-EVENT-LIST phrase 6-36
FONT phrase 6-37
FOREGROUND-COLOR phrase 6-37
FULL phrase 6-39
HELP-ID phrase 6-39
HIGH, LOW, STANDARD video phrases 6-39
IDENTIFICATION phrase 6-40
KEY phrase 6-40
LAYOUT-DATA phrase 6-42
LINE NUMBER phrase 6-42
LINES phrase 6-44
LOWER phrase 6-58
MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, MIN-WIDTH phrases 6-44

Index-8
NO ADVANCING phrase 6-45
NO ECHO phrase 6-46
NUMERIC-FILL phrase 6-59
OUTPUT phrase 6-46
PROMPT phrase 6-46
property name phrases 6-47
PROPERTY phrase 6-47
REQUIRED phrase 6-51
REVERSED phrase 6-52
SAME phrase 6-52
SCROLL phrase 6-52
SIZE phrase 6-53, 6-54
STYLE phrase 6-55
TAB phrase 6-56
TITLE phrase 6-56
UNDERLINED phrase 6-56
UPON phrase 6-57
UPPER phrase 6-58
VALUE phrase 6-58
video attributes phrases 6-39
VISIBLE phrase 6-59
ZERO-FILL phrase 6-59

common statement rules 6-16
COMP-1 5-64
COMP-2 5-64

sign-storage convention 5-70
COMP-3 5-64

sign-storage convention 5-70
COMP-4 5-65
COMP-5 5-66
COMP-6 5-67
comparison

of nonnumeric operands 6-10
of numeric operands 6-9

compatibility modes 2-13
compiler-directing statements 2-36, 6-2
complex conditions 6-13

 Index-9
COMP-N 5-68
COMPRESSION CONTROL VALUE IS 4-31
COMPUTATIONAL 5-62
COMPUTATIONAL-1 5-62
COMPUTATIONAL-2 5-62
COMPUTATIONAL-3 5-62
COMPUTATIONAL-4 5-62
COMPUTATIONAL-5 5-62
COMPUTATIONAL-6 5-62
COMPUTATIONAL-N 5-62
COMPUTATIONAL-X 5-62
COMPUTE statement 6-16, 6-127
COMP-X 5-67
concatenation of data items 6-362
condition, order of evaluation 6-14
conditional compiling

$DISPLAY 2-29
$ELSE 2-31
$END 2-30
$IF 2-31
$SET 2-32
described 2-28

conditional expressions 6-8
conditional sentence 6-3
conditional statements 2-36, 6-2
condition-name 5-17, 5-84, 5-86, 6-11
condition-variable 6-11
configuration file, SET statement 6-337
Configuration Section 4-2
configuration varaibles, list of

WARNINGS 5-15
configuration variables

DEFAULT_FONT 6-94
EXTRA_KEYS_OK 6-299
FILE_STATUS_CODES 6-389
FLUSH_ON_COMMIT 6-125
FOREGROUND_INTENSITY 6-152

Index-10
HTML_TEMPLATE_PREFIX 5-49, 6-215
INPUT_STATUS_DEFAULT 6-92
LOG_DIR 6-320
LOGGING 6-320
MESSAGE_QUEUE_SIZE 6-332
SCREEN 6-154, 6-195
SCRIPT_STATUS 6-91, 6-92
SCROLL 6-154
SET statement to modify during execution 6-337
STOP_RUN_ROLLBACK 6-126, 6-320
TEXT 6-212
UPPER_LOWER_MAP 6-58
V_BUFFERS 6-117
WINDOW_INTENSITY 6-152

CONSOLE IS CRT 4-11
constants, figurative 2-7
continuation lines 2-12
CONTINUE statement 6-127
CONTROL cntrl-string phrase 6-30
CONTROL KEY clause 6-78

value and status-name 4-13
CONTROL phrase 6-29
CONTROL VALUE phrase 6-152
CONTROL-HANDLE 4-19
control-name, example of structure 4-7
controls

activating 6-101
activating with Screen Section 6-102
background intensity of 6-24
changing with the MODIFY statement 6-273
colors, assigning 6-38
displaying and hiding with the VISIBLE phrase 6-59
enabled and disabled with the ENABLED phrase 6-34
event lists 6-36
field numbers in Screen Section 5-106
font, assigning 6-37
hiding with the VISIBLE phrase 6-59

 Index-11
identifier, assigning 6-40
interaction with pop-up subwindows 6-209
key letter, designating 6-40, 6-56
layout manager, LAYOUT-DATA phrase 6-42
positioning, COLUMN phrase 6-28
positioning, LINE phrase 6-42
removing, the DESTROY statement 6-134, 6-138
retrieving information about 6-239
sizing, LINES phrase 6-44
sizing, SIZE phrase 6-53
special properties, specifying 6-47
subwindows, interaction with 6-209
TITLE 6-56
value, assigning 6-59
value, stored in ACCEPT statement 6-102

controls.def 5-105
conventions used in Reference Manual 1-2
conversion errors, numeric 6-79
CONVERT phrase 6-31

and field SIZE 6-53
converting character to numeric value 6-292
CONVERTING format of the INSPECT statement 6-255
COPY libraries, excluding a library from a COPY statement 2-18
COPY statement

code examples 2-22
comparison operation 2-15
highlights for first-time users 2-23
syntax and general rules 2-16

CORRESPONDING phrase 6-19
and MOVE statement 6-290

CREATE statement 6-128
CRT STATUS 4-13, 6-102

compatibility with other COBOL systems 4-14
table of statements 4-14

crtvars.def 4-8
CSIZE phrase 6-25
CURRENCY SIGN, to set the currency symbol 4-10

Index-12
current window, changing with the UPON phrase 6-57
CURSOR clause, in SPECIAL-NAMES 4-12
CURSOR phrase for ACCEPT 6-77
cursor position

after DISPLAY control-type statement 6-209
data item used to control 4-11

cut, copy, paste via SET format 13 6-341

D
data

categories of 5-4
classes of 5-4
external 5-35

data description entry
general format 5-36
level-numbers 5-40
syntax rules 5-38

Data Division 5-2
general format and rules 5-21

data entry without screen display 6-46
data items

31-digit support 5-65
declaring external 5-44
format of 5-60

data names
condition-name 5-17
described 5-10
qualification of 5-10
RECORD-POSITION 5-19
reference modification 5-13
subscripting 5-12

DATA RECORDS clause 5-31
data structures 5-2
data type

and alignment 5-4

 Index-13
conversion with MOVE 6-292
C-style 5-63

DATE option 6-85
DAY option 6-85
DAY-OF-WEEK option 6-86
debugging lines 2-10

conditional in source 4-3
decimal point, specifying the symbol 4-10
DECIMAL-POINT IS COMMA 4-10
declarative paragraphs 6-2
.def files, crtvars.def 4-8
DEFAULT phrase 6-33

and PROMPT phrase 6-46
DEFAULT_FONT configuration variable 6-94
DELETE FILE 6-134
DELETE RECORD 6-133
DELETE statement 6-132
DELIMITED phrase, with STRING 6-364
delimited-scope statements 2-36, 6-2
DESCENDING, in SORT 6-345
DESTROY statement 6-134
device names

file processing and 4-29
list of valid 4-29
table of 4-9

directives
$IF 2-31
$SET 2-32
conditional compilation 2-28

DISPLAY 6-163
ANSI format 6-163
CONTROL phrase 6-29
control-type-name, general rules 6-208
record type 5-8
screen-name 6-144
STANDARD WINDOW option 6-195
SUBWINDOW, CONTROL VALUE phrase 6-153

Index-14
summary of different forms of 6-138
DISPLAY BOX 6-159
DISPLAY control-type-name 6-201, 6-218
DISPLAY external-form-item 6-213
DISPLAY FLOATING WINDOW 6-167
DISPLAY INITIAL WINDOW 6-187
DISPLAY LINE 6-156, 6-158
DISPLAY MESSAGE BOX 6-210
DISPLAY OMITTED option 6-143
DISPLAY SCREEN SIZE 6-155
DISPLAY SCREEN, column mode 6-155
DISPLAY src-item 6-139
DISPLAY src-item (ANSI format) 6-163
DISPLAY statement 6-138
DISPLAY SUBWINDOW 6-145
DISPLAY TOOL-BAR 6-197
DISPLAY UPON ENVIRONMENT-NAME 6-217
DISPLAY UPON FLOATING WINDOW TITLE 6-166
DISPLAY UPON GLOBAL TITLE 6-166
DISPLAY UPON WINDOW TITLE 6-162
DISPLAY WINDOW 6-145
DIVIDE statement 6-16, 6-220
division header, COBOL program 2-34
division, arithmetic operator 6-6
DLL, calling and return values of 6-118
DOUBLE, USAGE type 5-63, 5-69
DUPLICATE, primary key 4-32
DUPLICATES 4-32, 6-347
dynamic memory

allocating with M$ALLOC 6-339

E
EBCDIC 4-6, 6-354
ECHO phrase 6-34
editing formats allowed in PICTURE clause 5-51

 Index-15
fixed insertion 5-58
floating insertion 5-58
insertion, types of 5-57
rules 5-56
simple insertion 5-57
special insertion 5-58
suppression and replacement 5-57
types of editing allowed 5-57
zero suppression and replacement 5-59

elementary data item 5-2
in data description entry 5-40

ellipses (...) use in manual 1-3
embedded procedures 5-119

COLOR values and 5-121
for group items 5-122

EMPTY-CHECK phrase 6-75
ENABLED phrase 6-34
ENCRYPTION phrase 4-31
E-notation, format of 6-31
entries and clauses, defined 2-36
ENTRY point, name matching logic 6-224
ENTRY statement 6-223
Environment Division 4-2
ENVIRONMENT option 6-98
environment variables, in the OF phrase of a COPY statement 2-15
ENVIRONMENT-NAME special register 6-65

and DISPLAY UPON 6-217
ENVIRONMENT-VALUE, ACCEPT FROM 6-106
EQUAL TO condition 6-8
ERASE phrase 6-35
ERASE, DISPLAY WINDOW 6-151
ESCAPE option 6-93
European character sets 4-34
EVALUATE statement 6-225

code examples 6-229
general rules 6-227
highlights for first-time users 6-230

Index-16
evaluation, order of in arithmetic expressions 6-6
event lists 6-36
event procedures

and ACCEPT 5-124
in Screen Section 5-118
modifying 6-284

EVENT-LIST 6-36
EVENT-STATUS

EVENT-ACTION data item 4-22
EVENT-CONTROL-HANDLE data item 4-22
EVENT-CONTROL-ID data item 4-22
EVENT-DATA-1 data item 4-22
EVENT-DATA-2 data item 4-22
EVENT-TYPE data item 4-21
EVENT-WINDOW-HANDLE data item 4-21
example of structure 4-8

exception condition 6-84
EXCEPTION procedures 5-119

and screen section 5-118
exception value

95 6-80
setting for context sensitive help 6-341

EXCLUDE-EVENT-LIST 6-36
exclusive mode file locking 4-34
EXIT PARAGRAPH 6-233
EXIT PERFORM 6-233
EXIT PROGRAM 6-232
EXIT SECTION 6-233
EXIT statement 6-231
exponentiation 6-6
EXTERNAL clause 5-44
external data item 5-35, 5-44
EXTERNAL data items

in Working-Storage 5-38
level-numbers 5-38

external files 5-24, 5-26
external name of file, VALUE OF FILE-ID 5-30

 Index-17
EXTERNAL-FORM clause 5-46
EXTRA_KEYS_OK configuration variable 6-299

F
FCOLOR 6-30
field numbers assigned to Screen Section entries 4-18
figurative constants 2-7
file description entry 5-23
file handle, passing to a subroutine 6-119
file locking, with OPEN statement 6-297
File Section

BLOCK CONTAINS clause 5-27
CODE-SET clause 5-31
DATA RECORDS clause 5-31
file description entry 5-23
general format 5-23
IS EXTERNAL clause 5-26
LABEL RECORDS clause 5-30
LINAGE clause 5-32
RECORD clause 5-28
sort file description entry 5-25

FILE STATUS variable 6-20
file types

indexed, organization of 5-7
relative, organization of 5-7
sequential, organization of 5-7
sort, verbs used with 5-7

file types, organization of 5-7
FILE_STATUS_CODES configuration variable 6-389
File-Control paragraph 4-24

general rules 4-28
syntax rules 4-26

FILE-PREFIX special register 6-337
files

ACTUAL KEY 4-29

Index-18
clauses determining organization of 5-8
dynamic access 4-29
random access 4-28
RELATIVE KEY 4-29
sequential access 4-28
shared 5-26
when not in open mode 3-3

FILLER 5-41
fixed insertion editing 5-58
FIXED-FONT 6-94
fixed-length records 5-7
floating insertion editing 5-58
floating point

and CONVERT phrase 6-31
arithmetic expression 5-10
C subroutines 5-69
input format 6-32
passing to subroutines with CALL 6-119
when to use 5-9

floating windows
active, changing with the SET statement 6-340
and TITLE-BAR phrase 6-181
and UPON phrase 6-175
auto resize 6-182
BIND TO THREAD phrase 6-176
BOXED border 6-174
CELL phrase 6-178
closing with DESTROY 6-136
current, changing with the SET statement 6-340
current, changing with the UPON phrase 6-57
GRAPHICAL option 6-175
handle, fetching with the SET statement 6-340
height 6-178
implicit subwindow 6-173
initial position 6-176
LINK TO THREAD phrase 6-176
matching the user’s colors 6-180

 Index-19
MODAL and MODELESS 6-175
placement of title 6-174
resizable 6-182
shadowed 6-174
specifying attributes at runtime 6-185
system menu 6-181

floating-point literals 2-5
flow of control 6-4
flush buffers, COMMIT 6-125
FLUSH_ON_COMMIT configuration variable 6-125
font

DEFAULT-FONT 6-94
FIXED-FONT 6-94
handle to, with ACCEPT STANDARD OBJECT 6-94
LARGE-FONT 6-94
MEDIUM-FONT 6-95
OEM-FIXED-FONT 6-94
preassigning to a handle 5-75
predefined 6-94
SMALL-FONT 6-95
SYSTEM-FIXED-FONT 6-94
SYSTEM-FONT 6-94
TRADITIONAL-FONT 6-94

FONT phrase 6-37
FOREGROUND_INTENSITY configuration variable 6-152
FOREGROUND-COLOR phrase 6-37
format

ANSI source 2-10
of source program 2-9
terminal source 2-11

form-feeds, with LINAGE clause 5-33
FROM clause in Screen Section 5-109
FULL phrase 6-39

Index-20
G
GIVING, SORT with 6-268
GLOBAL, data description entry 5-38
GO TO statement 6-235

ALTER statement, using to change destination of 6-110
GOBACK statement 6-234
GRAPHICAL

label in Screen Section 5-102
option, DISPLAY FLOATING WINDOW 6-174

GREATER THAN condition 6-8
group items 5-2

category 5-4
data description entry 5-39
embedded procedures for 5-122

H
HANDLE data items 5-74
handles

preassign a font handle 5-75
SYNCHRONIZED 5-75

HAS-GRAPHICAL-INTERFACE 6-87
HAS-VISIBLE-ATTRIBUTES 6-87
help automation, via SET format 13 6-341
HELP-ID phrase 6-39
hex literals

nonnumeric 2-6
numeric 2-3

hexadecimal
HIGH-VALUES 2-7
notation for numeric literals 2-3

High intensity value 6-27
HIGH phrase 6-39
HIGHLIGHT phrase 6-39
HIGH-VALUES 2-7
HP COBOL, special names 4-17

 Index-21
HP e3000 compatibility mode 2-13
HTML

associating group items with HTML data 5-46
templates, merging data with 6-213

HTML_TEMPLATE_PREFIX configuration variable 5-49, 6-215

I
I/O status 6-20
IBM DOS/VS COBOL

system names 4-17
using SUPPRESS in a COPY statement 2-18

IBM Enterprise COBOL 6-397
ICOBOL

COLUMN phrase 6-29
compatibility mode 2-13
default locking 4-34
DISPLAY src-item 6-143
ECHO 6-34
ERASE 6-143
LINE NUMBER 6-43
NO ADVANCING 6-45

Identification Division 3-2
IDENTIFICATION phrase 6-40
IF statement 6-236
Illegal MERGE 6-269
Illegal RELEASE 6-315
Illegal RETURN 6-316
Illegal SORT 6-350
imperative sentence 6-3
imperative statements 2-36, 6-2
independent windows 6-187
Index out of Bounds 5-13
indexed files, organization of 5-7
indicator area

ANSI format 2-10

Index-22
terminal format 2-11
initial attribute 6-115, 6-233
INITIAL PROGRAM 3-3
initialize a font handle 5-75
INITIALIZE statement 6-237
INPUT PROCEDURE 6-345
INPUT_STATUS_DEFAULT configuration variable 6-92
INPUT-OUTPUT Section 4-23
INQUIRE statement 6-239
insertion characters 5-57
INSPECT REPLACING size mismatch 6-255
INSPECT statement 6-250

code examples 6-256
general rules 6-252
highlights for first-time users 6-258
syntax rules 6-251

Internet, defining records for HTML forms 5-46
interrupting a SORT 6-350
INVALID KEY phrase 6-21
I-O-CONTROL

general format 4-35
general rules 4-36
syntax rules 4-35

IS EXTERNAL clause 5-26
general format for 5-44

IS-REMOTE 6-88
italicized words in manual 1-3

J
justification, SIZE phrase 6-46
JUSTIFIED clause 5-81

K
KEY AREA 6-265, 6-345

 Index-23
key letter
designating 6-56
specifying with the KEY phrase 6-40

KEY phrase 6-40
key value, duplicate primary 4-32
KEY, duplicate primary key 4-32
KEY-ASCENDING 6-265, 6-346
KEYBOARD

in ASSIGN clause 4-30
record type 5-8

Key-dest 6-73
holder of terminating event code 6-102

KEY-DIGITS 6-266, 6-346
KEY-OFFSET 6-265, 6-346
KEY-SIZE 6-266, 6-346
key-table

requirements in MERGE statement 6-265
requirements in SORT statement 6-344

KEY-TYPE 6-265, 6-346
list of codes for 6-346

L
LABEL RECORDS 5-30
LARGE-FONT 6-94
LAST THREAD 6-390
LAYOUT-DATA phrase 6-42
LENGTH OF expression 2-4
LENGTH option 6-246
LESS THAN condition 6-8
level-numbers 5-2

66 5-3
77 5-3
88 5-3, 5-17, 5-84
in Data Description Entry 5-38
syntax and general rules 5-40

Index-24
library routines
M$ALLOC 6-339
W$FORGET 6-100, 6-166

LINAGE 5-32, 6-393, 6-395
and WRITE statement 5-34
general format 5-32
with record type 5-8

LINAGE-COUNTER 5-12, 5-34, 6-395
LINE

DISPLAY BOX 6-161
drawing 6-158

LINE Clause 5-115
line drawing characters, conversion example 6-98
LINE NUMBER phrase 6-42
LINE NUMBER phrase, DISPLAY SUBWINDOW 6-150
LINE SEQUENTIAL, and record type 5-8
LINES

DISPLAY BOX 6-161
DISPLAY WINDOW 6-150

lines
blank 2-12
comment 2-12
continuation 2-12

LINES phrase 6-44
LINK TO THREAD 6-176
linkage data item, setting its address to a specified value 6-338
Linkage Section 5-35
LIST-BOX control, updating with the MODIFY verb 6-282
literals 2-2

figurative constants 2-7
LM-RESIZE 6-95
LOCK mode 4-33
LOCK ON MULTIPLE RECORDS WITH ROLLBACK 4-34
LOCK THREAD statement 6-261
LOCK, omitted 4-34
LOCK-HOLDING 4-36
locking, exclusive mode 4-34

 Index-25
LOG_DIR configuration variable 6-320
LOGGING configuration variable 6-320
logical operators 6-13
logical page 5-33
Low intensity value 6-26
LOW phrase 6-39
LOWER phrase 6-58
lower-case words in manual 1-3
LOWLIGHT phrase 6-39
LOW-VALUES 2-7

M
M$ALLOC routine 6-339
machine-dependent data 5-71
main application window

created automatically 6-193
creating with DISPLAY STANDARD WINDOW 6-195
default size 6-195
DESTROY has no effect on 6-134
handle of 6-95
initial placement on screen 6-195
minimize button 6-194
resizable 6-182

manual locking 4-33
MASS-UPDATE phrase, OPEN with 6-295, 6-298
MEDIUM-FONT 6-95
memory management, initial programs 3-3
MERGE statement 6-262

ASCENDING phrase 6-265
code examples 6-269
DESCENDING phrase 6-265
enabling user to enter merge key 6-265
GIVING phrase 6-268
highlights for first-time users 6-270
list of KEY-TYPE codes 6-266

Index-26
merge keys 6-265
OUTPUT PROCEDURE 6-268
USE procedure 6-268
variable-size table 6-265

message boxes, creating with DISPLAY verb 6-211
MESSAGE_QUEUE_SIZE configuration variable 6-332
messages

broadcasting 6-331
receiving 6-312
sending 6-331

mnemonic-name, defined 6-74, 6-393
MODAL phrase 6-175
modal window 6-173
MODELESS phrase 6-175
modeless window 6-173
modes, compatibility with other COBOLs 2-13
MODIFY statement 6-273
MOVE statement 6-289

converting data type 6-292
CORRESPONDING option 6-19
illegal moves 6-292

movement keys, in the Screen Section 5-119
multiple ENTRY points to a program 6-223
MULTIPLE option and record locking 4-34
multiple receiving fields 6-17
multiple record layouts, and record types 5-8
multiplication 6-6
MULTIPLY statement 6-16, 6-293
multi-tasking 6-91

N
named constant 5-86
NEGATIVE condition 6-11
.NET

CREATE statement 6-128

 Index-27
DESTROY statement 6-138
DISPLAY statement 6-218
event lists 6-36
INQUIRE statement 6-244
MODIFY statement 6-281
screen description entry 5-107

NO ADVANCING phrase 6-45
NO ECHO phrase 6-46
NO SCROLL phrase 6-153
NO WRAP phrase 6-153
nonnumeric literals 2-6
nonnumeric operands, comparison of 6-10
NOT 6-11, 6-13
NOT ON OVERFLOW, with STRING 6-365
notation (use in manual) 1-2
NULL, in PROCEDURE phrase 5-102
NULLS 2-7
NUMBER-OF-SCREEN-COLUMNS 6-87
NUMBER-OF-SCREEN-LINES 6-87
numeric 5-52
NUMERIC condition 6-11
numeric edited 5-52
numeric literals 2-3, 4-16

binary, octal, or hexadecimal notation 2-3
LENGTH OF expression 2-4
NULL 2-7
ZERO 2-7

numeric operands, comparison of 6-9
NUMERIC SIGN 4-10
numeric value, conversion to 6-292
NUMERIC-FILL phrase 6-59

O
OBJECT control-type phrase, in Screen Section 5-105
OBJECT-COMPUTER paragraph 4-3

Index-28
OCCURS clause 5-5
general format 5-77
general rules 5-78
in Screen Section 5-111
syntax rules 5-77
table example 5-5

octal notation for numeric literals 2-3
OEM-FIXED-FONT 6-94
OFF phrase 6-46
OMITTED option for DISPLAY 6-143
ON EXCEPTION phrase

for ACCEPT 6-81
with MOVE statement 6-292

OPEN statement 6-294
operating system, SYSTEM-INFO table 6-90
operators 6-6

list of relational 6-8
logical 6-13

OPTIONAL 6-296
OPTIONAL phrase 4-33
OR 6-13
order of evaluation, condition 6-14
ORGANIZATION

IS INDEXED 4-32
IS RELATIVE 4-32

organization
of a COBOL program 2-34
of files, clauses determining 5-8

OUTPUT phrase 6-46
OUTPUT PROCEDURE 6-345
overflow condition, UNSTRING 6-375
overlays 4-4

P
PACKED-DECIMAL 5-68

 Index-29
padding characters 4-28
paragraph header 2-35
parameters, passing to called programs 6-114
parentheses, order of evaluation 6-6, 6-14
passing a file handle to a subroutine 6-119
passwords, data entry without screen display 6-46
PERFORM statement 6-299

rules for transfer of control 6-302
TEST AFTER 6-303
TEST BEFORE 6-303

PERFORM THREAD 6-299
PHYSICAL-SCREEN-HEIGHT 6-88
PHYSICAL-SCREEN-WIDTH 6-88
PICTURE character-string 2-8

repeat count example 5-41
PICTURE clause

and data classification 5-4
editing rules of elementary items 5-51
general format 5-51
in Screen Section 5-109
rules 5-51
zero suppression 5-59

pointer data items 5-68
POINTER phrase, with STRING 6-364
POP-UP AREA phrase 6-154
portability, USAGE types for integer data 5-71
POSITIVE condition 6-11
preassign a font handle 5-75
print records 5-8
PRINT-CONTROL 4-36

record type 5-8
printers, and ASSIGN clause 4-29
priority, setting for a thread 6-341
PROCEDURE Clause 5-118
Procedure Division 6-2

flow of control 6-4
organization 6-2

Index-30
statements 6-64
syntax rules 6-61

program organization 2-34
program structure 2-2
PROGRAM-ID paragraph 3-3
programming an event procedure 5-124
PROMPT phrase 6-46

effect on DEFAULT phrase 6-33
PROPERTY phrase 6-47
property-name phrases 6-47
Protected value 6-27

Q
qualification 5-10

general format 5-11
syntax rules 5-11

QUOTES 2-7

R
READ statement 6-306

NEXT, and START 6-358
PREVIOUS 6-311
PREVIOUS, SYSTEM-INFO 6-91
rules for retrieving records 6-308
syntax rules 6-307

RECEIVE statement 6-312
receiving fields, multiple 6-17
RECORD clause 5-28
RECORD DELIMITER 4-34
record description entry 5-2, 5-36
RECORD KEY 4-32
record locking

locks not automatically released 4-36
UNLOCK 6-370

 Index-31
WITH NO LOCK 6-311
record size, BLOCK CONTAINS 5-27
record type, rules determining 5-7
RECORD-POSITION 5-19
records

fixed-length 5-7
four types of 5-7
print 5-8
text 5-7
variable-length 5-7

REDEFINES 5-42
and VALUE clause 5-43

reference modification 5-13
code examples 5-16
highlights for first-time users 5-17
range errors 5-15

reinitializing Terminal Manager 6-100, 6-166
relation conditions 6-8

abbreviated combined 6-15
relative files, organization of 5-7
RELATIVE KEY 4-29
RELEASE statement 6-314
RENAMES clause, general format 5-88
REPLACE statement

code examples 2-28
general rules 2-26
highlights for first-time users 2-28
syntax rules 2-25
text replacement rules 2-24

REPLACING, INSPECT with 6-254
REQUIRED phrase 6-51
RESERVE AREA 4-34
reserved words, figurative constants 2-7
RESIDENT 3-4
resource files, how to include in object files 2-15
results unpredictable if sending and receiving item share storage area 6-20
RETURN statement 6-315

Index-32
RETURN-CODE
EXIT 6-231

RETURN-CODE special register 6-117, 6-233, 6-362
CALL 6-117
GOBACK 6-234
STOP 6-362

RETURNING phrase 6-118
RETURN-UNSIGNED 6-118, 6-233, 6-234
REVERSE phrase

in line drawing 6-159
with DISPLAY BOX 6-161

Reverse video value 6-26
REVERSED phrase 6-52

and DISPLAY WINDOW 6-151
REWRITE statement 6-317

rules 6-317
RM/COBOL

AUTO phrase 6-24
COLUMN phrase 6-29
compatibility mode 2-13
compatibility mode, data items 5-68
compatibility mode, device names in ASSIGN clause 4-29
CONVERT phrase 6-31, 6-32
ECHO 6-34
ERASE 6-143
LINE NUMBER 6-43
min-blocks 5-27
NO ADVANCING 6-45
record type 5-8
TAB phrase 6-56
USE AFTER EXCEPTION 6-311

ROLLBACK statement 6-319
effect on COMMIT in FILE-CONTROL entry 6-126

rollback, automatic 6-320
ROUNDED phrase 6-18
run unit 6-62

affected by CALL PROGRAM 6-116

 Index-33
affected by CHAIN 6-122
and open files 6-297

RUNTIME-VERSION 6-91

S
SAME AREA 4-36
SAME phrase 6-52
SAME RECORD AREA 4-35, 4-36
SAME SORT AREA 4-37
scope of statements 6-3
SCREEN configuration variable 6-154, 6-195
SCREEN CONTROL entry 4-18
screen description

and FROM 5-109
and OCCURS 5-111
and PICTURE 5-109
and TO 5-109
general format 5-90
general rules 5-102
syntax rules 5-97
VALUE 5-111

screen image 6-95
screen options, common 6-22
Screen Section 6-40, 6-43

AFTER procedure 5-118
and VALUE 5-111
CHARACTER label 5-102
COLUMN clause 5-116
controls, field number 5-106
defined 5-89
event procedures 5-118, 5-122
EXCEPTION procedure 5-118
fetching a handle to a screen 6-340
general format 5-89
LINE clause 5-115

Index-34
movement keys 5-119
OCCURS and COLOR examples 5-111
OCCURS general rules 5-111
OUTPUT phrase 6-46
overview 5-89
procedures 5-118

SCRIPT_STATUS configuration variable 6-91, 6-92
scroll and wrap states of the current window 6-154
SCROLL configuration variable 6-154
SCROLL phrase 6-52
scrolling 6-53, 6-153
SD or FD, and record type 5-8
SEARCH statement 6-320

code examples 6-324
highlights for first-time users 6-327
rules 6-321

section header 2-35
section, Procedure Division Format 6-61
SECURE phrase 6-46
security, data entry without screen display 6-46
segmentation 4-4, 6-63
SEGMENT-LIMIT 4-4, 6-63
SELECT clause 4-28
SEND statement 6-331
sentences, definitions 2-36
separators, rules for 2-8
sequence number 2-10
sequential files, organization of 5-7
SET ADDRESS OF Linkage data item 6-338
SET ENVIRONMENT 6-337
SET statement 6-333

general rules 6-336
syntax rules 6-335

SHADOW phrase 6-154
shadowed windows 6-174
SIGN clause 5-76
sign condition 6-11

 Index-35
SIGNED-INT 5-71
SIGNED-LONG 5-71
SIGNED-SHORT 5-71
sign-storage convention

COMP-2 5-70
COMP-3 5-70
USAGE DISPLAY 5-69

SIZE
DISPLAY BOX 6-161
DISPLAY WINDOW 6-150

SIZE ERROR clause 6-18
SIZE phrase 6-53, 6-54

with text entry field 6-53
with windows and controls 6-54

SMALL-FONT 6-95
sort file description entry 5-25
sort files, verbs used with 5-7
SORT statement 6-342

code examples 6-351
COLLATING SEQUENCE 6-347
DUPLICATES phrase 6-347
general rules 6-345
GIVING phrase 6-349
INPUT PROCEDURE phrase 6-348
KEY AREA option 6-345
KEY AREA phrase 6-352
syntax rules 6-343
USING phrase 6-348
working-storage elements 6-350

SORT status 6-350
SORT-MESSAGE special register 6-350
SORT-RETURN special register 6-350
source format 2-9

ANSI 2-10
terminal 2-11

source management statements 2-14
SOURCE-COMPUTER paragraph 4-3

Index-36
special characters
conversion example 6-98
table of values 6-97

special registers
ENVIRONMENT-NAME 6-65
FILE-PREFIX 6-337
RETURN-CODE 6-117, 6-362
SORT-MESSAGE 6-350
SORT-RETURN 6-350
XML PARSE 6-409
XML-CODE 6-399, 6-406
XML-EVENT 6-406
XML-TEXT 6-409

SPECIAL-NAMES
general format 4-5
general rules 4-9
HP COBOL support 4-17
in Data Division 5-45
syntax rules 4-6

split keys 4-33
standard alignment rules 5-4
STANDARD OBJECT

option for ACCEPT 6-94
preassign a font handle 5-75

STANDARD phrase 6-39
standard, ANSI 1-4
START LESS THAN, SYSTEM-INFO 6-91
START statement 6-357

and READ NEXT 6-358
general rules 6-358
indexed files 6-359
NOT INVALID KEY 6-360
relative files 6-359
syntax rules 6-358
warning about reverse file processing 6-360

START TRANSACTION 6-360
START TRANSACTION, implied 6-360

 Index-37
statement rules, common 6-16
statements

compiler-directing 6-2
conditional 6-2
delimited-scope 6-2
four types of 2-36, 6-2
imperative 6-2
scope of 6-3
termination of 6-3

station-id 6-90
STATUS clause, switch-status name 6-12
status-name, table of values 4-13
STOP RUN 6-362
STOP statement 6-361
STOP THREAD 6-362
STOP_RUN_ROLLBACK configuration variable 6-126, 6-320
STRING statement 6-362

general rules 6-364
highlights for first-time users 6-367
NOT ON OVERFLOW phrase 6-365
POINTER phrase 6-364
syntax rules 6-363
with DELIMITED 6-364

STYLE phrase 6-55
style-name phrase 6-55
subscripting, general format and syntax rules 5-12
SUBTRACT statement 6-16, 6-367

CORRESPONDING option 6-19
subtraction 6-6
subwindow

characteristics specified at runtime 6-153
mixed with controls 6-209
video intensity 6-152

switches
example code 6-12
external program 6-12
in SPECIAL-NAMES 4-5

Index-38
SET statement 6-337
switch-name clause 4-9
switch-status condition 6-12
SYMBOLIC CHARACTERS 2-7, 4-5, 4-9
SYNCHRONIZED, general format 5-79
system devices 4-9
system names, IBM DOS/VS COBOL 4-17
SYSTEM-FIXED-FONT 6-94
SYSTEM-FONT 6-94
SYSTEM-INFO option 6-89
system-name clause 4-9

T
TAB phrase 6-56
table handling 5-5
tables

adding together 6-106
example code for 5-5
multi-dimensional 5-6

TALLYING, INSPECT with 6-254
temporary data item 6-17
Terminal Manager

caution about ANSI ACCEPT 6-99
reinitializing 6-100, 6-166
special character values 6-97

terminal source 2-11
TERMINAL-ABILITIES 6-86
TERMINAL-INFO option 6-86
TERMINAL-NAME field 6-87
termination key 6-78
termination status for ACCEPT, data item returning 4-13
TEXT configuration variable 6-212
text records 5-7
threads

and threading, starting 6-113

 Index-39
ANY THREAD 6-390
LAST THREAD 6-390
locking 6-261
messages, broadcasting 6-331
messages, receiving 6-312
messages, sending 6-331
setting execution priority with SET Format 12 6-341
stopping 6-362
synchronizing with WAIT 6-389
unlocking 6-372
WAIT times out 6-391

THROUGH phrase 4-16
TIME option 6-85
timeout, setting for the ACCEPT statement 6-79
title

placing in floating window 6-174
specifying for a control 6-56

TITLE phrase 6-56, 6-153
common screen options, designating a key letter 6-56
common screen options, DISPLAY BOX 6-162
common screen options, in line drawing 6-158

TO clause in Screen Section 5-109
toolbar

as function keys 6-201
more than one in a window 6-200
placing controls with the UPON phrase 6-200
space occupied by 6-200

TRADITIONAL-FONT 6-94
trailing space removal, on READ 6-308
transaction management

automatic START TRANSACTION and COMMIT 4-35
rules for Vision and relative files 6-319

transactions
beginning with START 6-357, 6-360
effects of UNLOCK on 6-371

Index-40
U
unary 6-6
Underline value 6-27
UNDERLINED phrase 6-56
underlined words (use in manual) 1-2
UNIX

and COMMIT statement 6-125
size of window 6-89

UNLOCK 6-370
CLOSE statement 4-34
effect on transactions 6-371
MULTIPLE option 4-34

UNLOCK statement 6-370
UNLOCK THREAD 6-372
UNSIGNED-INT 5-71
UNSIGNED-LONG 5-71
UNSIGNED-SHORT 5-71
UNSTRING statement 6-372

code examples 6-376
data transfer rules 6-373
highlights for first-time users 6-379
overflow condition 6-375
syntax rules 6-373

UPDATE phrase 6-33
UPON phrase 6-57
UPON, omission and -Ca option 6-164
UPPER phrase 6-58
UPPER_LOWER_MAP configuration variable 6-58
upper-case words (use in manual) 1-2
USABLE-SCREEN-HEIGHT 6-87
USABLE-SCREEN-WIDTH 6-88
usage (in manual)

braces 1-3
brackets 1-3
ellipses 1-3
italics 1-3

 Index-41
lower-case 1-3
underlining 1-2
upper-case 1-2

USAGE clause 5-60
DISPLAY, sign-storage convention 5-69
preassign a font handle 5-75
syntax rules 5-62
types for integer data, and portability 5-71

USAGE IS DOUBLE 5-63
USAGE IS FLOAT 5-63
USAGE IS INDEX 5-62
USAGE IS POINTER 5-63
USE statement 6-380

highlights for first-time users 6-387
USER-COLORS 6-180
user-defined words 2-2
USER-GRAY 6-180
USER-ID, in Format 3 ACCEPT statement 6-90
USER-WHITE 6-180
USING clause in Screen Section 5-109
USING phrase 6-62

CALL 6-114
CHAIN 6-123
SORT with 6-347, 6-348

V
V_BUFFERS configuration variable 6-117
VALUE clause

general format 5-83
general rules 5-85
in Screen Section 5-111

VALUE OF FILE-ID 5-30
VALUE OF LABEL Clause 5-30
VALUE phrase 6-58
variable-length records 5-7

Index-42
and -Cf flag 5-9
VAX COBOL

and COMMIT statement 6-125
COLUMN phrase 6-29
compatibility mode 2-13
ECHO 6-34
ERASE 6-143
LINE NUMBER 6-43
NO ADVANCING 6-45
terminal source format 2-9

VAX/RMS, undefined File Position Indicator 6-311
video attributes, REVERSED 6-52
visible attributes 6-87
VISIBLE phrase 6-59
VMS, and COMMIT statement 6-125

W
W$FORGET routine

ANSI ACCEPT 6-100
description 6-166

WAIT statement 6-389
WARNINGS configuration variable 5-15, 5-16
W-CONVERSION-ERROR 6-65
Web runtime, Is-Plugin 6-92
W-EVENT 6-65
WHEN SET TO FALSE 5-86
WINDOW_INTENSITY 6-152
windows

active, changing with the SET statement 6-340
changing with the MODIFY statement 6-273
color, inherited 6-152
colors for best look 6-181
current, changing with the SET statement 6-340
DISPLAY FLOATING WINDOW 6-173
DISPLAY SUBWINDOW 6-149

 Index-43
fetching a handle with the SET statement 6-340
independent 6-187
minimize button 6-194
restoration 6-154
retrieving information about 6-239
scroll and wrap states of current 6-154
shadows 6-154
title modification 6-162

WITH BELL phrase 6-102
WITH DEBUGGING MODE 4-3
W-MESSAGE 6-65
W-NO-FIELDS 6-65
Working-Storage, general format 5-34
WRITE statement 6-391

and LINAGE clause 5-34, 6-394
invalid key condition 6-394
with a print file 6-394
with ADVANCING 6-394
without carriage-control 6-396

WRITE, record type 5-8
W-TIMEOUT 6-65

X
X/Open COBOL Standard, compatibility with CRT STATUS phrase 4-14
XML data conversion 6-401
XML element naming 6-403
XML events 6-412
XML GENERATE statement 6-397

nested 6-403
XML PARSE statement 6-404

control flow 6-408
nested 6-408
special registers for 6-409

XML-CODE special register 6-399, 6-406, 6-410
and XML PARSE statement 6-401

Index-44
XML-EVENT special register 6-406, 6-412
XML-TEXT special register 6-409, 6-412

Y
years, four-digit 6-85

Z
ZERO condition 6-11
ZERO figurative constant 2-7
zero suppression and replacement editing 5-59
ZERO-FILL phrase 6-59

	ACUCOBOL-GT®
	Introduction
	1.1 Overview of Reference Manual
	1.2 Conventions
	1.2.1 Upper-case and Special-character Words
	1.2.2 Lower-case Words
	1.2.3 Brackets, Braces and Vertical Bars
	1.2.4 Vertically stacked entries enclosed in vertical bars indicate that you may select one or more of the entries. Any number of entries can be selected, but no entry may be selected more than once. Ellipses
	1.2.5 Shading

	1.3 Acknowledgment

	Program Structure
	2.1 Language Elements
	2.1.1 COBOL Words
	2.1.1.1 User-defined words

	2.1.2 Literals
	2.1.2.1 Numeric literals
	2.1.2.2 Nonnumeric literals
	2.1.2.3 Figurative constants

	2.1.3 Picture Strings
	2.1.4 Separators
	2.1.5 Comment Entries

	2.2 Source Format
	2.2.1 ANSI Format
	2.2.2 Terminal Format
	2.2.3 Line Continuation
	2.2.4 Blank Lines and Comment Lines

	2.3 Compiler Compatibility Modes
	2.3.1 ANSI ACCEPT and DISPLAY Verbs

	2.4 Source Management Statements
	2.4.1 COPY Statement
	2.4.2 ++INCLUDE Statement
	2.4.3 REPLACE Statement

	2.5 Conditional Compilation
	2.5.1 $DISPLAY Statement
	2.5.2 $END Statement
	2.5.3 $ELSE Statement
	2.5.4 $IF Statement
	2.5.5 $SET Statement

	2.6 Program Organization
	2.6.1 Program Elements
	2.6.1.1 Division header
	2.6.1.2 Section header
	2.6.1.3 Paragraph header
	2.6.1.4 Clauses and entries
	2.6.1.5 Statements
	2.6.1.6 Sentences

	Identification Division
	3.1 Identification Division
	3.2 PROGRAM-ID Paragraph

	Environment Division
	4.1 Environment Division
	4.2 Configuration Section
	4.2.1 Source-Computer Paragraph
	4.2.2 Object-Computer Paragraph
	4.2.3 Special-Names Paragraph

	4.3 Input-Output Section
	4.3.1 File-Control Paragraph
	4.3.2 I-O-Control Paragraph

	Data Division
	5.1 Data Structures
	5.1.1 Record Description
	5.1.2 Level-Numbers
	5.1.3 Classes of Data
	5.1.4 Standard Alignment Rules
	5.1.5 Table Handling
	5.1.6 Large Data Handling
	5.1.7 File Types
	5.1.8 Floating-Point Data
	5.1.8.1 Using floating-point data

	5.2 Data Names
	5.2.1 Qualification
	5.2.2 Subscripting
	5.2.3 Reference Modification
	5.2.4 Condition-Name (Level 88)
	5.2.5 RECORD-POSITION

	5.3 Data Division Format
	5.4 File Section
	5.4.1 File Description Entry
	5.4.2 Sort File Description Entry
	5.4.3 IS EXTERNAL Clause
	5.4.4 BLOCK CONTAINS Clause
	5.4.5 RECORD Clause
	5.4.6 LABEL RECORDS Clause
	5.4.7 VALUE OF LABEL Clause
	5.4.8 VALUE OF FILE-ID Clause
	5.4.9 CODE-SET Clause
	5.4.10 DATA RECORDS Clause
	5.4.11 LINAGE Clause

	5.5 WORKING-STORAGE Section
	5.6 LINKAGE Section
	5.7 Record Description Entry
	5.7.1 Data Description Entry
	5.7.1.1 Level-number
	5.7.1.2 The data-name or FILLER clause
	5.7.1.3 REDEFINES clause
	5.7.1.4 IS EXTERNAL clause
	5.7.1.5 IS SPECIAL-NAMES clause
	5.7.1.6 IS EXTERNAL-FORM clause
	5.7.1.7 PICTURE clause
	5.7.1.8 USAGE clause
	5.7.1.9 SIGN clause
	5.7.1.10 OCCURS clause
	5.7.1.11 SYNCHRONIZED clause
	5.7.1.12 JUSTIFIED clause
	5.7.1.13 BLANK WHEN ZERO clause
	5.7.1.14 VALUE clause
	5.7.1.15 RENAMES clause

	5.8 Screen Section
	5.9 Screen Description Entry
	5.9.1 PICTURE, FROM, TO, and USING Clauses
	5.9.2 VALUE Clause
	5.9.3 OCCURS Clause
	5.9.4 LINE Clause
	5.9.5 COLUMN Clause
	5.9.6 PROCEDURE Clause

	Procedure Division
	6.1 Organization
	6.1.1 Statements and Sentences
	6.1.1.1 Scope of statements

	6.1.2 Flow of Control

	6.2 Arithmetic Expressions
	6.2.1 Evaluation of Arithmetic Expressions
	6.2.2 ADDRESS OF Phrase in Expressions

	6.3 Conditional Expressions
	6.3.1 Relation Conditions
	6.3.1.1 Comparison of numeric operands
	6.3.1.2 Comparison of nonnumeric operands

	6.3.2 Class Condition
	6.3.3 Sign Condition
	6.3.4 Condition-Name Condition
	6.3.5 Switch-Status Condition
	6.3.6 Complex Conditions
	6.3.6.1 Combined conditions

	6.3.7 Order of Evaluation
	6.3.8 Abbreviated Combined Relation Conditions

	6.4 Common Statement Rules
	6.4.1 Arithmetic Operations
	6.4.2 Multiple Receiving Fields
	6.4.3 ROUNDED Option
	6.4.4 SIZE ERROR Option
	6.4.5 CORRESPONDING Option
	6.4.6 Unpredictable Results
	6.4.7 I/O Status
	6.4.8 AT END and INVALID KEY Phrases
	6.4.9 Common Screen Options
	AUTO Phrase
	BACKGROUND-HIGH, BACKGROUND-LOW, and BACKGROUND-STANDARD Phrases
	BELL Phrase
	BLINK Phrase
	CCOL, CLINE, CLINES, and CSIZE Phrases
	COLOR Phrase
	COLUMN NUMBER Phrase
	CONTROL Phrase
	CONVERT Phrase
	DEFAULT Phrase
	ECHO Phrase
	ENABLED Phrase
	ERASE Phrase
	EVENT-LIST, AX-EVENT-LIST, EXCLUDE-EVENT-LIST Phrases
	FONT Phrase
	FOREGROUND-COLOR and BACKGROUND-COLOR Phrases
	FULL Phrase
	HELP-ID Phrase
	HIGH, LOW, and STANDARD Phrases
	IDENTIFICATION Phrase
	KEY Phrase
	LAYOUT-DATA Phrase
	LINE NUMBER Phrase
	LINES Phrase
	MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, MIN-WIDTH Phrases
	NO ADVANCING Phrase
	NO ECHO Phrase
	OUTPUT Phrase
	PROMPT Phrase
	PROPERTY and Property-Name Phrases
	REQUIRED Phrase
	REVERSED Phrase
	SAME Phrase
	SCROLL Phrase
	SIZE Phrase (with a text entry field)
	SIZE Phrase (with Windows and Controls)
	STYLE Phrase and Style-Name
	TAB Phrase
	TITLE Phrase
	UNDERLINED Phrase
	UPON Phrase
	UPPER and LOWER Phrases
	VALUE Phrase
	VISIBLE Phrase
	ZERO-FILL and NUMERIC-FILL Phrases

	6.5 Procedure Division Format
	6.6 Procedure Division Statements
	ACCEPT Statement
	ADD Statement
	ALTER Statement
	CALL Statement
	CANCEL Statement
	CHAIN Statement
	CLOSE Statement
	COMMIT Statement
	COMPUTE Statement
	CONTINUE Statement
	CREATE Statement
	DELETE Statement
	DESTROY Statement
	DISPLAY Statement
	DISPLAY src-item
	DISPLAY screen-name
	DISPLAY WINDOW
	DISPLAY SCREEN SIZE
	DISPLAY LINE
	DISPLAY BOX
	DISPLAY UPON WINDOW TITLE
	DISPLAY UPON COMMAND LINE
	DISPLAY src-item (ANSI format)
	DISPLAY UPON GLOBAL TITLE
	DISPLAY FLOATING WINDOW
	DISPLAY INITIAL WINDOW
	DISPLAY TOOL-BAR
	DISPLAY control-type-name
	DISPLAY MESSAGE BOX
	DISPLAY external-form-item
	DISPLAY UPON ENVIRONMENT-NAME
	DISPLAY assembly-name
	DIVIDE Statement
	ENTRY Statement
	EVALUATE Statement
	EXHIBIT Statement
	EXIT Statement
	GOBACK Statement
	GO TO Statement
	IF Statement
	INITIALIZE Statement
	INQUIRE Statement
	INSPECT Statement
	LOCK Statement
	MERGE Statement
	MODIFY Statement
	MOVE Statement
	MULTIPLY Statement
	NEXT SENTENCE Statement
	OPEN Statement
	PERFORM Statement
	READ Statement
	RECEIVE Statement
	RELEASE Statement
	RETURN Statement
	REWRITE Statement
	ROLLBACK Statement
	SEARCH Statement
	SEND Statement
	SET Statement
	SORT Statement
	START Statement
	STOP Statement
	STRING Statement
	SUBTRACT Statement
	UNLOCK Statement
	UNSTRING Statement
	USE Statement
	WAIT Statement
	WRITE Statement
	XML GENERATE Statement
	XML PARSE Statement

	Index

