Event Service Specification 4

4.1 Service Description

4.1.1 Overview

A standard CORBA request results in the synchronous execution of an operation by an
object. If the operation defines parameters or return values, data is communicated
between the client and the server. A request is directed to a particular object. For the
request to be successful, both the client and the senwstr be available. If a request

fails because the server is unavailable, the client receives aptéxtand must take

some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

® A system administration tool is interested irolng if a disk runs out of space.
The software managing a disk is unaware of the existence of the system
administrationtool. The software simply reports that the disk is flllhen a disk
runs out of space, the systaaministration toobpens a window to inform the user
which disk has run out of space.

® A propertylist object is associated with an application object. The propistty
object is physically separate from the application object. The application object is
interested in the changes made to itspprties by a user. The propertieen be
changed without involving thepplication object. That is, in order tave
reasonable response time for the user, changing a property daadivate the
application object. However, when the application object is activated, it needs to
know about the changes its properties.

® A CASE tool is interested in being notifizehen a sourc@rogram has been
modified. The source prgram simply reports when it is modified. Itusaware of
the existence of the CASE tool. In response tonthigfication, the CASE tool
invokes acompiler.

CORBAservices March 1995 4-1

® Several documents are linked to a spreadsheet. The documents are interested in
knowing whenthe value of certain cells have changed. Wherc#ilevalue
changes, the documents updtiteir presentationsased on the spreadsheet.
Furthermore, if a document is unavailable because of a failurestitl isxterested
in any changes to the cells and wants to be notified of those chahgasitw
recovers.

4.1.2 Event Communication

The Event Service decoupld®e communication between objects. The Event Service
defines two roles for objects: the supplier raled the consumer rolSupplier:;
produce event data aiconsuners process event data. Event data are communicated
between suppliers and consumers by issuing standard CORBA requests.

There are two approachesititiating event communication betweenpliers and
consumers, and two orthogonal approaches to the form thabtheunicationcan
take.

The two approaches faitiating event communication are callehe pust mode and

the pull mode. The push model allows a supplier of events to initiate the transfer of

the event data to consumers. The pull model allows a consumer of events to request the
event data from a supplier. In the push model, the supplier is takingitibgve; in

the pull model, the consumer is taking th#iative.

The communication itself can be eithgeneric or typec. In the generic case, all
communication is by means of genepush or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is via
operations defined in OMG IDL. Event data is passed by means of the parameters,
which can be defined in any manner desired. Section 4.2 thismaion 4.5 discuss
generic event communication in detail; section #h®ughsection 4.9 discuss typed
event communication in detalil.

An event chann is an intervening object that allowsultiple suppliers to

communicate with multipleonsumers asynchronously. An event channel is both a
consumer and a supplier of events. Event channels are standard CORBA objects and
communication with an event channel is @oplished using standard CORBA

requests

4.1.3 Example Scenario

This section provides a general scenario thadtrates how the Ever8ervice can be
used.

The Event Service can be used to provide “charg#ication”. When an object is
changed (its state is modified), an event can be generated that is propagated to all
interested partiedzor example, when a spreadsheelt object is modified, all
compound documents which contain a reference (linkhao cell can beotified (so

the document can redisplay the referenced or recalculate values that depend on

CORBAservices March 1995

4

the cell). Sinilarly, when an engineering specification object is modified, all engineers
who haveregistered an interest in the specification can be notified that the
specification has cheged.

In this scenario, objects that can be “cfped” act as suppliers, parties interested in
receiving nofications of changes act as consur, and one or more event channel
objects are used as intermediaries between consumers and suEither the push or
the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplie interface so that event communication can be discontinued, use the
EventChanni, theSupplierAdmi and theProxyPushConsum interfaces to register as
suppliers of events, and use ProxyPushConsum interface to push events to event
channels.

When a change occurs to an object, a changeable object invpush operation on
the channel. It provides as an argument topush operation information that
describes the event. Thisfamnmation is of datdype any - it can be asimple or as
complex as is necessary. For example, the @néortmation might identify the object
reference of the object that has been changed, it mightifgiehe kind of change that
has occurred, it might provide a new displayable image of thegeldaobject or it
might identify one or moreadditional objects that describe tbleange that has been
made.

If the pull model is used by consumers, all client objects that want to be notified of
changes support ttPullConsumelinterface so communication can be discontinued,
using theEventChanny, IConsumerAdm andProxyPullSupplie interfaces to register
as consumers of events, and usingProxyPullSupplie interface to pull events from
event channels.

The consumemay use either a blocking or non-blocking mechanism for receiving
notification of changes. Using thtry pull operation, the consumer can periodically
poll the channel for events. Alternatively, the consumer can uspull operation

which will block the consumer’s execution thread until an event is generated by some
supplier.

Event dhannels act as the intermediaries between the objects being changed and objects
interested irknowing about changes. The channels that provide chaatiécation

can be general purpose, well-knowjects (eg., “persistent server-based objects” that

are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objedts.g., temporary objects that are created when
needed). Objects that use event channels may locate the channels by looking for them
in a persistently available server (e.g., by looking for them in a naming service) or they
may be given references to these objects as part of a specific-to-task object protocol
(e.g., when an “open” operation is invoked on an object, the object may return the
reference to an event channel which theleashould use until the object is closed).

Event channels detmine how changes are propagated betweenisuppind

consumers, i.e., trqualities of servic (Section4.1.6. For example, an event channel
determines the persistence of an event. The channekesgyan event for a specified
period of time, passing it along to any consumer who registers with the channel during

Event Servicevl.0 Service Descriptic March 1995 4-3

4-4

that

period of timge.g., it may keep evemiotifications abouthanges to engineering

specifications for a week).fernatively, the channel may only pass on events to
consumers who are currently waiting for notificationchinges (e.gnotifications of
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basic
building block used in providing higher-level services specific to an application or
commonfacilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have been

used.

4.1.4 Design Principles

The

Event Service desigatisfiesthe following principles:

Events work in aistributed environment. The designes not depend on any
global, critical, or centralized service.

Event services allow multiple consumers of an event and multiple event suppliers.
Consumers can either request events or be notified of events, whichever is more
appropriate for application desigmd performance.

Consumers and suppliers of events support standard OMG IDL interfaces; no
extensions to CORBA are necessary to define these interfaces.

A suppler can issue a single standard request to communicate event d#ta to
consumers at once.

Suppliers can generate events withoubwimg theidentities of the consumers.
Conversely, consumers can receive events without knowing the identities of the
suppliers.

The Event Service interfaces allow multiple qualities of senfameexample, for
different levels of reliability. It also allows for future interface extensions, such as
for additional functionality.

The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

4.1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in th«Object
Services Architectu} document aollows:

1.0bject Services Architecte, Document Number 92-8-4, Object Managmemtu@r Framingham, MA,
1992.

CORBAservices March 1995

4

® Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected frimetto time, and do not require
centralized event identification, processing, routing, or other services that might be
a bottleneck or a single point of failure.

Events themselves anot objects because the CORRH#stributed object model
does not support passing objects by value.

Event generation The specification describes how events are generated and delivered
in a very general fashion, with event channels as intermemiatimg points. It does

not require (or preclude) polling, nor does it require that an event sugphketly

notify every interested party.

Events involving multiple objects Complex events may be handled by constructing a
notification tree of event consumer/supplielecking for successively moreesgfic

event predicates. The specification does not require a general or global event predicate
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed,heterogeneous (potentially decoupled) environment.

Scoping, grouping, andfiltering events The specification takeadvantage of

CORBA's distributed sgping and grouping mechanisms for tdentifier and type of
events. Eventiltering is easilyachieved through event channels theliectively

deliver events from suppliers to consumers. Event channels can be composed; that is,
one event channel can consumer evenppkad by another.

Typed event channels can providkefing based on event type.

Registration and generation of event: Consumers and suppliers register with event
channels themselves. Event channels are objects and they are found by any fashion that
objects can be found. A global registration service is not requargdpbject that

conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of tany that can be
delivered with an event, used for application-specific data.

Forgery and secure eventsBecause event ppliers are objects, the specification
leverages any ORB work on security for object referermrescommunication.

Performance: The design is a mimalist one,and requires only one OR&ll per

event received. It supports both push-style antigiyle notification toavoid

inefficient event polling. Since event suppliers, consunemnd, channels arall ORB
objects, the service directly benefits from a Library Object Adapter or any other ORB
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be benefal to formalize the data associateithwan event

(defined in this specification as type any). This can be accomplished by defining a
typed structure for this information. Depending on the needs of the environment, the
kinds of information included might be a priority, timestamp, origin stramgl
confirmation indicator. This information might be solely for the benefit ofethent
consumer or might also be interpreted by particular event chanpkimentations.

Event Servicevl.0 Service Descriptic March 1995 4-5

Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of receptioack to the supplier. This can be
supported effectively using a “reverse” event channel through whicsuocoers send
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivieeyween all sppliersand all
consumers requires additional interfaces.

4.1.6 Quality of Sevice

Application domains requiring event-style communicati@ve diverse reliality
requirements, from “at-most-oe” semantics (best effort) to guaranteed “exactly-
once” semantics, availaltyf requirements, thraghput requirements, performance
requirements (i.e., hovast events are disseminated), and scalability requirements.

Clearly no singlémplementation of the #ent Service can ojmtize such a diverse
range of technical requirements. Henceltiple implementations of event services are
to be expected, with different services targeted toward different environments. As
such, the event interfaces do not dicqualities of servic. Different implementations
of the Event Service interfaces can supdfferent qualities of service to meet
different applicatiomeeds.

For example, aimplementation that trades at most once delivery to a saaylsumer

in favor of performance is useful for some applications; an implementatioratiasf
performance but cannot preclude duplicate delivery is useful for other applications.
Both are acceptabienplementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all evenotia usefu
implementation. Useful implemenitains will at least support “best-effort” delivery of
events.

Note that the interfaces defined in this chapter are incomplete for implementations that
supportstrict notions of atomicity. That is, additional interfaces rageded by an
implementation to guarantee that eithercalhsumers receive an event or none of the
consumers receive an event; and tilaevents are received in the same order by all
consumers

4.2 Generic Event Communication

There are two basic moddls communicating event data betwesuppliers and
consumers: thpush modt and thepull mode.

4.2.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invokipush operations on thPushConsumeinterface.

To set up a push-style communication, consumers and sis exchane
PushConsum::and PushSupplie iobject referencesEvent communication can be
broken by invokin a disconnect_push_consumer operation on the

CORBAservices March 1995

4

PushConsumt interface or by invoking disconnect_push_supplier operation
on thePushSupplieinterface. If thePushSpplier object reference is nil, the
connection cannot be broken via thegiier.

Figure 4-1 illustrates push-style communication between aisupid a consumer.

PushSupplier

consumer) | supplier
|
1

PushConsumer

Figure 4-1 Push-style Communication Between a Supplier and a Consumer

4.2.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invokipull operations on thPullSupplierinterface.

To set up a ull-style communication, consumers and suppliers mustaggh
PullConsumeiandPullSupplierobject references. Event communication can be broken
by invoking adisconnect_pull_consumer operation on thiPullConsumer
interface or by invoking disconnect_pull_supplier operation on the
PullSupplierinterface. If thePullConsume object reference is nil, the coaction

cannot be broken via the consumer.

Figure 4-2 illustrates pull-style communicatibatween a supplier and a consumer.

PullConsumer

|
consumer .) | \ supplier
|
&

PullSupplier

Figure 4-2 Pull-style Communication Between a Supplier and a Consumer

Event Servicerl.0 Generic Event Communicati March 1995 4-7

4

4.3 The CosEventComm Module

The communication styleshown in kgure 4-1 and Figure 4-2 are both supported by
four simple interfacesPushConsumy, IPushSpplier, andPullSupplieranc
PullConsume. These interfaces are defined in an OMG IDL module named
CosEventComm, as shown in Figure 4-3.

module CosEventComm {
exception Disconnected{};

i nterface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

}s

interface PushSupplier {
void disconnect_push_supplier();

b

i nterface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier() ;

b

i nterface PullConsumer {
void disconnect_pull_consumer();

b

Figure 4-3 The OMG IDL Module CosEventComm

4.3.1 The PustConsumer Interface

A push-style consumer supports PushConsumeinterface to receive event data.

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

A supplier communicates event data to the consumer by invokirpush operation
and mssingthe event data as a param. If the event communication has already been
disconnected, thDisconnected exception is raised.

4-8 CORBAservices March 1995

4

The disconnect_push_consumer operation terminates the event communication;
it releases resources used at the consumaspport the event communicaticThe
PushConsum: object reference is disposed.

4.3.2 The PushSupplier Interface

A push-style supjdr supports thiPushSuppér interface.

interface PushSupplier {
void disconnect_push _supplie r(;
3
Thedisconnect_push_supplier operation terminates the event communication;

it releases resources used at the sappd support the event communicatiThe
PushSupplie object reference is disposed.

4.3.3 The PullSupplier Interface

A pull-style supplier supports ttPullSupplie interface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier()

A consumer requests event data from the supplier by invoking eithpull
operation or thery pull operation on the supplier.

®* Thepull operation blocks until the event data is avail or an exception is
raised? It returns the event data to the consumer. If the evemimunicatiorhas
already been disconnected, iDisconnected exception is raised.

®* Thetry pull operation does not block: if the event data is available, it returns
the event data and sets thas_event parameter tdrue; if the event is not
available, it sets thhas_event parameter tdalse and the event data is returned
as long with an undefined va. If the event communication has already been
disconnected, thDisconnected exception is raised.

2.This, of course, may be a standardRB2A excepton.

Event Servicerl.0 The CosEventComm Mod March 1995 4-9

The disconnect_pull_supplier operation terminates the event communication;
it releases resources used at the sappd support the event communicatiThe
PullSupplie object referace is disposed.

4.3.4 The PullConsumer Interface

A pull-style consumesupports thePullConsumeiinterface.

interface PullConsumer {
void disconnect_p ull_ consumer();

h

Thedisconnect_pull_consumer operation terminates the event communication;
it releases resources used at the consumaigport the event communicati The
PullConsume object reference is disposed.

4.4 Event Channels

The event chann is a service that decouples the communicatietween suppliers
and consumers. The event channel is itself bcconsumer and a pplier of the event
data.

An event channel can provide asynchronous communication of event data between
suppliers and consumers. Although consumers andisuopgbmmunicate with the

event channel using standard CORBA requests, the event channel does not need to
supply the event data to its consumer at the same tioomstumes the data froits
supplier.

4.4.1 Push-Style Communication with an Event Channel

The suppekr pushes event data to the event channel; the event channel, in turn, pushes
event data to the consumer. Figure 4-4 illustrates a push-style communimttiaen
a suppler and the eventhannel, and a consumer and the event channel.

4-10 CORBAservices March 1995

\ PushSupplier I PushSupplier |

consumer I L > /I | (>

supplier

I |
PushConsumer\ eventchannel PushConsume

Figure 4-4 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

4.4.2 Pull-Style Communication with an Event Channel

The consumer pulls event ddtam the event channel; the event channel, in tputls
event data from the supplier. Figure 4-5 illustrates a pull-style communication between
a suppler and the eventhannel, and a consumer and the event che nnel.

\PullSuppller /\PullSuppher | /

consumer | suppller

' |
PullConsumer event channel PuIIConsumer

Figure 4-5 Pull-style communication between a supplier and an event channel and a consumer
and the event channel

4.4.3 Mixed StylecCommunication with an Event Channel

An event channel can communicate with a sigoplsingone style ocommunication,
and communicate with a consumer usindiféerent style of communication.

Figure 4-6 illustrates a push-style communicati@miween a seplier and an event
channel, and aull-style communicatiobetween a consumer and the event channel.
The consumer pullthe event data that the supplier has pushed to the event channel.

Event Servicerl.0 EventChanne March 1995 4-11

PullConsumer PushSupplier |
|
consumer | I . /I I [>supplier
|
/PuIISuppIier

Figure 4-6 Push-style Communication Between a Supplier and an Event Channel, and Pull-
style Communication Between a Consumer and an Event Channel

event channel PushConsumer

4.4.4 Multiple Consumers and Multiple Suppliers

Figure 4-4, Figure 4-5, and Figure 4-6 ilicege eventhannels with a single supplier
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events fsneor more suppliers, and
supplies events to one or more consumers. Subject quality of service of a
particular implementation, an event chanpelvides an event tall consumers.

Figure 4-7 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

\PushSuppliel’ i PushSupplier /
7 - !

consumer } .

1 I supplier
/ PushConsurer IPushConsumer
event channel
pushSupplier F’ushSupplierl /
consumer _| : \> : l&’supplier
/ IpushConsumer PushConsumer

Figure 4-7 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using differemtunication
models.

4-12 CORBAservices March 1995

4

If an event channel has at lease push-style consumer orlaastone pending pull
request, the event channel requires an event. If the event channel has pull suppliers, it
will issue a request on a pull supplier to satisfy its requirement

4.4 5 Event Channel Administration

The event channel is built up incrementally.h&h an event channel is created, no
suppliers or consumers are connected to the event cl.iUpon creation of the
channel, the factory returns an object reference that suppolEventChannel
interface, as illustrated in Figure 4-8.

event channel

EventChannel

Figure 4-8 A newly created event chaal. The ®iannel has no suppliers or consumers.

The EventChanne interface defines three administrative operations: an operation
returning aConsumerAdm object for adding consumers, an operation returning a
SupplierAdmi object for adding suppliers, and an operation for destroying the
channel.

The operationgor adding consumers retuproxy supplier. A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface sfipplier), but includes
an additional method for coenting a consumer to the progyppler.

The operationgor adding suppliers returproxy consume. A proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of groducer or consumer is a two step process. An event-generating
application first obtains proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains proxy supplier from a&hannel, then “connects” to the proxy
supplier by providing it with a consumer.

Event Servicerl.0 EventChanne March 1995 4-13

The reasorior the two-step registration process isstgoport composing evtn

channels y an external agent. Such an agent would compose two channels by
obtaining a proy supplier fromone and a proxy consumer from the other, and passing
each of them a reference to the other as pattief connect operatic. 1

Proxies are in one of threstatesdisconnecte, lconnecte or destroye. Figure 4-9
gives a state diagram for a proxy. The nodes of the diagram are theasthtibe
edges are labelled with the operations that change the state of thePush/pull
operations are only valid in trconnecte state.

event
commurgation

connectgs

obtain . connect
disconnecteg

Figure 4-9 State diagram of a proxy.

4-14 CORBAservices March 1995

4.5 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumiédre CosEventChannelAdmin
module is defined in Figure 4-10.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

h

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

h

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

h

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

Event Servicer1.0 Th€osEventChannelAdmin Module March 1995

4-15

4-16

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();
b

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

b

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

Figure 4-10 The CosEventChannelAdmin Module

4.5.1 The EventChannel Interface

TheEventChanncinterface defines three administrative operations: adding consumers,
adding suppliers, and destroying the channel.

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

Any object that possesses an object reference that suppoEventChanntinterface
can perform these operations:

®* The ConsumerAdmiinterface allovs consumers to be connecte the event
channelThefor_consumers operation returns an object reference that supports
the ConsumerAdm interface.

®* TheSupplierAdmirinterface allovs suppliers to beonnectedo the event channel.
Thefor_suppliers operation returns an object reference that supports the
SupplierAdmi interface.

® Thedestroy operation destroys the event channel.

Consumer administration and suigpladministration are defined as separate obsots
thet the creator of the channcar control the addition of suppliers asdnsumer:iFor
example, a creator mightish to be the sole supplier of event data but allow many
consumers to be connected to the cha'In such a case, the creator would simply
export theConsumerAdm obiject.

CORBAservices March 1995

4 5.2 The ConsumerAdmin Interface

The ConsumerAdm interfacedefines the first step for omecting consumers to the
event channeiclients use it to obtain proxy ppliers

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

The obtain_push_supplier operation returns ProxyPushSpplier object. The
ProxyPushSpplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns ProxyPullSupplie object. The
ProxyPullSupfier object i< ther used to connect jull-style consumer.
4.5.3 The SupplierAdmin Interface

The SupplierAdmi interface defines the first step foonnecting suppliers to the event
channelclients use it to obtain proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

The obtain_push_consumer operation returns ProxyPushConsum object. The
ProxyPushConsum object is then used to connect a push-styjspBer.

The obtain_pull_consumer operation returns ProxyPullConsume object. The
ProxyPullConsume object isthenused to connect a pull-style suigpl

4.5.4 The ProxyPushConsumer Interface

The ProxyPushConsumeinterfacedefines the second step for connecting push
suppliers to the event channel.

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier (
in CosEventComm::PushSupplier push_supplier)
r aises(AlreadyConnected);

Event Servicerl.0 The CosEventChannelAdminMoc March 1995 4-17

A nil object referene may b jpassed to te connect_push_supplier operatim,;
if so a channel cannot invoke ttdisconnect_push_supplier operation on the
supplier; the suppr may be disconnected from the channel without being infcrmed

If the ProxyPushConsum is already connected toPushSupplie, then the
AlreadyConnected exception is raised.
4.5.5 The ProxyPullSupplier Interface

The ProxyPullSupplieinterface defines the second step for connecting pull consumers
to the event chann:l.

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)
r aises(AlreadyConnecte d);

A nil object reference may be passed toconnect_pull_consumer operation; if
so ¢ channel cannot invokedisconnect _pull_consumer gperation on the

consumer; the consumer may be disconnected from the channel without being
informec.

If the ProxyPullSupplie is already connected toPullConsume, then the
AlreadyConnected exception is raise.d

4.5.6 The ProxyPullConsumer Interface

The ProxyPullConsumeinterface defines the second step for connedgingsuppliers
to the event chann:l.

interface ProxyPullConsumer: CosEventComm::PullConsumer {

void connect_pull_supplier (
in CosEventComm::PullSupplier pull_supplier)
r aises(AlreadyConnected , TypeError);

b

Implementations should raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to connect_pull_supplier operation.

If the ProxyPullConsume is already connected toPullSupplie, then the
AlreadyConnected exception is raise.d

An implementation of iProxyPullConsume may put additional requirements on the
interface supported by the pull supplier. If the pull suppliees not meet those
requirements thProxyPullConsumeraises theTypeError exception. (See section
4.7.2for an example.)

4-18 CORBAservices March 1995

4.5.7 The ProxyPushSupplier Interface

The ProxyPushSpplier interface defines the second step for connecting push
consumers to the event chanel.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer (
in CosEventComm::PushConsumer push_consumer)
r aises(AlreadyConnected , TypeError);

b

Implementations should raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to connect_push_consumer operation.

If the ProxyPushSupplicis already connected toPushConsumj, then the
AlreadyConnected exception is raise.d

An implementation of iProxyPushSupplit may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet those
requirements thProxyPushSupplieraises theTypeError exception. (Sesection
4.7.1for an example.)

4.6 Typed Even€Communcation

Section 4.2 discusses generic event communication push andpull operations.
The next fewsections describe how event communication can be described in OMG
IDL and how typed event channels can support such typed esemhunication.

4.6.1 Typed Push Model

In the typecpush model, suppliers call emtions on consumers using some mutually
agreed interfacl. The inerfacel is defined in IDL, and may contain any operations
subject to the followingestrictions:

® All parameters must bin parameters only.
® No return values are permitted

These are the samestrictions as CORBA imposes oneway operations, and for
similar reasons: event communication is unidirectional,goas notdirectly support
responses. The operations can beatecloneway, but need not be.

To set up typed push-style communication, consumers and supplie@ngrc
TypedPushConsun andPushSupplie object referaces. (Note that the supplier
interface is the same as the untyped case.) Theisupipén invokes the
get_typed_consumer operation of theTypedPushConsun interface, which
returns an object reference supporting the typed interl, referred to as al-

referenc. The particular interfacd, that the reference supports is dependent on the

Event Servicevd.0 Typed Event Communicat March 1995 4-19

particular TypedPushConsurr, and must be mutually agreed by suppéierd
consumer. Once the suplhas obtained thi-reference, it can call operations in
interfacel on the consumer.

As in the case of the generic push-style, exmmimunicationcan be broken by
invoking adisconnect_push_consumer operation on thiTypedPushConsun er
interface or by invoking disconnect_push_supplier operation on the
PushSupplieinterface. If thePushSupplie object reference is nil, the connection
cannot be broken via the supplier.

Figure 4-11 illustrates typed push-style communication between supplier and
consumer.

PushSupplier

I k > supplier

1
- ! TypedPushConsumer
i
ro

Figure 4-11 Typed Push-style Communication Between a Supplier and a Consumer

consumer)

4.6.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliersiesgipgevent
information, using some mutually agreed interfPull<I>3. For every interfaci
having the properties describedseaction 46.1, aninterfacePull<I> is defined as
follows:

® For every oprationo in |, Pull<I> contains two operations:

* pull_o , with allin parameters changed out parameters. When calletthis
operation will return with the event data in fout parameters. If no-event is
currently available, it wilblock.

e boolean try 0o, with allin parameters changed to out parameters. When
called, this operation will check whether c-event is currently available. If so,
it will returntrue , with the event data in ttout parameters. If not, it will
returnfalse , with theout parameters ndefined

3.Pulll> isused as notation for acomputed interface frominterface I. TH is an interface
DocumelitEvent;, Pull<I> is an interfac PullDocumentEvents.

4-20 CORBAservices March 1995

4

TheinterfacePull<I> is designed to allow pulling of exactly the same events that can
be pushed usinmterfacel.

To set up typed pull-style communication, consunard suppliers exchange
PullConsume and TypedPullSuplier object references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of thiTypedPullSpplier, which returns an object
reference supporting the typed interfaPull<I>, referred to as Pull<I>-reference.
The particular interfacePull<l>, that the refenece supports is dependent on the
particularTypedPullSupplic, and must be mutually agreed by supplier andsaorer.
Once the consumer has obtained Pull<l>-referenc,, it can call gerations in
interfacePull<I> on the supplier.

Figure 4-12 illustrates typed pull-style communication between supplier and consumer.

PullConsumer

consumer supplier

~—]|

g
. |
TypedPullSupplier
1
|

Pull<l>

Figure 4-12 Typed Pull-style Communication Between a Supplier and a Consumer

4.7 The CosTgedEventComm Module

The typed communication styles shown in Figure 4-11 eFigure 4-12 are both
supported by two new interfaceTypedPushConsun and TypedPullSupplie and two
existing interfaes,PushSupplie andPullConsume. The firsttwo interfaces are

Event Servicevd.0 The CosTypedEventComm Moc March 1995 4-21

defined in an OMG IDL module nam¢CosTypedEventCon, as shown in
Figure 4-13. The last two are the same as for untyped eeemnunicationand were
defined in theCosEventCom module in Figure 4-3.

#include “CosEventComm.idl”
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

k

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
|3

Figure 4-13 The IDL ModuleCosTypedEventComm

4.7.1 The TypedPushConsumer Interface

A typed pish-style consumer supports {TypedPushConsun interface both to
receive event data in the generic manner, and to supply dispygged interface
through which to receive it in typddrm.

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

k

The TypedPushConsurr can behave just like an untypPushConsum, described in
section 4.31. In addition, if the supplier wishes mbmmunicate event data to the
consumer in typed rather than generic form, it first invokes the
get_typed_consumer operation. This returns é-reference supporting an

interfacel. The particular interfac I, that the reference supports is dependent on the
particular TypedPushConsurr. The return type of the operationObjec, because
different TypedPushConsume¢ will return references of different types, so the actual
type cannot be specified in a general definition. Once the supplier has obtaiil-:d the
referenc, it can narrow it t I, and then call operations interfacel on the consumer.
Mutual agreement aboll is needed between the supplier and consumer. If they do not
agree, the narrow operation will fail.

As noted above, TypedPushConsumr must support thpush operation, inherited
from CoEventComm::PushConsun. Implementingpush fully is an unnecessary
burden if the consumer is intended for typed use only. It is therp&reissible to
implement aTypedPushConsurr with a null implementation cpush that merely
raises the standaCORBA exceptiorNO_IMPLEMEN. Clearly, suppliers must know
this and confine themselves to type@mmunication with such consumers.

4-22 CORBAservices March 1995

4.7.2 The TypedPullSupplier Interface

A typed pul-style suppier supports thiTypedPullSupplie interface both to allow
consumers to pull event data in the generic manner, and to supply a specific typed
interface through which they can pull it in typed form.

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
3

The TypedPullSupplie can behavgust like an untpedPullSupplie, described in
section 4.33. In addition, if the consumer wishes to pull event data from the suppl

in typed rather than generic form fitst invokes theget_typed_supplier

operation. This returns Pull<I>-reference supporting an interfacPull<I>. The
particular interfacePull<l>, that the reference supports is dependent on the particular
TypedPullSupplie. The return type of the operationObjec, because different
TypedPullSuppérs will return references of different types, so the actual type cannot
be specified in a general definitio@ncethe consumer has obtained Pull<I>-
referenc, it can narrow it ttPull<l>, and then call perations in interfacPull<I> on

the supplier. Mutual agreement abPull<l> is needed between the supplier and
consumer. If they do not agree, harrow operation will fail.

As noted above, TypedPullSupplie must support thpull andtry _pull

operations, inherited from CEventComm::Pull8pplier. Implementing these

operations fully is an unnecessary burden if the supplier is intended for typed use only.
Itis therefore permissible to implemenTypedPullSupplie with null implementations

of pull andtry_pull that merely raise the standéCORBA exception
NO_IMPLEMEN. Clearly, consumers must know this and confine themselvypéd
communication with such suppliers.

4.8 Typed Event Channels

Typed event channels are analogougeneric event channels, but they support both
typed and generic event communication. These forms can be mixed at will. A single
channel can handle eventgpgliedand consumed in any combination of fbems
defined earlier (push/pull, generic/typed). An event suppliedpedjorm can be
consumed in generic form, or vice vel;a.

4.Doing this does require an understanding on the part of the generic suppliers and consonetiseof
channel packages parameters of typed calls when converting them to generic form. Details of this
packaging are dependent on the implementation of the channel.

Event Servicevd.0 Typed EventChann¢ March 1995 4-23

4

4.9 The CosTgedEventChannelAdmin Module

The CosTypedEventChannel Admin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. It is defined in Figure 4-14. Most of its interfaces are specializations
of the corresponding interfaces in iICosEventChannel module defined in

Figure 4-10.

4-24 CORBAservices March 1995

#include © CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchimplementation {};
typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {};

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchlmplementation);

h

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(
in Key uses_interface)
raises(NoSuchlmplementation);

k

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

Figure 4-14 The CosTypedEventChannelAdmin Module

Event Servicevd.0 The CosTypedEventChannelAdmin Mo March 1995

4-25

4.9.1 The TypedEventChannel Interface

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

This interface is analogous to (EventChannelAdmin::EventChannel

However, it returns typed versionstbe consumer and suppliadministration
interfaces, which are capable of providing proxies for either generic or typed
communication.

4.9.2 The TypedConsumerAdmin Interface

The TypedConsumerAdn interface defines the first step for connecting consumers to
typed event channel; clients use it to obtain proxy suppliers.

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed push_supplier(
in Key uses_interface)
raises(NoSuchimplementation);

The obtain_typed_pull_supplier operation takes a Key parameter that
identifies an interfacePull<I>. The scope of the key is the typed event channel. It
returns eTypedProxyPullSuppli for interfacePull<|>. The TypedProxyP ullSpplier
will allow an attached pull consumer to pull events either in generic form or using
operations in interfac Pull<I>. It is up to the implementation of

obtain_typed_pull_supplier to create or find an appropriate
TypedProxyPullSuppli. If it cannot, it raises the exception
InterfaceNotSupported

The obtain_typed_push_supplier operation takes Key parameter that

identifies an interfacel. The scope of the key is the typed event channel. It returns a
ProxyPushSpplier that calls operations in interfal, rather tharpush operations. It

is up to the implementation ©obtain_typed_push_supplier to create or find

an appropriatc ProxyPushSupplil. If it cannot, it raises the exception
NoSuchimplementation

4-26 CORBAservices March 1995

4

Such aProxyPushSupplic is guaranteed only to invoke operations defined in interface
I. Any event on the channel that does not correspond to an operation defined in
interfacel is not passed on to the consumer. SuProxyPushSuppli¢ is therefore an
eventfilter based on type.

4.9.3 The TypedSupplierAdmin Interface

The TypedSupplierAdm interface defines the first step for connecting suppliers to the
typed event channel; clients use it to obtain proxy consumers.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchimplementation);

The obtain_typed_push_consumer operation takes Key parameter that
identifies an interfac I. The scope of the key is the typed event channel. It returns a
TypedProxyPushConsun for I. An attached supplier can provide events by using
operations in interfacl. It is up to the implementation of

obtain_typed_push_consumer to create or find an appropriate
TypedProxyPushConsun. If it cannot, it raises thexception
InterfaceNotSupported

The obtain_typed_pull_consumer operation takes Key parameter that

identifies an interfacePull<l>. The scope of the key is the typed event channel. It
returns eProxyPullConsume that calls operations in interfaPull<l>, rather than
pull operations. Itis up to the implementation of

obtain_typed_pull_consumer to create or find an appropric e
ProxyPullConsume. If it cannot, it raises thexceptionNoSuchimplementation

Such aProxyPullConsume is guaranteed only to invokeerations defined in
interfacePull<l>. Any event request that does not cormgpto an opration defined
in interfacePull<I> is not pulled from the supplieBuch aProxyPullConsume is
therefore an event filter based on type.

5.see Appendix Afor implementatiomasiderations.

Event Servicevd.0 The CosTypedEventChannelAdmin Mo March 1995 4-27

4.9.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsuminterface defines the second step for aating push
suppliers to the typed event channel.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {};

* By inheriting from both CcEventChannelAdmin::ProxyPushConsumer
and CoTypedEventComm::TypedPushConsumer , this interface supports:

» Connection and disconnection of push suppliers, exactly as in the generic event

channel,
» Genericpush operation and

» Obtaining the typed view, so that the supplier can use typed push
communicationThe eference returned kget_typed_consumer has the
interface identified by thKey used when thiTypedProxyPushConsun was
obtained. (Sesection 4.9.3)

4.9.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplieinterface defines theecond step for connecting pull
consumers to the typed event channel.

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

By inheriting from both CcEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier , this interface supports:
» Connection and disconnection of pull consumeragcty as in the generievent
channel,
» Genericpull andtry_pull operations and
» Obtaining the typed view, so that the consumer can use typed pull
communication.The eference returned kget_typed_supplier supports

the interface identified by thKey used wherthis TypedProxyPullSupplic was
obtained. (Sesection 4.9).

4.10 Composing Event Channels and Filtering

4-28

The event channel administration operations defined in sectiosupport the
composition of event channels. Thatase event channel can consume events
supplied by another. This architecture allowsithplementaibn of an event channel
that filters the events supplied by another.

CORBAservices March 1995

4

Since th: ProxyPushSpplier for interfac¢ | of a typed event channel only pushes
events that corregmd tol, it acts as a filtebased on type. Similarly, tie
ProxyPullConsume for interfact Pull<I> of a typed event channel only pulls events
that correspond tPull<I>, it also acts as a filtdrased on type.

4.11 Policies for Finding Event Channels

The Event Service does nestablish a policy for finding event channels. Finding a
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers will
dictate when an everhannel is created and how references to the event channel are
obtained. By representing the event channel asbch it hasall of the properties

that apply to objects, including support by finding mechanisms.

For example, when a user performdrag-and-drop ~ or cut-and-paste

operation, an event channel could be created aatiftkd to suppliersnd corsumers.
Alternatively, the event channel could be named in a naming context, or it could be
exported through an operation on @lnjec.

Event Servicevl.0 Policies for Finding Event Channe March 1995 4-29

4

Appendix A Implementing Typed Event Channels

Note —Implementation details do not form part of an OMG specification, and should
not be standardized. On the other hand, it is not obvious that typed channels can be
implemented without extensions to CORBA. This section indicone strategy for
implementing typed event channels. It is included to show that typed event channels
can be implemented; it is not intended in any way testrain implementations.
Optimized implement&ns are certainly possible.

Figure 4-15 demonstrates a possible implementation of a typed event channel. This
appendix concentrates on push stydenmunication. The implementation of pull-style
communication is analogous.

The mplementation interposes iencode between typedtgle suppliersand the
channel and idecode between the channel and typed-style consumers.

l i |
<] I
typed IPC encode | typed

consume supplier

PC = PushConsumer
| = interface |

Figure 4-15 A possible implementation of a typed event channel.

At the supplier end, aencode converts operation calls push calls.
At the consumer end, decode convertspush calls back to operation calls.

The effect of such aommunication is thus that the original operation is eventually
called on theconsumer, but the communication is routed via the channel. Of course,
there can benultiple suppliersand mitiple consumers on the same channel.
Whenever one of the supgxis calls an operation, it is delivered by the channel to all
consumers.

The encoder must package thgeration identificatiorand theparameters in a manner
that the decoder can unpack theatrectly.

Given the OMG IDL definition of an interfacl, an encoder generator could generate
an implementation thaupports the interfa | and convertsll calls on this interface
to push calls on an event channel.

Similarly, it is possible t@enerate an I-decoder from the OMG IDL definition of I.

4-30 CORBAservices March 1995

The typed eent channel is responsible for findingeating or implementing the
appropriateencoders. An appropriate encoder is found or created in response to the
obtain_typed_push_consumer request on the typed event channel. The encoder
is returned in response to tget_typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating or implementing
the appropriatdecoders. An appropriate decoder is found or created in response to the
connect_push_consumer request on the typed event char nel.

Implementing Typed Event ChannelsPolicies for Finding Event Channt March 1995 4-31

4

Appendix B

4-32

An Event Channel Use Example

This sectionllustrates arexample use of the event channel, including the following:

e Creating an everthannel
e Consumers and/or suppliers finding the channel
» Suppliers using the event channel

* In this example, the document object creates event channels and defines
operations in its interface to allow consumers t@tded.

» TheDocumer interface defines two operations to retesrent channels:

interface Document {
ConsumerAdmin title_changed();

ConsumerAdmin new_section();

Thetitle_changed operation causes the document to generate an event when
its title ischanged; thnew_section operation causes the document to generate

an event when a nesection isadded. Both operations retuConsumerAdm n
object reference. This allows consumers to be added to the event channel.

® Thetitle_changed implemenation contains instance variables for using and

administering theevent channels.

/* Factory for creating event channels. */
EventChannelFactoryRef ecf;

/* For title changed event channel */

EventChannelRef event_channel,
ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;

CORBAservices March 1995

® At some point, the document implementation creates the ehannel, gets
suppler andconsumer adimistrative references, and adds itself as a sui.lier

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push _supplie r(env,
doc_side_connection)

® Thetitle_changed operation returns thConsumerAdm object reference.

return consumer_admin;

Clients of this operationan add consumers.

®* When the tie changes, the documemmhplementatiorpushes the event to the
channel.

proxy_push_consumer->push(env,data);

The documentmplementation similarly initializes, expo, and uses the event channel
for reporting new sections.

6.For readability, exception Indling is omitted from theseode fragments.

Event Channel Use Example Policies for Finding Event Channe March 1995 4-33

4-34 CORBAservices March 1995

	Event Service Specification
	4.1 Service Description
	4.1.1 Overview
	4.1.2 Event Communication
	4.1.3 Example Scenario
	4.1.4 Design Principles
	4.1.5 Resolution of Technical Issues
	4.1.6 Quality of Service

	4.2 Generic Event Communication
	4.2.1 Push Model
	4.2.2 Pull Model

	4.3 The CosEventComm Module
	4.3.1 The PushConsumer Interface
	4.3.2 The PushSupplier Interface
	4.3.3 The PullSupplier Interface
	4.3.4 The PullConsumer Interface

	4.4 Event Channels
	4.4.1 Push-Style Communication with an Event Chann...
	4.4.2 Pull-Style Communication with an Event Chann...
	4.4.3 Mixed Style Communication with an Event Chan...
	4.4.4 Multiple Consumers and Multiple Suppliers
	4.4.5 Event Channel Administration

	4.5 The CosEventChannelAdmin Module
	4.5.1 The EventChannel Interface
	4.5.2 The ConsumerAdmin Interface
	4.5.3 The SupplierAdmin Interface
	4.5.4 The ProxyPushConsumer Interface
	4.5.5 The ProxyPullSupplier Interface
	4.5.6 The ProxyPullConsumer Interface
	4.5.7 The ProxyPushSupplier Interface

	4.6 Typed Event Communication
	4.6.1 Typed Push Model
	4.6.2 Typed Pull Model

	4.7 The CosTypedEventComm Module
	4.7.1 The TypedPushConsumer Interface
	4.7.2 The TypedPullSupplier Interface

	4.8 Typed Event Channels
	4.9 The CosTypedEventChannelAdmin Module
	4.9.1 The TypedEventChannel Interface
	4.9.2 The TypedConsumerAdmin Interface
	4.9.3 The TypedSupplierAdmin Interface
	4.9.4 The TypedProxyPushConsumer Interface
	4.9.5 The TypedProxyPullSupplier Interface

	4.10 Composing Event Channels and Filtering
	4.11 Policies for Finding Event Channels

