
A Guide to Interoperating with
ACUCOBOL-GT®

Version 8.1.3

Micro Focus
9920 Pacific Heights Blvd.

San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (IP) Ltd, 1988-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft, Windows, ActiveX, Internet Explorer, SQL Server, Visual Studio, ODBC, COM, and
.NET are trademarks or registered trademarks of Microsoft Corp. IBM, WebSphere, MQ Series,
TXSeries, and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. Sun, Solaris, Java, JavaServer
Pages, and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries. BEA, WebLogic, WebLogic Server, and Tuxedo are trademarks or registered
trademarks of BEA Systems, Inc. Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. SAP is a registered trademark of SAP AG. Sybase is a registered trademark of Sybase,
Inc. UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds. Netscape, Netscape Navigator, and Netscape
Communicator are registered trademarks and service marks of Netscape Communications
Corporation. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-UG-100501-Interop-8.1.3

Contents

Chapter 1: Introduction
1.1 Introduction.. 1-2
1.2 Documentation Overview .. 1-2
1.3 The extend Family of Products .. 1-4
1.4 Technical Services ... 1-6

Chapter 2: Working with Java Technology
2.1 COBOL/Java Interoperability.. 2-2
2.2 Calling COBOL from Java .. 2-3

2.2.1 Calling COBOL from a Java Command Line ... 2-4
2.2.1.1 Static Method RunCbl ... 2-6

2.2.2 Using the Java Compiler Options .. 2-6
2.2.3 Using the Java API, “CVM.jar” .. 2-7

2.2.3.1 CVM class ... 2-8
2.2.3.2 CALL_OPTIONS class ... 2-11
2.2.3.3 Sample use case... 2-13
2.2.3.4 Configuration and deployment .. 2-13
2.2.3.5 Security.. 2-16
2.2.3.6 Example of Java calling COBOL.. 2-16
2.2.3.7 Sample programs for Java interoperability.. 2-18
2.2.3.8 Building a Shared Library for HP-UX 11.0 .. 2-18

2.2.4 Using C$SOCKET .. 2-18
2.2.5 Using ACUCOBOL-GT’s CGI Extensions... 2-19
2.2.6 Using the Java Native Interface (JNI) ... 2-20
2.2.7 Using Named Pipes.. 2-21
2.2.8 Using AcuXDBC... 2-23

2.3 Calling Java from COBOL .. 2-23
2.3.1 Calling the C$JAVA Routine .. 2-23

2.3.1.1 Method signatures ... 2-24
2.3.1.2 Supported parameter types .. 2-27
2.3.1.3 Creating and using Java objects in COBOL.. 2-27
2.3.1.4 Creating and using Java arrays in COBOL ... 2-29
2.3.1.5 Using Java logging from COBOL... 2-33
2.3.1.6 Creating and using a JDBC ResultSet ... 2-36
2.3.1.7 Java Remote Method Invocation (RMI) interoperability 2-39
2.3.1.8 Handling Java exceptions .. 2-41
2.3.1.9 Releasing memory ... 2-42

Contents-ii
2.3.1.10 C$JAVA configuration variables ..2-43
2.3.1.11 Configuration and deployment ..2-44
2.3.1.12 Linking the runtime to “libjvm.sl” on HP-UX ..2-45
2.3.1.13 Example ...2-47
2.3.1.14 Running the Java interoperability sample programs2-47

2.3.2 Using C$SOCKET...2-48
2.3.3 Calling the Java Virtual Machine (JVM) DLL or Shared Library.......................2-49
2.3.4 Using C$SYSTEM ..2-49
2.3.5 Using Named Pipes..2-50

2.4 Mapping Java Data Types..2-50
2.5 J2EE Application Servers ..2-52

2.5.1 Working with J2EE Application Server Products ...2-53
2.6 Web Services..2-53

2.6.1 Providing Web Services from COBOL ...2-54
2.6.2 Consuming Web Services in COBOL ...2-55

Chapter 3: Working with Windows Technologies
3.1 COBOL and Windows ...3-2
3.2 Calling COBOL From Other Windows Programs...3-2

3.2.1 Using the ACUCOBOL-GT COM Server...3-4
3.2.1.1 Methods of the COM server object ...3-6

3.2.2 Calling the Runtime DLL ..3-10
3.3 Calling DLLs from COBOL ..3-13

3.3.1 Loading DLLs with the CALL Statement ...3-13
3.3.2 Loading DLLs with Configuration Variables ..3-17
3.3.3 Loading DLLs with the “-y” Runtime Option ...3-18

3.4 Working With Open Database Connectivity (ODBC)...3-19
3.4.1 What Is ODBC? ...3-19

3.5 Accessing the Windows API..3-21
3.5.1 Microsoft Documentation ..3-22
3.5.2 Useful Windows API DLLs...3-22
3.5.3 Calling a Windows API function from ACUCOBOL-GT3-23

3.6 Using Visual C++ .NET...3-29
3.6.1 Building a New Runtime ...3-29
3.6.2 User Interface Approaches...3-30

3.7 Windows-specific Features of ACUCOBOL-GT ..3-33
3.7.1 Windows-specific Library Routines ..3-35

 Contents-iii
Chapter 4: Using ActiveX Controls and COM Objects
4.1 Leveraging Ready-made Controls ... 4-2
4.2 Adding ActiveX Controls or COM Objects to Your COBOL Program.......................... 4-3
4.3 Properties, Styles, and Methods... 4-10

4.3.1 Passing COBOL Data to Methods or Properties as SAFEARRAYs................... 4-12
4.3.2 Using COBOL Data Types as ActiveX and COM Object Parameters................ 4-16

4.4 ActiveX and COM Events ... 4-18
4.4.1 Event Timing ... 4-21

4.5 ACTIVE-X Control Type .. 4-22
4.6 Name Clashes .. 4-23
4.7 Useful Files .. 4-24
4.8 Multiple Object Interfaces ... 4-24
4.9 ActiveX Library Routines.. 4-27
4.10 Distributing Applications Containing ActiveX Controls... 4-28
4.11 Deployment Guidelines ... 4-31
4.12 Creating COM Objects on Remote Network Servers .. 4-33
4.13 Qualified ActiveX Control and Object Names .. 4-34
4.14 Enumerators ... 4-35
4.15 ActiveX Color Representation... 4-35
4.16 ActiveX Error Handling... 4-36
4.17 ActiveX Debugging ... 4-36
4.18 ActiveX Troubleshooting .. 4-37
4.19 ActiveX Examples ... 4-37
4.20 AXDEFGEN Utility Reference ... 4-41

4.20.1 AXDEFGEN COPY Files ... 4-44

Chapter 5: Working With .NET Assemblies
5.1 COBOL and .NET ... 5-2
5.2 What Is .NET? ... 5-2
5.3 What Is an Assembly? ... 5-3
5.4 Calling COBOL from .NET... 5-3

5.4.1 Using the .NET MSIL Compiler Options.. 5-4
5.4.1.1 --netexe ... 5-5
5.4.1.2 --netdll ... 5-6
5.4.1.3 Data passing limitations .. 5-8
5.4.1.4 Example... 5-8

5.4.2 Using the .NET Interface Assembly, “wrunnet.dll” .. 5-13
5.4.2.1 CVM class ... 5-13
5.4.2.2 Properties... 5-18
5.4.2.3 Error codes... 5-20

Contents-iv
5.4.2.4 CompilerTypes ..5-21
5.4.3 Using the ACUCOBOL-GT COM Server...5-23

5.5 Calling .NET from COBOL...5-25
5.5.1 Using .NET assemblies in COBOL ...5-26

5.5.1.1 CoCreate Instance Failed Error ...5-29
5.5.1.2 Sample program...5-30
5.5.1.3 Limits and restrictions ...5-33
5.5.1.4 Optimizing the “AcuToNet.dll” interface..5-34
5.5.1.5 .NET control distribution and licensing...5-35
5.5.1.6 Name clashes ...5-36

5.5.2 NETDEFGEN Utility Reference ...5-36
5.5.2.1 Changing Default NETDEFGEN Settings ..5-40
5.5.2.2 NETDEFGEN COPY files ..5-42
5.5.2.3 Passing data as parameters...5-46
5.5.2.4 NETDEFGEN methods ...5-46
5.5.2.5 NETDEFGEN properties...5-48
5.5.2.6 NETDEFGEN events...5-49
5.5.2.7 NETDEFGEN enumerators ...5-49
5.5.2.8 NETDEFGEN errors ...5-50
5.5.2.9 Sample COPY file ...5-51
5.5.2.10 Sample controls ...5-54

5.6 Interacting with .NET Web Services ...5-55

Chapter 6: Working with C and C++ Programs
6.1 COBOL and C/C++ ...6-2
6.2 Matching C Data Items ..6-3
6.3 Calling C Programs From COBOL..6-5

6.3.1 Calling C Programs in DLLs or Shared Object Libraries......................................6-6
6.3.1.1 Loading shared libraries with the “-y” runtime option................................6-7
6.3.1.2 Loading shared libraries with the SHARED_LIBRARY_LIST configuration
variable ..6-8
6.3.1.3 Loading shared libraries with the CALL statement.....................................6-9
6.3.1.4 Calling routines in shared libraries with the CALL statement6-10

6.3.2 Calling C Programs via the Direct Method ...6-10
6.3.3 Calling C Programs via the Interface Method ...6-13

6.3.3.1 The “sub” interface ..6-14
6.3.3.2 The “sub85” interface ..6-17

6.3.4 Cancelling a CALLed C Program..6-19
6.3.5 Managing the Terminal..6-20
6.3.6 Relinking the Runtime System ..6-20

6.3.6.1 Linking on Windows systems..6-21

 Contents-v
6.3.6.2 Linking on UNIX and Linux systems ... 6-22
6.3.6.3 Linking on VMS systems .. 6-24
6.3.6.4 Linking on MPE/iX systems ... 6-24

6.4 Calling COBOL from C... 6-25
6.4.1 Include Files... 6-25
6.4.2 Using the C API... 6-26

6.4.2.1 Using the C API in Windows .. 6-26
6.4.3 Function Reference.. 6-27

6.5 Using the C API: Two Approaches ... 6-43
6.5.1 Simple Use Case for acu_cobol() .. 6-44
6.5.2 Calling the Runtime From a C Main Program .. 6-45

6.5.2.1 Creating the runtime .. 6-45
6.5.2.2 Initializing the runtime .. 6-46
6.5.2.3 Shutting down the runtime .. 6-47
6.5.2.4 Notes on COBOL verbs... 6-48

6.5.3 Calling COBOL Routines.. 6-50
6.5.3.1 Starting a COBOL main program.. 6-50
6.5.3.2 Calling COBOL subroutines that call C routines 6-50
6.5.3.3 Canceling a COBOL subroutine.. 6-53

6.5.4 Exception Handling ... 6-53
6.5.5 Unloading Programs from Memory... 6-54
6.5.6 Signal Handling ... 6-55

6.5.6.1 When to call acu_abend() .. 6-55
6.5.7 Setting a Debug Method with acu_cobol().. 6-56

6.6 Other Interface Paths for COBOL and C... 6-56
6.6.1 Connecting with C$SOCKET ... 6-56
6.6.2 Starting a Program with C$SYSTEM ... 6-57
6.6.3 Passing Data with Named Pipes .. 6-58

6.7 Tracking, Monitoring and Debugging Memory .. 6-60
6.7.1 Memory Debugging via C ... 6-60
6.7.2 Turning Memory Debugging Features On and Off ... 6-62
6.7.3 Reporting Allocated Blocks... 6-62
6.7.4 Getting Memory Amounts... 6-63
6.7.5 Testing Memory Boundaries ... 6-63

Chapter 7: Deploying ACUCOBOL-GT Applications on the Web
7.1 COBOL on the Web .. 7-2
7.2 Web Thin Client... 7-3
7.3 COBOL CGI Interface... 7-4
7.4 Web Runtime ... 7-5

Contents-vi
7.5 Internet Helper Application ...7-6
7.6 Web Browsing from COBOL ..7-6
7.7 COBOL Web Services ...7-7
7.8 Other Internet Solutions ...7-8

Chapter 8: Accessing ACUCOBOL-GT Applications from Mobile Devices
8.1 Overview of Mobile Computing ..8-2
8.2 Key Mobile Terminology...8-2

8.2.1 Languages ..8-3
8.2.2 Protocols ..8-3
8.2.3 Wireless Communication Standards ..8-4

8.2.3.1 The past and the present ..8-4
8.2.3.2 The future...8-5
8.2.3.3 3G status ..8-6

8.3 Mobile Platform Trends ...8-6
8.4 Mobile System Design Issues ..8-7

8.4.1 User Interface...8-7
8.4.2 Security ..8-8
8.4.3 Degree of Connectivity ..8-8
8.4.4 Record Locking..8-9

8.5 Service-oriented Architecture (SOA)...8-10
8.6 Methods for Mobile Computing ..8-10

8.6.1 ACUCOBOL-GT COM Server ...8-11
8.6.2 ACUCOBOL-GT CGI Language Extensions..8-11
8.6.3 ACUCOBOL-GT Runtime and Short Message Service (SMS) Processing........8-12

Chapter 9: Working with Transaction Processing Systems
9.1 Introduction..9-2
9.2 What Is Transaction Processing? ...9-2
9.3 IBM CICS ..9-3
9.4 Working with the IBM CICS Transaction Gateway..9-4

9.4.1 Including the Transaction Gateway Routines in the Runtime9-5
9.4.2 Connecting to CICS Applications..9-6

9.5 Working with IBM TXSeries CICS...9-7
9.5.1 How TXSeries CICS Works with ACUCOBOL-GT ..9-8
9.5.2 Modernizing Applications ...9-8

9.6 Working with UniKix Mainframe Rehosting Software ...9-9
9.7 Working With BEA Tuxedo ..9-10

9.7.1 Creating a Tuxedo Client Program ..9-13

 Contents-vii
9.7.2 Creating a Tuxedo Server .. 9-14
9.7.3 Running Your Tuxedo Application ... 9-14

9.8 Background Debugging Options ... 9-15
9.8.1 Background Debugging With an xterm... 9-15
9.8.2 Defining debugging methods with “ADM_t”.. 9-16

9.8.2.1 Using an xterm .. 9-16
9.8.2.2 Using a terminal .. 9-17
9.8.2.3 Using the thin client... 9-18

Chapter 10: Working with Messaging Middleware
10.1 Support for IBM WebSphere MQ ... 10-2
10.2 Support for IBM Shared Libraries ... 10-3
10.3 Support for WebSphere MQ COPY Files.. 10-3
10.4 Connecting to WebSphere MQ Applications ... 10-4

10.4.1 Adding WebSphere MQ Calls to Your ACUCOBOL-GT Program 10-4
10.4.1.1 Connecting to the queue manager ... 10-6
10.4.1.2 Opening specific queues.. 10-6
10.4.1.3 Reading messages from queues... 10-7
10.4.1.4 Writing messages to queues .. 10-9
10.4.1.5 Closing queues... 10-10
10.4.1.6 Disconnecting from the queue manager .. 10-11

10.4.2 Setting Up Working-Storage ... 10-11
10.4.3 Compiling Your Application ... 10-12
10.4.4 Configuring the Runtime and Environment .. 10-12

Chapter 11: Working with Non-Vision Data
11.1 Introduction.. 11-2
11.2 Working with XML Data... 11-3

11.2.1 XML Concepts... 11-4
11.2.1.1 XML documents.. 11-5
11.2.1.2 XML parsers.. 11-10
11.2.1.3 Usage ... 11-10

11.2.2 The XML-to-FD Utility... 11-12
11.2.2.1 xml2fd output .. 11-12
11.2.2.2 xml2fd command options .. 11-14

11.2.3 The AcuXML Interface ... 11-16
11.2.3.1 Data dictionaries.. 11-18
11.2.3.2 AcuXML configuration variables.. 11-19

11.2.4 Using AcuXML ... 11-20
11.2.4.1 AcuXML output structures.. 11-23

Contents-viii
11.2.4.2 Restrictions ..11-24
11.2.5 AcuXML Error Reporting ...11-26
11.2.6 Using the C$XML Routine..11-27

11.2.6.1 General procedure..11-28
11.2.6.2 Understanding C$XML terminology...11-29
11.2.6.3 Parsing an XML file ..11-31
11.2.6.4 Moving to an element ..11-33
11.2.6.5 Retrieving data...11-34
11.2.6.6 Adding, modifying, or deleting data..11-35
11.2.6.7 Writing a file..11-35
11.2.6.8 Releasing the parser...11-36
11.2.6.9 Retrieving errors ..11-36
11.2.6.10 Retrieving attributes...11-37
11.2.6.11 Retrieving comments ...11-38
11.2.6.12 C$XML examples..11-38

11.3 Working with Relational Data ...11-42
11.3.1 Acu4GL Interface ..11-42
11.3.2 Embedded SQL..11-43

11.3.2.1 Embedding SQL statements into ACUCOBOL-GT..............................11-43
11.3.2.2 Supported ESQL pre-compilers...11-44

11.4 Working with ODBC Data...11-45
11.5 Working with File Systems like C-ISAM and KSAM ..11-45
11.6 Working with an EXTFH Interface ...11-46

11.6.1 Using the EXTFH Interface ...11-46
11.6.2 Making EXTFH Libraries Available to the Runtime11-46

11.6.2.1 Accessing files through EXTFH..11-47
11.6.2.2 Searching for function names ..11-48
11.6.2.3 Setting libraries for indexed, relative, and sequential files....................11-49
11.6.2.4 Statically linking EXTFH-compatible libraries.....................................11-50

11.7 File System Configuration ...11-50
11.8 File System Initialization ...11-52

Index

1
 Introduction
Key Topics

Introduction ... 1-2
Documentation Overview ... 1-2
The extend Family of Products ... 1-4
Technical Services.. 1-6

1-2 Introduction
1.1 Introduction

The extend® family of technologies includes many opportunities for
extending and enhancing your legacy applications, allowing you to integrate
that code with other enterprise information technology components
regardless of their platform, language, database, or network infrastructure.
You can combine our technologies in a number of ways to solve your
business issues, while protecting your valuable investment in legacy
applications. A Guide to Interoperating with ACUCOBOL-GT provides
information to help you facilitate this integration as the need arises.

1.2 Documentation Overview

This manual describes various methods that allow your ACUCOBOL-GT
applications to interoperate with technologies that provide enhanced
capabilities and functionality. Topics include

• “Chapter 2: Working with Java Technology” provides information that
can help your ACUCOBOL-GT applications interoperate with Java. The
chapter includes details about methods for calling COBOL from Java
and calling Java from COBOL. You can also learn about mapping Java
data types, J2EE application server technology, and Web services.

• In “Chapter 3: Working with Windows Technologies,” you learn how to
leverage Microsoft Windows technologies in your ACUCOBOL-GT
programs. The chapter includes information about calling dynamic link
libraries (DLLs), accessing the Windows Application Programming
Interface (API), and using some Windows-specific ACUCOBOL-GT
features.

• “Chapter 4: Using ActiveX Controls and COM Objects” describes how
to include Microsoft ActiveX controls and COM objects in your
ACUCOBOL-GT program.

• “Chapter 5: Working With .NET Assemblies” describes how to call
.NET assemblies from your ACUCOBOL-GT program and how to
invoke COBOL from a .NET assembly. It also discusses interacting
with .NET Web services from COBOL.

Documentation Overview 1-3
• “Chapter 6: Working with C and C++ Programs” provides information
about how your ACUCOBOL-GT applications can interoperate with C
and C++ programs. Learn about direct calls from C to COBOL and from
COBOL to C, interfacing to COBOL from C via the ACUCOBOL-GT C
API, and matching C data items.

• In “Chapter 7: Deploying ACUCOBOL-GT Applications on the Web,”
you can learn about our various technologies that help you deploy your
ACUCOBOL-GT applications on the Internet. The chapter includes
descriptions of the ACUCOBOL-GT Web Thin Client and Web
Runtime, our Common Gateway Interface (CGI) extensions, and more.

• “Chapter 8: Accessing ACUCOBOL-GT Applications from Mobile
Devices” explores the basic concepts of accessing COBOL programs
from mobile devices running non-COBOL applications. You receive
background information on mobile terminology, infrastructure, and
platform trends. Some mobile system design issues are covered, and a
sample mobile system with a COBOL back end is described.

• “Chapter 9: Working with Transaction Processing Systems” discusses
how ACUCOBOL-GT can interoperate with online transaction
processing (OLTP) systems. You learn about transaction processing in
general, and then find out how ACUCOBOL-GT can work with specific
transaction processing technologies.

• In “Chapter 10: Working with Messaging Middleware,” you learn how
to integrate ACUCOBOL-GT applications with message passing
middleware, specifically IBM WebSphere MQ (formerly MQ Series).

• In “Chapter 11: Working with Non-Vision Data,” you learn how
ACUCOBOL-GT applications can interoperate with external data
sources, including XML documents, SQL databases, ODBC-compliant
data sources, C-ISAM and KSAM files, and file systems that use an
EXTFH interface to access files.

Other manuals in the extend documentation set are referenced in this book as
well. These manuals may be accessed from support section of the Micro
Focus website or installed from your product media.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following versions of the Windows operating systems: Windows
XP, Windows Vista, Windows 7, Windows 2003, Windows 2007, Windows

1-4 Introduction
2008 R2. In those instances where it is necessary to make a distinction
among the individual versions of those operating systems, we refer to them
by their specific version numbers (“WindowsXP,” “Windows Vista,” etc.).

1.3 The extend Family of Products

Your strategy for interoperability may include one or more members of the
extend family of products. Brief descriptions of these technologies appear in
the following sections.

Acu4GL®

ACUCOBOL-GT uses Acu4GL libraries to access information stored in
relational database management systems (RDBMSs). Data dictionaries
generated by the compiler guide the libraries in mapping the field names and
data types that are passed between COBOL and the database engine. The
essence of Acu4GL libraries is that standard COBOL I/O statements are used
to access databases.

Acu4GL dynamically generates industry-standard SQL from COBOL I/O
statements. As the ACUCOBOL-GT runtime module is executing your
COBOL application, Acu4GL is running “behind the scenes” to match up the
requirements and rules of both COBOL and the RDBMS to accomplish the
task set by your application. This means that Acu4GL utilizes the full power
designed into the database engine.

ACUCOBOL-GT

ACUCOBOL-GT is an ANSI 1985 COBOL compiler designed to provide a
powerful development environment for a wide range of computers. Fast
compile speed, clear error messages, and a multi-window source level
debugger work together to provide a high performance, easy to use COBOL
development platform. Portable object code, a generic interface to a variety
of file systems, and a device-independent terminal interface help to simplify
the distribution of applications developed with ACUCOBOL-GT.

The extend Family of Products 1-5
In addition to portable object code, ACUCOBOL-GT can generate and
execute object files that contain native instructions for specific types of
processors. This enables you to optimize the use of CPU resources on the
host machine while maintaining full portability within the same family of
processors.

AcuXDBC™

AcuXDBC is a data management system, designed to integrate
ACUCOBOL-GT data files into a relational database-like environment.
AcuXDBC enables you to apply SQL and relational database concepts to
your COBOL data sources resulting in data that is accessed and managed in
much the same way as many of today’s popular relational database
management systems.

AcuXDBC lets you retrieve and update ACUCOBOL-GT’s Vision indexed
files, relative files, and sequential files from Windows-based applications
including Microsoft Word, Excel, and Access. Business Intelligence tools
such as Crystal Reports® Professional, and custom applications developed in
ODBC-supported environments such as Visual Basic® are supported as well.
With the enterprise edition, you can also retrieve data through Java
applications that utilize JDBC standards. Direct SQL access to your
ACUCOBOL-GT data is available in both the Windows and UNIX
environments.

AcuXDBC Server is an add-on to AcuXDBC that supports remote processing
on a UNIX/Linux or Windows server.

AcuConnect®

AcuConnect is a client/server technology that is an integral part of our
distributed computing solution. AcuConnect lets you implement a client/
server system in which the client piece can be as “thin” or as “thick” as you
need.

AcuConnect has two deployment environments. With AcuConnect's
distributed processing deployment, users can distribute application logic
between client and server machines in a way that best suits their needs.
AcuConnect users can also take advantage of our Thin Client technology,

1-6 Introduction
which lets you run the user interface (UI) portion of your application on a
graphical display host while the rest of the application and data reside on the
server.

AcuServer®

AcuServer is an add-on module that provides remote file access services to
ACUCOBOL-GT applications running on most UNIX, Linux, and Windows
TCP/IP based networks. AcuServer provides the ability to create and store
indexed, relative, and sequential data files on any UNIX, Linux, or Windows
NT/2000/2003/2008 server equipped with AcuServer. It also provides full
function remote access from supported clients to indexed, relative,
sequential, and object files stored on an AcuServer server.

AcuSQL®

AcuSQL is an add-on tool that supports the inclusion of embedded SQL
(ESQL) statements in ACUCOBOL-GT program source code. The AcuSQL
pre-compiler, in combination with the AcuSQL runtime library, allows your
ESQL COBOL programs to access IBM® DB2®, Microsoft® SQL Server,
and ISO/ANSI SQL92 compliant data sources.

1.4 Technical Services

For the latest information on contacting customer care support services go to:

http://www.microfocus.com/about/contact

For worldwide technical support information, please visit:

http://supportline.microfocus.com/xmlloader.asp?type=home

http://www.microfocus.com/about/contact/
http://supportline.microfocus.com/xmlloader.asp?type=home

2
 Working with Java
Technology
Key Topics

COBOL/Java Interoperability ... 2-2
Calling COBOL from Java.. 2-3
Calling Java from COBOL.. 2-23
Mapping Java Data Types ... 2-50
J2EE Application Servers.. 2-52
Web Services .. 2-53

2-2 Working with Java Technology
2.1 COBOL/Java Interoperability

Businesses want to deploy Java technology for a variety of reasons. They
include:

• The flexibility of JavaServer Pages™ for graphical front ends, Internet
portals, mobile devices, etc.

• The availability of an enterprise standard, Java2 Enterprise Edition
(J2EE™)

• The promise of application server technology from vendors such as
BEA, IBM, Sun, and Oracle

Despite the opportunities that Java affords, many businesses recognize that
their legacy applications have high value to them. They know that COBOL
runs their business. Their COBOL programs have been time-tested,
fine-tuned, and proven reliable and scalable. They have been custom-fitted
to their business processes.

Rather than replacing COBOL with Java, many organizations integrate their
legacy assets with the newer Java components.

Java scenario

A bank has a mission-critical loan processing application written in COBOL.
The bank wants to make the application accessible on a Web site as part of a
customer loan portal. The portal will be supported by an application server
running J2EE applications. The bank wants to take the existing COBOL
application and integrate it with the J2EE applications so that requests
coming in through the application server will be routed to and processed by
the COBOL application.

Calling COBOL from Java 2-3
2.2 Calling COBOL from Java

With ACUCOBOL-GT®, there are many ways to achieve interoperability
with Java. You can call COBOL directly from a Java command line or from
a Java application. If calling from a Java application, there are several ways
to do this:

• Use ACUCOBOL-GT’s Java compiler options to generate Java classes
that call your ACUCOBOL-GT program. Java programmers can then
invoke these classes as they would any native Java code.

• Use the Java native interface, “CVM.jar”, to interact with the COBOL
program at the API level. “CVM.jar” contains a singleton class, CVM,
that encapsulates the ACUCOBOL-GT runtime. With the CVM, the Java
programmer can programmatically instantiate an instance of the
ACUCOBOL-GT runtime and invoke a COBOL program. The
programmer can use other classes or methods of CVM to specify runtime
options and program options.

• Use the C$SOCKET library routine to facilitate interprocess
communication via sockets. C$SOCKET is a low-level option, but it is
very flexible.

• Use our CGI extensions. The Java programmer can use CGI to call a
remote COBOL procedure through a Web server.

• Use the Java Native Interface (JNI) to call the ACUCOBOL-GT runtime
dynamic link library (DLL) in Windows or shared library in UNIX.

• Use named pipes to pass data between your COBOL and Java
applications if they reside on the same host machine. Passing data
through named pipes is a low-level solution requiring the development
of C code. Named pipes are a good option for legacy applications that
perform strictly file I/O.

• Use AcuXDBC™ to access COBOL Vision data from a Java Database
Connectivity (JDBC)-enabled application.

2-4 Working with Java Technology
2.2.1 Calling COBOL from a Java Command Line

You can call COBOL from a Java command line and without having to write
a Java program. This is done by specifying a Java command line that calls the
ACUCOBOL-GT Java Native Interface “CVM.jar”, specifies the path to the
ACUCOBOL-GT runtime, and passes an ACUCOBOL-GT runtime
command.

Syntax
java -cp path-to-CVM.jar com.acucorp.acucobolgt.runcbl
--acugt path-to-AcuGT-runtime [java-options]
runtime-command-line path-to-cobol-program

Syntax Definitions and Parameters

java -cp path-to-CVM.jar
com.acucorp.acucobolgt.runcbl

Required syntax for calling the
AcuGT CVM.

--acugt Required parameter that brings in
the AcuGT runtime.

path-to-AcuGT-runtime Required syntax that specifies the
location of the AcuGT runtime.

java-options Optional parameters described in
the next table.

runtime-command-line Any valid runtime command line
options. See the ACUCOBOL-GT
User’s Guide, Section 2.3 for details
on runtime command lines.

cobol-program The name of the COBOL program
to run.

java-options Description

--log Creates a log

--logfile Creates a log file

--verbose Creates detailed log

Calling COBOL from Java 2-5
Syntax Example

The following is a sample Java command line for calling a COBOL program
named “tour”.
Java -cp "C:\Program
Files\Acucorp\Acucbl811\AcuGT\bin\CVM.jar"
com.acucorp.acucobolgt.runcbl --acugt "C:\Program
Files\Acucorp\Acucbl811\AcuGT\bin" -dle xxx "C:\Program
Files\Acucorp\Acucbl811\AcuGT\bin\tour"

--lib There is a default list of libraries that
automatically get loaded for both UNIX and
Windows. On most systems the Java runtime
will determine the correct list to load. The
default library lists on UNIX is:

libacme,libacuterm,libvision,libclnt,libaxml,lib
srvmgmt,libruncbl

The default list on Windows is:
acme,atermmgr,avision5,libexpat,axml32,wrun
32

On some systems such as HP-UX it may be
required to specify these files manully by using
the --lib option. The library names must be
separated by either commas or semi-colons.The
library names should also be specified in the
order given above.

In most UNIX and Windows cases, it should
not be necessary to use this option.

--libext Used to specify the library name’s file
extension. This option may be needed on
certain systems such as HP-UX. In most UNIX
and Windows cases, it should not be necessary
to use this option.

java-options Description

2-6 Working with Java Technology
2.2.1.1 Static Method RunCbl

It also possible to call the ACUBOBOL-GT Java command line functionality
from another Java program by calling the static method RunCbl in runcbl
class, and passing a Java String array that contains a valid runtime command
line and logging switches.

There are two versions of the static method RunCbl.This version takes
command line arguements only:

RunCbl(String[])

This version takes command line arguemnts and linkage section parameters
as object array:

RunCbl(String[], Object[])

2.2.2 Using the Java Compiler Options

There are two compiler options that make it easy for you to provide COBOL
services to a Java program:

 --javaclass

When you specify the “--javaclass” option at compile time, the compiler
generates a “.java” file in addition to a “.acu” file. The “.java” file has the
same prefix as the “.acu” file and is placed in the same directory. This “.java”
file is a Java class that calls the COBOL program being compiled. Java
programmers can then invoke this class as they would any native Java code.

Compiler Option Description

--javaclass Generates a Java class that calls your COBOL
program

--javamain Generates a Java class with a main method

Calling COBOL from Java 2-7
--javamain

Same as “--javaclass” except “--javamain” generates a class with a main
method added.

2.2.3 Using the Java API, “CVM.jar”

Another way to call COBOL from Java is to use the application programming
interface (API) contained in the Java archive, “CVM.jar”. This interface can
be used by Java developers to call COBOL functionality (programs, entry
points, etc.) from their Java class.

Note: This feature is available only to shared library or DLL versions of
the ACUCOBOL-GT runtime. On Windows, the DLL version is
automatically available. To see if this feature is available to you on UNIX,
type “ls lib” from the ACUCOBOL-GT installation directory. If you see the
filename “libruncbl.so” or “libruncbl.sl”, then the feature is available. For
instructions on creating a shared library for HPUX 11.0, see section 2.2.3.8.

“CVM.jar” consists of two main classes:

Note that you can call COBOL from Java locally or remotely. You can even
have the runtime execute remotely without a COBOL object executing on the
client. All you need on the client is a Java program and a runtime. For this
to work, you set CODE_PREFIX in the configuration file that you provide
with the runtime initialization to point to a remote server hosting your
COBOL application. The remote server must also be running AcuConnect.

Class Description

CVM CVM is a singleton class representing the
ACUCOBOL-GT runtime. This class allows Java
developers to programmatically manage the
ACUCOBOL-GT runtime, giving them low-level
control of COBOL objects from Java.

CALL_OPTIONS This options class is used for setting options for each
called COBOL program.

2-8 Working with Java Technology
AcuConnect is able to execute a COBOL object remotely and share data with
the local runtime. For more information on executing remote COBOL
programs with AcuConnect, please refer to the AcuConnect User’s Guide.

2.2.3.1 CVM class

CVM is a Java class representing the ACUCOBOL-GT runtime. The CVM
class exposes public methods for setting runtime options, calling and
cancelling programs, getting object libraries, and much more.

The following table contains a description of each method. Please note that
the get method returns the current value of a particular property or string.
The set method sets the string or property value. For example,
“setErrorsOut” sets the name of the file to which to send error messages, and
“getErrorsOut” returns the filename that is currently set for the error log.

Boolean properties like TerminalInit are set to false by default. If you want
to set a boolean property to true, then you call the set method for that
property. For example, TerminalInit is set to false by default, meaning that
terminal initialization is not inhibited. If you want to inhibit terminal
initialization, set TerminalInit to true by calling “setTerminalInit” passing in
true. Call “getTerminalInit” to see what boolean value is currently set for this
property.

Public Method Description

initialize(RT_OPTS options) Initializes the ACUCOBOL-GT CVM

initialize(String cmdLine) Initializes the CVM with
command-line options

callProgram(String name, Object
params[], CALL_OPTIONS options)

Calls the named COBOL program
using specified parameters and
program options

cancelAllPrograms() Cancels all programs

cancelProgram(String name) Cancels the named program and holds
it in memory

unloadAllPrograms() Empties memory of all programs

Calling COBOL from Java 2-9
unloadProgram(String name) Empties memory of the named
program

shutdown() Shuts down the CVM

CVM GET_INSTANCE() Returns the instance of the CVM in this
process

CVM GET_INSTANCE(String
logPropertiesFile)

Specify a Java String that is the name
of the logging properties file. This
enables you to use a different file
which is not the default Java logging
properties file.

CVM GET_INSTANCE(String
logPropertiesFile, String libLoc, String
ext)

The first String parameter has the same
meaning as the previous
GET_INSTANCE. The second String
parameter is the location of the Acu
shared libraries. On windows, this is
where the acu dlls are installed (
“c:\Program
Files\Acucorp\Acucbl810\AcuGT\bin.
The third parameter is the extension of
the shared libraries – on windows the
extension is “.dll”, on linux it is “.so”,
and on some versions of HP-UX it is
“.sl”.

setLog(Logger log) Overrides the default log with a
user-specified log

StatusInfo GetStatusInfo() Checks the status of a called
COBOL program that has finished
running. Use StatusInfo as
follows:
class StatusInfo {
 public long cobol_return_code;
 public int exit_code;
 public int signal_number;
 public int call_error;
 public String exit_msg;};

getCVMError() Gets the last error message of the CVM
object class

Public Method Description

2-10 Working with Java Technology
getLastErrorMsg() Returns the last error message string
from the runtime

get/setSwitches() Gets or sets the list of Special Names
switches to turn on

get/setConfigFile() Gets or sets an alternate configuration
file

get/setErrorsOut() Gets or sets an error messages file

get/setErrorsAppend() Gets or sets a file to append error
messages to

get/setKeyFile() Gets or sets a keyboard input file

get/setImport() Gets or sets a variable for importing
graphical screens

get/setPlays() Gets or sets a file of input keystroke
scripts

get/setDisplayOut() Gets or sets a file for display output

get/setDisplayAppend() Gets or sets a file to append display
output

get/setDebugCmds() Gets or sets a file containing debugger
commands

get/setTerminalOut() Gets or sets a file to capture terminal
output

get/setObjLib() Gets or sets an object file library

get/setEmbeddedLib() Gets or sets a configuration file from a
COBOL object library

get/setTerminalInit() Inhibits terminal initialization

get/setCGIWarnings() Suppresses warning messages in CGI
programs

get/setIgnoreSignals() Ignores terminal hang-up signals

get/setListConfig() Lists contents of the configuration file

get/setNoSaveDebug() Prevents the debugger from reading
and writing adb

get/setSafeMode() Runs in safe mode

Public Method Description

Calling COBOL from Java 2-11
To set options in the CVM class (i.e., to set runtime options), use the specific
“setOption” method such as “setConfigFile” and the value to set. You can
also call “setOption” with the option name passed as a string.

Call “cvm.initialize” after setting options. After “initialize” is called, setting
options has no effect until you call “initialize” again.

2.2.3.2 CALL_OPTIONS class

The CALL_OPTIONS class represents the options for each called COBOL
program. If you want to pass program options to the “cvm.callProgram”
method that runs the COBOL program, create a CALL_OPTIONS object,
then add options to it. The CALL_OPTIONS class is structured as follows:
class CALL_OPTIONS {

public String GetOption(String key);
public void SetOption(String key, String value);

};

Valid call options include:

get/setNonNumeric() Suppresses warnings when
non-numeric data is used as numeric
data

get/setExtendedError() Displays extended error codes for file
error “30”

get/setDumpMem() Dumps memory for memory access
violations

get/setThrowErrors() Displays error message text in a
MessageBox

get/setCharToGui() Converts character screens to GUI
equivalent

get/setZipErrorFile() Compresses the error file

get/setLinkageLength() Disables Linkage item length test

Public Method Description

2-12 Working with Java Technology
• cache – an unsigned value that determines whether the runtime should
maintain the program in a memory cache after it has been canceled. This
parameter is useful for application servers like CICS that allow each
program to be configured as resident or nonresident.

If “cache” is FALSE (“0”), the runtime removes the program from
memory and sets the Working-Storage to its initial state on subsequent
calls. If “cache” is TRUE (“1”), it marks the program as “cached” and
resets Working-Storage for the next call; the program remains in
memory according to the caching rules. For information on managing
logical and physical cancels that may affect the behavior of “cache”,
refer also to the LOGICAL_CANCELS configuration variable in
Appendix H of the ACUCOBOL-GT documentation set.

• debug_method (-dn) where n is 0-3:

0 = ADM_NONE for no debugging
1 = ADM_XTERM to debug using a new xterm
2 = ADM_TERMINAL to debug using an existing terminal through
runcbl
3 = ADM_THINCLIENT to debug using a waiting thin client

Based on the debug_method selected, you may need to also specify
debug_method_string.

• debug_method_string – a char* that sets the display setting for the
debug_method

For ADM_XTERM, set to the Xservername:displaynumber of the xterm
or set to NULL to allow the xterm to use the default display given by the
DISPLAY environment variable. For ADM_TERMINAL, set the string
to the tty device on which you will execute runcbl. For
ADM_THINCLIENT, set to client:port where the client is the host on
which acuthin is executing and port is the port on which it is listening.

Note: The value of debug_method_string overrides the value, if any,
in the DISPLAY configuration variable for the xterm.

See section 9.8, “Background Debugging Options,” for more
information on background debugging.

Calling COBOL from Java 2-13
• no.stop – an unsigned input value that, when set to “1”, causes STOP
RUN to be ignored.

• program.name – the name of the COBOL program being called

The CALL_OPTIONS class contains a linkage_signature property that
describes the data in the linkage section. For example, a linkage_signature of
“X45X20SSIJ” describes two PIC X items of 45 and 20 bytes respectively,
two shorts, an integer, and a long.

The linkage_signature ensures that there is enough memory for Java strings
to get passed in, even when the Java string has a shorter length than the PIC
X data item in the linkage section. For example, a Java string of length 10
can be passed into a PIX X(45) data item. In this case, 45 bytes are allocated
to memory, not 10 bytes.

2.2.3.3 Sample use case
CVM cvm = CVM.GET_INSTANCE();
cvm.setErrorsOut("/tmp/errfile");
cvm.setConfigFile("c:/myproject/config");
cvm.initialize();

CALL_OPTIONS co = new CALL_OPTIONS();
co.setOption("debug_method", "1");

Object objInt = new Integer(1);
Object objString = new String("Test String Parameter");
Object params[] = {
objInt,
objString
};
cvm.callProgram("TestJavaToCobol", params, co);
cvm.cancelProgram("TestJavaToCobol");
cvm.shutdown();

2.2.3.4 Configuration and deployment

To call COBOL from Java using the CVM, perform the following steps:

1. Install and correctly configure the ACUCOBOL-GT runtime.
Optionally, install AcuBench® if the system will also be used for
COBOL development.

2-14 Working with Java Technology
2. Install and correctly configure a Java Runtime Environment (JRE)
Version 1.4.2 or later. Optionally, install a J2SE Software Developer’s
Kit (SDK) if the same system will also be used for Java development.

3. Place the path to the JRE /bin directory in the PATH environment
variable. Here is an example:

PATH =D:/j2sdk1.4.2_04/bin.

If the ACUCOBOL-GT installation directory is not the current directory,
then that directory should also be placed on the path. The runtime path
must be correctly configured so that a call to LoadLibrary(“wrun32.dll”)
or loading the shared library “libruncbl.so” succeeds.

4. Place the path to “CVM.jar” in the CLASSPATH environment variable.
Also ensure that the class or JAR (Java Archive) file that contains the
declaration of main is included in the classpath. For JAR files, include
the filenames in the classpath. For class files, include the directory
where the class files reside. Here is a Windows example:

CLASSPATH=d:\cobol7\bin\acuUtilities.jar;d:\cobol7\bin
\CVM.jar;c:\cobol7\JavaProject

For UNIX platforms, use a colon as a delimiter instead of a semicolon.

5. Add the location of the runtime DLLs and shared libraries to the
variable LD_LIBRARY_PATH. For example, on Windows:

LD_LIBRARY_PATH=C:\Program
Files\Acucorp\Acucbl800\AcuGT\bin

On UNIX or Linux, the shared libraries are located in /AcuGT/lib.

6. Do one of the following:

a. Place a copy of the COBOL program to be called in the same
directory as the ACUCOBOL-GT runtime. This would be the
compiled “.acu” file that contains the COBOL program.

b. Pass the fully qualified filename of the COBOL program to be
called to the runtime.

c. Use a configuration variable to identify the location of the COBOL
program.

Calling COBOL from Java 2-15
7. Ensure that all configuration options located in the configuration file
are set up correctly. This includes the location of the JRE, preloading
the JVM, and the command line that will be passed to the JVM.

8. The Java class being used to call COBOL must provide a main
function such as this:

public static void main(String[] args)

9. The Java program calling COBOL must include an import statement
that imports the ACUCOBOL-GT Java class that is used. Here is an
example:

import com.acucorp.acucobolgt.*;

10. The Java program calling COBOL must declare two objects: one of
type CVM and one of type CALL_OPTIONS. The following is sample
Java code that shows how to call a COBOL program, passing two
parameters, using the “CVM.class”:

CVM cvm = CVM.GET_INSTANCE();
cvm.setErrorsOut("/tmp/errfile");
cvm.setConfigFile("c:/myproject/config");
cvm.initialize();

CALL_OPTIONS co = new CALL_OPTIONS();
co.setOption("debug_method", "1");

Object objInt = new Integer(1);
Object objString = new String("Test String Parameter");
Object params[] = {
objInt,
objString
};
cvm.callProgram("TestJavaToCobol", params, co);
cvm.cancelProgram("TestJavaToCobol");
cvm.shutdown();

11. The COBOL program being called must provide a Linkage Section that
matches the order and type of the Java parameters passed in the Java
Object array. This is done by the COBOL programmer. Here is an
example of a Linkage Section that does this for the above program:

linkage section.
77 test-integer-parameter usage is signed-int.
77 test-string-parameter pic x(21) value spaces.

2-16 Working with Java Technology
2.2.3.5 Security

The CVM class in “CVM.jar” supports the default security manager class in
Java, known as java.lang.SecurityManager. For information on this class or
overriding the default security manager, please refer to the Java API
documentation provided by Sun Microsystems.

2.2.3.6 Example of Java calling COBOL

Java program
import com.acucorp.acucobolgt.*;

public static void main(String[] args) throws IOException {
 try{
 CVM cvm = CVM.GET_INSTANCE();
 cvm.setErrorsOut("/tmp/errfile");
 cvm.setConfigFile("c:/myproject/config");
 cvm.initialize();

 CALL_OPTIONS co = new CALL_OPTIONS();
 co.setOption("debug_method", "1");

 int intParam = 1;
 Integer objInt = new Integer(intParam);

 byte byteParam = 'a';
 Byte objByte = new Byte(byteParam);

 char charParam = 'b';
 Character objChar = new Character(charParam);

 Object params[] = {
 objInt,
 objByte,
 objChar
 };
 cvm.callProgram("TestJavaToCobol", params, co);
 cvm.cancelProgram("TestJavaToCobol");

 objInt = (Integer)params[0];
 objByte = (Byte)params[1];
 objChar = (Character)params[2];

Calling COBOL from Java 2-17
 System.out.println("COBOL changed value to " +
 objInt.intValue());
 System.out.println("COBOL changed value to " +
 objByte.byteValue();
 System.out.println("COBOL changed value to " +
 objChar.charValue());

 cvm.shutdown();
 } catch (Exception e){
 e.printStackTrace();
 }
}

COBOL program
identification division.
program-id. TestJavaToCobol.

data division.
working-storage section.
COPY "java.def".
01 status-val pic 9(02) value zero.

linkage section.
01 integer-parameter usage is signed-int.
01 byte-parameter pic x.
01 char-parameter pic x.

procedure division
 using integer-parameter, byte-parameter,
 char-parameter.

main-logic.
 move 3 to integer-parameter.
 move "d" to byte-parameter.
 move "e" to char-parameter.
 exit program.

2-18 Working with Java Technology
2.2.3.7 Sample programs for Java interoperability

12. Your ACUCOBOL-GT distribution includes Java interoperability
sample programs. You will find them in the \acugt\sample\java\
directory where ACUCOBOL-GT is installed. You will also find a text
file containing detailed instructions on runnning these sample
programs.

2.2.3.8 Building a Shared Library for HP-UX 11.0

Because we do not offer a shared library distribution of ACUCOBOL-GT on
HP-UX 11.0 or before, customers who want to use the Java API feature need
to create the shared library manually. To do so, follow these instructions:

1. Add the following five lines to the end of $ACUCOBOL/lib/Makefile.
Note that the whitespace before the fourth and fifth lines must be tabs,
not spaces.

SHAREDLIB_LDFLAGS = -s +b $(ACUVERSPATH)/lib:$(ACUPATH)/lib:.:../
stdlib:/usr/lib:/lib
libruncbl.sl: amain.o $(SUBS)
 ld -b $(SHAREDLIB_LDFLAGS) -o libruncbl.sl amain.o $(SUBS) \
 $(RUNTIME_LIB) $(LIBS) $(SYS_LIBS)

2. Run “make libruncbl.sl” from the $ACUCOBOL/lib directory.

This creates a file named “libruncbl.sl” that can be loaded by the CVM
class when calling COBOL from Java. You can also add “libruncbl.sl”
to the “clean” target so that “make clean” will remove “libruncbl.sl”.

2.2.4 Using C$SOCKET

If desired, you can facilitate communication between Java and COBOL
programs on a socket level. ACUCOBOL-GT includes a library routine,
known as C$SOCKET, to perform interprocess communication.

When calling COBOL from Java:

1. The COBOL programmer uses the C$SOCKET routine to create a server
socket (op-code 1) and wait for and accept a connection from the Java
client (op-code 2).

Calling COBOL from Java 2-19
2. The Java programmer creates a socket, connects via TCP/IP to the port
of the COBOL program, and writes data to it.

3. Via C$SOCKET, the COBOL program reads the data (op-code 6),
processes it, and returns data to the socket (op-code 5).

Of course, because the data format is totally open and undefined, the COBOL
and Java programmers must agree on a common format.

Following is sample code to demonstrate this capability:
*The following code creates a server socket.
CALL "C$SOCKET" USING AGS-CREATE-SERVER, 8765
GIVING SOCKET-HANDLE-1.

*The following code waits for a connection.
CALL "C$SOCKET" USING AGS-NEXT-READ, SOCKET-HANDLE-1,
TIMEOUT.

*If have a connection request. Accept the connection.
CALL "C$SOCKET" USING AGS-ACCEPT, SOCKET-HANDLE-1.

*Read data from the connecting socket.
CALL "C$SOCKET" USING AGS_READ, SOCKET-HANDLE-2,
SOCKET-IN, IN-DATA-LENGTH
GIVING READ-AMOUNT.

*Write outgoing data back to the client socket:
CALL "C$SOCKET" USING AGS-WRITE, SOCKET-HANDLE-2,
SOCKET-OUT, OUT-DATA-LENGTH.

Refer to Appendix I in ACUCOBOL-GT Appendices for information on the
C$SOCKET library routine.

2.2.5 Using ACUCOBOL-GT’s CGI Extensions

ACUCOBOL-GT offers extensions designed to simplify communication
with Web servers using the Common Gateway Interface (CGI) standard.
These CGI extensions can be used to connect a Java program to an
ACUCOBOL-GT program.

2-20 Working with Java Technology
You develop a CGI program to act as an interface between the Web server and
the ACUCOBOL-GT program. The CGI program can be written in
ACUCOBOL-GT. (Section 4.5 of A Programmer’s Guide to the Internet
details how you accomplish this.)

From Java, you then open an HTTP connection to the Web server with a
URL. The URL must have a pointer to the CGI program in it, encoded using
CGI encoding.

Through CGI extensions to ACCEPT and DISPLAY syntax, your CGI
program accepts CGI input data from the Java program; launches or
subsumes your ACUCOBOL-GT application; and generates HTML, WML,
or XML output forms from the results—whatever the Java program requires.
The output could be considered a service, it could use SOAP, or it could be
simple markup language output.

When you place your CGI program and ACUCOBOL-GT application on the
Web server, along with the necessary configuration, license, and data files,
your ACUCOBOL-GT application becomes immediately available to end
users of the Java application. Conceptually, you’re using CGI to do a remote
procedure call.

Refer to Chapter 4 of A Programmer’s Guide to the Internet for full details
on using ACUCOBOL-GT’s CGI syntax.

2.2.6 Using the Java Native Interface (JNI)

Java programs can also call COBOL programs through a C calling interface
known as the JNI. You can use JNI to call the ACUCOBOL-GT runtime
DLL in Windows or a shared library that contains COBOL code routines in
UNIX.

Windows

To simplify the process of calling an ACUCOBOL-GT program from other
programming languages in a Windows environment, the ACUCOBOL-GT
runtime is encapsulated in a DLL file, “wrun32.dll”.

Calling COBOL from Java 2-21
To call the ACUCOBOL-GT runtime DLL from JNI, you add declarations to
the source program for the DLL’s initialization, shutdown, and call libraries.
Then you call those libraries to initialize the runtime, call the COBOL
program, and shut down when you are finished.

For more information on calling the ACUCOBOL-GT runtime DLL, refer to
Chapter 3 of this guide.

UNIX

To access COBOL from Java in UNIX environments, you can place native
COBOL code routines in shared libraries and call them from your Java
programs via JNI.

2.2.7 Using Named Pipes

Another way to pass data between COBOL and Java programs is through
named pipes. Named pipes are a method for exchanging information
between two unrelated processes.

Note: To communicate via named pipes, the COBOL and Java programs
must be on the same host machine.

Technically, named pipes are files with known pathnames. Because a named
pipe is associated with a pathname, unrelated processes can open the file to
begin communications with one another. Because a Java program can open
a named pipe just as it would a normal file, no special Java or JNI code is
required. By opening the file for reading, a process has access to the reading
end of the pipe, and by opening the file for writing, a process has access to the
writing end of the pipe. In effect, named pipes allow independent processes
to “rendezvous” their I/O streams.

Named pipes can be created in two ways—via the command line or from
within a program.

In UNIX, to create a named pipe with the file named “npipe” you can use the
following command on the command line:

% mkfifo npipe

2-22 Working with Java Technology
Alternatively, you could create the named pipe from within your program
using:

int mkfifo(const char *path, mode_t mode)

where “path” is the path of the file and “mode_t” is the mode (permissions)
with which the file should be created.

A named pipe can be opened using the open() system call or the fopen()
standard C library function. (Refer to Chapter 6 of this guide for information
on interfacing ACUCOBOL-GT programs to C routines.)

As with normal files, if the call succeeds, you get either a file descriptor or a
“FILE” structure pointer, depending on how you opened the file. You can
then use this information for reading or writing, depending on the parameters
you passed to open() or fopen().

Reading from and writing to a named pipe are very similar to reading from
and writing to a normal file. You can use the standard C library function calls
read() and write().

Named pipes can also be used on Windows systems. You create Windows
pipes with the CreateNamedPipe() API. You can then use the OpenFile()
API to access the other end of the newly created named pipe.

Although named pipes can be very effective for communicating between
COBOL and Java applications, bear in mind the following issues:

• Named pipes work only for processes on the same host machine.

• Named pipes can be created only in the local file system of the host.

• Named pipe data is a byte stream, and no record identification exists.

• Named pipes provide only a half-duplex flow of data. They are also
known as “fifos” for their method of “first in, first out” communication.
To establish full-duplex communication, you must create and manage
two pipes, which can be complicated and result in file deadlocks if you
are not careful.

Calling Java from COBOL 2-23
2.2.8 Using AcuXDBC

If you want to access COBOL Vision data from a Java Database Connectivity
(JDBC)-enabled application, you can use AcuXDBC Enterprise Edition.
AcuXDBC is a data management system, designed to integrate
ACUCOBOL-GT data files into a relational database-like environment. In
addition to database-like features, the enterprise editions of AcuXDBC can
give users of JDBC-enabled Java applications seamless access to
ACUCOBOL-GT Vision files.

Refer to the AcuXDBC User’s Guide for more information.

2.3 Calling Java from COBOL

To call Java from your COBOL application, you can:

• Call the C$JAVA library routine. You can use configuration variables to
preload the JVM and pass command-line options to it.

• Use the C$SOCKET library routine to facilitate interprocess
communication via sockets

• Call the Java Virtual Machine (JVM) DLL or shared library

• Use the C$SYSTEM library routine to send a Java command line to the
host machine

• Use named pipes to pass data between your COBOL and Java
applications if they reside on the same host machine

2.3.1 Calling the C$JAVA Routine

An easy, effective way to call Java from COBOL is via the C$JAVA library
routine. A call to C$JAVA causes the JVM to be loaded (if it is not already)
and the specified Java class to be loaded.

The COBOL statement used to make a call to Java from COBOL has the
following syntax:

2-24 Working with Java Technology
CALL "C$JAVA"
 USING OP-CODE, CLASS-NAME, METHOD-NAME, METHOD-SIGNATURE,
 FIELD-INT, FIELD-RETURN
 GIVING STATUS-VAL.

For example:

CALL "C$JAVA"
 USING CJAVA-NEW, "acuCobolGT/CAcuCobol", "()V"
 GIVING OBJECT-HANDLE.

The default CALL “C$JAVA” statement is designed to call a Java method. It
requires a class name fully qualified with the package name if necessary. It
also requires a method name and a method signature describing the parameter
types and return types. (See section 2.3.1.1 for more information on the
method signature.) After the method signature, pass the parameters that the
method requires, and finally pass a parameter to hold the Java return value
from the method. If the method is void, no return parameter is required. A
giving value is returned to pass any other error code that may have occurred.

Refer to Appendix I in ACUCOBOL-GT Appendices for complete
information on the C$JAVA library routine and its op-codes. Section 2.3.1.8
contains information about configuration variables related to the use of the
C$JAVA routine.

Note: To call Java from COBOL, HP-UX users must relink the runtime so
that it is statically linked to “libjvm.sl”. For instructions, refer to section
section 2.3.1.12.

2.3.1.1 Method signatures

Parameter signatures are used by the JNI functions to get the method ID of a
method in a Java class so that it can be called by non-Java programs. Two
examples are “(I)I” and “(Z)Z”. The first one describes a Java method taking
an int parameter and returning an int value. The second is a Java method
taking a boolean parameter and returning a boolean value. For a Java method
like this:

int MyJavaMethod(boolean param1, int param2, long
param3, double param4)

Calling Java from COBOL 2-25
The signature would look like this:
(ZIJD)I.

The return value comes last after the close parenthesis. “Z” was chosen to
represent boolean because “B” is used to describe a byte data value.

Section 2.3.1.2 shows a list of the parameter types supported by
ACUCOBOL-GT. An “L” represents some object type. “J” is used for
longs. Everything else in Java is an object (strings, arrays, etc.), and the
signatures look like this:

Example syntax is shown in the following table:

Object Types Signature

String Ljava/lang/String

Object Ljava/lang/Object

Array of strings [Ljava/lang/String

Signature Description

()V Java-defined void method
taking no parameters

(Z)I Takes boolean, returns int

(ZISDJ)Z Takes boolean, int, short,
double, long, returns boolean

(B[J[I)X Takes byte, long array, int
array, returns string

(XLjava/lang/Object;)Ljava/lang/String; Takes string, object, returns
string

(C)C Takes char, returns char

2-26 Working with Java Technology
Comments on syntax

The type for Java Strings in a method signature can be either “Ljava/lang/
String;” or “X”, but there is no need to specify length since the convert data
routine will determine length from the COBOL declaration of the particular
variable. So an appropriate method_signature could be “Ljava/lang/
String;Ljava/lang/String;Ljava/lang/String;” or “XXX” (both mean the same
thing), but “X3X4X5” will be treated as three Strings and the digits will be
ignored.

The method_signature for a data item that will be converted to a java char
type is “C” not “X” even though the COBOL variable is declared PIC X – the
important consideration is how it is declared in Java. If it is declared as a
String, use “X”, if it is declared as char, use “C”.

The use of JNI functions for String conversion require the use of C or null
terminated strings. If you need 10 characters for your string, then declare the
PIC X item with a length of at least 11 and ensure the value for the last
position is a low value. If you declare the string as 10 and use all ten positions
for character data, the 10th item will be overwritten during conversion.

Finding a method signature

A Java utility that comes with the Java JRE produces all the parameter
signatures of a given JAR file or class automatically so that it is not necessary
to determine the signature manually. Use this utility, called “javap.exe”, to
get the exact signature to use with your CALL “C$JAVA” statement.

Here is the output from running “javap” on “acuUtilities/AcuJavaTest”. The
part following the word “Signature” could be cut and pasted into a CALL
“C$JAVA” for a given method.
D:\cobol7\bin>javap -s acuUtilities/AcuJavaTest
Compiled from "AcuJavaTest.java"
public class acuUtilities.AcuJavaTest extends
java.lang.Object{
public acuUtilities.AcuJavaTest();
 Signature: ()V
public static void main(java.lang.String[]) throws
java.io.IOException;
 Signature: ([Ljava/lang/String;)V
public static int executeCommand(java.lang.String);

Calling Java from COBOL 2-27
 Signature: (Ljava/lang/String;)I
}

2.3.1.2 Supported parameter types

Following is a list of Java parameter types that are supported by
ACUCOBOL-GT:

V – void
Z - boolean
B - byte
C - char
S - short
I - int
J - long
F - float
D - double
X - string
LString;
Ljava/lang/String;
Ljava/lang/Object;

[Z - boolean array
[B - byte array
[C - char array
[S - short array
[I - int array
[J - long array
[F - float array
[D - double array
[X - string array
[LString; - string array
[Ljava/lang/String; - string array
[Ljava/lang/Object; - object array

2.3.1.3 Creating and using Java objects in COBOL

Using the C$JAVA routine, you can create new Java objects in COBOL, call
methods on Java objects, and destroy Java objects. The following sections
describe how.

2-28 Working with Java Technology
Creating a new Java object

Create a new Java object using the CJAVA-NEW op-code to the C$JAVA
routine. Be sure to pass a fully qualified package/class name and a
constructor signature. Use the GIVING statement to return the object handle.
Here is an example of how to create a new Java object:
CALL "C$JAVA" USING CJAVA-NEW, "acuCobolGT/CAcuCobol", "()V"
GIVING OBJECT-HANDLE.

Calling methods on Java objects

You can call Java methods as static methods, virtual methods, or non-virtual
methods by using op-codes 8-10 of the C$JAVA routine, or you can call a
Java main method using op-code 29. If you do not use an op-code when you
call C$JAVA, the default runtime behavior is to try to call the method
statically, and then virtually by trying to create an object using a default
constructor. A non-virtual method is called on the specific object that is
being used. A virtual method can be called on a method that is inherited from
one of the object’s superclasses. Here are examples of each of the types of
calls:

Default:
CALL "C$JAVA" USING "acuCobolGT/CAcuCobol",
"CobolCallingJavaChar", "(C)C", FIELD-CHAR, FIELD-CHARRET
GIVING STATUS-VAL.

Virtual:
CALL "C$JAVA" USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol", "CobolCallingJavaLong", "(J)J", FIELD-LONG,
FIELD-LONGRET GIVING STATUS-VAL.

Non-virtual:
CALL "C$JAVA" USING CJAVA-CALLNONVIRTUAL, OBJECT-HANDLE,
"acuCobolGT/CAcuCobol", "CobolCallingJavaBoolean", "(Z)Z",
FIELD-BOOL, FIELD-BOOLRET GIVING STATUS-VAL.

Static:
CALL "C$JAVA" USING CJAVA-CALLSTATIC, "acuCobolGT/CAcuCobol",
"CobolCallingJavaDouble", "(D)D", FIELD-DOUBLE,
FIELD-DOUBLERET GIVING STATUS-VAL.

Calling Java from COBOL 2-29
Main:
CALL "C$JAVA" USING CJAVA-CALLJAVAMAIN, "CobolCallingJava",
"StrParam1",
 "StrParam2", "StrParam3", "StrParam4" GIVING STATUS-VAL.

This example calls a Java main method with the following signature:
public static void main(String[] args);

Additional examples:
CALL "C$JAVA" USING CJAVA-CALLNONVIRTUAL, OBJECT-HANDLE,
"acuCobolGT/CAcuCobol", "CobolCallingJavaVoid”, "()V" GIVING
STATUS-VAL.

CALL "C$JAVA" USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol", "CobolCallingJavaStringV", "(X)X", FIELD-STRING,
FIELD-STRINGRET GIVING STATUS-VAL.

Destroying Java objects

To destroy a Java object, use C$JAVA’s CJAVA-DESTROY op-code, and
pass a valid object handle:
CALL "C$JAVA" USING CJAVA-DESTROY, OBJECT-HANDLE GIVING
STATUS-VAL.

2.3.1.4 Creating and using Java arrays in COBOL

You can use the C$JAVA routine to create and pass Java arrays of primitive
types, objects, and strings; to get and set array elements; to clear arrays; and
to convert COBOL tables to Java arrays and vice versa.

Creating and passing arrays of primitive types

To create Java arrays, use the op-code CJAVA-CREATEARRAY and pass
in the type of the array and the size of the array. Return the array handle
through the GIVING statement.

In the example below, an array of ints is created, and ARRAY-SIZE is
declared USAGE IS SIGNED-INT VALUE 10. An object method that
would take this array would have a parameter in its signature of type [I such
as “([I)I”. The primitives array types are documented in section 2.3.1.1.

2-30 Working with Java Technology
CALL "C$JAVA" USING CJAVA-CREATEARRAY, CJAVA-INTARRAY,
ARRAY-SIZE GIVING ARRAY-HANDLE.

Creating and passing arrays of objects

You can create an object array as shown here:
CALL "C$JAVA" USING CJAVA-CREATEARRAY, CJAVA-OBJECTARRAY, 10
GIVING ARRAY-HANDLE.

In this case, the array consists of an array of object handles. Here is an
example of calling a Java method that takes an array of objects:
CALL "C$JAVA" USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol", "CobolCallingJavaObjectArray", "([Ljava/lang/
Object;)X", ARRAY-HANDLE, FIELD-STRINGRET GIVING STATUS-VAL.

Creating and passing arrays of strings

Even though strings in Java are objects, they are treated separately for the
convenience of using them with PIC X tables. Here is an example of creating
a string array:
CALL "C$JAVA" USING CJAVA-CREATEARRAY, CJAVA-STRINGARRAY, 10
GIVING ARRAY-HANDLE.

Here are examples of setting a string array element. In this example,
STRING-TABLE is declared PIC X(20) OCCURS 10.
MOVE "99999999999999999999" TO STRING-TABLE(10)

CALL "C$JAVA" USING CJAVA-SETARRAYELEMENT, ARRAY-HANDLE, 1,
STRING-TABLE(10), GIVING STATUS-VAL.

This example demonstrates how to call a Java method that takes an array of
strings as a parameter:
CALL "C$JAVA" USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol", "CobolCallingJavaStringArray", "([Ljava/lang/
String;)X", ARRAY-HANDLE, FIELD-STRINGRET GIVING STATUS-VAL.

Calling Java from COBOL 2-31
Getting and setting array elements

You set array elements using the CJAVA-SETARRAYELEMENT op-code
and passing in an array handle, the position in the array to set, and the value
to set. In the following example, the first element of an array is set with the
first value from an integer table that is USAGE IS SIGNED-INT OCCURS
10.
CALL "C$JAVA" USING CJAVA-SETARRAYELEMENT, ARRAY-HANDLE, 1,
INT-TABLE(1), GIVING STATUS-VAL.

Getting array elements is done using a similar syntax with the op-code
CJAVA-GETARRAYELEMENT. This call requires an array handle, the
position in the array to get, and the variable into which the array value will be
placed. Here is an example:
CALL "C$JAVA" USING CJAVA-GETARRAYELEMENT, ARRAY-HANDLE, 5,
INT-TABLE(1), GIVING STATUS-VAL.

In this case, we are getting element 5 from the array and placing it in the first
element of an integer table.

Getting and setting array regions

You set array regions using the CJAVA-SETARRAYREGION op-code.
This op-code takes a Java array object copies the elements from a COBOL
table data item into a specified range. Getting array regions is done using a
similar op-code, CJAVA-GETARRAYREGION. This op-code takes a Java
array object, gets the specified range of elements, and copies them into a
COBOL table data item.

Clearing arrays

Clearing arrays is straightforward. Use the op-code
CJAVA-CLEARARRAY and pass in the array handle of the array to be
cleared, as shown:
CALL "C$JAVA" USING CJAVA-CLEARARRAY, ARRAY-HANDLE GIVING
STATUS-VAL.

2-32 Working with Java Technology
Implicit COBOL table/Java array conversion

With ACUCOBOL-GT, it is possible to pass a COBOL table directly to a
method that requires a Java array. The contents of the table are automatically
converted to an array of the type the Java method expects. When the method
completes, the contents of the table are updated with what is in the array. You
do not have to explicitly convert the COBOL table to a Java array and convert
it back again. No special op-code is required to do the conversion. When the
runtime sees the array type in the signature, it tries to convert that table
parameter to an array. Here is an example of a table being passed to a Java
method that takes an array parameter:
CALL "C$JAVA" USING CJAVA-CALL, OBJECT-HANDLE, "acuCobolGT/
CAcuCobol", "CobolCallingJavaIntArray", "([I)I", INT-GROUP,
FIELD-RET GIVING STATUS-VAL.

In the above example, INT-GROUP is declared:
01 INT-GROUP.
 03 INT-DATA occurs 10 times.
 05 INT-ELEMENT signed-int.

The values for INT-GROUP are set as follows:
 MOVE 1111 to INT-ELEMENT(1)
 MOVE 2222 to INT-ELEMENT(2)
 MOVE 3333 to INT-ELEMENT(3)
 MOVE 4444 to INT-ELEMENT(4)
 MOVE 5555 to INT-ELEMENT(5)

It should be noted that the type of the table passed into the Java method
should be the appropriate type, that is, data of the same element size (in bits).
The size of the Java array will be the number of elements in the table.

Explicit COBOL table/Java array conversion

With ACUCOBOL-GT, you can also use C$JAVA op-codes to explicitly
convert Java arrays to COBOL and COBOL tables to Java. This
functionality gives you more precise control over the conversion process.

Calling Java from COBOL 2-33
The op-code to convert a Java array to a table is
JAVA-CONVERTARRAYTOTABLE. Here is an example of an array of
Java ints being converted to a USAGE SIGNED-INT OCCURS 10 COBOL
table:
CALL "C$JAVA" USING CJAVA-CONVERTARRAYTOTABLE, ARRAY_HANDLE,
10, 0, INT-TABLE(1) GIVING STATUS-VAL.

The call takes the array handle, the number of elements to convert, the
starting element position in the array, and the COBOL table variable in which
to place the converted array.

To explicitly convert a COBOL table to Java, you can use the C$JAVA
op-code CJAVA-CONVERTTABLETOARRAY. Here is an example of a
call that converts a table to an array:
CALL "C$JAVA" USING CJAVA-CONVERTTABLETOARRAY, INT-TABLE(1),
10, 0, ARRAY-HANDLE, GIVING STATUS-VAL.

In this case, the call requires the COBOL table from which the values are
taken, the number of elements, the position of the first element, and the
handle of the destination array.

2.3.1.5 Using Java logging from COBOL

With the C$JAVA routine, you can also log Java messages and configure the
Java log.

Logging messages

If you want to log Java messages from a COBOL program, use the
CJAVA-LOGMESSAGE op-code as follows:
CALL "C$JAVA" USING CJAVA-LOGMESSAGE, "Message to log".

The advantage of using the Java log is that it is thread-safe, and all of the
messages from a given thread of execution are written to the same log
whether that thread is executing COBOL or Java. Also, logs in Java are
highly configurable. Note that the sample log output shown below is
formatted to report date, time, class, method, and log level before the
message.

11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> COBOL LOG --> Entered
TestJavaToCobol

2-34 Working with Java Technology
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> COBOL LOG --> Exiting
TestJavaToCobol
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> call.error = 0,
exit.code = 0, signal.number = 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> exit message =
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Call error: 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Exit code: 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Signal number: 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Exit message:
11/30/04 2:13:57 PM acuCobolGT.CAcuCobol cblLog INFO --> CobolCallingJavaTest: Complete
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO -->
CobolCallingJavaReentrantTest ()V
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> call.error = 0,
exit.code = 0, signal.number = 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_cobol INFO --> exit message =
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Call error: 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Exit code: 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Signal number: 0
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM cblLog INFO --> Exit message:
11/30/04 2:13:57 PM com.acucorp.acucobolgt.CVM acu_shutdown INFO --> shutdown called -
shutdown param: 0
11/30/04 2:13:57 PM acuUtilities.AcuJavaTest main INFO --> shutdown complete
11/30/04 2:13:57 PM acuUtilities.AcuJavaTest main INFO --> calling cobol end

Configuring the Java log

To configure the Java log created with the CJAVA-LOGMESSAGE
op-code, modify the “logging.properties” file that is located in the runtime
directory. The output location of the log (console or file) can be specified, as
well as the log level, for example, INFO or SEVERE. Below is a sample of
the “logging.properties” file:
setting to limit messages printed to the console.
.level= INFO
#.level= FINEST

##
Handler specific properties.
Describes specific configuration info for Handlers.
##

default file output is in user's home directory.
#java.util.logging.FileHandler.pattern = %h/java%u.log
java.util.logging.FileHandler.pattern = CVM.log
java.util.logging.FileHandler.limit = 500000
java.util.logging.FileHandler.count = 1

Calling Java from COBOL 2-35
java.util.logging.FileHandler.append = false
java.util.logging.FileHandler.level = INFO
#java.util.logging.FileHandler.formatter =
java.util.logging.XMLFormatter
#java.util.logging.FileHandler.formatter =
java.util.logging.SimpleFormatter
java.util.logging.FileHandler.formatter =
com.acucorp.acucobolgt.logFormat

Limit the message that are printed on the console to INFO and
above.
#java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.level = INFO
#java.util.logging.ConsoleHandler.formatter =
java.util.logging.SimpleFormatter
java.util.logging.ConsoleHandler.formatter =
com.acucorp.acucobolgt.logFormat

##
Facility specific properties.
Provides extra control for each logger.
##

For example, set the com.acucorp.acucobolgt.CVM logger to
only log SEVERE
messages:
#com.acucorp.acucobolgt.CVM.level = SEVERE
com.acucorp.acucobolgt.CVM.level = INFO
#acuCobolGT.CAcuCobol.level = SEVERE
acuCobolGT.CAcuCobol.level = INFO
#acuUtilities.AcuJavaTest.level = SEVERE
acuUtilities.AcuJavaTest.level = INFO

Alternate logging

Rather than using the CJAVA-LOGMESSAGE op-code, COBOL
developers could use the C$JAVA routine to call log4j from COBOL. log4j
is an open source tool developed for putting log statements into a Java
application. It provides a robust, reliable and easy to implement framework
for logging Java applications for debugging and monitoring purposes.

2-36 Working with Java Technology
This form of logging should only be considered if you are running a Java
application server and AcuConnect on the same machine and if the COBOL
program already uses C$JAVA routine.

2.3.1.6 Creating and using a JDBC ResultSet

With ACUCOBOL-GT, there are two ways to create and use a Java Database
Connectivity (JDBC) ResultSet in COBOL:

• Using a class called DBConnect that is included in ACUCOBOL-GT’s
COBOL Virtual Machine Java archive file, “CVM.jar”. (See section
2.2.3.1 for more information on ACUCOBOL-GT’s CVM class.)

• Using the CJAVA-DBCONNECT and CJAVA-DBQUERY op-codes to
the C$JAVA routine

Using DBConnect class to get a ResultSet object

ACUCOBOL-GT’s “CVM.jar” package contains a class for connecting to
JDBC data sources, and querying those data sources for ResultSet objects.
The class is called DBConnect.

The DBConnect class has two public static methods called “connect” and
“query”. The “connect” method takes two string parameters: a JDBC driver
string, and a JDBC connection string, and returns a java.sql.Connection
object. The “query” method takes two parameters: a query string, and a
java.sql.Connection object, and returns a ResultSet object. The ResultSet
object can then be used to access and update the data.

Here is an example of using the DBConnect class in COBOL:

MOVE "sun.jdbc.odbc.JdbcOdbcDriver" to DB-DRIVERSTR.

MOVE "jdbc:odbc:DefaultDir=D:\cobol7\bin;Driver={Microsoft
Text Driver (*.txt; *.csv)};DriverId=27;UID=admin;Initial
Catalog=D:\cobol7\bin" to DB-CONNECTSTR.

MOVE "SELECT * FROM dataFile.csv" to DB-QUERY.

CALL "C$JAVA" USING CJAVA-NEW, "java/lang/Object", "()V"
GIVING DB-CONNECT.

Calling Java from COBOL 2-37
CALL "C$JAVA" USING CJAVA-NEW, "java/lang/Object", "()V"
GIVING DB-RESULTSET.

CALL "C$JAVA" USING "com/acucorp/acucobolgt/DBConnect",
"connect", "(XX)Ljava/sql/Connection;", DB-DRIVERSTR,
DB-CONNECTSTR, DB-CONNECT GIVING STATUS-VAL.

CALL "C$JAVA" USING "com/acucorp/acucobolgt/DBConnect",
"query", "(XLjava/sql/Connection;)Ljava/sql/ResultSet;",
DB-QUERY, DB-CONNECT, DB-RESULTSET GIVING STATUS-VAL

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet", "next", "()Z", FIELD-BOOLRET GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet", "getRow", "()I", FIELD-RET GIVING STATUS-VAL.

MOVE 1 to FIELD-INT.

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet", "getString", "(I)X", FIELD-INT, FIELD-STRINGRET
GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-DELETE, DB-CONNECT GIVING
STATUS-VAL.

CALL "C$JAVA" USING CJAVA-DELETE, DB-RESULTSET GIVING
STATUS-VAL.

In this example, the JDBC driver used was the jdbc:odbc bridge that ships
with the Java SDK. The ODBC driver is the Microsoft Text driver, and a text
CSV file was used as the data source. Two new object handles are created to
contain the Connection and ResultSet handles. The ResultSet method “next”
is called to move to the first row, the “getRow” method is called to find the
current row number, and the “getString” method is called to get the value in
column one which happens to be of type string. Finally, the two objects are
deleted.

2-38 Working with Java Technology
Using op-codes to get a ResultSet object

Another way to access JDBC ResultSet objects is to issue a call to the
C$JAVA routine using the op-codes CJAVA-DBCONNECT and
CJAVA-DBQUERY. To do this, you must include the “java.def” file that
comes with ACUCOBOL-GT in the COBOL program’s working storage
section. “java.def” is located in the sample/def directory where you installed
ACUCOBOL-GT.

This method is somewhat more efficient than using the CVM’s DBConnect
class, because the Connection and ResultSet handles do not have to be
created prior to being used. Here is an example of using the op-codes:
MOVE "sun.jdbc.odbc.JdbcOdbcDriver" to DB-DRIVERSTR

MOVE "jdbc:odbc:DefaultDir=D:\\cobol7\\bin;Driver={Microsoft
Text Driver (*.txt; *.csv)};DriverId=27;UID=admin;Initial
Catalog=D:\\cobol7\\bin" to DB-CONNECTSTR

MOVE "SELECT * FROM dataFile.csv" to DB-QUERY.

CALL "C$JAVA" USING CJAVA-DBCONNECT, DB-DRIVERSTR,
DB-CONNECTSTR GIVING DB-CONNECT.

CALL "C$JAVA" USING CJAVA-DBQUERY DB-QUERY, DB-CONNECT GIVING
DB-RESULTSET.

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet", "next", "()Z", FIELD-BOOLRET GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet", "getRow", "()I", FIELD-RET GIVING STATUS-VAL.

MOVE 1 to FIELD-INT.

CALL "C$JAVA" USING CJAVA-CALL, DB-RESULTSET, "java/sql/
ResultSet", "getString", "(I)X", FIELD-INT, FIELD-STRINGRET
GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-DELETE, DB-CONNECT GIVING
STATUS-VAL.

CALL "C$JAVA" USING CJAVA-DELETE, DB-RESULTSET GIVING
STATUS-VAL.

Calling Java from COBOL 2-39
2.3.1.7 Java Remote Method Invocation (RMI) interoperability

The following sections describe how to use the ACUCOBOL-GT runtime
class, CVM, as a RMI client and RMI server. They also describe how to use
the C$JAVA routine to connect to an RMI server.

Using the runtime as a Java RMI Client

ACUCOBOL-GT’s “CVM.jar” package contains a class for connecting to an
RMI server and returning an object through which remote methods can then
be called on the RMI server. The class is called RemoteConnect. (See section
2.2.3.1 for more information on the CVM class.)

The RemoteConnect class has a public static method called
“CreateRemoteObject” that takes two strings and an int as parameters and
returns a java.rmi.Remote object handle. The strings it requires are the host
name of the server, the name of the RMI server object, and the int is the port
number on which the server is listening. Once the remote object handle has
been returned, remote methods on that object can be called in the same way
as methods as any other Java object handle. Here is an example of using the
RemoteConnect class in COBOL:
CALL "C$JAVA" USING CJAVA-NEW, "java/lang/Object", "()V"
GIVING REMOTE-OBJ.

CALL "C$JAVA" USING "com/acucorp/acucobolgt/RemoteConnect",
"CreateRemoteObject", "(XXI)Ljava/rmi/Remote;", "localhost",
"TestRemoteInterface", PORT-NUMBER, REMOTE-OBJ GIVING
STATUS-VAL.

CALL "C$JAVA" USING CJAVA-CALL, REMOTE-OBJ, “acuUtilities/
TestRemoteInterface", "TestRemoteMethod", "()X",
FIELD-STRINGRET GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-DELETE, REMOTE-OBJ GIVING
STATUS-VAL.

In this example, an instance of the object is created, and then the method
“CreateRemoteObject” in RemoteConnect is called. In this case, the host is
localhost, and the name of the remote interface is “TestRemoteInterface”.
“TestRemoteInterface” extends Remote and has one remote method called
“TestRemoteMethod”. The port number is “0” here. Passing in “0” causes

2-40 Working with Java Technology
the method to look for the object on the default RMI port, 1099. Note that for
this to work, the RMI registry needs to have been previously started using the
command “start rmiregistry” from the command line, and then the server
object must be registered with the RMI registry.

Using an op-code to connect to an RMI Server

It is also possible to connect to an RMI server by calling the C$JAVA routine
with op-code CJAVA-NEWREMOTEOBJECT. It is very much like the
CJAVA-NEW op-code, but instead of creating an object in the local JVM, it
creates an instance of a remote object. This op-code takes three parameters:
the host name, the server name, and the port number. Here is an example of
the call:
CALL "C$JAVA" USING CJAVA-NEWREMOTEOBJECT, "localhost",
"TestRemoteInterface", PORT-NUMBER GIVING REMOTE-OBJ.

CALL "C$JAVA" USING CJAVA-CALL, REMOTE-OBJ, "acuUtilities/
TestRemoteInterface", "TestRemoteMethod", "()X",
FIELD-STRINGRET GIVING STATUS-VAL.

CALL "C$JAVA" USING CJAVA-DELETE, REMOTE-OBJ GIVING
STATUS-VAL.

Using the runtime as a Java RMI Server

To create and use a Java RMI server object, you must first create a class for
the object. This takes two steps. First, you must create an interface that
extends the Java interface “java.rmi.Remote”. Not only does the interface
need to extend Remote, all the methods that can be called remotely must
throw the RemoteException. Second, you must write a class that implements
the interface. Once this is done, you can create an RMI server object and
register it for use with the Java RMI Registry.

Here is a very simple illustration of this concept. First, an interface must be
created in Java:
public interface TestRemoteInterface extends Remote {
 String TestRemoteMethod() throws RemoteException;
}

Calling Java from COBOL 2-41
Next, a class that implements the TestRemoteInterface must be written. In
the case of the methods of this class, you do not need to throw
RemoteException, because the interface method declarations have that. Here
is an example of such a class in Java:
public class TestRMIServer implements TestRemoteInterface {

 public TestRMIServer() {}

 public String TestRemoteMethod() {
return "TestRemoteMethod successfully called.";
 }
}

Once this has been written, compiled, and packaged, you can register the
server with the RMI registry. First, you must start the RMI registry on the
host that will be the RMI server. You can do this using the command “start
rmiregistry”. Next, you can use a COBOL program to start the RMI server.
In this COBOL program, make a call to the C$JAVA routine with the op-code
CJAVA-STARTREMOTESERVER.

Here is an example of the code required to start an RMI server which uses the
interface and server classes shown above:
CALL "C$JAVA" USING CJAVA-NEW, "acuUtilities/TestRMIServer",
"()V" GIVING REMOTE-SERVER.
CALL "C$JAVA" USING CJAVA-STARTREMOTESERVER, REMOTE-SERVER,
"TestRemoteInterface", PORT-NUMBER GIVING STATUS-VAL.

The first step is to create the server object. The second step is to start the
server. CJAVA-STARTREMOTESERVER takes the remote server object
handle just created, the name of the remote server to register, and the port
number on which the server will listen. Once the server has started, that
instance of the runtime that started it will block and remain running, listening
for requests for the server from RMI clients.

2.3.1.8 Handling Java exceptions

The C$JAVA library routine includes two op-codes for handling exceptions
that are thrown by Java: CJAVA-EXCEPTIONOCCURRED and
CJAVA-GETEXCEPTIONOBJECT.

2-42 Working with Java Technology
CJAVA-EXCEPTIONOCCURRED is returned by any call to C$JAVA that
returns a status value, but during which an exception was thrown.

CJAVA-GETEXCEPTIONOBJECT returns the exception object of the last
exception thrown. Once the exception object is returned, you can call any of
the methods on the exception object that are documented in the Java
documentation.

In addition, exception information is now written to stderr or the error file
specified by the “-le” command line option when a Java exception occurs.
This information is formatted like a normal Java stack trace.

2.3.1.9 Releasing memory

The Java Virtual Machine (JVM) doesn’t have an explicit method to allocate
and free memory. For this reason, if the COBOL program gets a reference to
an object from the JVM, it is the COBOL program’s responsibility to release
the reference, otherwise the JVM might exhaust machine resources.

To aid in this effort, we suggest that you establish a JVM trace file using the
following configuration variables:

• A_JAVA_TRACE_FILENAME - Names the file where you want to
store trace information

• A_JAVA_TRACE_VALUE - Specifies the types of calls to trace

Using the JVM trace file, you can determine when a call to the JVM returns
an object reference that must be released, then you can call C$JAVA with
CJAVA_DESTROY or CJAVA_DELETE to remove the reference.

For there to be no memory leaks, any call that returns a reference to a Java
object needs to be paired with a call to release that reference. When the
runtime gets an object reference from the JVM, it is the runtime’s
responsibility to release the reference. When the runtime calls the JVM, it
deletes the local reference to any memory the JVM allocated on behalf of the
runtime.

Calling Java from COBOL 2-43
In the JVM, an entity known as the JVM garbage collector also de-allocates
memory that is no longer being used. To specify how often the runtime
should call the JVM garbage collector, use the A_JAVA_GC_COUNT
configuration variable.

Refer to Appendix H of the ACUCOBOL-GT Appendices for more
information on these and other configuration variables.

2.3.1.10 C$JAVA configuration variables

ACUCOBOL-GT includes several configuration variables for calling Java
via the C$JAVA routine.

All of these variables are optional. If desired, you include them in your
runtime configuration file, just as you would any ACUCOBOL-GT
configuration variable. See Appendix H in the ACUCOBOL-GT Appendices
for details on using these variables.

For Java interoperability, your configuration file may look like this:

Configuration Variable Purpose

PRELOAD_JAVA_LIBRARY Tells the runtime to preload the JVM
on startup

JAVA_LIBRARY_NAME Specifies the name and path of the JVM
library to load

JAVA_OPTIONS Specifies Java command-line options

A_JAVA_TRACE_FILENAME Names the file where you want to store
JVM call trace information

A_JAVA_TRACE_VALUE Specifies the types of calls to trace

A_JAVA_GC_COUNT Specifies how often the runtime should call
the JVM garbage collector

A_JAVA_CHARSET Specifies the character set that the
runtime should use when mapping
Java strings or PIC X data items
containing characters outside of the
ISO-8859-1 range. The default setting
is “IS0-8859-1”.

2-44 Working with Java Technology
PRELOAD_JAVA_LIBRARY=1
JAVA_LIBRARY_NAME=jvm.dll (libjvm.so unix)
JAVA_OPTIONS=”-Djava.library.path="c:\usr\lib" -Xms128m
-Xmx128m -classpath /java/MyClasses/myclasses.jar”

Note that both CLASSPATH (java.class.path system property) and the
java.library.path must be configured in order for C$JAVA to locate the Java
class to run. The CLASSPATH is the location of “.jar” or “.class” files. The
java.library.path is the location DLLs or shared objects that are required
either by the runtime or by the Java Virtual Machine (JVM).

You can set these properties using the JAVA_OPTIONS variable. This is the
first place that the runtime looks when trying to call Java from COBOL. If
you prefer, you can set them in the environment:

• To set the Java system property, java.library.path, set
LD_LIBRARY_PATH in the environment.

• To set the java.class.path property, set a CLASSPATH configuration or
environment variable.

2.3.1.11 Configuration and deployment

To call Java from COBOL using the C$JAVA routine, perform the following
steps:

1. Install and correctly configure an ACUCOBOL-GT runtime.
Optionally, install AcuBench if the system will also be used for COBOL
development.

2. Install and correctly configure a JRE version 1.4.2 or later. Optionally,
install a J2SE SDK if the same system will also be used for Java
development.

3. Configure the ACUCOBOL-GT runtime as appropriate by creating a
runtime configuration file.

By default, the JVM is loaded by the runtime the first time it executes a
CALL “C$JAVA” statement. If you want to preload the JVM, use the
PRELOAD_JAVA_LIBRARY variable. Use the
JAVA_LIBRARY_NAME variable if you want to specify the DLL that

Calling Java from COBOL 2-45
exports the JNI API for loading the JVM. If desired, specify Java
command-line options using the JAVA_OPTIONS variable. You can
specify additional libraries and classpaths here as well.

4. Issue a CALL “C$JAVA” statement to call the C$JAVA library
routine.

2.3.1.12 Linking the runtime to “libjvm.sl” on HP-UX

To call C$JAVA on HP-UX platforms, you must first relink the runtime so
that it is statically linked to the “libjvm.sl” shared library. Here are
instructions:

1. Edit “Makefile”, located in the ACUCOBOL-GT /lib directory. Modify
the CC and EXTRA_LDFLAG entries as shown for your port below:

32-bit Static:

Original: CC = cc -Ae +DAportable -Wl,+s
-D_LARGEFILE64_SOURCE
Modified: CC = cc -mt -Ae +DAportable -Wl,+s
-D_LARGEFILE64_SOURCE
Original: EXTRA_LDFLAG =
Modified: EXTRA_LDFLAG = -L /opt/java1.5/jre/lib/
PA_RISC2.0/server -ljvm

32-bit Shared:

Original: CC = cc -Ae +DAportable -Wl,+s
-D_LARGEFILE64_SOURCE +z
Modified: CC = cc -mt -Ae +DAportable -Wl,+s
-D_LARGEFILE64_SOURCE +z
Original: EXTRA_LDFLAG = -Wl,+b -Wl,$(ACUVERSPATH)/
lib:$(ACUPATH)/lib:.:/usr/lib:/lib
Modified: EXTRA_LDFLAG = -Wl,+b -Wl,$(ACUVERSPATH)/
lib:$(ACUPATH)/lib:.:/usr/lib:/lib \ -L /opt/java1.5/
jre/lib/PA_RISC2.0/server -ljvm

64-bit Static:

Original: CC = cc -Ae +DS2.0 +DA2.0W +DD64 -Wl,+s
Modified: CC = cc -mt -Ae +DS2.0 +DA2.0W +DD64 -Wl,+s
Original: EXTRA_LDFLAG =

2-46 Working with Java Technology
Modified: EXTRA_LDFLAG = -L /opt/java1.5/jre/lib/
PA_RISC2.0W/server -ljvm

64-bit Shared:

Original: CC = cc -Ae +DS2.0 +DA2.0W +DD64 -Wl,+s +z
Modified: CC = cc -mt -Ae +DS2.0 +DA2.0W +DD64 -Wl,+s +z
Original: EXTRA_LDFLAG = -Wl,+b -Wl,$(ACUVERSPATH)/
lib:$(ACUPATH)/lib:.:/usr/lib:/lib
Modified: EXTRA_LDFLAG = -Wl,+b -Wl,$(ACUVERSPATH)/
lib:$(ACUPATH)/lib:.:/usr/lib:/lib \ -L /opt/java1.5/
jre/lib/PA_RISC2.0W/server -ljvm

2. Rebuild the runtime. In the ACUCOBOL-GT /lib directory execute
“make runcbl”.

3. Copy the new “runcbl” to the ACUCOBOL-GT /bin directory.

4. Set the following in the runtime configuration file:

32-bit:

JAVA_LIBRARY_NAME /opt/java1.5/jre/lib/PA_RISC2.0/
server/libjvm.sl

64-bit:

JAVA_LIBRARY_NAME /opt/java1.5/jre/lib/PA_RISC2.0W/
server/libjvm.sl

All:

JAVA_OPTIONS -XX:+UseAltSigs

5. Set the following in the environment:

32-bit:

SHLIB_PATH=/opt/java1.5/jre/lib/PA_RISC2.0/server:/
opt/java1.5/jre/lib/PA_RISC2.0;$SHLIB_PATH

64-bit:

LD_LIBRARY_PATH=/opt/java1.5/jre/lib/PA_RISC2.0W/
server:/opt/java1.5/jre/lib/
PA_RISC2.0W;$LD_LIBRARY_PATH

Calling Java from COBOL 2-47
2.3.1.13 Example

The following sample code is a simple COBOL program calling a Java
program. It shows the minimum necessary pieces to call a Java method from
a COBOL program.

identification division.
program-id. CobolToJava.
data division.
working-storage section.

01 CLASS-NAME PIC X(80).
01 METHOD-NAME PIC X(80).
01 METHOD-SIGNATURE PIC X(80).
01 STATUS-VAL PIC S9(02) VALUE ZERO.
01 FIELD-INTUSAGE IS SIGNED-INT.
01 FIELD-RETURNUSAGE IS SIGNED-INT.

procedure division.
main-logic.

move "com.acucobolgt.CVM" TO CLASS-NAME
move "CobolCallingJavaInt" TO METHOD-NAME
move "(I)I" TO METHOD-SIGNATURE
move 0 to FIELD-INT
move -1 to FIELD-RETURN

CALL "C$JAVA" USING CLASS-NAME, METHOD-NAME,
METHOD-SIGNATURE, FIELD-INT, FIELD-RETURN GIVING
STATUS-VAL.

2.3.1.14 Running the Java interoperability sample programs

Your ACUCOBOL-GT distribution includes Java interoperability sample
programs. You will find them in the \acugt\sample\java\ directory where
ACUCOBOL-GT is installed. For instructions on setting up and running the
samples, refer to section 2.2.3.7.

2-48 Working with Java Technology
2.3.2 Using C$SOCKET

You can also use the C$SOCKET library routine to facilitate interprocess
communication between Java and COBOL programs via sockets.
C$SOCKET is a low-level option, but it is very flexible.

When calling Java from COBOL:

1. The Java programmer creates a server socket and waits for and accepts a
connection to the COBOL client.

2. The COBOL programmer uses the C$SOCKET routine to create a
client socket (op-code 1), connect via TCP/IP to the port of the Java
program, and write data to the socket (op-code 5).

3. The Java program reads the data, processes it, returns data to the
socket.

4. The COBOL program uses C$SOCKET to read the data (op-code 6).

Of course, because the data format is totally open and undefined, the COBOL
and Java programmers must agree on a common format.

The following sample code demonstrates this capability:
*Create a Client Socket.
CALL "C$SOCKET" USING AGS-CREATE-CLIENT, 8765, SERVER-NAME
GIVING SOCKET-HANDLE.

*Write data to socket.
CALL "C$SOCKET" USING AGS-WRITE, SOCKET-HANDLE,
DATA-FROM-CLIENT, DATA-LENGTH.

*Read the return data from the socket.
CALL "C$SOCKET" USING AGS-READ, SOCKET-HANDLE,
DATA-FROM-CLIENT, DATA-LENGTH.

*Close the socket.
CALL "C$SOCKET" USING AGS-CLOSE, SOCKET-HANDLE.

Refer to Appendix I in ACUCOBOL-GT Appendices for complete
information on the C$SOCKET library routine.

Calling Java from COBOL 2-49
2.3.3 Calling the Java Virtual Machine (JVM) DLL or
Shared Library

If desired, you can invoke a Java program from COBOL by calling the JVM
shared library or DLL and then invoking the routines in that library. In the
case of JRE 1.4.2_04, these files are called “jvm.dll” and “libjvm.so”. You
can call these files in one of two ways:

1. Load the JVM shared library or DLL into your COBOL program using
the CALL statement, then make calls to the JVM functions. For
example, in UNIX:

CALL "libjvm.so"
CALL "JVMfunction"

(Refer to Chapters 3 and 4 for more information on calling DLLs and
shared libraries and their functions.)

In Windows, you can CALL the DLL to load it, as shown here:

CALL "JVM.dll"

Then you can call any of the routines contained in the DLL using the
direct C interface. This is described in Chapter 6 of this book.

2. Call the JVM through C. ACUCOBOL-GT can make calls to C, and C
can make calls to the JVM. Refer to Chapter 6 of this book for
information on how to call C subroutines from ACUCOBOL-GT.

2.3.4 Using C$SYSTEM

Another way to invoke a Java program from COBOL is to send a Java
command line to the host operating system. You can do this using
ACUCOBOL-GT’s C$SYSTEM library routine. This routine combines the
functionality of the “SYSTEM” and “C$RUN” routines.

To call a Java program from COBOL via C$SYSTEM, you:

1. Call the C$SYSTEM library routine as described in Appendix I in
ACUCOBOL-GT Appendices.

2-50 Working with Java Technology
2. Send a Java command line to C$SYSTEM to invoke the Java program.
For example, to call the Java program AcuOrders, you might use this
code:

move "javaw -classpath cvm.jar;./ acuprod.AcuOrder"
to the-run-command.
call "C$SYSTEM" using the-run-command.

The C$SYSTEM routine submits the command line to the host operating
system as if it were a command keyed in from the terminal.

Note that you can call C$RUN instead of C$SYSTEM to run the Java
program asynchronously, as in:

call "C$RUN" using the-run-command.

3. Pass data from the Java program to the COBOL program through a
disk file or communicate through a database.

Refer to Appendix I in ACUCOBOL-GT Appendices for complete
information on the C$SYSTEM and C$RUN library routines.

2.3.5 Using Named Pipes

If your COBOL and Java applications reside on the same host machine, you
can call Java from a COBOL program through a named pipe. Named pipes
are a method for exchanging information between two unrelated processes.
Refer to section 2.2.7 for details.

2.4 Mapping Java Data Types

When interfacing with external Java systems, it is often necessary to map
COBOL data types to Java data types. Following are the Java primitive
types:

boolean - 8 bits, unsigned
byte - 8 bits, signed
char - 16 bits, unsigned
short - 16 bits, signed
int - 32 bits, signed

Mapping Java Data Types 2-51
float - 32 bits, signed, floating point
long - 64 bits, signed
double - 64 bits, signed, floating point

All other types are objects that are composed of other objects or primitive
types. For example, the String type is an object. Note that encoding of native
Java strings and numbers in memory may be different from way you
represent data in COBOL.

Even on 32-bit platforms, Java represents longs as 64 bits. On 32-bit
platforms, the ACUCOBOL-GT runtime truncates longs to 32 bits regardless
of whether the “-Dw32” or “-Dw64” flags are used for compilation. In order
to effectively interoperate using Java longs and use all 64 bits on a 32-bit
platform, you must use the PIC S9(18) COMP-5 declaration shown below.
Also, in order to use the entire range available to Java shorts and ints (short
32767 to -32768 int 2147483647 to -2147483648) with USAGE IS
SIGNED-INT and USAGE IS SIGNED-SHORT declarations, the “-Dw32”
flag must be specified at compile time.

The following sample declarations have been used to test COBOL/Java
interoperability.

01 FIELD-INT USAGE IS SIGNED-INT.
01 FIELD-BOOL pic 9.
01 FIELD-BYTE pic x.
01 FIELD-CHAR pic x.
01 FIELD-SHORT USAGE IS SIGNED-SHORT.
01 FIELD-LONG PIC S9(18) COMP-5.
01 FIELD-FLOAT USAGE IS FLOAT.
01 FIELD-DOUBLE USAGE IS DOUBLE.
01 FIELD-STRING PIC X(80).

Another method of declaring ints and shorts is shown below. With these two
declarations, the use of the “--TruncANSI” compiler switch is required so
that the range checking is correct for the range the native platform allows.
(Refer to Chapter 2 in ACUCOBOL-GT User’s Guide for information about
the “--TruncANSI” option.)

01 FIELD-INT PIC S9(9) COMP-5.
01 FIELD-SHORT PIC S9(5) COMP-5.

2-52 Working with Java Technology
Currently, ACUCOBOL-GT converts Unicode UTF-16 Java strings to
UTF-8 for representation in PIC X variables. If your program uses code
points that require more than 16 bits to represent supplementary characters or
if it uses UTF-32, then you should use arrays of Java ints to represent the
data.

If your Java strings or PIC X data items contain characters outside of the
ISO-8859-1 range, you need to instruct the runtime which character set to use
by specifying it in the A_JAVA_CHARSET runtime configuration variable.
The default setting is “IS0-8859-1”. Be aware of a common misconception
that ISO-8859-1 is equivalent to Windows-1252. This is for the most true, but
there are characters in the range 0x80 - 0x9F that differ. Windows-1252 uses
these numbers for letters and punctuation while the ISO-8859-1 uses these
for control codes.

Note that Java implementations represent data in big endian format
regardless of platform. For considerations on moving data between big
endian and little endian hosts, refer to the documentation for C$SOCKET in
Appendix I in ACUCOBOL-GT Appendices, and for the Usage Clause in
section 5.7.1.8 of ACUCOBOL-GT Reference Manual.

Note: Be careful when sending numeric data across the network via
sockets, because some machines use different byte ordering than others,
and native numeric data can appear swapped on different machines.
COMP-4 data is in the order that most network servers expect binary data
to be in, so if you are communicating with a non-COBOL client or server,
you should use COMP-4 data of the correct size for the machine in
question. If your client and server are both COBOL, you can use standard
COBOL types.

2.5 J2EE Application Servers

In recent years, growing demand for infrastructure that can manage hundreds
or thousands of applications, integrate them, perform load balancing, provide
messaging services, and so on, has led to a fiercely competitive application
server market.

Web Services 2-53
One type of application server software revolves around Sun Microsystems’
Java 2 Platform, Enterprise Edition (J2EE). BEA WebLogic Server and IBM
WebSphere are the two leading application server products for the
development of enterprise Java applications. Other vendors such as Sun,
Oracle, SAP, and Sybase also compete in this area.

The second category is the Microsoft Platform, which relies on Windows,
.NET, COM+, and other technologies. While Microsoft does not have an
application server per se, it provides features in its Windows Server editions
that compete with the J2EE application servers.

We provide interoperability with applications written for both the J2EE and
Microsoft application server platforms. This section describes integration
with J2EE application server platforms. Chapter 5 describes how to integrate
COBOL with .NET.

2.5.1 Working with J2EE Application Server Products

ACUCOBOL-GT applications can be integrated with application server
platforms using any of the methods described in this chapter. Your Java
components are managed by the application server, but they can still gain
access to COBOL using our CVM class, the C$SOCKET routine, CGI
programs, the runtime DLL, or named pipes.

Similarly, your COBOL applications can access your Java components,
managed by the application server, via our C$JAVA routine, the C$SOCKET
routine, the CALL statement, the C$SYSTEM routine, or named pipes.

2.6 Web Services

Web services are self-contained, modular applications that can be published,
located, and invoked across the Web from any location, allowing you to
transcend hardware and operating system boundaries. An implementation of
SOA, Web services use a standard interface technology to make the services
available.

2-54 Working with Java Technology
Web service applications perform discrete functions ranging anywhere from
simple requests to complicated business processes that combine information
from multiple sources. Web services can be developed and componentized
internally, or brought in and reused from the outside. To create a robust
business solution, you assemble Web services like building blocks into a
cohesive entity, mixing and matching software components as you need.

Conceptually, Web services are similar to any application services. What
makes them unique is that they describe themselves to the outside world,
revealing what functions they perform, how they can be accessed, and what
kinds of data they require. Today, this is accomplished with the following
standards:

• Self-description is accomplished via Web Service Description Language
(WSDL). Using WSDL, you provide information on all publicly
available functions, address information for locating the service, and so
on.

• Services are published and found in the white, yellow, and green pages
of a business registry conforming to the Universal Description,
Discovery, and Integration (UDDI) specification.

• All communications to a Web service are encoded in eXtensible Markup
Language (XML), using SOAP. SOAP is used to describe how to
instantiate a remote procedure call, including the passed data and the
returned results.

2.6.1 Providing Web Services from COBOL

For those using the J2EE platform, we offer a native Java interface that
encapsulates the ACUCOBOL-GT runtime in a JAR file. By invoking the
Java class contained in this archive, a Web service running on J2EE can start
the runtime and run your COBOL program. Your program becomes a service
to another program or service.

Consumers of the COBOL service use their own tools to incorporate a client
proxy into their application. On the WebLogic platform, for instance, they
use the Web Services Tool Kit (WSTK) of WebLogic Workshop to update
their Web service.

Web Services 2-55
As with any Web service, the consumer application must also contain logic
for connecting to the COBOL server. It must also be programmed to issue a
Web service request to the specified URL via XML/SOAP.

2.6.2 Consuming Web Services in COBOL

To enable a COBOL program to consume a Web service, we provide the
C$JAVA library routine. The Java programmer packages the WSDL from the
Web service in a WAR file with all the necessary resources including a Java
client proxy, and the COBOL programmer invokes the service by calling the
C$JAVA routine and naming the proxy as a USING parameter.

2-56 Working with Java Technology

3
 Working with Windows
Technologies
Key Topics

COBOL and Windows .. 3-2
Calling COBOL From Other Windows Programs 3-2
Calling DLLs from COBOL ... 3-13
Working With Open Database Connectivity (ODBC) 3-19
Accessing the Windows API ... 3-21
Using Visual C++ .NET .. 3-29
Windows-specific Features of ACUCOBOL-GT................................... 3-33

3-2 Working with Windows Technologies
3.1 COBOL and Windows

ACUCOBOL-GT® is a graphical COBOL language that is uniquely suited
for graphical Windows environments. ACUCOBOL-GT not only supports
all major Windows technologies, but it runs on most 32-bit and 64-bit
versions of the Windows operating system.

In this chapter, you will learn how to call dynamic link libraries (DLLs),
access the Windows Application Programming Interface (API), use Visual
C++ .NET, and enable Windows features like “.wav” files and print spoolers.
You’ll also learn how to interoperate with applications and data sources that
conform to the Open Database Connectivity (ODBC) standard.

Component Object Model (COM), ActiveX®, and .NET are large enough
subjects to warrant their own chapters. To learn how to leverage COM and
ActiveX in your COBOL programs, refer to Chapter 4 of this guide. To learn
to interact with .NET assemblies, refer to Chapter 5.

For information on graphical user interface (GUI) programming (including
concepts such as windows, handles, events, methods, menus, and color
mapping), please refer to ACUCOBOL-GT User Interface Programming.

3.2 Calling COBOL From Other Windows Programs

To simplify the process of calling an ACUCOBOL-GT program from other
programming languages in a Windows environment, the ACUCOBOL-GT
32-bit Windows runtime is encapsulated in a DLL file. This DLL file has
been further encapsulated in a COM server.

To call ACUCOBOL-GT from other Windows programs, you can do one of
two things:

1. Create an object for the ACUCOBOL-GT COM server in the source
program and call the methods of that object. This is covered in section
3.2.1.

2. Call the ACUCOBOL-GT runtime DLL in the source program. This
call requires special declarations, and is explained in section 3.2.2.

Calling COBOL From Other Windows Programs 3-3
The advantage of using the COM server is that you can treat the
ACUCOBOL-GT system as a COM object. You do not need to insert
declarations into the source code of the other programming language, you can
operate in a multi-threaded environment, and the development environment
is more intuitive. Using the ACUCOBOL-GT runtime DLL instead of the
COM server can provide slightly improved performance and makes
application distribution smaller and installation easier. However, the DLL
can be called only from a single thread of execution. For example, if you call
a COBOL program from a user interface control’s event procedure, and the
event procedure is called again before the COBOL program returns, you must
detect this case and either wait or inform the user of the error.

Regardless of which approach you choose, when a program written in
another language calls an ACUCOBOL-GT program, the data is passed as a
pointer to a variant type for each parameter. The ACUCOBOL-GT program
receives a handle for each parameter and uses a library routine to convert the
data to COBOL types. When ACUCOBOL-GT data items are passed back to
this program, they pass through another library routine that converts the data
back into variant types. The C$GETVARIANT and C$SETVARIANT
library routines are detailed in Appendix I in ACUCOBOL-GT Appendices.

The parameters of the COM server methods, or exported DLL functions, are
all null-terminated strings, integers, or variant type variables. In some
programming languages, such as Visual Basic (VB), the variant type is used
by default for any variables that have not been assigned a data type. Because
the variant type is used to represent many different types of data, you
generally don’t have to convert these types of data when they are assigned to
a variant variable. The programming language automatically performs any
necessary conversion. Because the ACUCOBOL-GT COM server and
runtime DLL routines take variant type parameters, it is easy to receive
variables from, or return variables to, other languages.

Note: All the examples in this section use Visual Basic as the source
language for code samples. Microsoft conventions for object description
language are used for the descriptions of method usage.

3-4 Working with Windows Technologies
3.2.1 Using the ACUCOBOL-GT COM Server

For ease of use in Windows environments, the ACUCOBOL-GT runtime is
available as a COM server. With the COM server, you can treat the
ACUCOBOL-GT system as a COM object and include it in applications that
support COM.

To use the COM server in other programs:

1. Register the ACUCOBOL-GT COM server. Registration occurs
automatically when you load the ACUCOBOL-GT runtime using the
setup program that comes with the software.

When you distribute your application, if you are not using the
ACUCOBOL-GT setup program, you will have to install and register the
COM server on each user’s machine. If you are using it as a remote
server, you must install and register the ACUCOBOL-GT runtime with
the COM server option on the server machine. Register the
ACUCOBOL-GT COM server by running it with no command-line
options or with the “/RegServer” option. This command-line option is
not case sensitive.

The ACUCOBOL-GT COM server executable is in the
ACUCOBOL-GT bin directory after installation. This file is named
“AcuGT.exe”. The ACUCOBOL-GT COM server requires the same
files as the ACUCOBOL-GT runtime, except for “wrun32.exe”. Two
additional files, “AcuGT.exe” and “AcuGT.tlb”, must be installed on the
machine in a single directory. For the COM server to work, the runtime
DLL “wrun32.dll” must either be in the same directory as “AcuGT.exe”
or somewhere else in the Windows DLL search path. If you move
“AcuGT.exe” to a different directory, you must register it again from the
new location.

Note: If you ever need to unregister the ACUCOBOL-GT COM
server, run “AcuGT /UnregServer”.

2. Start the other programming language’s development environment and
add the current “ACUCOBOL-GT Library” to your project references.

Calling COBOL From Other Windows Programs 3-5
3. Add code to declare and create the AcuGT object. For example, in
Visual Basic you could enter:

Dim cblObj As Object
Set cblObj = New AcuGT

4. Control the ACUCOBOL-GT COM server using the “Initialize”,
“Call”, “Call50”, “Cancel”, and “Shutdown” methods described in
section 3.2.1.1. For example, from Visual Basic you would enter:

cblObj.Initialize "-d" ' Start ACUCOBOL-GT in debug mode
retVal = cblObj.Call(programName, arg0, arg1, arg2)
cblObj.Shutdown

or use the “With” construct. For example:

With cblObj
 .Initialize "-e @myserver:\myprogs\errorfile"
 .Call "*myserver:\myprogs\program1.acu", "call1", 1.2, 37
 .Call "*myserver:\myprogs\program1.acu", "call2", 2.3, 38
 .Call "*myserver:\myprogs\program1.acu", "call3", 3.4, 39
 .Cancel "*myserver:\myprogs\program1.acu"
End With

If you don’t explicitly call “Initialize”, the COM server calls it for you,
passing an empty command-line parameter. Likewise, if you don’t explicitly
call “Shutdown”, the COM server calls it for you when the object is
destroyed.

In this example, after the AcuGT object is created in Visual Basic, “Initialize”
is called automatically. Then, when the AcuGT object is destroyed at the end
of the subroutine, the “Shutdown” method is called automatically:
Private Sub Command1_Click()
 Dim cblObj As Object
 Set cblObj = New AcuGT
 cblObj.Call "program"
End Sub

If you have several COBOL calls to make, it is much more efficient to create
the AcuGT object as a Public variable in the module, class, or form
initialization. For example, this may be done using the Visual Basic
CreateObject function:
Dim cblObj As Object
Set cblObj = CreateObject("AcuGT.Application");

3-6 Working with Windows Technologies
The Visual Basic CreateObject function takes an optional second
parameter—the name of the network server where the object is created. For
example, if you want to run the COBOL program on a remote machine
named MOOSE, use the following syntax:
Set cblObj = CreateObject("AcuGT.Application", "MOOSE");

The COM server sets the “current directory” for COBOL programs to the
directory containing “AcuGT.exe”. This allows you to use relative directory
paths when you specify file names. For example, suppose you have installed
the COM server in C:\AUTOSRV\BIN, the COBOL programs and
configuration files you want to use in C:\AUTOSRV\PROGRAMS and the
data files in C:\AUTOSRV\DATA. You could then call the “Initialize”
method with “-c ..\PROGRAMS\CONFIG”, set CODE_PREFIX to
“..\PROGRAMS” and set FILE_PREFIX to “..\DATA”.

The ACUCOBOL-GT COM server is thread-safe, meaning that you can run
COBOL programs asynchronously. To do this, you must create a new thread
and a new AcuGT object in that thread. Then you call the COBOL program
from that thread.

For an example of how to create new threads in Visual Basic, see “Creating a
Multithreaded Test Application” in the Visual Basic documentation.

It is a good idea to trap errors and handle them with your own Visual Basic
error handler. For example:
 On Error GoTo ErrHandler
 cblObj.Call "program"
Exit Sub

ErrHandler:
 myval = MsgBox(Err.Description, vbOKOnly,
 "Call not successful")
End Sub

3.2.1.1 Methods of the COM server object

The ACUCOBOL-GT COM server object has the following methods:

• Initialize

• Shutdown

Calling COBOL From Other Windows Programs 3-7
• Call

• Call50

• Cancel

Initialize

Initializes the ACUCOBOL-GT runtime

Usage
HRESULT Initialize([in] VARIANT *cmdLine)

Return value

“Initialize” returns one of the following result codes (note that these values
are given in hexadecimal format):

Shutdown

Shuts down the runtime

Usage
void Shutdown(void)

Call

Calls the runtime

Name Value Description

S_OK 0 Call succeeded

ACUGT_E_UNEXPECTED 80040200 Unexpected error

ACUGT_E_INITIALIZE 80040201 COM initialization failed.
Make sure that the COM
libraries are the correct
version.

3-8 Working with Windows Technologies
Usage
HRESULT Call([in] VARIANT *name,
 [in, out, optional] VARIANT *arg0,
 [in, out, optional] VARIANT *arg1,
 [in, out, optional] VARIANT *arg2,
 [in, out, optional] VARIANT *arg3,
 [in, out, optional] VARIANT *arg4,
 [in, out, optional] VARIANT *arg5,
 [in, out, optional] VARIANT *arg6,
 [in, out, optional] VARIANT *arg7,
 [in, out, optional] VARIANT *arg8,
 [in, out, optional] VARIANT *arg9,
 [in, out, optional] VARIANT *arg10,
 [in, out, optional] VARIANT *arg11,
 [in, out, optional] VARIANT *arg12,
 [in, out, optional] VARIANT *arg13)

Return value

“Call” returns one of the following result codes (note that these values are
given in hexadecimal format):

Name Value Description

S_OK 0 Call succeeded

ACUGT_E_UNEXPECTED 80040200 Unexpected error

ACUGT_E_MULTIPLE_THREADS 80040203 Call (or Call50) has
been called in
multiple threads
(see “Calling the
Runtime DLL”).

ACUGT_E_INITIALIZE_FAILED 80040204 Initialize failed.
(Initialize cannot be
called after
Shutdown in a
single process.)
(See “Calling the
Runtime DLL.”)

ACUGT_E_PROGRAM_MISSING 80040205 Program missing or
inaccessible

Calling COBOL From Other Windows Programs 3-9
Call50

“Call50” calls the runtime in the same way as “Call”, except that you may
have up to 50 optional parameters. Substitute “Call50” for the word “Call”
in the Visual Basic syntax. The return values are exactly the same.

Note: When you call using “Call” or “Call50”, you may not exceed 14
parameters for “Call” or 50 parameters for “Call50”.

Cancel

Cancels a COBOL program

Usage
void Cancel([in] VARIANT *program)

ACUGT_E_NOT_COBOL 80040206 Not a COBOL
program

ACUGT_E_CORRUPTED 80040207 Corrupted program

ACUGT_E_INADEQUATE_MEMORY 80040208 Inadequate memory
available

ACUGT_E_UNSUPPORTED 80040209 Unsupported
version of object
code

ACUGT_E_PROGRAM_IN_USE 8004020A Program already in
use

ACUGT_E_TOO_MANY 8004020B Too many external
segments

ACUGT_E_CONNECTION_REFUSED 8004020C Connection
refused; perhaps
AcuConnect® is
not running.

Name Value Description

3-10 Working with Windows Technologies
3.2.2 Calling the Runtime DLL

For 32-bit Windows users, the ACUCOBOL-GT runtime is available in a
DLL file.

To call the runtime DLL from another programming language, you must add
certain declarations to the source program. This example shows what you
would use in Visual Basic:
Declare Function AcuInitialize Lib "wrun32.dll" _
 (Optional ByVal cmdLine As String) As Integer

Declare Sub AcuShutdown Lib "wrun32.dll" ()

Declare Function AcuCall Lib "wrun32.dll" _
 (ByVal name As String, _
 Optional param1, _
 Optional param2, _
 Optional param3, _
 Optional param4, _
 Optional param5, _
 Optional param6, _
 Optional param7, _
 Optional param8, _
 Optional param9, _
 Optional param10, _
 Optional param11, _
 Optional param12, _
 Optional param13, _
 Optional param14) As Integer

Declare Function AcuCall50 Lib "wrun32.dll" _
 (ByVal name As String, _
 Optional param1, _
...
 Optional param50) As Integer

Note: Two declarations are shown. “AcuCall” supports 14 optional
parameters, and “AcuCall50” supports 50 optional parameters.
“AcuCall50” has the same format as “AcuCall”, except that you must
include the full list of 50 parameters in your declaration. The code example
for “AcuCall50” was abbreviated.

Calling COBOL From Other Windows Programs 3-11
Declare Function AcuGetCallError Lib"wrun32.dll" () As Integer

Declare Sub AcuCancel Lib "wrun32.dll" (ByVal name As String)

After you add the declarations, you initialize the runtime, call the COBOL
program(s) passing the program name and parameters, and shut down when
you are finished. For example, in Visual Basic you would perform the
following steps:

1. Call “AcuInitialize” to pass the runtime’s command-line options. For
example:

returnValue = AcuInitialize("-c myconfig -le myerrors")

“AcuInitialize” returns a value of “0” on success and “-1” on failure.
You can safely call “AcuInitialize” multiple times. The command line
from the first call is used and is ignored on subsequent calls.

You may use the runtime “-d” option to debug your ACUCOBOL-GT
program. Specify “-d” in the command line to “AcuInitialize”, and the
debugger window appears when you actually call a COBOL program.

2. Then call “AcuCall” or “AcuCall50”, passing the program name and
parameters. For example, to call the program “vb-test” with
“AcuCall”, enter:

returnValue = AcuCall("vbtest.acu", testNum,
 testStr, testLongNum, testFloat)

“AcuCall” returns “0” on success and “-1” on failure. If “AcuInitialize”
hasn’t been called yet, “AcuCall” calls it, passing an empty command
line. If “AcuCall” returns “-1”, you may call “AcuGetCallError” to get
the error code. The error codes are as follows:

-4 “AcuCall” (or “AcuCall50”) has been called in multiple
threads.

-3 “AcuInitialize” failed. (“AcuInitialize” cannot be called
after “AcuShutdown” in a single process.)

1 Program missing or inaccessible

2 Not a COBOL program

3 Corrupted program

3-12 Working with Windows Technologies
Note: Two calls are available to you. “AcuCall” supports 14 optional
parameters, and “AcuCall50” supports for up to 50 optional
parameters. “AcuCall50” calls the runtime in the same way as
“AcuCall”, just use the appropriate name in the Visual Basic syntax.
The return values are exactly the same. The declaration is similar, but
you must declare all 50 parameters.

3. Call “AcuShutdown” after you are completely finished using COBOL
in your Visual Basic application. It is absolutely essential to call
“AcuShutdown” from the VB program after the final call to COBOL.
Failure to call “AcuShutdown” before the VB program ends will likely
cause the Visual Basic integrated environment to crash, resulting in the
loss of any unsaved VB program changes.

Note: If a COBOL program issues a STOP RUN, “AcuCall” returns,
the runtime environment is initialized, and the calling process
continues running. This sequence occurs so that STOP RUN does not
shut down the calling application or development environment you are
using.

4. To cancel a COBOL program, call “AcuCancel” passing the name of
the program. For example:

AcuCancel("vbtest.acu")

4 Inadequate memory available

5 Unsupported version of object code

6 Program already in use

7 Too many external segments

25 Connection refused; perhaps AcuConnect is not running

27 Program contains object code for a different processor.

28 Incorrect serial number

30 License error

Calling DLLs from COBOL 3-13
3.3 Calling DLLs from COBOL

ACUCOBOL-GT programs can call native code subroutines located in
DLLs. This includes files with a “.dll” extension and Windows system files
with a “.drv” or “.ocx” extension. You do not need to relink the runtime to
access the routines in DLLs.

To use a routine located in a DLL, you must first load the DLL in one of three
ways:

• Using the CALL statement

• Using configuration variables

• Using the “-y” runtime option

Note: If you are loading a DLL that contains Windows API functions,
please refer to section 3.5. This section contains some specific guidelines
and procedures that you should know when calling Windows API
functions.

3.3.1 Loading DLLs with the CALL Statement

To load the dynamic link library “mylib.dll”, you would CALL either
“mylib.dll” or simply “mylib”. The runtime automatically appends “.dll”
when searching for a DLL. The runtime searches for DLLs after it has
searched for COBOL programs. It first searches the paths defined in the
CODE_PREFIX configuration variable, and then in the System and
Windows folders, respectively (actually, folder names vary depending on the
specific version of Windows and user customizations). If you do not want the
runtime to look in the System or Windows folders, set the
DLL_USE_SYSTEM_DIR configuration variable to “0” (off, false, no).

3-14 Working with Windows Technologies
Note: By default, the runtime also recognizes “.drv” and “.ocx” files,
which enables you to load these file types just as you would a “.dll”. For
backwards compatibility, you can turn this feature off by setting the runtime
configuration variable “USE_WINSYSFILES” to “0” (off, false, no). Then,
only calls to “.dll” files are supported.

The CALL statement that loads a DLL simply makes the routines contained
in the DLL available to the COBOL program. The one exception to this is if
the DLL contains a routine whose name is the same as the DLL. In this case,
the routine is immediately called. For example, if the DLL “mylib.dll”
contains a routine called “mylib”, then

CALL "mylib"

both loads the DLL and executes the MYLIB routine. To load the library and
avoid calling the subroutine of the same name, specify “.dll” explicitly in the
CALL statement, as shown below:

CALL "mylib.dll"

Thin client applications may call DLLs on the display host (client) by adding
“@[DISPLAY]:” to the beginning of the CALL name. For example, to call a
DLL named “mylib” on the client, you would use the following code:

CALL "@[DISPLAY]:mylib.dll"

For complete information, see section 6.5.6, “Calling Dynamic Link
Libraries (DLLs),” in the AcuConnect User’s Guide.

Once the library has been loaded, all of the routines it contains can be called.
For example:

CALL "funcA"

Loaded DLLs are searched immediately prior to searching for COBOL
programs on disk. Routines contained in a DLL are called using either the
direct C interface or the Pascal/WINAPI interface. As a result, you may pass
parameters BY VALUE if that is required by the routine.

Calling DLLs from COBOL 3-15
Routines called by this method are assumed to use either the cdecl (standard
C) or stdcall (Pascal/WINAPI) parameter passing conventions. Most of the
Windows API library functions are stored in DLLs and must be called using
the stdcall (Pascal/WINAPI) calling convention.

By default, the runtime uses the value of the DLL_CONVENTION
configuration variable to determine the calling convention. A maximum of
16 parameters can be passed using the stdcall DLL_CONVENTION. A
maximum of eight parameters can be passed using the cdecl (standard C)
DLL_CONVENTION (the default). See Appendix H in ACUCOBOL-GT
Appendices for more details. If you attempt to call a routine that uses a
different calling convention, the results are undefined (and usually fatal).

You can override the calling convention for an individual function by
specifying it after the function name in the CALL statement.

To specify the stdcall calling convention, append one of the following strings
to the function name: @, @1, @WINAPI, @__stdcall. (The @__stdcall
string has two underscores.) For example:

CALL "funcA@"

or
CALL "funcA@1"

or
CALL "funcA@WINAPI"

or
CALL "funcA@__stdcall"

calls funcA using the stdcall calling convention.

To specify the cdecl calling convention, append one of the following strings
to the function name: @0, @STDC, @__cdecl. (The @__cdecl string has
two underscores.) For example:

CALL "funcB@0"

or
CALL "funcB@STDC"

3-16 Working with Windows Technologies
or
CALL "funcB@__cdecl"

calls funcB using the cdecl calling convention.

The runtime uses the specified calling convention and ignores the value of
the DLL_CONVENTION configuration variable. Note that you cannot
specify the calling convention for a DLL when specifying a DLL name in a
CALL statement. You can, however, specify the calling convention for DLLs
using configuration variables. Specifying conventions for individual
functions in the CALL statement overrides any other conventions specified
for the DLL name.

If desired, you could specify the calling convention for individual functions
in the runtime configuration file instead of in the CALL statement. To do
this, set the CODE_MAPPING variable to “1”. If you use the following
configuration entries:

CODE_MAPPING=1
funcA=funcA@__stdcall
funcB=funcB@__cdecl

then
CALL "funcA"

calls funcA using the stdcall calling convention and
CALL "funcB"

calls funcB using the cdecl convention.

If you have access to a library (“.lib”) file for the DLL, you can determine the
calling convention for a particular function using the Microsoft COFF Binary
File Dumper utility. Run “dumpbin /exports <library name>”. If the function
name is preceded by an underscore and followed by an “at” sign (“@”) and a
decimal number, the function expects to be called using the stdcall calling
convention. If the name of the function is not followed by an at sign, then the
function expects to be called using the cdecl convention.

Like other programs that are loaded with a CALL statement, you can unload
a CALLed DLL with a CANCEL statement. When you CANCEL a DLL,
you may no longer call its component libraries. Also, unless the logical

Calling DLLs from COBOL 3-17
cancels feature is enabled, all memory used by the program is released. For
information about runtime memory management and the logical cancels
feature, see section 6.3, “Memory Management,” in the ACUCOBOL-GT
User’s Guide.

Note: The CANCEL_ALL_DLLS configuration variable can be used to
control whether CANCEL ALL frees DLLs. See Appendix H in
ACUCOBOL-GT Appendices for more details.

3.3.2 Loading DLLs with Configuration Variables

Another way to load DLLs is to list them in the SHARED_LIBRARY_LIST
configuration variable. SHARED_LIBRARY_LIST lets you specify a list of
libraries to be automatically loaded by ACUCOBOL-GT at run time. It can
be set in the environment, in the runtime configuration file, or
programmatically with the SET ENVIRONMENT statement.

The library names in SHARED_LIBRARY_LIST are delimited by spaces or
colons on UNIX and spaces or semicolons on Windows (like directories
specified in the PATH variable). You can also specify both the name of the
DLL and the calling convention to use. Any calling convention specified this
way overrides the DLL_CONVENTION variable setting.

For example, to specify the stdcall calling convention for “mylib.dll”, you
might include the following in your configuration file:

SHARED_LIBRARY_LIST=mylib.dll@__stdcall

This indicates that every function in “mylib.dll” should be called using the
stdcall convention, regardless of the DLL_CONVENTION setting.

To specify the cdecl calling convention, you might include:
SHARED_LIBRARY_LIST=mylib.dll@__cdecl

This indicates that every function in “mylib.dll” should be called using the
cdecl convention, regardless of the DLL_CONVENTION setting.

3-18 Working with Windows Technologies
If you have access to a library (“.lib”) file for the DLL, you can determine the
calling convention for a particular function using the Microsoft COFF Binary
File Dumper utility, as described in the previous section. Run “dumpbin
/exports <library name>”. If the function name is preceded by an underscore
and followed by an at sign and a decimal number, the function expects to be
called using the stdcall calling convention. If the name of the function is not
followed by an at sign, then the function expects to be called using the cdecl
convention.

Note that the SHARED_LIBRARY_LIST configuration variable does not
load client-side DLLs for thin client applications that make calls using the
CALL verb @[DISPLAY]: syntax. These applications must explicitly load
the DLL by calling it with the CALL verb before calling a function within the
DLL. You can, however, call DLLs on the server using
SHARED_LIBRARY_LIST.

Refer to Appendix H in ACUCOBOL-GT Appendices for more information
on any of the configuration variables discussed in this section.

Note: To use shared libraries without CALLing them first, you can use the
“-y” runtime option to place shared libraries on the command line. The
runtime then uses the usual search logic to find the specified libraries when
trying to resolve CALLs.

3.3.3 Loading DLLs with the “-y” Runtime Option

You can load DLLs by specifying “-y” on the command line at run time. You
enter “-y” followed by the DLL name to load. Specifying:

 -y lib1.dll -y lib2.dll -y lib3.dll

is equivalent to specifying
SHARED_LIBRARY_LIST=lib1.dll;lib2.dll;lib3.dll

You can also specify the calling convention in the “-y” argument. For
example:

wrun32 ... -y lib1.dll@_stdcall -y lib2.dll@_cdecl

Working With Open Database Connectivity (ODBC) 3-19
Note that the “-y” runtime option does not load client-side DLLs for thin
client applications that make calls using the CALL verb @[DISPLAY]:
syntax. These applications must explicitly load the DLL by calling it with the
CALL verb before calling a function within the DLL. You can, however, call
DLLs on the server using the “-y” option.

Refer to section 2.2 of the ACUCOBOL-GT User’s Guide for more details on
the “-y” runtime option.

3.4 Working With Open Database Connectivity
(ODBC)

To provide flexible interaction between your COBOL applications and data
and popular commercial applications and data in the Windows environment,
we offer two different ODBC interface technologies.

The first, Acu4GL® for ODBC, is designed to give your ACUCOBOL-GT
applications access to ODBC-compliant data sources such as Microsoft
Access. You can use standard COBOL I/O statements to access these data
sources, locally or remotely.

The second, AcuXDBC™, gives ODBC-enabled applications such as
Microsoft Word, Excel, and Access access to Vision data. Business
Intelligence tools such as Crystal Reports® Professional, and custom
applications developed in ODBC supported environments such as Visual
Basic® are supported as well. AcuXDBC also works with Java Database
Connectivity (JDBC).

This section provides general information about using our ODBC interfaces.
For detailed instructions, please refer to the Acu4GL User’s Guide and the
AcuXDBC User’s Guide.

3.4.1 What Is ODBC?

Developed by Microsoft, ODBC is a library of standardized data access
functions used to connect Windows applications to relational and
non-relational databases. It is intended to give programmers a way to access

3-20 Working with Windows Technologies
and manipulate data in a variety of dissimilar data sources. ODBC can access
a wide variety of file systems because it takes advantage of their common
properties and common standards.

With traditional call-level interfaces, you need to learn the API for each data
source and application. If you want to extend an application to support an
additional data source, or port an application from one data source to another,
you must write a complete new access module.

ODBC was designed expressly to provide access to any ODBC-compliant
data source. It offers a standard API that can be used to manipulate data in a
Microsoft Access database on your PC, or connect from your PC to an Oracle
database on a UNIX host. It can even access files that are not databases, such
as Excel spreadsheets.

Our two ODBC products, AcuXDBC and Acu4GL for ODBC, are designed
to ease the use of ACUCOBOL-GT applications and data in a Microsoft
Windows environment. Together, these ODBC interfaces give our customers
a broad level of application and data flexibility.

The front-end ODBC product is known as Acu4GL for ODBC.
ACUCOBOL-GT uses Acu4GL libraries to access information stored in
relational database management systems (RDBMSs). Data dictionaries
generated by the compiler guide the libraries in mapping the field names and
data types that are passed between COBOL and the database engine. The
essence of Acu4GL libraries is that standard COBOL I/O statements are used
to access databases. Acu4GL dynamically generates industry-standard SQL
from the COBOL I/O statements. As the ACUCOBOL-GT runtime module

ACUCOBOL-GT application ODBC–enabled application

(e.g., Word or Excel)

ODBC data source

(e.g.,Access)

ACUCOBOL – GT

data files

AcuXDBC

Acu4GL for ODBC

Accessing the Windows API 3-21
is executing your COBOL application, Acu4GL is running “behind the
scenes” to match up the requirements and rules of both COBOL and the
RDBMS to accomplish the task set by your application.

AcuXDBC can be used as a back-end ODBC product. AcuXDBC gives
ODBC-enabled Windows applications seamless access to ACUCOBOL-GT
Vision files. AcuXDBC Server is an add-on to AcuXDBC that supports
remote processing on a Windows NT/2000/2003/2008, UNIX, or Linux
server. Whether your Vision data is on a Windows machine, network server,
or UNIX server, AcuXDBC can make it accessible to many popular
Windows applications, including Excel, Word for Windows, Access, and
Microsoft Query.

3.5 Accessing the Windows API

The Windows API lets you develop applications that take advantage of the
features and capabilities of the Windows operating system. In essence, the
Windows API provides building blocks that can be used by applications
written for Windows, regardless of the language those applications are
written in.

If desired, you can call Windows API functions from ACUCOBOL-GT,
giving your COBOL program features and functions that are unique to
Windows. You can give your application a graphical user interface; display
graphics and formatted text; and manage system objects such as memory,
files, and processes. Literally hundreds of Windows API functions are
available.

Windows API functions are contained in DLLs. To access a Windows API
function from ACUCOBOL-GT, you load the DLL and then call the function.
(The procedure for this is outlined in section 3.5.3, subsection “Procedure.”)

Before you get started, you should become familiar with the documentation
that is available, the DLLs that you’ll use most often, and some guidelines
specific to ACUCOBOL-GT and data mapping. This information is provided
in sections 3.7.1 through 3.7.3.

3-22 Working with Windows Technologies
3.5.1 Microsoft Documentation

Microsoft Corporation documents the Windows APIs in two main places: in
the Microsoft Software Developer’s Kit (SDK), and on the Web site,
msdn.microsoft.com. Both of these are excellent sources of information on
the various Windows API functions. In order to learn how to access and use
a Windows API function, you need to refer to these documents frequently.

In the documentation for each function, you can learn the DLL name that
contains the function (the DLL name to call) and whether or not ANSI and
Unicode versions are available (for functions that handle text). All of this
information is listed in the requirements table for the function.

If both Unicode and ANSI versions of the function are available, you must
append an “A” or “W” to the function name when you call it in
ACUCOBOL-GT. “A” stands for ANSI, “W” for wide code/Unicode. For
instance, the GetUserName function is implemented as GetUserNameW
(Unicode) and GetUserNameA (ANSI). In some cases, the requirements
table supplies the function names for Unicode and ANSI. In other cases it
simply states:

Unicode: Implemented as Unicode and ANSI versions

Either way, be sure to include the “A” or “W” in the function name to
indicate which version you want to call.

Note that Windows API function names are case sensitive. You must adhere
to case sensitivity of the function name when you call it.

Finally, the Microsoft documentation defines the parameters for the
Windows API functions. You will create variables for each of these
parameters in your program’s Working-Storage Section.

3.5.2 Useful Windows API DLLs

Although many Windows API DLLs are available, the following three may
be used frequently:

• “user32.dll”, for clipboard functions

http://msdn.microsoft.com

Accessing the Windows API 3-23
• “kernel32.dll”, for Getxxx functions

• “mpr.dll”, for network functions

To see a list of the functions available in these or any DLLs, place the DLL in
your \system directory then run the utility known as “depends.exe”. The
“depends.exe” file is in the \tools directory of the Microsoft SDK.

3.5.3 Calling a Windows API function from
ACUCOBOL-GT

The following sections provide some general rules and guidelines for calling
a Windows API function from ACUCOBOL-GT.

General rules

1. You must load the DLL to call it’s function. (Even if it is already loaded
by the system, you must implement it.) There are three ways to load a
DLL in ACUCOBOL-GT: you can CALL it, use the “-y” runtime
option, or use the SHARED_LIBRARY_LIST configuration variable.
These are described fully in section 3.3 of this chapter.

2. If you CALL a DLL, you can enter any of the following:

CALL "MyDll"
CALL "MyDll.dll"
CALL "C:\MyDir\MyDll.dll"

We recommend the middle option. The last won’t work if your system
is mobile. If you set CODE_PREFIX, the runtime looks for the DLL in
the CODE_PREFIX directory. If it is not found, it also tries the
Windows system directory.

3. You must indicate the DLL calling convention in your COBOL
program. The vast majority of the time, the convention for Windows
API DLLs is WINAPI also known as stdcall. You can specify calling
conventions in ACUCOBOL-GT in several ways:

• Using the DLL_CONVENTION variable. To indicate
WINAPI/stdcall, you would set DLL_CONVENTION to “1”.

3-24 Working with Windows Technologies
• Using the SHARED_LIBRARY_LIST variable

• In the CALL statement for individual library functions

• Setting the CODE_MAPPING variable to “1”, then using
configuration entries to specify the calling convention for individual
functions

• Using the “-y” runtime option

 Section 3.3.1 describes the nuances of specifying calling conventions.

4. You must indicate “A” or “W”, ANSI/wide, in the function name if
both ANSI and Unicode versions of the function are available. See
section 3.5.1 for a more detailed description.

5. You must adhere to case sensitivity of the function name.

6. You must terminate any strings that you pass to a function. Use x“00”
(LOW-VALUES) as in the following examples:

STRING "My example" LOW-VALUES DELIMITED BY SIZE INTO
target-string.

or

INSPECT target-string REPLACING TRAILING SPACES BY
x"00".

7. Do not use literals with Windows functions.

8. You must map your ACUCOBOL-GT handle to the Windows handle.
For example:

INQUIRE acuhandle SYSTEM HANDLE IN syshandle

Then “syshandle” can be passed on to the Windows API function. You
declare the handle in Working-Storage like this:

77 syshandle USAGE PIC X(4) COMP-N.

9. You should cancel the DLL when finished using it. For example:

CANCEL "mydll.dll".

Note that DLLs loaded with “-y” or SHARED_LIBRARY_LIST cannot
be cancelled or unloaded.

Accessing the Windows API 3-25
10. Always pass string variables BY REFERENCE. In C, BY
REFERENCE is indicated by an “&”. You can also use BY
REFERENCE when the data type is prefixed with LP, as in LPSTR.

You can pass a numeric value BY REFERENCE or BY VALUE,
depending on how the function is implemented. (Refer to the Microsoft
documentation.)

CALL a function BY CONTENT to make a copy of it and provide an
address to the copy. This lets users read, not modify, content.

11. Most Windows API functions return only “true” or “false” when they
succeed or fail. You must call GetLastError for specific reasons.

12. Whatever memory you allocate via ACUCOBOL-GT’s M$ALLOC
routine, it is your responsibility to release/free via M$FREE.

Data mapping

1. When mapping Windows API data types to COBOL, you can use
COMP-5 or COMP-N as shown below:

Windows COBOL Data Size

char[n], str[n], tchar[n] PIC X(n) n bytes

long, int PIC X(4) COMP-N

or

PIC S9(9) COMP-5

4 bytes

dword, ulong, lpxxx, float PIC X(4) COMP-N

or

PIC 9(9) COMP-5

4 bytes

short PIC X(2) COMP-N

or

PIC S9(5) COMP-5

2 bytes

word, ushort PIC X(2) COMP-N

or

PIC 9(5) COMP-5

2 bytes

3-26 Working with Windows Technologies
We recommend using COMP-N for most cases, although COMP-N data
types are HEX, unsigned, and thus difficult for negative numbers.

If you want to use COMP-5, be sure to use the “--TruncANSI” compiler
option. This causes truncation in binary to the capacity of the allocated
storage for COMP-5 items. (By default, ACUCOBOL-GT truncates in
decimal to the number of digits given in the PICTURE clause on
arithmetic and non-arithmetic stores into COMP-5 items.) Note that the
“-Dz” option overrides “--TruncANSI”.

2. When defining C data types in COBOL, remember to maintain the data
size shown in the table. It is imperative to make items the same, static
size.

3. A structure is a group of data, a virtual container for many different C
data items. To include a C structure (struct) in ACUCOBOL-GT,
ignore the first and last line in the structure, and create a COBOL
group item as shown in the following example:

C structure to include:
typedef struct _WIN32_FIND_DATA {
 DWORD dwFileAttributes;
 FILETIME ftCreationTime;
 FILETIME ftLastAccessTime;
 FILETIME ftLastWriteTime;
 DWORD nFileSizeHigh;
 DWORD nFileSizeLow;
 DWORD dwReserved0;
 DWORD dwReserved1;
 TCHAR cFileName[MAX_PATH];
 TCHAR cAlternateFileName[14];
} WIN32_FIND_DATA, *PWIN32_FIND_DATA;

Resulting ACUCOBOL-GT group item:
01 WIN32-FIND-DATA.
 03 dwFileAttributes PIC X(4) COMP-N.
 03 ftCreationTime.
 05 dwLowCreateDT PIC X(4) COMP-N.
 05 dwHighCreateDT PIC X(4) COMP-N.
 03 ftLastAccessTime.
 05 dwLowAccessDT PIC X(4) COMP-N.
 05 dwHighAccessDT PIC X(4) COMP-N.
 03 ftLastWriteTime.

Accessing the Windows API 3-27
 05 dwLowWriteDT PIC X(4) COMP-N.
 05 dwHighWriteDT PIC X(4) COMP-N.
 03 nFileSizeHigh PIC X(4) COMP-N.
 03 nFileSizeLow PIC X(4) COMP-N.
 03 dwReserved0 PIC X(4) COMP-N.
 03 dwReserved1 PIC X(4) COMP-N.
 03 cFileName PIC X(260).
 03 cAlternateFileName PIC X(14).

Limits

ACUCOBOL-GT does not support:

• Callback functions

• Microsoft Foundation Class (MFC) objects

In addition, the GetMessage function causes the ACUCOBOL-GT runtime to
stop while the function waits for a message. Use PeekMessage instead. If no
message is sent, the function returns.

Procedure

To call a Windows API function:

1. Determine the name of the desired function and the DLL containing the
function by looking at Microsoft’s documentation. Also determine if
both ANSI and Unicode versions are supported. For example:

Unicode: Implemented as GetUserNameW (Unicode) and
GetUserNameA (ANSI)
Required DLL: AdvAPI32.DLL

2. Find the parameters for the desired function in the documentation. For
example, the parameters for GetUserName are:

lpBuffer: Pointer to the buffer to receive the null-terminated string
containing the user’s logon name

nSize: On input, this variable specifies the size of the lpBuffer buffer, in
TCHARs. On output, the variable receives the number of TCHARs
copied to the buffer, including the terminating null character.

3-28 Working with Windows Technologies
3. In your ACUCOBOL-GT program’s Working-Storage Section, create a
variable for each of the Windows API function parameters. For
example:
77 user-name PIC X(40).
77 var-size PIC 9(9) COMP-5.

4. Set the DLL calling convention for the function in your program’s
Procedure Division. For example:

set environment "dll_convention" to 1.

5. Load the DLL containing the Windows API function. For example:

Call "advapi32.dll"
On exception go to err-load

6. Call the Windows API function. For example:

Set var-size to size of user-name.
call "GetUserNameA" using
by reference user-name
by reference var-size

Other functions have parameters requiring the use of BY VALUE instead
of BY REFERENCE. Read the Microsoft documentation carefully to
make sure you pass parameters the proper way.

7. Terminate any strings that will be returned by the function. For
example:

inspect user-name replacing all low-values by space.

8. Cancel or unload the DLL if appropriate. For example:

cancel "advapi32.dll"

Note that DLLs loaded with “-y” or SHARED_LIBRARY_LIST cannot
be cancelled or unloaded.

These general steps should be enough to get you started.

Using Visual C++ .NET 3-29
3.6 Using Visual C++ .NET

This section describes how to use ACUCOBOL-GT in conjunction with
Visual C++ .NET. Visual C++ .NET, together with Visual Studio .NET,
provides a 32-bit Windows software development kit.

Generally speaking, you use Visual C++ .NET to write various C subroutines
that provide a specialized interface between your COBOL applications and
the Windows operating system. You then build a new ACUCOBOL-GT
runtime that contains these C subroutines, and you make calls to these
routines from your COBOL application. You can also use this procedure to
call code produced by code generators.

The remainder of this section assumes you are familiar with C and Visual
C++ .NET. For information on including .NET assemblies in your COBOL
program, or calling COBOL from a .NET application, refer to Chapter 5.

3.6.1 Building a New Runtime

Chapter 6 covers the details of writing C subroutines and passing parameters
between those routines and COBOL. You may use any of the interface
methods described there to call your C routines.

After you’ve written your routines, you’ll need to link them into the runtime
system. This process builds a new “wrun32.dll” that contains your routines.

In order to build a new runtime, you must have the ACUCOBOL-GT
Windows runtime and Visual C++ .NET installed. The files that you need to
rebuild the runtime can be found in the “library” subdirectory of the main
ACUCOBOL-GT directory. To link, load “wrun32.sln” into Visual C++
.NET and perform a build. For more information, see Chapter 6.

Important tips before you rebuild the runtime

You may add your C routines directly to the “sub.c” or “mswinsub.c” files
provided with ACUCOBOL-GT. More likely, you’ll want to create your own
files that hold your routines. If you do this, add the files to the “wrun32”
project.

3-30 Working with Windows Technologies
The file “mswinsub.c” contains useful declarations that you may want to use
in your C subroutines. In particular, you will find variables for the “instance”
and “main window” handles used by ACUCOBOL-GT. Also, you will find a
start-up routine to which you can add your initialization code.

3.6.2 User Interface Approaches

You can use Visual C++ .NET for many things that don’t directly affect the
user interface. For example, you can add dynamic data exchange with
another application. If you want to add user interface code, however, you
must decide whether to build your user interface using a mix of COBOL and
C, or whether to use C alone. This decision affects how your code interacts
with the runtime system.

Using C only, no COBOL

If you build your interface entirely in C, then you have complete flexibility in
how the interface works. In this case, you either want to run the runtime
system with the “-b” command-line option, or set the configuration variable
NO_CONSOLE to “1”. When you do this, the runtime won’t create its own
application window. Instead, your C code must build its own window. When
you take this approach, you may not use ACCEPT or DISPLAY verbs in your
COBOL program (except for those that don’t interact with the screen or
keyboard). This approach also works well with a user interface created by a
code-generating tool.

Using C and COBOL

If you want to use COBOL in conjunction with C, you must take care to
cooperate with the runtime system in how the screen is displayed.

In some cases, you don’t need to worry about the runtime system, because
32-bit Windows manages everything. Generally speaking, this occurs when
your C code displays data in its own window. For example, you can display
and accept data from a dialog box without interacting with the runtime
system (all you need is the handle of the runtime’s window, which you have
in “mswinsub.c”).

Using Visual C++ .NET 3-31
In other cases, you’ll need to cooperate with the runtime’s message handler.
For example, if you want to display a graphical object in the main application
window, you must monitor “paint” messages to the runtime system and draw
your object when appropriate. The general technique for doing this is called
“subclassing.” When you subclass a window, you instruct 32-bit Windows to
pass all of its messages to your own message handler. Typically, your
message handler acts on one or more messages and then passes all the
messages to the original message handler. For detailed instructions on
subclassing, see any 32-bit Windows programming text. The following is an
example of a typical case.

Suppose that you want to intercept messages to the runtime system and pass
them to a routine called “MyMsgHandler”. You would first declare
“MyMsgHandler” as a function designed to be called from 32-bit Windows:
LRESULT CALLBACK MyMsgHandler(HWND, UINT, WPARAM, LPARAM);

Next, in your start-up code, you would get the address of the
ACUCOBOL-GT message handler and then direct 32-bit Windows to send
messages to your handler instead. The code reads like this:

FARPROC lpfnMyMsgHandler, lpfnAcuWndProc;

lpfnMyMsgHandler = MakeProcInstance((FARPROC) MyMsgHandler, hAcuInstance);
lpfnAcuWndProc = (FARPROC) GetWindowLong(hAcuWnd, GWL_WNDPROC);
SetWindowLong(hAcuWnd, GWL_WNDPROC, (long) lpfnMyMsgHandler);

At this point, all messages that 32-bit Windows would normally direct to the
ACUCOBOL-GT main window procedure are instead received by
“MyMsgHandler”. Your message handler should intercept and act on the
messages it cares about. At the end, it should pass each message on to the
original message handler and return the result. This is usually done with a
line that reads like this:
return CallWindowProc(lpfnAcuWndProc, hWnd, iMsg, wParam, lParam);

For reference, ACUCOBOL-GT for 32-bit Windows currently acts on the
following messages:

WM_ACTIVATE WM_LBUTTONUP

WM_ACTIVATEAPP WM_MBUTTONDBLCLK

WM_CHAR WM_MBUTTONDOWN

3-32 Working with Windows Technologies
See the Visual C++ .NET documentation for details about these messages.

WM_CLOSE WM_MBUTTONUP

WM_COMMAND WM_MEASUREITEM

WM_CREATE WM_MOUSEMOVE

WM_CTLCOLOR WM_NCLBUTTONDBLCLK

WM_CTLCOLORBTN WM_NCLBUTTONDOWN

WM_CTLCOLOREDIT WM_NCPAINT

WM_CTLCOLORLG WM_PAINT

WM_CTLCOLORLISTBOX WM_PALETTECHANGED

WM_CTLCOLORMSGBOX WM_QUERYDRAGICON

WM_CTLCOLORSCROLLBAR WM_QUERYENDSESSION

WM_CTLCOLORSTATIC WM_QUERYNEWPALETTE

WM_DESTROY WM_RBUTTONDBLCLK

WM_DRAWITEM WM_RBUTTONDOWN

WM_ENDSESSION WM_RBUTTONUP

WM_ERASEBKGND WM_SETCURSOR

WM_GETMINMAXINFO WM_SETFOCUS

WM_HSCROLL WM_SIZE

WM_INITMENU WM_SIZING

WM_INITMENUPOPUP WM_SYSCHAR

WM_KEYDOWN WM_SYSCOLORCHANGED

WM_KILLFOCUS WM_SYSCOMMAND

WM_LBUTTONDBLCLK WM_TIMER

WM_LBUTTONDOWN WM_VSCROLL

Windows-specific Features of ACUCOBOL-GT 3-33
3.7 Windows-specific Features of ACUCOBOL-GT

The following sections describe ACUCOBOL-GT behaviors that are unique
to 32-bit Windows environments.

Message Boxes

ACUCOBOL-GT applications deployed in 32-bit Windows environments
can make use of the native Windows message box facility. A message box is
a simple pop-up window that provides information to the user. In some
instances it accepts a response (such as Yes or No) from the user. For further
details, see DISPLAY MESSAGE BOX in ACUCOBOL-GT Reference
Manual, Chapter 6.

 Hardware Error Handling

Use the WIN_ERROR_HANDLING configuration variable to determine
how hardware errors are handled.

When this variable is set to “1” (the default), certain errors are handled
directly by 32-bit Windows, and do not automatically return a file error code.
For these errors, a dialog box is displayed that describes the error and offers
Cancel and Retry buttons. The user may correct the error and click Retry. If
the user clicks Cancel, then your program receives the file error that it would
have normally received.

If you set WIN_ERROR_HANDLING to “0”, then the dialog box is not
shown and your program receives the error directly.

Special Characteristics of 32-bit Windows

In many ways, the 32-bit Windows environment operates quite differently
from other environments. Included in these differences are memory access
methods, interfaces to other languages, file extensions, and hardware error
messages. Some of these differences could affect the way your programs
execute.

3-34 Working with Windows Technologies
Memory

The ACUCOBOL-GT runtime for 32-bit Windows is designed to handle
memory management issues for you automatically.

SYSTEM library routine

The SYSTEM routine (described in Appendix I in ACUCOBOL-GT
Appendices) can be used to initiate 32-bit Windows and console-mode
programs. In either case, the program you start runs in its own window.
While the called program is running, the window containing the calling
program does not accept input from the user.

When CALL “SYSTEM” is used to initiate a program, it looks only for files
with a “.exe” extension. If you want to call a “.com” or “.bat” file, you must
explicitly add that extension in your code. For example:
CALL "SYSTEM" USING "MYBATCH.BAT"

C$SYSTEM library routine

The C$SYSTEM routine (also described in Appendix I in ACUCOBOL-GT
Appendices) allows you to run other programs from inside a COBOL
application by combining the functionality of the SYSTEM and C$RUN
routines.

ACCEPT SYSTEM-INFORMATION FROM SYSTEM-INFO

ACUCOBOL-GT for 32-bit Windows returns “WIN/NT” as its host
operating system when you use the ACCEPT FROM SYSTEM-INFO verb.
This allows you to easily code 32-bit Windows-specific sections in your
programs. The file “acucobol.def” contains SYSTEM-INFORMATION data
items.

Assembly routines

Assembly routines cannot be linked into the 32-bit Windows runtime.

Windows-specific Features of ACUCOBOL-GT 3-35
C$CHAIN library routine

The 32-bit Windows version of C$CHAIN behaves differently than it does in
most other environments. A mechanism for “chaining” programs is not
provided in 32-bit Windows. Instead, ACUCOBOL-GT initiates the
chained-to program as an independent program and then halts the
chained-from program.

Although this has the correct effect, 32-bit Windows causes the active
program to shift from the chained-to program to some other program when
the chained-from program halts. The runtime cannot determine which
program is selected by 32-bit Windows as the active one.

The net effect is that the chained-to program pops up, but then becomes
inactive and must be reactivated with either the mouse or the keyboard in
order for the user to enter data. A mechanism for suggesting which program
to activate when a program halts does not exist in 32-bit Windows.

3.7.1 Windows-specific Library Routines

ACUCOBOL-GT offers several Windows-specific library routines.

• WIN$PLAYSOUND lets you play a “.wav” file on Microsoft Windows
machines.

• WIN$PRINTER enhances COBOL’s ability take advantage of the
Windows print spooler.

• WIN$VERSION lets you retrieve version information from Windows
host machines.

• A number of library routines enable you to create and query Windows
Registry keys.

For more information on these routines, please refer to Appendix I in
ACUCOBOL-GT Appendices.

3-36 Working with Windows Technologies

4
 Using ActiveX Controls and
COM Objects
Key Topics

Leveraging Ready-made Controls... 4-2
Adding ActiveX Controls or COM Objects to Your COBOL Program.... 4-3
Properties, Styles, and Methods .. 4-10
ActiveX and COM Events... 4-18
ACTIVE-X Control Type.. 4-22
Name Clashes.. 4-23
Useful Files ... 4-24
Multiple Object Interfaces... 4-24
ActiveX Library Routines ... 4-27
Distributing Applications Containing ActiveX Controls 4-28
Deployment Guidelines... 4-31
Creating COM Objects on Remote Network Servers 4-33
Qualified ActiveX Control and Object Names 4-34
Enumerators .. 4-35
ActiveX Color Representation .. 4-35
ActiveX Error Handling .. 4-36
ActiveX Debugging... 4-36
ActiveX Troubleshooting .. 4-37
ActiveX Examples... 4-37
AXDEFGEN Utility Reference.. 4-41

4-2 Using ActiveX Controls and COM Objects
4.1 Leveraging Ready-made Controls

You can use many different ActiveX® controls and COM objects in your
ACUCOBOL-GT® program. When you add an ActiveX control or COM
object to your program, whether it is graphical or non-graphical, the control
or object becomes part of the development and run-time environment and
instantly provides the application with new functionality.

COM objects are application components that perform well-defined
functions, often involving a graphical user interface. ActiveX controls are
COM objects that subscribe to the ActiveX component model originally
developed by Microsoft. As such, they behave in a manner that developers
can predict, they are reusable, and they are toolable. Pre-programmed
controls (such as calendars, clocks, and gauges) are sold by third-party
vendors along with the licensing rights to use them in your Windows
application. Non-graphical controls and objects such as spell checkers and
COM servers are also available, widening the opportunities for your COBOL
application even further.

For your convenience, several Microsoft controls have been included with
the ACUCOBOL-GT Windows runtime. You can use these controls in your
program and redistribute them to your end users as needed. Refer to section
4.10 for a list of these controls.

By supporting ActiveX controls and COM objects, ACUCOBOL-GT allows
you to take advantage of existing software functionality, as well as create
applications that conform to the Windows standard.

This chapter provides a general overview of ActiveX and COM
programming, including information on how to add ActiveX and COM
objects to your program, avoid name clashes, distribute a program that
contains an ActiveX or COM object, respond to events, handle errors, and
more. Reference material is also provided in the ACUCOBOL-GT
documentation set:

• The ACCEPT, CREATE, MODIFY, INQUIRE, and USE statements are
described in Chapter 6 in ACUCOBOL-GT Reference Manual, along
with common screen options.

• ActiveX terms, methods, events, control types, and color settings are
described in ACUCOBOL-GT User Interface Programming.

Adding ActiveX Controls or COM Objects to Your COBOL Program 4-3
• ActiveX configuration variables and library routines are described in
ACUCOBOL-GT Appendices.

Note: Please note that ACUCOBOL-GT does not support windowless
ActiveX controls. If you want to use a windowless control, see if it is
available as a .NET assembly, then use our .NET interface to invoke the
control. Refer to section 5.5.1, “Using .NET assemblies in COBOL” for
details.

4.2 Adding ActiveX Controls or COM Objects to
Your COBOL Program

You add ActiveX controls and COM objects to your ACUCOBOL-GT
program using the utility program called AXDEFGEN. AXDEFGEN is
provided on the ACUCOBOL-GT installation media for your convenience.
You can launch it from Windows Explorer or AcuBench®, whichever you
choose. Refer to section 4.20, “AXDEFGEN Utility Reference,” for details.

The AXDEFGEN Utility

The role of AXDEFGEN is to locate the names of ActiveX controls and
COM objects currently registered on the system and generate a COBOL
COPY file for the control or object that you select. This COPY file is used
by the ACUCOBOL-GT compiler for syntax and parameter type checking as
well as efficient code generation.

The COPY file contains a Special-Names Class definition for the ActiveX
control/COM object. After generating the COPY file with AXDEFGEN,
you must copy the COPY file into the COBOL program’s Special-Names
paragraph in the Environment Division/Configuration Section. Please note
that the Special-Names paragraph must end with a period. However, the
COPY file generated by AXDEFGEN does not end with a period. This is so
other definitions can be made in the Special-Names paragraph after the
COPY statement that copies this COPY file. To complete the paragraph, you
must add a period.

4-4 Using ActiveX Controls and COM Objects
The Special-Names Class definitions in the COPY file generated by
AXDEFGEN contain all of the information the compiler needs to know
about the ActiveX control or COM object. This eliminates the need for the
compiler to read the system registry or instantiate the ActiveX control during
compilation of the COBOL program. As a result, the COBOL program can
be compiled later on a UNIX or VMS machine, or on a Windows machine
that does not have the particular ActiveX control or COM object registered.

In order for the control to function in your COBOL program, you must add it
to your program. For ActiveX, you typically modify the Screen Section to
include the name of the control’s primary interface. This name can be
determined by looking at the COPY file section “***Primary Interface***.”
Occasionally, you may want to create an ActiveX control in your Procedure
Division. In this case, you use the DISPLAY statement.

Note: If you are using the AcuBench integrated development environment
(IDE), you can drag the ActiveX control from the Screen Component
Toolbox and drop it onto your screen in the Screen Designer. When run
from AcuBench, AXDEFGEN automatically populates the toolbox with
the ActiveX controls of your choice. Refer to the AcuBench User’s Guide
for details.

To create a COM object, you add a CREATE statement to your program’s
Procedure Division. Unlike ActiveX controls, COM objects cannot be
created using the Screen Section or DISPLAY statement.

To Add an ActiveX Control or COM Object to Your ACUCOBOL-GT
Program

1. If it is not installed already, install and register the ActiveX control or
COM object of interest on your development system.

Complex controls may come with their own setup programs, licensing,
and registration wizards. Look for a setup program or “readme” file in
the directory containing the control. Run the setup program if you find
one. This program will likely install and register the control for you.
Read the “readme” file, if one exists, for any installation and registration
instructions. If you cannot find any instructions on the control, you can
also visit the control vendor’s Web site.

Adding ActiveX Controls or COM Objects to Your COBOL Program 4-5
For simple controls, you can usually accomplish installation and
registration by copying the ActiveX control files (at least a “.ocx” or
“.dll” file) to your hard disk and executing the following command:

regsvr32 <ocx or dll name>

The “regsvr32.exe” file is normally located in your \windows\system
directory. Do not assume that it is in your search path. Even if the
control is already installed on your machine (for instance, if it came with
other software that you’ve purchased) you may still need to register the
control with “regsvr32.exe”.

2. Use Windows Explorer to locate “axdefgen.exe”. You’ll find it in the
\AcuGT\bin directory wherever you installed ACUCOBOL-GT on your
machine (C:\Program Files\Acucorp\Acucbl8xx\AcuGT\bin by
default).

3. Double-click the AXDEFGEN icon to start the utility. A list of all the
controls and COM objects currently in the local machine’s Windows
registry appears. (If desired, you can launch “AXDEFGEN” from the
command line. Refer to section 4.20 of this book for applicable
command-line options.)

4. Select the ActiveX control or COM object that you’d like to include in
your COBOL program, then specify an output path and filename for
the COPY file. Click OK when done. The utility automatically
generates a COPY file for the chosen control and appends the “.def”
filename extension to the file.

Many ActiveX controls and COM objects have documentation available.
If they do, the ActiveX Help push button on the right side of this box is
enabled. Click the button to read the help file for the selected ActiveX
control or COM object. If the ActiveX Help push button is disabled,
then AXDEFGEN could not locate a help file for the selected control.

Adding ActiveX Controls or COM Objects to Your COBOL Program 4-7
5. In a code editor, open your ACUCOBOL-GT program and go to its
Environment Division/Configuration Section.

6. Copy the new COPY file into the COBOL program’s Special-Names
paragraph. If you are adding several controls, copy several COPY files
into this paragraph. Add a period at the end of the paragraph. For
example:

SPECIAL-NAMES
COPY "calendar.def".
COPY "chart.def".
.

ACUCOBOL-GT includes an “acuclass.def” file, which contains stock
class definitions for ActiveX. We recommend that you also copy it into
your program’s Special-Names paragraph, as in:

COPY "acuclass.def".

7. Add the control to your program. If you are adding a COM object, you
add the object using the CREATE statement in your program’s
Procedure Division. For example:

*Create an instance of the Outlook application
CREATE Application OF Outlook
 HANDLE IN myOutlook
 EVENT PROCEDURE OUTLOOK-EVENTS.

If you are adding an ActiveX control, however, you can do one of two
things:

a. Add the new control to your screen in your program’s Screen
Section. For example:

SCREEN SECTION
...
03 calendar-item Calendar column 5,
 line 5, size 60, lines 20
...

or

b. Create the control using the DISPLAY statement in your
program’s Procedure Division. For example:

*Declare the calendar control’s handle.

4-8 Using ActiveX Controls and COM Objects
 77 CALENDAR-1 USAGE IS HANDLE OF Calendar.
 ...
*Create an instance of the calendar control
 DISPLAY Calendar line 4, column 6,
 lines 10, size 40
 EVENT PROCEDURE IS CALENDAR-EVENT-HANDLER
 HANDLE IN CALENDAR-1.

You can determine the name of the control by opening the COPY file
(“.def” file) and looking at the section called “***Primary Interface***.”
Look for the name of the control after the word “CLASS” in the primary
interface definition.

If you set a property of the ActiveX control in the control property panel
(thus storing it in the resource file) and that property has a corresponding
ACUCOBOL-GT property (e.g., ENABLED), then the COBOL
program must explicitly set the corresponding ACUCOBOL-GT
property in the Screen Section or Procedure Division. For example, if
the ActiveX ENABLED property is set to “false” in the ActiveX control
property panel, then a line must be included in the initialization code of
the COBOL program to set the ACUCOBOL-GT ENABLED property
to “false”, as in:

MODIFY ActiveXcontrol ENABLED FALSE

Note: The runtime ignores events from all controls while it is creating
an ActiveX control. If you are using a control that delivers significant
information using events and you don’t want to miss those events while
you are creating a new control, set the
CONTROL_CREATION_EVENTS runtime configuration variable to
“1” (on, true, yes). Alternatively, you could avoid creating an ActiveX
control when you are expecting an event.

8. If desired, you can modify a control’s properties or invoke methods
using the MODIFY verb as in the following example:

MODIFY ActiveXcontrol Method ("parameters").

MODIFY ActiveXcontrol Property-name = property-value.

or

MODIFY ActiveXcontrol PROPERTY 37 = ("parameters").

Adding ActiveX Controls or COM Objects to Your COBOL Program 4-9
Note that 37 is the ActiveX or COM “property” number of
Property-name or Method. You can determine the property number by
opening the COPY file and searching for the name of the property or
method. The “property” number, also known as the dispatch id or dispid,
precedes the name in the COPY file. The equal sign is optional.

To disable an ActiveX control, you use the MODIFY statement:

MODIFY ActiveXcontrol ENABLED FALSE.

If the ActiveX control has its own property named ENABLED, the
MODIFY statement must explicitly set both the ACUCOBOL-GT
ENABLED property and the ActiveX property (@ENABLED; the “@”
symbol signifies that the property is a property of the ActiveX control).
For example:

MODIFY ActiveXcontrol ENABLED FALSE @ENABLED FALSE.

To enable the control:

MODIFY ActiveXcontrol ENABLED TRUE @ENABLED TRUE.

To inquire about the value of one of a control’s properties, use the
INQUIRE verb, as in:

INQUIRE ActiveXcontrol Property-name IN value-item.

or

INQUIRE ActiveXcontrol PROPERTY 37 IN value-item.

9. If desired, modify your program to respond to one of the control’s
events (e.g., a mouse click). For example:

calendar-1-event.
 evaluate event-type
 when msg-ax-event
 evaluate event-data-2
 when CalendarClick
 Perform ...
 end-evaluate.
 ...
 end-evaluate.

4-10 Using ActiveX Controls and COM Objects
You can view a list of control events by opening the COPY file created
by AXDEFGEN and looking at the section “Event Interface for the xxx
Control.”

10. Compile and run your modified program.

Note: In order for the control to work on your end user’s machine, it must
be installed and registered. If you are licensed to do so, you can distribute
the control along with your application. Refer to section 4.10, “Distributing
Applications Containing ActiveX Controls,” for information about
distributing an application that contains an ActiveX object.

4.3 Properties, Styles, and Methods

ActiveX controls have properties and styles just like ACUCOBOL-GT
controls. In addition, ActiveX controls provide functions called methods. To
set a property or style or to invoke (call) a method, you use the MODIFY
verb. Use INQUIRE to get the value of a property or to get the style flags.

ActiveX methods can take any number of parameters or no parameters. They
can also take optional parameters (i.e., parameters that can be omitted). You
specify the parameters in COBOL by enclosing them in parentheses. If there
are no parameters, include empty parentheses (). Optional parameters are
always last. For example, if a method has three parameters, one of which is
optional, the first two are required. The last one is optional and therefore may
be omitted. For more information on ActiveX methods, refer to section 4.5
of ACUCOBOL-GT User Interface Programming.

Note that ActiveX properties and methods should always be prepended with
an “@” sign in case they clash with COBOL reserved words or
ACUCOBOL-GT graphical control property and style names. The “@”
symbol identifies the relationship of the name to ActiveX. The same holds
true for ActiveX enumerators, described in section 4.14.

When programming with ActiveX controls and COM objects, you can create
simpler statements by using named parameters. ActiveX controls and COM
objects provide the option of using named parameters as a shortcut for typing
parameter values in MODIFY and INQUIRE statements. With named

Properties, Styles, and Methods 4-11
parameters, you can provide any or all of the parameters, in any order, by
assigning a value to the named parameter. This is especially useful when an
ActiveX/COM method or property has several optional arguments that you
do not always need to specify.

Note: You cannot use named parameters to avoid entering required
parameters. You can omit optional parameters only.

Generally, if the COBOL program passes a parameter in binary or numeric
form with no decimal point, the runtime creates a variant of type VT_I4
(4-byte signed integer) before passing it to the property or method. If the
program passes the parameter in numeric with a decimal point or in floating
point, then the runtime creates a variant of type VT_R8 (8-byte floating point
number). And if the COBOL program passes an alphabetic or alphanumeric
parameter, then the runtime creates a variant of type VT_BSTR (Unicode
string) before passing it to the property or method.

Note that you do not have to make a conversion from an ACUCOBOL-GT
Working Storage item to a variant datatype in order to pass data to an
ActiveX/COM property or method. The runtime handles all conversion that
is required for you. For example, if you have a method in your definition file
like this:

METHOD, 10, @Send,
 “VARIANT” @From, TYPE 12,
 “VARIANT” @To, TYPE 12,
 “VARIANT” @Subject, TYPE 12,
 “VARIANT” @Body, TYPE 12,
 “VARIANT” @Importance, TYPE 12
 OPTIONAL5

You do not have to convert your data before passing it. Rather, all you need
to consider is what data to pass. (The runtime does the conversion so focus
on the content.) In this case, you would pass sender, recipient, subject,
message, and importance.

If the ActiveX or COM object with which your program is interacting
expects the parameter of a different variant type, you must tell the runtime by
using the AS type-num phrase in the parameter expression of the MODIFY

4-12 Using ActiveX Controls and COM Objects
or INQUIRE statement (where type-num indicates the variant type to pass).
The runtime then converts the parameter to the variant type that you specify
before passing it to the object.

You can tell from the object’s documentation and the name of the parameter
whether the object expects a particular variant type, such as boolean.

4.3.1 Passing COBOL Data to Methods or Properties as
SAFEARRAYs

When programming with ActiveX controls and COM objects, you can pass
one- or two-dimensional COBOL tables to methods or properties that expect
SAFEARRAY parameters. The runtime automatically converts a one- or
two-dimensional COBOL table to a COM SAFEARRAY, as long as it
contains only one elementary item that is USAGE HANDLE or USAGE
HANDLE OF VARIANT.

The COM SAFEARRAY data type can contain elements of any type.
Therefore, you must convert your COBOL data into variant type data before
adding it to the array. Use the C$SETVARIANT library routine to create a
new variant that stores the data if the initial value of the handle item passed
to it is LOW-VALUES or SPACES. You need to free this variant using the
DESTROY verb.

To use SAFEARRAYs, you should do the following:

1. Declare a table in Working-Storage that has one or two OCCURS
clauses. If specified, the second OCCURS clause must be on an item
that is subordinate to the item with the first OCCURS clause. The table
must contain only one elementary item that is USAGE HANDLE or
USAGE HANDLE OF VARIANT. (OF VARIANT is optional but
makes the code more readable.)

2. Call C$SETVARIANT for each handle item in the table to convert the
COBOL data to variant type data.

3. Use the name of this table wherever a property or method requires a
SAFEARRAY.

Properties, Styles, and Methods 4-13
For example, Microsoft Chart Control has a property called ChartData. The
value of this property is a SAFEARRAY. Each element of the array is a data
point value for the chart.
01 myTable.
 03 filler occurs 5 times.
 05 chart-data usage handle of variant.

screen section.
01 screen-1.
 03 mschart-1
 MSChart
 line 3, column 5, size 50, lines 16.

 03 my-button push-button, "E&xit Program",
 ok-button,
 line 32, cline 23, column 27, size 13.

procedure division.
Main-Logic.

 perform varying col-number from 1 by 1
 until col-number > 5
 call "c$setvariant"
 using col-number, chart-data(col-number)
 end-perform.

 display standard graphical window,
 title "ActiveX Table MSChart Sample - tblchart.cbl"
 lines 37, size 66, background-low.

 display screen-1.

 modify mschart-1
 ChartData = myTable.

 perform, with test after, until exit-button-pushed
 accept screen-1
 end-perform.

 perform varying col-number from 1 by 1
 until col-number > 5
 destroy chart-data(col-number)
 end-perform.
 destroy screen-1.

4-14 Using ActiveX Controls and COM Objects
 stop run.

Notice that the initial values of the chart-data table elements are spaces.
When C$SETVARIANT is called with the chart-data items set to spaces, it
creates new variant handles and sets the chart-data item to the variant handle.

The DESTROY statement destroys these handles and releases the associated
memory. The DESTROY statement also sets the chart-data item to
low-values to allow multiple destroys of the same handle item without any
negative effects.

The following code is an example of a table with two OCCURS clauses
passed as a two-dimensional SAFEARRAY to the ChartData property.
Microsoft Chart Control takes the “string” elements of this array to be the
x-axis labels and the numeric elements to be two series of chart data.
77 col-label pic x(20).
77 series-2-data pic 99.

01 myTable.
 03 filler occurs 5 times.
 05 filler occurs 3 times.
 07 chart-data usage handle of variant.

screen section.
01 screen-1.
 03 mschart-1
 MSChart
 line 3, column 5, size 50, lines 16.

 03 my-button push-button, "E&xit Program",
 ok-button,
 line 32, cline 23, column 27, size 13.

procedure division.
Main-Logic.

 perform varying col-number from 1 by 1
 until col-number > 5
 string "Label " delimited by size
 col-number delimited by size
 into col-label
 call "c$setvariant"
 using col-label, chart-data(col-number,1)

Properties, Styles, and Methods 4-15
 call "c$setvariant"
 using col-number, chart-data(col-number,2)
 multiply col-number by 2 giving series-2-data
 call "c$setvariant"
 using series-2-data, chart-data(col-number,3)
 end-perform.

 display standard graphical window,
 title "ActiveX Table MSChart Sample - tblchart.cbl"
 lines 37, size 66, background-low.

 display screen-1.

 modify mschart-1
 ChartData = myTable.

 perform, with test after, until exit-button-pushed
 accept screen-1
 end-perform.

 perform varying col-number from 1 by 1
 until col-number > 5
 destroy chart-data(col-number,1)
 destroy chart-data(col-number,2)
 destroy chart-data(col-number,3)
 end-perform.
 destroy screen-1.
 stop run.

Some ActiveX and COM objects that use SAFEARRAYs accept that some
items in the array may be empty (for example, Microsoft ADO). Items that
are empty are normally passed using the VT_EMPTY variant type.

If an element in an array that you want to pass is optional (i.e., it may
sometimes be empty), you must tell the runtime this by coding one of the
following:

01 VariantParam.
 03 VariantTable usage handle of variant occurs 5.

 call "c$setvariant" USING x"00" VariantTable(1)

or
 call "c$setvariant" USING "" VariantTable(1)

4-16 Using ActiveX Controls and COM Objects
This tells the runtime to convert the content of VariantTable(1) to
VT_EMPTY. If you use the latter approach, you may receive and ignore
compiler warnings that an empty literal was encountered.

4.3.2 Using COBOL Data Types as ActiveX and COM
Object Parameters

When programming with ActiveX controls and COM objects, you can
MODIFY property values using COBOL data items, literals, and figurative
constants. You can also pass them as parameters to methods using MODIFY.

When passing parameters to an ActiveX control or COM object method, the
ACUCOBOL-GT runtime converts the COBOL parameters into variant
parameters. Variant parameters have a data type associated with them. More
than 40 different variant types exist. Each type name starts with “VT_”. For
example, VT_I4 is a 4-byte signed integer. VT_R8 is an 8-byte real (floating
point) number. VT_BSTR is a string. The rules applied by the runtime to
determine the variant type are given at the end of this section.

A method or property can act differently depending on the type of data passed
to it in a variant. For example, a type of variant parameter called
VT_UNKNOWN is commonly used to represent COM objects. A property
or method might expect either VT_I4 or VT_UNKNOWN (i.e., IUnknown
pointer) and will act differently depending on which one it receives (see
section 4.20.1, “AXDEFGEN COPY Files,” for more information about
IUnknown). If the runtime converts a COM object handle to a VT_I4 instead
of a VT_UNKNOWN, the property or method being called might not act as
expected. The runtime determines which of the two variant types to pass
based on the USAGE parameters of the COBOL data item.

Some ActiveX and COM methods and properties take VT_VARIANT
parameters, a generic variant type. This usually means that these methods
accept more than one type of variant parameter. For example, you could pass
a VT_I4, VT_R8, or a VT_BSTR as a VT_VARIANT parameter. The
ActiveX or COM property or method could convert the passed parameter into
a specific variant type. It could also act differently depending on the type of
variant that was passed. For example, suppose an ActiveX or COM object
had a table where rows could be referred to by a character string name or by
their numeric index. A method that returns a row in the table could take

Properties, Styles, and Methods 4-17
either the name or index of the row as a parameter. The method could assume
that if the parameter is a VT_BSTR, it is a row name; and if the parameter is
a VT_I4, it is a numeric index.

If the ActiveX control or COM object property or method parameter is one of
the standard variant types, ACUCOBOL-GT attempts to convert the COBOL
data to the expected type. For example, if an ActiveX control property is type
VT_I4 (i.e., 4-byte integer), and the COBOL data type is PIC X(10),
ACUCOBOL-GT tries to convert the value of the PIC X(10) item into a
number and pass it as a VT_I4 type variant.

If the property or method parameter type is VT_VARIANT, then
ACUCOBOL-GT converts the COBOL data item into a specific variant type
parameter using the following rules:

1. The PICTURE and USAGE clauses determine the type.

2. If the data item is alphabetic, alphanumeric, or alphanumeric edited, it
is passed as a VT_BSTR.

3. If the data item is USAGE HANDLE or POINTER, and the property or
method parameter type is VT_VARIANT, it is passed as a
VT_UNKNOWN. If the data item is another binary (USAGE
COMP-..., BINARY, HANDLE, POINTER, etc.), it is passed as a
VT_I4.

4. If the data item is USAGE FLOAT or DOUBLE, it is passed as a
VT_R8.

5. If the data item is another numeric type, it is passed as a VT_I4.

Note that the compiler generates an error message if a figurative constant is
passed as a parameter where the method or property expects a “by reference”
parameter. That error message is, “Illegal parameter: literal”. This is the
same error message you get when passing a figurative constant as a USING
parameter in a CALL statement. One way to tell that the ActiveX/COM
method expects a “by reference” parameter is by viewing the entry in the
COPY file for that control or object. If the type has “BYREF” or if the
numeric value divided by 16384 is odd, then you may not pass a figurative
constant.

4-18 Using ActiveX Controls and COM Objects
4.4 ActiveX and COM Events

ActiveX control and COM object events can have any number and type of
associated parameters or no parameters. The event parameters are used to
provide information about the event to the program. They can also be used
to get information from the program in response to the event.

When an ActiveX control or COM object event occurs, the control or object
invokes its event procedure. The EVENT-STATUS data item reflects the
invoking event. EVENT-TYPE is either CMD-GOTO, CMD-HELP,
MSG-VALIDATE, or MSG-AX-EVENT. For a description of these events,
refer to section 6.3 of ACUCOBOL-GT User Interface Programming.

MSG-AX-EVENT (value 16436) occurs when an ActiveX control or COM
object has “fired” an event. EVENT-DATA-2 contains the control’s event
type. For COM objects, you can use the C$SETEVENTDATA and
C$GETEVENTDATA library routines to set and get event the event
parameters for the current event.

For ActiveX controls, however, you can use C$GETEVENTDATA/
C$SETEVENTDATA, or you can use the C$GETEVENTPARAM/
C$SETEVENTPARAM routines to get and set individual event parameters.

For example:
01 DATE-1
 03 MONTH PIC 99.
 03 FILLER PIC X VALUE '/'.
 03 DAY PIC 99.
 03 FILLER PIC X VALUE '/'.
 03 YEAR PIC 99.
77 KEY-ASCII PIC X USAGE COMP-X.
77 KEY-CHAR PIC X REDEFINES KEY-ASCII.
...

* Handle events
...
 CALENDAR-EVENT-HANDLER.
 EVALUATE EVENT-TYPE
 WHEN MSG-AX-EVENT
 EVALUATE EVENT-DATA-2
 WHEN CalendarBeforeUpdate
* Don’t allow years >= 2020

ActiveX and COM Events 4-19
 INQUIRE EVENT-CONTROL-HANDLE
 Value IN DATE-1
 IF YEAR OF DATE-1 >= 2020
* Cancel the update (set the 'Cancel' parameter to 1)
 CALL "C$SETEVENTPARAM" USING
 EVENT-CONTROL-HANDLE, "Cancel", 1
 END-IF
 WHEN CalendarKeyPress
* Stop run if the user presses 'X'
 CALL "C$GETEVENTPARAM" USING
 EVENT-CONTROL-HANDLE, "KeyAscii",
 KEY-ASCII
 IF KEY-CHAR = 'X' STOP RUN END-IF
...

Note that the CalendarBeforeUpdate event has one parameter, CANCEL.
(See the CalendarBeforeUpdate definition in the control’s COPY file.)

In this example, EVENT-CONTROL-HANDLE contains the handle of the
control that fired the event (e.g., CALENDAR-1). C$SETEVENTPARAM
is used to set the CANCEL parameter to “1” in response to a
CalendarBeforeUpdate event when the year is 2020 or later.
C$GETEVENTPARAM is used in the handling of the CalendarKeyPress
event to get the key value and stop the runtime if it is “X”.

For another example, suppose you have displayed an ActiveX control called
“AX” whose handle is in AX-1. Further suppose that this control fires an
event called AxEventOne, which has three parameters. You would use the
following COBOL syntax to get the event parameters, add “2” to each one,
and set the event parameters to their new values:
evaluate event-type
 when w-event
 evaluate event-data-2
 when AxEventOne
 call "c$geteventdata"
 using event-control-handle,
 param-1, param-2, param-3
 add 2 to param-1
 add 2 to param-2
 add 2 to param-3
 call "c$seteventdata"
 using event-control-handle,
 param-1, param-2, param-3

4-20 Using ActiveX Controls and COM Objects
To use C$GETEVENTPARAM and C$SETEVENTPARAM, you must
know the actual names of the parameters. You can determine these names by
reading the ActiveX control’s documentation or by looking at the definitions
in the COPY file for the ActiveX control.

Note: Using the C$SETEVENTPARAM approach, you do not need to pass
all of the event parameters. You need to specify only the name of the
particular parameter you want to set. With C$SETEVENTDATA you don’t
need to specify parameter names, but you must pass an ordered parameter
list up to the parameter you want to set.

An event commonly receives many parameters. C$GETEVENTPARAM and
C$SETEVENTPARAM allow you to get and set the values of only the
parameters you care about. Suppose in the above example that PARAM-1
and PARAM-2 contain information about the event and that only PARAM-3
is meant to be set by the event procedure. Because PARAM-3 is the third
parameter, to set it you would have to pass two “dummy” parameters to
C$SETEVENTDATA. For example,
call "c$seteventdata" using event-control-handle,
 0, 0, param-3.

Suppose you determined that the name of PARAM-3 in the ActiveX control
was “Param3”. You could then use C$SETEVENTPARAM to accomplish
the task in our example in a more elegant and readable way. For example:
call "c$seteventparam" using event-control-handle,
 "param3", param-3.

In the Calendar example, you would use:
call "c$seteventparam" using event-control-handle,
 "cancel", 1

instead of:
call "c$seteventdata" using event-control-handle, 1

And you would use:
call "c$geteventparam" using event-control-handle,
 "KeyAscii", key-ascii

instead of:

ActiveX and COM Events 4-21
call "c$geteventdata" using event-control-handle, key-ascii

Using these routines can make your code more readable. The object code
will be a little larger, and your program will run slightly slower. However,
these differences may be unnoticeable and the benefits of readable code can
outweigh the performance and size considerations.

To determine in which specific window and control the event occurred, you
can use the EVENT-WINDOW-HANDLE, EVENT-CONTROL-HANDLE,
and/or EVENT-CONTROL-ID fields in the event procedure.

• EVENT-WINDOW-HANDLE holds the handle of the floating window
in which the event occurred. If the event occurred in a control, this item
is the handle of the floating window that contains the control.

• EVENT-CONTROL-HANDLE holds the handle of the control in which
the event occurred. If the event did not occur in a control, this item is set
to NULL.

• EVENT-CONTROL-ID holds the ID of the control in which the event
occurred. IDs are assigned by the application when each control is
created. If the event did not occur in a control, this item has the value
zero.

During an ActiveX or COM event, you can refer to the control which “fired”
the event using the EVENT-CONTROL-HANDLE item.

For more information on the C$GETEVENTDATA, C$SETEVENTDATA,
C$GETEVENTPARAM, and C$SETEVENTPARAM library routines,
please refer to Appendix I in ACUCOBOL-GT Appendices.

4.4.1 Event Timing

In order to properly handle ActiveX and COM events, it is important to
understand how the runtime behaves in certain situations. Following are
default runtime behaviors. If you want to change the behavior, you can add
configuration variable(s) to your runtime configuration file.

4-22 Using ActiveX Controls and COM Objects
• The runtime ignores events from all controls while it is creating an
ActiveX control or COM object. If you are using a control that
delivers significant information using events and you don’t want to miss
those events while you are creating a new control, set the
CONTROL_CREATION_EVENTS runtime configuration variable to
“1” (on, true, yes).

• The runtime suspends ActiveX and COM events when the
application is not processing an ACCEPT statement; in other words,
it suspends events in between ACCEPT statements. If your control
does not support the suspend/resume behavior and you are using it with
the ACUCOBOL-GT Thin Client, this can be problematic. To prevent
problems, set the TC_RESTRICTS_AX_EVENTS thin client
configuration variable to “1” to mimic the runtime behavior.

• The runtime allows events to trigger while it is processing other
events. If this is not handled properly, the runtime could execute the
same code simultanously in two threads on the same data. Set
NESTED_AX_EVENTS to “0” (off, false, no) if you do not want event
procedures to be nested. Be aware that this option may cause you to lose
certain events (typically events triggered by modifications made in the
event procedure).

For details on these configuration variables, please refer to Appendix H of
ACUCOBOL-GT Appendices.

4.5 ACTIVE-X Control Type

To use an ActiveX control in your COBOL program, we recommend that you
define a new control type with properties, methods and events using the
SPECIAL-NAMES CLASS clause. You can do this with the ActiveX
definitions file generator, AXDEFGEN.

ACUCOBOL-GT defines a control type named “ACTIVE-X” that it uses
internally whenever you CREATE, MODIFY, INQUIRE, or DESTROY an
ActiveX control. For a complete description of the ACTIVE-X control type,
refer to section 5.3 in ACUCOBOL-GT User Interface Programming.

Name Clashes 4-23
4.6 Name Clashes

An ActiveX control may have property, method, or event names that are the
same as COBOL reserved words or ACUCOBOL-GT standard property or
style names. This situation creates ambiguity for the compiler. In addition,
because ActiveX class names are used in the USAGE HANDLE clause of
data description entries, in Screen Section items, and in DISPLAY
statements, they may also cause ambiguities with COBOL reserved words.

To avoid these ambiguities, AXDEFGEN prepends an “at” sign character
(“@”) to every class, property, method, and event name in the generated
COPY file.

In addition, ambiguity may occur with event names when two or more
ActiveX controls define the same event name. To reduce this possibility,
AXDEFGEN prepends the control name to each event name. For example,
if an ActiveX control named “MyControl” has an event called
“RightMouseButtonClick”, AXDEFGEN names the control “@MyControl”
and the event “@MyControlRightMouseButtonClick”.

The “@” sign is not required unless ambiguities exist in the meaning in a
certain context. However, to guard against unanticipated name conflicts and
to ensure clarity in the reading and maintenance of the source code, we
strongly recommend that you always use “@” when referring to an ActiveX
property, style, or method in your source code.

If you do not use an “@” sign and a clash occurs, a compiler error results. For
example, if you had a component named Editor that has a method Open, the
following would cause a compiler error because Open clashes with
ACUCOBOL-GT syntax:
...
77 hDocument HANDLE OF Editor.
...
PROCEDURE DIVISION.
MAIN.
 DISPLAY Editor LINE 1, COLUMN 1, LINES 10, SIZE 80,
 HANDLE IN hDocument.
 MODIFY hDocument Open("myfile.txt").
...

To address this, prepend the method name with an “@” as shown below:

4-24 Using ActiveX Controls and COM Objects
...
77 hDocument HANDLE OF Editor.
...
PROCEDURE DIVISION.
MAIN.
 DISPLAY Editor LINE 1, COLUMN 1, LINES 10, SIZE 80,
 HANDLE IN hDocument.
 MODIFY hDocument @Open("myfile.txt").
...

If a class name immediately follows the level number in a Screen Section
item, you must either use the “@” prefix or specify FILLER between the
level number and class name.

4.7 Useful Files

We provide two files that are useful to developers involved in ActiveX and
COM programming. The “activex.def” file contains useful definitions for
ActiveX. We recommend that you copy it into your program’s
Working-Storage section.

The “acuclass.def” file contains stock class definitions for ActiveX. We
recommend that you copy it into your program’s Special-Names paragraph.

4.8 Multiple Object Interfaces

Some ActiveX controls are designed with multiple (object) interfaces. For
example, “Microsoft Chart Control, version 6.0 (OLEDB)” has 42 public
interfaces. Each interface is equivalent to a new object definition. In order to
access the full feature set of the Microsoft Chart control, ACUCOBOL-GT
must allow the property modification and method invocation of 42 different
objects. For example, to set the Microsoft Chart legend, you get the value of
the Legend property. This value is an object that you may then modify to
change the legend. The Legend object has properties whose values are other
objects, and so on.

Here’s how you would set the text and backdrop parameters for a chart legend
in Visual Basic.

Multiple Object Interfaces 4-25
Private Sub Command1_Click()
 With MSChart1.Legend
 ' Make Legend Visible.
 .Location.Visible = True
 .Location.LocationType = VtChLocationTypeRight
 ' Set Legend properties.
 .TextLayout.HorzAlignment = _
 VtHorizontalAlignmentRight ' Right justify.
 ' Use Yellow text.
 .VtFont.VtColor.Set 255, 255, 0
 .Backdrop.Fill.Style = VtFillStyleBrush
 .Backdrop.Fill.Brush.Style = VtBrushStyleSolid
 .Backdrop.Fill.Brush.FillColor.Set 255, 0, 255
 End With
End Sub

In ACUCOBOL-GT this task is accomplished in a similar way with the USE
verb, “^” and “::” operators. For example:
MODIFY MS-CHART-1 Legend::Location::Visible = 1.
MODIFY MS-CHART-1 Legend::Location::LocationType =
 VtChLocationTypeRight.
MODIFY MS-CHART-1 Legend::TextLayout::HorzAlignment =
 VtHorizontalAlignmentRight.
MODIFY MS-CHART-1 Legend::VtFont::VtColor::
 Set (255, 255, 0).
MODIFY MS-CHART-1 Legend::BackDrop::Fill::Style =
 VtFillStyleBrush.
MODIFY MS-CHART-1 Legend::BackDrop::Fill::Brush::Style =
 VtBrushStyleSolid.
MODIFY MS-CHART-1
 Legend::BackDrop::Fill::Brush::FillColor::
 Set (255, 0, 255).

or:
USE MS-CHART-1 Legend
MODIFY ^Location::Visible = 1
 ^Location::LocationType = VtChLocationTypeRight
 ^TextLayout::HorzAlignment =
 VtHorizontalAlignmentRight
 ^VtFont::VtColor::Set (255, 255, 0)
 ^BackDrop::Fill::Style =
 VtFillStyleBrush
 ^BackDrop::Fill::Brush::Style =
 VtBrushStyleSolid

4-26 Using ActiveX Controls and COM Objects
 ^BackDrop::Fill::Brush::FillColor::
 Set (255, 0, 255)
END-USE

This syntax can be described as follows. In this format, the word following
MODIFY must always be a control handle or “^”. Each property or method
name can be followed by “::” and then another property or method name to
invoke methods inline. “MethodName1::MethodName2” means invoke the
method “MethodName1” of the current object and set the current object to
the return value. When a property or method name is followed by a token
other than ‘::’, then it means to actually invoke the method on the current
object passing the specified arguments or set the property to the specified
value and reset the current object to null.

For example, the following code:
MODIFY MS-CHART-1
 Legend::BackDrop::Fill::Brush::FillColor::
 Set (255, 0, 255).

can be broken down as follows:
MODIFY
MS-CHART-1
Legend
::
BackDrop
::
Fill
::
Brush
::
FillColor
::
Set
(255, 0, 255).

which means MODIFY MS-CHART-1 in the following ways:

1. Set the current object to the chart control.

2. Invoke the “Legend” method of the current object (the chart control).

3. Release the current object.

ActiveX Library Routines 4-27
4. Set the current object to the value returned by Legend.

5. Invoke the “BackDrop” method of the current object (the Legend
object).

6. Release the current object.

7. Set the current object to the value returned by BackDrop.

8. Invoke the “Fill” method of the current object (the BackDrop object).

9. Release the current object.

10. Set the current object to the value returned by Fill.

11. Invoke the “Brush” method of the current object (the Fill object).

12. Release the current object.

13. Set the current object to the value returned by Brush.

14. Invoke the “FillColor” method of the current object (the Brush object).

15. Release the current object.

16. Set the current object to the value returned by FillColor.

17. Invoke the “Set” method of the current object (the FillColor object)
passing (255, 0, 255) as arguments.

18. Release the current object.

4.9 ActiveX Library Routines

ACUCOBOL-GT includes the following six library routines related to
ActiveX:

C$GETEVENTDATA retrieves all event parameters from the control’s
event procedure

C$GETEVENTPARAM retrieves specific event parameters from the control’s
event procedure

4-28 Using ActiveX Controls and COM Objects
These routines are documented in Appendix I in ACUCOBOL-GT
Appendices.

4.10 Distributing Applications Containing ActiveX
Controls

To distribute your application, you need the object files and the resources
they use. If you have added ActiveX controls to your application, you need
to distribute files associated with the ActiveX controls along with the bitmap,
“.wav”, XFD, and configuration files required by your application. In
addition, you need to modify your installation program to install and register
the controls on the end-user’s machine. Typically, you can accomplish this
by copying the ActiveX control files (at least a “.ocx” or “.dll” file) to the
directory where your application will be installed on the user’s hard disk and
calling the following command from your install shield script or batch file:

regsvr32 <ocx or dll name>

The “regsvr32.exe” file is normally located in the user’s \windows\system
directory. It is also included on the ACUCOBOL-GT Windows installation
CD. Do not assume that it is in the user’s search path or that it is pre-installed
on Windows 98 and Windows NT 4.

C$EXCEPINFO retrieves information about an object exception that
has been raised

C$RESOURCE loads a control “state” resource file and either
retrieves or destroys the resource handle associated
with it

C$SETEVENTDATA sets all event parameters to be sent back to the control
when the control’s event procedure exits

C$SETEVENTPARAM sets specific event parameters to be sent back to the
control when the control’s event procedure exits

Distributing Applications Containing ActiveX Controls 4-29
Note: We recommend that you test your component installation by using
the declaratives section to catch exceptions when creating an instance of an
ActiveX control. See C$EXCEPINFO in Appendix I in ACUCOBOL-GT
Appendices for details. In addition, note that “regsvr32” can be used to
unregister a control as well as register it. This may be useful if you want to
test whether or not your installation script is properly registering the
control. When you type “regsvr32” with no command-line options, a list of
available options is displayed.

For your convenience, several Microsoft controls have been included with
the ACUCOBOL-GT Windows runtime. You can use these controls in your
program and redistribute them to your end users as needed. The runtime
checks out the license key automatically so you don’t have to provide one.
These controls include:
Microsoft Chart Control
Microsoft Comm Control
Microsoft DTPicker Control
Microsoft ImageCombo Control
Microsoft ImageList Control
Microsoft Internet Control
Microsoft ListView Control
Microsoft Mail Control (MapiSession, MapiMessage)
Microsoft MaskEdit Control
Microsoft Monthview Control
Microsoft Progressbar Control
Microsoft RichTextBox Control
Microsoft Slider Control
Microsoft Statusbar Control
Microsoft SystemInfo Control
Microsoft Tabstrip Control
Microsoft Toolbar Control
Microsoft TreeView Control
Microsoft UpDown Control

The “.ocx” files for these controls reside in the \ms\ocx subdirectory of the
ACUCOBOL-GT installation CD for Windows. There, you will find
documents called “list.txt” and “procedure.txt”, which describe how to install

4-30 Using ActiveX Controls and COM Objects
and register the Microsoft components onto the target machine(s). Note that
for network installations, you must install the components on each
workstation that will use the software (including thin client terminals). It is
not sufficient to install the components on the server. For information on the
controls themselves, refer to Microsoft’s Controls Reference on
msdn.microsoft.com.

Of course, you can use any ActiveX control in your ACUCOBOL-GT
application, not just the ones that we provide on disk.

Complex controls may have more complicated installation and registration
procedures. If this is the case, control vendors typically provide instructions
on distributing their controls. Look for instructions in the form of “readme”
files or online help files in the directory where your control is stored. You can
also refer to a vendor’s Web site for instructions.

When an ActiveX control requires a license, the distributor of the control
provides a license key. This license key is a text string. To use a license with
an ActiveX control, you set the value of the LICENSE-KEY property for the
control to this license key, thereby embedding this license key in your
COBOL program. Note that an ActiveX control is often delivered with two
keys—one for development and one for distribution. If this is the case, the
ActiveX vendor will notify you of this fact.

Once you’ve set the LICENSE-KEY property, when your COBOL program
creates an instance of the control, the license key is passed to the ActiveX
control for verification. Please note that if the license key is WideChar
(WCHAR) (Doublebyte) such as “0x0067 0x01a2 0x00dd 0x0134 0x0167,”
you must take some additional steps to ensure that the license code is passed.
If the control’s license is missing or invalid, the following message displays:
Class is not licensed for use.
COBOL error at xxxxx in xxxxx.

Refer to section 5.3.2 of ACUCOBOL-GT User Interface Programming for
more information on using the LICENSE-KEY property and passing
WideChar keys.

http://msdn.microsoft.com

Deployment Guidelines 4-31
4.11 Deployment Guidelines

Listed below are some guidelines to consider when deploying a COM object
or ActiveX control:

1. Is there an end-user license?

• Check with the vendor.

• Make sure the LICENSE-KEY phrase is filled in with any necessary
license information.

• If you are using the Microsoft common controls included on the
product CD, you do not need to worry about licensing. The end-user
license is automatically checked out by the ACUCOBOL-GT
runtime.

• Licensing implications are discussed in section 4.10.

2. Are there any file dependencies?

• What files are required (if any) to execute the control? The control
vendor can tell you this. Don’t ship the entire developer’s
installation unless you must, because this typically includes
unnecessary components.

• If external files are required, what versions should they be?

• Does the dependent file have a dependency? If your control is made
with any version of Visual Studio, it may depend on the presence of
the Microsoft Visual C runtime library, or the Microsoft foundation
classes of a particular version. Normally you don’t have to think
about this, because the COBOL Virtual Machine™ already depends
on these and provides them. Make a note of it though, because your
component may rely on a different version and may behave oddly in
the case of a mismatch.

• For the Microsoft common controls shipped on the product CD, we
provides a text file describing the control dependencies. This file is
stored in the same folder as the controls.

3. When should you install component and additional files?

4-32 Using ActiveX Controls and COM Objects
• ACUCOBOL-GT’s Declaratives section covers object exceptions,
or cases where an ActiveX control or COM object either did not
display or terminated during execution. You can trap these kinds of
events in the Object Exception part of the Declaratives. You should
do this to make sure that you can control the full execution of the
control, and if nothing else, make a graceful termination for your
application. See section 4.16 for additional details.

• With the Object Exception section in place, you can use the standard
DISPLAY or CREATE verb to determine if the control you are
about to use is already installed. If you have an Object Exception
section and create an object that is not installed, your program is
thrown into the Declaratives. Using the C$EXCEPINFO library
function, you can determine the cause of the failure.

• If it is determined that the control is not installed, you should copy
the files into your application directory (where you have
“wrun32.exe” installed) to avoid interfering with other software and
to ensure the possibility of an easy cleanup and uninstall.

• If the control is not installed and it has a “.dll” extension, you can
install it from within your COBOL application. You must copy the
component files to the /bin directory and then register the files via:

DllRegisterServer

and

DllUnregisterServer

Alternatively, you can use “regsvr32” like this:

regsvr32 activexfilename

If you want to unregister, use this:

regsvr32 activexfilename /U

Note: If the control has the extension “.ocx”, you may rename it
to “.dll” in order to install it in ACUCOBOL-GT. The control’s
behavior is the same. The runtime does not recognize an “.ocx” as
a “.dll”. Once renamed, a control should not be renamed again.

Creating COM Objects on Remote Network Servers 4-33
For instructions on how to deploy an ActiveX control or COM object, see
section 4.2.

4.12 Creating COM Objects on Remote Network
Servers

ACUCOBOL-GT includes a special verb to accommodate COM objects:
CREATE. The Format 1 CREATE statement creates a new instance of a
COM object. (Use the Screen Section or Format 14 DISPLAY to create an
instance of an ActiveX control.) Refer to Chapter 6 in the ACUCOBOL-GT
Reference Manual for a detailed description of the CREATE statement.

If you have access privileges to do so, you can create a COM object on a
remote-networked computer by passing the name of the computer in
SERVER-NAME. That name is the same as the machine-name portion of a
share name. For example, for a share named \\MyServer\Public, server name
is MyServer. Note that CREATE cannot be used to create an object on a
UNIX or VMS server. SERVER-NAME must be the name of a Windows
machine.

The following code returns the version number of an instance of Excel
running on a remote computer named MyServer:

CREATE Application of Excel
 SERVER-NAME is "MyServer"
 HANDLE in xl-app.
INQUIRE xl-app Version in xl-vers.
DISPLAY xl-vers.

If the remote server does not exist or is unavailable, then an exception is
raised and xl-app is set to NULL.

You might think of using CREATE if you want to use an ActiveX object that
does not have a user interface. However, the CREATE verb does not create
ActiveX controls. If you want to create an ActiveX control that does not have
a visual representation on the screen, set VISIBLE = 0 in the DISPLAY
statement or Screen Section item. If you do not want any screen at all, create
the initial window also with VISIBLE = 0.

4-34 Using ActiveX Controls and COM Objects
The CREATE statement can be used with thin client applications to create
instances of an object on the client or on remote Windows servers.

For instance, you can use the CREATE statement to provide Microsoft Office
functions such as spell check and mail merge to end users. The clients must
be Windows workstations, but they can be naked of all software except for
Windows and the ACUCOBOL-GT Thin Client. The server running
AcuConnect can be Windows, UNIX, or Linux. Note that clients must have
execution privileges on the computer hosting Office, and use of the Office
technology is subject to Microsoft licensing terms.

You use the Format 1 CREATE statement to create a remote instance of the
desired application on the Windows computer hosting Office. When
executed, your thin client application CREATEs the Office object on the
Windows host, sends it instructions and data, gets results, then either displays
results on the client or performs further processing on them.

Although CREATE cannot be used to create an object on a UNIX or VMS
server, non-Windows servers running AcuConnect can provide connectivity
to Windows servers in a multiple-tier configuration.

4.13 Qualified ActiveX Control and Object Names

In a Screen Section item, Format 14 DISPLAY statement, and a CREATE
statement, “control-type-name” or “object-name” can be a qualified or
unqualified name of an ActiveX control or COM object. ActiveX control and
COM object names are defined in the Special-Names paragraph. The
AcuBench Screen Designer or AXDEFGEN generates a COPY file for each
ActiveX control or COM object type. You should copy this COPY file into
the Special-Names paragraph. In rare cases, two different ActiveX controls
or COM objects may have the same name. To use both in a single COBOL
source file, you must qualify the names using “IN” or “OF” followed by the
name of the “root” object. The “root” object name is defined in the ActiveX
COPY file following the word OBJECT.

For example, if a single COBOL source file invokes methods in the
Application object of both Microsoft Word and Microsoft Excel, it must
qualify the Application object name as in the following two CREATE
statements:

Enumerators 4-35
CREATE Application OF Word HANDLE IN WORD-HANDLE.
CREATE Application OF Excel HANDLE IN EXCEL-HANDLE.

4.14 Enumerators

The CLASS clause is also used to define enumerations. For example, the
VtBrushStyle class is defined by the Microsoft Chart Control in the COPY
file as follows:
 * Brush Styles
 * VtBrushStyle
 CLASS @VtBrushStyle
 CLSID, B8CC5B99-BD29-11D1-B137-0000F8753F5D
 NAME, "VtBrushStyle"
 * long VtBrushStyleNull
 ENUMERATOR, @VtBrushStyleNull, 0
 * long VtBrushStyleSolid
 ENUMERATOR, @VtBrushStyleSolid, 1
 * long VtBrushStylePattern
 ENUMERATOR, @VtBrushStylePattern, 2
 * long VtBrushStyleHatched
 ENUMERATOR, @VtBrushStyleHatched, 3

Enumerators are used just like level-78 data items.

Note that ActiveX enumerators should always be prepended with an “@”
sign in case they clash with COBOL reserved words or ACUCOBOL-GT
graphical control property and style names. The “@” character identifies the
relationship of the name to ActiveX. The same holds true for ActiveX
properties and methods.

4.15 ActiveX Color Representation

Many ActiveX controls use a special type named OLE_COLOR to represent
colors. Methods and properties that accept a color specification of
OLE_COLOR type expect that specification to be a number representing an
RGB color value. For specific information regarding the OLE_COLOR type,
refer to section 9.10, “ActiveX Color Settings,” in ACUCOBOL-GT User
Interface Programming.

4-36 Using ActiveX Controls and COM Objects
4.16 ActiveX Error Handling

The runtime handles errors that occur during operations involving ActiveX
controls similar to the way it handles errors during file I/O or during
transactions. If an error cannot be naturally understood and dealt with by the
COBOL program by looking at the return value or out-values of a statement,
an exception is raised. The system then searches for a USE After
EXCEPTION On OBJECT statement in the Declaratives section. If such a
statement is found, the search stops, and the error handler is executed. If the
program has not been terminated, program execution continues after the
statement that raised the error. If no USE After EXCEPTION On OBJECT
statement is found, the runtime determines the action. Usually, a message is
presented and the program halts. Refer to Chapter 6 in ACUCOBOL-GT
Reference Manual for more information about USE.

4.17 ActiveX Debugging

If you encounter problems when trying to run a program that contains
ActiveX or COM objects, you should first try to determine whether the
failure is related to the object or to the COBOL program. Try to run the
ActiveX or COM object in another ActiveX container program to see if it
works there. For instance, try to run it using the AcuBench Screen Designer.
If you have Visual Basic on your machine, you can try to run the ActiveX or
COM object in Visual Basic, or you can simply insert it on a Web page and
try to run it in a browser. In addition, you can try to run the ActiveX or COM
object on a different machine using ACUCOBOL-GT. If it works in other
ActiveX containers or on other machines, then you have isolated the problem
to your local environment or program. Check the COBOL syntax
surrounding the control.

If necessary, you can use the screen trace option in the debugger to get more
information about an error and to help debug your program. To enable the
screen trace feature, type “ts” at the debugger command prompt. Refer to
section 3.1.5, “Screen Tracing,” in ACUCOBOL-GT User’s Guide for more
information on using this option.

ActiveX Troubleshooting 4-37
4.18 ActiveX Troubleshooting

4.19 ActiveX Examples

Use of the Windows Media Player control is demonstrated in an AcuBench
sample project located in the Support area of the Micro Focus Web site. To
download the project,go to: http://supportline.microfocus.com/
examplesandutilities/index.asp. Select Examples and Utilities >
Graphical User Interface Sample Programs > Media_Player.zip.

Following is an excerpt of the COPY file generated by AXDEFGEN for
Microsoft’s Calendar Control 8.0. The COPY file includes object names so
that the compiler can distinguish between two classes with the same name in
different objects. For example, you might want to create an “Application of
Word” and an “Application of Excel” in the same COBOL program. In the
Calendar COPY file, the line “OBJECT @MSACAL” specifies the object
name.
* CAL.DEF - ActiveX control definitions for MSACAL
* Generated: Tuesday, June 22, 1999

Symptom Cause

Control does not work within
AcuBench (e.g., you receive a
message such as “Can’t create
OCX.MSFlexGrid Control”).

Control is not properly installed or
registered on the development system.
Refer to section 4.2 for instructions on
installing and registering controls.

Control does not appear within the
AXDEFGEN list.

Control is not properly installed or
registered on the development system.
Refer to section 4.2 for instructions on
installing and registering controls.

Control does not work correctly
with the ACUCOBOL-GT runtime
on the end-user’s machine.

Control is not properly installed or
registered on the end-user’s system.
Refer to section 4.10 for instructions
on distributing ActiveX files along with
your application.

http://supportline.microfocus.com/examplesandutilities/index.asp
http://supportline.microfocus.com/examplesandutilities/index.asp

4-38 Using ActiveX Controls and COM Objects
 OBJECT @MSACAL

* Calendar control

*** Primary Interface ***

* Calendar
 CLASS @Calendar
 CLSID, 8E27C92B-1264-101C-8A2F-040224009C02
 NAME, "Calendar"
 PRIMARY-INTERFACE
 ACTIVE-X-CONTROL
 DEFAULT-INTERFACE, "ICalendar"
 DEFAULT-SOURCE, "DCalendarEvents"
* BackColor
 PROPERTY-GET, -501, @BackColor
 RETURNING "OLE_COLOR"
* BackColor
 PROPERTY-PUT, -501, @BackColor,
 "OLE_COLOR (Property Value)"
* Day
 PROPERTY-GET, 17, @Day
 RETURNING "short"
* Day
 PROPERTY-PUT, 17, @Day,
 "short (Property Value)"
* DayFont
 PROPERTY-GET, 1, @DayFont
 RETURNING "IFontDisp*"
* DayFont
 PROPERTY-PUT, 1, @DayFont,
 "IFontDisp* (Property Value)"
* DayFontColor
 PROPERTY-GET, 2, @DayFontColor
 RETURNING "OLE_COLOR"
* DayFontColor
 PROPERTY-PUT, 2, @DayFontColor,
 "OLE_COLOR (Property Value)"
* NextDay
 METHOD, 22, @NextDay
* NextMonth
 METHOD, 23, @NextMonth
* NextWeek
 METHOD, 24, @NextWeek
* NextYear

ActiveX Examples 4-39
 METHOD, 25, @NextYear
* PreviousDay
 METHOD, 26, @PreviousDay
* PreviousMonth
 METHOD, 27, @PreviousMonth
* PreviousWeek
 METHOD, 28, @PreviousWeek
* PreviousYear
 METHOD, 29, @PreviousYear
* Refresh
 METHOD, -550, @Refresh
* Today
 METHOD, 30, @Today
* AboutBox
 METHOD, -552, @AboutBox
* Click
 EVENT, -600, @CalendarClick
* No Parameters
* DblClick
 EVENT, -601, @CalendarDblClick
* No Parameters
* KeyDown
 EVENT, -602, @CalendarKeyDown
* 2 Parameters
 short* KeyCode
 short Shift
* KeyPress
 EVENT, -603, @CalendarKeyPress
* 1 Parameter
* short* KeyAscii
* KeyUp
 EVENT, -604, @CalendarKeyUp
* 2 Parameters
* short* KeyCode
* short Shift
* BeforeUpdate
 EVENT, 2, @CalendarBeforeUpdate
* 1 Parameter
* short* Cancel
* AfterUpdate
 EVENT, 1, @CalendarAfterUpdate
* No Parameters
* NewMonth
 EVENT, 3, @CalendarNewMonth
* No Parameters

4-40 Using ActiveX Controls and COM Objects
* NewYear
 EVENT, 4, @CalendarNewYear
* No Parameters

After generating the COPY file, you may create and use a Calendar control.
You can add the control to your Screen Section as described in section 4.2, or
you can use the DISPLAY statement in the Procedure DivisioN to create the
control. Note that the following two statements are equivalent:
 DISPLAY Calendar HANDLE IN my-cal.
 DISPLAY Calendar OF MSACAL HANDLE IN my-cal.

Here is an example of how you might update your Procedure Division to
create, and then modify, the control:
* Declare the calendar control's handle.
77 CALENDAR-1 USAGE IS HANDLE OF Calendar.
...
* Declare the @KeyPress event parameter
77 KEY-ASCII PIC X USAGE COMP-X.
77 KEY-CHAR PIC X REDEFINES KEY-ASCII.
...
* Calendar @Value is the current date
01 DATE-1
 03 MONTH PIC 99.
 03 FILLER PIC X VALUE '/'.
 03 DAY PIC 99.
 03 FILLER PIC X VALUE '/'.
 03 YEAR PIC 9999.
...
* Create an instance of the calendar control
 DISPLAY Calendar LINE 4 COLUMN 6 LINES 10 SIZE 40
 EVENT PROCEDURE IS CALENDAR-EVENT-HANDLER
 HANDLE IN CALENDAR-1.
...
* Set the calendar's "day" font to Courier 10 pt Bold
 USE CALENDAR-1 DayFont
 MODIFY Name = "Courier" Size = 10 Bold = 1.
...
* Set the calendar’s year to 2000
 MODIFY CALENDAR-1 Year = 2000.
...
* Invoke the NextDay method
 MODIFY CALENDAR-1 NextDay.
...

AXDEFGEN Utility Reference 4-41
* Invoke the PreviousDay method
 MODIFY CALENDAR-1 PreviousDay.
...
* Handle events
...
CALENDAR-EVENT-HANDLER.
 EVALUATE EVENT-TYPE
 WHEN MSG-AX-EVENT
 EVALUATE EVENT-DATA-2
 WHEN CalendarBeforeUpdate
* Don't allow years >= 2000
 INQUIRE EVENT-CONTROL-HANDLE
 @Value IN DATE-1
 IF YEAR OF DATE-1 >= 2000
* Cancel the update (set the 'Cancel' parameter to 1)
 CALL "C$SETEVENTDATA" USING
 EVENT-CONTROL-HANDLE, 1
 END-IF
 WHEN CalendarKeyPress
* Stop run if the user presses 'X'
 CALL "C$GETEVENTDATA" USING
 EVENT-CONTROL-HANDLE, KEY-ASCII
 IF KEY-CHAR = 'X' STOP RUN END-IF
...

4.20 AXDEFGEN Utility Reference

The ActiveX Definitions Generator (AXDEFGEN) utility is a dialog-based
application designed to facilitate the addition of ActiveX controls and COM
objects to Windows-based ACUCOBOL-GT programs. As mentioned in
section 3.4.1, the role of AXDEFGEN is to locate the names of ActiveX
controls and COM objects currently registered on the system and generate a
COBOL COPY file for the control or object that you select. This COPY file
is used by the ACUCOBOL-GT compiler for syntax and parameter type
checking as well as efficient code generation.

4-42 Using ActiveX Controls and COM Objects
AXDEFGEN is located in the \AcuGT\bin directory wherever you installed
ACUCOBOL-GT on your machine. If you run AXDEFGEN without
command-line parameters, a dialog box appears.

The dialog box has two tabs: Components and Libraries. The Components
tab lists all ActiveX controls and other COM objects that have registered type
libraries. The items on this list are derived from the
HKEY_CLASSES_ROOT\CLSID registry key and then matched by the
Globally Unique IDentifier (GUID) of the type library against the
HKEY_CLASSES_ROOT\TypeLib registry entries. The Libraries tab
contains a list of libraries derived directly from the
HKEY_CLASSES_ROOT\TypeLib registry key. Therefore, some items
may appear under both tabs, and some items in the Libraries list may
represent collections of items from the Components list. AXDEFGEN
generates a COPY file for the entire type library, whether you select the
library name from the Libraries list or the name of an individual component
from the Components list.

AXDEFGEN Utility Reference 4-43
Select the name of an ActiveX control or COM object that you want to
include in your COBOL program, then browse to choose an output path and
filename for the COPY file. (The extension “.def” is automatically appended
to the filename you specify.) When done, click OK to generate the COPY
file.

Note: To prevent compiler errors, AXDEFGEN automatically converts
any embedded spaces that it finds to hyphens when generating the COPY
file, including spaces found in object methods, events, properties,
parameters, and enumerators.

Many ActiveX controls and COM objects have documentation available. If
they do, the ActiveX Help push button on the right side of this box is enabled.
Click the button to read the help file for the selected ActiveX control or COM
object. If the ActiveX Help push button is disabled, it means that
AXDEFGEN could not locate a help file for the selected control.

If desired, you can execute AXDEFGEN from the command line. It takes
two optional command line parameters. The first is the registry name of an
ActiveX control or other COM object. The second is the name of the COPY
file you want AXDEFGEN to create. For example:

AXDEFGEN MSCAL.Calendar cal.def

creates a COPY file named “cal.def” in the current directory containing the
definitions for the Microsoft Calendar Control, which is an ActiveX control
registered as “MSCAL.Calendar” in the system registry. Likewise:

AXDEFGEN Word.Application word.def

creates a COPY file named “word.def” in the current directory containing the
definitions for Microsoft Word, which is registered as Word.Application in
the system registry.

For more information on ActiveX and COM programming, including
instructions on what to do with the COPY files generated by AXDEFGEN,
refer to section 4.2, “Adding ActiveX Controls or COM Objects to Your
COBOL Program.”

4-44 Using ActiveX Controls and COM Objects
4.20.1 AXDEFGEN COPY Files

Following is a list of TYPE codes that you might find in a COPY file
generated by AXDEFGEN. The TYPE names are acronyms and/or
abbreviations for the type descriptions. VT stands for Variant Type. For
example, VT_I2 is a type of variant that contains a 2-byte signed integer.
VT_UI2 is a 2-byte unsigned integer. VT_R4 is a 4-byte real number
(floating point). For a more complete reference of these codes, refer to the
Microsoft Developer’s Network at msdn.microsoft.com.

Note that you may pass an alphanumeric data item or literal as a parameter to
a property or method that expects a numeric item. The runtime automatically
“parses” the alphanumeric string and extracts a number from it if possible.

In general, if a parameter is passed by reference (usually an I/O or output
parameter), then it has 16384 (hex 4000) added to its value in the COPY file.
For example a boolean output parameter would be 16384 + 11 (the value for
VT-BOOL), or 16395. For this reason, if the TYPE in the COPY file is
between 16384 and 16456, then you can subtract 16384 to find the associated
TYPE code.

This table also includes possible C types that you may find in AXDEFGEN
COPY files along with the corresponding COBOL data class.

AXDEFGEN COPY File Type Codes

TYPE
Code

TYPE Name C Type COBOL
Data Class

Description of Data

 VT_EMPTY void N/A Nothing

1 VT_NULL null numeric SQL style Null; any
numeric data item, 0, zero,
null, or low-values

2 VT_I2 short numeric 2-byte signed int; a 16-bit
signed integer, any
numeric data item or
literal

AXDEFGEN Utility Reference 4-45
3 VT_I4 int numeric 4-byte signed int; a 32-bit
signed integer, any
numeric data item or
literal

4 VT_R4 single numeric 4-byte real; a single
(4-byte) floating point
number, any numeric data
item or literal, typically
USAGE FLOAT

5 VT_R8 double numeric 8-byte real; a double
(8-byte) floating point
number, any numeric data
item or literal, typically
USAGE DOUBLE

6 VT_CY CURRENCY numeric Currency; a currency
value, any numeric data
item or literal, usually
containing a decimal point

7 VT_DATE DATE alphanumeric Date; a date in either
numeric or alphanumeric
form

8 VT_BSTR BSTR alphanumeric COM Automation string;
a character string, any
data item or literal,
typically USAGE
DISPLAY

9 VT_DISPATCH IDispatch numeric IDispatch; a pointer to the
IDispatch interface, a
USAGE POINTER, or
USAGE HANDLE item

10 VT_ERROR SCODE numeric SCODE; a 32-bit
unsigned integer, any
numeric data item or
literal

AXDEFGEN COPY File Type Codes

TYPE
Code

TYPE Name C Type COBOL
Data Class

Description of Data

4-46 Using ActiveX Controls and COM Objects
11 VT_BOOL boolean numeric True=-1, False=0; any
alphanumeric or numeric
data item or literal, pass 1,
-1 or “True” for True, 0 or
“False” for False

12 VT_VARIANT VARIANT any VARIANT; any
alphanumeric or numeric
data item or literal

13 VT_UNKNOWN IUnknown numeric IUnknown; a pointer to
the IUnknown interface, a
USAGE POINTER, or
USAGE HANDLE item

14 VT_DECIMAL N/A numeric 16-byte fixed point

16 VT_I1 char alphanumeric Signed char; a single 8-bit
signed character, any data
item or literal, typically
USAGE DISPLAY

17 VT_UI1 unsigned char numeric Unsigned char; a single
8-bit unsigned character,
any numeric data item or
literal

18 VT_UI2 unsigned short numeric Unsigned short; a 16-bit
unsigned integer, any
numeric data item or
literal

19 VT_UI4 unsigned long numeric Unsigned long; a 32-bit
unsigned integer, any
numeric data item or
literal

20 VT_I8 int64 numeric Signed 64-bit int; a 64-bit
signed integer, any
numeric data item or
literal

AXDEFGEN COPY File Type Codes

TYPE
Code

TYPE Name C Type COBOL
Data Class

Description of Data

AXDEFGEN Utility Reference 4-47
21 VT_UI8 uint64 numeric Unsigned 64-bit int; a
64-bit unsigned integer,
any numeric data item or
literal

22 VT_INT int numeric Signed machine int; a
32-bit signed integer, any
numeric data item or
literal

23 VT_UINT unsigned int numeric Unsigned machine int; a
32-bit unsigned integer,
any numeric data item or
literal

24 VT_VOID void N/A C style void

25 VT_HRESULT HRESULT numeric Standard return type; a
32-bit unsigned integer,
any numeric data item or
literal

26 VT_PTR PTR numeric Pointer type; a USAGE
HANDLE or USAGE
POINTER data item

27 VT_SAFEARRAY SAFEARRAY table One- or two-dimensional
table with one USAGE
HANDLE or USAGE
HANDLE OF VARIANT
elementary item

28 VT_CARRAY CARRAY N/A C style array

29 VT_USERDEFINED USERDEFINED N/A User-defined type

30 VT_LPSTR LPSTR alphanumeric Null terminated string;
any alphanumeric data
item or literal

31 VT_LPWSTR LPWSTR alphanumeric Wide null terminated
string; any alphanumeric
data item or literal

36 VT_RECORD N/A User-defined type

AXDEFGEN COPY File Type Codes

TYPE
Code

TYPE Name C Type COBOL
Data Class

Description of Data

4-48 Using ActiveX Controls and COM Objects
If DATE is in numeric form, days are represented by whole number
increments starting with 30 December 1899, midnight as time zero. Hour
values are expressed as the absolute value of the fractional part of the
number. For example:

0.00 is 30 December 1899, 12:00 A.M.

5.25 is 4 January 1900, 6 A.M.

5.875 is 4 January 1900, 9 P.M.

If DATE is in alphanumeric form, the date can be in a variety of formats. For
example, the following are all valid formats:

“25 January 1996”

“8:30:00”

64 VT_FILETIME FILETIME N/A FILETIME

65 VT_BLOB BLOB N/A Length prefixed bytes

66 VT_STREAM STREAM N/A Name of the stream
follows.

67 VT_STORAGE STORAGE N/A Name of the storage
follows.

68 VT_STREAMED
_OBJECT

STREAMED
_OBJECT

N/A Stream contains an object.

69 VT_STORED
_OBJECT

STORED
_OBJECT

N/A Storage contains an
object.

70 VT_BLOB_OBJECT BLOB_OBJECT N/A Blob contains an object.

71 VT_CF CF N/A Clipboard format

72 VT_CLSID CLSID alphanumeric A Class ID; any
alphanumeric data item or
literal

AXDEFGEN COPY File Type Codes

TYPE
Code

TYPE Name C Type COBOL
Data Class

Description of Data

AXDEFGEN Utility Reference 4-49
“20:30:00”

“January 25, 1996 8:30:00”

“8:30:00 Jan. 25, 1996”

“1/25/1996 8:30:00”

You may pass a USAGE POINTER item that was filled in by a prior method
or property call, or you may pass a USAGE HANDLE item which contains a
handle to an ActiveX control or COM object. You may not pass a Screen
Section item name as a handle of an ActiveX control. Instead, use the Format
11 SET verb to get a handle to the ActiveX control (e.g., SET my-handle to
HANDLE OF screen-section-item). The IUnknown interface is part of the
Microsoft COM standard. Any COM object or ActiveX control exports
interfaces that are used to create, use, and destroy objects. Each interface is
based on a single interface called IUnknown. This means that you may pass
a pointer to any of these interfaces (objects) to a method or property that
expects an IUnknown*.

The runtime automatically converts a handle to an ActiveX control or COM
object to the IUnknown* type when you pass it to a method or property.

Any of these types may be followed by an asterisk to indicate that the
parameter will be passed “by reference”. This means that the ActiveX
control or COM object method or property may modify the contents of the
passed data item.

Any type name other than those in the list is a user-defined type.
User-defined types are those that are created by the ActiveX control or COM
object programmer or vendor. They always resolve to one of the types in the
list but have different names to indicate their functions. For example,
OLE_COLOR is a user-defined type that is commonly used to represent
colors in ActiveX controls and COM objects. It resolves to a unsigned long
which is a 32-bit unsigned integer. You must read the programmer’s
documentation of the particular ActiveX control or COM object in order to
determine how to use user-defined types. For example, after reading about
OLE_COLOR you may learn a formula to allow you to construct an
OLE_COLOR if you know the red (0-255), green (0-255), and blue (0-255)
components of the color you are trying to represent.

4-50 Using ActiveX Controls and COM Objects
Another common user-defined type is IFontDisp*. This type is used to
represent fonts. Some ActiveX controls and/or COM objects have properties
whose values are fonts, or methods whose parameters are fonts. You may use
INQUIRE to get a IFontDisp* into a HANDLE OF IFontDisp item.
IFontDisp is defined in “acuclass.def”. Then you may modify the NAME,
SIZE, BOLD, ITALIC, UNDERLINE, STRIKETHROUGH, WEIGHT, or
CHARSET properties of the IFontDisp item using the MODIFY verb. For
example:

copy "acuclass.def"
...
77 my-font-disp usage handle of IFontDisp
...
INQUIRE Calendar-1 DayFont in my-font-disp.
MODIFY my-font-disp Name = "Courier New"
 @Size = 15, Bold = 1.

Note: Because SIZE is a common ACUCOBOL-GT property name, @Size
uses the “at” sign to distinguish it as an ActiveX property name.

Alternatively, you may use the double colon (“::”) operator to set these
properties in a single MODIFY statement. For example:

MODIFY Calendar-1 DayFont::Name = "Courier New"
 DayFont::Size = 15, DayFont::Bold = 1.

In this case, you do not use a HANDLE OF IFontDisp item. Instead, the
runtime creates a temporary HANDLE OF IFontDisp item, does the
INQUIRE, and sets the properties “behind the scenes” in the processing of
the MODIFY statement.

Another user-defined type that you might see is DataSource*, which is
sometimes used as the value of a DataSource property in an ActiveX control.
It resolves to the IUnknown * type. For example, to use the Microsoft
DataGrid control and the Microsoft ADO control together, set the DataGrid
control’s DataSource property to the IUnknown* of the ADO control. As
stated above, to pass an ActiveX control or COM object as a IUnknown* you
must pass the handle of the control or COM object.

For example:
01 main-screen.
 03 adoctrl, Adodc,

AXDEFGEN Utility Reference 4-51
 COL 14 LINE 21 LINES 2.20 CELLS
 SIZE 29.00 CELLS
 LICENSE-KEY "C4145310-469C-11d1-B182-00A0C922E820".
 03 testgrid, Datagrid,
 COL 14 LINE 9 LINES 10 CELLS
 SIZE 28 CELLS
 LICENSE-KEY "CDE57A55-8B86-11D0-b3C6-00A0C90AEA82".

 03 PUSH-BUTTON LINE 27 COL 23 TITLE "Exit"
 CANCEL-BUTTON LINES 4 CELLS SIZE 10 CELLS.

...

DISPLAY main-screen.

MODIFY adoctrl ConnectionString = "DSN=Customers".
MODIFY adoctrl DatasourceName = "Customers".
MODIFY adoctrl RecordSource = "Select * from publishers".

MODIFY testgrid Caption = "Test".
SET adoctrl-handle TO HANDLE OF adoctrl.
MODIFY testgrid DataSource = adoctrl-handle.

DISPLAY testgrid.

The handle of the “adoctrl” is obtained with the SET verb. It is then passed
as the value of the DataSource property in the MODIFY statement that
follows.

4-52 Using ActiveX Controls and COM Objects

5
 Working With .NET
Assemblies
Key Topics

COBOL and .NET... 5-2
What Is .NET?... 5-2
What Is an Assembly?... 5-3
Calling COBOL from .NET.. 5-3
Calling .NET from COBOL.. 5-25
Interacting with .NET Web Services.. 5-57

5-2 Working With .NET Assemblies
5.1 COBOL and .NET

ACUCOBOL-GT includes many facilities for interoperating with Microsoft®
.NET technologies.

It includes compiler options that generate Microsoft Intermediate Language
(MSIL) objects capable of calling and running your COBOL program. These
objects can be managed and run by the .NET Common Language Runtime
(CLR) and instantiated by a .NET assembly.

It includes a .NET interface that lets .NET programmers interact with the
COBOL program at the API level. A .NET version of the ACUCOBOL-GT®
programs can be included in any Visual Studio .NET project.

ACUCOBOL-GT also includes a utility, NETDEFGEN, that translates .NET
assemblies into COBOL COPY files, making it easy to invoke .NET
assemblies from your COBOL program.

Web services are supported via .NET client control proxies. These proxies
are simple .NET controls that interact with Web services and communicate
with an ACUCOBOL-GT program using native .NET event declarations,
methods, and properties.

UNIX users can interact with .NET assemblies using our Thin Client
technology. If you want, you can mix Win32, ActiveX, and .NET graphical
controls on the same ACUCOBOL-GT screen.

All of these options are discussed in this chapter.

5.2 What Is .NET?

.NET is a set of Microsoft software technologies designed to facilitate the
development and execution of large, interoperable Web-based, desktop,
distributed, and server applications, both for e-commerce and global
electronic businesses. .NET is the Microsoft solution for Web services. Like
other Web service environments, it relies heavily on eXtensible Markup
Language (XML) and SOAP.

What Is an Assembly? 5-3
.NET has been incorporated across Microsoft’s clients, servers, services, and
tools. For developers, .NET is manifested in the programming model
delivered in the Microsoft .NET Framework. .NET is based on the reuse of
services. Microsoft defines services as small, discrete, building-block
applications that connect to each other as well as to other, larger applications
via the Internet or an intranet.

.NET supports many different programming languages. Normally .NET
applications are compiled into Microsoft intermediate language (MSIL) and
run in a sort of virtual operating system, the CLR. The compiled code is
called managed code, because it is managed by the CLR.

Applications compiled in other languages can also run in .NET environments
under the Windows operating system, and Microsoft has provided many
facilities to allow such programs to interoperate with managed code.

5.3 What Is an Assembly?

In .NET parlance, all controls or programs are called assemblies. An
assembly is a single file or a group of files that comprise a program, including
the security management, versioning, sharing, and deployment information
as well as the individual services that the program utilizes.

Services perform discrete functions ranging anywhere from simple requests
to complicated business processes that combine information from multiple
sources. A .NET assembly is a group of services that can be assembled like
building blocks into a cohesive business application, or it can be as simple as
an individual program that performs some discrete functions.

An assembly may appear as a single “.dll” or “.exe” file. Assemblies can be
listed in a Global Assembly Cache (GAC) on an end user’s machine.

5.4 Calling COBOL from .NET

There are three ways to call and interact with an ACUCOBOL-GT program
from a .NET assembly. You can:

5-4 Working With .NET Assemblies
• Use ACUCOBOL-GT’s .NET compiler options to package your
ACUCOBOL-GT program as a .NET assembly. .NET programmers can
then invoke these objects as they would any other .NET assembly.

Though perhaps easiest, this option limits data passing as discussed in
section 5.4.1.

Note: To use the .NET compiler options, you must have Microsoft
.NET Development Framework Version 2.0. However, you can create
Version 1.1 and 2.0 assemblies.

• Use our .NET interface assembly, “wrunnet.dl”. This gives .NET
programmers more direct access to and control of the ACUCOBOL-GT
Windows runtime module. “wrunnet.dll” contains a singleton class,
CVM, that encapsulates the ACUCOBOL-GT runtime. With the CVM,
the .NET programmer can programmatically instantiate the
ACUCOBOL-GT runtime and invoke a COBOL program without a
COM interface or knowledge of the Windows API or .NET PINVOKE.

.NET programmers can include “wrunnet.dll” in a Visual Studio .NET
project and take advantage of the native .NET development
environment. This interface gives them lower-level control over the
COBOL program, and is very similar to the ACUCOBOL-GT C and
Java interfaces.

• Use ACUCOBOL-GT’s COM server technology. The COM server is a
COM object containing the ACUCOBOL-GT Windows runtime DLL.
When the COM server is added to a .NET project, a proxy is created to
communicate with the ACUCOBOL-GT runtime. The proxy provides
all interface and data marshalling between .NET and the COM server.
(Marshalling is the process of gathering data and transforming it into a
standard format before transmitting it over a network.)

5.4.1 Using the .NET MSIL Compiler Options

The easiest way to provide COBOL services to a .NET assembly is to use one
of ACUCOBOL-GT’s .NET compiler options to generate managed objects
that can call your ACUCOBOL-GT program. These objects are compiled in
Microsoft Intermediate Language (MSIL), so they can be managed directly

Calling COBOL from .NET 5-5
by the .NET Common Language Runtime (CLR). They are MSIL stubs
capable of calling the ACUCOBOL-GT runtime and executing your “.acu”
object.

There are two compiler options that you can use for this purpose:

5.4.1.1 --netexe

The “--netexe” compiler option generates a .NET executable file for
command line execution. The name of the executable is the name of the
program followed by “.exe.” All valid ACUCOBOL-GT command line
options can be specified with the executable, as well as any of the following
Linkage Section parameters:
-int:
-string:

Compiler Option Description

--netexe Generates a .NET executable file from your
COBOL source.

By default this command generates a .NET Version
1.1-compatible assembly or the latest version if 1.1 is
not installed. You can also specify the desired version
by adding the appropriate qualifier to the option.

For example: “--netexe:2.0” verifies that .NET Version
2.0 is installed and generates a 2.0-compatible
assembly if so.

Valid versions are 1.1 and 2.0.

--netdll Generates a .NET dynamic link library (DLL) file
from your COBOL source.
By default this command generates a .NET Version
1.1-compatible assembly or the latest version if 1.1 is
not installed. You can also specify the desired version
by adding the appropriate qualifier to the option.

For example: “--netdll:2.0” verifies that .NET Version
2.0 is installed and generates a 2.0-compatible
assembly if so.

Valid versions are 1.1 and 2.0.

-uint:
-short:
-ushort:
-float:
-double:
-long:
-ulong:
-byte:

For example, the compiler command:
ccbl32 --netexe MyCobol.cbl

results in two files being created: the COBOL object, “MyCobol.acu,” and
the .NET executable, “MyCobol.exe.”

You can execute the .NET version from the command line with
“MyCobol.exe” or you can include command line options and linkage
section parameters, as in:

MyCobol.exe -d -int:1234 -string:"Enter customer name"

5.4.1.2 --netdll

The “--netdll” compiler option generates a .NET dynamic link library (DLL)
that gives .NET assemblies—both executables and DLLs—a programmatic
interface to your COBOL program. All COBOL entry points are exposed as
.NET methods along with ACUCOBOL-GT runtime properties and methods.
This allows .NET programmers to set ACUCOBOL-GT command options
and call runtime interfaces from their .NET assembly.

By referring to an ACUCOBOL-GT .NET DLL in a project solution, .NET
programmers can view ACUCOBOL-GT runtime properties, runtime
initialization and control methods, COBOL entry points, the main COBOL
entry point, and Linkage Section parameters in the Visual Studio .NET object
browser.

Three files are created when you compile a COBOL program using the
“--netdll“ option. All three begin with the program file name. For example,
the compiler command:

ccbl32 --netdll MyProgram.cbl

Calling COBOL from .NET 5-7
results in “MyProgram.dll,” “MyProgram.netmodule,” and
“MyProgram_CVM.dll.” .NET programmers would reference
“MyProgram.dll” and “MyProgram_CVM.dll” in their project.

“MyProgram_CVM.dll” contains all the COBOL program entry points and
ACUCOBOL-GT runtime interfaces exposed as .NET methods.
ACUCOBOL-GT runtime options are exposed as properties.

The class in “MyProgram.dll” derives from class CVM which resides in
“MyProgram_CVM.dll” allowing the instantiation of namespace class
“MyProgram.MyProgram myPgm = new MyProgram.MyProgram()”. All
methods and properties in “MyProgram_CVM.dll” class CVM are exposed
to object “myPgm”.

“MyProgram.netmodule” contains ACUCOBOL-GT setup routines that are
automatically executed during object instantiation. “MyProgram.dll” works
in conjuction with “MyProgram.netmodule” to perform this task. The
namespace and class are always generated using the COBOL file name
without the extension. In this case the namespace and class are
“MyProgram.MyProgram”.

As mentioned previously, COBOL entry names and the main COBOL
program entry point generate .NET methods. Method parameters are
generated when entry statements contain USING parameters or a Procedure
Division statement contains USING parameters. There are two additional
parameters added to each generated .NET method. They follow all the
COBOL USING parameters for the entry name or Procedure Division
statement. The first parameter, string, is for program execution command
parameters. They are “-d” (debug) and “-cache”. All other runtime
command options must be set via properties before calling AcuInitialize or in
the string parameter of AcuInitialize.

The second parameter is for a return code. This is the return code from the
COBOL program. The method return code is from the COBOL Virtual
Machine interface and is documented in section 5.4.2.1. You can also view
the values using the Visual Studio .NET object browser under ErrorTypes in
class CVM.

Note: All of the criteria that apply to the CVM class also apply to the .NET
component. Refer to section 5.4.2.1 for details on these criteria.

5-8 Working With .NET Assemblies
5.4.1.3 Data passing limitations

The compiler options limit data passing to the following data types: integer,
string, unsigned integer, short, unsigned short, float, double, long, unsigned
long, and byte.

5.4.1.4 Example

COBOL Source

Following is the COBOL source for a sample program,
“TestNetToCobol.cbl”.

identification division.
program-id. TestNetToCobol.
environment division.
configuration section.
data division.
working-storage section.

linkage section.
77 string-in-out pic x(32) value spaces.
77 int-in-out USAGE IS SIGNED-INT.

procedure division using string-in-out, int-in-out.
main-logic.

 move "hey whats doin" to string-in-out.
 entry "int-only" using int-in-out.
 move 9999 to int-in-out.
 exit program.

View of Managed Code in Visual Studio .NET Object Browser

Following is a screen that shows what “TestNetToCobol_CVM” looks like to
a .NET programmer in the Visual Studio .NET object browser (once you’ve
generated a .NET DLL for this program with the “--netdll” option). Notice

Calling COBOL from .NET 5-9
that there are methods other than the COBOL program entry points and main
Procedure Division paragraph in this browser. These ACUCOBOL-GT
runtime interfaces are documented in section 3.5.3.2.

C# Source

Here is a C# program that makes reference to “TestNetToCobol_CVM”.
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using testnettocobol;
//using testnettocobol_CVM;

namespace TestDll
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 testnettocobol.testnettocobol cblObj;

5-10 Working With .NET Assemblies
 private System.Windows.Forms.Button button1;
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.button1 = new System.Windows.Forms.Button();
 this.SuspendLayout();
 //
 // button1
 //
 this.button1.Location = new System.Drawing.Point(104, 24);
 this.button1.Name = "button1";
 this.button1.TabIndex = 0;
 this.button1.Text = "Test";

Calling COBOL from .NET 5-11
 this.button1.Click += new System.EventHandler(this.button1_Click);
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(292, 101);
 this.Controls.Add(this.button1);
 this.Name = "Form1";
 this.Text = "Form1";
 this.ResumeLayout(false);

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 private void button1_Click(object sender, System.EventArgs e)
 {
 testnettocobol_CVM.errorTypes err = testnettocobol_CVM.errorTypes.CS_OK;
 IntPtr pInfo = IntPtr.Zero;
 int cblReturn = 0;
 string err_msg;
 int some_int = 777;
 string some_string;

 // Instantiate COBOL object and CVM, COBOL VIRTUAL MACHINE
 cblObj = new testnettocobol.testnettocobol();
 // Set ACUCOBOL-GT runtime options (properties)
 cblObj.RunPath = "D:\\branch_7_1\\cobolgt\\bin";
 cblObj.Debug = true;
 cblObj.LinkageLength = true;
 //cblObj.Cache = true;
 // Initialize the ACUCOBOL-GT runtime
 cblObj.Initialize();

 try
 {

 // The second to last parameter is for options specific
 // to a method call. They may also be set via properties
 // before the method call is executed.
 // The last parameter is the return code from the COBOL program.

5-12 Working With .NET Assemblies

 // call an ENTRY in the ACUCOBOL-GT program
 some_int = 1111;
 cblReturn = 0;

 err = cblObj.int_only(ref some_int, null, ref cblReturn);

 // call the main ENTRY, 1st COBOL line in PROCEDURE DIVISION
 some_int = 1422;
 some_string = "The hills are Alive ";

 err = cblObj.testnettocobol_CVM_main(ref some_string,
 ref some_int,
 null,
 ref cblReturn);
 }
 catch (System.Exception e2)
 {
 Exception innerE = e2.InnerException;
 if ((innerE != null) && (innerE.Message.Length > 0))
 err_msg = innerE.Message;
 else
 {
 if (e2.Message.Length > 0)
 err_msg = e2.Message;
 else
 err_msg = "AcuNet Temp Object Create Error";
 }
 MessageBox.Show(err_msg);
 return;
 }
 // test runtime return code
 if (err != testnettocobol_CVM.errorTypes.CS_OK)
 {
 // get error text property
 MessageBox.Show(cblObj.LastErrorMsg);
 }
 cblObj.ShutDown(0);
 }
 }

}

Calling COBOL from .NET 5-13
5.4.2 Using the .NET Interface Assembly, “wrunnet.dll”

A more precise way to call COBOL from .NET is using the application
programming interface (API) contained in the dynamic link library,
“wrunnet.dll”. .NET developers can use this interface to call COBOL
functionality (programs, entry points, etc.) from their .NET class.

The API consists of one .NET class: CVM. CVM class allows .NET
developers to programmatically manage the ACUCOBOL-GT runtime,
giving them low-level control of COBOL objects from .NET.

Note that you can call COBOL from .NET locally or remotely. You can even
have the runtime execute remotely without a COBOL object executing on the
client. All you need on the client is a .NET program and a runtime. For this
to work, you set CODE_PREFIX in the configuration file that you provide
with the runtime initialization to point to a remote server hosting your
COBOL application. The remote server must also be running AcuConnect.
AcuConnect is able to execute a COBOL object remotely and share data with
the local runtime. For more information on executing remote COBOL
programs with AcuConnect, please refer to the AcuConnect User’s Guide.

5.4.2.1 CVM class

CVM is a .NET class representing the ACUCOBOL-GT runtime. The CVM
class exposes public methods for setting runtime options, calling and
cancelling programs, getting object libraries, and more.

CVM contains the following methods within the name space “acucobol”:

• Initialize

• Call

• CancelProgram

• CancelAllPrograms

• UnloadProgram

• UnloadAllPrograms

5-14 Working With .NET Assemblies
• ShutDown

Each of these methods corresponds to the runtime interfaces acu_initv,
acu_cobol, acu_cancel, acu_unload, and acu_shutdown. More details are
provided in the following sections.

Initialize

Initializes the COBOL Virtual Machine (runtime) with command line options
before calling CallAcuCobol. Initialize is optional; Call will call Initialize
with defaults if it has not been previously called.

Usage:
public unsafe bool Initialize (string cmdline)
public bool Initialize ()

Where:

Use “public bool Initialize ()” to set defaults.

Call

Executes an ACUCOBOL-GT program.

Usage:
public unsafe errorTypes Call (string pgmName,
 ref object[] CobolParams,
 ref byte[] CobolTypes,
 string CallOptions,
 ref int ProgramReturnCode)

Where:

Variable Definition

cmdline Includes ACUCOBOL-GT runtime options. You can set
runtime options using key value pairs or by setting
properties. See “Properties” below.

Calling COBOL from .NET 5-15
Variable Definition

pgmName Is the file path of an ACUCOBOL-GT program.

CobolParams Is an array of parameter objects. They must match the
Procedure Division USING parameters and be native
types int, uint, short, ushort, long, ulong, float, double,
char, byte, and/or string. Parameters should correspond
one-to-one with the Linkage Section of the COBOL
program.

CobolTypes Is an array of COBOL types. (See “CompilerTypes”
later in this section.) This field is optional, meaning it
can be a null reference. When used, it must be allocated
with the same number of entries as CobolParams, one
type corresponding to each parameter. These entries are
needed when a COBOL program has a mix of unicode,
double byte, and ANSI strings. .NET treats all strings
as unicode and “wrunnet”, by default, converts them to
ANSI strings. In order for “wrunnet” to convert the
unicode to a wide character, double byte, or pass it as a
unicode string to a COBOL program, the corresponding
entry in CobolTypes must be set.

If all strings in the COBOL program are unicode or all
are double byte, a property may be set. This field is
automatically generated when using the compiler
option, “--netdll”. The applicable fields are NAT,
NATJ, NATE, WID, WIDJ and EWID.

5-16 Working With .NET Assemblies
 CancelProgram/CancelAllPrograms

Cancels program(s) and resets working storage. Optional.

Usage:
public unsafe bool CancelProgram (string name)
public unsafe bool CancelAllPrograms ()

Where:

“public unsafe bool CancelAllPrograms ()” cancels all programs.

CallOptions The following runtime options can be set using the Call
method:

• “-d”, debug
• “-show”, display error text
• “ -uni”, unicode
• “-wide”, double byte characters
• “-cache”, cache program

These are the only options that can be set after Initialize
is called. They may also be set using a property
assignment before a Call is executed. For example:
“-d 1” or “-d 0” turns debug mode on in the first
instance and off in the second instance.

This is the only place where a boolean option can be set
on and off in this manner. All other boolean options set
via Initialize can be turned only on. In this case the
syntax does not include a “1” or “0”.

ProgramReturnCode Upon return from Call, ProgramReturnCode contains
the COBOL program return code.

Variable Definition

Variable Definition

name The COBOL program to cancel.

Calling COBOL from .NET 5-17
UnloadProgram/UnloadAllPrograms

Unloads a cached program from memory. Optional.

Usage:
public unsafe bool UnloadProgram (string name, bool subprograms)
public unsafe bool UnloadAllPrograms ()

Where:

“public unsafe bool UnloadAllPrograms ()” unloads all cached programs
from memory.

ShutDown

ShutDown terminates the ACUCOBOL-GT runtime and is sometimes called
when the runtime is no longer needed by the application . Please note that
ShutDown should rarely be executed in a .NET application. This is because
CVM provides an interface to the ACUCOBOL-GT runtime that is a standard
Windows DLL, and there is only one instance of the DLL in the application.
Even though you might destroy the instance of the CVM assembly, Windows
keeps the DLL loaded until the application terminates. If you later create a
new instance of CVM, Windows gives it a handle to the loaded DLL. Once
an instance of CVM executes the ShutDown method, then any current or
subsequent instances will not work because the DLL is now in a shutdown
state and can not be reactivated.

ShutDown is automatically called when CAcuCobol is destoyed. This
method is useful in other contexts as well and is provided to maintain
compatibility.

Usage:
public void ShutDown(int msg)

Variable Definition

name The COBOL program to unload.

subprograms When true, unloads all subprograms

5-18 Working With .NET Assemblies
Where:

FreeInfo de-allocates IntPtr pInfo control blocks that were allocated during a
call to CallAcuCobol. If this is not called the blocks will be de-allocated
when “wrunnet” is removed from the system or when class CVM is
destroyed.

5.4.2.2 Properties

The following table contains a description of each property and its associated
method. Please note that the get property, LastErrorMsg, returns the string of
the last error message. The set properties set the string or property value.

When “wrunnet.dll” is referenced in a Visual Studio .NET project or the
compiled COBOL program used the “--netdll” option, properties can be
viewed using the object browser of Visual Studio .NET. When the “--netdll”
option is used, properties are inluded in the “ProgramName_CVM.dll”.

Variable Definition

msg0 Is the default return code

String Types

Property Name Get
/Set

Description Command
Option

Platform Method

ConfigFile Set Alternate configuration file -c Win, UNIX Initialize

DebugCmds Set File containing debugger
commands

-r Win, UNIX Initialize

DisplayAppend Set File to append display
output

+o Win, UNIX Initialize

DisplayOut Set File for display output -o Win, UNIX Initialize

EmbeddedLib Set Load configuration file
from COBOL object
library

--embedded Win, UNIX Initialize

ErrorsAppend Set Append to error messages
file

+e Win, UNIX Initialize

Calling COBOL from .NET 5-19
ErrorsOut Set Error messages file -e Win, UNIX Initialize

Import Set A variable for importing
graphical screens

-import Win Initialize

KeyFile Set Keyboard input file -i Win, UNIX Initialize

LastErrorMsg Get Returns the last error
message string

Win, UNIX No
restriction

ObjLib Set Object file library -y Win, UNIX Initialize

Plays Set File of input keystroke
script

-k Win, UNIX Initialize

RunPath Set Folder where “wrun32.dll”
is located

-runpath: Win, UNIX Initialize

Switches Set List of Special Names
switches to turn on

-# Win, UNIX Initialize

TerminalOut Set Capture terminal output to
a file

-t Win, UNIX Initialize

String Types

Property Name Get
/Set

Description Command
Option

Platform Method

BOOL Types

Property Name Get/
Set

Description Command
Option

Platform Method

Cache Set Leave program in cache
after execution

-cache Win, UNIX Call

CGIWarnings Set Suppress warning
messages in CGI programs

-f Win Initialize

CharToGui Set Convert character screens
to GUI equivalent

--CharToGui Win Initialize

Debug Set Execute ACUCOBOL-GT
debugger

-d Win, UNIX Call

DumpMem Set Dump memory for
memory access violations

-z Win, UNIX Initialize

5-20 Working With .NET Assemblies
5.4.2.3 Error codes

Call returns the following error codes to the .NET environment. The .NET
programmer can refer to the error code, an enumerator, to get more
information.

ExtendedError Set Display extended error
codes for file error “30”

-x Win, UNIX Initialize

IgnoreSignals Set Ignore terminal hang-up
signals

-h UNIX Initialize

LinkageLength Set Disable Linkage item
length test

-u Win, UNIX Initialize

ListConfig Set List contents of
configuration file

-l Win, UNIX Initialize

NonNumeric Set Suppress warnings when
non-numeric data is used
as numeric data

-w Win, UNIX Initialize

NoSaveDebug Set Prevent debugger from
reading and writing adb

--no-save-de
bug

Win, UNIX Initialize

SafeMode Set Run in safe mode -s UNIX Initialize

ShowError Set Display error message text
in a MesssageBox

-show Win Call

TerminalInit Set Inhibit terminal
initialization

-b UNIX Initialize

Unicode Set Pic X() parameters passed
as unicode

-uni Win, UNIX Call

Wide Set Pic X() parameters passed
As DBC strings

-wide Win, UNIX Call

ZipErrorFile Set Suppress warning
messages in CGI programs

-g Win, UNIX Initialize

BOOL Types

Property Name Get/
Set

Description Command
Option

Platform Method

Calling COBOL from .NET 5-21
When ShowError is “true”, Call displays the message text. The property,
LastErrorMsg, is also available to retrieve the last error text string. When
“wrunnet.dll” is referenced in a Visual Studio .NET project or the compiled
COBOL program used the “--netdll” option, error codes can be viewed using
the object browser of Visual Studio .NET. When the “--netdll” option is used,
errorTypes is inluded in the “ProgramName_CVM.dll”.
public enum errorTypes : int
{
/* runtime is not thread-safe */
CS_MULTIPLE_OS_THREADS = -4,
CS_WIN_INIT_FAILED = -3,
CS_STOP_RUN = -2,
CS_CONT = -1,
CS_OK = 0, /* program executed with no errors */
CS_MISSING = 1, /* Program missing or inaccessible */
CS_NOT_COBOL = 2, /* Not a COBOL program */
CS_INTERNAL = 3, /* Corrupted program */
CS_MEMORY = 4, /* Inadequate memory available */
CS_VERSION = 5, /* Unsupported version of object code */
CS_RECURSIVE = 6, /* Program already in use */
CS_EXTERNAL = 7, /* Too many external segments */
CS_LARGE_MODEL = 8, /* Large-model program not supported */
CS_JAPANESE = 14, /* Japanese extensions not supported */
CS_MULTITHREADED = 22, /* Multithreaded CALL RUN illegal */
CS_AUTHORIZATION = 23, /* Access denied */
CS_CONNECT_REFUSED = 25, //Connection refused
//Program contains object code for a different processor
CS_MISMATCHED_CPU = 27,
CS_SERIAL_NUMBER = 28 /* Incorrect serial number */
//user count exceeded on remote server
CS_USER_COUNT_EXCEEDED = 29,
CS_LICENSE = 30, /* License error */
CS_UNSUPPORTED_PARAM = 31, /* unsupported parameter */
CS_COBOL_SIGNAL = 65,
CS_COBOL_FATAL_ERROR = 66
};

5.4.2.4 CompilerTypes

When “wrunnet.dll” is referenced in a Visual Studio .NET project or the
compiled COBOL program used the “--netdll” option, CompilerTypes can be
viewed using the object browser in Visual Studio .NET. When the “--netdll”
option is used, CompilerTypes is included in the “ProgramName_CVM.dll”.

public enum CompilerTypes : byte

5-22 Working With .NET Assemblies
{
NSE= 0,
NSEZ= 1,
CONS= 2,
ANL= 3,
ABS= 4,
ABSJ= 5,
PARAM= 6,
GRPL= 7,
ANSE= 8,
GRPVL= 9,
ANS= 10,
ANSJ= 11,
GRP= 12,
GRPV= 13,
NPU= 14,
NNCU= 15,
NSU= 16,
NNU= 17,
NSS= 18,
NSSL= 19,
NCU= 20,
NBU= 21,
NCS= 22,
NNCS= 23,
NIS= 24,
NISL= 25,
NPS= 26,
NFP= 27,
TEMP= 28,
NPP= 29,
NBS= 30,
NNS= 31,
NAT= 32, /* codes are for double byte */
NATJ= 33, /* codes are for double byte */
NATE= 34, /* codes are for double byte */
WID= 35, /* codes are for double byte */
WIDJ= 36, /* codes are for double byte */
EWID= 37, /* codes are for double byte */
TMP_PFX= 38,
NEFP= 39,
NBFP= 40

};

Calling COBOL from .NET 5-23
5.4.3 Using the ACUCOBOL-GT COM Server

An alternate way to provide COBOL services to a .NET assembly is through
the ACUCOBOL-GT COM server.

The COM server is a COM object containing the ACUCOBOL-GT Windows
runtime DLL. It provides a COM interface between the ACUCOBOL-GT
runtime and programs running outside the runtime. For more information on
the COM server, refer to section 3.2.1 of this guide.

When the COM server is added to a .NET project, .NET creates a proxy
object, “Interop.AcuGTObjects.dll”, that provides an interface between .NET
and the ACUCOBOL-GT COM server object. The .NET proxy gathers data
intended for use by the COBOL program and packages it in COM variant
formats before sending it to the ACUCOBOL-GT COM server. This process
is known as data marshalling. The COBOL program uses C$GETVARIANT
and C$SETVARIANT to retrieve and update data held by the
ACUCOBOL-GT COM server object. The proxy also unmarshals data
received from ACUCOBOL-GT COM server before delivering it back to the
.NET program. The proxy is designed to manage the interchange between
the .NET and COBOL worlds.

Invoke an ACUCOBOL-GT program from a .NET assembly as follows:

1. Install and register the ACUCOBOL-GT COM server on the system
running .NET. Install the COBOL object file there as well. Instructions
are provided in section 3.2.1, “Using the ACUCOBOL-GT COM
Server.”

Once the COM server is registered on the .NET system, the
ACUCOBOL-GT runtime is then exposed to any program running in
that environment.

2. To use the ACUCOBOL-GT COM Server, select a .NET application
that requires the ACUCOBOL-GT interface. (The
…\sample\dotnet\NetToAcuCobol directory contains a sample that you
can use.)

a. In Visual Studio .NET, right-click the project name in the Solution
Explorer window to display a selection menu.

5-24 Working With .NET Assemblies
b. Select Add Reference from the resulting pop-up menu to display
the Add Reference dialog box.

c. Select the COM tab from the Add Reference dialog box.

d. Select ACUCOBOL-GT 8.0 Type Library (Acugt.tlb) from the list
and click OK.

Visual Studio generates a .NET proxy module to interface with your
COM object identified as “Interop.AcuGTObjects.dll”.

Visual Studio .NET Add Reference dialog box

3. Add the proxy interface to the .NET application source. For example,
if you are using Visual Basic or C#, you would add the following:

Visual Basic:

Dim AcugtInterface As Object
AcugtInterface = New AcuGTObjects.AcuGTClass

C#:

Calling .NET from COBOL 5-25
AcuGTObjects.AcuGTClass AcugtInterface = new
AcuGTObjects.AcuGTClass();

4. Run the .NET service and it will invoke the COBOL program as
necessary.

Note: The …\sample\dotnet\NetToAcuCobol directory contains a
“ReadMe.txt” file that describes using the example with the
“AcuGTObjects.AcuGTClass”.

5.5 Calling .NET from COBOL

Use ACUCOBOL-GT’s .NET bridging interface, “AcuToNet.dll”, if you
want to include .NET assemblies in your COBOL programs. This interface
gives you access to .NET assemblies, both graphical and non-graphical,
including user controls and Windows forms controls. You do not need to
know object-oriented programming or the NET Framework.

This interface includes a graphical utility known as the .NET Definitions
Generator, or “NETDEFGEN.exe”. This utility allows you to view and
select .NET assemblies for translation to a COBOL COPY file. COBOL
programmers already familiar with the DISPLAY, CREATE, MODIFY,
INQUIRE, and DESTROY statements can immediately write COBOL
programs that consume .NET assemblies.

At run time, “AcuToNet.dll” starts the .NET CLR, loads and executes the
requisite .NET components, and returns the results to the COBOL program.

The next Section provides details on adding and using .NET assemblies in
COBOL programs by using NETDEFGEN and AcuToNET.dll.

Note: To execute NETDEFGEN, the samples, “AcuToNet.dll”, and other
items, you must have Microsoft .NET Development Framework Version
2.0. However, with NETDEFGEN, you can process Version 1.1 and 2.0
assemblies.

5-26 Working With .NET Assemblies
5.5.1 Using .NET assemblies in COBOL

The .NET bridging interface includes a graphical utility known as
NETDEFGEN. This utility allows you to view and select .NET assemblies
for translation to a COBOL COPY file. It is similar to the AXDEFGEN
utility that ACUCOBOL-GT provides for programming with ActiveX and
COM objects. However, NETDEFGEN is designed to work with .NET
assemblies.

The COPY files generated by NETDEFGEN supply the ACUCOBOL-GT
compiler with all the necessary information for interfacing with .NET
assemblies. When you include the COPY files in your COBOL program, you
can interact with the .NET assembly via these COBOL statements:
DISPLAY, CREATE, MODIFY, INQUIRE, and DESTROY.

Invoke .NET assemblies from your ACUCOBOL-GT program as follows:

1. If it is not installed already, install and register the .NET framework on
your development system.

2. Run “netdefgen.exe”. It is located in the \AcuGT\bin directory
wherever you installed ACUCOBOL-GT on your machine.
NETDEFGEN locates the .NET assemblies in the Global Assembly
Cache (GAC) on the machine and lists them. (For more information
on the NETDEFGEN utility, refer to the NETDEFGEN Utility
Reference later in this section.)

3. From the list of cached assemblies displayed in the NETDEFGEN
dialog box, select the .NET assembly that you want to include in your
COBOL program, then select the NameSpace class or classes that you
specifically want to access.

Note: If the assembly of interest is not in the GAC, use the Browse
button to navigate to the directory where the assembly resides.

4. Specify an output path and filename for the COBOL COPY file that
will be generated. Click Generate when done.

The utility automatically generates a COPY file for the chosen assembly.
For information on the contents of NETDEFGEN COPY files, refer to
the NETDEFGEN Utility Reference.

Calling .NET from COBOL 5-27
The utility also generates something known as an event DLL. The event
DLL is named after the NameSpace class found in the COPY file,
appended by the suffix “.dll”.

5. In a code editor, open your ACUCOBOL-GT program and go to its
Environment Division/Configuration Section.

6. In the COBOL program’s Special-Names paragraph, enter a COPY
statement for the COPY file that you specified in step 4. If you are
adding several .NET assemblies, copy several COPY files into this
paragraph. Add a period at the end of the paragraph. For example:

SPECIAL-NAMES
COPY "netcontrol1.def".
COPY "netcontrol2.def".
.

7. Add the .NET control to your program. Minimally, you must include
the ASSEMBLY-NAME, NAMESPACE, and CLASS-NAME
parameters that are found in the COPY file.

If the .NET control that you are adding is graphical, (i.e., it has the word
“Visual” in the COPY file NameSpace class definition), you can add it to
your program in one of two ways:

a. Go to the Screen Section of your program and add the new control
to your screen. For example:

screen section.
01 screen-1.
 03 SOME-NETCONTROL, "@My.Assembly",
 LINE 1, COL 2,
 NAMESPACE IS "My.Test.Namespace",
 CLASS-NAME IS "MyGUIClass",
 CONSTRUCTOR IS CONSTRUCTOR2(PARM1, PARM2, PARM3,
 PARM4, PARM5, PARM6, PARM7),
 EVENT PROCEDURE IS USERCONTROL-EVENTS.

b. Go to your program’s Procedure Division and create the control
using the DISPLAY statement. For example:

DISPLAY "@My.Assembly"
 NAMESPACE IS "My.Test.Namespace"
 CLASS-NAME IS "MyGUIClass"
 EVENT PROCEDURE IS MY-EVENT-PROCEDURE
 HANDLE IS MY-GUI-HANDLE.

5-28 Working With .NET Assemblies
If the .NET assembly that you are adding is non-graphical, use the
CREATE statement to add it to your program as shown below:

CREATE "@My.Assembly"
 NAMESPACE IS "My.Test.Namespace"
 CLASS-NAME IS "MyClass"
 HANDLE IS MY-NONGUI-HANDLE.

Note that .NET properties, methods, and events should always be
prepended with an “@” sign in case they clash with COBOL reserved
words or ACUCOBOL-GT graphical control property and style names.
The “@” character identifies the relationship of the name to .NET or
ActiveX.

8. Add any optional .NET parameters to the Screen Section, DISPLAY, or
CREATE statement. For example, add the FILE-PATH parameter to
point to assemblies that will not be placed in the end-user’s GAC (you
must first create an XML file containing the file path), or add the
CONSTRUCTOR parameter to instantiate a class. Valid .NET
parameters are described in section 5.5.2.2.

9. Perform whatever functions you want on the control. If desired, you
can modify a .NET control’s properties or invoke methods using the
MODIFY statement. For example:

MODIFY MY-NONGUI-HANDLE printIteration = NUMBRPRINTS.
MODIFY MY-NONGUI-HANDLE lastName = LAST-NAME.
MODIFY MY-NONGUI-HANDLE "ToLog"("Hello From COBOL", 99,
"It's a Good Thing").

If you want to retrieve a property value, you can use the INQUIRE
statement. For example:

INQUIRE MY-NONGUI-HANDLE printIteration IN QPRINTS.
INQUIRE MY-NONGUI-HANDLE lastName IN LAST-NAME.

10. To destroy .NET controls, use the DESTROY statement. Ultimately,
all controls that you instantiated in step 7 should be destroyed. You
can use DESTROY ALL to destroy all controls in the Screen Section
or created with a DISPLAY statement. However, if the control was
created with a CREATE statement, then it must be destroyed with a
Format 1 DESTROY handle-name statement.

Calling .NET from COBOL 5-29
Note: For details on using the CREATE, DISPLAY, MODIFY,
INQUIRE, and DESTROY statements, refer to section 6.6 in
ACUCOBOL-GT Reference Manual. A complete sample program is
provided below for your reference.

11. Compile the COBOL program.

12. Update the configuration file named “NetEvents.ini” with path
statements of the event DLL(s) created when you ran NETDEFGEN,
or place the DLL(s) in the same directory as the ACUCOBOL-GT
runtime, “wrun32.exe”. The runtime must be able to access these
event DLLs as well as the .NET assembly itself.

13. Run your COBOL program via “wrun32.exe MyProgram.acu”.

At run time, your COBOL program transparently communicates with an
interface called “AcuToNet.dll”. This interface starts the .NET CLR, loads
the requisite .NET assemblies and event handlers, executes .NET assembly
methods, and returns the results to the COBOL program. Refer to
‘Optimizing the “AcuToNet.dll” interface’ for information on optimizing the
performance of “AcuToNet.dll”.

5.5.1.1 CoCreate Instance Failed Error

When attempting to run your program, there is a special case that will cause
you to receive a runtime error message of “CoCreate Instance failed”. This
case involves running on a Microsoft Vista or Windows 2008 machine that
previously (or currently) had ACUCOBOL-GT Version 8.0 installed on that
machine.

This error is due to a combination of versions 8.0 and 8.1 using different
CLSIDs (a unique identifier) for AcuToNet.dll, and Microsoft’s more
restrictive version control methods for side by side DLLs.

To correct this situation you need to use the ACUCOBOL-GT utility
RegAsm20Acu.exe to register the version 8.1 AcuToNet.dll. Do this by
performing the following steps:

1. From a command prompt, navigate to the bin directory of AcuGT
(Program Files\Acucorp\Acucbl810\AcuGT)

5-30 Working With .NET Assemblies
2. Entering the following command:

regasm20acu /register /codebase AcuToNet.dll

Note: When distributing version 8.1 ACUCOBOL-GT applications with
.NET controls to Vista or Windows 2008 machines that previously had
version 8.0 installed, you must perform the registration step on the target
machine. In this case you would go to the directory containing the
AcuToNet dll, and issue the RegAsm20Acu command as described in step
2 above. If the machine you are distributing to never had version 8.0
installed than it is not necessary to perform this step.

5.5.1.2 Sample program

The following example shows how to use the CREATE, DISPLAY,
MODIFY, and INQUIRE statements to create and interact with the .NET
control once its COPY file has been included in your COBOL program.
First, you’ll find a sample COPY file. Then you’ll find a sample COBOL
program, with comments, in bold.

NETDEFGEN COPY file
----- Generated by NetDefGen -----
OBJECT @ASSEMBLY
NAME "@My.Assembly"
VERSION "1.0.0.0"
CULTURE "neutral"
STRONG "3f6e8fa90dc2951b"

NAMESPACE "My.Test.Namespace"
CLASS "MyClass"

CONSTRUCTOR, 0, @CONSTRUCTOR1

* printIteration
 PROPERTY_GET, 0, @printIteration
 RETURNING, "int", TYPE 3
* printIteration
 PROPERTY_PUT, 0, @printIteration
 "int (Property Value)", TYPE 3

* Int32 ToLog(System.String, Int32, System.String)
 METHOD, 0, "@ToLog"
 "BSTR" @StringIn, TYPE 8
 "int" @someNumber, TYPE 3

Calling .NET from COBOL 5-31
 "BSTR" @anotherString, TYPE 8
 RETURNING "int", TYPE 3
* Public fields
FIELD, 0, @lastName
 RETURNING, "BSTR", TYPE 8

NAMESPACE "My.Test.Namespace"
CLASS "MyGUIClass"
VISUAL

CONSTRUCTOR, 0, @CONSTRUCTOR1

* LogRecordRead (Int32)
 EVENT, -709034780, @MyGUIClasss_LogRecordRead

* LogRecordWritten (Int32, System.String)
 EVENT, -1411090252, @MyGUIClass_LogRecordWritten

NAMESPACE "My.Test.Namespace"
CLASS "UserControl1"
VISUAL

 CONSTRUCTOR, 0, @CONSTRUCTOR1

 CONSTRUCTOR, 0, @CONSTRUCTOR2
 "BSTR" @userStuff, TYPE 8
 "int" @intData, TYPE 3
 "unsigned int" @uintData, TYPE 19
 "single" @floatData, TYPE 4
 "double" @doubleData, TYPE 5
 "short" @shortintData, TYPE 2
 "unsigned short" @ushortintData, TYPE 18

 ----- End Generated NetDefGen Code -----

COBOL program

* Handles can be associated with a specific
* Assembly.NameSpace.Class
* Use this form when the COBOL statement, MODIFY - INQUIRE, etc.,
* uses the handle before a CREATE or DISPLAY statement occurs
* in the program.

77 MY-NONGUI-HANDLE USAGE IS HANDLE OF
"@My.Assembly.My.Test.Namespace.MyClass".

77 MY-GUI-HANDLE USAGE IS HANDLE.
77 NUMBRPRINTS USAGE IS SIGNED-INT VALUE 3.
77 QPRINTS USAGE IS SIGNED-INT.

5-32 Working With .NET Assemblies
77 PARAM1 USAGE IS SIGNED-INT.
77 PARAM2 PIC x(128).
77 LAST-NAME PIC x(32).
77 PARM1 pic x(12) VALUE "HELLO WORLD".
77 PARM2 USAGE IS SIGNED-INT VALUE 1111.
77 PARM3 USAGE IS UNSIGNED-INT VALUE 2222.
77 PARM4 USAGE IS FLOAT VALUE 0.3333.
77 PARM5 USAGE IS DOUBLE VALUE 123456.55.
77 PARM6 USAGE IS SIGNED-SHORT VALUE 4444.
77 PARM7 USAGE IS UNSIGNED-SHORT VALUE 5555.

*CREATE - instantiate a NON-GUI CLASS.

CREATE "@My.Assembly"
NAMESPACE IS "My.Test.Namespace"
CLASS-NAME IS "MyClass"
EVENT PROCEDURE IS EVENT-PROC
HANDLE IS MY-NONGUI-HANDLE.

*DISPLAY - instantiate a GUI CLASS. GUI classes have a keyword
*VISUAL in the COPY file after the CLASS keyword.

DISPLAY "@My.Assembly"
NAMESPACE IS "My.Test.Namespace"
CLASS-NAME IS "MyGUIClass"
EVENT PROCEDURE IS MY-EVENT-PROCEDURE
HANDLE IS MY-GUI-HANDLE.

*INQUIRE - retrieve the value of a PROPERTY OR FIELD.

INQUIRE MY-NONGUI-HANDLE printIteration IN QPRINTS.
INQUIRE MY-NONGUI-HANDLE lastName IN LAST-NAME.

*MODIFY - execute a method. Methods are case sensitive. They
*must match the COPY file case and be enclosed in quotes.

MODIFY MY-NONGUI-HANDLE "ToLog"("Hello From COBOL", 99, "It's a Good
Thing").

*MODIFY - set the value of a PROPERTY OR FIELD.

MODIFY MY-NONGUI-HANDLE printIteration = NUMBRPRINTS.
MODIFY MY-NONGUI-HANDLE lastName = LAST-NAME.

*Capture events and retrieve event data - Use EVENT-DATA-2 or the
*COPY file event name.

*EVENT-DATA-2 and the COPY file event name are an event ID. The
*runtime tries to locate the last event thrown by matching the

Calling .NET from COBOL 5-33
*event ID. If you use CONTROL-HANDLE or HANDLE IS from the CREATE
*and DISPLAY statements, the runtime tries to locate the last
*event thrown by matching the .NET Interface for the control.
*Using a CONTROL-HANDLE or COPY file event name/numeric ID makes
*a difference when event procedures cause another event before
*collecting the first event's DATA. If the events are different,
*use the COPY file event name to retrieve the desired event data.
*If you use CONTROL-HANDLE, the most recent event, that is, the
*Last In First Out (LIFO), received by the runtime for a .NET
*interface is returned to a COBOL program possibly resulting in
*incorrect event data.

MY-EVENT-PROCEDURE.
EVALUATE EVENT-TYPE
 WHEN MSG-NET-EVENT
EVALUATE EVENT-DATA-2
 WHEN @MyGUIClass_LogRecordWritten
CALL "C$GETNETEVENTDATA" USING @MyGUIClass_LogRecordWritten PARAM1
PARAM2
 WHEN @MyGUIClass_LogRecordRead
CALL "C$GETNETEVENTDATA" USING EVENT-DATA-2 PARAM1
END-EVALUATE
END-EVALUATE.

*Screen section .NET Control with a Constructor

screen section.
01 screen-1.
 03 SOME-NETCONTROL, "@My.Assembly",
 LINE 1, COL 2,
 NAMESPACE IS "My.Test.Namespace",
 CLASS-NAME IS "UserControl1",
 CONSTRUCTOR IS CONSTRUCTOR2(PARM1, PARM2, PARM3, PARM4, PARM5,
 PARM6, PARM7),
 EVENT PROCEDURE IS USERCONTROL-EVENTS.

*Coding exceptions. NameSpace is optional in C# and VB NET and
*therefore may not appear in a COPY file. However, DISPLAY,
*CREATE, and Screen Section COBOL statements require a NameSpace
*entry. When a COPY file is missing a NameSpace keyword, use the
*class name as the NameSpace value on DISPLAY, CREATE, and Screen
*Section statements.

5.5.1.3 Limits and restrictions

ACUCOBOL-GT programs cannot create or retrieve .NET objects or pass
.NET objects as parameters. If you want to use a Windows Forms control or
.NET assembly that relies on a .NET object, you need to write a C# or Visual

5-34 Working With .NET Assemblies
Basic.NET intermediary program to handle it. (You can tell that a .NET
method or field is using .NET objects if it contains the phrase
“STORED-OBJECT”.) The intermediary program can be written to
interface with the assemblies that use objects, then you can use
NETDEFGEN to generate a COBOL COPY file for the intermediary
program.

The .NET interface cannot be used to instantiate .NET executables, either.
The CREATE and DISPLAY statements associated with this interface
support only .NET DLLs and controls. However, you can make a call to the
C$SYSTEM library routine to spawn a .NET executable. This routine is
described in Appendix I in ACUCOBOL-GT Appendices.

ACUCOBOL-GT supports methods that have integer, unsigned integer, byte,
string, float single, and double precision data types, all known as blittable
data types in the .NET world. Blittable data types are those that have a
common representation in both managed (MSIL) and unmanaged (COBOL)
code. Non-blittable types are ambiguous and not supported.

A special case generates a runtime error of “CoCreate Instance failed”. See
Section 5.5.1.1 for details on the case and how to overcome the error.

5.5.1.4 Optimizing the “AcuToNet.dll” interface

At run time, your COBOL program transparently communicates with an
interface file called “AcuToNet.dll”. This interface starts the .NET CLR,
loads the requisite .NET assemblies and event handlers, executes .NET
assembly methods, works with properties, and returns the results to the
COBOL program.

The ACUCOBOL-GT to .NET bridging interface is delivered in compiled
MSIL format. Any time a .NET assembly or “AcuToNet.dll” is loaded, it
undergoes an additional compilation in the Microsoft Just-In-Time (JIT)
compiler. This can raise questions about performance and whether it’s
possible to create native code “executables” in .NET.

Microsoft provides a tool in the .NET Framework directory called the Native
Image Generator (“NGen.exe”) that can be used for this purpose. This utility
compiles an assembly into a “native image”. You could run the NGen utility
on “AcuToNet.dll”, located in the ACUCOBOL-GT /bin directory. NGen
will compile and place it in the GAC under the same name. To avoid

Calling .NET from COBOL 5-35
confusion you could rename the original file to “ORIG_AcuToNet.dll”.
Then when the CLR loads the assembly, it will check the cache to see if a
precompiled version exists, and if it does, it will load that.

Although you might think this will improve performance, there a number of
drawbacks to consider (including maintenance issues), and you may not
obtain the performance improvement you expect either. NGen creates a
native image for a hypothetical machine architecture. The advantage is that
it runs on any x86 processor, for example. However, when the JIT compiler
executes, it takes the specific machine it’s running on into account and makes
appropriate optimizations. The result is that assemblies dynamically
compiled at run time often out perform precompiled assemblies.

Another drawback is that changes to a system’s hardware configuration or
operating system (like service pack updates) often invalidate the precompiled
assembly.

5.5.1.5 .NET control distribution and licensing

If you want to include a .NET assembly in your COBOL application, you
must first acquire it and install it on the development machine. In some
cases, a partner may provide the control. In others, you may download it off
the Internet and license it for distribution.

Unlike ActiveX, .NET does not have a specific parameter for licensing but
does have a class that performs this function. .NET uses a design-time
licensing model that is verified again at run time, usually in the
CONSTRUCTOR phase. Because ACUCOBOL-GT supports constructors,
it also supports custom run-time licensing that requires parameters.

If you encounter an ActiveX control that was converted to .NET using
Microsoft’s “Aximp.exe” utility and you experience licensing conflicts and
violations, use the ActiveX version of the control instead of the converted
.NET version.

To use ActiveX controls with ACUCOBOL-GT, use the AXDEFGEN utility
rather than NETDEFGEN. It is documented in section of this guide.

5-36 Working With .NET Assemblies
5.5.1.6 Name clashes

Often a .NET assembly may have property, method, or event names that are
the same as COBOL reserved words or ACUCOBOL-GT standard property
or style names. This creates ambiguity for the compiler. In addition, because
.NET class names are used in the USAGE HANDLE clause of data
description entries, in Screen Section items, and in DISPLAY statements,
they may also cause ambiguities with COBOL reserved words.

To avoid these ambiguities, NETDEFGEN prepends an “at” sign character
(“@”) to every class, property, method, and event name in the generated
COPY file.

In addition, ambiguity may occur with event names when two or more .NET
assemblies define the same event name. To reduce this possibility,
NETDEFGEN prepends the control name to each event name. For example,
if a .NET control named “MyControl” has an event called
“RightMouseButtonClick”, NETDEFGEN names the control
“@MyControl” and the event “@MyControlRightMouseButtonClick”.

The “@” sign is not required unless ambiguities in the meaning exist in a
certain context. However, to guard against unanticipated name conflicts and
to ensure clarity in the reading and maintenance of the source code, we
strongly recommend that you always use “@” when referring to a .NET
property, style, or method in your source code. If you do not use an “@” sign
and a clash occurs, a compiler error results.

5.5.2 NETDEFGEN Utility Reference

The NETDEFGEN utility is a dialog-based application designed to facilitate
the consumption of .NET assemblies from Windows-based ACUCOBOL-GT
programs. The role of NETDEFGEN is to locate the names of .NET
assemblies on the user’s machine and generate a COBOL COPY file for the
selected assembly.

The COPY file is used by the ACUCOBOL-GT compiler for syntax and
parameter type checking as well as efficient code generation. For
instructions on how to use NETDEFGEN and what to do with the COPY file
once it is generated, refer to section 5.5.1.

Calling .NET from COBOL 5-37
Note: If you want to include a .NET assembly in your COBOL application,
you must first acquire it and install it on the development machine. If you
have downloaded the control off the Internet, you may need to license it for
distribution. See “.NET control distribution and licensing” for more
information.

The “netdefgen.exe” file is located in the \AcuGT\bin directory wherever you
installed ACUCOBOL-GT (C:\Program Files\Acucorp\Acucbl800\AcuGT\
bin by default). It is accessible from the Windows Start menu. When you run
NETDEFGEN, a dialog box is displayed.

NETDEFGEN dialog box

5-38 Working With .NET Assemblies
Field or Button Description

Assembly Location Browse to the directory where the assembly
from which you want to produce a COPY
file resides. By default, this is the
computer’s path to the Global Assembly
Cache (GAC). Click the GAC button to
restore this field to the GAC path at any
time.

Assemblies If the Global Assembly Cache (GAC) is the
currently selected Assembly Location, then
this list box contains all the assemblies
found in the GAC. If the directory selected
is other than the GAC, then all of the DLL
and EXE files in that directory are listed
(both assemblies and non-assemblies).

Select the assembly of interest from the list.
All NameSpaces and classes found in that
assembly display in the list box labeled
Namespace Classes.

Namespace Classes By default, when an assembly has been
selected from the Assemblies list, all of the
items found in the assembly are selected.
Assemblies can contain many NameSpaces
and classes, which can result in very large
COPY files containing many references
and declaration that are unused by your
application. To reduce the size of your
COPY file, select only those items that are
needed by your application.

Copyfile To Create Browse to the directory and filename of the
COPY file to generate. If event handlers
are generated, they will be located in the
same directory with a filename prefix of the
NameSpace and Class and a suffix of “.dll”.

Calling .NET from COBOL 5-39
NETDEFGEN interrogates the assembly and produces an English translation
for NameSpaces, classes, methods, enumerations, properties, and events that
the ACUCOBOL-GT compiler understands. At run time, the COBOL
program accesses the assembly using a NameSpace and class from the COPY
file.

The resultant COPY file is included in a COBOL program for use by the
compiler and programmer. In addition to the COPY file, NETDEFGEN
generates event handlers for each class in the assembly. This is native MSIL
code that listens for .NET assembly events, routes them to the
ACUCOBOL-GT runtime, which in turn delivers events to the COBOL
program. Event handlers are loaded by the runtime when the COBOL
program executes a DISPLAY or CREATE statement or has a reference to an
assembly in a Screen Section. The runtime locates event handlers from a
configuration file called “NetEvents.ini”. This file contains a list of directory
paths indicating where to search for event handlers. “NetEvents.ini” must be
located in the same directory as the runtime. If “NetEvents.ini” is not
present, the runtime attempts to load event handlers from the folder where the
runtime is located.

Generate Copyfile The Generate Copyfile button is enabled
only when an assembly is selected, at least
one NameSpace/class is selected, and a
valid COPY file destination has been
entered into the Copyfile To Create field.

Click this button to generate the COPY file
and any required event handlers. Success
or failure messages appear in the status area
at the bottom of the screen.

Help Click the Help button to view the help file
for the utility.

Exit Select Exit from the menu bar to exit the
utility.

Settings Select Settings from the menu bar to
change the default settings of the utility,
including diagnostic settings. See section
5.5.2.1 for more information.

Field or Button Description

5-40 Working With .NET Assemblies
Windows base types—such as integer, unsigned integer, float, double, byte,
character, and character string—are supported. However, .NET objects as
parameters are not supported. Any method or constructor requiring
parameter object creation by the COBOL program fails.

5.5.2.1 Changing Default NETDEFGEN Settings

To enter settings that will change the default behavior of the NETDEFGEN
utility, select Settings from the menu bar. The Settings dialog appears.

Settings dialog box

Calling .NET from COBOL 5-41
Field or Button Description

Directory Location Control:

Remember the Last Startup
Directory

When this radio button is selected, as it is
by default, the utility remembers the last
Assembly Location selected and restores
the selection on subsequent executions.
Note that this is not affected by using the
GAC button. You can select the GAC at any
time and your previously selected directory
is still retained.

Set a Fixed Startup Directory: Use this selection if you want the
NETDEFGEN utility to always start in the
same Assembly Location directory. You
can always Browse to a different directory
if needed.

Remember the Last Copy File
Name and Directory

When this radio button is selected, as it is
by default, the utility remembers the last
filename and directory selected under Copy
File to Create and restores the selection on
subsequent executions. Uncheck it if you
want the utility to always assume that the
startup location is the destination.

Intermediate Language (IL) Assemblers:

This option allows you to use up to two different versions of .NET. Enter the
paths of the versioned tools and select the radio button for the version you
want the utility to use. For example, enter the path to Microsoft .NET
Development Framework Version 2.0 and select that version if you want the
utility to process .NET 2.0-compatible assemblies. By default, it processes
the latest version that you have installed.

Double-clicking the field clears it, causing the utility to use whichever
version is the current default on the development machine.

Diagnostic Aides:

Create a debug version of
event DLLs.

Causes the utility to include debug
information in any event DLLs it creates.

5-42 Working With .NET Assemblies
5.5.2.2 NETDEFGEN COPY files

COPY files that have been generated by the NETDEFGEN utility can contain
any of several .NET parameters. The parameters are described below. The
same parameters have been added to the ACUCOBOL-GT DISPLAY,
CREATE, and Screen Section statements.

To access a .NET assembly, your COBOL program must pass at least the
ASSEMBLY-NAME, NAMESPACE, and CLASS-NAME parameters. The
rest of the .NET parameters are optional. That is because the compiler
extracts these parameters from the COPY file if they are not included in your
program. The exception is FILE-PATH, which is never included in the
COPY file. If you want to include a FILE-PATH, you must encode it as
described in the table below.

You pass .NET parameters when you first instantiate a .NET control in your
COBOL program, that is, in the CREATE, DISPLAY, or Screen Section
statement.

Note that the returning value of any field in the parameter list can be updated
and returned to your COBOL program if desired.

Keep the generated event
source.

Keeps the intermediate language source
code that the utility generates when
creating an event DLL. This can be most
useful when working with our Technical
Support to resolve a problem.

Field or Button Description

COPY File
Parameter

Parameter to Pass Required/
Optional

Description

NAME ASSEMBLY-NAME Required Filename of assembly, without
extension

NAMESPACE NAMESPACE Required Assembly NameSpace

CLASS CLASS-NAME Required Class name

VERSION VERSION Optional Version number of assembly

CULTURE CULTURE Optional Cultural information like language,
country, region; default is neutral.

Calling .NET from COBOL 5-43
STRONG STRONG-NAME Optional PublicKeyToken; a cryptographic
key that is generated by the
Microsoft utility “sn.exe”. All
assemblies that are loaded in the
GAC must include a
STRONG-NAME key. If an
assembly has a key, the compiler
automatically retrieves it from the
COPY file when it encounters a
NAMESPACE/CLASS parameter.

CONSTRUCTOR(n) CONSTRUCTOR Optional if
a default
constructor
exists

All classes that result in an object
have a constructor, which is a sort
of method. When a class is
instantiated with a CREATE,
DISPLAY, or Screen Section
statement in COBOL, this
constructor is the first thing that is
executed. It is executed once
during the instantiation phase of an
object.

Constructors, like methods, can
have parameters, although most do
not. The default constructor usually
has no parameters. But if a .NET
programmer has written a control
that has constructors with
parameters, you will see the word
“CONSTRUCTOR” in the COPY
file, followed by a number and the
parameters associated with the
constructor. This is called
overloading. It occurs when the
same method name has different
parameters.

Following is an example of a
constructor that has been generated
by the NETDEFGEN utility:

COPY File
Parameter

Parameter to Pass Required/
Optional

Description

5-44 Working With .NET Assemblies
OBJECT @ASSEMBLY NAME
"@My.Assembly"
VERSION "1.0.0.0"
CULTURE "neutral"
STRONG "3f6e8fa90dc2951b"
NAMESPACE "My.Test.NameSpace"
CLASS "MyClass"
CONSTRUCTOR, 0, @CONSTRUCTOR1
CONSTRUCTOR, 0, @CONSTRUCTOR2
"BSTR" @value, TYPE 8
CONSTRUCTOR, 0, @CONSTRUCTOR3
"int" @overloadedconstruct,
TYPE 3

Because CONSTRUCTOR1 has no
parameters, you can use a
CREATE, DISPLAY, or Screen
Section entry without a
CONSTRUCTOR parameter.

If you want to pass values, then you
would select CONSTRUCTOR2 or
CONSTRUCTOR3. The following
depicts a CONSTRUCTOR
parameter in a CREATE statement.

77 MY-ASSEMBLY-HANDLE USAGE
IS HANDLE.
 CREATE "My.Assembly"
 NAMESPACE IS
 "My.Test.NameSpace"
 CLASS-NAME IS "MyClass"
 CONSTRUCTOR IS
CONSTRUCTOR3
 123456)
 HANDLE IS
MY-ASSEMBLY-HANDLE.

MODULE identifier MODULE Optional Assemblies can have multiple
modules within them; that is,
assemblies constructed from other
assemblies. MODULE identifies
the file where this NameSpace class
combination resides. It is used by
the runtime to select a module
within an assembly.

COPY File
Parameter

Parameter to Pass Required/
Optional

Description

Calling .NET from COBOL 5-45
n/a FILE-PATH Optional By default, the runtime looks for
.NET assemblies in the end user’s
GAC. If it can’t find the requested
assembly in the GAC, it looks in the
same directory as the runtime,
“wrun32.exe”.

Use FILE-PATH when the
assembly that the program must
access does not reside in the user’s
GAC or in the same directory as
“wrun32.exe”.

To include a FILE-PATH, first
create an XML file containing the
full file path where the assembly is
located. Then in your COBOL
program, include the FILE-PATH
parameter followed by the full path
of an XML file. If the FILE-PATH
contains a filename only, the file is
loaded from the same directory as
the runtime.

Following is an example of a
FILE-PATH XML file:

<?xml version="1.0"
 encoding="utf-8" ?>
<FILESPEC>
<Assembly>AmortControl</
Assembly>
<Module>amortcontrol.dll</
Module>
<StrongName />
<Version>1.0.1242.11216</
Version>
<Culture>neutral</Culture>
<FilePath>E:\AmortControl\bin
\Debug\AmortControl.dll</
FilePath>
</FILESPEC>

COPY File
Parameter

Parameter to Pass Required/
Optional

Description

5-46 Working With .NET Assemblies
5.5.2.3 Passing data as parameters

The .NET CLR is type-sensitive and generates or throws an error if an exact
match on a data type does not occur. At run time, ACUCOBOL-GT attempts
to convert data types to the format expected by the CLR. For the best
possible results, when passing data as parameters to .NET functions, use the
table below to determine what parameter to pass.

For example, when the COPY file says “int”, pass “SIGNED-INT” for the
parameter type in your COBOL program. The ACUCOBOL-GT runtime
converts this to “System.Int32” before passing it to the .NET assembly. The
“int”, “SIGNED-INT”, and “System32.Int32” parameters all represent a
4-byte field holding signed binary data. The runtime also converts PIC s999
to a SIGNED-INT field.

Be aware that the compiler does not always know which method declaration
to use when methods are overloaded. In your COBOL program, be sure to
use COBOL types that match the COPY file method declaration.

5.5.2.4 NETDEFGEN methods

The NETDEFGEN COPY file contains methods for classes within
NameSpaces. These are the program functions for that .NET object. For
example:
METHOD, 0, "@TypesTest"
 "unsigned int" @someUint, TYPE 19
 "single" @someFloat, TYPE 4

COPY File Parameter Parameter to Pass Converted to .NET

BSTR - TYPE 8 PIC X(n) System.String

int - TYPE 3 SIGNED-INT System.Int32

unsigned int - TYPE 19 UNSIGNED-INT System.UInt32

single - TYPE 4 FLOAT System.Single

double - TYPE 5 DOUBLE System.Double

short - TYPE 2 SIGNED-SHORT System.Int16

unsigned short - TYPE 18 UNSIGNED-SHORT System.UInt16

unsigned char - TYPE 17 PIC X System.Byte

Calling .NET from COBOL 5-47
 "unsigned char" @someByte, TYPE 17
 "double" @someDouble, TYPE 5
 "boolean" @someBool, TYPE 11
 RETURNING "int", TYPE 3

Use the COBOL MODIFY statement to execute a method. The
RETURNING value of any field in the parameter list may be updated and
returned to the COBOL program. Update fields, IN/OUT, can be identified
by types in the 16000 range. For example:
"int" @somefield TYPE 16387

Be aware that the compiler does not always know which method declaration
to use when methods are overloaded. In your COBOL program, be sure to
use COBOL types that match the COPY file method declaration.

Listed below are some guidelines on passing parameters to methods.
Following these guidelines should help you ensure that the correct
overloaded definition is compiled.

• You can pass character strings as a PIC X…X defined variable or a
quoted string literal. For example “This is a quoted string”.

• You can pass an unsigned integer as a USAGE UNSIGNED-INT
defined variable or as a constant. For example, “0”, “1”, “356”, and so
on.

• You can pass a signed integer as a USAGE SIGNED-INT defined
variable or as a constant. For example, “+0”, “+1”, “+356”, “-34”, and
so on.

• You can pass a byte data type as a PIC X COMP-X defined variable.

• You can pass a boolean data type as a PIC 9 defined variable that is
casted as a boolean type:

BOOL-PARAM PIC 9.
"@methodname" (BOOL-PARAM AS VT_BOOL)

or as a constant. For example, 00 = false, 01 = true.

"@methodname" (01)

5-48 Working With .NET Assemblies
Note: When casting data types is required, you must refer to the
ACUCOBOL-GT provided COPY file “activex.def” in the
Working-Storage section of your program.

• You can pass a signed byte data type as a USAGE SIGNED-INT defined
variable and then casted as a signed byte type:

SBYTE-PARAM USAGE SIGNED-INT.
"@methodname" (SBYTE-PARAM AS VT-I1)

• You can pass a Microsoft date data type as a USAGE DOUBLE defined
variable and then casted as a date type:

DATE-PARAM USAGE DOUBLE.
"@methodname" (DATE-PARAM AS VT-DATE)

For more examples of these and other forms of .NET method calls, see the
sample application “MethodTests” in your Acucorp \sample\dotnet directory.

5.5.2.5 NETDEFGEN properties

NETDEFGEN translates all properties in the NameSpace class and includes
them in the COPY file. For example:
* myPet
 PROPERTY_GET, 0, @myPet
 RETURNING, "int", TYPE 3
* myPet
 PROPERTY_PUT, 0, @myPet
 "int (Property Value)", TYPE 3

To retrieve a property value, use the INQUIRE statement. To change a
property value, use the MODIFY statement.

Calling .NET from COBOL 5-49
5.5.2.6 NETDEFGEN events

NETDEFGEN generates event handlers for each class in the assembly. This
MSIL code listens for .NET assembly events and routes them to the
ACUCOBOL-GT runtime, which in turn delivers events to the COBOL
program. If you see EVENT in the NETDEFGEN COPY file, as shown
below, you know that event handlers were generated for this particular class.
* ooHHello (Int32, System.String)
 EVENT, 1984084948, @MyClass_ooHHello

To capture events and data, write an event procedure using the COBOL
EVENT PROCEDURE IS phrase on the DISPLAY, CREATE, and Screen
Section statements. Call the C$GETNETEVENTDATA library routine
described in Appendix I in ACUCOBOL-GT Appendices. For example:
EVALUATE EVENT-DATA-2
 WHEN @MyClasss_ooHHello
 CALL "C$GETNETEVENTDATA" USING EVENT-DATA-2 PARAM1

5.5.2.7 NETDEFGEN enumerators

If the .NET assembly has enumerators, the NETDEFGEN COPY file lists
them all and makes them accessible to the COBOL program. For example,
the COPY file might list:
* "int animals_horses"
 ENUMERATOR, @animals_horses, 1

If the COPY file lists enumerators, you can use the enumerators in your
COBOL program to set properties or invoke methods. This allows you to use
a text name in place of a value, enhancing the readability of your program.
The compiler checks the COPY file and substitutes the value associated with
the name. For example, to set a property to the enumerator shown above, you
could code:
MODIFY MyHandle myPet = @animals_horses.

rather than
MODIFY MyHandle myPet = 1.

5-50 Working With .NET Assemblies
5.5.2.8 NETDEFGEN errors

Occasionally when using NETDEFGEN, you may encounter the error
message:
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\ilasm.exe Event
Handler Compilation Failed

as shown on the bottom of the screen below.

This is a Microsoft message indicating that “ilasm.exe,” a Microsoft
executable, could not generate an event handler, probably because the
assembly did not specify events. Our NETDEFGEN did not generate this
message. It generates the COPY file normally despite the Microsoft error.

Calling .NET from COBOL 5-51
5.5.2.9 Sample COPY file

Following is an example of a COBOL COPY file generated by the
NETDEFGEN utility:
* .NET Copy Book - Generated On 1/28/2004 12:25:20 PM

 OBJECT @ASSEMBLY
 NAME "@AmortControl"
 VERSION "1.0.1266.13363"
 CULTURE "neutral"
 STRONG "null"

* FULLY-QUALIFIED-NAME AmortControl.AmortCalc, AmortControl,
Version=1.0.1266.13363, Culture=neutral, PublicKeyToken=null

* AmortControl.AmortCalc
 NAMESPACE "AmortControl"
 CLASS "AmortCalc"
 MODULE "amortcontrol.dll"

 CONSTRUCTOR, 0, @CONSTRUCTOR1

* Void ProcData(Double, UInt32, Double, Double)
 METHOD, 0, "@ProcData"
 "double" @AmortizAmount, TYPE 5
 "unsigned int" @Months, TYPE 19
 "double" @InterestRate, TYPE 5
 "double" @WhatIfMonthlyPayment, TYPE 5

* Public - fields
 FIELD, 0, @MonthlyPayment
 RETURNING, "double", TYPE 5
 FIELD, 0, @TotalInterest
 RETURNING, "double", TYPE 5
 FIELD, 0, @TotalPayment
 RETURNING, "double", TYPE 5
 FIELD, 0, @WhatIfTotalInterest
 RETURNING, "double", TYPE 5
 FIELD, 0, @WhatIfTotalPayment
 RETURNING, "double", TYPE 5
 FIELD, 0, @WhatIfMonths
 RETURNING, "unsigned int", TYPE 19
 FIELD, 0, @Yearly_Interest
 RETURNING, "STORED_OBJECT", TYPE 69
 FIELD, 0, @Yearly_Principal
 RETURNING, "STORED_OBJECT", TYPE 69
 FIELD, 0, @Life_Interest
 RETURNING, "STORED_OBJECT", TYPE 69

5-52 Working With .NET Assemblies
 FIELD, 0, @Life_Principal
 RETURNING, "STORED_OBJECT", TYPE 69
 FIELD, 0, @Month_Interest
 RETURNING, "STORED_OBJECT", TYPE 69
 FIELD, 0, @Month_Principal
 RETURNING, "STORED_OBJECT", TYPE 69

* FULLY-QUALIFIED-NAME AmortControl.CalcFired, AmortControl,
Version=1.0.1266.13363, Culture=neutral, PublicKeyToken=null

* AmortControl.CalcFired
 NAMESPACE "AmortControl"
 CLASS "CalcFired"
 MODULE "amortcontrol.dll"

 CONSTRUCTOR, 0, @CONSTRUCTOR1
 "STORED_OBJECT" @object, TYPE 69
 "STORED_OBJECT" @method, TYPE 69

* Void EndInvoke(System.IAsyncResult)
 METHOD, 0, "@EndInvoke"
 "STORED_OBJECT" @result, TYPE 69

* System.IAsyncResult BeginInvoke(System.AsyncCallback,
System.Object)
 METHOD, 0, "@BeginInvoke"
 "STORED_OBJECT" @callback, TYPE 69
 "STORED_OBJECT" @object, TYPE 69
 RETURNING "STORED_OBJECT", TYPE 69

* Void Invoke()
 METHOD, 0, "@Invoke"

* Public - fields

* FULLY-QUALIFIED-NAME AmortControl.UserControl1, AmortControl,
Version=1.0.1266.13363, Culture=neutral, PublicKeyToken=null

* AmortControl.UserControl1
 NAMESPACE "AmortControl"
 CLASS "UserControl1"
 MODULE "amortcontrol.dll"
 VISUAL

 CONSTRUCTOR, 0, @CONSTRUCTOR1

* Void Dispose(Boolean)
 METHOD, 0, "@Dispose"
 "boolean" @disposing, TYPE 11

Calling .NET from COBOL 5-53

* Void add_FireCalc(AmortControl.CalcFired)
 METHOD, 0, "@add_FireCalc"
 "STORED_OBJECT" @value, TYPE 69

* Void remove_FireCalc(AmortControl.CalcFired)
 METHOD, 0, "@remove_FireCalc"
 "STORED_OBJECT" @value, TYPE 69

* System.String get_TotalInterest()
 METHOD, 0, "@get_TotalInterest"
 RETURNING "BSTR", TYPE 8

* System.String get_TotalPayment()
 METHOD, 0, "@get_TotalPayment"
 RETURNING "BSTR", TYPE 8

* System.String get_MonthPayment()
 METHOD, 0, "@get_MonthPayment"
 RETURNING "BSTR", TYPE 8

* System.String get_WhatIfTotalInterest()
 METHOD, 0, "@get_WhatIfTotalInterest"
 RETURNING "BSTR", TYPE 8

* System.String get_WhatIfTotalPayment()
 METHOD, 0, "@get_WhatIfTotalPayment"
 RETURNING "BSTR", TYPE 8

* System.String get_WhatIfMonths()
 METHOD, 0, "@get_WhatIfMonths"
 RETURNING "BSTR", TYPE 8

* Void InitializeComponent()
 METHOD, 0, "@InitializeComponent"

* Void calcBtn_Click(System.Object, System.EventArgs)
 METHOD, 0, "@calcBtn_Click"
 "STORED_OBJECT" @sender, TYPE 69
 "STORED_OBJECT" @e, TYPE 69

* Public - fields
 FIELD, 0, @columnHeader1
 RETURNING, "STORED_OBJECT", TYPE 69

* TotalInterest
 PROPERTY_GET, 0, @TotalInterest
 RETURNING, "BSTR", TYPE 8

5-54 Working With .NET Assemblies
* TotalPayment
 PROPERTY_GET, 0, @TotalPayment
 RETURNING, "BSTR", TYPE 8

* MonthPayment
 PROPERTY_GET, 0, @MonthPayment
 RETURNING, "BSTR", TYPE 8

* WhatIfTotalInterest
 PROPERTY_GET, 0, @WhatIfTotalInterest
 RETURNING, "BSTR", TYPE 8

* WhatIfTotalPayment
 PROPERTY_GET, 0, @WhatIfTotalPayment
 RETURNING, "BSTR", TYPE 8

* WhatIfMonths
 PROPERTY_GET, 0, @WhatIfMonths
 RETURNING, "BSTR", TYPE 8

* FireCalc ()
 EVENT, 520214344, @UserControl1_FireCalc

5.5.2.10 Sample controls

Sample .NET controls have been included on the ACUCOBOL-GT
distribution media in the /AcuGT/sample directory. Refer to
“ReadMeSetup.txt” in each sample directory for an overview of each control
and setup instructions. The samples include:

• ACUNET_WEB_SERVICE\WEB_SERVICE, Web Service using
remoting objects

• ACUNET_WEB_SERVICE\WebService2, Web Service using
ASP.NET

• AmortControl, Composite control

• CompositeControl, Composite control returning event data

• netdb, .NET database sample

• NetToAcuCobol, .NET program calling and retrieving data from an
ACUCOBOL-GT program

Interacting with .NET Web Services 5-55
The amortization control sample consists of an ACUCOBOL-GT program
displaying edit boxes, an exit button, and a .NET amortization user control.
“AmortControl.dll” fires an event when the control’s Calculate button is
clicked. The COBOL file “AmortControl.acu” receives the event, retrieves
updated properties, and displays the results in edit controls. To view the
contents of the AmortControl COPY file, the COBOL program, and the GUI
screen, refer to the /AcuGT/sample directory.

5.6 Interacting with .NET Web Services

ACUCOBOL-GT supports Web services via .NET client-side control
interfaces. This means that an ACUCOBOL-GT program can consume or
invoke a Web service via a .NET control. Also, a server-side Web service
can consume or invoke an ACUCOBOL-GT server-side program.

Invoking .NET Web Services from COBOL

As a rule, .NET Web services include a C# proxy. This C# proxy contains
program code that resolves function calls and connections to the server -side
.NET Web service. The proxy is compiled into the client application which
uses the proxy to connect to and retrieve information from the server-side
.NET Web service.

The .NET samples provided on your ACUCOBOL-GT distribution media
contain two Web services projects: one for ASP.NET services and the other
for remoting objects. They both utilize HTTP and SOAP.

The ASP.NET example generates a C# proxy that is compiled with the
client-side control with which the ACUCOBOL-GT program converses.
Refer to the “ReadMeSetup.txt” in each sample directory for an overview and
setup of the Web services samples.

1. A .NET programmer writes a .NET Web service using ASP.NET, C#, or
VB.NET.

2. This programmer generates a C# proxy from the Web service using the
Microsoft WSDL utility that comes with .NET.

5-56 Working With .NET Assemblies
The client needs this proxy so that it can connect to the service over the
Internet and call methods that reside in the service.

3. The programmer writes a client-side .NET control in C# or VB.NET
that accesses the Web service (via the proxy).

4. A COBOL programmer runs the NETDEFGEN utility on the control
as he would any .NET control. Refer to section 5.5.1 for instructions.

5. The COBOL programmer copies the resulting COPY file into the
ACUCOBOL-GT program, then uses the CREATE, DISPLAY,
INQUIRE, and MODIFY statements to access the .NET control
methods and events.

Invoking COBOL Services from .NET

There are two ways to invoke COBOL-based services from .NET:

1. Via the ACUCOBOL-GT COM Server as described in section 5.4 of this
guide.

2. Via the .NET API, “wrunnet.dll” described in section 5.4.2 of this
guide.

6
 Working with C and C++
Programs
Key Topics

COBOL and C/C++... 6-2
Matching C Data Items ... 6-3
Calling C Programs From COBOL... 6-5
Calling COBOL from C .. 6-25
Using the C API: Two Approaches ... 6-43
Other Interface Paths for COBOL and C .. 6-56
Tracking, Monitoring and Debugging Memory 6-60

6-2 Working with C and C++ Programs
6.1 COBOL and C/C++

In many applications, enterprise systems, and operating systems, C and C++
provide core capabilities and support functions. To help you build integrated
applications that make the best use of COBOL programs, ACUCOBOL-GT®
provides several robust methods for interoperating with C programs. These
technologies work equally well with C++ programs that conform to C calling
conventions.

ACUCOBOL-GT provides methods for both calling C from COBOL and
calling COBOL from C. Methods for calling C from COBOL include:

• Direct calls to C programs located in Windows dynamic link libraries
(DLLs) and UNIX/Linux shared object libraries.

• Direct calls to C programs linked into the ACUCOBOL-GT runtime.

• Interface calls, through a special interface, to C programs linked into the
ACUCOBOL-GT runtime.

To support the ability of C programs to call COBOL, ACUCOBOL-GT
includes an extensive C Application Programming Interface (API).

All of these facilities are described in detail in this chapter.

Note: ACUCOBOL-GT does not support the Object COBOL elements of
the 2002 ISO/IEC COBOL Standard. Neither does ACUCOBOL-GT
provide direct object-level interoperability with OO elements and
structures.

Interoperating with C to create more powerful applications

Organizations may want to integrate C programs and C-based technologies
with COBOL applications for a variety of reasons:

• To use a C application as the driver program in a deployment that
includes COBOL programs in a transaction server or application server
environment

• To boost system-level performance or flexibility of specialized routines

Matching C Data Items 6-3
• To take advantage of C-based, C++-based, Visual Basic (VB), or Delphi
front ends

• As an alternative to ACUCOBOL-GT methods for implementing and
supporting Internet portals, mobile devices, etc.

• For any one of hundreds of other special purposes that enterprise systems
architects and ACUCOBOL-GT developers invent

With our C interface technologies, businesses can more easily retain and
include valuable, time-proven COBOL programs in their 21st century,
multi-technology enterprise systems. ACUCOBOL-GT technologies
eliminate the need to re-engineer proven COBOL applications, when they
can be easily integrated into next-generation enterprise systems.

6.2 Matching C Data Items

To successfully interoperate with C programs, you need to understand and
properly implement data type matching and data exchange between COBOL
and C programs.

Note: In addition to the information given here, extensive reference-level
information is given in section 5.7.1.8, “USAGE Clause,” in
ACUCOBOL-GT Reference Manual. If you are working in a Windows
environment, see also section , “Data mapping,” in this manual.

Matching simple data items

To match simple C external variables or passed data items, you must choose
the appropriate USAGE type. For example, to share an integer variable with
a C routine, declare it in COBOL as:

77 MY-SHARED-INT SIGNED-INT, EXTERNAL.

In C, this item is then declared as:
int my_shared_int;

6-4 Working with C and C++ Programs
Note: You must also name my_shared_int in the table of external
identifiers, as described in the “direct.c” file.

Here is an example of passing an “int” value in a portable fashion to a C
routine:
77 MY-INT SIGNED-INT.
MOVE 123 TO MY-INT.
CALL "C-ROUTINE" USING, BY VALUE, MY-INT.

The ANSI C routine could then read:
void c_routine(int param1)
{
 printf("This should be '123': %d\n", param1);
}

Matching complex data items

Matching complex data items such as C structure (struct) items or arrays is
more involved. The challenge arises in trying to match the FILLER that may
follow the COBOL data items. For example, consider the following group
item:
01 GROUP-1.
 03 DATA-1 PIC X(5).
 03 INT-1 SIGNED-INT.

Assuming that each item is allocated 4 bytes, this would seem to match the
following C structure:
struct {
 char data_1[5];
 int int_1;
} group_1;

However, it most likely won’t match up with the default structure packing
due to alignment. If you must match complex C data types, you can take one
of three approaches:

1. You can use fixed-size COMP-5 COBOL data types that match your C
structures. You will then have to change your COBOL code and
recompile when you move to a different target environment.

Calling C Programs From COBOL 6-5
2. You can use the variable-size COBOL data types described in this
section and adjust your C structures accordingly. This approach
requires a change to your C code when you move to a new
environment.

3. You can use the variable-size COBOL data types described in this
section and select different target architectures with the “-Dw” compile
option. In this scenario, you do not have to change code to go to a new
environment; you just have to recompile with a different “-Dw” setting.
For example, you could set up two different directories on the
development machine, one for “-Dw32” objects, and one for “-Dw64”
objects. This approach would provide you with COBOL objects for all
currently supported machines.

Note: Most C compilers align structure elements according to their own
needs. The automatic synchronization that occurs with variable-size data
items matches the most natural alignment boundaries. But the
automatically synchronized data items may not match with the alignment
rules used by a particular C compiler. As a result, you may find yourself
forced to make some code adjustments for a particular machine.

6.3 Calling C Programs From COBOL

ACUCOBOL-GT supports three methods of calling C programs from
COBOL:

• Loading C routines packaged in a DLL or UNIX shared object library
and then calling the programs directly

• Via ACUCOBOL-GT’s direct method (without interfacing routines),
when the routine is linked into the runtime

• Via ACUCOBOL-GT’s interface method (using “sub” or “sub85”),
when the routine is linked into the runtime

Wherever possible, we recommend that you package routines in a DLL or
shared object library. This allows you to call the routines without having to
relink the runtime. Note, however, that the method for packaging routines is
platform specific.

6-6 Working with C and C++ Programs
Alternatively, the direct method and the interface method require that you
link the external routines into the runtime. The relinking process is described
in section 6.3.6, “Relinking the Runtime System.” However, on Windows
platforms, the interface method can be used with a DLL, in which case the
runtime does not have to be relinked. See section 6.3.3.1, “The “sub”
interface.”

All of these methods may be used in combination in the same program.

Note: On UNIX and Linux systems, the runtime also attempts to resolve
calls that are in its global symbol space. It does this by calling
dlopen(NULL, ...) and adding the return value to the list of shared libraries
to search. While not all functions are available, many are, including all of
the standard C library functions (those in “libc.a” or “libc.so”).

Caution: To successfully interface to C routines, you need to analyze and
implement appropriate data type matching and data exchange between
COBOL and C programs. For an introduction to C data type matching, see
section 6.2, “Matching C Data Items.”

6.3.1 Calling C Programs in DLLs or Shared Object
Libraries

The simplest way to call a C program from ACUCOBOL-GT is to:

1. Package the routine into a Windows DLL or UNIX/Linux shared object
library.

2. Load the DLL or shared object at startup by using one of the following
options:

• Use the “-y” runtime option

• Use the SHARED_LIBRARY_LIST runtime configuration variable

• Load the DLL or shared object during program execution with a
CALL statement or via the SHARED_LIBRARY_LIST variable
and a SET ENVIRONMENT statement.

Calling C Programs From COBOL 6-7
3. Call the routine with a CALL statement.

For a detailed description of using this method with DLLs, see section 3.3,
“Calling DLLs from COBOL.”

This section contains detailed information on calling routines in UNIX/Linux
shared objects. An important advantage of this method is that it is not
necessary to relink the runtime.

In this section, we describe the following methods of loading and calling
programs in shared object libraries:

• Loading libraries with the “-y” runtime option

• Loading libraries with the SHARED_LIBRARY_LIST configuration
variable

• Loading libraries with the CALL statement

• Calling routines with the CALL statement

Once loaded, any exported function can be called with a COBOL CALL
statement.

6.3.1.1 Loading shared libraries with the “-y” runtime option

You can use the “-y” runtime command-line option to specify the name of a
shared object library to load when the runtime starts. When the program calls
a routine in the library, the runtime applies its standard logic to resolve the
CALL (see section 2.9, “Calling Subprograms,” in ACUCOBOL-GT User’s
Guide).

For example, to call any function exported by “mylibc.so”, start the runtime
with the following command:

runcbl -y mylibc.so mycobol

You must specify a new “-y” for each shared library. The default filename
extension for shared libraries is “.so”. You can change the default by
specifying another extension in the SHARED_LIBRARY_EXTENSION
configuration variable. See its entry in Appendix H in ACUCOBOL-GT
Appendices.

6-8 Working with C and C++ Programs
You can use the SHARED_LIBRARY_PREFIX configuration variable to
specify a list of directories to search when the runtime attempts to load a
shared library. The values are applied if the shared library is specified
without path information and the runtime fails to find the object in the default
directories. For more information, see the SHARED_LIBRARY_PREFIX
entry in Appendix H in ACUCOBOL-GT Appendices.

6.3.1.2 Loading shared libraries with the SHARED_LIBRARY_LIST
configuration variable

You can use the SHARED_LIBRARY_LIST configuration variable to
specify a list of shared libraries to load at program startup, or as the result of
a SET ENVIRONMENT statement during program execution. You can set
SHARED_LIBRARY_LIST in three ways:

• In the environment

• In the runtime configuration file

• Programmatically with the SET ENVIRONMENT statement

Library names in SHARED_LIBRARY_LIST are delimited by spaces or
colons. You can set SHARED_LIBRARY_LIST with the SET
ENVIRONMENT statement any number of times during program execution.
Each time, the runtime loads the libraries listed. Previously loaded libraries
remain loaded.

On some systems, if the shared module is a member of an archive, you must
specify the name of the member in parentheses after the name of the archive.
For example, on AIX:
SHARED_LIBRARY_LIST=/usr/opt/program/lib/archive.a(lib.o)

SHARED_LIBRARY_LIST is similar to the runtime “-y” command-line
option except that:

• You do not need to set SHARED_LIBRARY_EXTENSION when you
use SHARED_LIBRARY_LIST.

• With SHARED_LIBRARY_LIST, you can mix “.a” and “.so” libraries.

Calling C Programs From COBOL 6-9
You can use the SHARED_LIBRARY_PREFIX configuration variable to
specify a list of directories to search when the runtime attempts to load a
shared library. The values are applied if the shared library is specified
without path information and the runtime fails to find the object in the default
directories. For more information, see the SHARED_LIBRARY_PREFIX
entry in Appendix H in ACUCOBOL-GT Appendices.

6.3.1.3 Loading shared libraries with the CALL statement

You can load a shared object library programatically with the CALL
statement. Once the shared library is loaded, you can call any function
exported by the library with a CALL statement (for syntax and rules, see the
entry for the CALL verb in section 6.6 in ACUCOBOL-GT Reference
Manual). For example, the following statement loads “sharedlibrary.so”:

CALL "sharedlibrary.so"

As mentioned earlier, the default filename extension of shared libraries is
“.so”. You can specify a different extension in the CALL statement, or the
default extension can be redefined with the
SHARED_LIBRARY_EXTENSION runtime configuration variable. See
Appendix H in ACUCOBOL-GT Appendices.

If no relative or absolute path is specified, the runtime looks for the library in
the current working directory, the locations specified in the operating
system’s environment variable for shared libraries (e.g., LIBPATH,
LD_LIBRARY_PATH, or SHLIB_PATH), and then in the locations specified
in the SHARED_LIBRARY_PREFIX configuration variable (see
Appendix H in ACUCOBOL-GT Appendices).

Like other programs that are loaded with a CALL statement, you can unload
a CALLed shared library with a CANCEL statement. When you CANCEL a
shared library, you may no longer call its exported functions. Unless the
logical cancels feature is enabled, all memory used by the program is
released. For information about runtime memory management and the
logical cancels feature, see section 6.3, “Memory Management,” in the
ACUCOBOL-GT User’s Guide.

6-10 Working with C and C++ Programs
Note: While most UNIX systems use a binary format that supports calling
subroutines in shared libraries exactly as described in this section, SCO
UNIX (and possibly some other UNIX systems) uses different binary
formats, namely COFF and ELF. On those systems, in order to support
calling shared libraries, the objects and executables must be in the ELF
format. See the UNIX “man” page for your C compiler on how to create
ELF format objects (on some systems, for example, you specify the “-b elf”
C compiler option).

6.3.1.4 Calling routines in shared libraries with the CALL statement

After a shared library has been loaded, any of its exported routines can be
called. For example:

CALL "sharedfunction”

Note: By default, the runtime first attempts to find a COBOL program with
a matching name. To do this, the runtime can apply several extensions and
look in several locations. Only if all of those attempts fail does the runtime
attempt to locate the function in the current process or in one of the loaded
shared libraries. However, you can use the
DYNAMIC_FUNCTION_CALLS configuration variable to specify a list
of functions or function name prefixes that the runtime will treat as
dynamic functions, which it searches before searching the disk for COBOL
programs. See the entry for DYNAMIC_FUNCTION_CALLS in
Appendix H in ACUCOBOL-GT Appendices.

6.3.2 Calling C Programs via the Direct Method

The direct method allows you to pass arguments to C functions without
writing special interfacing routines. Parameters are passed directly to the C
function according to the CALL statement that invoked the function, using
the standard C calling conventions. This direct method simulates the actions
of a native code compiler such as Micro Focus or VAX/COBOL.

Calling C Programs From COBOL 6-11
Note: The runtime has an internal limit of 30 parameters that it can pass to
a C routine called through the direct method; it aborts if more than 30
parameters are passed and suggests ways to work around the abort. You
can change this limit by modifying the file “lib/callc.c” and relinking the
runtime.

Use the BY VALUE phrase of the CALL statement to pass numeric
parameters in a way that is compatible with C calling conventions. Use the
BY REFERENCE phrase to pass address parameters.

With the direct method, using BY VALUE causes the actual value to be
passed to the routine (as expected). Using NULL causes binary zeros to be
passed to the routine (matching the NULL concept in C). With the direct
method, passing a zero BY VALUE is much the same as specifying NULL
(contrast this with the corresponding note under the interface method
described in section 6.3.3, “Calling C Programs via the Interface Method”).

When a C function is called by the direct method, its return value is placed in
the special register RETURN-CODE.

You should note that the direct method makes it easy to generate memory
access violations. You may omit a BY REFERENCE or BY VALUE phrase
or forget to terminate strings properly with a NULL value (as required by C).

To use the direct method, add the name of the C function to be called to
DIRECTTABLE in the file “direct.c”. The table has three columns:

• In the first column, place the name you want to use in the COBOL CALL
statement. Use all uppercase characters, and place the name in quotation
marks.

• In the second column, place the address of the routine to be called. (You
can accomplish this by specifying “FUNC” followed by the exact name
of the routine as declared in C. “FUNC” is a macro that generates the
appropriate cast of the routine name.)

• In the third column, place the function’s return type, which may be one
of these seven types:

6-12 Working with C and C++ Programs
C_int
C_long
C_unsigned
C_pointer
C_short
C_void
C_char

You may need to prototype the function if it is not prototyped in an included
header file. For example, to call the C function “open” directly, you would
include the following code in the “direct.c” file:

extern int open();
struct DIRECTTABLE LIBDIRECT[] = {
 { "OPEN", FUNC open, C_int },
 {NULL, NULL, 0 }
 };

After you make the change to “direct.c”, be sure to relink the runtime system.

To use the “open” function in COBOL, you might do something like this:
77 FILE-NAME PIC X(20)
77 FILE-HANDLE SIGNED-INT

MOVE "myfile" TO FILE-NAME.
INSPECT FILE-NAME REPLACING TRAILING SPACES
 BY LOW-VALUES.
CALL "OPEN" USING BY REFERENCE FILE-NAME BY VALUE 0.
MOVE RETURN-CODE TO FILE-HANDLE.

Note: Strings passed to C routines should have LOW-VALUE terminators.
Variables that are not passed by address should have the BY VALUE
qualifier in COBOL and should be COMP-5 or one of the C data types.

In the example above, FILE-NAME cannot be more than 19 characters,
because the 20th, or last, character must be the string terminator.

Up to 20 parameters may be passed via the direct method. If you need to pass
more than 20, call our Technical Support and request the routine “callc.c”.
The comments within the code explain how to use the “callc.c” routine.

Calling C Programs From COBOL 6-13
External C variables and system functions can also be linked with COBOL
EXTERNAL data items. One function in particular called “ERRNO” can be
used to obtain error information from those system functions. The runtime
exports the errno variable so that COBOL programs can reference it easily
and without requiring a relink.

ERRNO should be shown as defined as:
77 ERRNO EXTERNAL SIGNED-INT.

Consult your preferred C manual for information on using ERRNO.

6.3.3 Calling C Programs via the Interface Method

The interface method uses special routines that are passed the name of the
called function. Use this method when you want to simulate the actions of a
non-native system. ACUCOBOL-GT supports two types of interfaces that
simulate interfaces available in two versions of RM/COBOL:

• the “sub85” interface, which is source-compatible with C routines
written for RM/COBOL-85.

• the “sub” interface, which is compatible with RM/COBOL version 2.

You may use either or both of these interfaces. With the interface method,
parameters are passed to the interface routines in a standardized format. The
parameters must typically be converted to a format that is usable in C.

Every ACUCOBOL-GT compiler comes with a sample C subroutine
interface. The “sub.c” file implements the “sub” interface. The “sub85.c”
file implements the “sub85” interface. The “sub.h” file contains some useful
definitions, particularly if you are using the “sub85” interface. These files
contain extensive comments describing how they are used. They also contain
the source to the SYSTEM library routine. You can use these files as the
starting point for your code. The two interfaces are described in the
following sections.

6-14 Working with C and C++ Programs
Note: At run time, the “sub” interface performs a linear search for a called
routine. This process can be inefficient when a very large number of “sub”
routines are present. If your program calls a large number of C routines, we
recommend that you use the “sub85” or “direct” interface.
Also, in the “sub85” and “sub” interface methods, parameters are not
passed directly to the C routine. Instead, an array of pointers is passed, and
each pointer points to the corresponding parameter (or in the case of
“sub85,” a description of the parameter). In this case, the notion of BY
VALUE has no reasonable definition, because there is no place to put the
value. Because of this, the runtime ignores the BY VALUE phrase and
passes an address to a copy of the value (essentially treating BY VALUE as
BY CONTENT). It must do this because there is no C variable available in
which to pass the value. However, specifying NULL does have a
reasonable definition: The pointer corresponding to that parameter is set to
binary zeros. Therefore, with the interface method, NULL and BY VALUE
ZERO have different meanings (contrast this with the corresponding note
under the direct method described in section 6.3.2, “Calling C Programs via
the Direct Method”).

6.3.3.1 The “sub” interface

Every time a CALL statement executes, it calls a C routine called “sub”. This
routine is passed the name of the called program and its USING parameters.
You may modify this routine to recognize the call name that you want to
assign to a C subprogram and perform the appropriate code. This routine is
contained in the “sub.c” file.

The “sub” routine is passed two arguments: argc and argv. The argv
parameter is an array of character pointers. The argc parameter is an integer
count of the number of elements in the argv array. The first element in argv
points to the call name exactly as it appears in the COBOL CALL statement.
This name is terminated with a NULL character. The remaining elements of
argv point to each of the USING arguments.

The “sub” function should check to see if the called name is one that should
be handled in C. It can do this by comparing “argv[0]” with the desired
routine name using the “strcmp” C library routine. If the routine is one that
is not handled by a C subroutine, then “sub” should return a negative value.
This indicates to runcbl that the CALL statement has not been fulfilled and

Calling C Programs From COBOL 6-15
that it should try to find a COBOL subprogram by that name. If the routine
is handled by the “sub” function, then a zero should be returned. In this case,
runcbl assumes that the CALL statement has been completed and it
continues with the next statement. Finally, if “sub” returns a positive value,
then runcbl executes a STOP RUN, returning the value to the operating
system as runcbl’s exit value. See “sub.c” for an example of this interface.

When processing a USING parameter, note that the C subroutine must know
what internal format the parameter uses. Also note, that in COBOL, literal
values are not terminated by a NULL character. Thus, you should not treat a
passed value as a C string unless the calling program ensures that the passed
value is NULL terminated. This can be accomplished in the following
fashion:
STRING "literal", LOW-VALUES, DELIMITED BY SIZE
 INTO ITEM-1
CALL NAME-1 USING ITEM-1.

Note: The “sub” interface provides compatibility with the RM/COBOL-85
interface. At run time “sub” performs a linear search for a called routine.
This can be inefficient if your program calls a large number of C routines.
We recommend that you use the “sub85” or “direct” interface.

Placing the “sub” routine in a DLL

In addition to linking the “sub” function directly into the runtime, Windows
users may place the “sub” routine into one or more DLL files.

You must specify which routine to use as the “sub” interface routine by
setting the DLL_SUB_INTERFACE configuration variable. Then you call
the DLL from your COBOL program. The runtime loads the DLL, then
checks DLL_SUB_INTERFACE for the name of the routine to use as the
“sub” interface routine. For example, the following C program (subdll.c) is
the source for the DLL that contains the “sub” interface, called AcuSub in
this example:
#include <stdio.h>
#include <windows.h>
#include "sub.h"

#define DllExport __declspec(dllexport)
#define CCallingConvention __cdecl

6-16 Working with C and C++ Programs
DllExport int CcallingConvention
AcuSub(int argc, char *argv[])
{

 if (strcmp(argv[0], "MSGBOX") == 0) {
 MessageBox(NULL, argv[1], NULL, MB_OK);
 return Okay;
 }

 return NotFound;

} /* AcuSub */

/* end of subdll.c */

The following COBOL program (“callsub.cbl”) shows how the DLL is
loaded and called:
program-id. test.
working-storage section.

77 message-text pic x(80).

procedure division.
main-logic.
 display standard window.

* Load DLL and establish "sub" interface

 set environment "dll-sub-interface" to "AcuSub".
 call "subdll".

* Call "MSGBOX", one of the routines handled by "AcuSub"

 move "This is a test message" to message-text.
 inspect message-text replacing trailing spaces by
 low-values.
 call "msgbox" using message-text.

 accept omitted.
 stop run.

If DLL_SUB_INTERFACE is blank when the DLL is loaded, no “sub”
routine is used in that DLL.

Calling C Programs From COBOL 6-17
When a CALL statement executes, the “sub” interface routine in each loaded
DLL is called, in the order that they were loaded, until one of them returns
that it has executed the subroutine. If none of the DLLs returns success, the
normal, or linked-in, “sub” routine is called. If that does not return success,
then the standard calling sequence resumes. As soon as any routine returns
success, the CALL is considered satisfied and no further processing of the
CALL is done.

If you CANCEL a DLL with an active “sub” interface, that interface is
removed from the list of available interfaces and the DLL is unloaded.

6.3.3.2 The “sub85” interface

The “sub85” interface can be more useful than the “sub” interface because
more information about each USING parameter is passed to the C
subroutines. However, using the “sub85” interface also involves more
programming.

The “sub85.c” file contains a table called LIBTABLE. This table consists of
a variable number of entries. Each entry contains a routine name and the
name of the corresponding C subroutine. The last entry in this table must be
NULL to mark the end of the table. When a CALL statement executes, this
table is searched for a matching routine name. If a match is found, the
corresponding routine is executed.

When the routine is called, it is passed four parameters: name, num_args,
args, and initial (in that order). The name argument is a character pointer to
the name that the CALL statement used to access the subroutine. The
num_args parameter is an integer that contains the number of USING
arguments specified by the CALL statement.

The args parameter is defined as an array of type Argument. This type (a
structure) is declared in “sub.h”. For each USING parameter, the
corresponding array element contains the following series of fields that
describes that parameter:

a_address – a character pointer that points to the first byte of the USING
parameter

a_length – a long integer that contains the number of bytes contained in the
USING parameter

6-18 Working with C and C++ Programs
a_type – a short integer that contains one of the following values depending
on the passed data type:

Note that setting the u.pass_type member of the Argument structure controls
how data is passed back and forth between a program running on the client
and a remote COBOL object. Set u.pass_type to “0” to pass data by

0 Numeric edited

1 Unsigned numeric (DISPLAY)

2 Signed numeric (DISPLAY, trailing separate)

3 Signed numeric (DISPLAY, trailing combined)

4 Signed numeric (DISPLAY, leading separate)

5 Signed numeric (DISPLAY, leading combined)

6 Signed COMP-2

7 Unsigned COMP-2

8 Unsigned COMP-3

9 Signed COMP-3

10 COMP-6

11 Signed binary (COMP-1, COMP-4, COMP-X)

12 Unsigned binary (COMP-1, COMP-4, COMP-X)

13 Signed native (COMP-5, COMP-N, SIGNED-SHORT,
SIGNED-INT, SIGNED-LONG)

14 Unsigned native (COMP-5, COMP-N, UNSIGNED-SHORT,
UNSIGNED-INT, UNSIGNED-LONG)

15 Floating point (FLOAT, DOUBLE)

16 Alphanumeric

17 Alphanumeric (justified)

18 Alphabetic

19 Alphabetic (justified)

20 Alphanumeric edited

21 Not used

22 Group

Calling C Programs From COBOL 6-19
reference. Use this when the COBOL application is to read and write data to
the variable. Use BY REFERENCE for string literals. Set u.pass_type to “1”
to pass data by content. Use this when you want to allow read access to the
data item, but the COBOL application should not write to the address. Use
BY CONTENT for constants. Set u.pass_type to “2” to pass data by value.
Use BY VALUE for numbers.

a_digits – a char that contains the total number of digits in a numeric data
type. For non-numeric data types, this value is always zero.

a_scale – a char that contains the power of 10 to multiply the number by. This
indicates the location of the decimal point. For example, a value of “-1”
indicates that there is one digit to the right of the decimal point. Note that
since this is defined as a “char”, you may not be able to treat this as a signed
value on all machines. The macro “Scale” in “sub.h” converts one of these
fields to a signed integer in a machine independent manner.

The final argument to the C subroutine, initial, is set to a non-zero value if the
routine is being called for the first time. It is also set to a non-zero value for
the first call after a CANCEL statement has been executed for the routine.
On any other call, initial is set to zero.

The external variable return-code can be set to any value. The COBOL
variable RETURN-CODE will have that value when control returns to the
COBOL program. By convention, when a C routine finishes it should return
zero if everything was okay. Any other positive return value causes a STOP
RUN to be executed, and that value is returned to the operating system as the
RETURN-CODE for the run. The C routine should never return a negative
value.

6.3.4 Cancelling a CALLed C Program

Shared objects loaded with a CALL statement can be unloaded with a
CANCEL statement. For information about the CANCEL statement, see its
entry in section 6.6 in ACUCOBOL-GT Reference Manual, and section 2.9.2
in ACUCOBOL-GT User’s Guide.

Shared objects loaded with the “-y” runtime option or via the
SHARED_LIBRARY_LIST configuration variable cannot be unloaded.

6-20 Working with C and C++ Programs
Note: The CANCEL_ALL_DLLS configuration variable can be used to
control whether a CANCEL ALL statement frees shared object libraries
and DLLs. See Appendix H in ACUCOBOL-GT Appendices for more
details.

6.3.5 Managing the Terminal

If a called C routine accepts input from the user or performs screen I/O, those
routines need to manage the terminal. This is because ACUCOBOL-GT
programs and C programs expect the terminal to be in different initial states.

When the ACUCOBOL-GT runtime initializes the terminal manager on a
character-based system, it puts the terminal into a “half-cooked” state. This
allows the runtime to optimize certain screen I/O and provides support for
auto-terminated fields and other screen niceties. C programs, on the other
hand, expect the terminal to be in its default state. Therefore, C routines
called from COBOL that interact with the user or display information to the
screen must manage the state of the display device. Specifically, the C
routine must set the terminal to its default mode before performing screen
I/O, and restore the terminal to the “half-cooked” state before returning to
COBOL. This is accomplished with the w_reset_term() and w_set_term()
functions. These functions are built into the runtime.

To prepare the terminal for C screen I/O, at the top of your C routine call
w_reset_term() to place the terminal in its default state.

To prepare the terminal for COBOL screen I/O, before your C routine returns
call w_set_term() to place the terminal back into the “COBOL” state.

6.3.6 Relinking the Runtime System

You must relink the ACUCOBOL-GT runtime when you:

• Modify the “.c” files located in $ACUCOBOL/lib, including
“config85.c”, “filetbl.c”, and others.

Calling C Programs From COBOL 6-21
• Call C routines that are not available in DLLs or shared object libraries.
This means that you are using the direct method or interface method to
call C routines (see section 6.3.2 and section 6.3.3).

The exact procedure for relinking depends on the host system. On most
UNIX and Linux systems, you have the option of linking with either the
makerun script or the make utility.

Relinking the runtime requires that you have the appropriate C development
system for your host. Required software is specified in the host-specific
subsections that follow.

6.3.6.1 Linking on Windows systems

On Windows systems, routines are linked into the ACUCOBOL-GT runtime
DLL (“wrun32.dll”), not the runcbl program (“wrun32.exe”). Note that both
the standard runtime and the Web runtime use the same DLL.

Required software

Microsoft Visual Studio 2005

Linking the standard runtime

To make a new standard runtime for Windows, load the “wrun32.sln”
solution file into Visual Studio 2005 and build. By default, “wrun32.sln” is
located in the “lib” subfolder of “acugt”.

Linking the Alternate Terminal Manager runtime

To make a new Alternate Terminal Manager runtime for Windows, load the
“run32.sln” solution file into Visual Studio 2005 and build. By default,
“run32.sln” is located in the “lib” subfolder of “acugt”.

Linking the console runtime

To make a new console runtime for Windows, load the “crun32.sln” solution
file into Visual Studio 2005 and build. By default, “crun32.sln” is located in
the “lib” subfolder of “acugt”.

6-22 Working with C and C++ Programs
6.3.6.2 Linking on UNIX and Linux systems

On most UNIX and Linux systems, ACUCOBOL-GT provides two ways to
relink the runtime. The first is the traditional make facility for which
ACUCOBOL-GT includes a Makefile. The second is with a script named
makerun. makerun allows you to specify the names of libraries and objects
on the command line. make is immediately familiar to most UNIX and
Linux developers. Both facilities are described below.

On UNIX and Linux systems where extend® products are delivered as shared
object libraries, relinking the runtime requires relinking the appropriate
shared object. In the case of the runtime, this is “libruncbl.so” or
“libruncbl.sl”. On systems where extend products are delivered as statically
linked executables, the runtime executable is named runcbl by default.

Note: After relinking, be sure to move or copy the new object to the
required directory. The default location is $ACUCOBOL/lib for shared
object libraries, and $ACUCOBOL/bin for static libraries.

Required software

An ANSI 89-compliant C compiler supplied by the vendor of your UNIX
system, either included as part of your UNIX system or as an add-on option.
Check with your operating system vendor to see if the C compiler is
capable of building shared libraries. If it is not, you will need a full version
of the compiler to relink the ACUCOBOL library.

Using the make utility

On all supported UNIX and Linux platforms, the ACUCOBOL-GT runtime
can be relinked with make using the Makefile included with the extend
distribution.

For your convenience, two environment variables can be used to specify
object files and object libraries to be added to the link line of the Makefile.
Set EXTLIBS to a list of libraries, and set EXTOBJS to a list of objects. For
example, the following command links the C routines in the object file
“myroutines.o” into the ACUCOBOL-GT runtime:

EXTOBJS="myroutines.o" make

Calling C Programs From COBOL 6-23
Linking with make

To create a new runtime, cd to the lib directory and type:
 "make"

Using the makerun script

On most UNIX and Linux systems, ACUCOBOL-GT comes with a
makerun script that can be used to relink the runtime. makerun is a UNIX
Korn shell script that relinks the runtime executable (runcbl) or shared object
(“libruncbl.so” or “libruncbl.sl”).

The makerun command format is:
makerun [ldflags] [objects] [libraries]

where ldflags, objects, and libraries are optional arguments passed to the “ld”
command as described below.

For example, the following command links C routines contained in the object
file “myroutines.o” into the ACUCOBOL-GT runtime:

makerun myroutines.o

You can also execute makerun from your own script. For example, the
following script links three object files and three libraries into the
ACUCOBOL-GT runtime:
#!/bin/ksh
OBJDIR=/home/appuser/appobj
OBJECTS=“$OBJDIR/a.o \
 $OBJDIR/b.o \
 $OBJDIR/c.o”
LIBDIR=/home/appuser/applib

ldflags A list of any valid “ld” options

objects A list of additional objects to be linked into the runtime.

libraries A list of additional libraries to be linked into the runtime.
Instead of specifying absolute paths to library files, you
can also use “-L” and “-l” to specify path and library
names. For example, “/home/joe/lib/libacme.so” can be
specified as “-L /home/joe/lib –lacme”.

6-24 Working with C and C++ Programs
LIBRARIES=“$LIBDIR/lib1.a \
 $LIBDIR/lib2.a \
 $LIBDIR/lib3.a”
cd /usr/acu/lib
makerun $OBJECTS $LIBRARIES

The makerun script passes the additional linker options in the EXTLIBS
environment variable. Everything specified on the makerun command line
is passed to the C linker from the Makefile.

Linking with makerun

To use the makerun script:

1. Copy the files from the lib subdirectory of your ACUCOBOL-GT
installation into the directory of your choice and cd into that directory.

2. Type the makerun command line. For example:

makerun myroutines.o

6.3.6.3 Linking on VMS systems

On VMS systems, a command file is included with ACUCOBOL-GT to
relink the runtime system. To invoke it, simply type:
 “@ACU_LINK”

Required software

Digital Equipment Corporation’s VAX C or DEC C compiler for VMS

6.3.6.4 Linking on MPE/iX systems

Instructions for linking the runtime under HP MPE/iX are included in
Chapter 4 of the book titled Transitioning to ACUCOBOL-GT.

Required software

Hewlett Packard’s C POSIX Developer’s Kit

Calling COBOL from C 6-25
6.4 Calling COBOL from C

If you are working in an environment that includes programs written in both
COBOL and C or C++, refer to information in this section for details on using
the ACUCOBOL-GT C API. You will find a reference for all the functions
in the C API and instructions for calling COBOL from C.

Note that you can call COBOL from C locally or remotely. You can even
have the runtime execute remotely without a COBOL object executing on the
client. All you need on the client is a C or C++ program and a runtime. For
this to work, you set CODE_PREFIX in the configuration file that you
provide with the runtime initialization to point to a remote server hosting
your COBOL application. The remote server must also be running
AcuConnect. AcuConnect is able to execute a COBOL object remotely and
share data with the local runtime. For more information on executing remote
COBOL programs with AcuConnect, please refer to the AcuConnect User’s
Guide.

Unless noted otherwise, references to C also apply to C++ code that conforms
to the C calling conventions.

6.4.1 Include Files

The declarations, constants, and return values of the C API are defined in two
files:

• lib/sub.h

• lib/acusetjmp.h (for the acusavenv() and aculongjmp() functions)

The “sub.h” file includes a declaration of the routines for all platforms to
ensure that you use the correct calling convention with these routines.

6-26 Working with C and C++ Programs
6.4.2 Using the C API

The most efficient way to call COBOL from C is to use the C application
programming interface (API). This interface can be used by C developers to
call COBOL functionality (programs, entry points, etc.) from their C
program.

To use the C API, you need to do the following:

1. Install and configure ACUCOBOL-GT runtime. On Windows systems,
optionally install AcuBench® if the system is also used for COBOL
development.

2. Include “sub.h” and “acusetjmp.h” in any source files that use API
calls.

3. Install and configure your C compiler.

6.4.2.1 Using the C API in Windows

You can use the C API for calling ACUCOBOL-GT programs on Windows,
as well as on UNIX/Linux systems. Call the ACUCOBOL-GT runtime DLL
from other languages in one of two ways.

1. Use the functions acu_initv(), acu_cobol(), acu_shutdown(), and
others fully described in section 6.4.3, “Function Reference.”

These functions offer more control and are designed to be called from C.
They are portable between Windows and UNIX; the same C source code
calling ACUCOBOL-GT on Windows compiles and runs on UNIX.

2. Use the corresponding functions, AcuInitialize(), AcuCall(),
AcuShutdown() and so on, that are described in section 3.2.2, “Calling
the Runtime DLL.”

These functions are designed for use with programming languages like
VisualBasic that use Variant type arguments. For example:

extern void __stdcall AcuRunMain(char *command_line);

In Visual Basic, for example, the declaration is:

Declare Function AcuRunMain Lib "wrun32.dll" _
 (ByVal cmdLine As String)

Calling COBOL from C 6-27
This has the same functionality and use as acu_runmain(). It is optional
to call AcuInitialize before AcuRunMain. For example:

if (AcuInitialize(lpCmdLine) >= 0)
 AcuRunMain(lpCmdLine);

6.4.3 Function Reference

Functions in the C API include the following:

Function Description

acu_abend() Performs the ACUCOBOL-GT signal handling
logic

acu_cancel() Simulates the COBOL CANCEL verb from C

acu_cancel_all() Simulates the COBOL CANCEL ALL verb
from C

acu_cobol() Allows you to call COBOL programs and
control how they are executed

acu_initv() Initializes the runtime with command-line
options

aculongjmp() Cuts the C and COBOL call stacks to the point
recorded in the buffer

acu_register_sub() Registers a COBOL subroutine that calls a C
routine, so you can locate the routines in the
calling executable file

acu_runmain() Starts up a COBOL program that will be treated
like the main program of the run unit

acusavenv() Records information about the state of the C and
COBOL call stack

acu_shutdown() Halts the ACUCOBOL-GT runtime

acu_unload() Removes a cached program from memory

acu_unload_all() Removes all cached programs from memory

6-28 Working with C and C++ Programs
acu_abend()

The acu_abend() function allows you to perform the ACUCOBOL-GT
signal handling logic in selected programs when the runtime is initialized
with the “--no-signal-handlers” option. If you run with
“--no-signal-handlers”, error conditions that raise signals are not detected
automatically by the runtime. acu_abend() causes the runtime to output error
messages and resets the state of the runtime. This function is designed for use
in transaction processing environments that call the ACUCOBOL-GT
runtime from a C main program.

Refer to the ACUCOBOL-GT User’s Guide for more information on
“--no-signal-handlers”.

Usage

C programs that specify the “--no-signal-handlers” option in the call to
acu_initv() may call the acu_abend() function from their own
signal-handling code as follows:

void acu_abend(int signal_number)

where signal_number is the signal number or “-1” if no signal information is
available.

Although you can call acu_abend() at any time, we recommend that you call
it only if the application was executing COBOL code when the signal
occurred; otherwise, the error messages reported by the runtime may be
misleading. For example, you do not need to call acu_abend() if:

1. Your application calls acu_cobol() to execute a COBOL program.

2. The COBOL program exists.

3. After acu_cobol() returns, your application executes other
non-COBOL processing.

Calling COBOL from C 6-29
Note: acu_abend() does not shut down the runtime. It reports the current
COBOL program and execution address. It also reports the COBOL source
file and line number if you have compiled with “-Gl” or “-Ga”. It then
resets the runtime to its initial state. Therefore, even if you have called
acu_abend(), you still need to call acu_shutdown() to actually shut down
the runtime.

acu_cancel()

The acu_cancel() function marks a program as “cached” and resets Working
Storage to its initial state for the next call. This function is equivalent to the
CANCEL verb.

Usage
void ASTDCALL acu_cancel(char *name);

If the user has specified that the program is not to be cached, then
acu_cancel() also unloads the program from memory so that a new copy is
loaded from disk the next time the program is called.

For more information on using this function, refer to section 6.5.5,
“Unloading Programs from Memory.”

acu_cancel_all()

The acu_cancel_all() function performs an acu_cancel() on all “Loaded but
inactive” programs. This function is equivalent to the CANCEL ALL verb.

Usage
void ASTDCALL acu_cancel_all(void);

Application servers such as CICS should call acu_cancel_all() after every
acu_cobol() call returns. Subsequent calls to the same program and its called
subprograms will then have Working-Storage items in their initial state.

For more information on using this function, refer to section 6.5.5,
“Unloading Programs from Memory.”

6-30 Working with C and C++ Programs
acu_cobol()

The acu_cobol() function allows you to call COBOL programs and control
how they are executed. This function is required in order to build and invoke
the ACUCOBOL-GT runtime with a transaction processing environment like
CICS.

Note: This function deprecates the cobol() and cobol_no_stop() functions.

To call COBOL subroutines directly from C, you can use the acu_cobol()
routine anytime after acu_initv() has been called and before
acu_shutdown() has been called. For more information, see section 6.5.2,
“Calling the Runtime From a C Main Program.”

Usage

The acu_cobol() function has the following prototype:
int ASTDCALL acu_cobol(struct ACUCOBOLINFO *data);

The struct a_cobol_info structure is defined in lib/sub.h:
struct a_cobol_info
{

size_t a_cobol_info_size;
char *pgm_name;
int num_params;
Argument *params;
int exit_code;
const char *exit_msg;
int signal_number;
int call_error;
long cobol_return_code;
unsigned no_stop:1;
unsigned cache:1;
ADM_t debug_method;
char *debug_method_string;

};

typedef struct a_cobol_info ACUCOBOLINFO;

The ADM_t type is described in lib/sub.h as an enumeration.

Calling COBOL from C 6-31
typedef enum tag_ACUCOBOL_DEBUG_METHODS
{

ADM_NONE,
ADM_XTERM,
ADM_TERMINAL,

ADM_THINCLIENT,
} ACUCOBOL_DEBUG_METHOD, ADM_t;

The enumeration values describe the debugging method to be used for the
program. See the Parameters section below for more information.

Parameters

The a_cobol_info structure has the following parameters. Input variables are
set before the call to acu_cobol() and output variables set after acu_cobol()
returns:

a_cobol_info_size A size_t initialized to sizeof(a_cobol_info) to allow for
future expansion (input)

pgm_name A char* that contains the name of the COBOL program
to call (input)

num_params An int that contains the number of elements in the
params array (input)

params An Argument* that contains an array of arguments sent
to the COBOL program (input)

exit_code An int that contains the exit code. Refer to the exit_code
values in the Return Values section below (output)

exit_msg A const char* that contains the exit message. Its contents
should not be modified. This pointer may be NULL.
(output)

signal_number An int value of a signal that caused the
COBOL_SIGNAL or COBOL_FATAL_ERROR. If the
value is non-zero, the error was caused by this signal.
(output)

call_error An int value that contains the call error. Refer to the
call_error values listed in the Return Values section
below (output)

6-32 Working with C and C++ Programs
cobol_return_code A long value returned in “exit program.nnn” by a
COBOL program called from acu_cobol(). The
COBOL program can set this value by either setting the
return-code or exiting the program. (output)

no_stop An unsigned value that, when set to “1”, causes STOP
RUN to be ignored (input)

cache An unsigned value that determines whether the runtime
should maintain the program in a memory cache after it
has been canceled. This parameter is useful for
application servers like CICS that allow each program to
be configured as resident or nonresident. (input)

If cache is FALSE (“0”), acu_cancel() removes the
program from memory and sets the Working-Storage to
its initial state on subsequent calls. If cache is TRUE
(“1”), acu_cancel() marks the program as “cached” and
resets Working-Storage for the next call; the program
remains in memory according to the caching rules. For
information on managing logical and physical cancels
that may affect the behavior of cache, refer also to the
LOGICAL_CANCELS configuration variable in
Appendix H in ACUCOBOL-GT Appendices.

debug_method An ADM_t type that defines the debugger method to use
for the program when acu_cobol() is called. The
debug_method is deinitialized when the COBOL
program returns. (input)

To enable background debugging, specify one of the
following types:

• ADM_NONE — For no debugging
• ADM_XTERM — Debug using a new xterm
• ADM_TERMINAL — Debug using an existing

terminal through runcbl
• ADM_THINCLIENT — Debug using a waiting

thin client

Based on the debug_method selected, you may need to also specify
debug_method_string:

Calling COBOL from C 6-33
See section 9.8, “Background Debugging Options,” for more information on
background debugging.

Return values

The acu_cobol() function returns “0” if the call is successful and “-1” if the
call failed.

The exit_code returns one of the following values defined in “sub.h”:

debug_method_string A char* that sets the display setting for the
debug_method (input)

• For ADM_XTERM, set to the
Xservername:displaynumber of the xterm or set to
NULL to allow the xterm to use the default
display given by the DISPLAY environment
variable.

• For ADM_TERMINAL, set the string to the tty
device on which you will execute runcbl.

• For ADM_THINCLIENT, set to client:port where
the client is the host on which acuthin is
executing and port is the port on which it is
listening.

Note: The value of debug_method_string overrides
the value, if any, in the DISPLAY configuration
variable for the xterm.

Value Description

COBOL_EXIT_PROGRAM 1 The called program finished via an
EXIT PROGRAM statement (or
equivalent, such as GOBACK).

COBOL_REMOTE_CALL 2 The called program is a remote
program being run by AcuConnect®.
In this case, the exact reason why the
remote program finished is not
available.

6-34 Working with C and C++ Programs
* After a COBOL_SIGNAL or COBOL_FATAL_ERROR error,
the process should not make any further calls to acu_cobol(). If
another call is necessary, you must first unload and reload the

COBOL_STOP_RUN 3 The run unit halted due to a STOP
RUN statement, and the runtime has
been configured to return to the caller
instead of exiting to the system.

COBOL_CALL_ERROR 4 The called program could not be run
and the acu_cobol() function has
returned “-1”. This applies only to
programs called directly by
acu_cobol(). On an error loading a
subroutine, acu_cobol() returns
COBOL_FATAL_ERROR.

COBOL_SIGNAL* 5 The runtime caught a system signal
that would normally shut down the
runtime, but the runtime has been
configured to return to the caller
instead. Any error message associated
with this signal is returned in
exit_msg.

COBOL_FATAL_ERROR* 6 A fatal error has occurred that would
normally shut down the runtime, but
the runtime has been configured to
return to the caller instead. Any
message associated with the error is
returned in exit_msg.

COBOL_NONFATAL_ERROR 7 An error has occurred that causes the
acu_cobol() function to return and
prevents the runtime from continuing
to run the current program only. The
runtime remains in a stable state and it
is safe to make subsequent calls to
acu_cobol().

COBOL_DEBUGGER 8 The user has quit the
ACUCOBOL-GT debugger. It is safe
to make subsequent calls to
acu_cobol() after this error occurs.

Value Description

Calling COBOL from C 6-35
runtime. If you are dynamically loading the runtime shared
library on UNIX/Linux or runtime DLL on Windows, you can
do this using dlclose()/dlopen() or FreeLibrary()/LoadLibrary()
respectively. If you are linking directly to the runtime libraries,
you will need to exit and restart the current process. Consider
wrapping your executable in a shell script or another main() pro-
gram that checks for a particular exit code and then loops.

The call_error can be one of the following values:

Value Description

CS_SUCCESSFUL 0 Call was successful.

CS_MISSING 1 Program file is missing or
inaccessible.

CS_NOT_COBOL 2 Called file is not a COBOL
program.

CS_INTERNAL 3 Corrupted program file

CS_MEMORY 4 Inadequate memory is available to
load program.

CS_VERSION 5 Unsupported object code version
number

CS_RECURSIVE 6 Recursive CALL of a program;
program already in use.

CS_EXTERNAL 7 Too many external segments

CS_LARGE_MODEL 8 Large-model program is not
supported.

CS_JAPANESE 14 Japanese extensions are not
supported.

CS_MULTITHREADED 22 Multithreaded CALL RUN is
illegal.

CS_AUTHORIZATION 23 Access denied.

CS_CONNECT_REFUSED 25 Connection refused; user count is
exceeded on remote server.

CS_MISMATCHED_CPU 27 Program contains object code for a
different processor.

6-36 Working with C and C++ Programs
acu_initv()

The acu_initv() function performs all of the initialization needed to run a
COBOL program. This includes loading the COBOL configuration file,
initializing the user’s station, and initializing each available file system.

Usage
int ASTDCALL acu_initv(int argc, char **argv);

The acu_initv() function also registers various signal handlers so that the
runtime can catch certain signals and perform an orderly shutdown or some
other function. Using acu_abend() with the “--no-signal-handlers” runtime
option allows you to control signal handlers based on the signal type.

For more information on acu_initv(), see also section 6.5.2.2, “Initializing
the runtime.”

Parameters

argc – the number of arguments passed in argv, at least “1”

argv – an array of arguments. It must contain at least one argument in
argv[0]. This should be a pointer to the name of the executable file, that is,
the same as the argv[0] passed to your own main routine.

Note that in some situations, this array of character pointers is needed after
acu_initv() returns. Therefore, the variable passed in this parameter must
remain in scope until the runtime shuts down. You can accomplish this in one
of several ways:

1. Make argv a static variable in the C function where it is defined.

2. Make argv a global variable to the C module.

CS_SERIAL_NUMBER 28 Incorrect serial number

CS_USER_COUNT_EXCEEDED 29 Connection refused; user count is
exceeded on remote server.

CS_LICENSE 30 License error

Value Description

Calling COBOL from C 6-37
3. Call the functions, acu_initv(), acu_cobol(), and acu_shutdown()
from within a single function of your application (or in subfunctions of
the C function that calls acu_initv()).

Caution: If you do not keep argv in scope for the duration of the runtime’s
life, you may experience unwanted results.

No other arguments are required. To pass additional arguments, format them
in the same manner as a typical runcbl command line, where arguments to
the runtime are followed by the COBOL program name, and then by any
arguments to that COBOL program.

Return values

This function returns the argument number of the COBOL program name in
argv (or the value argc if there isn’t one). The runtime’s own main routine
uses this to easily locate the name of the program to load.

aculongjmp()

This aculongjmp() routine cuts the C and COBOL call stacks to the point
recorded in passed “acujmp_buf”. This point must have been recorded by a
prior call to both acusavenv() and setjmp(). Once a state has been recorded,
you can only jump to it one time using aculongjmp(). After that, it must be
recorded again.

Usage
void
aculongjmp(acujmp_buf *buffer)

Note: Like acusavenv(), aculongjmp() is intended for use with batch
programs or programs written for a transaction processing system and
therefore is not recommended for programs that use the ACUCOBOL-GT
graphical user interface.

6-38 Working with C and C++ Programs
Return values

This routine does not return; instead, it internally calls the C library
longjmp() routine which transfers control to the point of the prior setjmp()
call and causes setjmp() to return a value of “1”.

Example
#include "acusetjmp.h"
acujmp_buf mark1;

/* A COBOL or 'C' subroutine can CALL "myexception" to transfer
/* control back to the point where "mark1" was recorded. */

void myexception()
{

aculongjmp(&mark1);
}

/* Prototypical 'C' service routine to run a COBOL program with
/* the ability to exit out of the COBOL code via call to
/* 'myexception' */

void myservice()

{
/* Record our position in the 'C' and COBOL call stacks.
/* 'Setjmp' will return "0" when executed first. We
/* call it in a "while" loop so that the location
/* recording re-executes in case we end
/* up jumping here via 'aculongjmp' */

while(setjmp(*acusavenv(&mark1)))
{

/* If we get here, it’s because 'aculongjmp' jumped
/* here. Put recovery/cleanup code here.
/* If you do not want to re-execute the COBOL routine,
/* add a "return" here. Otherwise, just fall out of the
/* while loop to re-execute the COBOL routine */

}

/* Setup to call COBOL here and call a COBOL routine */
/* The COBOL program can jump back to the top of this
/* routine by calling "myexception" at some point. This

Calling COBOL from C 6-39
/* will transfer control to the point of the 'setjmp'
/* call above and cause 'setjmp' to return "1". */

struct a_cobol_info cblinfo;
memset(&cblinfo, 0, sizeof(cblinfo));
cblinfo.a_cobol_info_size = sizeof(cblinfo);
cblinfo.pgm_name = "cblprog";
cblinfo.num_params = 0;
cblinfo.params = NULL;
acu_cobol(&cblinfo);

}

Restrictions

• As with setjmp(), the function that calls acusavenv() must not exit
before any calls to aculongjmp() that use the same buffer. Programs that
do this will have undefined (and usually fatal) results.

• aculongjmp() works by simulating EXIT PROGRAM statements for
each of the COBOL programs being exited. This EXIT PROGRAM has
all its normal effects. If a program cannot exit for some reason, the call
to aculongjmp() fails and the runtime shuts down with a fatal error.
Reasons that EXIT PROGRAM can fail include:

• The program is the main program.

• The program is currently running an event procedure.

• The program is the root program of a thread.

• The program is currently in a Declarative called directly by the
BULK-ADDITION feature of Vision.

• Because the caller of aculongjmp() must be in the same run unit as the
caller of the corresponding acusavenv(), avoid using the CHAIN verb.

• The caller of aculongjmp() must be in the same COBOL thread as the
caller of the corresponding acusavenv(). In addition, the effect of
aculongjmp() on other COBOL threads is undefined. We recommend
that you stop any other threads prior to calling aculongjmp().

6-40 Working with C and C++ Programs
• After aculongjmp() uses a buffer, that buffer is no longer valid and must
be re-recorded by a new call to acusavenv() and setjmp(). This
behavior is different from the normal setjmp()/longjmp() convention. If
converting existing setjmp() logic, you can usually accomplish this by
replacing the “if” statement that contains the call to setjmp() with a
“while” statement. For example:

if (setjmp(mybuf) == 1)
{

/* longjmp lands here */
}

becomes:

while (setjmp(*acusavenv(&myacubuf)) == 1)
{

/* aculongjmp lands here */
}

acu_register_sub()

The acu_register_sub() function allows you to register a subroutine in your
C main program.

Usage
typedef int (*ACU_SUB_FUNC) (int argc, char **argv);
ACU_SUB_FUNC *acu_register_sub(ACU_SUB_FUNC *pFunc);

See section 6.5.3.2, “Calling COBOL subroutines that call C routines,” for
more information on using this function.

Return values

This function returns the previously registered function, or NULL if no
function was registered.

acu_runmain()

The acu_runmain() function can be used to start up a COBOL program
which is treated like the main program of the run unit.

Calling COBOL from C 6-41
Usage
void ASTDCALL acu_runmain(int argc, char **argv, int pgm_arg);

Parameters

argc and argv are main-style arguments. Typically, they are the same as the
values passed to acu_initv().

program_arg is the argument number (in argv) of the name of the COBOL
program.

Example

For an example of using acu_runmain(), see section 6.5.3.1, “Starting a
COBOL main program.”

Return values

When the COBOL program stops, the acu_runmain() function halts but
does not return.

acusavenv()

The acusavenv() routine records information about the state of the COBOL
call stack and returns a pointer to a jmp_buf structure that can be passed to
setjmp. You pass this routine an acujmp_buf structure, which carries the
combined C and COBOL stack states.

Usage
jmp_buf *
acusavenv(acujmp_buf *buffer)

Refer to the entry on aculongjmp() for more information on using
acusavenv(). See your C documentation for information on the setjmp and
longjmp routines, as you need a working understanding of these routines to
use acusavenv() and aculongjmp().

6-42 Working with C and C++ Programs
Note: The acusavenv() function is intended for use with batch programs or
programs written for a transaction processing system, allowing such
systems to restart or recover from a failed service component. Therefore,
they are not recommended for programs that use the ACUCOBOL-GT
graphical user interface, which are typically event-driven and
multithreaded.

acu_shutdown()

This routine performs all the necessary exit handling needed by the runtime.
It also ensures that all COBOL files are closed and that the screen is returned
to its normal operating state.

Usage
void ASTDCALL acu_shutdown(int place_cursor);

Note: After acu_shutdown() returns, do not call any COBOL subroutines
again during this run. In particular, do not try to re-initialize the runtime
with another call to acu_initv().

Parameters

If you pass a non-zero value in place_cursor, the runtime places the screen’s
cursor on the last line of the screen and scrolls the screen one line. This is the
normal behavior that you see when you execute a STOP RUN. If you pass a
zero in place_cursor, the cursor is not moved and the screen is not changed.

The value of place_cursor overrides the EXIT_CURSOR configuration
variable, which also controls the handling of the cursor at shutdown.

Example

For an example of using acu_shutdown(), see section 6.5.2.3, “Shutting
down the runtime.”

Using the C API: Two Approaches 6-43
acu_unload()

The acu_unload() function removes a “cached” program from memory. If
“called_programs = 1”, acu_unload() also unloads called subprograms.

Usage
void ASTDCALL acu_unload(char *name, int called_programs);

Note: The DYNAMIC_MEMORY_LIMIT configuration variable affects
how memory is released by calls to this function. See Appendix H in
ACUCOBOL-GT Appendices for information on this configuration
variable.

For more information on caching programs, see section 6.5.5, “Unloading
Programs from Memory.”

acu_unload_all()

The acu_unload_all() function removes all cached programs from memory.

Usage
void ASTDCALL acu_unload_all(void);

Note: The DYNAMIC_MEMORY_LIMIT configuration variable affects
how memory is released by calls to this function. See Appendix H in
ACUCOBOL-GT Appendices for information on this configuration
variable.

For more information on caching programs, see section 6.5.5, “Unloading
Programs from Memory.”

6.5 Using the C API: Two Approaches

Using the C API, you can:

• Call ACUCOBOL-GT programs from C

6-44 Working with C and C++ Programs
• Call the ACUCOBOL-GT runtime from a C main program.

You can use the same basic method to perform both of these tasks.

6.5.1 Simple Use Case for acu_cobol()

The following example demonstrates a call to the acu_cobol() C function:
int
main(int argc, char *argv[])
{

char *initv[3];
struct a_cobol_info cblinfo;
initv[0] = argv[0];
initv[1] = "-c";
initv[2] = "myconfig";
acu_initv(3, initv);
memset(&cblinfo, 0, sizeof(cblinfo));
cblinfo.a_cobol_info_size = sizeof(cblinfo);
cblinfo.pgm_name = "MYCBLPGM";
acu_cobol(&cblinfo);
acu_shutdown(1);
return 0;

}

This is equivalent to running a program from the command line as:
runcbl -c myconfig "MYCBLPGM"

If you add the no_stop parameter to the a_cobol_info structure, the COBOL
program returns to the caller if the program executes a STOP RUN:
struct a_cobol_info cblinfo;

memset(&cblinfo, 0, sizeof(cblinfo));
cblinfo.a_cobol_info_size = sizeof(cblinfo);
cblinfo.pgm_name = "MYCBLPGM";
cblinfo.no_stop = 1;
acu_cobol(&cblinfo);

Otherwise, you can remove the no_stop parameter and force the executable
to halt:

Using the C API: Two Approaches 6-45
struct a_cobol_info cblinfo;

memset(&cblinfo, 0, sizeof(cblinfo));
cblinfo.a_cobol_info_size = sizeof(cblinfo);
cblinfo.pgm_name = "MYCBLPGM";
acu_cobol(&cblinfo);

Note: The acu_cobol() function does return to the caller when the program
performs a STOP RUN if the call is made through the Web runtime or if the
runtime is running as an automation server.

6.5.2 Calling the Runtime From a C Main Program

ACUCOBOL-GT uses a runtime system to execute its compiled COBOL
programs. This runtime system is a fully linked executable program and, as
such, contains its own main routine. The runtime assumes that the first
program to run will be a COBOL program.

If, however, you have a “server” program in an OLTP environment that waits
for requests from clients and then calls COBOL to handle those requests, you
can choose to replace the runtime’s own main routine with another.

Note: You do not need to start a COBOL main program to call COBOL
subroutines. If you use a C main program, note that certain COBOL verbs
can prevent you from returning from a called COBOL subroutine to your C
main program.

6.5.2.1 Creating the runtime

The ACUCOBOL-GT runtime library (used to relink the runtime system)
comes with its own main routine. The library contains this routine in a
separate object module. To create a runtime system that uses your own main
routine, you simply add a routine called “main” to one of your C source files
and re-create the runtime. Because the linker uses your C object files before
searching the library, your main routine is used and the one in the library is
not linked.

6-46 Working with C and C++ Programs
To relink the runtime system, follow the instructions found in section 6.3.6,
“Relinking the Runtime System.” The technique for relinking the runtime
depends on the machine type.

6.5.2.2 Initializing the runtime

If you are calling the runtime from a C main program, you must initialize the
runtime prior to calling any COBOL programs from your C code. To do this,
call the following routine:
int
acu_initv(argc, argv)
int argc;
char *argv[];

You pass this routine’s arguments in a format identical to those passed to the
C main function. The COBOL program’s name is used during initialization
to determine the default title of any GUI-based window, but the program
itself is not loaded or executed. Arguments to the COBOL program are not
used by initialization and may be omitted. If you omit the COBOL program
name, initialization occurs using the default name of “cbl.out”.

The acu_initv() function calls the user-supplied routines exam_args
(passing argc and argv) and Startup (passing the name of the COBOL
program). These routines are normally empty, but may be modified by you.
They can be found in the “sub.c” file supplied with the runtime system.

Note: Since argv is an array of character pointers that may be needed after
acu_initv() returns, keep argv in scope until you shut down the runtime.
For more information, see the entry for acu_initv() in section 6.4.3,
“Function Reference.”

Example

The following code might be used by a server routine that intends to use
COBOL subroutines to perform various file operations. In this scenario, no
screen operations are done from COBOL, so we want to inhibit
ACUCOBOL-GT’s default screen initialization. To do this, we must pass the

Using the C API: Two Approaches 6-47
“-b” command-line option. Because the program will perform no screen
operations, we do not care about the default window title and, thus, do not
need to pass a COBOL program name.
int
main(argc, argv)
int argc;
char *argv[];
{
 char *initv[2];
 initv[0] = argv[0];
 initv[1] = "-b";
 acu_initv(2, initv);
 /* other code follows */
}

6.5.2.3 Shutting down the runtime

You can halt the runtime from COBOL by executing a STOP RUN statement
and the runtime terminates normally. Note that this action calls the
user-supplied C routine called Shutdown found in “sub.c”.

To halt the runtime from C, call the following routine:
void
acu_shutdown(place_cursor)
int place_cursor;

Example

The following C program calls a single COBOL routine once, passing it one
argument. After the COBOL routine returns, it cancels that program and
halts. While it is not necessary to cancel the program in this example, the
code is shown for completeness.
#include <stdio.h>
#include "sub.h"
main(argc, argv)
int argc;
char *argv[];

{
struct a_cobol_info cblinfo;
Argument cblargs[1];
acu_initv(argc, argv);

6-48 Working with C and C++ Programs
cblargs[0].a_address = "Hello World";
cblargs[0].a_length = 11;
memset(&cblinfo, 0, sizeof(cblinfo));
cblinfo.a_cobol_info_size = sizeof(cblinfo);
cblinfo.pgm_name = "cblprog";
cblinfo.num_params = 1;
cblinfo.params = cblargs;
acu_cobol(&cblinfo);
acu_cancel("cblprog");
acu_shutdown(0);
exit(0);

}

A simple example of “cblprog” might be:
identification division.
program-id. cblprog.
data division.
linkage section.
77 hello-world pic x(11).
procedure division using hello-world.
main-logic.
 display hello-world.
 exit program.

6.5.2.4 Notes on COBOL verbs

The following notes describe special considerations for COBOL verbs when
you are calling the ACUCOBOL-GT runtime from a C main program.

CALL and CALL RUN

The CALL and CALL RUN verbs work normally. You return from a CALL
with EXIT PROGRAM and from a CALL RUN with STOP RUN.

EXIT PROGRAM

The EXIT PROGRAM verb works normally. Use EXIT PROGRAM to
return from a COBOL subroutine to the C function that called it.

Using the C API: Two Approaches 6-49
STOP RUN

A STOP RUN causes the runtime to shut down (except when a STOP RUN
returns to a CALL RUN statement). If you need to control the shutdown in
C (to perform clean-up for example), do not code any STOP RUN statements.
Alternatively, you can place any clean-up code you need in the
acu_shutdown() routine found in “sub.c”. This routine is automatically
executed during runtime shutdown. Refer to the no_stop element of the
ACUCOBOLINFO structure for more information.

CHAIN and CALL PROGRAM

Both the CHAIN and CALL PROGRAM verbs halt the current run unit and
initiate a new run unit. Use these verbs with care as they prevent you from
returning to your C main program. The chained-to COBOL program is now
treated as the start of a new run unit, essentially meaning that it acts like a
main program. Because it is treated like a main program, the EXIT
PROGRAM verb in it is ignored. The only way to halt the program is with a
STOP RUN (which halts the entire runtime) or with another CHAIN.

If you do execute a CHAIN or CALL PROGRAM, any C routines that are
part of the call stack leading to the first COBOL subroutine will be left in
place. Although you cannot access these routines, their stack memory
remains allocated. On the other hand, any C routines that are on the call stack
after the first COBOL subroutine will be removed from the stack.

There is one case where you can still return to your C routine after executing
a CHAIN. This case occurs when you use the CALL RUN verb to initiate a
new run unit without halting the original. The new run unit can use CHAIN.
When the new run unit finally executes a STOP RUN, control returns to the
original run unit, which may still return to your C routine via an EXIT
PROGRAM.

However, we suggest avoiding these verbs.

6-50 Working with C and C++ Programs
6.5.3 Calling COBOL Routines

When calling a COBOL routine, you can either start a COBOL main program
(which is what the runtime normally does), or you can just call COBOL
subroutines.

6.5.3.1 Starting a COBOL main program

You can start a COBOL main program by calling the acu_runmain() routine
as follows:
void
acu_runmain(argc, argv, program_arg)
int argc;
char *argv[];
int program_arg;

This routine initiates a COBOL main program and never returns.

If you omit the COBOL program name (defaulting to “cbl.out”), then
program_arg should be the same as argc. Any arguments in argv following
program_arg are passed as CHAINING arguments to the COBOL program.
Note that program_arg is usually the same as the return value from
acu_initv().

Note: The arguments in argv before program_arg are not actually used in
acu_runmain(). This form is simply used for calling convenience.

6.5.3.2 Calling COBOL subroutines that call C routines

If you are calling COBOL subroutines in Windows, which in turn call C
routines, you may want to locate those routines in the calling executable file.
You can do this without relinking the runtime by registering your own “sub”
function in the C main program. You must add the following declaration to
your main program:
typedef int (*ACU_SUB_FUNC)(int argc, char **argv);
ACU_SUB_FUNC *acu_register_sub(ACU_SUB_FUNC *pFunc);

Using the C API: Two Approaches 6-51
The routine acu_register_sub() registers its argument (pFunc) as an
additional “sub” function to call. If pFunc is set to NULL, any existing
registration is removed.

The registered function is called just like “sub”, but it is called before “sub”.
Note that “sub” is still called if the registered function returns the constant
NotFound.

Example

The following C routine calls a COBOL program which, in turn, calls a C
program named “MSGBOX”:
#include <stdio.h>
#include <windows.h>
#include "sub.h"

extern int __stdcall AcuInitialize(char *cmdLine);
extern void __stdcall AcuShutdown(void);

// This is the "sub" function that will be registered
int __cdecl local_sub(int argc, char **argv)
{

if (strcmp(argv[0], "MSGBOX") == 0) {
MessageBox(NULL, argv[1], NULL, MB_OK);
return Okay;

}
return NotFound;

}
// local_sub
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE
 hPrevInstance, LPSTR lpCmdLine, int nCmdShow)
{

MessageBox(NULL, "Starting in 'C'", NULL, MB_OK);

// Initialize the runtime using the Visual Basic initializer.
// This prevents the runtime from calling exit() when halting.

AcuInitialize("");

// Install our "sub" handler
acu_register_sub(local_sub);

6-52 Working with C and C++ Programs
// Call the COBOL program. This one takes no parameters
// Assume that this program calls MSGBOX at some point.
// MSGBOX is located in "cblprog". It will be found
// because "cblprog" got registered with the runtime.

struct a_cobol_info cblinfo;
memset(&cblinfo, 0, sizeof(cblinfo));
cblinfo.a_cobol_info_size = sizeof(cblinfo);
cblinfo.pgm_name = "cblprog";
cblinfo.num_params = 0;
cblinfo.params = cblinfo.no_stop = 1;
acu_cobol(&cblinfo);

// De-initialize the runtime.
AcuShutdown();
MessageBox(NULL, "Back in 'C' - finished", NULL,
 MB_OK);
return 0;

}

Here is the COBOL program called above:
program-id. test.
working-storage section.
77 message-text pic x(80).
procedure division.
main-logic.

display "In COBOL program".
display "Calling MSGBOX"
move "This is a message" to message-text
inspect message-text replacing trailing spaces by
 low-values
call "MSGBOX" using message-text
display "Back from MSGBOX".
display "Press enter to execute STOP RUN ", no
 advancing.
accept omitted.
stop run.

Using the C API: Two Approaches 6-53
6.5.3.3 Canceling a COBOL subroutine

If you wish to simulate the COBOL CANCEL verb from C, you can do so by
calling the following routine:
void
acu_cancel(program)
char *program;

You pass this routine the name of the program you want to cancel. This name
should be identical to the string that you passed to the acu_cobol() function
to call that program. Canceling a program releases the memory it occupies
and resets its internal data to its initial state if you call the program again.
Also, any files left open in the program are closed. If program does not
match the name of any COBOL program in memory, then nothing happens
when you call this routine.

6.5.4 Exception Handling

The C library routines setjmp and longjmp provide functionality that cannot
typically be used in the context of the ACUCOBOL-GT runtime. These
routines provide “mark” and “goto” points in the call stack of C routines and
sometimes provide a convenient exception-handling mechanism.

Because these routines do not know about the COBOL call stack, they cannot
be used in cases where C routines call COBOL. However, the acusavenv()
and aculongjmp() functions allow batch programs or programs written for
a transaction processing system to restart or recover from a failed service
component.

Note: The acusavenv() and aculongjmp() functions are only usable from
C and are not recommended for programs that use the ACUCOBOL-GT
graphical user interface, which are typically event-driven and
multithreaded.

6-54 Working with C and C++ Programs
6.5.5 Unloading Programs from Memory

The ACUCOBOL-GT runtime allows you to cancel and unload programs
from memory based on the state of the object module. By default, the
CANCEL statements and corresponding C functions, acu_cancel() and
acu_cancel_all(), perform a physical cancel, placing programs in their initial
state. The runtime also allows you to enable logical cancels, which may
improve performance. For a description of runtime memory management
and physical and logical cancels, see section 6.3, “Memory Management,” in
ACUCOBOL-GT User’s Guide.

Both logical and physical cancels close open files and ensure that any
VALUE clauses are in effect when the program is called again. Physical
cancels also release any memory used by the program

The following C functions unload one or all programs from memory based on
the state of the object module:
acu_cancel()
acu_cancel_all()
acu_unload()
acu_unload_all()

The acu_cancel() and acu_cancel_all() functions perform a logical cancel.
The acu_unload() and acu_unload_all() functions perform a physical
cancel and force a subsequent call to load the new object file from disk.

Using these functions, an object module can be in one of four states:

• Active

• Loaded but inactive

• Not loaded

• Cached, which means the same as “Loaded but inactive” except that the
files and data items are set to their initial state.

Note that the LOGICAL_CANCELS and DYNAMIC_MEMORY_LIMIT
configuration variables affect how canceled programs are handled. For
information on these variables, see Appendix H in ACUCOBOL-GT
Appendices.

Using the C API: Two Approaches 6-55
6.5.6 Signal Handling

The ACUCOBOL-GT runtime normally installs default signal handlers to
ensure that the runtime system is cleaned up before terminating. In some
environments, the runtime may frequently need to switch back and forth
between executing COBOL programs and C programs. Used with the
runtime option, “--no-signal-handlers”, the acu_abend() function allows you
to optimize performance by specifying when to preserve signal handlers
based on the signal type.

In OLTP environments, for example, the server may need to install and
uninstall signal handlers while processing an EXEC CICS statement. In this
case, you can enable the ACUCOBOL-GT signal handlers when an
application is running COBOL code and enable the previously installed
signal handlers when the application is not running COBOL programs.

When you initialize the runtime with “--no-signal-handlers”, the runtime
does not call the ACUCOBOL-GT signal handlers. You can then install your
own signal handlers and call the acu_abend() function to perform the
equivalent of the ACUCOBOL-GT signal handlers when needed.

6.5.6.1 When to call acu_abend()

We recommend calling acu_abend() from your own signal handlers only
when an application is executing COBOL code when the signal occurs.
Otherwise, you can omit the call to acu_abend(). For example, under the
following circumstances, you do not need to call acu_abend():

1. You made a call to acu_cobol() to execute a COBOL program that then
exited, and

2. After acu_cobol() returns, your application executes some other
non-COBOL processing during which a signal is caught.

In fact, calling acu_abend() at this point may result in misleading error
messages because the signal did not occur when running a COBOL program.

6-56 Working with C and C++ Programs
6.5.7 Setting a Debug Method with acu_cobol()

Using the a_cobol_info structure in the acu_cobol() function, you can debug
COBOL programs from within a transaction processing environment using
an xterm window, a terminal, or the thin client. Note that implementing this
feature requires support from the vendor of the environment (for example, an
OLTP environment provider).

For more information, see the ACUCOBOL-GT supplement for your OLTP
environment and section 9.8, “Background Debugging Options.”

6.6 Other Interface Paths for COBOL and C

Calling C programs through the runtime and calling ACUCOBOL-GT
through the C API are the primary methods for interoperating with C.
However, the following three methods may be valuable in special cases:

• Using the C$SOCKET runtime routine, you can establish interprocess
communication via sockets. C$SOCKET is a low-level conduit that
provides lots of flexibility.

• Using the C$SYSTEM runtime library routine, you can send a C
command line to the program’s host system.

• Using named pipes, you can pass data between COBOL and C
programs. Named pipes are a method for exchanging information
between two unrelated processes.

These methods are described in the next three sections.

6.6.1 Connecting with C$SOCKET

If desired, you can facilitate communication between C and COBOL
programs at a socket level. ACUCOBOL-GT includes a C$SOCKET library
routine, which supports socket-level interprocess communication.

When communicating with sockets between COBOL and C, or any other
language, you must:

Other Interface Paths for COBOL and C 6-57
1. Determine which side is the client and which is the server.

2. Open a listening socket from the server process.

3. Open a connecting socket from the client process.

Of course, because the data format is totally open and undefined, the COBOL
and C programmers must agree on a common format.

The following sample code demonstrates this capability:
*The following code creates a server socket.
CALL "C$SOCKET" USING AGS-CREATE-SERVER, 8765
 GIVING SOCKET-HANDLE-1.

*The following code waits for a connection.
CALL "C$SOCKET" USING AGS-NEXT-READ, SOCKET-HANDLE-1, TIMEOUT.

*If you have a connection request, accept the connection.
CALL "C$SOCKET" USING AGS-ACCEPT, SOCKET-HANDLE-1.

*Read data from the connecting socket.
CALL "C$SOCKET" USING AGS_READ, SOCKET-HANDLE-2,
 SOCKET-IN, IN-DATA-LENGTH
 GIVING READ-AMOUNT.

*Write outgoing data back to the client socket.
CALL "C$SOCKET" USING AGS-WRITE, SOCKET-HANDLE-2,
 SOCKET-OUT, OUT-DATA-LENGTH.

Refer to Appendix I in ACUCOBOL-GT Appendices for more information
on the C$SOCKET library routine.

6.6.2 Starting a Program with C$SYSTEM

Another way to invoke a C program from COBOL is via the operating system
command line using the C$SYSTEM library routine. This routine combines
the functionality of SYSTEM and C$RUN.

To call a C program from COBOL via C$SYSTEM, you:

6-58 Working with C and C++ Programs
1. Call the C$SYSTEM library routine as described in Appendix I in
ACUCOBOL-GT Appendices. The C$SYSTEM routine submits the
command line to the host operating system as if it were a command
keyed in from the terminal.

Note that you can call C$RUN instead of C$SYSTEM to run the
command asynchronously.

2. Pass data from the C program to the COBOL program through a disk
file or database.

Refer to Appendix I in ACUCOBOL-GT Appendices for complete
information on the C$SYSTEM and C$RUN library routines.

6.6.3 Passing Data with Named Pipes

Another way to pass data between COBOL and C programs is through named
pipes. Named pipes are a method for exchanging information between two
unrelated processes.

Note: To communicate via named pipes, the COBOL and C programs must
be on the same host machine.

Technically, named pipes are files with known pathnames. Because a named
pipe is associated with a pathname, unrelated processes can open the file to
begin communications with one another. Because a C program can open a
named pipe just as it would a normal file, no special code is required. By
opening the file for reading, a process has access to the reading end of the
pipe, and by opening the file for writing, a process has access to the writing
end of the pipe. In effect, named pipes allow independent processes to
“rendezvous” their I/O streams.

Named pipes can be created in two ways: via the command line or from
within a program.

In UNIX, to create a named pipe with the file named “npipe” you can use the
following command on the command line:

% mkfifo npipe

Other Interface Paths for COBOL and C 6-59
Alternatively, you could create the named pipe from within your program
using:

int mkfifo(const char *path, mode_t mode)

where path is the path of the file and mode_t is the mode (permissions) with
which the file should be created.

A named pipe can be opened using the open() system call or the fopen()
standard C library function.

As with normal files, if the call succeeds, you get either a file descriptor or a
“FILE” structure pointer, depending on how you opened the file. You can
then use this information for reading or writing, depending on the parameters
you passed to open() or fopen().

Reading from and writing to a named pipe are very similar to reading from
and writing to a normal file. You can use the standard C library function calls
read() and write().

Named pipes can also be used on Windows systems. You create Windows
pipes with the CreateNamedPipe() API. You can then use the CreateFile(
) API to access the other end of the newly created named pipe.

Although named pipes can be very effective for communicating between
COBOL and C applications, bear in mind the following:

• Named pipes work only for processes on the same host machine.

• Named pipes can be created only in the local file system of the host.

• Named pipe data is a byte stream, and no record identification exists.

• Named pipes provide only a half-duplex flow of data. They are also
known as “fifos” for their method of “first in, first out” communication.
To establish full-duplex communication, you must create and manage
two pipes, which can be complicated and result in file deadlocks if you
are not careful.

6-60 Working with C and C++ Programs
6.7 Tracking, Monitoring and Debugging Memory

Several tools help you track, test, and debug memory in extend products,
including the runtime and linked C programs. These facilities are particularly
helpful when ACUCOBOL-GT programs interface frequently with C
programs.

All products have the ability to monitor, test, and debug memory allocations
in three ways. They can:

• Track memory boundaries, so that if any boundaries are corrupted a
report is generated. This facility is called memory bounds checking.

• Track how much memory is allocated in each of six subsystems. This
facility is referred to as memory tracking.

• Output a description of each memory allocation, reallocation, and
release by file and line. Each action can also include a programmed text
message. This facility is called memory handling descriptions.

These facilities are described in detail in section 6.4.3 in ACUCOBOL-GT
User’s Guide. How these facilities are accessed via C is described in the
following sections.

Note: The memory allocation features can be turned on and off using the
appropriate runtime options (described in section 6.4.3 of the
ACUCOBOL-GT User's Guide), and the available monitoring, testing, and
debugging features are determined by the state of the parallel runtime
option. For example, when boundary checking is turned off, memory
boundaries are not set and executing dbg_test() does not test the boundaries
of blocks allocated. Similarly, turning off memory tracking will stop
keeping track of newly allocated memory, and the numbers reported will
not reflect blocks allocated while the feature is off.

6.7.1 Memory Debugging via C

If you are using and writing C routines, you can access an abundance of
memory tracking information.

Tracking, Monitoring and Debugging Memory 6-61
If you allocate memory and want to tie into the ACUCOBOL-GT memory
debugging facilities, you can use the following functions to allocate,
reallocate, and free memory.
void *Amalloc(size_t size, int subsys, const char *file, long line,
 const char *call_desc);

void *Arealloc(void *ptr, size_t newsize, const char *file, long line,
 const char *call_desc);

void Afree(void *ptr, const char *file, long line,
 const char *call_desc);

size, ptr, and newsize are equivalent to the same parameters passed to
malloc(), realloc() and free().

subsys is one of: M_OVERHEAD (0), M_PROGRAMS (1), M_FILES (2),
M_WINDOWS (3), M_DYNAMIC (4), M_NOT_TRACKED (5). It can be
modified by ORing with the value M_NO_ZERO (0x8000) in order for the
memory to not be set to low-values before being returned to the application.
This parameter is used only if the memory tracking debugging feature is
turned on. The first five values (0 - 4) are what the runtime sends to the
debugger to report memory usage when the “U” command is specified.

file and line are the filename and line number of the operation, and are best
set by the standard C macros __FILE__ and __LINE__. These values are
used only if the memory description debugging feature is turned on.

description is a text description of the memory and is printed in the memory
description report.

call_desc is a text description of the call. If null, it defaults to M_alloc(size)
for Amalloc, M_realloc(ptr, newsize) for Arealloc, and M_free(ptr) for
Afree. This text is printed in the memory description report.

Note that you are not required to use these functions to allocate and free
memory used by your C routines. However, it is essential that memory
allocated by Amalloc() or Arealloc() not be freed by the system free()
function. It must be freed with Afree(). Similarly, memory allocated by
malloc(), calloc(), or realloc() must be freed with the system free() function,
and not the ACUCOBOL-GT Afree() function. Disregarding these rules will
almost certainly result in a memory access violation.

6-62 Working with C and C++ Programs
6.7.2 Turning Memory Debugging Features On and Off

To use the memory debugging functions from C, you must use the following
functions:
Aget_memory_debug_flag()

This function gets the current state of the memory debugging feature. It
returns an int.
Aset_memory_debug_flag(int flag)

This function sets the current state of the memory debugging feature. The int
values are described as follows:

The memory description value, as used by the runtime, is the low six bits
(though currently only three bits are used). In other words, the memory
description value can be retrieved by ANDing the returned flag with 0x003F.

The memory tracking feature is turned on if (flag & 0x0040) is non-zero.

The memory bounds checking feature is turned on if (flag & 0x0080) is
non-zero.

You can turn on memory handling descriptions by calling the function:
void Aset_mem_file_name(const char *filename);

Note that if memory descriptions are turned on but a filename is not given,
memory descriptions are not reported.

6.7.3 Reporting Allocated Blocks

A list of all allocated blocks can be written to the memory description file by
calling the function:
void Amem_dump(int final);

If final is non-zero, it is considered the final memory dump. The memory
description file is closed, and the memory description feature is turned off.

Tracking, Monitoring and Debugging Memory 6-63
6.7.4 Getting Memory Amounts

To get a report of how much memory each subsystem has allocated, you can
call:
size_t Aget_mem_used(int subsys);

subsys must be a value from 0 – 5. The function returns the amount of
memory allocated for that subsystem. The subsystem is the same as the
subsys passed to Amalloc().

6.7.5 Testing Memory Boundaries

When the boundary checking feature is turned on, the dbg_test() function
can be used to check that all memory boundaries are still intact. dbg_test()
has the following prototype:
void dbg_test(const char *description);

This checks all memory blocks allocated while boundary checking is on to
verify that memory boundaries have not been violated. It checks both the
beginnings and the endings of all such blocks.

Note: Memory bounds testing has a significant impact on performance and
should only be enabled to assist in program testing and debugging.

6-64 Working with C and C++ Programs

7
 Deploying ACUCOBOL-GT
Applications on the Web
Key Topics

COBOL on the Web .. 7-2
Web Thin Client .. 7-3
COBOL CGI Interface .. 7-4
Web Runtime... 7-5
Internet Helper Application... 7-6
Web Browsing from COBOL.. 7-6
COBOL Web Services... 7-7
Other Internet Solutions ... 7-8

7-2 Deploying ACUCOBOL-GT Applications on the Web
7.1 COBOL on the Web

We offer a variety of solutions for deploying COBOL applications on the
Internet. Some allow you to make your COBOL programs and data
accessible on the Web from popular Internet browsers. Others allow you to
harness the Internet in a more secure TCP/IP networking configuration.

Following are some of the Web-based solutions available to our customers:

• Web thin client – You can add the ACUCOBOL-GT® Web Thin Client
to your Web page so that when users visit your site, the thin client
downloads and installs on their machines and automatically launches
your application on the server. In thin client architectures, the
application logic runs on the server. Only the user interface displays on
the client.

• Web runtime – You can add the ACUCOBOL-GT Web Runtime to your
Web page so that when users visit that page, the runtime downloads and
installs on their machines and automatically launches your application
locally.

• COBOL CGI interface – You can create a Web interface to your
COBOL application and allow users to interact with pages on your Web
site via an HTTP browser or mobile device using ACUCOBOL-GT’s
Common Gateway Interface (CGI) extensions.

• Internet helper application – If your users already have a licensed copy
of the ACUCOBOL-GT runtime on their machine, they can gain access
to your applications on the Web by setting up the runtime as an Internet
helper application or viewer inside their browser. When they click a link
on your Web site, the browser knows to associate the application with the
ACUCOBOL-GT runtime.

• Web browsing from COBOL – ACUCOBOL-GT includes a Web
browser control that lets you add a variety of Internet features to your
COBOL program. With this control, your programs can support Web
browsing; display HTML pages; invoke e-mail, telnet, and FTP services;
and more. You can even give your program Windows print, file, and
clipboard capabilities.

Web Thin Client 7-3
• COBOL Web services – Using our Java and .NET interfaces, you can
expose your COBOL applications as Web services for use in Web
services deployments.

This chapter provides an overview of these approaches. These options are
described in detail in A Programmer’s Guide to the Internet, available on
your product distribution media.

7.2 Web Thin Client

If you want Windows users to launch applications from your Web site and
have the applications run exclusively on the remote server, you can use the
ACUCOBOL-GT Web Thin Client. In this scenario, end users simply visit
your Web site. The Web browser searches for the Web thin client on their
machines. If successful, it launches the program on the server. If it cannot
locate the Web thin client, it provides the software automatically with users’
permission. It then invokes the server application transparently and
“projects” the user interface back onto the client. The Web thin client is an
ActiveX version of our thin client solution.

Alternatively, end users can install the standard ACUCOBOL-GT Thin Client
on their local machine. They can install it from any ACUCOBOL-GT media
or, subject to appropriate licensing agreements, you can distribute it on your
Web site so that end users can download and install it from there. Using an
Active Server Page (ASP), Java Server Page (JSP), Visual Basic, or perl
script, you can automate the download and install process for users if you
like. Alternatively, they can download the thin client at no cost from the
Acucorp Web site, http://www.acucorp.com/support/downloads/. Once they
have the thin client installed, they can visit your Web site and click a link to
invoke your application.

Thin client users always have the option of executing the acuthin command
with an Internet server or IP address as part of the command parameters.
acuthin can launch programs on any server in a TCP/IP network, including
the Internet. The only components required on the client in this case are the
thin client software and an Internet connection. Users don't even need to
have a Web browser.

7-4 Deploying ACUCOBOL-GT Applications on the Web
With any of these thin client options, all application processing is performed
on the server. Usually, data access is considered local because the data
resides on the same server machine as the application. If you want to keep
data on a different server in a multi-tiered configuration, you can combine the
thin client with our AcuServer® technology. Please note that although the
thin client supports only Windows clients, it gives access to both Windows
and UNIX servers running the AcuConnect® application server software.

7.3 COBOL CGI Interface

Perhaps you want customers or users to run your applications by clicking a
link on your Web site, but you don’t want to require anything special of the
user’s machine (for instance, the presence of any ACUCOBOL-GT runtime,
be it a standard, thin client, or Web runtime). In this case, you can create a
new interface to your application using a markup language such as HTML,
WML, or XML. With a Web interface, your application can be interpreted
directly by the user’s HTTP browser or mobile device, and the processing
logic can remain in COBOL on the Web server.

In this scenario, you create your Web interface using one of many popular
authoring tools. Then you write a CGI program that can read CGI variables
submitted by the client to the server. This program can launch your COBOL
application or it can be a COBOL program itself. You can write it using
ACUCOBOL-GT or any other language you choose. If you write the
program in ACUCOBOL-GT, you do not have to UNSTRING the CGI
variables in the program, because ACUCOBOL-GT takes care of this for you
through special “IS EXTERNAL-FORM” syntax.

By default, your CGI program reads and writes HTML content for use in
standard HTTP browsers and mobile devices. But using configuration
variables, you can associate your program with the MIME content type for
WML so that data can be displayed on WML-based devices as well.

Once you build a Web front end and write a CGI program, your customers or
users can then visit your Web site and gain instant access to your COBOL
application running on the server.

Web Runtime 7-5
Note that CGI programs are inherently stateless—that is, they do not store
information about previous browser actions. If you require a persistent
connection to the browser, you can achieve this by adding pointers and
cookies to your CGI program, or you may choose a different method.

This option runs on any platform where ACUCOBOL-GT runs, but it also
requires the most coding. You can employ the CGI method wherever a user
interface via DISPLAY/ACCEPT statements is not used. This includes batch
processes, processes that use socket routines to communicate with an
external UI, BEA® Tuxedo® processes, and processes launched via
AcuConnect in distributed processing mode, to name a few.

7.4 Web Runtime

Another way to give end users access to your applications on the Web is to
provide runtime services through the ACUCOBOL-GT Web Runtime.

Using this approach, you set up a Web site and embed a link to your
ACUCOBOL-GT application. You embed the Web runtime in the link as
well by designating the URL of Acucorp’s download center in your HTML
coding. Users can then visit your site and click a link to launch the program.
If the Web browser detects that users do not yet have a runtime installed on
their machine, it automates the install process, with the users’ permission,
and then launches the COBOL program locally.

The Web runtime is available only on supported Windows machines, but it
gives users access to programs or data hosted on other platforms using
AcuServer and AcuConnect.

The ACUCOBOL-GT Web Runtime is geared for Microsoft Internet
Explorer environments. It relies on ActiveX technology and does not run on
any current versions of Netscape.

7-6 Deploying ACUCOBOL-GT Applications on the Web
7.5 Internet Helper Application

If your users already have a licensed copy of the ACUCOBOL-GT runtime
on their machine and they want to be able to access COBOL applications on
a Web site, one way to do this is to set up their runtime as an Internet helper
application or viewer inside their browser. Helper application and viewer
are browser terms referring to user-based software that can read and process
files of a given type. Netscape uses the term “helper application” to refer to
such software. Microsoft Internet Explorer uses the term “viewer.”

Because the ACUCOBOL-GT runtime has the ability to read and process
COBOL objects, it allows users to run COBOL programs that they encounter
when browsing your Web page. The main difference between this and a
standard runtime configuration is that your COBOL object files are on the
Web server and transmitted to the client machine via HTTP.

Keep in mind that the helper application/viewer is a full-featured runtime; it
has full access to your users’ machines, including system calls, memory, disk
and network access. Therefore, it should be used only with programs from
trusted sources, or in conjunction with the Internet security you have in place.

7.6 Web Browsing from COBOL

The ACUCOBOL-GT Development System includes an Internet-related Web
browser graphical control. The Web browser control lets you:

• Facilitate seamless Web browsing from your COBOL application.

• Display Web pages containing HTML, scripting, ActiveX controls, and
Java applet content.

• Display HTML pages distributed with your COBOL application.

• Include a variety of graphical and multimedia file types in your COBOL
application.

• Invoke e-mail, telnet, and FTP services from your COBOL application.

COBOL Web Services 7-7
• Display word processing, accounting, or presentation documents from
your COBOL application.

• Display Windows objects such as folders and files from your COBOL
application.

• Display Windows dialog boxes such as “Print,” “Print Preview,” and
“Page Setup,” allowing users to print the contents delivered by the
control.

• Display the Windows “Save As” dialog box allowing the user to save the
current control content to a file.

• Perform “Select All” and “Copy” clipboard operations.

ACUCOBOL-GT’s Web browser control is used in the same manner as other
graphical controls in ACUCOBOL-GT, except it opens a resource such as an
HTML page, graphical image, video, audio, e-mail program, file folder, or
any other resource that a Web browser can open. When you include the Web
browser control in your source code, your application launches Microsoft
Internet Explorer on your user’s machine and displays the resource you
specified.

For the control to work, your users must have Microsoft Internet Explorer
Version 4.0 or later on their machine.

7.7 COBOL Web Services

With extend technologies, you can expose your COBOL applications as Web
services for use in Web services deployments. Java technologies are
discussed in Chapter 2 of this guide. .NET technologies are discussed in
Chapter 5.

Providing Web Services

For those using the J2EE platform, we offer a native Java interface that
encapsulates the ACUCOBOL-GT runtime in a JAR file. By invoking the
Java class contained in this archive, a Web service running on J2EE can start
the runtime and run your COBOL program.

7-8 Deploying ACUCOBOL-GT Applications on the Web
For those using .NET, we offer a .NET interface that presents the runtime as
a dynamic link library. By invoking the .NET class contained in this DLL, a
Web service running on .NET can start the runtime and run your COBOL
program.

Consuming Web Services

To enable a COBOL program to consume a Web service, we provide the
C$JAVA library routine and the NETDEFGEN utility.

If the Web service is running on J2EE, the Java programmer packages the
WSDL from the Web service in a WAR file with all the necessary resources
including a Java client proxy, and the COBOL programmer invokes the
service by calling the C$JAVA routine and naming the proxy as a USING
parameter.

If the Web service is running under .NET, the .NET programmer generates a
client proxy from the Web service and incorporates that proxy into a .NET
assembly. The COBOL programmer then uses NETDEFGEN to create a
COBOL COPY file for the proxy. The programmer then copies the COPY
file into the COBOL program and uses the CREATE, DISPLAY, INQUIRE,
and MODIFY statements to access the Web service methods and events.

7.8 Other Internet Solutions

Not all Internet deployments involve Web browsers and HTTP. Our file
server, file interface, and/or application server technologies support IP
addresses and URL syntax so that you may leverage the Internet in virtual
LAN/WAN configurations and broaden the reach of your legacy assets in a
highly controlled setting.

• AcuServer can be used to provide access to Vision data over the Internet.

• AcuConnect can be used to provide access to server-resident COBOL
programs over the Internet, even programs that are distributed across a
number of different servers.

Other Internet Solutions 7-9
• AcuXDBC® can be used to provide access to ODBC data over the
Internet. AcuXDBC is combined with AcuXDBC Server for remote
processing of SQL requests.

• Acu4GL® and AcuSQL® can be used to provide access to relational
databases over the Internet.

• AcuXML can be combined with AcuServer to provide access to XML
documents over the Internet.

All extend technologies are designed to work in TCP/IP networks. Because
the Internet is just a large TCP/IP network, you can use these same proven
technologies in Internet deployments.

7-10 Deploying ACUCOBOL-GT Applications on the Web

8
 Accessing ACUCOBOL-GT
Applications from Mobile
Devices

Key Topics

Overview of Mobile Computing ... 8-2
Key Mobile Terminology .. 8-2
Mobile Platform Trends .. 8-6
Mobile System Design Issues ... 8-7
Service-oriented Architecture (SOA).. 8-10
Methods for Mobile Computing... 8-10

8-2 Accessing ACUCOBOL-GT Applications from Mobile Devices
8.1 Overview of Mobile Computing

What do we mean when we use the term mobile computing? Is it sending a
short text message via a mobile phone? Having wireless access to the
Internet from a PDA? Connecting to the office computer system from a hotel
room using a laptop? Using a barcode reader to collect data in the field?
Mobile computing is all these things, and more. The exact definition varies
with individual needs.

We can consider the concept of mobile computing as computers on the road:
a device/system combination that you use to conduct business at a location
removed from your office desktop machine. The remote location can be a
hotel room or branch office, or it can be your office at home. Your computing
needs can range from a simple query or “look-up” function from a handheld
device to obtain important information, to a portable office system with
real-time communication with the home office. For example, a field worker
might use a handheld device to collect data, such as water or power usage or
the current inventory level for a particular item. Or after finishing one job, a
plumber might use a handheld device to identify his or her next service stop.

It’s also possible that “mobile” employees aren’t leaving your office building
at all. So-called “campus workers” can use a notebook or tablet to continue
working when they are not actually sitting at their desks. They can, for
example, be working in the lunch room or taking notes in a meeting.

We see that mobile computing comprises an array of activities and devices.
This chapter explores some of the concepts you’ll need to know about as you
consider how to take advantage of mobile systems. We’ll start with
definitions of some basic mobile technology terms and a description of the
existing infrastructure. Then we’ll discuss current trends in mobile platforms
and some mobile system design issues. Finally, we describe a sample mobile
system and some helpful methods for achieving mobile computing.

8.2 Key Mobile Terminology

Mobile computing today is associated with an interesting lexicon that seems
to expand on a daily basis. WAP, WML, TCP/IP, 3G, WiFi—what do these
acronyms mean and how do they apply to the business of mobile computing?

Key Mobile Terminology 8-3
8.2.1 Languages

Hypertext Markup Language (HTML) is the familiar language used to
display Web pages. A subset of HTML, Wireless Markup Language (WML)
is specifically designed to present Web-based information on small handheld
devices like mobile phones.

Extensible Markup Language (XML) is a language for documents that
contain structured information. You can define custom tags and the structural
relationships between them based on the content of your document. Because
an XML document contains information about itself, it is an excellent vehicle
for transporting data from one location to another, for example, between
applications or between organizations.

8.2.2 Protocols

Several sets of protocols determine how voice and data are transmitted over
short and long distances. They include protocols for software, hardware, and
networks.

The standard protocol governing World Wide Web communications is the
well-known Hypertext Transfer Protocol (HTTP), which supports HTML for
Web page display. For wireless devices like mobile phones, the Wireless
Application Protocol (WAP) controls your access to information on the
Internet. WAP supports WML for display.

Bluetooth technology (named for the tenth century Danish king who unified
Denmark) allows wireless, radio-based communication between devices.
Bluetooth is a general-purpose standard that targets communication between
technical “gadgets.” For example, it could connect your laptop to a major
kitchen appliance like your refrigerator, if you so desired.

Transmission control protocol/Internet protocol (TCP/IP) is the layered
network protocol that has become the global standard for system-to-system
communications. It is designed to allow dissimilar systems to transmit data
to one another.

8-4 Accessing ACUCOBOL-GT Applications from Mobile Devices
8.2.3 Wireless Communication Standards

Mobile communications are managed by wireless networks, which have
system standards that govern the communications process. Each succeeding
generation of wireless standards has been developed to increase bandwidth
and speed of data transmission as well as the quality of voice transmission.
In this section, we present some background information about how these
standards have evolved.

8.2.3.1 The past and the present

Nordic Mobile Telephone (NMT) and the Advanced Mobile Phone System
(AMPS) were among the first standards for analog mobile phone systems.
Both are first-generation, or 1G, technology standards.

GSM, named for the group that developed it (Groupe Speciale Mobile), is
another wireless standard for mobile communication. Originally developed
as a common digital wireless standard for Europe, GSM is
second-generation, or 2G, technology. The GSM standard is based on Time
Division Multiple Access (TDMA), which divides a radio frequency into
time slots and then allocates each slot to a user.

Whereas TDMA has been the standard used in Europe, Code Division
Multiple Access (CDMA) is the standard used in the United States. CDMA
uses a digital encoding system to spread the signal for a call across a range of
frequencies. This technique allows more users to share the network
simultaneously.

The General Packet Radio Service (GPRS) uses GSM to handle data
transmission. This standard is known as 2.5G technology. GPRS is a
packet-switching technology, which means that users are always connected.

The 2.5G technology is currently the most widely used standard for mobile
communications. Mobile devices using this standard can provide voice and
data transmission, along with Web browsing capabilities. These types of
phones can also transmit e-mail. Networks using the 2.5G standard have
been implemented worldwide.

Key Mobile Terminology 8-5
WiFi, short for Wireless Fidelity, is more commonly known as the 802.11b
standard for wireless communication. WiFi provides short-range wireless
connectivity (approximately 150 feet) between devices, primarily for
computer networks. So-called “WiFi zones” may be located in airports,
hotels, and even warehouses in order to facilitate wireless communications.

8.2.3.2 The future

The Universal Mobile Telecommunications System (UMTS), also known as
3G, is a specification for the third generation of mobile communications. It is
based on an enhanced version of CDMA called Wideband CDMA
(W-CDMA).

Perceived as the successor to 2.5G technology, the 3G systems are intended
to provide higher data transfer rates than GPRS and are based on
packet-switching networks that are “always on.” Unlike GPRS, the UMTS
standard provides a dynamic connection, so that the bandwidth varies
depending on the requirements, providing a more efficient utilization of the
network.

An enhancement to GSM networks is EDGE, which stands for Enhanced
Data rates for Global Evolution. This technology is complementary to the
GPRS network upgrade to GSM and might be considered a “bridge” between
the 2.5G GPRS and future 3G technologies. EDGE allows increased
high-speed data transfer capabilities.

CDMA2000 wireless technologies build on CDMA to provide improved
transfer rates for users. Evolution Data Optimized (EV-DO) technology is
expected to provide high-speed data transmission, whereas Evolution Data
Voice (EV-DV) would allow increased network capacity for voice
transmissions and higher speeds for data transfers.

For enhanced wireless high-speed connectivity technology, the next step may
be WiMAX. WiMAX will operate like WiFi, but is expected to provide
high-speed connectivity from 1-10 miles, a much larger range than that in
your neighborhood WiFi hot spot. WiMAX could be the key to Internet
connectivity that covers entire communities without the huge investment in
cable or phone networks.

8-6 Accessing ACUCOBOL-GT Applications from Mobile Devices
8.2.3.3 3G status

A mobile device that uses the 3G standard with its higher frequency and
larger bandwidth can be expected to provide users with more capabilities and
much faster speeds for their mobile communications. The first applications
available for 3G devices have been primarily entertainment-oriented rather
than for business purposes. With phones that use 3G technology, users can
access video services covering the latest news and sporting events and make
video phone calls. At this time, however, 3G networks are implemented only
on a limited basis worldwide, and compatible mobile devices are expensive
and in short supply. Recent trends indicate that Europe may adopt a different
3G standard (UMTS) than Asia and North America (CDMA, EV-DO),
setting the stage for global network incompatibilities. Expected high
throughput rates have not been proved in reality, but the widespread rollout
of this type of network is still eagerly anticipated by users who want faster,
feature-rich mobile communications.

8.3 Mobile Platform Trends

With the proliferation of devices and operating systems in the market today,
possible combinations for mobile systems seem limitless. Today, mobile
computing technologies are evolving at an incredibly fast pace. From
handheld devices like Personal Digital Assistants (PDAs) and intelligent
mobile phones to solutions involving laptop computers and high-speed,
wireless Internet connections—how do you begin to choose the solution that
best fits your needs?

Research into current industry offerings reveals three major platforms
competing for dominance in the mobile device market—Pocket PC, Palm,
and Symbian. Each platform, in turn, uses its own operating
system—Windows Mobile OS, Palm OS, and Symbian OS, respectively.
Each has its own unique development and runtime environment. Because
none of these players has achieved industry dominance and standards in this
area are lacking, your choice among these three options is not clear-cut. And
if you want a single application to run on all three devices/operating systems,
you need third-party middleware to accomplish the interoperability.

Mobile System Design Issues 8-7
But the basic question is, can a device running a non-COBOL front-end
application communicate with your back-end COBOL program? The fact is,
with a carefully designed system architecture for your information system,
any one of these platforms/operating systems can be a viable front end to
your legacy COBOL application. If you already have a particular preference
for mobile device and operating system, the choice is easier. Odds are that it
can connect to and run your COBOL application.

8.4 Mobile System Design Issues

Several important elements must be carefully researched during the design
phase of a mobile computing system. User interface functions, security
issues, degree of connectivity, and record-locking requirements are some
topics that should be considered part of a complete system design. The
following sections provide more detail in these areas.

8.4.1 User Interface

User interface design for a mobile device involves several issues. You should
consider exactly what tasks your users need to accomplish. Are they
monitoring inventory, recording sales, or inquiring about a customer’s
current credit status? Because the screen size is much smaller than a standard
desktop computer, you cannot simply transfer your application from the
desktop to a mobile device. Concentrating on specific user tasks can help
you narrow down the information your screen should contain.

Ease of use is an important consideration in interface design. For example,
keyboards on mobile devices are quite small and may be very difficult to use
in the field. You might consider allowing users to choose options via check
boxes and radio buttons in the device display area. If you still require an
on-screen keyboard, be aware that it occupies valuable screen space.

Application operating rules are also different on mobile devices compared
with desktop operating systems. For example, a PDA operating system
allows only one application to be active at any one time. The user controls
which application is active, and the system makes the previously active
program dormant.

8-8 Accessing ACUCOBOL-GT Applications from Mobile Devices
8.4.2 Security

When you consider security for wireless operations, you need to cover three
main areas—device, application, and communications security.

Any valuable company data that resides on your mobile device must be
protected. The small size of a mobile device increases the chances of its
being misplaced or stolen. Device security can be achieved via the use of
power-on authentication functions that are usually available on PDA devices.
This password feature can protect data by ensuring that only the device’s
owner can access data. Another possibility is password protection for such
mobile device functions as the infrared communications feature. You might
decide to encrypt the data on your mobile device so it is unreadable to anyone
who does not have an appropriate algorithm and key.

As on desktop systems, data on a mobile device can be corrupted. Although
less common than on desktop systems, viruses can still attack and
compromise data on a wireless device. Third-party anti-virus software can
provide needed protection for the data stored on your mobile device.

Securing your application can involve a variety of user password
authentication and permissions protections. Your application can require a
password or other user authentication before it executes, or the database may
require a password for access.

Security for your communications is essential for wireless systems. The
nature of wireless networks can leave them more vulnerable to attack from
external sources than wired solutions. Wireless access points reside in an
unlicensed frequency band that can be easily breached by wireless hackers.
Secure Sockets Layer (SSL), a secure protocol based on TCP/IP, uses key
encryption and digital certificates to encrypt communication. A Virtual
Private Network (VPN) can also provide authentication and encryption
features to protect communications.

8.4.3 Degree of Connectivity

Another question is how your users are connected to the network. Does your
application require users to be always connected, mostly not connected, or
somewhere in between?

Mobile System Design Issues 8-9
Some applications may require a constant connection to the network in order
to function properly. This architecture is sometimes called thin client.
Depending on a constant wireless connection can be risky. The technology is
still not completely reliable, with long distances or other obstacles that can
interrupt an important data transfer.

Will your users collect data in the field on a mobile device and be connected
to the network only when they want to download the data to a server? In this
situation, a device needs to allow local data storage until it can be
“cradle-connected” to the server.

A mobile device can also store data locally for an application that may or may
not be connected to the network at any point in time. With this smart client
architecture, the application can still function and a user can access data with
or without a network connection.

8.4.4 Record Locking

Record-locking issues require careful consideration in wireless operations.
Business applications rely heavily on record locking to ensure consistent data
quality and to guard against conflicting updates by multiple users, a concept
known as concurrency. Unreliable wireless connections can complicate
record-locking issues. Mobile solutions may generally support three types of
concurrency—destructive, optimistic, or pessimistic concurrency.

With destructive concurrency, the last update to a record “wins.” The
application does not attempt to settle any update conflicts, giving it no control
over data updates. This situation can leave your data in an inconsistent state
if updates aren’t completed in the correct order.

Optimistic concurrency assumes that no data update conflicts exist. When a
user updates a data record, the original record is checked to see if it has
changed since the user accessed the record. If a conflict is detected, the user
is given the option to overwrite the record. If no change is detected, the
record is overwritten.

Pessimistic concurrency is probably the most familiar version of record
locking. This concept assumes a high probability of data update conflict. A
record selected for update remains locked until the user writes the update to
the database. Accomplishing this form of concurrency with desktop network

8-10 Accessing ACUCOBOL-GT Applications from Mobile Devices
systems is relatively straightforward. For a mobile application, the process is
a bit more complicated. In a mobile environment, we accomplish this by
having the application maintain lock information in individual records or in a
lock table. This solution is not foolproof. If the data is also available via
ODBC or another data source, these locks do not prevent other users from
accessing and updating data.

8.5 Service-oriented Architecture (SOA)

What we need to achieve our mobile computing solution is a technology that
allows us to integrate our COBOL back-end application with a non-COBOL
front end in a wireless environment. A business application designed with
service-oriented architecture (SOA) is well suited to this task. What is SOA?

SOA is a methodology for developing applications with standards-based
interfaces that accept specific inputs and deliver expected outputs. It uses the
simple design principles from various structured programming methods.
SOA has emerged in recent years as a logical way for organizations to keep
and reuse existing legacy applications while integrating them with new
technologies.

With SOA, the front-end program can be written in Java/JSP, VB/ASP,
Delphi, XML, HTML, or a variety of other languages. Your front-end
operating system can be Windows Mobile, Palm, or Symbian. This
platform-independent solution provides insurance for your back-end
architecture against any major changes in language or platform on the front
end. Best of all, you can leverage your proven COBOL back-end application
in a modern, wireless environment.

8.6 Methods for Mobile Computing

You can use the following ACUCOBOL-GT technologies as part of a mobile
computing strategy:

• ACUCOBOL-GT COM Server

Methods for Mobile Computing 8-11
• ACUCOBOL-GT Common Gateway Interface (CGI) language
extensions

• ACUCOBOL-GT runtime and Short Message Service (SMS) processing

The following sections provide brief descriptions of these technologies.

8.6.1 ACUCOBOL-GT COM Server

The ACUCOBOL-GT COM Server is a COM object that contains the
ACUCOBOL-GT Windows dynamic link library (DLL). It allows your
ACUCOBOL-GT application to be called by a program written in any
COM-compliant language or by a third-party, off-the-shelf package that
includes a COM interface for a mobile device. The front-end application
connects to the ACUCOBOL-GT COM Server via the TCP/IP network. Your
back-end application is in ACUCOBOL-GT. This deployment can be a
handy solution when you want to transfer data to a server, which processes
the raw data into useful information like summary reports and inventory lists.

8.6.2 ACUCOBOL-GT CGI Language Extensions

With the ACUCOBOL-GT runtime, users who need to access query or
look-up services have a way to quickly and easily obtain important
information. The front end consists of WML- or HTML-compliant software
like a mobile device browser that can communicate via CGI with a Web
server. The communication link is TCP/IP. On the back end, you have your
COBOL application, a COBOL-based CGI program for interfacing between
the mobile device and the COBOL application, and the ACUCOBOL-GT
runtime. You can use this technology for applications in which you initiate a
request for information, for example, up-to-the-minute currency exchange
rates or the status of product shipments.

8-12 Accessing ACUCOBOL-GT Applications from Mobile Devices
8.6.3 ACUCOBOL-GT Runtime and Short Message
Service (SMS) Processing

The SMS system of text messaging is gaining in popularity as the use of
mobile phones increases worldwide. An ACUCOBOL-GT application can
send and receive SMS text messages by using the C$SOCKET library routine
to communicate over TCP/IP with a telnet service available through a mobile
service network provider. With this technology, your ACUCOBOL-GT
application can be written to send an alert message to your mobile device, for
example, when inventory for a particular item falls below a specified level or
when report generation is completed.

Combining this solution with the ACUCOBOL-GT CGI option opens the
door to an even more interesting possibility. For example, when SMS alerts
you to that change in inventory, and your mobile device supports WAP, our
CGI extensions allow access to a supplier’s Web page so you can replenish
your stock.

9
 Working with Transaction
Processing Systems
Key Topics

Introduction ... 9-2
What Is Transaction Processing? .. 9-2
IBM CICS ... 9-3
Working with the IBM CICS Transaction Gateway.................................. 9-4
Working with IBM TXSeries CICS .. 9-7
Working with UniKix Mainframe Rehosting Software 9-9
Working With BEA Tuxedo .. 9-10
Background Debugging Options.. 9-15

9-2 Working with Transaction Processing Systems
9.1 Introduction

Because much of the world’s business data is processed by COBOL, and
billions of COBOL transactions occur daily, it’s important for
enterprise-level COBOL applications to interoperate smoothly with online
transaction processing (OLTP) software. Transaction processing software
furnishes applications with secure access to one or more data sources, both
within local networks and across wide-area networks or the Internet.
Regardless of the individual transaction processing package, the key features
of this type of software are its ability to maintain data integrity, its scalability,
and the security mechanisms it provides.

ACUCOBOL-GT® can interoperate with a variety of online transaction
processing packages. This chapter provides some background information
about transaction processing in general, and provides some information about
configuring OLTP software to work with ACUCOBOL-GT, specifically with
IBM® CICS® and BEA Tuxedo®. It also contains a section describing some
debugging options for use in a transaction processing environment. For more
information on the use of ACUCOBOL-GT with IBM TXSeries® CICS or
Sun™ Mainframe Rehosting environments, please contact your Acucorp
Sales Professional.

9.2 What Is Transaction Processing?

A transaction is unit of work consisting of one or more requests or updates
to a system. A transaction is successfully completed with a commit
command that finalizes all changes. If the transaction is not successful, a
rollback command is used to undo changes and return the system to its
previous state. A transaction, therefore, processes either all or none of its
changes.

Consider, for example, the common transaction of withdrawing money from
a checking account. The customer enters the request at an automated teller,
causing a program to check the availability of funds, dispense the money, and
update the balance of the user account. Each step must be completed before
a successful transaction can occur.

IBM CICS 9-3
Transaction processing software keeps track of each part of the transaction,
ensuring data integrity by verifying that the transaction has been successfully
completed before performing any updates.

The four basic properties of a transaction are known as the ACID properties:

• Atomicity – A transaction as a whole is either done or undone. If a
transaction involves more than one discrete piece of information, all
pieces are committed or none are.

• Consistency – A transaction leaves the data in a valid state. Either a
change has been committed and the data has a new valid state, or no
change occurs and the data returns to its previous valid state.

• Isolation – Each transaction occurs independently of other transactions
taking place in the same environment.

• Durability – The effects of a transaction are permanent, so that even in
the event of a system failure, upon restart, the data is available in its
correct state.

9.3 IBM CICS

The IBM Customer Information Control System (CICS) is a widely installed
transaction processing software system. A large number of transaction
processing requirements running on mainframes today are handled by CICS
systems. IBM designed CICS to support large numbers of terminals and a
large transaction volume with fast and consistent response time. CICS can be
described as an interface between CICS applications and the operating
system.

CICS or CICS-compatible environments are now available for many
platforms, including server support for OS/2, AIX, Windows NT, MVS/ESA,
AS/400, HP-UX, Digital OSF/1, Siemens SINIX, Sun Solaris, and other
UNIX platforms.

9-4 Working with Transaction Processing Systems
In supported environments, ACUCOBOL-GT offers the following features:

• Dynamic loading of shared libraries, including EXTFH libraries used for
batch programs, so you can customize your environment by simply
specifying an environment variable

• Debugging of CICS COBOL programs with the ACUCOBOL-GT
runtime debugger

• The ability to interoperate with a wide variety of utilities that help you
replicate mainframe functionality on open systems, such as external sort
modules and utilities to handle complex calculations

9.4 Working with the IBM CICS Transaction
Gateway

The Windows versions of the ACUCOBOL-GT runtime support calls to the
IBM CICS Universal Client Interface for Windows. The runtime attempts to
automatically load the CICS dynamic link library (DLL) if any subroutine
beginning with “CICS” is called. If the DLL is available and loadable, the
CICS function is called using the standard DLL call interface.

In some cases, the IBM CICS Transaction Gateway product may include a
“.lib” file instead of a DLL. When this occurs, the Windows runtime DLL
must be relinked to include the “.lib” file in order to access CICS functions.
The relinking process is described below.

Working with the IBM CICS Transaction Gateway 9-5
Whether you are working with a DLL or “.lib” file, a properly configured
ACUCOBOL-GT runtime allows you to access IBM applications on a
mainframe or other host, and to use ACUCOBOL-GT graphical interface
capabilities as a front end to your IBM COBOL applications.

To take advantage of these capabilities, you must install the appropriate
combination of the CICS Transaction Gateway and CICS Universal Client
Interface on your machine and configure it according to the IBM
documentation. IBM documentation includes specific information on CICS
and sample COBOL programs that you can use to test your client/server
connection.

9.4.1 Including the Transaction Gateway Routines in the
Runtime

For Windows systems, IBM may supply the Transaction Gateway library as
a “.lib” file rather than a DLL. As mentioned earlier, the Transaction
Gateway routines must be linked into the ACUCOBOL-GT runtime. The
process uses the direct call method described in Chapter 6 of this guide.

To link the Transaction Gateway library into “wrun32.dll”, you must:

1. Include the following lines in the file “direct.c”, located in the acugt\lib
folder of your ACUCOBOL-GT installation.

extern short CICS_ExternalCall();
extern short CICS_EciListSystems();
struct DIRECTTABLE LIBDIRECT[] = {
 { "CICSEXTERNALCALL", FUNC CICS_ExternalCall, C_short },
 { "CICSECILISTSYSTEMS", FUNC CICS_EciListSystems, C_short },
 { NULL, NULL, 0 }
 };

9-6 Working with Transaction Processing Systems
2. Open Visual Studio .NET and load the solution file “wrun32.sln”,
located in the acugt\lib folder.

3. Open the Project/Properties interface, expand the Linker folder, and
do the following:

a. Select Input, then add the name of the Transaction Gateway
library, “cclwin32.lib”, next to “Additional Dependencies”.

b. Select General and add the path to “cclwin32.lib” on the
“Additional Library Directories” line. For example:

C:\Program Files\IBM\IBM CICS Transaction Gateway\lib

4. On the main menu bar, select Build/Rebuild Solution. This command
recompiles all of the required files, including “direct.c”, and links
“cclwin32.lib” into “wrun32.dll”.

9.4.2 Connecting to CICS Applications

If you are using the CICS client, you must compile your ACUCOBOL-GT
application with the “-Dw32” and “-Da4” options. These are data format
switches. The runtime does not require any special switches to use the IBM
library routines or COPY files once you have compiled with the correct
options. You must also set the USE_CICS runtime configuration variable to
a value of “1”.

Note: Compiling with any other “-D” flags could cause problems in
compilation, so use them with caution.

ACUCOBOL-GT supports the External Call Interface (ECI) portion of CICS.
The ECI allows a non-CICS application to call a CICS program that resides
on a CICS server. The non-CICS application does not issue any CICS
commands itself; these commands are issued by the called program running
on the server. The call is no different from any other call built into a library
or COBOL program. The CICSEXTERNALCALL ECI call can be used to:

• Call programs (synchronously or asynchronously).

• Request STATE information (synchronously or asynchronously).

Working with IBM TXSeries CICS 9-7
• Check on previous asynchronous calls using a number of GET REPLY
options.

ACUCOBOL-GT also supports the CICSECILISTSYSTEMS call, which is
used to determine the servers available to receive CICSEXTERNALCALL
requests.

9.5 Working with IBM TXSeries CICS

Based on the solid foundation of mainframe CICS, the IBM TXSeries
products allow you to build on technologies that offer interoperability with
mainframe systems and the flexibility to integrate with modern programming
models. TXSeries CICS provides an application environment for running
COBOL programs in high-volume, OLTP systems. Because TXSeries
supports the CICS API and SPI (Systems Programming Interface), many
CICS application programs can run on TXSeries without any changes.

The TXSeries CICS platform includes:

• A wide range of supported relational database managers

• Full interoperability with other CICS-compatible environments

• Familiar EXEC CICS APIs

• Integration with modern desktop environments

• Easy access to enterprise-wide e-business applications

• Options to extend existing investments while taking advantage of new
technologies like the IBM WebSphere® platform

• Communication with back-end CICS and the Information Management
System (IMS)

As with mainframe CICS, TXSeries launches a transaction and then
initializes the entire operating environment, performing virtually all of the
data access and communication services, launching the application programs,
and handling calls from one program to another.

9-8 Working with Transaction Processing Systems
For more information on using ACUCOBOL-GT with TXSeries CICS,
please contact your Acucorp Sales Professional.

For additional information on TXSeries, refer to the IBM Web site at
http://www.ibm.com/software/htp/txseries/support.

9.5.1 How TXSeries CICS Works with ACUCOBOL-GT

With the integrated TXSeries and ACUCOBOL-GT environment, you can
take advantage of features such as:

• A prelinked version of the ACUCOBOL-GT runtime system shipped
with TXSeries that eliminates the manual build process as you configure
and deploy on TXSeries CICS

• A range of security options that address processing requirements in the
distributed environment, including CICS-based security for resource and
transaction access, or open systems models such as the Distributed
Computing Environment (DCE)

• Communication between TXSeries and the mainframe CICS TS via the
standard CICS Intersystem Communication (ISC) facilities. With this
feature, you can stage your migration process over time to help reduce
risks and extend strategic ACUCOBOL-GT applications as you migrate
them.

The existing mainframe process to compile and deploy COBOL programs
remains largely unchanged: CICS programs are precompiled in TXSeries to
translate EXEC CICS syntax to COBOL verbs. Programs are then compiled
with the ACUCOBOL-GT compiler. TXSeries initializes the runtime, waits
for requests from clients, and processes those requests, allowing
ACUCOBOL-GT programs to communicate with databases and other
programs or clients, and to display screens using CICS services.

9.5.2 Modernizing Applications

After you move your COBOL CICS applications to the TXSeries
environment and ACUCOBOL-GT, you have extensive options for
modernization, such as:

Working with UniKix Mainframe Rehosting Software 9-9
• Invoking CICS programs through the ECI to perform back-end
processing for Web services.

• Increasing developer productivity with the AcuBench® integrated
development environment from Acucorp, which extends and enhances
the ACUCOBOL-GT compiler and runtime system with a powerful suite
of GUI-based development tools.

• Updating the user interface for migrated applications by adding .NET
clients to invoke CICS programs through the ECI.

9.6 Working with UniKix Mainframe Rehosting
Software

UniKix™ Mainframe Rehosting Software, from Clerity Solutions, enables
customers to rehost legacy mainframe applications on open systems
platforms such as IBM AIX, HP-UX, Sun Solaris, and Linux, making it
feasible to replicate mainframe functionality on open systems without
needing to rewrite applications in a new language. Two products, Unikix
Transaction Processing Environment (TPE) and UniKix Batch Processing
Environment (BPE), together provide an environment for running CICS and
batch applications on open systems.

Similar to mainframe CICS, Unikix TPE software launches a transaction and
then initializes the entire operating environment, handling all the data access,
communication, and calls between programs. UniKix also provides several
facilities to share resources and data between UniKix regions and IBM CICS
systems. An IBM CICS mainframe system appears as a remote region to
UniKix through Intersystem Communication (ISC).

UniKix BPE software provides a complete batch job execution facility. The
software is composed of independent processes that manage and schedule
batch programs according to configuration parameters, such as start time and
job priority. UniKix provides functionality to allow administrators to assign
job attributes, change job attributes, and determine the current status of a job.

ACUCOBOL-GT supports CICS mainframe logic running in the UniKix
TPE and UniKix BPE environment in a number of ways:

9-10 Working with Transaction Processing Systems
• Dynamic loading of shared libraries, including EXTFH libraries used to
run batch programs

• Interoperability with a variety of utilities that replicate mainframe
functionality, such as external sort modules and utilities that handle
complex calculations

• Debugging of CICS COBOL programs using the ACUCOBOL-GT
runtime debugger

• Familiar EXEC CICS APIs

• Integration with modern desktop environments

• Easy access to enterprise-wide e-business applications

For more information on using ACUCOBOL-GT with UniKix, please
contact your Acucorp Sales Professional.

9.7 Working With BEA Tuxedo

ACUCOBOL-GT developers using the BEA Tuxedo platform for distributed
transaction processing and message-based application development can
create Tuxedo clients and Tuxedo services from ACUCOBOL-GT
applications. Acucorp is certified for Tuxedo 9.1 on all supported platforms.

Working With BEA Tuxedo 9-11
ACUCOBOL-GT and BEA Tuxedo can work together in either a distributed
processing (client/server) environment or a thin client environment. In a
distributed processing environment, the interaction occurs as shown in the
following diagram:

In this environment, ACUCOBOL-GT interoperates with BEA Tuxedo using
the same routines used to call C programs (COBOL-calling-C routines on the
client and C-calling-COBOL routines on the server).

In BEA Tuxedo client/server distributed applications, the client requests the
services of a server, which may have multiple services to provide, and the
outcome of the request is returned to the client by the service. This
architecture lets you divide application processing among multiple machines
to optimize performance.

9-12 Working with Transaction Processing Systems
ACUCOBOL-GT and BEA Tuxedo can also work together using Acucorp’s
Thin Client technology. The thin client architecture uses AcuConnect®,
Acucorp’s remote application server, as shown in the following diagram:

Because BEA Tuxedo is based on C, the procedure for interfacing with
Tuxedo is much like the procedure for interfacing with C routines in general.
This means that external C variables need to be defined in “direct.c”.

To prepare BEA Tuxedo to interface with ACUCOBOL-GT, C code must be
added to the initialization and termination routines of BEA Tuxedo servers,
then linked into the server using the BEA Tuxedo buildserver command.
This process is further explained in the sections that follow.

Working With BEA Tuxedo 9-13
9.7.1 Creating a Tuxedo Client Program

A BEA Tuxedo client is a software module that collects a user request and
forwards it to a server that offers the requested service. To create a Tuxedo
client with ACUCOBOL-GT, you must relink the ACUCOBOL-GT runtime
with the Tuxedo libraries. This section provides an overview of the steps
necessary to create the Tuxedo client.

1. Add the necessary Tuxedo calls to your ACUCOBOL-GT program.
These calls—used to open and close resources, begin and end
transactions, and support communication between clients and
servers—are collected in a Tuxedo API known as the Application to
Transaction Monitor Interface (ATMI). ATMI functions are described in
the Tuxedo documentation.

2. Recompile your program to establish it as a BEA Tuxedo client.

3. Relink the ACUCOBOL-GT runtime on the client machine to include
the BEA Tuxedo client libraries. The client libraries vary, depending
on the BEA Tuxedo version and the platform you are using. To
determine the Tuxedo client libraries used on a particular client, use the
BEA Tuxedo command:

buildclient -C -v -w

where:

Because the Tuxedo libraries are external C routines, link the libraries
into the ACUCOBOL-GT runtime using the direct method of calling C
routines described in Chapter 6.

4. Set client environment variables.

-C Specifies COBOL compilation

-v Specifies that buildclient should work in verbose mode,
displaying the compilation command on standard output

-w Specifies that the client is to be built using the workstation
libraries; used only with the WSL

9-14 Working with Transaction Processing Systems
9.7.2 Creating a Tuxedo Server

A BEA Tuxedo server is a process that provides one or more services to a
client. To build server processes, applications combine their service
subroutines with a controlling program provided by the BEA Tuxedo system.
Using ACUCOBOL-GT, this involves the following steps:

1. Create and compile an ACUCOBOL-GT program that performs a
specific task or service.

2. Create a configuration file for the service to establish the identifiers

3. Edit the “appinit.c” program (provided by BEA) to include runtime
initialization and shutdown functions specific to ACUCOBOL-GT.

The program calls the standard BEA Tuxedo ATMI initialization and
shutdown subroutines tpsvrinit() and tpsvrdone(). The tpsvrinit
routine calls two functions: tpopen opens the resource manager, and
userlog posts a message that the server has started. The tpsvrdone
routine also calls a tpclose function, which closes the resource manager

4. Link the ACUCOBOL-GT runtime libraries into the controlling
program provided by the BEA Tuxedo system.

On UNIX/Linux servers, use the buildserver command, adding the
ACUCOBOL-GT runtime libraries. Acucorp supplies a makefile that
can be used to simplify this process.

On Windows servers, relink the required Tuxedo libraries into the
ACUCOBOL-GT runtime DLL, then issue the buildserver command
with the ACUCOBOL-GT runtime libraries.

9.7.3 Running Your Tuxedo Application

1. Use the tmloadcf command to load the server configuration file.

2. Use the tmboot command to boot the application.

3. Run the client application using the runcbl command.

Background Debugging Options 9-15
9.8 Background Debugging Options

Various methods are available for debugging programs running in
background mode in a transaction processing environment. These are
described in sections 9.8.1 and 9.8.2.

9.8.1 Background Debugging With an xterm

With a properly configured X Window System, you can debug programs
executing in background mode (with the “-b” runtime flag) by specifying that
debugging I/O be sent to an xterm window on a specified X server. Use the
following procedures:

1. Set the DISPLAY environment variable on the system executing the
program to point to a valid X server. This setting must be made before
the runtime is invoked.

2. Give the user executing the program rights to start an xterm on the
specified X server.

3. Modify the PATH environment variable on the system executing the
program to point to the xterm directory.

4. Add both the “-b” and the “-d” flags to the runtime command line.

Use the standard debugging commands described in the rest of this section to
manage your debug session.

Some users may want to debug with an xterm, but don't actually want to
debug with the xterm executable because it doesn't have some of the abilities
they need (such as displaying non-ASCII characters). You can specify the
executable used to show the debugger on UNIX by setting the
“XTERM_PROGRAM” runtime configuration variable.

 Its default value is “xterm”, but it can be set to any compatible program such
as dtterm or kterm. The runtime executes this program when it tries to create
the program for background debugging. Note that the runtime passes some
arguments to this program, so this program must be able to execute with those
arguments. These arguments are:

-title “title of the window”

9-16 Working with Transaction Processing Systems
-Sccn
-display Xserver-name

The “-Sccn” option allows the program to be used as the input and output
channel for the runtime, and is absolutely required. Without this option, the
program won't know to display data from the runtime.

9.8.2 Defining debugging methods with “ADM_t”

All of the methods described in this section require support from the vendor
of the transaction processing software. Please refer to your vendor’s
documentation for implementation details.

The a_cobol_info structure described in lib/sub.h includes the variable
ADM_t debug_method, which describes which debugging method is used.
The ADM_t type is described in lib/sub.h as an enumeration with the
following values:

A separate char *debug_method_string setting depends on debug_method, as
described in the following sections.

9.8.2.1 Using an xterm

To debug using an xterm, first set debug_method to ADM_XTERM. If the
DISPLAY environment variable is not set (or set incorrectly), set
debug_method_string to point to your X server.

At execution time, the ACUCOBOL-GT runtime creates an xterm with the
COBOL program stopped at the first line of the program.

Note that when the debugger starts, debugger settings are loaded from a file,
and changes to settings are saved to that file as the debugger runs. By default,
that file is given the name of the user who started the background or server
process. In some environments, this could mean that multiple users of the

ADM_NONE no debugging

ADM_XTERM debug using a new xterm

ADM_TERMINAL debug using an existing terminal through runcbl

ADM_THINCLIENT debug using a waiting thin client

Background Debugging Options 9-17
debugger could share the same debugger settings. In such a case, breakpoints
set or cleared by one user, for example, would affect what appeared in every
other user’s debugger window.

To avoid this potential problem, use the “acudebug.user” X resource to
specify separate debugger settings files for different users. For example, in
your “~/.Xdefaults” file, you could add the line:
acudebug.user: dsmith

Debugger settings would then be loaded from and saved to a file called
“dsmith.adb”.

See your X server resource database documentation (“man xrdb”) for
additional instructions on how to set X server resource properties.

9.8.2.2 Using a terminal

To debug using an existing terminal, use the following procedures:

1. Set debug_method to ADM_TERMINAL, then set
debug_method_string to the tty string on which you will execute runcbl.

2. Log on to the UNIX machine that hosts the OLTP software and note
the tty device used.

3. On that machine, execute the runtime with the “--wait” flag. When this
option is used, the runtime waits for the OLTP runtime to contact it.

Note that if you use an additional command-line option, “--restart”, the
runtime restarts itself after each debugging session. This option is
particularly helpful if you have transactions that require multiple
COBOL programs and you want to debug all of them. Keep in mind,
however, that if you use the “--restart” option, you must use the interrupt
sequence (Ctrl+C) to terminate the runtime process when you are
finished debugging.

4. Execute the transaction you intend to debug, ensuring that the tty
variable in your transaction debugging screen is set correctly. When
the transaction executes, the runtime debugger appears on the terminal,
allowing you to set breakpoints, step, evaluate variables, and so on.
Once the OLTP runtime terminates the transaction, the terminal returns
to a shell prompt.

9-18 Working with Transaction Processing Systems
9.8.2.3 Using the thin client

Set debug_method to ADM_THINCLIENT. Set debug_method_string to
client:port, where client is the host on which acuthin is executing and port
is the port on which it is listening.

On the Windows client

1. Execute the acuthin command with “--wait [--port nnnn]” where nnnn
is the desired port number. The thin client waits for a runtime to connect
to it and behaves as the thin client normally does.

In this mode, acuthin has an additional command-line option,
“--restart”. When you specify this option, the thin client restarts itself
after each debugging session. If you have transactions that require
multiple COBOL programs, you can easily debug all of them. Keep in
mind, however, that when you use the “--restart” option, you must use
the Windows Task Manager to terminate the thin client process when
you have finished debugging.

2. When the runtime debugger screen appears, you can debug your
application with all the usual runtime debugger options.

Please note that in a transaction processing environment, if the server
program attempts to connect to acuthin and acuthin is not running, the
return value will be “7”, which is COBOL_NONFATAL_ERROR.

On the server

If you are using a UNIX server, set the A_DEBUG_USING_THIN
environment variable to a non-zero numeric value before the transaction
server initializes the runtime. This tells the runtime to initialize in a mode
which allows it to communicate with the thin client. After you enable this
mode, you may not use terminal or xterm debugging.

In Windows server environments, the transaction runtime is automatically
initialized in the mode that allows it to communicate with the thin client
whenever it is run from within a transaction server (such as CICS).

10
 Working with Messaging
Middleware
Key Topics

Support for IBM WebSphere MQ ... 10-2
Support for IBM Shared Libraries .. 10-3
Support for WebSphere MQ COPY Files ... 10-3
Connecting to WebSphere MQ Applications ... 10-4

10-2 Working with Messaging Middleware
10.1 Support for IBM WebSphere MQ

IBM WebSphere MQ, formerly MQSeries®, is messaging middleware
designed to enable application integration. The WebSphere MQ products
help business applications to exchange information across different platforms
by sending and receiving data as messages. WebSphere MQ provides base
messaging functions for servers and clients. It handles network interfaces,
communications protocols, and workload distribution so that messages can
be delivered promptly.

WebSphere MQ provides a consistent multiplatform,
application-programming interface for coding messaging tasks. It supports
many different platforms, including AIX, Compaq NSK, DOS, DYNIX/ptx,
HP UX, Linux, Mac OS, MVS/ESA, NUMA-Q, OpenVMS Alpha,
OpenVMS VAX, OS/2, OS/390, OS/400, Solaris, UNIX, Unisys 2200 Series,
Unisys A Series, UnixWare, VM/ESA, VSE/ESA, Windows 2000, Windows
3.x, Windows 95, Windows 98, Windows NT, and Java.

ACUCOBOL-GT supports IBM WebSphere MQ in the following ways:

• The Windows versions of the ACUCOBOL-GT runtime support calls to
WebSphere MQ. When properly configured, the Windows runtime
attempts to automatically load the WebSphere MQ DLL if any
subroutine beginning with “MQ” is called. If the DLL is available and
loadable, the WebSphere MQ function is called via the standard DLL
call interface.

• The ACUCOBOL-GT runtime for UNIX supports the shared libraries
provided with IBM WebSphere MQ without relinking.

• Both the Windows and UNIX runtimes use the COBOL COPY files
supplied by IBM WebSphere MQ

Properly configured, the ACUCOBOL-GT runtime allows you to access IBM
applications on a mainframe or other host, and to use ACUCOBOL-GT GUI
interfaces as a front end to your IBM COBOL applications.

Support for IBM Shared Libraries 10-3
10.2 Support for IBM Shared Libraries
For UNIX and similar systems, the ACUCOBOL-GT runtime supports the
shared libraries provided by IBM WebSphere MQ. Your programs running
on UNIX can call platform-specific shared libraries to load them, and then
call the necessary WebSphere MQ routines. You should not need to relink the
runtime with the libraries in order to call the routines.

If you are in a UNIX environment, after installation of the client, identify the
location of the shared libraries that contain the call routines. Confirm that the
path matches the path you provided in the shared library environment
variable. If the paths don't match, modify the variable as required.

On Linux, “libmqic_r.so” and “libmqmcs_r.so” are the shared libraries that
IBM provides containing WebSphere MQ routines.

Note: Windows-based ACUCOBOL-GT programs do not need to load the
DLL file, “mqic32.dll”, provided by IBM for accessing the routines.

10.3 Support for WebSphere MQ COPY Files
Both the Windows and UNIX runtimes use the set of COBOL COPY files
that IBM provides with WebSphere MQ. These COPY files contain constant
definitions and data structures used in the WebSphere MQ calls. Listed
below are the IBM COPY files that our compiler can use:

cmqbol.cpy cmqbov.cpy cmqcnol.cpy cmqcnov.cpy

cmqdhl.cpy cmqdhv.cpy cmqdlhl.cpy cmqdlhv.cpy

cmqgmol.cpy cmqgmov.cpy cmqiihl.cpy cmqiihv.cpy

cmqmd1l.cpy cmqmd1v.cpy cmqmdel.cpy cmqmdev.cpy

cmqmdl.cpy cmqmdv.cpy cmqodl.cpy cmqodv.cpy

cmqorl.cpy cmqorv.cpy cmqpmol.cpy cmqpmov.cpy

cmqrmhl.cpy cmqrmhv.cpy cmqrrl.cpy cmqrrv.cpy

cmqtmc2l.cpy cmqtmc2v.cpy cmqtml.cpy cmqtmv.cpy

cmqv.cpy cmqxqhl.cpy cmqxqhv.cpy

10-4 Working with Messaging Middleware
Depending on the functionality of your application, you may not require all
of the COPY files that IBM provides, but if you are not sure which COPY
files to use, it is safest to include them all in your program.

10.4 Connecting to WebSphere MQ Applications

To use your ACUCOBOL-GT program with IBM’s WebSphere MQ, you
must perform the following steps:

1. Install and configure the WebSphere MQ client software as described in
the IBM documentation.

2. Add the necessary WebSphere MQ calls to your ACUCOBOL-GT
program as described in section section 10.4.1.

3. Define a message buffer and any other variables in Working-Storage as
shown in section 10.4.2.

4. Compile your program using the “-D5” data format switch as described
in section 10.4.3.

5. Configure the runtime and environment by setting the
USE_MQSERIES configuration variable and MQSERVER
environment variable as explained in section 10.4.4.

These steps are described in more detail in the following sections.

10.4.1 Adding WebSphere MQ Calls to Your
ACUCOBOL-GT Program

In order to interface with IBM WebSphere MQ, your ACUCOBOL-GT
program must be able to connect to the queue manager, open specific queues,
read messages from queues, write messages to queues, close queues, and
disconnect from the queue manager. Once the WebSphere MQ Client
software is loaded and configured, you can set up a queue on the message
queue manager or server to receive messages. We support calls to the
message queues and the message queue manager.

Connecting to WebSphere MQ Applications 10-5
Note: Once they are defined, the queue manager and queue names are case
sensitive.

The runtime uses the following WebSphere MQ calls to communicate with
other WebSphere MQ applications by sending and receiving messages:

Connection Calls
MQCONN - Connect to queue manager
MQCONNX - Connect to queue manager (extended)
MQDISC - Disconnect queue manager

Queue Manipulation Calls:
MQOPEN - Open object (usually a queue)
MQCLOSE - Close Object
MQINQ - Inquire about an object
MQGET - Get a message off of the queue
MQPUT - Put a message on the queue
MQPUT1 - Open, put single message, close in one call
MQSET - Set object attributes

Transaction Support
MQBEGIN - Begin Unit of work
MQBACK - Back out changes
MQCMIT - Commit changes

These routines can be called directly from COBOL, as shown in the
subsequent sections. Please note that for Windows-based applications, it is
not necessary to use the parameter qualifiers “BY VALUE” or “BY
REFERENCE” if the runtime is configured to load the WebSphere MQ DLL
automatically. (See section 10.4.4, “Configuring the Runtime and
Environment,” for details.) However, if you load the DLL manually, or if
you are operating under UNIX or Linux, you must use these qualifiers.

For all of these calls, we recommend that you check the COMP-CODE and
REASON variables to verify that the calls executed successfully.

For a detailed description of all available commands and their usage, refer to
the IBM WebSphere MQ manuals.

10-6 Working with Messaging Middleware
10.4.1.1 Connecting to the queue manager

To connect to the WebSphere MQ queue manager from your
ACUCOBOL-GT program, use the following code:
CALL 'MQCONN'
 USING QM-NAME, by reference HCONN,
 COMPCODE, REASON

in the following modes:

Input Mode:

Output Mode:

10.4.1.2 Opening specific queues

To open specific message queues in WebSphere MQ, use the following code:

CALL 'MQOPEN'
 USING by value HCONN, by reference OBJDESC,
 by value OPTS, by reference HQUEUE,
 COMPCODE, REASON

in the following modes:

Variable Description Definition

QM-NAME Variable string that contains the name
of the queue manager

User-defined

Variable Description Definition

HCONN S9(9) BINARY handle to queue
manager

User-defined

COMPCODE S9(9) BINARY returns the
completion code

User-defined

REASON S9(9) BINARY returns the reason User-defined

Connecting to WebSphere MQ Applications 10-7
INPUT Mode:

The available OPTS S9(9) BINARY options are specified in “cmqv.cpy”.
From the options that are available, at least one of the following options must
be specified:

• MQOO-BROWSE - Open in browse messages

• MQOO-INPUT - Open in read messages

• MQOO-OUTPUT - Open to write messages

• MQOO-SET - Open to set properties of objects

• MQOO-INQUIRE - Open to inquire about objects

To specify multiple options, add them together.

OUTPUT Mode:

10.4.1.3 Reading messages from queues

To read messages from a WebSphere MQ queue, use the following code:

Variable Description Definition

HCONN S9(9) BINARY handle to queue
manager

User-defined

OBJDESC Structure that identifies the
object to be opened

cmqodv.cpy

OPTS S9(9) BINARY options that
control the action of MQOPEN

User-defined

Variable Description Definition

HQUEUE S9(9) BINARY handle to
queue

User-defined

COMPCODE S9(9) BINARY returns the
completion code

User-defined

REASON S9(9) BINARY returns the
reason

User-defined

10-8 Working with Messaging Middleware
CALL 'MQGET'
 USING by value HCONN, by value HQUEUE,
 by reference MSGDESC, by reference GETMSGOPTS,
 by value BUFFER-LEN, by reference BUFFER-REP,
 by reference DATA-LEN,
 COMPCODE, REASON

in the following modes:

INPUT Mode:

OUTPUT Mode:

I-O Mode:

Variable Description Definition

HCONN S9(9) BINARY handle to queue
manager

User-defined

HQUEUE S9(9) BINARY handle to queue User-defined

BUFFER-LEN S9(9) BINARY length in bytes
of buffer area

User-defined

DATA-LEN S9(9) BINARY length in bytes
of data in the message

User-defined

Variable Description Definition

BUFFER-REP Area to contain the message data User-defined

COMPCODE S9(9) BINARY returns the
completion code

User-defined

REASON S9(9) BINARY returns the
reason

User-defined

Variable Description Definition

MSGDESC Structure describes the attributes
of the message required and the
attributes of the message
retrieved

cmqmdv.cpy

Connecting to WebSphere MQ Applications 10-9
10.4.1.4 Writing messages to queues

To write messages to queues in WebSphere MQ, use the following code:
CALL "MQPUT"
 USING by value HCONN, by value HQUEUE,
 by reference MSGDESC,PUTMSGOPTS,
 by value BUFFER-LEN, by reference BUFFER-REQ,
 by reference COMPCODE, REASON.

in the following modes:

INPUT Mode:

OUTPUT Mode:

GETMSGOPTS Options that control the action of
MQGET For example, if you
want to read a specific message,
then you can specify the option
MQMO_MATCH_CORREL_I
D which causes only messages
with the specified correl-id to be
retrieved.

cmqgmov.cpy

Variable Description Definition

Variable Description Definition

HCONN S9(9) BINARY handle to queue
manager

User-defined

HQUEUE S9(9) BINARY handle to queue User-defined

BUFFER-LEN S9(9) BINARY length in bytes
of buffer area

User-defined

Variable Description Definition

BUFFER-REQ Message data area User-defined

COMPCODE S9(9) BINARY returns the
completion code

User-defined

REASON S9(9) BINARY returns the reason User-defined

10-10 Working with Messaging Middleware
I-O Mode:

10.4.1.5 Closing queues

To close message queues in WebSphere MQ, use the following code:
CALL 'MQCLOSE'
 USING by value HCONN, by reference HQUEUE,
 by value OPTS,
 by reference COMPCODE, REASON.

in the following modes:

INPUT Mode:

The available OPTS S9(9) BINARY options are specified in “cmqv.cpy”.
Only one of the following options should be specified:

• MQCO_NONE

• MQCO_DELETE

• MQCO_DELETE_PURGE

Variable Description Definition

MSGDESC Structure describes the attributes of
the message sent and receives
information about the message after
sending

cmqmdv.cpy

PUTMSGOPTS Options that control the action of
MQPUT

cmqpmov.cpy

Variable Description Definition

HCONN S9(9) BINARY handle to queue
manager

User-defined

OPTS S9(9) BINARY options that control
the action of MQCLOSE

User-defined

Connecting to WebSphere MQ Applications 10-11
OUTPUT Mode:

10.4.1.6 Disconnecting from the queue manager

To disconnect from the WebSphere MQ queue manager, use the following
code:
CALL 'MQDISC'
 USING by reference HCONN, COMPCODE, REASON.

in the following modes:

INPUT Mode:

OUTPUT Mode:

10.4.2 Setting Up Working-Storage

In addition to adding WebSphere MQ calls to your program, you will need to
define a message buffer and any other variables in Working-Storage. For
example:
01 QM-NAME PIC X(48) VALUE SPACES.
01 HCONN PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.

Variable Description Definition

COMPCODE S9(9) BINARY returns the
completion code

User-defined

REASON S9(9) BINARY returns the reason User-defined

Variable Description Definition

HCONN S9(9) BINARY handle to queue
manager

User-defined

Variable Description Definition

COMPCODE S9(9) BINARY returns the
completion code

User-defined

REASON S9(9) BINARY returns the reason User-defined

10-12 Working with Messaging Middleware
01 REASON PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 HOBJ PIC S9(9) BINARY.
01 BUFFER-LENGTH PIC S9(9) BINARY.
01 max-buff-length PIC S9(9) BINARY.
01 BUFFER PIC X(1024).

10.4.3 Compiling Your Application

When your ACUCOBOL-GT program is ready, compile it using the “-D5”
data format switch. This causes data items declared as BINARY to be treated
as COMP-5. This means that the data values are stored in the host machine’s
native byte-order instead of the machine-independent byte-order normally
used. Such data items can contain values of magnitude up to the capacity of
the native binary representation (2, 4, or 8 bytes) instead of being limited to
the value implied by the number of 9s in the picture. The runtime will not
require any special switches to use the IBM library routines or COPY files
once you have compiled with this option.

Note: Use caution when compiling with any other “-D” flags because this
could cause problems in compilation

10.4.4 Configuring the Runtime and Environment

The configuration variable USE_MQSERIES indicates that the program
makes calls to WebSphere MQ. If you plan to load the WebSphere MQ DLL
yourself, then there is no need for this variable (however you must use the
“BY VALUE” and “BY REFERENCE” phrases when calling an MQ
routine).

If you do not plan to load the DLL yourself, set this variable to “1” (on, true,
yes). The runtime will automatically load the DLL and pass calls beginning
with the string “MQ” to the WebSphere MQ client. If the named routine does
not exist, the runtime uses the normal search sequence to find a matching
function. The “BY VALUE” and “BY REFERENCE” phrases are not
required if you are using the USE_MQSERIES variable.

Connecting to WebSphere MQ Applications 10-13
If you are running on a Windows client machine, you must set the
MQSERVER environment variable to the name of the physical server as
defined in the Host file, or to a fixed IP address. On Windows NT, XP or
2000 systems, set the variable in the “Environment Variables” dialog,
accessed from the Advanced tab of the Control Panel’s “System” applet. On
Windows 98/ME systems, set the variable in the “autoexec.bat” file. The
variable takes effect after the system has been rebooted.

Note: Even though you are setting this definition on a Windows system,
you must use only a forward slash. Back slashes are not recognized by
WebSphere MQ.

10-14 Working with Messaging Middleware

11
 Working with Non-Vision
Data
Key Topics

Introduction ... 11-2
Working with XML Data .. 11-3
Working with Relational Data... 11-42
Working with ODBC Data .. 11-45
Working with File Systems like C-ISAM and KSAM.......................... 11-45
Working with an EXTFH Interface ... 11-46
File System Configuration .. 11-51
File System Initialization ... 11-52

11-2 Working with Non-Vision Data
11.1 Introduction

ACUCOBOL-GT® includes a native indexed sequential file system known as
Vision. Although many of our customers convert their data to the Vision
format, many others choose to keep their data in other COBOL and
non-COBOL data formats. This preference is no problem for
ACUCOBOL-GT. ACUCOBOL-GT programs can interoperate with many
kinds of external data sources, including:

• XML documents

• SQL databases

• ODBC-compliant data sources

• C-ISAM and KSAM files

• File systems that use an EXTFH interface to access files, such as those in
transaction processing environments

This chapter describes how to retrieve and update data from all of these data
sources as well as how to configure and initialize external file systems.

In addition, ACUCOBOL-GT programs can work with a variety of external
data types such as:

• Java data types and arrays

• C data types

• Variant data types and safearrays

These types are described elsewhere in this guide. See Chapter 2, section 2.4,
for information on working with Java data. See Chapter 6 for information on
working with C data. See Chapter 3, section 4.3.1 and section 4.3.2, for
information on working with ActiveX data.

Working with XML Data 11-3
11.2 Working with XML Data

Applications written in ACUCOBOL-GT can interact with many different
forms of data, including data marked with eXtensible Markup Language
(XML).

ACUCOBOL-GT provides a variety of ways to interact with XML data. One
of them is a runtime-resident file system interface known as AcuXML.
AcuXML reads XML data and transparently converts it to sequential files for
COBOL processing, and similarly converts COBOL output data into XML
format when required. Using eXtended File Descriptors (XFDs) created at
compile time, AcuXML maps the data transparently, making it easy to read
and write XML records.

To facilitate the use of AcuXML, ACUCOBOL-GT includes a developer
utility called xml2fd that creates File Descriptors (FDs) and SELECT
statements from existing XML files. Although you may need to tune the
results, you can include the FDs and SELECTS in your ACUCOBOL-GT
program to prepare it for use with XML data.

For those who want more control over the parsing of data, ACUCOBOL-GT
provides the C$XML library routine. This routine lets you define precisely
which elements or attributes of the data to parse. For instance, you can
request the handle of the entire XML tree, the first child element of the handle
passed, the next sibling element, the number of attributes in an element, the
name and value of the attributes, and so on. C$XML gives you much
lower-level control over the parsing of XML data compared to AcuXML, but
it requires more programming effort and XML knowledge.

Finally, ACUCOBOL-GT supports the IBM Enterprise COBOL XML
GENERATE and XML PARSE statements. XML PARSE gives you a way
to parse XML and process it in a COBOL program, associating processing
procedures with the exception and non-exception cases that can result from
the parse. XML GENERATE gives you a way to translate COBOL data into
XML.

11-4 Working with Non-Vision Data
All three of these approaches can be used to parse record-based XML files,
but please note that only C$XML and XML PARSE can be used to parse
non-record-based XML files.

11.2.1 XML Concepts

XML is a markup language for documents containing structured information.
At first glance, XML is similar to HyperText Markup Language (HTML);
with both, you mark up document content with descriptive tags surrounded
by angle brackets. In XML, documents commonly include the following
elements:

Elements can have children, which can have children, and so on. The main
difference between HTML and XML, however, is that in HTML, the markup
defines hypertext structure or display formatting. In XML, the markup
defines the document content itself.

Unlike HTML, XML contains no predefined tag set or preconceived
semantics for the markup. Rather, XML lets you define tags and the
structural relationships between them based on the content of your document.
For example, you may define tags called <lender>, <borrower>, and

For Information On... See...

AcuXML and xml2fd Section 11.2.2 through 11.2.5 of this
chapter

C$XML library routine Section 11.2.6 of this chapter, and

Appendix I in ACUCOBOL-GT
Appendices

XML GENERATE and XML
PARSE statements

 ACUCOBOL-GT Reference Manual,
Chapter 6, “Procedure Division.”

Comments <!-- -->

Headers <?xml version = “1.0”?>

Start tags <record>

End tags </record>

Working with XML Data 11-5
<due-date>. Because XML documents contain information about
themselves, they are an excellent vehicle for transporting data from one
location to another.

11.2.1.1 XML documents

XML documents are strictly text files. In the context of data transport, the
phrase “XML document” refers to a file or data stream containing any form
of structured data. Examples include e-commerce transactions, server APIs,
mathematical equations, customer information, and inventory status.

XML documents contain only markup and content. All of the rules and
semantics of the document are defined by the applications that process them.
Like HTML documents, XML documents can be displayed in a Web browser.
In this case, the semantics are usually derived from style sheets or Resource
Description Framework (RDF) files.

XML documents are said to be either “well-formed” or “valid.” Well-formed
documents follow all of the XML rules for a document—for example, for
every start tag, there is a corresponding end tag. Valid XML documents are
well-formed, but they also contain a document type definition (DTD), and
they obey the constraints of that definition. For example, the following XML
file contains a DTD that describes all the elements of the file:
<?xml version = "1.0"?>
<!DOCTYPE ORDERFILE [
<!ELEMENT ORDERFILE (CUSTOMER)*>
<!ELEMENT CUSTOMER (NAME, DATE, ORDERS)>
<!ELEMENT NAME (LAST-NAME, FIRST-NAME)>
<!ELEMENT LAST-NAME (#PCDATA)>
<!ELEMENT FIRST-NAME (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT ORDERS (ITEM)*>
<!ELEMENT ITEM (PRODUCT, NUMBER, (PRICE | CHARGEACCT | SAMPLE))>
<!ELEMENT PRODUCT (#PCDATA)>
<!ELEMENT NUMBER (#PCDATA)>
<!ELEMENT PRICE (#PCDATA)>
<!ELEMENT CHARGEACCT (#PCDATA)>
<!ELEMENT SAMPLE (#PCDATA)>
]>
<ORDERFILE>
 <CUSTOMER>
 <NAME>
 <LAST-NAME>Smith</LAST-NAME>
 <FIRST-NAME>Sam</FIRST-NAME>

11-6 Working with Non-Vision Data
 </NAME>
 <DATE>October 15, 2001</DATE>
 <ORDERS>
 <ITEM>
 <PRODUCT>Tomatoes</PRODUCT>
 <NUMBER>8</NUMBER>
 <PRICE>1.25</PRICE>
 </ITEM>
 <ITEM>
 <PRODUCT>Apples</PRODUCT>
 <NUMBER>12</NUMBER>
 <PRICE>2.50</PRICE>
 </ITEM>
 <ITEM>
 <PRODUCT>Bananas</PRODUCT>
 <NUMBER>6</NUMBER>
 <PRICE>.50</PRICE>
 </ITEM>
 </ORDERS>
 </CUSTOMER>
 <CUSTOMER>
 <NAME>
 <LAST-NAME>Snead</LAST-NAME>
 <FIRST-NAME>Todd</FIRST-NAME>
 </NAME>
 <DATE>October 17, 2001</DATE>
 <ORDERS>
 <ITEM>
 <PRODUCT>Slicer/Dicer</PRODUCT>
 <NUMBER>1</NUMBER>
 <CHARGEACCT>1234-5678-3456-7890</CHARGEACCT>
 </ITEM>
 </ORDERS>
 </CUSTOMER>
</ORDERFILE>

Documents that include and obey a schema rather than a DTD are considered
to be “schema-valid.” Schemas are files describing the XML document and
its precise structure. XML documents that are accompanied by schemas
produce the most reliable FDs and SELECT statements when run through the
xml2fd utility, especially if the schema has information about data types and
lengths.

Note: Please note that the xml2fd utility is used exclusively with
AcuXML. If you are calling the C$XML library routine, you do not need
to run XML documents through xml2fd.

Working with XML Data 11-7
Following is an example of a schema file for the same XML document. As
you can see, it is much more descriptive than the DTD.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 Created by AcuXML(tm) version 6.0.0 (2002-11-12) on 2002/11/12
 </xs:documentation>
 </xs:annotation>

 <xs:element name="TEST-ORDERFILE">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="CUSTOMER"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="CUSTOMER">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="NAME"/>
 <xs:element ref="DATE"/>
 <xs:element ref="ORDERS"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="NAME">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="LAST-NAME"/>
 <xs:element ref="FIRST-NAME"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ORDERS">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ITEM" maxOccurs="3"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ITEM">
 <xs:complexType>

11-8 Working with Non-Vision Data
 <xs:sequence>
 <xs:element ref="PRODUCT"/>
 <xs:element ref="NUMBER"/>
 <xs:element ref="PRICE"/>
 <xs:element ref="CHARGEACCT"/>
 <xs:element ref="SAMPLE"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="LAST-NAME">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="5"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="FIRST-NAME">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="DATE">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="16"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="PRODUCT">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="12"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="NUMBER">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="2"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

Working with XML Data 11-9
 <xs:element name="PRICE">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="CHARGEACCT">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="19"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="SAMPLE">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:totalDigits value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

</xs:schema>

ACUCOBOL-GT applications can read and write any type of XML data.
Typically, the party with whom you are exchanging data will require that the
data include a DTD. Occasionally, they may require a schema for their own
development work.

With AcuXML, you can specify the type of XML output that you want to
generate. You use the configuration variable AXML_CREATE_STYLE. If
you want the output to include a schema, you set AXML_CREATE_STYLE
to “schema”, and then use another configuration variable to define the
schema name (AXML_SCHEMA_NAME). By default, a schema is then
created each time ACUCOBOL-GT generates XML output. To prevent this
for subsequent output, you can set a third configuration variable,
AXML_CREATE_SCHEMA, to “false”, then just the name of the schema
file is included. Configuration variables are described in Appendix H in
ACUCOBOL-GT Appendices.

11-10 Working with Non-Vision Data
11.2.1.2 XML parsers

An XML parser is a processor that reads and interprets the contents of an
XML document and determines the structure and properties of the data. Both
AcuXML and C$XML are XML parsers. AcuXML automatically reads and
interprets XML data based on XFDs created at compile time. C$XML parses
XML data based on operation codes passed to the library call. The term
“parse” is used throughout the following sections to mean “read” or
“decode.” ACUCOBOL-GT’s XML parsers read and decode XML data so
that it can be processed by your COBOL program.

11.2.1.3 Usage

AcuXML was designed for data exchange, but it can be beneficial for other
uses as well. Following are some possibilities:

• Business-to-business data exchange – You can use AcuXML to enable
efficient business-to-business data exchange in wide-area networks and
over the Internet. Business partners such as manufacturers and
suppliers, hospitals and insurance companies, buyers and sellers can
exchange vital business data through the common adoption of XML.

B2B Data Exchange Using XML

In order for two parties to exchange documents, both parties need to
explicitly agree on the meaning of tags and data within documents. For
instance, in a procurement situation, both the buyer and seller must agree
on what <STATUS> means in an invoice document.

• Application integration – If one of your goals is to merge data from
multiple sources in order to integrate business processes, AcuXML can
help. Converting your COBOL data to and from XML can enable it to
be used throughout the enterprise, so long as the meaning of the data is

Application A

Company A

XML
files

In
te

rn
et Application B

Company B

XML
files

Working with XML Data 11-11
expressly understood. Similarly, data from other enterprise applications
can be read and processed by your COBOL program, if your enterprise
chooses to use XML as the common transport mechanism. Application
integration can replace the isolated stovepipe systems of the past.

Application Integration with XML

• Enterprise Resource Planning (ERP) – ERP software promises to save
companies money by centralizing processing functions that would
otherwise be redundant in an organization. Enterprises that use ERP
packages can choose XML as the data format used by the centralized
system. AcuXML can be used to integrate your COBOL program with
the data.

• Internet deployment – By combining AcuXML with AcuServer®, your
end users can access XML documents residing on remote servers,
whether those servers are in a local-area network, wide-area network, or
Internet configuration. If you want to display your COBOL-based XML
documents on the Web or inside a user’s browser, you may do this as
well using stylesheets or RDF files. With additional development effort,
you may even develop an XML front end to interface with your COBOL
program across the Internet. Most commonly, XML is being used as the
language of Web services. It provides a standard by which Web services
written in any language can communicate.

Department C

Department B

Department A

XML
files

XML
files

11-12 Working with Non-Vision Data
These are just a few of the many possible uses of XML. The capabilities of
the XML language are far-reaching. However you choose to use it, you can
make your ACUCOBOL-GT programs ready to read, process, and output
XML data.

11.2.2 The XML-to-FD Utility

In order to prepare your COBOL program for use with XML documents, you
must first determine the nature of the data in the documents and the meaning
of the tags.

The ACUCOBOL-GT Development System includes an xml2fd utility to
read XML documents and produce FDs and SELECT statements suitable for
inclusion in a COBOL program. Because the structure of valid XML
documents is very specific and well defined, the utility produces the best
results using valid documents.

The FD created by the utility has the same structure as the XML file. The
parent/child relationships of all the data elements are present. Array
definitions are included. The data types are defined. If a schema is included
with the file, the DTD has a high degree of accuracy. If a DTD is included,
the utility analyzes the content and makes an intelligent guess at the data
types (e.g., numerical data is assigned the NUMBER type, and so on). Raw
XML produces FDs that are a best guess based on the structure of the
elements. See section 11.2.2.1 for more details on xml2fd output.

The utility also creates a SELECT statement for each data file. Once the FDs
and SELECTs are created, you should modify them as required, then include
them in the COBOL program. When you include the FDs and SELECT
statements in your COBOL program, it can understand, process, and even
output XML data that is structured like the existing file.

For instructions on how to launch the xml2fd utility, refer to section 11.2.2.2.

11.2.2.1 xml2fd output

The utility understands three types of XML files:

Working with XML Data 11-13
• XML files with a DTD – When you run XML files with DTDs through
the utility, the record structure created for the FD is structurally correct,
but may require manual modification in the sizes and types of the data
items.

• XML files with an associated schema file or pointers to a schema file
that is available to the local system – When you run XML files with
schemas through the utility, the resulting FD is structurally correct, but
depending on the completeness of the schema may need to be manually
modified in order to correct the sizes of the data items. If the schema
includes size information, that information is used and no modification
is necessary.

Note that xml2fd supports schema includes. It detects the attributes
“schema=filename” or “nonamespaceschemalocation=filename” and
uses the named file to determine the structure of the FDs. However, the
file must be available locally. You may need to locate the schema file
on the Internet, download it onto your local development machine, and
then point to it before you run the XML file through the utility.

• Raw XML files (with no DTD and no schema) – When you run raw files
through the utility, the structure created is a best guess based on reading
all or part of the XML file and creating a structure from the structure of
the elements. The more homogeneous the XML data, the more precise
the record structure is. Again, it may require manual modification to fix
the sizes.

Note that xml2fd ignores attributes of XML tags, because no natural
mapping exists between attributes and COBOL data items. In the following
code snippet, type=“personal” is an attribute that would be ignored:

<customer type="personal">
 <name>Acu</name>
</customer>

The xml2fd utility creates two files: a “.fd” file and a “.sl” file. The “.fd” file
contains the FD and record structure for the data file. The “.sl” file contains
the file type and SELECT for the data file. The base name of the files are the
same as the base name of the XML file provided. For example,
“mydata.xml” produces “mydata.fd” and “mydata.sl”. It is your
responsibility to include the output files in your COBOL program.

11-14 Working with Non-Vision Data
11.2.2.2 xml2fd command options

You can invoke the xml2fd utility from the command line or from the
AcuBench® Tools menu. To invoke it from the command line, type:

xml2fd options xmlfile ...

where:
“xmlfile ...” is one or more XML files. For each XML file named, separate
“.fd” and “.sl” files are created.

Note that xml2fd is not designed to work with remote schema files. If the
XML file refers to a remote schema file (using http sytnax), the xml2fd
utility will crash when trying to open the file. Make sure that the XML file
used on this command line refers to a local schema or no schema at all.

Options include:

-d output_directory Use this option to name the directory into
which the “.fd” and “.sl” files should be
placed. The default is the current directory.
Note that the “-f” and “-s” options
described below override this value.

-f fd_directory Use this option if you want the “.fd” file to
be placed into a different directory than the
“.sl” file. The “.fd” file is then stored in the
named directory.

-s sl_directory Use this option if you want the “.sl” file to
be placed into a different directory than the
“.fd” file. The “.sl” file is then stored in the
named directory.

-n count Use this option to specify the number of
records to read from the XML file before
calculating the sizes of data items and table
occurrences and arriving at field
descriptions in the FD. In very large XML
files, it may not be desirable to read the
entire file to derive the FD. On the other
hand, it may be necessary to read more
than one record to confirm a “best guess”

Working with XML Data 11-15
for intended field descriptions in a record.
The more data the utility reads, the better
the guess will be, but the more time it will
take to process the data and create the file.
The value of “-n” must be numeric and
greater than “0”.

-o occurs Use this option to define a default value
for any tables found in the XML file.
Designating a numeric value greater than
“0” instructs xml2fd to look for cases
within the record where it is appropriate
to assign an OCCURS clause, and gives a
default number to assign in the clause.
Schema parsed uses any maxOccurs
attributes found, but DTDs don’t have the
syntax to describe a maximum number of
occurrences. If records are read and the
number of occurrences in any record is
larger than the value you enter here, the
larger value is used.

 Please note that in complex cases where an
FD has more than one OCCURS clause
and where the number of OCCURS differs,
you must manually change the generated
representation of the FD.

-p prefix Use this option to prepend all data items
in the FD with a standard prefix. This
option is especially useful if the XML file
has elements that use reserved words as
their names. For example, If your XML
file looks like the following:

<company>
 <name>Acucorp</company>
 <address>8515 Miralani
Drive</address>
 <city>San Diego</city>
 <state>CA</state>
 <ZIP>92126</ZIP>

 <remarks>This company sells

11-16 Working with Non-Vision Data
11.2.3 The AcuXML Interface

The AcuXML interface is a transparent interface between ACUCOBOL-GT
applications and XML documents. Part of the standard ACUCOBOL-GT
runtime system, AcuXML dynamically reads and generates XML using data
dictionaries created at compile time. As the ACUCOBOL-GT runtime

 development
 products for COBOL</remarks>
</company>

 Then xml2fd will generate an FD that
looks like:
07 company.
 09 name pic x(30).
 09 address pic x(30).
 09 city pic x(15).
 09 state pic x(2).
 09 ZIP pic 9(5).
 09 remarks pic x(128).

 However, ADDRESS and REMARKS are
COBOL reserved words, so this would not
compile. Instead, an error such as this
would result: “Unexpected character.
System will ignore it.”

 If you use “-p cust-” when running xml2fd,
then the utility generates:
07 cust-company.
 09 cust-name pic x(30).
 09 cust-address pic x(30).
 09 cust-city pic x(15).
 09 cust-state pic x(2).
 09 cust-ZIP pic 9(5).
 09 cust-remarks pic x(128).

 Using this option causes XFD NAME
directives to be placed into the “.fd” file
so that the resulting XFD file has data
item names that match the XML file.

Working with XML Data 11-17
module executes your COBOL application, the interface runs “behind the
scenes” to match up the requirements of both the application and the data.
You do not need to know XML to use the interface.

Transparent Access to XML Data

With the interface, an ACUCOBOL-GT program can read whichever XML
files a user indicates. Because XML files are by nature sequential, AcuXML
can read the files specified for input, process them, and return files in the
desired data format.

The ACUCOBOL-GT program can also open any COBOL file that is
required for a user request (whether it is indexed, relative, or sequential), read
and process that data, and output a sequential file that is in XML format.
Using configuration variables, you can specify which files you want to be

AC UC O BO L–G T
runtime system

AC UC O BO L–G T
object code

AcuXML Interface

C O BO L Data

The U s e r 's W o r ld

Th e De v e lo p e r 's W o r ld

AC UC O BO L– G T
data dictionaries

AC UC O BO L-G T
compiler

C O BO L source
program

XML FDs and
SELEC Ts

XML-to-FD Utility

DTD or
schemaXML

document

XML
documents

XML
documents

E
x

te
rn

a
l

A
p

p
li

ca
ti

o
n

11-18 Working with Non-Vision Data
XML documents, and whether you want ACUCOBOL-GT to generate raw
XML, XML documents with DTDs, or XML documents with schemas. For
our purposes, the XML documents are considered transient—more of a data
transport mechanism than a data storage mechanism.

Please note that reading an XML file and then writing it as XML with the
same data does not necessarily produce an identical file. The information is
the same, but the markup or “wrappers” likely are not.

11.2.3.1 Data dictionaries

ACUCOBOL-GT’s XML interface depends on XFDs, or data dictionaries, to
map COBOL records to the XML data type. These dictionaries are based on
the standard COBOL file descriptors (FDs). (Refer to section 5.3 of the
ACUCOBOL-GT User’s Guide for more details.) These files are created at
compile time. The structure of XFDs used by alfred and the Acu4GL® and
AcuXDBC® interfaces has been enhanced in order to mirror the rich
structure of XML.

To create the XFDs, you specify “-Fa” on the command line when you
compile your COBOL source. This option signals the compiler to create an
XFD file for every indexed, relative, or sequential file contained in the
program. To prevent naming errors, you should also include the “-Fc”
option, which tells the compiler that the field names in the resulting XFDs
must match the element names in the COBOL source exactly.

XFDs include information about the structure of their associated data files.
They provide a map between the COBOL files used by the program and the
external data file that the program receives (in this case, an XML document).

Using the XFDs and the new XML interface, the COBOL program can open
an XML document and read from it or write to it using COBOL file I/O
syntax.

To control precisely how the XFDs are built, you can use data dictionary
directives with AcuXML, as you can with any ACUCOBOL-GT file system
interface. Directives are optional comments that you place into your FDs in
your COBOL source code. (See section 4.1 of the ACUCOBOL-GT User’s
Guide for more information.)

Working with XML Data 11-19
For instance, to store items at group level, you can change the database table
names in the XFDs. Likewise, you can store dates as database “date” fields.
This is all done with directives. Note that if you use the XFD Name directive
to define XML data elements, you must use the name exactly as it appears in
the XML tag, including case. If you do not match the name or case exactly,
the FD items do not get filled when the interface parses the XML data.

11.2.3.2 AcuXML configuration variables

ACUCOBOL-GT includes several configuration variables for configuring
the XML output that is generated by the AcuXML interface. These include:

Configuration Variable Purpose

AXML_CREATE_STYLE Defines whether a DTD or schema
is included with the XML output
that is generated

AXML_CREATE_SCHEMA Tells AcuXML whether to create a
schema file, or simply include the
name of a schema file in the output

AXML_SCHEMA_DOC Adds a documentation element to
the schema if created

AXML_SCHEMA_NAME Defines the name of the schema
file to generate, if any

AXML_SCHEMA_NAMESPACE_DATA Defines the precise schema
namespace string to include in the
XML output

AXML_ENCODING Specifies a character encoding
method for the XML files that
AcuXML creates

AXML_STYLESHEET_TYPE Adds a sytlesheet comment to the
beginning of generated XML files.
This associates a style sheet with
the XML documents.

AXML_STYLESHEET_HREF Names the XML style sheet to use

AXML_IGNORE_EMPTY_DATA When writing tags, ignores data
items that are all blank (in the case
of alpha data) or “0” (in the case of
numeric data)

11-20 Working with Non-Vision Data
All of the variables are optional. If desired, you include them in your runtime
configuration file, just as you would any ACUCOBOL-GT configuration
variable. In addition, you should also use the configuration file to specify the
location of your XML files, which particular files are of XML type, and
perform additional configuration as desired. See section 11.2.4 below for
more details on configuring the runtime system for XML data.

Refer to Appendix H in ACUCOBOL-GT Appendices for usage details on all
of the configuration variables that are listed here.

11.2.4 Using AcuXML

To interact with XML data from an ACUCOBOL-GT application, you must
prepare your application, then set up and configure the end-user system.
Your program can be designed to read XML data and/or generate XML
output.

To enable your program to read XML data:

1. Prepare your ACUCOBOL-GT application.

a. Obtain a representative XML document from the anticipated
source of your files. For the best results, the document should
refer to a DTD or schema.

b. Use the xml2fd utility to create FDs and SELECT statements for
the XML document. Refer to section 11.2.2 for more information
on using this utility.

c. Include the new FDs and SELECT statements in your program as
you would any FD and SELECT.

d. Compile your program with the “-Fa” option specified. This
option tells the compiler to generate XFDs for each COBOL data
file included in the program. The “-Fa” option is described in
section 2.1.6 of the ACUCOBOL-GT User’s Guide. To prevent
naming errors, you should also include the “-Fc” option, which
tells the compiler that the field names in the resulting XFDs must
match the element names in the COBOL source exactly, including
case, hyphen usage, etc.

Working with XML Data 11-21
2. Set up and configure the runtime system.

a. Install the ACUCOBOL-GT runtime, object code, data
dictionaries, and COBOL data files on the end-user system.

b. Acquire XML data from your data source, or if reading data from
the Internet, acquire the exact URL of the XML data stream.

c. Create a configuration file for the runtime as described in section
2.7 of the ACUCOBOL-GT User’s Guide. In the configuration
file:

• Specify the location of your data files. If the files are local or
accessed via AcuServer, use the FILE_PREFIX configuration
variable to specify the location. If the files will be accessed
over the Internet, map the data files directly to a URL. For
example, to read “bookfile.xml” over the Internet, you could
add the following line to the configuration file:

BOOKFILE http://myserver.mycomp.com/data/bookfile.xml

• Specify which files should be treated as XML data files by
setting the filename_HOST variable to “XML”, where
filename is the base name of the XML document with no file
extension (e.g., “custdata_HOST XML”). Include a separate
entry for each XML document name. Make sure that the files
you indicate are sequential files. For example:

BOOKFILE_HOST XML

• Tell the runtime to keep the case of your XFD field names intact
by setting the 4GL-COLUMN-CASE variable to “unchanged”.
XML (unlike HTML) is case sensitive. If you do not set
4GL-COLUMN-CASE, the runtime converts the field names to
lower case and hyphens to underscores. Then the runtime may
not be able to read your XML data properly.

• Configure the XML output as desired using a set of
AcuXML-specific configuration variables. (These variables all
start with the “AXML” prefix. See section 11.2.3.2.) With
these variables, you can tell the runtime whether to create a
DTD or schema when creating XML data, whether to associate
a style sheet with the output, and more.

11-22 Working with Non-Vision Data
• Perform additional configuration as desired. You can use any
configuration variables that affect XFD parsing, such as
XFD-PREFIX and XFD-DIRECTORY. Note that XFD files
must be available in the named XFD_DIRECTORY even when
the XML data stream is read over the Internet via HTTP.

Refer to Appendix H in ACUCOBOL-GT Appendices for details on
any of these configuration file entries. Following is a sample
“cblconfig” file for use with AcuXML:

file-prefix . /usr/data
orderfile-host xml
bookfile-host xml
customer-host xml
4gl-column-case unchanged

3. Run your ACUCOBOL-GT program normally.

The rest is automatic. When your ACUCOBOL-GT program READs a file
designated as XML, the AcuXML interface converts the XML data to
COBOL using XFDs, your program performs the request, and then returns
data in desired format. Your program automatically WRITEs output in
sequential XML format as specified in configuration file.

To enable your program to generate XML output:

If your program needs only to output XML data, the process is even simpler:

1. Prepare your ACUCOBOL-GT application.

a. Decide what data is needed in the XML file.

b. Write an FD that describes that data in the desired way. Note that
if you have a sequential file that already describes the data, this
step is not necessary.

c. COPY the FD into your COBOL program, and compile with the
“-Fa” option.

2. Set up and configure the runtime system.

a. Install the ACUCOBOL-GT runtime, object code, data
dictionaries, and COBOL data files on the end-user system.

Working with XML Data 11-23
b. Create a configuration file for the runtime as described in step 2c
above. Include output variables, such as:

axml-create-style schema
axml-schema-name myschema
axml-create-schema false
axml-stylesheet-type text/css
axml-stylesheet-href mystyle.css

3. Run your ACUCOBOL-GT program normally.

11.2.4.1 AcuXML output structures

When AcuXML generates XML data, the hierarchical structure of the XML
file matches the record structure of the COBOL file. For example, iobench
has a sequential file SEQ1, whose record structure is defined as:
01 SEQ-1-RECORD.
 03 SEQ-1-KEY PIC 9(10).
 03 SEQ-1-ALT-KEY.
 05 SEQ-1-ALT-KEY-A PIC X(30).
 05 SEQ-1-ALT-KEY-B PIC 9(10).
 03 SEQ-1-BODY PIC X(50).

If this file were written as an XML file, a typical record would look like this:
 <SEQ-1-RECORD>
 <SEQ-1-KEY>20</SEQ-1-KEY>
 <SEQ-1-ALT-KEY>
 <SEQ-1-ALT-KEY-A>032472140976086473026412339002
 </SEQ-1-ALT-KEY-A>
 <SEQ-1-ALT-KEY-B>20</SEQ-1-ALT-KEY-B>
 </SEQ-1-ALT-KEY>
 <SEQ-1-BODY>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrst
 </SEQ-1-BODY>
 </SEQ-1-RECORD>

Note that in XML, it is possible for two data elements to have the same name.
For instance:
<Lender phone="607.555.2222">
 <name>Doug Glass</name>
 <street>416 Disk Drive</street>
 <city>Medfield</city>
 <state>MA</state>
</Lender>

11-24 Working with Non-Vision Data
<Borrower phone="310.555.1111">
 <name>Britta Regensburg</name>
 <street>219 Union Drive</street>
 <city>Medfield</city>
 <state>CA</state>
</Borrower>

However, XFDs are designed to mirror the structure of databases which do
not allow duplicate element names. For this reason, compiling a COBOL
program with this record structure will result in an XFD compiler warning. If
you are working with XML data files, you may disregard this warning.

11.2.4.2 Restrictions

Some restrictions are associated with reading or writing an XML document
from ACUCOBOL-GT programs. For instance, programs can open files
INPUT or OUTPUT, but not I-O or EXTEND. Attempting to open a file
EXTEND or I-O fails and returns a NO-SUPPORT error (error 9B in the
ANSI-85 code set).

In addition, the XML file system interface can write only sequential XML
files. Because XML is intended as a data delivery mechanism and not a data
store mechanism, this is not much of a limiting factor.

As any XML parser would, this interface fails to read a record if a parsing
error occurs. The error returned is 9D,05 in this case. See section 11.2.5,
“AcuXML Error Reporting,” for a list of specific parsing errors.

Finally, the XML data file to be read must contain only a single document.
Do not try to concatenate documents into a single data file. The top-level
element of the XML document corresponds to a sequential file. Each
element at the next level corresponds to a record in that file.

For example, the SEQ1 file “iobench” looks like the following after three
records have been written to the file:
<SEQ-1-FILE>
 <SEQ-1-RECORD>
 <SEQ-1-KEY>10</SEQ-1-KEY>
 <SEQ-1-ALT-KEY>
 <SEQ-1-ALT-KEY-A>164424914991684123046492639014
 </SEQ-1-ALT-KEY-A>

Working with XML Data 11-25
 <SEQ-1-ALT-KEY-B>10</SEQ-1-ALT-KEY-B>
 </SEQ-1-ALT-KEY>

<SEQ-1-BODY>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
</SEQ-1-BODY>
 </SEQ-1-RECORD>
 <SEQ-1-RECORD>
 <SEQ-1-KEY>20</SEQ-1-KEY>
 <SEQ-1-ALT-KEY>
 <SEQ-1-ALT-KEY-A>032472140976086473026412339002
 </SEQ-1-ALT-KEY-A>
 <SEQ-1-ALT-KEY-B>20</SEQ-1-ALT-KEY-B>
 </SEQ-1-ALT-KEY>

<SEQ-1-BODY>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
</SEQ-1-BODY>
 </SEQ-1-RECORD>
 <SEQ-1-RECORD>
 <SEQ-1-KEY>30</SEQ-1-KEY>
 <SEQ-1-ALT-KEY>
 <SEQ-1-ALT-KEY-A>110640971904282743006692139010
 </SEQ-1-ALT-KEY-A>
 <SEQ-1-ALT-KEY-B>30</SEQ-1-ALT-KEY-B>
 </SEQ-1-ALT-KEY>

<SEQ-1-BODY>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
</SEQ-1-BODY>
 </SEQ-1-RECORD>
</SEQ-1-FILE>

Note that the end of the file in this example is signaled by the XML
command, </SEQ-1-FILE>. ACUCOBOL-GT ignores other documents in
the file. For example, if you have an XML file which looks like the this:
<SEQ-1-FILE>
 <SEQ-1-RECORD>
 <SEQ-1-KEY>10</SEQ-1-KEY>
 <SEQ-1-ALT-KEY>
 <SEQ-1-ALT-KEY-A>164424914991684123046492639014
 </SEQ-1-ALT-KEY-A>
 <SEQ-1-ALT-KEY-B>10</SEQ-1-ALT-KEY-B>
 </SEQ-1-ALT-KEY>

<SEQ-1-BODY>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
</SEQ-1-BODY>

11-26 Working with Non-Vision Data
 </SEQ-1-RECORD>
</SEQ-1-FILE>
<SEQ-1-FILE>
 <SEQ-1-RECORD>
 <SEQ-1-KEY>20</SEQ-1-KEY>
 <SEQ-1-ALT-KEY>
 <SEQ-1-ALT-KEY-A>032472140976086473026412339002
 </SEQ-1-ALT-KEY-A>
 <SEQ-1-ALT-KEY-B>20</SEQ-1-ALT-KEY-B>
 </SEQ-1-ALT-KEY>

<SEQ-1-BODY>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
</SEQ-1-BODY>
 </SEQ-1-RECORD>
</SEQ-1-FILE>
<SEQ-1-FILE>
 <SEQ-1-RECORD>
 <SEQ-1-KEY>30</SEQ-1-KEY>
 <SEQ-1-ALT-KEY>
 <SEQ-1-ALT-KEY-A>110640971904282743006692139010
 </SEQ-1-ALT-KEY-A>
 <SEQ-1-ALT-KEY-B>30</SEQ-1-ALT-KEY-B>
 </SEQ-1-ALT-KEY>

<SEQ-1-BODY>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw
</SEQ-1-BODY>
 </SEQ-1-RECORD>
</SEQ-1-FILE>

then ACUCOBOL-GT ignores everything after the tenth line, because the
</SEQ-1-FILE> XML command signaled the end of the file. You should use
the C$XML library routine instead of AcuXML to read files like these.

11.2.5 AcuXML Error Reporting

If AcuXML encounters a parsing error, it returns the error code “9D05,nn”
where nn is one of the following:

1 Out of memory

2 Syntax error

Working with XML Data 11-27
11.2.6 Using the C$XML Routine

The C$XML library routine is designed for those who want low-level control
over the parsing of XML data. It lets you define precisely which elements or
attributes of the data to parse. C$XML can be used for both record- and
non-record-based XML documents.

3 No element found

4 Not well formed (invalid token)

5 Unclosed token

6 Partial character

7 Mismatched tag

8 Duplicate attribute

9 Junk after document element

10 Illegal parameter entity reference

11 Undefined entity

12 Recursive entity reference

13 Asynchronous entity

14 Reference to invalid character number

15 Reference to binary entity

16 Reference to external entity in attribute

17 XML processing instruction not at start of external entity

18 Unknown encoding

19 Encoding specified in XML declaration is incorrect

20 Unclosed CDATA section

21 Error in processing external entity reference

22 Document is not standalone

23 Unexpected parser state – please send a bug report

24 Entity declared in parameter entity

11-28 Working with Non-Vision Data
Appendix I in ACUCOBOL-GT Appendices contains detailed descriptions of
the library routine’s individual operation codes, parameters, usage, etc. The
following sections describe how to use the C$XML library routine in more
general terms.

11.2.6.1 General procedure

When using the C$XML routine, you should perform the following basic
functions:

1. Parse an XML file.

2. Move to an element in the file.

3. Retrieve data from the element.

4. Add, modify, or delete data as desired.

5. Write to the file to save your changes.

6. Release the parser from memory.

If an error occurs, you can also retrieve error information. If desired, you can
retrieve element attributes or comments as well.

Each function is performed through C$XML operation codes (op-codes) as
described in sections 11.2.6.2 through 11.2.6.10. Most C$XML operations
return element handles. A separate handle is provided for each element. You
should move the return codes to an ACUCOBOL-GT handle that you’ve
declared in Working-Storage. The handle should be defined as USAGE IS
HANDLE. You will refer to these handles when you move deeper into a
record and retrieve or update specific data.

Refer to section 11.2.6.12 for sample code.

Note: You don’t necessarily have to open a file to read XML data. You can
parse a string directly using the CXML-PARSE-STRING op-code.

Working with XML Data 11-29
11.2.6.2 Understanding C$XML terminology

The C$XML routine uses XML terminology that may not be familiar to
you—terms like element, attribute, parent, child, and sibling. To understand
the terminology of C$XML, consider the following XML file (line numbers
added for discussion purposes):
 1 <?xml version="1.0"?>
 2 <bookfile
 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4 xsi:noNamespaceschemaLocation="bookfile.xsd">
 5 <transaction borrowDate="2001-10-15">
 6 <Lender phone="607.555.2222">
 7 <name>Doug Glass</name>
 8 <street>416 Disk Drive</street>
 9 <city>Medfield</city>
10 <state>MA</state>
11 </Lender>
12 <Borrower phone="310.555.1111">
13 <name>Britta Regensburg</name>
14 <street>219 Union Drive</street>
15 <city>Medfield</city>
16 <state>CA</state>
17 </Borrower>
18 <note>Lender wants these back in two weeks!</note>
19 <books>
20 <book bookID="123-4567-890">
21 <bookTitle>Earthquakes for Breakfast</bookTitle>
22 <pubDate>2001-10-20</pubDate>
23 <replacementValue>15.95</replacementValue>
24 <maxDaysOut>14</maxDaysOut>
25 </book>
26 <book bookID="123-4567-891">
27 <bookTitle>Avalanches for Lunch</bookTitle>
28 <pubDate>2001-10-21</pubDate>
29 <replacementValue>19.99</replacementValue>
30 <maxDaysOut>14</maxDaysOut>
31 </book>
32 <book bookID="123-4567-892">
33 <bookTitle>Meteor Showers for Dinner</bookTitle>
34 <pubDate>2001-10-22</pubDate>
35 <replacementValue>11.95</replacementValue>
36 <maxDaysOut>14</maxDaysOut>
37 </book>
38 <book bookID="123-4567-893">

11-30 Working with Non-Vision Data
39 <bookTitle>Snacking on Volcanoes</bookTitle>
40 <pubDate>2001-10-23</pubDate>
41 <replacementValue>17.99</replacementValue>
42 <maxDaysOut>14</maxDaysOut>
43 </book>
44 </books>
45 </transaction>
46 </bookfile>

When you call C$XML with the CXML-PARSE-FILE op-code, you get a
handle to this entire file.

An “element” is a name that appears immediately after a less than sign (<),
and terminated with a greater than sign (>) or by a forward slash followed by
a greater than sign (/>). So “bookfile” (line 2) is the top-level element.
“transaction” (line 5) is an element, as is “city” (lines 9 and 15 - these are two
separate elements, both named “city”).

There are two different ways in XML to signify that an element is finished:

1. With a tag that is the element name preceded immediately by a less than
sign and a forward slash (</).

2. The corresponding greater than sign (>) is immediately preceded by a
forward slash (/).

This sample has instances of the first method only. For example, the
termination of the bookfile element is on line 46.

An “attribute” is included within the element description as a name followed
by an equals sign (=), followed by a quoted string. The name is the attribute
name, and the quoted string is the attribute value. There is no limit to the
number of space-delimited attribute name/value pairs in an element. For
example, the “transaction” element (line 5) has a single attribute whose name
is “borrowDate” and whose value is “2001-10-15”.

The “data” of an element is any non-element, non-comment text between the
element start and end. Elements that end with a /> can’t have data. And some
elements don’t have data. For example, the Lender element (line 6) has no
data. The “street” element on line 8 has data of “416 Disk Drive”.

Working with XML Data 11-31
A “child” of an element is an element one level below an element. For
example, “Lender” is a child of “transaction”, as is “Borrower”. “name” is a
child of “Lender”, and there is a separate element named “name” which is a
child of “Borrower”. But neither of those “name” elements is considered a
child of “transaction” because there is an element at a level between “name”
and “transaction”. There are two separate “city” elements, one of which is a
child of “Lender”, and the other a child of “Borrower”. The elements
between “city” and “Lender” are all at the same level as “city”, which is why
“city” is considered a child of “Lender”.

A “parent” of an element is one who has that element as a child.

A “sibling” of an element is an element with the same parent.

So “transaction” is the parent of “Lender”, “Borrower”, “note” and “books”
(lines 6, 12, 18 and 19, respectively). “Lender”, “Borrower”, “note” and
“books” are all siblings.

A “record” is child of the top-level element.

11.2.6.3 Parsing an XML file

You can use three main op-codes to parse an XML file with C$XML:
CXML-PARSE-FILE, CXML-OPEN-FILE, and CXML-NEW-PARSER.
Each has a slightly different function, as described below. Choose the one
that best suits your needs.

Note: C$XML can parse local or remote files—even files located on the
Internet. You simply specify the server, IP address, or URL in the
pathname. You cannot write to URLs, however.

Op-code Description

CXML-PARSE-FILE Opens and parses the specified file

CXML-OPEN-FILE Opens the specified file, so you can parse
individual records

CXML-NEW-PARSER Opens a new, empty XML file

11-32 Working with Non-Vision Data
If you prefer, you can parse an XML file directly without opening a file with
the CXML-PARSE-STRING op-code. Examples for using these op-codes
appear in the following paragraphs.

Opening and parsing a file

To open and read an entire XML file, use the CXML-PARSE-FILE op-code.
Once a file is parsed, all its elements are immediately retrievable. Parsing
entire files can take some time, depending on the size of the file. Use this
option when you plan to work extensively with the whole file or when the file
is small.

For instance:
call "C$XML" using CXML-PARSE-FILE "http://www.nws.noaa.gov/data/current_obs/KMYF.xml"
move return-code to parser-handle

Opening a file, parsing individual records

To simply open the file, but not parse it, use the CXML-OPEN-FILE
op-code. With the file open, you can then parse individual records using the
CXML-PARSE-NEXT-RECORD op-code. For instance:

CALL "C$XML" using CXML-OPEN-FILE "http://www.nws.noaa.gov/data/current_obs/KMYF.xml"
move return-code to parser-handle
CALL "C$XML" using CXML-PARSE-NEXT-RECORD parser-handle
move return-code to record-handle

This option is more efficient than parsing entire files, but you must remember
to parse the record before you try to retrieve its elements.

Creating a new parser

To create a new XML file, use the CXML-NEW-PARSER op-code. An
empty file is opened, into which you can add children, siblings, attributes,
and comments as described in section 11.2.6.6. Note that the file is not “created”
until you write to the file using the CXML-WRITE-FILE op-code.

Working with XML Data 11-33
Parsing an XML string directly

If you get XML text from another source and need to parse it, you can parse
the string directly using the CXML-PARSE-STRING op-code. You don’t
have to write the data to a file, then parse the file. You simply specify the
string directly in the call. For example:

call "C$XML" using CXML-PARSE-STRING,
"<?xml version=""1.0""?><group1><subgroup1><item1>data</item1></subgroup1></group1>".
move return-code to parse-handle.

Then you can use the return code elsewhere in your program.

11.2.6.4 Moving to an element

Once a file has been opened and parsed, you can navigate the file in many
different ways. In XML, you must move to an element of interest before you
can retrieve its data. Listed below are several op-codes that you can call from
the C$XML routine for this purpose. Be sure to specify the handle of the
element or parser to move to, as in:
call "C$XML" using CXML-GET-FIRST-CHILD
 parser-handle.

More advanced options include:

• CXML-GET-CHILD-BY-NAME

• CXML-GET-CHILD-BY-CDATA

• CXML-GET-CHILD-BY-ATTR-NAME

Op-code Description

CXML-GET-FIRST-CHILD Moves to the first child of an element

CXML-GET-NEXT-SIBLING Moves to the subsequent sibling of an
element

CXML-GET-PREV-SIBLING Moves to the previous sibling; one way to
move backward in a file

CXML-GET-PARENT Moves to the parent; another way to move
backward in a file

11-34 Working with Non-Vision Data
• CXML-GET-CHILD-BY-ATTR-VALUE

• CXML-GET-SIBLING-BY-NAME

• CXML-GET-SIBLING-BY-CDATA

• CXML-GET-SIBLING-BY-ATTR-NAME

• CXML-GET-SIBLING-BY-ATTR-VALUE

These options allow you to navigate to a specific child or sibling in an
element rather than simply the next or previous one. Details are provided in
Appendix I in ACUCOBOL-GT Appendices.

Note that these op-codes do not retrieve element data. They simply move to
the element and return the element handle. Once you have the handle to the
element of interest, you can call CXML-GET-DATA to retrieve the data
associated with the element.

Note: If desired, you can retrieve element attributes and comments as well.
Refer to Section 11.2.6.10, “Retrieving attributes,”and Section 11.2.6.11,
“Retrieving comments,” for more information.

11.2.6.5 Retrieving data

To retrieve data from an element, you use the CXML-GET-DATA op-code.
In this operation, you must specify the handle for the element of interest,
down to the field level. You can obtain the handle by looking at the return
code for the other operations, such as CXML-GET-SIBLING-BY-NAME.
For example:
*Get the handle for the Weather element
 call "C$XML" using CXML-GET-SIBLING-BY-NAME
 ele-1-handle
 "weather"
 0.
 move return-code to ele-2-handle.
*Get the weather data using that handle
 call "C$XML" using CXML-GET-DATA
 ele-2 handle
 throw-away-info
 weather-val.

Working with XML Data 11-35
Once the XML data is returned, you can then pass it to other parts of your
COBOL program for processing or display.

11.2.6.6 Adding, modifying, or deleting data

You can add, modify, or delete data in the XML document using any of the
following C$XML op-codes:

• CXML-MODIFY-CDATA

• CXML-MODIFY-ATTRIBUTE

• CXML-ADD-CHILD

• CXML-ADD-SIBLING

• CXML-ADD-ATTRIBUTE

• CXML-ADD-COMMENT

• CXML-APPEND-COMMENT (useful for documenting why you
modified an XML document)

• CXML-DELETE-ATTRIBUTE

• CXML-DELETE-ELEMENT

• CXML-DELETE-COMMENT

For the majority of these op-codes, you must pass the element handle as a
parameter as well as the new value of that element or attribute. Other
parameters may apply as well. Refer to Appendix I in ACUCOBOL-GT
Appendices for more details.

11.2.6.7 Writing a file

If you modify the XML file in any way, you must write to the file in order for
your changes to take effect. Use the CXML-WRITE-FILE op-code for this
purpose. For example:
call "C$XML" using CXML-WRITE-FILE
 parser-handle
 "bookfile.xml"

11-36 Working with Non-Vision Data
You can write to the same file that you opened, or you can write to a new file.
The filename that you specify can be anything you want. You cannot,
however, write to a URL.

Caution: If you do not write to the file, your changes are lost.

11.2.6.8 Releasing the parser

When you are finished writing to the file, you are responsible for releasing
the parser from memory. This operation is not performed automatically. To
release the parser, use the CXML-RELEASE-PARSER op-code. For
example:
call "C$XML" using CXML-RELEASE-PARSER
 parser-handle.

11.2.6.9 Retrieving errors

If a return code from any other operation is “0” or “1”, a call to C$XML has
failed. To retrieve error information, call the CXML-GET-LAST-ERROR
op-code. For example:
77 errors-storage PIC x(60).
77 errors-value PIC x(70).
.
.
.
CALL "C$XML" using CXML-GET-LAST-ERROR error-storage.
move "Err No:" to error-value(1:).
move return-code to errors-value(9:).
move errors-storage to errors-value(20:).
display message " " errors-value.

Appendix I in ACUCOBOL-GT Appendices lists all of the error codes that
can be returned by this library routine.

Working with XML Data 11-37
11.2.6.10 Retrieving attributes

If desired, you can retrieve element attributes using one of the following
C$XML op-codes:

Attributes have special characteristics:

• Attributes don’t have a handle; they are attached to the element handle
for which they are an attribute.

• There can be more than one attribute per element, thus more than one
attribute per element handle.

• You don’t need to call CXML-GET-DATA to fetch the attribute data.
The CXML-GET-ATTRIBUTE op-codes retrieve the data.

Before you use CXML-GET-ATTRIBUTE, we recommend that you use
CXML-GET-ATTRIBUTE-COUNT. This op-code tells you how many
attributes are in the element of interest. Then when you use
CXML-GET-ATTRIBUTE, you know which attribute you are getting (the
first attribute is number 0, the second number 1, etc.).

Alternatively, if you know the name of the attribute you want and not the
number of the attribute, you can use CXML-GET-ATTRIBUTE-BY-NAME.
If you have an unknown number of attributes like this:
Limousine
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSche
maDefinition"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Op-code Description

CXML-GET-ATTRIBUTE-COUNT Gets the number of attributes in
an element

CXML-GET-ATTRIBUTE Gets the next attribute

CXML-GET-ATTRIBUTE-BY-NAME Gets the named attribute

11-38 Working with Non-Vision Data
and you are searching for a particular attribute, say “xmlns:xsi”, you can
search for the value with CXML-GET-ATTRIBUTE-BY-NAME, or you can
get the count and read the attributes one by one searching for the one you
want.

Refer to Appendix I in ACUCOBOL-GT Appendices for more details on the
CXML-GET-ATTRIBUTE op-codes.

11.2.6.11 Retrieving comments

You can obtain element comments using CXML-GET-COMMENT op-code.
You don’t need to call CXML-GET-DATA to fetch the comment data. The
CXML-GET-COMMENT op-code retrieves the data.

11.2.6.12 C$XML examples

Sample 1: Open, parse, and read weather file

The following sample program calls an XML file from the National Weather
Service Web site and retrieves weather data for use in a COBOL program. (It
does not modify or write to the file in any way.)
*Retrieve the xml data and parse it
 call "C$XML" using CXML-PARSE-FILE
 "http://www.nws.noaa.gov/data/current_obs/KMYF.xml
 move return-code to parser-handle

*Move to the data item of the record, which is a
*child of the record name element.
 call "C$XML" using CXML-GET-FIRST-CHILD
 parser-handle.
 move return-code to ele-1-handle

*Get the desired fields, which are all siblings of the first
*child. Get the handle to the desired sibling, then get the
*data for that element using that handle.

*General outlook field
 call "C$XML" using CXML-GET-SIBLING-BY-NAME
 ele-1-handle
 "weather"
 0

Working with XML Data 11-39
 move return-code to ele-2-handle
 call "C$XML" using CXML-GET-DATA
 ele-2-handle
 throw-away
 weather-val.

*Temperature field
 call "C$XML" using CXML-GET-SIBLING-BY-NAME
 ele-1-handle
 "temperature_str"
 0
 move return-code to ele-2-handle
 call "C$XML" using CXML-GET-DATA
 ele-2-handle
 throw-away
 temp-val.

*Relative humidity field
 call "C$XML" using CXML-GET-SIBLING-BY-NAME
 ele-1-handle
 "relative_humidi"
 0
 move return-code to ele-2-handle
 call "C$XML" using CXML-GET-DATA
 ele-2-handle
 throw-away
 humid-val.

*Wind direction field
 call "C$XML" using CXML-GET-SIBLING-BY-NAME
 ele-1-handle
 "wind_dir"
 0
 move return-code to ele-2-handle
 call "C$XML" using CXML-GET-DATA
 ele-2-handle
 throw-away
 wind-dir.

*Wind speed field
 call "C$XML" using CXML-GET-SIBLING-BY-NAME
 ele-1-handle
 "wind_mph"
 0
move return-code to ele-2-handle

11-40 Working with Non-Vision Data
 call "C$XML" using CXML-GET-DATA
 ele-2-handle
 throw-away
 wind-mph.

*Visibility field
 call "C$XML" using CXML-GET-SIBLING-BY-NAME
 ele-1-handle
 "visibility"
 0
 move return-code to ele-2-handle
 call "C$XML" using CXML-GET-DATA
 ele-2-handle
 throw-away
 vis-val.

Sample 2: Create file, add elements and attributes, write data
to file

The following sample shows how to create an XML file, add elements to it,
and write data to the elements.

program-id. test.
working-storage section.
01 parser-handle usage is handle.
01 element-handle usage is handle.
COPY "acucobol.def".
procedure division.
main-logic.
*Create a new XML file
 call "C$XML" using CXML-NEW-PARSER
 move return-code to parser-handle.

*Add a top element (using the name of the file)
 call "C$XML" using CXML-ADD-CHILD
 parser-handle
 "custRec"
 move return-code to element-handle.

*Add some namespace information
 call "C$XML" using CXML-ADD-ATTRIBUTE
 element-handle
 "xmlns:xsi"

Working with XML Data 11-41
 "http://www.w3.org/2001/XMLSchema-instance".

*Add the first field of the record, which will be a child of
*the last element.
 call "C$XML" using CXML-ADD-CHILD
 element-handle
 "cus-key"
 "555-55-5555"
 move return-code to element-handle.

*Add the rest of the record
 call "C$XML" using CXML-ADD-SIBLING
 element-handle
 "cus-name"
 "Acucorp"
 move return-code to element-handle.

 call "C$XML" using CXML-ADD-SIBLING
 element-handle
 "cus-addr"
 "8515 Miralani Drive"
 move return-code to element-handle.

 call "C$XML" using CXML-ADD-SIBLING
 element-handle
 "cus-city"
 "San Diego"
 move return-code to element-handle.

 call "C$XML" using CXML-ADD-SIBLING
 element-handle
 "cus-state"
 "CA"
 move return-code to element-handle.

 call "C$XML" using CXML-ADD-SIBLING
 element-handle
 "cus-zip"
 "92126"

*write the file
 call "C$XML" using CXML-WRITE-FILE,
 parser-handle
 "custRec.xml".

11-42 Working with Non-Vision Data
 call "C$XML" using CXML-RELEASE-PARSER,
 parser-handle.
 stop run.

11.3 Working with Relational Data

We provide two main ways to integrate COBOL applications with relational
databases based on Structured Query Language (SQL):

• using the seamless Acu4GL interface

• using embedded SQL (ESQL) and an ESQL pre-compiler

While the Acu4GL interface is designed to provide easy access to SQL data
from ACUCOBOL-GT applications, embedded SQL gives you more precise
control over your database queries. The main difference is that you do not
need to know SQL with Acu4GL. With ESQL, you embed SQL into your
COBOL code, then run a pre-compiler to perform the I/O conversions.

Some sites use a combination of Acu4GL and ESQL to optimize data access
for each application. Output from Acu4GL can even be used as a template
for ESQL.

11.3.1 Acu4GL Interface

We offer a family of interface products that can automatically convert
COBOL I/O into database-specific SQL requests and vice versa. These
include:

• Acu4GL for Oracle®

• Acu4GL for Informix®

• Acu4GL for Sybase®

• Acu4GL for Microsoft® SQL Server

• Acu4GL for ODBC

Working with Relational Data 11-43
The first four Acu4GL products act as seamless interfaces between
ACUCOBOL-GT applications and specific RDBMSs. They dynamically
generate industry standard SQL from COBOL I/O statements using data
dictionaries created at compile time. As the ACUCOBOL-GT runtime
module executes your COBOL application, Acu4GL runs “behind the
scenes” to match up the requirements of both the application and the
database. You do not need to know SQL to use Acu4GL.

Acu4GL for ODBC works the same as the other Acu4GL products, except
that it interfaces between ACUCOBOL-GT applications and Open Database
Connectivity (ODBC)-compliant data sources. See section 11.4 for more
information on working with ODBC data sources.

See the Acu4GL User’s Guide for instructions on using any of the Acu4GL
interfaces.

11.3.2 Embedded SQL

Developers interested in generating SQL themselves can embed
database-specific SQL directly into their ACUCOBOL-GT programs. This
is known as “embedded SQL” or “ESQL.” Most database vendors offer a
pre-compiler that translates ESQL into external CALLs recognized by the
RDBMS. We provide an ESQL pre-compiler known as AcuSQL®.

ESQL can be used by itself or with Acu4GL to add specialized control over
database functions. ACUCOBOL-GT fully supports the use of ESQL to
provide database connectivity.

11.3.2.1 Embedding SQL statements into ACUCOBOL-GT

Although the process for using ESQL in ACUCOBOL-GT programs varies
slightly for each database, the general process is as follows:

1. Embed the SQL statements into the ACUCOBOL-GT program. (Your
database vendor can supply a list of supported SQL statements.)

2. Run a pre-compiler to translate the SQL into COBOL CALL
statements. See section 11.3.2.2 for a list of supported pre-compilers.

3. Compile the new program using ACUCOBOL-GT.

11-44 Working with Non-Vision Data
4. Relink the COBOL runtime with the appropriate database access
library routines.

5. Execute your program normally.

To guide you through the process of compiling and relinking, we can supply
you with instructions specific to your database. Relinking typically involves
updating an Acucorp-supplied interface file, updating your system makefile
(or batch or command file), and rebuilding the runtime. With
ACUCOBOL-GT, you relink the runtime only once, not for each program
that uses SQL. This results in much smaller object files.

11.3.2.2 Supported ESQL pre-compilers

ACUCOBOL-GT works well with many different types of ESQL. Listed
below are some of the pre-compilers available to our customers:

• Oracle Pro*COBOL (certified by Oracle for use with ACUCOBOL-GT)

• Informix-ESQL for COBOL

• Sybase Embedded SQL/COBOL

• Our AcuSQL (for IBM DB2, Microsoft SQL Server, and ISO/ANSI
SQL92 compliant data sources)

If your database vendor offers a COBOL-ESQL pre-compiler, you can
effectively link your ACUCOBOL-GT application to that database using
ESQL. If your vendor does not offer a pre-compiler, you may still be able to
access the database through a group of C routines that can be CALLed
directly by the COBOL compiler.

For more information on using AcuSQL, refer to the AcuSQL User’s Guide.
For more information on CALLing C routines, see Chapter 6 of this guide.

Working with ODBC Data 11-45
11.4 Working with ODBC Data

ACUCOBOL-GT can interface with many ODBC-compliant data sources,
such as Microsoft Access, Oracle, and Informix. It does this through
Acu4GL for ODBC, a transparent interface that translates COBOL I/O
statements into ODBC calls to Windows-based data sources.

With Acu4GL for ODBC, your Windows-based application can access the
most common database formats found on desktop computer systems, as well
as relational database management systems on UNIX or Windows NT
servers.

Acu4GL for ODBC gives ACUCOBOL-GT users access to information
stored in data sources that comply with the ODBC standard, a library of
standardized data access functions designed for the Windows operating
system environment. This capability gives ACUCOBOL-GT users access to
data in multiple data sources, databases, and file systems—all from a single
interface—and provides access to many Windows-based data sources.

For more information, please refer to the Acu4GL User’s Guide.

11.5 Working with File Systems like C-ISAM and
KSAM

We provide interfaces between ACUCOBOL-GT programs and data on file
systems such as C-ISAM and KSAM.

C-ISAM files can be accessed through a special interface routine that is
linked into the ACUCOBOL-GT runtime system and is invoked when your
program is executed. You do not need to embed C-ISAM commands in your
code. This interface is described in a supplement to the ACUCOBOL-GT
manual set titled, “Interfacing to the C-ISAM File System.”

KSAM files can be accessed through HP e3000 system intrinsic functions or
via standard COBOL I/O statements. Specific instructions for accessing
these files are provided in section 4.2.3 of Transitioning to ACUCOBOL-GT.

11-46 Working with Non-Vision Data
11.6 Working with an EXTFH Interface

You can readily configure the ACUCOBOL-GT runtime to use an EXTFH
interface for communicating with external file systems that contain indexed,
relative, or sequential files. The EXTFH interface is enabled and linked into
the runtime by default.

The EXTFH interface provides a way for applications to transparently access
a file system such as DB2 for record storage. In transaction processing
environments, EXTFH is typically used to handle data access for batch
programs. For online programs, you can easily add data access methods to an
application.

11.6.1 Using the EXTFH Interface

Two basic requirements are needed to configure the ACUCOBOL-GT
runtime to utilize the EXTFH interface:

1. Specify the file system(s) that is using the EXTFH interface to access
files.

2. Dynamically load the EXTFH libraries using runtime configuration
variables or by statically linking the EXTFH-compatible libraries with
the runtime.

After you configure the runtime, the COBOL data access methods are
unchanged. The same COBOL file I/O statements are used whether
accessing native file systems or using EXTFH.

11.6.2 Making EXTFH Libraries Available to the Runtime

To use an EXTFH interface, you must make a library available to the runtime
that implements an EXTFH-compatible function and include all the
necessary support libraries.

Working with an EXTFH Interface 11-47
Note: The vendor of your environment must supply the libraries that
contain EXTFH-compatible functions for any data sources you want to
access. ACUCOBOL-GT does not supply these libraries.

Use the following procedures to make the libraries available:

1. Specify that the file system is EXTFH.

2. Specify the library using one of these options:

a. Rely on the default EXTFH function names or specify one or more
function names in a configuration variable.

b. Specify a single EXTFH library name or different library names
for relative, sequential, and/or indexed files using configuration
variables.

c. Relink the ACUCOBOL-GT runtime.

We recommend that you set the A_EXTFH runtime configuration variable to
dynamically load the EXTFH library or use other A_EXTFH configuration
variables to specify different libraries for specific file types.

Regardless of what method you use, you also need to set at least one of the
file system configuration variables to access files through the EXTFH
interface. See section 11.6.2.1, “Accessing files through EXTFH,” or
Appendix H in ACUCOBOL-GT Appendices for more information.

11.6.2.1 Accessing files through EXTFH

By default, all file access is handled by the ACUCOBOL-GT native file
handler. For those file types you want to access using an EXTFH library, you
need to set one (or more) of the following configuration variables to
“EXTFH”:
DEFAULT_FILESYSTEM
DEFAULT_IDX_FILESYSTEM
DEFAULT_REL_FILESYSTEM
DEFAULT_SEQ_FILESYSTEM
filename_FILESYSTEM

11-48 Working with Non-Vision Data
Note that when you use filename_FILESYSTEM, the file suffix is not
included in the configuration variable definition. If the filename is
“outputfile.tmp”, for example, set this variable as:
outputfile_FILESYSTEM

To use the DB2 library to access indexed files and the ACUCOBOL-GT
native file handler for sequential and relative files, set the following two
configuration variables:
A_EXTFH_LIB=/pathname/libraryname.o
DEFAULT_IDX_FILESYSTEM=EXTFH

For more information on these configuration variables, see Appendix H in
ACUCOBOL-GT Appendices.

11.6.2.2 Searching for function names

By default, the runtime searches for functions named “cics_xfh”,
“cobol_extfh”, and “EXTFH” in that order. If your EXTFH function uses a
different name, you may also need to set a configuration variable to specify
the function name (such as A_EXTFH_FUNC). If necessary, you can also
specify a different function name for relative, sequential, and/or indexed
files. For more information on A_EXTFH_FUNC and related configuration
variables, see Appendix H in ACUCOBOL-GT Appendices.

Specifying a single EXTFH library name

The simplest way to implement the EXTFH interface is to specify the file
name or absolute path of a single EXTFH shared object library as the value
of A_EXTFH_LIB. When you use this method, the runtime loads the
specified library in order to find the necessary EXTFH function or functions.

For example, to use the EXTFH library supplied with TXSeries CICS for
DB2, specify:
A_EXTFH_LIB /usr/lpp/cics/lib/libxfhdb2sa.a(libxfhdb2_shr.o)

where “libxfhdb2_shr.o” contains the entry point to the DB2 EXTFH library
and resides in the “libxfhdb2sa.a” AIX archive. In this case, if your
LIBPATH variable includes the path where the library resides, you can omit
the path; otherwise, include the path as part of A_EXTFH_LIB.

Working with an EXTFH Interface 11-49
You can also specify the EXTFH library as an environment variable. For
example, you can specify the same EXTFH library for accessing DB2 files
from TXSeries using:
export A_EXTFH_LIB="/usr/lpp/cics/lib/libxfhdb2sa.a(libxfhdb2_shr.o)"

Note: An AIX archive file (“.a”) can contain shared objects. You must
specify the shared object in parentheses after the archive name unless you
link to the archive.

11.6.2.3 Setting libraries for indexed, relative, and sequential files

To use different EXTFH libraries for indexed, relative, and sequential files,
you can set the file names or paths of the libraries in one or more of the
following variables:
A_EXTFH_IDX_LIB
A_EXTFH_REL_LIB
A_EXTFH_SEQ_LIB

The ACUCOBOL-GT runtime uses A_EXTFH_LIB as the default EXTFH
library for all three file types. If one or more of these three variables is also
set, the runtime uses its value instead of A_EXTFH_LIB for the
corresponding file type.

Remember that when you use configuration variables to identify the library
names and specify file names instead of absolute paths, the operating system
must be able to find the files in the locations it normally searches for shared
libraries. You may need to set the correct search path environment variable,
such as LIBPATH on AIX.

Calling conventions for DLLs

All the configuration variables that allow you to specify an EXTFH library
name also allow you to specify the calling convention for a particular DLL
and thereby override the setting of the DLL_CONVENTION runtime
configuration variable. For more information, refer to Appendix H in
ACUCOBOL-GT Appendices.

11-50 Working with Non-Vision Data
11.6.2.4 Statically linking EXTFH-compatible libraries

If you prefer to statically link the EXTFH-compatible libraries into the
ACUCOBOL-GT runtime, you can use the makerun utility. For example,
enter:
cd $ACUCOBOL/lib
makerun -bE:extfh.exp -L/usr/lpp/cics/lib -lxfhdb2sa -lcicssa

where “extfh.exp” is a text file that contains a single line with the name of the
EXTFH function.

When the runtime initializes, it searches for the EXTFH functions in the
specified libraries. If it cannot find the EXTFH functions or if you have not
specified any libraries, the runtime searches all symbols in the current
process.

Note: If you are familiar with using the make utility, you can also choose
to modify the EXTFH_LIB and EXTFH_FLAGS macros in
$ACUCOBOL/lib/Makefile and use make to relink the runtime.

For more information on relinking the runtime, see Chapter 6.

11.7 File System Configuration

As described previously in this chapter, you can use many other file systems
in place of, or in combination with ACUCOBOL-GT’s Vision file system.
Supported file systems include:

XML enabled and available on all platforms

RMS used in place of Vision on VMS and
OpenVMS platforms

EXTFH interface enabled and available on all platforms; allows
access to most files for which an EXTFH
library is available

MPE/KSAM enabled on HP MPE/iX platforms in addition
to Vision

File System Configuration 11-51
On most platforms, ACUCOBOL-GT comes preconfigured to work with
Vision, XML, and EXTFH. In addition, on HP MPE/iX systems the
MPE/KSAM file system is enabled. On VMS and OpenVMS systems,
Vision is replaced by RMS. For more information about Vision, see section
6.1 in Book 1, ACUCOBOL-GT User's Guide. For more information about
XML, see section 11.2 in this chapter. For more information on the EXTFH
interface, see section 11.6 in this book. For information about MPE/KSAM,
see Chapter 4, “HP COBOL Conversions,” in Transitioning to
ACUCOBOL-GT.

Configuration information for file systems that use a separately licensed
product is included in the documentation provided with that product. For
information about Acu4GL, AcuSQL, and compatible embedded SQL
technologies, see their respective user’s guides, or contact your Micro Focus
extend Sales Professional.

C-ISAM licensed separately; available on most
UNIX/Linux platforms

P.SQL/Btrieve licensed separately; available on most
Windows platforms

DB2 licensed separately; through Acu4GL, or by
embedded SQL and the DB2 preprocessor

Oracle licensed separately; through Acu4GL, or by
embedded SQL and the Oracle preprocessor

MS SQL licensed separately; through Acu4GL, or by
embedded SQL with AcuSQL

Informix licensed separately; through Acu4GL, or by
embedded SQL with AcuSQL

Sybase licensed separately; through Acu4GL, or by
embedded SQL with AcuSQL

ODBC-compliant licensed separately; through Acu4GL, or by
embedded SQL with AcuSQL

11-52 Working with Non-Vision Data
11.8 File System Initialization

By default, with the exception of the EXTFH interface, ACUCOBOL-GT
initializes enabled file systems upon runtime startup, before the first COBOL
program begins execution. Initialization of the EXTFH interface, by default,
is deferred until the first file operation on the file system. This provides the
best runtime performance.

If you want to force initialization of EXTFH at startup, or you want to defer
initialization of another file system, you can do so by setting a variable in
“filetbl.c” and relinking the runtime. “filetbl.c” holds the ACUCOBOL-GT
file system table. Settings in “filetbl.c” determine which file systems are
enabled and when each system is initialized. “filetbl.c” is located in the lib
subdirectory of your ACUCOBOL-GT installation.

To specify file system initialization for a given file system:

1. Open “filetbl.c” in a text editor.

2. Locate the TABLE_ENTRY for the file system you want to control,
and change the defer_init parameter to the desired value. A value of
“0” causes the file system to be initialized at startup. A value of “1”
causes file system initialization to be deferred. The defer_init flag is
set to “0” by default for all file systems except EXTFH.

For example, following is the TABLE_ENTRY for Vision:

TABLE_ENTRY file_table[] = {
#if USE_VISION
 { &v5_dispatch, "VISIO", 0 },
#endif /* USE_VISION */

The defer_init value is the value that follows “VISIO” on the third line.

3. When you have made your changes, save and close the file and relink
the runtime. Instructions on relinking the runtime are located in
section 6.3.6, “Relinking the Runtime System.”

If a deferred file system initialization fails, the file status is set to 9B (32 for
IBM DOS/VS) to indicate that the requested operation is not supported.

File System Initialization 11-53
Note: Starting the runtime with the “-v” option forces startup initialization
of all enabled file systems, as well as output of version information. For a
complete description of the “-v” option, see section 2.2 in Book 1,
ACUCOBOL-GT User’s Guide.

11-54 Working with Non-Vision Data

Index

Symbols
.NET API 5-13
.NET bridging interface 5-25
.NET compiler options 5-4

data passing limitations 5-8
example 5-8

.NET control distribution 5-36

.NET interface, limits and restrictions 5-34

.NET, calling from COBOL 5-25

.NET, See also entries under ’N’ 5-2

A
A_JAVA_CHARSET configuration variable

configuration variables
A_JAVA_CHARSET 2-43

A_JAVA_GC_COUNT configuration variable
configuration variables

A_JAVA_GC_COUNT 2-43
A_JAVA_TRACE_FILENAME configuration variable

configuration variables
A_JAVA_TRACE_FILENAME 2-43

A_JAVA_TRACE_VALUE configuration variable
configuration variables

A_JAVA_TRACE_VALUE 2-43
ACCEPT FROM SYSTEM-INFO, 32-bit Windows 3-34
ActiveX and COM object parameters 4-16
ActiveX controls

AXDEFGEN utility 4-41
color representation 4-35

1-2
control type 4-22
debugging 4-36
definitions generator 4-41
disabling 4-9
distributed with ACUCOBOL-GT 4-2, 4-29
distributing applications with 4-28
enumerators 4-35
events 4-18
example 4-37
installing 4-4
Media Player 4-37
methods 4-10
multiple object interfaces 4-24
name clashes 4-23
named parameters 4-10
Passing COBOL data as SAFEARRAYs 4-12
passing parameters to 4-16
properties 4-10
registering 4-4
SAFEARRAYs 4-12
styles 4-10
troubleshooting 4-37
useful files 4-24

ActiveX library routines
C$EXCEPINFO 4-27
C$GETEVENTDATA 4-18, 4-27
C$GETEVENTPARAM 4-27
C$RESOURCE 4-27
C$SETEVENTDATA 4-27
C$SETEVENTPARAM 4-18, 4-27

acu_abend() function 6-28
acu_cancel() function 6-29
acu_cancel_all() function 6-29
acu_cobol() function 6-30
acu_initv() function 6-36
acu_register_sub() function 6-40
acu_runmain() function 6-40

 1-3
acu_shutdown() function 6-42
acu_unload() function 6-43
acu_unload_all() function 6-43
Acu4GL 1-4

on the Internet 7-9
Acu4GL interface 11-43
ACUCOBOL-GT Runtime DLL 3-10
AcuConnect 1-5

on the Internet 7-8
aculongjmp() routine 6-37
acusavenv() function 6-41
AcuServer 1-6
AcuSQL 1-6, 11-44

on the Internet 7-9
AcuToNet.dll 5-25

cocreate instance failed error 5-29
optimizing 5-35

AcuXDBC 1-5, 2-3
accessing Vision through JDBC 2-23
accessing Vision through ODBC 3-19, 3-21
on the Internet 7-9

AcuXML
concepts 11-16
defined 11-3
on the Internet 7-9
restrictions 11-24
usage 11-10

AcuXML error messages 11-27
alignment boundaries and C compilers 6-5
array regions 2-31
ASCII

A_JAVA_CHARSET config variable 2-43
mapping data items 2-52

Assemblies 5-39
Assembly Location 5-39
assembly routines, calling from Windows 3-34
attribute 11-29

1-4
automatic synchronization 6-5
Automation Server 3-4
AXDEFGEN utility 4-41
AXML_CREATE_SCHEMA configuration variable 11-9
AXML-CREATE-STYLE configuration variable 11-9
AXML-SCHEMA-NAME configuration variable 11-9

B
background debugging

kterm dtterm 9-15
xterm 9-15
xterm_program configuration variable 9-15

BEA Tuxedo. See Tuxedo.
building a shared library for HP-UX 2-18
by reference 4-17

C
C API 6-44
C API functions 6-27
C API functions, list of

acu_abend() 6-28
acu_cancel() 6-29
acu_cancel_all() 6-29
acu_cobol() 6-30
acu_initv() 6-36
acu_register_sub() 6-40
acu_runmain() 6-40
acu_shutdown() 6-42
acu_unload() 6-43
acu_unload_all() 6-43
aculongjmp() 6-37
acusavenv() 6-41

C call interface 6-44
C compilers, alignment boundaries 6-5

 1-5
C data
matching 6-3
matching COBOL data to host architecture 6-5
matching with COMP-5 6-4
modifying data types with "-Dw" 6-5
USAGE types for integer data 6-3

C data types 11-2
C library functions, in runtime global symbol space 6-6
C subroutines

calling from COBOL, introduction 6-5
calling in a DLL 6-6
calling in a shared object library 6-6
data types 6-17
interface calling method 6-13
interfacing to under Windows 3-29, 3-30
interfacing with, introduction 6-2
managing the terminal 6-20
memory monitoring and debugging 6-60

allocated blocks 6-62
boundaries 6-63
controlling 6-62
interface 6-60
memory amounts 6-63

placing SUB function in a DLL 6-15
shared object libraries

calling exported functions 6-10
cancelling 6-19
loading with "-y" 6-7
loading with CALL statement 6-9
loading with SHARED_LIBRARY_LIST 6-8

SUB interface 6-14
SUB85 interface 6-17

C$CHAIN routine, 32-bit Windows 3-35
C$EXCEPINFO routine 4-27
C$GETEVENTDATA routine 4-18, 4-27
C$GETEVENTPARAM routine 4-27
C$JAVA routine 2-23

1-6
calling 2-23
C$RESOURCE routine 4-27
C$SETEVENTDATA routine 4-27
C$SETEVENTPARAM routine 4-18, 4-27
C$SOCKET routine 2-3, 2-23, 6-56

Java interop, using for 2-48
C$SYSTEM routine 2-23, 6-56

32-bit Windows 3-34
C$XML examples 11-38
C$XML routine 11-3

using 11-28
C$XML terminology 11-29
Calling .NET from COBOL 5-25
calling C subroutines in shared object libraries 6-10
calling COBOL from C 6-44
calling COBOL from Java 2-3
calling DLLs 3-13
calling IBM Servers, CICS 9-4
CANCEL_ALL_DLLS configuration variable 6-20
cancelling a C program 6-19
cdecl (standard C) calling convention 3-15
character sets 2-43

mapping data items 2-52
child 11-29
CICS 9-3, 9-4
CJAVA-EXCEPTIONOCCURRED 2-41
CJAVA-GETEXCEPTIONOBJECT 2-41
CJAVA-SETARRAYREGION 2-31
CLASSPATH 2-44
COBOL and C interoperability 6-2
COBOL CGI 7-4
COBOL CGI interface 7-2
COBOL Web services 7-7
COBOL/Java interoperability 2-2
cocreate instance failed error 5-29
CODE_PREFIX configuration variable 3-6
color, ActiveX 4-35

 1-7
COM events 4-18
COM objects, creating 4-33
COM programming

AXDEFGEN utility 4-41
SAFEARRAYs 4-12

COM server 3-3, 3-4, 5-23
compiler options, .NET 5-4
CompilerTypes, .NET 5-21
configuration variables

JAVA_LIBRARY_NAME 2-43
JAVA_OPTIONS 2-43
PRELOAD_JAVA_LIBRARY 2-43

configuration variables, list of
CANCEL_ALL_DLLS 6-20
CODE_PREFIX 3-6
DLL_SUB_INTERFACE 6-15
DYNAMIC_FUNCTION_CALLS 6-10
FILE_PREFIX 3-6
NO_CONSOLE 3-30
USE_WINSYSFILES 3-14
WIN_ERROR_HANDLING 3-33

consuming Web services 7-8
CONTROL_CREATION_EVENTS configuration variable 4-8, 4-22
Copyfile To Create 5-39
Crystal Reports 1-5
CVM class, .NET 5-13
CVM.jar 2-3
CXML-GET-ATTRIBUTE 11-37
CXML-GET-ATTRIBUTE-BY-NAME 11-37
CXML-GET-ATTRIBUTE-COUNT 11-37
CXML-GET-CHILD-BY-ATTR-NAME 11-34
CXML-GET-CHILD-BY-ATTR-VALUE 11-34
CXML-GET-CHILD-BY-CDATA 11-34
CXML-GET-CHILD-BY-NAME 11-34
CXML-GET-COMMENT 11-38
CXML-GET-DATA 11-35
CXML-GET-FIRST-CHILD 11-34

1-8
CXML-GET-NEXT-SIBLING 11-34
CXML-GET-PARENT 11-34
CXML-GET-PREV-SIBLING 11-34
CXML-GET-SIBLING-BY-ATTR-NAME 11-34
CXML-GET-SIBLING-BY-ATTR-VALUE 11-34
CXML-GET-SIBLING-BY-CDATA 11-34
CXML-GET-SIBLING-BY-NAME 11-34
CXML-NEW-PARSER 11-32
CXML-OPEN-FILE 11-32
CXML-PARSE-FILE 11-32
CXML-PARSE-STRING 11-32

D
data dictionaries, used with AcuXML 11-18
data passing limitations, .NET compiler options 5-8
data storage, modifying definition of data types 6-5
data, external 11-46
DBConnect 2-36
debugger

displaying in xterm 9-15
dtterm, kterm 9-15
using in background mode 9-15

debugging ActiveX controls 4-36
deferred file system initialization 11-52
diagnostic aides 5-42
directives used with AcuXML 11-18
disabling an ActiveX control 4-9
DLL 3-13

calling C subroutines in a DLL 6-15
COM Server 3-4

DLL_CONVENTION configuration variable 3-15
DLL_SUB_INTERFACE configuration variable 6-15
DLL_USE_SYSTEM_DIR configuration variable 3-13
document type definition 11-5
.drv files 3-14

 1-9
dtterm 9-15
dynamic link libraries 3-13
DYNAMIC_FUNCTION_CALLS configuration variable 6-10

E
element 11-29
embedded SQL 11-42, 11-43
enumerators, ActiveX 4-35
ERRNO 6-13
error codes, .NET calls 5-20
error handling, hardware errors under 32-bit Windows 3-33
error information from C

ERRNO 6-13
error information from C, ERRNO 6-13
error messages, AcuXML 11-27
ESQL 11-42, 11-43

embedding statements into ACUCOBOL-GT 11-44
ESQL pre-compilers 11-44
event parameters

retrieving with C$GETEVENTDATA 4-18
setting in ActiveX 4-18

event timing, COM and ActiveX 4-21
events, ActiveX 4-18
examples, ActiveX 4-37
exceptions, Java 2-41
external data types, working with 11-2
EXTFH interface 11-46

accessing files 11-48
libraries 11-47
relinking the runtime 11-50

F
figurative constant 4-17
FILE_PREFIX configuration variable 3-6

1-10
filename_HOST configuration variable, used with AcuXML 11-21
files, ActiveX 4-24

G
Generate Copyfile 5-40
getting and setting array regions 2-31

H
half-cooked, terminal state 6-20
hardware error handling, under 32-bit Windows 3-33
Help 5-40
helper application, defined 7-6
host-specific information

SCO UNIX 6-10
Windows 3-33

HP-UX 11.0 2-18

I
IBM Enterprise COBOL 11-3
IBM WebSphere MQ 10-2
Illegal parameter, literal 4-17
Informix-ESQL 11-44
interfaces, multiple object and ActiveX 4-24
intermediate language (IL) assemblers 5-42
Internet helper application 7-2

J
Java arrays

clearing 2-31
creating 2-29

 1-11
Java compiler options 2-3
Java configuration variables 2-43
Java data types 11-2
Java exceptions 2-41
Java method 2-24
Java native interface 2-3
Java objects 2-27

calling methods on 2-28
creating 2-28
destroying 2-29

Java parameter types 2-25, 2-27
Java technology, working with 2-2
Java Virtual Machine 2-23
java.lang.SecurityManager 2-16
JAVA_LIBRARY_NAME configuration variable 2-43
JAVA_OPTIONS configuration variable 2-43
JAVA-CALLJAVAMAIN 2-29
javap.exe 2-26
JDBC 2-3, 2-23
JDBC ResultSet, with C$JAVA routine 2-36

K
kterm 9-15

L
library routines, list of

C$EXCEPINFO 4-27
C$GETEVENTDATA 4-18, 4-27
C$GETEVENTPARAM 4-27
C$RESOURCE 4-27
C$SETEVENTDATA 4-27
C$SETEVENTPARAM 4-18, 4-27

libruncbl.sl 6-22
libruncbl.so 6-22

1-12
LICENSE-KEY property 4-30
linkage_signature, CALL_OPTIONS 2-13
linking the runtime

MPE/iX systems 6-24
VMS systems 6-24

loading shared object libraries
"-y" 6-7
CALL statement 6-9
SHARD_LIBRARY_LIST 6-8

M
makerun

options 6-23
relinking the runtime 6-23

Media Player, ActiveX control 4-37
Memory management 2-42
memory monitoring and debugging, C subroutines 6-60

allocated blocks 6-62
boundaries 6-63
controlling 6-62
interface 6-60
memory amounts 6-63

message box, Windows 3-33
messages, 32-bit Windows, handled by runtime 3-31
method signatures 2-24
methods, ActiveX 4-10
Microsoft ActiveX controls distributed with ACUCOBOL-GT 4-2, 4-29
Microsoft Software Developer’s Kit (SDK) 3-22
MPE/iX, relinking the runtime 6-24
MQSeries 10-2
MQSERVER environment variable 10-13
MSIL 5-4
multiple object interfaces, ActiveX 4-24

 1-13
N
name clashes

.NET and COBOL 5-36
ActiveX 4-23

Namespace Classes 5-39
NESTED_AX_EVENTS configuration variable 4-22
.NET

assembly, described 5-3
calling .NET objects from COBOL 5-26
Common Language Runtime 5-2
described 5-2
invoking a .NET Web service from COBOL 5-57
invoking an ACUCOBOL-GT program 5-23
invoking an assembly 5-26
locating assemblies 5-26
NETDEFGEN 5-26
sample controls 5-56
support for .NET assemblies 5-2, 5-25

NETDEFGEN COPY files 5-43
NETDEFGEN enumerators 5-51, 5-52
NETDEFGEN events 5-51
NETDEFGEN methods 5-48
NETDEFGEN properties 5-50
NETDEFGEN settings 5-41
NETDEFGEN utility 5-26, 5-37

using 5-26
NETDEFGEN utility reference 5-37
NETDEFGEN, sample COPY file 5-52
--netdll compiler option 5-6
--netexe compiler option 5-5
NO_CONSOLE configuration variable 3-30

O
object, interfaces, ActiveX 4-24
.ocx files 3-14

1-14
Oracle Pro*COBOL 11-44

P
parameters, event, setting in ActiveX 4-18
parameters, retrieving event, C$GETEVENTDATA 4-18
parent 11-29
pre-compilers, ESQL 11-44
PRELOAD_JAVA_LIBRARY configuration variable 2-43
properties

ActiveX 4-10
of .NET methods 5-18

providing Web services 7-7

R
regsvr32, to register an ActiveX control 4-28
regsvr32.exe 4-5, 4-28
relational data 11-42
relational databases, working with 11-42
relinking the runtime

makerun script 6-23
MPE/iX systems 6-24
VMS systems 6-24

Remember the Last Copy File Name and Directory 5-42
Remember the Last Startup Directory 5-42
Remote Method Invocation 2-39
retrieving event parameters with C$GETEVENTDATA 4-18
RM/COBOL, C subroutines 6-13
RMI interop 2-39
runtime DLL 3-3, 3-10

calling 3-10
runtime, C functions in global symbol space 6-6

 1-15
S
SAFEARRAY data type 4-12
SAFEARRAYs in ActiveX Methods or Properties 4-12
sample programs, ActiveX 4-37
SCO UNIX

binary formats 6-10
host-specific information 6-10

SDK, under 32-bit Windows 3-29
security manager class in Java 2-16
Set a Fixed Startup Directory 5-42
setting event parameters in ActiveX 4-18
Settings dialog box 5-41
shared libraries

extension 6-7
loading with SHARED_LIBRARY_LIST 6-8
loading with the CALL statement 6-9
runtime option to load 6-7
SHARED_LIBRARY_EXTENSION 6-9
SHARED_LIBRARY_PREFIX 6-8, 6-9

SHARED_LIBRARY_EXTENSION configuration variable 6-9
SHARED_LIBRARY_LIST configuration variable 6-8
SHARED_LIBRARY_PREFIX configuration variable 6-8, 6-9
sibling 11-29
Software Development Kit for Windows (SDK) 3-29
stdcall (Pascal) calling convention 3-15
styles, ActiveX controls 4-10
SUB Interface for C routines 6-14

placing SUB in a DLL 6-15
SUB85 interface for C routines 6-17
Sybase Embedded SQL/COBOL 11-44
SYSTEM routine

using with 32-bit Windows 3-34
using with Windows 3-34

1-16
T
TC_RESTRICTS_AX_EVENTS configuration variable 4-22
terminal handling with C subroutines 6-20
32-bit Windows 3-33

host-specific information 3-33
trace files 2-42
tracing 2-42
transaction processing 9-3
transaction, defined 9-2
troubleshooting ActiveX controls 4-37
Tuxedo 9-10

creating a client 9-13
creating a server 9-14
deployment 9-14
implementation 9-12

TXSeries 9-7

U
USE_MQSERIES configuration variable 10-12
USE_WINSYSFILES configurations variable 3-14
useful files, ActiveX 4-24
utilities, AXDEFGEN 4-41

V
Variant data types 11-2
VARIANT, parameters 4-16
viewer, defined 7-6
Visual C++ 3-29
VMS, relinking the runtime 6-24
VT_UNKNOWN 4-16

 1-17
W
w_reset_term() 6-20
w_set_term() 6-20
Web browsing from COBOL 7-2
Web runtime 7-2

general information 7-5
Web services 7-3, 7-7

.NET control proxies 5-2
Web thin client 7-2

general information 7-3
WEB-BROWSER control 7-6
WebLogic Server 2-53
WebSphere Application Server 2-53
WebSphere MQ

CALLs 10-4
configuring the runtime for 10-12
COPY files 10-3
queue manager 10-6
working with 10-2

WIN_ERROR_HANDLING configuration variable 3-33
Windows

calling DLLs 3-13
Media Player 4-37
programming in C 3-30

Windows API DLLs 3-22
Windows API functions, calling 3-21, 3-23
Windows API, accessing from COBOL 3-21
Windows NT, host-specific information 3-33
WML 2-20
wrunnet.dll 5-13

X
XML data

concepts 11-4
output structures 11-23

1-18
process for accessing 11-20
schemas 11-6, 11-13
working with 11-3

XML documents 11-5
XML files

adding, modifying, or deleting data 11-35
moving to elements 11-33
opening 11-32
parsing 11-32
retrieving data 11-35
writing to 11-36

XML GENERATE statement 11-3
XML PARSE statement 11-3
xml2fd utility 11-3, 11-12

command options 11-14
xterm_program configuration variable 9-15

	Contents
	Introduction
	1.1 Introduction
	1.2 Documentation Overview
	1.3 The extend Family of Products
	1.4 Technical Services

	Working with Java Technology
	2.1 COBOL/Java Interoperability
	2.2 Calling COBOL from Java
	2.2.1 Calling COBOL from a Java Command Line
	2.2.1.1 Static Method RunCbl

	2.2.2 Using the Java Compiler Options
	2.2.3 Using the Java API, “CVM.jar”
	2.2.3.1 CVM class
	2.2.3.2 CALL_OPTIONS class
	2.2.3.3 Sample use case
	2.2.3.4 Configuration and deployment
	2.2.3.5 Security
	2.2.3.6 Example of Java calling COBOL
	2.2.3.7 Sample programs for Java interoperability
	2.2.3.8 Building a Shared Library for HP-UX 11.0

	2.2.4 Using C$SOCKET
	2.2.5 Using ACUCOBOL-GT’s CGI Extensions
	2.2.6 Using the Java Native Interface (JNI)
	2.2.7 Using Named Pipes
	2.2.8 Using AcuXDBC

	2.3 Calling Java from COBOL
	2.3.1 Calling the C$JAVA Routine
	2.3.1.1 Method signatures
	2.3.1.2 Supported parameter types
	2.3.1.3 Creating and using Java objects in COBOL
	2.3.1.4 Creating and using Java arrays in COBOL
	2.3.1.5 Using Java logging from COBOL
	2.3.1.6 Creating and using a JDBC ResultSet
	2.3.1.7 Java Remote Method Invocation (RMI) interoperability
	2.3.1.8 Handling Java exceptions
	2.3.1.9 Releasing memory
	2.3.1.10 C$JAVA configuration variables
	2.3.1.11 Configuration and deployment
	2.3.1.12 Linking the runtime to “libjvm.sl” on HP-UX
	2.3.1.13 Example
	2.3.1.14 Running the Java interoperability sample programs

	2.3.2 Using C$SOCKET
	2.3.3 Calling the Java Virtual Machine (JVM) DLL or Shared Library
	2.3.4 Using C$SYSTEM
	2.3.5 Using Named Pipes

	2.4 Mapping Java Data Types
	2.5 J2EE Application Servers
	2.5.1 Working with J2EE Application Server Products

	2.6 Web Services
	2.6.1 Providing Web Services from COBOL
	2.6.2 Consuming Web Services in COBOL

	Working with Windows Technologies
	3.1 COBOL and Windows
	3.2 Calling COBOL From Other Windows Programs
	3.2.1 Using the ACUCOBOL-GT COM Server
	3.2.1.1 Methods of the COM server object
	Initialize
	Shutdown
	Call
	Call50
	Cancel

	3.2.2 Calling the Runtime DLL

	3.3 Calling DLLs from COBOL
	3.3.1 Loading DLLs with the CALL Statement
	3.3.2 Loading DLLs with Configuration Variables
	3.3.3 Loading DLLs with the “-y” Runtime Option

	3.4 Working With Open Database Connectivity (ODBC)
	3.4.1 What Is ODBC?

	3.5 Accessing the Windows API
	3.5.1 Microsoft Documentation
	3.5.2 Useful Windows API DLLs
	3.5.3 Calling a Windows API function from ACUCOBOL-GT

	3.6 Using Visual C++ .NET
	3.6.1 Building a New Runtime
	3.6.2 User Interface Approaches

	3.7 Windows-specific Features of ACUCOBOL-GT
	3.7.1 Windows-specific Library Routines

	Using ActiveX Controls and COM Objects
	4.1 Leveraging Ready-made Controls
	4.2 Adding ActiveX Controls or COM Objects to Your COBOL Program
	4.3 Properties, Styles, and Methods
	4.3.1 Passing COBOL Data to Methods or Properties as SAFEARRAYs
	4.3.2 Using COBOL Data Types as ActiveX and COM Object Parameters

	4.4 ActiveX and COM Events
	4.4.1 Event Timing

	4.5 ACTIVE-X Control Type
	4.6 Name Clashes
	4.7 Useful Files
	4.8 Multiple Object Interfaces
	4.9 ActiveX Library Routines
	4.10 Distributing Applications Containing ActiveX Controls
	4.11 Deployment Guidelines
	4.12 Creating COM Objects on Remote Network Servers
	4.13 Qualified ActiveX Control and Object Names
	4.14 Enumerators
	4.15 ActiveX Color Representation
	4.16 ActiveX Error Handling
	4.17 ActiveX Debugging
	4.18 ActiveX Troubleshooting
	4.19 ActiveX Examples
	4.20 AXDEFGEN Utility Reference
	4.20.1 AXDEFGEN COPY Files

	Working With .NET Assemblies
	5.1 COBOL and .NET
	5.2 What Is .NET?
	5.3 What Is an Assembly?
	5.4 Calling COBOL from .NET
	5.4.1 Using the .NET MSIL Compiler Options
	5.4.1.1 --netexe
	5.4.1.2 --netdll
	5.4.1.3 Data passing limitations
	5.4.1.4 Example

	5.4.2 Using the .NET Interface Assembly, “wrunnet.dll”
	5.4.2.1 CVM class
	Initialize
	Call
	CancelProgram/CancelAllPrograms
	UnloadProgram/UnloadAllPrograms
	ShutDown
	5.4.2.2 Properties
	5.4.2.3 Error codes
	5.4.2.4 CompilerTypes

	5.4.3 Using the ACUCOBOL-GT COM Server

	5.5 Calling .NET from COBOL
	5.5.1 Using .NET assemblies in COBOL
	5.5.1.1 CoCreate Instance Failed Error
	5.5.1.2 Sample program
	5.5.1.3 Limits and restrictions
	5.5.1.4 Optimizing the “AcuToNet.dll” interface
	5.5.1.5 .NET control distribution and licensing
	5.5.1.6 Name clashes

	5.5.2 NETDEFGEN Utility Reference
	5.5.2.1 Changing Default NETDEFGEN Settings
	5.5.2.2 NETDEFGEN COPY files
	5.5.2.3 Passing data as parameters
	5.5.2.4 NETDEFGEN methods
	5.5.2.5 NETDEFGEN properties
	5.5.2.6 NETDEFGEN events
	5.5.2.7 NETDEFGEN enumerators
	5.5.2.8 NETDEFGEN errors
	5.5.2.9 Sample COPY file
	5.5.2.10 Sample controls

	5.6 Interacting with .NET Web Services

	Working with C and C++ Programs
	6.1 COBOL and C/C++
	6.2 Matching C Data Items
	6.3 Calling C Programs From COBOL
	6.3.1 Calling C Programs in DLLs or Shared Object Libraries
	6.3.1.1 Loading shared libraries with the “-y” runtime option
	6.3.1.2 Loading shared libraries with the SHARED_LIBRARY_LIST configuration variable
	6.3.1.3 Loading shared libraries with the CALL statement
	6.3.1.4 Calling routines in shared libraries with the CALL statement

	6.3.2 Calling C Programs via the Direct Method
	6.3.3 Calling C Programs via the Interface Method
	6.3.3.1 The “sub” interface
	6.3.3.2 The “sub85” interface

	6.3.4 Cancelling a CALLed C Program
	6.3.5 Managing the Terminal
	6.3.6 Relinking the Runtime System
	6.3.6.1 Linking on Windows systems
	6.3.6.2 Linking on UNIX and Linux systems
	6.3.6.3 Linking on VMS systems
	6.3.6.4 Linking on MPE/iX systems

	6.4 Calling COBOL from C
	6.4.1 Include Files
	6.4.2 Using the C API
	6.4.2.1 Using the C API in Windows

	6.4.3 Function Reference
	acu_abend()
	acu_cancel()
	acu_cancel_all()
	acu_cobol()
	acu_initv()
	aculongjmp()
	acu_register_sub()
	acu_runmain()
	acusavenv()
	acu_shutdown()
	acu_unload()
	acu_unload_all()

	6.5 Using the C API: Two Approaches
	6.5.1 Simple Use Case for acu_cobol()
	6.5.2 Calling the Runtime From a C Main Program
	6.5.2.1 Creating the runtime
	6.5.2.2 Initializing the runtime
	6.5.2.3 Shutting down the runtime
	6.5.2.4 Notes on COBOL verbs

	6.5.3 Calling COBOL Routines
	6.5.3.1 Starting a COBOL main program
	6.5.3.2 Calling COBOL subroutines that call C routines
	6.5.3.3 Canceling a COBOL subroutine

	6.5.4 Exception Handling
	6.5.5 Unloading Programs from Memory
	6.5.6 Signal Handling
	6.5.6.1 When to call acu_abend()

	6.5.7 Setting a Debug Method with acu_cobol()

	6.6 Other Interface Paths for COBOL and C
	6.6.1 Connecting with C$SOCKET
	6.6.2 Starting a Program with C$SYSTEM
	6.6.3 Passing Data with Named Pipes

	6.7 Tracking, Monitoring and Debugging Memory
	6.7.1 Memory Debugging via C
	6.7.2 Turning Memory Debugging Features On and Off
	6.7.3 Reporting Allocated Blocks
	6.7.4 Getting Memory Amounts
	6.7.5 Testing Memory Boundaries

	Deploying ACUCOBOL-GT Applications on the Web
	7.1 COBOL on the Web
	7.2 Web Thin Client
	7.3 COBOL CGI Interface
	7.4 Web Runtime
	7.5 Internet Helper Application
	7.6 Web Browsing from COBOL
	7.7 COBOL Web Services
	7.8 Other Internet Solutions

	Accessing ACUCOBOL-GT Applications from Mobile Devices
	8.1 Overview of Mobile Computing
	8.2 Key Mobile Terminology
	8.2.1 Languages
	8.2.2 Protocols
	8.2.3 Wireless Communication Standards
	8.2.3.1 The past and the present
	8.2.3.2 The future
	8.2.3.3 3G status

	8.3 Mobile Platform Trends
	8.4 Mobile System Design Issues
	8.4.1 User Interface
	8.4.2 Security
	8.4.3 Degree of Connectivity
	8.4.4 Record Locking

	8.5 Service-oriented Architecture (SOA)
	8.6 Methods for Mobile Computing
	8.6.1 ACUCOBOL-GT COM Server
	8.6.2 ACUCOBOL-GT CGI Language Extensions
	8.6.3 ACUCOBOL-GT Runtime and Short Message Service (SMS) Processing

	Working with Transaction Processing Systems
	9.1 Introduction
	9.2 What Is Transaction Processing?
	9.3 IBM CICS
	9.4 Working with the IBM CICS Transaction Gateway
	9.4.1 Including the Transaction Gateway Routines in the Runtime
	9.4.2 Connecting to CICS Applications

	9.5 Working with IBM TXSeries CICS
	9.5.1 How TXSeries CICS Works with ACUCOBOL-GT
	9.5.2 Modernizing Applications

	9.6 Working with UniKix Mainframe Rehosting Software
	9.7 Working With BEA Tuxedo
	9.7.1 Creating a Tuxedo Client Program
	9.7.2 Creating a Tuxedo Server
	9.7.3 Running Your Tuxedo Application

	9.8 Background Debugging Options
	9.8.1 Background Debugging With an xterm
	9.8.2 Defining debugging methods with “ADM_t”
	9.8.2.1 Using an xterm
	9.8.2.2 Using a terminal
	9.8.2.3 Using the thin client

	Working with Messaging Middleware
	10.1 Support for IBM WebSphere MQ
	10.2 Support for IBM Shared Libraries
	10.3 Support for WebSphere MQ COPY Files
	10.4 Connecting to WebSphere MQ Applications
	10.4.1 Adding WebSphere MQ Calls to Your ACUCOBOL-GT Program
	10.4.1.1 Connecting to the queue manager
	10.4.1.2 Opening specific queues
	10.4.1.3 Reading messages from queues
	10.4.1.4 Writing messages to queues
	10.4.1.5 Closing queues
	10.4.1.6 Disconnecting from the queue manager

	10.4.2 Setting Up Working-Storage
	10.4.3 Compiling Your Application
	10.4.4 Configuring the Runtime and Environment

	Working with Non-Vision Data
	11.1 Introduction
	11.2 Working with XML Data
	11.2.1 XML Concepts
	11.2.1.1 XML documents
	11.2.1.2 XML parsers
	11.2.1.3 Usage

	11.2.2 The XML-to-FD Utility
	11.2.2.1 xml2fd output
	11.2.2.2 xml2fd command options

	11.2.3 The AcuXML Interface
	11.2.3.1 Data dictionaries
	11.2.3.2 AcuXML configuration variables

	11.2.4 Using AcuXML
	11.2.4.1 AcuXML output structures
	11.2.4.2 Restrictions

	11.2.5 AcuXML Error Reporting
	11.2.6 Using the C$XML Routine
	11.2.6.1 General procedure
	11.2.6.2 Understanding C$XML terminology
	11.2.6.3 Parsing an XML file
	11.2.6.4 Moving to an element
	11.2.6.5 Retrieving data
	11.2.6.6 Adding, modifying, or deleting data
	11.2.6.7 Writing a file
	11.2.6.8 Releasing the parser
	11.2.6.9 Retrieving errors
	11.2.6.10 Retrieving attributes
	11.2.6.11 Retrieving comments
	11.2.6.12 C$XML examples

	11.3 Working with Relational Data
	11.3.1 Acu4GL Interface
	11.3.2 Embedded SQL
	11.3.2.1 Embedding SQL statements into ACUCOBOL-GT
	11.3.2.2 Supported ESQL pre-compilers

	11.4 Working with ODBC Data
	11.5 Working with File Systems like C-ISAM and KSAM
	11.6 Working with an EXTFH Interface
	11.6.1 Using the EXTFH Interface
	11.6.2 Making EXTFH Libraries Available to the Runtime
	11.6.2.1 Accessing files through EXTFH
	11.6.2.2 Searching for function names
	11.6.2.3 Setting libraries for indexed, relative, and sequential files
	11.6.2.4 Statically linking EXTFH-compatible libraries

	11.7 File System Configuration
	11.8 File System Initialization

	Index

