Reference Manual

ACUCOBOLGT®

Version 8.1.3

Micro Focus

9920 Pacific Heights Blvd.
San Diego, CA 92121
858.790.1900

© Copyright Micro Focus (IP) Ltd. 1998-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-RM-100501-ACUCOBOL-GT-8.1.3

Contents

Chapter 1: Introduction

1.1 Overview of Reference Manualcc.cocvieiiiiiiie e 1-2
1.2 CONVENTIONS ...ecviiveeieiteeite ettt ettt ste et s te et e s be et e sbe et e sbeeabesbeetesbeesbesbeebesbeenbasbeenbesbeenneenns 1-2
1.2.1 Upper-case and Special-character Words...........ccoveveiiiieie v 1-2
1.2.2 LOWEI-CASE WOTAScoviiiiiiiire ittt ettt ettt sttt saeeebe e sraesbe e steesbeebeesnre s 1-3
1.2.3 Brackets, Braces and Vertical Barsc.cccccovveiieeieiiie et 1-3
1.2, EHIIPSES. ..ttt bbb 1-3
ISR 1 - To 1o USSR 1-3
1.3 ACKNOWIEAGMENTcvieieeeeceeeteee sttt st eneereeresnesrenes 1-4

Chapter 2: Program Structure

2.1 Language ElBMENTS.......ccivieeie et 2-2
2.1.1 COBOL WOTUSiciiitiiieeiieiee it stte sttt ettt ere et sbe e sbesbaesbeessesbeerbesbesnnesbeennes 2-2
2.1.1.1 User-defined WOISccoeiriiiiiriieccte ettt err e e 2-2

N A I 1 -1 SRR 2-2
2.1.2.1 NUMEFIC TIEEIAIS ...uveeivii ettt 2-2

2.1.2.2 NONNUMETIC HIEEIAlS ...vvicviiiie et 2-6

2.1.2.3 FIQUIrative CONSEANES........ccuvieiieiee e seese ettt 2-7

2.1.3 PICTUIE SEIINQS. .. teitiitiite ettt sttt sttt bbb sbe e 2-8
2.0.4 SEPAIALOLSvevieueeieeeeesteeeeste et s bt e ettt e bt bt s he e eb e ke e sbesbe e besb e e bt ebe e bt ebe e bt sne e nneeneas 2-8
2.1.5 COMMENT ENTIES ...eoiviicee ettt ettt et be e ebe e s be s sbeesare e 2-9

2.2 SOUICE FOMMAL.....iiiiiiciee e s e s e e be e e e e be e st e e teesaeeebeesraeenreenees 2-9
2.2.1 ANSE FOIMAL ...vicviiivicccte ettt ettt st be et e sbeenbe b ens 2-10
2.2.2 Terminal FOIMAL..........ccoiiiiiiiie ettt st saeebe e 2-11
2.2.3 LiNe CONLINUALIONcvviiiiiiiei ettt ettt e ete et sreesaeeeabe e sbeeereeebesstbeeereesaneans 2-12
2.2.4 Blank Lines and CommENt LINESccvociieiiiiie ettt et ne e 2-12

2.3 Compiler Compatibility MOGESccooviiiiiiiiiie s 2-13
2.3.1 ANSI ACCEPT and DISPLAY VEIDSccccvvivviieiiie ittt 2-13

2.4 Source Management STAtEMENTSuviviriii i 2-14
O O O] o S = (=] 1= o | PP 2-15
2.4.2 ++INCLUDE StatBMENTcccvieiiiiiie ittt s sbe s 2-23
2.4.3 REPLACE STAtEBMENTviiiiiiee ittt ettt et e earee s 2-24

2.5 Conditional ComMPIALION..........coeiiiiiriice s 2-28
2.5.1 SDISPLAY STAEIMENT .. .eiviieicie ittt ettt sbe e b enee s 2-29
2.5.2 SEND SEAEMENLocviviiieieieeeee ettt sttt st st se s eraeresbesreas 2-30

2.5.3 SELSE STALBMENT. .. .eceviieiieie ettt ettt et e sttt e sttt e b e e e s b e et e st e eseesbeans 2-30

Contents-2

2.5.4 SIF SEABIMENTcvitiiitiicteieteeetee ettt sttt r e be e s b ne b nsbens 2-31
I] I -1 (<] 1<) | AT 2-32

2.6 Program OrganiZatiONcoeoeeiiiriie ettt bbb sae 2-34
2.6.1 Program EIEMENTS ...ttt 2-34
2.6.1.1 DiViSION NBAUETccuveiviictie ettt bbb 2-34

2.6.1.2 SECHION NBAGETecveiviectee ettt bbb 2-35

2.6.1.3 Paragraph NEAGETcoovruiirieiriisies e 2-35

2.6.1.4 ClauSeS aNd ENEIIES ...eccvviivvicireeirie ettt te e sbee s sr e e sree b sraesareers 2-36

2.6.1.5 STABIMENTS.....ciitiee ittt ettt e et e e eare e st e e e eate e e eaneas 2-36

2.8.0.6 SENTENCES ...vveiictiee ettt ettt e e et e et e e st e e e e tte e e ebre e e sbbeeeeare e e nareas 2-36

Chapter 3: Identification Division

3.1 1dentification DIVISIONooceiiiiiie ettt e s st e sbe e s s be e e sbae s e sbaaessrbeas 3-2
3.2 PROGRAM-ID Paragraphcoiveiieiirieinieenieeseeie ettt sne e 3-3

Chapter 4: Environment Division

4.1 ENVIrONMENT DIVISIONcouiiiiiiitiitiie ettt sttt s 4-2
4.2 ConfIgUIation SECLIONc.vvviiiiieiirieiie bbb 4-2
4.2.1 Source-Computer Paragraph........ccccovvieivrierieneneeesese s 4-3
4.2.2 Object-Computer Paragraphccccovvivieriererieieeesiesesesesesies e sesse e snesees 4-3
4.2.3 Special-Names Paragraphcccccocviieiiiiieie e 4-5
4.3 INPUL-OULPUL SECLION.......etiiiitiie ettt bbb e sbe b e 4-23
4.3.1 File-Control Paragraphcocooeieeieeeieese e e e 4-23
4.3.2 1-O-CoNtrol Paragraphcccioieieiiiisese e 4-34

Chapter 5: Data Division

5.1 DatA STIUCTUIESveevie ittt ettt sttt sttt ettt se e b et s be s e e be e s et e enbenbeenbennas 5-2
5.1.1 ReCOrd DESCIIPLIONcveiiiiiitiiitiietcee et 5-2
5.1.2 LEVEI-NUMDETSoviiiiiiiiteieee ettt 5-2
5.1.3 ClaSSES OF DALA.......evieeieieieieeeecetes ettt bbb 5-4
5.1.4 Standard AHGNMENT RUIESocvveieiiece s 5-4
5.1.5 Table HAaNAIING ..ccuoouiiiiiiie et 5-5
5.1.6 Large Data Handling.........ccooiiiiriiiiiiee e 5-6
B.L.7 FIlE TYPES ettt 5-7
5.1.8 FI0ating-POINt DAta........cccceivirerieieieisesestesie e seeeese e e sre e stesre s esseseeneesessessesnens 5-9

5.1.8.1 Using floating-point data............cceevverererinieicieee e 5-10

5.2 Data NAIMES ...ttt be e neennesne e nne e e nne s 5-10

LI R O TN T 11 Tox U1 o] SR 5-10

5.2.2 SUDSCIIPIING .ttt ettt b et bbb e 5-12

Contents-3

5.2.3 Reference ModifiCationccociiiii it e 5-13
5.2.4 Condition-Name (LeVel 88)......cccoiiiiiiiiieieriere et 5-17
5.2.5 RECORD-POSITION......coiiiiiie ittt sttt s sbe s 5-19

5.3 Data DiViSION FOIMAL.........cooiiiiiiiiie ettt ettt st ebe s s e sbe e sbee s ebeesreesnbeeas 5-21
5.4 Il SBOLION ...ttt ettt ettt et e e besbe et eebeebeebeebesaeaneas 5-23
5.4.1 File DeSCrption ENTIY......cccieieececc ettt na s 5-23
5.4.2 Sort File DesCription ENIYcoviiiiiiicie s 5-25
5.4.3 IS EXTERNAL CIAUSE.......coiiiiiitiiieite ittt sttt sttt sra v e b b v 5-26
5.4.4 BLOCK CONTAINS CIAUSE......ccoiiuiirieiiiirieie it ere et sve st saesresraesresne s 5-27
5.4.5 RECORD ClIAUSEcvvccvieiie ettt ettt et eve st esate s sbessaaessbe s snresnveesaee e 5-28
5.4.6 LABEL RECORDS ClaUSEcoiviiieiieiiesteee sttt 5-30
5.4.7 VALUE OF LABEL ClaUSE.......coviiiiieiiistie ettt sre e 5-30
5.4.8 VALUE OF FILE-ID ClaUSE......cceciveitiitieiiitiiie ettt sra e sve s 5-30
5.4.9 CODE-SET CIAUSEoecviiiiiieiie ittt sttt sttt st se s ste st aesbesraesbesne e 5-31
5.4.10 DATA RECORDS ClAUSE......ccoviiieiieiieitiitieite ettt ste st seesresvsesresne s 5-31
5,411 LINAGE ClIAUSE.......viecviiiiei ettt ettt eteeetee s eve e st ssate s sbessateesbessnbessveesneeans 5-32

5.5 WORKING-STORAGE SECLIONccvviviivictiictiitiecee sttt sttt be e sre e neere e 5-34
5.6 LINKAGE SECLION......ciiiiitiiie ittt ettt ettt sttt besasebesnsesbe s e sreannes 5-35
5.7 Record DeSCrption ENLIYc.ooiiieiice ettt 5-36
5.7.1 Data DeSCHPLION ENTIYcc.oouiiiiiiiiieeciese ettt 5-36

B5.7. 1.1 LEVEI-NUMDBET ..ottt ettt ettt e sbe e e e ereesaneens 5-39

5.7.1.2 The data-name or FILLER ClaUSEccceevveiirieiieciee e 5-41

5.7.1.3 REDEFINES CIAUSE.ccoviiviiriiitiiicite ettt sttt 5-42

5.7.1.4 ISEXTERNAL CIAUSEccviiviiiiitiiciecte ettt s sneas 5-44

5.7.1.5 IS SPECIAL-NAMES ClaUSEccveiticiicriiiice et 5-45

5.7.1.6 IS EXTERNAL-FORM ClaUSE......cccoveviiriiciiiicie et 5-46

5.7.1.7 PICTURE CIAUSEcviiviiiiitecic ittt sttt 5-51

B5.7. 1.8 USAGE ClAUSEeoiuviiiieceete ettt sttt sttt sre b 5-60

B5.7.1.9 SIGN ClAUSE ... oeeiuieiitii ettt ettt stee bt e e be e sbe e beeereesaneans 5-75

5.7.1.10 OCCURS ClAUSEooiviiieirictiiiticie sttt st 5-76

5.7.1.11 SYNCHRONIZED ClaUSEcoveviirietiictieite ettt 5-78

5.7.1.12 JUSTIFIED ClAUSE......oecoviitieiiitiecte sttt sttt 5-80

5.7.1.13 BLANK WHEN ZERO ClaUSEccvveiieiiiiiciecie et 5-81

B5.7.1.14 VALUE ClaUSE.......cviiviiie ittt ettt sttt sve s 5-82

5.7.1.15 RENAMES CIAUSEvooviiviitiiitictiecie ettt sttt 5-86

R B ol (=T= A STt o] PP 5-88
5.9 Screen DeSCrIPLION ENLIYcooiiiiiiiiiiitesieic e 5-89
5.9.1 PICTURE, FROM, TO, and USING CIaUSES..........ccervirerrreerrerreeiesreerreeresneennes 5-108
5.9.2 VALUE ClAUSE......cviiviitiecie ettt ettt sttt sbe bt ebaans e 5-110
5.9.3 OCCURS CIAUSEcviiviieiiiieiie it eie sttt ere et sbe st se e ste e sbesrae b e sbsebesnsenreens 5-110

5.9.4 LINE CIaUSE ..ottt 5-114

Contents-4

5.9.5 COLUMN CIAUSEoiviiereiiriciinreieireesreiesre st 5-115
5.9.6 PROCEDURE CIAUSE.........cvitiiiiiietinieteieeie ettt 5-116

Chapter 6: Procedure Division

LT RO (o= 411 o o PSPPSR 6-2

6.1.1 Statements and SENTENCESccvciiieeiece e s s e e eeresreens 6-2

6.1.1.1 SCOPE OF STALEMENTSeeieirie et 6-3

6.1.2 FIOW Of CONLIOL......ccuiciicce e e e 6-4

6.2 ArithMetiC EXPIrESSIONScuiiiiiiiitiietciet bbb 6-5

6.2.1 Evaluation of Arithmetic EXPreSSiONScccvvevereieieeneeseseseesesieseeeesessesseseens 6-6

6.2.2 ADDRESS OF Phrase in EXPreSSIiONScc.coveveieieesrseseseseesseseessessensessessessesens 6-7

6.3 CoNditioNal EXPIrESSIONScivveiiiiieiesiecec sttt e et a e ae e e eesnaenee e 6-8

6.3.1 Relation CONGILIONScocveiiiiiiece et st re e sre e 6-8

6.3.1.1 Comparison of NUMErIC OPEraNdS........ccceoueiueiieiieieiieie e 6-9

6.3.1.2 Comparison of NONNUMErIC OPEIandS..........ooeveeerereeienese e 6-10

6.3.2 Class CONAILION.........cceciiii ittt re s 6-10

6.3.3 SIGN CONAILION ...eevieiiiee e 6-11

6.3.4 Condition-Name CONAILION.........coeiiiiiiiiieiiee s 6-11

6.3.5 SWItCh-Status CONGITIONcvvveiriiiiiiieee s 6-12

6.3.6 COmMPIEX CONUITIONScvviiirceiciece e nre s 6-13

6.3.6.1 Combined CONAITIONSceiiiiieiirieee e 6-13

6.3.7 Order of EVAIUALIONccvoiiiiiiicc et 6-14

6.3.8 Abbreviated Combined Relation Conditions...........cccccevvevieniiic v 6-15

6.4 CommMON StAtEMENT RUIES......oiiiieieieieece et 6-16

6.4.1 ArithmetiC OPeratioNnS.........cccviiireieierieese e s ese e see e sr e eneenes 6-16

6.4.2 Multiple ReceiviNg FIelUS........ccoeieiiiiieicse e 6-17

6.4.3 ROUNDED OPLION ..ottt 6-18

6.4.4 SIZE ERROR OPLION......ccoiiiiiiitiieieise ettt sens 6-18

6.4.5 CORRESPONDING OPLtiON....cc.coviiiiiiiieiesieieree ettt 6-19

6.4.6 Unpredictable RESUILScovoiiiicce s 6-20

B.4.7 1/O SEALUS ...ttt ettt et et ettt eb e 6-20

6.4.8 AT END and INVALID KEY PRIasesc.cccuriiriirieninisinseseseseseseseseenes 6-21

6.4.9 CommON SCreen OPLIONSueieeiiiiieiesee sttt nns 6-22

AUTO PRFASE. ...ttt b bbb bbbttt be b e sne s 6-22
BACKGROUND-HIGH, BACKGROUND-LOW, and BACKGROUND-STAN-

DARD PRIBSES ...ttt sttt bbbt b b nne s 6-22

BELL PRIESE ...ttt 6-23

BLINK PRIESE ..ttt 6-23

CCOL, CLINE, CLINES, and CSIZE Phrasesccccccsceiererireeseresenesenesenenns 6-24

(OO O] 2 3 = o] - TY- TR 6-25

Contents-5

COLUMN NUMBER PRIGSE.....cccuiiiiiitiiiie ettt ste et ste e e sve s srae e nreesrne e 6-27
CONTROL PRISE...cctii ittt ettt ettt te e te e sbe e s be e sreesne s sbaesreebee e 6-28
CONVERT PRISE .oiiviiiitieiie ettt ettt ettt ettt et sare e ste e sare e be e staeenreesrne e 6-29
DEFAULT PRFESE ...viiiiieiiee ettt sttt ettt et sr et nba e s nre e sbaesaee s 6-32
ECHO PRIASE ..vviiiiciii ittt ettt sttt et et be e sbe e s be e sreesae e ns 6-32
ENABLED PRIaSE ...ooiiiicciieiie ettt sttt ettt sbne e sbaeenre s 6-33
ERASE PRIASE ...cveiiiii ittt ettt e sre et eb e 6-33
EVENT-LIST, AX-EVENT-LIST, EXCLUDE-EVENT-LIST Phrases.............. 6-34
FONT PRIASE .viiiiiiiei ettt ettt ettt sb e be e eba e b e e beesareeras 6-35
FOREGROUND-COLOR and BACKGROUND-COLOR Phrasesc..cc....... 6-36
FULL PRFGSE viiiie ettt ettt sttt ae v sba e beenan e s be e sbaesnreers 6-37
HELP-ID PRIASE ..oioviiciie ettt sttt ettt ettt s sbaesar e ns 6-38
HIGH, LOW, and STANDARD PRrasesccccovvevieiiieiieeiie e 6-38
IDENTIFICATION PRIASE ...coovveiitiecieeitie ettt sttt et sre e snve e svaesaneens 6-39
KEY PRIGSE ..ccuveiitiecie ettt ettt et ate e sbe et e e nbeesabe e sbeesaneentees 6-39
LAYOUT-DATA PRIASE ..occvieitiiiieeciee sttt ettt ste e st be e snnesnne s 6-41
LINE NUMBER PRIASE ..ooooviiiitiiceecec ettt sttt et s 6-41
LINES PRIASE .viiiiecitii ittt sttt ettt et et e nte e sare s beesaeesnre s 6-43
MAX-HEIGHT, MAX-WIDTH, MIN-HEIGHT, MIN-WIDTH Phrases............ 6-43
NO ADVANCING PRIASE ...vviiiiieieeiie sttt 6-44
NO ECHO PRHIASE ...vviiieeciie ittt ettt et be et sre e saaesnre e e 6-45
OUTPUT PRIASE ..uviiiviiiiie ittt ettt sreeve e st e s ste e stae s nbe s sveesnbe s sbaeereenree e 6-45
PROMPT PRIGSE .oicviiiieciee ittt sttt ettt ettt tve et e sbae e beesnae s sbe e snaesareers 6-45
PROPERTY and Property-Name PRrasesccccvvvviveiinieeiesieesesesseseesiesnnens 6-46
REQUIRED PRIESE ..ccvveieiiieiicteete st ste et ste ettt e sna e ae e snesnaeste e snennaens 6-50
REVERSED PRIASEcvviiieeiiiieectee ettt ettt e nba e st san e 6-51
SAME PRIASE .viiiieciie ettt et et te e sb e st e sre e s re e taeereenree e 6-51
SCROLL PRISE ..uviiitiiiieectee sttt ettt ettt sar et saae e be e tae e nreesrne e 6-51
SIZE Phrase (with a text entry field)cccccovvveiiiiiic e, 6-52
SIZE Phrase (with Windows and Controls)cccoceviveriiieninsieene e 6-53
STYLE Phrase and Style-Name ... 6-54
TAB PRIASE oottt st st e e be e st e e be et steesaeeenbe s 6-55
TITLE PRIASE ooeveeiiie ettt ettt ettt e te e stae et e et e e sbeesaeeente s 6-55
UNDERLINED PRIGSE ..occveiiiiicitie ettt sttt et 6-55
UPON PRASE ..oeiiieciii ittt ettt sttt ettt e sba e s be b e saee e rs 6-56
UPPER and LOWER PRIASEScciviiiicitieiie sttt st srve e 6-57
VALUE PRIGSE ..oviiciiiiie sttt ettt et re et st st esbe e snbe e staesnne et s 6-57
VISIBLE PRIASE oottt ettt ettt ba e st sbeesnneere s 6-58
ZERO-FILL and NUMERIC-FILL Phrasescccccovvvivieiieiieccee e 6-58
6.5 Procedure DiViSion FOIMAL.........cccoiviiiieiie ettt sba e s re b 6-59
6.6 Procedure DiViSiON STAatEMENTS........c.cocieiiiiiree et eree e e sreesae s sbessreenbe e 6-63
ACCEPT SEalBMENT ...ttt et e et e e sate e e st e e ebeeesebeeeeetbeeens 6-63

PN BT I =1 (=] 111 | 6-104

Contents-6

F B S - U= 4= | S 6-108
(07 N I I 1 1=] 1 [=T o A ST OPRRPO 6-109
CANCEL STAtEIMENT ...ttt s b e e e b e e e eate e e sabe e e sateeeeareas 6-118
CHAUIN SEABMENT ...ttt ettt e e eabe e e eabe e e saeeeeres 6-119
CLOSE StatBMENL......iiteciie et e et ae b e et e e reesaeesrreenreesnneens 6-121
COMMIT STAtEMENToecivieiii et ae e et e s e e nbe e srreereenneeans 6-123
COMPUTE STAteMENToeiiiiee et e e st e e st e et e e saa e e e snre e e sanneeenees 6-125
CONTINUE StatemMeNtciviicieeitieciteeeiee et etee s sre e steesre e staesreeeteestaessbeesbaesnreenreeans 6-125
CREATE STAtEMENL ...ttt et te e e eabe e e eaae e e neas 6-126
DELETE STAtEMENToeiiiiiie ettt ettt e et e e sabee e sbeeeenes 6-130
D] Yl O D] -1 =11 111 | S 6-132
DISPLAY SEAEMENL........eiiieiiiciie ettt re e re e sre e e e sreesneeenns 6-136
DY] o I (o) (=] 1 PSP 6-137
DISPLAY SCIEEN-NAIMEveieiiiee et e eitiee ettt e e etee e ste e e et e e stee e s eaeeesssbeessaseeesabeeesteeeanns 6-141
DISPLAY WINDOWoooiiiiiiitie sttt sttt ettt staeebe e sbaeereenbeesanas 6-143
DISPLAY SCREEN SIZEoo oottt 6-152
(01] o I N I 1SS 6-153
DY] o N 2 = 1) S 6-156
DISPLAY UPON WINDOW TITLE ...ttt 6-159
DISPLAY UPON COMMAND LINEccvieiiiii et 6-160
DISPLAY src-item (ANSI fOrMAL)coveiiiiiiiiiie e 6-160
DISPLAY UPON GLOBAL TITLE ...cvei ittt 6-163
DISPLAY FLOATING WINDOWooiiiiiiieiie ittt te st sne e 6-164
DISPLAY INITIAL WINDOWccoeiiii ettt s 6-183
DISPLAY TOOL-BAR ...ttt sttt be e 6-193
DISPLAY CONIOI-tYPE-NAME ..ottt sttt sne s 6-197
DISPLAY MESSAGE BOXoiitiiitiiiie ettt sttt st sane e 6-205
DISPLAY external-form-iteImMccoeiiiiiiiiicec ettt 6-209
DISPLAY UPON ENVIRONMENT-NAME ..o 6-212
DISPLAY aSSemMbBIY-NaME.........ccoiiiiiiiiecie ettt 6-213
DIVIDE StateMENT........oeiiiiee et e s tre s e e e s e e e sare e e saneeesreeeenns 6-216
ENTRY STAtEIMENT ...ttt et e st e e e eaee e s sab e e e sabeeeenns 6-219
EVALUATE SEAtEMENTvieiiiiiecee ettt ettt eeare e saree e sbeeeeans 6-220
EXHIBIT STAEMENToviiiiiiee ettt ettt et e et e e eatee e sabee e sbeeeenes 6-226
o B I 7 111111 | P 6-226
GOBACK SEABMENT......eiiic e e e st e e s rae e s e e e srbe e e saneeesanes 6-229
(O I O I3 7 1 =] 1 1] 1 SR 6-230
IF STAtEIMENT ...ttt et et e e e s be e e et e e e sab e e e enbbe e enaeaeaaneas 6-231
INITIALIZE StateMENT.....ooiiiiiei ettt ettt e et e e e nare e enes 6-232

INQUIRE STAtEMENTeiitiiiiiieiee ettt bttt ettt sneas 6-234

Contents-7

Index

INSPECT STAtEMENTeeiiiiiie et et e e re e e st e e e st e e snreaesreeeeas 6-245
LOCK STAtEIMENToviiiiiie ettt e e e e et e e et ee e et e e e ebre e e enreeesarneas 6-256
MERGE STAtEMENT ...ttt ettt aree e st e e et e e enre e e saaee s 6-256
MODIFY SEAEMENL.......oviiiiieeeeee ettt ree e s tae e e bee e eare e saree s 6-267
Y (@A S v 1 =] 1= o | O 6-283
MULTIPLY STAteMENT......cciiiieciie et stae e et sneenne e e 6-286
NEXT SENTENCE Statementcciiiiiieiieire ettt ere et sve e sreesnre s sreesnaesnne e 6-288
OPEN STAtEIMENT ..ottt e e st e e e et e e e ree e e tbe e eenreeeennes 6-288
PERFORM StatemMENT.......cooiiiiiiiiiee ettt sttt et e etae e e eaae e are e saaee s 6-293
READ SEAtEIMENTvveiiciiee ettt ettt e et e e ebae e sabeeesbee e eaneessaeeeas 6-299
RECEIVE SEAtEMENTccviiiiiciie et ste et ae et e sbeesne e s reennaesnne e 6-305
RELEASE STAlEMENL.....ccviiiie ettt ettt e eenreesrne e 6-308
RETURN SEAEMENT ..ottt e e e st e s e e e s sne e e e enne e e snne s 6-309
REWRITE STAEMENT.......oiiiiiiecie ettt et e e etre e e eare e saaee s 6-310
ROLLBACK STatEMENT......cccviiitiiiieccrie ettt ettt ettt stve s ebeesare s sreesaeeenbe e 6-313
SEARCH SEAtEBMENT ..ottt ettt stee e st e e e bee s eare e e enbeeeenes 6-314
] AV 7 1] 1111 | PR 6-325
] I -1 1011] PR 6-327
1O] I =1 (=] 1= | SRR 6-336
START SEAIEMENT ...t e et e et e e eree e e etbe e e eate e eaees 6-350
STOP STALEMENT ...ttt e e st e e e eat e e e sre e e eabaeeentaeeennes 6-354
STRING SEAtEMENT.....oviiiieee ettt et st e e et e e e erae e e ebbe e eeare e e enes 6-355
SUBTRACT SEatEMENTvecieeiie et sre et e s sre e e e e sree e e sraesnneene s 6-360
UNLOCK StatEMENT......ecivviicieeitie it eseesre s sieestreesreeseessreestaesaeesteestaeesseesseessreesseessneens 6-363
UNSTRING StatemeNtcocveeciieiieccee ettt sae e st e s sbeesae e s reesbaesrne e 6-365
USE STALEMENTottt et e e e et e e et e e e e be e e e ebe e e e enreeesaree s 6-373
WAIT STALEMENT ... ettt e e et e e st r e e ebe e e e saneeesraeeas 6-382
WRITE STAtEMENT.....oeciiiie ettt ettt et e e st ee e e bee e e eare e saree s 6-384
XML GENERATE StatemMeNtcccvveiieiiic ettt ste e e re e sne s 6-389
XML PARSE StatemMENL....cveeiiieiiiccee ettt et re s 6-397

Infroduction

Key Topics

Overview of Reference Manual..........cccceovveeiicii i
(OF0] 01V T] K To] o 13
ACKNOWIEAGMENT ...t

1-2 m Introduction

1.1 Overview of Reference Manual

ACUCOBOL-GT® is part of the extend® family of Micro Focus solutions.
ACUCOBOL-GT is an implementation of the COBOL-1985 programming
language (ANSI X3.23-1985 and the ANSI X3.23a-1989 supplement). This
manual provides a full technical description of the ACUCOBOL-GT
language. It is written in a style similar to the official ANSI definition of
COBOL and is designed for experienced COBOL programmers. Intended as
a reference, it does not try to teach programming or the COBOL language.
Readers interested in a more general introduction to COBOL may want to
consider classes or commercially available textbooks.

Note: Software installation instructions are located in a separate Getting
Started guide.

1.2 Conventions

This manual uses a meta-language to describe the ACUCOBOL-GT syntax.
This meta-language follows the conventions used in most COBOL manuals
as well as the ANSI standard. These conventions are described below.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

1.2.1 Upper-case and Special-character Words

Underlined upper-case words are keywords. A keyword is required when it
is encountered in the syntax. The following special characters are not
underlined but are required when they appear: +, -, <, >, *, /, **, <=, >= =
colon and period.

Conventions m 1-3

Upper-case words that are not underlined are optional. They serve only to
improve the readability of the source program.

1.2.2 Lower-case Words

Lower-case words serve as generic items. They can indicate COBOL
variables, literals, PICTURE elements, or other syntactical elements. When
referred to in the text, a generic item is shown in italics.

1.2.3 Brackets, Braces and Vertical Bars

Brackets ([]) enclose optional elements. When several bracketed entries are
stacked vertically, then you can select one (but not more than one) of these
entries.

Braces ({}) indicate that you must select one (but not more than one) of the
enclosed vertically stacked entries. If only one entry appears, then the braces
serve as delimiters for repetition (see Ellipses below).

1.2.4 Vertically stacked entries enclosed in vertical bars indicate that you may select
one or more of the entries. Any number of entries can be selected, but no
entry may be selected more than once. E||ipses

Ellipses (.. .) indicate repetition. The immediately preceding element may
be repeated any number of times. If an element consists of a required phrase,
the phrase is enclosed in braces.

1.2.5 Shading

Shaded areas are not currently used in the syntax.

1-4 m Introduction

1.3 Acknowledgment

Much of the material in this manual is from the ANSI X3.23-1985 COBOL
standard and the ANSI X3.23a-1989 supplement. The following statement is
required by the standards document.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein
are: FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the UNIVAC (R) I and 11, Data Automation Systems copyrighted 1958,
1959 by Sperry Rand Corporation; IBM Commercial Translator Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. Such authorizations extend to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

Program Structure

Key Topics

Language EIBMENTScc.ooiiiiie et 2-2
SOUICE FOIMAL ..o e 2-9
Compiler Compatibility MOdes........cccccveveviviievieie s 2-13
Source Management StatemMeNtS........cocvvcere e nenie e 2-14
Conditional Compilationccceecveieieiiiesierr s 2-28

Program Organization.........cccccveeeieeneseennsieesieseeeesee e e ense e see e 2-34

2-2 m Program Structure

2.1 Language Elements

This chapter describes the basic language elements that make up a COBOL
program. These elements are described fully in the following sections.

2.1.1 COBOL Words

2.1.1.1

A COBOL word is a string of not more than 60 characters, which forms a
user-defined word or a reserved word. Each character of a COBOL word is
selected from the set of letters, digits, underscores, and hyphens. Hyphens or
underscores may not appear as the first or last character. When used in
COBOL words, lower-case letters are treated as if they were upper-case, and
underscores are treated as if they were hyphens.

User-defined words

A user-defined word is a COBOL word that is created by the programmer.
Except for section-names, paragraph-names, segment-numbers, and
level-numbers, all user-defined words must contain at least one alphabetic
character. User-defined words may not be any of the reserved words. See
Appendix B of Book 4 for a complete list of reserved words.

All user-defined words must be unique except as specified in the rules for
uniqueness of reference. However, segment-numbers and level-numbers
need not be unique.

2.1.2 Literals

2.1.2.1

A literal is a character string that defines a value. There are two types of
literals: numeric and nonnumeric.

Numeric literals

A numeric literal is a character string selected from the digits, the plus sign,
the minus sign, and the decimal point. Numeric literals may contain up to 18
digits. [This increases to 31 digits if 31-digit support (-Dd31) is in effect.]
The following rules govern the formation of numeric literals.

Language Elements m 2-3

1. A literal must contain at least one digit.

2. It must contain no more than one sign character and, if one is used, it

must be the leftmost character of the string.

3. A literal must not contain more than one decimal point. The decimal
point is treated as an assumed decimal point and may appear anywhere
within the literal except as the rightmost character.

If a literal conforms to the rules for formation of a numeric literal, but is
enclosed in quotation marks, it is a nonnumeric literal.

Numeric literals may also be specified using binary, octal, or hexadecimal
notation. To specify a numeric literal in one of these forms, preface the

number with one of the following prefixes:

Binary “B#”
Octal “O#”

“0%” is accepted in HP COBOL compatibility mode (“-Cp”)

Hexadecimal “XH#” or “H#”?

For example:

Number Binary Octal
3 B#11 O#3

8 B#1000 O#10
12 B#1100 O#14
128 B#10000000 O#200
255 B#11111111 O#377

Hexadecimal

X#3 or H#3
X#8 or H#8
X#C or H#C
X#80 or H#80
X#FF or H#FF

Leading zeroes after the “#” are ignored. For example, X#00FF and X#FF

are equivalent.

The compiler converts each numeric literal specified in this way to an
unsigned long integer. In most cases, this is a 32-bit unsigned number, so the
maximum value of a numeric literal that can specified with this notation is

4294967295, or (2**32) -1.

2-4 m Program Structure

“LENGTH OF” expression

The “LENGTH OF” expression can be used anywhere you would use a
numeric literal, except as a subscript or reference modifier. The compiler
treats this expression as if you have coded a numeric literal. The “LENGTH
OF” expression is written as follows:

LENGTH OF data-name

Data-name can be a numeric or nonnumeric literal or the name of a data item
of any type. Data-name may include subscripts if it refers to a table item.
The compiler calculates the value of the “LENGTH OF” expression and
replaces it with a numeric literal equivalent to the current number of bytes of
storage used by the data item or literal referenced in “LENGTH OF.” For
example:

77 my-item PIC x(10).

78 my-item-length value LENGTH OF my-item.

becomes:

77 my-item PIC x(10).
78 my-item-length value 10.

The LENGTH OF expression can also be used in the procedure division as
demonstrated in this example:

01 my-data.
03 my-table occurs 20 times.
05 my-element-1 pic x(10).
05 my-element-2 pic 99.

MOVE LENGTH OF my-element-1 TO data-size.
MOVE LENGTH OF my-table TO data-size.
MOVE LENGTH OF my-table(l) TO data-size.

In this example the compiler treats the first MOVE as MOVE 10 TO
data-size, the second MOVE as MOVE 240 TO data-size, and the third
MOVE as MOVE 12 TO data-size.

Language Elements m 2-5

Note: This expression (when used on a table) works differently in
ACUCOBOL-GT than in other COBOL compilers, such as IBM Enterprise
COBOL. ACUCOBOL-GT returns the size of the entire table, while IBM
returns the size of a single element of the table. You can use the IBM
method by compiling the program with “-Cv”, which turns on the
compiler’s IBM compatibility mode. Refer to ACUCOBOL-GT User’s
Guide, Section 2.2.5 for details on the -Cv compiler option.

Floating-Point Literals

A floating-point literal has the following format:

L +1 km { E} L[+ 1n
L -1 {e} [-1

In the above:
» “k.m” represents a number with at least one digit.
* “n” represents one or more digits.

» If the functions of the decimal point and comma are switched with
DECIMAL IS COMMA, then “k.m” will be “k,m”.

Here are a few examples of floating-point numbers:

-12.345e12
.0123E-6
123.E1

Floating-point literals in the Procedure Division are stored internally as
USAGE DOUBLE.

The legal range of floating-point values is determined by the target
machine. If you express a literal that is out of range for a particular
machine, the runtime reports a warning message and substitutes the
closest boundary value--either zero or the maximum floating-point
value for the machine.

On some computers, floating-point computations may give imprecise
results. This is a hardware limitation; some floating point numbers
cannot be precisely represented on some machines.

2-6 m Program Structure

2.1.2.2 Nonnumeric literals

A nonnumeric literal (sometimes called an alphanumeric literal) is a
character string delimited at the beginning and at the end by quotation marks
or apostrophes. The beginning and ending delimiters must be the same (that
is, either both quotes or both apostrophes).

Nonnumeric literals may be up to 4096 characters in length. The characters
contained in the delimiters may be selected from all characters available on
the host computer.

To place the delimiter character in a nonnumeric literal, use two contiguous
delimiter characters (either two quotes or two apostrophes). These two
characters represent a single occurrence of that character.

You can also specify nonnumeric literals by supplying the hexadecimal value
of the characters desired using the native character set. This can be used, for
example, to encode device control codes. Any of the following formats are
recognized:

X"hex-values"
X"hex-values”
H""hex-values"
H"hex-values*®

The initial “H” or “X” may be either upper- or lower-case. The hex-values
consist of one or more hexadecimal digits. These digits are drawn from the
set of characters ‘0’ - ‘9’ and ‘A’ - “‘F’. Every two hexadecimal digits
represent one character position, with the first digit encoding the high-order
4 bits of the character, and the second digit encoding the low-order 4 bits. If
an odd number of hexadecimal digits is specified, then the low-order 4 bits of
the last character are treated as zeros.

Example: the following pairs of nonnumeric literals are equivalent (when the
native character set is ASCII):

X"414243” “ABC”
h’32313’ “210”
H"6E™ ap

x’22r e

Language Elements m 2-7

2.1.2.3 Figurative constants

Figurative constants are literals that are generated by the compiler through
the use of reserved words. These words are described below. The singular
and plural forms of the words are equivalent and may be used
interchangeably.

1.

ZERO, ZEROS, ZEROES Represents the numeric value “zero” or
one or more occurrences of the character 0, depending on whether the
constant is treated as a numeric or nonnumeric literal.

SPACE, SPACES Represents one or more space characters.

HIGH-VALUE, HIGH-VALUES Represents one or more characters
with the highest ordinal position in the program collating sequence.
Usually this is the hexadecimal value “FF”.

LOW-VALUE, LOW-VALUES Represents one or more characters
with the lowest ordinal position in the program collating sequence.
Usually this is the binary value 0.

QUOTE, QUOTES Represents one or more quotation mark
characters. These words may not be used in place of quotation marks
for delimiting nonnumeric literals.

ALL Literal Represents all or part of the string generated by
successive concatenations of the characters comprising the literal. The
literal must be nonnumeric.

Symbolic Character Represents one or more of the characters
defined as the value of this symbolic character in the SYMBOLIC
CHARACTERS clause of the SPECIAL-NAMES paragraph.

NULL, NULLS Represents the numeric value “zero” or one or more
occurrences of a character whose underlying representation is binary
zero. This also represents an invalid memory address when it is used
in conjunction with POINTER data types.

The word “ALL” may be placed in front of any of the preceding forms
(except the ALL literal. Its use is redundant in this case.)

2-8 m Program Structure

When a figurative constant represents a string of one or more characters, the
length of the string is determined by the compiler from the context according
to the following rules.

1. Whenafigurative constant is specified in a VALUE clause, or when it is
associated with another data item (for example, when it is moved or
compared to another data item), the string of characters specified by the
figurative constant is repeated character by character on the right until
the size of the resultant string is equal to the number of character
positions in the associated data item.

2. When a figurative constant is not associated with another data item (for
example in a DISPLAY, STRING, or UNSTRING statement), the
length of the string is one occurrence of the ALL literal or one
character in all other cases.

A figurative constant is valid anywhere a literal is. However, ZERO and
NULL are the only valid figurative constants for a literal restricted to numeric
literals.

2.1.3 Picture Strings

A PICTURE character-string defines the size and category of an elementary
data item. A PICTURE character-string consists of certain symbols, which
are composed of the currency symbol and certain other characters in the
COBOL character set. A full description of the format of a PICTURE string
is given when the PICTURE clause is described.

Any punctuation character that appears as part of a PICTURE string is not
considered a punctuation character, but rather as a symbol used in the
specification of that PICTURE string.

2.1.4 Separators

A separator is a character or two contiguous characters formed according to
the following rules.

1. The space character is a separator. Anywhere a space is used as a
separator, more than one space may be used.

Source Format m 2-9

2. The comma and semicolon characters, immediately followed by a
space, are separators that may be used anywhere the separator space is
used. They can be used to improve program readability.

3. The period character, followed by a space, is a separator. It must be
used only to indicate the end of a sentence or where required by the
ACUCOBOL-GT syntax.

4. The left and right parentheses are separators. They must be used in
balanced pairs.

5. The quotation mark character is a separator. An opening quotation
mark must be immediately preceded by a space or left parenthesis; a
closing quotation mark must be immediately followed by one of the
separators space, comma, semicolon, period, or right parenthesis.
Apostrophes may be substituted for quotation marks in balanced pairs.

6. The colon character is a separator that may be used only when required
by the ACUCOBOL-GT syntax.

7. Spaces may immediately precede or follow any separator unless they
would be enclosed by matching quotation marks. In this case, the
spaces would be treated as part of the nonnumeric literal.

2.1.5 Comment Entries

A comment entry is an entry in the Identification Division that may be any
combination of characters from the computer’s character set. A
comment-entry ends with the first line that contains text in Area A.

2.2 Source Format

The ACUCOBOL-GT compiler recognizes two source program formats:
ANSI and terminal. The ANSI format conforms to the standard COBOL
source format. The “terminal” format is designed for ease-of-use when you
are programming from an interactive terminal. It is upward compatible with
VAX COBOL terminal format.

2-10 = Program Structure

The selection of which format to use is made at compile time. For details, see
Book 1, section 2.4, “Source Formats.” The two formats are described in the
following sections.

2.2.1 ANSI Format

The ANSI source format divides an input line into several fields. These are
determined by character position. Each input line must be 80 characters.
Input lines that are shorter than 80 characters are padded with spaces to make
80 characters, while lines longer than 80 characters are truncated on the right.
Tab characters are converted into spaces such that the “tab stops” are eight
characters apart.

The ANSI format has five fields. These are:
Sequence Number Area (columns 1 - 6) This area is ignored by the compiler
and may contain any characters. Itis traditionally used for sequence numbers

to re-order a scrambled card deck.

Indicator Area (column 7) This column must contain one of the following

characters:

Space Default. The compiler processes the line normally.

Hyphen Continuation. The compiler processes the line as a
continuation of the previous line.

Asterisk Comment. The compiler ignores the contents of the
line.

Dollar sign Comment. The compiler ignores the contents of the
line.

Slash New page. Same as asterisk, except that in the source
listing created by the compiler this line starts on a new
page.

“D” Conditional debugging line. The compiler treats this

line as a comment line unless the compiler is run with
the option to include debugging lines, in which case
the line is treated normally.

Source Format m 2-11

Area A (columns 8 - 11) Area A contains division headers, section headers,
paragraph names, and some level indicators.

Area B (columns 12 - 72) Area B contains all other COBOL text.

Identification Area (columns 73 - 80) Any desired text may be placed here.
However, the compiler can conditionally compile lines based on patterns
found in this area. For details, see Book 1, section 2.7, “Source Code
Control.”

2.2.2 Terminal Format

Terminal format is convenient for interactive programming. Lines may be
longer or shorter than 80 characters. Tab characters are expanded to every
eight spaces. The terminal format divides the source line into four fields as
follows:

Indicator Area (column 1) The contents of this area are identical to the
contents of the ANSI format area of the same name, with two exceptions. If
the conditional debugging indicator “D” is used, it must be preceded by a
backslash (\). This places the “D” in column 2. If a normal COBOL line is
desired, then the indicator area is eliminated (a space is not used).

Area A Starts immediately after the indicator area (either column 1, 2, or 3).
It extends for 4 characters. For a standard source line, Area A starts in
column 1.

Area B Starts after Area A, in column 5 or later, and extends to the end of the
line or the start of the Identification Area.

Identification Area Starts when “|” or “*>” is encountered, provided it is
not part of a literal. The Identification Area extends to the end of the line.
This can be used to introduce in-line comments.

ACUCOBOL-GT allows up to 320 characters per line. If a line goes over the
limit, the compiler issues a warning and truncates the line to 320 characters.
If truncation causes an error, the compiler reports the error.

The following sample COBOL text is in terminal format:

2-12 =m Program Structure

* The following paragraph is a sample of terminal
* format. Notice how comments and Area A both start
* in column 1

TEST-PARAGRAPH.
MOVE SAMPLE-1-VALUE TO SAMPLE-1.
\D DISPLAY "SAMPLE-1 = ", SAMPLE-1.
PERFORM EDIT-SAMPLE.

2.2.3 Line Continuation

Sentences, entries, phrases, and clauses that continue in Area B of subsequent
lines are called continuation lines. A hyphen in a line’s indicator area causes
the first nonblank character in Area B to be the immediate successor of the
last nonblank character of the preceding line. This continuation excludes
intervening comment lines and blank lines.

If the continued line ends with a nonnumeric literal without a closing
quotation mark, the first nonblank character in Area B of the continuation
line must be a quotation mark. The continuation starts immediately after the
quotation mark. All spaces at the end of the continued line are part of the
literal.

If the indicator area of the continuation line is blank, then the compiler treats
the last nonblank character of the preceding line as if it were followed by a
space.

2.2.4 Blank Lines and Comment Lines

A blank line is one that contains only spaces in Area A and AreaB. A
comment line is one that contains an asterisk, dollar sign, or slash character
in the indicator area. Conditional debugging lines are also considered
comment lines unless the program is compiled with the conditional
debugging option. Blank lines and comment lines may appear anywhere in
the source program and have no effect. They will appear in the source listing.
If a comment line contains a slash in the indicator area, then the source listing
will contain a page eject prior to that line.

Compiler Compatibility Modes m 2-13

2.3 Compiler Compatibility Modes

The ACUCOBOL-GT compiler accepts certain variants of the COBOL
language. These variants are designed to make it easier to compile programs
written using other COBOL compilers. The variants, or alternate
compatibility modes, are based on the following popular compilers: VAX
COBOL version 4.0, Ryan McFarland COBOL version 2.X, ICOBOL, and
HP COBOL II/XL. Limited compatibility with IBM DOS/VS COBOL is
also available.

ACUCOBOL-GT documentation refers to these modes respectively as VAX
COBOL compatibility mode, RM/COBOL compatibility mode, ICOBOL
compatibility mode, HP COBOL compatibility mode, and IBM DOS/VS
COBOL compatibility mode.

The compatibility mode to use for a program is selected when that program
is compiled. For more information, see Book 1, section 2.2.5,
“Compatibility Options.” Different programs may use different
compatibility modes, even if they are part of the same run unit.

Differences in these modes are detailed in the appropriate sections in this
manual. Their differences primarily lie in the handling of files and the
ACCEPT and DISPLAY verbs. Unless otherwise noted, any comments
applying to VAX COBOL compatibility mode also apply to ICOBOL
compatibility mode.

2.3.1 ANSI ACCEPT and DISPLAY Verbs

The ACCEPT and DISPLAY verbs have ANSI formats that provide strict
compatibility with the ANSI definition of these verbs. ACCEPT and
DISPLAY also have expanded ACUCOBOL-GT formats that are not
ANSI-compliant but offer more functionality. The ANSI definition is quite
limited in that it does not provide any screen control facilities. However,
these verbs can be useful when you are:

» converting programs from other COBOL compilers

» directing messages to the runtime’s error file

2-14 = Program Structure

e providing low-level control of the user’s console

The ANSI formats of ACCEPT and DISPLAY are subsets of the extended
ACUCOBOL-GT formats. Thus, the compiler needs guidance in
determining which format is desired. This is important because different
formats result in different behavior. When examining an ACCEPT or
DISPLAY statement, the compiler applies the following rules, in order:

1. If you specify FROM CRT or UPON CRT, the compiler uses
ACUCOBOL-GT format.

2. If you specify a FROM or UPON phrase for a device other than CRT,
the compiler uses ANSI format.

3. If you use any ACUCOBOL-GT extensions, the compiler uses
ACUCOBOL-GT format.

4. If you place the phrase “CONSOLE IS CRT” in Special-Names, the
compiler uses ACUCOBOL-GT format.

5. If you use the compile-time option “-Ca” (ANSI compatibility), the
compiler uses ANSI format.

6. Otherwise, the compiler uses ACUCOBOL-GT format.

Note: By default, the compiler uses ACUCOBOL-GT format.

2.4 Source Management Statements

The COPY, ++INCLUDE, and REPLACE statements allow you to modify
the program’s source text at compile time. Conditional compiling statements
such as $IF and $SET statements can be used to specify whether or not
certain lines of code are compiled or skipped. See Section 2.5, “Conditional
Compilation” for details on these statements.

Source Management Statements m 2-15

2.4.1 COPY Statement

The COPY statement copies text or a resource (static data such as a bitmap)
into the source program from the specified file immediately prior to
compilation. The text or resource is inserted for compilation only and does
not permanently replace the COPY statement in the program source.
Resources and COPY files that are inserted in this way into the object code
are loaded from the object file at runtime. If you change the resource (such
as a bitmap) or the COPY file, you must recompile for the change to be
reflected in the object code.

The REPLACING phrase allows word and substring substitutions to be made
in the inserted text prior to compilation.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format

Format 1
COPY INDEXED library-name [{IN} path-name] [SUPPRESS]
{OF}
[REPLACING { { old-text BY new-text 3 A I
{ { {LEADING } literal-1 BY {literal-2} } }
{ { {TRAILING} {SPACE } 3}
{{ {SPACES } } }
Format 2
COPY RESOURCE resource-name [{IN} path-name] .
{OF}

Syntax Rules

1. The COPY statement must be terminated by a period. The period is part
of the COPY statement and does not otherwise affect the program.

2-16 = Program Structure

2. Library-name must be a nonnumeric literal or user-defined word.
Path-name must be a nonnumeric literal or a user-defined word. Note
that a nonnumeric literal may reference an environment variable by
placing a “$” in the name, as described in General Rule 2. To preserve
the case of library-name and path-name, you must place them within
quotation marks, otherwise they will be treated as uppercase by case
sensitive operating systems. For more information, see the
ACUCOBOL-GT User’s Guide, section 2.6, “COPY Libraries.”

3. The COPY statement may be used anywhere a separator may occur. It
may be placed in Area A or Area B.

4. Old-text and new-text may be any of the following:

a. A series of text words placed between “==" delimiters. For
example “==WORD-1 WORD-2==" specifies a two-word
sequence. In old-text, at least one word must be specified. In
new-text, zero words may be used.

b. A numeric or nonnumeric literal.

c. A data name, including qualifiers, subscripts, and reference
modification.

d. Any single text word.

5. For purposes of the COPY statement, a “text word” is a contiguous
sequence of characters in Area A or Area B that form one of the
following:

a. A separator, except for: space, a pseudo-text delimiter (“=="), and
the opening and closing delimiters for nonnumeric literals.

b. A numeric or nonnumeric literal.

c. Any of a sequence of characters except comment lines and the
word “COPY”, bounded by separators, which is neither a separator
nor a literal.

6. Literal-1 and literal-2 are nonnumeric literals.

7. The phrases SPACE and SPACES are equivalent. When one of these is
used instead of literal-2, literal-1 is deleted and no spaces are actually
substituted.

Source Management Statements m 2-17

8. The format of the COPY file must conform to one of the allowed
ACUCOBOL-GT source formats (either terminal or ANSI). This
format need not be the same as that used in the rest of the program.
Book 1, section 2.5, contains details about which source format is used
for COPY files.

9. Resource-name must be an alphanumeric literal or a user-defined
word. A resource hame with a hyphen is equivalent to the same name
with an underscore in place of the hyphen. For example, “MY-FILE”
is treated as being identical to “MY_FILE”. To preserve the case of
resource-name, you must place it within quotation marks; otherwise, it
will be treated as uppercase by case-sensitive operating systems.

10. COPY statements may be nested in other COPY libraries. Any one of
the COPY statements in this structure can include the REPLACING
phrase.

Depending on the scope of each statement, the REPLACING phrases
might affect subsidiary COPY statements. For example, if
“program-a.cbl” contains a copy/replace as follows:

COPY "program-b.cpy"
REPLACING ==genericitems== BY ==myitems==.

and “program-b.cpy” contains a nested copy/replace statement:

COPY "program-c.cpy"’
REPLACING ==variabledata== BY == specificdata==.

The replace performed in “program-b.cpy” by the copy/replace
statement in “program-a.cbl” will affect “program-c.cpy.” If you do not
want the copy/replace statement in “program-a.cbl” to cascade to
“program-c.cpy”, you must add the following statement to
“program-b.cpy”, so that the copy/replace performed in
“program-h.cpy” will not be performed in “program-c.cpy.”

COPY "program-c.cpy"’
REPLACING ==genericitems== BY ==genericitems==.

General Rules

1. Library-name and path-name identify a source file to be included at the
location of the COPY statement. The text of the source file logically
replaces the COPY statement, including the terminating period. The

2-18 m Program Structure

rules for interpreting these names are described in Book 1, Section 2.6.
The “-Ce” compile option can be used to specify an alternate default
filename extension. See Book 1, Section 2.2.5.

2. You may use operating system environment variables in the OF phrase
of a COPY statement. To reference an environment variable, place a
“$” in front of it. For example, if you assign “MYLIB” to
“C:\MYFILES\MYLIB”, then the statement:

COPY "FILE1"™ OF "$MYLIB"
would use the file CAMYFILES\MYLIB\FILE1".

You may use multiple environment variables by preceding each one with
a $ symbol. Symbol names may contain alphanumeric characters,
hyphens, underscores, and dollar signs. If the symbol name is not found
in the environment, then it is left unchanged (including the initial $
symbol). Symbols are not processed recursively--if the value of a
symbol contains a $, the dollars sign is used literally in the final file
name.

3. When INDEXED appears after the word COPY, it is ignored by the
compiler. It may be included to provide compatibility with some older
COBOL dialects.

4. If the word SUPPRESS appears after library-name and path-name,
then the program listing file will not include the contents of the COPY
file or any other COPY files that may be nested within. This word
provides compatibility with one feature of IBM DOS/VS COBOL. It
is not a reserved word in ACUCOBOL-GT and may be used in other
contexts as a user-defined name.

5. The text of the COPY file is copied unchanged into the source program
unless the REPLACING option is used. If the REPLACING option is
used, then elements of the COPY file that match old-text or literal-1
are replaced by new-text or literal-2. The comparison operation that
determines text replacement is done as follows:

a. The leftmost library text word that is not a separator comma or
semicolon is the first text word used for comparison. Starting with
this word, and the first old-text specified, the entire old-text
sequence is compared with an equivalent number of contiguous
library text words.

Source Management Statements m 2-19

Old-text matches the library text only if the ordered sequence of
text words of old-text is identical to the ordered sequence of
library text words. For purposes of matching, a separator
semicolon, comma, or space is considered a space, and a sequence
of one or more spaces is considered a single space. Also,
lower-case characters are considered the same as upper-case
characters in all text words except for nonnumeric literals.

If no match occurs, the comparison is repeated for each old-text
specified until a match is found or each old-text has been tried.

After all old-text comparisons have been tried and no match has
occurred, the leftmost library text word is copied into the source
program. The next text word is then considered as the leftmost
word and the cycle is repeated.

Whenever a match occurs between the library text and old-text, the
corresponding new-text is placed in the source program. The
library text word that follows the rightmost word that participated
in the match then becomes the new leftmost word for subsequent
cycles.

When you are using the LEADING/TRAILING option, the
replacement process differs slightly. When a match occurs
between library text and literal-1, the only characters replaced by
literal-2 are the specific LEADING or TRAILING characters
indicated in the COPY statement. These characters can be a
substring or a whole word. If a SPACE or SPACES phrase is used,
the LEADING or TRAILING characters are deleted. For
example, if you have the following COPY library named
“MY-COPY.CPY™:

01 dummy-rec.
03 dummy-number-null PIC X(10)

and you used this COPY statement:

COPY "MY-COPY.CPY" REPLACING
LEADING *‘dummy™ by "employee™
TRAILING "null™ by SPACES.

Then the replacement will result in:

01 employee-rec.

2-20 = Program Structure

03 employee-number PIC X(10)

Note that when using ALPHANUMERIC strings such as "02" in the
LEADING BY phrase, it is best to use the == delimiters rather than
surrounding with quotes.

g. The comparison cycle continues until the rightmost text word in
the library has either participated in a match or has been the
leftmost word of a comparison cycle.

6. Comment lines and blank lines occurring in the library or in old-text
are ignored for purposes of matching. Comment lines and blank lines
occurring in library text that is matched by a REPLACING operand are
not copied into the source program.

7. Debugging lines may appear within the library text and in old-text.
Text words appearing in a debugging line participate in the matching
rules as if the line were a normal text line.

8. When new-text is copied into the source program, the first word of
new-text is copied into the same Area as the leftmost word of the
replaced text. Subsequent words of new-text are copied into Area B.

9. It is possible to use the REPLACING phrase to replace substrings.
This allows you to construct COPY libraries in which several strings
have a uniform substring that you plan to modify.

For example, the substring “individual” might occur in the COPY library
in “individual”-name, “individual”-address, “individual”-state,
“individual”-city, “individual”-zip, and “individual”-title. The
REPLACING phrase could be used to replace “individual” with specific
substrings such as employee, owner, student, teacher, professor, or
advisor.

To make use of this, delimit the substring that will be replaced in the
COPY library with quotes. Then use the standard COPY syntax to
replace the quoted substring by another substring. The resulting
sequence of characters is re-evaluated by the compiler to make a hew
string.

For example, suppose you have a COPY library (called “MYLIB”) that
contains the following:

77 MY-"DUMMY*"-DATA-ITEM PIC X(10).

Source Management Statements m 2-21

10.

11.

12.

and you used this COPY statement:
COPY "MYLIB"™ REPLACING =="DUMMY"== BY ==REAL==.

Then the text of “MYLIB” is effectively treated as:

77 MY-REAL-DATA-ITEM PIC X(10).
You should use hyphens rather than underscores in this instance.

In addition to the use of single and double quotes to delimit the substring,
the following delimiters are also allowed:

::(XYZ)::
==|XYZ|== (in HP COBOL compatibility mode)
==*XYZ*==
==:XYZ:==
==XYZ*==
==XYZ&==
==XYZ#==

Resource-name and path-name identify a resource file to be included
in the resulting object file. The rules for interpreting these names are
described in Book 1, Section 2.6. Note that the compiler’s “COPY
path” applies to resources (Format 2) as well as to source files
(Format 1).

The effect of a COPY RESOURCE statement is to add resource-name
to a list of resources that the compiler embeds into the resulting
COBOL object file. The resources are added to the end of the COBOL
object in the same order as the corresponding COPY statements.
Because the resources are added to the end of the object, the location
of the corresponding COPY RESOURCE statement in the COBOL
program is irrelevant. Conventionally, COPY RESOURCE statements
are placed either in Working-Storage or at the end of the program, but
any location is acceptable.

If resource-name resolves to a COBOL object or library file, the
compiler includes this object or library in the resulting object in a
manner similar to “cblutil -lib”. These are not considered resources,
but are embedded COBOL objects. Note that we recommend using
“cblutil -lib” to create libraries containing multiple COBOL objects
instead of using COPY RESOURCE. There are two advantages to
using “cblutil”. The first is that you do not need to worry about the

2-22 =m Program Structure

order in which COBOL objects are compiled (if you use COPY
RESOURCE, you must ensure that the copied object is compiled first),
and “cblutil” also checks for duplicated program names; COPY
RESOURCE does not.

Code Examples

Assume the existence of disk directory CODELIB. In directory CODELIB is
file ENROLLREC. The contents of ENROLLREC are:

01 ENROLLMENT-RECORD.
05 STUDENT-NAME PIC X(30).
05 STUDENT-ADDR PIC X(50).
05 STUDENT-GPA PIC 99V9.
05 SID PIC 9(7).

Code example 1:

IDENTIFICATION DIVISION.
PROGRAM-ID. COPY-EXAMPLE-1.

DATA DIVISION.

FILE SECTION.

FD SCIENCE-DEPT-ENROLLMENT-FILE.
COPY ENROLLREC IN "LIBRARY/CODELIB".

Code compiled after COPY substitutions:

DATA DIVISION.

FILE SECTION.

FD SCIENCE-DEPT-ENROLLMENT-FILE.

01 ENROLLMENT-RECORD.
05 STUDENT-NAME PIC X(30).
05 STUDENT-ADDR PIC X(30).
05 STUDENT-GPA PIC 99V9.
05 SID PIC 9(7).

Code example 2:

IDENTIFICATION DIVISION.
PROGRAM-1D. COPY-EXAMPLE-2.

DATA DIVISION.

Source Management Statements m 2-23

FILE SECTION.
FD SCIENCE-DEPT-ENROLLMENT-FILE.
COPY ENROLLREC
IN "LIBRARY/CODELIB"
REPLACING ==SID== BY ==STUDENT-1D==,
::9(7):: BY ::9(9)::_

Compiled code after COPY/REPLACING substitutions:

DATA DIVISION.

FILE SECTION.

FD SCIENCE-DEPT-ENROLLMENT-FILE.

01 ENROLLMENT-RECORD.
05 STUDENT-NAME PIC X(30).
05 STUDENT-ADDR PIC X(30).
05 STUDENT-GPA PIC 99V9.
05 STUDENT-ID PIC 9(9).

Highlights for firsttime users

1. COPY will always import the entire contents of the named COPY file.

2. The REPLACING text does not appear in the listing produced by the
ACUCOBOL-GT compiler (“-Lo filename” compiler argument). This
is a common source of confusion for users who check the compilation
listing file for verification that the replacing action occurred. You can,
however, use the “-Lp” compiler option to create an output file that
includes the REPLACING text. See “-Lp” in Section 2.2.3 of Book 1.

2.4.2 ++INCLUDE Statement

To provide more compatibility with other COBOLs, ACUCOBOL-GT also
supports the ++INCLUDE statement. This statement is very similiar in
function, format, and syntax to the COPY statement described in Section
2.4.1 The differences from the COPY statement are:

» Aterminating period is not required in ++INCLUDE.

» ++INCLUDE can refer to only a single file, not to a library.

2-24 =m Program Structure

* ++INCLUDE does not allow SUPPRESS.
¢ ++INCLUDE does not allow NOLIST.

* ++INCLUDE does not allow REPLACING.

Filenames referenced by ++INCLUDE are searched for in the same way as
COPY files.

2.4.3 REPLACE Statement

The REPLACE statement provides the ability to modify source text

selectively. Text replacement is accomplished by the compiler immediately
prior to source compilation.

REPLACE is frequently used to help facilitate single source code
maintenance across multiple COBOL versions or multiple hardware or
operating system environments. REPLACE may be used wherever there is a
need to make temporary text substitutions for compilation purposes.

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format

Format 1

REPLACE { { old-text BY new-text 1 S I
{ { {LEADING } literal-1 BY {literal-2} } }
{ { {TRALLING} {SPACE }} 3
{ { {SPACES }} }

Format 2
REPLACE OFF.

Source Management Statements m 2-25

Syntax Rules

1.

The REPLACE statement must be terminated by a period. The period is
part of the REPLACE statement and does not otherwise affect the
program.

The REPLACE statement may be used anywhere a separator may
occur. It may be placed in Area A or Area B.

Old-text and new-text may be any of the following:

a. A series of text words placed between “==" delimiters. For
example “==WORD-1 WORD-2==" specifies a two-word
sequence. In old-text, at least one word must be specified. In
new-text, zero words may be used.

b. A numeric or nonnumeric literal.

c. A data name, including qualifiers, subscripts, and reference
modification.

d. Any single text word.

For purposes of the REPLACE statement, a “text word” is a contiguous
sequence of characters in Area A or Area B that form one of the
following:

a. A separator, except for: space, a pseudo-text delimiter (“=="), and
the opening and closing delimiters for nonnumeric literals.

b. A numeric or nonnumeric literal.

c. Any of a sequence of characters except comment lines and the
word “COPY,” bounded by separators, which is neither a separator
nor a literal.

Literal-1 and literal-2 are nonnumeric literals.

The phrases SPACE and SPACES are equivalent. When one of these is
used instead of literal-2, literal-1 is deleted and no spaces are actually
substituted.

2-26 = Program Structure

General Rules

1.

The REPLACE statement specifies conversion of source statements
containing old-text into new-text. The scope of a REPLACE statement
continues from the first text word following the REPLACE statement to
the beginning of the next REPLACE statement, or the end of the
program. A Format 2 REPLACE statement terminates the scope of any
preceding REPLACE statement.

REPLACE statements are processed after COPY statements. The text
produced by the action of a REPLACE statement must not contain a
REPLACE statement.

Within the scope of a REPLACE statement, any source text that
matches old-text is logically replaced by new-text. The comparison
operation that determines text replacement is done as follows:

a. The leftmost source text word is the first text word used for
comparison. Starting with this word, and the first old-text
specified, the entire old-text sequence is compared with an
equivalent number of contiguous source text words.

b. Old-text matches the source text only if the ordered sequence of
text words of old-text is identical to the ordered sequence of
source text words. For purposes of matching, a separator
semicolon, comma, or space is considered a space, and a sequence
of one or more spaces is considered a single space. Also,
lower-case characters are considered the same as upper-case
characters in all text words except for nonnumeric literals.

¢. If no match occurs, the comparison is repeated for each old-text
specified until a match is found or each old-text has been tried.

d. After all old-text comparisons have been tried and no match has
occurred, the next source text word is then considered as the
leftmost word and the cycle is repeated.

e. Whenever a match occurs between the source text and old-text, the
corresponding new-text replaces old-text in the source program.
The source text word that follows the rightmost word that
participated in the match then becomes the new leftmost word for
subsequent cycles.

Source Management Statements m 2-27

f. When you are using the LEADING/TRAILING option, a match
between library text and literal-1 will replace only the specific
LEADING or TRAILING characters indicated in the REPLACE
statement with the text in literal-2. These characters can be a
substring or a whole word. If a SPACE or SPACES phrase is used,
the LEADING or TRAILING characters are deleted.

g. The comparison cycle continues until the rightmost text word in
the REPLACE scope has either participated in a match or has been
the leftmost word of a comparison cycle.

4. Comment lines and blank lines occurring in old-text are ignored for
purposes of matching.

5. Debugging lines may appear in old-text. Text words appearing in a
debugging line participate in the matching rules as if the line were a
normal text line.

6. When new-text is copied into the source program, the first word of
new-text is copied into the same Area as the leftmost word of the
replaced text. Subsequent words of new-text are copied into Area B.

7. Itis possible to use the REPLACE statement to replace substrings. In
addition to the use of single and double quotes to delimit the substring,
the following delimiters are also allowed:

::(XYZ)::
==*XY/Z*==
==:XYZ:==

Code Examples

REPLACE
==STANDARD-ALPHA== BY ==ALPHA-UPPER-CASE==
==TABLE-SIZE== BY ==MAX-TABLE-SIZE==

==PAGE-BUFFER-SIZE== BY ==SHORT-PAGE-SIZE==
==WI1TH-DEBUG-MODE== BY ====.
*delete matched text

REPLACE OFF.
*turns off REPLACE

2-28 m Program Structure

Highlights for firsttime users

1. Multiple REPLACE statements are permitted. The REPLACE
statement can appear anywhere in the program source.

2. The substitution actions of the REPLACE statement continue to affect
the program source until the REPLACE statement is either superseded
by a new REPLACE statement or turned off by the REPLACE OFF
statement.

3. REPLACE statements are processed after COPY statements.

4, REPLACE statements can not contain COPY statements. COPY
statements may contain REPLACE statements.

5. The replaced text does not appear in the listing produced by the
ACUCOBOL-GT compiler (“-Lo filename” compiler argument). This
is a common source of confusion for users who check the compilation
listing file for verification that the replacing action occurred. You can,
however, use the “-Lp” compiler option to create an output file that
includes the replaced text. See “-Lp” in section 2.1.3 of Book 1.

2.5 Conditional Compilation

Conditional compilation provides a mechanism for selectively compiling part
or all of the COBOL source. Conditional compilation is controlled by $IF,
$ELSE, and $END constructs, which behave in a similar way to the COBOL
IF construct. Conditional compilation also supplies the $DISPLAY
Statement, which can be used to display a message during compilation or
include a version number in the object file. The $SET statement can be used
to define compiler directives for use in $IF statements.

Note: The compiler has special conditional compilation options that turn
on compiler directives and set constants to values. There is also a compiler
option (-Cg) that turns of conditional compiling features. See the
ACUCOBOL-GT Users Guide, section 2.2.15 for details.

Conditional Compilation m 2-29

Syntax Rules

1. Conditional compilation statements are indicated by a dollar sign ($) in
the indicator area of the source line followed by one of the key words IF,
DISPLAY, ELSE, END, and SET.

2. Conditional compilation should not be used to split a COBOL
character string; that is, continuation lines should not be split by
conditional compilation controls.

2.5.1 $DISPLAY Statement

The $DISPLAY statement displays a message on the standard output device
during compilation, or includes a version number in the object. There are two
formats.

Format 1
$DISPLAY text-data

Format 2
$DISPLAY VCS = version-number

Syntax

1. The entire $DISPLAY statement must appear on a single line.

General rules

1. Ifa$DISPLAY statement is encountered on a source line that is ignored
by conditional compilation, there is neither a compile-time nor a runtime
effect.

Format 1

2. Text-data is displayed on the standard output device during
compilation. There is no runtime effect.

Format 2

2-30 = Program Structure

Version-number is the content of the entire source line following the
"=" excluding leading and trailing spaces.

The character string formed by concatenating "@ (#)", version-number,
and a null character (binary zero) is included in the object file. If
version-number begins with the characters "@(#)", the compiler does
not concatenate these characters when forming the character string. In
other words, only a single "@(#)" will be included in the object file,
whether version-number includes that string or not.

Note: Version-number can be any text string, but it is intended to contain
a version number for which a pattern matching tool, such as the UNIX sccs
"what" command, can search the object file.

2.5.2 $END Statement

The $END Statement is used in conjunction with the $IF Statement to
control conditional compilation. There is a single format:

$END

Syntax

1.

The whole statement must appear on a single line.

General rules

1.

The innermost $IF statement is terminated. The now active $IF
condition is considered. If the active condition is "true", the source lines
following the $END are processed. If the condition is "false”, COBOL
source lines are ignored until the next conditional compilation line is
encountered.

2.5.3 $ELSE Statement

The $ELSE Statement is used in conjunction with the $1F Statement to
control conditional compilation. There is a single format:

Conditional Compilation m 2-31

$ELSE

Syntax

1. The whole statement must appear on a single line.

General rules

1. The most recent $IF condition is reversed. If the now active $IF
condition is "true", the source lines following the $ELSE are processed.
If the $IF condition is "false”, COBOL source lines are ignored until the
next conditional compilation line is encountered.

2.5.4 $IF Statement

The $IF Statement provides the ability to conditionally include or exclude
text based on the state of certain variables. There are three formats:

Format 1
$IF constant-name-1 [NOT] {< > =} literal-1

Format 2
$IF constant-name-2 [NOT] DEFINED

Format 3
$IF directive-setting SET

Syntax

1. Constant-name-1 is defined by a level 78 item or a CONSTANT
compiler flag.

2. Directive-setting is specified in the same format as it is given in the
$SET statement and may be preceded by NO. However, the format
used in the $IF statement differs from the format used in the $SET
statement as follows:

* No spaces are allowed between the NO and the directive name

2-32 m Program Structure

3.
4.

e Case must be preserved in the directive

Directive-setting may also be specified at compile time by using the “-/”
(forward slash) compiler option. See the User’s Guide, Section 2.2.15
for details on this and other conditional compiler options.

The entire statement must appear on a single line.

$IF can be nested within another $IF.

General rules

1.

constant-name-2 is DEFINED if it is the name of a level 78 item or a
CONSTANT compiler flag. Otherwise it is NOT DEFINED.

Directive setting SET evaluates "true" if the given string matches the
actual directive setting.

The comparison between directive-setting and the actual directive is
case-sensitive.

If the condition evaluates "true", the source lines following the $IF
statement are processed. If the condition evaluates "false", COBOL
source lines are ignored until the next conditional compilation line is
encountered.

2.5.5 $SET Statement

The $SET statement can be used to define compiler directives for use in $1F
Statement. The directives set with this method have no value, they are only
set. The $SET statement can also be used to set values for COBOL variables
in the same way as a level 78 data item.

There are two formats for the $SET statement.

Format 1

$SET [NOJcompiler-directive

Format 2

$SET CONSTANT identifier value

Conditional Compilation m 2-33

Syntax

1. The whole statement must appear on a single line.

General rules
Format 1

1. The sole effect of the Format 1 $SET statement is to set a directive name
in the compilation unit. Alternatively, you can use the “-/” (forward
slash) compiler option to set a directive name. Refer to the
ACUCOBOL-GT User’s Guide, Section 2.2.15, Conditional Compiling
Options for details. If a later Format 3 $IF statement is encountered, this
statement will evaluate "true" if the compiler-directive set by $SET
matches the directive-setting in the $IF statement. Preceding the
compiler directive with NO turns off the setting.

Format 2
2. "identifier" must be a valid COBOL identifier.
3. "value" is any valid value for a COBOL identifier.

4. If "value" is surrounded by single () or double (") quotes, it is a string
literal. "identifier" can be used anywhere a string literal can be used.

5. If "value" is surrounded by parentheses (()), it is a numeric literal.
6. "identifier" can be used anywhere a numeric literal can be used.

7. If "value" is neither quoted nor surrounded by parentheses, it will be
considered a numeric literal if all of the characters in the value are
digits. Otherwise it is considered a string literal.

8. A format 2 $SET statement is equivalent to the following line:

77 identifier VALUE value.

with the exception that the level "77" line doesn't allow numeric values
to be surrounded with parentheses.

2-34 =m Program Structure

2.6 Program Organization

A COBOL program is divided into four parts, called divisions. The divisions
are the Identification Division, the Environment Division, the Data Division,
and the Procedure Division. Divisions can contain sections, which in turn
can contain paragraphs. Paragraphs are composed of sentences, clauses,
statements and entries.

The general format of a program is:

[identification division]
[environment division]

[data division]

procedure division

[END PROGRAM string_literal.]

Each of these divisions is described in detail in the following chapters. The
END PROGRAM statement is optional. If used, it must appear in Area A.

2.6.1 Program Elements

2.6.1.1

A program can consist of many types of elements. These elements are
described in the following sections.

Division header

A division header names and marks the beginning of a division. The formats
for particular divisions are described in the appropriate syntax charts.
Division headers must appear in Area A.

The following division headers are optional and may be included or excluded
at your option. The compiler determines which division it is processing by
other COBOL syntax.

* |dentification Division

Program Organization m 2-35

2.6.1.2

2.6.1.3

e Environment Division

» Data Division

Section header

A section header marks the beginning of a section in the Environment, Data,
and Procedure Divisions. In the Environment and Data Divisions, the
formats of the allowed section headers are described in the appropriate syntax
charts in Chapter 4 and Chapter 5, respectively. In the Procedure Division, a
section header is a user-defined word followed by the word “SECTION” and
an optional segment number. A period always follows a section header.
Section headers must appear in Area A.

Paragraph header

A paragraph header names a paragraph in the Identification, Environment,
and Procedure Divisions. In the Identification and Environment Division, a
paragraph header is a reserved word followed by a period. These are detailed
in the appropriate syntax charts.

In the Procedure Division, a paragraph header is a user-defined word
followed by a period. A paragraph header can be placed in Area A or Area B.
When a paragraph header is placed in Area B, the compiler produces the
following warning message, unless the “-w” compile switch is specified:

Warning: Paragraph Name found in Area B

An initial paragraph header, immediately following the Procedure Division
header, is not required. If no initial paragraph header is present, the compiler
creates a dummy header named “ACU-MAIN".

The first entry or sentence of a paragraph begins on either the same line as the
paragraph header or in Area B of succeeding lines. Subsequent entries or
sentences must be in Area B.

2-36 = Program Structure

2.6.1.4

2.6.1.5

2.6.1.6

Clauses and entries

Anentry is an item of descriptive nature composed of separate clauses. Each
clause specifies some attribute of its entry. Clauses are separated by spaces
(or commas or semicolons). An entry is terminated by a period. The format
of clauses and entries is described in the appropriate syntax diagrams.

Statements

A statement is a COBOL key word (called a verb) followed by its operands.
A statement directs either the compiler or the object program to take some
action. There are four types of COBOL statements:

1. Compiler-directing statements specify an action to be taken by the
compiler. Only COPY, REPLACE, and USE statements fit this
classification.

2. Imperative statements specify an unconditional action to be taken by
the object program at run time. Whenever an imperative statement is
allowed, it may consist of a sequence of consecutive imperative
statements.

3. Conditional statements specify an action to be taken by the object
program that is dependent on the truth value of some condition.

4. Delimited-scope statements specify their explicit scope terminator.
This scope terminator always has “END-" as the first four letters of its
word. A delimited-scope statement contains elements of a conditional
nature. Because of the scope-delimiter, however, these statements may
be used anywhere an imperative statement may be.

Sentences

A sentence is a sequence of one or more statements terminated by a period.

An imperative sentence is one that contains only imperative statements. A

conditional sentence consists of a conditional statement optionally preceding
a sequence of imperative statements.

3

|dentification Division

Key Topics

Identification Division

PROGRAM-ID Paragraph.........ccccocvvivrieiiennseeesieese e eseeseee e see e

3-2 m |dentification Division

3.1 Identification Division

The Identification Division marks the beginning of a COBOL program. It
serves to name and comment the program.

General Format
[IDENTIFICATION DIVISION.]

[1D DIVISION. 1

[PROGRAM-ID. program-name [IS {INITIAL } PROGRAM] .]
{RESIDENT}

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [conment-entry] ...]

[DATE-WRITTEN. [comment-entry 1 ... 1

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

[REMARKS. [comment-entry] ...]

Syntax Rules

1. A comment-entry can consist of any set of characters over any number
of lines. It ends with the next line that starts in Area A.

2. “ID DIVISION” is interchangeable with “IDENTIFICATION
DIVISION”.

3. The AUTHOR, INSTALLATION, DATE_WRITTEN,
DATE_COMPILED, SECURITY, and REMARKS paragraphs may be
placed in any order.

General Rule

The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED,
and SECURITY paragraphs are used solely for commentary.

PROGRAM-ID Paragraph = 3-3

3.2 PROGRAM:-ID Paragraph

General Format
[PROGRAM-ID. program-name [IS {INITIAL } PROGRAM] .]

Syntax Rule

{RESIDENT}

Program-name is a user-defined word or a reserved word. It must be unique
among separately compiled programs. If a reserved word is used, it is treated
as if it were not reserved. The maximum number of characters is 30.

General Rules

1.

The program-name identifies the name of the program. It is used by the
ACUCOBOL-GT runtime system and debugger to identify a program.

The INITIAL PROGRAM clause specifies an initial program.
Whenever an initial program is called, it is placed in its initial state.
Data contained in an initial program is set to its starting value every
time the program is called. Note that the “-Zi” compiler option causes
the program to be compiled as if it had the IS INITIAL PROGRAM
phrase specified. See Book 1, Section 2.2.16, “Miscellaneous
Options” for details on the -Zi compiler option.

Files contained in the program are not in the open mode:
a. the first time the program is called,

b. the first time the program is called after it has been the target of a
CANCEL statement,

c. every time the program is called if it is an INITIAL program.

On all other entries, the files contained in the program are in the same
state and position as when the program last exited.

INITIAL programs are removed from memory when they exit.
Non-initial programs remain in memory until they are the targets of a
CANCEL statement.

3-4 m |dentification Division

6. The RESIDENT clause specifies that the program is to remain resident
in memory after its first execution. A program with the RESIDENT
clause cannot be affected by a CANCEL statement. Note that the
RESIDENT clause shields selected programs from the effects of a
CANCEL Statement.

7. The IBM DOS/VS COBOL “-Cv” compatibility mode allows the name
to be enclosed in quotation marks. See the IBM DOS/VS COBOL
chapter in Transitioning to ACUCOBOL-GT for more information.

8. If you omit the PROGRAM-ID paragraph, the program’s name is
derived from the source file name as follows:

a. All directory information is removed from the file name and only
the base file name is used.

(T3R1)

b. If the file name includes a period (*.”) or space, that portion of the
file name (including the period or space) is truncated.

c. The name is translated to upper case for letters in the ASCII
alphabet range.

d. Characters not in the ASCII alphabet are left unchanged.

9. If the PROGRAM-ID paragraph is omitted, the program does not have
an INITIAL or RESIDENT state.

Environ

ment Division

Key Topics

Environment Division
Configuration Section
Input-Output Section

4-2 m Environment Division

4.1 Environment Division

The Environment Division describes the program’s physical environment,
primarily through the descriptions of the files it uses.

General Format
[[ENVIRONMENT DIVISION.]

[[CONFIGURATION SECTION.]

[SOURCE-COMPUTER. source-computer-entry]

[OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. [special-names-entry]] 1]

[[INPUT-OUTPUT SECTION.]

[FILE-CONTROL.] { file-control-entry } ...

[1-O-CONTROL. [i-o-control-entry] 11 1
Syntax Rule

The division header is optional for the Environment Division.
General Rule

The Environment Division entries are described in the following sections.

4.2 Configuration Section

The Configuration Section contains information about the machine
environment for the program. The section header for the Configuration
Section is optional.

Configuration Section m 4-3

4.2.1 Source-Computer Paragraph

The SOURCE-COMPUTER paragraph identifies the computer on which the
source program is compiled.

General Format
SOURCE-COMPUTER. computer-name

[WITH DEBUGGING MODE 7 .
Syntax Rule

Computer-name is a user-defined word, or multiple words separated by
spaces, that names the source computer.

General Rules

1. Computer-name is for documentation purposes only.

2. If the WITH DEBUGGING MODE clause is used, then conditional
debugging lines in the source program will be treated as standard
source lines, not comment lines. This can also be accomplished by
compiling with the “-Sd” compiler option.

4.2.2 Object-Computer Paragraph

The OBJECT-COMPUTER paragraph names the computer on which the
program is to be run.

General Format
OBJECT-COMPUTER. computer-name

[MEMORY SIZE integer {WORDS }1
{CHARACTERS}
{MODULES }

[PROGRAM COLLATING SEQUENCE 1S alphabet-name]

[SEGMENT-LIMIT IS seg-val] .

4-4 m Environment Division

Syntax Rules

1.

3.

Computer-name is a user-defined word, or multiple words separated by
spaces, that names the object computer.

Alphabet-name is a user-defined word that describes the collating
sequence of the object machine.

Seg-val is an integer literal between 1 and 49 inclusive.

General Rules

Computer-name is for documentation purposes only.
The MEMORY SIZE clause is for documentation only.

The COLLATING SEQUENCE clause specifies the collating sequence
for any alphanumeric comparisons done in the program.
Alphabet-name must be an alphabet described in SPECIAL-NAMES.
The sequence of the characters in the alphabet determines the sequence
for character comparisons. It also specifies the default collating
sequence for SORT and MERGE verbs. The character that is first in
the program collating sequence is treated as the LOW-VALUES
character for the program. The character that is last in the program
collating sequence is treated as the HIGH-VALUES character for the
program. (The one exception to this is that in Special-Names,
LOW-VALUES and HIGH-VALUES always refer to the first and last
characters in the native collating sequence.)

The SEGMENT-LIMIT clause defines which Procedure Division
sections are to be placed in overlays. If the SEGMENT-LIMIT clause
is not specified, then any section with a segment number of 50 or
greater is placed in overlays. When the SEGMENT-LIMIT clause is
used, then any section with a segment number of seg-val or greater is
placed in overlays.

Configuration Section m 4-5

4.2.3 Special-Names Paragraph

The SPECIAL-NAMES paragraph describes several miscellaneous aspects
of the operating environment. The phrases may be listed in any order, with
two exceptions. The switch declarations must come first, and alphabets must
be defined before they are referenced in SYMBOLIC CHARACTERS
phrases.

General Format
SPECIAL-NAMES.

[{switch-name} [IS mnemonic-name]
{system-name}

[{ON } STATUS IS cond-name] ...] ...
{OFF}

[{alphabet-entry } ... 1

[SYMBOLIC CHARACTERS

{ {name} ... {IS } {number} ... } ...
{ARE}

[IN alphabet-name]]
[CLASS class-name 1S

{lit-1 [{THROUGH} lit-2]} ...] -..
{THRU }

[CURRENCY SIGN IS char]

[DECIMAL-POINT IS COMMA 1]

[NUMERIC SIGN IS TRAILING SEPARATE]

[CONSOLE 1S CRT]
[CURSOR IS cursor-name]

[CRT STATUS IS status-name]

4-6 m Environment Division

[SCREEN CONTROL IS control-name]

[EVENT STATUS IS event-status].

Alphabet Entry

Format 1
ALPHABET alphabet-name IS (STANDARD-1}

{STANDARD-2}
{NATIVE }
{EBCDIC }

Format 2
ALPHABET alphabet-name IS

Syntax Rules

1.

{literal-1 [THROUGH literal-2

1
[THRU literal-2 1
[{ALSO literal-3} 1

Switch-name must be one of the system names: SWITCH-1,
SWITCH-2, ... SWITCH-26 or the word “SWITCH?” followed by a
switch number (a numeric literal 1 through 26 or an alphanumeric literal
“A” through “Z”). It represents one of the 26 program switches.

Mnemonic-name is a user-defined word that may be used in a SET
statement to change the state of the associated program switch or to
refer to a device in an ACCEPT or DISPLAY statement.

Each system-name must be associated with a mnemonic-name. Also,
no system-name may be given an ON or an OFF STATUS.
System-name must be one of the following: CONSOLE, SYSIN,
SYSIPT, SYSOUT, SYSLIST, SYSLST, SYSOUT-FLUSH, or
SYSERR.

Cond-name is a user-defined word that can be used to test the status of
a program switch.

For each switch-name, at least one mnemonic-name or one cond-name
must be specified. No more than one ON STATUS and one OFF
STATUS phrase may be specified for a particular switch-name.

Configuration Section m 4-7

10.
11.

12.

13.

14.

15.

Name is a user-defined word that names a symbolic character.

Number is an integer literal that must be in the range of ordinal
positions in the alphabet being referenced.

There must be a one-to-one correspondence between occurrences of

name and number. The relationship between each name and number is
by position in the SYMBOLIC CHARACTERS clause. The first name
is paired with the first number, the second with the second, and so on.

Class-name is a user-defined word that defines a class name.
Lit-1 and lit-2 are numeric or alphanumeric literals.

Char is a one-character nonnumeric literal that specifies a currency
symbol.

Cursor-name must be the name of a data item appearing in the Data
Division that is 4 or 6 characters in length. Cursor-name must
describe an elementary unsigned numeric integer or a group item
containing two such elementary data items.

Status-name must name a group item in the Data Division that is three
characters in length or must name an elementary numeric data item.

Control-name must name a group item with the following structure:

01 SCREEN-CONTROL.
03 ACCEPT-CONTROL PIC 9.
03 CONTROL-VALUE PIC 999.
03 CONTROL-HANDLE USAGE HANDLE.
03 CONTROL-1D PIC X(2) COMP-X.

You must use the preceding structure, but you may use your own names
for the variables.

Event-status must refer to a group item with the following structure:

01 EVENT-STATUS.
03 EVENT-TYPE PIC X(4) COMP-X.
03 EVENT-WINDOW-HANDLE USAGE HANDLE OF WINDOW.
03 EVENT-CONTROL-HANDLE USAGE HANDLE.

03 EVENT-CONTROL-1ID PIC X(2) COMP-X.
03 EVENT-DATA-1 USAGE SIGNED-SHORT.
03 EVENT-DATA-2 USAGE SIGNED-LONG.

03 EVENT-ACTION PIC X COMP-X.

4-8 m Environment Division

16.

17.

18.

19.

20.

You can find a copy of this format in the COPY library “crtvars.def”.
You may name the data items in the EVENT-STATUS declaration
arbitrarily, but the data types, storage, and group structure must match
the example given. (For compatibility with older source code, the
compiler accepts an EVENT-STATUS item that does not have
EVENT-ACTION. The runtime behaves as if EVENT-ACTION
contains the value “0”, indicating normal event handling.) The
SIGNED-LONG data item, EVENT-DATA-2, may be compiled with
any “-Dw” setting (“-Dw” limits the word-size of the target machine). If
you use “-Dw16” or “-Dw32”, then you should not run the generated
object on a 64-bit machine.

Alphabet-name is a user-defined word that defines an alphabet name.

The optional word “ALPHABET” is required in an alphabet
declaration if it immediately follows a SYMBOLIC CHARACTERS
declaration.

Literal-1, literal-2, and literal-3 may be any literal, but if they are
numeric, they must be in the range of 1 through 256.

Literal-2 and literal-3 must have a size of one character if they are
alphanumeric literals.

Literal-1 must also have a size of one character if it is associated with
a THROUGH or ALSO phrase.

General Rules

1.

The switch-name clause associates status names (cond-name) and
switch names (mnemonic-name) with a particular program switch.
These can be used to test the on/off status of a switch or to change the
switch’s status.

The system-name clause associates a user-defined mnemonic-name
with one of the predefined system devices. These names may be used
in the ACCEPT and DISPLAY statement to refer to the following
devices:

System Name ACCEPT DISPLAY

CONSOLE system input system output

Configuration Section m 4-9

System Name ACCEPT DISPLAY
SYSIN system input (illegal)
SYSIPT system input (illegal)
SYSOUT (illegal) system output
SYSLST (illegal) system output
SYSLIST (illegal) system output
SYSOUT-FLUSH (illegal) system output
SYSERR (illegal) error output

The “system input” and “system output” devices are normally the
console’s keyboard and screen, but may be redirected with operating
system commands or with the “-i” and “-0” runtime options. The “error
output” device is normally the console screen, but may be redirected
with the “-e” runtime option.

The SYMBOLIC CHARACTERS clause defines symbolic characters.
A symbolic character is a user-defined figurative constant and can be
used anywhere a figurative constant may be. For each name, the
character it represents is set to the character whose ordinal position in
the native character set is specified by the corresponding number. Note
that the ordinal position of a character is one greater than its internal
representation. Thus a carriage-return character in ASCII (internal
value of “13”) would be specified as ordinal position “14”.

The CLASS clause defines a class name. A class name is used in a
class test to determine whether or not a data item entirely consists of a
certain set of characters.

The class name must be unique in the source context. Make sure that
there is no name clash between the class name and reserved COBOL
words, user-defined variables, enumerators, events, or methods. This is
particularly important for COM objects, ActiveX controls, and .NET
assemblies, which may have enumerators that use the same identifier as
a class name they define. If there is a name clash, rename the class, or if
possible, the other element to make the class name unique. Otherwise
compiler errors may result. We suggest prepending ActiveX and .NET
class names with an “@” sign to avoid ambiguities.

4-10 m Environment Division

For each numeric literal specified in the CLASS clause, the value of the
literal specifies the ordinal number of the character in the native
character set to include in the class. For example, “33” would refer to the
space character (decimal value 32) in the ASCII character set.

For each alphanumeric literal, the value of the character or characters in
the literal specifies the characters to include in the class.

If the THROUGH phrase is used, then lit-1 and lit-2 must be numeric
literals or alphanumeric literals containing only one character. The set of
contiguous characters between lit-1 and lit-2 (inclusive) is included in
the class. The two literals may be specified in either ascending or
descending order.

5. The CURRENCY SIGN clause specifies the PICTURE clause
currency symbol. It can be any character from the computer’s
character set.

6. If no CURRENCY SIGN clause is present, the dollar sign is used.

7. The DECIMAL-POINT IS COMMA clause exchanges the functions of
the comma and the period in PICTURE clauses and numeric literals.

8. The NUMERIC SIGN clause specifies that all USAGE DISPLAY
numeric data items in the program that do not have an explicit SIGN
clause should be treated as if they had a SIGN TRAILING
SEPARATE clause. A compile-time option exists to do the same
thing. This is usually done to match the behavior of other COBOL
systems.

9. The CONSOLE IS CRT clause causes the compiler to assume that:

e “UPON CRT" is specified for every DISPLAY statement that does
not have an UPON phrase.

* “FROM CRT” is specified for every ACCEPT statement that does
not have a FROM phrase.

This causes DISPLAY and ACCEPT statements without explicit UPON
or FROM phrases to interact with the ACUCOBOL-GT Window
Manager instead of with the low-level (ANSI-style) console driver. Note

Configuration Section m 4-11

10.

that CONSOLE IS CRT is automatically implied by the compiler unless
the “-Ca” compiler option is used. If CONSOLE IS CRT is presentin a
program compiled with “-Ca”, CONSOLE IS CRT takes precedence.

The CURSOR clause specifies the name of a data item that will be
used to control the console’s cursor position throughout the program.
If the cursor-name data item is four characters long, then the first two
characters are the cursor’s line number, and the last two characters are
the column number. If cursor-name is six characters long, then the
row and column numbers are each three characters long.

At the beginning of each ACCEPT statement, cursor-name should
specify a location in one of the fields being entered. If it does, then the
cursor will begin the ACCEPT statement at that location. If
cursor-name does not specify a valid position, and more than one field
is being entered by the ACCEPT statement, the cursor will start at the
beginning of the next valid field (the next field described in the Screen
Section definition of the screen-name referenced in this ACCEPT). If
the cursor position is past the last field, or before the first field, then the
cursor will be placed at the beginning of the first field.

At the conclusion of the ACCEPT statement, the cursor’s final location
will be placed in cursor-name.

Note: The ACUCOBOL-GT runtime system will limit the placement
of the cursor in some circumstances. It will not place a cursor past the
end of valid data in a field. In this case, the cursor will be placed as
close to the requested position as possible. Also note that if you
specify a CURSOR clause in SPECIAL-NAMES, then you must
initialize the cursor location prior to every ACCEPT statement.

If you specify a CURSOR clause in SPECIAL-NAMES, you may not
use the CURSOR phrase of the ACCEPT statement, because this would
lead to multiple specification of the initial cursor position.

If you don’t initialize cursor-name with numeric data, you’ll receive a
“nonnumeric data” warning message on your first ACCEPT statement.

The cursor may not start over a prompt character (except at the
beginning of a field), unless that prompt character is a space.

4-12 m Environment Division

11.

The following code demonstrates how a CURSOR clause could be used
with a Format 1 ACCEPT statement:

identification division.
program-id. testcurs.
*** This program shows how the CURSOR clause
*** can be used with a Format 1 ACCEPT statement.
environment division.
configuration section.
special-names.
cursor IS cursor-name.
data division.
working-storage section.

01 cursor-name.
05 c-line pic 9(3).
05 c-col pic 9(3).

01 accept-field pic x(10) value "abcdefghij"
procedure division.
main-logic.

display window erase.
display accept-field line 6 col 6.

*** Position the cursor over the "c" in the value
*** of accept-Ffield, which is the eighth column
*** on the screen.

move 6 to c-line.

move 8 to c-col.

accept accept-field line 6 col 6 update.
stop run.

The CRT STATUS phrase provides a method for returning the
termination status of every ACCEPT statement. At the end of each
ACCEPT statement, status-name is filled in with information regarding
how the ACCEPT terminated. Two forms of status values are
supported. One form is a three-character group item where each
character is treated as a “key” that contains various information. The
second form is a simple numeric value where each status condition is
identified by a unique numeric value. The next two rules describe
these two forms.

Configuration Section m 4-13

12.

13.

If status-name is a numeric data item, then a unique value will be
moved to this item at the end of each ACCEPT statement. This value
is the same as the CONTROL KEY value described in the ACCEPT
statement. For details on which values are returned, see the discussion
of the CONTROL KEY phrase in section 6.6 of this manual.

If status-name is a group item, then the first two characters are
assigned values according to the following table:

Key 1 Key 2 Meaning

‘0 ‘0’ Termination key pressed
‘0 ‘7 Auto-skip out of last field
‘1 x’00’ - X’FF’ Exception key pressed

‘2 x’00° End-of-file key pressed

‘3 x’00’ Statement timed out

‘9’ x’00’ No items fall within screen

If Key 1is “1”, then Key 2 contains the exception key value of the key
that was pressed. For atable of key values, see the heading “CONTROL
KEY Phrase” under the ACCEPT Statement in section 6.6.

The third character always contains the same value that is returned by the
CONTROL KEY phrase of the ACCEPT statement, if this value is in the
range of 0 to 255. This is the same value returned when status-name
refers to a numeric data item instead of a group item (rule 12 above).

When Key 1 is set to “0”, a normal termination has occurred. Any other
value indicates an exception condition.

Note: This form of the CRT STATUS phrase is provided for
compatibility with the X/Open COBOL specification as well as for
compatibility with some other COBOL systems. This method of
determining the status of an ACCEPT statement differs in several
details from the other methods of determining the ACCEPT status
supported by ACUCOBOL-GT. In particular, the other methods return
a single numeric value to describe the status (same as the value stored

4-14 m Environment Division

14.

in Key 3). We recommend that only one technique be used to test for
the ACCEPT status to avoid confusion. The following table
summarizes the various statements and phrases available to return an
ACCEPT statement’s status.

Status Statement Status Type
CRT STATUS group-item 3-byte key
CRT STATUS numeric-item Numeric value
CONTROL KEY IS item Numeric value
ACCEPT item FROM ESCAPE Numeric value
ON EXCEPTION item Numeric value

Also note that the formation of Key 2 is tricky. In the case of a normal

termination, Key 2 will contain a normal COBOL character digit, but in
the other cases, it will contain a binary value. The easiest way to test the
status value is to use hexadecimal constants to express the binary value.
Alternately, you can declare Key 2 to be COMP-X and test the exception
values against numeric literals. Note that some other COBOL systems

define Key 2 to be “PIC 99 COMP”. If you convert programs that use

this construct, be sure to use the “-D1” or “-Dm” compile-time flags to
cause this data item to be stored in one character. If you do not do this,
then Key 2 will occupy two characters and return invalid values.

The ALPHABET clause specifies the alphabet to be used for character
translations and collating sequences.

An alphabet may be used in the following circumstances:

a. Inthe CODE-SET phrase of a sequential file’s FD. The alphabet
specifies a character translation map. A Format 2 alphabet may
not be used for this purpose.

b. Inthe COLLATING SEQUENCE phrase of an indexed file’s
SELECT. This specifies an alternate collating sequence for the
file’s keys.

c. Inthe COLLATING SEQUENCE phrase of a SORT or MERGE
statement. Here the alphabet specifies the collating sequence to
use for key comparisons.

Configuration Section m 4-15

d. Inthe PROGRAM SEQUENCE phrase of the
OBJECT-COMPUTER paragraph. This specifies the collating
sequence for any alphanumeric comparisons done in the program.
It also specifies the default collating sequence for SORT and
MERGE verbs. The character that is first in the program collating
sequence is treated as the LOW-VALUES character for the
program. The character that is last in the program collating
sequence is treated as the HIGH-VALUES character for the
program. The one exception to this is that in Special-Names,
LOW-VALUES and HIGH-VALUES always refer to the first and
last characters in the native collating sequence.

e. InaSYMBOLIC CHARACTERS clause in SPECIAL-NAMES,
to indicate the alphabet to which the symbolic character belongs.

A Format 2 alphabet is used to describe a collating sequence. Explicitly
named characters are listed in the order of their positions in the new
collating sequence.

Any characters in the native collating sequence that are not explicitly
named in the ALPHABET clause assume a position greater than any of
the explicitly named characters. The relative order of these unnamed
characters remains the same as in the native collating sequence.

If a literal in the ALPHABET clause is numeric, it designates a character
by specifying that character’s ordinal position in the native character set.
For example, 66 would designate the letter A in the ASCII character set.

If the literal is alphanumeric, it is the actual character. For alphanumeric
literals that contain more than one character, the characters are assigned
successive ascending positions in the new collating sequence.

Here’s an example :

ALPHABET TINY 1S 01", "Z', "AB", SPACE

This alphabet contains 6 characters. Character 0 is the first character in
the sequence, character 1 is the second. Character “Z” is the third, and

characters “A” and “B” are the fourth and fifth. The space character is

the sixth character. If you were to sort a file using this alphabet, all items
that started with “Z” would appear before items that started with “A” or
“B”. Anything that started with a space would be last.

4-16 m Environment Division

15.

Any characters in the native collating sequence that are not explicitly

named assume a position in the new collating sequence greater than any
of the explicitly named characters. The relative order of these characters
remains unchanged from the native collating sequence. In the example
above, this means that anything that starts with “C” comes after anything
that starts with spaces, and anything starting with “D”” comes after “C”.

If the THROUGH phrase is specified, the set of contiguous characters in
the native character set beginning with literal-1 and ending with
literal-2 are assigned successive ascending positions in the new
collating sequence. The THROUGH phrase may specify characters in
ascending or descending sequence.

For example, the following alphabet will sort the alphabetic characters
backwards:

ALPHABET REV-ALPHA 1S "Z" THROUGH ™A™,
"'z'" THROUGH "a™

If the ALSO phrase is specified, then literal-1 and literal-3 are assigned
the same position in the collating sequence. This is one of the most
useful capabilities of the Format 2 ALPHABET clause. For example,
the following alphabet will cause the upper case and lower case of each
letter to be treated as the same character for sorting:

ALPHABET NO-CASE 1S 1 THRU 65, "A" ALSO "a“",

"B" ALSO "b-", "C" ALSO "c*, "D® ALSO "d-,
"E" ALSO "e", "F* ALSO °f-", "G" ALSO "g-",
"H® ALSO "h-, "1* ALSO "i°, *J® ALSO -j-,
K ALSO "k-, "L® ALSO "I-, “M® ALSO *m*",
N ALSO "n-, 0" ALSO "o-, "P" ALSO "p-,
Q" ALSO "qg-, "R" ALSO "r-, "S" ALSO "s*",
"T" ALSO "t-°, "U" ALSO "u-, V" ALSO "v-©,
"W® ALSO “w", X" ALSO *"x*, "Y" ALSO "y*",
"Z" ALSO "z*

The “1 THRU 65” phrase causes the portion of ASCII that exists in front
of “A” to be sorted in its normal sequence (“A” is the 66th character in
ASCII). Then each lower-case character is mapped to its corresponding
upper-case character. The remaining characters then follow implicitly.

The following IBM DOS/VS COBOL system names are supported by
ACUCOBOL-GT in the SPECIAL-NAMES paragraph if the “-Cv”
compiler option is used:

Configuration Section m 4-17

SYSPCH

SYSPUNCH

CO1 through C12
CSpP

S01 through S05

To enable printing to printer channels C01-C12, set the runtime
configuration variable called “COBLPFORM” as described in
Appendix H in the ACUCOBOL-GT Appendices manual.

See Chapter 5, “IBM DOS/VS COBOL Conversions,” in Transitioning
to ACUCOBOL-GT for more information.

16. The following HP COBOL special names are supported by
ACUCOBOL-GT in the SPECIAL-NAMES paragraph if the “-Cp”
compiler option is used:

NO SPACE CONTROL
TOP

See Chapter 4, “HP COBOL Conversions,” in Transitioning to
ACUCOBOL-GT for more information.

General Rules - Screen Control Entry

In the following rules, the four elementary items belonging to the SCREEN
CONTROL group item are referenced by the names in this example:

01 SCREEN-CONTROL.

03 ACCEPT-CONTROL PIC O.

03 CONTROL-VALUE PIC 999.

03 CONTROL-HANDLE USAGE HANDLE .

03 CONTROL-ID PIC X(2) COMP-X.

1. The following statement allows an embedded procedure to control its
ACCEPT statement:

[SCREEN CONTROL 1S control-name]

For more information, see Section 5.9.6, “PROCEDURE Clause,” and
Book 1, Section 6.5.5, “Using Screen Section Embedded Procedures.”

2. Input and update fields in a Screen Section entry are given field
numbers.* The compiler computes the field number for any Screen
Section entry by examining all of the input and update fields in that

4-18 m Environment Division

entry’s level 01 group item. Each input and update field in a level 01
Screen Section entry is numbered sequentially, starting at one. For
example, consider the following Screen Section entry:

01 SCREEN-1.
03 LITERAL-1 VALUE "‘Field 1: ™
03 FIELD-1, PIC X(5) TO WS-1.
03 LITERAL-2 VALUE "Some data: ", LINE + 1.
03 DATA-1, PIC X(5) FROM Ws-2.
03 LITERAL-3 VALUE "Field 2: "_, LINE + 1.
03 FIELD-2, PIC X(5) USING WS-3.

This Screen Section entry has two input or update fields: FIELD-1 and
FIELD-2. In this case, FIELD-1 is field number 1 and FIELD-2 is field
number 2. Note that LITERAL-1, LITERAL-2, and DATA-1 do not
receive field numbers because they do not contain a TO or USING
phrase—DATA-1 is a display-only (FROM) field. The literals prompt
the end user for entries.

*Graphical controls in the Screen Section are also assigned field
numbers. The rules that govern how field numbers are assigned to
graphical controls are given in general rule 6 of the Format 2 Screen
Description, in section 5.9, “Screen Description Entry.”

3. Prior to executing an embedded procedure (see section 5.9.6), an
ACCEPT statement initializes the SCREEN CONTROL variable. It
sets ACCEPT-CONTROL depending on the reason for entry (if it is a
notify (“NTF-...”) event, ACCEPT-CONTROL is set to “1”; otherwise,
the default is “0”), and it sets CONTROL-VALUE to the field number
of the Screen Section entry that is executing the embedded procedure.

On entry to an embedded procedure, CONTROL-HANDLE contains the
handle of the current control, and the CONTROL-ID field contains its
ID. If the current Screen Section item (the one that names the embedded
procedure) is not a graphical control, CONTROL-HANDLE and
CONTROL-ID are set to NULL and “0”, respectively.

When the ACCEPT statement terminates, it sets ACCEPT-CONTROL
to 0 and sets CONTROL-VALUE to the field number of the last field to
have the cursor. This will be zero if the Screen Section entry contains no
fields. CONTROL-HANDLE and CONTROL-ID fields contain the

Configuration Section m 4-19

handle and ID of the graphical control that was active when the
ACCEPT terminated. If the ACCEPT terminated while in a textual (i.e.,
non-graphical) field, they are set to NULL and “0”, respectively.

When an after procedure or exception procedure returns control to its
ACCEPT statement, the value of SCREEN CONTROL determines
what happens next. By setting this value in your after or exception
procedure, you can cause the program to skip fields, continue
ACCEPTING data, or terminate the ACCEPT with or without an
exception. ACCEPT-CONTROL serves as a flag that is checked to
determine how to proceed; SCREEN-CONTROL provides a needed
value, as shown in this list:

a. If ACCEPT-CONTROL is 0, the ACCEPT statement continues
normally.

b. If ACCEPT-CONTROL is 1, the ACCEPT statement moves the
cursor to the field identified by the value of CONTROL-VALUE.
The ACCEPT statement then continues from there.

c. |If ACCEPT-CONTROL is 2, the ACCEPT statement terminates
normally. The value of CONTROL-VALUE determines the
termination value of the ACCEPT statement. You can determine
its value by examining CRT STATUS or by using the ACCEPT
FROM ESCAPE KEY verb.

d. If ACCEPT-CONTROL is 3, the ACCEPT statement terminates
with an exception, assuming that exceptions are allowed. The
value of CONTROL-VALUE sets the exception value of the
ACCEPT statement. You may use CRT STATUS or the ACCEPT
FROM ESCAPE KEY verb to determine the statement’s exception
value.

e. If ACCEPT-CONTROL is 4, control is transferred to the graphical
control whose ID matches CONTROL-ID. This works identically
to setting ACCEPT-CONTROL to “1”, except that the
CONTROL-ID field is used and the search is made using the
control’s ID instead of the field numbers.

f. If none of the preceding applies, the ACCEPT statement continues
normally.

If you set ACCEPT-CONTROL to 1, several special cases exist:

4-20 m Environment Division

a. If you set CONTROL-VALUE to zero, the ACCEPT statement
will remain in the current field.

b. If you set CONTROL-VALUE to a field number that does not
exist, the ACCEPT statement will terminate. In this case, the CRT
STATUS value for the ACCEPT statement will be zero for a
numeric CRT STATUS or “0”, “2”, x*00” for a group-item CRT
STATUS.

c. If you set CONTROL-VALUE to the field number of a protected
field, control will pass to the first unprotected field with a higher
field number. If no such field exists, the ACCEPT statement will
terminate as in case (b) above.

6. When a Screen Section ACCEPT statement executes, it examines the
value of SCREEN CONTROL. If the ACCEPT-CONTROL field is 1,
then the ACCEPT statement starts at the field identified by
CONTROL-VALUE. This overrides any initial field identified by the
CURSOR Special-Names entry. Note that this is usually easier than
using the CURSOR clause to identify a starting point in a Screen
Section ACCEPT. If the specified field does not exist (or is protected)
the cursor is placed at the numerically closest legal field. If two fields
are equally close, the one with the larger field number is used.

General Rules - Event Status Entry

EVENT-STATUS is used to identify which data item is to receive
information about screen events.

In the description below, the seven elementary items belonging to the
EVENT-STATUS group item are referenced by the names in this example:

01 EVENT-STATUS.
03 EVENT-TYPE PIC X(4) COMP-X.
03 EVENT-WINDOW-HANDLE USAGE HANDLE OF WINDOW.
03 EVENT-CONTROL-HANDLE USAGE HANDLE.
03 EVENT-CONTROL-ID PIC X(2) COMP-X.

03 EVENT-DATA-1 USAGE SIGNED-SHORT.
03 EVENT-DATA-2 USAGE SIGNED-LONG.
03 EVENT-ACTION PIC X COMP-X.

When a system event occurs during an ACCEPT statement, the
EVENT-STATUS data item is filled with the following information:

Configuration Section m 4-21

EVENT-TYPE

Holds a value that uniquely identifies the kind of event that occurred.
The valid types are described in Chapter 6 of Book 2, User Interface
Programming.

EVENT-WINDOW-HANDLE

Holds the handle of the floating window in which the event occurred.
If the event occurred in a control, this will be the handle of the floating
window that contains the control.

EVENT-CONTROL-HANDLE

Holds the handle of the control in which the event occurred. If the
event did not occur in a control, this item is set to NULL.

EVENT-CONTROL-ID

Holds the ID of the control in which the event occurred. IDs are
assigned by the application when each control is created. If the event
did not occur in a control, this item will have the value zero.

EVENT-DATA-1

Holds information about the event that is unique for each
EVENT-TYPE. For many events, this value will always be zero.

EVENT-DATA-2

Also holds information about the event that is unique for each
EVENT-TYPE. For many events, this value will always be zero.

4-22 m Environment Division

EVENT-ACTION

Holds a value that determines the continued handling of an event when
an event procedure terminates. On entry to the procedure,
EVENT-ACTION is set to zero. The following values are meaningful
on exit from the procedure (symbolic names in “acugui.def”):

EVENT-ACTION-NORMAL (value 0) The event is
processed normally, causing
the control to terminate for
terminating events.

EVENT-ACTION-TERMINAT (value 1) The event is

E processed normally, and then it
terminates the active control.
This action forces termination
of events that do not normally
terminate.

EVENT-ACTION-CONTINUE (value 2) The event is
processed normally, but it does
not terminate the active control,
even if it would ordinarily do
so.

EVENT-ACTION-IGNORE (value 3) The event is not
processed further, but it does
not terminate the active control.
We do not recommend this
action because it short-circuits
the runtime’s event handler.
Events receive a certain
amount of processing before
the event procedure is entered.
Ignoring an event does not
prevent this processing from
occurring.

Input-Output Section m 4-23

EVENT-ACTION-FAIL (value 4) This setting is used
in response to certain events to
indicate that a specific action
should be taken, usually to
prevent the event from taking
its normal action. Events that
use this setting state that they
do so in the event description,
along with a description of the
effects of setting it.

EVENT-ACTION-FAIL (value 7) The effect of this
-TERMINATE setting is exactly the same as
that of

EVENT-ACTION-FAIL with
the additional effect of
EVENT-ACTION-TERMINA
TE: after performing the “fail”
operation, the control
terminates with an exception
status of W-EVENT.

4.3 Input-Output Section

The INPUT-OUTPUT Section describes the 1/0 environment that the
program will be using. The header for this section is optional.

4.3.1 File-Control Paragraph

The FILE-CONTROL paragraph contains descriptions of the physical
aspects of the files the program uses.

General Format
[FILE-CONTROL. 1 { file-control-entry } ...

or
{ file-control-entry } ...

4-24 m Environment Division

File-control-entry has one of the following formats:

Format 1 - Sequential Files
SELECT [OPTIONAL] file-name

ASSIGN TO [DYNAMIC] [device] [Ffile-spec]
[EXTERNAL]

[[ORGANIZATION IS] [BINARY] SEQUENTIAL]
[RECORD]
[LINE]

[ACCESS MODE IS SEQUENTIAL]

[RESERVE {number} [ALTERNATE] [AREA 1]
{No 3} [AREAS]

[LOCK MODE IS {EXCLUSIVE}
{AUTOMATIC}
{MANUAL }

[RECORD DELIMITER IS [STANDARD-1]
[FILE STATUS 1S status-variable [status-variable-2]]

[PADDING CHARACTER IS pad-char] .

Format 2 - Relative Files
SELECT [OPTIONAL] file-name

ASSIGN TO [DYNAMIC] [device] [file-spec]
[EXTERNAL]

[ORGANIZATION IS] RELATIVE

[ACCESS MODE 1S

{ SEQUENTIAL [RELATIVE KEY IS rel-key 1 } 1

{ RANDOM [RELATIVE] KEY IS rel-key }
[ACTUAL]
{ DYNAMIC RELATIVE KEY IS rel-key }
[LOCK MODE 1S { EXCLUSIVE }

{ AUTOMATIC [multiple-option] }

Input-Output Section m 4-25

{ MANUAL [multiple-option] }

[RESERVE {number} [ALTERNATE] [AREA 1]
oo) [AREAS]

[FILE STATUS IS status-variable [status-variable-2]] .

See the multiple-option format at the end of the formats.

Format 3 - Indexed Files
SELECT [OPTIONAL] file-name

ASSIGN TO [DYNAMIC] [device] [file-spec]
[EXTERNAL]

[WITH {COMPRESSION} ...]
{ENCRYPTION }

[COMPRESSION CONTROL VALUE IS factor]
[ORGANIZATION 1S] INDEXED
[ACCESS MODE IS {SEQUENTIAL}]

{RANDOM }
{DYNAMIC }

[RECORD KEY IS key-name [= seg-name ...]
[WITH [NO] DUPLICATES 17 ...

[ALTERNATE RECORD KEY IS alt-name [= seg-name ...]
[WITH [NO] DUPLICATES 1] --.

[LOCK MODE 1S { EXCLUSIVE [WITH MASS-UPDATE] }
{ AUTOMATIC [multiple-option] }
{ MANUAL [multiple-option] }

[RESERVE {number} [ALTERNATE] [AREA 1]
Mo 3 [AREAS]

[FILE STATUS IS status-variable [status-variable-2]]

[COLLATING SEQUENCE IS alphabet-name] .

4-26 m Environment Division

Format 4 - Sort Files
SELECT file-name

ASSIGN TO [DYNAMIC] [device] [Ffile-spec]

[EXTERNAL]

[FILE STATUS IS status-variable [status-variable-2]] .

Note: multiple-option has the following format for both Format 2 and
Format 3.

WITH { { LOCK ON } [MULTIPLE] { RECORD } } [WITH ROLLBACK]

Syntax Rules

1.

{ ROLLBACK }

File-spec must be either a nonnumeric literal or the name of an
alphanumeric Working-Storage data item. See Book 1, section 6.1.3, for
information about creating Vision indexed files.

Device must be one of these words: INPUT, OUTPUT,
INPUT-OUTPUT, RANDOM, DISK, DISC, PRINT, PRINTER,
PRINTER-1, TAPE, CASSETTE, CARD-PUNCH, CARD-READER,
CONSOLE, MAGNETIC-TAPE, DISPLAY, KEYBOARD, SORT,
MERGE, SORT-MERGE or SORT-WORK. The last four may be used
only with sort files.

If DYNAMIC is specified, file-spec must be specified and must be the
name of a data item. This data item need not be defined in the
program, although it can be.

If EXTERNAL is specified, file-spec must be specified and must be a
user-defined COBOL word.

Status-variable must be the name of an alphanumeric (or USAGE
DISPLAY numeric) Working-Storage or Linkage data item with a size
of 2 characters. Status-variable-2 must be the name of a group item
that is 6 characters (this is not checked by the compiler).

Rel-key must name an unsigned integer data item. It must not be in the
record description entry for the same file.

Input-Output Section m 4-27

10.

11.

12.
13.

14.

15.

16.

17.

18.

Factor must be a numeric literal from zero to 100, inclusive.

The key of an indexed file may have any PICTURE and USAGE.
Regardless of the PICTURE and USAGE specified, the key is always
treated as an alphanumeric data item when the sort order of the file is
determined (the individual bytes are compared with the collating
sequence).

Seg-name must name a data item in the same file’s record description
entry. A seg-name may not be a group item that contains
variable-occurrence data items.

If seg-name is used to define a split RECORD KEY, then key-name is
a user-defined word. Otherwise, key-name must name a data item in
the same file’s record description entry. It may not be a group item
that contains variable-occurrence data items.

If seg-name is used to define a split ALTERNATE RECORD KEY,
then alt-name is a user-defined word. Otherwise, alt-name must name
a data item in the same file’s record description entry. It may not be a
group item that contains variable-occurrence data items.

Number must be an integer literal.

Alphabet-name is the name of an alphabet declared in the
Special-Names paragraph.

Pad-char must be either a single-character literal or a single-character
alphanumeric data item. When a PADDING CHARACTER is
specified, the last block of the file is padded with pad-char. When the
file is read, any final portion of a block that consists solely of padding
characters is skipped.

SELECT must be the first clause in a FILE-CONTROL entry. The
other clauses may follow in any order. The SELECT clause may
appear in Area A; all other clauses must appear in Area B.

Each file described in the Data Division must be specified exactly once
in the FILE-CONTROL paragraph.

Each file described by a SELECT clause must have exactly one
corresponding file description in the Data Division.

ORGANIZATION IS RECORD SEQUENTIAL is synonymous with
ORGANIZATION IS BINARY SEQUENTIAL.

4-28 m Environment Division

General Rules

1.

When the FILE STATUS clause is specified, a value will be moved into
status-variable after the execution of every statement that references the
corresponding file. This value indicates the status of the statement. (See
section 6.4.7, “1/O Status.”) Status-variable-2 is treated as commentary
by the compiler.

The ACCESS MODE clause specifies the order in which records are
read or written. If it is not specified, SEQUENTIAL is implied.

For sequential access, the records are accessed according to the
organization of the file:

« Sequential files - The sequence is the same as that established by the
execution of WRITE statements that created the file.

< Relative files - The sequence is the order of ascending relative
record numbers for the file’s existing records.

« Indexed files - The sequence is the order of ascending record key
values for the file’s current key of reference.

Random access indicates that the file will be accessed only by key
value.

Dynamic access indicates that the file will be accessed both randomly
and sequentially.

RELATIVE KEY results in record key numbers that are one-based.
ACTUAL KEY may be specified for RANDOM access mode and
when compiling version 8.1 and greater objects in IBM DOS/VS
("-cv") and HP3000 (*-cp™) compatibility modes. For such files, the
record key numbers will be zero-based. For example, if you have a
relative file with a fixed record length of 3 bytes and a relative file with
the following contents:

AAABBBCCC

the record keys for the different modes are:

RELATIVE ACTUAL
AAA: 1 0
BBB: 2 1
CCC: 3 2

Input-Output Section m 4-29

The ASSIGN clause specifies the association of the file to a storage
device. The rules for interpreting the ASSIGN clause are described in
Book 1, section 2.8. If the file-spec phrase is missing, then file-name
will be treated as an alphanumeric literal and substituted for it
(exception: rule 8.a below). In this case, file-name should conform to
the host operating system’s rules for file names. Note that the
ASSIGN clause is required even if both device and file-spec are
missing.

The device phrase of the ASSIGN clause is not required. If it is
specified, it can affect the processing of the file in a variety of ways. If
the file is not a sequential file, then the device phrase is ignored. If it
is a sequential file, then the following applies depending on the device
phrase used:

a. PRINT, PRINTER, PRINTER-1 - A sequential file marked with
one of these device phrases will be treated as a “print” file. Print
files may not be opened for INPUT or I/0. When records are
written to a print file, trailing spaces are first removed from the
record. Print files have printer carriage control information added
to them as specified by the WRITE statements that add records to
the file. If “PRINTER” or “PRINTER-1" is specified, and no
file-spec is specified, then the external file name is treated as
“PRINTER” or “PRINTER-1" (unless RM/COBOL compatibility
mode is being used, in which case rule 7 applies instead).
Normally, these names are translated at runtime to the name of the
system spooler. This is an exception to rule 7 above.

b. CARD-PUNCH, CARD-READER, CASSETTE, INPUT,
INPUT-OUTPUT, MAGNETIC-TAPE, OUTPUT - Any of
these device phrases indicates that trailing spaces should be
removed from records before they are added to the file. This will
have effect only if the file is a “line” sequential file. When records
are read from one of these files, the records are automatically
padded with spaces to reach the maximum record size. A file with
one of these designators may not be opened for 1/0.

c. DISPLAY, KEYBOARD - Causes the default file type to be
“line” sequential. You may override this by specifying the file
type explicitly in the ORGANIZATION clause. This rule is
provided for compatibility with ICOBOL, which uses this method
for specifying line sequential files.

4-30 m Environment Division

10.

11.

12.

d. RANDOM, DISK, DISC, TAPE, CONSOLE - Indicates no
additional processing. This is the same as if the device phrase
were omitted.

e. MERGE, SORT, SORT-MERGE, SORT-WORK - Also
indicates no additional processing. These device phrases may be
associated with a sort file only.

The word DYNAMIC in an ASSIGN phrase indicates that file-spec is
the name of a variable that contains the file’s name. Because this is the
normal meaning of file-spec when it refers to a variable, the word
DYNAMIC is largely commentary.

When DYNAMIC is specified, if file-spec refers to a variable that is
not otherwise defined, the compiler creates a Working-Storage variable
by that name that is PIC X(256). It is the program’s responsibility to
move a valid file name to this data item prior to opening the file.

The word EXTERNAL in an ASSIGN phrase indicates that the
COBOL word that makes up file-spec is the name of the file itself.
This name is processed first by ignoring any characters that appear
before the last hyphen in the word (including the hyphen itself). For
example:

ASSIGN TO EXTERNAL UT-S-MYFILE

results in “MYFILE” being used for the file name. In other COBOL
systems, this name is normally assigned to a specific file name using
environment variables. This kind of name mapping occurs
automatically under ACUCOBOL-GT. There is no special meaning
associated with ASSIGN phrases containing the EXTERNAL option.
Such files have name mapping applied through the environment just like
all other files.

Note: If neither DYNAMIC nor EXTERNAL is included in the
ASSIGN clause, you can use the “--fileAssign=" compiler option to
specify DYNAMIC or EXTERNAL at compile time. See Section
2.2.7,in Book 1, ACUCOBOL-GT User’s Guide.

The WITH COMPRESSION phrase of the ASSIGN clause specifies
that file record compression is desired. This phrase must be specified
before the ORGANIZATION IS INDEXED phrase. The Vision file

Input-Output Section m 4-31

13.

14,

15.

16.

system supports compression, but not all file systems do. The WITH
COMPRESSION phrase takes effect only when the file is initially
created or re-created via the OPEN statement. When no compression
factor is specified (see next paragraph), WITH COMPRESSION uses
the default compression factor (70).

A compression factor other than the default may be selected via the
COMPRESSION CONTROL VALUE IS clause. The factor must be a
numeric literal from zero (meaning no compression) to 100 (maximum
compression). A compression factor of 1 is equivalent to the default
compression.

The exact meaning of the compression factor depends upon the host file
system. See Book 1, section 6.1.3, for specifics about the Vision file
system.

The WITH ENCRYPTION phrase specifies that record encryption is
desired on the file. Encryption is currently available with the Vision
indexed file system only. The ENCRYPTION clause takes effect only
when the file is initially created or re-created via the OPEN statement.

The ORGANIZATION clause specifies the logical structure of the file.
This is established when a file is first created and may not be changed.
If it is absent, then SEQUENTIAL organization is implied. Records
stored in an ORGANIZATION IS RELATIVE file are uniquely
identified by record number. The relative record number of a given
record specifies the record’s ordinal position in the file. The first
record has a relative record number of one.

Records in an ORGANIZATION IS INDEXED file are uniquely
identified by the values in the record’s primary key.

The primary key is identified by the RECORD KEY clause. Records
are ordered in ascending collating sequence by the primary key. If the
WITH DUPLICATES phrase is present, the primary key may contain
duplicate values, if the indexed file system supports them. Vision
supports duplicate primary key values. If WITH DUPLICATES is
used with a file system that does not support them, when the file is
created via the OPEN statement a status of “OM” is returned, indicating
that the file was successfully created but that duplicate primary keys
are not supported. When WITH DUPLICATES is used with Vision

4-32 m Environment Division

17.

18.

19.

20.

and other file systems that support it, the rules that govern how
REWRITE and DELETE operations are handled are determined by the
file system. The rules for Vision are as follows:

a. If the last record locked via a READ statement is still locked and
it matches the primary key value specified in a REWRITE or
DELETE statement, that record is the record rewritten or deleted.

b. Otherwise, the first record with the matching key value is rewritten
or deleted.

For information about how HP 3000 KSAM handles REWRITE and
DELETE with duplicate primary keys, see Chapter 4, “HP COBOL
Conversions,” in Transitioning to ACUCOBOL-GT.

The WITH NO DUPLICATES phrase is commentary. By default,
duplicate primary key values are not allowed.

The ALTERNATE RECORD KEY clause specifies additional record
keys for an indexed file. If the WITH DUPLICATES phrase is present,
then these key values may contain duplicated values. Otherwise, each
key value must be unique for a given key.

You may specify the word “NO” in front of the word “DUPLICATES”
in a declaration of an alternate indexed file key. This is useful for
ICOBOL compatibility mode where, by default, alternate keys allow
duplicates.

Up to 16 seg-names may be specified in Vision Version 4 to indicate
that a primary or alternate key consists of non-contiguous data
elements. In Vision Version 3, up to six seg-names may be specified,
and in Version 2, only one seg-name may be specified. The key-name
or alt-name is then a user-defined word that can be used in READ and
START.

The OPTIONAL phrase, if specified, indicates that the file need not be
present when the program is run. The exact effects of this phrase are
detailed in the discussion of the OPEN Statement. Note that the “-Fp”
compile option causes all files to be treated as if the OPTIONAL
phrase is present.

The LOCK MODE clause specifies how file and record locking should
be handled for the file. Each mode has the following characteristics:

Input-Output Section m 4-33

AUTOMATIC Eachtime arecord is read from a file open for 1/0O, that

MANUAL

EXCLUSIVE

record is locked unless the WITH NO LOCK option is
used on the READ statement. Files open for INPUT
do not lock records.

Records read from a file with manual locking are
locked only if the WITH LOCK option is used on the
READ statement. Like automatic mode, files open for
INPUT do not lock records even if WITH LOCK is
specified.

Exclusive mode files are opened with a lock on the
entire file. No locking options may be specified on an
OPEN statement associated with an exclusive mode
file. Instead, files opened for INPUT are treated as if
they were opened with the ALLOWING READERS
phrase, and files opened for OUTPUT, I-O, or
EXTEND are treated as if they were opened with the
ALLOWING NO OTHERS phrase. If the WITH
MASS-UPDATE phrase is used, then the
MASS-UPDATE option is implied for each OPEN
(except for OPEN INPUT). Seethe OPEN Statement
for details on these options.

21. If the COLLATING SEQUENCE phrase is used, the alphabet-name is
the name of an alphabet declared in Special-Names. This alphabet can
be standard or can be a custom alphabet defined by the programmer to
allow special handling. For example, upper-case and lower-case letters
could be mapped together so that two keys that are alphabetically the
same (but differ in case) would be treated as the same letter. European
character sets can also be re-ordered in Special-Names (so that keys are
sorted alphabetically).

22.

If the LOCK ON MULTIPLE RECORDS phrase is used, then the
program may lock more than one record in the file at once. If the
MULTIPLE option is not used, then each I-O statement automatically
unlocks the currently locked record before executing. When the
MULTIPLE option is used, then record locks are released only when
an UNLOCK or a CLOSE statement is executed for the file. The
ROLLBACK clause is useful when you compile with “-FI”, which

4-34 m Environment Division

23.

24.

25.

26.

217.

enables single locking rules as the lock mode default. When the
ROLLBACK clause is used with this phrase, multiple locking rules are
enabled for the file, regardless of the compiler option used.

If the LOCK phrase is omitted, LOCK MODE IS AUTOMATIC is
implied, unless the “-Fm” compiler option is used, in which case
LOCK MODE IS MANUAL is implied. In ICOBOL compatibility
mode (“-Ci”), the default is LOCK MODE IS MANUAL WITH
MULTIPLE RECORDS.

The RECORD DELIMITER and RESERVE AREA clauses are treated
as commentary by the compiler.The RESERVE AREA clause is
treated as commentary by the compiler.

If the ROLLBACK clause is specified, then WITH LOCK ON
MULTIPLE RECORDS will automatically be in effect. However, if
you compile with the “-FI” option, then you must specify multiple
locking rules for the files that need them.

If the ROLLBACK clause is specified, the runtime will automatically
effect a START TRANSACTION before opening the file, and a
COMMIT after opening it. Thus, every OPEN of the file will
automatically be done within a transaction; the COBOL code need not
explicitly include the START TRANSACTION and COMMIT.

It is possible that a RECORDING MODE clause may appear in the
IBM DOS/VS COBOL “-Cv” compatibility mode and be ignored by
the ACUCOBOL-GT compiler. See Chapter 5, “IBM DOS/VS
COBOL Conversions,” in Transitioning to ACUCOBOL-GT for more
information.

4.3.2 1-O-Control Paragraph

The 1-O-CONTROL paragraph specifies input-output techniques to be used
for the program’s files.

General Format
1-0O-CONTROL

[APPLY {LOCK-HOLDING } ... ON {file} ...] ...

Input-Output Section m 4-35

Syntax Rules

1.

{PRINT-CONTROL}

[SAME [RECORD] AREA FOR {Ffile} ...] ...

[SORT]
[SORT-MERGE]

[MULTIPLE FILE TAPE CONTAINS

{ tape-file [POSITION pos 1 } --- 1] --- .

File and tape-file name a file described by a SELECT clause in the
FILE-CONTROL paragraph.

A file name cannot appear in more than one SAME RECORD AREA
clause.

If file is a sort file, one of the RECORD, SORT, or SORT-MERGE
options must be used in a SAME AREA clause.

SORT and SORT-MERGE are equivalent.

At least one file must be a sort file if the SORT or SORT-MERGE
option is used.

Pos must be an integer literal.

You may put APPLY clauses of the IBM DOS/VS COBOL type into
the 1-O-CONTROL paragraph, but only when the compiler is in the
IBM DOS/VS COBOL compatibility mode. The clauses of the
I-O-CONTROL paragraph may be arranged in any order, and the
existing APPLY clause may be used, regardless of the compiler mode.
See Chapter 5, “IBM DOS/VS COBOL Conversions,” in Transitioning
to ACUCOBOL-GT for more information.

General Rules

1.

The APPLY clause modifies various characteristics of each file.

a. If the PRINT-CONTROL option is specified, then the named file
must be a sequential file. This option causes the file to be treated
as a print file. This has the same effect as specifying “PRINT” in
the file’s ASSIGN clause.

4-36 m Environment Division

b. If the LOCK-HOLDING option is used, then record locks on the
file will not be automatically released by any I-O statement.
Instead, only the UNLOCK and CLOSE statements will release
any record locks held on the file. This option has the same effect
as the LOCK ON MULTIPLE RECORDS phrase in the file’s
SELECT.

2. The SAME AREA clause indicates that the compiler should share file
information areas for the named files. ACUCOBOL-GT automatically
applies the most efficient use of memory possible for file information
areas and treats this clause as commentary. In ICOBOL compatibility
mode, the SAME AREA clause is treated as a SAME RECORD AREA
clause (see below).

3. The SAME RECORD AREA clause indicates that the named files
should share the same memory area for their current logical records.

4. The SAME RECORD AREA clause is identical to an implicit
redefinition of the shared files’ record areas.

5. The SAME SORT AREA clause indicates that the same memory
should be used for each file. Because ACUCOBOL-GT dynamically
allocates memory to sort files as needed and then discards the memory
when finished, this phrase is treated as commentary by the compiler.

6. The MULTIPLE FILE TAPE clause is treated as commentary.

Data Division

Key Topics

Data STFUCTUIES ...c.viiieiiciec ettt st 5-2
[= 1= B A F= T PSR 5-10
Data DiviSion FOrmMat.........ccccovveeviiieeiesee e see e 5-21
[TR o] o RS 5-23
WORKING-STORAGE SECLIONccvvviiiirrirveesrrieieeeeeee e 5-34
LINKAGE SECLION....ciieieieicese ettt st sne s re e 5-35
Record Description ENtry ... 5-36
Yo 1] I3 4o o 5-89

Screen DesCription ENTrY......ccccvecvieeiieiiere s se e e 5-90

5-2 m Data Division

5.1 Data Structures

The Data Division describes the data used by the program in both physical
and logical terms.

COBOL data structures are defined and described in the following sections.

5.1.1 Record Description

All user-defined data used in a COBOL program belongs to one or more
logical records. A logical record is defined by a record description entry.
Logical records may correspond to actual disk records (by being defined in
the File Section), or they may simply be areas of computer memory used by
the program. A record description entry is itself composed of one or more
data description entries. Each data description entry defines one COBOL
data item.

Logical records can be divided into a hierarchy of individual data items.
Subdivision can continue for each of the record’s parts. The lowest level
subdivision of a record is the elementary data item. Elementary data items
are never subdivided. A logical record is either an elementary data item or a
set of elementary data items.

A group item is a piece of data that contains other subordinate data items.
These subordinate items may be either elementary data items or other group
items. The lowest level group item is always a sequence of one or more
elementary data items.

5.1.2 Level-Numbers

Level-numbers are used to describe the hierarchical organization of a record.
Level-numbers that describe this hierarchy range from 01 through 49.

The topmost data item is the record. It always has a level-number of 01.
Items that are included in the record have greater (although not necessarily
consecutive) level-numbers.

Data Structures m 5-3

All items subordinate to a group item must have level-numbers greater than
the group’s level-number. The end of a group item is delimited by the next
data description entry that has a level-number less than or equal to the
group’s level-number.

Four special level-numbers are used to specify special types of data. They
are never used in a hierarchical structure. Instead, they define the following
special types:

» Level-number 66 identifies a RENAMES item that regroups other data
items.

» Level-number 77 identifies an elementary data item in the
Working-Storage or Linkage sections. These are essentially identical to
a level 01 elementary data item. The level-number is used to emphasize
that the data item is not part of a hierarchy and cannot itself be
subdivided.

e Level-number 78 associates a value with the name of a constant.

» Level-number 88 identifies a condition-name and its values.

The following example shows how level-numbers define a record’s hierarchy
and shows how records, groups, and elementary items interact. The items are
indented to display the hierarchy. This is a recommended programming
practice but is not required by COBOL.

01 EMPLOYEE-RECORD. (record)
03 EMPLOYEE-KEY. (group)
05 DEPARTMENT-CODE (elementary)
05 EMPLOYEE-NUMBER (elementary)
03 EMPLOYEE-IDENTIFICATION. (group)
05 EMPLOYEE-NAME (elementary)
05 EMPLOYEE-ADDRESS. (group)
07 STREET-ADDRESS-1 (elementary)
07 STREET-ADDRESS-2 (elementary)
07 CITY (elementary)
07 STATE (elementary)
07 ZIP-CODE (elementary)
05 EMPLOYEE-RACE (elementary)
05 MARRIAGE-STATUS (elementary)
03 PAYROLL-INFORMATION. (group)
05 SALARY (elementary)
05 PAY-FREQUENCY (elementary)

05 DEDUCTION-CODE-1 (elementary)

5-4 m Data Division

05 DEDUCTION-CODE-2 (elementary)
05 SICK-ACCRUAL-RATE (elementary)
05 VACATION-ACCRUAL-RATE (elementary)

5.1.3 Classes of Data

Depending on how a data item is defined, it belongs to one of the five
following categories:

1. Alphabetic

2. Alphanumeric

3. Alphanumeric Edited
4. Numeric

5. Numeric Edited

These categories are further grouped into the following classes:

1. Alphabetic class: alphabetic
2. Numeric class: numeric

3. Alphanumeric class: alphanumeric, alphanumeric edited, numeric
edited

Every elementary item is classified into one of these classes and categories by
its PICTURE clause. Elementary items that do not have a PICTURE clause
are in the numeric category.

Group items always belong to the alphanumeric category regardless of the
categories of any elementary items they contain. A group item may be used
in any place an alphanumeric item is allowed.

5.1.4 Standard Alignment Rules

The standard alignment rules define how characters are positioned in a data
item when the item is receiving data. Positioning depends on the category of
the receiving item.

Data Structures m 5-5

1. For a numeric receiving item, the data is aligned by decimal point.
Truncation or zero fill occurs as necessary. If no decimal point is
explicitly stated, then the item is treated as if it had a decimal point after
its rightmost character.

2. For a numeric edited item, the data is aligned by decimal point with
zero fill or truncation as needed. Editing requirements can replace
leading zeros with some other symbol.

3. For alphabetic, alphanumeric, and alphanumeric edited items, the data
is aligned at the leftmost character position in the item. Space fill or
truncation occurs on the right as needed.

The JUSTIFIED clause can change the standard alignment rules. For details,
see the JUSTIFIED clause in section 5.7.1.12. The “--TruncANSI” compile
option alters the truncation rules for COMP-5 items. See Section 2.2.10.1 in
Book 1.

5.1.5 Table Handling

Tables of data are common components of business data processing
problems. You define tables of data items in COBOL by including the
OCCURS clause in their data description entries. This clause specifies that
the item is to be repeated as many times as stated. The item is considered to
be a table element, and its name and description apply to each repetition or
occurrence. Because each occurrence of a table element does not have a
unique data name assigned to it, you can refer to a desired occurrence only by
specifying the data-name of a table element, along with the occurrence
number of the desired element. The occurrence number is known as a
subscript.

The number of occurrences of a table element may be specified as fixed or
variable. Although the number of occurrences of a table may be variable, the
physical size of the table in computer memory is always fixed.

To define a one-dimensional table, use an OCCURS clause as part of the data
description of the table element. The OCCURS clause must not appear in the
description of group items that contain the table element. The following
example shows a one-dimensional table defined by the item
TABLE-ELEMENT.

5-6 m Data Division

01 TABLE-1.
03 TABLE-ELEMENT OCCURS 20 TIMES.
05 SUB-ELEMENT-1 ...
05 SUB-ELEMENT-2 ...

In the preceding example, the complete set of occurrences of
TABLE-ELEMENT has been assigned the name TABLE-1. However, you
need not give a group name to a table unless you want to refer to the complete
table as a unit. In the preceding example, TABLE-ELEMENT,
SUB-ELEMENT-1, and SUB-ELEMENT-2 are all repeated data items and
require subscripts.

Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table gives rise to a two-dimensional table. For
example:

01 TABLE-2.
03 BAKER OCCURS 20 TIMES.
05 CHARLIE ...
05 DOG OCCURS 5 TIMES ...

In the preceding example, DOG is a two-dimensional table; BAKER and
CHARLIE are both one-dimensional.

Repeat this pattern to form multi-dimensional tables. Tables may have no
more than 15 dimensions.

5.1.6 Large Data Handling

All COBOL data items may be larger than 64 KB in size, with some minor
limitations:

* A file's maximum record size is 64 MB, so no data item in the FILE
SECTION may exceed 64 MB.

* A data item with a size greater than 64 KB may not be given a VALUE
phrase.

Data items larger than 64 KB may be used with most verbs, and data items
larger than 64 KB may be reference modified.

Data Structures m 5-7

Note: Earlier versions of ACUCOBOL-GT have different limitations.
Refer to the appropriate version of your ACUCOBOL-GT documentation
for details.

5.1.7 File Types

ACUCOBOL-GT manages four types of file organization. These are:

1.

Sequential Files - are ordered by the historical order in which records
are written to the file.

Relative Files - contain records that are identified by their record
number, where the first record in the file is record number one.
Relative files are ordered by ascending record numbers.

Indexed Files - contain records that have one or more key fields.
Records in an indexed file are ordered by ascending values in these key
fields. Each key of an indexed file represents an ordered sequence by
which the records can be accessed. One of the key fields, known as the
primary key, must contain a unique value for each record and is used
to identify records uniquely.

Sort Files - are used only by the SORT, MERGE, RELEASE, and
RETURN verbs. These are used to sort and merge records.

There are also four record types. These are:

Fixed-length Records - these records are a constant size.

Variable-length Records - these records contain information about the
length of each record, which may vary.

Text Records - are sequential file records that contain text data. Text
files should generally contain only USAGE DISPLAY fields, because
the binary information contained in other types of fields may
inadvertently resemble line-length delimiters used by the host
computer system (e.g., carriage return or line-feed characters). Text
records may optionally have trailing spaces automatically removed
from them by the runtime system. This is determined by the device
type named in the file’s ASSIGN phrase.

5-8 m Data Division

Print Records - are text records that additionally contain printer
carriage control information. Only sequential files may be print files.
Print records have trailing blanks removed from them when they are
written to the file. This is done to improve printing performance for
printers that use serial communications. Unless otherwise noted, a
print file follows the same rules as a text file.

The organization of a file is determined by the file’s SELECT clause of the
Environment Division and its FD or SD clause of the Data Division. The
record type is determined by the first of the following rules that applies:

1.

If the file’s ASSIGN clause has the PRINT option, print records are
used.

If any WRITE statement that references the file contains the
ADVANCING phrase, print records are used.

If LINAGE is specified for the file, print records are used.
If PRINT-CONTROL is specified, print records are used.

If the file’s SELECT has the LINE SEQUENTIAL clause, text records
are used.

If the file’s device type is DISPLAY or KEYBOARD, text records are
used.

In RM/COBOL compatibility mode, if the file is sequential and “-Cb”
is not specified, text records are used.

If the file’s FD or SD contains a RECORD clause, variable-length
records are used if the IS VARYING IN SIZE phrase is used or if both
a minimum and maximum record size is specified. If only a single
record size is specified, then fixed-length records are used.

Note: The compiler has an internal restriction of at least 6 bytes for
SORT FILE records. If a record is shorter than that, the compiler
detects it and pads the record to 6 bytes. Note also that in versions
prior to 5.0, using SORT FILE with records shorter than 6 bytes would
cause crashes.

If multiple record layouts are declared for the file and these records are
not all the same size, variable-length records are used.

Data Structures m 5-9

10. If the “-Cf” flag is used, then any variable-length record is made

fixed-length.

11. If none of the preceding rules applies, then fixed-length records are

used.

5.1.8 Floating-Point Data

A floating-point item is a numeric data item that allows for a very wide range
of values. However, compared to other numeric data types in COBOL,
floating-point data is less accurate. Most computer languages use
floating-point to represent non-integer values. This makes floating-point a
good method for sharing non-integer data with these other languages.

Floating-point data items differ in several ways from normal numeric data
items:

Floating-point items are stored in a machine-dependent format. In
particular, they are stored in a format that is “native” to each machine.
There are many floating-point formats currently in use by different
machines, so floating-point data should not be considered portable.

Floating-point items do not have pictures associated with them. Instead,
floating-point items are either 4 or 8 bytes in size. The size of the item
determines the range of values it can hold.

The range of values that can be stored in a floating-point item is
machine-dependent.

Because floating-point items do not maintain accuracy very well, you should
limit their use. Some examples where floating-point is appropriate are:

You need to share non-integer data with another language such as C or
FORTRAN.

You need to hold very large or very small values that exceed the usual 18
digits available in COBOL.

You need to process existing data that contains floating-point values.

5-10 = Data Division

5.1.8.1 Using floating-point data

Generally speaking, you may use a floating-point data item anywhere that
you can use a non-integer data item. Data moved to or from a floating-point
item is converted to the appropriate format.

If you use a floating-point item in an arithmetic expression, then that
expression is computed by converting all the values to double-precision
floating-point and doing the arithmetic using the machine’s conventions for
double-precision math. The result is then converted to the type appropriate
for the destination.

5.2 Data Names

The programmer assigns data names to COBOL data items in order to refer
to those items in the program. Data names typically must be unique so that
the compiler can know which data item the programmer is referring to. Data
names that do not uniquely identify a data item may be made unique through
qualification and subscripting. The programmer may also create new data
names by reference modification. These three techniques are explained in
the next three subsections.

5.2.1 Qualification

Every user-defined name explicitly referenced in a COBOL program must be
uniquely defined in one of these ways:

1. No other name has the same spelling and hyphenation.
2. The name is unique within the context of a REDEFINES clause.

3. The name exists within a hierarchy of names, and reference to the
name can be made unique by mentioning one or more of the higher
level names in the hierarchy.

Data Names m 5-11

These higher-level names are called qualifiers. Identical user-defined names
may appear in a source program; however, uniqueness must then be
established through qualification for each user-defined name explicitly
referenced. All available qualifiers need not be referenced as long as
uniqueness is established.

General Format

Format 1

{data-name-1} { {OF} name-2 } ... [{OF} file-name]
{cond-name 3} {IN} {IN}

Format 2

{data-name-1} {OF} file-name
{cond-name } {IN}

Format 3
paragraph-name {OF} section-name

{IN}

Format 4
lib-name {OF} dir-name

{IN}

Format 5
LINAGE-COUNTER {OF} file-name
{IN}

Syntax Rules

1. For each non-unique user-defined name that is explicitly referenced,
uniqueness must be established through a sequence of qualifiers that
precludes any ambiguity.

2. A name may be qualified even though it does not need qualification.

3. IN and OF are equivalent.

5-12 m Data Division

In Format 1, each qualifier must be the name associated with a group
item to which the item being qualified is subordinate, or the name of a
condition-variable with which the condition-name being qualified is
associated. Qualifiers are specified in the order of successively more
inclusive levels in the hierarchy.

If the program contains explicit references to a paragraph-name, the
paragraph-name cannot appear more than once in the same section. A
paragraph-name need not be qualified in a reference from within the
same section that contains paragraph-name.

The LINAGE phrase of a file’s FD creates an implicit data item called
LINAGE-COUNTER. If more than one file in a program contains a
LINAGE phrase, then reference to a file’s LINAGE-COUNTER must
be qualified by the name of the file.

If both qualification and subscripting are used in a data reference, the
qualification is done first.

If both qualification and reference modification are used in a data
reference, the qualification is done first.

A Format 4 form of qualification is used with the COPY statement. It
is described in that section.

5.2.2 Subscripting

Subscripting is used when reference is made to an individual element of a
table.

General Format

{data-name } ({ index-val [{+} integer]} -..)
{condition-name} {-}

Syntax Rules

1.

Index-val must be either an integer literal, an integer elementary data
item, or an index name. It may be qualified.

Data-name and condition-name must be subordinate to an OCCURS
clause.

Data Names m 5-13

3. Integer must be an integer literal.

4. The number of subscripts must equal the number of OCCURS clauses
in the description of the table element being referenced. When more
than one subscript is required, they are written in the order of
successively less inclusive dimensions of the table.

5. If both qualification and subscripting of a data name are being used,
the qualification is done first.

6. If both subscripting and reference modification of a data name are
being used, the subscripting is done first.

General Rules

1. The value of the subscript must be a positive integer. The lowest
occurrence value is represented by the value “1”. Each successive
element of a table within a dimension is referenced by occurrence
numbers of 2, 3, 4, and so on. The highest permissible occurrence
number for any given dimension of a table is the maximum number of
occurrences of the item as specified by the associated OCCURS clause.

2. If integer is specified, the value of the subscript is determined by
adding or subtracting the integer from index-val. This modified value
is subject to all of the conditions of rule 1 above.

3. By default, it is not an error to reference a table element beyond the
last one in the table, but the results are undefined and may adversely
affect your program. In fact, this is the single most frequent cause of
“memory access violation” errors. Use the “-Za” compiler option to
cause an error message to appear whenever an out-of-bounds table
element is referenced. The error text is: “Index out of bounds.” This
error is an intermediate runtime error that can trigger the execution of
installed error procedures. See the entry for CBL_ERROR_PROC in
Book 4, Appendix I.

5.2.3 Reference Modification

Reference modification is a syntax for referencing a portion (substring) of a
data item. The reference defines a temporary, unique data item. Reference
modification may be used anywhere in the Procedure Division.

5-14 m Data Division

Note: This manual entry includes code examples and highlights for
first-time users following the General Rules section.

General Format
data-name (leftmost-position : [length])

Syntax Rules

1.
2.

Leftmost-position and length are arithmetic expressions.

Unless otherwise specified, reference modification is allowed
anywhere a data item of the class alphanumeric is permitted.

Data-name may be qualified or subscripted. Reference modification is
done after both qualification and subscripting.

General Rules

1.

Each character of the data item referenced by data-name is assigned an
ordinal number starting at one for the leftmost position and incrementing
by one for each character in the item.

Reference modification for an operand is evaluated as follows:

a. If subscripting is specified, the reference modification is evaluated
immediately after the evaluation of the subscripts.

b. If subscripting is not specified, the reference modification is
evaluated at the time subscripting would have been evaluated if
subscripts had been specified.

Reference modification creates a unique data item that is a subset of
data-name. This unique data item is defined as follows:

a. The evaluation of leftmost-position specifies the leftmost character
of the unique data item relative to the start of data-name.
Evaluation of leftmost-position must result in an integer greater
than zero and less than or equal to the number of characters
contained in data-name.

Data Names m 5-15

b. The evaluation of length specifies the size of the unique data item.
The evaluation of length must result in a positive integer. The
sum of leftmost-position and length must be less than or equal to
the number of characters contained in data-name, plus one. If
length is not specified, the unique data item extends through the
rightmost character of data-name.

The unique data item is considered an elementary data item without the
JUSTIFIED clause. It has the same class and category as data-name
except that categories numeric, numeric edited, and alphanumeric
edited are treated as class and category alphanumeric.

If the reference modification start or length parameter is out of range
for the item it references, a runtime error occurs. How the runtime
responds depends on the value of the WARNINGS configuration
variable (see Book 4, Appendix I). By default, the runtime attempts to
correct the error (see rule 6, below), and the warning message
“Reference modifier range error” is displayed or sent to the error file.
This error is an intermediate runtime error that can trigger the
execution of installed error procedures (see the entry for
CBL_ERROR_PROC in Book 4, Appendix I).

By default, the runtime silently corrects reference modification range
errors by applying the following rules:

a. A start reference less than 1 is treated as 1. For example, var(0:3)
is treated as var(1:3).

b. A length reference less than 0 is treated as 0. Moving a zero-byte
item is equivalent to moving spaces to the destination item. A
zero-byte destination is not affected by the move. Ina STRING
statement, a length of zero for a string source is treated as 1, not 0.

c. A start plus length reference that is past the end of the item is
treated as meaning to the end of the item. For example, if the var
is a PIC X(5) item, var(4:23) is treated as var(4:2).

The WARNINGS runtime configuration variable provides some control
over how the runtime handles reference modification range errors. See
the WARNINGS entry in Appendix H of Book 4.

5-16 m Data Division

Caution: Reference modification is allowed on source-item and dest-item of
a Format 1 MOVE statement. However, when reference modification is
used, source-item and dest-item should not reference the same item (or
memory location). See general rule 7 of the MOVE Statement in Chapter 6.

Code Examples

Reference modification is akin to substringing in other programming
languages. Reference modification is very useful for referencing a
component part of a composite string. For example, it might be used to
reference the area code digits of a 10-character string containing a phone
number (area code + seven digits):

01 PHONE-NUMBER PIC 9(10) VALUE 3017728134.
{---1

PHONE-NUMBER (1:3).

*The reference modification begins at position 1
*of string PHONE-NUMBER and has a length of 3.
*The reference modification value = 301"

For the following code examples, assume these data items:

01 ACCOUNT-CODE PIC X(20) VALUE "AB700648xSMITHxXCLA1".
01 ACCOUNT-NAME PIC X(6) VALUE ALL SPACES.
01 ACCT-CLASS-1 PIC X(4) VALUE "CLA1".

Code example 1:

MOVE ACCOUNT-CODE (10:6) TO ACCOUNT-NAME.

*This reference modification selects the
*characters that form the name portion of
*ACCOUNT-CODE. The reference starts at position
*10 and has a length of 6 characters.

*The ACCOUNT-CODE substring = "SMITHx"

Code example 2:

IF ACCOUNT-CODE (17:) = ACCT-CLASS-1 THEN
*When the reference modification does not
*include a length, the reference begins at the
*value specified and extends to the end of the
*data item.

*The ACCOUNT-CODE substring = "CLAl"

Data Names m 5-17

Highlights for firsttime users

1. Reference modification may be used anywhere in the program where an
alphanumeric data item may be referenced.

2. A reference modification does not create a persistent data item. Unless
the result of the reference modification is assigned to a compatible data
object, you can refer to the value of the reference modification later in
the program only by repeating the reference modification.

3. The reference-modified data item is treated as an alphanumeric field.

5.2.4 Condition-Name (Level 88)

Level-number 88 designates a condition-name entry. Level 88s are used to
assign names to values at execution time. Thus, a condition-name is not the
name of an item, but rather the name of a value. A level 88 doesn’t reserve
any storage area.

Each level 88 must be associated with a data item and must immediately
follow that item in the Data Division. The associated data item is called a
condition-variable. A level 88 may name a specific value, a set of values, or
arange of values. For example:

05 student-status pic 9(2).-
88 kindergarten value 0.
88 elementary values are 1 through 6.
88 jr-high values 7, 8, 9.
88 high-school values are 10 through 12.

Condition-names are often used in the Procedure Division as a test (usually
with an IF statement) to specify conditions under which control will pass to
another part of the program. They can make sentences much more
meaningful to the reader. For example, if you’ve defined the
condition-names shown above, then you could write this code:

ifT kindergarten
perform assign-half-day-schedule.

Without the condition-name, you would have to write:

if student-status = "0"
perform assign-half-day-schedule.

5-18 m Data Division

If you defined this condition-name:

07 priority-code pic x.
88 highest-priority value "d".

then you could write this easily understood code:

if highest-priority perform fill-order-at-once.

Without the condition-name, you would have to write:
if priority-code = "d" perform fill-order-at-once.

Thus, real benefit comes from choosing a meaningful name for each value or
set of values.

Setting a condition-name to TRUE is equivalent to moving any one of its
values to the associated condition-variable. For example, note how the SET
verb is used below to establish the truth of the condition:
05 end-of-shipping-file pic x value "n".

88 no-more-shipments value "y".

perform process-daily-arrivals
until no-more-shipments.

read shipping-file
at end set no-more-shipments to true.

The same result could have been achieved with this code:

read shipping-file
at end move "y" to end-of-shipping-file.

If explicitly referenced, a condition-name must be unique or must be made
unique through qualification or subscripting. If qualification is used to make
a condition-name unique, the associated condition-variable may be used as
the first qualifier. The hierarchy of names associated with the
condition-variable may be used in further qualification. If referencesto a
condition-variable require subscripting, then references to the associated
condition-name also require the same combination of subscripting.

Data Names m 5-19

For more information about condition-names, see section 5.7.1, “Data
Description Entry,” section 5.7.1.14, “VALUE clause,” and the SET
Statement section.

5.2.5 RECORD-POSITION

The RECORD-POSITION construct allows you to refer to a data item by
creating a numeric literal representing the location of the data item within a
record.

General Format
RECORD-POSITION OF data-name

Syntax Rules

1. Data-name must refer to a data item with a level number of 01 through
50 or 77. Data-name may be qualified, but may not be subscripted or
reference modified.

2. The RECORD-POSITION phrase is allowed anywhere a numeric
literal data item may appear.

General Rules

1. The RECORD-POSITION phrase creates a numeric literal whose value
is the character position of data-name within its record, as follows:

a. If data-name is a level 01 or 77 data item, then the value is “1”.

b. Otherwise, the value is the character position of the start of
data-name within its containing level 01 group item. Character
positions start numbering at “1”.

2. If data-name refers to a table item, the value is computed from the first
occurrence of that item.

3. The format of the resulting literal is the same as a PIC 9(9) DISPLAY
data item.

5-20 = Data Division

Code Examples

Code example 1:

If you assume the following group item:

01 GROUP-1.
03 ELEM-1 PIC X(10).
03 ELEM-2 PIC X(10).
03 GROUP-2.
05 ELEM-3
OCCURS 10 TIMES PIC X(10).
05 ELEM-4 PIC X(10).

the following procedure division code:

DISPLAY RECORD-POSITION OF ELEM-1, CONVERT, LEFT
DISPLAY RECORD-POSITION OF ELEM-2, CONVERT, LEFT
DISPLAY RECORD-POSITION OF ELEM-3, CONVERT, LEFT
DISPLAY RECORD-POSITION OF ELEM-4, CONVERT, LEFT

would produce the following output:

1
11
21
121

Code example 2:

The RECORD-POSITION construct is particularly useful with the
DATA-COLUMNS property of the list box and grid controls. For example,
in a list box control, you might have a line that reads:

data-columns - (1, 13, 24, 33)

changing the line to:

data-columns = (
record-position of data-key-1,
record-position of data-city,
record-position of data-state,
record-position of data-amount)

Data Division Format m 5-21

makes it easier to understand. With this syntax, changes to the record format
do not need to be echoed in the data-columns format, so this is also easier to
maintain.

5.3 Data Division Format

General Format
[DATA DIVISION.]

[FILE SECTION.
[file-desc { record-description } ...] ...]
[sort-desc { record-description } ... 1]

[WORKING-STORAGE SECTION.
[record-description] ...]

[LINKAGE SECTION.
[record-description] ... 1]

[SCREEN SECTION.
[screen-description] ...]

Syntax Rules

1. The division header is optional for the Data Division.

2. The FILE SECTION header is optional.
General Rules

The Data Division entries are described in the following sections.
1. The File Section defines the structure of data files.

2. A file-desc entry and its associated record-descriptions specify the
format, layout, and sizes of a file’s logical records. A sort-desc entry
specifies the layout and sizes of a sort file’s logical records.

3. For each file described by a SELECT in the Environment Division, a
corresponding file-desc or sort-desc must be made in the Data
Division.

5-22 m Data Division

The Working-Storage Section describes the records and independent
data items that are not part of data files but are developed and
processed by the program internally.

Each record-description in Working Storage describes the format,
layout, and size of an internal data item.

Data items in Working Storage can be given initial values (see
VALUE clause). Items that are not explicitly initialized are set to
spaces, or the value specified with the “-Dv” compile option, when the
program is in its initial state. This may or may not be a valid value for
the data item.

The Linkage Section is used only in a called program. It defines the
data available from the calling program. Both the called and calling
program can use this data.

To access data described in the Linkage Section, the called program
may specify a USING phrase in its Procedure Division header. An
alternative way to do this is through the SET ADDRESS OF statement.
In the example below, note that the USING phrase has been omitted
from the Procedure Division header.

LINKAGE SECTION.
01 my-var pic x(30).

PROCEDURE DIVISION.
main-logic.
if switch-1
set address of my-var to msg-1
else
set address of my-var to msg-2
end-if.
display my-var.

See section 6.6 for additional information on the SET Statement.

The Screen Section describes the format, layout, and behavior of
console screen items. These screen items are used with the ACCEPT
and DISPLAY verbs to perform single- and multi-field console 1/0.

File Section m 5-23

5.4 File Section

The File Section describes the record-level information about the files that
the program uses.

General Format
FILE SECTION.

[file-desc { record-description } ...] ...
[sort-desc { record-description } ...]

General Rules

1. The File Section header is followed by a series of file-desc entries and
sort-desc entries.

2. A file-desc entry consists of a level indicator (FD), a file name, and a
series of independent clauses. These clauses specify various logical
and physical record attributes. They are described fully in the
following sections.

3. A sort-desc entry consists of a level indicator (SD), a file name, and a
series of independent clauses. These clauses specify various record
attributes, which are described fully in the following sections.

5.4.1 File Description Entry

A file description entry describes the physical structure, identification, and
record names for a program’s data files.

General Format
FD file-name [1S EXTERNAL] [IS GLOBAL]

[BLOCK CONTAINS [min TO] max {RECORDS 3}]
{CHARACTERS}

[RECORD { CONTAINS [min TO] max CHARACTERS }]
{ IS VARYING IN SIZE [FROM min 17}
{ [TO max] CHARACTERS }
{ [DEPENDING ON depend] }

5-24 m Data Division

[LABEL { RECORD IS } {STANDARD}]
{ RECORDS ARE } {OMITTED }

[VALUE OF LABEL IS label-lit]

[VALUE OF { FILE-ID } IS id-name]
{ID }

[CODE-SET IS alphabet]

[DATA { RECORD IS } {record-name} ...]
{ RECORDS ARE }

[LINAGE IS page-size LINES
[WITH FOOTING AT footing-line]
[LINES AT TOP top-lines]

[LINES AT BOTTOM bottom-lines]] -

Syntax Rules

1. File-name must refer to a file name contained in a SELECT clause in the
Environment Division.

2. The clause IS EXTERNAL must immediately follow the file-name in
each program that declares the file.

3. An external file must have the same file-name in each COBOL
program that declares it, and must be described the same way in each
program.

4. The other clauses following file-name can appear in any order.

5. One or more record description entries must follow a file description
entry.

6. The LINAGE phrase may be specified only for an FD associated with
a sequential file.

File Section m 5-25

General Rule

The file description entry clauses are described separately in the following
sections.

5.4.2 Sort File Description Entry
A sort file description entry describes the physical structure for a sort file.

General Format

SD file-name

[RECORD { CONTAINS [min TO] max CHARACTERS }]
{ IS VARYING IN SIZE [FROM min] }
{ [TO max] CHARACTERS }
{ [DEPENDING ON depend 1 }

[DATA { RECORD IS } {record-name} ...]
{ RECORDS ARE }

[VALUE OF FILE-ID IS id-name]

Syntax Rules

1. File-name must refer to a file name contained in a SELECT clause in the
Environment Division. That SELECT clause may contain only ASSIGN
and FILE STATUS clauses. However, a PASSWORD clause,
TRACK-AREA clause, PROCESSING MODE clause, RECORDING
MODE clause, FILE-LIMIT clause, VALUE OF clause, and APPLY
clause may appear when the compiler is in the IBM DOS/VS COBOL
compatibility mode. These phrases are scanned, but otherwise they are
ignored.

2. The clauses following file-name may appear in any order.

3. ld-name must be either a non-numeric literal or the name of an
alphanumeric data item in Working Storage. The value of this name is
used as the file’s external name.

4. If afile-spec is specified in the file’s ASSIGN clause, id-name must be
identical to file-spec.

5-26 m Data Division

5. One or more record description entries must follow a sort file
description entry.

General Rules

1. No /O statement may refer to a file described by a sort file description
entry. Only the SORT and MERGE statements may refer to file-name.

2. The sort file description entry clauses are described in the following
sections.

Note: The compiler has an internal restriction of at least 6 bytes for SORT
FILE records. If arecord is shorter than that, the compiler detects it and
pads the record to 6 bytes.

5.4.3 IS EXTERNAL Clause

The IS EXTERNAL clause specifies that the file is shared by more than one
program in a run unit.

General Format
1S EXTERNAL

Syntax Rules

1. The IS EXTERNAL declaration must be made in all the programs that
access the file or item externally. The file must be declared external by
each program in the run unit that will share a file’s current state and
record area.

2. The COBOL name of the file must be the same for all the programs
that declare the file.

3. Each program that declares an external file must describe the file the
same way.

File Section m 5-27

General Rules

1. If one program opens the file, it is open for all programs that declare the
same file.

2. If one program moves the record pointer, the record pointer moves in
all the programs that declare the file.

3. Any data placed in the record area is accessible by all the programs
that declare the file.

5.4.4 BLOCK CONTAINS Clause
The BLOCK CONTAINS clause specifies the size of a physical record.
General Format

BLOCK CONTAINS [min-block TO] max-block {RECORDS }
{CHARACTERS}

Syntax Rules

1. Min-block is an integer literal that specifies the minimum block size.

2. Max-block is an integer literal that specifies the maximum block size.

General Rules

1. The BLOCK CONTAINS clause specifies the physical record size.

2. The min-block specification is treated as commentary by the compiler.
However, if RM/COBOL compatibility mode is being used, and
min-block is specified, then the entire BLOCK CONTAINS clause is
ignored by the compiler.

3. The compiler ignores the BLOCK CONTAINS clause for relative files.

4. For Vision files, max-block should be a multiple of 512 up to 8192 (the
value is the block size in bytes). For Version 3 and 2 files, max-block
should not exceed 1024. If it does, Vision automatically reduces it to
1024.

5. For sequential files, all input and output is done by blocks.

5-28 m Data Division

10.

The RECORDS phrase specifies the physical record size in terms of
logical records. If the file contains variable-length records, then the
exact block size will vary from machine to machine depending on how
variable-length records are stored on the host machine. The record size
used to compute the block size is equal to the largest logical record.

The CHARACTERS phrase specifies the physical record size in terms
of characters.

The final block of a file may contain fewer characters than specified by
the BLOCK CONTAINS clause.

If no BLOCK CONTAINS clause is specified, the block size is set to
one record. For files with variable-length records, the block size is set
to the current record size (not necessarily the largest).

Records read from a file with variable-length records are internally
blocked by ACUCOBOL-GT if no BLOCK CONTAINS clause is
specified. This allows for efficient processing of these files on input
while still allowing for line-by-line control over an output device (such
as a printer).

Book 1, User’s Guide, section 6.1, has more details on the handling of file
blocking.

5.4.5 RECORD Clause

The RECORD clause describes the size of the logical records.

General Format
RECORD { CONTAINS [min-rec TO] max-rec CHARACTERS }

Syntax Rules

1.
2.

{ IS VARYING IN SIZE [FROM min-rec] }
{ [TO max-rec] CHARACTERS }
{ [DEPENDING ON depend] }

Min-rec is an integer literal that defines the smallest record size.

Max-rec is an integer literal that defines the largest record size.

File Section m 5-29

3.

Depend is a numeric data item described in Working Storage or in
Linkage. Depend cannot be in the File Section.

General Rules

1.

This clause is never required, because the minimum and maximum
record sizes of a file are computed by the compiler from the file’s record
descriptions. However, you may want to use this clause to indicate
variable-length records.

Note: The compiler has an internal restriction of at least 6 bytes for
SORT FILE records. If a record is shorter than that, the compiler
detects it and pads the record to 6 bytes.

No record description for a file can contain more characters than
specified by max-rec or fewer characters than specified by min-rec.

If min-rec is omitted, it is set to be equal to max-rec.

If the VARYING phrase is used, then the file has variable-length
records. If the CONTAINS phrase is used, and both min-rec and
max-rec are specified, the file will contain variable-length records. If
the CONTAINS phrase is used and only max-rec is specified, then the
file will contain fixed-length records.

If the DEPENDING ON phrase is used, the size of the record written
or rewritten to the file is set according to the value of depend. When a
record is read from the file, depend is set to the size of the record
found. Using the DEPENDING ON phrase automatically implies that
the file has variable-length records.

Note: Other source statements may take precedence over the RECORD
clause in determining the record type. The complete rules for determining
a file’s record type are described in section 5.1.7, “File Types.”

5-30 = Data Division

5.4.6 LABEL RECORDS Clause

The LABEL RECORDS clause describes how file labels should be processed
by the compiler.

General Format

LABEL { RECORD IS } {STANDARD}
{ RECORDS ARE } {OMITTED }

General Rule

This clause is ignored by the compiler.

5.4.7 VALUE OF LABEL Clause

This clause describes the values contained in a file’s label records.

General Format
[VALUE OF LABEL IS label-lit]

Syntax Rule
Label-lit must be a non-numeric literal.
General Rule

This clause is ignored by the compiler.

5.4.8 VALUE OF FILE-ID Clause

The VALUE OF FILE-ID clause specifies the file’s external name. (This
can also be accomplished by the file’s ASSIGN clause. The VALUE OF
FILE-ID clause is provided for compatibility with other COBOL compilers.)

General Format
[VALUE OF { FILE-ID } IS id-name]

File Section m 5-31

Syntax Rules

1. ld-name is either a non-numeric literal or the name of an alphanumeric
data item in Working-Storage. The value of this name is used as the
file’s external name.

2. If afile-spec is specified in the file’s ASSIGN clause, id-name must be
identical to file-spec.

5.4.9 CODE-SET Clause

The CODE-SET clause specifies the alphabet to use for a sequential file.

General Format
CODE-SET IS alphabet

Syntax Rules

1. Alphabet is the name of an alphabet declared in the SPECIAL-NAMES
section.

2. The CODE-SET clause may be associated only with a sequential file.

3. If the CODE-SET clause is used, then only USAGE DISPLAY items
may appear in the file’s record description entry. Furthermore, every
signed numeric field must have a SIGN IS SEPARATE clause.

General Rule
The CODE-SET clause associates a character set with a sequential file. If the

character set is not the native character set, then a translation to the native set
is also implied.

5.4.10 DATA RECORDS Clause

This clause names the record descriptions used by the file.

5-32 m Data Division

General Format

DATA { RECORD IS } {record-name} ...
{ RECORDS ARE}

Syntax Rule

Record-name must name level 01 record descriptions associated with the
file.

General Rule

This clause is never required, because the compiler can determine which
records are associated with each file.

5.4.11 LINAGE Clause

The LINAGE clause is used to specify the number of lines on a logical page,
and optionally provide margin information.

General Format
LINAGE 1S page-lines LINES

[WITH FOOTING AT footing-line]
[LINES AT TOP top-lines]

[LINES AT BOTTOM bottom-lines]

Syntax Rules

1. Page-linesisanumeric literal or numeric data item whose value must be
a positive integer. It specifies the number of lines on the logical page.
Page-lines may be qualified.

2. Footing-line is a positive integer or numeric data item. Its values must
be greater than zero and less than or equal to page-lines. It specifies
the line number where the footing area begins on the page.
Footing-line may be qualified.

File Section m 5-33

4.

Top-lines and bottom-lines are integers or numeric data items. Their
values must be greater than or equal to zero. They represent the
numbers of lines in the top and bottom margins, respectively.
Top-lines and bottom-lines may be qualified.

The LINAGE clause may be specified for a sequential file only.

General Rules

1.

The LINAGE clause specifies the number of lines on a logical page. The
total page size is the sum of page-lines, top-lines, and bottom-lines. If
the TOP or BOTTOM phrase is omitted, the corresponding value is
treated as zero. Note that footing-line is not added to the page size.

Page-lines specifies the size of the page body. This is the area of the
logical page in which the program can write or space lines.

Each logical page follows the preceding logical page with no additional
spacing. ACUCOBOL-GT does not provide physical page ejects
(form-feeds) when the LINAGE clause is used. Device positioning
occurs by line spacing rather than by page ejection.

The footing area is composed of the area between footing-line and
page-lines, inclusive. The footing area causes a page-overflow
condition when written in. 1f the FOOTING phrase is omitted, there is
no footing area.

Evaluation of the logical page size occurs as follows:

a. When the file is opened with the OUTPUT or EXTEND phrases,
the LINAGE clause values are evaluated and applied to the first
logical page. The device is assumed to be positioned at the
beginning of the logical page.

b. When the program executes a WRITE statement with the
ADVANCING PAGE option, or when a page-overflow condition
occurs, the LINAGE clause values are evaluated and applied to the
next logical page.

For each file that has a LINAGE clause associated with it, the compiler
creates an implicit data item called LINAGE-COUNTER associated

with that file. 1f more than one file in the program specifies a LINAGE
clause, reference to a LINAGE-COUNTER will have to be qualified by

5-34 m Data Division

the appropriate file name. The LINAGE-COUNTER is an elementary
numeric data item that contains the same number of digits as
page-lines.

7. At any time, the value of LINAGE-COUNTER is the line number in
the current page body at which the device is positioned.

8. LINAGE-COUNTER may be treated as a normal numeric data item,
except that it may never be explicitly modified by the program.

9. The LINAGE-COUNTER is set to one when the file is opened.

10. Every WRITE statement that refers to a file with a LINAGE clause
affects the associated LINAGE-COUNTER in the following manner:

a. If the WRITE statement has the ADVANCING PAGE phrase, the
LINAGE-COUNTER is set to one.

b. If the WRITE statement has the ADVANCING LINES phrase, the
LINAGE-COUNTER is incremented by the value in the
ADVANCING phrase.

c. If the WRITE statement does not have an ADVANCING phrase,
the LINAGE-COUNTER is incremented by one.

5.5 WORKING-STORAGE Section

The Working-Storage Section is used to define data items local to the
program that do not reside in files.

General Format
WORKING-STORAGE SECTION.

[record-description] ...

General Rules

1. Storage level 01, 77, and 78 data descriptions in Working-Storage must
be unique since they cannot be qualified.

LINKAGE Section m 5-35

Subordinate data names need not be unique if they can be made unique
through qualification.

Unless given a value by a VALUE clause, each data item defined in
Working-Storage is initialized to spaces or the value specified with the
“-Dv” compile option.

Level 01 and 77 data items in Working-Storage may be declared to be
external, which means they are shared by more than one program.

Each program of a run unit that declares an external data item may access
that item. Any change to the item made by one program is automatically
seen by all the other programs. External data items may be shared
between COBOL and C programs.

5.6 LINKAGE Section

The Linkage Section is used to define data items that are passed from a
calling program.

General Format
LINKAGE SECTION.

[record-description] ...

General Rules

1.

Each level 01 and 77 data item described in Linkage must be uniquely
named.

Subordinate data hames need not be unique if they can be made unique
through qualification.

Each level 01 and 77 data item declared in Linkage should be named in
a USING phrase of the Procedure Division header. Data items that are
REDEFINES of other data items should not be named, however.

There is a limit of 255 level 01 Linkage data items per program. There
is no limit for the number of subordinate items allowed for each of
these level 01 items.

5-36 m Data Division

Note: There are two runtime configuration variables that relate to linkage
items: CHECK_USING for specifying paramater size-matching testing,
and OPTIMIZE_INDIVIDUAL_LINKAGE that perform address
optimizations on each Linkage item individually.

5.7 Record Description Entry

A record description entry describes the name, size, and format of a COBOL
logical record or data item.

General Format
{ data-description-entry } ...

Syntax Rule

The first data description entry of a record must have a level-number of 01 or
77 and start in Area A.

General Rules

1. Any data description entry that is not further subdivided is called an
elementary item. A record itself may consist of an elementary item
consisting of a single level 01 data description entry. A non-elementary
entry is called a group item.

2. An elementary data item that is not part of a larger record must have a
level-number of 01 or 77.

3. A group item that is not part of an enclosing group item must have a
level-number of 01.

5.7.1 Data Description Entry

A data description entry specifies the attributes of one data item.

Record Description Entry m 5-37

General Format

Format 1

level-number [data-name]
[FILLER 1

[REDEFINES prev-data-name]

[1S EXTERNAL 1
[1S GLOBAL 1
[1S SPECIAL-NAMES ~ {CURSOR 31

{CRT STATUS }
{CHART STATUS }
{SCREEN CONTROL}
{EVENT STATUS }

[IS EXTERNAL-FORM [IDENTIFIED BY template-file-name] 1]
[IS IDENTIFIED BY external-name 1

[{PICTURE} IS picture-string]
{PIC }

[[USAGE IS] usage-type]

[[SIGN 1S] {LEADING } [SEPARATE CHARACTER]]
{TRAILING}

[OCCURS
{ table-size TIMES }
{ min TO max TIMES DEPENDING ON dep-item }

[{ASCENDING } KEY IS {key-name} ...] ...
{DESCENDING}

[INDEXED BY {index-name} ...]]

[{SYNCHRONIZED} [LEFT]]

{SYNC ¥ [RIGHT]
[{JUSTIFIED} RIGHT]
{usT 3}

[BLANK WHEN ZERO]

5-38 m Data Division

[VALUE IS value-lit] .

Format 2
66 new-name RENAMES name-start [{THRU } name-end] .

{THROUGH}

Format 3
78 user-name VALUE IS {literal-1} [{+} literal-2] .

{NEXT F I
&}
{/}

Format 4
88 cond-name {VALUE IS } { low [{THRU 3} high] } ...

Syntax Rules

1.
2.

{VALUES ARE} {THROUGH}

[WHEN SET TO FALSE false-val] .

Level-number in Format 1 can be any number from 01 through 49, or 77.
Data description clauses may appear in any order, with two exceptions:

a. The optional data-name or FILLER clause must immediately
follow the level-number.

b. The optional REDEFINES clause must immediately follow the
data-name or FILLER clause.

Only level 01 and level 77 Working Storage data items may be
declared EXTERNAL. Each program that declares an external data
item must use the same name for that item, and the item must occupy
the same number of bytes. External data items may not have a
VALUE phrase.

The phrase 1S GLOBAL is accepted by the compiler as a commentary.

Template-file-name and external-name are alphanumeric literals or
unqualified data names. If a data name is used, it must refer to an
unambiguous data item.

Record Description Entry m 5-39

6. Format 1 data description entries that specify a PICTURE clause, or a
USAGE clause that allows a PICTURE clause, are elementary items.
All other Format 1 entries are group items.

7. There must be a PICTURE clause for all Format 1 elementary items
except those that specify a USAGE clause that does not allow a
PICTURE clause (for details, see section 5.7.1.8, “USAGE clause”).

8. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO clauses can appear only in a record description for an
elementary item.

9. A level 78 entry associates a value with the name of a constant.
User-name names the constant, and literal may be any literal.

10. Each cond-name requires a separate Format 4 entry. The level 88
entry associates a set of values with cond-name. All cond-name
entries for a data item must immediately follow that data item’s record
description.

11. A cond-name can be associated with any data item except the
following:

a. another cond-name
b. alevel 66 or 78 data item

c. agroup item that contains items with JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY)
clauses.

d. an index data item

General Rule

5.7.1.1

The individual clauses are described in the following sections.

Level-number

The level-number of a data item shows the hierarchy of that data item within
its logical record. Itis also used to denote individual data items and condition
names.

5-40 m Data Division

Syntax Rules

1.

Data description entries subordinate to an FD entry must have
level-numbers with the values 01 through 49, 66, 78, or 88.

Data description entries in Working-Storage may have level-numbers
with the values 01 through 49, 66, 77, 78, or 88.

Data description entries in Linkage may have level-numbers with the
values 01 through 49, 66, 77, 78, or 88.

General Rules

The level-number 01 indicates the first entry in a record description.

Each data description entry in a record description can be subdivided
into multiple data description entries, each having the same
level-number. This level-number must be greater than the
level-number of the subdivided entry, but less than 50. These
level-numbers do not have to be successive. Thus you construct a
record hierarchy of data items by using level-numbers.

An elementary data item may not be immediately followed by a data
item with a higher level-number (except for levels 66, 77, 78, and 88).

Multiple level 01 entries subordinate to a file description entry
represent implicit redefinitions of the same area.

Level-number 66 may be used to identify only RENAMES entries
(Format 2 data description entry).

Level-number 77 identifies a non-contiguous data item entry.
Level-number 77 entries may not have subordinate data description
entries except for level 88 items.

A level 78 entry associates a value with the name of a constant. The
name of the constant can be used anywhere the corresponding literal
can be used.

You may use a level 78 named constant as a repeat count in a
PICTURE string. This means that, in a PICTURE string, you may
substitute a level 78 for a number in parentheses. In the following
example, DATA-1 and DATA-2 are both the same size:

78 LENG-20 VALUE 20.

Record Description Entry m 5-41

01 DATA-1 PIC X(20).
01 DATA-2 PIC X(LENG-20).

The PICTURE string that results from the substitution of the level 78 for
its value must be legal. Use this in programs when several data items
must be the same size and you want to be able to easily change the size
in the future.

Level-number 88 defines a condition name. It can be used only in a
Format 4 data description entry.

5.7.1.2 The data-name or FILLER clause

The data-name clause specifies the name of the data area.

General Format

[data-name]
[FILLER]

Syntax Rules

1.

2.
3.

The data-name or FILLER clause must appear immediately after the
level-number in a data description entry.

Data-name is a user-defined word.

A FILLER data item may not be declared EXTERNAL.

General Rules

1.

If there is no data-name or FILLER clause, the FILLER clause is
implied.

The FILLER clause names a data item that the program cannot
explicitly refer to.

The FILLER clause can name a data item that is the object of a level
88 condition name.

5-42 m Data Division

5.7.1.3 REDEFINES clause

The REDEFINES clause allows the same computer memory area to be
described by different data items. ACUCOBOL-GT extends ANSI-85
COBOL by allowing a REDEFINES phrase to reference an item that is itself
a redefinition of an area.

General Format

level-number [data-name] REDEFINES prev-data-name
[FILLER]

Syntax Rules

1. The level-number, data-name, and FILLER phrases in the General
Format are not actually part of the REDEFINE clause. They are
included for clarity.

2. The level-numbers of the subject of a REDEFINES clause and
prev-data-name must be the same. They may not be 66 or 88.

3. REDEFINES is allowed in a level 01 entry in the File Section, but it
will generate a warning message.

4. The number of character positions described by prev-data-name need
not be the same as the number of character positions in the subject of
the REDEFINES clause. The compiler generates a warning, however,
if the number of character positions is greater in the subject of the
REDEFINES clause than in prev-data-name and the level-number of
the two data items is not 01 or 77 (this case is not allowed under ANSI
COBOL).

5. The data item being redefined may be qualified, but any qualification
specified is ignored.

Example: 01 MY-FILLER REDEFINES THIS-FIELD OF
THIS-GROUP.

The phrase in the example compiles, but the qualification “OF
THIS-GROUP” is ignored.

6. Several data items can redefine the same memory area.

Record Description Entry m 5-43

No entry with a level-number lower than that of prev-data-name can
occur between the data description entry for prev-data-name and the
redefinition.

All entries redefining the storage area of a data item must immediately
follow the entries describing that data item. No intervening entries that
define additional storage may appear.

The IS EXTERNAL clause may not be used with the FILLER or
REDEFINES clauses.

General Rules

1.

Storage allocation for the redefining data item starts at the location of
prev-data-name.

Storage allocation continues until it defines the number of character
positions described by the redefining entry.

Prev-data-name may contain the OCCURS clause, although this is not
compatible with ANSI COBOL. If such a situation exists, the compiler
will return a “caution” warning indicating a non-ANSI construct.
Cautions are shown only when you compile with the “-a” option.
When you REDEFINE a data item with an OCCURS clause, the
redefining item starts at the same memory location as the first
occurrence of the redefined item.

In large model programs, certain REDEFINES could cause VALUE
clauses to be lost. This happens when the VALUEsS are set in a data
item that is not a large data item, and then that data item is redefined as
a large data item. When that occurs, the compiler detects the situation
and issues a warning message:

Warning: Large redefines of a regular variable with a
value: desc2 redefines descl

When you see this warning message, you should modify your COBOL
program to add FILLER to the first data item in order to make it a large
data item. For example, the following code:

01 small-group-item.
03 small-data-item pic x(100) value "this is a test".

01 large-group-item redefines small-group-item.
03 free-form-text pic x(100) occurs 1000 times.

5-44 m Data Division

will compile, but the value of small-data-item will be spaces when the
program starts. To work around this, add:

03 TFiller pic x(65000).

to the small-group-item after the small-data-item. The resulting code
should look like this:

01 small-group-item.
03 small-data-item pic x(100) value "this is a test".
03 filler pic x(65000) .

5.7.1.4 |S EXTERNAL clause

The IS EXTERNAL clause declares that a data item is shared by two or more
programs.

General Format
[1S EXTERNAL]

Syntax Rules

1.

Only level 01 and 77 data items in Working-Storage may be declared to
be external.

Each program that declares an external data item must use the same
name for that item, and the item must occupy the same number of
bytes.

External data items may not have a VALUE phrase.

The IS EXTERNAL clause may not be used with the REDEFINES
clause.

General Rules

1.

The phrase IS EXTERNAL must be included in the data description of
the item in each program that accesses the item externally. Each
program of a run unit that declares an external data item may access that
item. Any change to the item made by one program is automatically
seen by all the other programs. External data items may be shared
between both COBOL and C programs.

Record Description Entry m 5-45

2. An external data item belongs to the run unit, not to any of the
programs that are part of the run unit. This means that an external data
item is allocated for the duration of the run, regardless of the action of
CANCEL verbs.

The one exception to this rule is external data items that are also C data
items. These belong to the runtime system itself, not to the run unit. The
distinction is that you can initiate another run unit with the CALL RUN
verb, but this does not initiate another runtime system. In this case, you
get new copies of the COBOL-only external data items, but keep the
same data items that are shared with C programs.

3. Instructions for declaring a C data item external can be found in the file
“direct.c” supplied with the runtime system. External data items may
not have a VALUE phrase. They are initialized to binary zeros
(NULL) by the runtime.

5.7.1.5 IS SPECIAL-NAMES clause

The IS SPECIAL-NAMES clause allows you to identify select
Special-Names directly in the Data Division.

General Format

[1S SPECIAL-NAMES {CURSOR }
{CRT STATUS }
{CHART STATUS }
{SCREEN CONTROL}
{EVENT STATUS }

]

Syntax Rule

The syntax is identical to declaring data-name in Special-Names with the
indicated phrase. See section 4.2.3.

General Rule

Only one data item can be declared for each Special-Names type. Items
identified in the IS SPECIAL-NAMES phrase cannot appear in the
Special-Names paragraph of the Environment Division. If there is a
corresponding item, the declaration must be identical.

5-46 m Data Division

5.7.1.6

The advantage of the IS SPECIAL-NAMES syntax over naming the items in
Special-Names is that a single COPY library can be used to include all of
your commonly used Special-Names items. For example, you might have a
COPY library that reads:

* Declare commonly used screen handling items

01 SCREEN-CONTROL IS SPECIAL-NAMES SCREEN CONTROL.
03 ACCEPT-CONTROL PIC 9.
03 CONTROL-VALUE PIC 999.

01 CURSOR-POSITION IS SPECIAL-NAMES CURSOR.
03 CURSOR-ROW PIC 999.
03 CURSOR-COL PIC 999.

77 CRT-STATUS 1S SPECIAL-NAMES CRT STATUS PIC 9(5).

IS EXTERNAL-FORM clause

The IS EXTERNAL-FORM clause associates a group item with HyperText
Markup Language (HTML) data using the Common Gateway Interface
(CGl) specification. It allows you to define input and output records for
HTML forms and is useful when your COBOL code is part of an
Internet-based application.

General Format

[IS EXTERNAL-FORM [IDENTIFIED BY template-file-name]]
[IS IDENTIFIED BY external-name]

Syntax Rule

Template-file-name and external-name are alphanumeric literals or
unqualified data names. If a data name is used, it must refer to an
unambiguous data item.

General Rules

1. The EXTERNAL-FORM clause associates a group item with HTML
data using the Common Gateway Interface (CGI) specification. It
allows you to define input and output records for HTML forms. The

Record Description Entry m 5-47

EXTERNAL-FORM clause affects the way ACCEPT and DISPLAY
process the data item. It does not put any restrictions on the way that the
data item may be used in your program.

An EXTERNAL-FORM data item is called an “output form” if the
IDENTIFIED BY clause is used in the description of the group item.
This clause associates the data item with an HTML template file. If
the IDENTIFIED BY clause is omitted from the group item, the
EXTERNAL-FORM data item is called an “input form”.

For “input forms,” the IDENTIFIED BY clause establishes an
association between an elementary data item and a CGl variable. The
value of external-name is the name of the CGI variable. If the
IDENTIFIED BY phrase is omitted, then data item’s own name
(data-name) is used as the name of the CGI variable. If both the
IDENTIFIED BY phrase and data-name are omitted, then the data
item has no corresponding CGlI variable.

CGl variables are case-sensitive. The runtime matches CGI names
according to their case. However, if a CGI variable is not found using
a case-sensitive match, then the runtime tries a case-insensitive match.
Note that data-name is always treated as if it were upper case
regardless of the case used in the COBOL source. The case of the
value specified by the IDENTIFIED BY phrase is preserved.

The ACCEPT verb treats input forms and output forms in the same
manner. ACCEPT sets the value of each elementary item, in order, to
the value of its associated CGI variable. The CGI data is retrieved
from the program’s standard input. ACCEPT automatically decodes
and translates the CGI input data before moving it to the elementary
data item. The value of each CGI variable is converted to the
appropriate COBOL data type when it is moved. If the CGI variable is
empty or does not exist, ACCEPT sets the value of numeric data items
to zero, and nonnumeric data items to spaces.

To receive a CGl variable that is repeated (this occurs when multiple
items have been selected in a “choose many” list), you should use an
elementary data item that is part of a table. Each occurrence of the
data item receives one of the repeated values. The first occurrence
receives the first repeated CGI item; the second occurrence receives the
second repeated item; and so forth. Occurrences that do not
correspond to repeated CGI items are set to zero if the data item is
numeric, or spaces otherwise.

5-48 m Data Division

10.

Data items are matched to CGI variables immediately before the
particular CGI data item is retrieved. Thus it is possible for a form to
have CGI variable names supplied by the CGI input itself. Consider:

01 MY-FORM IS EXTERNAL-FORM
03 CGI-VAR1 PIC X(20) IDENTIFIED BY "Name'.
03 CGI-VAR2 PIC X(50) IDENTIFIED BY CGI-VAR1.

In this example, an ACCEPT MY-FORM statement would first locate
the CGlI variable called “Name” and move its value to CGI-VARL. It
would then locate a CGlI variable identified by that value and move the
corresponding value to CGI-VAR2. Note that, for this to work, you must
specify CGI-VAR1 before CGI-VAR2 in MY-FORM, because
ACCEPT updates the elementary data items in order.

The DISPLAY verb treats input and output forms differently. For
output forms, DISPLAY merges the data contained in the elementary
items into the associated HTML template file and sends the result to
the standard output stream in conformance with the CGI specification.
To do this, DISPLAY scans the HTML template file for data names
delineated by two percentage signs on either side (i.e.
%%data-name%%). It then replaces those data names with the
contents of the associated elementary items from the output form,
stripping trailing spaces. The maximum length of a single line in the
template file is 256 bytes. There is virtually no limit to the length of a
single HTML output line. No conversion is performed on the output
form items before they are merged with the HTML template file.

When an input form is specified in a DISPLAY statement, the names
and values of each elementary item are sent to the standard output
stream in HTML format. One line is generated for each elementary
item. The line consists of the name of the item followed by “ = “,
followed by the first 100 bytes of the item’s value. This can be useful
when you are testing and debugging your CGI program.

Template-file-name specifies the name of the HTML template file.
You can specify a series of directories for locating HTML template
files. To do this, use the HTML_TEMPLATE_PREFIX configuration
variable. This variable is similar to FILE_PREFIX and
CODE_PREFIX. It specifies a series of one or more directories to be
searched for the desired HTML template file. The directories are
specified as a sequence of space-delimited prefixes to be applied to the

Record Description Entry m 5-49

11.

12.

13.

14.

file name. All directories in the sequence must be valid names. The
current directory can be indicated by a period (regardless of the host
operating system).

You can omit the suffix if it is either “.html” or “.htm”. If the suffix is
omitted or is something other than “.html” or “.htm”, DISPLAY first
appends “.html” to the specified file name and tries to open it. If that
fails, DISPLAY appends “.htm” to the file name and tries to open it. If
that fails, DISPLAY tries to open the file exactly as specified. If these
attempts fail, the following error message is sent to the standard output
stream in HTML format:

Can"t open HTML template "template-file-name"

When the Web Server executes your CGI program, the current working
directory depends on the configuration of the specific Web Server that
is running. In many cases it is the same as the Web Server’s “root”
directory. As part of the CGI specification, when the Web Server
executes your CGI program, it sets an environment variable called
PATH_TRANSLATED to the directory containing your CGI program.
You may want to use this information to locate your HTML template
files.

For example, if your template files are in the same directory as your CGI
programs, then set the HTML_TEMPLATE_PREFIX configuration
variable to the value of PATH_TRANSLATED as follows:

01 CGI-DIRECTORY PIC X(100).

ACCEPT CGI-DIRECTORY FROM ENVIRONMENT "'PATH_TRANSLATED"
SET CONFIGURATION "HTML_TEMPLATE_PREFIX"™ TO
CGI-DIRECTORY.

The output from a CGI program must begin with a “response header”.
DISPLAY automatically generates a “Content-Type” response header
when template-file-name specifies a local file (i.e., not a URL - see
rule #15 below).

You may specify the EXTERNAL-FORM clause for an item that has
no subordinate items. This is useful for displaying static Web pages.
To do this, specify the name of the static Web page in
template-file-name. For example, if you have a Web page called
“webpagel.html”, add the following lines to your COBOL program:

5-50 m Data Division

15.

16.

17.

01 WEB-PAGE-1 1S EXTERNAL-FORM,
IDENTIFIED BY "'webpagel™.

DISPLAY WEB-PAGE-1.

You may also specify a complete URL in template-file-name. In this
case, DISPLAY generates a “Location” response header that contains
the URL. This header specifies that the data you’re returning is a
pointer to another location. To determine whether template-file-name
is a URL, DISPLAY scans it for the string “://”. DISPLAY does not
apply HTML_TEMPLATE_PREFIX when template-file-name is a
URL. For example, if your program determines that the information
the user has requested is on another Web server, and its URL is “http:/
/www.theinfo.com”, add the following lines to your COBOL program:

01 THE-INFO-URL IS EXTERNAL-FORM
IDENTIFIED BY "http://www.theinfo.com"

DISPLAY THE-INFO-URL.

The length of the URL must not exceed 256 bytes. Only one response
header is sent to the standard output stream. Your CGI program should
exitimmediately after sending a location header (i.e., after displaying an
external form identified by a URL).

You may use as many HTML template files as you like in a single
program. A common way to use multiple HTML template files is to
have three output forms: a header, body, and footer. Each of these has
a corresponding HTML template file. You first display the header
form, then move each row of data to the body form and display it, and
finally display the footer form.

Data items that do not have EXTERNAL-FORM specified are treated
as regular data items by ACCEPT and DISPLAY, even if they are
subordinate to an external form. For example:

01 MY-FORM IS EXTERNAL-FORM.
03 CGI-VARL PIC X(10)
03 CGI-VAR2 PIC 9(5).

Using this data structure, an ACCEPT of MY-FORM would fill in
CGI-VARL1 and CGI-VAR2 with CGI data. An ACCEPT of CGI-VAR1
would simply get data from the user just as it does for any regular data
item.

Record Description Entry m 5-51

5.7.1.7 PICTURE clause

The PICTURE clause describes the general characteristics and editing
formats of an elementary item.

General Format

{PICTURE} IS picture-string
{PIC }

Syntax Rules

1.
2.

A PICTURE clause can appear for elementary items only.
The maximum size of the picture-string is 100 characters.

A PICTURE clause is required for every elementary data item except
for those items with a USAGE clause that disallows a PICTURE, or
those items that are the subject of a RENAMES clause. A PICTURE
clause is prohibited for these items.

PIC and PICTURE may be used interchangeably.

A picture is invalid if it specifies more than 31 digits to the left of the
decimal point or more than 32 digits to the right of the decimal point,
including assumed zero digits represented by “P” and floating insertion
positions that may hold digits. If a picture exceeds these scaling
limitations, a compile-time error message is produced.

General Rules

The PICTURE clause defines a data item as belonging to one of five
categories and determines what the item can contain. The five categories are:

Alphabetic

Numeric
Alphanumeric
Alphanumeric Edited

Numeric Edited

5-52 m Data Division

Alphabetic:

1.

An item is alphabetic when its picture-string consists solely of “A”
symbols.

An alphabetic item may contain only one or more alphabetic
characters.

Note: The alphabetic declaration show’s the programmer’s intent to store
only alphabetic data, however the system does not provide any checks to
ensure compliance.

Numeric:

1.

An item is numeric when its picture-string contains only the symbols
“9” “P” “S” and “V”. The number of digit positions described by

picture-string must range from 1 to 18 inclusive. This increases to 31
digit positions if 31-digit support (-Dd31 compiler option) is in effect.

If unsigned, its contents must be one or more numeric characters. If
signed, then the item may also contain a “+” or “-” (or other
representation of the sign--see section 5.7.1.9, “SIGN clause™).

The numeric category of the PICTURE clause includes an external
floating-point data item, which is defined by a picture that strongly
resembles a floating-point numeric literal. For more information about
External Floating-Point, see section 5.5 in Transitioning to
ACUCOBOL-GT.

Alphanumeric:

1.

An item is alphanumeric when its picture-string consists solely of the

symbols “A”, “X”, and “9”. A picture-string containing all “A” or all

“9” symbols is not alphanumeric. When used in an alphanumeric item,
the “A” and “9” symbols are treated as if they were “X” symbols.

Its contents may contain one or more characters in the computer’s
character set.

Record Description Entry m 5-53

Alphanumeric edited:

1.

An item is alphanumeric edited when its picture-string contains certain
combinations of the symbols “A”, “X”, “9”, “B”, “0”, and “/”. The
picture-string must contain at least one “A” or “X” symbol and at least
one “B”, “0”, or “/” symbol.

Its contents may contain two or more characters in the computer’s
character set.

Numeric edited:

1.

An item is numeric edited when its picture-string contains certain
combinations of the symbols “B”, “/”, “P”, “V”, “Z2”, “0”, “9”, comma,
period, “*”, “+” “-” “CR”, “DB”, and the currency symbol. The
number of digit positions that can be represented by the picture-string
must range between 1 and 18 inclusive. This increases to 31 digit
positions if 31-digit support (-Dd31) is in effect. The picture-string must
contain at least one “0”, “B”, “/”, “Z”, “*”, “+”, comma, period, “-”,
“CR”, “DB”, or currency symbol.

The content of each character position must be consistent with the
corresponding PICTURE symbol.

All types:

1.

Some PICTURE symbols represent character positions and some do not.
A data item’s size is determined by adding up all the symbols that
represent character positions.

A picture-string may contain repeat counts for its symbols. You
denote this by placing the repeat count in parentheses immediately
after the symbol that is being repeated. For example, “X(4)” and
“XXXX” are equivalent PICTURE strings.

Only one “S” may appear in a PICTURE string, and it must be the
leftmost character. Only one of the following symbols may appear in a
PICTURE string: “V” or the period character. It may appear only
once. At least one of the symbols “A”, “X”, “Z”, “9”, or “*” or at least
two occurrences of the symbols “+”, “-”, or the currency symbol must
be present in a PICTURE string.

5-54 m Data Division

The PICTURE symbols and their functions are the following:

A Represents a character position that can contain only an
alphabetic character. It is counted in the size of an item. An
alphabetic character is any character “A” through “Z”, “a”
through “z”, or a space.

B Represents a character position where a space will be
inserted. It is counted in the size of an item.

E A delimiter directly preceding the (signed or unsigned)
exponent part of an External Floating-Point notation. The
exponent is always exactly two digits long, so the last two
characters of the picture must be “99”. This delimiter is
counted in the size of an item.

P This symbol is used to specify an assumed scaling position
in a number. The “P” character is not counted in the size of
the data item. Instead, each “P” represents a scaling of the
data item by a power of ten. “P” elements can appear only as
a contiguous string of “P”s in either the leftmost or rightmost
digit positions of a picture-string. If the “V” character is
used, it must be to the left of all leading “P”’s or to the right
of all trailing “P”s. The assumed decimal point for the item
is located at the point where the “V” character may be
placed. For example, the PICTURE string “9P” is a
one-digit item that can have numeric values of “10”, “20”, ...,
“90”, and a PICTURE string of “PPP9” is a one-digit item
that can have numeric values of “0.0001” though “0.0009”.
The “.” character may not be specified in the same
picture-string as a “P” character. When a data item is
treated as a numeric value, each “P” position acts as if it were
a digit position that contained a zero. When a data item is
not treated as a numeric value, then its “P” positions are
ignored.

Record Description Entry m 5-55

S

Indicates the presence of an operational sign for a numeric
item. It does not specify the sign representation or position.
Only one “S” may appear in a PICTURE string, and it must
be the leftmost character. It does not count in the size of the
data item unless the SIGN IS SEPARATE clause is also
specified.

Note that the PICTURE definition for a PIC X(n) COMP-5
cannot be signed.

Specifies the location of an assumed decimal point. It may
appear only once ina PICTURE string. It does not represent
a character position and is not counted in the size of the data
item.

Represents a character position that can contain any
character from the computer’s character set. It is counted in
the size of an item.

Represents a leading digit position that is replaced by a space
when its value and the digit positions to its left are all zero.
It is counted in the size of an item.

Represents a digit position which is counted in the size of an
item.

Represents a digit position where a zero will be inserted. It
is counted in the size of an item.

Represents a character position where a slash will be
inserted. It is counted in the size of an item.

The comma character represents a character position where a
comma will be inserted. It counts in the size of an item.

The period character represents a character position where a
decimal point will be inserted. It also implies an operational
decimal point for alignment purposes. It counts in the size of
an item. Note that the functions of comma and period are
exchanged if the DECIMAL-POINT IS COMMA clause is
stated in the program’s SPECIAL-NAMES paragraph.

Represent editing sign control symbols. These can occur
more than once. Each counts in the size of an item.

5-56 m Data Division

CR

DB

Editing Rules

1.

Represents an editing sign control symbol. It may be used
only once on the rightmost side of the PICTURE string. It
adds two to the size of a data item.

Represents an editing sign control symbol. It may be used
only once on the rightmost side of the PICTURE string. It
adds two to the size of a data item.

Represents a leading digit that is replaced by asterisks when
its value and all of the digits to its left are zero. It is counted
in the size of an item.

Represents a character position into which the currency
symbol is inserted. It is counted toward the size of an item.
Note that the dollar sign is the default currency symbol. It
may be changed by the CURRENCY clause of the
SPECIAL-NAMES paragraph.

The two methods of editing

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement.

The four types of insertion editing:

a.
b.
c.

d.

Simple insertion
Special insertion
Fixed insertion

Floating insertion

The two types of suppression and replacement editing:

a.

b.

Zero suppression and replacement with spaces

Zero suppression and replacement with asterisks

Types of editing allowed:

Record Description Entry m 5-57

The type of editing that may be performed on an item is dependent on the
category of that item. No editing may be performed on alphabetic,
numeric, or alphanumeric items. Simple insertion of types “0”, “B”,
and “/” may be performed on alphanumeric edited types. All forms of
editing are allowed on numeric edited items.

Floating insertion, zero suppression, and the PICTURE clause

Floating insertion and zero suppression and replacement are mutually
exclusive in a PICTURE clause. Only one type of zero suppression and
replacement may be used in a PICTURE clause.

Simple Insertion Editing

The comma, “B”, “0”, and “/” are used as simple insertion characters.
The insertion characters represent positions in an item where those
characters will be inserted. If the comma is the last symbol in a
PICTURE clause, the PICTURE clause must be the last clause in its data
description entry, and the clause must be immediately followed by a
period.

Special Insertion Editing

The period is used as an insertion character, as it is in simple insertion.
In addition to being used as an insertion character, it also represents the
operational decimal point of the item. The period may not appear in the
same PICTURE clause as the “V” symbol. If the period is the last
symbol in the PICTURE clause, then the PICTURE clause must be the
last clause in its data description entry, and the clause must be
immediately followed by a period.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols “+”, “-”,
“CR”, and “DB” are the insertion characters. Only one currency symbol
and only one of the editing sign control symbols can be used in a given
PICTURE clause. The symbols “CR” and “DB”, when used, must
appear as the rightmost symbols in the PICTURE string. The symbol
“+” or “-”, when used, must either be the leftmost or rightmost character
position to be counted in the size of the item. The currency symbol must
be the leftmost character except that it may be preceded by either a “+”

or “-” symbol.

5-58 m Data Division

Fixed insertion editing results in the insertion character’s occupying the
same character position in the edited item as it occupied in the PICTURE
string. Editing sign control symbols produce the following results
depending on the value of the data item:

Editing Symbol Zero or Positive Negative
+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols “+” and “-” are
the floating insertion characters. They are mutually exclusive in a
PICTURE clause. You indicate floating insertion by using a string of at
least two of the floating insertion characters. This string may contain
any of the simple insertion characters or have the simple insertion
characters immediately to the right. These simple insertion characters
are part of the floating string.

The leftmost character of the floating insertion string represents the
leftmost limit of the floating symbols in the data item. The rightmost
character represents the rightmost limit. The second floating character
from the left represents the leftmost limit of the numeric data that can be
stored in the data item. Non-zero numeric data may replace all the
characters at or to the right of this limit.

In a PICTURE string, there are only two ways of representing floating
insertion editing. One way is to represent any or all of the leading
numeric character positions on the left of the decimal point by the
insertion character. The other way is to represent all of the numeric
character positions by the insertion character.

If the insertion character positions are only to the left of the decimal
point, the result is that a single floating insertion character will be placed
into the character position immediately preceding either the decimal

Record Description Entry m 5-59

10.

point or the first non-zero digit in the data represented by the insertion
symbol string, whichever is leftmost. The character positions preceding
the insertion character are replaced by spaces.

If all numeric character positions in the PICTURE string are represented
by the insertion character, the results depend on the value of the data. If
the value is zero, the entire data item will contain spaces. If the value is
not zero, then the results are the same as when the insertion character is
only to the left of the decimal point.

The character inserted for the “+” symbol is “+” if the value is zero or
positive and “-” if it is negative. The character inserted for the “-”
symbol is “-” if the value is negative and space otherwise.

Zero Suppression and Replacement Editing

The suppression of leading zeros in numeric character positions is
indicated by the use of the “Z” and “*” symbols. These symbols are
mutually exclusive in a PICTURE clause. Ifa “Z” is used, the
replacement character is a space. If “*” is used, the replacement
character is an asterisk.

You indicate zero suppression and replacement by using a string of one
or more of the allowable symbols to represent leading numeric character
positions which are to be replaced when the associated character position
in the data contains a leading zero. Any of the simple insertion
characters embedded in the string of symbols or to the immediate right
of this string are part of the string.

In a PICTURE string, there are only two ways of representing zero
suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression
symbols. The other is to represent all of the numeric character positions
by suppression symbols.

If the suppression symbols appear only to the left of the decimal point,
any leading zero in the data that corresponds to a symbol in the
suppression string is replaced by the replacement character.

If all numeric positions in the PICTURE string are represented by
suppression symbols and the value of the data is not zero, the result is the
same as if the suppression characters were only to the left of the decimal

5-60 = Data Division

57.1.8

point. If the value is zero and the suppression symbol is “Z”, the entire
data item is set to spaces. If the suppression symbol is “*” instead, the
entire data item is set to asterisks except for the decimal point (if any),

which will appear in the data item.

11. The symbols “+7, “-”, “*” *“Z” ‘and the currency symbol, when used as
floating replacement characters, are mutually exclusive in a given

PICTURE clause.

USAGE clause

The USAGE clause specifies the format of a data item in computer memory
or in a file record.

In some circumstances, a data item’s file-record format may differ from its
computer-memory format as specified by the USAGE clause. This can occur
when non-COBOL file systems with different data storage formats are being
accessed through an interface. For example, Acu4GL uses SQL to access
non-COBOL file systems, and in the process a translation occurs on the data.

Note: There are numerous compiler options for affecting data storage
behavior. See Section 2.2.10, “Data Storage Options” of the
ACUCOBOL-GT User’s Guide for details on these options.

General Format

[USAGE 1S] {COMPUTATIONAL
{cowp
{COMPUTAT IONAL-1
{CoMP-1
{COMPUTAT IONAL-2
{comP-2
{COMPUTAT IONAL-3
{COMP-3
{COMPUTATIONAL-4
{CoMP-4
{COMPUTATIONAL-5
{COMP-5
{COMPUTAT IONAL-6
{COMP-6
{COMPUTAT IONAL-X
{COMP-X

e el e el e eyl e gl e el e el e

Record Description Entry m 5-61

Syntax Rules

1.

{COMPUTAT IONAL-N
{COMP-N

{BINARY
{PACKED-DECIMAL
{DISPLAY

{INDEX

{POINTER

{FLOAT

{DOUBLE
{SIGNED-SHORT
{UNSIGNED-SHORT
{SIGNED-INT
{UNSIGNED- INT
{SIGNED-LONG
{UNSIGNED-LONG

{HANDLE [OF {WINDOW
{SUBWINDOW
{FONT [font-name]
{control-type
{THREAD
{MENU
{VARIANT
{LAYOUT-MANAGER [layout-name]

O O N W W U S W WV GV o SO S W W S R

]

}
}
}
}
}
}
}
}

The column on the left shows the accepted abbreviations for the terms on

the right:

COMP

COMP-1
COMP-2
COMP-3
COMP-4
COMP-5
COMP-6
COMP-X
COMP-N

COMPUTAT IONAL

COMPUTAT IONAL-1
COMPUTAT IONAL-2
COMPUTATIONAL-3
COMPUTAT IONAL-4
COMPUTATIONAL-5
COMPUTAT IONAL-6
COMPUTAT IONAL-X
COMPUTAT IONAL-N

A USAGE clause may be used in any data description entry except
those with level-numbers 66, 78, and 88.

A USAGE clause may not be used with an external floating-point data

item.

5-62 m Data Division

10.

11.

If a USAGE clause is in the data description entry for a group item,
then any USAGE clauses that appear for subordinate entries must be of
the same type.

The PICTURE string of a COMP, COMP-1, COMP-2, COMP-3,
COMP-4, COMP-5, COMP-6, BINARY, or PACKED-DECIMAL item
can contain only the symbols “9”, “S”, “V”, and “P”. COMP-6 items
may not use the “S” symbol.

The PICTURE string of a COMP-X or COMP-N item may contain
only all “9” symbols or all “X” symbols.

The data description entry for a USAGE IS INDEX data item cannot
contain any of the following clauses: BLANK WHEN ZERO,
JUSTIFIED, PICTURE, and VALUE IS.

Level 88 items may not be specified for a USAGE IS INDEX data
item.

The data description entry for a USAGE IS POINTER data item cannot
contain any of the following clauses: BLANK WHEN ZERO,
JUSTIFIED, or PICTURE. A POINTER data item may have a value
clause specified for it, but the value must be the word NULL.

The data description entry for a USAGE IS FLOAT or a USAGE IS
DOUBLE data item cannot contain any of the following clauses:
BLANK WHEN ZERO, JUSTIFIED, or PICTURE. FLOAT or
DOUBLE data items may have a value clause. The value may be a
floating point literal, a numeric literal, or the word ZERO. Here is an
example of a Working-Storage Section data item:

01 F-DATA-1 USAGE IS FLOAT
VALUE IS 3.97E+24.

The following are collectively called the “C-style” data types:
SIGNED-INT, UNSIGNED-INT, SIGNED-SHORT,
UNSIGNED-SHORT, SIGNED-LONG, UNSIGNED-LONG. These
data types are similar to the data types found in the C programming
language.

The data description entry for a C-style data type cannot contain any of
the following clauses: BLANK WHEN ZERO, JUSTIFIED, or
PICTURE.

Record Description Entry m 5-63

12.

13.

14.

15.

16.

Control-type is one of the graphical control type names known to the
compiler, such as LABEL or ENTRY-FIELD, or the name of an
ActiveX, COM, or .NET control.

The data description entry for USAGE HANDLE data items may not
contain any of the following clauses: BLANK WHEN ZERO,
JUSTIFIED, or PICTURE. If it contains a VALUE clause, the value
specified must be the word NULL.

Font-name is one of the following identifiers: DEFAULT-FONT,
FIXED-FONT, TRADITIONAL-FONT, SMALL-FONT,
MEDIUM-FONT, LARGE-FONT.

It should be noted that either the “-Df” option or the “-Cv” option will
cause the compiler to treat COMP-1 and COMP-2 as FLOAT and
DOUBLE, respectively. For more information, see section 5.4 in
Transitioning to ACUCOBOL-GT.

Layout-name is the name of one of the system’s standard layout
managers. Currently, this can only be LM-RESIZE.

General Rules

1.

A USAGE clause written at a group level applies to every elementary
item subordinate to that group item.

If no USAGE clause is specified, then USAGE IS DISPLAY is
implied.

The internal format of a USAGE IS DISPLAY item is ASCII.

The format of an index item is 32-bit signed binary. Its size is always
four, and it holds a range of values from -2147483647 to 2147483647.
When using a compile switch for compatibility with versions prior to
6.0.0 (-Z52 for example) an index item is 16-bit unsigned binary, size
is always two, and it holds values from 0 to 65535.

The format of a COMP-1 data item is 16-bit signed binary. The legal
values range from -32767 to 32767. The size of the data item is always
two bytes, and the high-order half of the data is stored in the leftmost
byte. The PICTURE string that describes the item is irrelevant. Unlike
other numeric data types, a size error will occur on a COMP-1,

5-64 m Data Division

COMP-X, or COMP-N data item only when the value exceeds the
physical storage of the item (in other words, the number of “9”s in the
item’s PICTURE is ignored when size error is determined).

For COMP-2 (decimal storage), each digit is stored in one byte in
decimal format. If the value is signed, then an additional trailing byte
is allocated for the sign. The storage of COMP-2 is identical with
USAGE DISPLAY with the high-order four bits stripped from each
byte.

For COMP-3 (packed-decimal storage), two digits are stored in each
byte. An additional half byte is allocated for the sign, even if the value
is unsigned. The sign is placed in the rightmost position, and its value
is Ox0D for negative; all other values are treated as positive (but see
rule 18 below). The size of an item (including one for the implied
sign) is divided by two to arrive at its actual size (rounding fractions

up).

The format of a COMP-4 item is two’s-complement binary (the value
without its decimal point). COMP-4 values are stored in a
machine-independent format. This format places the highest-order part
of the value in the leftmost position and follows down to the low-order
part in the rightmost position. The number of bytes a data item
occupies depends on the number of “9”s in its PICTURE and on the
presence of various compile-time options. For example, you may
include more than eighteen “9”s only if your program has been
compiled for 31-digit support. This is summarized in the following
table:

of “9”s Default | -D1 | -Dm | -D7
1-2 2 1 1 1
34 2 2 2 2
5-6 4 4 3 3
7 4 4 4 3
8-9 4 4 4 4
10-11 8 8 5 5
12 8 8 6 5
13-14 8 8 6 6

Record Description Entry m 5-65

#of “97s Default | -D1 | -Dm | -D7
15-16 8 8 7 7
17-18 8 8 8 8
19 12 12 9 8,9
20 12 12 9 9
21 12 12 9 9
22 12 12 10 10
23 12 12 10 10
24 12 12 11 10,11
25 12 12 11 11
26 12 12 11 11
27 12 12 12 12
28 12 12 12 12
29 16 16 13 13
30 16 16 13 13
31 16 16 13 13

Note: Where two values are given, the smaller value applies to
unsigned data items, and the larger value applies to signed data items.

COMP-5 is primarily used to communicate with external programs that
expect native data storage.

The format of a COMP-5 data item is identical to a COMP-4 data item,
except that the data is stored in a machine-dependent format. It is stored
in an order that is natural to the host machine. For example, a PIC S9(9)
COMP-5 data item is equivalent to a 32-bit binary word on the host

machine, and a PIC S9(20) COMP-5 item is equivalent to a 64-bit word.

5-66 m Data Division

10.

Note: Data stored ina COMP-5 field may not be transportable to other
machines because different machines have different natural
byte-orderings. On many machines (68000, most RISC), COMP-5 is
identical to COMP-4. On others (80x86, VAX), it is the same with the
bytes in the reverse order.

A VALUE clause for a COMP-5 data item is stored in a
machine-independent format and is adjusted when it is loaded into the
data item. This ensures that the value is the same from machine to
machine.

On arithmetic and non-arithmetic stores into COMP-5 items, if
truncation is required, by default ACUCOBOL-GT truncates in decimal
to the number of digits given in the PICTURE clause. You can use the
“--TruncANSI” compiler option to force truncation in binary to the
capacity of the allocated storage of COMP-5 items. The “-Dz” and
“--noTrunc”options also affect truncation. See Book 1, section 2.1.9,
“Data Storage Options,” for more information.

Level 01 and level 77 data items that are COMP-5 are automatically
synchronized to an appropriate machine boundary, regardless of any
compile-time settings. This allows you to pass these items safely to C
subroutines without having to concern yourself with alignment.

If COMP-5 is used with a PIC X(n) data item and assigned an
alphanumeric value, the results are undefined. For example, the
following code fragment causes NUM to have an undefined number and
the resulting value for the last line will be “100:

NUM PIC X(5) COMP-5.
ALPHANUM PIC X(9).-
MOVE "ABC"™ TO NUM.
MOVE *1,000" TO NUM.
MOVE ALPHANUM TO NUM.
MOVE '100™ TO NUM.

A PIC X(n) data item used with COMP-5 cannot be signed.

The format of a COMP-6 item is identical to a COMP-3 item except
that it is unsigned and no space is allocated for the sign. If the number
of digits is odd, a zero is added to the left end of the number before it

Record Description Entry m 5-67

11.

12.

13.

14,

15.

is packed. Thus there are two decimal digits per byte, and the actual
size of the item is determined by dividing its PICTURE size by two
and rounding up.

A COMP-X data item must be described with a picture string
consisting of only “9” or only “X” symbols. In either case, the data
item is treated as an unsigned binary integer, with internal storage
similar to that of a COMP-4 data item. If “X” symbols are used to
describe the item, then the number of bytes allocated to the item is the
same as the number of “X” symbols in the picture string. If “9”
symbols are used instead, then the number of bytes allocated is the
least number of bytes required to hold a number of that size. For
example, a “PIC 99” data item will be allocated 1 byte; a “PIC 9(9)”
data item will be allocated 4 bytes.

Regardless of the number of “9” symbols in the item’s picture string, the
maximum value that can be stored in a COMP-X item is determined by
the number of bytes allocated to it (to a maximum of 18 digits, or a
maximum of 31 digits if 31-digit support is in effect). For example, a
COMP-X item consisting of 1 byte can hold a range of numbers from 0
to 255. A 2-byte COMP-X number can hold from 0 to 65535. A size
error occurs on a COMP-X item only when the value is larger than the
data item can physically hold. When COMP-X is used with a PIC(X)
data item, the maximum is PIC X(8). (This maximum is increased to PIC
X(16) when 31-digit support is in effect.)

A COMP-N data item is identical to a COMP-X data item, except that
the data is stored in the host machine’s native format, instead of
machine-independent format.

Data items described as PACKED-DECIMAL are identical to
COMP-3. You can cause unsigned PACKED-DECIMAL to be treated
as COMP-6 by using a compile-time option.

By default, a BINARY data item is identical to a COMP-4 data item.
The compile-time option “-D5” treats BINARY data items as COMP-5
items instead.

In VAX/COBOL compatibility mode, a COMP data item is the same as
COMP-4 and is treated as binary data. In RM/COBOL compatibility
mode, COMP is the same as COMP-2. You can use compile-time
options to change the default behavior.

5-68 m Data Division

16. A pointer data item is treated as an unsigned numeric data item. The

17.

internal format differs for each machine. Pointer data items are
intended to hold addresses of other data items (see the SET
Statement.) A pointer data item may have a VALUE clause specified
for it, but the specified value must be the word NULL. This indicates
that the pointer does not currently point to any item. If a pointer is not
explicitly given an initial value, then its initial value is arbitrary.

Pointer data items occupy 8 bytes. This provides enough space to hold
an address on a 64-bit machine. If you are on a smaller machine, the
runtime uses only the first 4 bytes of pointer data items (the trailing 4
bytes remain in memory, they are just left unused). You can do this to
conserve storage if you know you will not be running on a 64-bit
machine.

Pointers may be used in conditional expressions, where they can be
compared to each other or to the value NULL. A comparison involving
a pointer must be either “equals” or “not equals” (“greater” and “less
than” comparisons are not allowed).

Level 01 and level 77 data items that are POINTER items are
automatically synchronized to an appropriate machine boundary,
regardless of any compile-time settings. This allows you to pass these
items safely to C subroutines without having to concern yourself with
alignment.

Except for the automatic synchronization, USAGE POINTER data items
are treated in all respects like USAGE UNSIGNED-LONG data items.

This handles all current machines correctly. This behavior may change
to meet the requirements of some future machine.

Floating-point data items are stored in a machine-dependent format.
USAGE FLOAT items have 4 bytes allocated to them. USAGE
DOUBLE items occupy 8 bytes.

Level 01 and level 77 data items that are USAGE FLOAT or DOUBLE
are automatically synchronized to appropriate machine boundaries,
regardless of any compile-time settings. This allows you to pass these
items safely to C subroutines without having to concern yourself with
alignment.

Record Description Entry m 5-69

18. The ANSI definition of COBOL does not state how signs should be
stored in numeric fields (except for the case of SIGN IS SEPARATE).
ACUCOBOL-GT lets you select alternate sign-storage conventions by
using the compile-time options “-Dca”, ‘-Dcb”, “-Dci”, “-Dcm”,
“-Dcn”, “-Dcr”, and “-Dcv”. Specifying a sign-storage convention is
sometimes useful when you are exporting and importing data. For
additional information, see the User’s Guide, section 2.2.10, “Data
Storage Options.”

The storage convention affects how data appears in USAGE DISPLAY,
COMP-2, and COMP-3 data types. In USAGE DISPLAY, standard
ASCII storage, if the sign is incorporated into a digit position, the digit is
encoded according to the following table:

USAGE DISPLAY

DIGIT -Dca, -Dci, -Dca, -Dcb -Dcm -Dcr

VALU -Dcb, -Dcn -Dci,

E -Dem, -Dcn

-Dcr
Positive | Positive | Negative | Negative | Negative | Negative

0 0 { ‘v @ p
(space)

1 Q1 A e N ‘q E

2 Y B’ ‘K B’ =
(double-
quote)

3 3 ‘c ‘v ‘c ‘s’ #

4 ‘41 lD! th ‘D’ ltl £$1

5 s = ‘N’ E’ o e

6 5 = 0 r= e ‘&

7 7 G ‘P’ G w
(single-
quote)

8 l81 lH! ‘Q’ ‘H’ LX’ l(l

9 l91 lI’ ‘R’ ‘Il Ly’ l)l

5-70 m Data Division

19.

Note: Forimport compatibility with some systems that do not have the
symbols “{” and “}”, the symbols “[” and “?” are considered
equivalent to “{”, and the symbols “]”, “:”, and “!” are considered
equivalent to “}”, when an item with USAGE DISPLAY is read.

The next two tables show sign representation for COMP-2 and COMP-3
items, when you are using the “-Dca”, “-Dcb”, “-Dci”, “-Dcm”, “-Dcn”,
“-Dcr”, and “-Dcv” storage conventions. For COMP-2, the trailing byte
is reserved for the sign. For COMP-3, the trailing half-byte is reserved
for the sign.

USAGE COMP-2

-Dca Positive x’0B’

-Dcb/-Dci/-Dem/-Den/-Der Positive x’0C’
-Dca/-Dcb/-Dci/-Dem/-Den/-Der Negative x’0D’

USAGE COMP-3

-Dca Positive x’0F’
-Dcb/-Dci/-Dem/-Der Positive x’0C’
-Dca/-Dcb/-Dcil-Dem/-Der Negative x’0D
-Dca/-Dch/-Dci/-Dem/-Der Unsigned x'0F’
-Dcv Unsigned x’0C’

There are six USAGE types for integer data that simplify
communications with other programming languages such as C. These
types are designed to provide a portable method for handling
machine-dependent data. The six USAGE types handle three classes of
machine data: “short words,” “words,” and “long words.” These three

correspond to the C data types: “short”, “int”, and “long”. There are
signed and unsigned versions of each of these data types.

These USAGE types are specified without a PICTURE clause (like
USAGE INDEX and POINTER).

Record Description Entry m 5-71

The names of the types are:

SIGNED-SHORT UNSIGNED-SHORT
SIGNED-INT UNSIGNED-INT
SIGNED-LONG UNSIGNED-LONG

Each of these represents a binary value that is stored using the machine’s
native byte ordering. Since there is no PICTURE phrase, size checking
for these items is performed only on byte boundaries. These data types
are automatically SYNCHRONIZED.

The unusual characteristic of these data types is that their size is not
necessarily set at compile time. Instead, the size of these items is
determined at execution time. This allows them to match the working
characteristics of the host machine. For example, a SIGNED-LONG
data item will contain 64 bits when run on a DEC Alpha machine, but it
will have 32 bits when run on an Intel 80486-based machine. This lets
you write one program that can communicate effectively with an
external routine written in another language (such as C), regardless of
the target environment.

In order to lay out memory, the compiler assigns a maximum size to each
of these data types. This isthe number of bytes that the item will occupy.
At run time, these items may be reduced in size to match the host
machine’s characteristics. Any remaining bytes are then treated as
FILLER. The “-Dw” compile option (see the User’s Guide section
2.2.10, “Data Storage Options.”) determines the maximum size of
these types:

USAGE -Dw32 -Dw64
SIGNED-SHORT 2% 2*
UNSIGNED-SHORT

SIGNED-INT 4 4
UNSIGNED-INT

SIGNED-LONG 4* 8
UNSIGNED-LONG

5-72 m Data Division

Table entries marked with an asterisk indicate fixed-size items. A
fixed-size item is the same size regardless of the target machine. Entries
without an asterisk are variable in size. These items will occupy space
up to the number of bytes listed in the table.

Note: The sizes listed in the table above cover all current and
anticipated machines that run ACUCOBOL-GT. Future architectures
may require changes to the maximum size assigned to these items.

In the execution environment, these items act in all ways as if they were
fixed-size data items of the appropriate size.

For example, the following code fragment:

77 LONG-1 SIGNED-LONG.-
77 SI1ZE-1 PIC 9.

SET SIZE-1 TO SIZE OF LONG-1.
DISPLAY SIZE-1.

will print “4” when run on a 32-bit machine, but it will print “8” when
run on a 64-bit machine.

Examples

In the following examples, each byte is represented by two hexadecimal
digits or by a single quoted character. Each value is shown in the various
formats. Also shown is USAGE DISPLAY using the various SIGN
options. The following examples use the default ACUCOBOL-GT
sign-storage conventions.

PIC 9(3) VALUE 123.

TRAILING 1T "2t ch
TRAILING SEPARATE "1- "2- "3
LEADING "1- "2- "3
LEADING SEPARATE "1 "2 "3
COMP-1 00 7B
COMP-2 01 02 03
COMP-3 12 3F
COMP-4 00 7B
COMP-5(68000) 00 7B

COMP-5(8086) 7B 00

Record Description Entry m 5-73

COMP-6 01 23

PIC S9(3) VALUE -123.

TRAILING "1- 2" "L
TRAILING SEPARATE *"1° 2T "3" -
LEADING J- 2" 3"
LEADING SEPARATE " "1- 2" 3"
COMP-1 FF 85
COMP-2 01 02 03 oD
COMP-3 12 3D
COMP-4 FF 85
COMP-5(68000) FF 85
COMP-5(8086) 85 FF
COMP-6 illegal

PIC 9(5)V9 VALUE 12345.6.

TRAILING "1 "2 "3 "4 "5" "6"
TRAILING SEPARATE "1 "2 "3 "4 "5" "6"
LEADING "1* "2r "3 "4" "5" "6"
LEADING SEPARATE "1* "2r "3 "4" "5" "6"
COMP-1 illegal

COMP-2 01 02 03 04 05 06
COMP-3 01 23 45 6F
COMP-4 00 01 E2 40
COMP-5(68000) 00 01 E2 40
COMP-5(8086) 40 E2 01 00
COMP-6 12 34 56

PIC S9(5)V9 VALUE -12345.6.

TRAILING 1= =2° 3" ®4® =5 *"0-
TRAILING SEPARATE *"1° =2 3" *"4° "5 "6 *=-°
LEADING *JT T2 F3" "4 5% T"6"
LEADING SEPARATE - f1" F2® 3" "4° "5 T"6"
COMP-1 illegal

COMP-2 01 02 03 04 05 06 0D
COMP-3 01 23 45 6D
COMP-4 FF FE 1D CO
COMP-5(68000) FF FE 1D (6{0]

COMP-5(8086) co 1D FE FF

5-74 m Data Division

20.

21.

22.

23.

24,

COMP-6 illegal

HANDLE data items make up their own data class and category in
COBOL. Internally they are stored as integer values, and behave like
numbers when used. A HANDLE data item is normally used to store
the handle of a dynamically created object such as a floating window
or a graphical control.

HANDLE data items come in two forms: typed and generic. You create
a generic handle when you omit the OF phrase. You create a typed
handle when you include the OF phrase.

You may use HANDLE data items only when explicitly allowed, or as
part of a MOVE statement, a CALL statement (as a parameter), or in a
Boolean expression.

Generic handles may be used in any situation where handles are
allowed. When you use a generic handle as the source of a MODIFY
statement, you will not be able to use any control-specific property or
style names in that statement. This is because the generic handle could
be associated with any type of control. In this case, the compiler
cannot determine which set of style and property names is valid.

Typed handles may be used in statements where any handle is allowed,
or when you are referring to an object of a matching type. For
example, a HANDLE OF WINDOW cannot be used as the handle in a
DISPLAY LABEL statement. Instead, you must use either a generic
handle or a HANDLE OF LABEL. Typed handles allow the compiler
to recognize associated style and property names when appropriate.
Typed handles also improve the readability of your program by
providing additional information about the intended use of the handle,
in addition to providing compile-time checking to ensure that you are
using the handles in appropriate situations.

Handles may be used in comparisons. There are only two meaningful
comparisons: checking for equality or inequality to NULL, and
comparison to another handle data item. A handle value of NULL
always indicates an invalid handle.

Record Description Entry m 5-75

25.

26.

27.

Handles are stored internally as 4-byte binary integers. This
information can be useful when you are debugging a program (you can
examine the values of handles in the debugger). You should not rely
on this definition in your program, however, because it is subject to
change in the future.

Handle data items are automatically SYNCHRONIZED on a 4-byte
boundary. Note that this occurs regardless of the setting of the “-DI”
compile-time option (which limits the amount of synchronization).
The runtime system requires this level of alignment to avoid generating
bus errors on some machines.

If font-name is specified, then the data item described by the USAGE
clause is initialized at program startup with the corresponding font
handle. This acts identically to placing the statement:

ACCEPT data-item FROM STANDARD OBJECT *‘““font-name”
at the beginning of your program, where data-item is the data item

described by the USAGE clause and font-name is the same as font-name
in the USAGE clause.

5.7.1.9 SIGN clause

The SIGN clause specifies the location and format of an item’s operational
sign.

General Format
[SIGN 1S] {LEADING } [SEPARATE CHARACTER]

Syntax Rules

1.

{TRAILING}

The SIGN clause may appear only in a numeric data description entry
whose PICTURE string contains the “S” symbol, or on a group item that
contains such an entry.

The item must have USAGE DISPLAY.

A SIGN clause may not be used with an external floating-point data
item.

5-76 m Data Division

General Rules

1.

If the SIGN clause is omitted for a data item, then the operational sign is
incorporated into the final digit of the data item. The “S” symbol does
not occupy any space in the data item in this case.

If the SIGN clause is specified, but without the SEPARATE
CHARACTER phrase, then the sign is incorporated into the first or last
digit of the data item as specified.

If the SEPARATE CHARACTER phrase is specified in the SIGN
clause, then the “S” symbol represents a separate character position and
it adds one to the size of the data item. This character is located as the
first or last character of the data item as specified in the clause. The
sign is represented with a “+” or “-” character as appropriate. The zero
value may have either sign.

If the SIGN phrase is specified for a group item, then it applies to each
subordinate elementary numeric data item. A SIGN phrase specified
for an elementary data item takes precedence over a SIGN phrase
specified for one of its group items. If more than one group item has a
SIGN phrase specified for it in a hierarchy, the lowest level one takes
precedence.

5.7.1.10 OCCURS clause

The OCCURS clause allows for the creation of tables or arrays.

General Format

Format 1
OCCURS table-size TIMES

[{ASCENDING } KEY IS {key-name} ...] ...
{DESCENDING}

[INDEXED BY {index-name} ...]

Format 2
OCCURS [min-size TO] max-size TIMES DEPENDING ON dep-item

[{ASCENDING } KEY IS {key-name} ...] --..

Record Description Entry m 5-77

Syntax Rules

1.

10.

{DESCENDING}

[INDEXED BY {index-name} ...]

Table-size is a positive integer that specifies the exact number of
occurrences.

Min-size is an integer that specifies the minimum number of
occurrences. Its value must be greater than or equal to zero. If
omitted, it has a default value of one.

Max-size is an integer that specifies the maximum number of
occurrences. Its value cannot be less than min-size; it cannot be larger
than 2147483647.

Dep-item is the name of an elementary unsigned integer data item. Its
value specifies the current number of occurrences.

Key-name is the data-name of the entry that contains the OCCURS
clause, or an entry subordinate to it. Key-name may be qualified.
Each key-name after the first must name a subordinate item to the entry
containing the OCCURS clause. A key-name may not contain an
OCCURS clause unless that key-name is the name of the subject of the
current OCCURS clause.

If a Format 2 OCCURS clause appears in a record description for a
file, dep-item must appear in the same record.

An item described by a Format 2 OCCURS clause can be followed, in
the same record description, only by items subordinate to it.

An OCCURS clause may not appear in a data description entry that has
a level-number of 66, 78, or 88. A variable occurrence data item (one
that has a Format 2 OCCURS clause) may not be subordinate to
another data item that has an OCCURS clause.

The dep-item may not occupy any character positions subordinate to
the data item described by that OCCURS clause.

5-78 m Data Division

General Rules

1.

The OCCURS clause defines tables. All items subordinate to an
OCCURS clause must be referenced with subscripting or indexing.

Except for the OCCURS clause itself, all data description clauses
associated with that data item apply to each occurrence of the item.

A Format 1 OCCURS clause defines a fixed-size table.

A Format 2 OCCURS clause defines a table that contains a variable
number of occurrences. The current number of occurrences depends
on dep-item. Only the number of occurrences is variable; the table’s
size is fixed (max-size). Dep-item must fall in the range from min-size
to max-size. Values contained in the table that are beyond the current
number of occurrences (dep-item) are unpredictable.

The size occupied by a table is the size of one of its occurrences
multiplied by the maximum number of occurrences in the table
(max-size in Format 2).

If a group item containing a subordinate data item with a Format 2
OCCURS clause is involved in an operation, the operation uses only
that part of the table specified by dep-item.

Index names are treated in all respects as USAGE INDEX data items
by the compiler.

The KEY IS phrase indicates that the data is arranged in ascending or
descending order according to the values in the data items named by
key-name. The position of each key-name in the list determines its
significance. The first key-name is the most significant, the last is the
least significant. The KEY IS phrase is used by the SEARCH ALL
verb.

5.7.1.11 SYNCHRONIZED clause

The SYNCHRONIZED clause specifies elementary item alignment on word
boundaries of the computer’s memory.

General Format

{SYNCHRONIZED} [LEFT]
{SYNC } [RIGHT]

Record Description Entry m 5-79

Syntax Rules
1.
2.
3.

SYNC is an abbreviation of SYNCHRONIZED.
The SYNCHRONIZED clause can be used for elementary items only.

A SYNCHRONIZED clause may not be used with an external
floating-point data item.

General Rules

1.

The SYNCHRONIZED clause is used to specify that word boundary
alignment should be performed for the data item. Normally, data
contained in records is aligned on byte boundaries. Only data items
whose underlying representation is binary are affected by the
SYNCHRONIZED clause.

The SYNCHRONIZED clause causes the data item to be placed on a
boundary that is an even multiple of the natural size of the data item.
The following table lists the boundary used for each size of data item:

Data Size Boundary Multiple
1-2 2
34 4
5-8 8

A group item that contains a synchronized data item is also
synchronized on the same boundary. Regardless of the effects of
synchronization, a group item always begins at the same location as its
first elementary data item.

Synchronization may result in the creation of filler bytes. These bytes
count in the size of any group item that contains them. For this reason,
a group item that contains synchronized data may be larger than the
total size of its elementary items.

Level 01 and level 77 data items that are not otherwise synchronized
are placed on a boundary that can be selected at compile time. By
default, these items are placed at word boundaries that are divisible by
two.

5-80 m Data Division

6. Level 01 and level 77 data items that are POINTER or COMP-5 items
are automatically synchronized to an appropriate machine boundary,
regardless of any compile-time settings. All C-style data types are
automatically synchronized regardless of their level. This allows you to
pass these items safely to C subroutines without having to concern
yourself with alignment.

7. A compile-time (“-DI”) option can be used to cut back the maximum
boundary multiple. For example, “-DI4” would cause items of size 1
or 2 to be synchronized on 2-byte boundaries, and all other items
synchronized on 4-byte boundaries. If this option is not specified, then
the maximum boundary multiple depends on the compatibility mode

being used:
Mode Boundary Limit
VAX COBOL 8
RM/COBOL 2
ICOBOL 1

A limit of 1 effectively inhibits synchronization.

8. The LEFT and RIGHT options are treated as commentary. They have
the same effect as a SYNCHRONIZED clause without either option.

5.7.1.12 JUSTIFIED clause

The JUSTIFIED clause specifies alternate data positioning rules for
alphanumeric data.

General Format

{JUSTIFIED} RIGHT
{JusT }

Syntax Rules

1. JUST is an abbreviation for JUSTIFIED.

2. The JUSTIFIED clause may be used for elementary items only.

Record Description Entry m 5-81

3. The JUSTIFIED clause may not be used on index, numeric, or edited
data items. It may be used only on alphabetic and alphanumeric data
items.

General Rules

When an operation transfers data to an item described with the JUSTIFIED
clause, the standard alignment rules are altered.

1. Ifthe sending item is larger than the receiving item, excess characters are
truncated from the left.

2. If the sending item is smaller than the receiving item, data is aligned at
the rightmost character position of the receiving item. The excess
characters on the left are filled with spaces.

5.7.1.13 BLANK WHEN ZERO clause

The BLANK WHEN ZERO clause causes the data item to be filled with
spaces when its value is zero.

General Format
BLANK WHEN ZERO

Syntax Rules

1. The BLANK WHEN ZERO clause may be used only for a numeric or
numeric edited elementary item whose picture does not contain “S” or

1821

2. The data item must have USAGE DISPLAY.

Note: The compiler accepts any sign designation other than “S”
without declaring an error. That includes “+”, “-”, “CR”, and “DB”.

General Rules

1. The BLANK WHEN ZERO clause causes an item to be filled with
spaces when its value is zero.

5-82 m Data Division

2. Any numeric item described with a BLANK WHEN ZERO clause
becomes a numeric edited item.

5.7.1.14 VALUE clause

The VALUE clause defines the initial value of Working-Storage. It also
describes the values associated with conditionals.

General Format

Format 1
VALUE 1S value-lit

Format 2
{VALUE IS 3} { low-val [{THROUGH} high-val] } ...
{VALUES ARE} {THRU }

[WHEN SET TO FALSE false-val]

Format 3
78 user-name VALUE IS {literal-1} [{+} literal-2] .
{NEXT }y {3}
{3
{7}

Syntax Rules

1. Value-lit is a numeric or non-numeric literal that defines the initial value
of a Working-Storage item.

2. Low-val is a numeric or non-numeric literal that defines the value of a
condition, or the lower value of a condition range.

3. High-val is a numeric or non-numeric literal that defines the upper
value of a condition range. It must be the same type as low-val and
must have a value greater than low-val.

4. False-val is a numeric or non-numeric literal that defines the FALSE
value for the corresponding data item.

Record Description Entry m 5-83

10.
11.

12.

13.

14.

15.

Literal-1 is a numeric or alphanumeric literal. If literal-2 is specified,
then literal-1 must be a numeric, non-floating-point literal. Literal-1
can also be a “LENGTH OF” expression, as described in section
2.1.2.1, “Numeric literals.”

Literal-2 is a numeric, non-floating point literal or a “LENGTH OF”
expression.

The VALUE clause may not be used for any item whose size is
variable.

A VALUE clause may not be used with an external floating-point data
item.

All literals used in a VALUE clause must have a value which falls

within the range of allowed values for the item’s PICTURE clause.
Non-numeric literals may not exceed the size of the item. Numeric
items must have numeric literals. Alphabetic, alphanumeric, group,
and edited items must have non-numeric literals.

The words THROUGH and THRU are equivalent.

The Format 2 VALUE clause may be used only in a condition-name
(level 88). Its use is required in this case.

VALUE clauses may appear in the File Section and the Linkage
Section. They have no effect in these sections unless they are part of
condition-name entries (level 88s) or named constants (level 78s).

Their presence in these two sections simplifies the management of
CORPY libraries. For example, if you plan to use the same COPY library
in Working Storage in program-A and in Linkage in program-B, you
need not remove the VALUE clauses in the Linkage Section.

The VALUE clause may not be specified for a group item that contains
subordinate items with any of the following clauses: JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY).

A Format 1 VALUE clause may not appear on a data item that is
subordinate to a REDEFINES clause.

A level 78 entry associates a value with the name of a constant, and
user-name is a user-defined word that names the constant. User-name
must be unique, because it may not be qualified.

5-84 m Data Division

General Rules

1.

A Format 1 VALUE clause specifies the initial state of a
Working-Storage item or the value of a named constant. A Format 2
VALUE clause defines a condition-name. A Format 3 VALUE clause
defines a constant.

When a VALUE clause is applied to an edited item, that item is treated
as if it were alphanumeric. Editing characters in the PICTURE clause
count toward the size of the item but have no effect on initialization.
The literals must therefore appear in edited form.

Initialization (Format 1)

1.

A Format 1 VALUE clause takes effect only when the program enters its
initial state.

The VALUE clause initializes its data item to the value of value-lit.

If no VALUE clause is specified, the initial value of a Working-Storage
item is set to spaces, or the value specified with the “-Dv” compile
option. This may, or may not, be a legal value for the item.

When a VALUE clause appears on a data item that is subordinate to an
X OCCURS clause, every occurrence of that data item is initialized to
the specified value.

When a VALUE clause is applied to a group item, that item is
initialized as if it were an alphanumeric item. It is not affected by
characteristics of any subordinate items to the group. No subordinate
item may contain a VALUE clause within this group.

The BLANK WHEN ZERO and JUSTIFIED clauses do not affect
initialization.

Condition-Name (Format 2)

1.

The VALUE clause is required in a condition-name entry. The only
clauses allowed in a condition-name entry are the level-number (88), the
condition-name itself, and its VALUE clause. See section 5.2.4 for
examples of condition-name entries.

Record Description Entry m 5-85

The characteristics of the condition-name are implicitly the same as
those of its condition-variable. The condition-variable is the
immediately preceding completed record description entry.

The VALUE clause describes the values of the condition-variable that
imply a “true” state for the associated condition-name. This consists of
a single value, a range of values, or a set of both single values and
ranges. For example “VALUES ARE 1, 2, 4 THRU 7” would define a
condition-name that was “true” when its associated condition-variable
had any of the values “1”, “2”, “4”, “5”, “6”, and “7”.

The WHEN SET TO FALSE phrase defines the “false” value for the
condition-name. The SET statement cannot set the condition-name to
FALSE unless a “false” value is specified here.

Level 78 Constant (Format 3)

1.

When it is used with a level 78 item, the VALUE clause associates a
literal with a user-defined word. The user-defined word is then called a
named constant. A named constant may be used anywhere the
corresponding literal may be used. The compiler replaces each
occurrence of the named constant with the literal.

The literal is constructed as follows:

a. |If literal-1 is specified (without literal-2), then user-name acts as
a synonym for that literal in the remainder of the program.

b. If NEXT is specified (without literal-2), then user-name acts as an
integer numeric constant whose value is the virtual address of the
first byte past the end of the immediately preceding data item.
However, if the immediately preceding data item is a group item,
then the value is the virtual address of the beginning of the group
item. Note that the effect of synchronization and data alignment
may mean that the next data item does not start at the same virtual
address as the first byte past the end of the previous data item.
This construct has undefined effects if the immediately
preceding data item is, or is part of, a data item greater than
64KB in size.

5-86 m Data Division

Caution:The use of NEXT is designed for compatibility with other
COBOL compilers. The effects of data alignment and data space
segmentation make this feature difficult to use with standard
ACUCOBOL-GT code. We do not recommend its use except when
you are migrating code that already contains similar syntax.
ACUCOBOL-GT provides other techniques for address manipulation
(e.g. POINTER data items) and size computation (e.g. SET TO SIZE
OF statement).

c. If literal-2 is specified, then user-name is an integer numeric

constant whose value is the same as it would be without literal-2
specified, acted upon by the specified operation. For example, the
following two level 78s have the same value:

78 THREE VALUE 3.
78 THREE-AGAIN VALUE 1 + 2.

In some cases, literal-1 and literal-2 may, themselves, be level 78s.

For example:

78 ONE VALUE 1.

78 TWO VALUE ONE + 1.
78 THREE VALUE TWO + 1.

When literal-2 is used, both literal-1 and literal-2 are evaluated as

integers, and the arithmetic is done using 32-bit integer arithmetic.
The result is always an integer.

You may use a level 78 named constant as a repeat count in a
PICTURE string. This means that, in a PICTURE string, you may
substitute a level 78 for a number in parentheses. In the following
example, DATA-1 and DATA-2 are both the same size:

78 LENG-20 VALUE 20.
01 DATA-1 PIC X(20).
01 DATA-2 PIC X(LENG-20).

5.7.1.15 RENAMES clause

The RENAMES clause provides an alternate data name for a set of data
items.

Record Description Entry m 5-87

General Format
66 new-name RENAMES rename-1 [{THRU } rename-2]

Syntax Rules

1.

10.

11.

12.
13.

{THROUGH}

The level-number (66) and new-name are not actually part of the
RENAMES clause. They are included in the General Format for clarity.

New-name is a user-defined word that is the name of the item being
described.

Rename-1 is the data name of the leftmost data item in the area.
Rename-2 is the data name of the rightmost data item in the area.

All RENAMES entries referring to data items in a logical record must
immediately follow the last data de