
Orbacus
Version 4.3.5

Orbacus Notify Version 2.2 Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2016. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2016-09-27

Contents

List of Tables vii

List of Figures ix

Preface xi
The Orbacus Library xi
Audience xii
Document Conventions xii

Chapter 1 Introduction 1
Overview 2

Chapter 2 Configuration and Startup 5
Orbacus Notify 6
Orbacus Notify Console 13
Startup Example 14

Chapter 3 Notification Service Concepts 17
Overview 18
The OMG Event Service 20

Delivery Models 21
Object Management Hierarchy 24
Event Delivery 26

The OMG Notification Service 27
Delivery Models 28
Object Management Hierarchy 29
Event Delivery 30
Event Translation 32
Filtering 33
Mapping Filters 37
Quality of Service 39
Proprietary QoS Properties 43
iii

CONTENTS
Administrative Properties 45
Subscription Sharing 46

Chapter 4 Programming Example 49
Introduction 50
Connecting to a Notification Channel 51

Connecting a Consumer 61
Connecting to a Proxy 65

Supplying Events 69
Consuming Events 71
Filtering 72
Disconnecting from a Notification Channel 79
Building Orbacus Notify Clients 81

Chapter 5 Orbacus Notify Console 83
Overview 84
The Orbacus Notify Console Menus 87
Creation Wizards 89
Managing Notification Channels 90
Managing Admins 93
Managing Proxies 96
Managing Filters 99
Managing Filter Constraints 100
Managing Mapping Filters 102
Managing Mapping Filter Constraint-Value Pairs 103

Appendix A CosEventChannelAdmin Reference 107
Module CosEventChannelAdmin 108

Interface CosEventChannelAdmin::ProxyPushConsumer 109
Interface CosEventChannelAdmin::ProxyPullSupplier 110
Interface CosEventChannelAdmin::ProxyPullConsumer 111
Interface CosEventChannelAdmin::ProxyPushSupplier 112
Interface CosEventChannelAdmin::ConsumerAdmin 113
Interface CosEventChannelAdmin::SupplierAdmin 114
Interface CosEventChannelAdmin::EventChannel 115

Appendix B CosEventComm Reference 117
Module CosEventComm 118
iv

CONTENTS
Interface CosEventComm::PushConsumer 119
Interface CosEventComm::PushSupplier 120
Interface CosEventComm::PullSupplier 121
Interface CosEventComm::PullConsumer 122

Appendix C CosNotification Reference 123
Module CosNotification 124

Interface CosNotification::QoSAdmin 133
Interface CosNotification::AdminPropertiesAdmin 134

Appendix D CosNotifyChannelAdmin Reference 135
Module CosNotifyChannelAdmin 136

Interface CosNotifyChannelAdmin::ProxyConsumer 140
Interface CosNotifyChannelAdmin::ProxySupplier 142
Interface CosNotifyChannelAdmin::ProxyPushConsumer 144
Interface CosNotifyChannelAdmin::StructuredProxyPushConsumer 145
Interface CosNotifyChannelAdmin::SequenceProxyPushConsumer 146
Interface CosNotifyChannelAdmin::ProxyPullSupplier 147
Interface CosNotifyChannelAdmin::StructuredProxyPullSupplier 148
Interface CosNotifyChannelAdmin::SequenceProxyPullSupplier 149
Interface CosNotifyChannelAdmin::ProxyPullConsumer 150
Interface CosNotifyChannelAdmin::StructuredProxyPullConsumer 151
Interface CosNotifyChannelAdmin::SequenceProxyPullConsumer 152
Interface CosNotifyChannelAdmin::ProxyPushSupplier 153
Interface CosNotifyChannelAdmin::StructuredProxyPushSupplier 154
Interface CosNotifyChannelAdmin::SequenceProxyPushSupplier 155
Interface CosNotifyChannelAdmin::ConsumerAdmin 156
Interface CosNotifyChannelAdmin::SupplierAdmin 159
Interface CosNotifyChannelAdmin::EventChannel 161
Interface CosNotifyChannelAdmin::EventChannelFactory 164

Appendix E CosNotifyComm Reference 167
Module CosNotifyComm 168

Interface CosNotifyComm::NotifyPublish 169
Interface CosNotifyComm::NotifySubscribe 170
Interface CosNotifyComm::PushConsumer 171
Interface CosNotifyComm::PullConsumer 172
Interface CosNotifyComm::PullSupplier 173
v

CONTENTS
Interface CosNotifyComm::PushSupplier 174
Interface CosNotifyComm::StructuredPushConsumer 175
Interface CosNotifyComm::StructuredPullConsumer 176
Interface CosNotifyComm::StructuredPullSupplier 177
Interface CosNotifyComm::StructuredPushSupplier 178
Interface CosNotifyComm::SequencePushConsumer 179
Interface CosNotifyComm::SequencePullConsumer 180
Interface CosNotifyComm::SequencePullSupplier 181
Interface CosNotifyComm::SequencePushSupplier 182

Appendix F CosNotifyFilter Reference 183
Module CosNotifyFilter 184

Interface CosNotifyFilter::Filter 188
Interface CosNotifyFilter::MappingFilter 192
Interface CosNotifyFilter::FilterFactory 196
Interface CosNotifyFilter::FilterAdmin 197

Appendix G OBNotify Reference 199
Module OBNotify 200

Notify Bibliography 203
vi

List of Tables

Table 1: Configuration Properties 7

Table 2: Proxy Selection 24

Table 3: Event QoS properties 40

Table 4: QoS Properties 41

Table 5: Retry Properties 43

Table 6: Proprietary QoS Properties 44

Table 7: Administrative Properties 45
vii

LIST OF TABLES
 viii

List of Figures

Figure 1: Starting the Orbacus Notify Console 16

Figure 2: Basic Event Service Communications Model 18

Figure 3: Canonical Push Model 21

Figure 4: Canonical Pull Model 21

Figure 5: Hybrid Push/Pull Model 22

Figure 6: Hybrid Pull/Push Model 22

Figure 7: Mixed Suppliers and Consumers 23

Figure 8: Event Service CosEventChannelAdmin Object Management Hierarchy 24

Figure 9: Notification Service CosNotifyChannelAdmin Object Management Hierarchy 29

Figure 10: CosNotification::StructuredEvent 30

Figure 11: Event Translation Example 32

Figure 12: Filter Composition 33

Figure 13: Admin and Proxy Filtering 35

Figure 14: Admin and Proxy Filtering Expression 35

Figure 15: Expression with OR interfilter group operator specified 36

Figure 16: Mapping Filter Composition 38

Figure 17: Orbacus Notify Example 50

Figure 18: Connecting to a Notification Channel 52

Figure 19: Connecting a Supplier to a Notification Channel 56

Figure 20: Connecting a Consumer to a Notification Channel 61

Figure 21: Applying a Filter 72

Figure 22: Demo Event Structure 73

Figure 23: The Orbacus Notify Console Main Window 85

Figure 24: Popup Menu 88

Figure 25: Sample Creation Wizard 89

Figure 26: Notification Channel QoS Properties 91
ix

LIST OF FIGURES
Figure 27: Notification Channel Admin Properties 92

Figure 28: Admin QoS Properties 93

Figure 29: Consumer Admin Mapping Filters 94

Figure 30: Admin Subscription/Offer Types 95

Figure 31: Proxy QoS Properties 96

Figure 32: Supplier Proxy Mapping Filters 97

Figure 33: Proxy Subscription/Offer Types 98

Figure 34: Constraint Expression Properties 100

Figure 35: Constraint Event Type Properties 101

Figure 36: Constraint Expression Properties 104

Figure 37: Constraint Event Type Properties 105

Figure 38: Constraint Result to Set Properties 106
 x

Preface
The Orbacus Library
The Orbacus documentation library consists of the following books:

• Orbacus Guide

• FSSL for Orbacus Guide

• JThreads/C++ Guide

• Orbacus Notify Guide (this book)

Orbacus Guide

This manual describes how Orbacus implements the CORBA standard, and
describes how to develop and maintain code that uses the Orbacus ORB. This is
the primary developer’s guide and reference for Orbacus.

FSSL for Orbacus Guide

This manual describes the FSSL plug-in, which enables secure communications
using the Orbacus ORB in both Java and C++.

JThreads/C++ Guide

This manual describes JThreads/C++, which is a high-level thread abstraction
library that gives C++ programmers the look and feel of Java threads.

Orbacus Notify Guide

This manual describes Orbacus Notify, an implementation of the Object
Management Group’s Notification Service specification.
xi

PREFACE
Audience
Manuals in the Orbacus library are written for intermediate to advanced level
programmers who are:

• Experienced with Java or C++ programming

• Familiar with the CORBA standard and its specifications

These manuals do not teach the CORBA specification or CORBA programming
in general, which are prerequisite skills. These manuals concentrate on how
Orbacus implements the CORBA standard.

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Keying conventions

This book uses the following keying conventions:

Fixed width Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must supply,
such as arguments to commands or path names for your
particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences dialog.
 xii

PREFACE
No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
xiii

PREFACE
Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers
and addresses.

Further Information and Product
Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

• The Product Updates section of the Micro Focus
SupportLine Web site, where you can download fixes
and documentation updates.

• The Examples and Utilities section of the Micro Focus
SupportLine Web site, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your
browser to go to the Micro Focus home page, then click
Support.

Note:

Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus,
contact us as described on the Micro Focus Web site, http://
www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Also, visit:

• The Micro Focus Community Web site, where you can
browse the Knowledge Base, read articles and blogs,
find demonstration programs and examples, and
discuss this product with other users and Micro Focus
specialists.
 xiv

http://www.microfocus.com

PREFACE
• The Micro Focus YouTube channel for videos related to
your product.

Information We Need
However you contact us, please try to include the
information below, if you have it. The more information you
can give, the better Micro Focus SupportLine can help you.
But if you don't know all the answers, or you think some are
irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you
think might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of
any networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the
documentation.

• Your serial number. You can find this by either logging
into your order via the Electronic Product Distribution
email or via the invoice with the order.

Contact information
Our Web site gives up-to-date details of contact numbers
and addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the Product Updates section of the
Micro Focus SupportLine Web site, where you can download
fixes and documentation updates. To connect, enter http://
www.microfocus.com in your browser to go to the Micro
Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
xv

http://www.microfocus.com
http://www.microfocus.com

PREFACE
download it from our Web site or order it in printed form
from your sales representative. Support from Micro Focus
may be available only to customers who have maintenance
agreements.

You may want to check in particular:

https://supportline.microfocus.com/productdoc.aspx.
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

ttp://www.microfocus.com/Resources/Newsletters/
infocus/newsletter-subscription.asp
 xvi

https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

CHAPTER 1

Introduction
This chapter gives a brief overview of Orbacus Notify.

In this chapter This chapter contains the following section:

Overview page 2
1

CHAPTER 1 | Introduction
Overview

What is Orbacus Notify? Orbacus Notify is an implementation of the Object Management Group (OMG)
Notification Service specification [1]. It is fully backwards compatible with the
OMG Event Service specification [2], providing a smooth migration path for
applications that use an event service.

Features Some highlights of Orbacus Notify are:

• Written in C++ for maximum performance

• Multi-threaded architecture

• Event filtering

• Any, structured, and sequence event types

• Push and pull suppliers and consumers

• Quality of Service (QoS) parameters to control event queueing and event

lifetime

• Persistent and best effort event and channel reliability QoS parameters

• Subscription sharing between channels and clients

Graphical interface Orbacus Notify also features the Orbacus Notify Console, a graphical user
interface, which is written in Java for maximum portability. The user interface
supports the maintenance of:

• Event channels

• Supplier and consumer admins

• Proxy consumers and suppliers

• All QoS parameters

• Filters and constraint expressions

• Event subscription and offer information

About this document The Orbacus Notify manual provides a brief overview of Event and Notification
Service concepts. However, this document is not a substitute for the OMG Event
Service and Notification Service specifications. Please consult [1] and [2] for a
detailed description of these services.
2

Overview
The manual also includes a discussion of configuration issues, an introduction to
application development with examples in C++ and Java, and detailed
descriptions of the Orbacus Notify Console and proprietary Orbacus Notify
features.
3

CHAPTER 1 | Introduction
4

CHAPTER 2

Configuration and
Startup
This chapter describes how to start Orbacus Notify and lists
various configuration properties.

In this chapter This chapter contains the following sections:

Orbacus Notify page 6

Orbacus Notify Console page 13

Startup Example page 14
5

CHAPTER 2 | Configuration and Startup
Orbacus Notify

Synopsis Orbacus Notify is used with the following syntax:

notserv [-v, --version] [-h, --help] [-i, --ior] [-d, --dbdir]

Options:

Windows native service Orbacus Notify is also available as a native Windows service.

ntnotservice [h, --help] [-i, --install] [-u, --uninstall]
[-d, --debug]

Options:

In order to use Orbacus Notify as a native Windows service, it is first necessary
to add the NotificationService initial reference to the HKEY_LOCAL_MACHINE
NT registry key (see “Using the Windows Registry” in Using Orbacus for more
details).

-v, --version Reports the Orbacus Notify version number.

-h, --help Displays notserv command information.

-i, --ior Prints IOR on standard output.

-d, --dbdir Specifies the path to the database directory
(e.g., --dbdir <database directory>).

-h, --help Displays command line options supported by the
server.

-i, --install Install the service. The service must be started
manually.

-s, --start-install Install the service. The service will be started
automatically.

-u, --uninstall Uninstall the service.

-d, --debug Run the service in debug mode.
6

Orbacus Notify
Next the service is installed with:

ntnotservice -i

This adds the Orbacus Notify entry to the Services dialog in the Control Panel.
To start Orbacus Notify, select the Orbacus Notify entry and press Start. If the
service is to be started automatically when the machine is booted, select the
Orbacus Notify entry, then click Startup. Next select Startup Type -
Automatic, and press OK.

If you want to remove the service, run:

ntnotservice -u

Any trace information provided by the service is placed in the Windows Event
Viewer with the title NotifyService.

Configuration properties In addition to the standard Orbacus configuration properties, Orbacus Notify
also supports the following properties:

Note: If the executable for Orbacus Notify is moved, it must be uninstalled
and re-installed.

Table 1: Configuration Properties

Property Value Description

ooc.notification.dbdir directory Specifies the directory in which Orbacus Notify
stores its databases. This property must be set,
either in a configuration file or on the command
line, otherwise Orbacus Notify will not start.
7

CHAPTER 2 | Configuration and Startup
ooc.notification.dispatch_strategy threaded,
thread_pool

Orbacus Notify supports two different models for
scheduling push and pull requests on clients. The
best dispatch model depends on how Orbacus
Notify is to be used.

• threaded

Each push supplier and pull consumer proxy has a
thread invoking requests on the client supplier or
consumer. Each proxy transfers or receives events
independent of the other. If there is a large number
of consumers or suppliers, this can result in a large
number of active threads. This model is useful for
environments where communication latency varies
from client to client and/or the host system can
process multiple threads efficiently. On systems
where threads are expensive, it may be preferable to
use thread_pool.

When using the threaded dispatch model, pull
consumer proxies invoke pull() on pull suppliers.

• thread_pool

All channels share a pool of threads that invoke
requests on the client supplier or consumer. There is
a fixed number of threads dispatching requests on
clients, placing an limit on the number of
concurrent push/pull requests. This model is useful
for environments where it is desirable to place an
upper bound on the number of active threads. The
number of threads in the pool are controlled by the
dispatch_threads property.

When using the thread_pool dispatch model, pull
consumer proxies invoke try_pull() on pull
suppliers.

ooc.notification.dispatch_threads threads > 0 Specifies the number of threads for the
thread_pool dispatch strategy. The default is 10.

Table 1: Configuration Properties

Property Value Description
8

Orbacus Notify
ooc.notification.endpoint Value: string Specifies the endpoint configuration for the service.
Note that this property is only used if the
ooc.orb.oa.endpoint configuration property is
not set. (See ooc.orb.oa.endpoint in the Orbacus
Guide.)

ooc.notification.events_per_transac
tion

events > 0 Determines the maximum number of events
selected per database transaction for transmission to
a push consumer. This property reduces total
transaction overhead for persistent events. The
default value is 100.

ooc.notification.eventqueue true, false If true a central event queue is used. The default
value is false, that is the central event queue is not
used. The central event queue helps isolate
suppliers from consumers at the expense of an
increased number of transactions. For
configurations with few suppliers and consumers, it
is recommended to set this to false.

ooc.notification.trace.events level >= 0 Controls the level of diagnostic output related to
event lifecycles. Set this value to 1 or greater to
enable event lifecycle tracing. The default is 0,
which produces no output.

ooc.notification.trace.lifecycle level >= 0 Controls the level of diagnostic output related to
service object (channel, admin, proxy) lifecycles.
Set this value to 1 or greater to enable service object
lifecycle tracing. The default is 0, which produces
no output.

ooc.notification.trace.queue Value: level
>= 0

Controls the level of diagnostic output related to
proxy event queue operations. Set this value to 1 or
greater to enable proxy event queue tracing. The
default is 0, which produces no output.

ooc.notification.trace.retry level >= 0 Controls the level of diagnostic output related to
retried event transmissions. Set this value to 1 or
greater to enable event retry tracing. The default is
0, which produces no output.

Table 1: Configuration Properties

Property Value Description
9

CHAPTER 2 | Configuration and Startup
ooc.notification.trace.subscription level >= 0 Controls the level of diagnostic output related to
subscription sharing. Set this value to 1 or greater to
enable subscription sharing tracing. The default is
0, which produces no output.

ooc.filter.trace.lifecycle Value: level
>= 0

Controls the level of diagnostic output related to
filter object (forwarding filter, mapping filter, filter
factory) lifecycles. Set this value to 1 or greater to
enable service object lifecycle tracing. The default
is 0, which produces no output.

ooc.database.trace.transactions level >= 0 Controls the level of diagnostic output from the
transaction subsystem. Set this value to 1 or greater
to enable database transaction tracing. The default
value is 0, meaning no transaction tracing.

ooc.database.trace.database level >= 0 Controls the level of diagnostic output related to
database activity. Set this value to 1 or greater to
enable database activity tracing. The default value
is 0, meaning no tracing.

ooc.database.trace.locks level >= 0 Controls the level of diagnostic output related to
database locking. Set this value to 1 or greater to
enable database lock tracing. The default value is 0,
meaning no tracing.

ooc.database.max_retries retries >= 0 The maximum number of retries of a transaction
before an abort. When a transaction is aborted it is
completely rolled back and a CORBA::TRANSIENT
exception is raised meaning the client should retry
the request later. A value of 0 means unlimited
retries. The default value is 0.

ooc.database.max_sleep_time time >= 0 The maximum amount of time to sleep (in seconds)
between retries. The time between successive
retries grows exponentially until this value is
reached, that is 1, 2, 4, 8,... max_sleep_time. Set
this value to 0 to disable sleeping between retries.
The default value is 256.

Table 1: Configuration Properties

Property Value Description
10

Orbacus Notify
ooc.database.checkpoint_interval interval >= 0 The interval at which database checkpointing
occurs in seconds, in conjunction with
checkpoint_kbyte. Set this value to 0 to disable
checkpointing. The default is 300 seconds.

ooc.database.checkpoint_kbyte kbyte >= 0 The minimum amount of database log data (in
kilobytes) that must be present before a checkpoint
occurs. Set this value to 0 to create a checkpoint
every checkpoint_interval seconds. The default
is 64 kilobytes.

ooc.database.sync_transactions true, false Specifies whether to use synchronous or
asynchronous database transactions. You can set
this variable to true or false:

• true (default) specifies using synchronous

database transactions. The channel blocks

until the transaction is complete.

• false specifies using asynchronous database

transactions. The channel issues the

transaction and continues.

If set to false, there is a risk of events being lost if
the service crashes. If set to true, performance is
degraded, compared to the false setting. Thus, a
tradeoff is necessary, depending on the importance
of reliability over performance.

ooc.database.max_locks locks > 0 Configures the maximum number of database locks
that may be acquired at any time. The default value
is 16384. If it is expected that the database will
contain a large number of events at any one time,
then this value should be increased.

Table 1: Configuration Properties

Property Value Description
11

CHAPTER 2 | Configuration and Startup
Connecting to the service The object key of Orbacus Notify is DefaultEventChannelFactory, which
identifies an object of type CosNotifyChannelAdmin::EventChannelFactory.
The object key can be used when composing URL-style object references. For
example, the following URL identifies the notification service running on host
nshost at port 10000:

corbaloc::nshost:10000/DefaultEventChannelFactory

ooc.database.max_transactions transactions >
0

Configures the maximum number of concurrent
transactions that may be active at any one time.
This value should be set proportional to the number
of persistent proxies. Otherwise, if there are many
persistent proxies and not enough concurrent
transactions are permitted, performance will
decrease. The default is 20.

Table 1: Configuration Properties

Property Value Description
12

Orbacus Notify Console
Orbacus Notify Console

Synopsis java com.ooc.CosNotifyConsole.Main

There are no command line options specific to the Orbacus Notify Console.
13

CHAPTER 2 | Configuration and Startup
Startup Example
The following is an example for how to start Orbacus Notify and the Orbacus
Notify Console, using an Orbacus configuration file. For more information on
Orbacus configuration files, please refer to Using a Configuration File in Using
Orbacus. Note that it is also possible to use command line parameters instead of
configuration files.

Create a file with the following contents, and save it as /tmp/ob.conf (Unix) or
C:\temp\ob.conf (Windows):

Line 1 Specifies the endpoint configuration for the service. Replace <port>
with an arbitrary, free TCP port (e.g. 10001).

Line 2 Specifies the path to the service’s database directory. Replace
<database directory> with the directory where the service should create its
databases.

Line 3 Provides a reference to the default event channel factory. Replace
<host> with your system’s host name and <port> with the TCP port chosen
above.

Starting Orbacus Notify After Orbacus Notify has been properly built and installed, there will be a
notserv executable in the installation target directory.

For example, on UNIX, assuming the installation path was set to /usr/local,
the executable is:

/usr/local/bin/notserv

And on Windows, with the installation path set to C:\Orbacus:

C:\Orbacus\bin\notserv.exe

ooc.notification.endpoint=iiop --port <port>
ooc.notification.dbdir=<database directory>
ooc.orb.service.NotificationService=corbaloc::<host>:<port>/Defa

ultEventChannelFactory

Note: For clarity, line 3 of this example is shown on two lines. This line must
be one continuous line in your configuration.
14

Startup Example
You can start Orbacus Notify in two ways:

• Specify the configuration file on the command line:

Unix

/usr/local/bin/notserv -ORBconfig /tmp/ob.conf

Windows

C:\Orbacus\bin\notserv.exe -ORBconfig C:\temp\ob.conf

• Specify the configuration file with an environment variable:

Unix

ORBACUS_CONFIG=/tmp/ob.conf
export ORBACUS_CONFIG
/usr/local/bin/notserv

Windows

set ORBACUS_CONFIG=C:\temp\ob.conf
C:\Orbacus\bin\notserv.exe

Starting the Orbacus Notify
Console

The Java archive OBNotify.jar contains the Orbacus Notify Console.

For example, on Unix, assuming the installation path was set to /usr/local, the
archive can be found at:

/usr/local/lib/OBNotify.jar

And on Windows, assuming the installation path was set to C:\Orbacus:

C:\Orbacus\lib\OBNotify.jar

Note that the console application also requires OB.jar, OBEvent.jar, and
OBUtil.jar from Orbacus for Java distribution. Assuming these files are in the
same directory as OBNotify.jar, the console can be started as follows:

Unix

CLASSPATH=/usr/local/lib/OB.jar:/usr/local/lib/OBEvent.jar:/usr/l
ocal/lib/OBUtil.jar:/usr/local/lib/OBNotify.jar:$CLASSPATH

export CLASSPATH
java com.ooc.CosNotifyConsole.Main -ORBconfig /tmp/ob.conf

Windows

set CLASSPATH=C:\Orbacus\lib\OB.jar;C:\Orbacus\lib\OBEvent.jar;C:
\Orbacus\lib\OBUtil.jar;C:\Orbacus\lib\OBNotify.jar;
%CLASSPATH%

java com.ooc.CosNotifyConsole.Main -ORBconfig C:\temp\ob.conf
15

CHAPTER 2 | Configuration and Startup
Figure 1: shows a screenshot of the console right after startup.

Figure 1: Starting the Orbacus Notify Console
16

CHAPTER 3

Notification
Service Concepts
This chapter describes the Orbacus Event and Notification
Services.

In this chapter This chapter contains the following sections:

Overview page 18

The OMG Event Service page 20

The OMG Notification Service page 27
17

CHAPTER 3 | Notification Service Concepts
Overview
In general, CORBA communications are synchronous. A client obtains a
reference to a target object, invokes a request on that object, and blocks while
waiting for a reply. For some applications the blocking request mechanism is not
suitable. An alternative is to implement a distributed callback mechanism
allowing applications to make requests on a peer and have that peer notify it
asynchronously of the result. This introduces significant complexity since the
application must now deal with issues related to peer registration, persistence,
managing peer object references, peer unavailability, etc. The effort required to
handle such matters may dwarf the application’s true purpose.

The OMG Event Service was designed to decouple communications between
peer applications, for which the synchronous request model and distributed
callback scheme was too restrictive or too complex. The Event Service
introduced the concept of the event channel, an entity to which peers could
connect to supply and consume events. Clients of the Event Service are
classified as suppliers, consumers, or both depending on how they connect to an
event channel. Figure 2 illustrates a simplified delivery model:

Still, the event service suffers from some serious drawbacks.

Lack of Reliability

The event service makes no guarantees with regards to event delivery or
connection persistence. Any level of reliability is vendor specific.

Figure 2: Basic Event Service Communications Model

Supplier ConsumerEvent Channel

Direction of Event Flow
18

Overview
Lack of Structured Events and Event Filtering

In the event service, the structure of events is unknown to the event channel and
consumers are forced to handle all events when only a small subset may be of
interest. The CPU time necessary to interpret and discard unwanted events may
seriously impact consumer performance. This is exacerbated when multiple
suppliers are connected to a channel.

Lack of an Event Channel Factory

The event service does not address the issue of channel creation. Instead vendors
are forced to define and implement proprietary interfaces for this purpose. As a
result event service clients become tied a particular vendor and are not easily
ported to other event service implementations.

The OMG has adopted the Notification Service to address these issues while
maintaining compatibility with the Event Service. This chapter presents an
overview of Event Service and Notification Service concepts.
19

CHAPTER 3 | Notification Service Concepts
The OMG Event Service

Overview This section explains many of the terms and concepts covered by the Event
Service. Section builds upon this discussion with a presentation of the ideas
introduced by the OMG Notification Service. Refer to specifications [1] and [2]
for a complete discussion of the Event Service and Notification Service.

In this section This section contains the following topics:

Delivery Models page 21

Object Management Hierarchy page 24

Event Delivery page 26
20

The OMG Event Service
Delivery Models

Overview The mode of event delivery in the Event Service is selected by suppliers and
consumers at connection time. The models supported by the event service are
discussed next.

Canonical push model In this model, the supplier pushes events to an event channel which in turn
pushes events to the consumer (see Figure 3).

The push supplier is termed active since it initiates event delivery with the
channel. Conversely the push consumer is passive since the channel initiates
event delivery.

Canonical pull model In this model, the channel pulls events from the supplier while the consumer
pulls events from the channel (see Figure 4).

A pull supplier is passive since the channel initiates event delivery. A pull
consumer initiates event delivery with a channel and is termed active.

Figure 3: Canonical Push Model

Push Supplier Push ConsumerEvent Channel
Push Push

Direction of Event Flow

Figure 4: Canonical Pull Model

Pull Supplier Pull ConsumerEvent Channel
Pull Pull

Direction of Event Flow
21

CHAPTER 3 | Notification Service Concepts
Hybrid push/pull model In the Hybrid Push/Pull model, a push supplier pushes events to an event
channel while a pull consumer pulls event from the channel (see Figure 5).

Both the supplier and consumer play active roles in this model.

Hybrid pull/push model In the Hybrid Pull/Push model, an event channel pulls events from suppliers and
pushes them to consumers (see Figure 6).

The supplier and consumer are both passive in this model.

Combinations of the various models are also supported as illustrated in Figure 7.

Figure 5: Hybrid Push/Pull Model

Push Supplier Pull ConsumerEvent Channel
Pull

Direction of Event Flow

Push

Figure 6: Hybrid Pull/Push Model

Pull Supplier Push ConsumerEvent Channel
Pull

Direction of Event Flow

Push
22

The OMG Event Service
Figure 7: Mixed Suppliers and Consumers

Pull Supplier

Push ConsumerEvent Channel
Pull

Direction of Event Flow

Push

Push Consumer

Pus
h

Pull Consumer

Pull

Push Supplier Push
23

CHAPTER 3 | Notification Service Concepts
Object Management Hierarchy
The relationship between Event Service objects is shown in Figure 8.1

An Event Service client, ultimately, connects to a proxy object reference so that
it may supply or consume events. A set of steps to obtain a proxy object
reference are:

• Obtain an initial reference to an event channel, this is outside the scope of

the Event Service specification

• Obtain the appropriate admin object from the channel. Suppliers will want

a CosEventChannelAdmin::SupplierAdmin, while consumers will want a

CosEventChannelAdmin::ConsumerAdmin

• Obtain the appropriate proxy from the admin as summarized in Table 2

1. This diagram is for an untyped event channel. A similar structure exists for typed event
channels.

Figure 8: Event Service CosEventChannelAdmin Object Management
Hierarchy

EventChannel

ConsumerAdmin

SupplierAdmin

ProxyPushSupplier

ProxyPullSupplier

ProxyPushConsumer

ProxyPullConsumer

Table 2: Proxy Selection

Event Service
Client Type

Required Proxy Type

push supplier CosEventChannelAdmin::ProxyPushConsumer

pull supplier CosEventChannelAdmin::ProxyPullConsumer

push consumer CosEventChannelAdmin::ProxyPushSupplier
24

The OMG Event Service
• Connect to the proxy

The proxy, depending on its type, has methods which support the push and pull
of events by suppliers and consumers.

pull consumer CosEventChannelAdmin::ProxyPullSupplier

Table 2: Proxy Selection

Event Service
Client Type

Required Proxy Type

Note: Alternatively, Event Service clients may obtain an object
reference (from a naming service, for example) to any of the Event
Service objects and then obtain and connect to the proxy.
25

CHAPTER 3 | Notification Service Concepts
Event Delivery
Untyped event delivery in the event service is via a CORBA::Any. That is, the
event data is unknown to the channel. The proxy interfaces require suppliers to
insert event data into a CORBA::Any before the event is pushed on or pulled by
the channel. Similarly for consumers, all pulled and pushed events are contained
within a CORBA::Any. Consumers must first extract the event before deciding
whether to process or discard it.
26

The OMG Notification Service
The OMG Notification Service
Much of the previous discussion on the OMG Event Service applies equally to
the OMG Notification Service. The Notification Service was designed to be
backward-compatible with the Event Service and it reuses and/or derives from
equivalent Event Service IDL interfaces.

In this section This section contains the following topics:

Delivery Models page 28

Object Management Hierarchy page 29

Event Delivery page 30

Event Translation page 32

Filtering page 33

Mapping Filters page 37

Quality of Service page 39

Proprietary QoS Properties page 43

Administrative Properties page 45

Subscription Sharing page 46
27

CHAPTER 3 | Notification Service Concepts
Delivery Models
The Notification Service supports the same delivery models as the Event
Service, described in “The OMG Event Service” on page 20.
28

The OMG Notification Service
Object Management Hierarchy
The relationship between Notification Service objects is illustrated in Figure 9.

Note the objects marked with (*); these are Notification Service equivalents of
the Event Service counterparts. Also note the interfaces added by the
Notification Service. The CosNotifyChannelAdmin::EventChannelFactory
addresses the lack of factory issue in the Event Service, while several proxy
interfaces have been added to support structured event delivery.

Figure 9: Notification Service CosNotifyChannelAdmin Object Management
Hierarchy

EventChannel*

ConsumerAdmin*

SupplierAdmin*

ProxyPushSupplier*

ProxyPullSupplier*

ProxyPushConsumer*

EventChannelFactory

StructuredProxyPullSupplier

SequenceProxyPullSupplier

StructuredProxyPushSupplier

SequenceProxyPushSupplier

ProxyPullConsumer*

StructuredProxyPullConsumer

SequenceProxyPullConsumer

StructuredProxyPushConsumer

SequenceProxyPushConsumer
29

CHAPTER 3 | Notification Service Concepts
Event Delivery
The Notification Service supports the delivery of events in a CORBA::Any as does
the Event Service. In addition, the Notification Service introduces the concept of
structured events and sequence events.

Structured Events

Structured events are represented with the
CosNotification::StructuredEvent type as shown in Figure 10.

Figure 10: CosNotification::StructuredEvent

remainder_of_body

domain_name

type_name

event_name

fd_name1 fd_value1

fd_name2 fd_value2

Fixed Header

Variable
Header

Filterable
Fields

Remaining
Body

Event Header

Event Body ...

fd_namen fd_valuen

ohf_name1 ohf_value1

ohf_name2 ohf_value2

...

ohf_namen ohf_valuen
30

The OMG Notification Service
The two main components of a structured event are the event header and event
body. The event header is further sub-divided into a fixed header and variable
header. The fixed header categorizes the event, while the variable header
consists of zero or more name-value pairs which specify per-event QoS
information. See [1] for complete event header details. The event body holds the
interesting event data in name-value pairs comprising the filterable fields and
other event data in the opaque remaining body field.

Sequence Events

In some instances, it is inefficient to transfer events one-at-a-time. To address
this the Notification Service includes support for sequences of structured events
on the supplier and consumer side. Suppliers may transfer multiple events to a
channel in a single CORBA method invocation; likewise consumers may receive
multiple structured events in a single CORBA method call.
31

CHAPTER 3 | Notification Service Concepts
Event Translation
The Notification Service does not impose the restriction that peer entities
(suppliers and consumers) must deal with the same event type. For example a
structured consumer can receive events from an unstructured supplier. Rules
exist (see [2]) that define how events are translated into a format suitable for
various consumers. Event translation supports configurations like that in
Figure 11.

Figure 11: Event Translation Example

AnyPullSupplier

AnyPushConsumerEvent Channel

Direction of Event Flow

SequencePushConsumer

StructuredPullConsumer

StructuredPushSupplier
32

The OMG Notification Service
Filtering
The Notification Service defines a set of interfaces in the CosNotifyFilter
module which support event filtering. In the same way event channels are
created from the EventChannelFactory, filters are created from the
FilterFactory. The default filter factory is available from the
CosNotifyChannelAdmin::EventChannel interface.

Each filter contains a list of constraints, where each constraint is composed of a
list of event types and a single boolean constraint expression (the filter structure
is illustrated in Figure 12).

Figure 12: Filter Composition

Filter

...

Constraint1

Constraint Expression

ConstraintN

Constraint Expression

Event Types

domain name1 type name1

domain namen type namen

...

Event Types

domain name1 type name1

domain namen type namen

...
33

CHAPTER 3 | Notification Service Concepts
The constraint expression conforms to some constraint grammar and specifies
restrictions based on the data in the event filterable fields. Notify supports the
default constraint grammar as specified in [1]. For an event to match a constraint
it must match one or more of the event types within that constraint and the
constraint expression must evaluate to true. If a filter contains multiple
constraints, OR semantics are applied between the constraints. That is, the
boolean result of applying a filter can be expressed as:

where:

A given proxy or admin may have multiple filters associated with it. Again, OR
semantics are applied between filter results. That is, the boolean result of
applying multiple filters is:

where:

Perhaps the most complicated scenario is when a proxy and its parent admin
both have multiple filters associated with them. The filters associated with the
admin are applied as described above (using OR semantics). Likewise the filters
associated with the proxy are applied (again using OR semantics). Next the
results of these two operations are combined. The semantics, AND or OR, of this
final operation are specified at the time the admin object was created and is

RFilter C1 C2  CN+ + +=

RFilter is the boolean result of applying a filter

Cn, n=1..N is the boolean result of applying constraint n within the
filter

RAllFilters RFilter1 RFilter2  RFilterN+ + +=

RAllFilters is the boolean result of applying all filters for an admin or
proxy

RFiltern, n=1..N is the boolean result of applying filter n
34

The OMG Notification Service
known as the interfilter group operator. So, for the configuration in Figure 13,
the expression in Figure 14 applies.

where:

Figure 13: Admin and Proxy Filtering

Admin
(AND interfilter
group operator)

Proxy

Filter2

FilterM

...

Filter1

Filter2

FilterN

...

Filter1

Figure 14: Admin and Proxy Filtering Expression

RFinal RFilter1 RFilter2  RFilter M + + +  RFilter1 RFilter2  RFilterN+ + + =

RFinal is the boolean result of applying all filters for the admin and proxy

RFilterm, m=1..M is the boolean result of applying admin filter m

RFiltern, n=1..N is the boolean result of applying proxy filter n
35

CHAPTER 3 | Notification Service Concepts
If the OR interfilter group operator is specified during creation of the admin
object, then the resulting expression is shown in Figure 15:

Filters can be applied at the supplier and consumer ends of a channel, and at the
admin and proxy levels. Also note that a single filter can be associated with
multiple admins or proxies. This practice is not recommended, since it can lead
to a service which is difficult to manage.

Figure 15: Expression with OR interfilter group operator specified

RFinal RFilter1 RFilter2  RFilterM+ + +  RFilter1 RFilter2  RFilterN+ + + +=
36

The OMG Notification Service
Mapping Filters

Overview Mapping filters allow consumers to affect the priority and lifetime settings of an
event. The application of a mapping filter does not actually change any event
settings, instead it influences how the consumer perceives the event.

The structure of the mapping filter is shown in Figure 16 on page 38.

IDL interface The IDL interface for mapping filters, MappingFilter, is defined in the
CosNotifyFilter module. Note the similarities between mapping filters and
regular filters:

• both have a list of constraints

• within each constraint, there is a constraint expression and list of event

types

When a mapping filter is applied to an event each constraint is checked until a
match is found or there are no more constraints. If there is a match then the value
stored in the Value field of the matching constraint is returned to the proxy. This
value is used instead of the actual value for the event property. If there is no
match then the property value contained in the event is used, unless the event
does not specify this property, in which case the mapping filter Default Value is
used.

For this reason mapping filters can only be added to proxy suppliers and
consumer admin objects.
37

CHAPTER 3 | Notification Service Concepts
Figure 16: Mapping Filter Composition

Mapping Filter

...

Constraint1

Constraint Expression

ConstraintN

Constraint Expression

Event Types

domain name1 type name1

domain namen type namen

...

Event Types

domain name1 type name1

domain namen type namen

...

Default Value

Value

Value
38

The OMG Notification Service
Quality of Service

Overview The Notification Service defines standard interfaces for controlling the QoS
characteristics of event delivery. QoS is specified on a per-event,
per-consumer/supplier, or per-channel basis. Interfaces which support QoS
properties derive from the CosNotification::QoSAdmin IDL interface.

Persistence Perhaps one of the most important QoS properties added by the Notification
Service is persistence as it applies to event and connection reliability QoS
parameters.

Connection Persistence

Persistent connection reliability refers to Orbacus Notify’s ability to restore all
object connections after a service restart. That is, when Orbacus Notify starts it
restores all channels, admins, proxies, and filters to their state at shutdown. In
addition Orbacus Notify also attempts to re-establish communication with any
clients that were connected at shutdown.

Orbacus Notify can also restore connections to restarted clients. These clients
must supply a persistent, non-nil object reference when connecting to the proxy.

Event Persistence

With connection persistence enabled, Orbacus Notify also supports event
persistence. That is all consumers connected at the time an event is delivered to
the channel are guaranteed to receive that event within event expiry limits.

The following section describes the available properties.

Note: Orbacus Notify does not permit admin and proxy objects to set a
connection reliability different than that set on the parent event channel.
39

CHAPTER 3 | Notification Service Concepts
Event QoS properties The following QoS properties are set on a per-event basis.

Table 3: Event QoS properties

Property Value Description

EventReliability BestEffort,
Persistent

EventReliability, when set on a per event basis,
sets a different reliability for the target event than
that specified at the channel/admin/proxy level.
Note that it is not permitted to specify per event
Persistent event reliability over a channel with
BestEffort event reliability. By default, the
reliability of event delivery is determined by the
EventReliability setting of the channel.

Priority -32767 <= priority
<= 32767

The order in which events are delivered to a
consumer can be specified based on the priority of
an event. The lowest priority is -32,767 and 32,767
is the highest. The default priority is 0.

Timeout TimeBase::TimeT Timeout states a relative expiry time after which an
event can be discarded. By default, events have no
relative expiry time.

StopTime TimeBase::UtcT StopTime states an absolute expiry time after
which an event can be discarded. By default,
events have no absolute expiry time.

StartTime TimeBase::UtcT StartTime states an absolute earliest delivery time
after which the event can be delivered. The
StartTime property provides the ability to hold an
event until a specified time, and be eligible for
delivery only after that time. By default, events are
eligible for transmission as soon as they are
received by the service.
40

The OMG Notification Service
QoS properties The following QoS properties are set on a per-channel/admin/proxy basis.

Table 4: QoS Properties

Property Value Description

EventReliability BestEffort,
Persistent

EventReliability is set on the channel
object and determines whether the delivery
of all events on the channel will be
Persistent or BestEffort. The default is
BestEffort.

ConnectionReliability BestEffort,
Persistent

ConnectionReliability applies to channel,
admin, and proxy objects, and the
re-establishment of supplier and consumer
connections. The default is BestEffort.

MaxEventsPerConsumer events >= 0 The MaxEventsPerConsumer property is
used to limit the number of events that will
be queued in a ProxySupplier. The default is
0, meaning no limit.

OrderPolicy AnyOrder,
FifoOrder,
PriorityOrder,
DeadlineOrder

OrderPolicy determines the order in which
events are queued for delivery to a
consumer. AnyOrder means that any
ordering policy (FifoOrder,
PriorityOrder, or DeadlineOrder) may be
used. The default is PriorityOrder.

DiscardPolicy AnyOrder,
FifoOrder,
LifoOrder,
PriorityOrder,
DeadlineOrder,
RejectNewEvents

DiscardPolicy applies when a queue
reaches a limit specified by
MaxEventsPerConsumer admin property,
and specifies the order in which events
should be discarded. The default is AnyOrder
meaning that any event may be discarded on
overflow.

MaximumBatchSize size > 0 Indicates the maximum number of events
that will be delivered in a sequence of
structured events. The default is 1.
41

CHAPTER 3 | Notification Service Concepts
PacingInterval TimeBase::TimeT PacingInterval is the maximum period of
time a channel will collect events into a
sequence before delivering the sequence.
The default is 0, meaning that a sequence of
events is transmitted when ready

Note: For a more extensive description of the above listed properties, please
refer to [1].

Table 4: QoS Properties

Property Value Description
42

The OMG Notification Service
Proprietary QoS Properties
While the Notification Service specification [1] defines a wide range of QoS
properties, there are some important features which remain undefined. For
example, although the specification provides QoS properties to control priority,
expiry times, and earliest delivery time for events, it does not specify how an
event communication failure is handled. Similarly, for pull events, the
specification does not define how often the pull should occur. To address these
deficiencies, Orbacus Notify implements a number of proprietary features. The
IDL names for these features are specified in the OBNotify module.

Properties for retry handling of a
failed event communication

Orbacus Notify includes several QoS properties which configure proprietary
retry handling facilities. A retry occurs when Orbacus Notify attempts to push an
event and receives an exception, thereby prompting it to retry sending the event
at specified intervals.

Table 5: Retry Properties

Property Value Description

RetryTimeout TimeBase::TimeT The RetryTimeout specifies the initial amount of
time that Orbacus Notify waits before trying to
resend an event after a communication failure with
a client. The default value is 1 second.

RetryMultiplier 1.0 <= multiplier <=
2.0

The RetryMultiplier is the value by which the
current value of the RetryTimeout is multiplied to
determine the next RetryTimeout value. The
RetryMultiplier may also be used to provide a
backoff value if necessary. The default value is 1.0.

MaxRetryTimeout TimeBase::TimeT The MaxRetryTimeout property is the maximum
value or ceiling that the RetryTimeout can have.
This property applies to RetryTimeout values that
are directly assigned by a developer as well as
those that are generated from the multiplication of
the RetryMultiplier and RetryTimeout. The
default value is 60 seconds.

The relationship among the above properties is defined as follows:

RetryTimeout RetryMultiplier MaxRetryTimeout
43

CHAPTER 3 | Notification Service Concepts
Other proprietary QoS properties This section describes other proprietary QoS properties available for Orbacus
Notify.

MaxRetries retries >= 0 The MaxRetries value is the maximum number of
times that a failed event communication should be
retried. Once this number has been reached, the
proxy is destroyed and the communication
terminated. The default value is 0, meaning
unlimited retries.

RequestTimeout TimeBase::TimeT The amount of time permitted for a blocking
request on a client to return before a timeout. The
default value is 5 seconds.

Table 5: Retry Properties

Property Value Description

Table 6: Proprietary QoS Properties

Property Value Description

PullInterval interval >= 0 Orbacus Notify includes a PullInterval property
to specify how often events should be pulled from
suppliers. This property is applicable to the pull
model and enables users to configure the frequency
of pull requests made on suppliers. The default
value is 1 second.

RequestTimeout TimeBase::TimeT The RequestTimeout property specifies the
maximum time limit for requests made on pull
suppliers and push consumers by their associated
proxies. The maximum value for this property is 10
minutes. The default value is 5 seconds.
44

The OMG Notification Service
Administrative Properties
In addition to configurable QoS properties, event channels also support the
configuration of certain administrative properties. There are three administrative
properties, each of type long, which are supported by an event channel.

The default value is 0 for all properties, meaning that no limit applies to that
property.

Table 7: Administrative Properties

Property Value Description

MaxConsumers consumers >= 0 The maximum number of consumers that can be
connected to a channel at any given time.

MaxSuppliers suppliers >= 0 The maximum number of suppliers that can be
connected to a channel at any given time.
45

CHAPTER 3 | Notification Service Concepts
Subscription Sharing
Subscription sharing is a standard mechanism for suppliers to publish the types
of events that they will supply and for consumers to subscribe to event types that
they wish to receive. The information can be used by suppliers and consumers to
decide whether they wish to supply events or consume events on a notification
channel.

The Notification Service supports subscription sharing between channels and
channel clients through the following interfaces:

Supplier admins and proxy consumers inherit the NotifyPublish interface.
Suppliers may use the offer_change method to notify the channel that it is
about to start supplying new event types or is about to stop supplying an existing
type. The channel maintains an aggregate list of all event types currently offered;
and when this changes it notifies consumers through the offer_change method.

// IDL
module CosNotifyComm
{
 ...
 interface NotifyPublish
 {
 void offer_change (
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);

 }; // NotifyPublish

 interface NotifySubscribe
 {
 void subscription_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);
 }; // NotifySubscribe
 ...
};
46

The OMG Notification Service
Consumer admins and proxy suppliers inherit the NotifySubscribe interface.
Consumers may use the subscription_change method to
subscribe/unsubscribe to a set of channel events. Again, the channel maintains
an aggregate list of all subscriptions, and when this changes it notifies suppliers
through the subscription_change method.

Subscription sharing allows sophisticated suppliers and consumers to
dynamically control the types of events that flow through the channel. This can
increase channel efficiency since unwanted events are no longer produced.
47

CHAPTER 3 | Notification Service Concepts
48

CHAPTER 4

Programming
Example
This chapter describes a set of steps which implement a simple
Orbacus Notify supplier and consumer.

In this chapter This chapter contains the following sections:

Introduction page 50

Connecting to a Notification Channel page 51

Supplying Events page 69

Consuming Events page 71

Filtering page 72

Disconnecting from a Notification Channel page 79

Building Orbacus Notify Clients page 81/
49

CHAPTER 4 | Programming Example
Introduction
This chapter describes a set of steps which implement a simple Orbacus Notify
supplier and consumer. The supplier uses the push model to present structured
event data to the event channel. Similarly the consumer uses the push model to
receive events from the same channel. Each event represents a letter of the
alphabet in both upper and lower case forms (see Figure 17).

Note that this example is taken from the C++ demos that accompany the
Orbacus Notify distribution, or the equivalent Java demos. See:

notify/demo/simple/StructuredPushSupplier.cpp
notify/demo/simple/StructuredPushConsumer.cpp)

notify/demo/simple/StructuredPushSupplier.java
notify/demo/simple/StructuredPushConsumer.java

In this example, the supplier and consumer create the channel, admin and proxy
objects. Alternatively an Orbacus Notify client could use an already existing
object, either through a published IOR or via the unique ID assigned to such
objects within Orbacus Notify.

For clarity, appropriate exception handling and error checking is not included in
the code snippets.

Figure 17: Orbacus Notify Example

Structured Push
Supplier

Structured Push
Consumer

Event Channel
Push Push

D dE eF f
50

Connecting to a Notification Channel
Connecting to a Notification Channel
This section describes how suppliers and consumers connect to a notification
channel so that they may transfer events. Figure 18 illustrates how the supplier
and consumer connect to an event channel in this example. Each of these steps
are described next.
51

CHAPTER 4 | Programming Example
Figure 18: Connecting to a Notification Channel

Resolve Event Channel Factory
Obtain Notification Channel

Obtain Supplier Admin

Obtain Proxy Consumer
 Delivery Model

 Push
 Pull

 Client Type
 Any
 Structured
 Sequence

Connect to Proxy Consumer

Implement Supplier

Push/Pull

Callback on
Disconnect

Obtain Consumer Admin

Obtain Proxy Supplier
 Delivery Model

 Push
 Pull

 Client Type
 Any
 Structured
 Sequence

Connect to Proxy Supplier

Implement Consumer

Push/Pull

Callback on
Disconnect

Supplier/
Consumer

ConsumerSupplier

PullPushPullPush

Yes Yes
NoNo
52

Connecting to a Notification Channel
Resolving the event channel
Factory

Before an application can obtain an event channel it must first resolve the
"NotificationService" initial reference. The result is an object of type
CosNotifyChannelAdmin::EventChannelFactory. The C++ and Java code
follows:

Lines 2-3 Resolve the NotificationService initial reference.

Lines 5-6 Narrow the reference to the appropriate type.

Obtaining an event channel The object reference to the CosNotifyChannelAdmin::EventChannelFactory
is used to create an event channel. Another option is to ask for an existing
channel using an ID previously assigned by Orbacus Notify:

This example creates the channel, if necessary, and publishes the IOR of the
newly created channel1, otherwise an already published IOR is used to get a
channel reference. Note that only one of the supplier or consumer actually
creates the channel, depending on which is started first. It then publishes the IOR
for the newly created channel for use by its peer.

// C++
CORBA::Object_var obj =
 orb -> resolve_initial_references("NotificationService");

CosNotifyChannelAdmin::EventChannelFactory_var
eventChannelFactory =

 CosNotifyChannelAdmin::EventChannelFactory::_narrow(obj);

// Java
org.omg.CORBA.Object obj =
 orb.resolve_initial_references("NotificationService");

EventChannelFactory eventChannelFactory =
 EventChannelFactoryHelper.narrow(obj);

// IDL
interface EventChannelFactory
{
 ...
 EventChannel get_event_channel(in ChannelID id)
 raises(ChannelNotFound);
 ...
};
53

CHAPTER 4 | Programming Example
In C++ the channel is created as follows:

In Java:

Lines 2-3 Create empty property sequences for QoS and Channel
Administration. To specify properties other than the default, add the appropriate
name-value pairs to these sequences. For this example the default properties are
sufficient.

Line 4 The unique channel ID assigned by Orbacus Notify is passed back in the
channelId parameter.

Lines 5-8 Use the event channel factory to create a new channel.

Alternatively, a channel may be obtained from an IOR. In C++:

1. For this simple example, the IOR is published in a file. See the C++ or Java demos for
details.

// C++
CosNotification::QoSProperties initialQoS;
CosNotification::AdminProperties initialAdmin;
CosNotifyChannelAdmin::ChannelID channelId;
CosNotifyChannelAdmin::EventChannel_var eventChannel =
 eventChannelFactory -> create_channel(initialQoS,
 initialAdmin,
 channelId);

// Java
Property[] initialQoS = new Property[0];
Property[] initialAdmin = new Property[0];
org.omg.CORBA.IntHolder channelId = new

org.omg.CORBA.IntHolder();
EventChannel eventChannel =
 eventChannelFactory.create_channel(initialQoS,
 initialAdmin,
 channelId);

// C++
CORBA::Object_var obj = ... // Get reference to the channel
CosNotifyChannelAdmin::EventChannel_var eventChannel =
 CosNotifyChannelAdmin::EventChannel::_narrow(obj);
54

Connecting to a Notification Channel
And in Java:

The code presented so far applies equally to supplier and consumer applications
using either the push or pull model. Connecting the supplier and consumer is
discussed next.

// Java
org.omg.CORBA.Object obj = ... // Get reference to the channel
EventChannel eventChannel = EventChannelHelper.narrow(obj)
55

CHAPTER 4 | Programming Example
Connecting a supplier This section describes how to connect an event supplier to an event channel.
Figure 19 illustrates the steps.

Figure 19: Connecting a Supplier to a Notification Channel

Resolve Event Channel Factory
Obtain Notification Channel

Obtain Supplier Admin

Obtain Proxy Consumer
 Delivery Model

 Push
 Pull

 Client Type
 Any
 Structured
 Sequence

Connect to Proxy Consumer

Implement Supplier

Push/Pull

Callback on
Disconnect

Obtain Consumer Admin

Obtain Proxy Supplier
 Delivery Model

 Push
 Pull

 Client Type
 Any
 Structured
 Sequence

Connect to Proxy Supplier

Implement Consumer

Push/Pull

Callback on
Disconnect

Supplier/
Consumer

ConsumerSupplier

PullPushPullPush

Yes Yes
NoNo
56

Connecting to a Notification Channel
Supplier admin The first step in connecting a supplier is to obtain a supplier admin object. All
event channels come with two read only attributes: default_supplier_admin
and default_consumer_admin.

This example uses the default admin objects:

Supplier applications may also create a new supplier admin using the following:

// IDL
interface EventChannel
{
 ...
 readonly attribute ConsumerAdmin default_consumer_admin;
 readonly attribute SupplierAdmin default_supplier_admin;

 ...
};

// C++
CosNotifyChannelAdmin::SupplierAdmin_var supplierAdmin =
 eventChannel -> default_supplier_admin();

// Java
SupplierAdmin supplierAdmin =
 eventChannel.default_supplier_admin();

// IDL
EventChannel
{
 ...
 SupplierAdmin new_for_suppliers(
 in InterFilterGroupOperator op,
 out AdminID id);
 ...
};
57

CHAPTER 4 | Programming Example
or use an admin with a given AdminID. Note that AdminID is a unique ID
assigned by Orbacus Notify.

Proxy consumer The next step in connecting to an event channel is to obtain the proper proxy
consumer from the supplier admin. This is the point at which the application
specifies the delivery model and type of events it will supply. This example uses
the push delivery model and structured events. The C++ code looks like:

And in Java:

// IDL
EventChannel
{
 ...
 SupplierAdmin get_supplieradmin (in AdminID id)
 raises (AdminNotFound);
 ...
};

//C++
CosNotifyChannelAdmin::ProxyID proxyId;

CosNotifyChannelAdmin::ProxyConsumer_var proxyConsumer =
 supplierAdmin -> obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, proxyId);

CosNotifyChannelAdmin::StructuredProxyPushConsumer_var
 structuredProxyPushConsumer =

CosNotifyChannelAdmin::StructuredProxyPushConsumer::_narrow(
 proxyConsumer);

// Java
org.omg.CORBA.IntHolder proxyId = new org.omg.CORBA.IntHolder();

ProxyConsumer proxyConsumer =
 supplierAdmin.obtain_notification_push_consumer(
 ClientType.STRUCTURED_EVENT, proxyId);

StructuredProxyPushConsumer
 structuredProxyPushConsumer =
 StructuredProxyPushConsumerHelper.narrow(
 proxyConsumer);
58

Connecting to a Notification Channel
Line 2 Variable to hold the ID later assigned to the proxy by Orbacus Notify.

Lines 4-6 Obtain a push consumer, specifying the type. This example wants a
structured event push consumer. Valid types are ANY_EVENT,
STRUCTURED_EVENT, SEQUENCE_EVENT.

Lines 8-11 Narrow the proxy consumer to the appropriate type specified in the
previous call.

Equivalent objects and methods exist for pull model suppliers.

Connecting to a proxy The final step in connecting a supplier to an event channel is to connect to the
proxy. Each of the various proxy types implement their own connect method. A
proxy of type CosNotifyChannelAdmin:: StructuredProxyPushConsumer is
used in this example:

A supplier registers itself with a proxy when it invokes the appropriate connect
method. If the supplier wants notification of either of the following:

• when it is about to be disconnected

• when there is a change in the set of events to which consumers are

currently subscribed

it must implement the appropriate CORBA servant and pass it as an argument in
the connect call. In this case the supplier must also assume the role of CORBA
server.

// IDL
interface StructuredProxyPushConsumer :
 ProxyConsumer,
 CosNotifyComm::StructuredPushConsumer
{
 void connect_structured_push_supplier (
 in CosNotifyComm::StructuredPushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};
59

CHAPTER 4 | Programming Example
The example supplier is not interested in these notifications so it passes a nil
argument during the connect call:

// C++
structuredProxyPushConsumer -> connect_structured_push_supplier(
 CosNotifyComm::StructuredPushSupplier::_nil());

// Java
structuredProxyPushConsumer.
 connect_structured_push_supplier(null);
60

Connecting to a Notification Channel
Connecting a Consumer
This section describes how to connect to an event channel so that an application
may receive events. Figure 20 outlines the process of connecting a consumer to
an event channel.

Figure 20: Connecting a Consumer to a Notification Channel

Resolve Event Channel Factory
Obtain Notification Channel

Obtain Supplier Admin

Obtain Proxy Consumer
 Delivery Model

 Push
 Pull

 Client Type
 Any
 Structured
 Sequence

Connect to Proxy Consumer

Implement Supplier

Push/Pull

Callback on
Disconnect

Obtain Consumer Admin

Obtain Proxy Supplier
 Delivery Model

 Push
 Pull

 Client Type
 Any
 Structured
 Sequence

Connect to Proxy Supplier

Implement Consumer

Push/Pull

Callback on
Disconnect

Supplier/
Consumer

ConsumerSupplier

PullPushPullPush

Yes Yes
NoNo
61

CHAPTER 4 | Programming Example
Consumer admin The first step in connecting a consumer is to obtain a consumer admin. As
mentioned earlier each event channel comes with default supplier and admin
objects. The example consumer uses the default consumer admin:

As with supplier applications, consumers may also create a new consumer admin
object using the following:

or use an admin with a given ID (of type CosNotifyChannelAdmin::AdminID).
Note that this is a unique ID assigned by Notify.

Proxy supplier The next step in connecting a consumer to an event channel is to obtain the
appropriate proxy supplier from the consumer admin object. Like the supplier
example, this is where the consumer specifies the delivery model and type of
events it wishes to receive.

// C++
CosNotifyChannelAdmin::ConsumerAdmin_var consumerAdmin =
 eventChannel -> default_consumer_admin();

// Java
ConsumerAdmin consumerAdmin =
 eventChannel.default_consumer_admin();

// IDL
EventChannel
{
 ...
 ConsumerAdmin new_for_consumers(
 in InterFilterGroupOperator op,
 out AdminID id);
 ...
};

// IDL
EventChannel
{
 ...
 ConsumerAdmin get_consumeradmin (in AdminID id)
 raises (AdminNotFound);
 ...
};
62

Connecting to a Notification Channel
It is important to note that the type of proxies used by suppliers and consumers
are independent of each other. Hybrid delivery models are supported, for
example a pull consumer can receive events from a push supplier. Also the type
of event specified by the proxies are independent due to the event translation
capabilities of the channel. For example, structured events inserted into a
CORBA::Any by the supplier are received as structured events by a structured
consumer.1

This example, like the supplier, uses the push delivery model and structured
events. The corresponding C++ code is:

And in Java:

Line 2 Variable to hold the ID later assigned to the proxy by Orbacus Notify.

1. Try running different combinations of the demo suppliers and consumers which
accompany the Orbacus Notify distribution (see notify/demo/simple). For
example try running the SequencePullSupplier and the AnyPushConsumer.

// C++
CosNotifyChannelAdmin::ProxyID proxyId;

CosNotifyChannelAdmin::ProxySupplier_var proxySupplier =
 consumerAdmin -> obtain_notification_push_supplier(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, proxyId);

CosNotifyChannelAdmin::StructuredProxyPushSupplier_var
 structuredProxyPushSupplier =

CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow(
 proxySupplier);

// Java
org.omg.CORBA.IntHolder proxyId = new org.omg.CORBA.IntHolder();

ProxySupplier proxySupplier =
 consumerAdmin.obtain_notification_push_supplier(
 ClientType.STRUCTURED_EVENT, proxyId);

StructuredProxyPushSupplier
 structuredProxyPushSupplier =
 StructuredProxyPushSupplierHelper.narrow(
 proxySupplier);
63

CHAPTER 4 | Programming Example
Lines 4-6 Obtain a proxy push supplier specifying the type. This example wants
a structured event proxy push supplier. Valid types are ANY_EVENT,
STRUCTURED_EVENT, SEQUENCE_EVENT.

Lines 8-11 Narrow the proxy supplier to the appropriate type specified in the
previous call.

Equivalent objects and methods exist for pull model consumers.
64

Connecting to a Notification Channel
Connecting to a Proxy
The final step in connecting a consumer to an event channel is to connect to the
proxy. This is similar to connecting the supplier with one major difference: a
push consumer must implement the appropriate CORBA servant to support the
event delivery. A push consumer must assume the role of CORBA server since it
has to process incoming requests, namely handle events pushed by the channel.
The implementation of the push consumer servant is discussed next.

Implementing the servant

// C++
class StructuredPushConsumer_impl :
 public CosNotifyComm_StructuredPushConsumer_skel
{
 CORBA_ORB_var orb_;
 CORBA_BOA_var boa_;

public:
 StructuredPushConsumer_impl(
 CORBA_ORB_ptr orb, CORBA_BOA_ptr boa) :
 orb_(CORBA_ORB::_duplicate(orb)),
 boa_(CORBA_BOA::_duplicate(boa))
 {
 }

 virtual ~StructuredPushConsumer_impl()
 {
 }

 void
 push_structured_event(
 const CosNotification_StructuredEvent& event)
 {
 cout << "Pushed..." << endl;
 if(DisplayEvent(event))
 throw CosEventComm_Disconnected();
 }
65

CHAPTER 4 | Programming Example
Lines 2-3 New class defining our servant. Note the derivation from
CosNotifyComm_StructuredPushConsumer_skel which is generated by the
IDL compiler from CosNotifyComm.idl.

Lines 5-6 Keep a reference to the ORB and the BOA.

Lines 9-18 Constructor and destructor. Store our reference to the ORB and
BOA in _var types for automatic memory management.

Lines 20-27 Implement the push_structured_event method. This method is
invoked each time the channel pushes an event; in this example the consumer
displays the event. The DisplayEvent1 routine returns true when an event
containing the last letter of the alphabet is received, prompting the consumer to
disconnect from the channel.

Lines 29-34 On disconnection by the channel, disconnect the servant and end
the process. Invoking deactivate_impl() causes the BOA’s impl_is_ready()
method to return.

Lines 36-41 Not implemented in this example. This method communicates
changes in the event type offering on the channel. Sequences of event types
being added and event types being removed are passed as parameters.

 void
 disconnect_structured_push_consumer()
 {
 orb_ -> disconnect(this);
 boa_ -> deactivate_impl(CORBA_ImplementationDef::_nil());
 }

 void
 offer_change(const CosNotification_EventTypeSeq& added,
 const CosNotification_EventTypeSeq& removed)
 {
 // Event offering has changed
 }
};

1. For the details of DisplayEvent() see any of the demos which accompany the Orbacus
Notify distribution in notify/demo/simple).
66

Connecting to a Notification Channel
The corresponding Java code is presented below:

Lines 2-3 New class defining our servant. Note the derivation from
_StructuredPushConsumerImplBase which is generated by the IDL compiler
from CosNotifyComm.idl.

Lines 5-6 See Lines 5-6 above.

Lines 8-12 Constructor.

// Java
class StructuredPushConsumer_impl extends
 _StructuredPushConsumerImplBase
{
 private ORB orb_;
 private BOA boa_;

 StructuredPushConsumer_impl(ORB orb, BOA boa)
 {
 orb_ = orb;
 boa_ = boa;
 }

 public void
 push_structured_event(StructuredEvent event)
 throws org.omg.CosEventComm.Disconnected
 {
 System.out.println("Pushed...");
 if(StructuredPushConsumer.displayEvent(event))
 throw new org.omg.CosEventComm.Disconnected();
 }

 public void
 disconnect_structured_push_consumer()
 {
 orb_.disconnect(this)
 boa_.deactivate_impl(null);
 }

 public void
 offer_change(EventType[] added, EventType[] removed)
 {
 // Event offering has changed
 }
}

67

CHAPTER 4 | Programming Example
Lines 23-28 See Lines 20-27 above.

Lines 31-36 See Lines 29-34 above.

Lines 30-34 See Lines 36-41 above.

Once the servant is implemented it is registered with the proxy supplier:

All that remains is to activate the BOA, and the consumer is ready to receive
events.

// C++
CosNotifyComm_StructuredPushConsumer_var structuredPushConsumer

= new StructuredPushConsumer_impl(orb, boa);

structuredProxyPushSupplier ->
 connect_structured_push_consumer(structuredPushConsumer);

// Java
StructuredPushConsumer_impl structuredPushConsumer =
 new StructuredPushConsumer_impl(orb, boa);

structuredProxyPushSupplier.connect_structured_push_consumer(
 structuredPushConsumer);
68

Supplying Events
Supplying Events

Overview The mechanism of supplying events to a notification channel depends on the
delivery model. The Orbacus Notify C++ and Java demos implement push and
pull suppliers with any, structured, and sequence events.

Push supplier Implementing a push supplier is relatively easy since no CORBA servants are
required for the most basic applications1. Once connected to the proxy, the
application can immediately start supplying events. This example pushes events
within the main subroutine as shown below:

And in Java:

1. A servant is required if the supplier is interested in knowing when it is disconnected or
when the channel subscription information changes.

// C++
const int numChars = 26;
for(int i = 0 ; i < numChars ; ++i)
{
 cout << "Pushing..." << endl;
 CosNotification_StructuredEvent_var event =
 CreateNewEvent(i);

 structuredProxyPushConsumer ->
push_structured_event(*event);

}

// Java
final int numChars = 26;
for(int i = 0 ; i < numChars ; ++i)
{
 System.out.println("Pushing...");
 StructuredEvent event = createNewEvent(orb, i);

 structuredProxyPushConsumer.push_structured_event(event);
}

69

CHAPTER 4 | Programming Example
The different types of push suppliers have similar but distinct IDL interfaces.
The IDL for the structured push supplier is:

Our example does not implement this interface for reasons stated earlier.

Pull supplier Unlike the push supplier, the pull supplier assumes a passive role in event
delivery. The push supplier is active in that it initiates event delivery on the
channel. Conversely, the pull supplier is passive and has events pulled from it by
the channel. For this reason the pull supplier must implement a servant which
incarnates a CORBA object capable of accepting requests from Orbacus Notify.
Separate, but similar, IDL interfaces exist for the any, structured and sequence
pull suppliers. The IDL for the structured pull supplier is given below.

The blocking pull_structured_event() and non-blocking
try_pull_structured_event() are the methods which retrieve events from the
supplier.

// IDL
interface StructuredPushSupplier : NotifySubscribe
{
 void disconnect_structured_push_supplier();
};

// IDL
interface StructuredPullSupplier : NotifySubscribe
{
 CosNotification::StructuredEvent pull_structured_event()
 raises(CosEventComm::Disconnected);

 CosNotification::StructuredEvent try_pull_structured_event(
 out boolean has_event)
 raises(CosEventComm::Disconnected);

 void disconnect_structured_pull_supplier();
};
70

Consuming Events
Consuming Events

Overview Like supplying events, receiving events varies with the selected delivery model.
The Orbacus Notify C++ and Java demos implement push and pull consumers
for any, structured and sequence events.

Push consumer The push consumer is passive and has events pushed on it by Orbacus Notify. As
such it needs to implement the appropriate servant. As with the suppliers, there
are separate IDL interfaces for the different push consumers (any, structured,
sequence). Below is the IDL for the structured push consumer.

It is in the servant’s implementation of push_structured_event() that events
are received by the push consumer.

Pull consumer Compared to the push consumer, the pull consumer is the easier to implement
and may be likened to the push supplier. The most basic pull consumer need not
implement a servant but may directly invoke the methods of the proxy pull
supplier interface. The any, structured, and sequence pull suppliers have separate
IDL interfaces. The structured pull consumer IDL is given below:

// IDL
interface StructuredPushConsumer : NotifyPublish
{
 void push_structured_event(
 in CosNotification::StructuredEvent notification)
 raises(CosEventComm::Disconnected);

 void disconnect_structured_push_consumer();
};

// IDL
interface StructuredPullConsumer : NotifyPublish
{
 void disconnect_structured_pull_consumer();
};
71

CHAPTER 4 | Programming Example
Filtering
So far this chapter has covered the details of connecting to an event channel and
event delivery mechanisms. One of the powerful features of Orbacus Notify is
the ability to filter events on both the supplier and consumer side. In particular,
filters may be applied to supplier and consumer admins and to supplier and
consumer proxies. This section extends the structured push consumer example
by applying a filter to the supplier proxy (FilteredConsumer.cpp and
FilteredConsumer.java in the C++ and Java demos implement event
filtering).

The steps in applying a filter are illustrated in Figure 21.

Figure 21: Applying a Filter

Obtain a filter

Obtain reference to FilterFactory

Create constraints

Create filter

Add constraints to filter

Add filter to appropriate object
(proxy or admin)
72

Filtering
In this example, the filter object is treated much like an event channel in that it is
not necessarily created during each execution of the demo. If the demo
application determines that it must create a filter, it does so and publishes the
IOR for the filter. Subsequent executions of the demo then attempt to re-use this
filter. Obtaining a filter from its IOR is straightforward:

Demo event structure The structure of the demo events (see Figure 22) is presented before discussing
filter creation.

// C++
CORBA_Object_var obj = ... // Get object from filter IOR
CosNotifyFilter_Filter_var filter =
 CosNotifyFilter_Filter::_narrow(obj);

// Java
org.omg.CORBA.Object obj = ... // Get object from Filter IOR
Filter filter = FilterHelper.narrow(obj);

Figure 22: Demo Event Structure

empty

empty

domain_name: "alpha"

type_name: "character"

event_name: "Hh"

fd_name1: "lower" fd_value1: "h"

fd_name2: "upper" fd_value2: "H"

Fixed Header

Variable
Header

Filterable
Fields

Remaining
Body

Event Header

Event Body
73

CHAPTER 4 | Programming Example
For demonstration purposes all events share the same domain_name and
type_name field values. The event_name field is a concatenation of the filterable
field values. The Variable Header and Remaining Body of the event structure are
left empty. The Filterable Fields contain two name-value pairs for the lower and
upper case versions of alphabetic character.

Obtaining a reference to the filter
factory

The first step in applying a filter is to obtain a reference to the Default Filter
Factory. Note that every object of type
CosNotifyChannelAdmin::EventChannel includes a reference to the
DefaultFilterFactory:

In C++ the reference is obtained as follows:

And in Java:

Obtaining a filter This section presents the creation of a simple filter, as implemented by the
FilteredConsumer demo.

// IDL
interface EventChannel : ...
{
 ...
 readonly attribute CosNotifyFilter::FilterFactory
 default_filter_factory;
...
};

// C++
CosNotifyFilter_FilterFactory_var filterFactory =
 eventChannel -> default_filter_factory();

// Java
FilterFactory filterFactory =
 eventChannel.default_filter_factory();
74

Filtering
Create filter constraints, C++ Creating filter constraints involves populating a sequence of type
CosNotifyFilter::ConstraintExpSeq. The details are presented below.

Lines 2-10 Constraint expressions. In this example, events which represent
vowels are interesting. The constraint "$upper == ’A’" can be interpreted
as: match events which have a filterable field named “upper” and a value of “A”.

Lines 12-13 Initialize the sequence to hold numConstrainsts expressions.

Line 15 Iterate over the constraintStrings array, assigning each element to a
separate constraint expression.

// C++
const CORBA_ULong numConstraints = 5;
const char* constraintStrings[] =
{
 "$upper == ’A’",
 "$lower == ’e’",
 "$lower == ’i’",
 "$upper == ’O’",
 "$upper == ’U’"
};

CosNotifyFilter_ConstraintExpSeq constraints(numConstraints);
constraints.length(numConstraints);

for(CORBA_ULong i = 0 ; i < numConstraints ; ++i)
{
 constraints[i].event_types.length(1);
 constraints[i].event_types[0].domain_name =
 CORBA_string_dup("*");

 constraints[i].event_types[0].type_name =
 CORBA_string_dup("*");

 constraints[i].constraint_expr =
 CORBA_string_dup(constraintStrings[i]);
}

75

CHAPTER 4 | Programming Example
Lines 17-22 Event types are characterized by the domain_name and type_name
fields. A constraint is the intersection of a single constraint expression and one
or more event types. For this example we are only interested in events with
filterable data section elements that satisfy our constraint expression. Any event
type will satisfy these constraints.

Lines 24-25 Specify the constraint expression.

Creating filter constraints, Java The following example shows the code above implemented in Java.

// Java
final int numConstraints = 5;
String[] constraintStrings =
{
 "$upper == ’A’",
 "$lower == ’e’",
 "$lower == ’i’",
 "$upper == ’O’",
 "$upper == ’U’"
};

ConstraintExp[] constraints =
 new ConstraintExp[numConstraints];

for(int i = 0 ; i < numConstraints ; ++i)
{
 EventType eventType = new EventType();
 eventType.domain_name = "*";
 eventType.type_name = "*";

 EventType[] eventTypes = new EventType[1];
 eventTypes[0] = eventType;

 ConstraintExp constraint = new ConstraintExp();
 constraint.event_types = eventTypes;
 constraint.constraint_expr = constraintStrings[i];

 constraints[i] = constraint;
}

76

Filtering
Create filter Creating a filter is straightforward:

The single argument to the create_filter() method specifies the constraint
grammar. This example uses EXTENDED_TCL which is the default grammar
supported by all compliant notification services.

Add Constraints to the Filter

Once the filter and constraints are available, the constraints are added to the
filter. Again this is straightforward:

The return value of the add_constraints() operation is a sequence in which
each element contains one of the input constraint expressions and the unique
identifier for that expression assigned by Orbacus Notify.

Adding a filter to an admin or
proxy

The IDL interfaces:

CosNotifyChannelAdmin::ProxyConsumer
CosNotifyChannelAdmin::ProxySupplier
CosNotifyChannelAdmin::ConsumerAdmin
CosNotifyChannelAdmin::SupplierAdmin

all inherit the CosNotifyFilter::FilterAdmin interface and can have filter
objects associated with them. In this example the filter is added on the consumer
side by associating it with the supplier proxy. Adding a filter to the proxy looks
like:

// C++
filter = filterFactory -> create_filter("EXTENDED_TCL");

// Java
filter = filterFactory.create_filter("EXTENDED_TCL");

// C++
CosNotifyFilter_ConstraintInfoSeq_var info =
 filter -> add_constraints(constraints);

// Java
ConstraintInfo[] info = filter.add_constraints(constraints);

// C++
CosNotifyChannelAdmin_ProxySupplier_var proxySupplier = ...
...
proxySupplier -> add_filter(filter);
77

CHAPTER 4 | Programming Example
The add_filter() operation adds the given filter to the list of filter objects
already associated with the target proxy or admin object. It returns an ID, of type
CosNotifyFilter::FilterID, which is unique amongst all filter objects
associated with the particular target proxy or admin. Note that the scope of a
filter ID is limited to the scope of the admin or proxy to which the filter is
assigned.

Destroying a filter The CosNotifyFilter::Filter interface includes a method, destroy(), which
destroys the target filter object. Filters are not strictly owned by a single admin
or proxy object. Rather a filter is created from a filter factory and may be added
to one or more admin or proxy objects. For this reason, clients must be careful
when destroying a filter object, as it may be referenced by other admins and/or
proxies within the service. It is recommended that filters not be shared amongst
admins or proxies.

This example does not destroy the filter. Rather its IOR is published and used to
locate the filter object on subsequent executions of the FilteredConsumer
example.

// Java
ProxySupplier proxySupplier = ...
...
proxySupplier.add_filter(filter);
78

Disconnecting from a Notification Channel
Disconnecting from a Notification Channel
When a supplier or consumer wishes to disconnect from an event channel it
simply disconnects its proxy object. The example structured supplier
implementation disconnects as follows:

And in Java:

Likewise for the structured push consumer:

And in Java:

// C++
CosNotifyChannelAdmin_StructuredProxyPushConsumer_var
 structuredProxyPushConsumer = ...
...
structuredProxyPushConsumer ->
 disconnect_structured_push_consumer();

// Java
StructuredProxyPushConsumer structuredProxyPushConsumer = ...
...
structuredProxyPushConsumer.
 disconnect_structured_push_consumer();

// C++
CosNotifyChannelAdmin_StructuredProxyPushSupplier_var
 structuredProxyPushSupplier = ...
...
structuredProxyPushSupplier ->
 disconnect_structured_push_supplier();

// Java
StructuredProxyPushSupplier structuredProxyPushSupplier = ...
...
structuredProxyPushSupplier.
disconnect_structured_push_supplier();
79

CHAPTER 4 | Programming Example
Note that disconnecting a proxy effectively destroys the target proxy object.

Disconnecting passive clients Disconnecting from a passive client (push consumer or pull supplier) is not as
straight forward as disconnecting from an active client. In the demo examples,
the passive servants disconnect by throwing the CosEventComm::Disconnected
exception from the push method when it detects the last event has been received.
On receipt of this exception, Orbacus Notify invokes the appropriate servant
disconnect method which initiates client process termination.

Note: The CosNotifyChannelAdmin::EventChannel,
CosNotifyChannelAdmin::SupplierAdmin and
CosNotifyChannelAdmin::ConsumerAdmin all support the destroy()
operation. Care should be taken when invoking this method since it destroys
the target object and all objects it manages. For example, destroying an admin
will destroy all proxies managed by that admin, potentially cutting off active
communication channels. Similarly, destroying a channel destroys all admins
and proxies associated with that channel.
80

Building Orbacus Notify Clients
Building Orbacus Notify Clients
The following sections describe how to build Orbacus Notify clients.

Compiling and linking C++ clients Compiling and linking is to a large degree compiler- and platform-dependent.
Many compilers require unique options to generate correct code. Orbacus Notify
clients, at a minimum, must link with the following:

• Orbacus Notify library: libCosNotify.a (UNIX) or CosNotify.lib

(Windows)

• Orbacus library: libOB.a (UNIX) or ob.lib (Windows)

See the Orbacus manual and README files which accompany the Orbacus
distribution for various platform-specific compilation instructions.

Compiling Java clients Ensure that the CLASSPATH environment variable includes the following:

• Orbacus Notify Java classes, that is the OBNotify.jar file

• Orbacus for Java classes, that is the OB.jar file.

If using the Unix Bourne shell or a compatible shell, this is accomplished with
the following commands:

CLASSPATH=notify_directory/lib/OBNotify.jar: \
 orbacus_directory/lib/OB.jar:$CLASSPATH
export CLASSPATH

Replace notify_directory with the name of the directory where Orbacus
Notify is installed; and replace orbacus_directory with the name of the
directory where Orbacus is installed.

If running Orbacus on a Windows-based system, use the following command
within the Windows command interpreter:

set CLASSPATH=notify_directory\lib\OBNotify.jar; \
 orbacus_directory\lib\OB.jar;%CLASSPATH%

Note that for Windows the delimiter is “;” and not “:”.

Note: The Orbacus Notify Java classes are available for download with the
Orbacus Notify Console distribution.
81

CHAPTER 4 | Programming Example
82

CHAPTER 5

Orbacus Notify
Console
This chapter describes how to use the Orbacus Notify graphical
interface.

In this chapter This chapter contains the following sections:

Overview page 84

The Orbacus Notify Console Menus page 87

Creation Wizards page 89

Managing Notification Channels page 90

Managing Admins page 93

Managing Proxies page 96

Managing Filters page 99

Managing Filter Constraints page 100

Managing Mapping Filters page 102
83

CHAPTER 5 | Orbacus Notify Console
Overview
The Orbacus Notify Console supports the management of all aspects of Orbacus
Notify. The Orbacus Notify Console includes the following functionality:

• Complete administration of channels, admins and proxies

• QoS configuration at the channel, admin and proxy levels

• Administration of filters

• Administration of mapping filters

• Administration of subscription sharing
84

Overview
Main window The Orbacus Notify Console main window is shown in Figure 23.

It contains the following elements:

Figure 23: The Orbacus Notify Console Main Window

Menu bar Provides access to all the application features.

Toolbar Shortcuts for the most common menu commands.

Service Structure Displays the list of configured components in Orbacus
Notify.

Object Properties Displays the current property settings for the object selected
in the Service Structure tree.
85

CHAPTER 5 | Orbacus Notify Console
Status bar Displays the host and port at which the console is connected
to Orbacus Notify and also displays information regarding
currently executing operations.
86

The Orbacus Notify Console Menus
The Orbacus Notify Console Menus

File menu The File Menu contains operations that manage the console windows.

Edit menu The Edit Menu contains context sensitive operations which administer the
various objects within Orbacus Notify. These objects include channels, admins,
proxies and filters

Control menu This menu contains operations which control the operation of Orbacus Notify.

View menu This menu contains operations which allow the user to configure the console
display.

New Window Creates a new console window connected to the same
instance of Orbacus Notify.

Close Closes the current console window.

Quit Quits the application.

Create Create a new object from the selected factory. In this
context the term factory refers to any object which includes
factory methods for the creation of other objects. For
example an admin object is a factory for both proxy and
filter creation.

Destroy Destroys the selected object.

Properties Displays a properties dialog for the selected object.

Shutdown Shutdown Orbacus Notify.

Suspend This operation is available for proxy push supplier and
proxy pull consumer objects. It interrupts event flow
between the selected proxy and the connected supplier or
consumer.

Resume This operation causes previously suspended proxies to
resume pushing or pulling events.

Show ToolBar Toggles between a visible and hidden toolbar.
87

CHAPTER 5 | Orbacus Notify Console
Help menu This menu is used to access the on-line help facilities.

Popup menu Right-clicking on the various items in the console displays a context sensitive
popup menu, as shown in Figure 24.

This popup menu is a shortcut to the menu commands and contains appropriate
operations for the selected object (channel, admin, proxy or filter) based on its
current state.

Show StatusBar Toggles between a visible and hidden statusbar.

Explicit Refresh Toggles the refresh mode of the Service Structure tree. If
set then the contents of the tree are not automatically
refreshed on tree node expansion.

Refresh Obtains an updated list of items from Orbacus Notify and
updates the console display accordingly. This option is
useful if the list of items has been changed by another
Orbacus Notify client.

Help Contents Displays the main help contents page. From here the user
can navigate the entire on-line help system.

About Displays version and copyright information.

Figure 24: Popup Menu
88

Creation Wizards
Creation Wizards
The Orbacus Notify Console guides users through the creation of various items
through the use of object creation wizards. A sample wizard dialog is shown in
Figure 25.

The initial wizard dialog is displayed by invoking the Create operation on a
selected object. The wizards provide instructions related to the setup of various
objects within Orbacus Notify.

Figure 25: Sample Creation Wizard
89

CHAPTER 5 | Orbacus Notify Console
Managing Notification Channels

Creating a new channel To create a new channel simply choose the EventChannelFactory and select
the Edit/Create... operation. The Event Channel Creation Wizard then steps
through the creation of the channel.

Notification channel properties The Edit/Properties menu operation for a selected channel displays a tabbed
property dialog in which various channel properties may be edited. All the
properties in this dialog are set initially when the channel is created with the
channel creation wizard.
90

Managing Notification Channels
QoS properties The channel QoS Properties tab in the Event Channel Properties dialog is
shown in Figure 26.

This includes all QoS properties available for the channel including Orbacus
Notify proprietary properties. Note that Event Reliability and Connection
Reliability are only set during channel creation and cannot be altered
afterwards.

Figure 26: Notification Channel QoS Properties
91

CHAPTER 5 | Orbacus Notify Console
Admin properties The Admin Properties tab in the Event Channel Properties dialog, shown in
Figure 27, is used to set the maximum number of suppliers and consumers
permitted per channel.

Destroying a channel To destroy a channel simply select the channel and select the Edit/Destroy
menu operation. A confirmation is displayed before the channel is removed.
Note that destroying a channel also destroys all admins and proxies associated
with that channel.

Figure 27: Notification Channel Admin Properties
92

Managing Admins
Managing Admins

Creating a new admin To create a new supplier or consumer admin choose Edit/Create on a selected
event channel. The Admin Creation Wizard then steps through the
configuration of the new admin object.

Admin properties QoS Properties

Supplier and consumer admin QoS properties are configured in QoS Properties
tab of the Admin Properties dialog, shown in Figure 28.

This dialog is activated from the Edit/Properties operation when an admin
object is selected in the Service Structure tree.

Figure 28: Admin QoS Properties
93

CHAPTER 5 | Orbacus Notify Console
Mapping filters Priority and lifetime mapping filters may be assigned to or removed from
consumer admin objects in the Mapping Filters tab of the Admin Properties
dialog (Figure 29).

Subscription/offered types For consumer admins, subscription event types are managed in the Subscription
Types tab of the Admin Properties dialog (Figure 30). Similarly, for supplier
admins offered event types are managed in the Offered Types tab of the Admin

Figure 29: Consumer Admin Mapping Filters
94

Managing Admins
Properties dialog. Note that only one of the Subscription Types or Offered
Types tab is available depending on whether a consumer or supplier admin is
selected from the Service Structure Tree.

Destroying an admin A selected admin is destroyed by choosing the Edit/Destroy menu operation. A
confirmation is displayed before the admin is removed. Note that destroying an
admin also destroys all proxies associated with it. Any filters created from the
selected admin are not destroyed. Rather the destroyed admin is removed from
the filter’s subscriber list.

Figure 30: Admin Subscription/Offer Types
95

CHAPTER 5 | Orbacus Notify Console
Managing Proxies

Creating a new proxy Supplier and consumer proxies are created from an admin object. Supplier
admins control the creation of consumer proxies while consumer admins provide
methods for the creation of supplier proxies. In either case, to create a proxy
from the console choose the appropriate admin and select Edit/Create. The
Filter/Proxy Creation Wizard then steps through the creation of the proxy.

Proxy QoS properties Proxy QoS properties are configured in the Proxy Properties dialog, displayed
in Figure 31.

Choose a proxy from the Service Structure tree and select Edit/Properties to
display this dialog.

Figure 31: Proxy QoS Properties
96

Managing Proxies
Mapping filters Priority and lifetime mapping filters may be assigned to or removed from
supplier proxy objects in the Mapping Filters tab of the Proxy Properties
dialog (Figure 32).

Subscription/offer types For supplier proxies, subscription event types are managed in the Subscription
Types tab of the Proxy Properties dialog (Figure 33). Similarly, for consumer
proxies, offered event types are managed in the Offered Types tab of the Proxy

Figure 32: Supplier Proxy Mapping Filters
97

CHAPTER 5 | Orbacus Notify Console
Properties dialog. Note that only one of the Subscription Types or Offered
Types tab is available depending on whether a consumer or supplier proxy is
selected from the Service Structure Tree.

Destroying a proxy Like channels and admins, a selected proxy is destroyed by choosing the
Edit/Destroy menu operation. A confirmation is displayed before the proxy is
removed. Any filters created from the selected proxy are not destroyed. Instead
the destroyed proxy is removed from the filter’s subscriber list.

Figure 33: Proxy Subscription/Offer Types
98

Managing Filters
Managing Filters

Creating a new filter Filters can be created from any of the following objects:

• admin

• proxy

• FilterFactory

Once an object matching one of the above types is selected, invoke the
Edit/Create... menu operation. The Filter Creation Wizard1 then steps
through the creation of the filter. Note that all filters become property of the
FilterFactory and have associations with zero, one, or many admins and/or
proxies.

Filter properties There are no editable properties associated with a filter. When a filter is selected
in the Service Structure Tree the right-hand panel displays the read-only list of
subscribers.

Destroying a filter A selected filter is destroyed by choosing the Edit/Destroy menu operation. A
confirmation is displayed before the filter is removed.

1. If the filter is created from an admin then the Filter/Proxy Creation Wizard is used.
99

CHAPTER 5 | Orbacus Notify Console
Managing Filter Constraints

Creating a new filter constraint A filter constraint is created from a filter object. To create a filter constraint from
the console, choose the appropriate filter and select Edit/Create.... The
Constraint Creation Wizard then steps through the creation of the filter
constraint.

Filter constraint properties The Edit/Properties menu operation for a selected filter constraint displays a
tabbed property dialog in which various constraint properties may be edited. All
the properties in this dialog are set initially when the constraint is created with
the Constraint Creation Wizard.

Expression properties The constraint expression is accessed with the Expression Properties tab,
shown in Figure 34.

This dialog supports in-place editing of the constraint expression. Constraints
which do not conform to the constraint grammar cannot be entered.

Figure 34: Constraint Expression Properties
100

Managing Filter Constraints
Event type properties The list of event types for a constraint is accessed with the Event Type
Properties tab, shown in Figure 35.

To add a new event type click the Add button, which adds a new, blank, event
type to the list. All event types in the list may be edited in-place. To remove a
selected event type click the Remove button.

Destroying a filter constraint A selected filter constraint is destroyed by choosing the Edit/Destroy menu
operation. A confirmation is displayed before the constraint is removed.

Figure 35: Constraint Event Type Properties
101

CHAPTER 5 | Orbacus Notify Console
Managing Mapping Filters

Creating a new mapping filter Mapping filters may only be created from the FilterFactory. Existing mapping
filters may be assigned to the following objects from the appropriate properties
dialog:

• consumer admin

• supplier proxy

To create a new mapping filter, select the FilterFactory and invoke the
Edit/Create... menu operation. The Filter Creation Wizard1 then steps
through the creation of the filter. Note that all mapping filters are property of the
FilterFactory and have associations with zero, one, or many admins and/or
proxies.

Mapping filter properties There are no editable properties associated with a mapping filter. When a filter is
selected in the Service Structure Tree the right-hand panel displays the
read-only list of subscribers and the default value associated with the mapping
filter.

Destroying a mapping filter A selected mapping filter is destroyed by choosing the Edit/Destroy menu
operation. A confirmation is displayed before the mapping filter is removed.

1. If the filter is created from a consumer admin then the Filter/Proxy Creation Wizard
is used.
102

Managing Mapping Filter Constraint-Value Pairs
Managing Mapping Filter Constraint-Value
Pairs

Creating a new constraint-value
pair

A constraint-value pair is created from a mapping filter object. To create a
constraint-value pair from the console, choose the appropriate mapping filter and
select Edit/Create. The Constraint Creation Wizard then steps through the
creation of the constraint-value pair.

Constraint-value pair properties The Edit/Properties menu operation for a selected mapping filter
constraint-value pair displays a tabbed property dialog in which various
constraint properties may be edited. All the properties in this dialog are set
initially when the constraint-value pair is created with the Constraint Creation
Wizard.
103

CHAPTER 5 | Orbacus Notify Console
Constraint expression properties The constraint expression is accessed with the Expression Properties tab,
shown in Figure 36. This dialog supports in-place editing of the constraint
expression. Constraints which do not conform to the constraint grammar cannot
be entered.

Figure 36: Constraint Expression Properties
104

Managing Mapping Filter Constraint-Value Pairs
Event type properties The list of event types for a constraint is accessed with the Event Type
Properties tab, shown in Figure 37. To add a new event type click the Add
button, which adds a new, blank, event type to the list. All event types in the list
may be edited in-place. To remove a selected event type click the Remove
button.

Figure 37: Constraint Event Type Properties
105

CHAPTER 5 | Orbacus Notify Console
Result to set properties The value to be returned by a mapping filter on a match with a constraint may be
edited in the Result to Set Properties tab (Figure 38).

Destroying a constraint-value pair A selected mapping filter constraint-value pair is destroyed by choosing the
Edit/Destroy menu operation. A confirmation is displayed before the
constraint-value pair is removed.

Figure 38: Constraint Result to Set Properties
106

APPENDIX A

CosEventChannelA
dmin Reference
This appendix describes the CosEventChannelAdmin module

In this appendix This appendix contains the following section:

Module CosEventChannelAdmin page 108
107

APPENDIX A | CosEventChannelAdmin Reference
Module CosEventChannelAdmin

Overview This module contains channel administration interfaces. These interfaces
support the creation of the various Event Service type admin and proxy objects.

Exceptions AlreadyConnected

exception AlreadyConnected
{
};

Thrown by a consumer or supplier proxy to indicate that a client is already
registered. The proxy interfaces permit only one connection at a time.

TypeError

exception TypeError
{
};

Certain proxy implementations may impose additional requirements on pull
suppliers and push consumers that are allowed to connect. If the object does not
support these requirements the TypeError exception is raised.
108

Module CosEventChannelAdmin
Interface CosEventChannelAdmin::ProxyPushConsumer

Synopsis interface ProxyPushConsumer
inherits from CosEventComm::PushConsumer

A push supplier uses this interface to register with an event channel.

Operations connect_push_supplier

void connect_push_supplier(in CosEventComm::PushSupplier
push_supplier)

raises(AlreadyConnected);

Registers a push supplier implementation with the event channel. A push
supplier need not implement a CosEventComm::PushSupplier object to
successfully push events on the channel. This is only necessary if the supplier
wishes for notification when it is disconnected by the channel. If this notification
is not required a nil object reference may be given.

Parameters:

push_supplier A reference to a push supplier implementation, or a nil object
reference.
109

APPENDIX A | CosEventChannelAdmin Reference
Interface CosEventChannelAdmin::ProxyPullSupplier

Synopsis interface ProxyPullSupplier
inherits from CosEventComm::PullSupplier

A pull consumer uses this interface to register with an event channel.

Operations connect_pull_consumer

void connect_pull_consumer(in CosEventComm::PullConsumer
pull_consumer)

raises(AlreadyConnected);

Registers a pull consumer implementation with the event channel. A pull
consumer need not implement a CosEventComm::PullConsumer object to
successfully pull events from a channel. This is only necessary if the consumer
wishes for notification when it is disconnected by the channel. If this notification
is not required a nil object reference may be passed.

Parameters:

pull_consumer A reference to a pull consumer implementation, or a nil object
reference.
110

Module CosEventChannelAdmin
Interface CosEventChannelAdmin::ProxyPullConsumer

Synopsis interface ProxyPullConsumer
inherits from CosEventComm::PullConsumer

A pull supplier uses this interface to register with an event channel.

Operations connect_pull_supplier

void connect_pull_supplier(in CosEventComm::PullSupplier
pull_supplier)

raises(AlreadyConnected,
 TypeError);

Registers a pull supplier implementation with the event channel. A pull supplier
must implement and register a CosEventComm::PullSupplier object so that the
channel may successfully pull events from it.

Parameters:

pull_supplier A reference to a pull supplier implementation,
111

APPENDIX A | CosEventChannelAdmin Reference
Interface CosEventChannelAdmin::ProxyPushSupplier

Synopsis interface ProxyPushSupplier
inherits from CosEventComm::PushSupplier

A push consumer uses this interface to register with an event channel.

Operations connect_push_consumer

void connect_push_consumer(in CosEventComm::PushConsumer
push_consumer)

raises(AlreadyConnected,
 TypeError);

Registers a push consumer implementation with the event channel. A push
consumer must implement and register a CosEventComm::PushConsumer object
so that the channel may successfully push events on it.

Parameters:

push_consumer A reference to a push consumer implementation,
112

Module CosEventChannelAdmin
Interface CosEventChannelAdmin::ConsumerAdmin

Synopsis interface ConsumerAdmin

An event consumer uses this interface to create the appropriate proxy supplier.

Operations obtain_push_supplier

ProxyPushSupplier obtain_push_supplier();

Creates a new ProxyPushSupplier object.

Returns:

An object reference to the new proxy is returned.

obtain_pull_supplier

ProxyPullSupplier obtain_pull_supplier();

Creates a new ProxyPullSupplier object.

Returns:

An object reference to the new proxy is returned.
113

APPENDIX A | CosEventChannelAdmin Reference
Interface CosEventChannelAdmin::SupplierAdmin

Synopsis interface SupplierAdmin

An event supplier uses this interface to create the appropriate proxy consumer.

Operations obtain_push_consumer

ProxyPushConsumer obtain_push_consumer();

Creates a new ProxyPushConsumer object.

Returns:

An object reference to the new proxy is returned.

obtain_pull_consumer

ProxyPullConsumer obtain_pull_consumer();

Creates a new ProxyPullConsumer object.

Returns:

An object reference to the new proxy is returned.
114

Module CosEventChannelAdmin
Interface CosEventChannelAdmin::EventChannel

Synopsis interface EventChannel

Event suppliers and consumers use the EventChannel interface to obtain the
admin objects required for proxy creation.

Operations for_consumers

ConsumerAdmin for_consumers();

Creates a new ConsumerAdmin object.

Returns:

An object reference to the new admin is returned.

for_suppliers

SupplierAdmin for_suppliers();

Creates a new SupplierAdmin object.

Returns:

An object reference to the new admin is returned.

destroy

void destroy();

Destroys an EventChannel and all associated admin and proxy objects.
115

APPENDIX A | CosEventChannelAdmin Reference
116

APPENDIX B

CosEventComm
Reference
This appendix describes the CosEventComm module.

In this appendix This appendix contains the following section:

Module CosEventComm page 118
117

APPENDIX B | CosEventComm Reference
Module CosEventComm
This module contains the basic, Event Service compatible, interfaces supporting
the exchange of events between a supplier and consumer. Note that a channel
acts as both supplier and consumer of events through its proxy interfaces.

Exceptions Disconnected

exception Disconnected
{
};

This exception is raised by an operation if event communication has been
disconnected.
118

Module CosEventComm
Interface CosEventComm::PushConsumer

Synopsis interface PushConsumer

This interface is implemented by a push consumer to receive event data.

Operations push

void push(in any data)
raises(Disconnected);

A supplier invokes the push operation to transfer an event to a consumer.

Parameters:

data - The event is encapsulated in a CORBA::Any.

disconnect_push_consumer

void disconnect_push_consumer();

This method terminates event communication and releases resources allocated
by the target object.
119

APPENDIX B | CosEventComm Reference
Interface CosEventComm::PushSupplier

Synopsis interface PushSupplier

This interface is implemented by a push supplier which wishes to receive
notification when it is disconnected.

Operations disconnect_push_supplier

void disconnect_push_supplier();

This method terminates event communication and releases resources allocated
by the target object.
120

Module CosEventComm
Interface CosEventComm::PullSupplier

Synopsis interface PullSupplier

This interface is implemented by a pull supplier so that the channel my pull
events.

Operations pull

any pull()
raises(Disconnected);

This method blocks the calling thread until the supplier has data available or an
exception is raised.

Returns:

An event in a CORBA::Any.

try_pull

any try_pull(out boolean has_event)
raises(Disconnected);

This method does not block and can be used to poll a pull supplier for events.

Parameters:

has_event - Set to TRUE if there is an event available, FALSE otherwise.

Returns:

An event in a CORBA::Any if has_event is TRUE, undefined if has_event is FALSE.

disconnect_pull_supplier

void disconnect_pull_supplier();

This method terminates event communication and releases resources allocated
by the target object.
121

APPENDIX B | CosEventComm Reference
Interface CosEventComm::PullConsumer

Synopsis interface PullConsumer

This interface is implemented by a pull consumer which wishes to receive
notification when it is disconnected.

Operations disconnect_pull_consumer
void disconnect_pull_consumer();

This method terminates event communication and releases resources allocated
by the target object.
122

APPENDIX C

CosNotification
Reference
This appendix describes the CosNotification module.

In this appendix This appendix contains the following sections:

Module CosNotification page 124
123

APPENDIX C | CosNotification Reference
Module CosNotification
This module contains the definition of the structured event type and various
definitions related to QoS and Administration properties.

Aliases Istring

typedef string Istring;

PropertyName

typedef Istring PropertyName;

Alias for a property name.

PropertyValue

typedef any PropertyValue;

Alias for a property value.

PropertySeq

typedef sequence<Property> PropertySeq;

Alias for a sequence of property name-value pairs.

OptionalHeaderFields

typedef PropertySeq OptionalHeaderFields;

Alias for event header optional header fields.

FilterableEventBody

typedef PropertySeq FilterableEventBody;

Alias for event body filterable fields.

QoSProperties

typedef PropertySeq QoSProperties;

Alias for Quality of Service properties.

AdminProperties

typedef PropertySeq AdminProperties;

Alias for channel administration properties.

EventTypeSeq

typedef sequence<EventType> EventTypeSeq;

Alias for a sequence of event types.
124

Module CosNotification
NamedPropertyRangeSeq

typedef sequence<NamedPropertyRange> NamedPropertyRangeSeq;

Alias for a sequence of named property ranges.

PropertyErrorSeq

typedef sequence<PropertyError> PropertyErrorSeq;

Alias for a sequence of property errors.

EventBatch

typedef sequence<StructuredEvent> EventBatch;

Alias for a sequence of structured events.

Constants EventReliability

const string EventReliability = "EventReliability";

Specifies event reliability. The valid values are BestEffort and Persistent.

BestEffort

const short BestEffort = 0;

Reliability property value.

Persistent

const short Persistent = 1;

Reliability property value.

ConnectionReliability

const string ConnectionReliability = "ConnectionReliability";

Specifies connection reliability. The valid values are BestEffort and
Persistent.

Priority

const string Priority = "Priority";

Indicates the relative priority of the event compared to other events in the
channel. Can take on any value between -32,767 and 32,767, with -32,767 being
the lowest priority, 32,767 being the highest, and 0 being the default.

LowestPriority

const short LowestPriority = -32767;

Priority property value.
125

APPENDIX C | CosNotification Reference
HighestPriority

const short HighestPriority = 32767;

Priority property value.

DefaultPriority

const short DefaultPriority = 0;

Priority property value.

StartTime

const string StartTime = "StartTime";

Gives an absolute time (e.g., 12/12/99 at 23:59) after which the channel may
deliver the event. The value for this property is of type TimeBase:UtcT.

StopTime

const string StopTime = "StopTime";

Gives an absolute time (e.g., 12/12/99 at 23:59) at which the channel should
discard the event. The value for this property is of type TimeBase:UtcT.

Timeout

const string Timeout = "Timeout";

Gives a relative time (e.g., 10 minutes from time received) after which the
channel should discard the event. The value 0 indicates there is no timeout. The
value for this property is of type TimeBase:TimeT.

OrderPolicy

const string OrderPolicy = "OrderPolicy";

This QoS property sets the policy used by a given proxy to order the events it has
buffered for delivery (either to another proxy or a consumer). Constant values to
represent the permitted settings are defined.

AnyOrder

const short AnyOrder = 0;

OrderPolicy property value indicating any ordering policy is permitted.

FifoOrder

const short FifoOrder = 1;

OrderPolicy property value indicating events should be delivered in the order
of their arrival.
126

Module CosNotification
PriorityOrder

const short PriorityOrder = 2;

OrderPolicy property value indicating events should be buffered in priority
order, such that higher priority events will be delivered before lower priority
events.

DeadlineOrder

const short DeadlineOrder = 3;

OrderPolicy property value indicating events should be buffered in the order of
shortest expiry deadline first, such that events that are destined to timeout
soonest should be delivered first.

DiscardPolicy

const string DiscardPolicy = "DiscardPolicy";

Discard policy determines the order in which events are discarded when the
number of queued events exceeds MaxEventsPerConsumer. The OrderPolicy
property values are also DiscardPolicy property values.

LifoOrder

const short LifoOrder = 4;

DiscardPolicy property value. The last event received will be the first
discarded.

RejectNewEvents

const short RejectNewEvents = 5;

DiscardPolicy property value. The proxy consumers of the associated channel
should reject attempts to send new events to the channel when such an attempt
would result in a buffer overflow, raising the system exception IMPL_LIMIT.
Note that this is the default setting for discard policy.

MaximumBatchSize

const string MaximumBatchSize = "MaximumBatchSize";

This QoS property has meaning in the case of consumers that register to receive
sequences of structured events. For any such consumer, this property indicates
the maximum number of events that will be delivered within each sequence. The
corresponding value is of type long.

PacingInterval

const string PacingInterval = "PacingInterval";
127

APPENDIX C | CosNotification Reference
This QoS property has meaning in the case of consumers that register to receive
sequences of structured events. For any such consumer, this property defines the
maximum period of time the channel will collect individual events into a
sequence before delivering the sequence to the consumer. The corresponding
value is of type TimeBase::TimeT.

StartTimeSupported

const string StartTimeSupported = "StartTimeSupported";

Indicates whether or not the setting of StartTime on a per-message basis is
supported. The corresponding value is of type boolean.

StopTimeSupported

const string StopTimeSupported = "StopTimeSupported";

Indicates whether or not the setting of StopTime on a per-message basis is
supported. The corresponding value is of type boolean.

MaxEventsPerConsumer

const string MaxEventsPerConsumer = "MaxEventsPerConsumer";

An administrative property can be set on a channel to bound the maximum
number of events a given channel is allowed to queue at any given point in time.
However, a single badly behaved consumer could result in the channel holding
the maximum number of events it is allowed to queue for an extended period of
time, preventing further event communication through the channel. This QoS
property helps to avoid this situation by bounding the maximum number of
events the channel will queue on behalf of a given consumer. The corresponding
value is of type long.

MaxQueueLength

const string MaxQueueLength = "MaxQueueLength";

The maximum number of events that a channel will buffer at any one time. The
corresponding value is of type long.

MaxConsumers

const string MaxConsumers = "MaxConsumers";

The maximum number of consumers that can be connected to a channel at any
one time. The corresponding value is of type long.

MaxSupplier

const string MaxSuppliers = "MaxSuppliers";

The maximum number of suppliers that can be connected to a channel at any one
time. The corresponding value is of type long.
128

Module CosNotification
Structs Property

struct Property
{
PropertyName name;
PropertyValue value;
};

A generic name-value property pair.

Members:

name The name of the property.

value The value of the property.

EventType

struct EventType
{
string domain_name;
string type_name;
};

Structure defining an event type. The type of an event is governed by the
domain_name and type_name.

Members:

domain_name - Identifies the vertical industry domain in which the event is
defined.

type_name - Further classifies the event within the domain.

PropertyRange

struct PropertyRange
{
PropertyValue low_val;
PropertyValue high_val;
};

Structure used to indicate a range of acceptable values for an unnamed property.

NamedPropertyRange

struct NamedPropertyRange
{
PropertyName name;
PropertyRange range;
};

Structure used to indicate a range of acceptable values for a named property.
129

APPENDIX C | CosNotification Reference
PropertyError

struct PropertyError
{
QoSError_code code;
PropertyName name;
PropertyRange available_range;
};

Structure to indicate a property error for the name property and, if applicable, a
suitable range of values.

FixedEventHeader

struct FixedEventHeader
{
EventType event_type;
string event_name;
};

Structured event fixed header

Members:

event_type Categorizes the event.

event_name A name given to this event instance to differentiate it from other
events of the same type.

EventHeader

struct EventHeader
{
FixedEventHeader fixed_header;
OptionalHeaderFields variable_header;
};

Structured event header

Members:

fixed_header Categorizes and names the event.

variable_header Optional header information. This may contain any
name-value pair that the user chooses. Standard values are related to per event
QoS settings.

StructuredEvent

struct StructuredEvent
{
EventHeader header;
FilterableEventBody filterable_data;
any remainder_of_body;
};
130

Module CosNotification
The StructuredEvent Type. Events transmitted in this form are subject to
filtering.

Exceptions UnsupportedQoS

exception UnsupportedQoS
{
PropertyErrorSeq qos_err;
};

This exception is raised when a channel or channel component cannot satisfy a
client's QoS request.

Members:

qos_err Contains a list of the rejected QoS settings, along with reason for
rejection, and suitable property values, if applicable.

UnsupportedAdmin

exception UnsupportedAdmin
{
PropertyErrorSeq admin_err;
};

This exception is raised when a channel or proxy does not support the requested
aministrative property settings.

Members:

admin_err Contains a list of the rejected administrative settings, along with
reason for rejection, and suitable property values, if applicable.

Enums QoSError_code

enum QoSError_code
{
UNSUPPORTED_PROPERTY,
UNAVAILABLE_PROPERTY,
UNSUPPORTED_VALUE,
UNAVAILABLE_VALUE,
BAD_PROPERTY,
BAD_TYPE,
BAD_VALUE
};

Error codes used to indicate an invalid property assignment.

Members:
131

APPENDIX C | CosNotification Reference
UNSUPPORTED_PROPERTY Property not supported by this implementation of the
target object.

UNAVAILABLE_PROPERTY Property cannot be set within the current context of
other property settings.

UNSUPPORTED_VALUE The property value is not supported by this
implementation of the target object.

UNAVAILABLE_VALUE The property value is not supported within the current
context of other property settings.

BAD_PROPERTY Unrecognized property name.

BAD_TYPE Incorrect value type for this property.

BAD_VALUE Illegal value for this property.
132

Module CosNotification
Interface CosNotification::QoSAdmin

Synopsis interface QoSAdmin

Supports the management of QoS property settings.

Operations get_qos

QoSProperties get_qos();

Retrieves the current list of QoS properties for the target object.

Returns:

A sequence of QoS property name-value pairs.

set_qos

void set_qos(in QoSProperties qos)
raises(UnsupportedQoS);

Incrementally applies QoS settings to the target object. New elements are
appended to the list of QoS properties already associated with the target object.
If the property already exists for the target object its value is changed to the new
setting.

Parameters:

qos A list of QoS properties.

validate_qos

void validate_qos(in QoSProperties required_qos,
 out NamedPropertyRangeSeq available_qos)
raises(UnsupportedQoS);

Checks to see if a list of QoS properties are supported by the target object
without changing the list of properties already associated with the object. If any
of the properties in required_qos are not supported the UnsupportedQoS
exception is raised.

Parameters:

required_qos The QoS properties of interest to the caller are passed in this
parameter.

available_qos If the properties in required_qos are supported, other optional
QoS properties which are also supported are returned in this parameter.
133

APPENDIX C | CosNotification Reference
Interface CosNotification::AdminPropertiesAdmin

Synopsis interface AdminPropertiesAdmin

Supports the management of administrative properties.

Operations get_admin

AdminProperties get_admin();

Retrieves the list of administrative properties associated with the target object.

Returns:

A sequence of admin name-value pairs.

set_admin

void set_admin(in AdminProperties admin)
raises(UnsupportedAdmin);

Sets the administrative properties for the target object. If any of the properties in
admin are unsupported, the UnsupportedAdmin exception is raised.

Parameters:

admin A sequence of name-value pairs defining the administrative properties to
be set on the target object.
134

APPENDIX D

CosNotifyChannel
Admin Reference
This appendix describes the CosNotifyChannelAdmin module

In this appendix This appendix contains the following section:

Module CosNotifyChannelAdmin page 136
135

APPENDIX D | CosNotifyChannelAdmin Reference
Module CosNotifyChannelAdmin
This module contains the definitions of the primary Notification Service
interfaces. These interfaces allow suppliers and consumers to connect to a
channel.

Aliases ProxyID

typedef long ProxyID;

Alias for a proxy ID.

ProxyIDSeq

typedef sequence<ProxyID> ProxyIDSeq;

Alias for a sequence of Proxy IDs.

AdminID

typedef long AdminID;

Alias for an admin ID.

AdminIDSeq

typedef sequence<AdminID> AdminIDSeq;

Alias for a sequence of Admin IDs.

ChannelID

typedef long ChannelID;

Alias for a channel ID.

ChannelIDSeq

typedef sequence<ChannelID> ChannelIDSeq;

Alias for a sequence of channel IDs.

Structs AdminLimit

struct AdminLimit
{
CosNotification::PropertyName name;
CosNotification::PropertyValue value;
};

Contains a property name-value pair representing a limit on the number of
proxies that may connected to an admin object.
136

Module CosNotifyChannelAdmin
Exceptions ConnectionAlreadyActive

exception ConnectionAlreadyActive
{
};

Raised on an attempt to resume an already active connection.

ConnectionAlreadyInactive

exception ConnectionAlreadyInactive
{
};

Raised on an attempt to suspend an already inactive connection.

NotConnected

exception NotConnected
{
};

Raised on an attempt to suspend or a resume a disconnected proxy.

AdminNotFound

exception AdminNotFound
{
};

Raised when an admin identified by an AdminID cannot be found.

ProxyNotFound

exception ProxyNotFound
{
};

Raised when a proxy identified by a ProxyID cannot be found.

AdminLimitExceeded

exception AdminLimitExceeded
{
AdminLimit admin_property_err;
};

Raised on an attempt to connect a proxy which would exceed the maximum
number allowed for the target admin object.

ChannelNotFound

exception ChannelNotFound
{
};
137

APPENDIX D | CosNotifyChannelAdmin Reference
Indicates that a channel with a given channel ID was not found.

Enums ProxyType

enum ProxyType
{
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL_STRUCTURED,
PUSH_SEQUENCE,
PULL_SEQUENCE
};

Supplier and consumer proxy types.

Members:

PUSH_ANY Push delivery model, any events.

PULL_ANY Pull delivery model, any events.

PUSH_STRUCTURED Push delivery model, structured events.

PULL_STRUCTURED Pull delivery model, structured events.

PUSH_SEQUENCE Push delivery model, sequence of structured events.

PULL_SEQUENCE Pull delivery model, sequence of structured events.

ObtainInfoMode

enum ObtainInfoMode
{
ALL_NOW_UPDATES_OFF,
ALL_NOW_UPDATES_ON,
NONE_NOW_UPDATES_OFF,
NONE_NOW_UPDATES_ON
};

Configures the mode by which event types are communicated during
subscription sharing.

Members:

ALL_NOW_UPDATES_OFF Operation should return all types known by the target
object and disable automatic updates.

ALL_NOW_UPDATES_ON Operation should return all types known by the target
object and enable automatic updates.

NONE_NOW_UPDATES_OFF Operation should disable automatic updates and return
no event types.
138

Module CosNotifyChannelAdmin
NONE_NOW_UPDATES_ON Operation should enable aautomatic updates and return
no event types.

ClientType

enum ClientType
{
ANY_EVENT,
STRUCTURED_EVENT,
SEQUENCE_EVENT
};

Notification Service client types, based on supported event type.

Members:

ANY_EVENT Supports unstructured event delivery.

STRUCTURED_EVENT Supports structured event delivery.

SEQUENCE_EVENT Supports sequences of structured events.

InterFilterGroupOperator

enum InterFilterGroupOperator
{
AND_OP,
OR_OP
};

The InterFilterGroupOperator determines how filter results from an admin
object and its child proxy object are combined.

Members:

AND_OP Use logical AND semantics between admin and proxy filter results.

OR_OP Use logical OR semantics between admin and proxy filter results.
139

APPENDIX D | CosNotifyChannelAdmin Reference
Interface CosNotifyChannelAdmin::ProxyConsumer
interface ProxyConsumer
inherits from CosNotification::QoSAdmin,

CosNotifyFilter::FilterAdmin

ProxyConsumer interface. Supports operations common to all proxy consumers.

Attributes MyType

readonly attribute ProxyType MyType;

The type (delivery model and event type) of the proxy.

MyAdmin

readonly attribute SupplierAdmin MyAdmin;

Reference to the parent supplier admin object.

Operations obtain_subscription_types

CosNotification::EventTypeSeq obtain_subscription_types(in
ObtainInfoMode mode);

Obtains an aggregate list of all event types on the channel to which there is a
subscription.

Parameters:

mode Determines how subscribed event types are returned.

Returns:

A sequence of event types representing all events currently subscribed to on the
channel.

validate_event_qos

void validate_event_qos(in CosNotification::QoSProperties
required_qos,

 out CosNotification::NamedPropertyRangeSeq available_qos)
raises(CosNotification::UnsupportedQoS);

Checks for a conflict between per event QoS and the QoS settings of the target
proxy. If the target proxy cannot honor any of QoS properties in required_qos
an UnsupportedQoS exception is raised.

Parameters:

required_qos The QoS properties of interest to the caller are passed in this
parameter.
140

Module CosNotifyChannelAdmin
available_qos If the properties in required_qos are supported, other optional
QoS properties which are also supported are returned in this parameter.
141

APPENDIX D | CosNotifyChannelAdmin Reference
Interface CosNotifyChannelAdmin::ProxySupplier
interface ProxySupplier
inherits from CosNotification::QoSAdmin,

CosNotifyFilter::FilterAdmin

The ProxySupplier interface supports operations common to all proxy suppliers.

Attributes MyType

readonly attribute ProxyType MyType;

The type (delivery model and event type) of the proxy.

MyAdmin

readonly attribute ConsumerAdmin MyAdmin;

Reference to the parent consumer admin object.

priority_filter

attribute CosNotifyFilter::MappingFilter priority_filter;

Reference to an optional priority mapping filter.

lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime_filter;

Reference to an optional lifetime mapping filter.

Operations obtain_offered_types

CosNotification::EventTypeSeq obtain_offered_types(in
ObtainInfoMode mode);

Obtains an aggregate list of all event types currently offered on the channel.

Parameters:

mode Determines how offered event types are returned.

Returns:

A sequence of event types representing all events currently offered on the
channel.

validate_event_qos

void validate_event_qos(in CosNotification::QoSProperties
required_qos,

 out CosNotification::NamedPropertyRangeSeq available_qos)
raises(CosNotification::UnsupportedQoS);
142

Module CosNotifyChannelAdmin
Checks for a conflict between per event QoS and the QoS settings of the target
proxy. If the target proxy cannot honor any of QoS properties in required_qos
an UnsupportedQoS exception is raised.

Parameters:

required_qos The QoS properties of interest to the caller are passed in this
parameter.

available_qos If the properties in required_qos are supported, other optional
QoS properties which are also supported are returned in this parameter.
143

APPENDIX D | CosNotifyChannelAdmin Reference
Interface CosNotifyChannelAdmin::ProxyPushConsumer
interface ProxyPushConsumer
inherits from CosNotifyChannelAdmin::ProxyConsumer,

CosNotifyComm::PushConsumer

The ProxyPushConsumer interface supports connections by suppliers who wish
to push unstructured (CORBA::Any) events.

Operations connect_any_push_supplier

void connect_any_push_supplier(in CosEventComm::PushSupplier
push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

Connects a supplier to the channel. If a supplier is already connected the
AlreadyConnected exception is raised.

Parameters:

push_supplier A reference to the supplier object. A nil reference is permitted.
144

Module CosNotifyChannelAdmin
Interface
CosNotifyChannelAdmin::StructuredProxyPushConsumer

interface StructuredProxyPushConsumer
inherits from CosNotifyChannelAdmin::ProxyConsumer,

CosNotifyComm::StructuredPushConsumer

The StructuredProxyPushConsumer interface supports connections by
suppliers who wish to push structured events on the channel.

Operations connect_structured_push_supplier

void connect_structured_push_supplier(in
CosNotifyComm::StructuredPushSupplier push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

Connects a supplier to the channel. If a supplier is already connected the
AlreadyConnected exception is raised.

Parameters:

push_supplier A reference to the supplier object. A nil reference is permitted.
145

APPENDIX D | CosNotifyChannelAdmin Reference
Interface
CosNotifyChannelAdmin::SequenceProxyPushConsumer

interface SequenceProxyPushConsumer

inherits from CosNotifyChannelAdmin::ProxyConsumer,
CosNotifyComm::SequencePushConsumer

The SequenceProxyPushConsumer interface supports connections by suppliers
who wish to supply sequences of structured events to the channel.

Operations connect_sequence_push_supplier

void connect_sequence_push_supplier(in
CosNotifyComm::SequencePushSupplier push_supplier)

raises(CosEventChannelAdmin::AlreadyConnected);

Connects a supplier to the channel. If a supplier is already connected the
AlreadyConnected exception is raised.

Parameters:

push_supplier A reference to the supplier object. A nil reference is permitted.
146

Module CosNotifyChannelAdmin
Interface CosNotifyChannelAdmin::ProxyPullSupplier
interface ProxyPullSupplier

inherits from CosNotifyChannelAdmin::ProxySupplier,
CosNotifyComm::PullSupplier

The ProxyPullSupplier interface supports connections by consumers who
wish to pull unstructured events from the channel.

Operations connect_any_pull_consumer

void connect_any_pull_consumer(in CosEventComm::PullConsumer
pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

Connects a consumer to the channel. If a consumer is already connected the
AlreadyConnected exception is raised.

Parameters:

pull_consumer A reference to the consumer object. A nil reference is
permitted.
147

APPENDIX D | CosNotifyChannelAdmin Reference
Interface
CosNotifyChannelAdmin::StructuredProxyPullSupplier

interface StructuredProxyPullSupplier

inherits from CosNotifyChannelAdmin::ProxySupplier,
CosNotifyComm::StructuredPullSupplier

The StructuredProxyPullSupplier interface supports connections by
consumers who wish to pull structured events from the channel.

Operations connect_structured_pull_consumer

void connect_structured_pull_consumer(in
CosNotifyComm::StructuredPullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

Connects a consumer to the channel. If a consumer is already connected the
AlreadyConnected exception is raised.

Parameters:

pull_consumer A reference to the consumer object. A nil reference is
permitted.
148

Module CosNotifyChannelAdmin
Interface
CosNotifyChannelAdmin::SequenceProxyPullSupplier

interface SequenceProxyPullSupplier

inherits from CosNotifyChannelAdmin::ProxySupplier,
CosNotifyComm::SequencePullSupplier

The SequenceProxyPullSupplier interface supports connections from
consumers who wish to pull sequences of structured events from the channel.

Operations connect_sequence_pull_consumer

void connect_sequence_pull_consumer(in
CosNotifyComm::SequencePullConsumer pull_consumer)

raises(CosEventChannelAdmin::AlreadyConnected);

Connects a consumer to the channel. If a consumer is already connected the
AlreadyConnected exception is raised.

Parameters:

pull_consumer A reference to the consumer object. A nil reference is
permitted.
149

APPENDIX D | CosNotifyChannelAdmin Reference
Interface CosNotifyChannelAdmin::ProxyPullConsumer
interface ProxyPullConsumer
inherits from CosNotifyChannelAdmin::ProxyConsumer,

CosNotifyComm::PullConsumer

The ProxyPullConsumer interface manages connections from suppliers who
wish to have unstructured events pull from them by the channel.

Operations connect_any_pull_supplier

void connect_any_pull_supplier(in CosEventComm::PullSupplier
pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Connects a supplier to the channel. If a supplier is already connected the
AlreadyConnected exception is raised.

Parameters:

pull_supplier A reference to the supplier object. A nil reference is not
permitted.

suspend_connection

void suspend_connection()
raises(ConnectionAlreadyInactive,
 NotConnected);

This operation causes the target object to stop pulling events from the connected
supplier. If the connection is already suspended the
ConnectionAlreadyInactive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.

resume_connection

void resume_connection()
raises(ConnectionAlreadyActive,
 NotConnected);

This operation causes the target to resume pulling events from the connected
supplier. If the connection is not suspended the ConnectionAlreadyActive
exception is raised. If the target object is not connected to a supplier the
NotConnected exception is raised.
150

Module CosNotifyChannelAdmin
Interface
CosNotifyChannelAdmin::StructuredProxyPullConsumer

interface StructuredProxyPullConsumer
inherits from CosNotifyChannelAdmin::ProxyConsumer,

CosNotifyComm::StructuredPullConsumer

The StructuredProxyPullConsumer interface manages connections from
suppliers who wish to have structured events pulled from them by the channel.

Operations connect_structured_pull_supplier

void connect_structured_pull_supplier(in
CosNotifyComm::StructuredPullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Connects a supplier to the channel. If a supplier is already connected the
AlreadyConnected exception is raised.

Parameters:

pull_supplier A reference to the supplier object. A nil reference is not
permitted.

suspend_connection

void suspend_connection()
raises(ConnectionAlreadyInactive,
 NotConnected);

This operation causes the target object to stop pulling events from the connected
supplier. If the connection is already suspended the
ConnectionAlreadyInactive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.

resume_connection

void resume_connection()
raises(ConnectionAlreadyActive,
 NotConnected);

This operation causes the target to resume pulling events from the connected
supplier. If the connection is not suspended the ConnectionAlreadyActive
exception is raised. If the target object is not connected to a supplier the
NotConnected exception is raised.
151

APPENDIX D | CosNotifyChannelAdmin Reference
Interface
CosNotifyChannelAdmin::SequenceProxyPullConsumer

interface SequenceProxyPullConsumer
inherits from CosNotifyChannelAdmin::ProxyConsumer,

CosNotifyComm::SequencePullConsumer

The SequenceProxyPullConsumer interface manages connections from
suppliers who wish to have sequences of structured events pulled from them by
the channel.

Operations connect_sequence_pull_supplier

void connect_sequence_pull_supplier(in
CosNotifyComm::SequencePullSupplier pull_supplier)

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Connects a supplier to the channel. If a supplier is already connected the
AlreadyConnected exception is raised.

Parameters:

pull_supplier A reference to the supplier object. A nil reference is not
permitted.

suspend_connection

void suspend_connection()
raises(ConnectionAlreadyInactive,
 NotConnected);

This operation causes the target object to stop pulling events from the connected
supplier. If the connection is already suspended the
ConnectionAlreadyInactive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.

resume_connection

void resume_connection()
raises(ConnectionAlreadyActive,
 NotConnected);

This operation causes the target object to resume pulling events from the
connected supplier. If the connection is not suspended the
ConnectionAlreadyActive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.
152

Module CosNotifyChannelAdmin
Interface CosNotifyChannelAdmin::ProxyPushSupplier
interface ProxyPushSupplier
inherits from CosNotifyChannelAdmin::ProxySupplier,

CosNotifyComm::PushSupplier

The ProxyPushSupplier interface manages connections from push consumers
who wish to have unstructured events pushed on them by the channel.

Operations connect_any_push_consumer

void connect_any_push_consumer(in CosEventComm::PushConsumer
push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Connects a consumer to the channel. If a consumer is already connected the
AlreadyConnected exception is raised.

Parameters:

push_consumer A reference to the consumer object. A nil reference is not
permitted.

suspend_connection

void suspend_connection()
raises(ConnectionAlreadyInactive,
 NotConnected);

This operation causes the target object to stop pushing events to the connected
consumer. If the connection is already suspended the
ConnectionAlreadyInactive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.

resume_connection

void resume_connection()
raises(ConnectionAlreadyActive,
 NotConnected);

This operation causes the target object to resume pushing events to the
connected consumer. If the connection is not suspended the
ConnectionAlreadyActive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.
153

APPENDIX D | CosNotifyChannelAdmin Reference
Interface
CosNotifyChannelAdmin::StructuredProxyPushSupplier

interface StructuredProxyPushSupplier
inherits from CosNotifyChannelAdmin::ProxySupplier,

CosNotifyComm::StructuredPushSupplier

The StructuredProxyPushSupplier interface manages connections from
consumers who wish to have structured events pushed on them by the channel.

Operations connect_structured_push_consumer

void connect_structured_push_consumer(in
CosNotifyComm::StructuredPushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Connects a consumer to the channel. If a consumer is already connected the
AlreadyConnected exception is raised.

Parameters:

push_consumer A reference to the consumer object. A nil reference is not
permitted.

suspend_connection

void suspend_connection()
raises(ConnectionAlreadyInactive,
 NotConnected);

This operation causes the target object to stop pushing events to the connected
consumer. If the connection is already suspended the
ConnectionAlreadyInactive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.

resume_connection

void resume_connection()
raises(ConnectionAlreadyActive,
 NotConnected);

This operation causes the target object to resume pushing events to the
connected consumer. If the connection is not suspended the
ConnectionAlreadyActive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.
154

Module CosNotifyChannelAdmin
Interface
CosNotifyChannelAdmin::SequenceProxyPushSupplier

interface SequenceProxyPushSupplier
inherits from CosNotifyChannelAdmin::ProxySupplier,

CosNotifyComm::SequencePushSupplier

The SequenceProxyPushSupplier interface manages connections from
consumers who wish to have sequences of structured events pushed on them by
the channel.

Operations connect_sequence_push_consumer

void connect_sequence_push_consumer(in
CosNotifyComm::SequencePushConsumer push_consumer)

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Connects a consumer to the channel. If a consumer is already connected the
AlreadyConnected exception is raised.

Parameters:

push_consumer A reference to the consumer object. A nil reference is not
permitted.

suspend_connection

void suspend_connection()
raises(ConnectionAlreadyInactive,
 NotConnected);

This operation causes the target object to stop pushing events to the connected
consumer. If the connection is already suspended the
ConnectionAlreadyInactive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.

resume_connection

void resume_connection()
raises(ConnectionAlreadyActive,
 NotConnected);

This operation causes the target object to resume pushing events to the
connected consumer. If the connection is not suspended the
ConnectionAlreadyActive exception is raised. If the target object is not
connected to a supplier the NotConnected exception is raised.
155

APPENDIX D | CosNotifyChannelAdmin Reference
Interface CosNotifyChannelAdmin::ConsumerAdmin
interface ConsumerAdmin
inherits from CosNotification::QoSAdmin,

CosNotifyComm::NotifySubscribe, CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::ConsumerAdmin

The ConsumerAdmin interface supports the creation of proxy suppliers.

Attributes MyID

readonly attribute AdminID MyID;

The ID assigned to the target admin object by the channel.

MyChannel

readonly attribute EventChannel MyChannel;

A reference to the parent channel.

MyOperator

readonly attribute InterFilterGroupOperator MyOperator;

The InterFilterGroupOperator to be used when combining filter results from
the target admin object and its child proxies.

priority_filter

attribute CosNotifyFilter::MappingFilter priority_filter;

Reference to an optional priority mapping filter.

lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime_filter;

Reference to an optional lifetime mapping filter.

pull_suppliers

readonly attribute ProxyIDSeq pull_suppliers;

A list of pull suppliers managed by the target admin object.

push_suppliers

readonly attribute ProxyIDSeq push_suppliers;

A list of push suppliers managed by the target admin object.
156

Module CosNotifyChannelAdmin
Operations get_proxy_supplier

ProxySupplier get_proxy_supplier(in ProxyID proxy_id)
raises(ProxyNotFound);

Obtains a reference to a proxy supplier with the given proxy ID.

Parameters:

proxy_id The ID of the proxy to locate. A consumer admin object assigns an ID
to each proxy it creates.

Returns:

If found, a reference to the proxy supplier is returned. Otherwise a
ProxyNotFound exception is raised.

obtain_notification_pull_supplier

ProxySupplier obtain_notification_pull_supplier(in ClientType
ctype, out ProxyID proxy_id)

raises(AdminLimitExceeded);

Creates a new proxy pull supplier.

Parameters:

ctype Specifies the client type. The returned proxy can be narrowed to a type
suitable for the given client type.

proxy_id Returns the ID assigned to the newly created proxy.

Returns:

A reference to a newly created proxy supplier is returned. This reference should
be narrowed to the appropriate type before use. The AdminLimitExceeded
exception is raised if creating a new proxy would exceed the limit for the target
admin.

obtain_notification_push_supplier

ProxySupplier obtain_notification_push_supplier(in ClientType
ctype, out ProxyID proxy_id)

raises(AdminLimitExceeded);

Creates a new proxy push supplier.

Parameters:

ctype Specifies the client type. The returned proxy can be narrowed to a type
suitable for the given client type.

proxy_id Returns the ID assigned to the newly created proxy.

Returns:
157

APPENDIX D | CosNotifyChannelAdmin Reference
A reference to a newly created proxy supplier is returned. This reference should
be narrowed to the appropriate type before use. The AdminLimitExceeded
exception is raised if creating a new proxy would exceed the limit for the target
admin.

destroy

void destroy();

Destroys the target admin object and all proxies it is managing.
158

Module CosNotifyChannelAdmin
Interface CosNotifyChannelAdmin::SupplierAdmin
interface SupplierAdmin
inherits from CosNotification::QoSAdmin,

CosNotifyComm::NotifyPublish, CosNotifyFilter::FilterAdmin,
CosEventChannelAdmin::SupplierAdmin

The SupplierAdmin interface supports the creation of proxy consumers.

Attributes MyID

readonly attribute AdminID MyID;

The ID assigned to the target admin object by the channel.

MyChannel

readonly attribute EventChannel MyChannel;

A reference to the parent channel.

MyOperator

readonly attribute InterFilterGroupOperator MyOperator;

The InterFilterGroupOperator to be used when combining filter results from
the target admin object a its child proxies.

pull_consumers

readonly attribute ProxyIDSeq pull_consumers;

A list of pull consumers managed by the target admin object.

push_consumers

readonly attribute ProxyIDSeq push_consumers;

A list of push consumers managed by the target admin object.

Operations get_proxy_consumer

ProxyConsumer get_proxy_consumer(in ProxyID proxy_id)
raises(ProxyNotFound);

Obtains a reference to a proxy consumer with the given proxy ID.

Parameters:

proxy_id The ID of the proxy to locate. A supplier admin object assigns an ID
to each proxy it creates.

Returns:
159

APPENDIX D | CosNotifyChannelAdmin Reference
If found, a reference to the proxy consumer is returned. Otherwise a
ProxyNotFound exception is raised.

obtain_notification_pull_consumer

ProxyConsumer obtain_notification_pull_consumer(in ClientType
ctype, out ProxyID proxy_id)

raises(AdminLimitExceeded);

Creates a new proxy pull consumer.

Parameters:

ctype Specifies the client type. The returned proxy can be narrowed to a type
suitable for the given client type.

proxy_id Returns the ID assigned to the newly created proxy.

Returns:

A reference to a newly created proxy consumer is returned. This reference
should be narrowed to the appropriate type before use. The
AdminLimitExceeded exception is raised if creating a new proxy would exceed
the limit for the target admin.

obtain_notification_push_consumer

ProxyConsumer obtain_notification_push_consumer(in ClientType
ctype, out ProxyID proxy_id)

raises(AdminLimitExceeded);

Creates a new proxy push consumer.

Parameters:

ctype Specifies the client type. The returned proxy can be narrowed to a type
suitable for the given client type.

proxy_id Returns the ID assigned to the newly created proxy.

Returns:

A reference to a newly created proxy consumer is returned. This reference
should be narrowed to the appropriate type before use. The
AdminLimitExceeded exception is raised if creating a new proxy would exceed
the limit for the target admin.

destroy

void destroy();

Destroys the target admin object and all proxies it is managing.
160

Module CosNotifyChannelAdmin
Interface CosNotifyChannelAdmin::EventChannel
interface EventChannel
inherits from CosNotification::QoSAdmin,

CosNotification::AdminPropertiesAdmin,
CosEventChannelAdmin::EventChannel

The EventChannel interface has operations which support the
management of supplier and consumer admin objects.

Attributes MyFactory

readonly attribute EventChannelFactory MyFactory;

A reference to the event channel factory which created the target object.

default_consumer_admin

readonly attribute ConsumerAdmin default_consumer_admin;

A reference to a default consumer admin which is created automatically when
the channel is created.

default_supplier_admin

readonly attribute SupplierAdmin default_supplier_admin;

A reference to a default supplier admin which is created automatically when the
channel is created.

default_filter_factory

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

A reference to the default filter factory.

Operations new_for_consumers

ConsumerAdmin new_for_consumers(in InterFilterGroupOperator op,
 out AdminID id);

Creates a new consumer admin.

Parameters:

op The InterFilterGroupOperator to apply between filter results from the target
object and subsequently created proxy objects.

id The id assigned to the new consumer admin by the event channel.
161

APPENDIX D | CosNotifyChannelAdmin Reference
Returns:

A reference to the newly created consumer admin is returned.

new_for_suppliers

SupplierAdmin new_for_suppliers(in InterFilterGroupOperator op,
 out AdminID id);

Creates a new supplier admin.

Parameters:

op The InterFilterGroupOperator to apply between filter results from the target
object and subsequently created proxy objects.

id The id assigned to the new supplier admin by the event channel.

Returns:

A reference to the newly created supplier admin is returned.

get_consumeradmin

ConsumerAdmin get_consumeradmin(in AdminID id)
raises(AdminNotFound);

Obtains a reference to a consumer admin from an admin ID.

Parameters:

id The ID of the admin for which a reference is required. The ID is originally
assigned by the channel on creation of the admin.

Returns:

A reference to the consumer admin with the given ID. If no matching admin
object is found an AdminNotFound exception is raised.

get_supplieradmin

SupplierAdmin get_supplieradmin(in AdminID id)
raises(AdminNotFound);

Obtains a reference to a supplier admin from an admin ID.

Parameters:

id The ID of the admin for which a reference is required. The ID is originally
assigned by the channel on creation of the admin.

Returns:

A reference to the supplier admin with the given ID. If no matching admin
object is found an AdminNotFound exception is raised.
162

Module CosNotifyChannelAdmin
get_all_consumeradmins

AdminIDSeq get_all_consumeradmins();

Obtains the IDs of all consumer admin objects associated with the target object.

Returns:

A sequence of admin IDs.

get_all_supplieradmins

AdminIDSeq get_all_supplieradmins();

Obtains the IDs of all supplier admin objects associated with the target object.

Returns:

A sequence of admin IDs.
163

APPENDIX D | CosNotifyChannelAdmin Reference
Interface CosNotifyChannelAdmin::EventChannelFactory
interface EventChannelFactory

The EventChannelFactory interface contains operations which support the
creation and management of Notification Service event channels.

Operations create_channel

EventChannel create_channel(in CosNotification::QoSProperties
initial_qos,
in CosNotification::AdminProperties initial_admin,
out ChannelID id)

raises(CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Creates a new channel.

Parameters:

initial_qos A sequence of QoS properties to be assigned to the new channel.

initial_admin - A sequence of administrative properties to be assigned to the
new channel.

id - The ID assigned to the channel by the target object is returned in this
parameter.

Returns:

A reference to the newly created channel is returned. If any of the QoS
properties in initial_QoS are not supported an UnsupportedQoS exception is
raised. If any of the administrative properties in initial_admin are not
supported an UnsupportedAdmin exception is raised.

get_all_channels

ChannelIDSeq get_all_channels();

Obtains a list of all channels known to the factory.

Returns:

A sequence of IDs representing all channels currently managed by the target
object.

get_event_channel

EventChannel get_event_channel(in ChannelID id)

raises(ChannelNotFound);

Obtains a channel reference from a channel ID.
164

Module CosNotifyChannelAdmin
Parameters:

id The id of channel for which a reference is required.

Returns:

A reference to a channel with the corresponding ID. If no channel could be
found with the given ID a ChannelNotFound exception is raised.
165

APPENDIX D | CosNotifyChannelAdmin Reference
166

APPENDIX E

CosNotifyComm
Reference
This appendix describes the CosNotifyComm module.

In this appendix This appendix contains the following section:

Module CosNotifyComm page 168
167

APPENDIX E | CosNotifyComm Reference
Module CosNotifyComm

Exceptions InvalidEventType

exception InvalidEventType
{
CosNotification::EventType type;
};

Raised to indicate an event type name which contains syntax errors.
168

Module CosNotifyComm
Interface CosNotifyComm::NotifyPublish
interface NotifyPublish

The NotifyPublish interface provides a method which suppliers can use to
inform consumers of changes in the set of events offered.

Operations offer_change

void offer_change(in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
raises(InvalidEventType);

Reports changes in the event offering to consumers. If one or more of the event
type names being added or removed is syntactically incorrect the
InvalidEventType exception is raised.

Parameters:

added A list of new event types being added to those currently offered.

removed A list of event types no longer being supplied.
169

APPENDIX E | CosNotifyComm Reference
Interface CosNotifyComm::NotifySubscribe
interface NotifySubscribe

The NotifySubscribe interface provides a method which consumers can use to
inform suppliers of the event types of interest.

Operations subscription_change

void subscription_change(in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
raises(InvalidEventType);

Reports changes in the event subscription to suppliers. If one or more of the
event type names being added or removed is syntactically incorrect the
InvalidEventType exception is raised.

Parameters:

added A list of new event types being added to the current subscription.

removed A list of event types being removed from the subscription.
170

Module CosNotifyComm
Interface CosNotifyComm::PushConsumer
interface PushConsumer
inherits from CosNotifyComm::NotifyPublish,

CosEventComm::PushConsumer

The PushConsumer interface is implemented and registered (connected) by
clients who wish to have unstructured events pushed on them by the channel.
171

APPENDIX E | CosNotifyComm Reference
Interface CosNotifyComm::PullConsumer
interface PullConsumer
inherits from CosNotifyComm::NotifyPublish,

CosEventComm::PullConsumer

The PullConsumer interface is implemented and registered (connected) by
clients who wish to participate in subscription sharing and be notified when
disconnected by the channel. Clients do not need to implement this interface to
simply pull events.
172

Module CosNotifyComm
Interface CosNotifyComm::PullSupplier
interface PullSupplier
inherits from CosNotifyComm::NotifySubscribe,

CosEventComm::PullSupplier

The PullSupplier interface is implemented and registered (connected) by
clients who wish to have unstructured events pulled from them by the channel.
173

APPENDIX E | CosNotifyComm Reference
Interface CosNotifyComm::PushSupplier
interface PushSupplier
inherits from CosNotifyComm::NotifySubscribe,

CosEventComm::PushSupplier

The PushSupplier interface is implemented and registered (connected) by
clients who wish to participate in subscription sharing and be notified when
disconnected by the channel. Clients do not need to implement this interface to
simply push events.
174

Module CosNotifyComm
Interface CosNotifyComm::StructuredPushConsumer
interface StructuredPushConsumer
inherits from CosNotifyComm::NotifyPublish

The StructuredPushConsumer interface is implemented and registered
(connected) by clients who wish to have structured events pushed on them by the
channel.

Operations push_structured_event

void push_structured_event(in CosNotification::StructuredEvent
notification)

raises(CosEventComm::Disconnected);

Suppliers invoke this operation to pass structured event data to consumers. If
communication is disconnected the Disconnected exception is raised.

Parameters:

notification - The structured event being pushed to the consumer.

disconnect_structured_push_consumer

void disconnect_structured_push_consumer();

Terminates communication between the target consumer and its supplier. Also
frees resources allocated by the consumer.
175

APPENDIX E | CosNotifyComm Reference
Interface CosNotifyComm::StructuredPullConsumer
interface StructuredPullConsumer
inherits from CosNotifyComm::NotifyPublish

The StructuredPullConsumer interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and be
notified when disconnected by the channel. Clients do not need to implement
this interface to simply pull events.

Operations disconnect_structured_pull_consumer

void disconnect_structured_pull_consumer();

Terminates communication between the target consumer and its supplier. Also
frees resources allocated by the consumer.
176

Module CosNotifyComm
Interface CosNotifyComm::StructuredPullSupplier
interface StructuredPullSupplier
inherits from CosNotifyComm::NotifySubscribe

The StructuredPullSupplier interface is implemented and registered
(connected) by clients who wish to have structured events pulled from them by
the channel.

Operations pull_structured_event

CosNotification::StructuredEvent pull_structured_event()
raises(CosEventComm::Disconnected);

This method blocks the calling thread until the supplier has data available or an
exception is raised.

Returns:

A structured event.

try_pull_structured_event

CosNotification::StructuredEvent try_pull_structured_event(out
boolean has_event)

raises(CosEventComm::Disconnected);

This method does not block and can be used to poll a pull supplier for events.

Parameters:

has_event Set to TRUE if there is an event available, FALSE otherwise.

Returns:

A structured event if has_event is TRUE, undefined otherwise.

disconnect_structured_pull_supplier

void disconnect_structured_pull_supplier();

Terminates communication between the target supplier and its consumer. Also
frees resources allocated by the supplier.
177

APPENDIX E | CosNotifyComm Reference
Interface CosNotifyComm::StructuredPushSupplier
interface StructuredPushSupplier
inherits from CosNotifyComm::NotifySubscribe

The StructuredPushSupplier interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and be
notified when disconnected by the channel. Clients do not need to implement
this interface to simply push events.

Operations disconnect_structured_push_supplier

void disconnect_structured_push_supplier();

Terminates communication between the target supplier and its consumer. Also
frees resources allocated by the supplier.
178

Module CosNotifyComm
Interface CosNotifyComm::SequencePushConsumer
interface SequencePushConsumer
inherits from CosNotifyComm::NotifyPublish

The SequencePushConsumer interface is implemented and registered
(connected) by clients who wish to have sequences of structured events pushed
on them by the channel.

Operations push_structured_events

void push_structured_events(in CosNotification::EventBatch
notifications)

raises(CosEventComm::Disconnected);

Suppliers invoke this operation to pass sequences of structured events to
consumers. If communication is disconnected the Disconnected exception is
raised.

Parameters:

notifications The structured events being pushed to the consumer.

disconnect_sequence_push_consumer

void disconnect_sequence_push_consumer();

Terminates communication between the target consumer and its supplier. Also
frees resources allocated by the consumer.
179

APPENDIX E | CosNotifyComm Reference
Interface CosNotifyComm::SequencePullConsumer
interface SequencePullConsumer
inherits from CosNotifyComm::NotifyPublish

The SequencePullConsumer interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and be
notified when disconnected by the channel. Clients do not need to implement
this interface to simply pull events.

Operations disconnect_sequence_pull_consumer

void disconnect_sequence_pull_consumer();

Terminates communication between the target consumer and its supplier. Also
frees resources allocated by the consumer.
180

Module CosNotifyComm
Interface CosNotifyComm::SequencePullSupplier
interface SequencePullSupplier
inherits from CosNotifyComm::NotifySubscribe

The SequencePullSupplier interface is implemented and registered
(connected) by clients who wish to have sequences of structured events pulled
from them by the channel.

Operations pull_structured_events

CosNotification::EventBatch pull_structured_events(in long
max_number)

raises(CosEventComm::Disconnected);

This method blocks the calling thread until the supplier has data available or an
exception is raised.

Parameters:

max_number Indicates the maximum number of events to return.

Returns:

A sequence of structured events.

try_pull_structured_events

CosNotification::EventBatch try_pull_structured_events(in long
max_number, out boolean has_event)

raises(CosEventComm::Disconnected);

This method does not block and can be used to poll a pull supplier for events.

Parameters:

max_number Indicates the maximum number of events to return.

has_event Set to TRUE if there is at lease one event is available, FALSE
otherwise.

Returns:

A sequence of structured events if has_event is TRUE, undefined otherwise.

disconnect_sequence_pull_supplier

void disconnect_sequence_pull_supplier();

Terminates communication between the target supplier and its consumer. Also
frees resources at the supplier.
181

APPENDIX E | CosNotifyComm Reference
Interface CosNotifyComm::SequencePushSupplier
interface SequencePushSupplier
inherits from CosNotifyComm::NotifySubscribe

The SequencePushSupplier interface is implemented and registered
(connected) by clients who wish to participate in subscription sharing and be
notified when disconnected by the channel. Clients do not need to implement
this interface to simply push events.

Operations disconnect_sequence_push_supplier

void disconnect_sequence_push_supplier();

Terminates communication between the target supplier and its consumer. Also
frees resources allocated by the supplier.
182

APPENDIX F

CosNotifyFilter
Reference
This appendix describes the CosNotifyFilter module.

In this appendix This appendix contains the following section:

Module CosNotifyFilter page 184
183

APPENDIX F | CosNotifyFilter Reference
Module CosNotifyFilter
This module provides interfaces which support all aspects of filter and mapping
filter management.

Aliases ConstraintID

typedef long ConstraintID;

Alias for a constraint ID.

ConstraintIDSeq

typedef sequence<ConstraintID> ConstraintIDSeq;

Alias for a sequence of constraint IDs.

ConstraintExpSeq

typedef sequence<ConstraintExp> ConstraintExpSeq;

Alias for a sequence of filter constraints.

ConstraintInfoSeq

typedef sequence<ConstraintInfo> ConstraintInfoSeq;

Alias for a sequence of constraint-ID pairs.

MappingConstraintPairSeq

typedef sequence<MappingConstraintPair> MappingConstraintPairSeq;

Alias for a sequence of mapping constraint pairs.

MappingConstraintInfoSeq

typedef sequence<MappingConstraintInfo> MappingConstraintInfoSeq;

Alias for a sequence of constraint-value pairs.

CallbackID

typedef long CallbackID;

Alias for a callback ID.

CallbackIDSeq

typedef sequence<CallbackID> CallbackIDSeq;

Alias for a sequence of callback IDs.

FilterID

typedef long FilterID;
184

Module CosNotifyFilter
Alias for a filter ID.

FilterIDSeq

typedef sequence<FilterID> FilterIDSeq;

Alias for a sequence of filter IDs.

Structs ConstraintExp

struct ConstraintExp
{
CosNotification::EventTypeSeq event_types;
string constraint_expr;
};

A single filter constraint.

Members:

event_types A sequence of event types which are matched against the event
type information in the structured event header.

constraint_expr A constraint expression which conforms to some constraint
grammar.

ConstraintInfo

struct ConstraintInfo
{
ConstraintExp constraint_expression;
ConstraintID constraint_id;
};

Used to maintain an association between filter constraints and constraint IDs.

Members:

constraint_expression A reference to the filter constraint.

constraint_id The ID assigned to the filter constraint by the target object.

MappingConstraintPair

struct MappingConstraintPair
{
ConstraintExp constraint_expression;
any result_to_set;
};

The mapping filter constraint-value pair.

Members:

constraint_expression A filter constraint.
185

APPENDIX F | CosNotifyFilter Reference
result_to_set The result to return from a match operation which matches on
the corresponding constraint.

MappingConstraintInfo

struct MappingConstraintInfo
{
ConstraintExp constraint_expression;
ConstraintID constraint_id;
any value;
};

Used to maintain an association between mapping filter constraints and
constraint IDs.

Members:

constraint_expression A filter constraint.

constraint_id A unique ID assigned to the constraint-value pair by the target
mapping filter object.

value The result to return from a match operation which matches on the
corresponding constraint.

Exceptions UnsupportedFilterableData

exception UnsupportedFilterableData
{
};

Raised during a match operation if the input event contains data that the match
operation is not designed to handle.

InvalidGrammar

exception InvalidGrammar
{
};

Raised during filter creation if an invalid constraint grammar is specified.

InvalidConstraint

exception InvalidConstraint
{
ConstraintExp constr;
};

Raised during the addition or modification of constraints if the new constraint
does not conform to the specified grammar for the target filter object.
186

Module CosNotifyFilter
DuplicateConstraintID

exception DuplicateConstraintID
{
ConstraintID id;
};

Not used.

ConstraintNotFound

exception ConstraintNotFound
{
ConstraintID id;
};

Raised when an operation cannot find a constraint with the given ID.

CallbackNotFound

exception CallbackNotFound
{
};

Raised when an operation cannot find a callback with the given ID.

InvalidValue

exception InvalidValue
{
ConstraintExp constr;
any value;
};

Raised if the datatype of a value in an input constraint-value pair does not match
the value_type for the target mapping filter object.

FilterNotFound

exception FilterNotFound
{
};

Indicates that a reference for a specified filter was not found.
187

APPENDIX F | CosNotifyFilter Reference
Interface CosNotifyFilter::Filter
interface Filter

The Filter interface manages groups of filter constraint expressions and has
operations which evaluate events against these constraints.

Attributes constraint_grammar

readonly attribute string constraint_grammar;

The constraint grammar specified during creation of the filter. All constraints for
the target filter object must be expressed in this grammar.

Operations add_constraints

ConstraintInfoSeq add_constraints(in ConstraintExpSeq
constraint_list)

raises(InvalidConstraint);

Add a list of filter constraints to the target filter object. This operation is
incremental in that new constraints are appended to the existing list of
constraints.

Parameters:

constraint_list The list of constraints to be added to the target filter object.

Returns:

The target filter object assigns an ID to each constraint. This list of constraint-ID
pairs is returned. If any of the constraints violate the constraint grammar an
InvalidConstraint exception is raised.

modify_constraints

void modify_constraints(in ConstraintIDSeq del_list,
 in ConstraintInfoSeq modify_list)
raises(InvalidConstraint,
 ConstraintNotFound);

Modifies the list of constraints associated with the target filter object. If one or
more of the IDs in either of the two lists are not found the ConstraintNotFound
exception is raised.

Parameters:

del_list A list of constraint IDs representing constraints to remove from the
target filter object.
188

Module CosNotifyFilter
modify_list A list of constraint IDs and constraint expressions. Constraints
which exist in the target filter object are modified to those in the list with the
same constraint ID. If a constraint in this list does not conform to the constraint
grammar for the target filter object, an InvalidConstraint exception is raised.

get_constraints

ConstraintInfoSeq get_constraints(in ConstraintIDSeq id_list)
raises(ConstraintNotFound);

Retrieves a set of constraints from the target filter object.

Parameters:

id_list A list of constraint IDs representing the constraints to be retrieved.

Returns:

The constraints associated with the target filter object with the given IDs. If one
or more of the IDs are not found the ConstraintNotFound exception is raised.

get_all_constraints

ConstraintInfoSeq get_all_constraints();

Retrieve all constraints associated with the target filter object.

Returns:

All constraints associated with the target filter object.

remove_all_constraints

void remove_all_constraints();

Remove all constraints associated with the target filter object.

destroy

void destroy();

Destroys the target filter object.

match

boolean match(in any filterable_data)
raises(UnsupportedFilterableData);

Compare the filter constraints from the target filter object with the supplied
event.

Parameters:

filterable_data The event to be evaluated in the form of a CORBA::Any.

Returns:
189

APPENDIX F | CosNotifyFilter Reference
Returns TRUE if the event satistifes at least one constraint, FALSE otherwise. If the
filterable data of the input event contains data that the match operation cannot
handle, an UnsupportedFilterableData exception is raised.

match_structured

boolean match_structured(in CosNotification::StructuredEvent
filterable_data)

raises(UnsupportedFilterableData);

Compare the filter constraints from the target filter object with the supplied
event.

Parameters:

filterable_data The event to be evaluated in the form of a structured event.

Returns:

Returns TRUE if the event satistifes at least one constraint, FALSE otherwise. If the
filterable data of the input event contains data that the match operation cannot
handle an UnsupportedFilterableData exception is raised.

match_typed

boolean match_typed(in CosNotification::PropertySeq
filterable_data)

raises(UnsupportedFilterableData);
Not implemented.
attach_callback
CallbackID attach_callback(in CosNotifyComm::NotifySubscribe

callback);

Allows objects supporting the NotifySubscribe interface (proxy suppliers and
consumer admins) to register with the target filter object. Registered objects are
notified when the set of event types required by the filter constraints changes.

Parameters:

callback A reference to an object interested in subscription changes.

Returns:

The target filter object assigns and returns a unique ID to each registered
callback.

detach_callback

void detach_callback(in CallbackID callback)
raises(CallbackNotFound);

Removes a callback previously registered with attach_callback.
190

Module CosNotifyFilter
Parameters:

callback The ID of the callback to be removed. The CallbackNotFound
exception is raised of the target object does not contain a reference with the
given ID.

get_callbacks

CallbackIDSeq get_callbacks();

Retrieve a list of all callbacks registered with the target filter object.

Returns:

A list of IDs representing all callbacks currently registered.
191

APPENDIX F | CosNotifyFilter Reference
Interface CosNotifyFilter::MappingFilter
interface MappingFilter

The MappingFilter interface manages groups of mapping filter constraint-value
pairs and has operations which evaluate events against these constraints.

Attributes constraint_grammar

readonly attribute string constraint_grammar;

The constraint grammar specified during creation of the filter. All constraints for
a filter object must be expressed in this grammar.

value_type

readonly attribute TypeCode value_type;

Identifies the datatype of the property value which the mapping filter affects.

default_value

readonly attribute any default_value;

This parameter is returned as the result of a match operation for which the given
event satisfied none of the constraints associated with the target mapping filter
object.

Operations add_mapping_constraints

MappingConstraintInfoSeq add_mapping_constraints(in
MappingConstraintPairSeq pair_list)

raises(InvalidConstraint,

 InvalidValue);

Add a list of mapping filter constraints to the target mapping filter object. This
operation is incremental in that new constraints are appended to the existing list
of constraints.

Parameters:

pair_list The list of constraint-value pairs to be added to the target filter
object.

Returns:

The target filter object assigns an ID to each constraint-value pair. The input list
is returned along with the ID assigned to each constraint-value pair. If any of the
constraints violate the constraint grammar an InvalidConstraint exception is
192

Module CosNotifyFilter
raised. If any of the values in the list of constraint-value pairs are not of the same
type as the value_type for the target filter object, an InvalidValue exception is
raised.

modify_mapping_constraints

void modify_mapping_constraints(in ConstraintIDSeq del_list,
 in MappingConstraintInfoSeq modify_list)
raises(InvalidConstraint,
 InvalidValue,
 ConstraintNotFound);

Modifies the list of constraint-value pairs associated with the target filter object.
If one or more of the IDs in either of the two lists are not found the
ConstraintNotFound exception is raised.

Parameters:

del_list A list of constraint IDs representing constraint-value pairs to remove
from the target filter object.

modify_list A list of constraint IDs and constraint-value pairs. Constraints
which exist in the target filter object are modified to those in the list with the
same constraint ID. Both the constraint and value types may be modified. If a
constraint in this list does not conform to the constraint grammar for the target
filter object, an InvalidConstraint exception is raised. Likewise if a value in
this list is not of the same type as the value_type for the target filter object, an
InvalidValue exception is raised.

get_mapping_constraints

MappingConstraintInfoSeq get_mapping_constraints(in
ConstraintIDSeq id_list)

raises(ConstraintNotFound);

Retrieves a set of constraint-value pairs from the target filter object.

Parameters:

id_list A list of constraint IDs representing the constraint-value pairs to be
retrieved.

Returns:

The constraint-value pairs associated with the target filter object with the given
IDs. If one or more of the IDs are not found the ConstraintNotFound exception
is raised.

get_all_mapping_constraints

MappingConstraintInfoSeq get_all_mapping_constraints();
193

APPENDIX F | CosNotifyFilter Reference
Retrieve all constraint-value pairs associated with the target filter object.

Returns:

All constraint-value pairs associated with the target filter object.

remove_all_mapping_constraints

void remove_all_mapping_constraints();

Remove all constraint-value pairs associated with the target filter object.

destroy

void destroy();

Destroys the target filter object.

match

boolean match(in any filterable_data,
 out any result_to_set)
raises(UnsupportedFilterableData);

Compare the filter constraints from the target filter object with the supplied
event.

Parameters:

filterable_data The event to be evaluated in the form of a CORBA::Any.

result_to_set If the match is successful, that is the return result is TRUE, this
parameter is set to the value paired with the matching constraint. Otherwise if
the match fails, that is the return result is FALSE, this parameter is set to the
default_value for the target filter object.

Returns:

Returns TRUE if the event satistifes at least one constraint, FALSE otherwise. If the
filterable data of the input event contains data that the match operation cannot
handle, an UnsupportedFilterableData exception is raised.

match_structured

boolean match_structured(in CosNotification::StructuredEvent
filterable_data, out any result_to_set)

raises(UnsupportedFilterableData);

Compare the filter constraints from the target filter object with the supplied
event.

Parameters:

filterable_data The event to be evaluated in the form of a structured event.
194

Module CosNotifyFilter
result_to_set If the match is successful, that is the return result is TRUE, this
parameter is set to the value paired with the matching constraint. Otherwise if
the match fails, that is the return result is FALSE, this parameter is set to the
default_value for the target filter object.

Returns:

Returns TRUE if the event satistifes at least one constraint, FALSE otherwise. If the
filterable data of the input event contains data that the match operation cannot
handle, an UnsupportedFilterableData exception is raised.

match_typed

boolean match_typed(in CosNotification::PropertySeq
filterable_data, out any result_to_set)

raises(UnsupportedFilterableData);

Not Implemented.
195

APPENDIX F | CosNotifyFilter Reference
Interface CosNotifyFilter::FilterFactory
interface FilterFactory

The FilterFactory interface includes operations which support the creation of
filter objects and mapping filter objects.

Operations create_filter

Filter create_filter(in string constraint_grammar)
raises(InvalidGrammar);

Creates a new filter object.

Parameters:

constraint_grammar The constraint grammar to be used for constraint
expressions.

Returns:

A new filter object is returned. If an unknown constraint grammar is specified an
InvalidGrammar exception is raised.

create_mapping_filter

MappingFilter create_mapping_filter(in string constraint_grammar,
 in any default_value)
raises(InvalidGrammar);

Creates a new mapping filter object.

Parameters:

constraint_grammar The constraint grammar to be used for constraint
expressions.

default_value The default value returned by a match operation on the target
mapping filter.

Returns:

A new filter object is returned. If an unknown constraint grammar is specified an
InvalidGrammar exception is raised.
196

Module CosNotifyFilter
Interface CosNotifyFilter::FilterAdmin
interface FilterAdmin

The FilterAdmin interface supports the management of filter objects.

Operations add_filter

FilterID add_filter(in Filter new_filter);

Adds a filter to the target object.

Parameters:

new_filter The filter object to be added to the target object.

Returns:

The ID assigned to the filter by the target object is returned.

remove_filter

void remove_filter(in FilterID filter)
raises(FilterNotFound);

Remove a filter from the target object, the filter itself is not destroyed. If the
specified filter is not found a FilterNotFound exception is raised.

Parameters:

filter The ID of the filter to remove.

get_filter

Filter get_filter(in FilterID filter)
raises(FilterNotFound);

Retrieves a reference for the filter with the given filter ID from the target object.

Parameters:

filter The ID of the filter to locate.

Returns:

A reference to a filter object is returned. If a filter with a given ID could not a be
found a FilterNotFound exception is raised.

get_all_filters

FilterIDSeq get_all_filters();

Retrieve a list of all filters associated with the target object.

Returns:

A list of filter IDs is returned.
197

APPENDIX F | CosNotifyFilter Reference
remove_all_filters

void remove_all_filters();

Remove all filters associated with the target object.
198

APPENDIX G

OBNotify
Reference
This appendix describes the OBNotify module.

In this appendix This appendix contains the following section:

Module OBNotify page 200
199

APPENDIX G | OBNotify Reference
Module OBNotify
This module contains proprietary Orbacus Notify QoS settings.

Constants PullInterval

const string PullInterval = "PullInterval";

The amount of time the service pauses between pull requests. The value of this
property is of type TimeBase::TimeT, with a default of 1 second.

RetryTimeout

const string RetryTimeout = "RetryTimeout";

Specifies the initial amount of time as a TimeBase::TimeT that the service will
wait before retrying a failed client communications attempt. The default value is
1 second.

RetryMultiplier

const string RetryMultiplier = "RetryMultiplier";

After each consecutive expiration of the retry timeout, the timeout value will be
multiplied by this factor. This value is a double and has a valid range of 1.0 to
2.0 inclusive. The default value is 1.0.

MaxRetries

const string MaxRetries = "MaxRetries";

The maximum number of retries that will be performed before the proxy ceases
making requests to the connected consumer or supplier. The proxy then
disconnects and destroys itself. The default value is 0, which means unlimited
retry.

MaxRetryTimeout

const string MaxRetryTimeout = "MaxRetryTimeout";

The upper limit, as a TimeBase::TimeT, for increasing the retry interval. After
this duration has been reached the retry interval will stay constant until success
or until OBNotify::MaxRetries has been reached. The default value is 60
seconds.

RequestTimeout

const string RequestTimeout = "RequestTimeout";
200

Module OBNotify
The amount of time (TimeBase::TimeT) permitted for a blocking request on a
client to return before a timeout. The default value is 5 seconds.
201

APPENDIX G | OBNotify Reference
202

203

Notify
Bibliography
[1] Object Management Group. 2000. Notification Service

Specification. ftp://ftp.omg.org/pub/docs/formal/00-06-20.pdf.
Framingham, MA: Object Management Group.

[2] Object Management Group. 2001. Event Service Specification.
ftp://ftp.omg.org/pub/docs/formal/01-03-01.pdf. Framingham,
MA: Object Management Group.

	List of Tables
	List of Figures
	Preface
	The Orbacus Library
	Audience
	Document Conventions

	Introduction
	Overview

	Configuration and Startup
	Orbacus Notify
	Orbacus Notify Console
	Startup Example

	Notification Service Concepts
	Overview
	The OMG Event Service
	Delivery Models
	Object Management Hierarchy
	Event Delivery

	The OMG Notification Service
	Delivery Models
	Object Management Hierarchy
	Event Delivery
	Event Translation
	Filtering
	Mapping Filters
	Quality of Service
	Proprietary QoS Properties
	Administrative Properties
	Subscription Sharing

	Programming Example
	Introduction
	Connecting to a Notification Channel
	Connecting a Consumer
	Connecting to a Proxy

	Supplying Events
	Consuming Events
	Filtering
	Disconnecting from a Notification Channel
	Building Orbacus Notify Clients

	Orbacus Notify Console
	Overview
	The Orbacus Notify Console Menus
	Creation Wizards
	Managing Notification Channels
	Managing Admins
	Managing Proxies
	Managing Filters
	Managing Filter Constraints
	Managing Mapping Filters
	Managing Mapping Filter Constraint-Value Pairs

	CosEventChannelA dmin Reference
	Module CosEventChannelAdmin
	Interface CosEventChannelAdmin::ProxyPushConsumer
	Interface CosEventChannelAdmin::ProxyPullSupplier
	Interface CosEventChannelAdmin::ProxyPullConsumer
	Interface CosEventChannelAdmin::ProxyPushSupplier
	Interface CosEventChannelAdmin::ConsumerAdmin
	Interface CosEventChannelAdmin::SupplierAdmin
	Interface CosEventChannelAdmin::EventChannel

	CosEventComm Reference
	Module CosEventComm
	Interface CosEventComm::PushConsumer
	Interface CosEventComm::PushSupplier
	Interface CosEventComm::PullSupplier
	Interface CosEventComm::PullConsumer

	CosNotification Reference
	Module CosNotification
	Interface CosNotification::QoSAdmin
	Interface CosNotification::AdminPropertiesAdmin

	CosNotifyChannel Admin Reference
	Module CosNotifyChannelAdmin
	Interface CosNotifyChannelAdmin::ProxyConsumer
	Interface CosNotifyChannelAdmin::ProxySupplier
	Interface CosNotifyChannelAdmin::ProxyPushConsumer
	Interface CosNotifyChannelAdmin::StructuredProxyPushConsumer
	Interface CosNotifyChannelAdmin::SequenceProxyPushConsumer
	Interface CosNotifyChannelAdmin::ProxyPullSupplier
	Interface CosNotifyChannelAdmin::StructuredProxyPullSupplier
	Interface CosNotifyChannelAdmin::SequenceProxyPullSupplier
	Interface CosNotifyChannelAdmin::ProxyPullConsumer
	Interface CosNotifyChannelAdmin::StructuredProxyPullConsumer
	Interface CosNotifyChannelAdmin::SequenceProxyPullConsumer
	Interface CosNotifyChannelAdmin::ProxyPushSupplier
	Interface CosNotifyChannelAdmin::StructuredProxyPushSupplier
	Interface CosNotifyChannelAdmin::SequenceProxyPushSupplier
	Interface CosNotifyChannelAdmin::ConsumerAdmin
	Interface CosNotifyChannelAdmin::SupplierAdmin
	Interface CosNotifyChannelAdmin::EventChannel
	Interface CosNotifyChannelAdmin::EventChannelFactory

	CosNotifyComm Reference
	Module CosNotifyComm
	Interface CosNotifyComm::NotifyPublish
	Interface CosNotifyComm::NotifySubscribe
	Interface CosNotifyComm::PushConsumer
	Interface CosNotifyComm::PullConsumer
	Interface CosNotifyComm::PullSupplier
	Interface CosNotifyComm::PushSupplier
	Interface CosNotifyComm::StructuredPushConsumer
	Interface CosNotifyComm::StructuredPullConsumer
	Interface CosNotifyComm::StructuredPullSupplier
	Interface CosNotifyComm::StructuredPushSupplier
	Interface CosNotifyComm::SequencePushConsumer
	Interface CosNotifyComm::SequencePullConsumer
	Interface CosNotifyComm::SequencePullSupplier
	Interface CosNotifyComm::SequencePushSupplier

	CosNotifyFilter Reference
	Module CosNotifyFilter
	Interface CosNotifyFilter::Filter
	Interface CosNotifyFilter::MappingFilter
	Interface CosNotifyFilter::FilterFactory
	Interface CosNotifyFilter::FilterAdmin

	OBNotify Reference
	Module OBNotify

	Notify Bibliography

