
Transitioning to
ACUCOBOL-GT

Version 8.1.3

Micro Focus
9920 Pacific Heights Blvd.

San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (IP) Ltd., 1998-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-UG-100501-Transitioning-8.1.3

Contents

Chapter 1: Introduction
1.1 Transitioning Your COBOL .. 1-2
1.2 Organization... 1-3
1.3 Technical Services ... 1-3

Chapter 2: RM/COBOL Conversions
2.1 Compile-Time Options .. 2-2
2.2 Runtime Options .. 2-3
2.3 Memory Management.. 2-4

2.3.1 Converting RM/COBOL Data Files .. 2-6
2.3.1.1 Converting relative files with variable-length records 2-7
2.3.1.2 Converting binary sequential files with variable-length records................. 2-8
2.3.1.3 Converting relative files with fixed-length records..................................... 2-8
2.3.1.4 Converting indexed files.. 2-8

Chapter 3: ICOBOL Conversions
3.1 Compile-Time Options .. 3-2
3.2 Runtime Options .. 3-3

3.2.1 ICOBOL Runtime Configuration Variable ... 3-4
3.3 Differences... 3-5

Chapter 4: HP COBOL Conversions
4.1 Introduction to HP COBOL Compatibility.. 4-2
4.2 ACUCOBOL-GT in MPE/iX Environments ... 4-3

4.2.1 Using ACUCOBOL-GT in Traditional MPE/iX Environments 4-4
4.2.1.1 Compiling and running in the MPE/iX environment 4-5
4.2.1.2 Linking .. 4-10
4.2.1.3 Object libraries .. 4-11
4.2.1.4 Using XLs and RLs with ACUCOBOL-GT ... 4-12
4.2.1.5 Interfacing to C subroutines .. 4-14
4.2.1.6 Privileged mode... 4-14
4.2.1.7 Terminal emulators.. 4-14
4.2.1.8 ACUCOBOL-GT PA-RISC native code support...................................... 4-14
4.2.1.9 MPE file equation restrictions ... 4-15

4.2.2 Using ACUCOBOL-GT in POSIX Environments .. 4-16

Contents-ii
4.2.3 Using ACUCOBOL-GT with MPE/iX Emulators ..4-17
4.2.3.1 Enabling the MPE file system ...4-18
4.2.3.2 Setting runtime configuration variables...4-20
4.2.3.3 Setting environment variables ...4-21

4.2.4 Accessing MPE KSAM, Relative, and Sequential Files4-22
4.2.4.1 The ACUCOBOL-GT MPE file system interface.....................................4-22
4.2.4.2 Selecting a file system ...4-23
4.2.4.3 File name handling ..4-25
4.2.4.4 File I/O trace information ..4-26
4.2.4.5 KSAM system limits and ranges ...4-26
4.2.4.6 Enabling and disabling the MPE interface ..4-27

4.2.5 Using the ACUCOBOL-GT Debugger in MPE/iX Environments......................4-29
4.2.5.1 Terminal emulator keyboard configuration ...4-30
4.2.5.2 Debugging programs that use VPLUS ..4-31

4.2.6 Terminal Configuration with VPLUS..4-32
4.2.7 The libutil Utility ...4-33

4.3 The “-Cp” HP COBOL Compatibility Switch ...4-35
4.3.1 COPY Statement..4-37
4.3.2 Special-Names Paragraph ..4-39

4.3.2.1 Program switches...4-39
4.3.2.2 TOP and NO SPACE CONTROL...4-39
4.3.2.3 CONDITION-CODE...4-40

4.3.3 File-Control Paragraph ..4-41
4.3.3.1 RANDOM and DYNAMIC keywords ..4-41
4.3.3.2 WITH DUPLICATES on primary keys ..4-42

4.3.4 Procedure Division Register Extensions..4-43
4.3.4.1 CURRENT-DATE...4-43
4.3.4.2 TALLY ..4-43
4.3.4.3 TIME-OF-DAY ...4-43
4.3.4.4 WHEN-COMPILED..4-44

4.3.5 Procedure Division Statements ..4-44
4.3.5.1 ACCEPT statement..4-45
4.3.5.2 CALL statement...4-47
4.3.5.3 EXAMINE statement...4-53

4.3.6 Conversion Issues ..4-55
4.3.6.1 Unsupported HP COBOL extensions ..4-55
4.3.6.2 Unrecognized HP COBOL extensions ..4-56

4.3.7 Operating System and Runtime Limitations and Differences4-56
4.3.7.1 ACCEPT FROM INPUT STATUS statement ..4-57
4.3.7.2 Divide by zero..4-57
4.3.7.3 File I/O error handling ...4-57
4.3.7.4 File name case..4-58

 Contents-iii
4.3.7.5 Mismatched EXTERNAL data items.. 4-58
4.4 Preprocessor for HP COBOL .. 4-60

4.4.1 $COMMENT Directive ... 4-61
4.4.2 $CONTROL Directive... 4-61
4.4.3 $DEFINE Directive ... 4-63
4.4.4 $PREPROCESSOR Directive ... 4-64
4.4.5 $IF and $SET Directives ... 4-65
4.4.6 $INCLUDE Directive.. 4-66

4.5 System Intrinsics.. 4-66
4.5.1 CREATEPROCESS Intrinsic Function... 4-67
4.5.2 CREATE/ACTIVATE Intrinsic Functions.. 4-67
4.5.3 GETINFO Intrinsic Function... 4-68

4.6 AcuBench... 4-68
4.6.1 Using AcuBench With Existing Applications ... 4-69
4.6.2 Developing New Applications With AcuBench.. 4-71

4.7 Thin Client Solution on MPE/iX ... 4-72
4.7.1 AcuConnect ... 4-72

4.7.1.1 Starting AcuConnect ... 4-73
4.8 Backing Up ACUCOBOL-GT Software ... 4-74

Chapter 5: IBM DOS/VS COBOL Conversions
5.1 Support for DOS/VS COBOL ... 5-2
5.2 ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features................................... 5-3

5.2.1 ACTUAL KEY Clause and SEEK .. 5-3
5.2.2 ADVANCING in WRITE Statement .. 5-3
5.2.3 AFTER POSITIONING Clause .. 5-4
5.2.4 APPLY Clause Options ... 5-5
5.2.5 Arithmetic Statements ... 5-6
5.2.6 BASIS, INSERT, DELETE... 5-6
5.2.7 COM-REG... 5-6
5.2.8 COPY SUPPRESS Statement ... 5-6
5.2.9 CURRENT-DATE... 5-7
5.2.10 DATE-COMPILED... 5-7
5.2.11 Debugging Features ... 5-8
5.2.12 DISPLAY UPON SYSPUNCH... 5-8
5.2.13 EJECT, SKIP in Listing... 5-9
5.2.14 ENTER Statement ... 5-10
5.2.15 EXAMINE... 5-10
5.2.16 FILE-LIMIT Clause... 5-12

Contents-iv
5.2.17 File Status Codes ...5-12
5.2.17.1 FILE STATUS Extensions ..5-13

5.2.18 IDENTIFICATION Division Arrangement...5-13
5.2.19 IF OTHERWISE..5-14
5.2.20 LENGTH OF Expression...5-14
5.2.21 NOTE Statement..5-15
5.2.22 Password Protection of Files..5-16
5.2.23 PROCESSING MODE Clause ..5-16
5.2.24 PROGRAM-ID Program Name...5-17
5.2.25 RECORDING MODE Clause ...5-17
5.2.26 REVERSED Sequential Input Files...5-17
5.2.27 SORT Statement Registers ..5-18
5.2.28 SPECIAL-NAMES..5-18
5.2.29 TIME-OF-DAY ...5-19
5.2.30 TRACK-AREA Clause..5-19
5.2.31 TRANSFORM Statement ..5-20
5.2.32 USE GIVING...5-21
5.2.33 VALUE OF Clause ..5-22
5.2.34 WHEN-COMPILED..5-22
5.2.35 WRITE ADVANCING Special-Name..5-23
5.2.36 XLM GENERATE and PARSE ..5-24

5.3 Reserved Words ...5-24
5.4 COMP-1 and COMP-2 are Floating-Point...5-25
5.5 External Floating-Point (EFP) ...5-26

5.5.1 External Floating-Point Data Type ..5-26
5.5.2 The Picture ..5-27

5.6 IBM DOS/VS Error Codes ..5-28

Index

1
 Introduction
Key Topics

Transitioning Your COBOL ... 1-2
Organization .. 1-3
Technical Services... 1-3

1-2 Introduction
1.1 Transitioning Your COBOL

Businesses convert their mission-critical applications to ACUCOBOL-GT
for many reasons:

• Some are forced to migrate off their current platform, but they don’t
want to lose their investment in COBOL.

• Others are fed up with paying to maintain an obsolete platform, and they
want to move to open systems.

• Others feel that their COBOL no longer meets their needs. They may
have issues with their vendor. They may desire modern features.

Whatever your reason, converting your programs to ACUCOBOL-GT will
let you breathe new life into your COBOL code without losing functionality
or assuming the cost of rewriting.

To smooth your transition, ACUCOBOL-GT provides compatibility with
many other COBOL dialects, RM COBOL, HP COBOL, VS COBOL,
ICOBOL, IBM Mainframe COBOL, and more. We offer:

• Compatibility switches

• Conversion tools

• Professional Services Organization consultation

• Migration partners that offer everything from toolkits to turnkey
solutions

Once your applications are in ACUCOBOL-GT, you can take advantage of
our many COBOL modernization and interoperability features to help you
reach your business objectives. And you can re-host from one hardware
platform to another—all without rewriting your proven business
applications.

Organization 1-3
1.2 Organization

This guide, Transitioning to ACUCOBOL-GT, offers information on how to
convert from several of the most popular COBOLs to ACUCOBOL-GT. It
is organized as follows:

• Chapter 1: Introduction

• Chapter 2: RM COBOL Conversions

• Chapter 3: ICOBOL Conversions

• Chapter 4: HP COBOL Conversions

• Chapter 5: IBM DOS/VS COBOL Conversions

1.3 Technical Services

For the latest information on contacting customer care support services go to:

http://www.microfocus.com/about/contact

For worldwide technical support information, please visit:

http://supportline.microfocus.com/xmlloader.asp?type=home

http://www.microfocus.com/about/contact/
http://supportline.microfocus.com/xmlloader.asp?type=home

1-4 Introduction

2
 RM/COBOL Conversions
Key Topics

Compile-Time Options.. 2-2
Runtime Options ... 2-3
Memory Management... 2-4
Converting RM/COBOL Data Files ... 2-6

2-2 RM/COBOL Conversions
2.1 Compile-Time Options

This chapter provides information about how to convert programs written for
the RM/COBOL compiler to ACUCOBOL-GT. This is particularly directed
at users who are new to ACUCOBOL-GT and are not familiar with its many
options. The information contained here is specifically directed to programs
written for version 2.X of the RM/COBOL 1974 compiler. Most of this
information is also applicable to versions 1.5 and 1.6 of that compiler, as well
as to RM/COBOL-85. See section 2.3.1 for information about converting
RM/COBOL data files.

Several compile-time options should be used when you are compiling a
program written for RM/COBOL with ACUCOBOL-GT. You should
always use the “-Cr” flag to indicate RM/COBOL compatibility mode. You
will also probably want to use the “-R8vais” flags to cause certain reserved
words to be treated as user-defined words. This will cause all words not
reserved by RM/COBOL to be treated as user-defined words. If you are
converting programs from RM/COBOL-85, then you should use “-Rvais”
instead.

Many applications will also need to use the “-Ds” flag. This flag specifies
that the PICTURE element “S” for a USAGE DISPLAY item is treated as a
separate character. This is the same as implying the SIGN IS TRAILING
SEPARATE clause for that item. RM/COBOL version 1.6 behaved this way.
RM/COBOL version 2.X can optionally behave this way. For applications
that date from earlier versions of the RM/COBOL compiler, you will
probably need to use this flag. If the application was written originally with
version 2.0 or later, then you may or may not need to use this flag. You will
need to examine the source to see if the “S” picture element counts in the size
of an item or not. It is important to determine whether or not this flag should
be used, particularly if you plan to convert existing data files. Otherwise,
records loaded from your RM/COBOL files may not match the record layout
of your new ACUCOBOL-GT files.

You may also want to use either the “-Vh” or “-Vl” flags. These flags
determine the default video intensity to use when it is not explicitly stated in
an ACCEPT or DISPLAY statement. The default action for
ACUCOBOL-GT is to use the terminal’s default intensity. The “-Vh” flag
causes ACUCOBOL-GT to default to high intensity and the “-Vl” flag to low
intensity. With RM/COBOL, the default intensity for UNIX machines is

Runtime Options 2-3
high intensity and for MS-DOS machines is low intensity. You may want to
match the default intensity used by RM/COBOL for the machine the
programs were written for.

By default, in the Identification Division the compiler allows an Area A line
to start in column 8 or 9 (ANSI format), or 1 or 2 (terminal format). The
“--noRmMargin” option can be used to apply a more stringent rule. When
specified, lines in Area A of the Identification Division must begin in column
8 (ANSI format) or column 1 (terminal format).

The table below shows the RM/COBOL Compatibility Switches (“*”
indicates an optional flag).

You will probably want to set the COPYPATH environment variable in order
to locate your COPY libraries on your system. For details on how to do this,
see the ACUCOBOL-GT User’s Guide Chapter 2, “Compiler and Runtime.”

2.2 Runtime Options

There are several runtime options that you will probably want to employ.
The “-w” flag suppresses warning messages from the runtime system. In
particular, it inhibits the warning message “NONNUMERIC DATA IN
NUMERIC ITEM”. This message is printed whenever a numeric field is
used in a numeric fashion and that field does not contain a valid number. The
default action for ACUCOBOL-GT is to print the warning message and then
treat the value as zero. RM/COBOL does not check for this case and
proceeds to do some undefined action. Because it does not test for this
condition, it shows up in programs surprisingly often. When the “-w”

 Version 1.6 Version 2.x RM-85

General -Cr -Cr -Cr

Reserved words -R8vais -R8vais -Rvais

Data storage -Ds -Ds* -Ds*

Video -Vh (for UNIX)
-Vl (for DOS)

-Vh (for UNIX)
-Vl (for DOS)

-Vh (for UNIX)
-Vl (for DOS)

Area A --noRmMargin* --noRmMargin* --noRmMargin*

2-4 RM/COBOL Conversions
runtime flag is specified, ACUCOBOL-GT does not print a message and acts
on the field with its current value. The results are not well defined but usually
are the same as the same program run under RM/COBOL.

By default, ACUCOBOL-GT uses 1985 ANSI standard file status codes.
These codes differ from those used by RM/COBOL in several respects. If
your programs are written to the 1974 RM/COBOL standard, you should add
the following line to the configuration file to cause ACUCOBOL-GT to use
those file status codes:

FILE-STATUS-CODES 74

Note: If you are converting programs from RM/COBOL-85, and use the
default 1985 standard status codes, then you will not want to add this line
to the configuration file.

RM/COBOL (but not RM/COBOL-85) also automatically closes all
non-print files in a subprogram when that program exits. This is in conflict
with the ANSI standard which states that a subprogram remains in the same
state until explicitly canceled. ACUCOBOL-GT follows the ANSI standard.
If your programs depend on this behavior, however, you can add the
following line to the configuration file to cause ACUCOBOL-GT to act the
same way that RM/COBOL does:

CLOSE-ON-EXIT 1

You will also need to edit the configuration file to describe which printers are
attached to your system. You may also want to set the PATH entry to
describe where your object-code files reside. These procedures are described
in Chapter 2 of the ACUCOBOL-GT User’s Guide, “Compiler and
Runtime.”

2.3 Memory Management

RM/COBOL supports two forms of memory management. One form is the
standard ANSI COBOL form. This is also the memory management scheme
used by ACUCOBOL-GT. If your RM/COBOL application uses the
ANSI-style of memory management, then you do not need to make any
changes to run under ACUCOBOL-GT.

Memory Management 2-5
The RM/COBOL implementation of the ANSI memory management is very
restrictive, however, in that the main program plus the set of all called
programs must fit in 64K bytes (except for those that are canceled). For this
reason, many applications use RM/COBOL’s alternate mode of memory
management. In this mode, all of the currently active programs must fit in
64K bytes, but programs that are not currently active need not. This has the
effect of dynamically canceling inactive subprograms as needed to free up
enough space. This has the advantage that the programmer largely does not
need to worry about canceling subprograms. When this style of memory
management is used, however, the programmer cannot depend on a
subprogram’s remaining loaded in memory. This can cause variables to lose
values. RM/COBOL also causes open files in a subprogram to be closed
when that subprogram exits (except for files assigned to a printer).

ACUCOBOL-GT has a much larger address space, and thus has no need for
this scheme. Furthermore, this form of memory management results in
unpredictable behavior, since the state of a called and exited subprogram is
unknown. For these reasons, ACUCOBOL-GT does not directly support the
alternate form of RM/COBOL memory management.

ACUCOBOL-GT does, however, have several techniques that can be used
when you are converting programs that use this style of memory
management. Virtually any RM/COBOL program will run under the
ACUCOBOL-GT memory management scheme. The only significant
problem that applications face has to do with handling menus. These
applications have one or more master menus that the user selects specific
tasks from. Usually, each of these tasks is a separate program that is called
from the menu program when selected. Since ACUCOBOL-GT abides by
the ANSI/ISO standard, each of these programs remain in memory until
explicitly canceled. As the user chooses more and more menu selections, the
memory used can become large. This could eventually overrun the amount
of memory available in the machine.

The ANSI/ISO solution to this problem is to cancel the task-handling
subprograms when they are finished. This would normally happen when
control is returned to the menu program. ACUCOBOL-GT has an extension
to the CANCEL verb to make this task easier. This is the statement
“CANCEL ALL”. This statement has the effect of canceling every program
except for those that are currently active. This has two advantages over the
standard CANCEL statement:

2-6 RM/COBOL Conversions
1. You do not need to know the name of the program being canceled. Thus
you can place this one statement in the main loop in your menu program
to handle all of the menu selections.

2. The CANCEL ALL statement also cancels subprograms called by
intervening programs. Suppose the menu program calls program A,
which in turn calls program B. If you explicitly cancel program A, the
ANSI standard states that program B will remain unconcealed. The
CANCEL ALL statement, on the other hand, will cancel both program
A and B.

This is probably the easiest way to handle the memory management problem.
Another technique, however, that gives you greater control is to use the
INITIAL PROGRAM attribute. Any program that has the initial attribute is
automatically canceled whenever it exits. You can specify the initial attribute
by either of these two methods:

1. By specifying “IS INITIAL PROGRAM” in the PROGRAM-ID clause.

2. By using the “-Zi” compile-time flag.

You can use this technique if you want greater control over memory
management than the CANCEL ALL statement gives you.

Finally, do not overlook the standard CANCEL verb. This has the advantage
that it is part of both the 1974 and 1985 COBOL standards.

For more information about runtime memory management, see section 6.3,
“Memory Management,” in the ACUCOBOL-GT User’s Guide.

2.3.1 Converting RM/COBOL Data Files

The exact procedure depends on the version of RM/COBOL used to create
the data files.

Sequential and relative files created by RM/COBOL version 2 programs are
directly usable by ACUCOBOL-GT programs. These files have exactly the
same internal format. (Note, however that this is not true for variable-length
binary sequential files or variable-length relative files.)

Memory Management 2-7
RM/COBOL version 2 produces two types of indexed files: single-file format
and dual-file format. The dual-file format consists of two physical files for
each logical file. One of these files is a binary sequential file that contains the
raw data records. The other is a file that contains the key information. You
can convert one of these files by using the “load” option of vutil (described
in the Debugger and Utilities chapter). To do this, first create an empty
ACUCOBOL-GT indexed file either with a COBOL program (by doing an
OPEN OUTPUT) or with the “generate” option of vutil. Then use the “load”
option of vutil, specifying the RM/COBOL data file as the input file. Note
that the RM/COBOL key file is not used.

A single-file format indexed file must first have its records unloaded into a
binary sequential file with an RM/COBOL program. Then this file can be
loaded into an ACUCOBOL-GT indexed file with the procedure described
for the dual-file format.

Line sequential and fixed-length binary sequential files created by RM/
COBOL-85 are directly usable by ACUCOBOL-GT. Use the following
procedures to convert other RM/COBOL-85 formats to fixed-length binary
sequential.

2.3.1.1 Converting relative files with variable-length records

You can write a program in RM/COBOL-85 to convert variable-length
relative files to fixed-length binary sequential files that ACUCOBOL-GT can
use. To do this:

1. Write a program that reads the desired file using a DEPENDING ON
phrase in the RECORD clause of the input file’s FD. The variable
depend will be filled in with the record size.

2. Define the output file as follows:

• Records should be fixed-length binary sequential.

• Each record must begin with two bytes that are COMP-4, and those
two bytes should be filled in with the value of depend.

• The remainder of the record should be the actual record contents
from the input file.

2-8 RM/COBOL Conversions
3. Write the output records to a new file. Use this new fixed-length
binary sequential as your ACUCOBOL-GT data file.

Note: ACUCOBOL-GT binary sequential and relative files have
essentially the same format.

2.3.1.2 Converting binary sequential files with variable-length records

To convert binary sequential files with variable-length records, follow the
same procedure (steps 1-3 above) used for variable-length relative files.

2.3.1.3 Converting relative files with fixed-length records

To convert relative files with fixed-length records, write an RM/COBOL
program that reads the file and writes the records to a fixed-length binary
sequential file. The resulting relative file is usable by ACUCOBOL-GT.

2.3.1.4 Converting indexed files

vutil can convert an indexed file created by RM/COBOL-85 into a Vision
file. This is useful when you are moving data from an RM/COBOL-85
application to an ACUCOBOL-GT application. The command is:
vutil -convert [-ac] [+c] [-f #] [-2345]
 [-q] [-d dir] [files]

The “convert” option starts with the same letter as the “check” option
described earlier. You must use at least two letters of the word “convert” in
order to specify this option. If you just use “-c”, vutil will assume that you
are specifying the “check” option.

The “convert” function will take each named file and convert it from an RM/
COBOL-85 indexed file to a corresponding Vision file. The Vision file
replaces the original RM/COBOL-85 file, so you should have a current
backup of the original files. If no files are specified, then the standard input
is read for a list of files to convert.

Memory Management 2-9
Normally the resulting Vision file will be compressed if the original file has
compressed records (this is the RM/COBOL-85 default). Specifying the “-c”
option will cause the resulting file to have uncompressed records regardless
of the original file; using “+c” will cause the resulting records to be
compressed.

The “-f #” option sets the compression factor to be used when the file is
converted. This option does not force the use of compression, it merely sets
the compression factor if compression is used. The compression factor, a
numeric literal, specifies how much of the space saved by compression is
actually to be removed from the record.

Normally vutil will warn the user about the impending conversion and ask if
he or she wants to continue. The “-a” (for “automatic”) option suppresses
this warning. This can be useful when you are calling vutil from another
program.

The “-5” option specifies that you want the resulting file to be in Vision
Version 5. The “-4” option specifies a Vision Version 4 file. A “-3” means
you want a Version 3 file, and “-2” means you want a Version 2 file.

The “-d” option specifies that you want the converted files to be placed in a
new directory. Dir should be the name of a directory on the machine other
than the directory containing the files to be converted. When “-d” is
specified, the original files are not destroyed. Instead, the converted files are
placed in dir. The “-d” option implies the “-a” option.

The “-q” option causes vutil to exit (with status 99) if user interaction is
required.

There are a few types of files that cannot be converted due to restrictions in
Vision. Any of the following properties will cause vutil to print a message
and leave the file alone:

1. A record size or block size greater than 32 KB.

2. More than 120 keys.

3. An individual key with more than 250 bytes in it.

4. A non-ASCII code-set or collating sequence.

2-10 RM/COBOL Conversions
Some files cannot be converted due to unresolved format differences. A file
with split keys cannot be converted for this reason.

If the original file has variable size records, vutil will convert these to fixed
size records with space padding. These files should be compressed to keep
disk usage down.

vutil makes a copy of the file while it is converting it. You must have
adequate disk space for vutil to complete its conversion. Also, RM/
COBOL-85 indexed files and Vision files differ in the amount of disk space
they use. This difference is fairly unpredictable and can vary quite widely.
Sometimes the Vision files are smaller, and sometimes the RM/COBOL-85
files are smaller. Be sure to have plenty of spare disk space when you start
converting files to accommodate the potential difference.

3
 ICOBOL Conversions
Key Topics

Compile-Time Options.. 3-2
Runtime Options ... 3-3
Differences... 3-5

3-2 ICOBOL Conversions
3.1 Compile-Time Options

This chapter discusses how to convert a program written for Data General
ICOBOL to ACUCOBOL-GT. ACUCOBOL-GT provides a great deal of
compatibility with ICOBOL, but there are a few differences that you will
want to address.

It is important that you use the correct compile-time options to provide the
greatest compatibility with your existing ICOBOL programs. The most
important option is the “-Ci” option that puts the compiler into its ICOBOL
compatibility mode. When you use this option, most ICOBOL syntax will be
accepted by ACUCOBOL-GT. In addition, the meaning of certain phrases
will be altered to match the ICOBOL usage. When ICOBOL compatibility
mode is specified, the “-Zr” compile-time option is automatically implied.
This option allows for recursive PERFORM statements.

There are a few other options that you will probably want to use. The “-Vx”
option enables the entry of function keys on all ACCEPT statements. If you
do not specify this, then only ACCEPT statements with an ON ESCAPE
clause will allow the entry of function keys. If you want to use ICOBOL’s
default handling of high and low intensity, then you should specify “-Vah”.
This causes all input and update fields to be displayed in high intensity, while
all literal and output fields are shown in low intensity.

You may also want to use the “-Dz” compile-time option to modify the way
that COMPUTATIONAL data items are handled. Specifying this option
causes the runtime system to compute the size error condition based on the
physical size of the data item in memory, not on its PICTURE clause. For
example, this would allow the value 255 to be placed in a PIC 99 COMP data
item. Without this option, the largest value that can be placed in such an item
is 99.

Finally, you may need to suppress certain reserved words used by
ACUCOBOL-GT. If you want to suppress all of the reserved words not used
by ICOBOL, you should specify “-Rarsv”. If you plan to use some of the
features of ACUCOBOL-GT not found in ICOBOL, then you will probably
have to allow for some more reserved words. For details on your choices
about reserved words, see Appendix B of the ACUCOBOL-GT Manual Set
and section 2.1.8 of the ACUCOBOL-GT User’s Guide.

Runtime Options 3-3
Note: When you select ICOBOL compatibility mode, the storage of
COMPUTATIONAL items is changed to match that of ICOBOL. You
should not specify any of the compile-time options that affect
COMPUTATIONAL storage, because they will override the ICOBOL
settings. The following table summarizes the storage of
COMPUTATIONAL items.

3.2 Runtime Options

When you use ICOBOL compatibility, the compiler generates code that has
the same meaning used by ICOBOL. The default screen interface, however,
is controlled by the runtime system. If you want to simulate ICOBOL
keyboard handling, you should add the following lines to your configuration
file. (Section 2.7 of the ACUCOBOL-GT User’s Guide discusses the
configuration file in detail.)
SCREEN Input-Display=Prompt
SCREEN Numeric-Updates=Unchanged
SCREEN Edited-Updates=Left-Adjust
KEYBOARD Cursor-Past-End=Yes
KEYSTROKE Edit=Next Terminate=0 ^M
KEYSTROKE Edit=Next Terminate=0 ^J

of 9’s Unsigned Signed

1-2 1 1

3-4 2 2

5-6 3 3

7 3 4

8-9 4 4

10-11 5 5

12 5 6

13-14 6 6

15-16 7 7

17-18 8 8

3-4 ICOBOL Conversions
KEYSTROKE Edit=Next Terminate=0 kd
KEYSTROKE Edit=Previous ku
KEYSTROKE Edit=Next Terminate=0 ^I
KEYSTROKE Exception=1 27
KEYSTROKE Exception=2 k1
KEYSTROKE Exception=3 k2
KEYSTROKE Exception=4 k3
KEYSTROKE Exception=5 k4
KEYSTROKE Exception=6 k5
KEYSTROKE Exception=7 k6
KEYSTROKE Exception=8 k7
KEYSTROKE Exception=9 k8

The exact meaning of these entries is described in Chapter 4 of the User’s
Guide, “Terminal Manager.” At some point, you should read this chapter to
acquaint yourself with the various options available. The listing above
covers only function keys 1 - 8. If you use more of the function keys, you
will need to make additional KEYSTROKE entries to define those keys.

Use the ICOBOL_FILE_SEMANTICS runtime configuration variable to get
ICOBOL compatible behavior when reading past the beginning or ending of
a file. For more details, see section 3.2.1 below.

You will also probably want to use file status codes that are compatible with
those used by ICOBOL. You can do that by entering the following line to
your configuration file:
 FILE-STATUS-CODES DG

3.2.1 ICOBOL Runtime Configuration Variable

The ICOBOL_FILE_SEMANTICS* configuration variable affects the
behavior of indexed and relative files when reversing direction after reading
past the beginning or end of a file. Normally, if you perform a series of
READ NEXTs that reach to the end of the file (returning file status "10"), a
subsequent READ PREVIOUS will return the last record in the file. The file
pointer's position after each READ NEXT is just past the end of the last
record. Similarly, reading past the beginning of the file and then doing a
READ NEXT will return the first record in the file.

Differences 3-5
Under ICOBOL, these conditions produce different results. The record
returned by the READ PREVIOUS is the second-to-last record in the file,
and the record returned by the READ NEXT is the second record in the file.
Essentially, when a series of READs passes either end of the file, the record
pointer remains on the first or last record.

Setting ICOBOL_FILE_SEMANTICS to "1" (on, true, yes) will cause the
runtime to emulate ICOBOL’s handling. This is useful when porting
ICOBOL programs to ACUCOBOL-GT. This option is effective only in
programs that have been compiled for ACUCOBOL-85 2.0, or later. The
default value is "0" (off, false, no).

3.3 Differences

ACUCOBOL-GT contains certain differences from ICOBOL, even when
you are using ICOBOL compatibility mode. These differences are detailed
here.

ASSIGN TO DISPLAY and KEYBOARD

ICOBOL allows an ASSIGN clause to use the word DISPLAY to refer to the
user’s screen and KEYBOARD to refer to the user’s input device.
ACUCOBOL-GT allows these terms, but when they are used a file name
must be specified. This allows (as ICOBOL does) the specification of a text
file. However, ACUCOBOL-GT does not support the direct assignment to
the user’s screen or keyboard. To do this, you will have to add code to
identify the device name of the user’s terminal and ASSIGN to that name.
You can use the ACCEPT FROM SYSTEM-INFO verb to return the user’s
station id.

ACCEPT FROM LINE NUMBER

This form of the ACCEPT statement returns a 3-digit number corresponding
to the console device that is controlling the executing program. Because
most of the machines that run ACUCOBOL-GT do not use device numbers,
but use alphanumeric names instead, ACUCOBOL-GT computes the device
number by the following procedure. First, the device name is converted to
uppercase and hyphens are converted to underscores (on UNIX systems, the
initial “/dev/” is removed). This name is then searched for in the

3-6 ICOBOL Conversions
environment (including the configuration file). If it is found, then the value
of the name is returned. If it is not found, a number is constructed from any
digits found in the device name. If no digits are present, the value “0” is used.

ACCEPT FROM EXCEPTION

This statement, which returns the reason the last CALL statement failed, is
not supported. A similar function can be coded using the C$CALLERR
library routine described in Appendix I of the ACUCOBOL-GT Manual Set.

Library Routines

ICOBOL contains several library routines that can be called. These routines
start with a “#” character. ACUCOBOL-GT does not support these routines
and will ignore them if you call them with the CALL PROGRAM verb. You
will have to rename the routines and code them in C or COBOL if you want
to use them.

4
 HP COBOL Conversions
Key Topics

Introduction to HP COBOL Compatibility .. 4-2
ACUCOBOL-GT in MPE/iX Environments... 4-3
The “-Cp” HP COBOL Compatibility Switch 4-35
Preprocessor for HP COBOL .. 4-60
System Intrinsics ... 4-66
AcuBench ... 4-68
Thin Client Solution on MPE/iX.. 4-72
Backing Up ACUCOBOL-GT Software... 4-74

4-2 HP COBOL Conversions
4.1 Introduction to HP COBOL Compatibility

ACUCOBOL-GT provides extensive compatibility with HP COBOL II/XL.
On the HP e3000, in HP COBOL compatibility mode, ACUCOBOL-GT can
compile and run HP COBOL programs that use HP COBOL extensions, HP
e3000 intrinsics, VPLUS forms, and KSAM and IMAGE data sources. On
other platforms, ACUCOBOL-GT supports HP COBOL syntax extensions
and the HP COBOL preprocessor functions. HP COBOL syntax extensions
have the same meaning and generate the same results on all platforms. The
ACUCOBOL-GT HP COBOL preprocessor provides the same functional
capabilities on all platforms.

ACUCOBOL-GT and HP COBOL share a common core of ANSI/ISO
standard COBOL. In addition, most HP COBOL extensions to the ANSI/
ISO standard are supported by ACUCOBOL-GT via the “-Cp” compiler
option. The “-Cp” option, set either on the command line or in the
CBLFLAGS environment string, places the ACUCOBOL-GT compiler in
HP COBOL compatibility mode. In this mode, ACUCOBOL-GT performs
actions and accepts features of HP COBOL that it does not otherwise perform
or allow.

Note: We use the term compatibility to describe how ACUCOBOL-GT is
compatible with HP COBOL. It does not refer to the compatibility mode on
HP 3000 series 900 computers that allows MPE/iX V applications to run on
MPE/iX XL machines without recompilation. This is commonly referred
to as compatibility mode (CM) by HP e3000 users.

Note: The specific version of HP COBOL with which ACUCOBOL-GT is
compatible is defined in “HP COBOL II/XL Reference Manual.” Further
references to “HP COBOL” in this chapter refer to HP COBOL II/XL.

Users of ACUCOBOL-GT’s HP COBOL compatibility mode, in addition to
getting HP COBOL support, gain the benefit of many useful
ACUCOBOL-GT extensions (see Appendix A of the ACUCOBOL-GT
Manual Set, section A.3 for a list of ACUCOBOL-GT extensions to the
ANSI/ISO standard). Users can also benefit from a powerful set of

ACUCOBOL-GT in MPE/iX Environments 4-3
complementary technologies (see the ACUCOBOL-GT User’s Guide,
Chapter 1, section 1.1, “Product Overview” for a brief introduction to these
technologies).

We also offer an integrated development environment (IDE) for COBOL
called AcuBench. AcuBench extends and enhances the ACUCOBOL-GT
compiler and runtime system with an advanced suite of GUI-based
development tools for COBOL. With AcuBench you can develop and
maintain your COBOL applications in an integrated, developer-friendly
Microsoft Windows environment and deploy them on your HP e3000
system, or any system supported by ACUCOBOL-GT.

4.2 ACUCOBOL-GT in MPE/iX Environments

ACUCOBOL-GT supports HP COBOL compatibility mode in MPE/iX
environments on the HP e3000 platform. In addition, ACUCOBOL-GT can
be used with MPE/iX emulators on non-HP e3000 hardware. This section
discusses how to use ACUCOBOL-GT (and its debugger) in these
environments. It also discusses how to access MPE KSAM, relative, and
sequential files from an ACUCOBOL-GT program.

Qedit source files

When the ACUCOBOL-GT compiler is started, in addition to accepting
source files in text file format, the compiler also recognizes and accepts
source files in Qedit format. To support the compilation of a Qedit file, the
compiler makes a temporary text file from the original file. The temporary
file is removed after compilation. If the compiler is also invoked with the
“-v” (verbose) option, a message similar to the following is displayed for
every Qedit file:
filename is a Qedit file
Processing Qedit source file:/tmp/SRCxxxxxx from:filename

KSAM COPY files and libraries

ACUCOBOL-GT can read KSAM COPY files and COPY libraries on
HP e3000 systems. On other platforms, ACUCOBOL-GT requires COPY
files and COPY libraries to be plain text files. ACUCOBOL-GT includes a

4-4 HP COBOL Conversions
utility called libutil that can be used to easily convert KSAM COPY libraries
into text format COPY libraries. For more information about libutil, see
section 4.2.7, “The libutil Utility.”

Runtime configuration file

Many aspects of the ACUCOBOL-GT runtime system can be controlled
through configuration variables. Configuration variables are maintained in a
configuration file. This is a standard text file that can be modified by the host
system’s text editor. For more information about runtime configuration, see
section 2.7, “Runtime Configuration,” in Book 1 of the ACUCOBOL-GT
documentation set. For more information about runtime configuration
variables, see Appendix H of the ACUCOBOL-GT Manual Set.

Note: Configuration file entries are not recognized when the configuration
file contains line numbers along the right-hand column. Such numbers are
included by default by the MPE/iX Editor program. To remove line
numbering, specify “unn” when you save the file. For example:
:editor
/a
 1 DEFAULT_FILESYSTEM MPE
 2 //
/k CBLCONFI, unn
/exit

4.2.1 Using ACUCOBOL-GT in Traditional MPE/iX
Environments

If you want to use ACUCOBOL-GT in the traditional MPE/iX environment
(outside of POSIX), you should set the following MPE/iX environment
variables.

:SETVAR HPPATH HPPATH+”,.,/ACUCOBOL/bin”
:SETVAR A_TERM "hp”
:SETVAR A_TERMCAP "/ACUCOBOL/etc/a_termcap”

ACUCOBOL-GT in MPE/iX Environments 4-5
Note: If when you installed ACUCOBOL-GT you performed every step of
the installation instructions, these environment variables should already be
set. See the Getting Started booklet, section 1.6, “Installing on HP e3000
Machines” for details.

4.2.1.1 Compiling and running in the MPE/iX environment

To run the compiler and runtime from the MPE/iX command line, you should
use the following general syntax.

:RUN <command>;INFO="args”

or:
:<command> "<args>"

where:

command could be “ccbl” (for the compiler) or “runcbl” (for the runtime),
and

args are the options to the compiler or runtime. The options must be enclosed
in quotes.

For example:
:CHDIR /ACUCOBOL/sample
:ccbl "tourhp.cbl”
:runcbl "tourhp.acu”

Note: ACUCOBOL-GT filenames are case sensitive and must be entered
in the case shown. See the installation instructions to help resolve any
errors you encounter when compiling or running the “tourhp” sample.

Examples of compiling programs with HP COBOL

With HP COBOL, the syntax for compiling and linking a COBOL program
might look like this:

:BUILD HELLOLST;REC=-80,1,F,ASCII;DISC=2000
:COB85XLK HELLOCBL,HELLOEXE,HELLOLST

4-6 HP COBOL Conversions
or like this:
:FILE COBTEXT=HELLOCBL
:FILE COBOBJ=HELLOOBJ
:FILE COBLIST=HELLOLST
:BUILD HELLOLST;REC=-80,1,F,ASCII;DISC=2000
:RUN COBOL.PUB.SYS;PARM=7
:LINK FROM=HELLOOBJ;TO=HELLOEXE

Examples of compiling programs with ACUCOBOL-GT

With ACUCOBOL-GT, the syntax for compiling the same COBOL program
might look like this:

:ccbl "-Cp –Lof HELLOLST –o HELLOOBJ HELLOCBL”

where:

-Cp tells the compiler to use HP COBOL compatibility mode;

-Lof HELLOLST creates a full listing file called HELLOLST;

-o HELLOOBJ creates an object file called HELLOOBJ; and

HELLOCBL is the name of the source COBOL program.

For a quick reference to all of the compiler options type:
:ccbl “-help”

Note: You should use the command line options in lieu of the HP COBOL
$CONTROL directives. See section 4.4.2 of this guide for a table that maps
HP COBOL $CONTROL directives to the ACUCOBOL-GT command line
options for the compiler and the runtime.

Here are some other options that you might use while compiling HP COBOL
programs with ACUCOBOL-GT:
“-Rw” - suppresses individual ACUCOBOL-GT reserved words. If your HP
COBOL program uses words that are not HP COBOL reserved words, but are
ACUCOBOL-GT reserved words, a compile time error occurs. For example, if your
HP COBOL program has a working storage item called BELL or BEEP, the program

ACUCOBOL-GT in MPE/iX Environments 4-7
will not compile unless you use the “-Rw” option because these words are
ACUCOBOL-GT reserved words. You can suppress reserved words with the “-Rw”
option on the compiler command line, like this:

:ccbl "-Rw BELL –Rw BEEP -Cp –Lof HELLOLST

 –o HELLOOBJ HELLOCBL”

“-Di” - causes the compiler to initialize Working-Storage. Many of the
problems that surface due to differences in the that way HP COBOL and
ACUCOBOL-GT initialize (or not initialize) data items by default, can be
avoided by compiling with “-Di”. When “-Di” is specified, data items are
initialized according to their type. For more information about “-Di”, see
Book 1 of the ACUCOBOL-GT Manual Set, section 2.1.9, “Data Storage
Options.”

“-Gd” - compiles for source debugging (this option includes the source code
in the compiled object file). You then invoke the debugger with the “-d”
option on the ACUCOBOL-GT runtime command line (“runcbl”).

“-v” - tells the compiler to output information about what it is doing during
compilation.

Examples of running programs with HP COBOL

With HP COBOL, the syntax for running a COBOL program with an XL
(Executable Library) in your group library is:

:RUN program;
 INFO=‘options’; PARM=parameter;
 XL=‘xl.group.account’

or
:RUN program;
 INFO=‘options’; PARM=parameter;
 LIB=G

where:

program is the name of the program you want to run;

options are any options to your program;

parameter specifies any software switches you need to set;

4-8 HP COBOL Conversions
xl.group.account is the name of your XL; and

LIB=G means the program’s group library is searched first, next its public
account library is searched, and finally the system library is searched to
resolve the program’s external references. You can also specify LIB=P or
LIB=S.

Examples of running programs with ACUCOBOL-GT

With ACUCOBOL-GT, the syntax for running a COBOL program with an
XL (Executable Library) is:

MPE:
:RUN /ACUCOBOL/bin/runcbl;
 INFO=‘options program’; PARM=parameter;
 XL=‘xl.group.account’

POSIX:
shell/iX> callci "RUN /ACUCOBOL/bin/runcbl;
 INFO=‘options program’; PARM=parameter;
 XL=‘xl.group.account’”

where:

options are any options to “runcbl”;

program is the name of the program you want to run;

parameter specifies any software switches you need to set; and

xl.group.account is the name of your XL

Note: You must specify the full or relative pathname of “runcbl” if it is not
in your current directory or if your HPPATH environment variable is not
set correctly. See the Getting Started booklet, section 1.6, “Installing on
HP e3000 Machines” for instructions on how to set the HPPATH
environment variable.

ACUCOBOL-GT in MPE/iX Environments 4-9
Note: If you change the name or case of “ccbl” or “runcbl”, you must also
change the name of its associated license file. The license file must have
the same name and case as the program, plus the file extension “.alc” in
lowercase. For example, if you rename “runcbl” to “RUNCBL” you must
rename the license file from “runcbl.alc” to RUNCBL.alc”.

If the ACUCOBOL-GT programs are renamed to uppercase names and are in
an MPE/iX MPE/iX group like:

RUNCBL.group.account

then you can use the “LIB=” option to specify searching the group library,
public account library, or the system library. For example:

MPE:
:RUN RUNCBL; INFO=‘options program’; LIB=G

POSIX:
shell/iX> callci "RUN RUNCBL; INFO=‘options program’;
 LIB=G”

“LIB=G” means the program’s group library is searched first, then its public
account library is searched, and finally the system library is searched to
resolve the program’s external references. You can also specify LIB=P or
LIB=S.

“runcbl” needs to be either in your current directory or in one of the
directories specified in your HPPATH.

If you do not have an XL that you need to specify, you can use the implied
version of RUN. For example:

MPE:
:runcbl; INFO=‘options program’

or
:runcbl ‘options program’

POSIX:

4-10 HP COBOL Conversions
shell/iX> callci "runcbl; INFO=‘options program’”

or
shell/iX> callci "runcbl ‘options program’”

If you do not specify the full pathname of “runcbl”, then it needs to be located
in one of the directories specified in your HPPATH.

4.2.1.2 Linking

To HP developers in general, the term linking means running a command or
series of commands that arrange all of a program’s objects so that they can
run as a single application.

Within ACUCOBOL-GT, the term linking is used to describe the linking of
C subroutines or HP RLs into the ACUCOBOL-GT runtime so that the
runtime can CALL the functions that these routines provide. Programs
compiled with ACUCOBOL-GT do not require linking.

To help illustrate this, suppose you have three COBOL objects. If these three
objects are HP COBOL objects, when you link them together you get an HP
executable program:

OBJECT1 + OBJECT2 + OBJECT3 = HPEXE

To run the HP executable enter:
:RUN HPEXE

If these three objects are ACUCOBOL-GT objects, you do not link them
together; they remain separate object files:

OBJECT1
OBJECT2
OBJECT3

The ACUCOBOL-GT runtime is used to execute these objects. Assuming
that OBJECT1 is the main program, the command to run might look like this:

:RUN /ACUCOBOL/bin/runcbl;INFO="OBJECT1”

or:

ACUCOBOL-GT in MPE/iX Environments 4-11
:runcbl "OBJECT1”

To execute OBJECT2 and OBJECT3, the main program (OBJECT1) makes
a CALL to one of the other objects, and the ACUCOBOL-GT runtime
dynamically loads and runs the called object. The main program may CALL
all of the other objects one by one in the following pattern:

OBJECT1 CALLs OBJECT2; OBJECT1 CALLs OBJECT3; etc.,

or the CALLed object can CALL the next object in the execution sequence,
in the following pattern:

OBJECT1 CALLs OBJECT2; OBJECT2 CALLs OBJECT3; etc.

4.2.1.3 Object libraries

There is an ACUCOBOL-GT utility called cblutil that you can use to
combine multiple ACUCOBOL-GT objects into one ACUCOBOL-GT
object library. This is not the same as HP linking. It is useful if you want to
combine all of your objects into one file so that you don’t have a lot of
separate objects.

For example:
:cblutil "-lib –v –o OBJLIB OBJECT1 OBJECT2 OBJECT3”

creates an ACUCOBOL-GT object library called OBJLIB. (See Book 1,
User’s Guide, section 3.2, “Object File Utilities-cblutil”, for more
information.) Then, when you start the program with:

:RUN /ACUCOBOL/bin/runcbl;INFO="OBJLIB”

or
:runcbl "OBJLIB”

the runtime loads all of the ACUCOBOL-GT objects in OBJLIB and starts
executing the main program.

4-12 HP COBOL Conversions
4.2.1.4 Using XLs and RLs with ACUCOBOL-GT

The use of XLs and RLs is supported by ACUCOBOL-GT on the HP e3000.
XLs should be specified on the “runcbl” command line when the program is
started. RLs must be linked into the ACUCOBOL-GT runtime. Relinking
the runtime requires a C compiler. In the past, HP has made a C compiler
available to DSPP members. By arrangement, Micro Focus’s Consulting
services can provide assistance or perform relinking for you. The need to
relink the runtime should arise only if you are calling functions stored in an
RL.

Note: XL and RL programs sometimes change the current working
directory, which can have the affect of causing the runtime to fail to locate
a subsequently called program. To prevent such a failure, you should set
the CODE_PREFIX runtime configuration variable. The CODE_PREFIX
variable defines a series of directories that the runtime searches to locate
object files. CODE_PREFIX can include absolute and relative paths, and
can include the current working directory by specifying a period (“.”). For
example:
CODE_PREFIX . ; /ACUCOBOL/SAMPLE ; /MYAPP/CBLOBJ
For more information about how the runtime locates program object files,
see section 2.7.2, “Code and Data File Search Paths,” in Book 1 of the
ACUCOBOL-GT Manual Set. For more information about the
CODE_PREFIX configuration variable, see Appendix H of the same set.

XLs

XLs should be specified on the command line when you start the program.
On the command line, after the “XL=” argument, specify the name of the XL.
For example:

MPE:
:RUN /ACUCOBOL/bin/runcbl;
 INFO=‘options program’; PARM=parameter;
 XL=‘xl.group.account’

POSIX:
shell/iX> callci "RUN /ACUCOBOL/bin/runcbl;
 INFO=‘options program’; PARM=parameter;

ACUCOBOL-GT in MPE/iX Environments 4-13
 XL=‘xl.group.account’”

where:

options are any options to “runcbl”

program is the name of the program you want to run

parameter specifies any software switches you need to set

xl.group.account is the name of your XL

If you do not want to specify the XL on the command line, you can choose to
link the name of the XL into the ACUCOBOL-GT runtime. To link an XL
name into the runtime:

Edit /ACUCOBOL/lib/Makefile.

 Change: LDFLAGS = -s

 to: LDFLAGS = -s -WL,XL=/Account/group/name

where /Account/group/name is the name of your XL file.

RLs

To access functions in an RL, you must link the RL into the
ACUCOBOL-GT runtime. To link an RL into the runtime, perform the
following:

Edit /ACUCOBOL/lib/Makefile.

 Change: LDFLAGS = -s

 to: LDFLAGS = -s -WL,RL=/Account/group/name

where /Account/group/name is the name of your RL file.

Relink the runtime with the following commands:

MPE:

4-14 HP COBOL Conversions
:CHDIR /ACUCOBOL/lib
:MAKE.HPBIN.SYS

POSIX:
shell/iX> cd /ACUCOBOL/lib
shell/iX> make

4.2.1.5 Interfacing to C subroutines

ACUCOBOL-GT applications can call C subroutines. See Chapter 4 of the
Guide to Interoperating with ACUCOBOL-GT for details.

Note: If you use the direct method described in section 4.2 of the
Interoperability Guide and you are preparing to relink the runtime for
deployment on the HP e3000, when you apply the instructions in 4.2 you
should replace all references to the file “direct.c” with “hpcobol.h”.

4.2.1.6 Privileged mode

ACUCOBOL-GT does not use the privileged mode.

4.2.1.7 Terminal emulators

ACUCOBOL-GT and the programs compiled with ACUCOBOL-GT are
compatible with most common HP terminal emulators, such as ScreenJet,
WRQ Reflection, QCTerm, and MiniSoft MS92.

4.2.1.8 ACUCOBOL-GT PA-RISC native code support

ACUCOBOL-GT PA-RISC native code support on the HP e3000 requires an
executable library (XL) called ACUPAXL. This XL needs to reside in a
valid MPE group and must be specified on the runtime command line. For
example:

:RUN /ACUCOBOL/bin/runcbl;
 INFO='native.acu';
 XL='ACUPAXL.PUB.ACUCOBOL'

If you try to run a PA-RISC native code object and the runtime cannot find
ACUPAXL, then you will get an error like the following:

ACUCOBOL-GT in MPE/iX Environments 4-15
native: Program contains object code for a different
processor

This is because the runtime cannot load the PA-RISC native code object
without this XL.

4.2.1.9 MPE file equation restrictions

When you are using MPE file equations, you must exercise caution if you are
also using the ACUCOBOL-GT FILE_PREFIX or FILE_SUFFIX runtime
configuration variables. This is because the runtime prepends the
FILE_PREFIX and appends the FILE_SUFFIX strings to the name of the file
specified in the SELECT statement. As a result, this name no longer matches
the name specified in the file equation, which can result in errors when the
runtime tries to access the file.

For example, if you have a SELECT statement such as:
SELECT MYFILE ASSIGN TO “MYFILE”

And you have a file equation such as:
FILE MYFILE=FILEX

And you have a configuration variable such as:
FILE_PREFIX /ACUCOBOL/DATA

The runtime attempts to open a file called /ACUCOBOL/DATA/MYFILE
when it should have been opening a file called MYFILE.

To prevent this renaming from happening, you can do either of these two
things:

• Put the following “name alias” line in your runtime configuration file:

MYFILE -F MYFILE

• Change the COBOL programs so the SELECT statement looks like this:

SELECT MYFILE ASSIGN TO “-F MYFILE”

4-16 HP COBOL Conversions
The “-F” in both cases tells the runtime to use the name as it appears and not
to prepend the FILE_PREFIX to the name of the file. The open then treats
MYFILE as a file equation and should find the correct file.

4.2.2 Using ACUCOBOL-GT in POSIX Environments

The ACUCOBOL-GT development system can be run in HP COBOL
compatibility mode in the MPE/iX POSIX shell. This section discusses some
basic issues related to the installation, startup, and running of
ACUCOBOL-GT under the POSIX shell on HP e3000 platforms.

To install ACUCOBOL-GT on your system, you must have MPE/iX release
5.0 or later. The installation procedure, including the installation of license
files, is described in detail in the Getting Started booklet, section 1.6,
“Installing on HP e3000 Machines.” The installation procedure gives the
exact command line syntax you should use, first to get from the basic MPE/
iX level to the POSIX shell, and then to install and run ACUCOBOL-GT. In
addition, useful information on printing from the POSIX shell is included.

To get your existing COBOL applications running with ACUCOBOL-GT,
you need to recompile the source. The name of the ACUCOBOL-GT
compiler executable is “ccbl” and you invoke it with the following command.
(For complete information on invoking the compiler, see the
ACUCOBOL-GT User’s Guide, section 2.1.)

ccbl <filename.cbl>

The resulting object file has the same base name as the source file plus the
extension “.acu”. Unlike the native HP COBOL system, the
ACUCOBOL-GT object does not require linking.

To run your program, invoke it with ACUCOBOL-GT runtime (“runcbl”).
To invoke it, enter the following command. (For complete information on
using the runtime, see section 2.2 in Book 1, ACUCOBOL-GT User’s Guide.)

runcbl <filename.acu>

ACUCOBOL-GT in MPE/iX Environments 4-17
Any programs that are called during execution are loaded dynamically by the
runtime. Subprograms written in C may be linked into the runtime system
directly, and then called by a COBOL program using the CALL verb. For
details regarding linking a C program into the runtime, see Chapter 4 of the
Guide to Interoperating with ACUCOBOL-GT.

 There are many compile and runtime options that you can also include in the
command arguments to compile or execute your ACUCOBOL-GT program.
To view a list of compiler options, entering the following command:

ccbl -help

Note: You should use the command line options in lieu of the HP COBOL
$CONTROL directives. See section 4.4.2 of this guide for a table that maps
HP COBOL $CONTROL directives to the ACUCOBOL-GT command line
options for the compiler and the runtime.

For detailed descriptions of the ACUCOBOL-GT compiler and runtime,
including all of the command line options and utility programs, see Chapters
2 and 3 in Book 1 of the ACUCOBOL-GT Manual Set. Book 1 also includes
sections on how to get help and how to handle compilation and runtime
problems (ACUCOBOL-GT User’s Guide, Chapter 1, section 1.7 and its
subsections).

4.2.3 Using ACUCOBOL-GT with MPE/iX Emulators

Several companies offer software that to varying degrees emulates the MPE/
iX operating system on non-HP e3000 hardware. In some situations, these
emulators provide a viable rehosting path for moving HP COBOL
applications to a new platform with minimum changes to the source code.
Because they provide varying degrees of support for the full capabilities of
MPE/iX, each emulator should be carefully evaluated for its ability to meet
the needs of your applications. In most cases, ACUCOBOL-GT can be
easily configured to run within these emulators.

4-18 HP COBOL Conversions
The information in this section is designed to help you configure
ACUCOBOL-GT for use in an emulated MPE/iX environment. Typically,
the configuration steps are modest, requiring only that you enable the MPE
file system and assign values to a small number of environment and runtime
variables.

This section assumes that you are familiar with your emulator software and
that you have successfully compiled your HP COBOL program with the
ACUCOBOL-GT compiler on the new host.

4.2.3.1 Enabling the MPE file system

Off of the HP e3000, the ACUCOBOL-GT runtime does not come
pre-configured to support the MPE file system. Therefore, if you want to
access MPE files you must first enable the MPE file system in the runtime.
This requires relinking the runtime. The steps for doing this are given below.

Before starting, it is helpful to verify the version and configuration of your
ACUCOBOL-GT runtime. On the system, enter:

runcbl -vv

The “-vv” option causes the runtime to display detailed version and
configuration information. On an HP-UX system the output is similar to:

ACUCOBOL-GT runtime version 8.1.0
Serial number 999999
Licensed for 1 user(s)
AcuServer client
Vision version 5 file system
XML version expat_1.95.4 file system
Copyright (c) 1985-2008 Micro Focus (IP) Ltd.

The end of the first line of output indicates the version of the runtime. To get
MPE file system support, you must have Version 7.0.0, or later.

To enable MPE file system support, follow the steps below. The steps
include relinking the runtime. Relinking requires that you have access to the
host system’s native C compiler. For complete information on relinking, see
section 4.3.6 in A Guide to Interoperating with ACUCOBOL-GT.

ACUCOBOL-GT in MPE/iX Environments 4-19
Note: By default, the ACUCOBOL-GT files needed to relink the runtime
are located in the “lib” subdirectory of your ACUCOBOL-GT installation.

1. Make a backup copy of your current runcbl file.

2. Optionally, include other libraries. See section 4.3 in A Guide to
Interoperating with ACUCOBOL-GT.

3. Enable (or disable) the MPE file system. Edit “filetbl.c” (in the “lib”
subdirectory of your ACUCOBOL-GT installation) and look for the list
of define statements. The list contains entries such as:

Locate USE_MPE and set the value to “1”. The file systems that are set
to “1” are those that are enabled and linked. Those set to “0” are disabled
and not linked. Any or all file systems may be enabled at the same time;
the more systems you link, the larger your runtime system becomes.

4. Edit “Makefile” (in the “lib” subdirectory of your ACUCOBOL-GT
installation) and add “ksam.o” to the FSI_SUBS definition. The line
for FSI_SUBS should look like:

FSI_SUBS = ksam.o

To remove support for MPE, remove “ksam.o” from FSI_SUBS.

5. Relink the runtime. Make your current working directory the “lib”
subdirectory of your ACUCOBOL-GT installation (AcuGT/lib) and
enter:

make

This compiles “sub.c” and “filetbl.c”, and links the runtime.

#define USE_VISION 1

#define USE_RMS 0

#define USE_CISAM 0

#define USE_BTRIEVE 0

#define USE_MPE 0

4-20 HP COBOL Conversions
To verify that MPE file system support is enabled, enter “runcbl -vv”. The
output should now include the line:

KSAM version MPE/iX native and compatibility
 mode file system

4.2.3.2 Setting runtime configuration variables

Typically, you need to set a few runtime variables before using
ACUCOBOL-GT with your MPE/iX emulator.

To ensure that the ACUCOBOL-GT runtime performs as expected, you may
need to set the DEFAULT_FILESYSTEM,
SHARED_LIBRARY_EXTENSION, and SYSINTR_NAME runtime
configuration variables.

Note: An introduction to the function and use of the ACUCOBOL-GT
runtime configuration file is located in section 2.7 of the ACUCOBOL-GT
User’s Guide. All ACUCOBOL-GT runtime configuration variables are
described in Appendix H of ACUCOBOL-GT Appendices.

DEFAULT_FILESYSTEM

The value of this variable tells the runtime which file system to use when the
application opens an existing file or creates a new file. (You can override this
setting for an individual file with the filename_FILESYSTEM variable. See
the entry for filename_FILESYSTEM in Appendix H.)

To direct the runtime to use the MPE file system by default, set
DEFAULT_FILESYSTEM to MPE. The line in the configuration file
should look like:

DEFAULT_FILESYSTEM MPE

SHARED_LIBRARY_EXTENSION

This variable defines the filename extension for UNIX shared libraries. The
default value is “.so”. On HP-UX systems, set the value to “.sl”, as in:

SHARED_LIBRARY_EXTENSION = .sl

ACUCOBOL-GT in MPE/iX Environments 4-21
This variable has meaning only on systems that support UNIX shared
libraries.

SYSINTR_NAME

For some MPE emulators, this variable defines the location of the SYSINTR
file. This variable must be specified with HFS syntax and set to the full path
of the SYSINTR file. For example:

SYSINTR_NAME /opt/mpe/etc/sysintr.txt

4.2.3.3 Setting environment variables

Depending on your host system, the runtime may require that the
SHLIB_PATH or LD_LIBRARY_PATH environment variable be defined.

SHLIB_PATH (HP-UX systems only)

The environment variable SHLIB_PATH must include the path to the MPE
emulator’s shared libraries. This can be accomplished with the following
Bourne Shell commands:

SHLIB_PATH=$SHLIB_PATH:/opt/mpe/lib
export SHLIB_PATH

Or with the following C Shell command:
setenv SHLIB_PATH=$SHLIB_PATH:/opt/mpe/lib

You can add these commands to the each user’s start-up file (.profile or
.cshrc), or to make the definition effective for all users, to /etc/profile.
Changing /etc/profile requires root privileges.

LD_LIBRARY_PATH (UNIX/Linux systems, except HP-UX)

The environment variable LD_LIBRARY_PATH must include the path to
the MPE emulator’s shared libraries. This can be accomplished with the
following Bourne Shell commands:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mpe/lib
export LD_LIBRARY_PATH

Or with the following C Shell command:

4-22 HP COBOL Conversions
setenv LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mpe/lib

You can add these commands to the each user’s start-up file (.profile or
.cshrc), or to make the definition effective for all users, to /etc/profile.
Changing /etc/profile requires root privileges.

4.2.4 Accessing MPE KSAM, Relative, and Sequential
Files

You can access MPE KSAM, relative, and sequential files through HP e3000
system intrinsic functions or via standard COBOL I/O statements. If your
programs use system intrinsics to access MPE files, you do not need to make
any changes to your code or set any special runtime configuration variables.
If your programs use standard COBOL I/O statements to access MPE files,
you will need to check the setting of one or more ACUCOBOL-GT runtime
configuration variables. How to configure ACUCOBOL-GT to access MPE
files via standard COBOL I/O statements is discussed in the remainder of this
section.

Note: ACUCOBOL-GT supports duplicate primary key values. For more
information, see section 4.3.3, “File-Control Paragraph.”

On the HP e3000, ACUCOBOL-GT supports the following KSAM formats:
KSAM XL, KSAM64, and KSAM/3000. KSAM XL and KSAM64 function
in the native mode (NM) environment of the MPE/iX operating system.
KSAM/3000 is an earlier MPE/iX V/E KSAM format that is used on the
MPE/iX in HP’s compatibility mode (CM).

The following sections describe ACUCOBOL-GT’s support of MPE KSAM,
relative, and sequential files on the HP e3000.

4.2.4.1 The ACUCOBOL-GT MPE file system interface

On the HP e3000, ACUCOBOL-GT uses the MPE file system by default for
KSAM, relative, and sequential files. ACUCOBOL-GT also comes with its
own indexed file system called Vision. See section 4.2.4.2 for more
information on selecting a file system.

ACUCOBOL-GT in MPE/iX Environments 4-23
The MPE file system interface routines are linked into the runtime system
and are automatically invoked whenever you execute your programs. This
method allows for improved portability of your application because no file
system-specific commands need to be embedded in your COBOL code.

Depending on file system version, Vision and KSAM use either one or two
disk files for storage. Vision Version 3 files are stored in a single disk file.
This can simplify system maintenance and reduce the size of directories.
Vision Version 4 and 5 files use a dual-file format, which facilitates the
management of very large files. One disk file, or segment, contains the data
records, and the other segment contains indexing information. As each
segment approaches the configurable segment size limit, Vision
automatically generates additional segments to hold the data or index
information. Like Vision 4 and 5, KSAM/3000 files are stored in two disk
files—one for indexes and one for data records. Like Vision Version 3,
KSAM XL and KSAM64 use a single disk file. KSAM file size limits are
fixed at the time of file creation. The default KSAM file size is limited to
10,000 records. A different file size limit can be established when the file is
created by setting the file size parameter in the ASSIGN clause (this is an HP
COBOL extension to the ASSIGN clause that requires compilation for HP
compatibility (“-Cp”)).

KSAM/3000 supports variable-length records. KSAM XL and KSAM64
support only fixed length records. Vision supports variable-length records,
and also record locking, data compression, and data encryption.

The ACUCOBOL-GT MPE file system interface creates KSAM XL files by
default. A KSAM/3000 file is created if variable-length records are specified
in the File Descriptor (FD). The KSAM file is created with the name
specified in the ASSIGN clause. The name is limited to eight characters.
The KSAM/3000 index file has the same name as the data file but with a ‘K’
appended to the end (if the ASSIGN name is eight characters, only the first
seven are used and a ‘K’ is appended to the index file name).

4.2.4.2 Selecting a file system

ACUCOBOL-GT allows a program to interface with more than one external
file system in the same program. The file systems supported by the runtime
are identified and enabled in the file “filetbl.c” (located in the “LIB”
directory). On the HP e3000, support for the KSAM and Vision indexed file
systems is enabled by default.

4-24 HP COBOL Conversions
To specify the indexed file system that the program will use, you must set the
DEFAULT_FILESYSTEM configuration variable. To define a file system
for use with a particular file, you set the filename_HOST configuration
variable. For an introduction to ACUCOBOL-GT runtime configuration
variables and the configuration file, see section 2.7, “Runtime
Configuration,” in Book 1 of the ACUCOBOL-GT Manual Set.

DEFAULT_FILESYSTEM

DEFAULT_FILESYSTEM specifies the default file system to be used for all
file I/O. The default value on HP e3000 machines is “MPE”. If you want to
use ACUCOBOL-GT’s Vision file system instead, add the following to the
“cblconfig” file:

DEFAULT_FILESYSTEM Vision

This tells the runtime to use Vision files instead of MPE KSAM files. In
addition, if you specify Vision, the relative and sequential files will be in
bytestream format instead of MPE format.

filename_HOST

This variable specifies the file system to use for a particular file. For
example, if DEFAULT_FILESYSTEM is set to MPE (the default), and the
file “CUSTFILE” is a Vision file, in your “cblconfig” you could specify:

CUSTFILE_HOST VISION

This definition directs the runtime to treat “CUSTFILE” as a Vision file.
Note that the file name may not include any path or directory name and
should not include the file extension.

DEFAULT_FILESYSTEM and filename_HOST are described in detail in
Appendix H, “Configuration File Entries,” in Book 4 of the
ACUCOBOL-GT Manual Set.

When your program executes, each time a file is opened, the
ACUCOBOL-GT runtime checks filename_HOST and
DEFAULT_FILESYSTEM to determine which file system to use. You can
change the value of these variables, just before you open the file, by including
the following in your code:

ACUCOBOL-GT in MPE/iX Environments 4-25
SET ENVIRONMENT "DEFAULT_FILESYSTEM” TO value

or
SET ENVIRONMENT "filename_HOST” TO value

where value is a Working Storage item containing the name of the file
system, or is a literal in quotation marks. SET ENVIRONMENT thus
enables you to change file systems during the execution of your program.

4.2.4.3 File name handling

On MPE/iX systems, ACUCOBOL-GT can handle references to files,
groups, and accounts in the traditional MPE syntax, e.g., FILE1.PUB.SYS.
When an ACUCOBOL-GT program attempts to access a KSAM file, the
runtime expects the filename to be in MPE syntax. The runtime treats the
filenames of other file types differently.

If the file being accessed is not a KSAM file, the runtime first assumes that
the filename is in Hierarchical File System (HFS) syntax. For example, if
FILE1.PUB.SYS is referenced in your program, the runtime looks in the
current directory for a file named “FILE1.PUB.SYS”. If the file is not found,
the runtime assumes that the filename is in traditional MPE/iX syntax. It then
converts the name to HFS syntax and tries again to find the file. For example,
FILE1.PUB.SYS is converted to /SYS/PUB/FILE1.

In addition to ACUCOBOL-GT’s built-in method of establishing filename
aliases via the runtime configuration file (see section 2.7.1, “File Name
Assignments,” in Book 1 of the ACUCOBOL-GT Manual Set),
ACUCOBOL-GT also supports file aliases created with the MPE/iX “FILE”
command. FILE equations and runtime configuration file entries provide a
simple and flexible way to map logical names to physical files.

Note: If you plan to migrate your application to another host and your
application makes use of FILE equations, unless you will use an MPE
emulator on the new host you will have to use other methods to accomplish
file attribute specification and filename aliasing. Precisely what is required
will vary depending on the host operating system. ACUCOBOL-GT
always supports the following mechanisms:

1. The SET ENVIRONMENT statement can be used in the runtime
configuration file and within the program to define filename aliases.

4-26 HP COBOL Conversions
2. File information, including path and name information, can be stored in
a special file that the program reads prior to manipulating files.

If you plan to deploy your application with our thin client technology, there
is an additional consideration. Frequently, thin client applications are
initiated with a common (shared) runtime configuration file. However, this
approach prevents unique users from getting unique environment settings
(such as those provided by FILE equates). A recommended solution is to
prepare unique runtime configuration files for every user (or group of
users), and to place those configuration files on the application server. The
program is then modified to get the name of the user on startup and to then
load the appropriate configuration file using the C$CONFIG library
routine.

4.2.4.4 File I/O trace information

Both the ACUCOBOL-GT runtime and debugger support an option to output
file I/O trace information during program execution. This facility can be very
helpful when you are investigating program execution problems. When file
tracing is enabled, the runtime outputs a message to the error file for every
file I/O-related action that it executes.

To enable file tracing, the trace level must be set to “7” or higher.

How to enable file tracing is described in Book 1, section 1.7.2, “Handling
Program Execution Problems,” of the ACUCOBOL-GT documentation set,
and in the entry for the “FILE_TRACE” configuration variable in
Appendix H of the ACUCOBOL-GT Manual Set. How to use the file trace
facility in the debugger is described in Book 1, section 3.1.4, “File Tracing.”

4.2.4.5 KSAM system limits and ranges

KEYS 1-16 keys

KEY SIZE byte 1-255 bytes

integer 1-255 bytes of integer data

real 1-255 bytes of real number data

IEEE real 4, 8, or 16 bytes of IEEE real number data

ACUCOBOL-GT in MPE/iX Environments 4-27
Other limits apply as described in Appendix A of the ACUCOBOL-GT
documentation set.

4.2.4.6 Enabling and disabling the MPE interface

ACUCOBOL-GT’s support for KSAM is enabled by default. However, if
for some reason support has been disabled and you want to re-enable it, or if
you want to disable support, you can include or remove it from the runtime
by performing the following steps.

1. Make a backup copy of your current runcbl file.

2. Edit “filetbl.c” (in the “LIB” directory). In a text editor, look for the
list of define statements. The list contains entries such as:

#define USE_VISION 1
#define USE_RMS 0
#define USE_CISAM 0
#define USE_BTRIEVE 0
#define USE_INFORMIX 0
#define USE_KSAM 1

Set a value in the list to “0” (zero) to disable that system, or to “1” (one)
to enable it. The file systems that are set to “1” are the ones you plan to
link and use. Any or all may be enabled at the same time; the more
systems you link, the larger your runtime system becomes. Only Vision
and MPE KSAM, relative, and sequential files are supported on the HP
e3000.

numeric 1-28 bytes of numeric data

packed 1-14 bytes of packed decimal data
 (odd # of char)

*packed 2-14 bytes of signed packed decimal data
 (even # of char)

REC SIZE 1-32,767 fixed-length and
undefined-length ASCII files

1-32,766 variable-length ASCII, fixed,
variable and undefined length binary

FILE SIZE 4 gigabytes, KSAM XL file

128 gigabytes, KSAM64 file

4-28 HP COBOL Conversions
3. Locate and edit the “Makefile” (in the “LIB” directory). In a text
editor, add “ksam.o” to the FSI_SUBS definition. The line with
FSI_SUBS should look like this:

FSI_SUBS = ksam.o

To remove support for KSAM, remove “ksam.o” from FSI_SUBS.

4. Link the runtime system. Be sure that your current working directory
is the “lib” subdirectory of your ACUCOBOL-GT directory.

To link the runtime in the MPE/iX environment enter:

:/usr/local/bin/make

To link the runtime in the POSIX environment enter:

make

This compiles “sub.c” and “filetbl.c”, and then links the runtime.

5. To specify MPE as the default file system, edit “cblconfig” (the
runtime configuration file) and add the following line:

DEFAULT_FILESYSTEM MPE

You can override this default in your programs via the SET
ENVIRONMENT statement or by setting the filename_HOST variable.

6. Test the system.

The interface is now in place. To ensure that ACUCOBOL-GT is
writing and reading records via KSAM, move to the directory containing
the sample program iobench. Create a temporary configuration file
named “temp.ttt”. In this file, place one line:

DEFAULT_FILESYSTEM MPE

At the system prompt, type:

:runcbl "-v”
:ccbl "-x -Cr -Si ACU iobench.cbl”
:runcbl "-c temp.ttt”

This displays the version number of the interface and then compiles and
executes a sample program that generates several file I/O activities.

ACUCOBOL-GT in MPE/iX Environments 4-29
We use the file “temp.ttt” to prevent the runtime system from using your
usual “cblconfig” file. This ensures that the iobench program creates its
files in the current directory.

4.2.5 Using the ACUCOBOL-GT Debugger in MPE/iX
Environments

Built into the ACUCOBOL-GT runtime is a powerful and easy to use
source-, symbolic-, and low-level debugger. Its capabilities and use are
described in detail in Book 1, section 3.1, “Runtime Debugger,” of the
ACUCOBOL-GT Manual Set. You can use the debugger via an HP terminal
or from a PC running a terminal emulator (such as ScreenJet or Reflection);
however, access to the debugger’s menu bar may be restricted or require
changes to the keyboard configuration. These issues are described below.

In every environment, the debugger includes a menu bar and command
window. On systems with mouse support, the menus can be accessed
directly with the mouse. On other systems, the menu bar is activated with
function key F10 and the menus are navigated with the arrow keys. The
Command window supports the traditional text-based command line
interface. Most actions that can be initiated from the menu bar can also be
specified in the command window.

On HP terminals, because the keyboard does not have several function keys
that are common on PC keyboards (F10 and the arrow keys, in particular), the
debugger’s menu interface is not accessible. Instead, you should simply use
the debugger’s command window. For a list of commands and command
syntax, see section 3.1.3, “Debugger Commands” in Book 1. Functions keys
F1 through F8 are available on most HP terminals and can be used to perform
the actions described in Book 1, section 3.1.3.

If you are using a PC-based system with terminal emulator software, you
have the option of re-mapping the keyboard and redefining the termcap
definition on the HP e3000 to enable F10 and the arrow keys and, thereby,
gain access to the debugger’s menu bar. Terminal emulator configuration is
described in the next section.

4-30 HP COBOL Conversions
4.2.5.1 Terminal emulator keyboard configuration

If you are using the ACUCOBOL-GT debugger via a PC system with a
terminal emulator, you can specially configure your system to gain access to
the debugger’s menu system. Configuration requires two actions:

1. Redefinition of the terminal type on the HP e3000.

2. Re-mapping of several special keys in the terminal emulator so that
key presses send the correct value to the debugger. These keys—F10
and the arrow keys—may have special purposes within the emulator
which will be lost when each key is re-mapped.

Setting the terminal type

In the MPE/iX environment, or in your login UDC, set the environment
variable A_TERM to one of the following values, as appropriate.

hpminisoft
hpreflection
hpscreenjet

For example:
:SETVAR A_TERM "hpreflection”

If you are using an emulator that is not listed above, but the emulator is very
similar to one of the above, set the A_TERM variable to the similar emulator,
remap the special keys as described in the next section, and run a program in
the debugger to test for correct behavior.

Re-mapping special keys

In your terminal emulator, access the keyboard configuration facility and
remap the following keys to the specified values (see your terminal emulator
documentation for specific instructions on re-mapping keys):

F10 escape – y – carriage return (^[y^M)

Up Arrow escape – A (^[A)

Down Arrow escape – B (^[B)

ACUCOBOL-GT in MPE/iX Environments 4-31
To easily use these settings again in a subsequent session, save these
mappings to a new “configuration” or “session.”

4.2.5.2 Debugging programs that use VPLUS

Debugging programs that use VPLUS is tricky because debugger I/O and
VPLUS I/O cannot share the same terminal session. A common way to work
around this problem is to use two terminal sessions, one to host debugger
output and one to host VPLUS I/O. In the application of this method, the first
terminal session hosts debugger output and establishes a FILE equation that
directs VPLUS output to a second terminal session. This is the strategy we
recommend you use when you want to debug an ACUCOBOL-GT program
that uses VPLUS.

Note: You do not need to use two terminal sessions if the program you
want to debug does not use VPLUS.
Before you can use the source-level debugger on any program, you must
compile the program with the “-Gd” option.

The following steps describe one way to start your program so that debugger
I/O will go to one terminal session and VPLUS I/O will go to another:

1. Get a logical device number for the session that will host the
VPLUS I/O.

a. Establish a serial connection to the HP e3000 that has the qualities
of a directly connected terminal (e.g.: a DTC, modem connection,
modem connection from a terminal emulator, etc.).

b. Get the logical device number (LDEV) of the connection. The
LDEV will be used later in the FILE equation that redirects
VPLUS I/O to this logical device. You can use the “SHOWME”
command to get the LDEV number. For example:

:SHOWME
$STDIN LDEV: 90 $STDLIST LDEV: 90

Right Arrow escape – C (^[C)

Left Arrow escape – D (^[D)

4-32 HP COBOL Conversions
Make a note of the LDEV number. In the above example, the
LDEV number is 90.

c. Log out of the session (VPLUS cannot use the connection if it is
already in use).

2. Open a session for the ACUCOBOL-GT debugger. The connection
type does not matter; the connection can be from a terminal emulator.

3. In the debugger session, set a FILE equation that points to the VPLUS
terminal filename that is specified in the VOPENTERM call and set
the DEV number to the LDEV number derived from step 1. For
example:

:FILE VPLUSTF;DEV=90

4. Start the ACUCOBOL-GT debugger by including the “-d” option
before the name of the program. For example:

:RUN /ACUCOBOL/bin/runcbl;INFO="-d VPLUSP"

5. Use the debugger to debug your program.

When you use the debugger, the runtime switches into block mode before
calling a VPLUS intrinsic and then back into raw mode after the call
completes. This is done because the runtime requires raw mode when using
the debugger. When the runtime is in block mode you will not be able to use
COBOL DISPLAY/ACCEPT statements, nor will runtime errors be
displayed on the screen. To capture runtime error messages, you should use
the “-le” runtime option to send error messages to a file.

Some VPLUS calls may cause the keyboard to become locked when using
the debugger. If this happens, you must use the appropriate commands for
your terminal to unlock the keyboard.

4.2.6 Terminal Configuration with VPLUS

As in all environments, what the operating system and program know about
the display device affects the handling of screen I/O. This is equally true for
HP e3000 COBOL applications that use VPLUS. To enable VPLUS
applications to override some of its default values, VPLUS employs an
environment control file, “VENVCNTL”. When VPLUS starts up, VPLUS

ACUCOBOL-GT in MPE/iX Environments 4-33
checks for the existence of VENVCNTL.PUB.SYS or a file equated to the
formal file designator. If no VENVCNTL file exists, the standard VPLUS
defaults are used.

VENVCNTL is a simple text file that contains only one line of data. Each
override option may be activated by setting the option byte number to 1. For
example, in the VENVCNTL file below, option 6 is set.

:PRINT VENVCNTL.PUB.SYS
000001

Option 6 tells VPLUS to extend terminal status reads to ensure that an input
termination character is accounted for.

If you are using a VT-MGR connection you should set option 6. If you don’t
set option 6, the keyboard might become locked.

If you are using a TELNET or DTC connection you should not set option 6.
If you do, a call to VCLOSETERM might result in an error 10.

If you are using ACUCOBOL-GT VPLUS programs with a variety of
terminal types, you might want to create environment control files for each
terminal type and then use a FILE equation to match the terminal type with
the correct environment control file. For example:

:FILE VENVCNTL.PUB.SYS=file.group.account

where “VENVCNTL.PUB.SYS” is always fully specified and
“file.group.account” is the name of the file containing your connection
specific settings.

For HP documentation on this topic, see http://docs.hp.com/mpeix/
onlinedocs/32209-90024/32209-90024.html and navigate to Application
Notes/Using the VPLUS Environment Control File (VENVCNTL).

4.2.7 The libutil Utility

libutil is a special utility that allows you to easily convert KSAM COPY
libraries into text format COPY libraries. The utility also allows you to
create individual COPY files from KSAM or text format COPY libraries.
libutil has several options.

4-34 HP COBOL Conversions
To create individual COPY files from COPY libraries the usage is:

MPE:
libutil "-x[b] [copylib [group]]”

POSIX:
libutil -x[b] [copylib [group]]

where:

copylib is a KSAM or text file. copylib defaults to COPYLIB.

group is the name of an existing group or directory. group defaults to the
current group or directory.

If only ‘-x’ is specified, the output file type is MPE fixed ASCII. If ‘-xb’ is
specified, the output file type is HFS bytestream ASCII. Use the “-xb” option
if your copy libraries have copyfile names with hyphens in them.

One COPY file is created for each entry in the COPY library. The name of
each COPY file is derived from the name of the entry in the COPY library.
For example, if you want to extract all of your COPY files from a COPY
library called MYLIB into a group called MYCPY in an account named
ACUCOBOL, from MPE you can use the command:

libutil "-x MYLIB MYCPY.ACUCOBOL”

To create a text file version of a KSAM COPY library the usage is:

MPE:
libutil "-c[b] [KSAM-copylib [ASCII-copylib]]”

POSIX:
libutil -c[b] [KSAM-copylib [ASCII-copylib]]

where:

KSAM-copylib defaults to COPYLIB; and

ASCII-copylib defaults to COPYLIBA.

The “-Cp” HP COBOL Compatibility Switch 4-35
If only ‘-c’ is specified, the output file type is MPE fixed ASCII. If ‘-cb’ is
specified, the output file type is HFS bytestream ASCII. Because some HP
editors cannot edit files that do not have sequential line numbers, libutil
resequences the line numbers in the output file, starting with 000001 and
incrementing by one. For example, if you want to convert a KSAM COPY
library called MYLIB into a text file called MYLIBA, from MPE you can use
the following command:

libutil "-c MYLIB MYLIBA”

For more information on how libraries are used by the ACUCOBOL-GT
compiler, see section 4.3.1, “COPY Statement.”

4.3 The “-Cp” HP COBOL Compatibility Switch

The “-Cp” compiler switch allows ACUCOBOL-GT to accept HP COBOL
extensions to the ANSI 1985 Standard. These extensions are described in the
following subsections, organized in the order in which the extension occurs
in a COBOL program.

The use of the “-Cp” option with the ACUCOBOL-GT compiler triggers the
following HP COBOL-specific behavior.

• In addition to reading standard flat files, ACUCOBOL-GT also accepts
Qedit format source files.

• The ACUCOBOL-GT precompiler for HP COBOL is invoked. The
precompiler supports conditional compilation via the $IF, $SET,
$COMMENT, $PREPROCESSOR, $DEFINE, and $INCLUDE
directives. Macro substitutions with parameters are supported.
$CONTROL directives are not supported. However, many of the
actions accomplished by $CONTROL directives can be accomplished
with ACUCOBOL-GT compiler switches. The precompiler is discussed
in detail in section section 4.4.

• STRING/UNSTRING statements and relation conditions are accepted.

• The following HP COBOL extensions are accepted:

4-36 HP COBOL Conversions
• The percent character, “%”, is allowed as an indicator of an
octal-based numeric literal.

• HP extensions to the COPY statement, including those that copy a
file from a resident library. COPY REPLACING statements within
nested Copy books are not supported.

• Special Names Paragraph switches “SW0” through “SW15”

• The Special Names TOP and NO SPACE CONTROL phrases with
the ADVANCING clause of the WRITE statement

• The HP meaning of RANDOM in the File-Control paragraph

• The Procedure Division registers: CURRENT-DATE, TALLY,
TIME-OF-DAY, and WHEN-COMPILED

• HP extensions to the ACCEPT statement

• HP extensions to the CALL statement

• The ENTRY statement

• The EXAMINE statement

• The following HP COBOL extensions are not supported. These
extensions are not commonly used and are largely considered to be
obsolete.

The following extensions cause ACUCOBOL-GT to issue a warning but
do not cause compilation to terminate:

• COBOLLOCK

• COBOLUNLOCK

• EXCLUSIVE

• UN-EXCLUSIVE

These unsupported extensions are not recognized by the compiler and
cause compilation to terminate:

• BEGINNING

The “-Cp” HP COBOL Compatibility Switch 4-37
• COMMON

• ENABLE

• ENDING

• FILE-LIMITS

• MORE-LABELS

• PROCESSING

• SEEK

Successful compilation results in the creation of an ACUCOBOL-GT object
file that is ready for immediate execution by the runtime. There is no link
step.

Support for HP COBOL extensions and the call interface to HP e3000 system
intrinsics is built directly into the HP e3000 ACUCOBOL-GT compiler and
runtime. ACUCOBOL-GT supports KSAM, IMAGE, and VPLUS through
the HP e3000 intrinsic procedures and functions specific to those
components. KSAM can also be used with standard COBOL I/O (see section
4.2.4, “Accessing MPE KSAM, Relative, and Sequential Files”). For
more information about ACUCOBOL-GT support for system intrinsics, see
section 4.5, “System Intrinsics.”

Programs compiled with “-Cp” and run on the HP e3000 have the following
MPE-specific behaviors and restrictions:

• Files referenced by OPEN OUTPUT statements must have MPE
filenames.

• OPEN OUTPUT statements create MPE format files.

• MPE file locking is used.

4.3.1 COPY Statement

The HP COBOL syntax of the COPY statement is:
COPY source-file [{OF} library-name] [NOLIST]

4-38 HP COBOL Conversions
 {IN}

 [REPLACING { { old-text } BY { new-text } } ...].

If the “-Cp” option is specified, ACUCOBOL-GT supports the HP COBOL
variant of the COPY statement that copies a file from a resident library. In
this usage, library-name is a one to eight character alphanumeric name that
specifies the resident library in which the source file is located. This library
is a KSAM or text file that contains one or more source files.

If library-name is not specified, the compiler assumes that the library name
is COPYLIB. If source-file cannot be found in the library, then
ACUCOBOL-GT checks to see if source-file is in the current directory.

Note: HP COBOL assumes the name of the source file is in uppercase. If
an uppercase name is not found in the current directory, the rules that
ACUCOBOL-GT uses for source-file and library-name will be used
(described below).

If the “-Cp” option is not specified, the standard rules that ACUCOBOL-GT
applies to source-file and library-name are used. This means that
library-name is interpreted as a directory name. If you have a resident
library, you will need to unload its contents. In the working directory in
which you perform compilations, create a subdirectory of the same name and
case as library-name. Unload the library’s source files into this subdirectory
using the same name and case as specified by source-file. The next time you
compile, ACUCOBOL-GT will find source-file in the directory you created.
For example, if your COBOL COPY statement reads:

COPY support IN common

During compilation, ACUCOBOL-GT will translate that statement into:
COPY “./common/support”

If library-name is not specified, ACUCOBOL-GT checks to see if source-file
is in the current directory. If source-file is not found in the current directory,
the rules that ACUCOBOL-GT uses for finding source-file are applied. (For
more information about ACUCOBOL-GT’s treatment of the COPY
statement and the use of the COPYPATH environment variable for locating
copy files, see the ACUCOBOL-GT User’s Guide, section 2.5, “COPY
Libraries”.)

The “-Cp” HP COBOL Compatibility Switch 4-39
NOLIST is supported by ACUCOBOL-GT in HP COBOL compatibility
mode. NOLIST has the same meaning as SUPPRESS in ACUCOBOL-GT’s
default mode. See the ACUCOBOL-GT Reference Manual, section 2.4.1,
“The COPY Statement,” for details.

old-text and new-text have the same meaning in HP COBOL as in
ACUCOBOL-GT. See the reference manual, section 2.4.1, “The COPY
Statement,” for details.

Note: COPY REPLACING within nested Copy books is not supported.

4.3.2 Special-Names Paragraph

This section discusses ACUCOBOL-GT’s compatibility with the non-ANSI
features of HP COBOL that affect the Special-Names Paragraph of the
Environment Division.

4.3.2.1 Program switches

ACUCOBOL-GT in its HP COBOL compatibility mode allows you to
specify the HP COBOL program switches in the Special-Names Paragraph.
HP COBOL specifies those switches as “SW0” through “SW15”.
ACUCOBOL-GT in the default mode uses “SWITCH-1” through
“SWITCH-26”.

4.3.2.2 TOP and NO SPACE CONTROL

With ACUCOBOL-GT in its HP COBOL compatibility mode, you can
include TOP and NO SPACE CONTROL as Special Names in the
ADVANCING clause of the WRITE statement. These Special Names can be
used in Format 1 of the WRITE statement when the program is accessing
sequential files.

Format 1
WRITE record-name [FROM source] [{BEFORE} ADVANCING {mnemonic-name} ...]
 {AFTER }

Syntax Rules

4-40 HP COBOL Conversions
1. record-name is the name of a record associated with a file described in
the File Section of the Data Division. The associated file may not be a
sort file. (See the ACUCOBOL-GT Reference Manual, section 6.6,
“Procedure Division Statements,” WRITE Statement.

2. source is a data item or literal. It may not share any storage area with
record-name. (See the Reference Manual, section 6.6, “Procedure
Division Statements,” WRITE Statement.)

3. mnemonic-name is a user-defined word that may be used to change the
state of the associated program switch or to refer to a device. (See the
Reference Manual, section 4.2.3, “Special Names Paragraph,” syntax
rule 2.)

General Rules

1. mnemonic-name assigned to TOP advances the line to the next page
boundary (same as specifying PAGE).

2. mnemonic-name assigned to NO SPACE CONTROL suppresses
spacing and keeps the line printer from advancing.

TOP and NO SPACE CONTROL are system-names accepted by
ACUCOBOL-GT in HP COBOL compatibility mode. (See the Reference
Manual, section 4.2.3, “Special Names Paragraph,” syntax rule 3.)

4.3.2.3 CONDITION-CODE

As with HP COBOL, CONDITION-CODE is set to the condition code
returned by an MPE/iX intrinsic function when the function is called with the
CALL statement. It can also be set by a called C program if the following
code is included in the C program.

Extern int32_t Ahp_ccode;

 Ahp_ccode = 0;

CONDITION-CODE takes the value of “Ahp_ccode” in the COBOL
program.

The “-Cp” HP COBOL Compatibility Switch 4-41
4.3.3 File-Control Paragraph

This section discusses ACUCOBOL-GT’s compatibility with the non-ANSI
features of HP COBOL that affect the File-Control Paragraph of the
Environment Division.

4.3.3.1 RANDOM and DYNAMIC keywords

In HP COBOL compatibility mode, the keyword RANDOM means the same
as the keyword DYNAMIC (RANDOM loses its default ACUCOBOL-GT
meaning). For example, either

ACCESS IS RANDOM

or
ACCESS IS DYNAMIC

can be used to specify DYNAMIC access to a file. See section 4.3.1,
“File-Control Paragraph” in Book 3 of the ACUCOBOL-GT documentation
set, Reference Manual, for usage syntax and general rules for the keyword
DYNAMIC.

When compiling for object versions 8.1 and greater, the compiler accepts the
ACTUAL KEY feature for relative files opened in RANDOM access mode.
For such files, the relative key numbers will be zero-based, rather than
one-based, as with RELATIVE KEY. For example, if you have a relative file
with a fixed record length of 3 bytes and a relative file with the following
contents:
AAABBBCCC

The record keys for the different modes are:
 RELATIVE ACTUAL
AAA: 1 0
BBB: 2 1
CCC: 3 2

4-42 HP COBOL Conversions
4.3.3.2 WITH DUPLICATES on primary keys

In HP COBOL compatibility mode, duplicate primary key values are allowed
if the indexed file system supports them and the WITH DUPLICATES
phrase is specified in the File-Control paragraph. Vision and KSAM support
duplicate primary key values. The syntax is:
RECORD KEY IS key-name [= seg-name] [WITH [NO] DUPLICATES]

The phrase “WITH NO DUPLICATES” is commentary because, by default,
duplicate values are not allowed for the primary key.

The phrase “WITH DUPLICATES” indicates that duplicate primary key
values are allowed. If “WITH DUPLICATES” is used with a file system that
doesn’t support duplicate primary keys, when the file is created via the OPEN
statement a status of “0M” is returned, indicating that the file was
successfully created but that duplicate primary keys are not supported.

When “WITH DUPLICATES” is used with Vision, KSAM, and other file
systems that support it, the rules that govern how REWRITE and DELETE
operations are handled are determined by the file system. This is because
support for duplicate primary keys is not part of the ANSI 1985 Standard,
few files systems support it, and therefore no common rules exist. The rules
for Vision are given in General Rule 14 of section 4.3.1, “File-Control
Paragraph,” of the ACUCOBOL-GT Reference Manual.

There are some small but important differences between how KSAM and
Vision handle REWRITE and DELETE when duplicate primary keys are
allowed.

Under KSAM, the first record is rewritten or deleted unless the file is open
with ACCESS SEQUENTIAL mode. These latter programs should convert
easily to Vision because Vision’s default lock handling will cause the correct
record to be locked and result in the same set of records being updated.

For RANDOM and DYNAMIC access files, there could be a difference
between how KSAM and Vision update records depending on how the
records are read before they are rewritten or deleted. (Note that the HP
COBOL II Reference Manual advises against allowing duplicates primary
key values with RANDOM or DYNAMIC access files.) KSAM’s behavior
can be mimicked with Vision by always reading the record immediately
before rewriting or deleting it. This ensures the correct record is accessed.

The “-Cp” HP COBOL Compatibility Switch 4-43
Otherwise, KSAM and Vision rules are generally compatible unless the
program does a series of READ NEXT’s and then rewrites or deletes a record
other than the one last read.

4.3.4 Procedure Division Register Extensions

HP COBOL supports special register words. These words reference memory
storage that is generated at compile time and initialized at compile time or run
time. They are treated as reserved words by ACUCOBOL-GT when it is in
HP COBOL compatibility mode. In that mode, you cannot use any of the HP
COBOL-specific special register words as user-defined words.

4.3.4.1 CURRENT-DATE

This register stores the current date. CURRENT-DATE can be used with a
MOVE or DISPLAY statement.

Format
MOVE CURRENT-DATE TO {dest-item} ...
DISPLAY CURRENT-DATE [UPON new-window] ...
DISPLAY CURRENT-DATE [UPON mnemonic-name] ...

The value of CURRENT-DATE is stored in an 8-character alphanumeric
field in the format “MM/DD/YY”, where “MM” is the month (01 for
January, 02 for February, etc.), “DD” is the day of the month, and “YY” is the
last two digits of the year. For example, the date February 15, 2001 is
formatted as “02/15/01”.

4.3.4.2 TALLY

See section 4.3.5.3, “EXAMINE statement,” for information about the
special register TALLY.

4.3.4.3 TIME-OF-DAY

This register stores the current time of day. TIME-OF-DAY can be used with
a MOVE or DISPLAY statement.

Format

4-44 HP COBOL Conversions
MOVE TIME-OF-DAY TO {dest-item} ...
DISPLAY TIME-OF-DAY [UPON new-window] ...
DISPLAY TIME-OF-DAY [UPON mnemonic-name] ...

The value of TIME-OF-DAY is stored in the format “hhmmss”, where “hh”
is the hour, “mm” is the minute, and “ss” is the second, based on a 24-hour
clock. For example, 5:30 p.m. is stored as “173000”.

The DISPLAY output of TIME-OF-DAY is edited to include colons (“:”) as
separators, so the displayed format is “hh:mm:ss”. For example, 5:30 p.m. is
displayed as “17:30:00”.

4.3.4.4 WHEN-COMPILED

This register stores the date and time that the program was compiled. It can
be used with a MOVE or DISPLAY statement.

Format
MOVE WHEN-COMPILED TO {dest-item} ...
DISPLAY WHEN-COMPILED [UPON new-window] ...
DISPLAY WHEN-COMPILED [UPON mnemonic-name] ...

The value of WHEN-COMPILED is stored in the format “MM/DD/YY
hh:mm:ss”.

4.3.5 Procedure Division Statements

This section discusses ACUCOBOL-GT’s compatibility with the non-ANSI
features of HP COBOL that affect the Procedure Division.

The HP COBOL Procedure Division supports special formats of the
ANSI-standard statements, as well as non-ANSI verbs. They are presented
here in alphabetical order.

The “-Cp” HP COBOL Compatibility Switch 4-45
4.3.5.1 ACCEPT statement

CONVERT phrase

HP COBOL programs allow numeric or numeric edited receiving fields on
the ACCEPT statement by default.

With ACUCOBOL-GT in HP COBOL compatibility mode, the CONVERT
phrase is implied on numeric ACCEPT statements. When the “-Cp” option
is specified, the compiler sets the variable AUTO_CONVERT to “TRUE”.

ACUCOBOL-GT, in the default mode, requires that you use the CONVERT
phrase on the ACCEPT statement, or use the “-Vc” compiler option that sets
the variable AUTO_CONVERT to “TRUE”.

See ACCEPT statement, Format 1, syntax rule 1, in section 6.6 of Book 3,
Reference Guide, for details.

FREE phrase

The ACUCOBOL-GT compiler in its HP e3000 compatibility mode supports
the following HP COBOL formats of the ACCEPT statement.

Note: Format 10, Format 11, and Format 12 are the numbers given to the
ACCEPT statement formats. ACUCOBOL-GT formats of the ACCEPT
statement are documented in the ACUCOBOL-GT Reference Manual,
section 6.6, “Procedure Division Statements.”

Format 10 (HP COBOL)
ACCEPT identifier [FREE] [FROM { SYSIN }]
 { CONSOLE }
 { mnemonic-name }

Format 11 (HP COBOL)
ACCEPT identifier FREE [FROM { SYSIN }]
 { CONSOLE }
 { mnemonic-name }

[ON INPUT ERROR imperative-statement-1]

4-46 HP COBOL Conversions
[NOT ON INPUT ERROR imperative-statement-2]

[END-ACCEPT]

Format 12 (HP COBOL)
ACCEPT identifier FROM { DATE }
 { DAY }
 { DAY-OF-WEEK }
 { TIME }

Syntax Rules

1. identifier is a data item that receives the accepted data.

2. mnemonic-name is a user-defined word declared in Special-Names that
refers to a display device, or is the name of a display device. See the
entry for ACCEPT in the ACUCOBOL-GT Reference Manual, section
6.6, “Procedure Division Statements.”

3. imperative-statement-1 and imperative-statement-2 are COBOL
statements. The INPUT ERROR phrase in which the statement
appears can be used only if the FREE phrase is used. (See General
Rule 3.)

General Rules

1. CONSOLE and SYSIN are system devices. See Reference Manual,
section 4.2.3, “Special-Names Paragraph.”

2. The FREE phrase allows the use of the free-field format. The
free-field format allows you to continue the input into the next line
when the input field is smaller than the defined length of identifier. In
this format, the ampersand character (“&”) acts as a continuation
character when it is the last non-blank character in the input line, thus
allowing the input to be continued in the next line. The pound sign
(“#”) acts as a line terminator (but is not required when the input
comes from the terminal). To specify the “#” character and circumvent
its use as a line terminator, use two “#” characters in succession.

3. The ON INPUT ERROR and NOT ON INPUT ERROR phrases can be
used only with the FREE statement. They allow the handling of the
following input error conditions:

The “-Cp” HP COBOL Compatibility Switch 4-47
• An illegal character in a numeric item.

• Too many digits in a numeric item.

• An input string that is too long for the receiving field.

4.3.5.2 CALL statement

The ACUCOBOL-GT compiler in its HP e3000 compatibility mode supports
the following HP COBOL extensions to the CALL statement.

Note: Format 4 is the number given to the HP CALL statement
extensions. Format 4 is described below. Other CALL statement formats
are described in section 6.6, “Procedure Division Statements,” in the
ACUCOBOL-GT Reference Manual.

Format 4 (HP COBOL)
CALL { identifier-1 } [USING { \\ } ...]
 { [INTRINSIC] literal-1 } { @identifier-2 }
 { identifier-2 }
 { literal-2 }
 { \identifier-2\ }
 { \literal-2\ }
 [GIVING identifier-n]

 [ON {EXCEPTION} statement-1]
 {OVERFLOW }

 [NOT ON {EXCEPTION} statement-2]
 {OVERFLOW }

 [END-CALL]]

Syntax Rules

1. Identifier-1 is an alphanumeric data item whose value is a program
name. See General Rules (below) for a description of conditions that
may occur when you use this operation.

4-48 HP COBOL Conversions
2. Literal-1 is a nonnumeric literal whose value is either an operating
system intrinsic name or a program name. When you are naming an
intrinsic, literal-1 must be preceded by the keyword INTRINSIC.

3. “\\” represents a null value passed as a parameter to an intrinsic or to a
System Programming Language (SPL) program that includes the
OPTION VARIABLE clause. When the intrinsic option is not
specified, the compiler assumes a one-word parameter.

4. @identifier-2 indicates that the byte address of the data item
represented by identifier-2 is to be passed as a parameter. These types
of parameters may be passed only to non-COBOL programs.

5. Identifier-2 is the name of any data item in the calling program, or is a
file named in an FD-level entry in the File Section of your program.

6. Identifier-2 cannot be a function-identifier (i.e., it cannot reference an
intrinsic function).

General Rules

1. When you use the identifier-1 form of the CALL statement, the value of
identifier-1 determines which subprogram is called. When the program
is executed, an attempt is made to load the subprogram. If the load fails,
an exception condition occurs.

2. Identifier-2 must be described in the File, Working-Storage, or Linkage
section of your program. When this value is passed to another
program, it is passed by reference.

3. If identifier-2 names a file, the called program must not be a COBOL
program.

4. \identifier-2\ and \literal-2\ indicate that the literal or data item
enclosed in backslashes is to be passed by value to the called program
or intrinsic. This may be used only when the called program is not a
COBOL program. If an identifier is used in this way, it must represent
a numeric data item of not more than 18 digits.

5. Identifier-n is the name of a binary data item in the calling program. It
is used in calls to non-COBOL programs and in calls to COBOL
programs that return a value in the RETURN-CODE special register.
Identifier-n cannot be a function-identifier (i.e., it cannot reference an
intrinsic function).

The “-Cp” HP COBOL Compatibility Switch 4-49
CALLing intrinsics

The INTRINSIC phrase is used to indicate that the CALL statement is calling
an operating system intrinsic function, rather than a subprogram. When the
INTRINSIC phrase is used, literal-1 must be used and must name an
operating system intrinsic. The USING phrase specifies the various
parameters to be passed to the intrinsic. When the intrinsic is a “typed
procedure,” the GIVING phrase specifies the parameter to be returned by the
intrinsic.

As with subprograms, the parameters passed to intrinsics are specified by
position. If a parameter of an intrinsic is optional, and you do not want to
pass a value for that parameter, you must specify two consecutive
backslashes (“\\”) in the position within the USING phrase of the CALL
statement that corresponds to that parameter’s position.

Unlike subprograms, if an intrinsic expects a parameter to be passed by value
rather than by reference, you don’t need to enclose the literal or identifier in
backslashes. The intrinsic automatically assumes that the parameter is being
passed by value.

The special register CONDITION-CODE holds the condition code returned
by the intrinsic function. The following special relation operators can be
used after the call to check the condition code:

mnemonic-name { [NOT] { < } } 0
 { { = } }
 { { > } }
 { { >= } }
 { { <= } }
 { { <> } }

When CALL INTRINSIC is used for intrinsics in a system file:

• the special symbols “@” and “\” are optional.

• data conversions for parameters passed by value are performed
automatically.

4-50 HP COBOL Conversions
Note: On the HP e3000, ACUCOBOL-GT supports calls to most system
intrinsic functions. Nothing in ACUCOBOL-GT's CALL interface limits
support for intrinsics. However, we have not tested support for all intrinsic
functions. In particular we have not tested the more obscure functions or
variants of functions that take unusual or undocumented parameter types.
Should you encounter unexpected behavior, please contact our Technical
Services.

USING phrase (non-COBOL subprograms)

Data is passed from the calling program to the called program on a positional
basis, rather than by name. Therefore, the third name in a USING phrase of
a calling program corresponds to the third name in the arguments of the
called program.

This positional correspondence extends to non-COBOL called programs.
Thus, for example, if the called program is a Pascal program, then the names
in the parameter list of the procedure declaration in that program are
identified with those data items whose names appear in the corresponding
position of the USING phrase in the calling program.

As stated above in the description of identifier-2, identifier-3, and so forth,
these identifiers may name files to be passed to a called program.
Furthermore, although you can enclose such a file identifier between
backslashes (which are ignored), preceding it with an “@” symbol results in
an error.

If the file name from the FD is passed, the file number of that file is passed
by value. If the subprogram is an SPL procedure, the procedure parameter
corresponding to the file name must be declared as type INTEGER or
LOGICAL, and it must be specified as a value parameter. The file must be
opened in the calling program.

To pass a data item by value, you must enclose the associated identifier in
backslashes. If the value passed is a literal, the backslashes are optional.
Passing a data item by value leaves the data item in the calling program
unchanged following execution of the called program.

The “-Cp” HP COBOL Compatibility Switch 4-51
If an identifier is not passed by value (that is, is not enclosed in backslashes),
it is passed as a byte pointer (that is, by reference). Thus, the data in the
calling program can be altered by the called program if it is passed in this
manner. In calls to COBOL programs, this is the standard method of
referencing common data.

Two consecutive backslashes (“\\”) may be specified in a USING phrase of a
CALL statement if the called program is a Pascal procedure with OPTION
DEFAULT_PARMS or EXTENSIBLE. Using two consecutive backslashes
indicates that a parameter is not being sent and should not be expected.

Whenever an OPTION VARIABLE SPL procedure is called, an additional
parameter must be added to the end of the USING parameter list. This
parameter is called a bit mask and is used to tell the SPL procedure which
parameters are being passed. The bit mask consists of one or two 16-bit
binary words, where a “0” represents a missing parameter and a “1”
represents an existing parameter (this allows up to 32 parameters to be
passed). A parameter in the bit mask must be a numeric data item, and it
represents the value derived from the bit mask.

Parameters are matched, starting from the right, in both the bit mask and the
USING list, excluding the value in the USING list used for the bit mask
parameter. For example,

CALL "SPLPROC” USING \TESTER\ \\ @RESULT \ERROR\ \%13\

The bit mask in this case is 0000000000001011, which is represented by the
octal value “\%13\”, showing that the fourth, third, and first parameters are
being passed, while the second parameter is not being passed.

The bit mask is generated automatically by the compiler if you specify the
INTRINSIC option.

Passing file handles to subroutines

In HP COBOL compatibility mode, you can pass the operating system’s file
handle for an open COBOL file to a subroutine by referring to that file’s
SELECT name in the CALL statement. For example:

ENVIRONMENT DIVISION.
FILE-CONTROL.
SELECT MY-FILE
ASSIGN TO DISK

4-52 HP COBOL Conversions
SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD MY-FILE.
01 RECORD-1 PIC X(80).

PROCEDURE DIVISION.
MAIN-LOGIC.
 OPEN INPUT MY-FILE.
 CALL "SUB” USING MY-FILE.
 CLOSE MY-FILE.

One reason for doing this is to call an operating system function that allows
the file to retrieve some information that is not available through COBOL.

Several special rules apply:

1. For compatibility with HP COBOL, a file handle is automatically passed
BY VALUE unless it is immediately preceded by a BY REFERENCE or
BY CONTENT specification. You will need to do this if you pass an
open file handle to a COBOL subroutine because COBOL routines
cannot take BY VALUE parameters.

2. If the called subroutine is a COBOL routine, the handle passed is PIC
S9(4) COMP-5. You can override this with the compiler option
“--fileIdSize=#” where “#” is either “2”,“4” or “8” to specify the
number of bytes you want in the passed integer.

3. If the called subroutine is not COBOL, the handle is passed as a signed
native integer using the host’s default integer size.

4. The file handle passed is the host file system’s identifying value for the
open file. For all current implementations, this is the value returned by
the C “open” function. This may change in a future implementation.

5. If the host file system does not have this information available, then
“-1” is used instead. This can happen if the host system is not a file
(e.g. Acu4GL for Oracle) or the host system does not provide a way of
obtaining the handle (e.g. C-ISAM interface). Files served by
AcuServer also use “-1” since there is no useful way to use a remote
process’ open file handle.

The “-Cp” HP COBOL Compatibility Switch 4-53
6. For Vision files in the multi-file format, the handle used is the handle
of the first data segment (this is the same file specified by the file name
used when opening the file).

7. It is best to avoid performing actual I/O on the file using this file
handle because the COBOL file system will be unaware of any state
changes to the file and may perform incorrectly. It is possible to
corrupt data this way.

Recursive CALLs

In ACUCOBOL-GT, as in HP COBOL, a program may directly or indirectly
call itself. Such a CALL statement is termed a recursive call. By default,
ACUCOBOL-GT creates a new copy of data for each instance of the
program. To share the initial data with all recursive calls, as is the default
with HP COBOL, set the RECURSION_DATA_GLOBAL configuration
variable. For more information, see the descriptions of the RECURSION and
RECURSION_DATA_GLOBAL configuration variables in Appendix H of
the ACUCOBOL-GT documentation set. See also section 2.9 in the
ACUCOBOL-GT User’s Guide.

4.3.5.3 EXAMINE statement

The EXAMINE statement is used to count the number of occurrences of a
given character in a data item. ACUCOBOL-GT accepts the EXAMINE
statement in the HP COBOL compatibility mode. HP COBOL’s EXAMINE
statement duplicates some of the functionality of the ACUCOBOL-GT
Format 1 INSPECT statement, but with slightly different syntax. (See the
ACUCOBOL-GT Reference Manual, section 6.6, “Procedure Division
Statements,” for a detailed discussion of the INSPECT statement.)

Format 1
EXAMINE identifier-1 TALLYING {ALL } literal-1 [REPLACING BY literal-2]
 {LEADING }
 {UNTIL FIRST}

Format 2
EXAMINE identifier-1 REPLACING {ALL } literal-1 BY literal-2
 {FIRST }
 {LEADING }
 {UNTIL FIRST}

4-54 HP COBOL Conversions
Syntax Rules

1. identifier-1 is the name of a data item containing characters to be
counted or replaced. Its USAGE must be DISPLAY (implicitly or
explicitly).

2. Each literal is a single-character literal or one of the following
figurative literals:

ZERO
ZEROS
ZEROES
SPACE
SPACES
QUOTE
QUOTES
LOW-VALUE
LOW-VALUES
HIGH-VALUE
HIGH-VALUES

3. ACUCOBOL-GT does not enforce the one-character limitation. If a
string literal has two or more characters, it uses only the first character.

General Rules

1. The number of characters in Format 1 that obey certain conditions are
counted by a special register named TALLY. Its PICTURE is 9(5) and
USAGE is COMP-N. Its default value is zero.

2. The characters to be counted and replaced are determined by the key
words following TALLYING or REPLACING. Counting is done only
in Format 1, and replacement is done only in Format 2 and when
specified in Format 1.

Key Words Characters To Be Counted And Replaced

ALL Count and/or replace all instances of literal-1 with
literal-2.

The “-Cp” HP COBOL Compatibility Switch 4-55
3. Literal-1 is the character to be counted. Literal-2 is the character that
will replace literal-1. Note that the substitution of literal-2 for
characters other than literal-1 occurs only when UNTIL FIRST is
specified.

4. The contents of the TALLY register are unchanged in Format 2. In
Format 1, its contents are replaced by the appropriate character count,
regardless of the previous contents.

4.3.6 Conversion Issues

This section addresses source code conversion issues.

4.3.6.1 Unsupported HP COBOL extensions

The HP COBOL extensions are said to be unsupported by ACUCOBOL-GT
when they are recognized at compile time but ignored at runtime. Such
extensions, when present, cause the compiler to return a warning message
indicating that this is an unsupported operation. They do not prevent the
compiler from creating an object.

The following HP COBOL extensions are not supported by
ACUCOBOL-GT in HP COBOL compatibility mode:

FIRST Replace the first (left-most) instance of literal-1 with
literal-2.

LEADING Count and/or replace all instances of literal-1 that
appear before (to the left of) any other character in the
data item.

UNTIL FIRST Count and/or replace all characters to the left of the first
(left-most) instance of literal-1 with literal-2. If
literal-1 does not appear in the data item, count and
replace all characters in the data item.

4-56 HP COBOL Conversions
COBOLLOCK
COBOLUNLOCK
EXCLUSIVE
UN-EXCLUSIVE

Note: These extensions are currently listed as Reserved Words in the HP
COBOL II/XL Reference Manual, Appendix F.

4.3.6.2 Unrecognized HP COBOL extensions

The HP COBOL extensions are said to be unrecognized by ACUCOBOL-GT
when they prevent the compiler from successfully compiling the COBOL
source. Statements that include these words cannot be compiled. The words
must be removed or commented out.

The following HP COBOL extensions are not recognized by
ACUCOBOL-GT in HP COBOL compatibility mode:

BEGINNING
COMMON
ENABLE
ENDING
FILE-LIMIT
FILE-LIMITS
MORE-LABELS
PROCESSING
SEEK

4.3.7 Operating System and Runtime Limitations and
Differences

The following sections describe some notable differences between the way
HP COBOL and ACUCOBOL-GT handle certain aspects of program
execution.

The “-Cp” HP COBOL Compatibility Switch 4-57
4.3.7.1 ACCEPT FROM INPUT STATUS statement

MPE/iX does not support the “ACCEPT FROM INPUT STATUS” statement
due to limitations of the MPE/iX operating system. The lack of this
functionality can cause problems for multi-threaded COBOL applications. If
the application executes an ACCEPT in one thread, the runtime system is
unable to task-switch to any other thread until the ACCEPT terminates.

A possible workaround for this limitation is to change the ACCEPT
statement to use the BEFORE TIME clause. This causes the ACCEPT
statement to time out which then allows the program to switch to another
thread.

4.3.7.2 Divide by zero

At run time, DIVIDE statements that do not include an ON SIZE ERROR
phrase and that produce a division by zero error are handled differently by HP
COBOL and ACUCOBOL-GT. Programs compiled with HP COBOL
output an error message and terminate. The behavior of programs compiled
with ACUCOBOL-GT is undefined. In some cases the program does not
terminate. It is strongly recommended that you always use the ON SIZE
ERROR phrase with any arithmetic statement that could generate a size error.

4.3.7.3 File I/O error handling

In most cases, HP COBOL and ACUCOBOL-GT handle file I/O errors in
exactly the same way. Specifically, if the program includes a USE statement
procedure, an INVALID KEY phrase, or an AT END phrase, and a file I/O
error occurs, the appropriate code is executed. However, when a FILE
STATUS variable is specified with a file, the behavior of the two COBOLs
can differ. For example, when a FILE STATUS variable is specified and an
OPEN INPUT statement attempts to open the file but the file does not exist,
HP COBOL sets the FILE STATUS item and the program continues to
execute. In contrast, ACUCOBOL-GT sets the FILE STATUS item and
halts the program. ACUCOBOL-GT can be made to behave like HP COBOL
by setting the ERRORS_OK configuration variable. When ERRORS_OK is
set to a value of “1”, file I/O errors are ignored. The result being that when
ACUCOBOL-GT attempts to OPEN a file that doesn’t exist, FILE STATUS

4-58 HP COBOL Conversions
is set and the program continues to execute. For complete information on the
ERRORS_OK configuration variable, see Appendix H of the
ACUCOBOL-GT Manual Set.

4.3.7.4 File name case

HP COBOL and ACUCOBOL-GT treat file name case differently. When HP
COBOL creates a new file via the OPEN OUTPUT statement, the name of
the file (as specified in the ASSIGN TO phrase) is always created in upper
case. For example:

ASSIGN TO "myfile”
.
.
.
OPEN OUTPUT . . .

creates a file with the name “MYFILE”. In ACUCOBOL-GT, the name of
the file retains the case specified in the ASSIGN TO phrase (in the example
above, “myfile”). This difference in behavior can produce unexpected results
(for example, although “MYFILE” may exist, ACUCOBOL-GT won’t find
it; instead it creates a new file named “myfile”). You can make
ACUCOBOL-GT behave like HP COBOL by setting the FILE_CASE
configuration variable. The value of FILE_CASE causes the case of data file
names to be adjusted at run time. Accepted values for FILE_CASE include:

2 Data file names are translated to upper case.

1 Data file names are translated to lower case.

0 (default) No case translation is performed.

For complete information on the FILE_CASE configuration variable, see
Appendix H of the ACUCOBOL-GT documentation set.

4.3.7.5 Mismatched EXTERNAL data items

There is a small, but significant incompatibility in the way that HP COBOL
and ACUCOBOL-GT treat the indexes of external tables. In
ACUCOBOL-GT, indexes attached to an external table are also external. As

The “-Cp” HP COBOL Compatibility Switch 4-59
a result, all programs that share an external table must also have matching
indexes for the table. (Note that the 1985 ANSI standard leaves the handling
of INDEXED BY data items up to the implementor.)

The incompatibility exhibits itself at runtime. HP COBOL programs
compiled with ACUCOBOL-GT using the “-Cp” option, and that share an
external table but that do not have identical indexes for that table, will get the
following runtime error:

Mismatched EXTERNAL data item: data_item_name

The problem is illustrated by the following example. If the called program
defines:

01 main-01 external.
 03 item-01 pic x occurs 20
 indexed by idx1.
01 redef1 redefines main-01.
 03 item-01 pic x occurs 20
 indexed by idx2.

and the calling program defines:
01 main-01 external.
 03 item-01 pic x occurs 20
 indexed by idx1.

the “Mismatched EXTERNAL data item” error is raised at run time.
Although “redef1” is a REDEFINES of “main-01”, “idx2” is still a new data
item and it must be present in all of the programs that share “main-01” or the
index must be eliminated. Note that if a SEARCH statement references
“redef1”, “idx2” must be present.

The following code does not raise the error. The called program defines:
01 main-01 external.
 03 item-01 pic x occurs 20
 indexed by idx1.
01 redef1 redefines main-01.
 03 item-01 pic x occurs 20
 indexed by idx2.

and the calling program defines:
01 main-01 external.
 03 item-01 pic x occurs 20

4-60 HP COBOL Conversions
 indexed by idx1, idx2.

4.4 Preprocessor for HP COBOL

The ACUCOBOL-GT compiler includes a preprocessor that is written
specifically for providing compatibility with HP COBOL programs. This
preprocessor handles conditional compilation with $IF, $SET,
$COMMENT, $PREPROCESSOR, $DEFINE, and $INCLUDE directives,
and macro calls with parameters. When you specify the “-Cp” option,
ACUCOBOL-GT automatically invokes the preprocessor for HP COBOL.

Note: The $CONTROL directives are ignored by the ACUCOBOL-GT
preprocessor for HP COBOL. The $CONTROL directives are handled by
the compiler command arguments. See section 4.4.2, “$CONTROL
Directive,” for details.

The compiler determines the source format automatically by examining the
first character of the first non-blank line. If that character is blank or a digit,
the file is assumed to be an ANSI file, otherwise it is assumed to be in
terminal format. You can also specify the format of the source with the “-Sa”
or “-St” compile options. See the ACUCOBOL-GT User’s Guide, section
2.1.7, “Source Options.”

The ACUCOBOL-GT preprocessor for HP COBOL currently supports the
following directives. They are discussed in more detail below.

$COMMENT
$DEFINE
$IF
$INCLUDE
$PREPROCESSOR
$SET

The $CONTROL directive is not supported by the preprocessor; however,
ACUCOBOL-GT provides compile options that handle most of the
functionality supported by $CONTROL. See section 4.4.2, “$CONTROL
Directive.”

Preprocessor for HP COBOL 4-61
4.4.1 $COMMENT Directive

Format
$COMMENT [comment-text]

The preprocessor treats any line that has the $COMMENT directive as
whitespace. If the line ends with the line continuation character, (ampersand
(“&”) is the default line continuation character), the following line is also
treated as a commented line.

4.4.2 $CONTROL Directive

The $CONTROL directive in HP COBOL provides a method for specifying
compilation and list options. The $CONTROL directive is not supported by
ACUCOBOL-GT and is not included in the compiled object or listing file.

ACUCOBOL-GT uses command line arguments to perform the same
functions that $CONTROL directives perform for HP COBOL. The
following table correlates HP COBOL $CONTROL options to equivalent
ACUCOBOL-GT options. The string “<default>” indicates that the option is
enabled by default in ACUCOBOL-GT. To make it easier to specify
multiple compiler options, you can use the CBLFLAGS environment
variable. For information on the use of CBLFLAGS, see section 2.1.15 in the
ACUCOBOL-GT User’s Guide.

HP COBOL
$CONTROL option

ACUCOBOL-GT
compiler option

ANSISORT <none>

ANSISUB <default>

BOUNDS -Za

CHECKSYNTAX -Lf

CODE <default>

NOCODE <none>

CROSSREF -LC

NOCROSSREF <default>

4-62 HP COBOL Conversions
DEBUG -Gd

DIFF74 <none>

DIFF74=OBS <none>

DIFF74=INC <none>

DYNAMIC -Zi

ERRORS=number <none>

LINES=number -Ll

LIST -Lf

NOLIST <default>

LOCKING <none>

LOCOFF <default>

LOCON -Lf

MAP -Ls

NOMAP <default>

MIXED <none>

NOMIXED <default>

QUOTE = “ ’ <none>

SOURCE -Lo

NOSOURCE <default>

STAT74 use the runtime configuration variable:
FILE_STATUS_CODES = 74

STDWARN <none>

NOSTDWARN <none>

SUBPROGRAM <none>

SYMDEBUG -Gy

SYNC16 -D12

SYNC32 -D14

USLINIT -Di

VERBS -Lc

Preprocessor for HP COBOL 4-63
4.4.3 $DEFINE Directive

The $DEFINE preprocessor directive associates a string of text with a macro
name. When the preprocessor encounters a defined macro name in the source
program, it invokes the macro and passes the associated string of text.

The string of text may specify up to nine formal parameters. If the string of
text uses parameters, then the macro call can specify actuals for these
parameters; otherwise, they are ignored.

Format
$DEFINE macro-name=[string-text]#

where:

macro-name is the name of the macro. Macro names begin with a
non-alphanumeric character. By default, it is the percent symbol (“%”);

string-text is a string of text to replace occurrences of the macro call within
the body of the program code. The string of text may contain formal
parameters (which are sometimes referred to as variables). These are
designated by an exclamation point followed by an integer in the range of 1
to 9. string-text may also contain other macro calls, which recursively
expand; and

string-text is delimited by the equal sign (“=”) and pound sign (“#”). The
pound sign marks the end of the definition. The pound sign is the default
delimiter and it can be changed with the $PREPROCESSOR command.

Note: Use of an “&” character is interpreted as part of the macro definition
and not as a continuation (as it would in the $COMMENT command).

NOVERBS <default>

WARN -a

NOWARN -w

4-64 HP COBOL Conversions
If the string-text starts on the same line as the macro name, the replacing text
is expanded from exactly the same column as the macro call. Otherwise, the
replacing text starts at the beginning of the next line.

The two different forms of the macro call are:
macro-name

and
macro-name(p1#,p2#,...,pn#)

where

“p1”, “p2”, ..., “pn” are actual parameters that replace the formal parameters
in the string of text. Each actual parameter can be a null character or any
combination of characters, including spaces;

n is an integer in the range of 1 to 9; and

“#” is a delimiter.

Formal parameters that are not specified with an actual parameter in the
macro call are ignored. You can specify which formal parameters should be
ignored by entering only a pound sign (“#”) in the appropriate position within
the macro call. For example, to ignore the first parameter, you write the call
like this:

macro-name(#,p2#,...,pn#)

4.4.4 $PREPROCESSOR Directive

The default delimiter characters used in macro text strings and macro names
are the pound (“#”), percent (“%”), and the exclamation point (“!”). These
characters can be changed with the $PREPROCESSOR directive.

Format
$PREPROCESSOR parameter=new-character
 [, parameter=new-character, ...]

where:

Preprocessor for HP COBOL 4-65
parameter specifies which character to modify; and

new-character specifies the new character.

The following parameters can be modified.

“KEYCHAR” - defines the initial character of a macro name. The default
character is “%”.

“DELIMITER” - defines the character that delimits the end of macro text
strings and the actual parameters used with macro calls. The default
character is “#”.

“PARMCHAR” - defines the initial character of each formal parameter
within macro text string. The default character is “!”.

4.4.5 $IF and $SET Directives

The $IF and $SET directives allow for partial compilation of a source file
based on the states of software switches. Ten software switches (0 through
9) can be independently changed between binary states (“on” or “off”) using
the $SET directive. Sections of the source program can then be processed or
skipped, depending on the state of any one or a combination of switches used
in the $IF directive.

The $IF and $SET directives can be specified on the command line used to
invoke the compiler. When specified in that way, the directive must be
preceded with a hyphen (“-”). For example:
 :ccbl "-Cp -$SET X0=ON HELLOCBL"

$SET Format
$SET [Xn={ ON } [, Xr={ ON }]]
 { OFF} { OFF}

where:

“Xn” and “Xr” are software switches; and

n and r are integers in the range of 0 to 9.

4-66 HP COBOL Conversions
All switches are “OFF” by default.

When the $SET directive is used by itself, it sets all switches to “OFF”.

$IF Format
$IF [Xn={ ON }]
 { OFF}

where “Xn” is a software switch.

When the $IF directive is used by itself, it evaluates to true and any following
program source is processed.

A $IF directive always ends the influence of any preceding $IF directive.

4.4.6 $INCLUDE Directive

The $INCLUDE directive allows you to include a file as part of your source
file.

Format
$INCLUDE filename

where filename is the name of the file. The contents of filename are inserted
beginning where the $INCLUDE statement appears.

4.5 System Intrinsics

On the HP e3000, ACUCOBOL-GT supports calls to most system intrinsic
functions. Most notably, this includes support for the TurboIMAGE/XL
database and VPLUS interface. Nothing in ACUCOBOL-GT’s CALL
interface specifically limits support for system intrinsics. However, we have
not tested support for all intrinsic functions. In particular, the more obscure
functions and variants of calls that take unusual or undocumented parameter
types have not been tested.

System Intrinsics 4-67
On platforms other than HP e3000 that support TurboIMAGE/XL, VPLUS,
or other intrinsics, if the emulator or environment does not provide
transparent support, you can access the intrinsics from ACUCOBOL-GT
using the direct method of interfacing to C subroutines (see Chapter 4 of the
Guide to Interoperating with ACUCOBOL-GT, section 4.2). All you need to
do is edit the “LIBDIRECT” structure in the file “direct.c”. After editing
“direct.c”, you must relink the runtime. Create a new runtime using the
method described in section 4.5 of the interoperability guide.

4.5.1 CREATEPROCESS Intrinsic Function

In HP COBOL compatibility mode, ACUCOBOL-GT supports the use of the
CREATEPROCESS intrinsic function to start separate, directly executable
programs. CREATEPROCESS statements that launch such programs do not
have to be modified in any way. CREATEPROCESS statements cannot,
however, be used to start programs that have been compiled with
ACUCOBOL-GT. Such programs can be started directly with the CALL or
CALL RUN statement. Existing CREATEPROCESS statements that call
programs that are now compiled with ACUCOBOL-GT, must be converted
to use the CALL or CALL RUN statement.

4.5.2 CREATE/ACTIVATE Intrinsic Functions

In HP COBOL compatibility mode, ACUCOBOL-GT supports the use of the
CREATE and ACTIVATE intrinsic functions to load and start separate,
directly executable programs. Processes started in this way run
asynchronously to the calling program (in a separate thread).

CREATE and ACTIVATE statements that load and launch separately
executable programs do not have to be modified in any way. CREATE and
ACTIVATE cannot, however, be used to load and launch programs that have
been compiled with ACUCOBOL-GT. Existing CREATE and ACTIVATE
statements that call programs that are now compiled with ACUCOBOL-GT,
must be converted to use the CALL THREAD statement.

4-68 HP COBOL Conversions
4.5.3 GETINFO Intrinsic Function

The GETINFO intrinsic function returns the string specified in the INFO
argument of the command line. A typical HP COBOL command line
includes program parameters in the INFO argument. The structure of the
ACUCOBOL-GT command line includes the name of the COBOL program
as well as the program parameters in the INFO argument.

To cause GETINFO to return only the arguments that follow the COBOL
program name (identical behavior to HP COBOL), you must include a “ ;”
delimiter between the COBOL program name and the other parameters in the
INFO argument.

For example, if the HP COBOL command line looks like:
:RUN MYPROG;INFO=’info1 info2’

a call to GETINFO will return “info1 info2”. To get the same result with
ACUCOBOL-GT, the command line must look like:

:RUN /ACUCOBOL/bin/runcbl;INFO=’MYPROG ;info1 info2’

If the “ ;” delimiter is left out of the INFO argument, a call to GETINFO will
return “MYPROG info1 info2”. Note that there must be a space before the
semi-colon and no space after the semi-colon.

4.6 AcuBench

You can use our Windows-based integrated development environment
(IDE), AcuBench, to develop new COBOL applications for your HP e3000
systems or to enhance your existing COBOL applications. AcuBench is
particularly helpful in developing new graphical user interfaces (GUI) for
existing applications.

AcuBench is a Windows-based tool. To enhance existing HP e3000
applications, you may need to use some additional tools in conjunction with
AcuBench to ensure that all libraries and data files are in formats that
AcuBench can handle and to allow your Windows systems and your
HP e3000 systems to pass files to each other as required.

AcuBench 4-69
This section outlines the use of AcuBench to develop HP e3000 applications.
Please contact your Micro Focus extend Systems Engineering representative
for additional information and assistance.

4.6.1 Using AcuBench With Existing Applications

AcuBench is an excellent tool for developing a Windows-native graphical
user interface (GUI) to replace an application’s existing user interface.
Depending on various characteristics of your applications, such as the format
of source and library files, the use of VPLUS, the use of Qedit files, and other
HP e3000 specific attributes, some special needs may have to be addressed.
These special needs are discussed in this section.

Source code residency

In order for AcuBench to access program source files, the source files must
reside in a local Windows directory or in a Windows shared-drive. If you
want to keep your COBOL objects and files on the HP e3000, you can install
special software (such as SambaIX) on your HP e3000 to allow your
Windows machine to map directories on the HP e3000.

Compiling with AcuBench

AcuBench uses the Windows version of the ACUCOBOL-GT compiler to
compile source code. The ACUCOBOL-GT compiler includes a capability
called Acucorp Remote File Access Protocol, or acurfap. With acurfap, the
compiler can create the resulting object file directly on the remote system, if
AcuServer or AcuConnect is running on the remote machine. AcuConnect
can be deployed on the HP e3000, making it is possible to compile on a
Windows system and have the resulting object file placed automatically on
the designated HP e3000 machine. The exact location is specified in the
Project Properties area of AcuBench. For complete information on acurfap
and its use with AcuBench, see the AcuBench User’s Guide and the
ACUCOBOL-GT documentation set.

Note: acurfap can be used only when AcuConnect is running on the
HP e3000.

4-70 HP COBOL Conversions
Handling KSAM file format and multiple-file COPY libraries

AcuBench requires that COPY files be in plain text format. AcuBench does
not support the inclusion of macros in COPY files. Neither does it support
COPY libraries. KSAM format COPY files and libraries must be converted
to individual text files. See section 4.2.7, “The libutil Utility,” for
information about converting KSAM files and COPY libraries.

Using terminal emulators with AcuBench

AcuBench is particularly helpful in developing a graphical user interface for
your HP e3000 applications for deployment using our Thin Client
technology. However, at present, this development scenario requires, in most
cases, that you compile your updated application on the HP e3000 using
ACUCOBOL-GT’s HP COBOL compatibility option (“-Cp”). One way to
facilitate this activity is to use WRQ’s Reflection to help transfer files
between MPE/iX MPE/iX and Windows and to initiate ACUCOBOL-GT
compilation and runtime execution on the HP e3000. The following outlines
the basic steps.

1. Use Reflection to import the source code from the HP e3000 to the
Windows machine on which AcuBench is installed.

2. Use the Screen Designer to develop and generate code for your GUI
screens and perform any source code editing in the AcuBench Code
Editor.

3. When you are ready to compile the updated code, use Reflection to
export the source code back to the HP e3000.

4. Use Reflection to invoke the ACUCOBOL-GT compiler on the HP
e3000.

5. Use Reflection to invoke the ACUCOBOL-GT runtime and debugger
on the HP e3000.

Handling source files in Qedit format

Qedit files must be converted to a flat file format before they can be used in
the AcuBench Code Editor. To use Qedit files with AcuBench, you should
move them as keep files, not as Qedit format files. You can use a third-party

AcuBench 4-71
tool (such as QCOPY.QLIB.ROBELLE) to convert the file to keep file
format, or you can use Qedit for Windows to copy and paste the file into a PC
file.

Handling programs containing VPLUS screens

VPLUS screens cannot be displayed on the Windows host using the Thin
Client. HP e3000 programs that contain VPLUS screens can be coded in the
AcuBench Code Editor and compiled with the Windows compiler. However,
runtime-related activities, such as execution and debugging, must be
performed on the HP e3000. You can handle this by complementing
AcuBench with a product such as Reflection, which contains a terminal
emulator. See the subsection titled “Using terminal emulators with
AcuBench” in this section.

Handling IMAGE data files

There are no limitations associated with IMAGE data. We recommend that
execution be on the HP e3000. This could be considered a requirement,
except that there are third-party software products (such as OMNIDEX by
DISC) that allow your program to be run on Windows and access IMAGE
data files on the HP e3000. The Graphical Working Storage Section of
AcuBench can import existing COPY files which describe the buffers and
variables used to make intrinsic calls.

4.6.2 Developing New Applications With AcuBench

If you want to develop new applications for your HP e3000 systems,
AcuBench provides a complete IDE that has all of the tools necessary for
developing and debugging your COBOL application on the HP e3000
platform. You work in a Windows environment on a client, and you can
develop and debug your applications on the HP e3000 server. One thing to
remember is that the MPE/iX layer uses the FILE.GRP.ACCT syntax for
specifying files and directories, while POSIX uses Hierarchical File System
(HFS) syntax, such as /ACCT/GRP/FILE, for the same purpose. For details,
see “MPE/iX vs. HFS Syntax and LISTF vs. LISTFILE” in the Getting
Started booklet, section 1.6. See the AcuBench User’s Guide for complete
information on using that product.

4-72 HP COBOL Conversions
4.7 Thin Client Solution on MPE/iX

If you use ACUCOBOL-GT to run your applications on the HP e3000, you
may be interested in our Thin Client technology. TheThin Client technology
allows you to run your application on the HP e3000 while displaying the user
interface on a Windows client. This is particularly valuable if you use
ACUCOBOL-GT to develop a Windows-native graphical user interface
(GUI) for your HP e3000 application. Our AcuConnect component,
described in the next section, is a key enabling Thin Client technology.

Note: The MPE/iX operating environment has a limitation that requires
sites planning to use AcuConnect to carefully consider how they will
deploy the service. In the MPE/iX environment, the operating system does
not provide a way for a program to change its user ID. Therefore, the
service always uses the ID of the account that starts the service. Any action
the program takes is performed with that ID. This inability to change IDs
imposes some limitations and requires that MPE/iX sites carefully consider
how they will deploy AcuConnect. There are two approaches to managing
this issue. See the AcuConnect User’s Guide for details.

4.7.1 AcuConnect

AcuConnect is used with the Thin Client technology, an innovation that lets
you display your server-based application on graphical display hosts. For a
thin client to access programs on the server, AcuConnect must be running.

AcuConnect comes with a default security file known as “AcuAccess.” This
file is located in the /ACUCOBOL/etc directory and is called “/
ACUCOBOL/etc/AcuAccess”.

The “/ACUCOBOL/etc/AcuAccess” file contains a database of access
records that determine which machines and which users are allowed to use
the server. Depending on the construction of the database records, the server
access file can provide many levels of system access, from very permissive
to very restrictive. By default, system access is permissive.

The server software also comes with a configuration file called “/
ACUCOBOL/etc/acurcl.cfg”.

Thin Client Solution on MPE/iX 4-73
For the job file (see the example under “Starting AcuConnect”) to work, you
must modify the configuration file so that the following parameters are
uncommented and have the following values:

Note that the value for DEFAULT-USER must be specified in uppercase.

In addition AcuConnect requires a server alias file to hold all the information
that will be needed to invoke the appropriate application on the server. See
the AcuConnect User’s Guide for details on how to create this file.

4.7.1.1 Starting AcuConnect

To start the server process, you need to run the process as an MPE/iX batch
job. The job file might be called JACURCLD and might look something like
this:

!JOB JACURCLD,MGR.ACUCOBOL;PRI=CS
!RUN /ACUCOBOL/bin/acurcl;&
! INFO=‘-start -c /ACUCOBOL/etc/acurcl.cfg –le /ACUCOBOL/bin/acurcl.err -t3’;&
! PRI=CS
!EOJ

To stream the job, you could do the following, assuming you are in the MPE/
iX group where the job file is:

MPE:
:STREAM JACURCLD

POSIX:
shell/iX> callci "STREAM ./JACURCLD”

To stop the job, you would do the following:

MPE:
:/ACUCOBOL/bin/acurcl "-kill”

Parameter Value

ACCESS-FILE /ACUCOBOL/etc/AcuAccess

DEFAULT-USER MGR.ACUCOBOL

4-74 HP COBOL Conversions
POSIX:
shell/iX> /ACUCOBOL/bin/acurcl -kill

4.8 Backing Up ACUCOBOL-GT Software

When you do a full system backup and want to make sure that the
ACUCOBOL-GT files are included in that backup, all you need to do is use
a command that includes HFS files. By including HFS files you also include
ACUCOBOL-GT files.

ACUCOBOL-GT files will be included in a full backup with STORE if you
use a fileset like @.@.@:

:STORE @.@.@;;DIRECTORY

However, if you use a fileset like ?@.@.@:
:STORE ?@.@.@

the “?” excludes HFS files.

You can use the TREE option to force STORE to include HFS files if for
some reason they are not being included with your fileset specification:

:STORE @.@.@;;TREE

For more details on backing up HFS files, see the STORE and TurboSTORE/
iX Products Manual.

5
 IBM DOS/VS COBOL
Conversions
Key Topics

Support for DOS/VS COBOL .. 5-2
ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-3
Reserved Words... 5-24
COMP-1 and COMP-2 are Floating-Point ... 5-25
External Floating-Point (EFP) ... 5-25
IBM DOS/VS Error Codes .. 5-27

5-2 IBM DOS/VS COBOL Conversions
5.1 Support for DOS/VS COBOL

The command-line option “-Cv” (either on the command line or in the
CBLFLAGS environment string) allows the ACUCOBOL-GT compiler to
be compatible with IBM DOS/VS COBOL. In this mode, it accepts features
of IBM DOS/VS COBOL that are not otherwise accepted by
ACUCOBOL-GT.

Since there are slight differences between IBM COBOL versions, “-Cv” also
takes the following optional arguments:

“-Cv=OSVS” specifies OSVS compatibility.

“-Cv=VSC2” specifies VSC2 compatibility.

“-Cv” by itself defaults to OSVS mode. The two modes are very similar,
except that in VSC2 compatibility mode, the following words are not
reserved:

CURRENT-DATE
EXAMINE
TIME-OF-DAY
TRANSFORM

Note that CURRENT-DATE is a valid function in any compatibility mode.

This chapter provides information about the IBM DOS/VS COBOL features
that the ACUCOBOL-GT compiler supports. Complete IBM DOS/VS
COBOL compatibility is, unfortunately, not feasible. However, in this
chapter you will find a list of IBM DOS/VS-specific features, what they do,
and whether they are supported by ACUCOBOL-GT through the command
line option, “-Cv.”

IBM DOS/VS COBOL compatibility is available only with Version 5.0 (or
later). Therefore, the compiler aborts with its “usage” message if both “-Cv”
and a backward object compatibility option, “-Z32” for example, are
specified.

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-3
5.2 ACUCOBOL-GT and IBM DOS/VS
COBOL-Specific Features

IBM DOS/VS COBOL-specific features that cannot be supported by the
ACUCOBOL-GT compiler are reported as general errors. The following list
contains the specific features of IBM DOS/VS COBOL, along with an
explanation of what each feature does, whether it is accepted or not via the
command line option “-Cv,” and any operational information that is helpful
in using the “-Cv” command line option.

5.2.1 ACTUAL KEY Clause and SEEK

In IBM DOS/VS compatibility mode, when compiling for object versions 8.1
and greater, the compiler accepts the ACTUAL KEY feature for relative files
opened in RANDOM access mode. For such files, the relative key numbers
will be zero-based, rather than one-based, as with RELATIVE KEY. For
example, if you have a relative file with a fixed record length of 3 bytes and
a relative file with the following contents:
AAABBBCCC

The record keys for the different modes are:
 RELATIVE ACTUAL
AAA: 1 0
BBB: 2 1
CCC: 3 2

ACUCOBOL-GT does not support SEEK and reports an “Unsupported
Operation” error if it is present.

5.2.2 ADVANCING in WRITE Statement

In the absence of either an ADVANCING or POSITIONING clause, a
WRITE statement for a sequential PRINT file advances one line before
printing for ACUCOBOL-GT without the “-Cv” option, and one line after
printing for IBM DOS/VS COBOL or ACUCOBOL-GT with the”-Cv”
option.

5-4 IBM DOS/VS COBOL Conversions
5.2.3 AFTER POSITIONING Clause

IBM DOS/VS COBOL has a Format 2 WRITE statement that is similar to the
ACUCOBOL-GT Format 1 WRITE statement, except that the
ADVANCING clause is replaced by a POSITIONING clause:

ACUCOBOL-GT:
 {BEFORE} ADVANCING {number [LINE]}
 {AFTER } { [LINES]}
 {PAGE }

IBM DOS/VS COBOL:
 AFTER POSITIONING {identifier} LINES
 {integer }

If the line count in the IBM form is an identifier, it must be a one-character
alphanumeric item, interpreted as follows:

If the line count in the IBM form is an integer literal, it is interpreted as
follows:

Character ACUCOBOL-GT Equivalent

‘ ‘ AFTER ADVANCING 1

‘0’ AFTER ADVANCING 2

‘-’ AFTER ADVANCING 3

‘+’ AFTER ADVANCING 0

‘1’ AFTER PAGE

others invalid or not supported in ACUCOBOL-GT

(implemented as AFTER ADVANCING 1)

Value ACUCOBOL-GT Equivalent

0 AFTER PAGE

1 AFTER ADVANCING 1

2 AFTER ADVANCING 2

3 AFTER ADVANCING 3

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-5
ACUCOBOL-GT accepts the IBM form (along with its own form, even in
the same file) if the “-Cv” option is in effect. ACUCOBOL-GT does not
enforce the one-character limit on the line count and uses only the first
character or digit if there are two or more.

Note: In the absence of either an ADVANCING or POSITIONING clause,
a WRITE statement for a sequential PRINT file advances one line
BEFORE printing for ACUCOBOL-GT without the “-Cv” option, and one
line AFTER printing for IBM DOS/VS COBOL or ACUCOBOL-GT with
the “-Cv” option.

5.2.4 APPLY Clause Options

IBM DOS/VS COBOL allows the clauses of the I-O-CONTROL paragraph
of the ENVIRONMENT division to appear in any order. It also accepts the
following forms of the APPLY clause that ACUCOBOL-GT does not accept:
APPLY WRITE-ONLY ON file-name-1 [file-name-2] ...

APPLY EXTENDED-SEARCH ON file-name-1 [file-name-2] ...

APPLY WRITE-VERIFY ON file-name-1 [file-name-2] ...

APPLY CYL-OVERFLOW OF integer TRACKS ON file-name-1 [file-name-2] ...

APPLY CORE-INDEX TO data-name ON file-name-1 [file-name-2]

APPLY {MASTER-INDEX} TO device-number ON file-name-1 [file-name-2] ...
 {CYL-INDEX }

These options affect the efficiency of file operations in IBM DOS/VS
COBOL but not the program logic. As a result, ACUCOBOL-GT treats
these forms of the APPLY clause as comments when in the IBM DOS/VS
COBOL compatibility mode, and it accepts the clauses in any order
regardless of the mode.

others invalid or not supported in ACUCOBOL-GT

(implemented as AFTER ADVANCING 1)

Value ACUCOBOL-GT Equivalent

5-6 IBM DOS/VS COBOL Conversions
You may put APPLY clauses of the IBM DOS/VS COBOL type into the
I-O-CONTROL paragraph, but only when the compiler is in the IBM DOS/
VS COBOL compatibility mode. Such clauses are scanned but otherwise
ignored.

The clauses of the I-O-CONTROL paragraph may be arranged in any order,
and the existing APPLY clause may be used, regardless of the compiler
mode.

5.2.5 Arithmetic Statements

ACUCOBOL-GT includes a compiler option, “--ArithmeticVSC2”, that
causes intermediate results in arithmetic statements to be truncated following
the rules of VS COBOL II and COBOL/370. Note that this option matches
the Micro Focus ARITHMETIC”VSC2” compiler directive.

5.2.6 BASIS, INSERT, DELETE

The BASIS statement is a variant of the COPY statement. Because the
BASIS statement is a debugging technique, it is not portable and
ACUCOBOL-GT does not support it.

5.2.7 COM-REG

This special register in IBM DOS/VS COBOL corresponds to bytes 12 to 22
of the DOS Communication Region. It is not portable and is not supported
by ACUCOBOL-GT.

5.2.8 COPY SUPPRESS Statement

The word SUPPRESS in the COPY statement causes the compiler to omit the
copied file from the program listing. This feature of IBM DOS/VS COBOL
has been incorporated into ACUCOBOL-GT. See section 2.4.1 in the
ACUCOBOL-GT Reference Manual.

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-7
5.2.9 CURRENT-DATE

IBM DOS/VS COBOL has a CURRENT-DATE register that contains the
current date in either MM/DD/YY or DD/MM/YY format, where MM is the
month (01 for January, 02 for February, etc.), DD is the day of the month, and
YY is the last two digits of the year. Leading zeros are used where necessary
to ensure two-digit values. For example, November 2, 2000 is expressed as
either 11/02/00 or 02/11/00. This register is valid only as the source of a
MOVE statement without conversion.

When ACUCOBOL-GT is in the IBM DOS/VS COBOL compatibility
mode, CURRENT-DATE may be used as the source of a Format 1 MOVE
statement:

 MOVE CURRENT-DATE TO {dest-item} ...

If there are two or more destination items in the same MOVE statement, all
are guaranteed to receive the same value, even if the clock ticks and midnight
passes while the statement is being processed.

As usual, the value is truncated or padded with blanks at the right end to make
it fit into the destination.

The runtime configuration variable CURRENT-DATE determines which
format to use. If this variable is “0”, which is the default condition, MM/DD/
YY is used. If this variable is “1”, DD/MM/YY is used. Other values
produce undefined results.

5.2.10 DATE-COMPILED

IBM DOS/VS COBOL replaces the comment in the DATE-COMPILED
paragraph with the compilation date in the program listing.
ACUCOBOL-GT does not need to do this because it puts the compilation
date elsewhere in the listing.

5-8 IBM DOS/VS COBOL Conversions
5.2.11 Debugging Features

ACUCOBOL-GT does not support IBM DOS/VS-specific debugging
features. The ACUCOBOL-GT compiler marks as errors the debugging
statements that begin with the following words:

READY
RESET
EXHIBIT
ON
DEBUG

5.2.12 DISPLAY UPON SYSPUNCH

The IBM DOS/VS COBOL SYSPUNCH (or SYSPCH) option refers to
punchcards, which are obsolete. The ACUCOBOL-GT compiler redirects
punchcard output to a special file called SYSPUNCH.TXT.

Format 9 of the DISPLAY statement (ANSI DISPLAY) is in most cases
treated in a slightly different manner by IBM DOS/VS COBOL.

IBM DOS/VS COBOL has special names for card punch output, which may
appear after the reserved word UPON either as SYSPUNCH (or SYSPCH) or
as a “mnemonic” associated with one of these in the SPECIAL-NAMES
paragraph.

In the IBM DOS/VS COBOL compatibility mode, ACUCOBOL-GT accepts
these names, or their mnemonics, and it emulates a card punch by writing the
card images to a disk file (or a device that looks like a disk file to the
operating system). The default file specification is SYSPUNCH.TXT (in the
current directory), but you may specify another file by putting a line of the
following form in the runtime configuration file:
SYSPUNCH = <file specification used instead of SYSPUNCH.TXT>

Each card image is 80 characters wide, and is terminated in the manner
appropriate for the runtime environment (carriage return and line feed for
Windows, line feed for UNIX).

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-9
The leftmost 72 columns contain data from the DISPLAY UPON
SYSPUNCH statement. If the data is longer than this, excess characters spill
over to the next card image. If the data is shorter than this, it is padded with
blanks at the right end to make it 72 characters long.

The other 8 columns of each card image contain the program name from the
PROGRAM-ID phrase of the IDENTIFICATION division. If the program
name is more or less than eight characters long, it is truncated or padded with
spaces at the right end.

If the file specified for card images already exists, the card images are added
to the end of the file.

The WITH NO ADVANCING phrase may be used with DISPLAY UPON
SYSPUNCH, although it is not part of IBM DOS/VS COBOL. It may cause
subsequent text to go into the same card image, if it fits.

DISPLAY UPON CONSOLE, DISPLAY UPON SYSLST, DISPLAY
UPON SYSLIST and DISPLAY UPON SYSOUT behave in a slightly
different manner when the IBM DOS/VS COBOL compatibility mode is in
effect. In this mode, each line must be 100 characters long for DISPLAY
UPON CONSOLE, and 120 characters long for the other forms. A line that
is too short is padded with blanks at the right end, and a line that is too long
spills over to the next line.

The IBM DOS/VS COBOL compatibility mode has no effect on the
DISPLAY UPON SYSERR statement.

5.2.13 EJECT, SKIP in Listing

In the IBM DOS/VS COBOL compatibility mode, the following reserved
words may be used to control spacing of the program listing:

Word Effect

EJECT start a new page

SKIP1 skip one line before the next line (double spacing)

SKIP2 skip two lines before the next line (triple spacing)

5-10 IBM DOS/VS COBOL Conversions
IBM DOS/VS COBOL requires these words to appear in Area B. The
reserved word must be the only thing on the line, other than tabs and spaces.

5.2.14 ENTER Statement

IBM DOS/VS COBOL scans but ignores the ENTER statement as follows:
 ENTER language-name [routine-name].

ACUCOBOL-GT also ignores this statement when it is in the IBM DOS/VS
COBOL compatibility mode.

5.2.15 EXAMINE

IBM DOS/VS COBOL has an EXAMINE statement, which duplicates some
of the functionality of the ACUCOBOL-GT INSPECT statement, but with
slightly different syntax. ACUCOBOL-GT accepts this statement in the IBM
DOS/VS COBOL compatibility mode.

Format 1:
EXAMINE identifier-1 TALLYING {ALL } literal-1 [REPLACING BY literal-2]
 {LEADING }
 {UNTIL FIRST}

Format 2:
EXAMINE identifier-1 REPLACING {ALL } literal-1 BY literal-2
 {FIRST }
 {LEADING }
 {UNTIL FIRST}

Here identifier-1 is the name of a data item containing characters to be
counted or replaced. Its USAGE must be DISPLAY (implicitly or
explicitly). Each literal is a single-character literal or one of the following
figurative literals:

ZERO

SKIP3 skip three lines before the next line (quadruple spacing)

Word Effect

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-11
ZEROS
ZEROES
SPACE
SPACES
QUOTE
QUOTES
LOW-VALUE
LOW-VALUES
HIGH-VALUE
HIGH-VALUES

ACUCOBOL-GT does not enforce the one-character limitation. If a string
literal has two or more characters, it uses only the first character.

The special register TALLY, whose PICTURE is 9(5) and whose USAGE is
COMP-N, counts the number of characters in Format 1 that obey certain
conditions.

The characters to be counted and replaced are determined by the key words
following TALLYING or REPLACING. Counting is done only in Format 1,
and replacement is done only in Format 2 and when specified in Format 1.

It should be noted that the substitution of literal-2 for characters other than
literal-1 occurs only in the last case.

Key Words Characters To Be Counted And Replaced

ALL Count all instances of literal-1 in the data item and replace
them with literal-2.

FIRST Replace the first (leftmost) instance of literal-1 in the data
item to literal-2.

LEADING Count the instances of literal-1 in the data item that appear
before (to the left of) any other character in the data item,
and replace them with literal-2.

UNTIL FIRST Count the characters to the left of the first (leftmost)
instance of literal-1 and replace them with literal-2. If
literal-1 does not appear in the data item, count and replace
all characters in the data item.

5-12 IBM DOS/VS COBOL Conversions
The contents of the TALLY register are unchanged in Format 2. In Format
1, its contents are replaced by the appropriate character count, regardless of
the previous contents.

5.2.16 FILE-LIMIT Clause

IBM DOS/VS COBOL permits an optional clause in a SELECT statement
(also called a “file-control-entry”):

 {FILE-LIMIT IS } limits-1 [limits-2] ...
 {FILE-LIMITS ARE}

Here limits-1, limits-2, etc., are phrases of the form:
 {data-name-1} THRU {data-name-2}
 {literal-1 } {literal-2 }

IBM DOS/VS COBOL treats this clause as a comment. ACUCOBOL-GT
ignores it in the IBM DOS/VS COBOL compatibility mode.

Put the FILE-LIMIT clause in any convenient spot after the ASSIGN clause.

5.2.17 File Status Codes

Some of the numeric status codes returned for file operations are different in
IBM DOS/VS COBOL and ACUCOBOL-GT. The following list contains
codes returned for each.

Code IBM DOS/VS COBOL ACUCOBOL-GT

00 Success Same

10 EOF Same

21 Invalid key, sequence error Same

22 Duplicate key Same

23 Key not found Same

24 Boundary violation (indexed VSAM Same

30 Permanent error Same

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-13
5.2.17.1 FILE STATUS Extensions

The compiler supports the specification of a second FILE STATUS item,
which is treated as commentary. The FILE STATUS phrase of the
File-Control paragraph supports the following format:

 [File STATUS Is status-variable [status-variable-2]]

Status-variable must be the name of an alphanumeric (or USAGE DISPLAY
numeric) Working-Storage or Linkage data item with a size of 2 characters.
Status-variable-2 must be the name of a group item that is 6 characters in
length (this is not checked by the compiler).

When the FILE STATUS clause is specified, a value will be moved into
status-variable after the execution of every statement that references the
corresponding file. This value indicates the status of the statement.

5.2.18 IDENTIFICATION Division Arrangement

IBM DOS/VS accepts the AUTHOR, INSTALLATION,
DATE_WRITTEN, DATE_COMPILED, SECURITY and REMARKS
paragraphs in any order in the IDENTIFICATION division.

34 Boundary violation (sequential
VSAM)

Same

91 Password failure Not supported
closest alt.: 3707

92 Logic error Presumably 4x

93 Resource not available Presumably 05/35

94 No current record for seq. Request 43

95 Invalid or incomplete file information. Not supported
closest alt.: 39xx

96 No DLBL card Not supported

Zx User-defined errors Not supported

Code IBM DOS/VS COBOL ACUCOBOL-GT

5-14 IBM DOS/VS COBOL Conversions
ACUCOBOL-GT does the same, even when not in the IBM DOS/VS
compatibility mode. Therefore, the user may put the AUTHOR,
INSTALLATION, DATE_WRITTEN, DATE_COMPILED, SECURITY
and REMARKS paragraphs in the IDENTIFICATION division in any order.

5.2.19 IF OTHERWISE

IBM DOS/VS COBOL optionally accepts the reserved word OTHERWISE
instead of ELSE in IF statements. In the IBM DOS/VS COBOL
compatibility mode, ACUCOBOL-GT accepts OTHERWISE as a synonym
for ELSE.

5.2.20 LENGTH OF Expression

The LENGTH OF construct works differently in ACUCOBOL-GT than in
IBMCOBOL when the data item used is a table. In this case,
ACUCOBOL-GT returns the size of the entire table, while IBM returns the
size of a single element of the table. For example, consider the following:
01 my-data.
 03 my-table occurs 20 times.
 05 my-element-1 pic x(10).
05 my-element-2 pic 99.
MOVE LENGTH OF my-element-1 TO data-size.
MOVE LENGTH OF my-table TO data-size.
MOVE LENGTH OF my-table(1) TO data-size.

ACUCOBOL-GT IBM COBOL treat the first MOVE as MOVE 10 TO
data-size, and the third MOVE as MOVE 12 TO data-size. The second
MOVE, however, is treated differently. ACUCOBOL-GT treats the second
MOVE as MOVE 240 TO data-size, while IBM COBOL treats the second
MOVE as MOVE 12 TO data-size.

When using IBM compatibility mode, the ACUCOBOL-GT compiler treats
LENGTH OF in the same way as IBM COBOL.

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-15
5.2.21 NOTE Statement

IBM DOS/VS COBOL accepts a NOTE statement in the PROCEDURE
division:

 NOTE character string(s)

The entire statement is treated as a comment.

If the NOTE statement is not first statement in its paragraph, then it ends

1. at the first period followed by a space, or

2. at the beginning of the next paragraph, or

3. at the end of the source code,

whichever comes first.

If the NOTE statement is the first statement in a paragraph, then it ends

1. at the beginning of the next paragraph, or

2. at the end of the source code,

whichever comes first. Hence all subsequent statements in the same
paragraph are also ignored.

When it is in the IBM DOS/VS COBOL compatibility mode,
ACUCOBOL-GT accepts the NOTE statement as IBM DOS/VS COBOL
does, with one slight difference. When a NOTE statement is the first
statement in a paragraph, IBM DOS/VS COBOL parses subsequent
statements in the same paragraph, and presumably flags any syntax errors
found in them. ACUCOBOL-GT, however, does not perform any syntax
parsing in such cases.

5-16 IBM DOS/VS COBOL Conversions
5.2.22 Password Protection of Files

IBM DOS/VS COBOL implements password protection for files. You may
put a PASSWORD clause into a SELECT statement, but only when the
compiler is in the IBM DOS/VS COBOL compatibility mode. A SELECT
statement (also called a “file-control-entry”) for a password-protected file
must contain a PASSWORD clause of the following format:

 PASSWORD IS data-name-1

Here, data-name-1 is the name of an alphanumeric data item in the
WORKING-STORAGE section of the DATA division. This data item must
contain a valid password when the file is opened; otherwise, the OPEN
statement fails.

To be compatible with IBM DOS/VS, ACUCOBOL-GT ignores the
PASSWORD clause when in the IBM DOS/VS compatibility mode.

Put the PASSWORD clause in any convenient spot after the ASSIGN clause.

5.2.23 PROCESSING MODE Clause

IBM DOS/VS COBOL permits an optional PROCESSING MODE clause in
a SELECT statement (also called a “file-control-entry”):

 PROCESSING MODE IS SEQUENTIAL

IBM DOS/VS COBOL ignores this clause. Compatibility with IBM DOS/
VS COBOL requires that ACUBOL-GT ignore it also.

You may put a PROCESSING MODE clause into a SELECT statement, but
only when the compiler is in the IBM DOS/VS COBOL compatibility mode.

Put the PROCESSING MODE clause in any convenient spot after the
ASSIGN clause.

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-17
5.2.24 PROGRAM-ID Program Name

In IBM DOS/VS COBOL, the program name in the PROGRAM-ID item of
the IDENTIFICATION division may be placed between quotation marks.
This is especially useful if the program name contains embedded spaces or is
otherwise incompatible with identifier syntax.

The ACUCOBOL-GT compiler accepts a program name in quotation marks,
whether it is in the IBM DOS/VS COBOL compatibility mode or not.

5.2.25 RECORDING MODE Clause

IBM DOS/VS COBOL permits an optional RECORDING MODE Clause in
a SELECT statement (also called a “file-control-entry”):

 RECORDING MODE IS mode

Here the mode must be F, V, U, or S. It describes the manner in which
records are placed into blocks, which is irrelevant under DOS, Windows or
Unix. Compatibility with IBM DOS/VS COBOL means that
ACUCOBOL-GT ignores it.

You may put a RECORDING MODE clause into a SELECT statement, but
only when the compiler is in the IBM DOS/VS compatibility mode.

Put the RECORDING MODE clause in any convenient spot after the
ASSIGN clause.

5.2.26 REVERSED Sequential Input Files

IBM DOS/VS COBOL contains a REVERSED option for input files, which
is specified when the file is opened:

 OPEN INPUT file-name REVERSED.

The file must be a sequential file with a fixed record length. The OPEN
operation fails if this is not the case.

5-18 IBM DOS/VS COBOL Conversions
The records in a REVERSED file are read in reverse order by ordinary
READ statements. An attempt to read past the beginning of the file produces
the same result as an attempt to read past the end of a regular sequential file.

ACUCOBOL-GT accepts this feature when in the IBM DOS/VS
compatibility mode.

5.2.27 SORT Statement Registers

IBM DOS/VS COBOL has 11 special registers associated with the SORT
statement. ACUCOBOL-GT supports five of these. When in the IBM DOS/
VS compatibility mode, ACUCOBOL-GT treats these as dummy registers,
as though they had been declared at the beginning of the
WORKING-STORAGE section as follows:

01 SORT-MESSAGE PIC X(8) EXTERNAL
77 SORT-FILE-SIZE PICTURE S9(8) USAGE COMP-4 VALUE 0.
77 SORT-CORE-SIZE PICTURE S9(8) USAGE COMP-4 VALUE 0.
77 SORT-MODE-SIZE PICTURE S9(5) USAGE COMP-4 VALUE 0.
77 SORT-RETURN PICTURE S9(4) USAGE COMP-4 VALUE 0.

Special registers are reserved words that name storage areas, which are
generated by the compiler. They do not need to be declared in the
Working-Storage Section of your program, and they can still be referenced as
data items in your program. It’s important to understand the data format for
which they implicitly are created and to understand that they behave as
though they were declared variables. These registers cannot be used as
operands of ACCEPT or DISPLAY statements (as in IBM DOS/VS
COBOL), but values can be moved to and from them.

5.2.28 SPECIAL-NAMES

The following system names are supported by ACUCOBOL-GT in the
SPECIAL-NAMES paragraph:

SYSPCH
SYSPUNCH
C01 through C12
CSP
S01 through S05

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-19
The SYSPCH and SYSPUNCH names do not represent an actual card punch
in ACUCOBOL-GT. Instead, output directed to the card punch is written to
the file SYSPUNCH.TXT. (See DISPLAY UPON SYSPUNCH for
details.)

To enable printing to printer channels C01-C12, set the runtime configuration
variable called “COBLPFORM”. See Appendix H in the ACUCOBOL-GT
Appendices manual for details on setting this variable.

5.2.29 TIME-OF-DAY

IBM DOS/VS COBOL has a TIME-OF-DAY register that contains the
current time of day in HHMMSS format, where HH is the hour (on a 24-hour
clock), MM is the minute, and SS is the second. Leading zeros are used
where necessary to ensure two-digit values. For example, 8 AM would be
080000.

This register is valid only as the source of a MOVE statement without
conversion.

When ACUCOBOL-GT is in the IBM DOS/VS COBOL compatibility
mode, TIME-OF-DAY may be used as the source of a Format 1 MOVE
statement:

 MOVE TIME-OF-DAY TO {dest-item} ...

If there are two or more destination items in the same MOVE statement, all
are guaranteed to receive the same value, even if the clock ticks while the
statement is being processed.

As usual, the value is truncated or padded with blanks at the right end to make
it fit into the destination.

5.2.30 TRACK-AREA Clause

IBM DOS/VS COBOL permits an optional TRACK-AREA Clause in a
SELECT statement (also called “file-control-entry”):

 TRACK-AREA IS integer-1 CHARACTERS

5-20 IBM DOS/VS COBOL Conversions
Here integer-1 is an integer.

This clause increases the efficiency of some file operations on the IBM
System/360 Disk Operating System but is meaningless on other systems.
ACUCOBOL-GT ignores it to remain compatible with IBM DOS/VS.

You may put a TRACK-AREA clause into a SELECT statement, but only
when the compiler is in the IBM DOS/VS compatibility mode.

Put the TRACK-AREA clause in any convenient spot after the ASSIGN
clause.

5.2.31 TRANSFORM Statement

IBM DOS/VS COBOL has a TRANSFORM statement with the following
syntax:
TRANSFORM identifier-1 CHARACTERS FROM pattern-1 TO pattern-2

Each pattern is one of the following:
ZERO
ZEROS
ZEROES
SPACE
SPACES
QUOTE
QUOTES
LOW-VALUE
LOW-VALUES
HIGH-VALUE
HIGH-VALUES
nonnumeric-literal
identifier-2

Here identifier-2 must not be more than 255 characters long. If it is more
than 255 characters long, the results in IBM DOS/VS COBOL are undefined;
in ACUCOBOL-GT only the first 255 characters are used.

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-21
Each figurative constant (ZERO, ZEROS, ZEROES, SPACE, SPACES,
QUOTE, QUOTES, LOW-VALUE, LOW-VALUES, HIGH-VALUE and
HIGH-VALUES) is equivalent to a one-character nonnumeric literal
containing the associated character. For example, ZERO is equivalent to ’0’
and HIGH-VALUE is equivalent to x”FF”.

One of the following conditions must hold:

1. pattern-1 and pattern-2 are the same length;

2. pattern-1 contains more than one character and pattern-2 contains
exactly one character.

The effect of the TRANSFORM statement on the contents of identifier-1 is
undefined if neither of these conditions holds. The effect on the contents of
identifier-1 is also undefined if pattern-1 contains duplicate characters.
However, the statement finishes in a reasonable time and control passes
normally to the next statement in any case.

At run time, every character in identifier-1 that matches a character in
pattern-1 is replaced by the character in the corresponding position in
pattern-2. If there is no corresponding position, because pattern-2 is shorter
than pattern-1, then it is replaced by the sole character in pattern-2.

5.2.32 USE GIVING

IBM DOS/VS COBOL has a form of the USE statement in the
DECLARATIVES section that normally is not recognized by
ACUCOBOL-GT:

USE AFTER STANDARD ERROR PROCEDURE ON file-name GIVING
 data-name-1 [data-name-2]

This form is accepted by ACUCOBOL-GT when the “-Cv” option is in
effect. See section 6.6, “USE Statement,” in the ACUCOBOL-GT Reference
Manual for the format and rules governing the usage of this statement. See
section 5.6 of this guide for the IBM DOS/VS COBOL error codes.

5-22 IBM DOS/VS COBOL Conversions
5.2.33 VALUE OF Clause

IBM DOS/VS COBOL ignores the following clause in a file description
entry statement:

VALUE OF value-pair-1 {value-pair-2} ...

Here each value-pair is of the form
data-name-1 IS {data-name-2 }
 {literal-1 }

ACUCOBOL-GT ignores it too.

You may put a VALUE OF clause into a file description entry, but only when
the compiler is in the IBM DOS/VS compatibility mode.

5.2.34 WHEN-COMPILED

IBM DOS/VS COBOL contains a reserved word, WHEN-COMPILED, that
can be used as the source of a MOVE statement. The value copied into the
destination or destinations is a string of the form “MM/DD/YYhh.mm.ss,”
representing the time and date when the compilation began, where

ACUCOBOL-GT does the same when it is in the IBM DOS/VS COBOL
compatibility mode. However, ACUCOBOL-GT also allows the
programmer to use WHEN-COMPILED wherever a string constant can be
used, not just as the source of a MOVE statement.

MM is the month (01 = Jan., 02 = Feb., etc.)

DD is the day (01 to 31, inclusive)

YY is the year, modulo 100 (99 for 1999, 00 for 2000, 01 for 2001, etc.)

hh is the hour, on a 24-hour clock (00-23)

mm is the minute (00-59)

ss is the second (00-59)

ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features 5-23
Note: The ACUCOBOL-GT object file (.ACU) contains an embedded
compilation time and date, which is used for other purposes but is identical
to COMPILE-TIME.

5.2.35 WRITE ADVANCING Special-Name

IBM DOS/VS COBOL allows the following form of the ADVANCING
clause in a Format 1 WRITE statement:

 {BEFORE} ADVANCING {identifier-2 LINES}
 {AFTER } {integer LINES }
 {special-name }

The special-name option is the only one that is not also in ACUCOBOL-GT.
The special-name is one of the following special names, or a “mnemonic” for
it defined in the SPECIAL-NAMES paragraph:

Only CSP and C01 are implemented in ACUCOBOL-GT in the IBM DOS/
VS COBOL compatibility mode. The others depend on particular hardware
features and cannot be ported. They will generate error messages.

Special Name Equivalent

CSP 0 LINES

C01 PAGE

C02 none

C03 none

C12 none

S01 none

S02 none

S05 none

5-24 IBM DOS/VS COBOL Conversions
5.2.36 XLM GENERATE and PARSE

ACUCOBOL-GT supports the IBM Enterprise COBOL XML GENERATE
and XML PARSE statements. XML PARSE gives you a way to parse XML
data and process it in a COBOL program, associating processing procedures
with the exception and non-exception cases that can result from the parse.
XML GENERATE gives you a way to translate COBOL data into XML.

As before, ACUCOBOL-GT also includes AcuXML, a runtime-resident
interface that transparently converts XML data to sequential files for COBOL
processing, and C$XML, a library routine that gives you precise control over
which elements or attributes of the data to parse. A developer utility called
xml2fd creates File Descriptors (FDs) and SELECT statements from existing
XML files to support AcuXML.

All three of these approaches can be used to parse records-based XML files,
but note that only C$XML and XML PARSE can be used to parse
non-records-based XML files.

5.3 Reserved Words

The following words are reserved in IBM DOS/VS, but not in
ACUCOBOL-GT. They are, however, treated as reserved words by
ACUCOBOL-GT when it is in the IBM DOS/VS COBOL compatibility
mode. You need to avoid using any of the IBM DOS/VS-specific reserved
words as user-defined words.

ACTUAL DISPLAY-ST SKIP

BEGINNING EJECT SORT-CORE-SIZE

C01 ENDING SORT-FILE-SIZE

C02 ENTRY SORT-MODE-SIZE

C03 EXAMINE* SORT-RETURN

C04 EXTENDED-SEARCH SUPPRESS

C05 FILE-LIMIT SYSPCH

C06 MASTER-INDEX SYSPUNCH

COMP-1 and COMP-2 are Floating-Point 5-25
* In VSC2 mode these words are NOT reserved. See Section 5.1 for details
on this mode. Note that CURRENT-DATE is a valid function in any
compatibility mode.

5.4 COMP-1 and COMP-2 are Floating-Point

The treatment of COMP-1 (a.k.a. COMPUTATIONAL-1) and COMP-2
(a.k.a. COMPUTATIONAL-2) is different in IBM DOS/VS COBOL. They
are equivalent to FLOAT and DOUBLE, respectively, and they cannot be
used with PICTURE phrases.

ACUCOBOL-GT already has a command-line option (“-Df”) to specify that
COMP-1 and COMP-2 are to be treated as in IBM DOS/VS COBOL. The
“-Cv” option automatically turns on this “-Df” option, and so additionally
specifying “-Df” is unnecessary.

Take care to observe the proper syntax and usage of COMP-1 and COMP-2
variables for the mode in effect.

C07 NOMINAL TALLY

C08 NOTE TIME-OF-DAY*

C09 OTHERWISE TRACK-AREA

C10 PASSWORD TRANSFORM*

C11 POSITIONING WHEN-COMPILED

C12 PROCESSING WRITE-ONLY

COM-REG S01 WRITE-VERIFY

CORE-INDEX S02

CSP S03

CURRENT-DATE* S04

CYL-INDEX S05

CYL-OVERFLOW SEEK

5-26 IBM DOS/VS COBOL Conversions
5.5 External Floating-Point (EFP)

The format of external floating-point (EFP) items is compatible with IBM
DOS/VS COBOL. However, ACUCOBOL-GT will accept it even if it is not
in the IBM DOS/VS compatibility mode.

Note: If a command-line option, such as “-Z4”, is used to force the
compiler to generate code for external floating-point items for a version of
ACUCOBOL-GT prior to Version 5.0, then the compiler issues an “invalid
picture” error.

5.5.1 External Floating-Point Data Type

External floating-point (EFP) is a machine-independent floating-point data
type defined with a PICTURE phrase. An EFP item is a numeric item. It is
not an edited numeric item.

EFP items in ACUCOBOL-GT can be written to, and read from, data files,
and they can be converted to and from other numeric data types.

An EFP item may be used anywhere a floating-point item may be used. When
it is used in a DISPLAY statement, the assumed decimal point is shown, but
no other editing is performed.

Note: Mixed-type operations are not well-defined in COBOL. Therefore,
it is not advisable to mix internal floating-point (FLOAT or DOUBLE),
external floating-point, and fixed-point numeric operands, except in simple
MOVE statements.

EFP operations are always rounded off, even if the ROUNDED option is not
used.

No USAGE, SIGN, SYNCHRONZED, JUSTIFIED or VALUE clause may
be used with an EFP item.

External Floating-Point (EFP) 5-27
5.5.2 The Picture

An external floating-point (EFP) data item is defined by a picture that
strongly resembles a floating-point numeric literal:

{+} mantissa E {+} 99
{-} {-}

The mantissa is a string containing:

1. from one to sixteen “9”s, and

2. one assumed decimal point (that does not appear in the data)
represented by the letter “V”, or one actual decimal point (that does
appear in the data) represented by a period “.”.

The exponent is always exactly two digits long, so the last two characters of
the picture must be “99”.

A plus sign “+” in the picture indicates that a nonnegative mantissa or
exponent will be preceded by a plus sign; a minus sign “-” indicates that a
nonnegative mantissa or exponent will be preceded by a space.

A negative mantissa or exponent is always preceded by a minus sign.

When a numeric value is converted to EFP format, the result is normalized so
that the leftmost digit of the mantissa is nonzero, if this can be done without
reducing the exponent below “-99”. Zero is represented by a mantissa and
exponent consisting entirely of zeros.

When exponent overflow occurs, the mantissa of the result consists entirely
of “9”s, and its exponent is “+99”.

When exponent underflow occurs, the result is not normalized, and may be
zero if it is too small to be represented in this format.

Examples:

picture value data notes

+9.999E+99 123 +1.230E+02

+9.999E+99 123.0E99 +9.999E+99 exponent overflow

5-28 IBM DOS/VS COBOL Conversions
5.6 IBM DOS/VS Error Codes

IBM DOS/VS COBOL has a form of the USE statement in the
DECLARATIVES section that is not recognized by ACUCOBOL-GT:

USE AFTER STANDARD ERROR PROCEDURE ON file-name GIVING
 data-name-1 [data-name-2]

This form is accepted by ACUCOBOL-GT when the “-Cv” option is in
effect.

When an error handler introduced by this statement is invoked, the runtime
puts special error codes into the eight-byte data item data-name-1. Each byte
is loaded with “1”s if the corresponding error condition is true. If the
corresponding error condition is false, ACUCOBOL-GT loads it with “0”s.

Here are the IBM conditions:

-9V999E+99 123 1230E+02

-9V999E-99 123 1230E 02

+V9999E-99 0.0123 +1230E-01 note normalization

+V9999E-99 0.01E-99 +0100E-99 exponent underflow

-99999.E+99 123 12300.E-02

picture value data notes

byte indexed direct sequential

1
(leftmost)

DASD error data check in count parity error

2 wrong record
length

wrong record
length

wrong record
length

3 prime data full no room found

4 cylinder index too
small

data check in key or
data

5 master index too
small

IBM DOS/VS Error Codes 5-29
This is how the preceding error conditions are mapped into the conditions
detected by ACUCOBOL-GT:

6 overflow area full

7 no EOF record
written in prime
data area

85 74 Vax DG IBM data-name-1

00 00 00 00 00 10000000

48 91 48 92 13 10000000

49 91 49 92 13 10000000

47 91 47 92 13 10000000

42 91 94 91 92 10000000

38 93 38 92 93 10000000

41 92 41 91 93 10000000

37 95 37 91 93 10000000

93 93 91 94 93 10000000

94 94 97 97 93 01000000

48 90 48 92 13 10000000

24 24 24 24 24 00100000

22 22 22 22 22 00010000

24 24 24 24 24 00010000

34 34 34 34 34 00100000

30 30 30 30 30 10000000

48 90 48 92 13 10000000

49 90 49 92 13 10000000

23 23 23 23 23 01000000

99 99 92 94 23 10000000

byte indexed direct sequential

5-30 IBM DOS/VS COBOL Conversions
44 97 44 92 21 01000000

43 90 43 92 23 01000000

47 90 47 92 13 10000000

10 10 10 10 10 01000000

42 91 42 92 92 10000000

05 00 05 00 10 10000000

39 94 39 9A 95 01000000

46 96 46 10 21 01000000

9A 9A 9A 9A 23 10000000

02 02 02 00 00 00010000

35 94 35 91 93 10000000

37 90 39 91 93 10000000

98 98 30 9B 93 01000000

94 94 39 92 93 01000000

9B 9B 9B 9B 23 10000000

02 02 00 00 00 00010000

07 00 07 00 00 10000000

14 00 14 00 00 01000000

24 00 24 00 24 10000000

21 21 21 21 21 00010000

9C 9C 9C 9C 23 10000000

0M 0M 0M 0M 00 10000000

9D 9D 9D 9D 92 10000000

9Z 9Z 9Z 9Z 92 10000000

9E 9E 9E 9E 92 10000000

85 74 Vax DG IBM data-name-1

Index

Symbols
$COMMENT directive, preprocessor 4-61
$CONTROL directive, preprocessor 4-61
$DEFINE directive, preprocessor 4-63
$IF directive, preprocessor 4-65
$INCLUDE directive, preprocessor 4-66
$PREPROCESSOR directive, preprocessor 4-64
$SET directive, preprocessor 4-65
%, indicator of octal numeric literal 4-36

A
ACCEPT

CONVERT phrase with HP COBOL 4-45
FREE phrase with HP COBOL 4-45
FROM INPUT STATUS with HP COBOL 4-57

ACTUAL KEY 4-41
AcuBench

and HP COBOL 4-68
HP terminal emulation 4-70
IMAGE files 4-71
KSAM files 4-70
macros in COPY files not supported 4-70
Qedit files 4-70
VPLUS screens, handling with 4-71

AcuConnect, on MPE/iX 4-72
ADVANCING, in WRITE statement, IBM DOS/VS COBOL 5-3
AFTER POSITIONING Clause, IBM DOS/VS COBOL 5-4
APPLY clause, I-O Control Paragraph, IBM DOS/VS COBOL 5-5
Area A, compatibility with RM COBOL 2-3

Index-2
B
BASIS, IBM DOS/VS COBOL 5-6

C
CALL statement 4-47

CONDITION-CODE phrase 4-49
intrinsics and HP COBOL 4-49
passing a file handle to a subroutine 4-51
USING phrase 4-50

calling intrinsic function, HP COBOL 4-49
cblutil program, with HP COBOL 4-11
COMP-1 and COMP-2 are Floating-Point, IBM DOS/VS COBOL 5-25
compatibility options, compiler, HP COBOL 4-35
compatibility, program switches 4-39
compilation date and time 5-22
compiler option, --fileIdSize 4-52
compression factor, option to set 2-9
COM-REG, IBM DOS/VS COBOL 5-6
CONDITION-CODE, HP COBOL 4-40, 4-49
configuration entry, ICOBOL_FILE_SEMANTICS 3-4
configuration file

line numbers in 4-4
runtime 4-4

configuration file variables, ICOBOL_FILE_SEMANTICS 3-4
CONVERT phrase 4-45
converting

KSAM files to text 4-3
RM/COBOL-85 indexed files 2-8

COPY libraries, KSAM 4-3
COPY statement 4-37

IBM DOS/VS COBOL 5-6
CURRENT-DATE register extension, HP COBOL 4-43
CURRENT-DATE, IBM DOS/VS COBOL 5-7
-Cv compiler option for IBM DOS/VS COBOL compatibility 5-2

 Index-3
D
date of compilation 5-22
DATE-COMPILED, IBM DOS/VS COBOL 5-7
debugger 4-29

terminal configuration 4-30
debugging

IBM DOS/VS COBOL, features not supported 5-8
VPLUS applications 4-31

DEFAULT_FILESYSTEM configuration file entry 4-24
direct.c

relinking and HP e3000 4-14
directives, HP preprocessor

$COMMENT 4-61
$CONTROL 4-61
$DEFINE 4-63
$IF 4-65
$INCLUDE 4-66
$PREPROCESSOR 4-64
$SET 4-65

DISPLAY UPON SYSPUNCH, IBM DOS/VS COBOL 5-8
divide by zero error 4-57
DUPLICATE, primary key 4-22

support for 4-42
DYNAMIC keyword, File-Control paragraph 4-41

E
EFP (External Floating-Point) 5-25
EJECT, SKIP in program listing, IBM DOS/VS COBOL 5-9
emulators, MPE, support for 4-17
ENTER statement, IBM DOS/VS COBOL 5-10
environment control file, VPLUS 4-32
error codes

IBM DOS/VS COBOL 5-21, 5-27
ERRORS_OK configuration file entry 4-57
EXAMINE statement 4-53

Index-4
IBM DOS/VS COBOL 5-10
extensions to COBOL

unrecognized HP COBOL extensions 4-56
unsupported HP COBOL extensions 4-55

External Floating-Point (EFP), IBM DOS/VS COBOL 5-25

F
file errors 4-57
file format

IMAGE, with AcuBench 4-71
KSAM 4-3
Qedit 4-3

file handle
passing to a subroutine 4-51

file status codes
IBM DOS/VS COBOL 5-12

file tracing
KSAM files 4-26

FILE_CASE configuration file entry 4-58
File-Control paragraph 4-41

ACTUAL KEY 4-41
DYNAMIC keyword 4-41
RANDOM keyword 4-41

--fileIdSize, compiler option 4-52
FILE-LIMIT clause, IBM DOS/VS COBOL 5-12
filename

case, MPE/iX 4-58
handling, MPE/iX 4-25

filename_HOST configuration variable 4-24
files

RM/COBOL-85, converting indexed 2-8
FREE phrase 4-45

 Index-5
H
HP COBOL

calling C subroutines 4-14
compatibility 4-2, 4-35

terminal emulators 4-14
CONDITION-CODE 4-40, 4-49
conversion issues 4-55
initializing Working-Storage 4-7
unrecognized extensions 4-56
unsupported extensions 4-55

HP e3000
FILE equations 4-25
terminal emulation and AcuBench 4-70

hpcobol.h, relinking and HP e3000 4-14

I
I/O errors 4-57
IBM DOS/VS COBOL

ADVANCING in WRITE Statement 5-3
AFTER POSITIONING Clause 5-4
APPLY Clause Options 5-5
BASIS, INSERT, DELETE 5-6
command line 5-2
COMP-1 and COMP-2 are Floating-Point 5-25
COM-REG 5-6
conversion guide 5-2
COPY Statement 5-6
CURRENT-DATE 5-7
DATE-COMPILED 5-7
Debugging Features 5-8
DISPLAY UPON SYSPUNCH 5-8
EJECT, SKIP in Listing 5-9
ENTER Statement 5-10
error codes 5-21, 5-27
EXAMINE 5-10

Index-6
External Floating-Point 5-25
File Status Codes 5-12
FILE-LIMIT Clause 5-12
IDENTIFICATION Division Arrangement 5-13
IF OTHERWISE 5-14
NOTE Statement 5-15
Password Protection of Files 5-16
PROCESSING MODE Clause 5-16
PROGRAM-ID Program Name 5-17
RECORDING MODE Clause 5-17
Reserved Words 5-24
REVERSED Sequential Input Files 5-17
SORT Statement Registers 5-18
SPECIAL-NAMES 5-18
TIME-OF-DAY 5-19
TRACK-AREA Clause 5-19
TRANSFORM Statement 5-20
VALUE OF Clause 5-21
WHEN-COMPILED 5-22
WRITE ADVANCING Special-Name 5-22

ICOBOL
ACUCOBOL-GT differences 3-5
compile-time issues 3-2
Conversion Guide 3-2
runtime options 3-3

ICOBOL_FILE_SEMANTICS configuration entry 3-4
ICOBOL_FILE_SEMANTICS configuration file entry 3-4
Identification Division

IBM DOS/VS COBOL 5-13
IF OTHERWISE, IBM DOS/VS COBOL 5-14
IMAGE data files 4-2

and AcuBench 4-71
indexed file system, selecting and configuring 4-23
Intrinsic Functions

HP COBOL 4-66
calling 4-49

 Index-7
K
key value, duplicate primary 4-42
KSAM 4-22

accessing 4-22
and AcuBench 4-70
configuration 4-23
converting to text file 4-3
enabling or disabling in the runtime 4-27
file trace information 4-26
limits and ranges 4-26
variable length records 4-23

L
libraries, using RLs and XLs 4-12
libutil 4-3, 4-33
linking, HP COBOL vs. ACUCOBOL-GT 4-10

M
MPE emulators, support for 4-17
MPE file system 4-22

enabling for use with an MPE emulator 4-18
MPE/iX environment

compiling and running in 4-5
connectivity solutions 4-72
examples of compiling with ACUCOBOLGT 4-6
examples of compiling with HP COBOL 4-5
examples of running with ACUCOBOLGT 4-8
examples of running with HP COBOL 4-7
filename syntax 4-25
limitations, conversion issues 4-57
setting variables 4-4

Index-8
N
--noRmMargin compiler option 2-3
NO-SPACE-CONTROL, Special Names paragraph 4-39
NOTE Statement, IBM DOS/VS COBOL 5-15

O
octal notation for numeric literals 4-36
OTHERWISE with IF

IBM DOS/VS COBOL 5-14

P
passwords

protection of IBM DOS/VS COBOL files 5-16
POSIX environment 4-16
preprocessor 4-60

for HP_e3000 COBOL 4-60
preprocessor directives

$COMMENT 4-61
$CONTROL 4-61
$DEFINE 4-63
$IF 4-65
$INCLUDE 4-66
$PREPROCESSOR 4-64
$SET 4-65

privileged mode, explained 4-14
Procedure Division

register extensions 4-43
Procedure Division Statements 4-44
PROCESSING MODE Clause, IBM DOS/VS COBOL 5-16
program switches, Special Names Paragraph 4-39
PROGRAM-ID Program Name, IBM DOS/VS COBOL 5-17

 Index-9
Q
QEDIT file format

with AcuBench 4-70
Qedit file format

support for 4-3

R
RANDOM keyword, File-Control paragraph 4-41
RECORDING MODE Clause, IBM DOS/VS COBOL 5-17
recursion 4-53
register extensions, Procedure Division 4-43
reserved words

IBM DOS/VS COBOL 5-24
REVERSED Sequential Input Files, IBM DOS/VS COBOL 5-17
RLs, using with ACUCOBOL-GT 4-12
RM/COBOL

Area A 2-3
compile-time options 2-2
conversion

converting to ACUCOBOL-GT 2-2
converting version 2 data files 2-7

memory management 2-4
RM/COBOL-85 (ANSI 85) 2-2

converting indexed files with vutil 2-8
runtime options 2-3

runtime
configuration file 4-4
debugger 4-29

S
SORT statement

IBM DOS/VS COBOL special registers 5-18
Special Names Paragraph 4-39

Index-10
NO SPACE CONTROL 4-39
TOP 4-39

SPECIAL-NAMES
IBM DOS/VS COBOL 5-18

subroutine, passing a file handle to 4-51
system intrinsics, HP COBOL 4-66

T
TALLY register extension 4-43
terminal configuration

debugger 4-30
VPLUS 4-32

terminal emulators, HP 4-14
thin client

with HP COBOL applications 4-72
time of compilation 5-22
TIME-OF-DAY

IBM DOS/VS COBOL 5-19
register extension 4-43

TOP, Special Names Paragraph 4-39
trace

file I/O 4-26
TRACK-AREA Clause, IBM DOS/VS COBOL 5-19
Transform Statement, IBM DOS/VS COBOL 5-20

U
USING phrase 4-50
utilities

cblutil 4-11
libutil 4-3

 Index-11
V
VALUE OF Clause, IBM DOS/VS COBOL 5-21
VENVCNTL, VPLUS environment control file 4-32
VPLUS

debugging 4-31
terminal configuration 4-32

VPLUS screens and AcuBench 4-71
vutil

converting an RM/COBOL-85 indexed file 2-8

W
WHEN-COMPILED 5-22

register extension 4-44
WRITE ADVANCING Special-Name 5-22

X
XLs, using with ACUCOBOL-GT 4-12

Index-12

	Introduction
	1.1 Transitioning Your COBOL
	1.2 Organization
	1.3 Technical Services

	RM/COBOL Conversions
	2.1 Compile-Time Options
	2.2 Runtime Options
	2.3 Memory Management
	2.3.1 Converting RM/COBOL Data Files
	2.3.1.1 Converting relative files with variable-length records
	2.3.1.2 Converting binary sequential files with variable-length records
	2.3.1.3 Converting relative files with fixed-length records
	2.3.1.4 Converting indexed files

	ICOBOL Conversions
	3.1 Compile-Time Options
	3.2 Runtime Options
	3.2.1 ICOBOL Runtime Configuration Variable

	3.3 Differences

	HP COBOL Conversions
	4.1 Introduction to HP COBOL Compatibility
	4.2 ACUCOBOL-GT in MPE/iX Environments
	4.2.1 Using ACUCOBOL-GT in Traditional MPE/iX Environments
	4.2.1.1 Compiling and running in the MPE/iX environment
	4.2.1.2 Linking
	4.2.1.3 Object libraries
	4.2.1.4 Using XLs and RLs with ACUCOBOL-GT
	4.2.1.5 Interfacing to C subroutines
	4.2.1.6 Privileged mode
	4.2.1.7 Terminal emulators
	4.2.1.8 ACUCOBOL-GT PA-RISC native code support
	4.2.1.9 MPE file equation restrictions
	4.2.2 Using ACUCOBOL-GT in POSIX Environments
	4.2.3 Using ACUCOBOL-GT with MPE/iX Emulators
	4.2.3.1 Enabling the MPE file system
	4.2.3.2 Setting runtime configuration variables
	4.2.3.3 Setting environment variables
	4.2.4 Accessing MPE KSAM, Relative, and Sequential Files
	4.2.4.1 The ACUCOBOL-GT MPE file system interface
	4.2.4.2 Selecting a file system
	4.2.4.3 File name handling
	4.2.4.4 File I/O trace information
	4.2.4.5 KSAM system limits and ranges
	4.2.4.6 Enabling and disabling the MPE interface
	4.2.5 Using the ACUCOBOL-GT Debugger in MPE/iX Environments
	4.2.5.1 Terminal emulator keyboard configuration
	4.2.5.2 Debugging programs that use VPLUS
	4.2.6 Terminal Configuration with VPLUS
	4.2.7 The libutil Utility

	4.3 The “-Cp” HP COBOL Compatibility Switch
	4.3.1 COPY Statement
	4.3.2 Special-Names Paragraph
	4.3.2.1 Program switches
	4.3.2.2 TOP and NO SPACE CONTROL
	4.3.2.3 CONDITION-CODE
	4.3.3 File-Control Paragraph
	4.3.3.1 RANDOM and DYNAMIC keywords
	4.3.3.2 WITH DUPLICATES on primary keys
	4.3.4 Procedure Division Register Extensions
	4.3.4.1 CURRENT-DATE
	4.3.4.2 TALLY
	4.3.4.3 TIME-OF-DAY
	4.3.4.4 WHEN-COMPILED
	4.3.5 Procedure Division Statements
	4.3.5.1 ACCEPT statement
	4.3.5.2 CALL statement
	4.3.5.3 EXAMINE statement
	4.3.6 Conversion Issues
	4.3.6.1 Unsupported HP COBOL extensions
	4.3.6.2 Unrecognized HP COBOL extensions
	4.3.7 Operating System and Runtime Limitations and Differences
	4.3.7.1 ACCEPT FROM INPUT STATUS statement
	4.3.7.2 Divide by zero
	4.3.7.3 File I/O error handling
	4.3.7.4 File name case
	4.3.7.5 Mismatched EXTERNAL data items

	4.4 Preprocessor for HP COBOL
	4.4.1 $COMMENT Directive
	4.4.2 $CONTROL Directive
	4.4.3 $DEFINE Directive
	4.4.4 $PREPROCESSOR Directive
	4.4.5 $IF and $SET Directives
	4.4.6 $INCLUDE Directive

	4.5 System Intrinsics
	4.5.1 CREATEPROCESS Intrinsic Function
	4.5.2 CREATE/ACTIVATE Intrinsic Functions
	4.5.3 GETINFO Intrinsic Function

	4.6 AcuBench
	4.6.1 Using AcuBench With Existing Applications
	4.6.2 Developing New Applications With AcuBench

	4.7 Thin Client Solution on MPE/iX
	4.7.1 AcuConnect
	4.7.1.1 Starting AcuConnect

	4.8 Backing Up ACUCOBOL-GT Software

	IBM DOS/VS COBOL Conversions
	5.1 Support for DOS/VS COBOL
	5.2 ACUCOBOL-GT and IBM DOS/VS COBOL-Specific Features
	5.2.1 ACTUAL KEY Clause and SEEK
	5.2.2 ADVANCING in WRITE Statement
	5.2.3 AFTER POSITIONING Clause
	5.2.4 APPLY Clause Options
	5.2.5 Arithmetic Statements
	5.2.6 BASIS, INSERT, DELETE
	5.2.7 COM-REG
	5.2.8 COPY SUPPRESS Statement
	5.2.9 CURRENT-DATE
	5.2.10 DATE-COMPILED
	5.2.11 Debugging Features
	5.2.12 DISPLAY UPON SYSPUNCH
	5.2.13 EJECT, SKIP in Listing
	5.2.14 ENTER Statement
	5.2.15 EXAMINE
	5.2.16 FILE-LIMIT Clause
	5.2.17 File Status Codes
	5.2.17.1 FILE STATUS Extensions
	5.2.18 IDENTIFICATION Division Arrangement
	5.2.19 IF OTHERWISE
	5.2.20 LENGTH OF Expression
	5.2.21 NOTE Statement
	5.2.22 Password Protection of Files
	5.2.23 PROCESSING MODE Clause
	5.2.24 PROGRAM-ID Program Name
	5.2.25 RECORDING MODE Clause
	5.2.26 REVERSED Sequential Input Files
	5.2.27 SORT Statement Registers
	5.2.28 SPECIAL-NAMES
	5.2.29 TIME-OF-DAY
	5.2.30 TRACK-AREA Clause
	5.2.31 TRANSFORM Statement
	5.2.32 USE GIVING
	5.2.33 VALUE OF Clause
	5.2.34 WHEN-COMPILED
	5.2.35 WRITE ADVANCING Special-Name
	5.2.36 XLM GENERATE and PARSE

	5.3 Reserved Words
	5.4 COMP-1 and COMP-2 are Floating-Point
	5.5 External Floating-Point (EFP)
	5.5.1 External Floating-Point Data Type
	5.5.2 The Picture

	5.6 IBM DOS/VS Error Codes

	Index

