
User’s Guide

AcuXDBCTM

Version 8.1.3

Micro Focus
9920 Pacific Heights Blvd.

San Diego, CA 92121
858.790.1900

© Copyright Micro Focus (IP) Ltd. 1998-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-UG-100501-AcuXDBC-8.1.3

Contents

Chapter 1: Introduction
1.1 Overview.. 1-2
1.2 Features of AcuXDBC... 1-3

1.2.1 Relational Database Features... 1-3
1.2.2 Data Access Features.. 1-4

1.3 Changes in AcuXDBC... 1-5
1.3.1 System Catalog and the Role of XFDs.. 1-5

1.4 Product Requirements.. 1-6
1.5 What Is ODBC/JDBC? .. 1-7
1.6 Technical Services ... 1-8

Chapter 2: AcuXDBC Architecture
2.1 AcuXDBC Design ... 2-2

2.1.1 Basic Components ... 2-2
2.2 System Architecture... 2-4

2.2.1 Local Processing (Stand-alone) ... 2-4
2.2.2 Remote Processing (Network or Client/Server) .. 2-5
2.2.3 Remote Access/Local Processing (AcuXDBC with AcuServer) 2-6

2.3 Security .. 2-7
2.3.1 Network Security Layer... 2-7
2.3.2 Database Security Layer .. 2-7

Chapter 3: Preparing Your COBOL
3.1 Mapping COBOL Data Items and Database Fields... 3-2
3.2 The Role of XFDs.. 3-2

3.2.1 Creating XFD Files.. 3-3
3.2.2 How XFDs Are Formed... 3-4
3.2.3 Defaults Used in XFD Files... 3-5
3.2.4 Examples of Default Mapping... 3-8
3.2.5 Summary of XFD Fields.. 3-9
3.2.6 Naming the XFD File .. 3-10
3.2.7 How AcuXDBC Locates XFD Files.. 3-11

3.3 Using Directives .. 3-11
3.3.1 Sample Files and Examples ... 3-12
3.3.2 Directive Syntax .. 3-14

i-ii
3.3.3 ALPHA Directive ..3-15
3.3.4 BINARY Directive ..3-16
3.3.5 COMMENT Directive ...3-17
3.3.6 DATE Directive ...3-18
3.3.7 FILE Directive ...3-25
3.3.8 HIDDEN Directive ..3-26
3.3.9 NAME Directive..3-28
3.3.10 NUMERIC Directive ...3-32
3.3.11 READ-ONLY Directive ..3-33
3.3.12 SUBTABLE Directive ...3-35
3.3.13 USE GROUP Directive ...3-36
3.3.14 VAR_LENGTH Directive ...3-38
3.3.15 WHEN Directive..3-38
3.3.16 XSL Directive ..3-47

Chapter 4: Configuration
4.1 Introduction..4-2
4.2 AcuXDBC Configuration ..4-2

4.2.1 DEBUG_LOGFILE ...4-6
4.2.2 DEBUG_LOGLEVEL...4-6
4.2.3 DICTSOURCE ..4-7
4.2.4 FILE_CASE...4-7
4.2.5 FILENAME_WILDCARD..4-8
4.2.6 FILE_PREFIX ...4-9
4.2.7 FILE_SUFFIX ...4-9
4.2.8 IGNORE_OWNER..4-10
4.2.9 INVALID_NUMERIC_DATA ...4-11
4.2.10 JULIAN_BASE_DATE...4-12
4.2.11 LOCKS_PER_FILE...4-12
4.2.12 LOG_BUFFER_SIZE..4-13
4.2.13 LOG_DEVICE...4-13
4.2.14 LOG_ENCRYPT ...4-13
4.2.15 LOG_FILE...4-14
4.2.16 LOGGING ...4-14
4.2.17 MAX_FILES ...4-15
4.2.18 MAX_LOCKS ...4-15
4.2.19 NULL_ALPHA_READ...4-15
4.2.20 NULL_ALPHA_WRITE...4-16
4.2.21 NULL_NUMERIC_READ ...4-16

 i-iii
4.2.22 NULL_NUMERIC_WRITE.. 4-18
4.2.23 READ_ONLY ... 4-20
4.2.24 TEMP_DIR.. 4-21
4.2.25 TRANSACTIONS... 4-21
4.2.26 TRANSACTION_PROCESSING... 4-21
4.2.27 V_BUFFERS ... 4-21
4.2.28 VISION_LOGGING_FILE ... 4-21
4.2.29 VISION_LOGGING_LEVEL... 4-22
4.2.30 Sample “acuxdbc.cfg” File .. 4-22

4.3 AcuXDBC Server Configuration... 4-25
4.3.1 KEY_CONNECT .. 4-26
4.3.2 PACKETSIZE ... 4-26
4.3.3 READ_TIMEOUT .. 4-26
4.3.4 RETURN_ERRNO.. 4-27
4.3.5 WRITE_TIMEOUT... 4-27
4.3.6 Sample “net.ini” File ... 4-27

4.4 AcuServer Configuration ... 4-28
4.4.1 ACUSERVER_PASSWORD.. 4-28
4.4.2 ACUSERVER_PORT ... 4-28
4.4.3 DEFAULT_MAP_FILE.. 4-29
4.4.4 SECURITY_METHOD... 4-30

Chapter 5: Installing AcuXDBC
5.1 General Setup Procedures .. 5-2

5.1.1 Quick Start — Demo Application ... 5-2
5.1.2 Stand-alone Installations.. 5-3
5.1.3 AcuXDBC Server Installations.. 5-4
5.1.4 AcuServer Installations.. 5-5
5.1.5 Using AcuXDBC... 5-6

5.2 Installing AcuXDBC/AcuXDBC Server ... 5-6
5.2.1 Windows Installations ... 5-6
5.2.2 UNIX/Linux Installations .. 5-7
5.2.3 Providing JDBC Access .. 5-12
5.2.4 Installed Executables and Scripts/Shells ... 5-12

5.3 Creating a System Catalog and Views... 5-14
5.3.1 xdbcutil Syntax .. 5-16

5.4 Granting Database Privileges... 5-19
5.5 Loading the System Catalog with Your XFDs .. 5-21

5.5.1 Setting Up File Aliases .. 5-23

i-iv
5.5.2 Multi-company Support ...5-25
5.6 Setting Permissions on Your Vision Tables ..5-28
5.7 Starting AcuXDBC Server (Network Only) ..5-29

5.7.1 Pinging AcuXDBC Server...5-31
5.7.2 Stopping AcuXDBC Server...5-32

5.8 Setting Up Data Source Names (DSNs) on Client...5-33
5.8.1 Adding a Data Source Name ...5-33
5.8.2 AcuXDBC Setup: General Tab..5-35
5.8.3 AcuXDBC Setup: Advanced Tab ..5-37
5.8.4 AcuXDBC Setup: Logging Tab...5-40
5.8.5 Copying DSNs to Other Network Machines ...5-42

Chapter 6: The System Catalog
6.1 Introduction..6-2
6.2 System Catalog Structure...6-3

6.2.1 PUBLIC ...6-4
6.2.2 GENESIS Tables ...6-4
6.2.3 INFORMATION_SCHEMA...6-6

6.2.3.1 INFORMATION_SCHEMA.COLUMNS ..6-8
6.2.3.2 INFORMATION_SCHEMA.TABLES...6-9
6.2.3.3 INFORMATION_SCHEMA.VIEWS...6-9

6.2.4 DUAL ..6-10
6.3 Using the Command-line Query Tool..6-10

6.3.1 Starting xdbcquery from the Command Line ..6-11
6.3.2 Starting xdbcquery from asql.bat/asql.sh ..6-12
6.3.3 xdbcquery Commands ...6-13

6.3.3.1 Running SQL Scripts...6-14

Chapter 7: Supported SQL Commands
7.1 Introduction..7-2
7.2 Conventions ...7-2
7.3 Limitations and Restrictions ..7-3

7.3.1 Object Names...7-3
7.3.2 Predicates ...7-3
7.3.3 Constraints ...7-4

7.4 Summary of Supported SQL Commands...7-5
7.5 Detailed SQL Support Descriptions...7-6

7.5.1 CREATE INDEX ..7-6
7.5.2 CREATE SYNONYM...7-7

 i-v
7.5.3 CREATE TABLE.. 7-8
7.5.4 CREATE VIEW .. 7-11
7.5.5 DELETE .. 7-14
7.5.6 DROP INDEX ... 7-15
7.5.7 DROP SYNONYM ... 7-16
7.5.8 DROP TABLE... 7-17
7.5.9 DROP VIEW ... 7-17
7.5.10 GRANT (Database privileges) .. 7-18
7.5.11 GRANT (Object privileges) .. 7-19
7.5.12 INSERT ... 7-21
7.5.13 REVOKE (Database privileges) .. 7-22
7.5.14 REVOKE (Object privileges) .. 7-23
7.5.15 SELECT... 7-25

7.5.15.1 SELECT list (SELECT statement).. 7-26
7.5.15.2 FROM clause (SELECT statement) .. 7-28
7.5.15.3 Joins... 7-28
7.5.15.4 Outer Joins... 7-29
7.5.15.5 WHERE clause (SELECT statement) ... 7-29
7.5.15.6 GROUP BY clause (SELECT statement) ... 7-31
7.5.15.7 HAVING clause (SELECT statement).. 7-32
7.5.15.8 ORDER BY clause (SELECT statement) ... 7-32
7.5.15.9 Possibly Nondeterministic Queries ... 7-33

7.5.16 SET OPTION... 7-33
7.5.16.1 SET PASSWORD ... 7-35

7.5.17 UPDATE.. 7-36
7.6 Functions Supported by AcuXDBC .. 7-38

7.6.1 ASCII... 7-38
7.6.2 CHAR_LENGTH .. 7-39
7.6.3 CHR ... 7-39
7.6.4 CONCAT... 7-39
7.6.5 CONVERT .. 7-39
7.6.6 CURDATE .. 7-40
7.6.7 CURTIME ... 7-40
7.6.8 DATABASE.. 7-40
7.6.9 DAYNAME... 7-40
7.6.10 DECODE ... 7-40
7.6.11 HOUR.. 7-41
7.6.12 IFNULL ... 7-41
7.6.13 INSTR.. 7-41
7.6.14 LEFT.. 7-42
7.6.15 LENGTH ... 7-42

i-vi
7.6.16 LOCATE..7-42
7.6.17 LCASE...7-43
7.6.18 LTRIM ...7-43
7.6.19 NOW..7-43
7.6.20 NVL ...7-43
7.6.21 POSITION ...7-43
7.6.22 RIGHT ...7-44
7.6.23 ROUND ...7-44
7.6.24 RTRIM...7-44
7.6.25 SQRT ...7-45
7.6.26 SUBSTR ..7-45
7.6.27 SUBSTRING ...7-45
7.6.28 SYSDATE ...7-45
7.6.29 TO_CHAR ...7-45
7.6.30 TO_DATE ...7-47
7.6.31 TO_NUMBER ...7-48
7.6.32 TRANSLATE ..7-49
7.6.33 TRUNC..7-49
7.6.34 UCASE ..7-50
7.6.35 USER ...7-50

Chapter 8: Working with Windows and Java Applications
8.1 Working With Windows Applications...8-2

8.1.1 Accessing Data From Word 2000..8-2
8.1.2 Accessing Data From Word 2003..8-10
8.1.3 Accessing Data From Excel 2000 and 2003..8-20
8.1.4 Accessing Data From Access 2000 and 2003..8-26

8.2 Working with Java Applications..8-31

Chapter 9: Troubleshooting
9.1 Introduction..9-2
9.2 AcuXDBC Client Error Messages ...9-2
9.3 AcuXDBC Server Error Messages ..9-6
9.4 AcuXDBC SQL Processing Error Messages ...9-9
9.5 Vision File System Error Messages ...9-14
9.6 Application Errors..9-15

Appendix A: Compatibility Guide

 i-vii
A.1 Migrating from AcuODBC to AcuXDBC ... A-2
A.2 AcuODBC Configuration Screen Changes.. A-4

A.2.1 General Tab.. A-4
A.2.2 Advanced Tab .. A-5
A.2.3 Vision Tab.. A-6
A.2.4 Tracing Tab.. A-7
A.2.5 Server Tab.. A-8
A.2.6 File Alias Tab... A-9
A.2.7 Multi-company Tab ... A-9
A.2.8 AcuServer Tab ... A-10

Index

i-viii

1
 Introduction
Key Topics

Overview .. 1-2
Features of AcuXDBC... 1-3
Changes in AcuXDBC... 1-5
Product Requirements .. 1-6
What Is ODBC/JDBC? ... 1-7
Technical Services... 1-8

1-2 Introduction
1.1 Overview

Welcome to the AcuXDBCTM data management system, designed to
integrate ACUCOBOL-GT® data files into a relational database-like
environment. AcuXDBC enables you to apply structured query language
(SQL) and relational database concepts to your COBOL data files, resulting
in data that is accessed and managed in much the same way as many of
today’s popular relational database management systems (RDBMSs).

AcuXDBC is the next generation of AcuODBC and is engineered to provide
broader flexibility in the way your COBOL data is accessed and maintained.
Like previous versions of AcuODBC, AcuXDBC lets you retrieve and
update ACUCOBOL-GT’s Vision indexed files, relative files, and sequential
files from Windows-based applications including Microsoft Word, Excel,
and Access. Business Intelligence tools such as Crystal Reports®
Professional, and custom applications developed in ODBC (Open Database
Connectivity) supported environments such as Visual Basic® are supported
as well. With the enterprise edition, new functionality lets you retrieve data
through Java applications that use JDBC (Java Database Connectivity)
standards. Direct SQL access to your ACUCOBOL-GT data is now available
in both the Windows and UNIX/Linux environments, in both single and
two-tier configurations. AcuXDBC is part of the extend® family of solutions.

This manual describes how to configure and use AcuXDBC to access data
from ODBC and JDBC enabled applications. It also describes what SQL
commands and relational database concepts users can apply to a Vision
database.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

Features of AcuXDBC 1-3
1.2 Features of AcuXDBC

AcuXDBC provides ACUCOBOL-GT data files with extended data
management capabilities typically associated with RDBMSs, as well as
seamless access to this data from popular ODBC- and JDBC-enabled
applications. To accomplish this, many new AcuXDBC features are
implemented, as well as enhancements to previous features of AcuODBC.

1.2.1 Relational Database Features

Tabular structure of Vision data. The fundamental concept behind
relational databases is the organization of data within collections of tables
consisting of columns and rows. AcuXDBC creates a Vision database by
restructuring Vision files into tables. It does this by importing eXtended File
Descriptor (XFD) files, which the compiler can generate to describe the
schema information to be associated with a COBOL data file. XFDs enable
the AcuXDBC interface to populate tables in a system catalog that map
COBOL records in the indexed, relative, or binary sequential file to “rows”
and “columns” of data that can be accessed by common SQL commands. For
more detailed information about XFDs, see Chapter 3, “Chapter 3:
Preparing Your COBOL.”

System catalog. Special utilities included with AcuXDBC create and
populate a system catalog with information obtained from your XFDs. No
special restructuring of your data files is necessary to gain the relational
database-like functionality.

SQL DDL (Data Definition Language) support. AcuXDBC supports many
of the DDL commands, such as CREATE and DROP, enabling users to
create and delete tables or views based on conditional operators and multiple
fields/columns.

SQL DML (Data Manipulation Language) enhancements. In addition to
DDL support, AcuXDBC includes broader and more complete support for
DML commands such as UNION, UNION ALL, and combined inner/outer
joins, as well as an optimized ORDER BY clause.

1-4 Introduction
Multi-level security. Through the use of the DDL commands GRANT and
REVOKE, AcuXDBC provides data security options at both database-wide,
and object-specific levels. For example, one table from a database can be
read-only for certain users, while another table within the same database can
be read/write accessible by either the same or different users. By combining
views and object-level security, even column-level security is available.

Enhanced performance. AcuXDBC’s optimized drivers and SQL processor
result in faster execution of complex SQL commands on large data sets.

1.2.2 Data Access Features

ODBC driver for ODBC-compliant Windows applications. Popular
Microsoft Office applications such as Access and Excel, as well as Crystal
Reports and Visual Basic programs, use the ODBC standard for connecting
to external data sources. AcuXDBC provides a driver that enables users of
these applications to connect to your database and execute SQL commands
for data retrieval and manipulation purposes.

ODBC driver for UNIX/Linux platforms (enterprise edition). AcuXDBC
enables connections to an ODBC driver from a UNIX/Linux command line
or script, allowing UNIX/Linux users to access the database directly. Once
connected, UNIX/Linux users can execute SQL commands or scripts through
the AcuXDBC command-line query tool. For information about ODBC
drivers on UNIX/Linux, please see section 5.2.2, “UNIX/Linux
Installations.”

JDBC driver for Java applications (enterprise edition). AcuXDBC
includes a JDBC driver, which enables Java applications to connect to the
database.

Command-line query tool. An SQL query tool enables you to execute SQL
commands and scripts directly on your database tables without having to
connect to the database from a third-party application or go through an
ODBC connection. The command-line query tool is useful for such tasks as
creating batch reports that require a series of complicated SQL commands to
produce.

Changes in AcuXDBC 1-5
1.3 Changes in AcuXDBC

If you are a previous user of AcuODBC, you will find changes in some of the
methods used to set up and administer AcuXDBC. These changes are mainly
the result of the new relational database features, which by nature require the
use of SQL and other concepts inherent to relational databases. This section
briefly highlights key differences between AcuODBC and AcuXDBC.
Details on each difference are provided in other sections of this manual, as
well as in Appendix A, which describes differences in setup and
configuration.

1.3.1 System Catalog and the Role of XFDs

The system catalog forms the core of your database. It comprises a set of
system tables that describe all of the tables and relations contained within the
database. You can have multiple system catalogs (databases), but only a
single catalog may be accessed at one time. Just like Vision files, the system
catalog is fully portable between machines with the same byte ordering.

AcuXDBC populates a system catalog with information it reads from your
XFDs. Once this information is loaded, AcuXDBC no longer requires your
XFDs. Instead, it refers to the system catalog to obtain the information
needed to construct and display your Vision tables. This gives you the option
of providing end users with XFDs for building their own system catalog or a
pre-built system catalog. The ability to supply a pre-built system catalog can
lead to other benefits for your applications. For example, you can also
pre-build user logins, database object permissions, and complex data
handling views.

Universal Configuration

Many of the variables that were set from the AcuODBC Configuration screen
and tabs are now set from within a configuration file called “acuxdbc.cfg” by
default. If you are migrating from AcuODBC, you need to create new Data
Source Names (DSNs). The main advantage of using a configuration file is
that DSN settings become universal, meaning you don’t have to set them
individually each time you create a DSN. Refer to Appendix A, section A.2,
which compares the location of each AcuODBC configuration variable to its
corresponding location in AcuXDBC.

 DSN Setup Screen

Because many of the variables moved from the DSN configuration screen
into a configuration file, the DSN setup screen has been modified
appropriately and is less populated. Chapter 5, section 5.8, includes screen
shots and descriptions of the AcuXDBC Setup screen.

System Security

The AcuAccess file and manager utility are no longer used with AcuXDBC.
Instead, the SQL GRANT/REVOKE command and its variants are used to
manage database security. This provides more flexibility and levels of
security than were previously available. Chapter 5, section 5.4, provides
information on setting database security.

Multi-company Support

AcuXDBC offers two convenient ways to manage multiple company data
sets. For example, you may have two sets of data, one for Company01 and
one for Company02. The layouts of the data files are the same, but the file
names have different prefixes or suffixes. Rather than setting up individual
system catalogs for each company, you can use wild cards (defined in the
AcuXDBC configuration file) to identify which company file to access.
Alternatively, you can assign table ownership to the different companies,
then issue a single query to access all the data files. For instructions on
implementing each of these methods, see Chapter 5, section 5.5.2.

1.4 Product Requirements

To interface your COBOL data to ODBC-enabled applications through
AcuXDBC, you must have the following:
• AcuXDBC’s ODBC driver (acuxdbc.dll).
• ACUCOBOL-GT indexed or relative data files created with

ACUCOBOL-GT Version 3.0 or later.

What Is ODBC/JDBC? 1-7
• XFD files, which are created at compile time with the “-Fx” or “-Fa”
options, and are discussed in Chapter 3, “Chapter 3: Preparing Your
COBOL.” If you have older XFDs, we recommend that you update to
XFD Version 4 or 5 format.

• AcuXDBC Server if data will reside on a remote UNIX® or Windows
NT server and processing will be remote. AcuXDBC Server may be
licensed together with AcuXDBC or separately.

To interface your COBOL data to a JDBC-enabled application through
AcuXDBC, you must have the following:
• Java Runtime Environment (JRE) 1.5 or above.
• ACUCOBOL-GT indexed or relative data files created with

ACUCOBOL-GT Version 3.0 or later.
• XFD files, which are created at compile time with the “-Fx” or “-Fa”

options, and are discussed in Chapter 3, “Chapter 3: Preparing Your
COBOL.” If you have older XFDs, we recommend that you update to
XFD Version 6 format.

1.5 What Is ODBC/JDBC?

ODBC is an SQL-based Application Programming Interface (API) created
by Microsoft that is used by Windows software applications to access
databases via SQL. JDBC is an SQL-based API created by Sun Microsystems
to enable Java applications to use SQL for database access.

These APIs provide communications between an application residing on a
client machine and a data source residing on the same client machine or on
another server computer.

AcuXDBC includes both ODBC and JDBC drivers for ACUCOBOL-GT’s
data files. AcuXDBC gives ODBC-enabled Windows applications (like
those in Microsoft Office) and Java applications access to ACUCOBOL-GT
Vision indexed, relative, and fixed-length sequential data files.

1-8 Introduction
1.6 Technical Services

For the latest information on contacting customer care support services go to:

http://www.microfocus.com/about/contact

For worldwide technical support information, please visit:

http://supportline.microfocus.com/xmlloader.asp?type=home

http://www.microfocus.com/about/contact/
http://supportline.microfocus.com/xmlloader.asp?type=home

2
 AcuXDBC Architecture
Key Topics

AcuXDBC Design .. 2-2
System Architecture .. 2-4
Security.. 2-7

2-2 AcuXDBC Architecture
2.1 AcuXDBC Design
The AcuXDBC interface is designed to let users of Windows and Java
applications read and write ACUCOBOL-GT Vision files (as well as relative
and sequential files) as if they were tables in a relational database.

Since none of these file formats is relational to begin with, AcuXDBC’s job
is to present COBOL files in a table format that can be accessed by
applications like Microsoft Excel or ColdFusion.

2.1.1 Basic Components

AcuXDBC includes a database tool (xdbcutil) that creates and populates a
system catalog from your XFDs. A system catalog is where database systems
store metadata that describes the structure of the database system itself, as
well as the structure of specific tables. XFDs are eXtended File Descriptors
that you can generate at compile time along with your COBOL object files.

After you run xdbcutil, your COBOL data becomes like a relational
database—a Vision database—accessible to applications that issue SQL
requests for data. After setup, your XFDs are expendable, unless you use
them for another extend product like an Acu4GL interface. AcuXDBC will
not refer to them again.

When deployed, the basic components of an AcuXDBC system include:
• An ODBC and/or JDBC driver—Receives SQL requests from ODBC-

or JDBC-enabled applications and routes them to the SQL processor.
• An SQL processor—Processes SQL requests, queries the Vision

database, and returns results.
• A Vision driver—Provides access to the Vision database.
• Your Vision database, comprising:

• Vision data files
• ACUCOBOL-GT sequential files
• ACUCOBOL-GT relative files
• A system catalog—A series of files that maps your COBOL data

fields to database columns. Based on your XFDs, these files are
themselves Vision files. The system catalog is a deployment piece
and has no bearing on the COBOL developer.

AcuXDBC Design 2-3
With AcuXDBC, you can also use an SQL query tool such as xdbcquery to
issue SQL requests for Vision data directly. This bypasses the ODBC/JDBC
layer altogether. xdbcquery comes with AcuXDBC.

The following illustration depicts the basic components of AcuXDBC.

AcuXDBC transforms your COBOL data files into an SQL-like database

A Vision database is the system catalog and the COBOL files it describes
(Vision, fixed sequential, and relative) that reside in one or more directories.
For a given installation, you may have one or more Vision databases. Only
one database may be accessed by an application at one time; however, a
single file may be a component of multiple databases.

2-4 AcuXDBC Architecture
2.2 System Architecture

AcuXDBC can operate in one of three main configurations:
• Local Processing (Stand-alone)
• Remote Processing (Network or Client/Server)
• Remote Access/Local Processing (AcuXDBC with AcuServer)

2.2.1 Local Processing (Stand-alone)

In a local processing configuration, both the AcuXDBC interface and the
Vision database that it creates reside on the same computer. This is
considered a “single-tier” architecture.

A typical local-processing installation is illustrated in the following diagram.

AcuXDBC in a stand-alone configuration

Note that AcuXDBC can operate on both Windows and UNIX/Linux
machines and that ODBC drivers are available for both. (For information
about ODBC drivers on UNIX/Linux, please see section 5.2.2, “UNIX/
Linux Installations.”)

System Architecture 2-5
2.2.2 Remote Processing (Network or Client/Server)

In a two-tier configuration, the client computer is running the ODBC/JDBC
application or the command-line query tool. The data to be processed resides
on a remote UNIX/Linux or Windows server. With AcuXDBC Server
(xdbcsrvr) running on the remote machine, your application is able to take
advantage of server-side processing of the SQL statements.

Remote processing can mean more efficient use of your system resources.
Queries often process large amounts of data to get results. Remote processing
decreases the amount of data that must be transferred between the client and
the server. If files reside on the same server on which processing occurs,
network traffic is reduced. Only the final result of the processing is returned
to the client machine. In addition, this structure encourages centralized
management of your data, cutting down on duplication and ensuring that the
information returned to the application is up-to-date.

For remote processing on a Windows server, xdbcsrvr resides as a “service”
on the remote machine, waiting for calls for SQL processing. On UNIX/
Linux machines, xdbcsrvr resides as a “daemon.” AcuXDBC Server is a
single-instance server: each time xdbcsrvr gets a request, it spawns a new
copy to deal with the request, and the original goes back to listening for
additional requests. You may run xdbcsrvr continuously, or start and stop it.

The following illustration depicts the architecture for remote SQL
processing.

AcuXDBC with AcuXDBC Server in a remote processing configuration

2.2.3 Remote Access/Local Processing (AcuXDBC with
AcuServer)

For those whose configurations already use AcuServer, AcuServer can be
used to gain access to files that reside on a remote computer; however, with
AcuServer, these files are transferred to the client and processed locally.
Because of the performance impact of network communication, AcuServer
should be used with AcuXDBC only when a small amount of data is being
accessed.

AcuServer is available for most UNIX/Linux and Windows NT (Intel)
machines. It can serve COBOL applications running on UNIX/Linux and
Windows
TCP/IP-based networks. You must have a TCP/IP networking client installed
on the client machine and a licensed copy of AcuServer installed on the
server. For more information about AcuServer, see the AcuServer
documentation.

Remote file access architecture is depicted as follows:

AcuXDBC with AcuServer in a remote access/local processing configuration

Security 2-7
Notice that in this AcuServer configuration, the Vision database is split up.
That is, the system catalog is local on the client, but the Vision data files
themselves are on the remote server. The Vision data files can also be a
mixture of local and remote.

2.3 Security

AcuXDBC provides a variety of security measures, some at the network
level, and some at the database level.

2.3.1 Network Security Layer

In client/server configurations, AcuXDBC offers one form of network
security: user ID and password encryption.

Use the “-k” option to the xdbcsrvr command to encrypt the database user ID
and password that goes across the network. Use it to specify the masking key
value used to perform the encryption, then use the KEY_CONNECT variable
in the “net.ini” file to specify the same value on each client machine. (See
Chapter 4, section 4.3, for information on the “net.ini” file.)

See Chapter 5, section 5.7, for information on starting and stopping
AcuXDBC Server.

2.3.2 Database Security Layer

AcuXDBC offers a variety of ways to secure your database. If you don’t
adopt any of these methods, your database is open to everyone.
• You can hide individual data fields from within your COBOL

application by using the HIDDEN directive. This will instruct the
compiler to flag this COBOL field as hidden when the XFD file is
generated. When the XFD is subsequently loaded into the database, this
field will not appear as a column in any description of the table. This is
useful for hiding data like passwords, telephone numbers, and financial
information—whatever information you don’t want users to see. (See
Chapter 3, section 3.3.8, for more information.)

2-8 AcuXDBC Architecture
• You can tag fields or columns of data as read-only using the
READ-ONLY directive. Users can then view the data but not update it.
(See Chapter 3, section 3.3.11, for more information.)

• You can use the READ_ONLY configuration variable to establish the
read and write permissions for all the files belonging to the database.
(See Chapter 4, section 4.2.23, for more information.)

• You can grant database-level and table/file-level privileges to individual
users or to PUBLIC using the SQL statement GRANT. This updates the
system tables known as GENESIS_USERS and GENESIS_AUTH.
When AcuXDBC receives the connection string, it compares the
username and password supplied through the DSN (or user-entered) with
the GENESIS_USERS table. If the GENESIS_USERS table doesn’t
exist, AcuXDBC allows the connection. If the table does exist,
AcuXDBC checks to make sure the user and password match a record.

See Chapter 5, section 5.4 and section 5.6, for general information on
granting permissions and Chapter 7, section 7.5.10 and section 7.5.11,
for details on the GRANT statement.

• You can create views of your data using the SQL statement CREATE
VIEW to show certain fields/columns of data in your database but not
others. (See Chapter 7, section 7.5.4, for more information.)

A potential situation where this can be useful is the following:

An application has a customer record containing all of the information
on a customer. The application developer would like to be able to
provide the ability for clerical workers to update some of the customer
information, while masking any private information.

A good way to do this would be to make one user the owner of the full
table. The application developer could then create a “VIEW” of the table
that contained only the non-private information. If the view were created
as owned by “PUBLIC,” all users would be able to access this
information while maintaining the confidentiality of the remainder of the
information.

3
 Preparing Your COBOL
Key Topics

Mapping COBOL Data Items and Database Fields............................. 3-2
The Role of XFDs .. 3-2
Using Directives .. 3-11

3-2 Preparing Your COBOL
3.1 Mapping COBOL Data Items and Database Fields

AcuXDBC relies upon eXtended File Descriptors (XFDs) to map your
COBOL data items to database columns. An XFD file may be created either
as a simple text file or as an XML file. In either case, the XFD contains a
description of a COBOL indexed, sequential, or relative file based on its
fields. XFDs are automatically generated when you compile your program
with the “-Fx” or “-Fa” compiler option. If the default mapping described in
this chapter is sufficient, there is nothing you need to do to prepare your
COBOL for AcuXDBC except create the XFDs themselves. (See section
3.2.)

If you want to add more detail to your database tables, you can add directives
to your program before generating the XFDs. Directives are optional
comments that you can place into a File Descriptor (FD) in your COBOL
source code to control how XFDs are built. (See section 3.3)

These concepts are described more fully later in this chapter.

3.2 The Role of XFDs

For AcuXDBC to map your Vision data file to an SQL table format,
descriptive information must be written to an XFD file for each file. An XFD
typically has the same name as the COBOL data file, but its extension is
“.xfd”. When you distribute your AcuXDBC application, you don’t need to
include the XFD with the executables and data files. The XFDs are used only
one time to populate your system catalog.

This section describes what information is included in an XFD and how it is
mapped to a system catalog format that is easily recognized by your ODBC
or JDBC application. Section 3.3 describes how you can take control of the
XFDs using directives. Because this material is relevant during compilation,
it applies only to COBOL developers.

The Role of XFDs 3-3
3.2.1 Creating XFD Files

To create an XFD file, specify the “-Fx” or “-Fa” option at compile time. For
example:

ccbl32 –fa animals.cbl

When you specify the “-Fx” option, an “.xfd” file is created for each indexed
data file specified in the compiled program. Use the “-Fa” option to generate
XFDs for all indexed, relative, and sequential files. Specify “-Fae” or “-Fxe”
to generate the XFDs in XML format. XFDs are stored in your source code
directory unless you use “-Fo” to specify another location.

Once you compile with one of these options, each COBOL file has a
corresponding “.xfd” file. The “-Fx” and “-Fa” options create “.xfd” files
without changing anything in the object code.

Creating XFD files at compile time offers two significant advantages:
• Any changes made to the file definitions are automatically included in

the XFDs when the program is recompiled.
• The effects of all compile-time options, COPY REPLACING, and

source-code control lines are reflected correctly in the XFDs.

The XFDs contain information about such things as the structure of the
COBOL files, the names of the fields, and their format. However, this
information is only a subset of the information available in most applications.
To map your COBOL fields to tables that are more meaningful and useful to
the application, you may need to add additional information to your XFDs.
To add information to your XFDs, or to change the default names of the
existing fields, you must use directives, or optional comments, in the FD
section of your COBOL program. These directives are explained in Section
3.3.

COBOL FDs ACUCOBOL-GT
compiler with XFDs
“-Fx” or “-Fa”

option

3-4 Preparing Your COBOL
Note: If you create your XFDs with a data storage option, (for example,
“ccbl 32 -Dci -Fa animals.cbl”), you must specify the “-s” switch to
xdbcutil when loading your system catalog with your XFDs. See Chapter
5, section 5.3.1 for more information.

3.2.2 How XFDs Are Formed

XFDs enable the AcuXDBC interface to populate tables in a system catalog
that map COBOL records in the indexed, relative, or binary sequential file to
“rows” and “columns” of data that can be accessed by common SQL
commands.

In the database table, each column contains the values for one data item. The
column names are essentially the field names. The table that is built is based
on the largest record in the COBOL file and contains the fields from that
record, plus any key fields (key fields are those that are named in KEY IS
phrases of SELECT statements in the FILE CONTROL section). This
ensures that data from all COBOL records fits within the table, and simplifies
the storage and retrieval process. If you were to examine the database
columns, only the fields from the largest record, and the key fields, would
appear.

Note: If the field named in the KEY IS phrase is a group item, it does not
become a column in the XFD table. Instead, the elementary items
subordinate to the named group item each become a column. You can force
a group item to be a column by using the USE GROUP directive, described
in section 3.3.13.

With multiple record formats (level 01), not all COBOL fields are
represented in the database by name, but all fields are storable and
retrievable. The XFD maps fields from all records of a file to the
corresponding locations in the “master” (largest) record of the file, and thus
to the Vision database table. Only the fields included in the XFD will be
available to ODBC or JDBC applications. Because AcuXDBC has access to
the table holding information from the XFD, it “knows” where the data from
a given COBOL record fits in the database tables. This activity is invisible to
the ODBC or JDBC application.

The Role of XFDs 3-5
You can use the WHEN directive (section 3.3.15) to include multiple record
definitions in the XFD. Alternatively, you can create views of your data using
the SQL command, CREATE VIEW (section 7.5.4).

Caution: Each field or group of fields in your COBOL FD or XFD field
must correspond to an SQL column name. To ensure that this is the case,
you may need to use the NAME directive to add field names to the XFD.

To help you determine whether any fields need to be added, the next section
describes which fields are automatically included and excluded.

3.2.3 Defaults Used in XFD Files

There are several elements of COBOL FDs that require special handling
when XFDs are built. These include multiple record definitions,
REDEFINES, FILLER, and OCCURS. This section describes how
ACUCOBOL-GT handles each of these situations.

As described earlier, in many instances you can override the default behavior
described below by placing directives in the FDs of your COBOL code.
(Directives are described in section 3.3.) For example, the WHEN directive
enables you to use multiple definitions for a single set of data by specifying
when each definition should be used.

Like most data sources, AcuXDBC does not support the notion of multiple
definitions for the same column. As the following paragraphs explain,
whenever a COBOL program gives more than one definition for the same
data, the compiler makes a choice about which definition to use in the XFD.
Then it disregards the rest.

KEY IS phrase

Fields named in KEY IS phrases of SELECT statements are included as
column names in the XFD. Other fields that occupy the same areas as the key
fields (by either explicit or implicit redefinition) are not included by name,
but are mapped to the key field column names by the XFD.

3-6 Preparing Your COBOL
Remember, if the field named in the KEY IS phrase is a group item, it will not
be included in the XFD unless a USE GROUP directive is used (see section
3.3.13.).

REDEFINES clause

Fields contained in a redefining item occupy the same positions as the fields
being redefined. The compiler needs to select one of the field definitions to
use. The default rule that it follows is to use the fields in the item being
redefined as column names; fields that appear subordinate to a REDEFINES
clause are mapped to column names in the Vision database using the XFD.

Multiple record definitions

This same rule extends to multiple record definitions. In COBOL, multiple
record definitions are redefinitions of the entire record area. This leads to the
same complication that is encountered with REDEFINES: multiple
definitions for the same data. So the compiler needs to select one definition
to use.

Because the multiple record types can be different sizes, the compiler must
use the largest one, so that it can cover all of the fields adequately. Thus, the
compiler’s rule is to use the fields in the largest record defined for the file. If
more than one record is of the largest size, the compiler uses the first one.

Group items

Note that group items are, by default, never included in an XFD for the same
reason that REDEFINES are excluded: they result in multiple names for the
same data items, and they are shown in the XFD file as a comment. You can,
however, choose to combine grouped fields into one data item by specifying
the USE GROUP directive, described in section 3.3.13.

FILLER data items

In a COBOL FD, FILLER data items are placeholders. FILLER items are not
uniquely named and thus cannot be uniquely referenced. For this reason, they
are not placed into the XFD. The XFD maintains the correct mapping of the
other fields, and no COBOL record positional information is lost.

The Role of XFDs 3-7
If your ODBC or JDBC application needs to refer to information contained in
a FILLER data item, you may need to include it. In such a case, you could
include it under a USE GROUP directive, or give it a name of its own with
the NAME directive, described in section 3.3.9.

OCCURS clauses

An OCCURS clause requires special handling, because the
ACUCOBOL-GT compiler must assign a unique name to each database
column. The compiler accomplishes this by appending sequential index
numbers to the item named in the OCCURS.

For example, if the following were part of a file’s description:
 03 employee-table occurs 20 times.
 05 employee-number pic 9(3)

these column names would be created in the Vision database table, that is, the
“table” of Vision data created when AcuXDBC performs its translation:
employee_number_1
employee_number_2
.
.
.
employee_number_10
employee_number_11
.
.
.
employee_number_20

You can use the SUBTABLE directive to modify this behavior, resulting in
the compiler storing just the base name along with name of the subtable
specified by the directive. See Section 3.3.12 for information on this
directive.

Note that the hyphens in the COBOL code are translated to underscores in
database field names, and the index number is preceded by an underscore.

3-8 Preparing Your COBOL
Identical field names

In COBOL you distinguish fields with identical names by qualification. For
example, there are two fields named MONTH in the following code, but they
can be qualified by their group items. Thus, you would reference MONTH
OF LAST_VISIT and MONTH OF LAST_PAYMENT in your program:
10 last_visit.
 15 month pic 99.
 15 day pic 99.
 15 year pic 99.
10 last_payment.
 15 month pic 99.
 15 day pic 99.
 15 year pic 99.

However, database systems consider duplicate names an error. Thus, if more
than one field in a particular file has the same name, you receive a compile
warning, and an “.xfd” file is not generated.

The solution to this situation is to add a NAME directive that associates an
alternate name with one or both of the conflicting fields. (See section 3.3.9
for more information.)

3.2.4 Examples of Default Mapping

The following section includes examples of how XFDs are formed.

If your program has one file with the three records shown below, the
underlined fields are included in the XFD by default (this example assumes
that ar-codes-key is named in a KEY IS phrase). Some fields do not appear
in the XFD, but the XFD maps them to the “master” field names. The
interface thus eliminates redundancies and gives you optimum performance.

Note: In the following example, the ship-weight and ship-instruct fields
would be invisible to any ODBC, JDBC, or SQL application, unless you
use a directive to make the fields visible.

01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.

The Role of XFDs 3-9
These fields are included because they are the key.
01 ship-code-record.
 03 filler pic x(4).
 03 ship-weight pic s999v9.
 03 ship-instruct pic x(15).
01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

These fields are included because they comprise the largest record.

The diagram below shows how AcuXDBC identifies database columns for
some of the fields in the COBOL record, while other fields are mapped to
those columns by the XFD; this means that all the fields are accessible to the
ODBC/JDBC program.

Note: If your application reads a record that should be a ship-code-record,
the data that is displayed is unreadable. If you try to modify that record, you
may receive an error message.

3.2.5 Summary of XFD Fields

Fields defined with an OCCURS clause are assigned unique sequential
names. Fields without names are disregarded. When multiple fields occupy
the same area, the compiler chooses only one of them unless you have a
WHEN directive to distinguish them. To choose among multiple fields
occupying the same area, the compiler:

3-10 Preparing Your COBOL
• preserves fields mentioned in KEY IS phrases.
• discards group items unless USE GROUP is specified.
• discards REDEFINES.
• uses the largest record if there are multiple record definitions.

3.2.6 Naming the XFD File

The compiler must give a name to each XFD file that is built. The compiler
attempts to build the name from your COBOL code, but in some instances the
name in the code is nonspecific, and you must provide a name.

Each “.xfd” name is built from a starting name that is derived (if possible)
from the SELECT statement in your COBOL code. The following
paragraphs explain how that occurs.

ASSIGN name is a variable

If the SELECT for the file has a variable ASSIGN name (ASSIGN TO
filename), you must specify a starting name for the “.xfd” file via a FILE
directive in your code.

ASSIGN name is a constant

If the SELECT for the file has a constant ASSIGN name (such as ASSIGN
TO “COMPFILE”), that name is used as the starting name for the “.xfd” file.

ASSIGN name is generic

If the ASSIGN phrase refers to a generic device (such as ASSIGN TO
“DISK”), the compiler uses the SELECT name as the starting name for the
XFD.

Forming the final XFD name

From the starting name, the final name is formed as follows:

1. The compiler removes any extensions from the starting name.

Using Directives 3-11
2. It constructs a “universal” base name by stripping out directory
information that fits any of the formats used by the operating systems
that run ACUCOBOL-GT.

3. It converts the base name to lower case.

4. It appends the extension “.xfd” to the base name.

Examples of XFD names

3.2.7 How AcuXDBC Locates XFD Files

You provide the path to your XFDs on the command line when first
populating your system catalog using xdbcutil (see Chapter 5, section 5.3,
“Creating a System Catalog and Views.”) or addfile (see Chapter 5,
section 5.5, “Loading the System Catalog with Your XFDs.”). Once your
XFDs are used by xdbcutil, AcuXDBC no longer needs them. Unlike older
versions of AcuODBC, AcuXDBC does not require you to distribute your
XFDs to end users. Your XFDs are completely expendable unless they are
being used by another product, such as Acu4GL.

3.3 Using Directives

XFDs may be built directly from your source code with no directives if the
compiler’s default mapping rules are sufficient for your situation. If you
would like to override the default mapping behavior or map a field to a
different name, you can add directives to your COBOL code.

COBOL code File name

ASSIGN TO "usr/ar/customer.dat" customer.xfd

SELECT TESTFILE, ASSIGN TO DISK testfile.xfd

ASSIGN TO "-D SYS$LIB:HELP" help.xfd

3-12 Preparing Your COBOL
Directives are optional comments that you can place into an FD in your
COBOL source code to control how XFDs are built. By controlling how
XFDs are built, you can guide the way AcuXDBC will map the content of
your Vision files’ fields to columns in the tables that comprise your database.

Among other things, directives enable you to
• specify a column name to be used in place of a COBOL field name.
• map elementary items of a group item together into a single column.
• cause the fields from a specific record in a file to appear in the database

table (rather than just the fields from the largest record).
• give a name to the XFD file itself.

Directives are always placed within a COBOL FD. They do not affect
Procedure Division I/O statements, and they do not change your COBOL
data in any way.

Note: If you are going to access Vision from an ODBC- or JDBC-enabled
application, each field in the application must correspond to a data item in
your COBOL FD or XFD. To ensure that this is the case, you may need to
use the NAME directive to add fields to the XFD.

3.3.1 Sample Files and Examples

In addition to describing the directives you can include in your COBOL file’s
FD section, this section provides sample code and examples based on the
sample files, “animals.cbl” and “file_dir.cbl”, that come with AcuXDBC.
(These files are located with the other files that make up the AcuXDBC
installation.) These files were developed with ACUCOBOL-GT on a
Windows 2000 system. The files were compiled with the following
command:

ccbl32 –fa animals.cbl

After successful compilation, the Vision file was created with the following
command:

wrun32 animals

Using Directives 3-13
The tables resulting from these files are displayed in Microsoft Access 2000.
See Chapter 8 for information on bringing external data into the database.

The following code is the FD for the source “animals.cbl” file. Note that this
is a highly simplified example intended only to demonstrate the use of
directives. You would not insert data into a table with this design.
 FILE SECTION.
 FD jr-file.
 01 jr-record.
 03 animal-info.
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 05 owner pic x(30).
 03 financial.
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 05 fee pic s9(5)v99.
 05 date_paid pic 9(8).

With each directive, a new line is added to the code as shown in subsequent
sections of this chapter. Examples in each section will show the code and also
the resulting database table, where appropriate. If you are working on a
different system, you may use different commands to compile “animals.cbl”
and to create the Vision file. If you are using an application other than
Microsoft Access 2000, the resulting tables may appear different.

3-14 Preparing Your COBOL
The following figure illustrates a table that was imported into Microsoft
Access 2000 based on the FD above. You may want to note the changes as
directives are added to the FD.

The file “file_dir.cbl” is used only when describing the FILE directive. The
sample source code is shown in section 3.3.7, “FILE Directive.”

3.3.2 Directive Syntax

Place each directive on a line by itself, immediately before the COBOL line
to which it pertains.

Introduce each directive with a “$” in the Indicator Area (column 7 in
standard ANSI source format), followed immediately by the letters “XFD”,
and then the directive itself. There must be no space between the $ and the
XFD. Spaces are permitted elsewhere on the line as separators. For example,
the NAME directive looks like this:
$XFD NAME = COLOR

An alternate ANSI-compliant way to introduce a directive is with an asterisk
(*) in the Indicator Area. In this case, you begin the directive with the letters
“XFD” and enclose the entire directive in double parentheses. For example:
$XFD NAME = COLOR

There must be no space between the asterisk and the double left parentheses.
Spaces are permitted elsewhere on the line as separators.

You may use either form of the directive syntax (or both) in your
applications.

Using Directives 3-15
Two or more directives that pertain to the same line of COBOL code may be
combined on one comment line. The directives should be separated by a
space or a comma. For example, to specify both USE GROUP and
NUMERIC at the same time, you would add this line:
$XFD USE GROUP, NUMERIC

The following sections describe each of the directives that AcuXDBC
supports, in alphabetical order. These include the:
• ALPHA Directive
• BINARY Directive
• COMMENT Directive
• DATE Directive
• FILE Directive
• HIDDEN Directive
• NAME Directive
• NUMERIC Directive
• READ-ONLY Directive
• USE GROUP Directive
• VAR_LENGTH Directive
• WHEN Directive
• XSL Directive

3.3.3 ALPHA Directive

The ALPHA directive allows you to treat a data item as alphanumeric text in
the database, when it is declared as numeric in the COBOL program.

Syntax
$XFD ALPHA

This is especially useful when you have numeric keys in which you
occasionally store non-numeric data, such as LOW-VALUES or special
codes. In this situation, treating the field as alphanumeric allows you to move
any kind of data to it.

3-16 Preparing Your COBOL
Example

Suppose you have specified KEY IS code-key. Then assume the following
record definition:
01 code-record.
 03 code-key.
 05 code-num pic 9(5).

In the database, group items are disregarded, so CODE-NUM is the actual
key field. Suppose you needed to move a non-numeric value to the key:
MOVE “C0531” TO CODE-KEY.
WRITE CODE-RECORD.

In this case the results are not well-defined because a non-numeric value has
been moved into a numeric field. The database might very well reject the
record.

One way to solve this problem is to use the ALPHA directive. This causes the
corresponding database field to accept alphanumeric data:
 01 code-record.
 03 code-key.
$XFD ALPHA
 05 code-num pic 9(5).

As an alternative, you could specify the USE GROUP Directive on the line
before code-key. The USE GROUP directive implies that the field is
alphanumeric.

3.3.4 BINARY Directive

The BINARY directive is used to specify that the data in the field could be
alphanumeric data of any classification. Absolutely any data is allowed.

The BINARY directive may not be used in combination with the
VAR_LENGTH Directive.

The method of storing fields declared as binary is database-specific. For
example, with Informix databases, binary data is stored in char fields with an
extra leading character. This character always contains a space. Oracle uses
the data type raw for the field.

Using Directives 3-17
Syntax
$XFD BINARY

Example

You might use this directive when you need to store a key that contains
LOW-VALUES; COBOL allows a numeric field to contain LOW or HIGH
values, but these are invalid for a numeric field in the RDBMS:
 01 code-record.
 03 code-key.
 05 code-indic pic x.
$XFD BINARY
 05 code-num pic 9(5).
 05 code-suffix pic x(3).
 .
 .
 .
 move low-values to code-num.

3.3.5 COMMENT Directive

The COMMENT directive allows you to include comments in an XFD file.
Because the information is embedded in a comment, it doesn’t interfere with
processing by AcuXDBC. Each comment entered with this directive appears
in the XFD file with the symbol “#” in column 1. This information will
appear in only the XFD file. It will not be imported into the system catalog by
xdbcutil.

Syntax
$XFD COMMENT text

The following FD includes a comment:
 FILE SECTION.
 FD qa-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 qa-record.
 03 animal-info.
 05 patient-id pic x(5).
 05 atype pic x.

3-18 Preparing Your COBOL
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 05 owner pic x(30).
 03 financial.
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 05 fee pic s9(5)v99.
 05 date_paid pic 9(8).

The following line appears in the “animals.xfd” file:
<!-- This sample file demonstrates directives. -->

3.3.6 DATE Directive

The DATE directive creates a map between the ODBC/JDBC application
date fields and COBOL numeric fields. Because there’s no COBOL syntax
that identifies a field as a date, you should add this directive to differentiate
dates from other numbers. This way, when a user of a Windows or Java
application requests date information, AcuXDBC can respond properly.

Syntax
$XFD DATE[=date-format-string optional]

The DATE directive implies the NUMERIC directive.

The date-format-string is a description of the desired date format, composed
of characters from the following list:

Y year (2- or 4-digit)

M month (01 to 12)

D day of month (01 to 31)

Using Directives 3-19
• If date-format-string contains only date characters (Y, M, D, E, or J), the
string is treated as a DATE variable.

• If date-format-string contains only time characters (H, N, S), it is treated
as a TIME variable.

• If date-format-string contains any combination of date and time
characters, or if it contains fractional seconds (T), it is treated as a
TIMESTAMP variable.

Note: Some applications have difficulty processing a date-format-string
that contains fractional seconds (for example: HHNNSSTT). If you are
using such an application, modify strings containing fractions to be purely
numeric.

Each character in a date-format-string can be considered a placeholder that
represents the type of information stored at that location. The characters also
determine how many digits will be used for each type of data. Any other
characters cause the date-format-string to be invalid. Invalid formats are
automatically treated as numeric data.

For example, although you would typically represent the month with two
digits, if you specify MMM as part of your date format, the resulting date
uses three digits for the month, left-zero-filling the value. If the month is
given as M, the resulting date uses a single digit, and truncates on the left.

If you don’t specify a date-format-string, the default is YYMMDD if the
field has six digits, or YYYYMMDD if the field has eight digits.

J Julian day (00000000 to 99999999)

E day of year (001 to 366)

H hour (00 to 23)

N minute

S second

T hundredth of a second

3-20 Preparing Your COBOL
Sometimes it’s desirable to have incomplete date types, for example to have
YYYYMM to simply store the year and month. AcuXDBC defaults the
month and day to 1, so that incomplete types will be valid. Note that
AcuXDBC can handle incomplete date types, but if you have a complete type
and invalid date data, AcuXDBC cannot handle the date.

Julian dates

Because the definition of Julian day varies, the DATE directive offers a great
deal of flexibility for representing Julian dates. Many source books define the
Julian day as the day of the year, with January 1st being 001, January 2nd
being 002, and so forth. If you want to use this definition for Julian day,
simply use EEE (day of year) in your date formats.

Other reference books define the Julian day as the number of days since some
specific “base date” in the past. This definition is represented in the DATE
directive with the letter J (for example, a six-digit date field would be
preceded with the directive “$XFD DATE=JJJJJJ”). The default “base date”
for this form of Julian date is January 1, 1900.

You can define your own base date for Julian date calculations by setting the
JULIAN_BASE_DATE configuration variable in your AcuXDBC
configuration file. See Chapter 4, section 4.2.10 for details.

Using group items

You may place the DATE directive in front of a group item, as long as you
also use the USE GROUP directive. For more information, see section 3.3.13.

Examples

The source code for the “animals” table contains a group item for the date of
the animal’s last visit, and an elementary item for the date of the last
payment:
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 05 fee pic s9(5)v99.
 05 date_paid pic 9(8).

Using Directives 3-21
The date portions of a database table based on source code with this FD look
similar to this illustration. All of these date-related fields are of type
NUMBER in the (Access) database.

The examples that follow build on this source code.

Example 1 – Elementary data item, DATE directive

The “date_paid” field is defined in the sample file as an elementary item of
type NUMBER. Inserting the DATE directive before this line maps the type
to DATE/TIME (in Access) and changes the format of the date in the table,
as shown below.
 FILE SECTION.
 FD qa-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 qa-record.
 03 animal-info.
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 05 owner pic x(30).
 03 financial.
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 05 last_visit.

3-22 Preparing Your COBOL
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 05 fee pic s9(5)v99.
 $XFD DATE=YYYYMMDD
 05 date_paid pic 9(8).

The resulting entries in a database table look similar to the following
illustration:

Example 2 – Group data item, DATE and USE GROUP
directives

If your date information is defined as a group item, you must use both the
DATE and USE GROUP directives to map your COBOL numeric data items
to SQL date fields. Insert the directives on the line preceding the group item.
 FILE SECTION.
 FD qa-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 qa-record.
 03 animal-info.
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 05 owner pic x(30).
 03 financial.

Using Directives 3-23
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 $XFD DATE=YYYYMMDD, USE GROUP
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 05 fee pic s9(5)v99.
 $XFD DATE=YYYYMMDD
 05 date_paid pic 9(8).

The resulting table now has a column with the name of the group item
(“last_visit”), which is defined as type DATE/TIME (in Access).

FY and RY date formats

The FY and RY date format characters have very precise requirements and
are used to handle a specific case where eight-digit dates are expressed in six
characters.

3-24 Preparing Your COBOL
Instead of YYYY or YY, you can specify FY to mean that the first character
of the year specifies the decade instead of the “tens” year. The decade can be
a character between space (“ “) and “I” (inclusive). For the characters “0”
through “9” to be treated as decades in the 20th century, the decade characters
have the following meaning:

This means that a date of ?70210 is converted to 20570210, or February 10,
2057. The range of valid dates is 00101 (Jan 1, 1740) through I91231 (Dec
31, 2159).

Instead of YYYY or YY, you can also specify RY to mean that the first
character of the year specifies the decade and that the entire date is to be 9s
complement (to be able to sort dates in reverse order). Note that the entire
date and time is treated as a 9s complement number in this case. The decade
characters have the following meaning:

The date 20570210 is now specified with *29789. The range of valid dates is
I99898 (Jan 1, 1740) through 08768 (Dec 31, 2159), the same valid range as
when using F instead of R.

00 10 20 30 40 50 60 70 80 90

1700 spc ! “ # $ %

1800 & ' () * + , - . /

1900 0 1 2 3 4 5 6 7 8 9

2000 : ; < = > ? @ A B C

2010 D E F G H I

00 10 20 30 40 50 60 70 80 90

1700 I H G F E D

1800 C B A @ ? > = < ; :

1900 9 8 7 6 5 4 3 2 1 0

2000 / . - , + *) (' &

2010 % $ # “ ! spc

Using Directives 3-25
While using F and R before month, day, hour, or any other format specifier
does not generate a compile error for the XFD, the results are undefined at
runtime.

Note that if you use these format specifiers with Acu4GL, the actual date is
written to the database, not the encoded date. That means that the R specifier
is not very useful in this scenario (you won’t be able to read forward through
a file in reverse date order). This format specifier is more useful with
AcuXDBC where the data is in Vision format.

3.3.7 FILE Directive

The FILE directive supplies a starting name from which the XFD file name
is formed. This directive is required only when the file name in the COBOL
code is nonspecific. For example, you would use this directive when the
SELECT for the file has a variable ASSIGN name (ASSIGN TO
variable_name). In this situation, the interface cannot form a file name
automatically, and you must provide a name.

You can encounter this situation when you are using AcuXDBC’s file alias
feature. For example, the description section of your COBOL file may
reference multiple data files with the same format. Each of these data files
represents a distinct table in the database, but one XFD file describes them
all. See Chapter 5, section 5.5.1 “File Aliases” for more information.

A starting name is a short file name that serves as the basis for the XFD name.
See section 3.3.9, “NAME Directive,” for additional information.

Syntax
$XFD FILE=name

This directive must appear on the line immediately preceding the file’s FD.

Example

The sample file “file_dir.cbl” contains code that demonstrates the FILE
directive. Suppose your SELECT statement has a variable ASSIGN name
such as the one shown here:

3-26 Preparing Your COBOL
SELECT work-file
 ASSIGN to pet-file.

You must add the FILE directive as shown here:
 FILE-CONTROL.
 SELECT work-file
 ASSIGN TO pet-file
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS type-id
 FILE STATUS IS qa-file-status.

 DATA DIVISION.
 FILE SECTION.
 $XFD FILE=patients
 FD work-file.
 01 pet-record.
 05 type-id.
 10 atype pic x.
 10 ano pic 99.
 05 owner pic x(30).
 05 breed pic x(25).
 05 gender pic x.
 WORKING-STORAGE SECTION.
 01 pet-file pic x(8).
 01 qa-file-status pic xx.

Note that after compilation, the data directory now contains the files
“file_dir.acu” and “patients.xfd”. Because the FILE directive assigns the
name of the XFD file, this is different from previous examples in which both
the “.acu” file and the “.xfd” file took the same base name as the “.cbl” file.

Refer to Chapter 5, section 5.5.1 for information on file alias and how to load
XFDs to different tables and databases using the system catalog utility
program (xdbcutil).

3.3.8 HIDDEN Directive

The HIDDEN directive allows you to hide specific data items from end users,
while providing normal access to other data items. When you place this
directive immediately before a data item in an FD, that item is hidden from

Using Directives 3-27
end users. Field names affected by the HIDDEN directive are literally not
placed into the system catalog. The user can neither read, modify, nor even
know that this field exists.

Note: An alternative is to create a VIEW of the table that does not include
the field. To do so, use the CREATE VIEW command, described in
Chapter 7, section 7.5.4.

The HIDDEN directive applies only to the elementary data item it precedes.
Subsequent data items revert to normal read access. Note that you cannot
apply the HIDDEN directive to group items and you cannot hide the key.

If you use the INSERT command on a table that has hidden fields, spaces
(hex value 20) are put into the hidden fields, whether they are numeric or
alphanumeric.

Syntax
$XFD HIDDEN

In the following FD, “fee” is hidden from users in the resulting table.
 FILE SECTION.
 FD jr-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 jr-record.
 03 animal-info.
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 05 owner pic x(30).
 03 financial.
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 $XFD DATE=YYYYMMDD, USE GROUP
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).

3-28 Preparing Your COBOL
 10 dd pic 9(2).
 $XFD HIDDEN
 05 fee pic s9(5)v99.
 $XFD DATE=YYYYMMDD
 05 date_paid pic 9(8).

Note that in the resulting table, the “fee” column no longer appears:

This directive is useful for hiding data like passwords, telephone numbers,
and financial information—whatever information you don’t want users
to see.

You cannot include a HIDDEN field in a WHEN directive with a
TABLENAME clause, due to the complexities of editing or adding records.
In this situation, you must add the data, but since the field is hidden, you
cannot see it and could add a value that would cause unexpected results. See
section 3.3.15, “WHEN Directive,” for additional information.

3.3.9 NAME Directive

The NAME directive assigns a database field name to the data item defined
on the next line. You can use the NAME directive to prevent duplicate field
names.

Syntax
$XFD NAME=fieldname

Using Directives 3-29
This directive has several uses, as shown in the following examples.

Example 1 – duplicate names for data items in a single record

Within the Vision database, all field names must be unique. (Multiple
database tables may include the same field name, but duplicates may not exist
within a single table.) Unique field names are not required in COBOL,
because names can be qualified by group items. For example, this is
acceptable in COBOL:

10 last_visit.
 15 mm pic 99.
 15 dd pic 99.
 15 yy pic 99.
10 last_payment.
 15 mm pic 99.
 15 dd pic 99.
 15 yy pic 99.

It is not, however, acceptable for a database table to have two columns with
the same name. In fact, you will not be able to compile and generate an XFD
with the above source code in your program.

You need not change the field names in your COBOL program to make them
accessible as a database column. A preferable option might be to use the
NAME directive to provide unique names for the fields. The NAME directive
has the advantage of being placed in your COBOL program as a comment,
which allows you to change the database name of the column without
impacting the existing code or functionality of your COBOL application.

Although this is not included in the sample code, here is an example of using
the NAME directive when you have duplicate field names:

10 last_visit.
 15 mm pic 99.
 15 dd pic 99.
 15 yy pic 99.
10 last_payment.
$XFD NAME=MONTH_PD
 15 mm pic 99.
$XFD NAME=DAY_PD
 15 dd pic 99.
$XFD NAME=YEAR_PD
 15 yy pic 99.

3-30 Preparing Your COBOL
The “dates” portion of the Vision database table will look like this:

Example 2 – assigning shorter names

You may want to use the NAME directive to assign shorter names than those
used in your COBOL programs. This makes the formation of interactive SQL
queries easier and quicker. For example:
 FILE SECTION.
 FD jr-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 jr-record.
 03 animal-info.
 $XFD NAME=PATIENT
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 05 owner pic x(30).
 03 financial.
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 $XFD DATE=mmddyyyy, USE GROUP
 05 last_visit.
 10 mm pic 9(2).
 10 dd pic 9(2).
 10 yyyy pic 9(4).
 $XFD HIDDEN
 05 fee pic s9(5)v99.

mm dd yy MONTH_PD DAY_PD YEAR_PD

06 18 02 07 04 02

Using Directives 3-31
This directive causes the XFD to map PATIENT-ID to PATIENT in the
database.

Additional examples

Here are some other cases in which you may consider using the NAME
directive. In all of these instances, note that your COBOL data does not
change. The new name appears only in the Vision database and in any tables
that result from your COBOL code.
• If your COBOL data contains field names that are identical within the

first 18 characters.

Each time you compile your program and specify “-Fx” to create XFDs,
any field names longer than 18 characters are checked for uniqueness
within the first 18. If you have names that are identical within the first 18
characters, or that would not be meaningful if shortened to the first 18
characters, use the NAME directive to assign them different database
field names.

• If you map COBOL data items to Windows or Java applications.

If a column name in your Windows or Java application does not match
the name used in your COBOL FD, you can use a NAME directive to
associate the two names.

• If a field name in your COBOL data begins with a numeric character.

Because Windows and Java applications communicate using SQL, the
program typically generates a syntax error when it encounters a column
name that begins with a numeric character. If your COBOL program

3-32 Preparing Your COBOL
uses field names that begin with a numeric character, use the NAME
directive to assign a different name for use with your Windows and Java
applications.

• If you want to include a “FILLER” item.
• If your COBOL name is an SQL reserved word.

3.3.10 NUMERIC Directive

The NUMERIC directive allows you to treat a data item as an unsigned
integer when it is declared as alphanumeric. You might use this when the data
stored in the item is always numeric.

Syntax
$XFD NUMERIC

Example

The PATIENT-ID field (now appearing in the database table as the
PATIENT column) is defined in the source code as being a text field. Since
this field will always contain a number, you may want to define it in the
database table as numeric. (Note the use of two directives for the same data
item here.)
 FILE SECTION.
 FD jr-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 jr-record.
 03 animal-info.
 $XFD NAME=PATIENT, NUMERIC
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 05 owner pic x(30).
 03 financial.
 05 acct_no.

Using Directives 3-33
 10 year pic x(2).
 10 seq_no pic x(4).
 $XFD DATE=YYYYMMDD, USE GROUP
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 $XFD HIDDEN
 05 fee pic s9(5)v99.

The following table is the result, and, in the database, PATIENT is now of
type NUMBER.

See also
INVALID_NUMERIC_DATA
NULL_NUMERIC_READ
NULL_NUMERIC_WRITE

3.3.11 READ-ONLY Directive

The READ-ONLY directive allows you to make some fields (columns) of
data read-only, while preserving normal access to other fields/columns.
When placed immediately before a data item in an FD, this directive assigns
the read-only attribute to the item. The read-only attribute applies only to
elementary items, and not to group items. Subsequent data items return to
normal read-write access.

3-34 Preparing Your COBOL
Note: Use the READ-ONLY directive if you want to tag fields (columns)
of data as read-only. Use the READ_ONLY configuration variable if you
want to designate all the files belonging to a DSN as read-only. See Chapter
4, section 4.2.23 for more information on this configuration variable.

Syntax
$XFD READ-ONLY

In the code creating the “animals” table, the “owner” data item has been
designated as read-only. The code is:
 FILE SECTION.
 FD jr-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 jr-record.
 03 animal-info.
 $XFD NAME=PATIENT, NUMERIC
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 $XFD READ-ONLY
 05 owner pic x(30).
 03 financial.
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 $XFD DATE=YYYYMMDD, USE GROUP
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 $XFD HIDDEN
 05 fee pic s9(5)v99.
 $XFD DATE=MMDDYYYY
 05 date_paid pic 9(8).

Using Directives 3-35
In the database table, the “owner” column looks the same as the other
columns. However, if users attempt to modify data in the owner column, they
receive a message telling them that the update on a linked table failed.

See also

GRANT (Object privileges)

3.3.12 SUBTABLE Directive

This directive modifies the way fields that appear in an OCCURS clause are
processed, resulting in the creation of subtables. (See section 3.2.3 for more
information on the OCCURS clause). This directive instructs the XFD
parsing routines not to append the occurrence number to the field name, as
would normally take place with OCCURS clauses, but instead to store just
the base name along with the name of the subtable as written in the XFD file.
The resulting tables will appear as multiple tables in a primary/foreign key
relation based on the base table’s primary key.

The SUBTABLE directive is designed for AcuXDBC and cannot be used
with Acu4GL.

Syntax
$XFD SUBTABLE=name

Example
$XFD SUBTABLE=subtab1
 03 employee-table occurs 10 times.
 05 employee-number pic 9(3).

See also

USE GROUP Directive

3-36 Preparing Your COBOL
3.3.13 USE GROUP Directive

Generally, only elementary data items correspond to columns. The USE
GROUP directive indicates that the following group item is to correspond to
a column as if it were an elementary item of the same width. This is necessary
if the item is stored in your database as a group, rather than as individual
fields.

By default, the USE GROUP directive implies that the consolidated field is
alphanumeric. If you want a numeric field, add the word “NUMERIC” at the
end of the directive.

Grouping data items in this way is efficient if the groups are usually
processed as units.

Syntax
$XFD USE GROUP

Example

You might use this directive with fields like multi-part account numbers or
department numbers, or keys that are referenced as a unit but not by their
individual pieces. In the sample file, you can group the “year” and “seq_no”
fields to make a single account number column (“acct_no”) as shown below:
 FILE SECTION.
 FD jr-file.
 $XFD COMMENT This sample file demonstrates directives.
 01 jr-record.
 03 animal-info.
 $XFD NAME=PATIENT, NUMERIC
 05 patient-id pic x(5).
 05 atype pic x.
 05 ctype redefines atype pic x.
 05 dtype redefines atype pic x.
 05 otype redefines atype pic x.
 03 owner-info.
 05 phone pic x(8).
 $XFD READ-ONLY
 05 owner pic x(30).
 03 financial.

Using Directives 3-37
 $XFD USE GROUP
 05 acct_no.
 10 year pic x(2).
 10 seq_no pic x(4).
 $XFD, USE GROUP, DATE=YYYYMMDD
 05 last_visit.
 10 yyyy pic 9(4).
 10 mm pic 9(2).
 10 dd pic 9(2).
 $XFD HIDDEN
 05 fee pic s9(5)v99.

The resulting table looks similar to this:

If you are using an existing database in which certain fields are grouped, they
must also be grouped in your COBOL FD.

If the database does not yet exist, keep in mind that combining fields into
groups typically improves execution speed. Whether to group fields or not
also depends on how you want to process them. Do you always store and use
the fields together? Someone who really knows how the data is being used
might help to identify groups of fields that can be combined to speed
processing.

Once you’ve grouped fields, you can apply other directives to them, such as
DATE Directive, NUMERIC Directive, and ALPHA Directive.

3-38 Preparing Your COBOL
3.3.14 VAR_LENGTH Directive

By default, the compiler generates fixed-length fields in the XFD. The
VAR_LENGTH directive requests that the data item that immediately
follows the directive be assigned a type that implies variable length, if
possible. This can save considerable space in your database.

The VAR_LENGTH directive cannot be used in combination with the
BINARY Directive.

The precise variable type that is assigned to the data item depends on which
RDBMS is in use. Possible variable types that might be assigned are
VARCHAR and VARBINARY.

Syntax
$XFD VAR_LENGTH

Example

For example, the directive in the following code indicates that the
employee-name field should be entered into a SYBASE database as a
VARCHAR data item.
 $XFD VAR_LENGTH
 03 employee-notes pic x(300).

3.3.15 WHEN Directive

Use the WHEN directive when you want to include multiple record
definitions or REDEFINES in the XFD. The WHEN directive typically is
used to force certain columns of data to be available that wouldn’t be
available otherwise.

Note: You cannot use the WHEN directive in an OCCURS clause.

Using Directives 3-39
Recall that the key fields and the fields from the largest record are
automatically included as explicit columns in the Vision database table (see
section 3.2.2). So you should use the WHEN directive if you want the user to
be able to access all the data in the COBOL file in a way that is
understandable.

WHEN declares that the field (or subordinate fields, if it is a group item) that
immediately follows the directive must appear as a column (or columns) in
the Vision database table. It also states one condition under which the
columns are to be used. The WHEN directive thus guarantees that the fields
will be explicitly included in the table (as long as they aren’t FILLER and
don’t occupy the same area as key fields).

Syntax
$XFD WHEN field operator value

Field is the name of a data item that corresponds to a field. If there is a
NAME directive for this data item, the name used in the WHEN directive is
the name given to the item by the NAME directive, not its COBOL name.

The operator specifies the relation between the field value and the
alphanumeric literal that satisfies the condition. Operator can be one of the
following:

Value is an alphanumeric literal (if the field is alphanumeric) or a numeric
literal (if the field is numeric) or the special word “Other”. “Other” is used
only with the “=” operator:
$XFD WHEN field = other

Operator Relation

= The field value is equal to the literal value.

!= The field value is not equal to the literal value.

> The field value is greater than the literal value.

< The field value is less than the literal value.

>= The field value is greater than or equal to the literal
value

<= The field value is less than or equal to the literal value

3-40 Preparing Your COBOL
“Other” is true only when all other conditions for the same field are false. For
example, if your FD contains the following lines of code:
 $XFD WHEN ATYPE = "C"
 $XFD WHEN ATYPE = "D"
 $XFD WHEN ATYPE = other

the “other” condition holds true only if both “atype = ‘c’” and “atype = ‘d’”
are false.

Example

The following code is an example of using the WHEN directive.
 01 key-record.
 * employee-number is a key data item
 03 employee-number pic 99999.
 03 emp-type pic x.
 $xfd when emp-type="1"
 * record has this form when emp-type=”1”
 01 data-record-1.
 03 filler pic 99999.
 03 filler pic x.
 03 name-1 pic x(35).
 03 pay-rate-1 pic 99.99.
 $xfd when emp-type="2"
 * record has this form when emp-type=”2”
 01 data-record-2
 03 filler pic 99999.
 03 filler pic x.
 03 name-2 pic x(35).
 03 pay-rate-2 pic 999.99.
 03 subordinates pic 999.
 03 position pic x(50).

The effect of these directives is to force “emp-type”, “name-1”, and
“pay-rate-1” to correspond to columns, even though they are not in the largest
record description. Therefore, the corresponding table has the following
columns:

EMPLOYEE_NUMBER
EMP_TYPE
NAME_1
PAY_RATE_1

Using Directives 3-41
NAME_2
PAY_RATE_2
SUBORDINATES
POSITION

If each data item is subordinate to at most one WHEN directive, as in this
example, the following occurs:
• When the condition is true, the data item appears in the database table in

the usual way.
• When the condition is false, the special value NULL appears in the

corresponding column in the database table, and any value written into
the column in the database table is not written to the COBOL data file.
The exact meaning of a NULL value depends on the database. In some
databases, NULL is a blank or zero value. In others, NULL is a special
value on which no arithmetic or string operations can be performed,
although a value can be tested to determine whether it is NULL.

If a data item is subordinate to two or more WHEN directives, the following
applies:
• When all conditions are true, the data item appears in the database table

in the usual way.
• When at least one condition is false, the special value NULL appears in

the corresponding column in the database table, and any value written
into the column in the database table is not written to the COBOL data
file.

WHEN Directive With TABLENAME Clause

If you assign a tablename, a VIEW will be created that contains the columns
subordinate to the WHEN directive and any columns the WHEN directive
depends on.

When an XFD names a condition, such as WHEN, AcuXDBC produces
multiple tables from a single XFD file. One table is given the current name of
the file, while the VIEWS resulting from any named conditions are given the
name specified with the tablename parameter (see syntax below).

3-42 Preparing Your COBOL
You cannot include a HIDDEN field in a WHEN directive with a
TABLENAME clause, because of the complexities of editing or adding
records. In such a situation, you must add the data, but since the field is
hidden, you cannot see it and may add a value that would cause unexpected
results.

If an XFD file in an alias contains WHEN directives with TABLENAME
phrases, the corresponding tables are defined in the usual way, using the data
file specified by its physical file name. You can define two or more file
aliases with the same XFD file but with different physical file names if the
XFD file does not contain any WHEN directives with the TABLENAME
clause.

Syntax
$XFD WHEN field operator value TABLENAME=new_table_name

The syntax is essentially the same as for the WHEN directive alone, with the
addition of the TABLENAME clause. The word “OTHER” can be used only
with “=”. It means “use the following field(s) only if none of the other
WHEN condition(s) listed for the same field is met.” In other words, this
condition is true only if all other conditions for the same field are false.

For example:
.
.
assign to "ar_table"
.
.
01 ar-code-type.
$xfd when ar-code-type = "s" tablename=ship
 03 ship-code-record pic x(4).
$xfd when ar-code-type = "b" tablename=backorder
 03 backorder-code-record redefines
 ship-code-record.
$xfd when ar-code-type = other
 03 obsolete-code-record redefines
 ship-code-record.

If you tried to connect to the system catalog through a program like Access,
you would see a table named “ar_table”, and two views named “ship”, and
“backorder”. If you placed $XFD READ-ONLY TABLE immediately

Using Directives 3-43
before the “xfd when ar-code-type = “s” tablename=ship” line, the ship
view and ar_table would be read-only, but the backorder view would not. If
you create the INFORMATION_SCHEMA during AcuXDBC setup
(described in Chapter 5, section 5.3), you can see these entries by executing
the following SQL query:
SELECT * FROM INFORMATION_SCHEMA.VIEWS;

OTHER may be used before one record definition and may be used once at
each level within each record definition.

Note: A WHEN directive with condition OTHER must be used if there is
a possibility that the data in the field will not meet any of the explicit
conditions specified in the other WHEN directives. If this is not done,
results are undefined. Also, WHEN directives may ensure that there will be
multiple columns that share the same record area. If you try to modify both
columns, an error results.

Example 1

If the following code were compiled without directives, the underlined fields
would appear explicitly in the database table. Note that the key fields are
included automatically, as are the fields from the largest record. FILLER
would be ignored:
01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.
01 ship-code-record.
 03 filler pic x(4).
 03 ship-instruct pic x(15).
01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

3-44 Preparing Your COBOL
If you added the WHEN directive as shown below, it would cause the fields
from the SHIP-CODE-RECORD to be included in the database table, and
would determine when specific database columns would be used. The
underlined fields would appear as columns in the database table:
 01 ar-codes-record.
 03 ar-codes-key.
 05 ar-code-type pic x.
 05 ar-code-num pic 999.
$xfd when ar-code-type = "s"
 01 ship-code-record.
 03 filler pic x(4).
 03 ship-instruct pic x(15).
$xfd when ar-code-type = "t"
 01 terms-code-record.
 03 filler pic x(4).
 03 terms-rate-1 pic s9v999.
 03 terms-days-1 pic 9(3).
 03 terms-rate-2 pic s9v999.
 03 terms-descript pic x(15).

FILLER data items don’t have unique names and thus are not used to form
columns in the database table. You could use the NAME directive to give
them a name if you really need to see them in the database table. However, in
this example the FILLER data items implicitly redefine key fields. Thus, they
would be disregarded even if you provided a name for them.

Example 2

In the following code, in which no WHEN directives are used, the underlined
fields will be explicitly named in the database table. (Key fields have the
suffix “key” in their names in this example.)

Note that REDEFINES records simply re-map the same data area and are not
explicitly included in the database table by default:
01 archive-record.
 03 filler pic x(33).
 03 archive-code pic 9(6).
 03 archive-location pic 9(2).
 03 filler pic x(10).
01 master-record.
 03 animal-id-key.
 05 patient-id pic 9(6).

Using Directives 3-45
 05 species-code-type pic 9(5).
 05 species-name pic x(6).
 03 service-code-key.
 05 service-code-type pic 9(6).
 05 service-name pic x(10).
 03 billing-code.
 05 billing-code-type pic 9(4).
 05 plan-name pic x(8).
 03 office-info.
 05 date-in-office pic 9(8).
 05 served-by-name pic x(10).
 03 remote-info redefines office-info.
 05 van-id pic 9(4).
 05 proc-code pic 9(8).
 05 vet-name pic x(6).

If you added the WHEN directives shown below, you would add several
columns to the database table. The fields that would appear in the table are
underlined:
$xfd when animal-id-key = "00000000000000000"
 01 archive-record.
 03 filler pic x(33).
 03 archive-code pic 9(6).
 03 archive-location pic 9(2).
 03 filler pic x(10).
$xfd when animal-id-key = other
 01 master-record.
$xfd use group
 03 animal-id-key.
 05 patient-id pic 9(6).
 05 species-code-type pic 9(5).
 05 species-name pic x(6).
 03 service-code-key.
 05 service-code-type pic 9(6).
 05 service-name pic x(10).
 03 billing-code.
 05 billing-code-type pic 9(4).
 05 plan-name pic x(8).
$xfd when billing-code-type = "1440"
 03 office-info.
 05 date-in-office pic 9(8).
 05 served-by-name pic x(10).
$xfd when billing-code-type = other
 03 remote-info redefines office-info.

3-46 Preparing Your COBOL
 05 van-id pic 9(4).
 05 proc-code pic 9(8).
 05 vet-name pic x(6).

Example 3

If your application has a REDEFINES whose field names are more
meaningful than the fields they redefine, you might consider switching the
order of your code, rather than using a WHEN directive. Use the less
significant field names in the REDEFINES.

For example, you might change this:
 03 code-info.
 05 filler pic 9(8).
 05 code-1 pic x(10).
 03 patient-info redefines code-info.
 05 patient-id pic 9(4).
 05 service-code pic 9(8).
 05 server-name pic x(6).

to this:
 03 patient-info.
 05 patient-id pic 9(4).
 05 service-code pic 9(8).
 05 server-name pic x(6).
 03 code-info redefines patient-info.
 05 filler pic 9(8).
 05 code-1 pic x(10).

The fields that would appear in the database table by default are underlined
above. This shows how the column names might become more meaningful
when the order is reversed. Your application operates the same either way.

Note: If a WHEN condition is false for a particular record, columns
corresponding to data items subject to the WHEN directive and in the row
corresponding to the record are set to the special database value NULL This
means that there is no value provided for those columns. NULL is not
equivalent to zero, and it has special properties in the database. For
example, you can select all rows for which a given column is NULL.

Using Directives 3-47
Example 4

This COBOL code:
 01 col-type pic x.
 03 col-def.
$xfd when col-type = "a"
 05 def1 pic x(2).
$xfd when col-type = "b"
 05 def2 redefines def1 pic 9(2).

results in this database table:

Note that if you try to set the first row so that col_type=a, def1=xx, and
def2=20, the value of def2 is not stored.

3.3.16 XSL Directive
If you are using the “-Fxe” or “-Fae” compiler option to generate XML-style
XFD files, the XSL directive allows you to include a stylesheet reference in
the XML header.

Syntax
$XFD XSL=stylesheet

where stylesheet is an alphanumeric literal indicating the appropriate
stylesheet. The compiler includes the following line in all generated
XML-style XFD files:

<?xml-stylesheet type="text/xsl" href="stylesheet"?>

For example:
$XFD XSL="myxsl.xsl"

generates this line:

<?xml-stylesheet type="text/xsl" href="myxsl.xsl"?>

col_type def1 def2

a xx null

b null 10

a yy null

3-48 Preparing Your COBOL

4
 Configuration
Key Topics

Introduction ... 4-2
AcuXDBC Configuration ... 4-2
AcuXDBC Server Configuration ... 4-25
AcuServer Configuration .. 4-28

4-2 Configuration
4.1 Introduction

Two configuration files are central to AcuXDBC. By default, they are known
as “acuxdbc.cfg” and “net.ini”. In stand-alone configurations, only
“acuxdbc.cfg” is used. Network installations using AcuXDBC Server require
both configuration files. In this case, “acuxdbc.cfg” resides on the server and
“net.ini” resides on the client.

Note: The “acuxdbc.cfg” file can be named anything. You specify the
name of the file when you set up the DSN on the client or when using
various command-line tools. “net.ini”, on the other hand, must retain its
default name and location.

Configuration files provide you with two main benefits:
• Universal configuration

When creating DSNs on network clients, you don’t have to configure
each DSN individually. Instead, just point to a configuration file on the
server.

• Dynamic configuration

When you need to change your AcuXDBC configuration, you can
modify the configuration file as needed without changing individual
DSNs.

This chapter describes the purpose of these configuration files and the
variables that are supported.

4.2 AcuXDBC Configuration

AcuXDBC is configured through a configuration file, acuxdbc.cfg. This
configuration file is where you define the location of your Vision data files
and system catalog, file case instructions, and other important program
functions. You can create several different configuration files for different
purposes. Configuration files must reside in your AcuXDBC installation

AcuXDBC Configuration 4-3
directory, specified by the environment variable (registry entry on Windows)
GENESIS_HOME. You specify the exact name when setting up your DSNs
on the client.

The genxconf utility (“genxconf.bat” for Windows and “genxconf.sh” for
UNIX/Linux) is included in the bin directory of “AcuGT” to make the
generation of configuration files easier. This utility takes the format:
genxconf [-d directory] [-c catalog] [-p prefix] [-n config_name]

where:

This utility automatically generates an AcuXDBC configuration file that
includes the required configuration variables set to the values that you define
unless you override them with command-line parameters. It also enables you
to specify an alternate directory name for GENESIS_HOME and an alternate
configuration file name. Most of the settings are read from a template, located
in $(GENESIS_HOME)/sample/acuxdbc/acuxdbc.in, so you will be able to
use this to customize the generation settings for your site’s particular needs.

In stand-alone installations, “acuxdbc.cfg” is the only configuration file that
is required. In network installations, “acuxdbc.cfg” must reside on the server,
and “net.ini” is the configuration file used on network clients.

For “acuxdbc.cfg”, you can use configuration variables from several key
areas, as shown below. AcuServer variables are described in section 4.4. The
DICTSOURCE and FILE_PREFIX variables are required. If you installed

Option Specifies

“-d” The directory in which to place the generated configuration
file. This should be set to the same value as environment
variable (registry entry on Windows) GENESIS_HOME. See
section 5.2 for more details on this variable/registry entry.

“-c” An optional directory name to use for the system catalog. See
section 4.2.3, “DICTSOURCE,” for more details.

“-p” A location (path) to your data files. See Section 4.2.6,
“FILE_PREFIX” for more details.

“-n” A name for the configuration file that is created.

4-4 Configuration
AcuXDBC in a non-default directory, you must modify the DICTSOURCE
and FILE_PREFIX variables in the client configuration file or generate a
new configuration file with the genxconf utility.

For information on configuration files in general, refer to the
ACUCOBOL-GT User’s Guide, section 2.7, “Runtime Configuration.”

AcuXDBC Configuration Variables

Variable Default Description

General Setup Options

DICTSOURCE \Acucorp\Acuc
bl8xx\acugt\sys
cat (Windows)

/opt/acucorp/
8xx/syscat
(UNIX/Linux)

Location (path) of your system catalog

FILE_PREFIX* none Location (path) of your data files

FILE_SUFFIX none Extension of your data files

Advanced Options

FILE_CASE Default (Mixed) Indicates the file case of your data files

FILENAME_WILDCARD none Define multi-company wildcards and
their respective substitution characters.

IGNORE_OWNER 0 Specifies whether you want the table
owner to be included in the listing of
tables that appears in some
applications.

INVALID_NUMERIC_DATA error Indicates how to treat non-numeric data
in a numeric field

JULIAN_BASE_DATE 1900/01/01 The base date for Julian date calculation

NULL_ALPHA_READ null Defines how to read null alphanumeric
data

NULL_ALPHA_WRITE spaces Defines how to write null alphanumeric
data

NULL_NUMERIC_READ 0 Defines how to read null numeric data

AcuXDBC Configuration 4-5
NULL_NUMERIC_WRITE 0 Defines how to write null numeric data

READ_ONLY No Read-write status of data files

Vision Options

LOCKS_PER_FILE 10 The maximum number of record locks
that can be held on a file when an SQL
transaction has been issued

MAX_FILES 32 Maximum number of files that can be
opened

MAX_LOCKS 32 The maximum number of record locks
that can be held for all of the files
together

V_BUFFERS 32 The number of indexed block buffers to
allocate

Transaction Processing Options

LOG_BUFFER_SIZE 512 The maximum buffer size, in bytes, for
the transaction log file

LOG_ENCRYPT off Encrypts transaction log file

LOG_FILE none Name of transaction log file

LOG_DEVICE off Assumes that the log file is actually a
device, rather than a file

LOGGING off Enables transaction logging

TEMP_DIR current
directory

Directory to be used for holding the
temporary files generated by the
transaction management system

TRANSACTIONS on Enables transaction processing in the
AcuXDBC interface.

TRANSACTION_PROCESSIN
G

off Enables Vision’s transaction processing
support.

Logging Setup Options

DEBUG_LOGFILE none Name and location of the log file used
for debugging purposes

AcuXDBC Configuration Variables

Variable Default Description

4-6 Configuration
* If the value contains space(s), it should be enclosed in quotation marks. If
the value can contain multiple directories that contain spaces, the entire entry
should be enclosed in quotation marks.

You can quickly generate a sample configuration file by executing the
genxconf command. This file gets its information from a template file
located in sample\AcuXDBC\acuxdbc.in in the install directory. Section
4.2.30 shows the contents of this file. Most of the configuration options are
commented out in this sample. To use an option, remove the comment hash
sign (#) to apply a setting, and resave the file.

4.2.1 DEBUG_LOGFILE

Use DEBUG_LOGFILE to specify the fully qualified name of the log file to
be generated by the DEBUG_LOGLEVEL variable.

For example:
DEBUG_LOGFILE c:\logdir\xdbc.log

4.2.2 DEBUG_LOGLEVEL

Set DEBUG_LOGLEVEL to the level of logging that you need for
debugging purposes. This variable has three valid values:

DEBUG_LOGLEVEL 0 The log level you desire for debugging
purposes

VISION_LOGGING_FILE vision_trace.log Sets name of Vision log file

VISION_LOGGING_LEVEL 0 Initiates Vision logging/tracing

AcuXDBC Configuration Variables

Variable Default Description

Value Description

0 None. No log file is created. Logging is off.

AcuXDBC Configuration 4-7
4.2.3 DICTSOURCE

Use this variable to specify the location of your system catalog. The system
catalog is a required component of AcuXDBC and is created using the
xdbcutil program or ainit script. Refer to Chapter 5, section 5.3 for details.

Example:
DICTSOURCE c:\data\Dict

By default, DICTSOURCE is set to C:\Program
Files\Acucorp\Acucbl8xx\acugt\syscat on Windows and /opt/acucorp/8xx/
syscat on UNIX/Linux.

Use the FILE_PREFIX variable to specify the location of your Vision data
files. Both DICTSOURCE and FILE_PREFIX are required.

4.2.4 FILE_CASE

Using this variable, set the case of the Vision filenames in your destination
directory. By default, on Windows systems, the filenames are recognized
regardless of case. On UNIX/Linux systems, you may need to use this
variable to indicate the correct case.
• If you set FILE_CASE to “Default,” the case of the filenames will

remain unchanged. This is the default value.
• If you set FILE_CASE to “Upper,” your filenames will be translated to

upper case before attempting to open the file.
• If you set FILE_CASE to “Lower,” your filenames will be translated to

lower case before opening.

1 Log control blocks/data. The log file contains information about
the connection, the values in your configuration file, and the data
from the table/file.

2 Log conversion output.

Value Description

4-8 Configuration
The name of the file is stored in the system catalog at the time it is loaded
using either xdbcutil or addfile. On UNIX/Linux systems, this will be
equivalent to the file name being loaded in lower case. Should you wish to
access a file in mixed case, you will need to load the origional filename in the
appropriate case. You can do this with the xdbcutil program.

For example if you wish to load an .xfd file titled “myxfd” that will result in
an SQL table named “newtable” and reference a COBOL data file named
“MyDaTaFile”, you would use the command:

xdbcutil -a myxfd#newtable#MyDaTaFile

In your AcuXDBC configuration file, you would need to ensure that you
have the entry:

FILE_CASE Default

AcuXDBC would then leave the case of the filename unchanged when it
attempts to open the file.

4.2.5 FILENAME_WILDCARD

Use this variable to define wildcards for multi-company DSNs. For example,
a configuration file entry like this:

FILENAME_WILDCARD $$=01;**=02

tells AcuXDBC to substitute “01” for “$$” and “02” for “**” whenever the
wildcard characters “$$”” and “**” are encountered in a configuration file, a
“list.txt” file, or on the xdbcutil command line.

Wildcards can be any character except an equal sign (=), colon (:),
semi-colon (;), alphabetic characters A to Z, and numerals 0 to 9. These are
reserved characters.

Separate a wildcard from its substitution character by an equal sign. Separate
multiple wildcards from one another by a semi-colon.

Refer to Section 5.5.2, “Multi-company Support,” for instructions on
setting up multi-company DSNs.

AcuXDBC Configuration 4-9
4.2.6 FILE_PREFIX

Use this variable to specify the directories in which AcuXDBC should search
for data files. You can specify multiple locations for your data files. Until you
specify a data directory, AcuXDBC will not let you log on.

You must prepend the line with a semi-colon, use double backslashes (“\\”)
or single forward slashes (“/”) between directory names, and separate your
paths by semi-colons. If any of your directories contain spaces, place the
entire entry (including the prepended semi-colon) in quotation marks:

FILE_PREFIX “;c:\my dir1;c:\my dir2”

For best performance, list the directories in the order in which you want
AcuXDBC to search. For example:

FILE_PREFIX ;C:\\data\\data; \\XYZDomain\\data

or
FILE_PREFIX ;C:/data/data; /XYZDomain/data

Use the DICTSOURCE variable to specify the location of your system
catalog. Both DICTSOURCE and FILE_PREFIX are required.

4.2.7 FILE_SUFFIX

Use this variable to specify the file extension used for your data files. For
example

FILE_SUFFIX dat

When AcuXDBC looks for a file, it looks only at files with the extension
specified here. If you do not include this variable in your configuration file,
AcuXDBC looks for data files with no extension in the data directory
indicated with FILE_PREFIX. You can always specify the exact filename
with suffix when using the xdbcutil program or addfile script.

Note that files residing on remote UNIX/Linux servers must have lowercase
file extensions.

4-10 Configuration
4.2.8 IGNORE_OWNER

All tables in an AcuXDBC database have an owner. By default, the owner of
the table is PUBLIC, or you can specify a different authorization ID when
you add the file to the database with xdbcutil.

If an application such as Microsoft Access tries to link to the table, the table
appears with the link table name of the form OWNER_NAME by default. To
prevent the owner from being displayed:

1. Specify "-o " " " in xdbcutil to specify a blank owner when loading the
table. Please note there is a space between the quotes after the “-o”, so it
looks something like this on the command line:

-o “<space>”

2. Set the IGNORE_OWNER variable to “1” (on, true, yes). When set to
“1”, this variable removes the owner from the listing of the tables in
applications that perform catalog lookups. The default value is “0” (off,
false, no).

To have no owner appear in applications that perform table look up, you must
use both of these steps. See section 5.3.1 for information on the xdbcutil
utility.

As an alternative, you may choose the name of the linked/imported table in
Access by using Edit/Rename or by right-clicking the table name and
clicking “Rename” on the pop-up menu.

Tip: Having the link in the form USER_NAME is useful in distinguishing
between separate objects with the same name.

AcuXDBC Configuration 4-11
4.2.9 INVALID_NUMERIC_DATA

Use this variable to indicate how AcuXDBC should treat non-numeric data in
a numeric field.

Caution: Be aware that users may inadvertently change data in a record.
For example, if a particular record contains non-numeric data in a numeric
field, and the user changes the data while working in an ODBC-enabled
application, the record in the source file changes to reflect what is now in
the application. Therefore, exercise caution when setting either the
INVALID_NUMERIC_DATA or READ_ONLY variables to a non-default
value.

Some applications must read data based on the key. If a numeric column of a
key field contains non-numeric data, the application will be unable to find the
correct row of the file and may show an error. Note that, in particular,
Microsoft Access selects the columns of the primary key and then selects the
rest of the data based on those key columns. If Access cannot read the data
(because a user operation has changed the data, and therefore the wrong data
is in the key), the affected records show as DELETED. In this case, you must
fix the data in the primary key.

If you
specify...

AcuXDBC will...

Error (default) Treat non-numeric data in a numeric field as an
assignment error.

Truncate Treat the first non-numeric character in a numeric field as
the end of the numeric data (thus truncating the numeric
data). This includes anything that is not a number,
decimal, plus, or minus.

Zero Cause the field to be returned to the application as “0” if
the field contains any non-numeric data.

4-12 Configuration
4.2.10 JULIAN_BASE_DATE

A Julian date is the number of days since a certain, base date. For example, if
the Julian base date is June 18, 2006 and today’s date is July 4, 2006, the
Julian date is 16. The default Julian base date in AcuXDBC is January 1,
1900.

To specify the date from which to start counting Julian dates, use the
JULIAN_BASE_DATE variable. Specify a base date in the format “yyyy/
mm/dd”. For example:

JULIAN_BASE_DATE 2006/10/30

Note that you can enter any Julian Base Date, regardless of whether or not the
date is valid. Also note that when AcuXDBC calculates Julian dates, the
Julian base date becomes date 0. For example, if your Julian base date is
October 30, 2006, the Julian dates are counted as follows:

4.2.11 LOCKS_PER_FILE

The LOCKS_PER_FILE variable sets the maximum number of record locks
that can be held on a file when an SQL transaction has been issued by the
Windows application. This value affects only the files that are maintaining
multiple record locks. Typically, all read records for updating or deleting
transaction data are locked. This field enables you to increase the number of
locks per file so you can manage large transactions. The default setting is
“10”. The maximum value is “8191” for Vision files. Setting this variable to
its maximum value can waste resources and is not recommended.

October 30 Julian date 0

October 31 Julian date 1

November 1 Julian date 2

November 2 Julian date 3

November 3 Julian date 4

AcuXDBC Configuration 4-13
4.2.12 LOG_BUFFER_SIZE

This variable sets the maximum buffer size, in bytes, for the transaction log
file. Acceptable values are from “0” to “32767”. Log Buffer Size is examined
before each write to the log file. Its default value is “512”. If Log Buffer Size
is set to “0”, writes to the log file are synchronous (unbuffered). That is, if the
log buffer size is “0”, there is an operating system call after every write to the
log buffer. If the number is large, there is a call only when the buffer is full.
We recommend that you experiment to determine which size works best in
your environment.

4.2.13 LOG_DEVICE

Setting this variable to “1”, (on, true, yes) causes the transaction management
system to assume that the log file is actually a device, rather than a file. This
means that a special device locking method is on the log file. It also
guarantees that the log file is opened “append” and that no seeks are
performed on it. This allows for the use of a tape device for the log file on
many systems. By default, this option is turned off.

See also
LOG_ENCRYPT
LOG_FILE
LOGGING
LOG_BUFFER_SIZE

4.2.14 LOG_ENCRYPT

Set this variable to “1”, (on, true, yes) to encrypt records before writing them
to the log file. By default, log encryption is off.

See also
LOG_FILE
LOGGING
LOG_BUFFER_SIZE
LOG_DEVICE

4-14 Configuration
4.2.15 LOG_FILE

Use this variable to specify the name of the log file to be used for transaction
management logging. (Activate transaction management logging using the
ENABLE_LOGGING variable.) If the file does not exist, one is created.

You may store your transaction log file on a remote machine if your system
utilizes AcuServer. To specify a remote filename for Log File, use remote
name notation in this field. Note that AcuServer must be running on the
remote machine.

Remote name notation has the following format:
@server-name:path-name/file-name

Log files prepended with @server-name:path-name are routed to AcuServer
on the host specified by server-name, and stored in the directory specified by
path-name.

See also
LOG_ENCRYPT
LOGGING
LOG_BUFFER_SIZE
LOG_DEVICE

4.2.16 LOGGING

Set this variable to “1”, (on, true, yes) to enable transaction management
logging. When this box is selected, file updates are logged to the transaction
log file specified in the LOG_FILE variable. Note that logging affects
performance and should be used judiciously. By default, logging is off.

See also
LOG_FILE
LOG_ENCRYPT
LOG_BUFFER_SIZE
LOG_DEVICE

AcuXDBC Configuration 4-15
4.2.17 MAX_FILES

The MAX_FILES variable sets the maximum number of files that can be
opened by AcuXDBC. The default is “32”. The maximum value is “256”.
Keep this value small to conserve memory, but large enough to allow for 12
AcuXDBC system tables plus your data tables.

4.2.18 MAX_LOCKS

The MAX_LOCKS variable sets the maximum number of record locks that
can be held by AcuXDBC for all of the files together. The default matches the
setting of “Max Files,” in this case “32”. The maximum value is “8191” for
Vision files. Setting this variable to its maximum value can waste resources.

4.2.19 NULL_ALPHA_READ

COBOL does not have a concept that corresponds directly to SQL’s NULL.
The closest candidates in COBOL are data items that contain either SPACES
or LOW-VALUES. In SQL, NULL is often used to indicate that the data is
missing or not applicable.

To maintain the integrity of the source data and to ensure that any data
written from your application back to the COBOL source is accurate, you
must provide a representational mapping between COBOL’s SPACES and
LOW-VALUES and the corresponding SQL column values.

Use the NULL_ALPHA_READ variable to indicate which COBOL
alphanumeric data should be represented as NULL. For data coming into
your application (READs), if a field contains either SPACES or
LOW-VALUES in alphanumeric data in the COBOL files, instruct the
application to represent it as either NULL or an empty string. Valid values
are:

NULL_ALPHA_READ null
NULL_ALPHA_READ empty

By default, alphanumeric data is interpreted as null on input to your
ODBC-enabled application.

4-16 Configuration
AcuXDBC follows these rules for alphanumeric data coming into an
ODBC-enabled application.

4.2.20 NULL_ALPHA_WRITE

See the NULL_ALPHA_READ for background on null processing in
COBOL.

Use the NULL_ALPHA_WRITE variable to indicate how SQL NULLs in
alphanumeric data should be translated into COBOL data. For data returned
to the COBOL files (WRITEs), indicate whether the NULLs should be
interpreted as SPACES or LOW-VALUES. Valid values are:

NULL_ALPHA_WRITE spaces
NULL_ALPHA_WRITE low-values

By default, alphanumeric data is interpreted as SPACES on output to the
COBOL source.

Note: This variable is ignored if your data source is read-only.

4.2.21 NULL_NUMERIC_READ

See the NULL_ALPHA_READ for background on null processing in
COBOL.

Use the NULL_NUMERIC_READ variable to indicate which COBOL
numeric data should be represented as NULL. For data coming into your
application (READs), if a field contains either SPACES or LOW-VALUES in
numeric data in the COBOL files, instruct the application to represent it as
either NULL or a zero. Valid values are:

If an alphanumeric
field contains …

Then that field …

All SPACES or all
LOW-VALUES

Comes into the application as either NULL or
as an empty string, depending on the setting for
variables for the data source.

Any other values Comes into the application unchanged.

AcuXDBC Configuration 4-17
NULL_NUMERIC_READ null
NULL_NUMERIC_READ 0

With numeric fields, LOW-VALUES and SPACES are valid values for many
numeric types, as shown in the following examples:

Therefore, AcuXDBC follows these rules for numeric data coming in to the
ODBC-enabled application:

Please refer to section NULL_NUMERIC_WRITE for additional
restrictions on writing data to your COBOL data file from your
ODBC-enabled application.

Note: SPACES or LOW-VALUES will not be converted to NULL or zero
in a numeric data item where SPACES or LOW-VALUES, respectively, are
valid numeric values.

By default, numeric data is interpreted as zero on input to your
ODBC-enabled application.

If the numeric type is … LOW-VALUES
is equal to …

SPACES is equal
to …

PIC 9(4) COMP-3 0 202

PIC 9(4) COMP-5 0 8224

PIC 9(4) COMP-2 0 INVALID

If a field contains … And … Then …

All LOW-VALUES LOW-VALUES
is an invalid
value for the
numeric type

The field comes into the
application based on the
setting for numeric variables
for the data source.

All SPACES SPACES is an
invalid value for
the numeric type

The field comes into the
application based on the
setting for numeric variables
for the data source.

Any other values The value is
invalid for the
numeric type

Undefined data may come
in to the application.

4-18 Configuration
4.2.22 NULL_NUMERIC_WRITE

See NULL_ALPHA_READ for background on null processing in COBOL.

COBOL does not have a concept that corresponds directly to SQL's NULL.
The closest candidates in COBOL are data items that contain either SPACES
or LOW-VALUES. In SQL, NULL is often used to indicate that the data is
missing or not applicable.

To maintain the integrity of the source data and to ensure that any data
written from your application back to the COBOL source is accurate, you
must provide a representational mapping between COBOL's SPACES and
LOW-VALUES and the corresponding SQL column values.

Use the NULL_NUMERIC_WRITE variable to indicate how SQL NULLs
in numeric data should be translated into COBOL data. For data returned to
the COBOL files (WRITEs), indicate whether the NULLs in numeric data
should be interpreted as SPACES, LOW-VALUES, or zero.

Valid values are:
NULL_NUMERIC_WRITE spaces
NULL_NUMERIC_WRITE low-values
NULL_NUMERIC_WRITE 0

Numeric fields that take the form of one of the computational types further
complicate the situation. For most comp fields, LOW-VALUES and SPACES
are valid values. See the configuration variable NULL_NUMERIC_READ
for examples. To prevent erroneous information being written to the COBOL
data files by the insert of a NULL value, tables created with comp fields that
could be misinterpreted are created with the NOT NULL constraint on these
columns. The following describes these columns:

Field Type Nullable

Numeric NULL

COMP NOT NULL

COMP-1 NOT NULL

COMP-2 NULL

AcuXDBC Configuration 4-19
In this case, if you attempt to insert a row into the COBOL file and specify
NULL for one of these columns, or do not specify a value, you will receive
the error message:

 "***** ERROR: NULL not allowed for column"

From within the command-line query tool, you can check which columns
have this constraint. For example to find out which columns in the table
COMPTEST will not allow a null value, use the command:

select
 column_name, ordinal_position
from
 information_schema.columns
where
 table_name = 'COMPTEST'
and
 is_nullable = 'N';

For columns having the NOT NULL constraint, you must specify a value.

Note: The following WHEN condition takes precedence over the above
NULL rules:If a NULL is inserted into a comp column and the WHEN
condition is FALSE, the NULL is ignored.

By default, numeric data is interpreted as zero on output to the COBOL
source.

Note: This variable is ignored if your data source is read-only.

COMP-3 NOT NULL

COMP-4 NOT NULL

COMP-5 NOT NULL

COMP-6 NOT NULL

Other comp See above types

Field Type Nullable

4-20 Configuration
4.2.23 READ_ONLY

This variable establishes the default read/write permission for all the files
belonging to the associated DSN. By default, this variable is set to “0”, (off,
false, no), indicating that users can write to the files. Specify “1”, (on, true,
yes)” if you want to make the files read-only.

What you indicate for read/write permission here applies to all files in the
data source. If you want to assign different permissions to any individual
files, you can do so using file aliases. See Chapter 5, section 5.5.1 for more
information on file aliases.

File (table) level read/write protection can also be defined by granting object
privileges to specific users or to the PUBLIC user. This is done with the SQL
GRANT statement as described in Chapter 7, section 7.5.11. For example, to
make a table read-only to all users, you could issue the following command
using xdbcquery:
GRANT SELECT ON TABLE1 TO PUBLIC

Field (column) level read/write protection can be further defined using the
READ-ONLY directive. Refer to Chapter 3, section 3.3.11 for more
information on this option.

Note: When executing a SELECT statement, AcuXDBC opens Vision
files as INPUT regardless of the how this variable is set. When the user
attempts to update a row (from Microsoft Access, for example), if the
READ_ONLY configuration variable is off, AcuXDBC attempts to open
the Vision file for update. If the COBOL program has the record locked
during an AcuXDBC SELECT and that record has met the SELECT
conditions, a locked record condition occurs. When the COBOL program
updates a record previously retrieved during an AcuXDBC SELECT, the
update takes effect. When AcuXDBC attempts to update the record, an
error occurs indicating that the record has been changed by another process
after the original AcuXDBC SELECT.

AcuXDBC Configuration 4-21
4.2.24 TEMP_DIR

This variable allows you to specify a directory to be used for holding the
temporary files generated by the transaction management system. If no
directory is specified, temporary files are placed in the current directory.

4.2.25 TRANSACTIONS

This variable turns transaction processing support on (1, true, yes) or off (0,
no, false) for the AcuXDBC interface. The default setting is “On” and results
in AcuXDBC accepting or recognizing Vision transaction commands. When
set to “Off” AcuXDBC ignores the transaction commands.

4.2.26 TRANSACTION_PROCESSING

Use this variable to enable Vision’s transaction processing support in
AcuXDBC. If you are in a transaction processing environment, set this
variable to “1”, (on, true, yes) to begin transaction management, locking, and
other key functions. By default, transaction processing is off. Use the
LOGGING to turn on transaction logging.

4.2.27 V_BUFFERS

The V_BUFFERS variable lets you set the number of indexed block buffers
to allocate. Each buffer is 512 bytes plus some overhead. These buffers are
used to improve the performance of indexed files. The value can range from
“0” (no buffering) to “256”. The default is “32”. Selecting a larger value
generally improves file performance. Setting a lower value saves memory.

4.2.28 VISION_LOGGING_FILE

Use this variable to specify the name of the log file to be used for Vision
logging. (Activate Vision logging using the VISION_LOGGING_LEVEL
variable.) If the file does not exist, one is created.

4-22 Configuration
You may store your Vision log file on a remote machine if your system
utilizes AcuServer. To specify a remote filename for Log File, use remote
name notation in this field. Note that AcuServer must be running on the
remote machine.

Remote name notation has the following format:
@server-name:path-name/file-name

Log files prepended with @server-name:path-name are routed to AcuServer
on the host specified by server-name, and stored in the directory specified by
path-name.

4.2.29 VISION_LOGGING_LEVEL

Set this variable to a value between “1” and “9” to initiate Vision logging/
tracing; the higher the number, the more detailed the trace file. The trace file
contains all Vision file operations performed at runtime, such as file opens,
reads, and writes. It is useful for troubleshooting file errors. By default, the
file is named “vision_trace.log”.

A value of “0” or “-1” turns file tracing off.

4.2.30 Sample “acuxdbc.cfg” File
This is a sample AcuXDBC configuration file.
You should edit it to match your needs.

The following lines are commented out to show you the default values.
If you want to use a different value, then uncomment the line and change
the value.

#---
#-------------------GENERAL SETUP OPTIONS-------------------
#---

The path to your system catalog directory. This is a required variable

dictsource C:\Program Files\Acucorp\Acucbl811\acugt\syscat

The path to your data files. You must prepend the line with a semi-colon,
use either double backslashes (“\\”) or forward slashes (“/”),

AcuXDBC Configuration 4-23
and separate your paths by semi-colons. This is a required variable

file_prefix ;C:/Program Files/Acucorp/Acucbl811/acugt/sample/AcuXDBC/data

Specify your data file extensions; leave blank if no
extensions exist.

file_suffix

#---
#-------------------ADVANCED OPTION SETUP-------------------
#---

Values for File_Case are Default (case ignored),
Lower (filename converted to lower case), and
Upper (filename converted to upper case).
file_case default

To specify how AcuXDBC will treat non-numeric values in numeric fields,
set this variable to Error (assignment error returned),
Truncate (value truncated from first non-numeric value to the end),
or Zero (value returned will be zero).

invalid_numeric_data error
invalid_numeric_data truncate
invalid_numeric_data zero

Set this value to true if the user should have read-only
permissions to this database. The default is read and write permissions.

read_only no

These two variables provide a representational mapping between COBOL’s
SPACES and LOW-VALUES and the corresponding SQL column values.
Valid values are null and empty.

null_alpha_read null

Valid values are spaces and low-values.

null_alpha_write spaces

Valid values are null and 0 (zero).

null_numeric_read 0

Valid values are spaces, low-values, and 0 (zero).

null_numeric_write 0

4-24 Configuration
Enter a start date for Julian dates using the YYYYMMDD
format. The default date is January 1, 1900.
julian_base_date 19000101

This variable when turned off will cause AcuXDBC to ignore the transaction
options on operations such as an update. The default is on.
#
transactions on

Tables in AcuXDBC have an owner specified. The owner is either public
or an authorization id. The ignore_owner variable can be used to have
files show as no owner. This must be used in conjunction with loading
through xdbcutil with the -o “ “ option to have a blank owner in the
database. The default is FALSE.
#
ignore_owner off

#---
#-------------------VISION OPTION SETUP---------------------
#---
Set Max_Files from 1 to 256.
max_files 32

Set Max_Locks from 1 to 8191.
max_locks 32

Set Locks_per_file from 1 to 8191.
locks_per_file 10

Set V_Buffers from 0 to 256.
v_buffers 32

#---
#-----TRANSACTION PROCESSING SETUP OPTIONS------------------
#---

transaction_processing Off
logging off
log_encrypt off
log_device off
log_file
temp_dir .
log_buffer_size 512

#---
#---------------ACUSERVER SETUP OPTIONS---------------------
#---

AcuXDBC Server Configuration 4-25
acu_client_password
acuserver_port 6532
security_method none
default_map_file

#---
#---------------------Multi-company options-----------------
#---

For multi-company handling, you can specify the value of any
wildcards that you used when creating the table in your
system catalog by noting the values here.

filename_wildcards

#---
#---------------LOGGING SETUP OPTIONS-----------------------
#---

vision_logging_file
vision_logging_level
debug_logfile
debug_loglevel

#---
#----------------END CONFIGURATION-----------------------
#---

4.3 AcuXDBC Server Configuration

AcuXDBC Server requires two configuration files:
• “acuxdbc.cfg” on the server. This file is described in section 4.2.
• “net.ini” on the client. By default, AcuXDBC expects this file to be

located in the lib subdirectory of the install.

“net.ini” is where you define client-side settings for your network
configuration.

For your convenience, a sample “net.ini” is provided on the AcuXDBC
distribution media, in the “lib” subdirectory of the install. Section 4.3.6
shows the contents of this file. Most of the configuration options are
commented out in this sample. To use an option, remove the comment hash
sign (#) to apply a setting, and resave the file.

4-26 Configuration
AcuXDBC Server supports a variety of configuration variables, as shown
below:

4.3.1 KEY_CONNECT

Use the “net.ini” configuration variable, KEY_CONNECT, to specify the
connect string masking key used to encrypt the OS and DBMS user ID and
password information. This number must match the one given with the “-k”
option when AcuXDBC Server is started. For example:

KEY_CONNECT 12345

4.3.2 PACKETSIZE

Use this variable to specify the size (in bytes) of the buffer used to aggregate
send operations. The default is 8192. For example:

PACKETSIZE 1024

4.3.3 READ_TIMEOUT

Use this variable to specify the time to wait (in seconds) for read completion.
The default of “0” indicates that there is no timeout.

READ_TIMEOUT 60

AcuXDBC Server Configuration Variables

Variable Default Description

KEY_CONNECT 1234 Used to encrypt the user ID and password sent over
the network

PACKETSIZE 8192 Size of buffer used to aggregate send operations

READ_TIMEOUT 0 Time to wait for read completion

RETURN_ERRNO no Return the OS error code for communication errors

WRITE_TIMEOUT 0 Time to wait for write completion

AcuXDBC Server Configuration 4-27
4.3.4 RETURN_ERRNO

When this variable is set to “1”, (on, true, yes), AcuXDBC returns the
operating system error code for communication errors. By default this
variable is set to “0”, (off, false, no).

RETURN_ERRNO yes

4.3.5 WRITE_TIMEOUT

Use this variable to specify the time to wait (in seconds) for write completion.
The default of “0” indicates that there is no timeout.

WRITE_TIMEOUT 60

4.3.6 Sample “net.ini” File
net.ini file, used by AcuXDBC Server for client-side
configuration settings. Note that the information
in the DSN takes precedence over the settings here.

This number must match the one given with
the -k option when AcuXDBC Server is started.
It is used to encrypt the user ID and password
information over the network.
#key_connect 1234

Size (in bytes) of the buffer used to aggregate send operations.
#packetsize 8192

Time to wait for read completion. The default of 0 (zero) means no timeout.
#read_timeout 0

Time to wait for a write completion. The default of 0 (zero) means no timeout.
#write_timeout 0

Return the OS error code for a communication error.
#return_errno no

4-28 Configuration
4.4 AcuServer Configuration

Network installations that use AcuServer rather than AcuXDBC Server
require one configuration file: “acuxdbc.cfg” on the client.

Any AcuXDBC configuration variable described in section 4.2 can be used
in this file. The following variables are specific to AcuServer users. They
apply only to network environments that use AcuServer for remote data
access:

4.4.1 ACUSERVER_PASSWORD

Use this variable to specify the password assigned in AcuServer’s server
access file (AcuAccess file). AcuXDBC will use this password to access the
AcuServer host.

4.4.2 ACUSERVER_PORT

Use this variable to specify the port number assigned to the AcuServer host if
it is different from the default port number, “6523”. This variable is useful for
redirecting additional instances of AcuServer or for working around a
firewall.

AcuServer Setup Options

ACUSERVER_PASSWORD none Defines the password for connecting to
AcuServer

ACUSERVER_PORT 6523 Specifies the port number on which
AcuServer is listening

DEFAULT_MAP_FILE none Sets the name and path of the map file to
be used to map special characters to their
decimal or hexadecimal equivalent

SECURITY_METHOD none Sets the security method to use when
accessing the AcuServer host

AcuServer Configuration 4-29
4.4.3 DEFAULT_MAP_FILE

Use this variable to set the name and path of the map file to be used (if any)
to map special characters in your character set to their decimal or
hexadecimal equivalent in another character set before they are passed to or
from the Vision file system. This file lets you reconcile the character
encoding between two machines that use different codes for the same
characters.

You can specify a local or remote directory for the map file. To specify a
remote directory, use the following syntax:
@server-name:directory-path

where server-name is the name of the UNIX/Linux or Windows server on
which the map file resides.

When creating a map file, you need to re-map only those values that vary
between the two character sets (e.g., vowels with a grave accent, acute
accent, circumflex, tilde, etc.) You can check the values of specific characters
using the Windows Character Map accessory in the PC environment, or by
referring to your UNIX manual pages (man pages) in the UNIX environment.

The map file should contain two values per line: the first indicating the
decimal or hexadecimal value of the special character on the client machine
and the second indicating the decimal or hexadecimal value of the
corresponding character on the server machine. (Hexadecimal values use the
standard “0x” notation.) For instance:
0x90 0xC9

maps “É” (E acute) in the IBM PC character set to “É” (E acute) in the
ISO8859-1 character set using hexadecimal notation.
144 201

gives the same mapping using decimal notation.

You can use the pound sign (“#”) to indicate a comment.

4-30 Configuration
Note: The map will be used to translate only alphanumeric fields; but it
will translate all alphanumeric fields, including group items and items
subject to a REDEFINES clause. If this is not a desired behavior, you may
need to restructure your program to avoid these clauses by passing the
elementary items instead of the group item, or passing an item from the
REDEFINES clause instead of the first reference.

4.4.4 SECURITY_METHOD

Use this variable to specify the security method to use when accessing the
AcuServer host. AcuXDBC’s network security methods are not used with
AcuServer.

SECURITY_METHOD can take any of three values. The value specified
here must match the value specified in the server configuration file on the
AcuServer host. Valid values include:

NONE (false, no)

Do not use the native operating system security. Use AcuServer
security instead.

LOGON

Use the system’s native security to manage user logons.

NAMED-PIPE (on, true, yes)

Use Windows security based on the connection made from the client to
the server via a named pipe.

5
 Installing AcuXDBC
Key Topics

General Setup Procedures .. 5-2
Installing AcuXDBC/AcuXDBC Server.. 5-6
Creating a System Catalog and Views... 5-14
Granting Database Privileges... 5-19
Loading the System Catalog with Your XFDs 5-21
Setting Permissions on Your Vision Tables ... 5-28
Starting AcuXDBC Server (Network Only).. 5-29
Setting Up Data Source Names (DSNs) on Client 5-33

5-2 Installing AcuXDBC
5.1 General Setup Procedures

The procedures for installing AcuXDBC in network and stand-alone
environments are described in this section. They assume that you have
already created your configuration file(s) as instructed in Chapter 4. To
become familiar with the AcuXDBC software quickly, follow the quick-start
procedure. If you just want to run the sample demonstration database
included with your distribution, you can generate a default configuration file
with the command genxconf.bat (on Windows) or genxconf.sh (on UNIX/
Linux).

5.1.1 Quick Start — Demo Application
1. Install AcuXDBC software, accepting the default options in the

installation script.

2. Switch to the directory in which AcuXDBC is installed.

3. Generate a default database configuration file using the sample script
genxconf.bat (Windows) or genxconf.sh (UNIX/Linux) (see Chapter 4
for details).

4. Generate the demonstration database with the sample script “demo.bat”
(Windows) or “demo.sh” (UNIX/Linux). This script:

a. Creates an empty system catalog, database system tables, and base
views of the catalog.

b. Loads the system catalog with information from XFDs from a
sample veterinary office application.

5. You can now use the command-line query tool to retrieve some
information from the sample database you have just created. Enter
“asql” (Windows) or “asql.sh” (UNIX/Linux).

6. Enter the SQL command:

 SELECT * FROM pets

This should retrieve the 19 records contained in the pets file:

General Setup Procedures 5-3
SQL (/? for help) ==> select * from pets;

PATIENT_ID PATIENT_NAME ANIMAL_TYPE BREED TREATMENT OWNER_ID
---------- ------------ ------------ ---------- --------- -------
 1 Cinnamon Cat Tabby 1 624
 2 Nutmeg Cat Tabby 2 550
 18 Shotzi Dog Schnauzer 1 704
 36 Cinder Dog Poodle 4 221
 54 Buster Cat Siamese 1 377
 72 Missy Bird Parakeet 6 309
 102 Kit Dog Shiba Inu 1 600
 160 Milo Dog Chow 4 522
 161 Puzzle Reptile Ball Python 3 522
 328 Copper Dog Golden Retriever 4 618
 377 Scooter Cat Domestic Shorthair 2 357
 378 Scrapper Cat Devon Rex 2 357
 379 Abbie Cat Maine Coon 2 357
 480 Princess Reptile Iguana 1 309
 503 Polly Bird Senegal Parrot 6 625
 504 Diego Bird Red Lory 4 625
 505 Alexi Bird African Grey 4 625
 801 Hammy Rodent Gerbil 3 700
 802 Rodney Rodent Hamster 4 700

SQL (/? for help) ==>

7. You can exit the application by entering “/q” for quit.

5.1.2 Stand-alone Installations

If you will be accessing your Vision data locally, you don’t require
AcuXDBC Server or AcuServer. The following steps are all performed on the
same machine:

1. Install AcuXDBC software using the installation script found on your
product distribution media.

2. Edit a configuration file, either by hand or with genxconf.

For information about genxconf, see section 4.2, “AcuXDBC
Configuration.”

3. Create a database:

• For the demo, use the demo file located in the GENESIS_HOME
directory.

5-4 Installing AcuXDBC
• For an empty database:

(1) Use the script file ainit.

(2) Run the executable xdbcutil:

xdbcutil -c -d mydb -pa

4. If desired, create users.

5. Load the system catalog with information from your XFDs. (For
details on this, see section 5.3 and section 5.5.)

6. Set permissions (for details, see section 5.6).

7. Set up a Data Source Name (DSN) for your Vision data.

This step is not required if you plan to use a query tool to issue SQL
queries and do not require ODBC integration.

5.1.3 AcuXDBC Server Installations

If you will be using AcuXDBC Server to process Vision data on the server,
you will need to install the server software and configure it for your specific
client configuration. If you will be using AcuXDBC in a client/server
configuration, you will first need to set up and configure AcuXDBC on the
server machine for local access. Once you have completed this configuration,
you can start the server and test client/server connections locally.

Server Procedure

1. Install AcuXDBC Server software on the server and set necessary
environment variables.

2. Create an empty system catalog, database system tables, and base
views of the catalog.

3. If desired, define users and grant database privileges to them.

If you do not perform this step, your database will be open to all users.

4. Load the system catalog with information from your XFDs.

5. If desired, set permissions on your newly created Vision tables.

6. Start AcuXDBC Server.

General Setup Procedures 5-5
Windows Client Procedure

1. Install AcuXDBC software on the client.

2. Set up a Data Source Name (DSN) for your Vision data.

This step is not required if you plan to use a query tool to issue SQL
queries and do not require ODBC integration.

UNIX/Linux Client Procedure

1. Install AcuXDBC on the client.

2. Download an ODBC driver manager for UNIX/Linux, such as
unixODBC.

3. Add DSN information to an ODBC text file according to the driver’s
instructions.

4. Modify environment and configuration variables.

5.1.4 AcuServer Installations

If you will be using AcuServer to process remote Vision data locally, do the
following:

Server Procedure

1. Install AcuServer software on the server.

2. Create a server access file.

3. Start AcuServer.

See the AcuServer User’s Guide for specifics.

Client Procedure

1. Install AcuXDBC software.

2. Create an empty system catalog, database system tables, and base
views of the catalog.

3. If desired, create users and grant database privileges to them.

If you do not perform this step, your database will be open to all users.

4. Load the system catalog with information from your XFDs.

5. If desired, set permissions on your newly created Vision tables.

6. Set up a Data Source Name (DSN) for your Vision data.

This step is not required if you plan to use a query tool to issue SQL
queries and do not require ODBC integration.

5.1.5 Using AcuXDBC

Once you have installed and configured AcuXDBC, you are ready to issue
SQL queries to your Vision data. There are two ways to do this:

1. You can issue queries from ODBC-enabled applications like Microsoft
Word, Excel, and Access or JDBC-enabled applications like Cold
Fusion. Chapter 7 demonstrates how to do this.

2. You can issue queries from the command-line query tool,
“xdbcquery.exe”. Chapter 6 demonstrates how to do this.

5.2 Installing AcuXDBC/AcuXDBC Server

This section provides instructions for installing AcuXDBC and AcuXDBC
Server in Windows and UNIX/Linux environments.

5.2.1 Windows Installations

On Windows, run “setup.exe” on your product CD-ROM to install
AcuXDBC on your machine. Select AcuXDBC from the product selection
list as appropriate. You will be prompted for product codes and license keys
during the installation, so have this information ready.

Note: If you are using the install script from the CD to install AcuXDBC
on Windows Vista , you will need to follow a different process; Windows
Vista requires that programs be “Run as Administrator” to install correctly.
Follow the steps below to ensure that AcuXDBC runs correctly on
Windows Vista:

Installing AcuXDBC/AcuXDBC Server 5-7
1. Exit the install script.
2. Launch Windows Explorer and navigate to the CD drive.
3. Right-click “Setup.exe” and select “Run as Administrator” to launch

the installer.
4. Proceed as normal from there.

The installation process sets an environment variable known as
GENESIS_HOME with the location for configuration files and the
installation directory. The default installation directory is C:\Program
Files\Acucorp\Acucbl8xx\AcuGT\ on Windows. Though you can have
several different configuration files and refer to different ones in your DSNs,
they must always reside in the directory pointed to by GENESIS_HOME.

Note: If you install AcuXDBC in a non-default directory, be sure to
modify the DICTSOURCE and FILE_PREFIX variables in the client
configuration file. See section 4.2 for more information on these variables.

Tip: The “setup.exe” file contains defaults used for many of the tools. You
may want to duplicate in this file any changes that you made to defaults, to
reflect the new defaults used by system utilities.

In network environments, install AcuXDBC on each client in the network,
and install AcuXDBC Server or AcuServer on the server.

5.2.2 UNIX/Linux Installations

UNIX/Linux Server

1. Mount the installation CD-ROM for AcuXDBC Server.

2. Change to the mount directory.

3. Type “./install” and follow the instructions given from the command
line.

5-8 Installing AcuXDBC
4. Set the operating system environment variable GENESIS_HOME to
the root installation of AcuXDBC, /opt/acucorp/8xx by default. The
following is an example of how to set this variable:

export GENESIS_HOME=/opt/acucorp/8xx

Note: The value of the environment variable should not have a “/” as
the last character, because this can interfere with installation and
configuration scripts.

5. Set or modify environment variables that point to the location of the
AcuXDBC executables and to tell the operating system where to find
the AcuXDBC shared libraries. On Linux, use the PATH and
LD_LIBRARY_PATH variables, for example.

export PATH=/opt/acucorp/8xx/bin:$PATH
export LD_LIBRARY_PATH=/opt/acucorp/8xx/bin:$LD_LIBRARY_PATH

UNIX/Linux Client

1. Mount the installation CD-ROM for AcuXDBC.

2. Change to the mount directory.

3. Type “./install” and follow the instructions given from the command
line.

4. Download an ODBC driver for UNIX. We have tested with
“unixODBC” from www.unixodbc.org/unixODBC-2.2.11.tar.gz.

5. Copy the “unixODBC*.tar.gz” file to a location where you have
permission to create files and directories.

6. Type “gunzip unixODBC*.tar.gz”.

7. Type “tar xvf unixODBC*.tar”.

8. Read the “readme” file located in the directory where the package was
extracted and any other “readme” files with a suffix that describes your
operating system (for example, “readme.aix” for IBM.AIX). These
directions are provided for a basic 32-bit Linux (Intel x86) installation.

9. Read the “install” file for prerequisites and installation instructions.

10. Type “configure” and wait while features on your system are being
checked.

Installing AcuXDBC/AcuXDBC Server 5-9
11. Type “make” and wait for the package to be compiled.

12. Type “make install” to install programs, data, and documentation.

13. Type “odbcinst -j” to find out where your SYSTEM and USER data
sources are located. Here is the location information from a Linux
system.

DRIVERS............: /usr/local/etc/odbcinst.ini
SYSTEM DATA SOURCES: /usr/local/etc/odbc.ini
USER DATA SOURCES..: /home/techsup/.odbc.ini

14. Add the following to the file where your SYSTEM data sources are
located (for example, /usr/local/etc/odbc.ini):

[ODBC Data Sources]
vision_sys = VORTEXodbc to VISION
[vision_sys]
Driver = /usr2/lib/acuxdbc.so
Description = VORTEXodbc to VISION
LoginID = system

15. In your /home/acucorp8xx/lib) create another odbc.ini file with the
following information:

rem -------------- VORTEXodbc
fetch_buffer_size 8192 -- fetch buffer size (in bytes)
columns 256 -- max # of database columns
logical_cursors 1024 -- max # of logical cursors
db_cursors 64 -- max # of DB cursors

Then, if the information above is for use on a local machine, enter:

dsn_vision_sys “acuxdbc04:%s/%s/xvision:acuxdbc.cfg”

If the information above is for use on a server, enter:

dsn_vision_sys “acuxdbc03:%s/%s/xvision:acuxdbc.cfg@20222:servername!acuxdbc04

16. Set two operating environment variables called VORTEX_HOME and
GENESIS_HOME to the root installation directory of AcuXDBC, /opt/
acucorp/8xx/ by default. The following is an example of how to set
these variables:

export VORTEX_HOME=/opt/acucorp/8xx
export GENESIS_HOME=/opt/acucorp/8xx

5-10 Installing AcuXDBC
Note: The value of the environment variable should not have a “/” as
the last character, because this can interfere with installation and
configuration scripts.

17. Set or modify environment variables that point to the location of the
AcuXDBC executables and to tell the operating system where to find
the AcuXDBC shared libraries. On Linux, use the PATH and
LD_LIBRARY_PATH variables, for example:

export PATH= /opt/acucorp/8xx/bin
export LD_LIBRARY_PATH= /opt/acucorp/8xx/bin

18. Modify the AcuXDBC configuration file. A sample configuration file
called “acuxdbc.cfg” is provided for your convenience. The
configuration file must be located at $GENESIS_HOME. There are
two variables that are required: DICTSOURCE and FILE_PREFIX.
Other variables may be needed depending on your situation. Below is a
partial sample of acuxdbc.cfg. showing the syntax for the two required
variables. Note that this file also contains sample syntax and
instructions for all available variables. If you want to use this file, you
can remove the comment indicators from any of the other variables
listed in acuxdbc.cfg.

The path to your system catalog directory
DICTSOURCE /usr2/acuxdbc/syscat
The path to your data files. You must prepend the line with a
semi-colon,
use either double backslashes ("\\") or forward slashes ("/"),
and separate your paths by semi-colons.
FILE_PREFIX ;/usr2/acuxdbc/data;/usr2/acuxdbc/sample/acuxdbc/data

Note: For FILE_PREFIX, the delimiting character is a semi-colon or
colon. Spaces are not supported in this AcuXDBC variable.

19. Verify that the AcuXDBC license file, “xvision.alc”, is located in the
bin directory.

20. Run the setup script “demo.sh” located in the $GENESIS_HOME/bin
directory.

21. Try to access a sample Vision file using a utility that came with
unixODBC. To run the test, type “isql vision_sys system manager”.

22. A successful connection looks like this:

Installing AcuXDBC/AcuXDBC Server 5-11
Connected!
sql-statement
help [tablename]
quit

To use the unixODBC driver

1. Set up a Data Source Name (DSN) for the veterinary data.

a. From the Start menu, select Programs/Acucobol 8xx/AcuXDBC/
ODBC Data Source Administrator. The ODBC Data Source
Administrator appears.

b. From the User DSN tab, click Add.

c. From the Create New Data Source dialog box, select Acucorp
AcuXDBC Driver, and then click Finish.

d. On the AcuXDBC Setup: General Tab, complete the fields as
follows:

2. Access the veterinary database from an ODBC-compliant application
as described in Chapter 8.

Field Description

Data Source Name Enter “Vet Data”

Description (Optional) Enter “Sample veterinary application data”

Network driver Leave unchecked

Hostname N/A

Port N/A

Configuration File Accept the default value

Username System

Password Manager

Confirm Password Leave blank

5-12 Installing AcuXDBC
5.2.3 Providing JDBC Access

With AcuXDBC Enterprise Edition, you have access to Vision data from
JDBC as well as ODBC. Below are the instructions for setting up a JDBC
installation on UNIX/Linux:

1. Create a directory on your machine for the AcuXDBC JDBC files.

2. Put the downloaded “.tar” file in that directory and untar it.

The directory now contains two subdirectories and a “vortex.jar” file:

• sample — Sample Java and JDBC programs.
• html — HTML Java and JDBC method descriptions.

3. Move the “vortex.jar” file into a directory pointed to by the Java JVM
$CLASSPATH environment variable that is used for running the
JDBC-enabled application.

Alternatively, you can add this directory to the $CLASSPATH
environment variable:

 C Shell
setenv CLASSPATH "$CLASSPATH":"/usr2/acuxdbc"

 Bourne Shell
CLASSPATH=$CLASSPATH:/usr2/acuxdbc
export CLASSPATH

5.2.4 Installed Executables and Scripts/Shells
Here is a list of the executable components and batch files/shell scripts that
are installed along with AcuXDBC. You can make changes to all scripts in a
centralized default settings file, “axset.bat”.

File Description

xdbcutil.exe / xdbcutil System catalog tool

xdbcquery.exe / xdbcquery Command-line SQL query tool

xdbcsrvr.exe / xdbcsrvr AcuXDBC Server network daemon

Installing AcuXDBC/AcuXDBC Server 5-13
vortex.jar JDBC and Java class file

ainit.bat / ainit.sh Creates system catalog and information-schema
views

asql.bat / asql.sh Starts xdbcquery tool

addfile.bat / addfile.sh Adds named XFD file or file list to system
catalog

acuxdbcs.bat / acuxdbcs.sh Performs functions on xdbcsrvr server daemon
with the following options:

“-help”

“-info [-n port][server]” (pings daemon)

 Examples: E:\>acuxdbcs -info

AcuXDBCS is running on port 20222 of
server jmccoy-xp

E:\>acuxdbcs -info -n 20111 sparky

AcuXDBCS is not running on port 20111 of
server sparky

E:\>acuxdbcs -info -n 20999 sparky

AcuXDBCS is running on port 20999 of
server sparky

“-install [any valid -start options]” (installs the
server as a service on a specified port)

“-kill [-n port][server]” (kills daemon)

Examples: E:\>acuxdbcs -kill

Kill of AcuXDBCS on port 20999 of server
jmccoy-xp successful

E:\>acuxdbcs -kill n 20999 sparky

Kill of AcuXDBCS on port 20999 of server
sparky successful

E:\>acuxdbcs -kill -n 20999 sparky

Kill of AcuXDBCS on port 20999 of server
sparky failed
connect: errno: 10061

File Description

5-14 Installing AcuXDBC
5.3 Creating a System Catalog and Views

A system catalog, also known as a repository, is where database systems
store schema metadata, such as information about tables and columns in your
data directories, and internal bookkeeping information.

If you ran “demo.bat” or “demo.sh”, you don’t need to create a system
catalog. One has been created for you. Look for an AcuGT/syscat/ directory
to confirm whether a system catalog exists.

For your convenience, we have included a script that creates a system catalog
and simultaneously generates information-schema views of the catalog. The
views are reflections of the system tables and contain columns that describe
your Vision data, so that you can use SQL syntax that you’re used to using
(standard SQL).

In addition, AcuXDBC includes a command-line utility, xdbcutil, that lets
you create a system catalog for your Vision files. xdbcutil reads your XFD
files and creates a table, transforming your Vision file system into a Vision
database. The system catalog itself is stored in the Vision database.

“-remove” (removes the server as a service on a
specified port)

“-start [-n port][-l]” (starts daemon)

“-version” (gets the version of the tool)

demo.bat / demo.sh Creates system catalog and load it with sample
veterinary data.

genxconf.bat / genxconf.sh Generates an AcuXDBC configuration file
that includes the required configuration
variables set to the values that you define. It
also enables you to specify an alternate
directory name for GENESIS_HOME and
an alternate configuration file name.

File Description

Creating a System Catalog and Views 5-15
If you plan to port your system catalog to multiple hardware platforms, be
aware of the byte order format for both the machine you created your system
catalog on and the machine you are going to deploy on. The machine’s byte
order format is commonly referred to as big endian or little endian. A system
catalog created on a machine that uses little endian (Intel for example) will
not be portable to a machine that uses big endian (Motorola for example), and
vice versa. In this case, you need to create a system catalog once on each type
of machine (big endian and little endian) and then port the appropriate catalog
to the appropriate target machine.

An alternate method is to dynamically create and load the database on the
target machine. In this case, you would send the XFD files to the end user
site, and then create an empty database and load the XFD files into it, either
one at a time or in batch mode.

Note: This section describes how to create an empty system catalog. Once
you have a catalog, you must populate it with information from your XFDs.
This process is described in section 5.5.

To create a system catalog using a script:

1. Change to the \AcuGT\bin directory where AcuXDBC or AcuXDBC
Server was installed.

2. Type “ainit” and press Enter.

The script creates a series of system tables and views of those tables and
places them in the \AcuGT\syscat\ directory by default. These are described
in Chapter 6.

Note: If you did not accept the default catalog path, be sure to amend your
COBOL configuration file to point to your system catalog. Do this using
the DICTSOURCE variable. See Chapter 4, section 4.2.3 for details.

To create a system catalog using the xdbcutil utility:

1. Change to the directory where you want your system catalog installed.

2. Enter the following command:

xdbcutil -c

5-16 Installing AcuXDBC
If you plan to grant database and table privileges to individual users, use
the “-pa” option as well to create a user/group catalog and an object
permissions catalog.

xdbcutil -c -pa

Because the above command will create all of the system catalog files in
the current directory, you may want to use this command instead:

xdbcutil -c -pa -d %GENESIS_HOME%/mfsyscat

for Windows or

xdbcutil -c -pa -d $GENESIS_HOME/mfsyscat

for UNIX/Linux.

The command syntax for xdbcutil is described in section 5.3.1.

Note: If you use the “-d” option to specify a catalog path, be sure to
amend your COBOL configuration file to point to your system catalog.
Do this using the DICTSOURCE variable. See Chapter 4, section 4.2.3
for details.

5.3.1 xdbcutil Syntax

The xdbcutil command has this syntax:
xdbcutil [-l LOGFILE] [-d SYSCAT_PATH] [-x XFD_PATH] [-v] [-p] [-pa] [-n] [-s] <-c |
-a xfd1 [xfd2...] | -f FILE> | -u xfd1 [xfd2...]>

Note: Use quotes or the short name if specifying a path that contains spaces. XFD
filenames, when given, must be of the format:

xfilename[#[tablename][#filename]]

where xfilename is the XFD filename, tablename is the SQL tablename to
use, and filename is the Vision data filename.

Creating a System Catalog and Views 5-17
As shown in the table below, some of the command options are used when
creating the system catalog; others are used when loading the system catalog
with XFDs.

Option Description

For use when creating the system catalog (see section 5.3)

-c Required. Creates a new system catalog.

-d Specifies a directory for your system catalog. If none is specified, the
system catalog is stored in the current directory.

-n Specifies “do not overwrite” the user/group catalog if it exists.

-p Creates a user/group catalog for granting database privileges.

-pa Creates a user/group catalog and an object permissions catalog. A
user/group catalog is for granting database privileges. An object
permissions catalog is for setting permissions on your Vision tables.
Use the GRANT statement to set permissions in these tables.

For use when loading the system catalog with XFDs (see section 5.5)

-a Adds an individual table definition from the specified XFD file. You
can use either “-a” or “-f” to populate the system catalog with XFDs,
but do not use both in the same operation.

-d Specifies the location of your system catalog. Required if you are not
in the system catalog directory when you issue the xdbcutil
command.

-f Adds table definitions from the specified file, which contains a list of
XFD filenames. You can use either “-a” or “-f” to populate the system
catalog with XFDs, but do not use both in the same operation.

-l Defines log output file name.

-o Specifies table ownership. This must be a valid authorization ID that
was created with the GRANT SQL statement for database privileges
(see section 7.5.10, “GRANT (Database privileges).”

-p Creates a user/group catalog for granting database privileges.

-pa Creates a user/group catalog and an object permissions catalog. A
user/group catalog is for granting database privileges. An object
permisssions catalog is for setting permissions on your Vision tables.
Use the GRANT statement to set permissions in these tables.

5-18 Installing AcuXDBC
Note: All tables in an AcuXDBC database have an owner. By default, the
owner of the table is PUBLIC, or you can specify a different authorization
ID using the “-o” option to xdbcutil. If you do not want a table owner to be
listed publicly in applications like Microsoft Access, specify “-o “ ”” and
set the IGNORE_OWNER to “1” (on, true, yes) in your configuration file.

-s Says to include data storage method switch. Required if you are using
XFDs created with a pre-8.0 version compiler, and used one of the
data storage compiler options (“-Dci”, “-Dcm”, “-Dcn”...) when
creating your XFDs.

The “-s” command accepts these storage method arguments:

If you compiled with: Use this xdbcutil switch:

 -Dca -s a

 -Dci -s i

 -Dcm -s m

 -Dcn -s n

 -Dcv -s v

 -Dcb -s b

 -Dcr -s r

-u Updates table definitions from the specified XFD file(s). Use this
option if you have already loaded an XFD file into the system catalog
but have modified it for some reason. Reloading a file with “-a”
results in an error.

-v Initiates a verbose reporting mode.

-x Specifies an XFD file directory. Required if your XFD files are not in
the current directory.

Option Description

Granting Database Privileges 5-19
5.4 Granting Database Privileges

Access to objects can be secured on both the database and the object level
with AcuXDBC. If you created your database using xdbcutil or addfile with
the “-p” or the “-pa” options, you will have a database that supports user
authorization IDs. (By default, addfile will create the database with the “-pa”
option, providing both database-level privileges and object-level privileges.)

By default, the system will create a single user “system” with the password
“manager.” There is also a second special authorization ID called “public,”
which is used only in the context of object-level privileges. Any object
owned by “public” is accessible by all authorization IDs. By default, when
you load an XFD into AcuXDBC, the owner of the object will be “public.”
You may override this by specifying the “-o” option to xdbcutil or the “-u”
option to addfile.

Once you have created your database with database-level privileges, you will
need to create additional user authorization IDs. This is done using SQL
“GRANT” command from within the command-line query tool or script
(xdbcquery or asql) or some other ODBC-enabled query tool that will allow
the input of SQL commands. (The GRANT statement is described in detail in
section 7.5.10. The command-line query tool is described in section 6.3.1.)

If you wish, you can load the system catalog with your XFDs and send the
loaded tables to your customer or end user. A site administrator can grant
database and table permissions.

A second—and perhaps more efficient—approach to setting up a new
database is to use an SQL script file to create all of the user authorization IDs
and object-level privileges. This script can then be run at the end-user site
using the command-line query tool. For example:
asql -u system -p manager -r my_script.sql

where my_script.sql is a text file containing the SQL commands to perform.
For an example of this, please refer to the “addfile” script, which executes the
“cview.sql” script to create the information schema in new databases.

Note: Granting database privileges is optional; however, if you do not
grant privileges, your database will be open to all users.

5-20 Installing AcuXDBC
To grant database privileges:

1. Change to the \AcuGT\bin directory where AcuXDBC or AcuXDBC
Server was installed.

2. You can modify these parameters from within the file itself to match
your settings and then simply run the “asql.bat” file from the same
directory where xdbcquery is installed. Alternatively, you can manually
specify your own connection parameters from the command line by
using the following syntax:

asql -u system -p manager -c myconfigfile.cfg

The following prompt appears:

SQL (/? for help) ==>

Caution:If you REVOKE privileges from "system" before creating
another authorization ID with database administrator (DBA)
privileges, no one will be able to connect and your system will be
unusable. Should this happen, you will need to recreate the system
catalog as described in section 5.3.

3. Grant database administrator privileges to yourself by issuing a
GRANT statement such as:

GRANT DBA TO tsmith IDENTIFIED BY password123;

4. Grant the privileges CONNECT and/or RESOURCE to each of your
users.

• CONNECT lets grantees connect to the database when the password
is correct.

• RESOURCE lets grantees create objects/tables in the database.
• Granting DBA privileges implies both CONNECT and

RESOURCE and lets grantees read or modify any table in the
database.

For example, you might issue the following commands:

GRANT CONNECT,RESOURCE TO jsmith IDENTIFIED BY password1;
GRANT CONNECT TO sjones IDENTIFIED BY password2;

5. When you have finished granting privileges, quit the query tool by
entering the following:

Loading the System Catalog with Your XFDs 5-21
SQL (/? for help) ==> /q

See section 7.5.10 for detailed information on the GRANT statement.

Once you have granted users database privileges, you can modify their
object-level privileges as well.

To modify privileges for existing users:

Issue a GRANT statement without the IDENTIFIED BY clause. For
example:

GRANT CONNECT TO jsmith;

5.5 Loading the System Catalog with Your XFDs

The xdbcutil utility can be used both to create a system catalog and to
populate it with data. The xdbcutil command is very flexible, so you have
many options for loading your XFDs into the system catalog. For your
convenience, we have provided a script—addfile—for loading XFD files
into your system catalog. This script will allow you to default many of the
common options.

To load XFDs using a script:

1. Change to the \AcuGT\bin directory where AcuXDBC or AcuXDBC
Server was installed.

2. Enter the following:

addfile filename

where filename is the name of the XFD file to add to the system catalog. By
default, the script assumes that your XFDs are stored in the current directory
and that your system catalog is stored in AcuGT/syscat/. Also by default, the
user PUBLIC is assumed.

If you stored your XFDs and/or system catalog elsewhere or if you want to
specify an alternate user, you can edit the script or add command-line options
as follows:
addfile [-d syscat_path] [-x xfd_path] [-u user] filename

5-22 Installing AcuXDBC
or
addfile [-d syscat_path] [-x xfd_path] [-u user] -f filelist

The second form assumes that you have created a text file using your favorite
editor listing all of the XFD files that you want to load into the system
catalog. When you create a list file, use just the base name of the XFD files;
do not use the ‘.xfd’ suffix. List the XFD files one per line. For example, you
might create a file called “list.txt” containing:
animals
accounts
pets

In this case, your addfile command would be:
addfile –f list.txt

To load XFDs using the xdbcutil utility:

To load the system catalog with your XFDs, minimally, use the “-d” and “-a”
options to xdbcutil, as shown below:

xdbcutil [-d SYSCAT_PATH] <-a xfd1 [xfd2...]>

For example:
xdbcutil -d c:\data\dict -a c:\data\XFD\animals

results in the system catalog in c:\data\dict being loaded with information
from the XFD named “animals.xfd” found in c:\data\XFD.

Rather than prepending the XFD filenames with their path, however, you can
specify the XFD directory with the “-x” option, as in:

xdbcutil -d c:\data\dict -x c:\data\XFD -a animals

This would have the same effect as the preceding example.

If desired, you can create a file with a list of XFD names and then specify it
with an “-f” option, along with the “-x” option to specify the directory. For
example, this command:

xdbcutil -d c:\data\dict -x c:\data\XFD -f list.txt

and a “list.txt” that contains this:

Loading the System Catalog with Your XFDs 5-23
animals
accounts
pets

results in a system catalog with table definitions from “animals.xfd”,
“accounts.xfd”, and “pets.xfd”.
To instruct AcuXDBC that your XFDs use the data storage value specified by the
“-Dci” storage method, add “-si” to the xdbcutil command line, like this:

xdbcutil -d c:\data\dict -x c:\data\XFD -si -f list.txt

If you have several different XFD directories, you can create the list file with
the XFD paths prepended. For example, this command:

xdbcutil -d c:\data\dict -f list.txt

and a “list.txt” that contains this:
c:\data\data\animals
c:\data\data2\accounts
c:\data\other\pets

results in a catalog with three table definitions, coming from XFDs in three
separate XFD directories.

Note: xdbcutil command syntax is described in section 5.3.1.

5.5.1 Setting Up File Aliases

With AcuXDBC, you can define file aliases when adding XFDs to your
system catalog with xdbcutil.

A file alias is a way to map data files, “.xfd” files, and SQL tables. It is used
at runtime to dynamically reassign a file name that is referenced in an
ASSIGN clause or, if the ASSIGN clause is a variable, from the FILE
directive.

File aliases are useful when:

5-24 Installing AcuXDBC
• A single COBOL file description can reference multiple physical data
files with the same format, such as when the ASSIGN TO clause of a
COBOL select statement is a variable. Each of these files represents a
distinct table in the database.

• A single table name in SQL can refer to multiple physical COBOL data
files.

These situations can easily occur in a large company, in which one COBOL
file needs to point to more than one company. For example, Corporation A
supports several other companies (say, company01 and company 02) and
wants to use the same code to point to each company. Corporation A has
named its COBOL file “company,” so the XFD file would be called
“company.xfd”. Because Corporation A wants to use this same code for
company01 and company02, it has set up the code to point to data files
“company01.dat” and “company02.dat”.

Let’s also say that Corporation A wants to use a different name when
referring to the data files from SQL (maybe the name is too long and/or
cumbersome). No problem! Corporation A can specify all three components:
the XFD name, the database table name, and the data file name. All of this
information, along with the schema to load the tables into, is specified using
the addfile batch file or the tool xdbcutil.exe.

Please note that another issue that you may need to consider is the
configuration file variable FILE_PREFIX, which points to the directory in
which your files are stored.

If your “.xfd” and data files for a table have different names, define a file
name alias on the xdbcutil command line or in the list file using the standard
syntax. Simply enter the alias as the third parameter.

xfilename[#[tablename][#filename]]

For example:
Acme#Table1#Company1

indicates that an alias should be assigned to the file named “Company1”. In
this example, “Acme” is the name of the XFD file being read, “Table1” is the
name to be used in SQL statements, and “Company1” plus FILE_SUFFIX, if
any, is the filename that will be used.

Loading the System Catalog with Your XFDs 5-25
For information about loading XFD files, see section 5.5, “Loading the
System Catalog with Your XFDs.”

5.5.2 Multi-company Support

AcuXDBC offers convenient ways to manage multiple company data sets.
For example, you may have two sets of data for Company01 and
Company02. The layouts of the data files are the same, but the file names
have different prefixes or suffixes. For example, ACCT01 and ACCT02 may
be the accounting files for Company01 and Company02. They are stored in
different directories.

Rather than having to set up system catalogs for each of your companies
individually, you can do one of two things:

1. You can have a different configuration file for each company. In this
configuration file, you can use wildcards and substitution characters
(defined in the configuration file) to identify which data files to access,
allowing you to have a single system catalog that gets populated only
once and yet supports more than one company.

2. You can set up a separate schema for each company, and then you can
specify which table to access. For example, you could set up a schema
for “acme” and a separate schema for “generic,” and then qualify your
SQL statements.

To set up a multi-company DSN with wildcard substitution:

1. Create a text file listing the XFD filenames for your companies. Name
the file “list.txt” or something similar.

For example, if your data is:

main.xfd
ACCT01.dat
ACCT02.dat
ACCT03.dat

you might have an entry like this in “list.txt”:

main#AcctTbl#Acct$$

5-26 Installing AcuXDBC
where main is the XFD name, AcctTbl is the table/repository name, and
Acct$$ represents the Vision file name.

2. In the configuration file, “acuxdbc.cfg” by default, use the
FILENAME_WILDCARD variable to define the wildcards and their
respective substitution characters.

For example, the configuration file might contain:

FILENAME_WILDCARD $$=01

3. Create your system catalog using the “-f” option as shown:

xdbcutil -d c:\data\dict -f list.txt

When building the system catalog, xdbcutil uses the XFD “main” to
create a repository table called “AcctTbl”.

4. At the company site, create a single DSN for Accounting, and point to
the configuration file that contains the substitution characters for that
company.

(See section 5.8 for instructions on creating DSNs.)

When a user accesses the table AcctTbl from your COBOL program,
AcuXDBC looks in the configuration file for the FILENAME-WILDCARD
variable, and, substituting “01” for “$$” accesses the data file, “Acct01”. In
programming terms, when “SELECT * from AcctTbl;” is issued, it functions
as if “SELECT * from Acct01;” was entered.

There is no limit on the number of wildcards/replacements that you can use
with AcuXDBC. You can change several characters in a filename. For
example:

ACCT>=$$**

where the actual filename would be ACCTZ01AA and the configuration file
entry would be:

FILENAME_WILDCARD >==Z ;$$=01;**=AA

You don’t have to create a list file to specify your company wildcards. If you
prefer, you can specify them directly on the xdbcutil command line, like this:
xdbcutil -d c:\data\dict -x c:\data\data -a mainxfd#AcctTbl#Acct$$

Loading the System Catalog with Your XFDs 5-27
Note: You may have to escape the wildcard characters if they are shell
interpreted. For example, the sample above would not work on UNIX/
Linux, because the shells interpret the “$” character. You would have to
use:
xdbcutil -d /data/dict -x /data/data -a mainxfd#AcctTbl#Acct\$\$
or
xdbcutil -d /data/dict -x /data/data -a "mainxfd#AcctTbl#Acct$$"

To set up a multi-company with separate schemas (table
ownership):

Alternatively, to support multiple companies, you could specify database
table ownership using the “-o” option to xdbcutil when creating your system
catalog. For example, there could be two tables named AcctTbl—one owned
by Company01 and one by Company 02.

On the command line, you specify:
xdbcutil -d <catalog_dir> -x <xfd_dir> -o <owner’s name>
xfdname#tablename#filename

Or in this case:
xdbcutil -d c:\data\dict -x c:\data\XFD -o Company01
mainxfd#AcctTbl#ACCT01

xdbcutil -d c:\data\dict -x c:\data\XFD -o Company02
mainxfd#AcctTbl#ACCT02

Then you can access all the data files with one SQL query to one DSN, like
this:

SELECT * FROM COMPANY01.AcctTbl AND COMPANY02.AcctTbl
WHERE

Filename Database Name Owner Table name

ACCT01 dd company01 AcctTbl

ACCT02 dd company02 AcctTbl

5-28 Installing AcuXDBC
You can also use synonyms for AcctTbl, such as “Accts Receivable” or
“Billing”.

Note: If you don’t want a table owner to be listed publicly in applications
like Microsoft Access, specify “-o “ ” ” when loading the table with
xdbcutil and set the IGNORE_OWNER variable to “1” (on, true, yes) in
your configuration file.

5.6 Setting Permissions on Your Vision Tables

You set object privileges—permissions on individual tables, views, and so
on—by modifying the GENESIS_AUTHS system table.
GENESIS_AUTHS is created when you use the “-pa” option to xdbcutil or
ainit when creating the system catalog. (While ainit defaults to “-pa”; you
must specify “-pa” with xdbcutil.)

Like the database-level privileges described in section 5.4, this is done by
issuing GRANT commands from an SQL query tool like xdbcquery. Use the
SQL GRANT command to specify permissions for specific users. If a table is
loaded into the PUBLIC schema (the default), all users have all access levels
to the table. If a table is loaded into an alternate schema, the SQL GRANT
statement must be executed on the table to give access permissions to
individual users, or to all users if permission is granted to PUBLIC.

Please note that different access permissions can be granted to different users.
For example, one user may have just SELECT (or what we might call
read-only) permissions, while a different user might have SELECT and
UPDATE permissions (this user can modify data).

Setting permissions is often performed at the user site by a site administrator.
If you would like to pre-set a group of permissions, the series of GRANT
statements can be placed in a text file and then executed as a script using asql,
or you could use the xdbcquery tool. For details, see section section 7.5,
“Detailed SQL Support Descriptions.”

1. From your command-line prompt, return to the /AcuGT/bin/ directory
where AcuXDBC was installed.

2. Log in as database administrator.

Starting AcuXDBC Server (Network Only) 5-29
For example, type the following at the prompt and press Enter.

asql -u system -p manager

After a brief message, the following prompt appears:

SQL (/? for help) ==>

3. Grant table-level privileges to individual users or groups of users.

For example:

GRANT SELECT ON Table_A TO sjones;
GRANT ALL PRIVILEGES ON Table_B TO public;

Other privileges include DELETE, INSERT, and UPDATE.

The following table describes some privilege levels:

Refer to Chapter 7, section 7.5.11 for more information on granting object
privileges to users.

5.7 Starting AcuXDBC Server (Network Only)

If you or your users are operating in a network environment, the final step is
to start AcuXDBC Server on the server. If you are operating on a stand-alone
machine, this step is not necessary; you can begin using ODBC applications
to access Vision files right away.

SELECT Gives grantees read-only access. This allows
them to issue the SELECT statement on the
object, but nothing else.

SELECT, UPDATE,
DELETE, and INSERT

Allows grantees to read, write, delete, and insert
data.

ALL PRIVILEGES Passes on all applicable privileges that you
are entitled to grant.

USAGE Allows grantees to use the object to define
another object.

5-30 Installing AcuXDBC
AcuXDBC Server can be started under any user ID on the system. In this
mode, all file access will be performed using the user and group ID under
which the daemon was started. You also have the option of starting
AcuXDBC Server under the root or superuser account and turning on
operating system (OS) authorization checking with the “-a” option. This
option lets one user start a process and pass ownership to another. In this
mode, you must pass a valid operating system user ID and password as part
of the connect string. AcuXDBC Server will use this information to perform
an OS authentication of the user and then spawn a process to handle the
requests using this user information.

To start AcuXDBC Server on the server, enter the following at the command
prompt:

acuxdbcs -start

This runs a script that invokes the xdbcsrvr daemon on the default port,
20222, with the “-k” option to request data encryption over the network. If
the xdbcsrvr daemon is already running, AcuXDBC Server displays the
message:

The AcuXDBC Server 8.x.x on the default port <20222> service is already installed

A new xdbcsrvr process will not be started. You can, however, start multiple
AcuXDBC Servers on different ports. If you want to start the AcuXDBC
Server with new options, you must stop and restart xdbcsrvr.

If you would like to invoke the server daemon with different security,
logging, or port options, you can issue the xdbcsrvr command directly.
Following is the command syntax for xdbcsrvr.

Command Syntax
xdbcsrvr [-a[l]] [-p] [-kn] [log]

or

acuxdbcs -start [-n port] [-1]

Starting AcuXDBC Server (Network Only) 5-31
Optional arguments to xdbcsvr include:

5.7.1 Pinging AcuXDBC Server

Use “acuxdbcs -info” to ping the xdbcsrvr process. If no server is specified,
the xdbcsrvr process is pinged on the current host; otherwise the process is
pinged on the named host. You may get a message similar to the following:

On Windows
• For a successful call:

acuxdbcs.exe -info myserver

you receive the response:

xdbcsrvr is running on port 2022 of server myserver

• For an unsuccessful call:
acuxdbcs.exe -info -n 2345 myserver

you receive the response:

-a[l] Activates the operating system (OS) authorization checking.
This option lets one user start a process and pass ownership to
another.

You must pass a valid OS user ID and password as part of the
connect string, so the spawned service knows who owns it.
xdbcsrvr performs a default OS authentication.

If the l modifier is specified, xdbcsrvr logs the outcome of the
authentication request to the system log. On UNIX/Linux, this
is syslog. On Windows, it is the event log.

-kn Specifies a masking key value used to decrypt incoming OS
and DBMS user ID and password information. Clients must
have the same value in their “net.ini” file in the
KEY_CONNECT variable.

-pport_number Assigns the listener port number for clients to request service.
The default is 20222.

log Starts logging. It puts a log file named “tcmprocessid.log” in
the directory where xdbcsrvr is started.

5-32 Installing AcuXDBC
xdbcsrvr is not running on port 2345 of server myserver
connect: errno: 10061

On UNIX/Linux
• For a successful command:

acuxdbcs.sh -info myserver

you receive the response:

Pinging ‘myserver’.
vtxnetd is alive and kicking (1st attempt).
Host process ID :23526
Requires byte flipping : No
Character set - Client : ASCII
 Host : ASCII

• For an unsuccessful command:
acuxdbcs.sh -info -n 2345 myserver

you receive the response:

Pinging ‘myserver’
SORRY: connect: Connection refused

5.7.2 Stopping AcuXDBC Server

Use “acuxdbcs -kill [-n port] [server]” to halt (kill) the xdbcsrvr process on
port 20222 or the port specified by the -n option. On UNIX/Linux, you may
also use “xdbckill [-p<port#>]”. If no port is specified, the xdbcsrvr process
is halted on the current host; otherwise the process is halted on the named
host.

On Windows, all client connections are terminated. On UNIX/Linux, client
connections remain active.

Caution: The xdbcsrvr process can also be terminated from UNIX/Linux
using the command “kill -9” (signal #9). However, a signal #9 prevents
xdbcsrvr from performing an orderly shutdown and should never be used
when clients are actively using AcuXDBC.

Setting Up Data Source Names (DSNs) on Client 5-33
5.8 Setting Up Data Source Names (DSNs) on Client

Traditionally, the data source is one of the main components of an ODBC
installation. Physically, data sources consist of sets of data and their
associated environments. This means that the term “data source” actually
indicates the data files, the operating system, the file system or RDBMS used
to manage the physical data, and the optional network software used to access
this data. The term data source name (DSN), therefore, refers to something
rather complicated.

Because part of the ODBC mission is to hide the complexity of underlying
software, ODBC architects have chosen to use an abstract name to identify all
the components of a data source. This data source name maps all the
underlying software components necessary to access the data.

The name you assign to a data source is arbitrary. However, when users try to
access the data files, they will be asked to specify the DSN. Therefore, you
should assign a meaningful name that represents the type of data that the files
contain or the type of query that will be made against the files.

This section describes how to create local data source names (or DSNs) for
your COBOL data files.

You begin by adding the AcuXDBC driver on the ODBC Data Source
Administrator of the Windows control panel. (The ODBC Data Source
Administrator, included as part of your operating system, is your interface for
adding, removing, or configuring ODBC data sources on your system.) Once
you add a driver, you define the data source name and configuration file
through the AcuXDBC Setup screen.

Note: If you are upgrading from an earlier version of AcuODBC, you must
create new DSNs.

5.8.1 Adding a Data Source Name

To add a DSN to the ODBC Data Source Administrator, follow these steps.

5-34 Installing AcuXDBC
1. From the Start menu, select All Programs/Acucobol 8.x.x/AcuXDBC/
ODBC Data Source Administrator. The ODBC Data Source
Administrator appears with the User DSN tab selected.

User DSNs are one of three types of DSNs managed by the ODBC Data
Source Administrator:

2. Select the User DSN or System DSN tab, depending on your
preference, and click Add.

DSN Description

User Stores information about how to connect to a specific data
source; may be used only by the current user on the current
machine.

System The most common type of DSN that you and your users will
create for AcuXDBC. Same as the User DSN, but available
to all users on a particular machine, including NT services.
Local to the computer, rather than dedicated to a user. The
system, or any user having privileges, can use a data source
set up with a system DSN.

File A file-based data source that may be shared among all users
who have the same drivers installed. AcuXDBC does not
support File DSNs.

Setting Up Data Source Names (DSNs) on Client 5-35
3. From the Create New Data Source dialog box, select AcuXDBC
Driver, and then click Finish. (If “AcuXDBC Driver” is not an option
in the list box, reinstall AcuXDBC on your system.)

The AcuXDBC Setup screen appears. It contains three tabs: General,
Advanced, and Logging. Complete these tabs as described in section
5.8.2 to 5.8.4.

5.8.2 AcuXDBC Setup: General Tab

Into the General tab, enter the information that is requested, then click OK.
Descriptions of each field are shown in the table below.

5-36 Installing AcuXDBC
Field Description

Data Source Name
(Required)

Enter a string that identifies the name of the data source
that you are creating. Specify a name that represents the
type of data in this group of data files or the type of query
that will be made against these files. Since this name is
used every time a user opens this data source, select a
name that is meaningful to users. (For example, “ACME
Payroll” might be used for payroll files for the ACME
Corporation.)

The name of the data source must be no longer than 63
characters. Follow the Windows file-naming
conventions when using special characters in data source
names. Also, note that the name you choose must be
unique.

This is a required field. Default value is blank.

Description
(Optional)

Enter a description of the data source for additional user
clarification. Default value is blank.

Network driver Check this box if this is a network data source.

Hostname If this is a network data source, enter the hostname of the
server on which the data resides.

Port If this is a network data source, enter the port number on
which the server is listening. Default is 20222.

Configuration File
(Required)

Browse to the configuration file that you created for the
data source (a remote file if this is a network data
source).

The configuration file defines the location of your Vision
files, file case instructions, and much more. This is a
required field. By default, it is located in the installation
directory and named “acuxdbc.cfg”.
Refer to Chapter 4, section 4.2 for more information on
this file.

Username
(Optional)

A username for the person who will be logging into the
database on this machine. Default value is blank. If you
have set up usernames, but the Username field is blank,
you will be prompted for one at the time of connect.

Setting Up Data Source Names (DSNs) on Client 5-37
5.8.3 AcuXDBC Setup: Advanced Tab

Into the Advanced tab, enter the following information or accept the defaults,
then click OK.

Password
(Optional)

A password to be associated with the username. Default
value is blank. Refer to section 5.4 for information on
alternative measures of data security. If you have set up
usernames, but the Username field is blank, you will be
prompted for one at the time of connect.

Confirm Password Confirm the password by entering it a second time.

Field Description

5-38 Installing AcuXDBC
Field Description

Fetch Buffer Size Enter the size of the fetch buffer in bytes. The fetch
buffer indicates how much data will be fetched or
retrieved from a query at a time. Allowable values are
1024 through 32766. Default value is 4096.

Merge Buffer Size Enter the size of the merge buffer in rows. This is the
number of unique rows that your query can return.
Default value is 10,000.

Memory Sort Pages Enter the number of memory sort pages. This indicates
how many of the “Total Sort Pages” will reside in
memory. Allowed values are 100 to 999,999. Default
value is 1000.

Total Sort Pages Enter the total number of sort pages. Total sort pages is
the number of virtual memory pages used to sort results
sets. Allowed values are 1000 to 99,999,999. Default
value is 10,000.

Maximum
Statements

Enter the maximum number of statements allowed.
values are 10 to 4096. Default value is 256. See
Maximum Cursors.

Maximum
Cursors

Enter the maximum number of cursors allowed.
Allowable values are 10 to 1024. Default value is 64.

AcuXDBC has a concept of logical cursors (nlc) that are
mapped over a smaller number of actual DB Cursors
(ndc). If you create SQL statements equal to or fewer
than the number of DB Cursors set, it’s a straight
one-to-one relationship. However, when you attempt to
open more, AcuXDBC searches for the oldest
“soft-closed” logical cursor that it can “unhook” from a
database cursor and assign to the new statement. If the
application tries to use the original statement, AcuXDBC
will look for another unused logical cursor to donate its
DB Cursor.

If no cursors can be unhooked (because results are
pending), then an error message “Too many concurrently
open cursors” is returned.

Setting Up Data Source Names (DSNs) on Client 5-39
Maximum Columns Enter the maximum number of columns allowed in a
single table. Allowable is 1 to 1024. Default value is 256.
(Please note that some Microsoft applications will not
allow more than 256 columns in a table.)

Note: The Vision file or table supports 65535 field
names (columns); however, you may be limited in your
queries to the table based on the query tool used. For
instance, the command-line query tool will support
only result sets with a maximum number of 512
columns. Queries through ODBC Driver default to
1024 columns.

Field Description

5-40 Installing AcuXDBC
5.8.4 AcuXDBC Setup: Logging Tab

You can gather information from AcuXDBC to help you troubleshoot server
processes and debug your client applications. Into the Logging tab, enter the
information that is requested or accept the defaults, then click OK.

Field Description

Client Logging:

Log Filename Browse to the name of the local log file used for
AcuXDBC logging. By default, this is
“ACUXDBC_API_LOGFILE.log”. Log files are
created in the local directory that is current when
AcuXDBC starts. If you want your log file to write to
another location, you must specify a fully-qualified file
name.

Setting Up Data Source Names (DSNs) on Client 5-41
Full Logging Check this box if you want detailed logging on the client.
By default, AcuXDBC performs abridged logging.
Abridged logging, more space-efficient, records only
selected items rather than the complete control structure.

SQL Logging Check this box if you want to create an SQL log file
locally.

Include Time Check this box if you want to include the time to
complete each call in the local log file.

Unique Filenames Check this box if you want unique identifiers to be
appended to the name of the local log file.

Server Logging: These options appear when you check “Network driver”
on the General Tab.

Log Filename Browse to the name of the remote log file used for
AcuXDBC logging. By default, this is
“ACUXDBC_HOST_LOGFILE_pid.log”, where pid is
the host process ID. Log files are created in the local
directory that is current when AcuXDBC starts. If you
want your log file to write to another location, you must
specify a fully-qualified file name.

Full Logging Check this box if you want detailed logging on the host.
By default, AcuXDBC performs abridged logging.
Abridged logging, more space-efficient, records only
selected items rather than the complete control structure.

SQL Logging Check this box if you want to create an SQL log file on
the host.

Include Time Check this box if you want to include the time to
complete each call in the log file on the host.

Unique Filenames Check this box if you want unique identifiers to be
appended to the name of the remote log file.

Hide Errors For Windows servers only, check this box if you want
AcuXDBC to quit when a GPF error occurs.

Hide GPF Errors For Windows servers only, check this box if you don’t
want to display GPF dialog boxes to the end user.

Field Description

5-42 Installing AcuXDBC
5.8.5 Copying DSNs to Other Network Machines

If desired, you can create a single DSN, then download it to other machines
in your network using the “.reg” file.

6
 The System Catalog
Key Topics

Introduction ... 6-2
System Catalog Structure ... 6-3
Using the Command-line Query Tool ... 6-10

6-2 The System Catalog
6.1 Introduction

The system catalog forms the core of your database. It comprises a set of
system tables that describe all of the tables and relations described by the
database. You can have multiple system catalogs (databases) but only a
single catalog may be accessed at one time. The system catalog is portable
between machines with the same byte-order (little endian to little endian and
big endian to big endian).

AcuXDBC creates a system catalog corresponding to information it reads
from your XFDs. Once this information is loaded, AcuXDBC no longer
requires your XFDs. Instead, it refers to the system catalog to obtain the
information needed to construct and display your Vision tables. This gives
you the option of providing end users with XFD or encrypted XFD (.efd) files
for building their own system catalog, or you can provide them with a
pre-built system catalog. The ability to supply a pre-built system catalog can
lead to other benefits for your applications. For example, you can also
pre-build user logins, database object permissions, and complex data
handling views.

The primary advantage to a system catalog is that it allows for much greater
relational-database-like behavior.

This chapter describes the structure of the system catalog, and in doing so,
orients you to the environment from which you can access and manage your
database. It shows how a newly created Vision database may appear to users
after the initial install of AcuXDBC and a system catalog populated with
sample customer data. Database administrators and other programmers
should find the information in this chapter useful for more effectively
managing and querying the database.

Note: This chapter is not intended to teach SQL programming, or how to
manage a database. If you do not have a fundamental understanding of
these concepts, you should first consult a resource dedicated to SQL
programming and database management.

This chapter also provides a description of the xdbcquery command-line tool
that can be used to access the system catalog and interact with your database
tables directly. xdbcquery is provided on your distribution media.

System Catalog Structure 6-3
6.2 System Catalog Structure

Note: The examples in this section are based on the sample catalog that is
created from the “demo.bat” file that is included with AcuXDBC. The
examples depict what a user encounters after the system catalog is created
and loaded using this installation script and a DSN is created, as described
in Chapter 5, section 5.8 of this manual.

The system catalog displays the database tables that are created from your
XFD files. It also contains system tables that you can query to obtain
information about the definitions that make up your tables. The initial
structuring of the catalog places or assigns your tables to the “PUBLIC”
schema, which allows any database user to access the tables. AcuXDBC also
creates two other schemas that appear as users or owners, depending on the
client application being used to view the catalog. These schemas are called
“INFORMATION_SCHEMA” and “SYSTEM.”

For example, the following Microsoft Query Add Tables screen shows a
partial list of the catalog tables that appear under PUBLIC for the sample
veterinarian database:

Under the Options button of this screen, you can choose which types of
objects to show. For example, if you uncheck all except tables, you will see
only Accounts, Animals, Clients, Codes, and Pets under the “Public” schema.

6-4 The System Catalog
From Microsoft Access, the same veterinarian database tables appear as
shown below:

6.2.1 PUBLIC

Tables created from your XFDs have a schema or owner. By default, this
owner is the authorization ID “PUBLIC”. Tables or other database objects
owned by PUBLIC are accessible to any authorized database user. This
includes users initially created, as well as any additional users added in the
future.

If you don’t want a table owner to be listed publicly in applications like
Microsoft Access, specify “-o “ ”” when loading the table with xdbcutil
and set the IGNORE_OWNER to “1” (on, true, yes) in your configuration
file. (Please note that there is a blank space between the parentheses.)
However, you will usually want to display owner and tablename.

6.2.2 GENESIS Tables

Although appearing under the PUBLIC schema, GENESIS_TABLES is
actually in a special class of objects in the database called “system tables,”
not to be confused with the “SYSTEM” schema. These system tables are
internal tables required by the AcuXDBC processor. When you execute SQL
statements, the AcuXDBC processor constantly refers to these tables to
complete the SQL command. These system tables are marked as System

System Catalog Structure 6-5
tables in the catalog, and they begin with “GENESIS_”. If you don’t want to
see these tables in tools such as Microsoft Query, uncheck the System Tables
checkbox under the Options button of the Add Tables dialog box.

You cannot change or modify these system tables directly. The content of
these tables is maintained by the AcuXDBC processor and is modified only
as an effect of executing various SQL statements or the use of the AcuXDBC
command-line tools and scripts, such as addfile. For example, issuing the
following command not only results in AcuXDBC creating a new table, it
also results in a new row being entered into the table GENESIS_TABLES.

CREATE TABLE MYTABLE(COL1 CHAR (10));

This effect can be seen in sql with the following command:
SQL (/? for help) ==> SELECT
SQL continued ======> t_owner, t_name
SQL continued ======> FROM
SQL continued ======> genesis_tables
SQL continued ======> WHERE
SQL continued ======> t_name = 'MYTABLE';

 T_OWNER T_NAME
 ------------------------------ ------------------
 SYSTEM MYTABLE

SQL (/? for help) ==>

Note that the table name in the query is in upper case.

The system tables include the following:

Table Name Description

GENESIS_AUTHS Enables the setting of object-level
authorizations on objects (for example, tables
and views) by the GRANT SQL statement.
These privileges are SELECT, INSERT,
UPDATE, and DELETE.

GENESIS_COLUMNS Provides the mapping between SQL tables and
views and the columns that comprise them.
These fields are equivalent to the COBOL
fields that comprise a File Descriptor (FD).

6.2.3 INFORMATION_SCHEMA

There is a special schema created for you if you create your database using
ainit or demo called "information_schema". This schema is used to store a
set of views that pulls information out of the system tables that begin with
“GENESIS_”. These views are modeled after the SQL92 and SQL99
INFORMATION_SCHEMA.

The purpose of the INFORMATION_SCHEMA views is to provide a
common interface to query object definitions. For SQL programmers used to
working with other SQL-compliant databases, these views provide an
intuitive method of retrieving information about your database. Only the
COLUMNS, TABLES, and VIEWS objects are created. The SQL script that
creates the INFORMATION_SCHEMA views is located in
%GENESIS_HOME%\bin\cview.sql (Windows) or $GENESIS_HOME/bin/
cview.sql (UNIX/Linux). These views are provided as a convenience only.
You are free to modify or expand the script to meet your site’s particular
needs.

GENESIS_CONDITIONS Tracks the conditions used to modify the result
set based on the values in certain columns.

GENESIS_DEPENDS Keeps track of view dependencies.

GENESIS_FORKEYS Defines foreign key relationships, but is not
currently used by Vision.

GENESIS_INDEXES Provides the mapping between SQL indexes
and the Vision keys.

GENESIS_TABLES Provides information about the tables and
views that comprise an AcuXDBC database.
This contains all of the COBOL XFD files that
you have loaded into the database, as well as
system tables.

GENESIS_USERS Enables a security method based on user ID and
password.

GENESIS_VIEWS Describes the SQL view definition.

GENESIS_XCOLUMNS Provides the mapping between SQL indexes
and the Vision key segments.

Table Name Description

System Catalog Structure 6-7
Using Microsoft Query as an example, when you choose the owner
INFORMATION_SCHEMA from the Add Tables dialog box, the box
displays the following:

When you double-click the “*” or execute the following SQL command:

SELECT * FROM INFORMATION_SCHEMA.TABLES;

the following information is displayed for each of the Veterinarian database
tables:

6-8 The System Catalog
Note: You can query and read the column headings, but not modify them.

6.2.3.1 INFORMATION_SCHEMA.COLUMNS

This view contains the following information on each user-defined or
publicly created column:

Column Heading Definition

table_catalog Database containing the column; this
column is always blank, because it is
limited to the current database.

table_schema Schema (owner) of the column; the
owner can be either the current
schema (user) viewing the
INFORMATION_SCHEMA or the
PUBLIC schema.

table_name Name of the table containing the
column.

column_name Name of the column.

ordinal_position The column’s physical location in the
table.

is_nullable Indicates if NULL is allowed (Y/N).

data_type Column data type.

character_octet_length Applies to char and varchar, the
number of bytes in the column.

numeric_precision The maximum precision column for
decimal and numeric data types.

numeric_scale The maximum scale column for
decimal and numeric data types.

System Catalog Structure 6-9
6.2.3.2 INFORMATION_SCHEMA.TABLES

This view contains the following information on each user-defined or
publicly created table:

6.2.3.3 INFORMATION_SCHEMA.VIEWS

This view contains the following information on each user-defined or
publicly created view.

Column Heading Definition

table_catalog Database containing the table.

table_schema Schema (owner) of the table; the
owner can be either the current
schema (user) viewing the
INFORMATION_SCHEMA or the
PUBLIC schema.

table_name Name of the table.

table_type Type of table. The possible values
are:

S - System

T - User

V - View

Column Heading Definition

table_catalog Database containing the view.

table_schema View owner; the owner can be either
the current schema (user) viewing the
INFORMATION_SCHEMA or the
PUBLIC schema.

table_name Name of the view.

view-definition SQL that defines the view.

6-10 The System Catalog
6.2.4 DUAL

DUAL is a system table and has one column called “DUMMY” and one row
containing the value “X”. The DUAL table is a convenience tool that enables
users, or their programs, to select a single known constant or function.

For example, since DUAL contains only a single column, it makes the
following types of commands more sensible:
SELECT USER()FROM DUAL;

SELECT NOW()FROM DUAL;

SELECT DATABASE()FROM DUAL;

...and for other functions where you want only a single value returned.

If you would like to provide a slightly different format of the data in the
information_schema, you can modify the queries to return the name of the
configuration file. In the file %GENESIS_HOME%\bin\cview.sql, modify
the following lines:

These changes will cause the configuration file of the current database to be
printed on each line.

6.3 Using the Command-line Query Tool

AcuXDBC includes a command-line SQL query tool called xdbcquery. You
use xdbcquery from an operating system command prompt to connect to
your system catalog and execute SQL commands on your database directly,
as opposed to connecting to the catalog from a third-party query tool such as
Microsoft Query. The xdbcquery tool is also useful for conducting the
following database tasks:

change... to...

t_database as table_catalog, database() as table_catalog,

v_database as table_catalog, database() as table_catalog,

c_database as table_catalog, database() as table_catalog

Using the Command-line Query Tool 6-11
• Creating users and granting permissions on objects.
• Creating VIEWs.
• Executing AcuXDBC queries and programs in non-interactive mode

through an SQL script.
• Testing SQL scripts.

To use the query tool, you first start the tool and then specify a command that
connects you to your system catalog. You can perform these steps manually
from the command prompt, or you can run a batch file that includes the
xdbcquery start and connect command syntax and parameters.

Tip: xdbcquery is also accessible from the Windows Start menu through
the following menus: All Programs/Acucorp8.xx/AcuXDBC/xdbcquery.

6.3.1 Starting xdbcquery from the Command Line

To start the query tool and connect to your system catalog, execute the
following xdbcquery connect command. (No spaces are allowed between
parameters.)
xdbcquery /cacuxdbc04:[user name/password/]xvision:
[configuration file name]

where:

* Not required if no database security is in effect.

Parameter Definition

/c xdbcquery connect command.

acuxdbc04 SQL driver with which to connect.

user name* User name.

password* User password.

xvision Vision driver with which to connect

configuration file name File that specifies the data source and catalog
location.

6-12 The System Catalog
Example
xdbcquery /cacuxdbc04:system/manager/xvision:acuxdbc.cfg

Note: If you have not set up database security, you can omit the user name
and password, but you need to keep the two forward slashes before “xvision”
as placeholders.

You are now connected to the system catalog, and can execute
xdbcquery-specific commands or execute SQL statements on your catalog
tables. Chapter 7, section 7.4, provides the complete list of SQL commands
and functions supported by AcuXDBC.

6.3.2 Starting xdbcquery from asql.bat/asql.sh

For your convenience, a script file named “asql.bat” (“asql.sh” on UNIX/
Linux) is included with AcuXDBC. You can use this file to start xdbcquery
and connect to a database and system catalog, either locally or on a remote
machine. The xdbcquery script has the following usage:

asql [-c config] [-u user] [-p password] [-r script] [-s server] [-n port]

Command Parameter Default Description

-c configuration
filename

acuxdbc.cfg Specifies the
configuration file that
identifies the database and
catalog location.

-u user name system Specifies the user name to
connect to the database as.

-p password manager Specifies the password for
the user.

-r script name none Runs the specified script.

-s server none Specifies a name or IP
address

-n port 20222 Specifies the port to
connect to

Using the Command-line Query Tool 6-13
Example
asql -u mary -p 123

Because no configuration file was specified in this example, this command
connects the user “Mary” to the database and catalog specified in the
acuxdbc.cfg configuration file.

Note: You can modify the default parameters directly within asql.bat to
match your settings and then simply run the “asql.bat” file from the same
directory where xdbcquery is installed.

6.3.3 xdbcquery Commands

Once xdbcquery is started, you can view a list of command options and other
helpful information by executing the “/?” command. Doing so, displays the
following information:

Command Parameter Description

/c connect_string Connect to a database.

/x c r [u] Commit or Rollback transaction and, if “u”
is specified, start a read/write transaction.

/d s t<string> Describe an SQL statement or table.

/r file name Run statements/commands from a file.
Files can be chained, but not nested.

/o cmd parameters Execute driver command.

/m mask Set datetime format mask.

/n null Indicates what to display for a NULL value.
Default is blank.

/l N N lines displayed for SELECT. 0 for
continuous.

6-14 The System Catalog
6.3.3.1 Running SQL Scripts

Using a text editor, you can create SQL scripts and run them with
xdbcquery.

by using the “/r” command followed by the filename. A sample script file
appears below. Note that xdbcquery recognizes the hash sign (#) as the
comment identifier.
###
x.sql
###

create table foo(col1 char(10), col2 char (10));

#now create an index for the file
create unique index ifoo_0 on foo(col1);

#insert values
insert into foo values ('1','1');

#insert a null value for col2

/p [N T [data]] Just “/p” to reset.

Parameters:

“N” is parameter number (zero-based).

“T” is one of the following data types:

• B - binary
• C - character
• D - date time
• I - integer
• N - number

/v y n Verbose messages. “N” for errors only.

/b Display database request block.

/s N Sleep for N seconds.

/? or /h Help screen.

/q Quit session and exit.

Command Parameter Description

Using the Command-line Query Tool 6-15
insert into foo values ('2', '');

set the null character
/n !null!

#select some records
select * from foo;

#now exit
/q

Run this script by issuing the following command:
asql -r x.sql

This will log into the default database with the default user and password
information. It will then execute the script called x.sql.

If you wish, you can redirect the output to a file. For example
asql -r x.sql > output.txt

The file output.txt would then contain:
COL1 COL2
------------ -----------
1 1
2 !null!

6-16 The System Catalog

7
 Supported SQL Commands
Key Topics

Introduction ... 7-2
Conventions.. 7-2
Limitations and Restrictions .. 7-3
Summary of Supported SQL Commands ... 7-5
Detailed SQL Support Descriptions .. 7-6
Functions Supported by AcuXDBC.. 7-38

7-2 Supported SQL Commands
7.1 Introduction

This chapter describes the SQL commands and functions that can be used to
query and manage your database tables. Section 7.4 provides a concise list of
the supported SQL commands, while section 7.5 provides you with a detailed
explanation of each supported command including its syntax, usage, and
sample coding.

Note: This chapter is not designed to teach SQL programming or to serve
as a comprehensive SQL guide. Please consult your preferred SQL-specific
programming guide for detailed information on SQL programming
techniques.

7.2 Conventions

The following conventions describe the SQL syntax supported by
AcuXDBC. There are no rules pertaining to the number of words you put on
a line or where the line breaks. The number of words and line breaks used in
this section are strictly for readability.

Convention Description

CAPS Capital letters indicate the word is a keyword (command).

MIXed Capitals mixed with lower-case letters indicate that the word is
a keyword, but you can type either the full word or just the
letters in capitals.

lower Lowercase words are variables; you supply your own.

{ } Curly braces indicate you must choose at least one of the
enclosed options.

[] Brackets indicate you can choose one or more of the enclosed
options, or none of them.

() Parentheses are part of the command. Type them just as they
appear.

| A vertical bar separates mutually exclusive options. You can
only choose one.

Limitations and Restrictions 7-3
7.3 Limitations and Restrictions

The following section describes SQL programming protocols related to
object names, predicates and constraints.

7.3.1 Object Names

Names or identifiers of objects such as columns, tables, and indexes are
limited to 30 characters. Identifiers must start with an alphabetic character
and can include numbers as well as the “_” character. Avoid using any
special characters such as “-” and “+”. If you use special characters, you will
have to put double quotation marks (““ ””) around identifiers in your SQL
statements.

7.3.2 Predicates

Predicates are expressions that apply comparison operators (comp_op
elements in the following syntax) and/or SQL predicate operators (IN,
EXISTS, and so on) to values to produce a truth value of TRUE, FALSE, or
UNKNOWN.

Predicates can be either a single expression or a combination of any number
of expressions using Boolean operators (AND, OR, and NOT) as well as the
special SQL operator IS, and parentheses to define the order of evaluation.

, A comma separates multiple options. You can choose as many
options as you like, but include commas in the command
between choices.

… The ellipses (three dots) mean you can repeat the marked
section or commands as many times as you like.

Convention Description

7-4 Supported SQL Commands
Predicates are most often used in the WHERE and HAVING clauses of
SELECT statements and subqueries to determine the rows or aggregate
groups to select, and in UPDATE and DELETE statements to identify the
rows on which changes should be made.

Predicates evaluate to TRUE, FALSE, or UNKNOWN. UNKNOWNs arise
when NULLs are compared to any value, including other NULLs, because it
is impossible to know the value of a data field with NULL value. You can use
Boolean operators and SQL IS on UNKNOWN truth values.

7.3.3 Constraints

The ANSI standard defines a list of constraints that can be placed on a table
or index. Constraints following the definition of a column apply to that
column; those standing alone as table constraints can reference any one or
more columns in the table.

At this time, AcuXDBC supports only the NOT NULL constraint. The
complete list of possible constraints are:

You can define constraints so that they are not checked until the end of the
current transaction. This approach is useful when you want to update a table
that references itself as a parent key. This operation usually creates
intermediate states where referential integrity must be violated. By default,
constraints are not deferrable.

Constraint Description

NOT NULL Forbids NULLs from being entered in a column. According to
ANSI standard, this specification can be only a column constraint.

UNIQUE Mandates that every column value, or combination of column
values if a table constraint, be unique.

PRIMARY
KEY

Same effect as UNIQUE, except that none of the columns in a
PRIMARY KEY constraint can contain NULLs. You can issue
this constraint only once in a given table.

CHECK Followed by a predicate (in parentheses) that uses column values
in some expression whose value can be TRUE, FALSE, or in the
presence of NULLs, UNKNOWN. The constraint is violated only
when the predicate is FALSE.

Summary of Supported SQL Commands 7-5
7.4 Summary of Supported SQL Commands

This section provides a concise list of each supported command’s syntax.
Section 7.5 provides detailed descriptions of each command, including
syntax, descriptions, use, and examples.

If you are writing commands from an ODBC or JDBC application, that
application must also support the same commands as AcuXDBC for the
command to function properly.
CREATE (UNIQUE) INDEX index_name
 ON table_name
 (column_name (ASC | DESC) (,column_name (ASC | DESC)) ...)

CREATE SYNONYM synonym_name
 FOR object_name

CREATE TABLE table_name
 (column_name datatype (NOT NULL)
 (, column_name datatype (NOT NULL)) ...)

CREATE VIEW view_name
 ((column_name(, column_name) ...))
 AS subselect
 (WITH CHECK OPTION)

DELETE FROM {table_name | view_name} (correlation_name)
 (WHERE search_condition)

DROP INDEX index_name

DROP SYNONYM synonym_name

DROP TABLE table_name

DROP VIEW view_name

GRANT privilege., ..TO { grantee }
 IDENTIFIED by { password }

INSERT INTO table_name
 [(column_list)]
 { VALUES (constant_list)

REVOKE { privilege., ..} FROM { grantee }

 privilege ::=
 { CONNECT
 | DBA
 | RESOURCE }

SELECT [ALL | DISTINCT] select_list
 FROM {table_name | view_name} (corr_name)
 (, {table_name | view_name} (corr_name)) ...
 (WHERE search_condition)
 (GROUP BY column_name (, column_name) ...)
 (HAVING search_condition)
 (ORDER BY {column_name | select_list_number } (ASC | DESC))
...)

SET PASSWORD {old_password} {new_password}

UPDATE {table_name | view_name} (correlation_name)
 SET
 column_name = {expression | NULL}
 (column _name = {expression | NULL}) ...
 (WHERE search_condition)

7.5 Detailed SQL Support Descriptions

This section provides detailed information on each AcuXDBC supported
command including the syntax, keywords and descriptions, use, and sample
code.

If you are writing commands from an ODBC or JDBC application, that
application must also support the same commands as AcuXDBC for the
command to function properly.

Commands are ordered alphabetically.

7.5.1 CREATE INDEX

Creates an index on a base table.

Detailed SQL Support Descriptions 7-7
Syntax
CREATE [UNIQUE] INDEX index_name
 ON table_name
 (column_name [ASC | DESC] [,column_name [ASC | DESC]]...)

Use

You can create indexes on initial tables that have yet to be used or referenced
within a SELECT or INSERT statement. Once you use a table, you cannot go
back to the table and create an index.

Example
CREATE UNIQUE INDEX STAFF_IX1 ON STAFF(ID)
CREATE INDEX STAFF_IX2 ON STAFF(DEPT,NAME)

7.5.2 CREATE SYNONYM

Creates a PUBLIC synonym name for a database object.

Syntax
CREATE SYNONYM synonym_name
 FOR object_name

Keyword Description

UNIQUE Creates a unique index

index_name The name of the index to create.

table_name The name of the table for the index

column_name Column name to use in the index key. The index key
is built using the columns in the order you specify in
this list.

Keyword Description

SYNONYM Creates a synonym name for a table name

synonym_name The name of the synonym to create.

object_name The name of the table or view to which the synonym
name applies

7-8 Supported SQL Commands
Use

You can create synonyms for an object in the database. Synonyms can
currently be created for base tables or views. The synonym name can then be
used in place of the object name in queries. Note that users of the synonym
name must have appropriate privileges to the base object to which the
synonym applies. Synonyms are useful in that a user can access data from
tables existing in other user schemas (authorization IDs) without having to
specify that user’s schema.

The DROP SYNONYM command is used to remove a synonym name.

Example

CREATE SYNONYM REPS FOR Mary.ALL_REPS_LOCATIONS

7.5.3 CREATE TABLE

Creates a permanent table.

Syntax

CREATE TABLE table_name
 (column_name datatype (NOT NULL)
 (, column_name datatype (NOT NULL)) ...)

Keyword Description

table_name Name of the table to create.

column_name Column name to create in the table; columns are created in the
order you specify in this list.

datatype Data type for the specified column. You must specify a valid
data type for each named column to successfully create the
table.

Detailed SQL Support Descriptions 7-9
Use

AcuXDBC supports the creation of permanent base tables only. Tables
contain one or more columns, which must be defined when you create the
table. Thus, a table definition is a series of one or more comma-separated
column definitions

To define a column, you specify a column_name, a data type for the data in
that column, and whether the data can be NULL or not.

The order of the columns in this statement determines their order in the table.
A column definition must include:
• The name of the column (The column must be named.)
• A data type that applies to all column values.

NULL or NOT NULL designation.

Some data types accept size arguments indicating, for example, the length of
a fixed-length character string, or the scale and precision of a decimal
number. The meaning and format of these vary with the data type, but
defaults exist.

Default values and collations

If you specify a NOT NULL constraint for a column, one of the following
must happen:
• you must define a default value
• every INSERT or UPDATE command on the column must leave it with

a specified value.

Data types allowed:

•CHAR[n] — fixed length character string (default: n = 1)
•VARCHAR[n] — variable-length character string
•DATETIME — date and time (to the second)
•DECIMAL(p[,s]) — decimal of precision p, scale s
•FLOAT — DECIMAL(8,6)
•REAL — DECIMAL(8,6)
•DOUBLE — DECIMAL(16,6)
•INTEGER — four-byte integer
•SMALLINT — two-byte integer

7-10 Supported SQL Commands
The default can be specified as a literal, a user value function, a datetime
value function, or NULL (if you don’t specify a default, the column is
assumed to be nullable).

Ownership and access control

Tables and other database objects are created and owned by authorization
IDs, which means users in most contexts. An object’s owner controls the
privileges others have on it. In a sense, all privilege flows from the right to
create objects. Tables are grouped into schemas and can be created by only
the owner of the schema in which they reside or by a user with DBA
privileges.

Example
CREATE TABLE STAFF(ID INTEGER NOT NULL,
 NAME VARCHAR(10) NOT NULL, DEPT INTEGER NOT NULL,
 JOB VARCHAR(6) NOT NULL, YEARS INTEGER,
 SALARY FLOAT(8,2) NOT NULL,COMM FLOAT(8,2))

AcuXDBC supports the creation of permanent base tables only. Tables
contain one or more columns separated by commas, which must also be
defined when you create the table. The query processor will store Data
Definition Language (DDL) statements after a CREATE TABLE statement
until the first non-DDL statement is encountered. It will then create the
COBOL table.

Example
SQL (/? for help) ==> CREATE TABLE staff (
SQL continued ======> id INTEGER NOT NULL,
SQL continued ======> name VARCHAR(10) NOT NULL,
SQL continued ======> dept INTEGER NOT NULL,
SQL continued ======> job VARCHAR(6) NOT NULL,
SQL continued ======> years INTEGER
SQL continued ======>);
SQL (/? for help) ==> CREATE UNIQUE INDEX
SQL continued ======> i_staff0
SQL continued ======> ON
SQL continued ======> staff(id)
SQL continued ======> ;
SQL (/? for help) ==> INSERT INTO
SQL continued ======> staff

Detailed SQL Support Descriptions 7-11
SQL continued ======> VALUES (
SQL continued ======> 1, 'John Smith', 31, 'PGM', 1
SQL continued ======>);

After the insert, the table will be created in the first directory listed in your
FILE_PREFIX configuration file variable. Here is the file description:
C:\>vutil32 -info -x SYSTEM%STAFF (vision version 5)

 # of records : 1
 # of deleted records : 0(0+0)
 file size : 1024 (SYSTEM%STAFF)
 file size : 1024 (SYSTEM%STAFF.vix)
 total file size : 2048
 segment size : 2147482112
 record size : 34
 # of keys : 1
 key size : 6
 key offset : 0
 duplicates okay : N

 block size : 512
 blocks per granule : 1
 tree height : 1/1/1.0
 # of nodes : 1
 # of deleted nodes : 0
 total node space : 509
 node space used : 24 (4.72%)
 user count : 0

7.5.4 CREATE VIEW

The CREATE VIEW command defines a view.

Syntax
CREATE VIEW view_name (column_list)
 AS (SELECT statement);

Keyword Description

view_name Name of view.

column_name List of columns to display in view.

statement Criteria by which you identify rows that you want to retrieve.

7-12 Supported SQL Commands
Use

This statement creates a view. A view is an object that is treated as a table,
but whose definition contains a query — a valid SELECT statement. Because
the query may access more than one base table, a view may combine data
from several tables. Views do not contain their own data. Because the rows
of a view are, by definition, unordered, you cannot use ORDER BY when
creating a view.

You reference a view in SQL statements just like base tables. When you
reference the view in a statement, the output of the query becomes the content
of the view for the duration of that statement. In cases in which views can be
updated, the changes are transferred to the underlying data in the base
table(s).

The tables or views directly referenced in a query are called the simply
underlying tables of the query or view. These, combined with all the tables
they reference and all the subsequently referenced tables all the way down to
and including the base tables that contain the data, are called the generally
underlying tables. The base tables — the ones that don’t reference any other
tables, but actually contain the data — are called the leaf underlying tables.
View definitions cannot be circular. That is, no view can be among its own
generally underlying tables.

Views also cannot contain target specifications or a dynamic parameter
specification. The list of columns is used to provide the columns with names
that are used only in given view. You can use it if you don’t want to retain the
names that the columns have in the underlying base table(s). However, you
must use it whenever:
• Any of the two columns would otherwise have identical names.
• Any of the columns contain computed values or any values other than

column values directly extracted from the underlying tables, unless an
AS clause is used in the query to name them.

• There are any joined columns with distinct names in their respective
tables, unless an AS clause is used in the query to name them.

If you do name the columns, you cannot use the same column name twice in
the same view. If you name the columns, you must name all of them, so the
number of columns in the name list is the same as the SELECT clause of the
contained query. You can use SELECT * in the query to select all columns;

Detailed SQL Support Descriptions 7-13
this command is converted internally to a list of all columns so that if a
column is added to an underlying table (using ALTER TABLE), your view
remains valid.

Views can base their queries on other views, as long as the definition is not
circular. Views cannot reference declared temporary tables, although global
and created local ones are acceptable.

Inserting, updating, and deleting values in views

When you perform any of the above operations on a view the changes are
transferred to the base table that contains the data. Such operations are
permitted only if the changes that must be made to the underlying table are
unambiguous. The principle is that an insertion or change to one row in the
view must translate to an insertion or change to one row in the leaf underlying
table. If this is the case, the view is said to be updatable. The specific
conditions outlined in the standard for a view to be updatable are:
• It must be drawn on only one simply underlying table; joins are not

allowed.
• It must contain only one query.
• If the simply underlying table is itself a view, that view must also be

updatable.
• The SELECT clause of the contained query may specify only column

references, not value expressions or aggregate functions, and no column
can be referenced more than once.

• The contained query can not specify GROUP BY or HAVING.
• The contained query cannot specify DISTINCT.
• Subqueries are permissible, but only if they do not refer to any of the

generally underlying tables on which the view is based.

Example
CREATE VIEW STAFF_VIEW (Employee_id, Employee_name,
Employee_dept)
 AS SELECT ID,NAME,DEPT FROM STAFF

7-14 Supported SQL Commands
7.5.5 DELETE

This command deletes rows from a table.

Syntax
DELETE FROM table_name (correlation_name)
 [(WHERE search_condition) |
 { (WHERE CURRENT OF cursor_name) }]

Use

This statement can be coded directly or in dynamic SQL, coded as a prepared
statement, which is a statement whose text is generated at run time. The
DELETE statement removes rows from permanent base tables, views, or
cursors. In the last two cases, the deletions are transferred to the base table
from which the view or cursor extracts its data.

The WHERE CURRENT OF form is used for deletions from cursors. The
row currently in the cursor is removed. This is called a positioned deletion.
The WHERE predicate form is used for deletions from base tables or views.
All rows that satisfy the predicate are removed at once. This is called a
searched deletion. If the WHERE clause is absent, it is also a searched
deletion, but all rows of the table or view are removed. The following
restrictions apply to both types:
• You must have DELETE privileges on the table to delete it.
• If the deletion is performed on a view or cursor, that view or cursor must

be updatable.
• The current transaction mode cannot be read-only.

Keyword Description

table_name Name of table or view from which to delete data rows.

correlation_name Also called range variable or alias, provides an alternative
name for the table whose name it follows; the definition lasts
only for the duration of the statement. Correlation names are
optional for base tables and views, but required for tables
produced by subqueries.

search_condition Criteria by which you identify rows on which you want to
act.

Detailed SQL Support Descriptions 7-15
Searched deletions

The predicates used in DELETE statements, like those in SELECT and
UPDATE, use one or more expressions. For example, location =’Bahrain’.
This will test whether TRUE, FALSE, or if NULLs exist, UNKNOWN for
each row based on the values within that row. Each row for which the
predicate is TRUE is deleted.

Positioned deletions

Positioned deletions use cursors and therefore apply to only static or dynamic
SQL, but not to interactive SQL. You can use a positioned deletion if:
• A cursor is within the current module or one of its compilation unit

emulations that references the table.
• This cursor has been opened within the current transaction.
• This cursor has had at least one row fetched.
• The cursor has not yet been closed.

The last row fetched is deleted.

Prepared DELETE statements

The PREPARE statement lets you generate the text of dynamic SQL
statements at run time. When you use PREPARE to generate a positioned
deletion, you can omit the FROM table_name clause of the DELETE
statement. The table underlying the cursor is assumed.

Example
Downsize department 15:
DELETE FROM STAFF WHERE DEPT = 15

7.5.6 DROP INDEX

This command removes an index from a base table.

7-16 Supported SQL Commands
Syntax
DROP INDEX index_name;

Use

This statement is used to remove an index and can be used currently only
before the table is accessed the first time by a non-DDL statement (which
causes the physical file to be created).

Example
DROP INDEX STAFF_IX1

7.5.7 DROP SYNONYM

Removes a PUBLIC synonym from the database.

Syntax
DROP SYNONYM synonym_name

Use

This statement is used to remove a synonym referencing a table or view from
the database. The removal of a synonym has no effect on the base object to
which it refers.

The CREATE SYNONYM statement is used to create a synonym name.

Example
DROP SYNONYM REPS

Keyword Description

index_name Name of the index to remove.

Keyword Description

synonym_name The name of the synonym to drop.

Detailed SQL Support Descriptions 7-17
7.5.8 DROP TABLE

This command removes a base table.

Syntax
DROP TABLE table_name;

Use

This statement is used to remove the same kinds of tables that are created
with a CREATE TABLE statement. To drop views, use the DROP VIEW
statement. To drop a table, you must own the schema in which the table
resides or have DBA privileges.

The definition of the table is eliminated and all users lose their privileges on
that table.

Example
DROP TABLE STAFF

7.5.9 DROP VIEW

This command removes a view.

Syntax
DROP VIEW view_name ;

Keyword Description

table_name Name of the table to remove.

Keyword Description

view_name Name of the view to remove.

7-18 Supported SQL Commands
Use

This statement drops a view, which must have been created previously with
a CREATE VIEW statement. To drop a view, you must own the schema
within which the view resides or have DBA privileges.

Example
DROP VIEW STAFF_VIEW

7.5.10 GRANT (Database privileges)

This command gives users database access rights.

Syntax
GRANT privilege., ..TO { grantee } IDENTIFIED by { password }

privilege ::=
 { CONNECT
 | DBA
 | RESOURCE }

Keyword Description

privilege Type of privilege to grant:

• CONNECT: lets grantees connect to and read
from the database.

• RESOURCE: lets grantees create objects in the
database.

• DBA: implies both CONNECT and
RESOURCE, and gives grantees total control
over all tables in the database.

grantee User name to allow privilege.

password Password for user name.

Detailed SQL Support Descriptions 7-19
Use

Only DBAs can use the GRANT command. If you are a DBA, this command
lets you give grantees the right to perform specified actions on the database.
(Grantee is the authorization ID that represents a user or group of users.)

You may use SET PASSWORD to change a password.

Example
GRANT CONNECT,RESOURCE TO CLERK IDENTIFIED BY MY42

7.5.11 GRANT (Object privileges)

This command gives users database object privileges.

Syntax
GRANT privilege., ..ON object_name
 TO { grantee., ...} | PUBLIC
 [WITH GRANT OPTION];

privilege ::=
 { ALL PRIVILEGES }
 | { SELECT
 | DELETE
 | { INSERT [(column name.,..)] }
 | { UPDATE [(column name.,..)] }

object name ::=
 [TABLE] table name

Keyword Description

privilege Type of access, action, or privilege to grant:

• ALL PRIVILEGES—passes on all applicable
privileges that you are entitled to grant. PUBLIC
denotes all authorization IDs, present and future.

• SELECT, INSERT, UPDATE, and DELETE—let
grantees execute the statements of the same names
on the object.

object_name Name of the object on which to grant privileges.

grantee User name(s) to allow privilege.

7-20 Supported SQL Commands
Use

This statement gives grantees the right to perform specified actions on named
objects. (Grantee is the authorization IDs that represents a user or group of
users.)

USAGE

To grant an object privilege, you must have been given (granted) the
privilege yourself. You can then grant that particular privilege to other users.
Be aware that the users to whom you grant this privilege are in turn able to
grant this same privilege to other users.

Privileges Cascade

Privileges can cascade up; that is, privileges granted on some object can
imply grants of privileges on other objects. These situations are covered by
the following principles:
• If the grantee owns an updatable view and is being GRANTed privileges

on its leaf underlying table (the base table wherein the data finally
resides, regardless of any intervening tables or views), these privileges
are GRANTed for the view as well. If specified, the grant option also
cascades up. There is only one leaf underlying table for an updatable
view. (See CREATE VIEW.)

• If the grantee owns an updatable view that immediately references the
table on which privileges are being GRANTed (in other words, if the
reference appears in the FROM clause without an intervening view),
these privileges can also cascade up, including the grant option, if
applicable.

• If the grantee owns a view, updatable or not, that grantee already has the
SELECT privilege on all tables referenced in its definition as well as on
the view itself. If the grantee gains the grant option on SELECT on all
the referenced tables, he or she also acquires the grant option on the
SELECT privilege on the view.

In all of these situations, the grantor of the privilege is ‘‘_SYSTEM,’’ which
denotes an automatic grant.

Detailed SQL Support Descriptions 7-21
For each privilege that is granted, a privilege descriptor is effectively created.
(This is a theoretical construct used by the ISO standard to specify privilege
behavior; it may not actually exist.) The privilege descriptor indicates:
• The grantee that has received the privilege.
• The privilege itself (the action that can be performed).
• The object on which the privilege is granted, which may be one of those

listed above or a column.
• The grantor that conferred the privilege. For automatic grants, this is the

built-in value ‘‘_SYSTEM.’’
• Whether the privilege is grantable (GRANTed with the grant option).

Multiple identical privilege descriptors are combined, so that a privilege
granted twice by the same grantor need be revoked only once. Likewise, if
two privilege descriptors differ only in that one confers grant option and the
other does not, they are merged into a single privilege with grant option. If
the grantor lacks the ability to grant the privileges attempted, a completion
condition is raised — a warning that privileges were not granted.

Example
GRANT SELECT ON STAFF TO CLERK

7.5.12 INSERT

This command inserts rows into a table.

Syntax
INSERT INTO table_name
 [(column_list)]
 { VALUES (constant_list)

)

Keyword Description

table_name Name of the table into which values are inserted.

7-22 Supported SQL Commands
Use

This statement enters one or more rows into table_name. The rows are the
output rows of the subquery. These rows must have the same data types as the
columns being inserted into.

You must have INSERT privileges on all named columns to issue an
INSERT statement. If the table is a view, this view must be updatable, in
which case the new rows are inserted into the base table that contains the data
from which the view is derived (the leaf underlying table).

The values to be inserted may be directly specified with a table value
constructor (whose elements may include variables or parameters passed
from applications) or derived from a query from information already present
in the database.

Example
INSERT INTO STAFF VALUES
(10,’Sanders’,15,’Clerk’,7,12345.67,543.54)

7.5.13 REVOKE (Database privileges)

This command removes the privilege to perform an action on a database.

column_list Identifies the columns of the table into which the values are
inserted. All columns not in the list receive their default
values automatically. If any such column cannot receive
defaults (for example, if they have the NOT NULL
constraint, but have no other default value specified) the
INSERT fails.

If you omit the list, all columns of the table are the target of
the insert. The number and order in which you list the
columns must match the number and order of the output
columns of the corresponding query.

constant_list A simple list of values to insert.

Detailed SQL Support Descriptions 7-23
Syntax
REVOKE { privilege., ..} FROM { grantee }

privilege ::=
 { CONNECT
 | DBA
 | RESOURCE }

Use

This statement removes privileges from authorization IDs that have
previously received them with the GRANT statement. Only a DBA can
execute this statement.

Removing CONNECT privileges means that the grantee can no longer access
the database. It has no effect on the objects owned by that grantee. Removing
RESOURCE privileges means that the grantee can no longer create new
objects.

Note: Be very careful removing DBA privileges: If there are no other
DBAs, the GRANT and REVOKE statements can no longer be used.

Example
REVOKE CONNECT FROM CLERK

7.5.14 REVOKE (Object privileges)

This command removes the privilege to perform an action on a database
object.

Keyword Description

privilege Type of access, action, or privilege to remove.

grantee User name(s) to allow privilege.

7-24 Supported SQL Commands
Syntax
REVOKE [GRANT OPTION FOR]
 { ALL PRIVILEGES } | { privilege., ..}
 ON object_name
 FROM PUBLIC | { grantee .,.. };

Use

This statement removes privileges from authorization IDs (users) that have
previously received them with the GRANT statement. The privileges follow
the definitions and rules outlined under GRANT. The GRANT option is the
ability to grant the privileges received in turn to others.

In any case, the revoker of the privilege is the same authorization ID that
granted it, and all dependent privileges may be revoked. A privilege
(privilege A) depends directly on another (privilege B) if either of the
following sets of conditions is met:

Condition set one

All of the following must be true to satisfy this condition set:
• Privilege A is grantable (has GRANT option)
• The grantee of A is PUBLIC or the same as the grantee of B
• A and B are both privileges for the same action on the same object.

OR

Condition set two

All of the first three below must be true to satisfy this condition set:
• B is an automatically generated privilege, indicated by a grantor value of

‘‘_SYSTEM’’

Keyword Description

privilege Type of access, action, or privilege to revoke.

object_name Name of the object on which to revoke privileges.

grantee User name(s) to revoke.

Detailed SQL Support Descriptions 7-25
• The actions of the two privileges are the same
• The grantee of A owns the object (which must be a table, translation, or

collation) on which the privileges exist.

plus any one of the following:
• Privilege B is on a view referencing a table on which privilege A is the

SELECT privilege (if it is a read-only view) or the privilege at hand (if it
is an updatable one)

• B is the USAGE privilege on a collation defined on a character set on
which A is the USAGE privilege

• B is the USAGE privilege on a translation that uses the character set on
which A is the USAGE privilege as either source or target.

Example
REVOKE SELECT ON STAFF FROM CLERK

7.5.15 SELECT

Syntax
SELECT [ALL | DISTINCT] select_list
 FROM [table_name | subquery] (corr_name)
 (, [table_name | subquery] (corr_name)) ...
 (WHERE search_condition)
 (GROUP BY column_name (, column_name) ...)
 (HAVING search_condition)
 (ORDER BY {column_name | select_list_number } (ASC | DESC)) ...

Keyword Description

select_list List of columns to retrieve.

table_name Name of table or tables in which the columns reside.

correlation_name Also called range variable or alias, provides an
alternative name for the table whose name it follows; the
definition lasts only for the duration of the statement.
Correlation names are optional for base tables and views,
but required for tables produced by subqueries.

search_condition Criteria by which you identify rows on which you want
to act.

7-26 Supported SQL Commands
Use

This is the statement used to formulate queries, which are requests for
information from the database. To issue this statement you must have the
SELECT privilege on all tables accessed. Queries may be stand-alone or used
in the definitions of views and cursors. In addition, you can use them as
subqueries to produce values that are used within other statements, including
the SELECT statement itself. Sometimes a subquery is evaluated separately
for each row processed by the outer query. Values from that outer row are
used in the subquery. Queries of this type are called correlated subqueries.

The output of a query is itself a table, and the SELECT clause defines the
columns of that table (the output columns).

Clauses of the SELECT statement are evaluated in the following order:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY*

Note: * The order of records returned by AcuXDBC is always undefined
unless you specify an ORDER BY clause. If a specific returning order is
required, you must use the ORDER BY clause.

7.5.15.1 SELECT list (SELECT statement)

The SELECT list appears as the first clause in a SELECT statement, but it is
not the first logical step. The other clauses produce a set of rows, the source
rows, from which the output is derived.

column_name Name of the column to evaluate with the
search_condition.

select_list_number Position in the select list of the column to evaluate with
the search_condition.

Detailed SQL Support Descriptions 7-27
The SELECT list determines which columns from these rows are output. It
may directly output these columns, or it may use them in aggregate functions
or value expressions. Value expressions can be NUMERIC, STRING,
DATETIME, or INTERVAL. They may include aggregate functions and
subqueries.

If DISTINCT is specified, the rows are compared and if any duplicate rows
are found, only one copy appears in the output. The SELECT clause may
contain any of the following:

If aggregate functions and value expressions are mixed, all the value
expressions must be specified in a GROUP by clause.

Aggregate functions Functions that extract single values from
groups of column values, for example, SUM
or COUNT.

An asterisk (*) Causes all the columns of all tables listed in
the FROM clause to be output in the order in
which they appear in the FROM clause.

A qualifier Where the qualifier is the table or correlation
name referenced in the FROM clause. All
columns of that (possibly derived) table are
output, excluding common columns of joined
tables.

A value expression Normally is (or includes) a column name from
one of the tables identified in the FROM
clause. Either the column’s value is directly
output or it becomes part of some expression,
such as AMOUNT * 3.

A specified column name If the output columns are directly taken from
only one column referenced in the FROM
clause, it inherits the name of that column by
default. You can override this name by using
the AS clause. The names of columns not
directly taken from input columns are
implementation-dependent. You are not
required to name any output columns by the
SELECT clause, but may be required to by the
context of the way the output columns are to
be used (for example, in a view). The keyword
AS is not required because it is implied.

7-28 Supported SQL Commands
7.5.15.2 FROM clause (SELECT statement)

The FROM clause names the source tables for the query. These tables may
be:
• Tables or views named and accessed directly.
• Derived with a subquery that is part of the main query.
• Explicit joins.

The FROM clause determines the tables from which the data is taken or
derived. These sources can include temporary or permanent base tables,
views, results of subqueries, and other operations that return tables.

You can use correlation names to qualify ambiguous column references in
the rest of the statement. You can choose to join a table to itself, which is
treated as a join of two identical tables. In this case, you must use correlation
names to distinguish between the two tables. The correlation names prefix the
column_name and are separated by a period. The column name list is for
renaming columns, just as they are in the SELECT clause.

The names used here, however, are not for the output; they are for references
to the columns made in the remainder of the statement, particularly in the
WHERE clause. They are optional, but may be required to clarify column
references in some cases.

7.5.15.3 Joins

If more than one table is named in the FROM clause, they are all implicitly
joined. This means that every possible combination of rows (one from each
table) is derived. In addition, this concatenation is the table on which the rest
of the query operates. The concatenated table is called a Cartesian product or
cross join. Typically, you want to eliminate most of the rows and focus on the
data you want. To do this, use the WHERE clause.

The standard join is also referred to as an inner join and is simply the regular
SQL WHERE clause. For example:
WHERE [table1.]column1 = [constant | [table2.]column2]

Detailed SQL Support Descriptions 7-29
7.5.15.4 Outer Joins

AcuXDBC supports OUTER joins, including LEFT, RIGHT, and FULL.
The outer joins follow the FROM clause and are of the form:

<LEFT | RIGHT | FULL> OUTER JOIN <tablename> ON <column1> =
<column2>

where <column1> is a column in <tablename> and <column2> is a column
in another FROM clause table.

7.5.15.5 WHERE clause (SELECT statement)

The WHERE clause defines the criteria that rows must meet to be selected for
output.

The WHERE clause contains a predicate, which is a set of one or more
expressions that can be TRUE, FALSE, or UNKNOWN. Values are
compared according to:

These comparisons are expressed using the following operators: =, <, <=, >,
=>, and < > (does not equal).

Operators such as “*” (multiplication) or “||” (concatenation) may be applied
depending on the data type. In most situations, row value constructors may be
used instead of simple value expressions.

Predicate Type Description

NULLS Compared to any value, including other NULLs,
produce UNKNOWNs.

Character string types Collating sequence.

Numeric types Numerical order.

Date-time types Chronological order.

Interval types Magnitude.

7-30 Supported SQL Commands
In addition to the standard comparison operators, SQL provides the following
special predicate operators. Assume that B and C are all value expressions,
which can be column names or direct expressions (possibly using column
names or aggregate functions) in the appropriate data type:

Predicate Operator Description

B BETWEEN A AND C Equal to (A <= B) AND (B <= C). A and C must be
specified in ascending order.

B BETWEEN C AND A is interpreted as (C <= B)
AND (B <= A), which is FALSE if the first
expression is TRUE, unless all three values are the
same.

If any of the values is NULL the predicate is
UNKNOWN.

A IN (C, D, ., …) This is true if A equals any value in the list.

A LIKE ‘string’ This assumes that A is a character string and
searches for the specified substring. Fixed and
varying-length wild cards can be used.

A IS NULL Specifically tests for NULLs. It can be TRUE or
FALSE only, not UNKNOWN.

A comp op SOME | ANY
subquery

SOME and ANY have equivalent meanings. The
subquery produces a set of values. If, for any value V
so produced, A comp op V is TRUE, the ANY
predicate is TRUE.

A comp op ALL
subquery

Similar to ANY except that all the values produced
by the subquery have to make A comp op V true.

EXISTS subquery Evaluates to TRUE if the subquery produces any
rows, otherwise, evaluates to FALSE. It is never
UNKNOWN. To be meaningful, this phrase must
use a correlated subquery.

UNIQUE subquery If the subquery produces no identical rows,
UNIQUE is TRUE, otherwise, it is false. For the
purposes of this predicate, identical rows are devoid
of NULLs, otherwise, they are not identical.

Detailed SQL Support Descriptions 7-31
These predicates are combined using the conventional Boolean operators
AND, OR, and NOT. For TRUE and FALSE values, these have the
conventional results. The rows selected by the WHERE clause go on to be
processed by subsequent clauses.

7.5.15.6 GROUP BY clause (SELECT statement)

The GROUP BY clause groups identical output values in the named columns.
Every value expression in the output column that includes a table column
must be named in it unless it is an argument to aggregate functions. GROUP
BY is used to apply aggregate functions to groups of rows defined by having
identical values in specified columns.

If you don’t use GROUP BY, either all or none of the output columns in the
SELECT clause must use aggregate functions. If all of them use aggregate
functions, all rows satisfying the WHERE clause, or all rows produced by the
FROM clause (if there is no WHERE clause) are treated as a single group for
deriving the aggregates.

The GROUP BY clause defines groups of output rows to which aggregate
functions (COUNT, MIN, AVG, and so on) can be applied. If you do not use
this clause and elect to use aggregate functions, the column names in the
SELECT clause must all be contained in aggregate functions, and the
functions are applied to all rows to satisfy the query.

row value constructor
MATCH arguments
subquery

Tests for the presence of the constructed row among
those of the table produced by the subquery. The
arguments allow you to specify FULL or PARTIAL
matches and whether the matched row must be
unique.

row value constructor
OVERLAPS row value
constructor

This allows you to determine when two date or time
periods overlap. You must use it with DATETIME
data types, possibly in conjunction with INTERVAL
data types.

Predicate Operator Description

7-32 Supported SQL Commands
Otherwise, each column referenced in the SELECT list outside an aggregate
function must be a grouping column and be referenced in this clause. All
rows output from the query that have all grouping column values equal,
constitute a group. (For the purposes of GROUP BY, all NULLs are
considered equal). The aggregate function is applied to each such group.

7.5.15.7 HAVING clause (SELECT statement)

The HAVING clause defines criteria that the groups of rows defined in the
GROUP BY clause must satisfy to be output by the query.

Just as the WHERE clause defines a predicate to filter rows, HAVING is
applied after grouping to define a similar predicate to filter the groups based
on the aggregate values. It is needed to test for aggregate function values, as
these are not derived from single rows of the Cartesian product defined by the
FROM clause, but from groups of such rows, and therefore cannot be tested
in a WHERE clause.

7.5.15.8 ORDER BY clause (SELECT statement)

ORDER BY forces the output of queries to emerge in a particular sequence.

The ORDER BY clause sorts the output. The rows are sorted according to the
values in the columns listed:
• the first column listed gets the highest priority
• the second column determines the order within duplicate values of the

first
• the third column determines the order within duplicate values of the

second, and so on.

You can specify “ASC” (for ascending, the default) or “DESC” (descending)
independently for each column.

Character sets are sorted according to their collations. You can also use
integers rather than names to indicate columns. The integers refer to the
placement of the column among those in the output, so that the first column
is indicated with a “1”, the fifth with a “5”, and so on. If any output columns
are unnamed, you must use a number.

Detailed SQL Support Descriptions 7-33
Note: The order of records returned by AcuXDBC is always undefined
unless you specify an ORDER BY clause. If a specific returning order is
required, you must use the ORDER BY clause.

7.5.15.9 Possibly Nondeterministic Queries

In some cases the same query can produce different output tables on different
implementations because of subtle implementation-dependent behaviors.
Such queries are called possibly nondeterministic queries. A query is
possibly nondeterministic if any of the following is true:
• It specifies DISTINCT and the data type of at least one column of the

source row is a character string.
• One column of the source rows is a character string data type and is used

in either the MIN or the MAX aggregate function.
• A character set column is used as a grouping column or in a UNION.
• A HAVING clause uses a character string column within a MIN or MAX

function.
• It uses UNION without specifying ALL.

Possibly nondeterministic queries cannot be used in constraints.

Examples
SELECT DEPT, AVG(SALARY) FROM STAFF
GROUP BY DEPT

7.5.16 SET OPTION

This command enables and dis-enables numerous administrative options.

Syntax
SET OPTION optiontype param1 [param2]

Option Param1 Param2 Description

COMPSORT ON | OFF Sets sort page compression (default
is “ON”).

7-34 Supported SQL Commands
DATETIME [n] ‘string’ Allows the user to modify the
DATETIME formatting string. The
default is DD-MON-RR and the
maximum size for the string is 64
bytes. The user can define up to
three DATETIME formatting
strings. These are identified by the
optional n parameter.

ERROR ON | OFF Sets internal error dumping.

EXPR ON | OFF Sets internal expression dumping.

HASH ON | OFF Sets internal hash dumping.

HEAPBLOCK
SIZE

bytes Allows the user to set the heap
block size used in allocating
memory. Larger sizes require less
CPU overhead but may result in
excessive memory usage.

The range is 0 to 1000000. Setting
“0” means that the exact required
size will be used.

LOGFILE ‘filename’ Sets the name of the debugging
logfile.

MERGESIZE records Sets the number of records used to
check for duplicates while
processing an IN or UNION
clause. The default is 1000.
Increase this value if you get a
“Multi RID overflow” error.

OJNESTON ON | OFF Allows nested ON clauses (default
is “OFF”).

OPTIMIZE ON | OFF Allows the user to control whether
or not Optimization is used to
evaluate statements. (Default is
“ON”).

PLAN ON | OFF Sets query plan dumping.

Option Param1 Param2 Description

Detailed SQL Support Descriptions 7-35
Use

This statement is used to set a number of database administrative options, as
described in the table above.

Examples
SET OPTION SORT 8000 2000
SET OPTION DATETIME DD-MM-YYYY
SET OPTION LOGFILE mylogfile
SET OPTION ERROR ON

7.5.16.1 SET PASSWORD

This statement is used to change the user’s password.

SORTPAGES totalpages mempages Allows the user to modify the
amount of disk and memory
storage used for sort operations.
The totalpages parameter is the
total number of 4096 byte pages to
use and mempages is the number of
these pages kept in memory.

totalpages must be greater than or
equal to mempages.

The default values are 10000 and
1000. The default values are fine
for most users. If you get a
message indicating that Virtual
Memory has been exceeded, then
increase the totalpages value.

TRACE ON | OFF Sets internal trace dumping.

TREE ON | OFF Sets internal tree dumping.

Option Param1 Param2 Description

7-36 Supported SQL Commands
Syntax
SET PASSWORD old_password new_password

Use

This statement is used to change the user’s password.

Examples
SET PASSWORD mypass newpass
SET PASSWORD mypass ‘‘42pass’’

7.5.17 UPDATE

This command changes the data in a table.

Syntax
{UPDATE table_name (correlation_name)
 SET column_name = {expression | NULL}
 (column_name = {expression | NULL}) ...
 (WHERE search_condition)

Keyword Description

old_password Current password.

new_password New password.

Keyword Description

table_name The name of an existing table that you can access. May
include the owner’s name if it is not you. For example,
owner.table.

correlation_name Also called an alias. Used to relabel the name of the
reference in other clauses in the statement.

column_name A column within the table. Parentheses are required only if
the column list contains more than one column.

expression The operation or function to execute on the specified
column_names.

search_condition A valid condition that evaluates to TRUE, FALSE, or
UNKNOWN.

Detailed SQL Support Descriptions 7-37
Use

This statement changes one or more column values in an existing row of a
table. The table may be a base table or view. You can set any number of
columns to values and follow the whole column_name = value_expression
clause with a comma if there is another such to follow. As an alternative to an
explicit value, you can set the column to NULL or to the DEFAULT defined
for the column (see CREATE TABLE).

You can use value_expression to refer to the current values in the table being
updated. Any such references refer to the values of all of the columns before
any of them were updated. This allows you to do such things as double all
column values (if numeric) by specifying:
column_name = column_name * 2

You can also swap values between columns. Value expressions can also use
subqueries.

The UPDATE is applied to all rows that fulfill the WHERE clause, which is
one of two types. The WHERE predicate form is like the WHERE predicate
clause in the SELECT statement: it uses an expression that can be TRUE,
FALSE or UNKNOWN for each row of the table to be updated, and the
UPDATE is performed wherever it is TRUE.

Be careful of omitting the WHERE clause; if you do, the UPDATE is
performed on every row in the table. You can use the WHERE CURRENT
OF form in static or dynamic SQL if the cursor direction is updatable (in
other words, not through views) and provided the target table is open and
positioned on a row. The UPDATE is then applied to the row on which it is
positioned. When using WHERE CURRENT OF in dynamic SQL, you can
omit the table name from the UPDATE clause, because the table in the cursor
is implied.

In either case, for the UPDATE to be successful, the following conditions
must be met:
• The statement issuer must have the UPDATE privilege on each column

of the table being set.
• If the target table is a view, it must be updatable.
• If the current transaction is read-only, the target table must be temporary.

7-38 Supported SQL Commands
• If the UPDATE is performed through a cursor that specifies ORDER
BY, it may not set the values of any columns specified in the ORDER
BY clause.

• If the target table is a view, the value_expression in the SET clause must
not directly, or through views, reference its leaf-underlying table (the
base table where the data ultimately resides).

• The value_expression may not use aggregate functions except in
subqueries.

• Each column of the target table can be altered only once by the same
UPDATE statement.

• If the UPDATE is on a cursor that specified FOR UPDATE, each
column being set must have been specified or implied by that FOR
UPDATE.

• If the UPDATE is made through a view, it may be constrained by a
WITH CHECK OPTION clause.

Example

The following statement updates every salary in department 15:
UPDATE STAFF SET SALARY = SALARY * 1.10 WHERE DEPT = 15

7.6 Functions Supported by AcuXDBC

AcuXDBC has a number of built-in functions that help you create your SQL
statements. You can use them in the SELECT-list to modify the result set or
in the WHERE clause to limit the number of qualifying rows. They are also
valid in INSERT, UPDATE, and DELETE statements.

7.6.1 ASCII
ASCII(char)

Returns the integer value of char.

Functions Supported by AcuXDBC 7-39
7.6.2 CHAR_LENGTH
CHAR_LENGTH(expr)

Returns the length of the character expression.

7.6.3 CHR
CHR(a)

Returns the character value of a.

7.6.4 CONCAT
CONCAT(char1,char2)

Returns the concatenation of char1 and char2.

7.6.5 CONVERT
CONVERT(expr1,datatype)

Returns the value of expr1 converted into datatype, which is one of the
following:
SQL_BIGINT
SQL_BINARY
SQL_BIT
SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_REAL
SQL_SMALLINT

7-40 Supported SQL Commands
SQL_TIME
SQL_TIMESTAMP
SQL_TINYINT
SQL_VARBINARY
SQL_VARCHAR

7.6.6 CURDATE
CURDATE()

Returns the current date.

7.6.7 CURTIME
CURTIME()

Returns the current time.

7.6.8 DATABASE
DATABASE()

A database is identified by the configuration file. The DATABASE function
returns the name of this configuration file.

7.6.9 DAYNAME
DAYNAME(expr)

Returns the name of the day of the week for the date specified by expr.

7.6.10 DECODE
DECODE(expr,value,result[,value,result]...,default)

Compares expr with each value and returns either the first matching value’s
result or the default value if no values match.

Functions Supported by AcuXDBC 7-41
7.6.11 HOUR
HOUR(expr)

Returns the hour for the datetime specified by expr.

7.6.12 IFNULL
IFNULL(expr1,expr2)

Returns a result or default based on a test for NULL.

See also

NVL

7.6.13 INSTR
INSTR(string,substring[,position[,occurrence]])

Returns the position of substring within string.
• If position is specified and positive, the search begins position

characters into string.
• If position is negative, the search begins position characters from the

end of string.
• If occurrence is specified, the occurrenceth occurrence of substring in

string is located.

If substring does not exist within string, “0” is returned.

See also

LOCATE

7-42 Supported SQL Commands
7.6.14 LEFT
{fn LEFT(expr,n)}

Returns the first n characters of expr.

The LEFT and RIGHT built-in functions are also SQL keywords. You must
enclose them in {fn <LEFT | RIGHT>(parameters)}.

7.6.15 LENGTH
LENGTH(expr)

Returns the length of the character representation of expr.

7.6.16 LOCATE
LOCATE(string,substring[,position[,occurrence]])

Returns the position of char2 within char1. If n is specified and positive, then
the search begins n chars into char1. If n is negative, then the search begins
n chars from the end of char1. If m is specified, then the mth occurrence of
char2 in char1 is located. If char2 does not exist within char1, then “0” is
returned.

Returns the position of substring within string.
• If position is specified and positive, the search begins position

characters into string.
• If position is negative, the search begins position characters from the

end of string.
• If occurrence is specified, the occurrenceth occurrence of substring in

string is located.

If substring does not exist within string, “0” is returned.

See also

INSTR

Functions Supported by AcuXDBC 7-43
7.6.17 LCASE
LCASE(expr)

Returns the lowercase representation of expr.

7.6.18 LTRIM
LTRIM(expr)

Returns the character representation of expr trimmed of leading blanks.

7.6.19 NOW
NOW()

Returns the current date and time.

7.6.20 NVL
NVL(expr1,expr2)

Returns expr2 if expr1 is NULL, otherwise it returns expr1.

See also

IFNULL

7.6.21 POSITION
POSITION(char1 IN char2)

Returns the position of char1 within char2. If char1 does not exist within
char2, “0” is returned.

7-44 Supported SQL Commands
7.6.22 RIGHT
{fn RIGHT(expr,n)}

Returns the last n characters of expr. The LEFT and RIGHT built-in
functions are also SQL keywords. You must enclose them in {fn <LEFT |
RIGHT>(parameters)}.

7.6.23 ROUND
ROUND(n[,m])

Returns the rounded value of n based on the value of m. If n is a numeric
value, it can be either positive or negative.
• A positive value m specifies the digits to the right of the decimal point.
• A negative value m specifies the digits to the left of the decimal point.
• If m is “0” or not specified, the value is rounded at the decimal point.
• If n is a date value, m can be one of the following:

7.6.24 RTRIM
RTRIM(expr)

Returns the character representation of expr trimmed of trailing blanks.

SCC,CC Century

SYYY, YYYY, YEAR, SYEAR,
YYY, YY, Y

Year

Q Quarter

MONTH, MON, MM Month

WW,W Start of Week

DDD,DD,J (default) Day

DAY, DY, D Nearest Sunday

HH, HH12, HH24 Hour

MI Minute

Functions Supported by AcuXDBC 7-45
7.6.25 SQRT
SQRT(n)

Returns the square root of n.

7.6.26 SUBSTR
SUBSTR(string,m[,n])

Returns a substring of a string, beginning at position m for n characters.
• If you specify m=0, the whole string is returned.
• If you specify a negative number, the function returns the number of

characters specified from the end of the string.
• If you don’t specify n, the default is to return all characters starting from

m.

7.6.27 SUBSTRING
SUBSTRING(string,m[,n])

See SUBSTR().

7.6.28 SYSDATE
SYSDATE

Returns the current system date and time.

7.6.29 TO_CHAR
TO_CHAR(expr[,fmt])

Returns the character representation of expr based on the fmt string or the
default for expr’s data type. If expr is already a character string, expr is not
converted.

If expr is a numeric value, fmt can be:

The default mask is as many nines (9s) as required for the number’s precision
and scale.

If expr is a date value, fmt can be:

% Percent sign at right of number.

$ Dollar sign at left of number.

B Display zero as blank.

0 Display leading zeros.

9 A digit position.

other Delimiting character (not leading).

YYYY Four-digit year.

YY Two-digit year.

RR Two-digit year in another century.

MM Two-digit month of year (01 to 12).

MON Three-character month (all uppercase).

mon Three-character month (all lowercase).

Mon Three-character month (initial cap).

MONTH Fully named month (all uppercase).

month Fully named month (all lowercase).

Month Fully named month (initial cap).

DDD Three-digit day of year (001 to 356).

DD Two-digit day of month (01 to 31).

D Single-digit day of week (1 to 7).

DY Three-character day (all upper case).

dy Three-character day (all lowercase).

Dy Three-character day (initial cap).

DAY Fully named day (all uppercase).

day Fully named day (all lowercase).

Functions Supported by AcuXDBC 7-47
To add character extensions to the values that represent counting, such as ST,
ND, RD, or TH, simply add th to any uppercase digit mask. The function
correctly interprets the extension based on the last digit and the case based on
the mask’s case.

Put embedding characters that are valid masks inside double quotes (" “).

The default mask is DD-MON-YY.

7.6.30 TO_DATE
TO_DATE(expr[,fmt])

Returns the datetime representation of expr based on the fmt string or the
default for expr’s data type. If expr is already a datetime, then the value is not
converted.

The expr can be an integer or numeric value.
• If expr is an integer value, it represents the number of days since year

zero.

Day Fully named day (initial cap).

HH12 Two-digit hour (00 to 11).

HH,HH24 Two-digit hour (00 to 23).

MI Two-digit minutes (00 to 59).

SS Two-digit seconds (00 to 59).

SSSSS Seconds past midnight (0000 to 86399).

J Julian day.

Q Single-digit quarter of year (0 to 4).

W Single-digit week of month (1 to 4); the week begins on
Sunday.

WW Two-digit week of year (01 to 52).

other Delimiting character.

7-48 Supported SQL Commands
• If expr is a numeric, the integer portion represents the number of days
since year zero, and the fractional portion represents the part of the last
day.

• If expr is a char value, fmt can be:

7.6.31 TO_NUMBER

TO_NUMBER(expr[,fmt])

Returns the numeric representation of expr based on the fmt string or the
default for expr’s data type.

YYYY Four-digit year.

YY Two-digit year.

RR Two-digit year in another century.

MM Two-digit month of year (01 to 12).

MON Three-character month (all uppercase).

mon Three-character month (all lowercase).

Mon Three-character month (initial cap).

DDD Three-digit day of year (001 to 356).

DD Two-digit day of month (01 to 31).

HH12 Two-digit hour (00 to 11).

HH,HH24 Two-digit hour (00 to 23).

MI Two-digit minutes (00 to 59).

SS Two-digit seconds (00 to 59).

SSSSS Seconds past midnight (0000 to 86399).

J Days since 1/1/1.

other Delimiting character.

Functions Supported by AcuXDBC 7-49
If expr is already a numeric, the value is not converted. If expr is a char value,
fmt can be:

The default mask is as many nines (9s) as required for the number’s precision
and scale.

If expr is a date value, the returned numeric represents the number of days
since year 0 and the portion of the last day.

7.6.32 TRANSLATE
TRANSLATE(char,from,to)

Returns char with all characters in from replaced with the corresponding
ones in to.
• If the number of characters in to is a multiple of the number of characters

in from, that multiple of characters in to replaces each single character in
from.

• If to is empty, all characters found in from are deleted.

7.6.33 TRUNC
TRUNC(value)

Returns the truncated value. If value is of type datetime, the hours, minutes,
and seconds are set to zero. Otherwise, it is treated as a number and the
fractional part is removed.

% Percent sign at right of number.

$ Dollar sign at left of number.

B Display zero as blank.

0 Display leading zeros.

9 A digit position.

other Delimiting character (not leading).

7-50 Supported SQL Commands
7.6.34 UCASE
UCASE(expr)

Returns the uppercase character representation of expr.

7.6.35 USER
USER()

Returns the username of the current connection.

8
 Working with Windows and
Java Applications
Key Topics

Working With Windows Applications... 8-2
Accessing Data From Word 2000... 8-3
Accessing Data From Word 2003... 8-11
Accessing Data From Excel 2000 and 2003... 8-21
Accessing Data From Access 2000 and 2003....................................... 8-27
Working with Java Applications... 8-32

8-2 Working with Windows and Java Applications
8.1 Working With Windows Applications

The most common way to interact with your Vision tables (now an ODBC
data source) is by using Microsoft Query, a database query tool that comes
with Microsoft Office. You can invoke Query directly from Windows
applications like Microsoft Word and Excel. Once in Query, you can use the
point-and-click interface to build up queries graphically, or you can bring up
a text box to manually enter SQL statements for execution by AcuXDBCTM.
ODBC calls to the Vision tables are totally transparent when you use Query.
Other Windows programs, like Microsoft Access, Crystal Reports
Professional, and the Microsoft Visual Basic development system, have their
own interfaces to ODBC data sources.

This section describes how you can access Vision data from three of the most
popular Windows applications: Microsoft Word, Excel, and Access. For
instructions on accessing an ODBC data source from other Windows
applications, refer to the application-specific user documentation. The
examples in this chapter assume you have performed all the setup tasks
applicable to your environment, such as creating the sample database and a
data source name (DSN).

Note: It is important to be aware of how many fields your application
supports for a primary key. For example, Vision files can support 16
columns in a primary key. Microsoft Access, on the other hand, supports
only ten columns in a primary key. If your application does not support as
many fields as your data, you can receive unexpected results.

8.1.1 Accessing Data From Word 2000

The following procedure describes how to access your Vision data from
Microsoft Word 2000, the word processing component of Microsoft Office.
Accessing Vision tables from Microsoft Word 2003 is described in the
Section 8.1.2. If you have a different version of Word, your instructions may
be slightly different.

Working With Windows Applications 8-3
Choosing your data source

1. Start Microsoft Word and open the document into which you want to
insert data.

2. Select Mail Merge from the Tools menu. If your Microsoft Office
menus are set to “Show recently used commands first,” you may need
to click on the expansion arrows at the bottom of the Tools menu to see
the Mail Merge option.

The Mail Merge Helper dialog box appears.

3. Under “Main Document,” click Create and select Form Letters.

4. Because you are already working in the document into which you want
to insert data, click Active Window.

You are then returned to the Mail Merge Helper dialog box.

8-4 Working with Windows and Java Applications
5. Under “Data Source,” click Get Data, and select Open Data Source.

Working With Windows Applications 8-5
6. Click MS Query in the Open Data Source dialog box. (If you do not
have an MS Query button, you need to install Microsoft Query on your
machine.)

This starts Microsoft Query and opens the Choose Data Source dialog
box. If you want to use Microsoft Query’s “Query Wizard” to create your
SQL query, leave the “Use Query Wizard” check box selected. Refer to
Microsoft Query’s online documentation for instructions on using the
Query Wizard.

For this exercise, clear the Query Wizard check box.

7. Select the DSN corresponding to the data source you want to access
and click OK. (Refer to section 5.8, “Setting Up Data Source Names
(DSNs) on Client,” for instructions on creating DSNs.).

If you don’t see your DSN listed, do one of the following:

• Click Browse and navigate to “c:\Program Files\Common Files\
odbc\DataSources”, then double-click the name of your DSN. This
adds the DSN to the list in the Choose Data Source dialog box.

• Click Options and enter the path to the directory containing your
DSN, then click Add. Now the contents of that directory will be
listed. For more information, see the Microsoft Query
documentation.

8. The AcuXDBC Login dialog box appears if you or an administrator
established database security methods during AcuXDBC setup Enter a
valid User ID and Password, and click OK. If no security methods
have been established, a User ID and Password are not required and the
Login dialog box will not appear.

Working With Windows Applications 8-7
Adding your tables

1. Select the table or tables that you want to add (for example, “clients”),
and then click Add. Close the dialog box when you’re done.

For each table you selected, a list box is displayed on the Microsoft
Query screen. This box lists all of the columns in the associated table.

2. Double-click each column that you want to read into your Word
document; that column appears on the screen. If you want to add all
columns, double-click the “*” at the top of the list box.

8-8 Working with Windows and Java Applications
If you prefer, you can select columns or further refine your query by
clicking the SQL button and entering your own SQL statements, such as
the one shown below.

Click OK when you’re done. (For a description of the SQL commands
supported by AcuXDBC, refer to Chapter 7, section 7.4)

3. Select Return Data to Microsoft Word from the Microsoft Query File
menu.

4. If no database security methods have been established, the AcuXDBC
Login dialog box does not appear. If database security methods have
been established and you previously supplied a correct user ID and
password, this step will not be necessary. If, however, you established
security methods but didn't enter a user ID and/or password, the login
dialog box will appear for you to do so now.

Finish preparing your document

1. Click Edit Main Document to continue preparing your document.

Notice that new mail merge buttons are added to the toolbar.

2. Place the cursor in your document where you want to insert the data
and click Insert Merge Field to see a drop-down list of table columns.

Working With Windows Applications 8-9
These are the columns that you selected in Microsoft Query.

3. Select the merge field you wish to insert.

 The control characters for this field are placed in your document.

4. To display the data that corresponds to each field code, click the
<<ABC>> button on the Mail Merge toolbar.

8-10 Working with Windows and Java Applications
Use the control buttons on the Mail Merge toolbar to move to the next,
previous, first, or last record in the table.

5. Finish your document as you normally would. Whenever you want to
insert a data field, click Insert Merge Field once again and select the
appropriate field.

For more instructions on using Word’s mail merge feature, refer to your
Microsoft documentation.

8.1.2 Accessing Data From Word 2003

The following procedure describes how to access your Vision data from
Microsoft Word 2003 or later. This procedure uses Word’s Mail Merge task
pane and wizard to create form letters. You can also create the letters using
Word’s Mail Merge toolbar. If you are an experienced Word user, you may
favor this method over the Mail Merge task pane approach, but be aware your
steps will differ from what is depicted here.

Working With Windows Applications 8-11
Choosing your data source

1. Start Microsoft Word and open a new document, or if you have a form
letter already prepared, open that document.

2. Select Letters and Mailings from the Tools menu and then Mail
Merge from the submenu.

If your Microsoft Office menus are set to “Show recently used
commands first,” you may need to click the expansion arrows at the
bottom of the Tools menu to see the Letters and Mailings option.

The Mail Merge task pane appears.

8-12 Working with Windows and Java Applications
3. Select the Letters radio button, then click Next at the bottom of the
pane.

4. Select Use the current document, then click Next.

Working With Windows Applications 8-13
5. Select Use an existing list, then click Browse.

The Select Data Source dialog box appears.

6. From this dialog box, select the Tools menu, then select MS Query. (If
you don’t have an MS Query option, you need to install MS Query on
your machine.)

8-14 Working with Windows and Java Applications
This starts Microsoft Query, and opens the Choose Data Source dialog
box.

For this exercise, clear the Use the Query Wizard check box if it is
checked.

7. Select the DSN that corresponds to the data source you want to access
and click OK.

(Refer to section 5.8, “Setting Up Data Source Names (DSNs) on
Client,” for instructions on creating DSNs.)

If you don’t see your DSN listed, do one of the following:

• Click Browse and navigate to “c:\Program Files\Common Files\
odbc\DataSources”, then double-click the name of your DSN. This
adds the DSN to the list.

• Click Options and enter the path to the directory containing your
DSN, then click Add. Now the contents of that directory will be
listed. For more information, see the Microsoft Query
documentation.

8. The AcuXDBC Login dialog box appears if you or an administrator
established database security methods during AcuXDBC setup. Enter a
valid User ID and Password, and click OK.

If no security methods have been established, a User ID and Password
are not required, and the Login dialog box does not appear.

The Add Tables dialog box appears.

Working With Windows Applications 8-15
Tip: You can display just tables of a given user by selecting from the owner
drop-down-list. For example, you could display only the tables that belong
to PUBLIC by choosing PUBLIC from the drop-down list.

Adding your tables

1. Select the table or tables that you want to add (for example, “clients”)
and then click Add.

Close the box when you’re done.

For each table you selected, a list box is displayed on the Microsoft
Query screen. This box lists all of the columns in the associated table.

8-16 Working with Windows and Java Applications
2. Double-click each column that you want to read into your Word
document; that column then appears on the screen. If you want to add
all columns, double-click the “*” at the top of the list box.

If you prefer, you can select columns or further refine your query by
clicking the SQL button in the toolbar and entering your own SQL
statements, such as the one shown below.

Click OK when you’re done.

(For a description of the SQL commands supported by AcuXDBC, refer
to Chapter 7, section 7.4.)

Working With Windows Applications 8-17
3. Select Return Data to Microsoft Word from the Microsoft Query File
menu.

4. If no database security methods have been established, (the database is
open to all users) the AcuXDBC Login dialog box reappears. Simply
click OK. If database security methods have been established and you
previously supplied a correct user ID and password, this step will not
be necessary.

The Mail Merge Recipient dialog box appears.

5. Make sure all the records are checked and click OK.

Note that no records actually appear after you click OK. This is expected
behavior, as this step is simply making the data records available to
Microsoft Word. Additional steps are necessary to actually insert the
data records into your document.

The Mail Merge Recipients dialog box provides options for refining your
mail merge list. For example, you can add or delete records, and specify
certain record criteria. Refer to Microsoft Word documentation for help
on using the commands appearing in this dialog box.

8-18 Working with Windows and Java Applications
Finish preparing your document

1. Click Next on the Mail Merge task pane and continue preparing the body
of your letter as needed.

2. Place the cursor in your document where you want your customer data
to appear and click More items on the Mail Merge task pane.

The Insert Merged Field dialog box appears.

3. Make sure the Database Fields radio button is selected. Click on the
field name you want to appear first in your document and click Insert.
Click on the next field you want and click Insert again. Repeat this
process for each field that you want to add to your document.

Once you have added all desired fields, Close the Insert Merge Field
dialog box.

Note: This dialog box does not allow you to select multiple fields and
insert them all at once. You must select and insert them individually.

Working With Windows Applications 8-19
4. Format your fields as desired, then click Next on the Mail Merge task
pane.

The data corresponding to each field is displayed. Notice the options on
the Mail Merge task pane to preview or edit your letters.

5. When you are satisfied with your letters, click Next on the Mail Merge
task pane.

6. Click Edit Individual Letters on the Mail Merge task pane.

The Merge to New Document dialog box appears. Consider your options
for selecting which records to merge.

7. Select All and then click OK.

8-20 Working with Windows and Java Applications
A new document containing individual letters for each record is created.

8. Edit and save your letter document as you normally would. You can
also save your original document containing the mail merge query and
reuse it to create additional mail merge letters.

For more instructions on using Word’s mail merge feature, refer to your
Microsoft documentation.

8.1.3 Accessing Data From Excel 2000 and 2003

The following procedure describes how to access your Vision data from
Microsoft Excel 2000, 2003 and later (these are the spreadsheet components
of Microsoft Office). If you have a different version of Excel, your
instructions may be slightly different.

Choosing your data source

1. Start Excel.

Excel automatically opens a new spreadsheet.

2. Excel 2000 users select Add-Ins from the Tools menu. Excel 2003
users go to step 4.

Working With Windows Applications 8-21
If your Microsoft Office menus are set to “Show recently used
commands first,” you may need to click the expansion arrows at the
bottom of the Tools menu to see the Add-Ins option.

3. In the Add-Ins dialog box, select the MS Query Add-In check box
and click OK.

If this add-in does not appear on your list, reinstall Excel, being sure to
select “MS Query” from the list of functions to install.

8-22 Working with Windows and Java Applications
4. From the Data menu, select Import External Data or Get External
Data and then New Database Query from the submenu.

This starts Microsoft Query and opens the Choose Data Source
dialog box.

If you want to use Microsoft Query “Query Wizard” to create your SQL
query, leave the “Use Query Wizard” check box selected. Refer to
Microsoft Query’s online documentation for instructions on using the
Query Wizard.

For this exercise, clear the Query Wizard check box.

Working With Windows Applications 8-23
5. Select the DSN that corresponds to the data source you want to access
and click OK. (Refer to section 5.8, “Setting Up Data Source Names
(DSNs) on Client,” for instructions on creating DSNs.)

The AcuXDBC Login dialog box appears if you or an administrator
established database security methods during AcuXDBC setup. If no
security methods have been established, a User ID and Password are not
required, and the Login dialog box will not appear.

6. If the Login dialog box appears, enter a valid User ID and Password
and click OK.

Adding your tables

1. From the Add Tables dialog box, select the table or tables that you want
to add (for example, “pets”) and click Add; then close the dialog box.

For each table you selected, a list box is displayed on the Microsoft
Query screen. This list box shows all of the columns in the associated
table.

8-24 Working with Windows and Java Applications
2. Double-click each column that you want to read into your Excel
spreadsheet; that column is then displayed on the screen. If you want to
add all columns, double-click the “*” at the top of the list box.

If you prefer, you can select columns or further refine your query by
clicking the SQL button and entering your own SQL statements, such as
the one shown below.

Click OK when you’re done.

(For a description of the SQL commands supported by AcuXDBC, refer
to section 7.5, “Detailed SQL Support Descriptions.”)

Working With Windows Applications 8-25
3. Select Return Data to Microsoft Excel from the Microsoft Query File
menu.

The Import Data dialog box appears.

4. Select where to put the data, and then click OK. If you want to select
further options, click Properties.

5. If no database security methods have been established, the AcuXDBC
Login dialog box will not appear. However, if database security
measures were established and you have not entered a valid user ID or
password, you will be prompted to do so at this time.

You are returned to Excel. The data you selected is displayed in the
current Excel spreadsheet.

8-26 Working with Windows and Java Applications
8.1.4 Accessing Data From Access 2000 and 2003
The following procedure describes how to access your Vision data from
Microsoft Access 2000 and 2003, the database components of Microsoft
Office. If you have a different version of Access, your instructions may be
slightly different.

Note: When you are accessing relative files, you don’t need to specify a
unique key for Access. When Access displays the dialog box requesting
that you enter a unique key, just click OK without selecting any field.
If you are using the multi-company feature and are linking tables, you must
relink every time you start Access and use this data source. See Chapter 5,
section 5.5.2 for more information on this feature.

Choosing your data source
1. Start Microsoft Access.
2. Open an existing database or create a new one.

If you create a new database, name and save it.

3. Select Get External Data from the File menu, then select Import or
Link Tables.

Working With Windows Applications 8-27
Here’s a brief comparison of working with imported or linked data. For
more information, refer to your Microsoft Access documentation.

As a guideline, re-linking or re-importing is required when the table
structure—such as the number of columns, or their names, sizes, and
types—changes.

Note that in the examples shown in this section, the data is imported, not
linked.

Imported Tables Linked Tables

Data is local—The entire contents
of an imported table is read into a
copy on local storage.

Data is remote—Only rows
requested from the linked table are
read into local storage.

Note that you can link to a local
table, rather than creating a second
copy by importing it.

Importing can take several
seconds, or even minutes,
depending on the size of the
database.

Creating a link is almost
instantaneous, depending on the
network connection.

Space is required for local copies
of imported tables.

The link requires very little local
storage.

Data is static—If there are
changes to the database, they are
not reflected in local data. If the
database is subject to frequent
changes, linking can be preferable.

Data is dynamic—You have
access to any changes.

If the network connection is
broken, users still have access to
data.

If network connection is broken,
users have no access to data until
connection is restored.

Users cannot write to the Vision
source.

Users can write to the Vision
source if the DSN is read/write and
the user has INSERT and/or
UPDATE permissions on the
object.

8-28 Working with Windows and Java Applications
4. In the Import dialog box, select ODBC Databases from the “Files of
type” list box.

5. In the Select Data Source dialog box, select the DSN that you
established and click OK.

AcuXDBC data sources will appear on the Machine Data Source tab.
(Click New to create a new DSN. Refer to section 5.8, “Setting Up Data
Source Names (DSNs) on Client,” for instructions.)

Working With Windows Applications 8-29
The AcuXDBC Login dialog box appears if you or an administrator
established database security methods during AcuXDBC setup. If no
security methods were established, a User ID and Password are not
required, and the login dialog box will not appear.

6. If the Login dialog box appears, enter a valid User ID and Password
and click OK.

The Import Objects dialog box opens.

8-30 Working with Windows and Java Applications
Adding your tables

1. Select the table or tables that you want to read into Access and click OK.
Click Select All to add all of the listed tables to your Access database.

2. Double-click the table icon to open the table in Access.

If you have imported the data, the table name or names you selected
appear on the Access screen next to an icon of a table. You will see a
different icon next to the table names if you have linked the data.

Working with Java Applications 8-31
3. You may now perform Access operations on this data.

8.2 Working with Java Applications

The enterprise edition of AcuXDBC includes the “vortex.jar” file, which
enables a Java client application to connect to your Vision database. The
general Java-specific steps and requirements involved in connecting to a
Vision database include the following:
• A Java source file that uses the “DriverManager.getConnection” method

to initiate a Vision database connection.
• String URL within the Java source file that includes the appropriate

connection syntax.
• Java source file compiled using Java 1.5 or later.
• The path of “vortex.jar” specified in the CLASSPATH of the Java

application you wish to run.

8-32 Working with Windows and Java Applications
Source File and String URL Syntax Sample

Included with the enterprise edition of AcuXDBC is the “sample.java” file,
which is located in the “samples” directory of AcuXDBC. This file
demonstrates the use of the “DriverManager.GetConnection” method, along
with the String URL syntax to connect to a remote system catalog.

Run the demo program, “demo.bat” on Windows and “demo.sh” on UNIX/
Linux, to create a sample veterinarian database. The “sample.java” program
will issue SQL commands to access the sample veterinarian database tables.

Note: No spaces are allowed between the String URL connection
parameters. If access to the system catalog is local, “@port no”, “machine
name”, and “ip-address” are not required.

sample.java

import java.sql.*;

class sample {
 public static void main (String argv[]) {
 try {

 /* Note: The format is

jdbc:vortex:userid//password/driver:configfile@port:hostname!databaseid

 For example
 (using defaults for driver, configfile, port, and databaseid):

jdbc:vortex:system//manager/xvision:acuxdbc.cfg@20222:myserver!acuxdbc04

 */

 String connectionURL =
 "jdbc:vortex://system/manager/xvision:" +
 "acuxdbc.cfg" +
 "@20222:myserver.acucorp.com" +
 "!acuxdbc04";

 String sqlStatement =

Working with Java Applications 8-33
 " SELECT \n" +
 " patient_id, \n" +
 " patient_name, \n" +
 " animal_type \n" +
 " FROM pets \n" +
 " WHERE \n" +
 " LCASE(animal_type) = 'dog' \n" +
 " ORDER BY patient_name";

 System.out.println("\nConnection URL: \n" + connectionURL);
 System.out.println("\nSQL Statement: \n" + sqlStatement);

 Class.forName("vortex.sql.vortexDriver");
 Connection conn =
 DriverManager.getConnection(connectionURL);

 Statement stmt =
 conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet data;
 data = stmt.executeQuery(sqlStatement);

 System.out.print("\nRESULTS:\n\n");
 System.out.print(
 "Patient ID Patient Name Animal Type\n" +
 "============ ==================== ====================\n");
 while (data.next()) {
 System.out.printf("%-12s %-20s %-20s\n",
 data.getString(1),
 data.getString(2),
 data.getString(3));
 }
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Compile the source file

Compile the source file as follows:
<java home directory>/javac sample.java

8-34 Working with Windows and Java Applications
Run the application with vortex.jar

To run your application, the path of “vortex.jar” must appear in the
CLASSPATH of the Java application. For example:
export CLASSPATH=<directory path>/vortex.jar:.
<java home directory>/java sample

Note: You must have read and execute permission on vortex.jar to run your
program. If you get the error message, “vortex.sl. vortex driver”, check the
permissions that you have on vortex.jar.

9
 Troubleshooting
Key Topics

Introduction ... 9-2
AcuXDBC Client Error Messages ... 9-2
AcuXDBC Server Error Messages .. 9-6
AcuXDBC SQL Processing Error Messages... 9-9
Vision File System Error Messages.. 9-14
Application Errors ... 9-15

9-2 Troubleshooting
9.1 Introduction

When installing, configuring, or using AcuXDBC components, you may
encounter error messages along the way. This chapter can help you find the
cause of the error by explaining what the error message means. If you
encounter an error message, locate it in this chapter and see if the information
provided can help you uncover the underlying cause of the error. If you still
cannot determine the cause, use the logging features of AcuXDBC to trace
AcuXDBC and Vision activities. Refer to Chapter 4, section 4.2.1 for details
on using the logging features.

Error messages may originate from the following sources:
• AcuXDBC Client
• AcuXDBC Server
• AcuXDBC SQL Processor
• Vision File System
• Client Applications

9.2 AcuXDBC Client Error Messages

Messages are listed in alphabetical order.

Message Description

BADCONV Cause: The requested data conversion failed.

Action: Check that the requested data is of the appropriate
type. For example, this error occurs when a character column
is fetched into an integer and the character data are not all
digits.

BADINI Cause: The “.ini” file is missing or its contents are invalid.

Action: Check that the file exists and that its settings are
correct.

CANCEL Cause: Operation was cancelled by the driver manager.

Action: Informational message; no action necessary.

AcuXDBC Client Error Messages 9-3
CANFREE Cause: No processing was being done on the statement, so the
call was treated as a call to SQLFreeStmt with the
SQL_CLOSE option. Function returns
SQL_SUCCESS_WITH_INFO.

Action: Informational message; no action is necessary.

CURDUP Cause: The cursor name is already in use.

Action: Specify a different name.

DATATRUNC Cause: Data has been truncated. Either the data specified is
too long or supplied output buffers are too small.

Action: Modify the size of the output buffers.

DIALOG Cause: The connect dialog failed.

Action: Notify your system administrator.

FUNCSEQ Cause: The sequence of functions called is invalid.

Action: Make sure that you follow the sequence specified by
the ODBC documentation.

GENONLY This version only supports GENESIS.

Cause: This version of AcuXDBC only supports GENESIS.

Action: Make sure you are attempting to connect to a Vision
database.

INVARG Cause: Invalid arguments specified.

Action: Consult the ODBC documentation for the correct
syntax.

INVAUTH Cause: User not authorized to connect to specified data
source.

Action: Check your userid and password or contact your
system administrator.

INVBUFLEN Cause: The string or buffer length specified is invalid.
Negative values such as SQL_NTS have special meaning, but
not all negative values are valid.

Action: Check the ODBC documentation for valid length
specifiers.

Message Description

9-4 Troubleshooting
INVCOLNUM Cause: The specified column number is out of range.

Action: Verify that the correct column number is being used.

INVCURNAM Cause: The specified cursor name is invalid.

Action: See the ODBC documentation for the maximum
allowed length.

INVCURSTA Cause: The state of the cursor (OPENed, CLOSEd, etc.) is not
valid for the current operation.

Action: Make sure you’ve executed the necessary steps before
calling this function.

INVDATA Cause: The data for the specified operation is invalid.

Action: Verify that the data being used is correct.

MANYCONN Cause: The concurrent connections limit has been exceeded.

Action: Reduce the number of concurrent connections.

MANYSTMT Cause: The number of allowable statements has been
exceeded.

Action: Either increase the limit in the Advanced tab of the
Setup Dialog screen, or free any statements you are not using
or do not need.

MISSENV Cause: The environment variable (registry entry on Windows)
GENESIS_HOME is missing.

Action: Set the GENESIS_HOME environment variable/
registry entry.

MISSINDV Cause: NULL data supplied without an indicator variable. If
the data is NULL, an address of an indicator variable must be
supplied.

Action: Supply an address for the indicator variable.

NOCONN Cause: No connection established. A connect must be
performed before any other operations.

Action: Connect to the data source before attempting any
database operations.

NOCURNAM Cause: Cursor name was never assigned.

Action: Assign a cursor name.

Message Description

AcuXDBC Client Error Messages 9-5
NODRV Cause: No AcuXDBC driver was specified in the connect.

Action: Verify that the connect string specifies the AcuXDBC
driver.

NODSN Cause: The Data Source Name (DSN) was not specified.

Action: Verify that the connect string specifies the DSN.

NOMEM Cause: A memory allocation failed. This is a fatal error. Either
there is no more heap memory available (rare) or the heaps
have been corrupted.

Action: Notify your system administrator immediately.

NOTCAP Cause: AcuXDBC does not support the requested capability.

Action: Modify your program to not request this capability.

NOTIMP Cause: The feature has not been implemented yet.

Action: Submit an enhancement request to Technical Support.

NOWHDL No window handle available.

Cause: No window handle available to open connect dialog.

Action: Notify your system administrator.

OPTCHG Cause: A value of an option has been changed.

Action: Informational message. No action required.

PARMCNT Cause: The number of parameters specified does not match
the number of parameters required by the statement.

Action: Modify your program to use the correct number of
parameters for the statement.

PARMDTY Cause: The data type specified for the parameter is unknown.

Action: Consult the ODBC documentation for valid data
types.

PARMNUM Cause: The parameter number specified is out of range.

Action: Verify that your program uses the correct parameter
number.

TIDUSED Cause: Another thread is currently using the statement.

Action: Verify that your program does not use the same
statement as is being used in another thread.

Message Description

9-6 Troubleshooting
9.3 AcuXDBC Server Error Messages

All messages are listed in alphabetical order.

UNDESTYP Cause: The fDescType for SQLColAttributes() is unknown.

Action: Modify your program to use the correct descriptor.

UNFETTYP Cause: Unknown fetch type. Currently only
SQL_FETCH_NEXT is supported.

Action: Modify your program to use only
SQL_FETCH_NEXT.

UNINTYP Cause: The Info Type is unsupported.

Action: Consult the ODBC documentation for valid values.

UNOPT Cause: The option is unknown.

Action: Consult the ODBC documentation for valid options.

UNUNOPT Cause: The Uniqueness option is unknown.

Action: Consult the ODBC documentation for valid values.

UNXACOPR Cause: The transaction operation is unknown.

Action: Consult the ODBC documentation for valid values.

Message Description

Message Description

AUTHBAD Cause: The authentication syntax is invalid.

Action: Follow the host name with the userid/password.

AUTHFAIL Cause: Authentication on service failed. You are not
authorized to execute the requested host service.

Action: Verify that the userid/password are correct or contact
your system administrator.

AUTHREQ Cause: The host you are connecting to requires additional
authentication.

Action: Follow the host name with the userid/password.

AcuXDBC Server Error Messages 9-7
BADINI Cause: The “net.ini” file is missing or is an invalid file.

Action: Verify that “net.ini” exists and is valid.

CONFIG Cause: This assertion error notifies you that the first call must
always be a CONFIG.

Action: Make sure a CONFIG call precedes any other call.

DLLENTRY Cause: The loaded DLL or shared library does not contain the
expected entry point. This error occur only on machines that
support DLLs or shared libraries and usually signals that the
wrong DLL has been loaded.

Action: Verify that the AcuXDBC DLLs have not been
overwritten by other DLLs or that there are not other DLLs in
the path with the same name.

DLLLOAD Cause: Could not load the specified DLL or shared library.
The DLL is either missing or invalid. This error occurs only on
machines that support DLLs.

Action: Ensure that the DLL or shared library specification is
correct (including spelling) and check that the correct DLL is
installed.

DLLSAFE Cause: Loaded DLL is not thread safe. Not all database
drivers are thread safe.

Action: To avoid this error, run the single-threaded daemon:
“xdbcsrvr.exe”.

EVALCORR Cause: The evaluation license ID has been corrupted.

Action: Download the evaluation software from the Web site
again or contact Micro Focus to purchase the software.

EVALEXP Cause: The evaluation license has expired. The timeout
period is 4 hours.

Action: To continue the evaluation, restart the AcuXDBC
daemon. If you want a copy of the software that doesn’t
expire, contact Micro Focus to purchase the software.

Message Description

9-8 Troubleshooting
EXECFAIL Cause: Exec name failed on host name. The service (program)
specified in the network connection string could not be started.
This error occurs if the service could not be found, does not
have the correct permissions, or is not listed as a valid service.

Action: Check that the service exists, is listed as a valid
service, and that you are connecting with the correct user name
and password.

HOSTNOT
FOUND

Cause: The host name you are trying to connect to is not
found.

Action: Make sure the spelling of the host is correct and that it
really exists.

INVHOSTSYN Cause: The host/service syntax is invalid.

Action: Review the connect string documentation in Chapter
5, section 5.3.1 of this manual..

INVVER Cause: NET version mismatch (host: number, client:
number). The version of AcuXDBC server is not the same as
AcuXDBC client.

Action: Make sure that both sides of the network connection
are at the same version level.

KEEPALIVE Cause: This assertion error indicates that the socket option
KEEPALIVE failed or was not set.

Action: Notify Micro Focus Technical Support or your system
administrator.

LINGER Cause: This assertion error indicates that the socket option
LINGER failed or was not set.

Action: Notify Micro Focus support or your system
administrator.

NOINTR Cause: Your program requested a cancel operation. The host
you are trying to cancel cannot handle interrupts.

Action: Modify your program so that it does not call the
cancel operation.

NOMEM Cause: A memory allocation failed. This is a fatal error. Either
there is no more heap memory available (rare) or the heaps
have been corrupted.

Action: Notify your system administrator immediately.

Message Description

AcuXDBC SQL Processing Error Messages 9-9
9.4 AcuXDBC SQL Processing Error Messages

Following are error messages related to issuing SQL statements:

SERVNOT
FOUND

Cause: The service and/or protocol name cannot be found.

Action: For UNIX/Linux: Ensure that xdbcsrvr is specified in
“/etc/services”. For Windows: Ensure that vtxnet is specified
in “%SystemRoot%\System32\Drivers\etc\services”.

If it is not, you must add it, or explicitly specify the port
number in the connect string.

SOCKET Cause: Call to the socket() function failed. The operating
system may have run out of file descriptors.

Action: Notify your system administrator.

UNDBID Cause: Unknown database ID specified in “net.ini”.

Action: Use a valid database ID (from 0 to 3) in “net.ini”.

Message Description

Message Description

Cannot open file
‘filename’

Cause: The specified file cannot be opened. The
path may be wrong, it may not exist, or the
permissions are not set correctly.

Action: Check the spelling and verify the location
of filename.

Catalog table ‘name’
corrupted or out of date

Cause: The specified catalog table cannot be read.
It has either been modified directly or it is from a
different version of AcuXDBC.

Action: Rebuild the catalog with the correct catalog
utility.

Character array too big
(max: number)

Cause: The SQL statement contains a character
array that is too big.

Action: Correct the statement.

Column name already
defined

Cause: The SQL CREATE TABLE/VIEW
statement has duplicate column names.

Action: Correct the statement.

9-10 Troubleshooting
Column name undefined Cause: The SQL statement refers to a column that
is not defined in the catalog.

Action: Correct the statement or define the column/
table in the catalog.

Create view column count
mismatch (create:
number, select number)

Cause: The SQL CREATE VIEW statement’s
column list does not match the number of columns
in the SELECT statement’s select list.

Action: Correct the statement.

Data truncation (max:
number)

Cause: Data was truncated.

Action: Notify Micro Focus Technical Support.

End of buffer reached Cause: The SQL statement ended prematurely.

Action: Check the syntax for the command you are
using.

Ending quote missing Cause: The SQL statement is missing an ending
quote.

Action: Add the missing quote.

Function name not
implemented yet

Cause: Not implemented yet.

Action: Contact Micro Focus with an enhancement
request.

GENESIS_HOME
environment variable not
found

Cause: The GENESIS_HOME environment
variable (registry entry on Windows) is not set.

Action: Set the GENESIS_HOME environment
variable, following instructions in the installation
procedure.

Identifier too long Cause: The SQL statement contains an identifier
that is too long. Identifiers are limited to 30
characters.

Action: Rename the identifier.

If any numeric operand is
NULL then only ‘==’ and
‘!=’ are valid

Cause: The SQL statement’s WHERE clause is
using an invalid operator with a NULL value.

Action: Correct the statement.

Message Description

AcuXDBC SQL Processing Error Messages 9-11
Illegal character Cause: The SQL statement contains an illegal
character at the given position.

Action: Check the statement for legality.

Illegal number of
parameters for built-in
function

Cause: The SQL statement has the wrong number
of parameters for the built-in function.

Action: Correct the statement.

Invalid parameter Cause: The AcuXDBC COMMAND sent an
invalid parameter for the specified command.

Action: Verify that the parameters you use are all
valid.

Invalid password Cause: The connection password is incorrect.

Action: Ensure that you are using a valid password.
Contact your DBA.

Invalid predicate result
(NULL or invalid
datatype)

Cause: The SQL statement’s WHERE clause
returned a NULL or invalid datatype result.

Action: Correct the statement.

No data source specified Cause: The connect string does not contain a data
source specification.

Action: Make sure you supplied a valid data source
name. If you didn’t create a data source name, refer
to Chapter 5, section 5.8 of this manual for
information on creating a data source name.

No locks available on
UPDATE

Cause: This sometimes happens when you link a
file into Microsoft Access and perform an update
that affects a large number of rows.

Action: If the number of records affected by an
update is less than 8191, set the configuration
options “MAX_LOCKS” and/or
“LOCKS_PER_FILE” to a value slightly higher
then the number of records. The maximum setting is
8191.

If the number of records is higher than 8191, set the
TRANSACTIONS variable to “FALSE”. This
causes the interface to ignore the transaction
command and update the records individually.

Message Description

9-12 Troubleshooting
Non aggregates require a
GROUP BY expression

Cause: The SQL SELECT statement contains
aggregate and non-aggregate select list items and
this requires a GROUP BY expression.

Action: Edit the statement and use GROUP BY or
change the statement’s structure.

Notify tech support. Cause: Internal error.

Action: Notify Micro Focus Technical Support.

NULL not allowed for
column

Cause: The SQL INSERT/UPDATE statement is
using a NULL value for a not-NULL column.

Action: Correct the statement.

Number of columns does
not match number of
values

Cause: The SQL INSERT statement’s values do
not match the number of columns defined for the
table or listed in the column list.

Action: Correct the statement.

Operation requires named
authorization

Cause: The SQL statement requires the specified
authorization.

Action: Ensure that you have authority to issue the
statement. Contact your DBA.

Sort column name out of
range (1 - number)

Cause: The SQL SELECT statement’s ORDER BY
clause refers to a column number that is out of
range.

Action: Correct the statement.

String too long Cause: The SQL statement contains a string
constant that is too long.

Action: Use a bind variable.

Sub-query must return a
single column

Cause: The SQL statement contains a sub-query
whose select list has more than one column.

Action: Correct the statement.

Table name undefined Cause: The SQL statement refers to a table that is
not defined in the catalog.

Action: Correct the statement to refer to a defined
table or define the table in the catalog.

Message Description

AcuXDBC SQL Processing Error Messages 9-13
to_char/date/ number’s
format mask must be a
constant string

Cause: The SQL statement uses a data conversion
function with a non-constant format mask string.

Action: Correct the statement.

Too many columns
number (max: number)

Cause: The SQL statement refers to a table with too
many columns.

Action: Correct the statement.

Too many columns
specified

Cause: The SQL statement has too many columns
defined.

Action: Correct the statement.

Too many cursors opened Cause: Your application has too many concurrently
opened cursors.

Action: Explicitly close cursors when they are no
longer needed. If this action does not solve the
problem, notify Micro Focus Technical Support.

Too many sort columns
(max: number)

Cause: The SQL SELECT statement has too many
columns in the ORDER BY clause.

Action: Reduce the number of columns in the
ORDER BY clause.

Too many sub-queries at
level number (max:
number)

Cause: The SQL statement contains too many
sub-queries.

Action: Correct the statement.

Too many tables in
SELECT (max: number)

Cause: The SQL SELECT statement contains too
many tables.

Action: Correct the statement.

Unknown error code Cause: Internal error.

Action: Notify Micro Focus Technical Support.

Unknown node (type:
name)

Cause: Internal error.

Action: Notify Micro Focus Technical Support.

yacc: msg Cause: The SQL statement cannot be parsed
correctly.

Action: Check for invalid keywords.

Message Description

9-14 Troubleshooting
9.5 Vision File System Error Messages

Vision error codes have two numbers. The first number corresponds to a
general “SQLSTATE” error. You can find information on SQLSTATE errors
in general ODBC manuals, like the ODBC Programmer’s Reference. The
second number in the native Vision error code. It lists the native error
associated with AcuXDBC operation.

For example, in the following error code:
S1003 102

“S1003” is the SQLSTATE ODBC error number, and “102” is the native
Vision error number.

Error
Code

Description

100 A duplicate key was detected where duplicates are not allowed.

102 This indicates that a routine was called with an illegal parameter.
For example, specifying a key number that is larger than the
number of keys in the file would result in this error.

104 An attempt was made to open more files than the system allows
open at once.

105 The index file is corrupt or the physical disk file does not match the
type of file being opened. If the index file is corrupt, it should be
reconstructed using the appropriate host system utility.

107 The requested record is locked by another process or (for some
systems) by another file handle used by this process.

111 The requested record was not found.

112 The current key of reference was in the “undefined” state when the
“i_next” or “i_previous” routines were called. There is no current
record from which to read forwards or backwards.

113 The file is locked against the current open mode.

116 The system ran out of dynamic memory.

117 An operation was requested that the current open mode doesn’t
allow. For example, attempting to add a record to a file that is open
for input-only results in this error.

Application Errors 9-15
9.6 Application Errors

You may occasionally receive an application-specific error message when
trying to access data through AcuXDBC. For instance, when using Microsoft
Query, you may receive an error like:
MSQry error: This program has performed an illegal operation
and will be shut down. If the problem persists, contact the
program vendor.

If you receive an error like this, try removing and re-adding your DSN in the
ODBC Data Source Administrator. Occasionally, the application may have
difficulty recognizing the DSN, particularly if you have upgraded from a
previous version of AcuODBC. Recreating the DSN should solve the
problem.

For specific information regarding other application-specific errors, refer to
your application’s user documentation or on-line help.

126 The requested operation is not supported by this host system.

127 The disk became full while adding a new record.

128 The size of the new record doesn’t match the type of file being
opened.

129 The system ran out of lock-table entries.

130 The file is missing.

131 Invalid permission for the operation.

Error
Code

Description

A
 Compatibility Guide
Key Topics

Migrating from AcuODBC to AcuXDBC .. A-2
AcuODBC Configuration Screen Changes ... A-4

A-2 Compatibility Guide
A.1 Migrating from AcuODBC to AcuXDBC

Because of the increased functionality of AcuXDBC, the procedures for
setting up and configuring AcuXDBC differ from AcuODBC. The following
chart compares setup methods and highlights key differences between
AcuXDBC versus AcuODBC. It also describes where to look for detailed
information pertaining to the stated difference.

AcuXDBC AcuODBC Differences

Install software. Install software. AcuXDBC uses Microsoft
Installer. Refer to Chapter 5,
section 5.2, for AcuXDBC
installation instructions.

Create XFDs. Create XFDs. No major difference in the
method used for creating your
XFDs. If you already have XFDs
from previous versions of
AcuODBC or other products,
these can be reused.

Set configuration
variables in the
configuration file.

Set configuration
variables in
AcuODBC DSN
Setup tabs.

To simplify client setup and
enable universal configuration,
AcuXDBC is configured via a
configuration file rather than on
each client machine during Data
Source Name (DSN) setup.

Many of the options previously
configured on the AcuODBC
screens are now configured
variables that you set in
“acuxdbc.cfg.” This method
allows you to use the same
configuration file for the entire
network by just pointing to the
configuration file from each
client’s DSN setup screen. Refer
to Section A.2 of this appendix
for information on variable
locations.

Migrating from AcuODBC to AcuXDBC A-3
Create a system
catalog and load it
with information
from the XFD.

Not required for
AcuODBC.

To provide greater relational
database functionality,
AcuXDBC refers to the system
catalog to construct and display
your Vision tables. After this
loading phase, your XFDs are no
longer needed by AcuXDBC.
Refer to Chapter 6, section 6.2,
for a detailed description of the
system catalog and the role of
XFDs.

Set system security
via SQL GRANT
statement.

Set system security
via AcuAccess file.

The AcuAccess file and manager
utility are no longer used with
AcuXDBC. Instead, the SQL
GRANT command and its
variants are used to manage
database security. Refer to
Chapter 5, section 5.4.

Set up DSNs. Set up DSNs. If you are migrating from
AcuODBC, you need to create
new DSNs. You accomplish this
in generally the same manner in
AcuXDBC; however, many of the
variables that once appeared on
the AcuODBC configuration
screen now appear in the
AcuXDBC configuration file
(acuxdbc.cfg). This process
allows for universal settings for
DSNs and simplifies the process
of setting up multiple clients in a
network setting.

For large network installs, you
can also create a .reg file and
download the DSN information to
your clients. Refer to Section
A.2 of this appendix for details on
DSN-related variable locations.

AcuXDBC AcuODBC Differences

A-4 Compatibility Guide
A.2 AcuODBC Configuration Screen Changes

Many of the configuration variables previously located in the AcuODBC
Configuration screen (now called the “AcuXDBC Setup” screen) are now
located in one of two configuration files included with AcuXDBC. By
default, they are known as “acuxdbc.cfg” and “net.ini”. “acuxdbc.cfg” is
required for all installations. Network installations using AcuXDBC Server
require both “acuxdbc.cfg” and “net.ini”.

The following charts list each configuration option that appeared on the tabs
of the AcuODBC configuration screen and then lists its corresponding
variable name and location in AcuXDBC. For details on actual AcuXDBC
variable settings, refer to Chapter 4, section 4.2, “AcuXDBC
Configuration”.

A.2.1 General Tab

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

Data Source
Name

Data Source Name AcuXDBC DSN Setup screen,
General tab.

XFD
Directory

DICTSOURCE acuxdbc.cfg.

AcuXDBC refers to the system
catalog (specified by
DICTSOURCE), instead of
your XFDs, for information it
uses to form table views of
your data. After the initial
loading of your XFD, the XFD
file itself is no longer needed
by AcuXDBC.

Data
Directory

FILE_PREFIX acuxdbc.cfg.

Data File
Extension

FILE_SUFFIX acuxdbc.cfg.

AcuODBC Configuration Screen Changes A-5
A.2.2 Advanced Tab

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

File Case FILE_CASE acuxdbc.cfg

Compiler
Option

None The data storage compiler
options (“-Dci”, “-Dcm”,
“-Dcn” ...) are set using the
xdbcutil “-s” command when
loading your system catalog.
Refer to Chapter 5, section
5.3.1, for details on using this
command.

Character Set None OEM support is not provided in
AcuXDBC.

Open Tables None Not applicable in AcuXDBC.

Character
Types

None Not applicable in AcuXDBC.

Invalid
Numeric Data

INVALID_NUMERIC_
DATA

acuxdbc.cfg

Division by
Zero

DIVISION_BY_ZERO acuxdbc.cfg

Signed Index None Not applicable in AcuXDBC.

Read Only READ_ONLY acuxdbc.cfg

GUI Dialog None Not applicable in AcuXDBC.

Table Name
Cache File

None Not applicable in AcuXDBC.

Use
DOUBLE for
Numeric Key
Data

None Not applicable in AcuXDBC.

A-6 Compatibility Guide
A.2.3 Vision Tab

Null
Processing

NULL_ALPHA_READ

NULL_ALPHA_WRITE

NULL_NUMERIC_READ

NULL_NUMERIC_WRITE

acuxdbc.cfg

Julian Base
Date

JULIAN_BASE_DATE acuxdbc.cfg

Reset
Configuration

None No longer required because
configuration occurs in a text
file.

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

Max Files MAX_FILES acuxdbc.cfg

Max Locks MAX_LOCKS acuxdbc.cfg

Locks Per
File

LOCKS_PER_FILE acuxdbc.cfg

Buffers V_BUFFERS acuxdbc.cfg

Enable
Transaction
Processing
Support

TRANSACTION_
PROCESSING

acuxdbc.cfg

Enable
Logging

LOGGING acuxdbc.cfg

Encrypt Log
File

LOG_ENCRYPT acuxdbc.cfg

Log to Device LOG_DEVICE acuxdbc.cfg

Log File LOG_FILE acuxdbc.cfg

AcuODBC Configuration Screen Changes A-7
A.2.4 Tracing Tab

Temp File
Directory

TEMP_DIR acuxdbc.cfg

Log Buffer
Size

LOG_BUFFER_SIZE acuxdbc.cfg

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

Vision Trace
Level

VISION_LOGGING_
LEVEL

acuxdbc.cfg

Vision Trace
File

VISION_LOGGING_FILE acuxdbc.cfg

ODBC
Driver Trace
Level

Full Logging

SQL Logging

Include Time

Unique Filenames

AcuXDBC Setup screen,
Logging tab, Client Logging
frame.

ODBC
Driver Trace
File

Log Filename AcuXDBC Setup screen,
Logging tab, Client Logging
frame.

SQL Tracing
Level

DEBUG_LOGLEVEL acuxdbc.cfg

SQL Trace
File

DEBUG_LOGFILE acuxdbc.cfg

A-8 Compatibility Guide
A.2.5 Server Tab

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

Local SQL
Processing

Network Driver AcuXDBC Setup screen,
General tab.

In AcuXDBC, deselecting
“Network Driver” has the same
effect as selecting “Local SQL
Processing” in AcuODBC.

Remote SQL
Processing

Network Driver AcuXDBC Setup screen,
General tab.

In AcuXDBC, selecting
“Network Driver” has the same
effect as selecting “Remote
SQL Processing” in
AcuODBC.

Hostname Hostname AcuXDBC Setup screen,
General tab.

IP Address Hostname AcuXDBC Setup screen,
General tab.

Use Hostname to set either the
hostname or IP address.

Port Number Port AcuXDBC Setup screen,
General tab.

NT Security None AcuXDBC has multi-level
security options that are set
using SQL standards. Refer to
Chapter 5, section 5.4, for
information on setting database
security.

AcuODBC Configuration Screen Changes A-9
A.2.6 File Alias Tab

A.2.7 Multi-company Tab

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

Table name

XFD

Data File

Write
Permission

None. With AcuXDBC, you define
file aliases when adding XFDs
to your system catalog with
xdbcutil. Refer to Chapter 5,
section 5.5.1.

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

Company

Data Directory

Write
Permission

None In AcuXDBC,
multi-company setup is
managed via wildcards or
assigning table ownership
using SQL commands.
Refer to Chapter 5,section
5.5.2, for details on two
methods available for setting
up multi-company data sets.

A-10 Compatibility Guide
A.2.8 AcuServer Tab

AcuODBC
variable

Corresponding AcuXDBC
variable

AcuXDBC Location/
Comments

AcuServer
Password

AcuServer Password

User name/Password

acuxdbc.cfg

AcuXDBC Setup screen,
General tab.

AcuXDBC uses a security
method based on SQL
standards, which involves
establishing user IDs and
passwords. Refer to Chapter
5, section 5.4.

NT Security None No longer applies. This
method is done
automatically.

International
Character
Handling

Default Map
File

DEFAULT_MAP_FILE acuxdbc.cfg

AcuServer Port AcuServer Port acuxdbc.cfg

Index

Symbols
$, directive syntax 3-14
*, directive syntax 3-14

A
abridged logging 5-41
Access 2000, accessing data from 8-27
AcuODBC

configuration screen changes A-4
directives 3-18
migrating from A-2

AcuServer configuration 4-28
AcuServer setup options 4-28
AcuServer tab A-10
AcuServer with AcuXDBC 2-6
ACUSERVER_PASSWORD configuration variable 4-28
ACUSERVER_PORT configuration variable 4-28
AcuXDBC Server, starting 5-29
AcuXDBC, installing on Windows Vista 5-6
acuxdbc.cfg file 4-2, 4-3

sample 4-22
ACUXDBC_HOST_LOGFILE_pid.log 5-41
acuxdbcs, stopping (command line) 5-32
addfile script 5-21
adding data source names (DSNs) 5-33
advanced options, configuration variables 4-4
Advanced tab

AcuODBC changes A-5
AcuXDBC Setup 5-37

ainit script 5-15

Index-2
aliases, setting up 5-23
ALPHA directive 3-15
alphanumeric data

as input 4-15, 4-16
as output 4-16, 4-18

ANSI-compliant directives 3-14
application errors 9-15
architecture 2-4
ASCII functions supported 7-38
asql.sh file 6-12
ASSIGN clause 5-23
assignment errors 4-11
axset.bat file 5-12

B
BINARY directive 3-16
buffer

maximum size for transaction log file 4-13
size used to aggregate send operations 4-26

buffers, indexed block 4-21

C
case, Vision filenames 4-7
catalog path 5-16
changing a user’s password 7-35
CHAR data type 7-8
CHAR_LENGTH function 7-39
CHECK constraint 7-4
CHR function 7-39
$CLASSPATH environment variable 5-12
clauses

ASSIGN 5-23
FILLER 3-43
FROM 7-28

 Index-3
GROUP BY 7-31
HAVING 7-32
OCCURS 3-7
ORDER BY 7-32
OTHER 3-42
REDEFINES 3-6, 3-38, 3-44
SELECT FROM 7-28
WHERE 7-29

client error messages 9-2
columns, making read-only 3-33
command-line query tool. See xdbcquery
commands

CREATE SYNONYM 7-7
CREATE TABLE 7-8
CREATE VIEW 2-8, 7-11

COMMENT directive 3-17
comments in SQL scripts 6-14
comparing values 7-40
components 2-2
CONCAT function 7-39
configuration

AcuServer 4-28
server 4-25

Configuration File field 5-36
configuration files

acuxdbc.cfg 4-2
creating new 4-6
introduction 4-2
net.ini 4-2
server 4-25

configuration variables
AcuServer 4-28
advanced options 4-4
general setup 4-4
listed 4-4
listed for server 4-26
logging setup options 4-5

Index-4
transaction processing options 4-5
Vision options 4-5

configuration variables, list of
ACUSERVER_PASSWORD 4-28
ACUSERVER_PORT 4-28
DEBUG_LOGFILE 4-6
DEBUG_LOGLEVEL 4-6
DEFAULT_MAP_FILE 4-29
DICTSOURCE 4-7, 4-9
FILE_CASE 4-7
FILE_PREFIX 4-7, 4-9
FILE_SUFFIX 4-9
FILENAME_WILDCARD 4-8
INVALID_NUMERIC_DATA 4-11
JULIAN_BASE_DATE 4-12
KEY_CONNECT 2-7, 4-26, 5-31
LOCKS_PER_FILE 4-12
LOG_BUFFER_SIZE 4-13
LOG_DEVICE 4-13
LOG_ENCRYPT 4-13
LOG_FILE 4-14
LOGGING 4-14
MAX_FILES 4-15
MAX_LOCKS 4-15
NULL_ALPHA_READ 4-15
NULL_ALPHA_WRITE 4-16
NULL_NUMERIC_PROCESSING 4-16
NULL_NUMERIC_WRITE 4-18
PACKETSIZE 4-26
READ_ONLY 2-8, 4-20
READ_TIMEOUT 4-26
RETURN_ERRNO 4-27
SECURITY_METHOD 4-30
TEMP_DIR 4-21
TRANSACTION_PROCESSING 4-21
TRANSACTIONS 4-21
V_BUFFERS 4-21

 Index-5
VISION_LOGGING_FILE 4-21
VISION_LOGGING_LEVEL 4-22
WRITE_TIMEOUT 4-27

constraints 7-4
CONVERT function 7-39
converting datetimes 7-47
converting numerics to char 7-45
copying DSNs 5-42
CREATE SYNONYM command 7-7
CREATE TABLE command 7-8
CREATE VIEW command 7-11
CREATE VIEW statement 2-8
creating XFD files 3-3
CURDATE function 7-40
CURTIME function 7-40

D
Data Definition Language 1-3
data file path 4-9
data filename extensions on UNIX/Linux servers 4-9
Data Manipulation Language 1-3
data sets

managing multiple 5-25
See also multi-company support

Data Source Administrator
DSNs managed by ODBC 5-34
overview of ODBC 5-33

Data Source Name field 5-36
data source names 5-33

adding 5-33
compatibility with earlier releases 5-33
file 5-34
system 5-34

data sources, non-numeric data in numeric fields 4-11
data types 7-8

Index-6
DATABASE function 7-40
database privileges, granting 7-18
database security 2-7
database tables, mapped to COBOL files 3-25
datatypes, valid 7-8
DATE directive 3-18

FY and RY formats 3-23
group items 3-20
Julian dates 3-20

dates, Julian 3-20
DATETIME data type 7-8
datetimes, converting 7-47
DAYNAME function 7-40
DB cursors 5-38
debug log 4-6
DEBUG_LOGFILE configuration variable 4-6
DEBUG_LOGLEVEL configuration variable 4-6
DECIMAL data type 7-8
DECODE function 7-40
default settings for scripts 5-12
DEFAULT_MAP_FILE configuration variable 4-29
defaults, XFD files 3-5
definitions, multiple record 3-6, 3-38
DELETE command 7-14
deleted records 4-11
deleting

positioned 7-15
searched 7-15

demonstration program 5-2
Description field 5-36
DICTSOURCE configuration variable 4-7

system catalog, specifying location of 4-9
directives

$ in indicator area 3-14
* in indicator area 3-14
syntax 3-14
using 3-11

 Index-7
directives, list of
ALPHA 3-15
ANSI compliant 3-14
BINARY 3-16
COMMENT 3-17
DATE 3-18
FILE 3-25
HIDDEN 3-26
NAME 3-28
NUMERIC 3-32
READ-ONLY 3-33
SUBTABLE 3-35
USE GROUP 3-16, 3-20, 3-36
VAR_LENGTH 3-16, 3-38
WHEN 3-38
XSL 3-47

directory, data file 4-9
DOUBLE data type 7-8
DROP INDEX command 7-15
DROP SYNONYM command 7-16
DROP TABLE command 7-17
DROP VIEW command 7-17
DSNs (data source names) 5-33

adding 5-33
three types of managed by ODBC Data Source Administrator 5-34

DUAL table 6-10
dynamic configuration 4-2

E
encryption 4-13

password 4-26
environment variables

$CLASSPATH 5-12
GENESIS_HOME 5-6

error code, OS 4-27

Index-8
error messages
client errors 9-2
server errors 9-6
SQL processing errors 9-9
Vision errors 9-14

errors, application 9-15
examples, XFD formation 3-8
Excel 2000 and 2003, accessing data from 8-21
extensions, data file 4-9

F
Fetch Buffer Size field 5-38
fields

identical names in 3-8
making read-only 3-33
mapping with XFD files 3-3
summary of XFD 3-9
unique names in 3-29

File Alias tab A-9
file aliases 5-23
FILE directive 3-25, 5-23
file DSN 5-34
file extensions, data files 4-9
FILE_CASE configuration variable 4-7
FILE_PREFIX configuration variable 4-9

Vision data files, specifying location of 4-7
FILE_SUFFIX configuration variable 4-9
filename case, UNIX/Linux 4-7
filename extensions, data files 4-9
FILENAME_WILDCARD configuration variable 4-8
files

creating XFD 3-3
samples demonstrating directives 3-12

files, XFD
comments in 3-17

 Index-9
defaults 3-5
FILLER data items 3-6
group items 3-6
identical field names 3-8
KEY IS phrase 3-5
locating 3-11
mapping fields 3-3
multiple record definitions 3-6
naming 3-10
OCCURS clause 3-7
REDEFINES clause 3-6

FILLER clause, WHEN directive 3-43
FILLER data items, XFD files 3-6
FLOAT data type 7-8
-Fo option 3-3
formation of data dictionaries (XFDs) 3-8
FROM clause 7-28
Full Logging field 5-41
functions

ASCII 7-38
CHAR_LENGTH 7-39
CHR 7-39
CONCAT 7-39
CONVERT 7-39
CURDATE 7-40
CURTIME 7-40
DATABASE 7-40
DAYNAME 7-40
DECODE 7-40
HOUR 7-41
IFNULL 7-41
INSTR 7-41
LCASE 7-43
LEFT 7-42
LENGTH 7-42
LOCATE 7-42
LTRIM 7-43

Index-10
NOW 7-43
NVL 7-43
POSITION 7-43
RIGHT 7-44
ROUND 7-44
RTRIM 7-44
SQRT 7-45
SUBSTR 7-45
SUBSTRING 7-45
SYSDATE 7-45
TO_CHAR 7-45
TO_DATE 7-47
TO_NUMBER 7-48
TRANSLATE 7-49
TRUNC 7-49
UCASE 7-50
USER 7-50

G
General tab A-4

AcuXDBC Setup 5-35
GENESIS tables, listed 6-4
GENESIS_AUTH table 2-8
GENESIS_AUTHS table 5-28
GENESIS_HOME environment variable 5-7
GENESIS_USERS table 2-8
genxconf.bat file 4-6
GRANT (database privileges) command 7-18
GRANT (object privileges) command 7-19
GRANT statement 2-8, 5-28
granting database privileges 7-18
granting object privileges 7-19
GROUP BY clause (SELECT statement) 7-31
group items

DATE directive 3-20

 Index-11
XFD files 3-6

H
HAVING clause (SELECT statement) 7-32
HIDDEN directive 3-26
Hide Errors field 5-41
Hide GPF Errors field 5-41
Hostname field 5-36
HOUR function 7-41
how XFDs are formed 3-8

I
identical field names, XFD files 3-8
IFNULL function 7-41
IGNORE_OWNER configuration variable 4-10
importing tables in Microsoft Access 8-28
Include Time field 5-41
indexed block buffers 4-21
INFORMATION_SCHEMA

COLUMNS table 6-8
TABLES table 6-9
VIEWS table 6-9

inner joins 7-28
INSERT command 7-21
installation directory 5-7
installing AcuXDBC

stand-alone 5-3
with AcuServer 5-5
with AcuXDBC Server 5-4

installing AcuXDBC on Windows Vista 5-6
INSTR function 7-41
INTEGER data type 7-8
integers

converting to datetimes 7-47

Index-12
returning char value 7-39
unsigned 3-32

INVALID_NUMERIC_DATA configuration variable 4-11
items

FILLER 3-6
group 3-6

J
Java applications

accessing data 8-32
source file sample 8-33
String URL syntax 8-33

JDBC, access to 5-12
joins 7-28

outer 7-29
Julian dates 4-12

DATE directive 3-20
JULIAN_BASE_DATE configuration variable 4-12

K
-k option 4-26
KEY IS phrase, XFD files 3-5
KEY_CONNECT configuration variable 2-7, 4-26, 5-31
kill process 5-32

L
LCASE function 7-43
LEFT function 7-42
LENGTH function 7-42
linking tables in Microsoft Access 8-28
list.txt file 5-21, 5-22, 5-25
loading XFDs

 Index-13
using a script 5-21
using xdbcutil 5-22

local processing configuration 2-4
LOCATE function 7-42
locating XFD files 3-11
LOCKS_PER_FILE configuration variable 4-12
log file 5-31

debug log 4-6
encryption 4-13
transaction log buffer size 4-13
transaction log device 4-13
transaction log encryption 4-13
Vision logging 4-21

Log Filename field 5-40, 5-41
LOG_BUFFER_SIZE configuration variable 4-13
LOG_DEVICE configuration variable 4-13
LOG_ENCRYPT configuration variable 4-13
LOG_FILE configuration variable 4-14
logging 5-31

transaction management 4-14
Vision 4-21, 4-22

LOGGING configuration variable 4-14
logging setup options, configuration variables 4-5
Logging tab, AcuXDBC Setup 5-40
logical cursors 5-38
LOGON mode of security, AcuServer 4-30
lower-case filenames on UNIX/Linux 4-7
LOW-VALUES

as input 4-15, 4-16
as output 4-16, 4-18

LTRIM function 7-43

M
map file, path 4-29
mapping fields, XFD files 3-3

Index-14
masking key 4-26, 5-31
MAX_FILES configuration variable 4-15
MAX_LOCKS configuration variable 4-15
Maximum Columns field 5-39
Maximum Cursors field 5-38
maximum files opened by AcuXDBC 4-15
Maximum Statements field 5-38
Memory Sort Pages field 5-38
Merge Buffer Size field 5-38
metadata 2-2
Microsoft Office

accessing data from Access 8-27
accessing data from Excel 8-21
accessing data from Word 8-3

multi-company DSNs 5-27
multi-company support 5-25

wildcards 4-8
Multi-company tab A-9
multiple company data 5-25
multiple record definitions 3-6, 3-38

N
NAME directive 3-28
NAMED-PIPE mode of security, AcuServer 4-30
names, field

identical 3-8
unique 3-29

naming objects 7-3
naming XFD files 3-10
native system security, AcuServer 4-30
net.ini file 4-2, 4-25

sample 4-27
Network driver field 5-36
non-numeric data 4-11
NOT NULL constraint 7-4

 Index-15
NOW function 7-43
null processing

LOW-VALUES as input 4-15, 4-16
LOW-VALUES as output 4-16, 4-18
SPACES as input 4-15, 4-16
SPACES as output 4-16, 4-18

NULL values, WHEN directive 3-46
NULL_ALPHA_READ configuration variable 4-15
NULL_ALPHA_WRITE configuration variable 4-16
NULL_NUMERIC_PROCESSING configuration variable 4-16
NULL_NUMERIC_WRITE configuration variable 4-18
numeric data

as input 4-15, 4-16
as output 4-16, 4-18

NUMERIC directive 3-32
numerics

converting to char 7-45
converting to datetimes 7-47

NVL function 7-43

O
object permissions catalog 5-17
object privileges 4-20

granting 7-19
revoking 7-23

OCCURS clause, XFD files 3-7
ODBC (Open Database Connectivity) 1-7

Data Source Administrator 5-33
options

-Fo 3-3
-k 4-26

ORDER BY clause (SELECT statement) 7-32
OTHER clause, WHEN directive 3-42
outer joins 7-29
output

Index-16
alphanumeric data 4-16, 4-18
numeric data 4-16, 4-18

overview
ODBC Data Source Administrator 5-33
WHEN directive 3-38

P
packet size, buffer 4-26
PACKETSIZE configuration variable 4-26
Password field 5-37
password, changing the user’s 7-35
passwords, AcuServer 4-28
path

data file 4-9
map file, AcuServer 4-29

performance 1-4
permissions on tables 5-28
phrases

FILLER, WHEN directive 3-43
OTHER, WHEN directive 3-42
REDEFINES, WHEN directive 3-38, 3-44

phrases, XFD files
KEY IS 3-5
OCCURS clause 3-7
REDEFINES clause 3-6

pinging AcuXDBC Server 5-31
Port field 5-36
port number 5-31

AcuServer 4-28
POSITION function 7-43
possibly nondeterministic queries 7-33
predicates 7-3

listed 7-29
PRIMARY KEY constraint 7-4
primary keys, number supported 8-2

 Index-17
privileges, revoking 7-23
PUBLIC domain 6-4

Q
query tool 1-4

See also xdbcquery

R
read/write permissions 2-8, 4-20
READ_ONLY configuration variable 2-8, 4-20
READ_TIMEOUT configuration variable 4-26
READ-ONLY directive 2-8, 3-33
REAL data type 7-8
record definitions, multiple 3-38
record locking 4-12, 4-15
REDEFINES clause

WHEN directive 3-38, 3-44
XFD files 3-6

remote access/local processing 2-6
remote name notation 4-14
remote processing configuration 2-5
RETURN_ERRNO configuration variable 4-27
REVOKE (database privileges) command 7-22
REVOKE (object privileges) command 7-23
RIGHT function 7-44
ROUND function 7-44
rounding values 7-44
rows, inserting into a table 7-21
RTRIM function 7-44

S
sample files for directives 3-12

Index-18
samples
acuxdbc.cfg file 4-22
net.ini file 4-27

scripts
addfile 5-21
anit 5-15
running with xdbcquery 6-14

scripts, modifying all in one place 5-12
security 1-4, 2-7

database 2-7
security method, AcuServer 4-30
SECURITY_METHOD configuration variable 4-30
SELECT command 7-25
SELECT list (SELECT statement) 7-26
SELECT, FROM clause 7-28
server configuration 4-25
server error messages 9-6
Server tab A-8
SET OPTION command 7-33
SET PASSWORD statement 7-35
setup options, AcuServer 4-28
setup.exe 5-6
single-instance server 2-5
SMALLINT data type 7-8
SPACES

as input 4-15, 4-16
as output 4-16, 4-18

special characters, mapping to decimal or hexadecimal equivalents 4-29
SQL

constraints 7-4
FROM clause (SELECT statemet) 7-28
GROUP BY clause (SELECT statement) 7-31
HAVING clause (SELECT statement) 7-32
joins 7-28
ORDER BY clause (SELECT statement) 7-32
predicates 7-3
SELECT list 7-26

 Index-19
WHERE clause (SELECT statement) 7-29
SQL commands, list of

CREATE SYNONYM 7-7
CREATE TABLE 7-8
CREATE VIEW 7-11
DELETE 7-14
DROP INDEX 7-15
DROP SYNONYM 7-16
DROP TABLE 7-17
DROP VIEW 7-17
GRANT 7-18
INSERT 7-21
REVOKE (database privileges) 7-22
REVOKE (object privileges) 7-23
SELECT 7-25
SET OPTION 7-33
UPDATE 7-36

SQL Logging field 5-41
SQL processing errors 9-9
SQL query tool 1-4
SQL statements

CREATE VIEW 2-8
GRANT 2-8

SQL syntax conventions, listed 7-2
SQRT function 7-45
square root function 7-45
stand-alone configuration 2-4
starting AcuXDBC Server 5-29
stopping AcuXDBC Server 5-32
stopping acuxdbcs (command line) 5-32
String URL syntax 8-33
stylesheet reference, including in XFD files 3-47
substitution characters 4-8, 5-25
SUBSTR function 7-45
SUBSTRING function 7-45
SUBTABLE directive 3-35
summary of XFD fields 3-9

SYNONYM 7-7, 7-16
syntax

directives and XFD files 3-14
xdbcsrvr 5-30

SYSDATE function 7-45
system architecture 2-4
system catalog 1-3, 1-5, 2-2

creating 5-14
DUAL table 6-10
GENESIS tables 6-4
loading with XFDs 5-21
overview 6-2
PUBLIC domain 6-4
structure of 6-3

system DSN 5-34
SYSTEM tables

DUAL 6-10
GENESIS 6-4

T
table ownership 5-17
table permissions 5-28
table rows, inserting 7-21
tables

constraints 7-4
creating 7-8
deleting rows from 7-14
dropping 7-17
linking versus importing in Microsoft Access 8-28
naming 7-3

TEMP_DIR configuration variable 4-21
terminate process 5-32
timeout

read 4-26
write 4-27

 Index-21
TO_CHAR function 7-45
TO_DATE function 7-47
TO_NUMBER function 7-48
tool, query 1-4
Total Sort Pages field 5-38
trace file, Vision 4-22
Tracing tab A-7
transaction management logging

enabling 4-14
specifying name of log file for 4-14

transaction processing options, configuration variables 4-5
transaction processing support 4-21
TRANSACTION_PROCESSING configuration variable 4-21
TRANSACTIONS configuration variable 4-21
TRANSLATE function 7-49
translating values 7-49
TRUNC function 7-49
truncating data 4-11
truncating values 7-49

U
UCASE function 7-50
UNIQUE constraint 7-4
unique field names 3-29
Unique Filenames field 5-41
universal configuration 4-2
UNIX/Linux

filename cases 4-7
UNIX/Linux servers, data file name extensions 4-9
unsigned integers, NUMERIC directive 3-32
UPDATE command 7-36
upper-case filenames on UNIX/Linux 4-7
USE GROUP directive 3-16, 3-20, 3-36
USER function 7-50
user/group catalog 5-17

Index-22
Username field 5-36
using AcuXDBC 5-6

V
V_BUFFERS configuration variable 4-21
VAR_LENGTH directive 3-16, 3-38
VARCHAR 7-8
variables. See configuration variables
views

creating 7-11
dropping 7-17

Vision error messages 9-14
Vision logging 4-21, 4-22
Vision options, configuration variables 4-5
Vision tab A-6
VISION_LOGGING_FILE configuration variable 4-21
VISION_LOGGING_LEVEL configuration variable 4-22
vortex.jar 5-12

specifying in CLASSPATH 8-32

W
WHEN directive

FILLER clause 3-43
NULL values 3-46
OTHER clause 3-42
overview 3-38
REDEFINES clause 3-38, 3-44

WHERE clause (SELECT statement) 7-29
WHERE CURRENT OF 7-14
wildcards

multi-company support 4-8, 5-25
substitution 5-25

Windows Vista, installing AcuXDBC on 5-6
Word 2000 and 2003, accessing data 8-2

 Index-23
writable data sources and non-numeric data in numeric fields 4-11
WRITE_TIMEOUT configuration variable 4-27

X
xdbcquery 1-4

connecting using asql.bat/asql.shon 6-12
running scripts 6-14
use of 6-10

XDBCQuery commands 6-13
xdbcsrvr daemon 5-30
xdbcsrvr, syntax 5-30
xdbcutil utility 5-14

command syntax 5-16
using to load XFDs 5-22

XFD files
creating 3-3
defaults 3-5
FILLER data items 3-6
group items 3-6
identical field names 3-8
KEY IS phrase 3-5
locating 3-11
mapping fields 3-3
multiple record definitions 3-6
naming 3-10
OCCURS clause 3-7
REDEFINES clause 3-6
XML-style headers 3-47

XFDs 2-2
formation of 3-4, 3-8
loading into system catalog 5-21
summary of fields 3-9

Index-24

	Contents
	Introduction
	1.1 Overview
	1.2 Features of AcuXDBC
	1.2.1 Relational Database Features
	1.2.2 Data Access Features

	1.3 Changes in AcuXDBC
	1.3.1 System Catalog and the Role of XFDs

	1.4 Product Requirements
	1.5 What Is ODBC/JDBC?
	1.6 Technical Services

	AcuXDBC Architecture
	2.1 AcuXDBC Design
	2.1.1 Basic Components

	2.2 System Architecture
	2.2.1 Local Processing (Stand-alone)
	2.2.2 Remote Processing (Network or Client/Server)
	2.2.3 Remote Access/Local Processing (AcuXDBC with AcuServer)

	2.3 Security
	2.3.1 Network Security Layer
	2.3.2 Database Security Layer

	Preparing Your COBOL
	3.1 Mapping COBOL Data Items and Database Fields
	3.2 The Role of XFDs
	3.2.1 Creating XFD Files
	3.2.2 How XFDs Are Formed
	3.2.3 Defaults Used in XFD Files
	3.2.4 Examples of Default Mapping
	3.2.5 Summary of XFD Fields
	3.2.6 Naming the XFD File
	3.2.7 How AcuXDBC Locates XFD Files

	3.3 Using Directives
	3.3.1 Sample Files and Examples
	3.3.2 Directive Syntax
	3.3.3 ALPHA Directive
	3.3.4 BINARY Directive
	3.3.5 COMMENT Directive
	3.3.6 DATE Directive
	3.3.7 FILE Directive
	3.3.8 HIDDEN Directive
	3.3.9 NAME Directive
	3.3.10 NUMERIC Directive
	3.3.11 READ-ONLY Directive
	3.3.12 SUBTABLE Directive
	3.3.13 USE GROUP Directive
	3.3.14 VAR_LENGTH Directive
	3.3.15 WHEN Directive
	3.3.16 XSL Directive

	Configuration
	4.1 Introduction
	4.2 AcuXDBC Configuration
	4.2.1 DEBUG_LOGFILE
	4.2.2 DEBUG_LOGLEVEL
	4.2.3 DICTSOURCE
	4.2.4 FILE_CASE
	4.2.5 FILENAME_WILDCARD
	4.2.6 FILE_PREFIX
	4.2.7 FILE_SUFFIX
	4.2.8 IGNORE_OWNER
	4.2.9 INVALID_NUMERIC_DATA
	4.2.10 JULIAN_BASE_DATE
	4.2.11 LOCKS_PER_FILE
	4.2.12 LOG_BUFFER_SIZE
	4.2.13 LOG_DEVICE
	4.2.14 LOG_ENCRYPT
	4.2.15 LOG_FILE
	4.2.16 LOGGING
	4.2.17 MAX_FILES
	4.2.18 MAX_LOCKS
	4.2.19 NULL_ALPHA_READ
	4.2.20 NULL_ALPHA_WRITE
	4.2.21 NULL_NUMERIC_READ
	4.2.22 NULL_NUMERIC_WRITE
	4.2.23 READ_ONLY
	4.2.24 TEMP_DIR
	4.2.25 TRANSACTIONS
	4.2.26 TRANSACTION_PROCESSING
	4.2.27 V_BUFFERS
	4.2.28 VISION_LOGGING_FILE
	4.2.29 VISION_LOGGING_LEVEL
	4.2.30 Sample “acuxdbc.cfg” File

	4.3 AcuXDBC Server Configuration
	4.3.1 KEY_CONNECT
	4.3.2 PACKETSIZE
	4.3.3 READ_TIMEOUT
	4.3.4 RETURN_ERRNO
	4.3.5 WRITE_TIMEOUT
	4.3.6 Sample “net.ini” File

	4.4 AcuServer Configuration
	4.4.1 ACUSERVER_PASSWORD
	4.4.2 ACUSERVER_PORT
	4.4.3 DEFAULT_MAP_FILE
	4.4.4 SECURITY_METHOD

	Installing AcuXDBC
	5.1 General Setup Procedures
	5.1.1 Quick Start - Demo Application
	5.1.2 Stand-alone Installations
	5.1.3 AcuXDBC Server Installations
	5.1.4 AcuServer Installations
	5.1.5 Using AcuXDBC

	5.2 Installing AcuXDBC/AcuXDBC Server
	5.2.1 Windows Installations
	5.2.2 UNIX/Linux Installations
	5.2.3 Providing JDBC Access
	5.2.4 Installed Executables and Scripts/Shells

	5.3 Creating a System Catalog and Views
	5.3.1 xdbcutil Syntax

	5.4 Granting Database Privileges
	5.5 Loading the System Catalog with Your XFDs
	5.5.1 Setting Up File Aliases
	5.5.2 Multi-company Support

	5.6 Setting Permissions on Your Vision Tables
	5.7 Starting AcuXDBC Server (Network Only)
	5.7.1 Pinging AcuXDBC Server
	5.7.2 Stopping AcuXDBC Server

	5.8 Setting Up Data Source Names (DSNs) on Client
	5.8.1 Adding a Data Source Name
	5.8.2 AcuXDBC Setup: General Tab
	5.8.3 AcuXDBC Setup: Advanced Tab
	5.8.4 AcuXDBC Setup: Logging Tab
	5.8.5 Copying DSNs to Other Network Machines

	The System Catalog
	6.1 Introduction
	6.2 System Catalog Structure
	6.2.1 PUBLIC
	6.2.2 GENESIS Tables
	6.2.3 INFORMATION_SCHEMA
	6.2.3.1 INFORMATION_SCHEMA.COLUMNS
	6.2.3.2 INFORMATION_SCHEMA.TABLES
	6.2.3.3 INFORMATION_SCHEMA.VIEWS

	6.2.4 DUAL

	6.3 Using the Command-line Query Tool
	6.3.1 Starting xdbcquery from the Command Line
	6.3.2 Starting xdbcquery from asql.bat / asql.sh
	6.3.3 xdbcquery Commands
	6.3.3.1 Running SQL Scripts

	Supported SQL Commands
	7.1 Introduction
	7.2 Conventions
	7.3 Limitations and Restrictions
	7.3.1 Object Names
	7.3.2 Predicates
	7.3.3 Constraints

	7.4 Summary of Supported SQL Commands
	7.5 Detailed SQL Support Descriptions
	7.5.1 CREATE INDEX
	7.5.2 CREATE SYNONYM
	7.5.3 CREATE TABLE
	7.5.4 CREATE VIEW
	7.5.5 DELETE
	7.5.6 DROP INDEX
	7.5.7 DROP SYNONYM
	7.5.8 DROP TABLE
	7.5.9 DROP VIEW
	7.5.10 GRANT (Database privileges)
	7.5.11 GRANT (Object privileges)
	7.5.12 INSERT
	7.5.13 REVOKE (Database privileges)
	7.5.14 REVOKE (Object privileges)
	7.5.15 SELECT
	7.5.15.1 SELECT list (SELECT statement)
	7.5.15.2 FROM clause (SELECT statement)
	7.5.15.3 Joins
	7.5.15.4 Outer Joins
	7.5.15.5 WHERE clause (SELECT statement)
	7.5.15.6 GROUP BY clause (SELECT statement)
	7.5.15.7 HAVING clause (SELECT statement)
	7.5.15.8 ORDER BY clause (SELECT statement)
	7.5.15.9 Possibly Nondeterministic Queries

	7.5.16 SET OPTION
	7.5.16.1 SET PASSWORD

	7.5.17 UPDATE

	7.6 Functions Supported by AcuXDBC
	7.6.1 ASCII
	7.6.2 CHAR_LENGTH
	7.6.3 CHR
	7.6.4 CONCAT
	7.6.5 CONVERT
	7.6.6 CURDATE
	7.6.7 CURTIME
	7.6.8 DATABASE
	7.6.9 DAYNAME
	7.6.10 DECODE
	7.6.11 HOUR
	7.6.12 IFNULL
	7.6.13 INSTR
	7.6.14 LEFT
	7.6.15 LENGTH
	7.6.16 LOCATE
	7.6.17 LCASE
	7.6.18 LTRIM
	7.6.19 NOW
	7.6.20 NVL
	7.6.21 POSITION
	7.6.22 RIGHT
	7.6.23 ROUND
	7.6.24 RTRIM
	7.6.25 SQRT
	7.6.26 SUBSTR
	7.6.27 SUBSTRING
	7.6.28 SYSDATE
	7.6.29 TO_CHAR
	7.6.30 TO_DATE
	7.6.31 TO_NUMBER
	7.6.32 TRANSLATE
	7.6.33 TRUNC
	7.6.34 UCASE
	7.6.35 USER

	Working with Windows and Java Applications
	8.1 Working With Windows Applications
	8.1.1 Accessing Data From Word 2000
	8.1.2 Accessing Data From Word 2003
	8.1.3 Accessing Data From Excel 2000 and 2003
	8.1.4 Accessing Data From Access 2000 and 2003

	8.2 Working with Java Applications

	Troubleshooting
	9.1 Introduction
	9.2 AcuXDBC Client Error Messages
	9.3 AcuXDBC Server Error Messages
	9.4 AcuXDBC SQL Processing Error Messages
	9.5 Vision File System Error Messages
	9.6 Application Errors

	Compatibility Guide
	A.1 Migrating from AcuODBC to AcuXDBC
	A.2 AcuODBC Configuration Screen Changes
	A.2.1 General Tab
	A.2.2 Advanced Tab
	A.2.3 Vision Tab
	A.2.4 Tracing Tab
	A.2.5 Server Tab
	A.2.6 File Alias Tab
	A.2.7 Multi-company Tab
	A.2.8 AcuServer Tab

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

