ORBacus

For C++ and Java

Copyright (c) 2001 IONA Technologies, Inc. All Rights Reserved.

“ORBacus” and “JThreads/C++” are trademarks or registered trademarks of IONA Tech-
nologies, Inc.

“OMG”, “CORBA”, and “Object Request Broker” are trademarks or registered trade-
marks of the Object Management Group.

“Java” is a trademark of Sun Microsystems, Inc.
“Netscape” is a registered trademark of Netscape Communications Corporation.

Other names, products, and services may be the trademarks or registered trademarks of
their respective holders.

ORBacus

CHAPTER 1 Introduction 15

What is ORBacus? 15
About this Document 16
Getting Help 16

CHAPTER 2 Getting Started 17

The “Hello World” Application 17
The IDL Code 18
Implementing the Example in C++ 18
Implementing the Server 18
Implementing the Client 22
Compiling and Linking 23
Running the Application 24
Implementing the Example in Java 24
Implementing the Server 24
Implementing the Client 27
Compiling 28
Running the Application 29
Summary 29

Where to go from here 30

CHAPTER 3 The ORBacus Code Generators 31

Overview 31

Synopsis 31

Description 32

Options for idl 32

Options for jidl 36
Options for hidl 37
Options for ridl 38
Options for irgen 39

The IDL-to-C++ Translator and the Interface Repository 40
Include Statements 40
Documenting IDL Files 41
Using javadoc 44

ORBacus

CHAPTER 4

CHAPTER §

ORB and Object Adapter Initialization

ORB Initialization 47
Initializing the C++ ORB 47
Initializing the Java ORB for Applications 47
Initializing the Java ORB in JDK 1.2/1.3 48

Object Adapter Initialization 48
Initialization of the Object Adapter 48
Configuring the ORB and Object Adapter 49
ORB Properties 49
OA Properties 53
IIOP Properties 55
Command-line Options 58
Using a Configuration File 59
Using the Windows NT Registry 60
Defining Properties 61
Precedence of Properties 63
Advanced Property Usage 63
Using POA Managers 65
Creating POA Managers 65
The Root POA Manager 67
Dispatching Requests 68
Callbacks 68
Advanced Configuration Example 68
ORB Destruction 70
Destroying the C++ ORB 70
Destroying the Java ORB 70
Server Event Loop 71

Applets 72
Compatibility with Netscape 72
Initializing the Java ORB for Applets 73
Adding ORBacus Applets to Web Pages 73
Defining ORB Options for an Applet 73
Defining the ORB Class Parameters 74
Security Issues 74

CORBA Objects 75

Overview 75

47

ORBacus

Implementing Servants 76
Implementing Servants using Inheritance 77
Implementing Servants using Delegation 79
Creating Servants 83
Creating Servants using C++ 84
Creating Servants using Java 85
Activating Servants 86
Implicit Activation of Servants using C++ 86
Implicit Activation of Servants using Java 87
Explicit Activation of Servants using C++ 87
Explicit Activation of Servants using Java 88
Deactivating Servants 89
Deactivation of Servants using C++ 89
Deactivation of Servants using Java 89
Transient and Persistent Objects 89
Factory Objects 90
Factory Objects using C++ 91
Factory Objects using Java 93
Caveats 94
Obtaining the POA for a Servant 94
Getting the POA for a Currently Executing Request 95

CHAPTER 6 Locating Objects 97

Obtaining Object References 97
Lifetime of Object References 100
Hostname 100
Port Number 100
Object Key 101
Stringified Object References 101
Using a File 101
Usinga URL 103
Using Applet Parameters 104
Object Reference URLs 105
corbaloc: URLs 105
corbaname: URLs 107
file: URLs 107
relfile: URLs 108
Initial Services 108

ORBacus

Resolving an Initial Service 108
Configuring the Initial Services 110
The Initial Service Locator 111

CHAPTER 7 The Implementation Repository 113

Background 114
How It All Works 114
Information Managed by the IMR 114
IMR Security 116
Synopsis 117
Usage 117
Windows NT Native Service 118
Configuration Properties 120
Connecting to the Service 121
Utilities 122
Implementation Repository Administration 122
Making References 123
Upgrading the IMR Database 124
Getting Started with the Implementation Repository 124
Programming Example 127

CHAPTER 8 The Implementation Repository Console 131

Synopsis 132

Usage 132

CLASSPATH Requirements 132

Implementation Repository Service Lookup 132
The Menus 132

The File Menu 132

The Edit Menu 133

The View Menu 133

The Toolbar and the Popup Menu 134

CHAPTER 9 ORBacus Names 135

Synopsis 135
Usage 135

ORBacus

Windows NT Native Service 136
Configuration Properties 138
Persistence 138
CLASSPATH Requirements 139
Connecting to the Service 139
Using the Naming Service with the IMR 139

Naming Service Concepts 140
Bindings 140
Name Resolution 141
Programming Example 142
Initialization 142
Binding 144
Exceptions 146
The Event Loop 147
Releasing Resources 148

CHAPTER 10 ORBacus Names Console 149

Synopsis 149
Usage 149
CLASSPATH Requirements 150
Naming Service Lookup 150
The Menus 150
The File Menu 150
The Edit Menu 152
The View Menu 153
The Tools Menu 154
The Toolbar 155

The Popup Menu 156

CHAPTER 11 ORBacus Properties 157

Synopsis 157
Usage 157
Configuration Properties 158
CLASSPATH Requirements 158
Connecting to the Service 158
Using the Property Service with the IMR 159

ORBacus

Property Service Concepts 159
Creating Properties 159
Querying for Properties 160
Deleting Properties 161

Programming Example 162

CHAPTER 12 ORBacus Time 165

Compliance Statement 165
Criteria to Be Followed for Secure Time 165
Proxies and Time Uncertainty 166

Synopsis 166
Usage 166
Configuration Properties 167
CLASSPATH Requirements 167

Time Service Concepts 167
Representation of Time 167
Basic Types 168
Enumerations 169
Exceptions 170
The Universal Time Object 170
The Time Interval Object 171
The TimeService Object 172

Time Service Extensions 173

Programming Example 176

CHAPTER 13 ORBacus Events 181

Synopsis 181
Usage 181
Windows NT Native Service 182
Configuration Properties 183
Diagnostics 184
CLASSPATH Requirements 185
Connecting to the Service 185
Using the Event Service with the IMR 186

Event Service Concepts 187
The Event Channel 187

ORBacus

CHAPTER 14

CHAPTER 15

CHAPTER 16

Event Suppliers and Consumers 187
Event Channel Policies 188
Event Channel Factories 188

Programming Example 190

The Interface Repository 195

Synopsis 195
Usage 195
Windows NT Native Service 196
Configuration Properties 197
Connecting to the Interface Repository 198
Configuration Issues 198
Interface Repository Utilities 198
irfeed 198
irdel 199
Programming Example 199

Using Policies 201

Overview 201
Supported Policies 202
Programming Examples 203

Connection Reuse Policy 203
Timeout Policy 205

Concurrency Models 207

Introduction 207
What is a Concurrency Model? 207
Why different Concurrency Models? 207
ORBacus Concurrency Models Overview 208
Single-Threaded Concurrency Models 208
Blocking Clients 208
Reactive Clients and Servers 209
Multi-Threaded Concurrency Models 211
Threaded Clients and Servers 211

ORBacus

CHAPTER 17

CHAPTER 18

Thread-per-Client Server 212
Thread-per-Request Server 213
Thread Pool Server 214
Selecting Concurrency Models 215
The Reactor 215
What is a Reactor? 215
Available Reactors 215

The Open Communications Interface

What is the Open Communications Interface? 219
Interface Summary 219

Buffer 219

Transport 220

Acceptor and Connector 220

Acceptor and Connector Factories 220

The Registries 220

The Info Objects 220

Class Diagram 221
OCI Reference 222

OCI for the Application Programmer 222
A “Converter” Class for Java 222
Getting Hostnames and Port Numbers 223
Determining a Client’s IP Address 224
Determining a Server s IP Address 226

The IIOP OCI Plug-in 227
1IOP Acceptor Configuration 227

The Bi-directional OCI Plug-in 229
How does it work? 229
Peers 230
POA Managers 231
Initialization and Configuration 231
Bi-directional Acceptor Configuration 233

Exceptions and Error Messages 235

CORBA System Exceptions 235
INITIALIZE Minor Exception Code 238

219

10

ORBacus

UNKNOWN Minor Exception Code 238
BAD_PARAM Minor Exception Code 238
NO_MEMORY Minor Exception Code 240
IMP_LIMIT Minor Exception Code 240
COMM_FAILURE Minor Exception Code 240
MARSHAL Minor Exception Code 242
NO_IMPLEMENT Minor Exception Code 244
NO_RESOURCES Minor Exception Code 244
BAD_INV_ORDER Minor Exception Code 244
TRANSIENT Minor Exception Code 245
INTF_REPOS Minor Exception Code 245
OBJECT_NOT_EXIST Minor Exception Code 245
INV_POLICY Minor Exception Code 245

Non-Compliant Application Asserts 245

APPENDIX A Boot Manager Reference 251

Interface OB::BootManager 251
Interface OB::BootLocator 253

APPENDIX B ORBacus Policy Reference 255

Module OB 255

Interface OB::ACMTimeoutPolicy 258
Interface OB::ConnectTimeoutPolicy 259
Interface OB::ConnectionReusePolicy 260
Interface OB::InterceptorPolicy 261

Interface OB::LocationTransparencyPolicy 262
Interface OB::ProtocolPolicy 263

Interface OB::RequestTimeoutPolicy 264
Interface OB::RetryPolicy 265

Interface OB::TimeoutPolicy 266

ORBacus

APPENDIX C

APPENDIX D

APPENDIX E

Reactor Reference 267

Interface OB::Reactor 267

Logger Reference 271

Interface OB::Logger 271

Open Communications Interface Reference

Module OCI 273

Interface OCI::Buffer 278

Interface OCI::Transport 280

Interface OCI::Transportinfo 284
Interface OCI::CloseCB 286

Interface OCI::Connector 287

Interface OCI::ConnectorInfo 290
Interface OCI::ConnectCB 292
Interface OCI::Acceptor 293

Interface OCI::Acceptorinfo 296
Interface OCI::AcceptCB 298

Interface OCI::AccFactory 299
Interface OCI::AccFactorylnfo 301
Interface OCI::AccFactoryRegistry 302
Interface OCI::ConFactory 304
Interface OCI::ConFactorylnfo 306
Interface OCI::ConFactoryRegistry 308
Interface OCI::Current 310

Module OCI::1IOP 311

Interface OCI::IIOP::Transportlnfo 312
Interface OCI::IIOP::ConnectorInfo 313
Interface OCI::11OP::AcceptorInfo 314
Interface OCI::IIOP::AccFactorylnfo 315
Interface OCI::IIOP::ConFactorylnfo 316

273

12

ORBacus

References

317

ORBacus

13

14

ORBacus

CHAPTER1

Introduction

1.1

What is ORBacus?

ORBACUS is an Object Request Broker (ORB) that is compliant with the Common Object
Request Broker Architecture (CORBA) specification as defined in “The Common Object
Request Broker: Architecture and Specification” [4], “C++ Language Mapping” [5],
“IDL/Java Language Mapping” [6], and “Portable Interceptors” [7].

These are some of the highlights of ORBACUS:
e Full CORBA IDL support

e C++ and Java language mappings

* Simple configuration and bootstrapping

* Portable Object Adapter

* Objects by Value

* Portable Interceptors

* Single- and Multi-threaded

* Active Connection Management

* Fault Tolerant Extensions

* Dynamic Invocation and Dynamic Skeleton Interface

¢ Dynamic Any

ORBacus 15

Introduction

1.2

1.3

* Interface and Implementation Repository
* Pluggable Protocols
* IDL-to-HTML and IDL-RTF documentation tools

* Includes Naming, Event, Property and Time Services

For platform availability, please refer to the ORBACUS home page at
http://ww. or bacus. com ob/ .

About this Document

This manual is—except for the “Getting Started” chapter—no replacement for a good
CORBA book. This manual also does not contain the precise specifications of the
CORBA standard, which are freely available on-line. A good grasp of the CORBA speci-
fications in [4], [6], and [6] is absolutely necessary to effectively use this manual. In par-
ticular, the chapters in [4], covering CORBA IDL and the IDL-to-C++ mapping, should be
studied thoroughly.

For C++ users, we also highly recommend [3]. This book contains by far the best treat-
ment of CORBA programming with C++ to date.

What this manual does contain, however, is information on z7ow ORBACUS implements
the CORBA standard. A shortcoming of the current CORBA specification is that it leaves
a high degree of freedom to the CORBA implementation. For example, the precise seman-
tics of a oneway call are not specified by the standard.

To make it easier to get started with ORBACUS, this manual contains a “Getting Started”
chapter, explaining some ORBACUS basics with a very simple example.

Getting Help

Should you need any assistance with ORBACUS, please visit our Support Frequently
Asked Questions (FAQ) list at htt p: //wmv. or bacus. cont f ag/ support. htm .

16

ORBacus

CHAPTER 2

Getting Started

2.1

The “Hello World” Application

The example described in this chapter is founded on a well-known application: A “Hello
World!” program presented here in a special client-server version.

Many books on programming start with this tiny demo program. In introductory C++
books you'll probably find the following piece of code in the very first chapter:

/] C++
#i ncl ude <i ostream h>

int main(int, char*[])

{
cout << "Hello World!'" << endl;
return O;
}
Or in introductory Java books:
/1 Java
public class Geeter
{
public static void main(String args[])
{
Systemout.printin("Hello Wrld!l");
}

ORBacus 17

Getting Started

2.2

2.3

2.3.1

a s~ wN PP

}

These applications simply print “Hello World!” to standard output and that is exactly what
this chapter is about: Printing “Hello World!” with a CORBA-based client-server applica-
tion. In other words, we will develop a client program that invokes a say_hel | o opera-
tion on an object in a server program. The server responds by printing “Hello World!” on
its standard output.

The IDL Code

How do we write a CORBA-based “Hello World!” application? The first step is to create a
file containing our IDL definitions. Since our sample application isn't a complicated one,
the IDL code needed for this example is simple:

/! 1DL
interface Hello

{
}s

voi d say_hell o();

An interface with the name Hel | o is defined. An IDL interface is conceptually equivalent
to a pure abstract class in C++, or to an interface in Java.

The only operation defined is say_hel | o, which neither takes any parameters nor returns
any result.

Implementing the Example in C++

The next step is to translate the IDL code to C++ using the IDL-to-C++ translator. Save
the IDL code shown above to a file called Hel | 0. i dl . Now translate the code to C++
using the following command:

idl Hello.idl

This command will create the files Hel | 0. h, Hel | 0. cpp, Hel | o_skel . h and
Hel | o_skel . cpp.

Implementing the Server

To implement the server, we need to define an implementation class for the Hel | o inter-
face. To do this, we create a class Hel | o_i npl that is derived from the “skeleton” class
PQOA Hel | o, defined in the file Hel | o_skel . h. The definition for Hel | o_i npl looks
like this:

18

ORBacus

Implementing the Example in C++

© 00 NO O WN PR

10

© 00N O WNBR

w

/] C++
#i ncl ude <Hel | o_skel . h>

class Hello_inpl : public POA Hell o,
publ i c Portabl eServer: : Ref Count Ser vant Base

{
public:

virtual void say_hello() throw CORBA:: SystenException);
i

Since our implementation class derives from the skeleton class POA_Hel | o, we must
include the file Hel | o_skel . h.

Here we define Hel | o_i npl as a class derived from POA _Hel | o and
Ref Count Ser vant Base. Ref Count Ser vant Base is part of the Por t abl eSer ver
namespace and provides reference counting.

Our implementation class must implement all operations from the IDL interface. In this
case, this is just the operation say_hel | o.

The implementation for Hel | o_i npl looks as follows:

/] C++

#i ncl ude <i ostream h>
#i ncl ude <OB/ CORBA. h>
#i nclude <Hell o_i npl. h>

void Hello_inpl::say_hello() throw CORBA:: SystenException)
{

}

cout << "Hello World!" << endl;

We must include OB/ CORBA. h, which contains definitions for the standard CORBA
classes, as well as for other useful things.

We must also include the Hel | o_i npl class definition, contained in the header file
Hel | o_i npl . h.

The say_hel | o function simply prints “Hello World!” on standard output.

Save the class definition of Hel | o_i npl in the file Hel | o_i npl . h and the implementa-
tion of Hel | o_i npl in the file Hel | o_i npl . cpp.

ORBacus 19

Getting Started

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

2-5

Now we need to write the server program. To simplify exception handling and ORB
destruction, we split our server into two functions: mai n() and run() . mai n() only cre-
ates the ORB, and calls run() :

/1l C++
#i ncl ude <OB/ CORBA. h>
#i nclude <Hell o_i npl . h>

#i ncl ude <fstream h>
int run(CORBA: : ORB ptr);

int main(int argc, char* argv[])
{
int status = EXl T_SUCCESS;
CORBA: : ORB _var orb;

try

{
orb = CORBA:: ORB_init(argc, argv);
status = run(orb);

}
cat ch(const CORBA: : Exception&)

{
}

i f(!CORBA: :is_nil(orb))
{

status = EXI T_FAI LURE;

try
{

}
cat ch(const CORBA: : Exception&)
{

}

orb -> destroy();

status = EXI T_FAI LURE;

}

return status;

}

Several header files are included. Of these, OB/ CORBA. h provides the standard CORBA
definitions, and Hel | o_i npl . h contains the definition of the Hel | o_i npl class.

20

ORBacus

Implementing the Example in C++

16

17

19-22

24-34

36

1
2

26

A forward declaration for the r un() function.

The first thing a CORBA program must do is initialize the ORB. This operation expects
the parameters with which the program was started. These parameters may or may not be
used by the ORB, depending on the CORBA implementation. ORBACUS recognizes cer-
tain options that will be explained later.

The run() helper function is called.
This code catches and prints all CORBA exceptions raised by ORB_i ni t () orrun().

If the ORB was successfully created, it is destroyed. This releases the resources used by
the ORB. If dest r oy () raises a CORBA exception, this exception is caught and printed.

The exit status is returned. If there was no error, EXI T_SUCCESS is returned, or
EXI T_FAI LURE otherwise.

Now we write the r un() function:

/] C++
int run(CORBA: : ORB _ptr orb)

CORBA: : Obj ect _var poaChj =

orb -> resolve_initial _references("Root POA");
Por t abl eServer:: POA var rootPoa =

Por t abl eServer: : POA: : _narrow poaChj);

Por t abl eSer ver: : POAManager _var manager =
root Poa -> t he_POAManager ();

Hel l o_i npl * hellolnmpl = new Hello_inpl();
Port abl eServer:: Servant Base_var servant = hell ol npl;
Hell o_var hello = hellolnpl -> _this();

CORBA: : String_var s
const char* refFile
of streamout (refFil e);
out << s << endl;

out. cl ose();

orb -> object_to_string(hello);
"Hel l o.ref";

manager -> activate();
orb -> run();

return EXI T_SUCCESS;
}

ORBacus 21

Getting Started

16- 20

22-23

2.3.2

© 00O NOO O~ WNBRE

el
A WNPFEL O

Using the ORB reference, r esol ve_i ni ti al _ref erences() isinvoked to obtain a ref-
erence to the Root POA.

The Root POA is used to obtain a reference to its POA Manager.

A servant of type Hel | o_i npl is created and assigned to a Ser vant Base_var variable.
The servant is then used to incarnate a CORBA object, using the _t hi s() operation.
Servant Base_var and Hel | o_var, like all _var types, are “smart” pointer, i.c.,
servant and hel | o will release their assigned object automatically when they go out of
scope.

The client must be able to access the implementation object. This can be done by saving a
“stringified” object reference to a file, which can then be read by the client and converted
back to the actual object reference.! The operation obj ect _to_string() converts a
CORBA object reference into its string representation.

The server must activate the POA Manager to allow the Root POA to start processing
requests, and then inform the ORB that it is ready to accept requests.

Save the code for mai n() and run() to a file with the name Ser ver . cpp.

Implementing the Client

In several respects, the client program is similar to the server program. The code to initial-
ize and destroy the ORB is the same:

/] C++

#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hell 0. h>

#i ncl ude <fstream h>

int run(CORBA: : ORB ptr);

int main(int argc, char* argv[])

{
}

int run(CORBA:: ORB ptr orb)

// Sane as for the server

1. If your application contains more than one object, you do not need to save object references for
all objects. Usually you save the reference of one object which provides operations that can sub-
sequently return references to other objects.

22

ORBacus

Implementing the Example in C++

15
16
17
18
19
20
21
22
23
24
25
26
27

3

16- 20

22

24

233

{
const char* refFile = "Hello.ref";
ifstreamin(refFile);
char s[2048];
in >> s;
CORBA: : Obj ect _var obj = orb -> string_to_object(s);
Hel | o_var hello = Hello::_narrow obj);
hello -> say_hello();
return O;
}
In contrast to the server, the client does not need to include Hel | o_i npl . h. Only the gen-

erated file Hel | o. h is needed.
This code is the same as for the server.

The “stringified” object reference written by the server is read and converted to a
CORBA: : (bj ect object reference. It’s not necessary to obtain a reference to the Root
POA or its POA Manager, because they are only needed by server applications.

The _nar r owoperation generates a Hel | o object reference from the CORBA: : Cbj ect
object reference. Although _nar r ow for CORBA objects works similar to dynam c_cast <>
for plain C++ objects, dynam c_cast <> must not be used for CORBA object references. That’s
because in contrast to dynami c¢_cast <>, _nar r owmight have to query the server for type
information.

The say_hel | o operation on the hel | o object reference is invoked, causing the server to
print “Hello World!”.

Save this code into the file Cl i ent . cpp.

Compiling and Linking

Both the client and the server must be linked with the compiled Hel | 0. cpp, which usu-
ally has the name Hel | 0. o under Unix and Hel | 0. obj under Windows. The compiled
Hel | o_skel . cpp and Hel | o_i npl . cpp are only needed by the server.

Compiling and linking is to a large degree compiler- and platform-dependent. Many com-
pilers require unique options to generate correct code. To build ORBACUS programs, you
must at least link with the ORBAcCUS library | i bOB. a (Unix) or ob. | i b (Windows).
Additional libraries are required on some systems, such as | i bsocket.aand i bnsl . a
for Solaris or wsock32. | i b for Windows.

ORBacus 23

Getting Started

234

2.4

24.1

© 00N O~ WN B

=
o

IN

The ORBACcUS distribution includes various README files for different platforms which
give hints on the options needed for compiling and the libraries necessary for linking.
Please consult these README files for details.

Running the Application

Our “Hello World!” application consists of two parts: the client program and the server
program. The first program to be started is the server, because it must create the file

Hel | o. r ef that the client needs in order to connect to the server. As soon as the server is
running, you can start the client. If all goes well, the “Hello World!” message will appear
on the screen.

Implementing the Example in Java

In order to implement this application in Java, the interface specified in IDL is translated
to Java classes similar to the way the C++ code was created. The ORBAcUS IDL-to-Java
translator j i dl is used like this:

jidl --package hello Hello.idl

This command results in several Java source files on which the actual implementation will
be based. The generated files are Hel | 0. j ava, Hel | oHel per. j ava,

Hel | oHol der. j ava, Hel | oOper ati ons. j ava, Hel | oPQA. j ava and

_Hel | oSt ub. j ava, all generated in a directory with the name hel | o.

Implementing the Server

The server's Hel | o implementation class looks as follows:

/1 Java
package hell o;

public class Hello_inmpl extends Hell oPOA

{
public void say_hello()
{
Systemout.printin("Hello Wrld!l");
}
}

The implementation class Hel | o_i npl must inherit from the generated class Hel | oPQA.

24

ORBacus

Implementing the Example in Java

-8 As with the C++ implementation, the say_hel | o method simply prints “Hello World!”
on standard output.

Save this class to the file Hel | o_i npl . j ava in the directory hel | o.

We also have to write a class which holds the server's mai n() and r un() methods. We
call this class Ser ver, saved as the file Ser ver . j ava in the directory hel | o:

1 // Java

2 package hell o;

3

4 public class Server

5 {

6 public static void main(String args[])

7 {

8 java. util.Properties props = System getProperties();
9 props. put ("or g. ong. CORBA. ORBC ass", "com ooc. CORBA. ORB") ;
10 props. put ("org. ong. CORBA. ORBSI ngl et ond ass",
11 "com ooc. CORBA. ORBSI ngl et on") ;

12

13 int status = O;

14 org.ong. CORBA. ORB orb = nul|;

15

16 try

17 {

18 orb = org.ong. CORBA. ORB. i nit(args, props);
19 status = run(orb);

20 }

21 cat ch(Excepti on ex)

22 {

23 ex. printStackTrace();

24 status = 1;

25 }

26

27 if(orb !=null)

28 {

29 try
30 {
31 ((com ooc. CORBA. ORB) orb) . destroy();
32 }

33 cat ch(Excepti on ex)

34 {

35 ex. printStackTrace();
36 status = 1;
37 }

ORBacus 25

Getting Started

38 }

39

40 System exi t (status);

41 }

8-11 These properties are necessary to use the ORBACUS ORB with JDK 1.2 or later.

18 The ORB must be initialized using ORB. i ni t . The ORB class resides in the package
or g. ong. CORBA. You must either import this package, or, as shown in this example, you
must use or g. ong. CORBA explicitly.

19 The run() helper function is called.

21-25 This code catches and prints all CORBA exceptions raised by ORB. i ni t () orrun().
27-38 Ifthe ORB was successfully created, it is destroyed. This releases the resources used by
the ORB. If dest r oy () raises a CORBA exception, this exception is caught and printed.
The cast to com ooc. CORBA. ORB is required when using JDK 1.2, but not when using
JDK 1.1 or JDK 1.3.
41 The exit status is returned. If there was no error, O is returned, or 1 otherwise.
Now we write the r un() method:
1 // Java
2 static int run(org. ong. CORBA. ORB orb)
3 throws org. ong. CORBA. User Excepti on
4 {
5 org. ong. Port abl eServer. POA r oot POA =
6 org. ong. Port abl eSer ver. POAHel per . narr owm
7 orb.resolve_initial_references("Root POA"));
8
9 org. ong. Port abl eServer. POAManager manager =

10 r oot POA. t he_PQAManager () ;

11

12 Hel | o_i npl hellolnmpl = new Hello_inpl();

13 Hello hello = hellolnpl._this(orb);

14

15 try

16 {

17 String ref = orb.object_to_string(hello);

18 String refFile = "Hello.ref";

19 java.io.PrintWiter out = new java.io.PrintWiter(

20 new java.io.FileQutputStreamrefFile));

21 out.println(ref);

22 out. cl ose();

26 ORBacus

Implementing the Example in Java

23
24
25
26
27
28
29
30
31
32
33
34
35

5-10

12-23

15-28

30-31

24.2

© 00N O WN B

e o el
~No ubhwWNPRO

}
catch(j ava.i o. 1 OExcepti on ex)
{
ex. printStackTrace();
return 1;
}
manager . activate();
orb.run();
return O;
}
}
A reference to the Root POA is obtained using the ORB reference, and the Root POA is

used to obtain a reference to its POA Manager.

A servant of type Hel | o_i npl is created and is used to incarnate a CORBA object. The
CORBA object is released automatically when it is not used anymore.

The object reference is “stringified” and written to a file.

The server enters its event loop to receive incoming requests.

Implementing the Client

Save this to a file with the name O i ent . j ava in the directory hel | o:

/1 Java
package hell o;

public class dient

{

public static void main(String args[])

{
}

static int run(org.ong. CORBA. ORB orb)
{

// Sane as for the server

or g. ong. CORBA. Obj ect obj = null;
try

{
String refFile = "Hello.ref";

java.io. Buf feredReader in = new java.io. Buf f eredReader (

ORBacus 27

Getting Started

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

6-9
14- 26

28

30

243

new java.io. Fil eReader(refFile));
String ref = in.readLine();
obj = orb.string_to_object(ref);
}
catch(java.io. | OException ex)
{
ex. print StackTrace();
return 1;
}
Hel l o hell o = Hel | oHel per. narrow obj);
hel | 0. say_hel l o();
return O;
}
}
This code is the same as for the server.

The stringified object reference is read and converted to an object.

The object reference is “narrowed” to a reference to a Hel | o object. A simple Java cast is
not allowed here, because it is possible that the client will need to ask the server whether
the object is really of type Hel | o.

The say_hel | o operation is invoked, causing the server to print “Hello World!” on stan-
dard output.

Compiling

Ensure that your CLASSPATH environment variable includes the current working directory
as well as the ORBACUS for Java classes, i.e., the OB. j ar file. If you are using the Unix
Bourne shell or a compatible shell, you can do this with the following commands:

CLASSPATH=. : your _orbacus_directory/lib/ OB.jar: $CLASSPATH
export CLASSPATH

Replace your _or bacus_di r ect or y with the name of the directory where ORBACUS is
installed.

If you are running ORBACUS on a Windows-based system, you can use the following
command within the Windows command interpreter:

set CLASSPATH=. ; your _orbacus_directory\lib\OB.|ar; UCLASSPATHY

28

ORBacus

Summary

244

2.5

(1% 1) 131

Note that for Windows you must use “;” and not ““:” as the delimiter.

To compile the implementation classes and the classes generated by the ORBAcuS IDL-
to-Java translator, use j avac (or the Java compiler of your choice):

javac hello/*.java

Running the Application

The “Hello World” Java server is started with:

java hel |l o. Server

And the client with:

java hello.dient
Again, make sure that your CLASSPATH environment variable includes the OB. j ar file.

You might also want to use a C++ server together with a Java client (or vice versa). This is
one of the primary advantages of using CORBA: if something is defined in CORBA IDL,
the programming language used for the implementation is irrelevant. CORBA applications
can talk to each other, regardless of the language they are written in.

Summary

At this point, you might be inclined to think that this is the most complicated method of
printing a string that you have ever encountered in your career as a programmer. At first
glance, a CORBA-based approach may indeed seem complicated. On the other hand, think
of the benefits this kind of approach has to offer. You can start the server and client appli-
cations on different machines with exactly the same results. Concerning the communica-
tion between the client and the server, you don't have to worry about platform-specific
methods or protocols at all, provided there is a CORBA ORB available for the platform
and programming language of your choice. If possible, get some hands-on experience and
start the server on one machine, the client on another!. As you will see, CORBA-based
applications run interchangeably in both local and network environments.

One last point to note: you likely won't be using CORBA to develop systems as simple as
our “Hello, World!” example. The more complex your applications become (and today’s
applications are complex), the more you will learn to appreciate having a high-level
abstraction of your applications' key interfaces captured in CORBA IDL.

1. Note that after the startup of the server program, you have to copy the stringified object refer-
ence, i.e., the file Hel | 0. r ef , to the machine where the client program is to be run.

ORBacus 29

Getting Started

2.6

Where to go from here

To understand the remaining chapters of this manual, you must have read the CORBA
specifications in [4], [5], and [6]. You will not be able to understand the chapters that fol-
low without a good understanding of CORBA in general, CORBA IDL and the IDL-to-
C++ and IDL-to-Java mappings.

30

ORBacus

CHAPTER 3

The ORBacus Code
Generators

3.1

3.2

Overview
ORBAcUSs includes the following code generators:

i dl The ORBAcUS IDL-to-C++ Translator
jidl The ORBAcuUS IDL-to-Java Translator
hi dl The ORBAcuUS IDL-to-HTML Translator
ridl The ORBACUS IDL-to-RTF Translator

i rgen The ORBAcuUS Interface Repository C++ Code Generator

Synopsis

i dl [options] idl-files...
jidl [options] idl-files...
hi dI [options] idl-files...
ridl [options] idl-files...

i r gen name-base

ORBacus 31

The ORBacus Code Generators

3.3

3.4

Description

i dl is the ORBAcCUS IDL-to-C++ translator. It translates IDL files into C++ files. For
each IDL file, four C++ files are generated. For example,

idl MFile.idl

produces the following files:

M/File.h Header file containing MyFi | e. i dl ’s translated data types
and interface stubs

MyFil e. cpp Source file containing MyFi | e. i dl ’s translated data types
and interface stubs

M/Fi |l e_skel . h Header file containing skeletons for MyFi | e. i dl ’s interfaces

M/Fi | e_skel . cpp Source file containing skeletons for MyFi | e. i dl ’s interfaces

j i dl translates IDL files into Java files. For every construct in the IDL file that maps to a
Java class or interface, a separate class file is generated. Directories are automatically cre-
ated for those IDL constructs that map to a Java package (e.g., a nodul e).

jidl can also add comments from the IDL file starting with / ** to the generated Java
files. This allows you to use the j avadoc tool to produce documentation from the gener-
ated Java files. See “Using javadoc” on page 44 for additional information.

hi dl creates HTML files from IDL files. An HTML file is generated for each module and
interface defined in an IDL file. Comments in the IDL file are preserved and j avadoc
style keywords are supported. The section “Documenting IDL Files” on page 41 provides
more information.

ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is generated for
each module and interface defined in an IDL file. Comments in the IDL file are preserved
and j avadoc style keywords are supported. The section “Documenting IDL Files” on
page 41 provides more information.

i r gen generates C++ code directly from the contents of an Interface Repository. See “The
IDL-to-C++ Translator and the Interface Repository” on page 40 for an example.

Options for idl
-h, --help

Show a short help message.

32

ORBacus

Options for idl

-V, --version

Show the ORBACUS version number.

-e, --cpp NAME

Use NAME as the preprocessor program.

-d, --debug

Print diagnostic messages. This option is for ORBACUS internal debugging purposes only.
- DNAME

Defines NAME as 1. This option is directly passed to the preprocessor.

- DNAVE=DEF

Defines NAME as DEF. This option is directly passed to the preprocessor.
- UNAME

Removes any definition for NAME. This option is directly passed to the preprocessor.

-IDR

Adds DI Rto the include file search path. This option is directly passed to the preprocessor.
-E
Runs the source files through the preprocessor without generating code.

--no-skel etons

Don’t generate skeleton classes.
--no-type-codes

Don’t generate type codes and insertion and extraction functions for the Any type. Use of
this option will cause the translator to generate more compact code.

--locality-constrained

Generate locality-constrained objects.

--no-virtual -inheritance

Don't use virtual C++ inheritance. If you use this option, you cannot use multiple interface
inheritance in your IDL code, and you also cannot use multiple C++ inheritance to imple-
ment your servant classes.

--tie

ORBacus 33

The ORBacus Code Generators

Generate tie classes for delegate-based interface implementations. Tie classes depend on
the corresponding skeleton classes, i.e., you must not use - - no- skel et ons in combina-
tion with - -ti e.

--fwd

Generate separate header files for forward declarations.
--inpl

Generate example servant implementation classes. An input file Foo. i dl will generate
the files Foo_i npl . h and Foo_i npl . cpp. These files will not be overwritten, therefore
you must first remove the existing files before new ones can be generated. You must not
use - - no- skel et ons in combination with this option.

--inmpl-all

Similar to - - i npl , but function signatures are generated for all inherited operations and
attributes. You must not use - - no- skel et ons in combination with this option.

--c-suffix SUFFI X

Use SUFFI X as the suffix for source files. The default value is . cpp.
--h-suf fix SUFFI X

Use SUFFI X as the suffix for header files. The default value is . h.
--skel -suf fix SUFFI X

Use SUFFI X as the suffix for skeleton files. The default value is _skel .

--all

Generate code for included files instead of inserting #i ncl ude statements. See “Include
Statements” on page 40.

--no-rel ative

When generating code, i dl assumes that the same - | options that are used with i dl are
also going to be used with the C++ compiler. Therefore i dl will try to make all

#i ncl ude statements relative to the directories specified with - I . The option - - no-

rel ati ve suppresses this behavior, in which case i dl will not make #i ncl ude state-
ments for included files relative to the paths specified with the - | option.

--header-dir DR

This option can be used to make #i ncl ude statements for header files relative to the spec-
ified directory.

34

ORBacus

Options for idl

--this-header-dir DR

Like the - - header - di r option, this option can be used to make #i ncl ude statements
for header files relative to the specified directory. However, this option only applies to
#i ncl ude statements for the header files of this IDL file.

--other-header-dir DR

Like the - - header - di r option, this option can be used to make #i ncl ude statements
for header files relative to the specified directory. However, this option only applies to

#i ncl ude statements for the header files corresponding to IDL files that were included in
this IDL file.

--output-dir DR

Write generated files to directory DIR.
--file-list FILE

Write a list of all generated files to file FILE.
--dl I -inport DEF

Put DEF in front of every symbol that needs an explicit DLL import statement.
--with-interceptor-args

Generate code with support for arguments, result and exception list values for intercep-
tors.

--no-orb-nedi ati on
By default, invocations on collocated servants are mediated by the ORB. Specify this
option to disable ORB mediation.

--no-1| ocal - copy

To ensure strict compliance with CORBA’s location transparency semantics, the default
behavior of the translator is to generate code that copies valuetype argument and result
values for collocated invocations. Specify this option to disable strict compliance and gen-
erate more efficient code.

--case-sensitive

The semantics of OMG IDL forbid identifiers in the same scope to differ only in case.
This option relaxes these semantics, but is only provided for backward compatibility with
non-compliant IDL.

ORBacus 35

The ORBacus Code Generators

3.5

Options for jidl

-h, --help

-v, --version
-e, --cpp NAME
-d, --debug

- DNAME

- DNAVE=DEF

- UNAME

-IDIR

-E
--no-skel et ons
--locality-constrained
--al

--tie
--file-list FILE
--no-1| ocal - copy
--case-sensitive

These options are the same as for the i dl command.

--no-conment s

The default behavior of j i dI is to add any comments from the IDL file starting with / **
to the generated Java files. Specify this option if you don’t want these comments added to
your Java files.

- - package PKG

Specifies a package name for the generated Java classes. Each class will be generated rel-
ative to this package.

--prefix-package PRE PKG

Specifies a package name for a particular preﬁxl. Each class with this prefix will be gener-
ated relative to the specified package.

- - aut o- package

Derives the package names for generated Java classes from the IDL prefixes. The prefix
ooc. com for example, results in the package com ooc.

--output-dir DR

1. Prefix refers to the value of the #pr agma pr ef i x statement in an IDL file. For example, the
statement #pr agma prefi x ““ooc. cont defines 00c. comas the prefix. The prefix is
included in the Interface Repository identifiers for all types defined in the IDL file.

36

ORBacus

Options for hidl

3.6

Specifies a directory where j i dl will place the generated Java files. Without this option
the current directory is used.

--clone

Generates a cl one method for struct, union, enum, exception, valuetype and abstract
interface types. For valuetypes, only an abstract method is generated. The valuetype
implementer must supply an implementation for cl one.

--inpl

Generates example servant implementation classes. For IDL interface types, a class is
generated in the same package as the interface classes, having the same name as the inter-
face with the suffix _i npl . The generated class extends the POA class of the interface.
For IDL valuetypes, a class is generated in the same package as the valuetype with the suf-
fix Val ueFact ory_i npl . You must not use - - no- skel et ons in combination with this
option.

—-inpl-tie

Similar to - - i npl , but implementation classes for interfaces implement the Qper at i ons
interface to facilitate the use of TIE classes. You must not use - - no- skel et ons in com-
bination with this option.

--with-interceptor-args

Generate code with support for arguments, result and exception list values for intercep-
tors. Note that use of this option will generate proprietary stubs and skeletons which are
not compatible with ORBs from other vendors.

Options for hidl

-h, --help

-v, --version
-e, --cpp NAME
-d, --debug

- DNAME

- DNAVE=DEF

- UNAVE

-IDIR

-E

--all
--case-sensitive

These options are the same as for the i dl command.

--no-sort

ORBacus 37

The ORBacus Code Generators

3.7

Don’t sort symbols alphabetically.

--ignore-case

Sort case-insensitive.

--use-tables

Use tables for indices.

--output-dir DR

Write HTML files to the directory DIR.

Options for ridl

-h, --help

-v, --version
-e, --cpp NAME
-d, --debug

- DNAME

- DNAVE=DEF

- UNAME

-IDIR

-E

--all
--case-sensitive

These options are the same as for the i dl command.
--no-sort

Don’t sort symbols alphabetically.

--ignore-case

Sort case-insensitive.

--use-tabl es

Use tables for indices.

--output-dir DR

Write RTF files to the directory DIR.
--single-file FILE

Create a single file called FILE.rtf.

38

ORBacus

Options for irgen

--wi th-index
Create index entries.

--font PARA NAME
--font-size PARA S| ZE

Specify the font name or size for a particular paragraph type. The paragraph types and
their default values are shown below.

Type Font Size
body roman Times New Roman 12pt
entry swiss Tahoma 12pt
extra same as body 12pt
heading swiss Arial 18pt
index same as heading 15pt
literal roman Courier New 10pt
symbol roman Symbol 12pt

Options for irgen
-h, --help
-v, --version

--no-skel et ons

- -no-type- codes
--locality-contrained
--no-virtual -inheritance
--tie

--inp

--inmpl-al

--c-suffix SUFFI X
--h-suf fix SUFFI X

--skel -suf fi x SUFFI X
--header-dir DR

--ot her-header-dir DR
--output-dir DR
--file-list FILE
--dl I -inport DEF
--with-interceptors-args
--no-1| ocal - copy

These options are the same as for the i dl command.

ORBacus

The ORBacus Code Generators

3.9

3.10

The argument to i r gen is the pathname to use as the base name of the output filenames.
For example, if the pathname you supply is out put/ fi | e, then i r gen will produce
output/file.cpp,output/file.h,output/file_skel.cppandoutput/
file_skel.h.

Note that i r gen will generate code for all of the type definitions contained in the Inter-
face Repository server.

See Chapter 14 for more information on the Interface Repository.

The IDL-to-C++ Translator and the Interface Repository

The ORBAcuUS IDL-to-C++ and IDL-to-Java translators internally use the Interface
Repository for generating code. That is, these programs have their own private Interface
Repository that is fed with the specified IDL files. All code is generated from that private
Interface Repository.

It is also possible to generate C++ code from a global Interface Repository. First, the com-
mand i r ser v must be used to start the Interface Repository. Then the Interface Reposi-
tory must be fed with the IDL code, using the command i r f eed. Finally, the i r gen
command can be used to generate the C++ code. For example:

irserv --ior > IntRep.ref &
irfeed -ORBrepository ‘cat IntRep.ref* file.idl
irgen -ORBrepository ‘cat IntRep.ref’ file

The IDL-to-C++ translator i dI performs all these steps at once, in a single process with a
private Interface Repository. Thus, you only have to run a single command:

idl file.idl

See Chapter 14 for more information on the Interface Repository.

Include Statements

If you use the #i ncl ude statement in your IDL code, the ORBAcUS IDL-to-C++ transla-
tori dl does not create code for included IDL files. Instead, the translator inserts the
appropriate #i ncl ude statements in the generated header files. Please note that there are
several restrictions on where to place the #i ncl ude statements in your IDL files for this
feature to work properly:

* #i ncl ude may only appear at the beginning of your IDL files. All #i ncl ude
statements must be placed before the rest of your IDL code.!

40

ORBacus

Documenting IDL Files

3.11

* Type definitions, such as i nt er f ace or st ruct definitions, may not be split among
several IDL files. In other words, no #i ncl ude statement may appear within such
definitions.

If you don’t want these restrictions to be applied, you can use the translator option - - al |
with i dI . With this option, the IDL-to-C++ translator treats code from included files as if
the code appeared in your IDL file at the position where it is included. This means that the
compiler will not place #i ncl ude statements in the automatically-generated header files,
regardless of whether the code comes directly from your IDL file or from files included by
your IDL file.

Note that when generating code from an Interface Repository using i r gen, the translator
behaves identically to i dl with the - - al | option. In other words, the i r gen command
does not place #i ncl ude statements in the generated files, but rather generates code for
all IDL definitions in the Interface Repository.

Documenting IDL Files

With the ORBAcUS IDL-to-HTML and IDL-to-RTF translators, hi dl andri dl , you can
easily generate HTML and RTF files containing IDL interface descriptions. The transla-
tors generate a nicely-formatted file for each IDL module and interface. Figure 3.1 shows
an HTML example and Figure 3.2 an RTF example.

The formatting syntax supported by hi dl andri dl is similar to that used by j avadoc.
The following keywords are recognized:

@ut hor aut hor

Denotes the author of the interface.

@xception exception-nanme description

Adds an exception description to the exception list of an operation.

@renber nenber - name description

Adds a member description to the member list of a struct, union, enum or exception type.
@ar am par anet er - nanme description

Adds a parameter description to the parameter list of an operation.

@eturn description

1. Preprocessor statements like #def i ne or #i f def may be placed before your #i ncl ude
statements.

ORBacus 41

The ORBacus Code Generators

IDL Documentation for “0OCI" - Hetscape

File Edit “iew Go Communicator Help

(43D baall

w§ " Bookmarks A Lacation: [fle:///Cl/rl/cpp/ob/idlOC] kil

Module OCI

The Cpen Comunurications Interface (OCT). The defintions i this module provide a uniform mterface to network
protocols. This allows for easy plug-in of new protocols or other comumunication mechanisms mto ORBs that implement
the OCL Furthermore, protocol implementations need only to be written once and can then be reuzed with all OCI
compliant ORBs. For more mformation, please see the OCT documentation.

Module Index

IoP

Thiz module contains mnterfaces to gather mformation on the IIOP OCT plug-in.
Interface Index

AccRegstry

A regstry for Acceptors.
AcceptCB

An nterface for an accept callback object.
Acceptor

An mterface for an Acceptor object, which 15 used by CORBA servers to accept clhient connection requests.
AcceptorInfo

Information on an OCT Acceptor ohject.
Buffer

An interface for a buffer.
CloseCB

An nterface for a cloze callback object.
ConFactory

4 factory for Connector objects.
ConFactoryInfo

’?| | Documert: Do

Figure 3.1: Documentation generated with the IDL-to-HTML translator

Adds descriptive text for the return value of an operation.

@ee reference

Adds a “See also” note.

@i nce since-text

Comment related to the availability of new features.

42

ORBacus

Documenting IDL Files

W Microsoft Word - ociref M= 3

@ File Edit Wiew Insert Format Tools Table Window Help ;Iillﬂ
DSEHERY (=BT o- - @& H &8 o -])
Mormal ~ TimesMewRoman = 14 =| B T O |
EE---|---1---|---2---|---3---
Module OCI |
The Open Communications Interface (OCT). The definitions in this module provide a uniform interface to
network protocols. This allows for easy plug-in of new protocols or other communication mechanisms into
(ORBs that implement the OCI. Furthermore, protocol implementations need only to be written once and
can then be reused with all OCI compliant ORBs. For more information, please see the OCT documentation.
Aliases
BufferSeq
typedef sequence<Buffer> Bufferfeq;
Alias for a sequence of buffers.
IOR
typedef IOP::IO0R IOR:
Alias for an IOR.
Profileld
typedef IO0P::Profileld Profileld:
Alias for a profile id.
ProfileIdSeqy
typedef sequence<Profileld> ProfileIdSeq;
Alias for a sequence of profile ids.
OhjeciEey
typedef sequence<octet> ObjectEey: i
+
Alias for an object key, which is a sequence of octets. s
F
I:]EIEIIEI{I I 3

[Page 7 Sec 1 7iar At Ln Cal [REC [TRKl | E4T Hovr! [wer

N

Figure 3.2: Documentation generated with the IDL-to-RTF translator

@ersion version
The interface’s version number.

Like j avadoc, hi dl andri dl use the first sentence in the documentation comment as
the summary sentence. This sentence ends at the first period that is followed by a blank,
tab or line terminator, or at the first @

ORBacus 43

The ORBacus Code Generators

3.12

ri dl understands most basic HTML tags and produces an equivalent format in the gener-
ated RTF files. The following HTML tags are supported:

 <CODE> <DD> <DL> <DT> <HR> <I> <Ll > <P> <TABLE>
<TD> <TR> <U>

Using javadoc

If not explicitly suppressed with the - - no- comment s option, the ORBAcUS IDL-to-Java
translator j i dl adds IDL comments starting with / ** to the generated Java files, so that

j avadoc can be used to generate documentation (as long as the comments are in a format
compatible with j avadoc).

Here is an example that shows how to include documentation in an IDL interface descrip-
tion file. Let’s assume we have an interface | in a module M

/1 1D

nodul e M

{
/

*

This is a conment related to interface |.
@ut hor Une Sei nmet

@ersion 1.0

* 0% X X X X X X X

*
~

nterface |

/**

*

* This comment describes exception E.
*

**/

exception E { };

/**

*

* The description for operation S.
*

* @aramarg A dummy argunent.

44

ORBacus

Using javadoc

*
* @eturn A dummy string.
* @xception E Raised under certain circunstances.
**/
string S(in long arg)
rai ses(E);
i
b

When running j i dI on this file, the comments are automatically added to the generated
JavafilesM | . j ava and M | Package/ E. j ava. For | . j ava, the generated code looks
as follows:

/1 Java
package M

I

/1 1DL:M1:1.0
I

/**

* This is a conment related to interface |.
*

* @ut hor Une Sei net
*

* @ersion 1.0

*

**/

public interface | extends org. ong. CORBA. Obj ect
{

/1

// IDL:M1/S:1.0

/1

/**

*

The description for operation S.
@aram arg A dummy ar gunent.
@eturn A dummy string.

*
*
*
*
*
*
*

@xception M| Package. E Rai sed under certain circunstances.

ORBacus 45

The ORBacus Code Generators

*

**/
public String
S(int arg)

throws M | Package. E;
}

Note that j i dl automatically inserts the fully-qualified Java name for the exception E
(M | Package. E in this case).

These are the contents of | Package/ E. j ava:

/1 Java
package M | Package;

/1
/1 1DL:MI/E 1.0
/1

/**

*

* This comment describes exception E.

*
**/
final public class E extends org. ong. CORBA. User Excepti on

{
public

EQ)
{
}

}

Now you can use j avadoc to extract the comments from the generated Java files and pro-
duce nicely-formatted HTML documentation.

For additional information please refer to the | avadoc documentation.

46

ORBacus

CHAPTER 4

ORB and Object Adapter
Initialization

4.1

4.1.1

4.1.2

ORB Initialization

Initializing the C++ ORB

In C++, the ORB is initialized with CORBA: : ORB_i ni t () . For example:

[l C++

int main(int argc, char* argv[])

{
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);
/1

}

The CORBA: : ORB_i ni t () call interprets arguments starting with - ORB and - OA. All of
these arguments, passed through the ar gc and ar gv parameters, are automatically
removed from the argument list.

Initializing the Java ORB for Applications

A Java application can initialize the ORB in the following manner:

/1 Java
i mport org.ong. CORBA. *;
public static void main(String args[])

{

ORBacus 47

ORB and Object Adapter Initialization

4.1.3

4.2

4.2.1

ORB orb = ORB.init(args, new java.util.Properties());
I

}

The ORB. i ni t () call interprets arguments starting with - ORB and - OA. Unlike the C++
version, these arguments are not removed (see “Advanced Property Usage” on page 63 for
more information).

Initializing the Java ORB in JDK 1.2/1.3

The ORB implementation included in JDK 1.2 and beyond can be considered a “minimal”
ORB, suitable primarily for use in basic client-oriented tasks. In order to use the ORBA-
CUS ORB instead of the JDK’s default ORB, you must start your application with the fol-
lowing properties:

java - Dor g. onmg. CORBA. ORBCl ass=com ooc. CORBA. ORB \
- Dor g. ong. CORBA. ORBSI ngl et onCl ass=com ooc. CORBA. ORBSi ngl et on \

M App

An alternative is to set these properties in your program before initializing the ORB. For
example:

/1l Java
i mport org.ong. CORBA. *;
public static void main(String args[])

{
java. util.Properties props = System getProperties();
props. put (" or g. omg. CORBA. ORBCl ass", "com ooc. CORBA. ORB") ;
props. put (" or g. ong. CORBA. ORBSI ngl et onC ass",
"com ooc. CORBA. ORBSI ngl et on") ;
ORB orb = ORB.init(args, props);
I
}

Object Adapter Initialization

Initialization of the Object Adapter

In ORBACUS, the object adapter is not initialized until the Root POA is first resolved. For
example:

/] C++
CORBA: : Obj ect _var poaChj =
orb -> resolve_initial _references("Root POA");

48

ORBacus

Configuring the ORB and Object Adapter

4.3

4.3.1

/1l Java
org. ong. CORBA. Obj ect poaChj =
orb.resolve_initial_references("Root POA");

Upon completion, the ORB will have created the Root POA and its POA Manager, and
will have initialized the ORB’s server-side functionality.

Configuring the ORB and Object Adapter

ORBACUS applications can tailor the behavior of the ORB and object adapters using a col-
lection of propertiesl. These properties can be defined in a number ways:

* using the Windows Registry (Windows NT/C++)
* using a configuration file

* using system properties (Java)

* using command-line options

* programmatically at run-time

The ORBACUS configuration properties are described in the sections below. Unless other-
wise noted, every property can be used in both C++ and Java applications.

ORB Properties

ooc.config
Value: filename

Selects the default configuration file. This property is only available in Java applications
and is equivalent to the ORBACUS_CONFI Genvironment variable in C++. See “Using a
Configuration File” on page 59 for more information on configuration files.

ooc.orb.client_shutdown_timeout
Value: timeout >= 0

If the client is not able to gracefully disconnect from the server in timeout seconds, a con-
nection shutdown is forced. If this property is set to zero, then the client will not force a

1. Note that these properties have nothing to do with the Property Service as described in
Chapter 11.

ORBacus 49

ORB and Object Adapter Initialization

connection shutdown. If the property is not set, a default timeout value of two seconds is
used.

ooc.orb.client_timeout
Value: timeout >= 0

The client actively closes a connection that has been idle for timeout seconds once that
connection has no more outstanding replies. Note that the application must use the
threaded client-side concurrency model if connection timeouts are desired. If this property
is set to zero, or not set at all, then the client does not close idle connections. Note that a
policy can also be set on the ORB or on individual object references. See “OB::ACMTim-
eoutPolicy” on page 202 for more information.

ooc.orb.conc_model
Value: bl ocki ng, reacti ve, t hr eaded

Selects the client-side concurrency model. The reactive concurrency model is not cur-
rently available in ORBACUS for Java. The default value is bl ocki ng for both C++ and
Java applications. See Chapter 16 for more information on concurrency models.

ooc.orb.default_init ref
Value: URL

Specifies a partial URL. If an application calls the ORB operation

resolve_initial _references and no match is found, the ORB appends a slash (/")
character and the service identifier to the specified URL and invokes st ri ng_t o_obj ect
to obtain the initial reference.

ooc.orb.default_wecs
Value: string

Specifies the default wide character code set for the ORB. Note that the CORBA specifi-
cation states that a default wide character code set does not exist. Therefore, this option
should only be used when communicating with a broken ORB that expects a particular
wide character code set and does not correctly support the negotiation of wide character
code sets.

ooc.orb.giop.max_message_size

Value: max >= 0

50

ORBacus

Configuring the ORB and Object Adapter

Specifies the maximum GIOP message size in bytes. If set to 0, no maximum message size
will be used. If a message is sent or received that exceeds the maximum size, the ORB will
raise the IMP_LIMIT system exception.

ooc.orb.id
Value: id

Specifies the identifier of the ORB to be used by the application.

ooc.orb.init_iiop
Value: none, cl i ent, server, both

Specifies to what extent the ORB should initialize the IIOP protocol plug-in. The default
value is bot h. For security reasons, applications may wish to disable the client and/or
server capabilities of the plug-in. Note that the values ser ver and bot h do not require
that the application must be a server. This property simply determines which protocol ser-
vices are installed. A value of none will typically be used when a different protocol plug-
in is being used and the IIOP plug-in is unnecessary.

ooc.orb.native_cs
Value: string

Specifies the native character code set for the ORB. The default is ISO 8859-1.

ooc.orb.native_wcs
Value: string

Specifies the native wide character code set for the ORB. The default is UTF-16.

ooc.orb.raise_dii_exceptions
Value: true, f al se

Determines whether system exceptions that occur during Dynamic Invocation Interface
(DII) operations are raised immediately or are stored only in the CORBA: : Envi r onnent
object. This property is only available for Java applications. The default value is f al se for
JDK 1.1.x, and t r ue for later JDK versions. Note that specifying a value of f al se when
using JDK 1.2 or later may result in unexpected behavior.

ORBacus 51

ORB and Object Adapter Initialization

ooc.orb.server_name

Value: string

Specifies the name of the server, as registered with the Implementation Repository (IMR).
Note that you should not put this property in a configuration file that is shared by several
IMR-enabled servers. Furthermore, this property should not be specified for servers that
are not registered with the IMR.

ooc.orb.server_shutdown_timeout
Value: timeout >= 0

If the server is not able to gracefully disconnect from the client in timeout seconds, a con-
nection shutdown is forced. If this property is set to zero, then the server will not force a
connection shutdown. If the property is not set, a default timeout value of two seconds is
used.

ooc.orb.server_timeout
Value: timeout >= 0

The server actively closes a connection that has been idle for timeout seconds once that
connection has no more outstanding replies. Note that the application must use one of the
threaded server-side concurrency model if connection timeouts are desired. If this property
is set to zero, or not set at all, then the server does not close idle connections.

ooc.orb.service.name
Value: ior

Adds an initial service to the ORB’s internal list. This list is consulted when the applica-

tion invokes the ORB operation r esol ve_i ni ti al _r ef er ences. name is the key that
is associated with an IOR or URL. For example, the property

ooc. orb. servi ce. NaneSer vi ce adds “NameService” to the list of initial services. See
“Initial Services” on page 108 for more information.

ooc.orb.trace.connections
Value: level >= 0

Defines the output level for diagnostic messages printed by ORBACUS that are related to
connection establishment and closure. A level of 1 or higher produces information about

52

ORBacus

Configuring the ORB and Object Adapter

4.3.2

connection events, and a level of 2 or higher produces code set exchange information. The
default level is 0, which produces no output.

ooc.orb.trace.retry
Value: level >= 0

Defines the output level for diagnostic messages printed by ORBACUS that are related to
transparent re-sending of failed messages. A level of 1 or higher produces information
about re-sending of messages, and a level of 2 or higher also produces information about
use of individual IOR profiles. The default level is 0, which produces no output.

OA Properties

Configuring an object adapter is achieved by setting properties on POA Managers. These
properties are grouped into two categories: global properties, and properties specific to a
particular POA Manager. Global properties have the prefix ooc. or b. oa, while properties
specific to a particular POA Manager have the prefix ooc. or b. poamanager . nane,
where name is the name of the POA Manager (see “Using POA Managers” on page 65).

Unless otherwise noted, a POA Manager will search for configuration properties using the
following algorithm:

» First, use properties defined specifically for that POA Manager
* Next, use global properties

* Finally, use default settings.

See “Using POA Managers” on page 65 for more information on POA Managers.

ooc.orb.oa.conc_model

Value: reacti ve, t hreaded, t hread_per_client,thread_per_request,
t hr ead_pool

Selects the server-side concurrency model. The r eact i ve concurrency model is not
available in ORBAcUS for Java. The default value is r eact i ve for C++ applications and
t hr eaded for Java applications. See Chapter 16 for more information on concurrency
models. If this property is set to t hr ead_pool , then the property

ooc. orb. oa. t hread_pool determines how many threads are in the pool.

This property is also used to determine the default value of the communications concur-
rency model for POA Managers (see ooc. or b. poanmanager . manager. conc_nodel
below). If the value of ooc. or b. oa. conc_nodel isreacti ve, the default value for the

ORBacus 53

ORB and Object Adapter Initialization

communications concurrency model is r eact i ve, otherwise the default value is
t hr eaded.

ooc.orb.oa.host

Deprecated. See ooc. i i op. host.

ooc.orb.oa.numeric

Deprecated. See ooc. i i op. nuneri c.

ooc.orb.oa.port

Deprecated. See ooc. iiop. port.

ooc.orb.oa.thread_pool
Value: n > 0

Determines the number of threads to reserve for servicing incoming requests. The default
value is 10. This property is only effective when the ooc. or b. oa. conc_nodel property
has the value t hr ead_pool .

ooc.orb.oa.version
Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references. The default value is 1. 2. This
option is useful for backward compatibility with older ORBs that reject object references
using a newer version of the protocol.

ooc.orb.poamanager.manager.conc_model
Value: reacti ve, t hreaded

Specifies the communications concurrency model used by the POA Manager with name
manager. The default value is determined by ooc. or b. oa. conc_nodel . See Chapter 16
for more information on concurrency models.

ooc.orb.poamanager.manager.host

Deprecated. See ooc. i i op. accept or. manager . host .

54

ORBacus

Configuring the ORB and Object Adapter

4.3.3

ooc.orb.poamanager.manager.numeric

Deprecated. See ooc. i i op. accept or. manager . nuneri c.

ooc.orb.poamanager.manager.port

Deprecated. See ooc. i i op. accept or . nanager . port.

ooc.orb.poamanager.manager.version
Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references generated by a particular POA
Manager. This option is useful for backward compatibility with older ORBs that reject
object references using a newer version of the protocol. The default value is determined by
the value of ooc. or b. oa. ver si on.

IHOP Properties

An application can configure IIOP endpoints with properties having the prefix ooc. i i op.
As with the object adapter properties described in the previous section, IIOP properties are
also grouped into global and POA Manager-specific categories. See “Using POA Manag-
ers” on page 65 for more information on POA Managers and their relationship to IIOP
endpoints.

ooc.iiop.backlog
Value: 0 <= backlog <= 65535

Specifies the length of the queue for incoming connection requests. Note that the operat-
ing system may override this setting if the value exceeds the maximum allowed by the
operating system.

ooc.iiop.bind
Value: hostname or IP address

Specifies that the server should bind its socket to a specific network interface If not speci-
fied, the server will bind its socket to all available network interfaces. This property is use-
ful in situations where a host has several network interfaces, but the server should only
listen for connections on a particular interface.

ORBacus 55

ORB and Object Adapter Initialization

ooc.iiop.host
Value: host[,host,...]

Explicitly defines the hostname(s) and/or IP address(es) to be used in generated object ref-
erences. The default value is the canonical hostname of the machine. If multiple host-
names are specified, the value of ooc. i i op. mul ti _profil e determines how those
hostnames are represented in object references.

ooc.iiop.multi_profile
Value: true, f al se

Specifies how multiple addresses should be represented in an object reference. If true,
each address is represented as a separate “tagged profile” in the object reference. If false,
there will be only one tagged profile, with the first address used as the primary address of
the profile, and all other addresses represented as alternate addresses in that profile. The
default representation depends on the protocol version in use. If the protocol version is

1. 0, the default value is t r ue, otherwise the default value is f al se. As far as ORBACUS
is concerned, the ORB behavior is identical for both representations, but other ORBs may
require a particular representation.

ooc.iiop.numeric
Value: true, f al se

If true, object references are generated using the internet (IP) address in dotted decimal
notation instead of the canonical hostname. The default value is f al se. This property is
ignored if ooc. i i op. host is specified.

ooc.iiop.port
Value: 0 < port <= 65535

Specifies the port number on which the Root POA Manager should listen for new connec-
tions. If no port is specified, one will be selected automatically by the server. Use this
property if you plan to publish an IOR (e.g., in a file, a naming service, etc.) and you want
that IOR to remain valid across executions of your server. Without this property, your
server is likely to use a different port number each time the server is executed. See
Chapter 6 for more information.

ooc.iiop.acceptor.manager.backlog

Value: 0 <= backlog <= 65535

56

ORBacus

Configuring the ORB and Object Adapter

Specifies the length of the queue for incoming connection requests on the POA Manager
with name manager. Note that the operating system may override this setting if the value
exceeds the maximum allowed by the operating system.

ooc.iiop.acceptor.manager.bind
Value: hostname or IP address

Specifies that the POA Manager with name manager should bind its socket to a specific
network interface If not specified, the POA Manager will bind its socket to all available
network interfaces. This property is useful in situations where a host has several network
interfaces, but the POA Manager should only listen for connections on a particular inter-
face.

ooc.iiop.acceptor.manager.host
Value: hostname(s) and/or IP address(es)

Explicitly defines the hostname(s) to be used in object references generated by the POA
Manager with name manager. The default value is determined by the value of
ooc. iiop. host.

ooc.iiop.acceptor.manager.multi_profile
Value: true, f al se

Specifies how multiple addresses should be represented in an object reference generated
by the POA Manager with name manager. If true, each address is represented as a separate
“tagged profile” in the object reference. If false, there will be only one tagged profile, with
the first address used as the primary address of the profile, and all other addresses repre-
sented as alternate addresses in that profile. The default representation depends on the pro-
tocol version in use. If the protocol version is 1. 0, the default value is t r ue, otherwise the
default value is f al se. As far as ORBACUS is concerned, the ORB behavior is identical
for both representations, but other ORBs may require a particular representation.

ooc.iiop.acceptor.manager.numeric
Value: true, f al se

If true, the POA Manager with name manager will generate object references that contain
an internet (IP) address in dotted decimal notation instead of the canonical hostname. The
default value is determined by the value of ooc. i i op. nuneri c. This property is ignored
if either ooc. i i op. host orooc. ii op. accept or. manager . host is specified.

ORBacus 57

ORB and Object Adapter Initialization

ooc.iiop.acceptor.manager.port
Value: 0 < port <= 65535

Specifies the port number on which the POA Manager with name manager should listen
for new connections. If no port is specified, one will be selected automatically by the
server.

4.3.4 Command-line Options
There are equivalent command-line options for many of the ORBACUS properties. The
options and their equivalent property settings are shown in Table 4.1. Refer to “ORB
Properties” on page 49 for a description of the properties.
Option Property
- QAbackl og backlog ooc. i i op. backl og=backlog
- QAbi nd host ooc. i i op. bi nd=host
- QAhost host[host,...] ooc. i i op. host =host[host,...]
- QAnuneric 00C. i i op. numeri c=true
- QAport port ooc. i i op. port =port
-QAreactive ooc. or b. oa. conc_nodel =reacti ve
- QAt hr eaded ooc. or b. oa. conc_nodel =t hr eaded
- OAt hread_per _cl i ent ooc. or b. oa. conc_nvodel =t hread_per _cl i ent
- QAt hr ead_per _r equest ooc. or b. oa. conc_nvodel =t hr ead_per _r equest
- OAt hr ead_pool n ooc. or b. oa. conc_nodel =t hr ead_pool
ooc. orb. oa. t hread_pool =n
- QAver si on version ooc. or b. oa. ver si on=version
- ORBbl ocki ng ooc. or b. conc_nodel =bl ocki ng
- ORBDef aul t | ni t Ref URL ooc.orb.default _init_ref=URL
- ORBi d id ooc. orb. i d=id
- ORBI ni t Ref name=ior 00cC. or b. servi ce. name=ior
-ORBnat i ve_cs name ooc. orb. nati ve_cs=name

Table 4.1: Command-line Options

58

ORBacus

Configuring the ORB and Object Adapter

Option

Property

- ORBnat i ve_wcs name

ooc. orb. nati ve_wcs=name

- ORBnani ng ior

ooc. orb. servi ce. NaneSer vi ce=ior

- ORBpr oper t y name=value

name=value

-ORBr eactive

ooc. orb. conc_nodel =reacti ve

- ORBr eposi t ory ior

ooc. or b. servi ce. I nterfaceRepository=ior

- ORBser ver _nane string

ooc. orb. server _hanme=string

- ORBser Vi ce name ior

ooc. orb. servi ce. name=ior

- ORBt hr eaded

ooc. or b. conc_nodel =t hr eaded

- ORBtrace_connecti ons level |0oc. orb. trace. connecti ons=level

-ORBtrace_retry level

ooc. orb. trace. retry=level

4.3.5

Table 4.1: Command-line Options

A few additional command-line options are supported that do not have equivalent proper-

ties. These options are described in Table 4.2.

Option

Description

- ORBconf i g filename

Causes the ORB to load the configuration file specified
by filename.

- ORBver si on

Causes the ORB to print its version to standard output.

Table 4.2:

Additional Command-line Options

Using a Configuration File

A convenient way to define a group of properties is to use a configuration file. A sample

configuration file is shown below:

Concurrency nodel s

ooc. orb. conc_nodel =t hr eaded
ooc. or b. oa. conc_nodel =t hr ead_pool
ooc. orb. oa. thread_pool =5

Initial services

ORBacus

ORB and Object Adapter Initialization

4.3.6

ooc. orb. servi ce. NameSer vi ce=cor bal oc: : myhost : 5000/ NaneSer vi ce
ooc. orb. servi ce. Event Servi ce=cor bal oc: : nyhost : 5001/ Def aul t Event Channel
ooc. orb. servi ce. Tradi ngSer vi ce=cor bal oc: : nyhost: 5002/ Tr adi ngSer vi ce

Note that trailing blanks are not ignored but are a part of the property.

You can define the name of the configuration file' using a command-line option, an envi-
ronment variable (C++), or a system property (Java):
* Command-line option:

- ORBconf i g filename
* Environment variable:

ORBACUS_CONFI G=filename
» Java system property:

ooc. conf i g=filename
When an ORB is initialized, it first checks for the presence of the environment variable or
system property. If present, the ORB loads the configuration file. Next, the ORB loads the
configuration file specified by the - ORBconf i g option. Therefore, the properties loaded
from the file specified by - ORBconf i g will override any existing properties, including

those loaded by a configuration file specified in the environment variable or system prop-
erty. See “Precedence of Properties” on page 63 for more information.

Configuration files are only loaded during ORB initialization. Changes made to a configu-
ration file after an ORB has been initialized have no effect on that ORB.

Using the Windows NT Registry

Another convenient mechanism for use with C++ applications under Windows NT is to
use the system registryz. Properties can be stored in the registry under the following regis-
try keys:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Pr operti es

HKEY_CURRENT_USER\ Sof t war e\ OCC\ Pr operti es

1. ORBACUS for Java also accepts a URL specification as the filename.

2. Use caution when defining ORBACUS properties in the registry, as they become global proper-
ties that will be used in every ORBACUS for C++ application. For example, subtle errors can
occur if the 00C. i i Op. port property is defined on a global basis.

60

ORBacus

Configuring the ORB and Object Adapter

4.3.7

a b~ WODN PR

Individual properties are defined as sub-keys of the base. For example, the property
ooc. orb. trace. connecti ons=5 is stored in the registry as the following key contain-
ing a value named connect i ons with a REG_SZ data member equal to “ 5" :

Sof t war e\ OOC\ Properti es\ooc\orb\trace

RegUpdate

The ORBAcUS distribution includes a utility called RegUpdat e. The tool first removes
all sub-keys defined under the specified registry key. Next, all values defined in an ORBA-
CUS configuration file are transferred to the registry.

Synopsis
RegUpdat e HKEY_LOCAL_MACHI NE| HKEY_CURRENT USER config-file

Example:
RegUpdat e HKEY_LOCAL_NACHI NE ob. conf

This command reads the properties defined in the file ob. conf and writes the values
under the following registry key:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Pr operti es
Defining Properties

Properties in Java

Java applications can use the standard Java mechanism for defining system properties
because ORBACUS will also search the system properties during ORB initialization.

For example:

/1l Java
java. util.Properties props = System getProperties();
props. put ("ooc. orb. conc_nodel ", "threaded");

props. put ("ooc.iiop.port”, "10000");
org. ong. CORBA. ORB orb = org.ong. CORBA. CRB.init(args, null);

Obtain the system properties.
Define ORBACUS properties.
Initialize the ORB.

ORBacus 61

ORB and Object Adapter Initialization

A WODN PR

,5

Java virtual machines typically allow you to define system properties on the command
line. For example, using Sun’s JVM you can do the following:

java -Dooc.iiop. port=5000 MyServer

You can also use the j ava. uti | . Properti es object that is passed to the ORB. i ni t ()
method to provide ORBACUS property definitions:

/1 Java
java. util.Properties props = new java.util.Properties();
props. put ("ooc.iiop.nuneric", "true");

org. ong. CORBA. ORB orb = orb. ong. CORBA. ORB.init(args, props);

Create aj ava. util. Properti es object to hold our properties.
Define ORBACUS properties.

Initialize the ORB using the j ava. uti | . Properti es object.

Properties in C++

In C++, the ORBAcCUS-specific class OB: : Properti es can be used to define properties:

/] C++
cl ass Properties

{
/1

public:
Properties();
Properties(Properties_ptr p);
~Properties();

static Properties_ptr _duplicate(Properties_ptr p);
static Properties_ptr _nil();

static Properties_ptr getDefault Properties();

voi d setProperty(const char* key, const char* val ue);
const char* getProperty(const char* key) const;

/1
}s

For example, to add the threaded concurrency model to a property set that is used to ini-
tialize the ORB:

62

ORBacus

Configuring the ORB and Object Adapter

4.3.8

4.3.9

a b~ WDN P

/] C++

OB::Properties_var dflt = OB::Properties::getDefaultProperties();
OB: :Properties_var props = new OB::Properties(dfit);

props -> setProperty("ooc.orb.conc_nodel", "threaded");

CORBA: : ORB_var orb = OBCORBA: : ORB_ init(argc, argv, props);

Create an OB: : Properti es object that is based on the default properties. This is impor-
tant because, unlike or g. ong. CORBA. ORB. i ni t , OBCORBA: : ORB_i ni t does not read
the default properties if the property parameter is not null.

Define ORBACUS properties.

Initialize the ORB using the ORBACUS-specific OBCORBA: : ORB_i ni t operation.

Precedence of Properties

Given that properties can be defined in several ways, it’s important to establish the order of
precedence used by ORBACUS when collecting and processing the property definitions.
The order of precedence is listed below, from highest to lowest. Properties defined at a
higher precedence override the same properties defined at a lower precedence.

1. Command-line options

2. Configuration file specified at the command-line

3. User-supplied properties

4. Configuration file specified by the ORBACUS_CONFI Genvironment variable (C++) or
the ooc. confi g system property (Java)

5. System properties (Java only)

HKEY_CURRENT_USER\ Sof t war e\ OOC\ Pr oper ti es (Windows NT/C++ only)
7. HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Pr operti es (Windows NT/C++ only)

For example, a property defined using a command-line option overrides the same property
defined in a configuration file.

Advanced Property Usage

With the methods for ORB initialization discussed in the previous sections, the command-
line arguments are not processed until a call to CORBA: : ORB_i ni t (C++),

OBCORBA: : ORB_i nit (C++), or or g. ong. CORBA. ORB. i ni t (Java). Hence, the set of
properties that will be used by the ORB is not available until after the ORB is initialized.
This poses a problem if the properties need to be validated prior to ORB initialization.

ORBacus 63

ORB and Object Adapter Initialization

© 00N O~ WNPR

B
= O

e
w

I

11

© 00 NO O~ WNPR

If you need access to an ORB’s property set before it is initialized, then you may elect to
use the ORBACUS-specific operations OB: : Par seAr gs (C++) or

com ooc. CORBA. ORB. Par seAr gs (Java). The following examples check the value of
the ooc. or b. conc_nodel property to ensure that it is set to r eact i ve or t hr eaded. If
not, the code chooses the t hr eaded concurrency model.

/] C++
OB::Properties_var dflt = OB::Properties::getDefaultProperties();
OB: : Properties_var props = new OB::Properties(dfit);
OB: : ParseArgs(argc, argv, props, OB::Logger::_nil());
const char* orbMdel = props -> getProperty(“ooc.orb.conc_nodel”);
i f(strcnp(orbhMdel, “threaded”) !'= 0 &&

strcnp(orbMdel, “reactive”) !'= 0)

{

}
CORBA: : ORB_var orb = OBCORBA: : ORB_ init(argc, argv, props);

props -> setProperty(“ooc.orb.conc_nodel”, “threaded”);

Create an OB: : Properti es object that is based on the default properties.

Initialize the properties for the ORB. After invoking OB: : Par seAr gs, pr ops contains
the ORB properties and ar gv no longer contains any - ORB or - OA command-line argu-
ments. The OB: : Par seAr gs operation takes an optional Logger object, which

Par seAr gs will use to display any warning or error messages. In this example, a custom
Logger object is not used, so the code passes a nil value.

Retrieve the ooc. or b. conc_nodel property and set it to t hr eaded if its value is not
valid.

Initialize the ORB.

/1 Java
java. util.Properties props = System getProperties();
args = com ooc. CORBA. ORB. Par seArgs(args, props, null);

String orbMbdel = props.get(“ooc.orb.conc_nodel");
i f(!orbMdel.equal s(“threaded”))
{
props. put (“ooc. orb. conc_nodel ", “threaded”);
}

org. ong. CORBA. ORB orb = org. ong. CORBA. CRB.init(arg, props);

Create aj ava. util . Properti es object.

Initialize the properties for the ORB. After invoking com ooc. CORBA. ORB. Par seAr gs,
pr ops contains the ORB properties. The return value of Par seAr gs is a string array with

64

ORBacus

Using POA Managers

44

4.4.1

all - ORB and - QA arguments removed. As in the C++ example, a Logger object is not
used.

Retrieve the ooc. or b. conc_nodel property and set it to t hr eaded if its value is not
valid.

Initialize the ORB.

Using POA Managers

The CORBA specification states that a POA Manager is used to control the flow of
requests to one or more POAs. In ORBAcCUS, each POA Manager also encapsulates a set
of network endpoints on which a server listens for new connections. This design provides
applications with a great deal of flexibility:

* endpoints can be activated and deactivated on demand

* agroup of endpoints can be controlled using a single POA Manager and serviced by
one or more POAs

Creating POA Managers

When the Root POA is first resolved using r esol ve_i ni ti al _r ef erences, a POA
Manager is created to manage the Root POA. Additional POA Managers are created
implicitly when a ni | value for the POA Manager argument is passed to the cr eat e_POA
operation. In this text, we’ll refer to POA Managers created in this way as “anonymous”
POA Managers.

By default, each new POA Manager creates a single IIOP endpoint (i.e., the POA Manager
will listen for new connections on a port). Applications should therefore use caution to
ensure that POA Managers are not created unnecessarily.

An application can control the endpoint configuration using configuration properties (see
“ORB Properties” on page 49). However, properties cannot be specified for anonymous
POA Managers, therefore these POA Managers are created using the default settings. For
IIOP, the default settings will cause an anonymous POA Manager to listen for new con-
nections on a port chosen by the operating system. To override this behavior and allow an
application to easily configure POA Managers, ORBACUS provides a proprietary factory
interface for creating named POA Managers:

/1 1DL
nodul e OBPort abl eSer ver

{
i nterface POAManager Factory

{

ORBacus 65

ORB and Object Adapter Initialization

~NoO OO~ WN R

-7

struct AcceptorConfig
{
OCl::ProtocolId id;
QCl : : Par anSeq par ans;
s

t ypedef sequence< AcceptorConfig > Acceptor Confi gSeq;

excepti on POAManager Al r eadyExi st's

{
}s

POAManager create_poa_nanager(in string nane)
rai ses(POAManager Al r eadyExi st s,
OCl :: I nval i dParam ;

POAManager create_poa_nmanager_w th_confi g(
in string nane,
i n Accept or Confi gSeq confi Q)
rai ses(POAManager Al r eadyExi st s,
OCl : : NoSuchFact ory,
QCl:: I nvalidParam;

POAManager Seq get _poa_nmanagers();
voi d destroy();

s

3

The example below illustrates how to create and configure a new POA Manager using the
ORBAcUs POA Manager Factory.

Here is an example in C++:

/1 C++
CORBA: : Obj ect _var obj =
orb -> resolve_initial _references("“POAManager Factory”);
OBPort abl eServer: : POAManager Factory_var factory =
OBPort abl eSer ver: : POAManager Fact ory:: _narrow(obj);
Port abl eSer ver: : POAManager _var nyPOAManager =
factory -> create_poa_manager (“ MyPOAManager”) ;

Resolve the POA Manager Factory.
Create a new POA Manager with the name “MyPOAManager”.

66

ORBacus

Using POA Managers

4.4.2

~NoO OO WDN PR

-7

And in Java:

/1 Java
or g. ong. CORBA. Obj ect obj =
orb.resolve_initial _references("“POAManager Factory”);
com ooc. OBPor t abl eSer ver. POAManager Factory factory =
com ooc. OBPor t abl eSer ver . POAManager Fact or yHel per. narr ow(obj) ;
org. ong. Port abl eServer. POAManager mnmyPQAManager =
factory. creat e_poa_nanager (“ MyPOAManager”) ;

Resolve the POA Manager Factory.
Create a new POA Manager with the name “MyPOAManager”.

Now we can configure the IIOP port used by our new POA Manager with the following
property:
ooc. i i op. accept or. MyPOAManager . port =5001

When experimenting with various endpoint configurations, it can be very useful to enable
connection tracing diagnostics. With diagnostics enabled, the ORB will display its end-
point information, allowing you to confirm that the application’s endpoints are configured
correctly. Diagnostics can be enabled using the - ORBt r ace_connect i ons command-
line option, or using the equivalent property ooc. or b. tr ace. connect i ons. See “Con-
figuring the ORB and Object Adapter” on page 49 for more information on the supported
configuration properties and command-line options.

The Root POA Manager

As its name suggests, the Root POA Manager is the POA Manager of the Root POA. The
Root POA Manager is usually created by the ORB when

resolve_initial _references is first called for the Root POA. However, an applica-
tion can also manually create the Root POA Manager if a special configuration is desired.
This capability is useful in that it allows the application to use the Root POA with custom-
ized endpoints.

Note that an application must create the Root POA Manager before resolving the Root
POA. Otherwise, the ORB will have already created the Root POA Manager and the appli-
cation will receive an exception when it attempts to create the Root POA Manager.

When using the POA Manager Factory, the name of the Root POA Manager is always
“RootPOAManager”.

ORBacus 67

ORB and Object Adapter Initialization

4.4.3

4.4.4

4.4.5

© 000N O~ WNBRE

e e ol =
o U~ WNPFE O

Dispatching Requests

As explained in [4], a POA Manager is initially in the “holding” state, where incoming
requests on the POA Manager’s endpoints are queued. To dispatch requests, the POA
Manager must be activated using the act i vat e() operation.

Callbacks

In mixed client/server applications in which callbacks occur, it is important to remember
that callbacks will not be dispatched until the POA Manager has been activated. If the
POA Manager has not been activated, the application will likely hang. In general, applica-
tions should activate the POA Manager prior to making any request that might result in a
callback.

Advanced Configuration Example

The cr eat e_poa_manager operation demonstrated in section 4.4.1 is a simple way to
create a POA Manager with a single endpoint. In some architectures, however, it may be
more appropriate to configure a POA Manager with multiple endpoints.

Using the cr eat e_poa_nanager _wi t h_confi g operation, the application can instruct
the POA Manager Factory to create a POA Manager with a specific endpoint configura-
tion. In terms of the ORBACUS Open Communications Interface (OCI), the application is
configuring the POA Manager’s acceptors (see Chapter 17 for more information on the
OCI). The example below illustrates how to configure the Root POA Manager with two
acceptors.

/] C++
#i ncl ude <OB/ CORBA. h>
#i ncl ude <0OB/ OCl _I | OP. h>

OBPort abl eServer: : POAManager Factory_var factory = ... // resolve
OBPor t abl eSer ver: : POAManager Fact ory: : Accept or Confi gSeq confi g;
config.length(2);

config[O0].id = OCl::110P:: TAG | | OP;
config[O0].parans.|ength(1l);

config[O0].parans[0].nane = CORBA: :string_dup(“port”);
config[0].parans[0].val ue <<= (CORBA: : UShort) 3000;
config[1l].id = OCl::110P:: TAG | | OP;
config[1].parans.|ength(1);

config[1].parans[0].name = CORBA::string_dup(“port”);
config[1]. parans[0].val ue <<= (CORBA: : UShort) 3001;

Port abl eServer:: POAManager _var nanager =

68

ORBacus

Using POA Managers

17
18
19
20

12-15

16-18

19-20

© 00 ~NO O WN PR

NNNNNNRPRPRRPRPRRRERPRPRREER
U B WNRPOO®O®NOOUNWNLERO

[

2]

factory -> create_poa_manager_with_confi g(“Root POAManager”,
config);
Por t abl eSer ver: : Root POA var root POA =
orb -> resolve_initial _references(“Root POA");

Resolve the ORBACUS POA Manager Factory. See section 4.4.1 for an example.
Initialize a configuration sequence with two elements.

Configure an IIOP acceptor to listen on port 3000.

Configure an ITOP acceptor to listen on port 3001.

Create the Root POA Manager.

The Root POA Manager must be created before resolving the Root POA.

/1 Java
i mport com ooc. OBPort abl eSer ver. POAManager Fact ory;
i mport com ooc. OBPort abl eSer ver. POAManager Fact or yPackage. *;

POAManager Factory factory = ... // resolve
AcceptorConfig[] config = new AcceptorConfig[2];
config[0] = new AcceptorConfig();
config[0].id = comooc. CCl.I1OP. TAG | | OP. val ue;
config[O0].paranms = new com ooc. OCl . Paranf 1] ;
config[0].paranms[0] = new com ooc. OCl . Par an() ;
config[O0].parans[0].name = “port”;
config[O0].parans[0].value = orb.create_any();
config[O0].parans[0].value.insert_ushort((short)3000);
config[1l] = new AcceptorConfig();
config[1l].id = comooc. CCl.I10OP. TAG || OP. val ue;
config[1l].paranms = new com ooc. OCl . Paranf 1] ;
config[1].parans[0] = new com ooc. CCl . Paramn();
config[1].parans[0].nane = “port”;
config[1l].parans[0].value = orb.create_any();
config[1].parans[0].val ue.insert_ushort((short)3001);
org. ong. Port abl eServer. POAManager mnanager =

factory. create_poa_nanager_w th_confi g(“Root POAManager”,

config);

org. ong. Port abl eServer. POA r oot POA =

orb.resolve_initial _references(“Root PQA");

Resolve the ORBACUS POA Manager Factory. See section 4.4.1 for an example.

Initialize a configuration sequence with two elements.

ORBacus 69

ORB and Object Adapter Initialization

14- 20
21-23

24-25

4.5

4.5.1

4.5.2

Configure an ITOP acceptor to listen on port 3000.

Configure an IIOP acceptor to listen on port 3001.

Create the Root POA Manager.

The Root POA Manager must be created before resolving the Root POA.

ORB Destruction

Destroying the C++ ORB

Applications must destroy the ORB before returning from mai n so that resources used by
the ORB are properly released. To destroy the ORB, invoke dest r oy on the ORB:

/] C++

CORBA: : ORB_var orb =// Initialize the orb
I

orb -> destroy();

Destroying the Java ORB

As in C++, Java must destroy the ORB so that resources are properly released. In Java, the
ORB is destroyed as follows:

/1 Java
org.ong. CORBA.ORB orb = // Initialize the orb
I

orb.destroy();

In JDK 1.2, the ORB interface does not define the standard dest r oy method. To work
around this problem, an application can be compiled using the - Xboot cl asspat h option
to ensure that the ORBACUS classes (i.e., OB. j ar) are located before the JDK’s runtime
classes. Alternatively, an application can cast the ORB reference to the type

com ooc. CORBA. ORB when calling dest r oy, as shown below:

/1 Java
org.ong. CORBA.ORB orb = // Initialize the orb
/1

((com ooc. CORBA. ORB) orb) . destroy();

Note that using this cast is ORBACUSs-specific, therefore an application wishing to remain
strictly portable must use a workaround such as - Xboot cl asspat h. For example:

javac - Xboot cl asspath/p:/path/to/OB.jar M/App.java

70

ORBacus

Server Event Loop

4.6

© 00N O WN PR

e =
N P O

The / p suffix indicates that the ORBACUS classes should be prepended to the JVM’s boot
classpath. See the JDK documentation for more information.
Server Event Loop

A server’s event loop is entered by calling POAManager : : act i vat e on each POA Man-
ager, and then calling ORB: : r un. For example, in Java:

/'l Java

org.ong. CORBA.ORB orb = ... // Initialize the orb

or g. ong. Port abl eServer. PQAManager manager = ... // Get Root PQA nanager
nanager . activate();

orb.run();

And in C++:

/] C++

CORBA: :ORB var orb = ... // Initialize the orb

Port abl eServer: : POAVanager _var manager = ... // Get the Root PQA manager

manager -> activate();
orb -> run();

You can deactivate a server by calling ORB: : shut down, which causes ORB: : r un to
return. For example, consider a server that can be shut down by a client by calling a
deact i vat e operation on one of the server’s objects. First the IDL code:

/1 1DL
i nterface ShutdownObj ect

{
}s

On the server side, Shut downObj ect can be implemented like this:

voi d deactivate();

Il C++
cl ass Shut downQbj ect _i npl
publ i c POA_Shut downhj ect,
publ i c Portabl eServer:: Ref Count Ser vant Base

CORBA: : ORB_var orb_;
public:
Shut downbj ect _i npl (CORBA: : ORB_ptr orb)

orb_(CORBA: : ORB:: _duplicate(orb))
{

ORBacus 71

ORB and Object Adapter Initialization

13
14
15
16
17
18
19

2-3

14-17

4.7

4.7.1

}

virtual void deactivate() throw CORBA:: SystenException)
{

}

orb_ -> shutdown(fal se);

}s

A servant class for Shut downCbj ect is defined. For more information on how to imple-
ment servant classes, see Chapter 5.

An ORB is needed to call shut down.
The constructor initializes the ORB member.

deacti vat e calls shut down on the ORB. Note that shut down is called with the argu-
ment f al se to avoid a deadlock. A f al se argument instructs shut down to terminate
request processing without waiting for executing operations to complete. A t r ue argu-
ment instructs shut down to return only once all operations have completed. If shut down
were to be called with a t r ue argument in this example, it would deadlock. That is
because shut down(t r ue) would be invoked from within an operation and, therefore,
could not ever return.

The client can use the deact i vat e call as shown below:

/] C++
Shut downhj ect _var shutdownCbj = ... // Get a reference sonehow
shut downCbj -> deactivate();

Applets

Compatibility with Netscape

The Java mapping in ORBACUS 4 uses the portable stream-based stubs as specified in [6].
These stubs are not compatible with Netscape’s built-in ORB. Therefore, in order to write
applets using ORBACUS 4, you will need to disable or replace Netscape’s built-in ORB.

The Netscape ORB classes are contained in the file i i op10. j ar, located in the j ava/

cl asses subdirectory of the Netscape installation. To disable the ORB, rename this file
(e.g.,toiiopl0_ol d.jar). With the ORB disabled, applets can download the ORBAcCUS
classes along with the applet.

72

ORBacus

Applets

4.7.2

4.7.3

4.7.4

To replace the built-in ORB with ORBACUS, rename the i i op10. j ar file as described
above, and copy the OB. j ar file to the same directory, giving it the name i i op10.j ar.
For example:

cd <net scape- hone>/j aval cl asses
nv iiopl0.jar iiopl0_old.jar
cp <orbacus-hone>/1ib/OB.jar iiopl0.jar

Initializing the Java ORB for Applets

A different overloading of ORB. i ni t () is provided for use by applets:

/1 Java
i nport org. ong. CORBA. *;
public void init()
{
ORB orb = ORB.init(this, new java.util.Properties());

/1

Adding ORBacus Applets to Web Pages

Like any other applet, ORBACUS applets can be added to HTML pages with the APPLET
tag:

<APPLET CODE="C i ent.class” ARCH VE="CB.jar” W DTH=500 HEI GHT=300>
</ APPLET>

It is necessary to tell the Web browser where to find the ORBACUS Java classes. This is
best done with the ARCHI VE attribute as shown above. An alternative is to use the
CODEBASE attribute and to extract the OB. j ar archive in the directory defined by
CODEBASE. For more information, please consult your Java Development Kit documenta-
tion.

Defining ORB Options for an Applet

The PARAMtag is used in HTML to define parameters for an applet. When initialized by an
applet, the ORB looks for the ORBpar ans parameter, whose value should be command-
line options separated by spaces.

For example, the HTML code below uses the - ORBconf i g option to specify the URL of
the ORB configuration file:

<APPLET CODE="C i ent.class” ARCH VE="OB.jar” W DTH=500 HEl GHT=300>
<PARAM NAME=" ORBpar ans” VALUE="-ORBconfi g http://ww orb. cfg”">

ORBacus 73

ORB and Object Adapter Initialization

4.7.5

4.7.6

</ APPLET>

Your applet can also define ORBACUS configuration properties using Java system proper-
ties, or using the j ava. uti | . Properti es object passed to
or g. ong. CORBA. ORB. i ni t (). See “ORB Properties” on page 49 for more information.

Defining the ORB Class Parameters

Some Web browsers' have a built-in ORB. In order to use ORBACUS instead of this built-
in ORB, you must set the following applet parameters:

<APPLET CODE="Client.class” ARCH VE="OB.jar” WDTH=500 HEl GHT=300>
<PARAM NAME=" or g. ong. CORBA. CRBCl ass”
VALUE="com ooc. CORBA. CRB” >
<PARAM NAME=" or g. ong. CORBA. ORBSI ngl et onCl ass”
VALUE="com ooc. CORBA. ORBSi ngl et on” >
</ APPLET>

Security Issues

Web browsers generally place several security restrictions on applets that you need to be
aware of when developing an applet using ORBACUS:

* Applets can only communicate with the host from which the applet was downloaded.

* Applets cannot accept connections from any host.

The first limitation forces you to run any CORBA server applications that your applet
communicates with on your Web server host.? The second limitation prevents your applet
from acting as a CORBA server, which is often necessary when a client wishes to receive
callbacks from a server.

These limitations are the most common causes of security exceptions in an applet. You
must ensure that any object references used by your applet refer to objects on the Web
server host. Furthermore, you must not attempt to enable CORBA server functionality in
your applet by using the POA.

1. For example, Netscape v4 has a built-in ORB.

2. Netscape v4 also does not normally allow CORBA applets to be loaded from a local (i.e., filesys-
tem) HTML file, causing a Secur i t yExcept i on when the applet attempts to connect to the
CORBA server. To work around this problem, CORBA applets must be downloaded from a Web
server.

74

ORBacus

CHAPTER §

CORBA Objects

5.1

Overview

A CORBA object is an object with an interface defined in CORBA IDL. CORBA objects
have different representations in clients and servers.

* A server implements a CORBA object in a concrete programming language, for
example in C++ or Java. This is done by writing an implementation class for the
CORBA object and by instantiating this class. The resulting implementation object is
called a servant.

* A client that wants to make use of an object implemented by a server creates an object
that delegates all operation calls to the servant via the ORB. Such an object is called a

DFOXy.

When a client invokes a method on the local proxy object, the ORB packs the input param-
eters and sends them to the server, which in turn unpacks these parameters and invokes the
actual method on the servant. Output parameters and return values, if any, follow the
reverse path back to the client. From the client’s perspective, the proxy acts just like the
remote object since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can invoke a method
on the servant when a request is received from a client. This connection is handled by the
Portable Object Adapter (POA), as shown in Figure 5.1.

ORBacus 75

CORBA Objects

5.2

© 000N O~ WNBR

e s ol e
a b~ wWwNPFE O

Client Server
Servant
Proxy POA

\ ORB /

Figure 5.1: Servants, Proxies and the Object Adapter

The Portable Object Adapter in ORBACUS replaces the deprecated “Basic Object
Adapter” (BOA). (The BOA was deprecated by the OMG because it had a number of seri-
ous deficiencies and was under-specified.) The POA is a far more flexible and powerful
object adapter than the BOA. The POA not only allows you to write code that is portable
among ORBs from different vendors, it also provides a number of features that are essen-
tial for building high-performance and scalable servers.

Implementing Servants

In this section, we will implement servant classes (or “implementation classes™) for the

IDL interfaces defined below:

/! 1DL
interface A

{
}s

void op_a();

interface B

{
}s

voi d op_b();

interface | : A B

{
}s

void op_i();

76

ORBacus

Implementing Servants

© 00 NO O~ WNPR

NP P RPEPRREPRERPRPRPE
O © O ~NOUN~NWNEREO

An interface A is defined with the operation op_a.
An interface B is defined with the operation op_b.

Interface | is defined, which is derived from A and B. It also defines a new operation op_i .

Implementing Servants using Inheritance

ORBAcuUS for C++ and ORBACUS for Java both support the use of inheritance for inter-
face implementation. To implement an interface using inheritance, you write a servant
class that inherits from a skeleton class generated by the IDL translator. By convention,
the name of the servant class should be the name of the interface with the suffix _i npl ,
e.g., for an interface | , the implementation class is named | _i npl A

Inheritance using C++

In C++, 1 _i npl must inherit from the skeleton class POA_| that was generated by the
IDL-to-C++ translator. If | inherits from other interfaces, for example from the interfaces
Aand B, then | _i npl must also inherit from the corresponding implementation classes
A inpl andB_i npl .

/[l C++
class A inmpl : virtual public POA_A
{
public:
virtual void op_a() throw CORBA:: SystenException);
}s
class B_inpl : virtual public POA B
{
public:
virtual void op_b() throw CORBA:: SystenException);
}s

class | _inpl : virtual public POA_I,
virtual public Ainpl,
virtual public B_inpl

{
public:

virtual void op_i() throw CORBA:: SystenException);
1

1. These naming rules are not mandatory, they are just a recommendation.

ORBacus 77

CORBA Objects

2-6

0N O WDN PR

The servant class A_i npl is defined, inheriting from the skeleton class POA_A. If op_a
had any parameters, these parameters would be mapped according to the standard IDL-to-
C++ mapping rules [4].

This is the servant class for B_i npl .

The servant class for | _i npl is not only derived from PQOA |, but also from the servant
classes A i npl and B_i npl .

Note that vi rt ual publ i c inheritance must be used. The only situation in which the
keyword vi r t ual is not necessary is for an interface | which does not inherit from any
other interface and from which no other interface inherits. This means that the implemen-
tation class | _i npl only inherits from the skeleton class POA_| and no implementation
class inherits from | _i npl .

It is not strictly necessary to have an implementation class for every interface. For exam-
ple, it is sufficient to only have the class | _i npl aslongas | _i npl implements all inter-
face operations, including the operations of the base interfaces:

/] C++

class | _inpl : virtual public POA_I

{

public:
virtual void op_a() throw CORBA:: SystenException);
virtual void op_b() throw CORBA:: SystenException);
virtual void op_i() throw CORBA:: SystenException);

1

Now | _i npl is only derived from POA |, but not from the other servant classes.

| _i npl must implement all operations from the interface | as well as the operations of all
interfaces from which | is derived.

Inheritance using Java

Several files are generated by the ORBAcCUS IDL-to-Java translator for an interface | ,

including:

* |.java, which defines a Java interface | containing public methods for the
operations and attributes of | , and

* | POA. java, which is an abstract skeleton class that serves as the base class for

servant classes.

In contrast to C++, Java’s lack of multiple inheritance currently makes it impossible for a
servant class to inherit operation implementations from other servant classes, except when

78

ORBacus

Implementing Servants

© 00O ~NOO O~ WNBR

e el
A WN PP O

15

using delegation-based implementation. For our interface | it is therefore necessary to
implement all operations in a single servant class | _i npl , regardless of whether those
operations are defined in | or in an interface from which | is derived.

/1 Java
public class | _inpl extends |POA
{
public void op_a()
{
}
public void op_b()
{
}
public void op_i()
{
}
}
The servant class | _i npl is defined, which implements op_i , as well as the inherited

operations op_a and op_b.

Implementing Servants using Delegation

Sometimes it is not desirable to use an inheritance-based approach for implementing an
interface. This is especially true if the use of inheritance would result in overly complex
inheritance hierarchies (for example, because of use of an existing class library that
requires extensive use of inheritance). Therefore, another alternative is available for imple-
menting servants which does not use inheritance. A special class, known as a fie class, can
be used to delegate the implementation of an interface to another class.!

Delegation using C++

The ORBAcuUS IDL-to-C++ translator can automatically generate a tie class for an inter-
face in the form of a template class. A tie template class is derived from the corresponding
skeleton class and has the same name as the skeleton, with the suffix _t i e appended.

1. Note that tie classes are rarely necessary. Not only is the inheritance implementation less com-
plex, but it also avoids a number of problems that arise with the life cycle of objects, particularly
in threaded servers. We suggest that you use the tie approach only if you have no other option.

ORBacus 79

CORBA Objects

0N O~ WNBR

For the interface | from the C++ example above, the template POA | _ti e is generated
and must be instantiated with a class that implements all operations of | . By convention,
the name of this class should be the name of the interface with _i npl _ti e appendcd.1

In contrast to the inheritance-based approach, it is not necessary for the class implement-
ing | ’s operations, i.e., | _i npl _t i e, to be derived from a skeleton class. Instead, an
instance of POA_| _t i e delegates all operation calls to | _i npl _t i e, as shown in Figure
5.2.

POA_I
| I
LT
POA_I tie
<fdelegates to
I_impl_tie

Figure 5.2: Class Hierarchy for Delegation Implementation in C++

Here is our definition of | _i npl _ti e:

/] C++

class | _inmpl _tie

{

public:
virtual void op_a() throw CORBA:: SystenException);
virtual void op_b() throw CORBA:: SystenException);
virtual void op_i() throw CORBA:: SystenException);

}s

| _i npl _ti e is defined and not derived from any other class.

| _i npl _ti e must implement all of | ’s operations, including inherited operations.

1. Again, you are free to choose whatever name you like. This is just a recommendation.

80

ORBacus

Implementing Servants

© 00N O~ WNPR

B
= O

~
'
©

A servant class for | can then be defined using the | _skel _t i e template:

/] C++
typedef POA | tie< | _inpl_tie > | _inpl;

The servant class | _i npl is defined as a template instance of POA_| _t i e, parameterized
with | _i npl _tie.

The tie template generated by the IDL compiler contains functions that permit you change
the instance denoted by the tie:

/] C++
t enpl at e<cl ass T>
class POA | _tie : public POA_I

{
public:
...
T* _tied_object();
void _tied_object(T& obj);
void _tied_object(T* obj, CORBA::Boolean rel ease = true);
/1
}

The _ti ed_obj ect function permits you to retrieve and change the implementation
instance that is currently associated with the tie. The first modifier function calls del et e
on the current tied instance before accepting the new tied instance if the r el ease flag is
currently true; the r el ease flag for the new tied instance is set to false. The second mod-
ifier function also calls del et e on the current tied instance before accepting the new
instance but sets the r el ease flag to the passed value.

Delegation using Java

For every IDL interface, the IDL-to-Java mapping generates an “operations” interface
containing methods for the IDL attributes and operations. This operations interface is also
used to support delegation-based servant implementation. For an interface | , the following
additional class is generated:

* | POATI e. j ava, the tie class that inherits from | POA and delegates all requests to an
instance of | Qper ati ons.

To implement our servant class using delegation, we need to write a class that implements
the | Oper at i ons interface:

ORBacus 81

CORBA Objects

1 // Java

2 public class | _inpl _tie inplements | Operations
3 {

4 public void op_a()
5 {

6 }

7

8 public void op_b()
9 {

10 }

11

12 public void op_i()
13 {

14 }

15 }

2 The servant class | _i npl _ti e is defined to implement the | Oper at i ons interface.

-14 | _i npl _ti e must implement all of | ’s operations, including inherited operations.

Figure 5.3 illustrates the relationship between the classes generated by the IDL-to-Java
translator and the servant implementation classes.

1POA

I_impl IPOATie %delegates o IOperations

I_impl_tie

Figure 5.3: Class Hierarchy for Inheritance and Delegation Implementation in Java

82

ORBacus

Creating Servants

© 00N O~ WN PR

NNRNNRPRPRPRERRERRRPRPPR
WNP OO®OWNOOUMWNERO

24

5.3

As noted earlier, Java’s lack of multiple inheritance makes it impossible to inherit an
implementation from another servant class. Using tie classes, however, does allow imple-
mentation inheritance, but only in certain situations.

For example, let’s implement each of our sample interfaces using delegation.

/1 Java
public class A_inpl inplements ACperations
{
public void op_a()
{
}
}
public class B_inpl inplements BOperations
{
public void op_b()
{
}
}
public class | _inpl extends B_inpl inplenents | Operations
{
public void op_a()
{
}
public void op_i()
{
}
}

Class A i npl is defined as implementing ACper at i ons.
Class B_i npl is defined as implementing BOper at i ons.

Class | _i npl inherits the implementation of op_b from B_i npl , and provides an imple-
mentation of op_a and op_i . Since a Java class can only extend one class, it’s not possi-
ble for | _i npl to inherit the implementations of both op_a and op_b.

Creating Servants

Servants are created the same way in both C++ and Java: once your servant class is writ-
ten, you simply instantiate a servant with new!

ORBacus 83

CORBA Objects

5.3.1

N

A WDN PR

Creating Servants using C++

Here is how to create servants using C++:

/] C++
| _inpl* servant_pointer = new | _inpl;
| _impl* anot her_servant _pointer = new | _inpl;

Two servants are created with new Note that this merely instantiates the servants but does
not inform the ORB that these servants exist yet. The ORB server-side run time only
learns of the existence of the servants once you activate them.

In case the servant class was written using the delegation approach, an object of the class
implementing | ’s operations must be passed to the servant’s constructor:

/] C++

| _inpl _tie* inmpl = new | _inpl_tie;

POA | tie< |_inpl_tie >* tie_pointer =
new POA | tie< | _inpl_tie >(inpl);

Anew | _inpl _ti e iscreated with new

An instance of POA_| _ti e parameterized with | _i npl _t i e is created, taking i npl asa
parameter. All operation calls to t i e will then be delegated to i npl .

In this example, the lifetime of i npl is coupled to the lifetime of the servant tie. That is,
when the tie is destroyed, del et e i npl is called by the tie’s destructor. In case you don’t
want the lifetime of i npl to be coupled to the lifetime of the tie, for example, because you
want to create a servant on the stack and not on the heap (making it illegal to call del et e
on the tie), use the following code:

/] C++
| _inmpl _tie inpl;
POA | tie< |_inpl_tie >* tie =
new POA | tie< | _inpl_tie >(& npl, false);

A new | _i npl _ti e is created, this time on the stack, not on the heap.

An instance of POA | _ti e is created. The f al se parameter tells t i e not to call del et e
oninpl .

1. You can also instantiate servants on the stack. However, this only works only for some POA pol-
icies, so servants are usually instantiated on the heap.

84

ORBacus

Creating Servants

5.3.2

N

o0~ WN R

Creating Servants using Java

Every tie class generated by the IDL-to-Java translator has two constructors:

// Java
public class | POATi e extends | POA
{
public | POATi e(l Operations delegate) { ... }
public | POATi e(l Operations del egate, POA poa) { ... }
}

The second constructor allows a POA instance to be supplied, which will be used as the
return value for the tie’s _def aul t _PQOA method. If the POA instance is not supplied, the
_def aul t _POA method will return the root POA of the ORB with which the tie has been
associated.

This example demonstrates how to create servants using Java:

/1 Java

| _impl inpl = new I _inpl();
| _inmpl anotherlnpl = new | _inpl();

Two servants, i npl and anot her | npl , are created with new

In case the servant class was written using the delegation approach, an object implement-
ing the | Oper at i ons interface must be passed to the tie’s constructor:

/1l Java

| _inmpl _tie inpl = new I _inpl_tie();
| POATi e tie = new | POATI e(inpl);

Anew | _inpl _ti e is created.

An instance of | POATI e is created, taking i npl as a parameter. All operation callstoti e
will then be delegated to i npl .

The tie class also provides methods for accessing and changing the implementation object:

/1l Java
public class | POATi e extends | POA
{
public | Operations _delegate() { ... }
public void _del egate(l Operations delegate) { ... }

ORBacus 85

CORBA Objects

54

5.4.1

}

This method returns the current delegate (i.e., implementation) object.

This method changes the delegate object.

Activating Servants

Servants must be activated in order to receive requests from clients. Servant activation
informs the ORB run time which particular servant represents (or incarnates) a particular
CORBA object. Activation of a servant assigns an object identifier to the servant. That
object identifier is also embedded in every object reference that is created for an object and
serves to link the object reference with its servant.

The POA’s | dAssi gnnent Pol i cy value controls whether object IDs are assigned by the
POA or the server application code. The SYSTEM | D policy value directs the ORB to
assign a unique object identifier to the CORBA object represented by the servant; the
USER_| D policy value requires the server application code to supply an ID that must be
unique within the servant’s POA.

Servants can be activated implicitly or explicitly. Implicit activation takes place when you
create the first object reference for a servant. Explicit activation requires a separate API
call. Typically, you will use implicit activation for transient objects and explicit activation
for persistent objects. The | npl i cit Acti vati onPol i cy controls whether explicit or
implicit is in effect. Explicit activation requires the NO_| MPLI Cl T_ACTI VATI ON policy
value on the servant’s POA, whereas implicit activation requires the

| MPLI CI T_ACTI VATI ON policy value.

Implicit Activation of Servants using C++

The following code shows how to implicitly activate a servant:

/] C++

| _inmpl inpl;
| _var iv = inpl -> _this();

A new servant i npl is created.

The new servant is activated implicitly by calling _t hi s.

Note that implicit activation as shown requires the RETAI N, | MPLI Cl T_ACTI VATI O\,
and SYSTEM | Dpolicies on the servant’s POA. The servant is activated with the POA that
is returned by the servant’s _def aul t _POA member function. (The default implementa-

86

ORBacus

Activating Servants

5.4.2

54.3

A WODN PR

tion of _def aul t _PQAreturns the Root POA; if you want servants activated on a different
POA, you must override _def aul t _PQA in the implementation class to return the POA
you want to use.)

Implicit Activation of Servants using Java

This is how Java servants are implicitly activated:

/1 Java

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
I _inpl inpl = new I _inpl();

| Iref = inpl._this(orb);

To activate a servant, we need the ORB.
A new servant i npl is created.

The new servant is activated (using the POA returned by the servant’s _def aul t _POA
operation).

As shown above, a servant in Java must be associated with an ORB, and cannot be associ-
ated with multiple ORBs. The first call to _t hi s() must supply the ORB reference; sub-
sequent calls to _t hi s() for the same servant can omit the ORB reference.

An alternative way to associate a servant with an ORB is to call the set _del egat e
method defined in or g. ong. CORBA_2_3. ORB.

/1 Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
((org. ong. CORBA 2 _3. ORB)orb).set_del egate(inpl);

Explicit Activation of Servants using C++

IfNO_| MPLI CI T_ACTI VATI ONand SYSTEM | Dare in effect for a servant’s POA, you
activate the servant by calling act i vat e_obj ect :

| _inmpl inpl;
Port abl eServer:: POA var poa = inpl._default_POA();
poa -> activate_object(& npl);

The code instantiates a servant.
To activate a servant, we need the servant’s POA.

acti vat e_obj ect creates a unique ID for the servant.

ORBacus 87

CORBA Objects

a s~ wN PP

5.4.4

N

A WOWDN PR

Once a servant is activated, calls to _t hi s on the servant return an object reference that
contains the ORB-assigned ID for the object.

IfNO_I MPLI CI T_ACTI VATI ONand USER | Dare in effect for servant’s POA, you activate
the servant by supplying the ID value as an octet sequence to
activate_object_with_id:

| _inmpl inpl;
Port abl eServer:: POA var poa = inpl._default_POA();
Port abl eServer:: Qojectld_var oid =
Port abl eServer::string_to_Objectld("MOojectNanme");
poa -> activate_object_with_id(oid, & npl);

The string_t o_Obj ect | d helper function converts a string into an octet sequence.
acti vat e_obj ect _wi t h_i d uses the octet sequence as the object ID for the servant.

You can use any suitable key value as an object ID. Typically, the key will be part of the
object’s state, such as a social security number. However, you can also use keys that are
not directly related to object state, such as database record identifiers. Once the servant is
activated, calls to _t hi s on the servant return an object reference that contains the ID you
assigned to the object.

Explicit Activation of Servants using Java

Servant activation in Java also uses act i vat e_obj ect (for SYSTEM | D) and
activate_object_with_id (for USER | D). With SYSTEM | D, the code looks as fol-
lows:

I _inpl inmpl = new I _inpl();
orb. ong. Port abl eServer. POA poa = inpl._default_PQOA();
poa. acti vat e_obj ect (i npl);

For USER_| D, you must provide the Object ID:

| _impl inpl = new I _inpl();

org. ong. Port abl eServer. POA poa = inpl._default_PQA();
byte[] id = "M/Obj ect Nanme". get Byt es();

poa. activate_object_with_id(id, inpl);

88

ORBacus

Deactivating Servants

55

5.5.1

5.5.2

5.5.3

A WDN P

A WOWDN PR

Deactivating Servants

Deactivation of Servants using C++

A servant can be deactivated. Deactivating a servant breaks the association between the
CORBA object and the servant; requests that arrive from clients thereafter result in an
OBJECT_NOT_EXI ST exception (or a TRANSI ENT exception, if the server is down at the
time a request is made).

To deactivate a servant, call the deact i vat e_obj ect member function on the servant’s
POA:

Il C++

Portabl eServer:: POA var poa = i
Port abl eServer:: Chjectld_var id
poa -> deactivate_object(id);

mpl . _default _POA();
= poa -> servant_to_id(& npl);

The code obtains a reference to the servant’s POA by calling _def aul t _POA. (This
assumes that _def aul t _POA is correctly overridden to return the appropriate POA if the
servant is not activated with the Root POA.)

The call to servant _t o_i d on the servant’s POA returns the object ID with which the
servant is activated.

The call to deact i vat e_obj ect breaks the association between the CORBA object and
the servant.

Note that deact i vat e_obj ect returns immediately, even though the servant may still be
executing requests, possibly in a number of different threads.

Deactivation of Servants using Java

Deactivation of a servant in Java is analogous to C++:

/'l Java

org. ong. Port abl eServer. POA poa = inpl._default_PQA();
byte[] id = poa.servant_to_id(inpl);

poa. deacti vat e_obj ect (id);

Transient and Persistent Objects

A POA has either the TRANSI ENT or the PERSI STENT policy value. A transient POA gen-
erates transient object references. A transient object reference remains functional only for

ORBacus 89

CORBA Objects

5.6

as long as its POA remains in existence. Once the POA for a transient reference is
destroyed, the reference becomes permanently non-functional and client requests on such
a reference raise either OBJECT_NOT_EXI ST or TRANSI ENT (depending on whether or not
the server is running at the time the request is sent). Transient references remain non-func-
tional even if you restart the server and re-create a transient POA with the same name as
was used previously. Transient POAs almost always use the SYSTEM | Dpolicy as a matter
of convenience (although the combination of TRANSI ENT and USER_| Dis legal).

Object references created on a persistent POA continue to be valid beyond the POA’s life
time. That is, if you create a persistent reference on a POA, destroy the POA, and then rec-
reate that POA again (with the same POA name), the original reference continues to
denote the same CORBA object (even if the server was shut down and restarted). Persis-
tent references require the same POA name and object ID to be used to denote the same
object. This means that persistent references rely on the combination of PERSI STENT and
USER | D. USER | Dmust be used in conjunction with NO_| MPLI Cl T_ACTI VATI ON, so
servants for persistent references are always activated explicitly.

Factory Objects

It is quite common to use the Factory [2] design pattern in CORBA applications. In short,
a factory object provides access to one or more additional objects. In CORBA applica-
tions, a factory object can represent a focal point for clients. In other words, the object ref-
erence of the factory object can be published in a well-known location, and clients know
that they only need to obtain this object reference in order to gain access to other objects in
the system, thereby minimizing the number of object references that need to be published.

The Factory pattern can be applied in a wide variety of situations, including the following:

* Security - A client is required to provide security information before the factory
object will allow the client to have access to another object.

* Load-balancing - The factory object manages a pool of objects, often representing
some limited resource, and assigns them to clients based on some utilization
algorithm.

* Polymorphism - A factory object enables the use of polymorphism by returning
object references to different implementations depending on the criteria specified by a
client.

These are only a few examples of the potential applications of the Factory pattern. The
examples listed above can also be used in any combination, depending on the require-
ments of the system being designed. Note that the factory pattern applies equally to persis-
tent and transient objects.

90

ORBacus

Factory Objects

© 00O ~NOO O~ WNPR

10

© 00N O~ WNPR

R el
A WODNPFP O

e
N

A simple application of the Factory pattern, in which a new object is created for each cli-
ent, is illustrated below. The implementation uses the following interface definitions:

/1 1 DL
i nterface Product

{
}s

voi d destroy();

interface Factory

{
}s

Pr oduct createProduct();

The Product interface is defined. The dest r oy operation allows a client to destroy the
object when it is no longer needed.

The Fact ory interface is defined. The cr eat ePr oduct operation returns the object ref-
erence of a new Pr oduct .

Factory Objects using C++

First, we’ll implement the Pr oduct interface:

/] C++
cl ass Product _i npl
public virtual POA_Product,
public virtual Portabl eServer:: Ref Count Servant Base

{
public:
virtual void destroy() throw CORBA:: SystenException)
{
Port abl eServer:: POA var poa = _default_POA();
Port abl eServer:: ojectld_var id = poa -> servant _to_id(this);
poa -> deactivate_object(id);
}
H

The servant class Pr oduct _i npl is defined as an implementation of the Pr oduct inter-
face. In addition, Pr oduct _i npl inherits from Ref Count Ser vant Base, which makes
the servant reference counted.

ORBacus 91

CORBA Objects

© 00O ~NO O~ WDNPRE

e e el el
o U hwWNPR O

11-14

The dest r oy () operation deactivates the servant with the POA. As a result, the POA will
release all references it maintains to the servant. Since there are no other references to the
servant left, the servant’s reference count will drop to zero, and thus the servant is
destroyed.

Next, we’ll implement the factory:

[l C++
class Factory_inpl : public virtual POA Factory
{
public:
virtual Product_ptr
creat eProduct () throw(CORBA:: Syst enExcepti on)
{
Product _i npl * inpl = new Product _i npl (orb_);
Por t abl eServer: : Servant Base_var servant = inpl;
Port abl eServer:: POA var poa = ... // Get servant’'s POA
Port abl eServer:: bjectld_var id = ... // Assign an ID
poa -> activate_object_with_id(id, inpl);
return inpl -> _this();
}
}s
The servant class Fact ory_i npl is defined as an implementation of the Fact or y inter-

face.

A new reference counted Pr oduct servant is instantiated. The servant is assigned to a
Ser vant Base_var, which decrements the servant’s reference count when it goes out of
scope.

Activates the servant and returns an object reference to the client.

It is important to understand how the servant is eventually destroyed. The

Ref Count Ser vant Base class from which the servant inherits implements a reference
count. When the servant is instantiated, the Ref Count Ser vant Base constructor sets this
reference count to 1. When the servant is activated with the POA, the POA increases the
reference count by at least 1. When the Ser vant Base_var we assigned the servant to
goes out of scope, the reference count is decremented by 1. This means that when

cr eat eProduct () returns, only the POA is “holding” a reference to the servant. Later,
when the servant is deactivated in dest r oy() , the POA decrements the reference count
by exactly the same number it used to increment the reference count upon activation. This
causes the reference count to drop to zero, in which case the servant will be implicitly
deleted.

92

ORBacus

Factory Objects

5.6.2

© 00N O~ WDNBR

© 00 NO O~ WNBRF

PP
= O

12

Note that whenever the ORB starts to dispatch a request on the servant, the reference count
is increased by 1. After request dispatching is finished, the count is decremented by 1.
This ensures that a reference counted servant cannot be deleted while a request is execut-

ing.
Factory Objects using Java

Here is our Java implementation of the Pr oduct interface:

/1l Java
public class Product_inpl extends Product POA
{
public void destroy()
{
byte[] id = _default_POA().servant _to_id(this);
_default _PQOA() . deactivate_object(id);
}

}

Servant class Pr oduct _i npl is defined as an implementation of the Pr oduct interface.

The dest r oy operation deactivates the servant with the POA. As long as no other refer-
ences to the servant are held in the server, the object will be eligible for garbage collection.

Here’s our implementation of the factory:

/1 Java
public class Factory_inpl extends FactoryPOA
{
public Product createProduct()
{
Product _i mpl result = new Product _inpl (orb_);
org. ong. Port abl eServer. POA poa = ... // Get servant’s POA
byte[] id = ... // Assign an ID
poa. activate_object_with_id(id, result);
return result. _this(orb_);
}

}

Servant class Fact ory_i npl is defined as an implementation of the Fact or y interface.

The cr eat ePr oduct operation instantiates a new Pr oduct servant, activates it with the
POA, and returns an object reference to the client.

ORBacus 93

CORBA Objects

5.6.3

5.6.4

© 00N O~ WNPR

e e ol el =
o U~ WNPEFE O

Caveats

In these simple examples, the factory objects do not maintain any references to the

Pr oduct servants they create; it is the responsibility of the client to ensure that it destroys
a Product object when it is no longer needed. This design has a significant potential for
resource leaks in the server, as it is quite possible that a client will not destroy its Product
objects, either because the programmer who wrote the client forgot to invoke dest r oy, or
because the client program crashed before it had a chance to clean up. You should keep
these issues in mind when designing your own factory objects.1

Obtaining the POA for a Servant

As mentioned in the previous sections, every servant inherits a _def aul t _POA function
from its skeleton class. The default implementation of this function returns the Root POA.
If you instantiate servants on anything but the Root POA, you must override the function
in the servant; otherwise, calls to _t hi s will create incorrect object references. Usually,
this involves remembering the POA reference for a servant in a private member variable
and returning that reference from a call to _def aul t _POA. (If all servants for objects of a
particular interface type use the same POA, you can use a static member variable.)

In C++, you can use an approach similar to the following:

/] C++
cl ass Product _i npl
public virtual POA_Product,
public virtual Portabl eServer:: Ref Count Servant Base

Port abl eServer:: POA var poa_;

public:
voi d Product _i npl (Portabl eServer:: POA ptr poa)
poa_(Portabl eServer:: POA: : _duplicate(poa))
{
}

virtual Portabl eServer::PQCA ptr _default_POA()
{

return Portabl eServer:: PQA:: _duplicate(poa)

1. Two possible strategies for handling this issue include: time-outs, in which a servant that has not
been used for some length of time is automatically released; and expiration, in which an object
reference is only valid for a certain length of time, after which a client must obtain a new refer-
ence. The implementation of these solutions is beyond the scope of this manual.

94

ORBacus

Factory Objects

17
18

14-17

5.6.5

}
}s

The constructor accepts a POA reference and remembers that reference in a private mem-
ber variable.

The _def aul t _POA function returns the servant’s POA.

In Java, the approach is very similar:

/1 Java
public class Product_inpl extends Product POA
{

private org.ong. Portabl eServer. POA poa_;

public Product _i npl (org. ong. Port abl eServer. POA poa)
{

}

poa_ = poa;

public org.ong. Portabl eServer. POA
_defaul t _PQA()

{
}

return poa_;

Getting the POA for a Currently Executing Request

The ORB provides access to an object of type Por t abl eSer ver:: Current:

/1 1D
nodul e Port abl eServer
{
interface Current : CORBA::Current
{
exception NoContext { };
POA get _PQA() raises(NoContext);
oj ectld get_object_id() rai ses(NoContext);
3

}s

This interface provides access to the POA and the object ID for an executing request. Note
that these operations must be invoked only from within the context of an executing opera-
tion inside a servant; otherwise, they raise NoCont ext . The Cur r ent object provides a
useful way to obtain access to a servant’s POA and object ID without having to store the

ORBacus 95

CORBA Objects

POA reference in a member variable, at the cost of being accessible only from within an
operation implementation. You can obtain a reference to the Cur r ent object from
resol ve_initial _references. In C++, the code looks something like this:

/] C++
CORBA: : ORB var orb = ... // Get the ORB sonehow
CORBA: : Obj ect _var obj =

orb -> resolve_initial _references("POACurrent");
Port abl eServer:: Current _var current =

Port abl eServer:: Current:: _narrow obj);
i f(!CORBA: :is_nil(current))

/1 CGot Current object K

You can keep the reference to the Cur r ent object in a variable and use it from within any
executing operation in a servant. There is no need to “refresh” the Cur r ent reference for
the current operation, not even for threaded servers. The ORB takes care of ensuring that
operation invocations on the Cur r ent object return the correct data.

In Java, the code to obtain the Cur r ent reference looks like this:

/1 Java
org.ong. CORBA.ORB orb = ... // Get the ORB sonehow
org. ong. CORBA. Obj ect obj =

orb.resolve_initial_references("POACurrent");
org.ong. Port abl eServer. Current current =

org. ong. Port abl eServer. Current Hel per. narrow obj) ;
if(current !'= null)

/1 Got Current object K

96

ORBacus

CHAPTER 6

Locating Objects

6.1

© 00 NO O WNBRF

N

Obtaining Object References

Using CORBA, an object can obtain a reference to another object in a multitude of ways.
One of the most common ways is by receiving an object reference as the result of an oper-
ation, as demonstrated by the following example:

/1 1DL
interface A

{
b

interface B

{
}s

A getA();

An interface Ais defined.
An interface B is defined with an operation returning an object reference to an A.

On the server side, A and B can be implemented in C++ as follows:

/] C++
class A inpl : public POA A,
publ i c Portabl eServer:: Ref Count Ser vant Base

ORBacus 97

Locating Objects

4 {
5}
6
7 class B_inpl : public POA_B,
8 publ i ¢ Portabl eServer:: Ref Count Ser vant Base
9 {
10 Ainpl* a_;
11
12 public:
13
14 B_i npl ()
15 {
16 a_ =new A inmpl();
17 }
18
19 ~B_inpl ()
20 {
21 a_ -> _renove_ref();
22 }
23
24 virtual A ptr getA() throw(CORBA:: SystenExcepti on)
25 {
26 return a_ -> _this();
27 }
28 };
2-5 The servant class A i npl is defined, which inherits from the skeleton class POA_A and the
class Ref Count Ser vant Base which provides a reference counting implementation.
7-28 The servant class B_i npl inherits from the skeleton class POA_ B and the reference count-
ing class Ref Count Ser vant Base.
14-17 An instance of the servant class A_i npl is created in the constructor for B_i npl .
19-22 In the destructor for B_i npl , the reference count for the servant A_i npl is decremented,
which leads to the destruction of the servant.
24-27 get Areturns an object reference to the A i npl servant (implicitly creating and activating
the CORBA object if necessary).
In Java, the interfaces can be implemented like this:
1 // Java
2 public class A_inpl extends APCA
3 {
4}
98 ORBacus

Obtaining Object References

© 0N O,

10
11
12
13
14
15
16
17
18
19
20
21

11-15

17- 20

public class B_inpl extends BPOA

{
org. ong. CORBA. ORB orb_;
Ainmpl a_;
public B_inpl (org. ong. CORBA. ORB or b)
{
orb_ = orb;
a_ = new A inpl();
}
A get A()
{
return a_. _this(orb_);
}
}

The servant class A_i npl is defined, which inherits from the skeleton class APOA.
The servant class B_i npl is defined, which inherits from the skeleton class BPOA.
B_i npl ’s constructor stores a reference to the orb and creates a new A i npl servant.

get Areturns an object reference to the A_i npl servant (implicitly creating and activating
the CORBA object if necessary).

A client written in C++ could use code like the following to get references to A:

/] C++

B var b = /1 CGet a B object reference sonehow
Avar a = b -> getA();

And in Java:

/1 Java

Bb=...//] Gt a B object reference sonehow

A a = b.getA();

In this example, once your application has a reference to a B object, it can obtain a refer-
ence to an A object using get A. The question that arises, however, is How do I obtain a
reference to a B object? This chapter answers that question by describing a number of
ways an application can bootstrap its first object reference.

ORBacus 99

Locating Objects

6.2

6.2.1

6.2.2

Lifetime of Object References

All of the strategies described in this chapter involve the publication of an object reference
in some form. A common source of problems for newcomers to CORBA is the lifetime
and validity of object references. Using IIOP, an object reference can be thought of as
encapsulating several pieces of information:

e hostname
e port number

* object key

If any of these items were to change, any published object references containing the old
information would likely become invalid and its use might result in a TRANSI ENT or
OBJECT_NOT_EXI ST exception. The sections that follow discuss each of these compo-
nents and describe the steps you can take to ensure that a published object reference
remains valid.

Hostname

By default, the hostname in an object reference is the canonical hostname of the host on
which the server is running. Therefore, running the server on a new host invalidates any
previously published object references for the old host.

ORBACUS provides the - OAhost option to allow you to override the hostname in any
object references published by the server. This option can be especially helpful when used
in conjunction with the Domain Name System (DNS), in which the - QAhost option spec-
ifies a hostname alias that is mapped by DNS to the canonical hostname.

See “Command-line Options” on page 58 for more information on the - OAhost option.

Port Number

Each time a server is executed, the Root POA manager selects a new port number on
which to listen for incoming requests. Since the port number is included in published
object references, subsequent executions of the server could invalidate existing object ref-
erences.

To overcome this problem, ORBACUS provides the - OApor t option that causes the Root
POA manager to use the specified port number. You will need to select an unused port
number on your host, and use that port number every time the server is started.

See “Command-line Options” on page 58 for more information on the - OApor t option.

100

ORBacus

Stringified Object References

6.2.3

6.3

6.3.1

N

Object Key

Each object created by a server is assigned a unique key that is included in object refer-
ences published for the object. Furthermore, the order in which your server creates its
objects may affect the keys assigned to those objects.

To ensure that your objects always have the same keys, activate your objects using POAs
with the PERSI STENT life span policy and the USER | D object identification policy.
Stringified Object References

The CORBA specification defines two operations on the ORB interface for converting
object references to and from strings.

/1 1DL
nodul e CORBA
{
interface ORB
{
string object_to_string(in Object obj);
hj ect string_to_object(in string ref);
b

}s

Using “stringified” object references is the simplest way of bootstrapping your first object
reference. In short, the server must create a stringified object reference for an object and
make the string available to clients. A client obtains the string and converts it back into an
object reference, and can then invoke on the object.

The examples discussed in the sections below are based on the IDL definitions presented
at the beginning of this chapter.
Using a File

One way to publish a stringified object reference is for the server to create the string using
obj ect _t o_stri ng and then write it to a well-known file. Subsequently, the client can
read the string from the file and use it as the argument to st ri ng_t o_obj ect . This
method is shown in the following C++ and Java examples.

First, we’ll look at the relevant server code:

[l C++
CORBA: : ORB var orb = ... /] Get a reference to the ORB sonehow
B inpl* blmp = new B_inpl ();

ORBacus 101

Locating Objects

© 00N O O b

© 00N O~ WNBRF

Por t abl eServer: : Servant Base_var servant = blnpl;
B var b = blnmpl -> _this();

CORBA: : String_var s = orb -> object_to_string(b);
of stream out ("obj ect.ref")

out << s << endl;

out . cl ose();

A servant for the interface B is created and is used to incarnate a CORBA object.
The object reference of the servant is “stringified”.

The stringified object reference is written to a file.

In Java, the server code looks like this:

/1 Java
org.ong. CORBA.ORB orb = ... // Cet a reference to the ORB sonehow
B inpl blmpl = new B_inpl();
B b = blnmpl. _this(orb);
String ref = orb.object_to_string(b);
java.io.PrintWiter out = new java.io.PrintWiter(
new java.io. Fi |l eQut put Stream("object.ref"));
out.println(ref);
out . cl ose();

A servant for the interface B is created and is used to incarnate a CORBA object.
The object reference of the servant is “stringified”.
The stringified object reference is written to a file.

Now that the stringified object reference resides in a file, our clients can read the file and
convert the string to an object reference:

[l C++

CORBA: : ORB_var orb = ... // CGet a reference to the ORB sonehow
ifstreamin("object.ref");

string s;

in >> s;

CORBA: : Obj ect _var obj = orb -> string_to_object(s.c_str());
B var b = B::_narrowobj);

The stringified object reference is read.

string_to_object creates an object reference from the string.

102

ORBacus

Stringified Object References

6.3.2

© 00N O~ WN B

R el =
A WON PP O

Since the return value of st ri ng_t o_obj ect is of type CORBA: : Obj ect _ptr,
B: : _narr ow must be used to get a B_pt r (which is assigned to a self-managed B_var in
this example).

/1 Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
java.io.Buf feredReader in = new java.io. Buf f eredReader (
new java.io. Fi | eReader ("object.ref"));
String ref = in.readLine();
org. ong. CORBA. Obj ect obj = orb.string_to_object(ref);
B b = BHel per. narrow obj);

The stringified object reference is read.
string_to_object creates an object reference from the string.

Use BHel per . nar r owto narrow the return value of st ri ng_t o_obj ect to B.

Using a URL

It is sometimes inconvenient or impossible for clients to have access to the same filesys-
tem as the server in order to read a stringified object reference from a file. A more flexible
method is to publish the reference in a file that is accessible by clients as a URL. Your cli-
ents can then use HTTP or FTP to obtain the contents of the file, freeing them from any
local filesystem requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for use in applets.

Note: This example is shown only in Java because of Java’s built-in support for URLs, but
the strategy can also be used in C++.

/1 Java
i mport java.io.*;
i mport java.net.*;

String location = "http://ww. mywebserver/object.ref";
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow

URL url = new URL(I ocation);
URLConnection conn = url.openConnection();
Buf f er edReader in = new BufferedReader (
new | nput StreanReader (conn. getl nput Stream()));
String ref = in.readLine();
in.close();

ORBacus 103

Locating Objects

15
16

15

16

6.3.3

a s~ wN PP

org. ong. CORBA. Obj ect object = orb.string_to_object(ref);
B b = BHel per. narrow obj ect);

| ocat i on is the URL of the file containing the stringified object reference.
Read the string from the URL connection.
Convert the string to an object reference.

Narrow the reference to a B object.

Using Applet Parameters

In addition to using the URL method described in the previous section, an applet can also
use an applet parameter to obtain a stringified object reference. The following HTML
illustrates this concept:

<APPLET CODE="Cd i ent.class" ARCH VE="OB.jar" W DIH=500 HEI GHT=300>
<PARAM NAME="ref" VALUE="|CR 000012031...">
</ APPLET>

The stringified object reference is inserted directly into the HTML file and passed to the
applet as a parameter. The applet can retrieve this parameter and convert it to an object
reference as shown below:

/1 Java

org.ong. CORBA.ORB orb = ... // Cet a reference to the ORB sonehow
String ref = getParaneter("ref");

org. ong. CORBA. Obj ect object = orb.string_to_object(ref);

B b = BHel per. narrow obj ect);

Obtain the applet parameter r ef .
Convert the string to an object reference.
Narrow the object reference to a B object.

The presence of the stringified object reference in the HTML file could present a mainte-
nance problem. One solution is for the server to write the entire HTML file, thereby ensur-
ing that the object reference is always up to date. You can find an example of this
approach in the deno/ hel | o subdirectory.

See “Applets” on page 72 for more information on using ORBACUS in applets.

104

ORBacus

Object Reference URLSs

6.4

6.4.1

Object Reference URLs

Prior to the adoption of the Interoperable Naming Service (INS) [10], the only standard
format for stringified object references was the cumbersome | OR: format. The INS intro-
duced two new, more readable formats for object references that use a URL-like syntax.
Object reference URLs can be passed to st ri ng_t o_obj ect, just like | OR: references.
The two new URL formats are described in detail in the specification, but will be briefly
discussed here. The optional fi | e: URL format is also discussed, as well as the propri-
etaryrel fil e: URL format.

corbaloc: URLSs

The cor bal oc: URL supports any number of protocols; the format of the URL depends
on the protocol in use. The general format of a corbaloc: URL is shown below:

corbal oc: [protocol]: <protocol -speci fic>
ORBACUS supports two standard protocols, i i op andrir.

The cor bal oc: URL for the i i op protocol has the following structure:

corbal oc:[iiop]:[version@host[:port]/object-key

The components of the URL are as follows:

* iiop - This is the default protocol for cor bal oc: URLs, and therefore is optional.
e version - The IIOP version number in maj or . ni nor format. The default is 1. 0.

* host - The hostname of the server.

* port - The port on which the server is listening. The default is 2089.

* obj ect - key - A stringified object key.

The specification allows a URL to contain multiple addresses, but the semantics are ven-

dor-specific. In ORBACUS, each address is used in turn until one is found that works or
until the ORB has tried them all and failed to contact the object.

Therir protocol is a shortcut for the ORB operation r esol ve_i ni ti al _ref erences.
The cor bal oc: URL for the ri r protocol has the following structure:

corbaloc:rir:[/id]
The components of the URL are as follows:

e rir - The protocol.

ORBacus 105

Locating Objects

© 00 NO O~ WNBR

g
2]

N

¢ i d - The identifier of the service to be resolved. The identifier NaneSer vi ce is used
if i d is not supplied.

Some examples of cor bal oc: URLs are:

cor bal oc: : nshost : 10000/ NaneSer vi ce
cor bal oc: : nyhost : 10000/ MyQbj ect I d
corbal oc:rir:/ NaneService

In the above examples, NameSer vi ce and MyQbj ect | d are used as object keys. Nor-
mally, object keys contain the information necessary to uniquely identify a POA and a ser-
vant within the POA. However, the object keys used above do not contain information
which identifies both the POA and the servant (unless some assumptions are made, e.g., a
default POA name). To solve this problem, ORBACUS defines the interfaces

Boot Manager and Boot Locat or. (See Appendix A for a detailed description.)

The Boot Manager : : add_bi ndi ng operation binds an object id to an object reference.
The Boot Manager : : r enpbve_bi ndi ng operation is used to remove a binding. A

Boot Locat or object can be registered with the Boot Manager using the set _| ocat or
operation and is used to dynamically locate a reference for a given object id. The follow-
ing example illustrates how a server can add a binding for the object id MyQbj ect | d.
First, in C++:

/] C++
CORBA: : Qbj ect _var obj // ... Areference to a persistent object
CORBA: : Obj ect _var bmgrQoj =
orb -> resolve_initial _references("Boot Manager");
OB: : Boot Manager _var boot Manager =
OB: : Boot Manager: : _narrow bngr Obj) ;
Port abl eServer:: hjectld_var objld =
Port abl eServer::string_to_Objectld("MObjectld");
boot Manager -> add_bi ndi ng(objld, obj);

Get a reference to the Boot Manager object by invoking
resolve_initial _references (see 6.5.1 on page 108) on the ORB.

Create the object id.
Create the new binding.

Or in Java:

/1 Java
org.ong. CORBA. Obj ect obj = ... // Areference to a persistent object
org. ong. CORBA. Obj ect bnmgrbj =

106

ORBacus

Object Reference URLSs

6.4.2

6.4.3

o ~NOoO O A

orb.resolve_initial _references("Boot Manager");
com ooc. OB. Boot Manager boot Manager =

com ooc. OB. Boot Manager Hel per. narrow bngr Obj) ;
byte[] objld = "M/Objectld". getBytes();
boot Manager . add_bi ndi ng(obj 1 d, obj);

Get a reference to the Boot Manager object by invoking
resolve_initial _references (see 6.5.1 on page 108) on the ORB.

Create the object id.

Create the new binding.

corbaname: URLSs

A cor banane: URL provides additional flexibility by incorporating use of the Naming
Service in the st ri ng_t o_obj ect operation. The cor bananme: URL extends the capa-
bilities of the cor bal oc: URL to allow the obj ect - key to identify a binding in a Nam-
ing Service. For example, consider this URL:

cor banamne: : ns1: 5001/ NanmeSer vi ce#ct x/ MyQhj ect

When the ORB interprets this URL, it attempts to resolve a naming context object located
at host ns1 on port 5001 and having the object key NaneSer vi ce. Once the naming con-
text has been resolved, the ORB attempts to lookup the binding named MyQbj ect in the
naming context ct x. If successful, the result of stri ng_t o_obj ect is the object refer-
ence associated with the binding.

file: URLSs

A file: URL provides a convenient way to obtain object references using an IOR or
URL reference that is in a file. The format of afi | e: URL is:

file:/<absolute file nane>

Using the fi | e: URL and given that the file obj ect . r ef is located in the / t mp direc-
tory, the client side example of 6.3.1 on page 101 may be simplified as follows:

Il C++
CORBA: : ORB_var orb = ... // Cet a reference to the ORB sonehow
CORBA: : Obj ect _var obj
= orb -> string_to_object("file:/tnp/object.ref");
B var b = B::_narrow obj);

/1l Java

ORBacus 107

Locating Objects

6.4.4

6.5

6.5.1

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow

org. ong. CORBA. Obj ect obj =
orb.string_to_object("file:/tnp/object.ref");

B b = BHel per. narrow obj);

relfile: URLs
ORBACcUS also provides the proprietary rel fi | e: URL. This URL is the same as the
file: URL except that it takes a relative file name instead of an absolute file name.
Initial Services
The CORBA specification provides a standard way to bootstrap an object reference
through the use of initial services, which denote a set of unique services whose object ref-
erences, if available, can be obtained using the ORB operation
resol ve_ini tial _references, which is defined as follows:
/1 1DL
nodul e CORBA
{
interface ORB
{
typedef string Objectld;
exception InvalidNanme {};
oj ect resolve_initial _references(in Cojectld identifier)
rai ses(lnval i dNane) ;
b
b
Initial services are intended to have well-known names, and the OMG has standardized
the names for some of the CORBAservices [9]. For example, the Naming Service has the
name NaneSer vi ce, and the Trading Service has the name Tr adi ngSer vi ce.
Resolving an Initial Service
An example in which the ORB is queried for a Naming Service object reference will dem-
onstrate how to use r esol ve_i ni ti al _r ef er ences. The example assumes that the
ORB has already been initialized as usual. First the Java version:
1 // Java

2 org.ong. CORBA. (bj ect obj = null;
3 org.ong. CosNam ng. Nam ngContext ctx = null;

108

ORBacus

Initial Services

19-

© 00 N O O b

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

26

© 00N O WNBRF

e e el
w N P O

try
{
obj = orb.resolve_initial _references("NaneService");
}
cat ch(or g. ong. CORBA. ORBPackage. | nval i dNane ex)
{
// An error occured, service is not avail abl e
}
if(obj == null)
{
/1 The object reference is invalid
}
try
{
ctx = org.ong. CosNani ng. Nam ngCont ext Hel per. narrow(obj) ;
}
cat ch(or g. ong. CORBA. BAD_PARAM ex)
{
/1 This object does not inplenment a Nam ngCont ext
}

Try to resolve the name of a particular service. If a service of the specified name is not
known to the ORB, an | nval i dNane exception is thrown.

The service type was known. Now the object reference has to be narrowed to the particular
service type. If this fails, the service is not available.

And here’s the C++ version:

Il C++
CORBA: : Obj ect _var obj;
CosNami ng: : Nam ngCont ext _var ctx;

try
{
obj = orb -> resolve_initial _references("NaneService");

}

cat ch(CORBA: : ORB: : | nval i dNaneg&)

{

// An error occured, service is not avail abl e
}

ORBacus 109

Locating Objects

14
15
16
17
18
19
20
21
22
23

i f(CORBA: :is_nil(obj))

{
/1 The object reference is invalid
}
ctx = CosNami ng:: Nam ngCont ext:: _narrow obj);

i f(CORBA::is_nil(ctx))
{

}

This is the equivalent to the Java version above.

/1 This object does not inplenent Nam ngContext

Configuring the Initial Services

When an application uses initial services that are not locality-constrained, the application
must register the object references for these objects with the ORB. ORBACUS supports the
standard - ORBI ni t Ref and - ORBDef aul t | ni t Ref command-line options for register-
ing initial service object references:

- ORBI ni t Ref nanme=URL
- ORBDef aul t 1 ni t Ref URL

For example, starting an application as shown below will enable the client to resolve the
NaneSer vi ce initial reference:

nyclient -ORBInitRef NameService=corbal oc:: nshost: 10000/ NaneSer vi ce

The - ORBconf i g option is an alternative method for defining a list of initial services, and
is often preferable when a number of services must be defined.

See “Configuring the ORB and Object Adapter” on page 49 for more information on these
command-line options. Also refer to the INS specification [10] for detailed information on
the standard options - ORBI ni t Ref and - ORBDef aul t | ni t Ref .

In addition to using command-line parameters, a program can add to the list of initial ser-
vices using the ORB operationregi ster_initial _refer ence':

/1 1DL
nodul e CORBA
{

interface ORB

1. This will become part of the ORB interface when the Portable Interceptor specification is
adopted.

110

ORBacus

Initial Services

{
voidregister_initial _reference(in Qhjectldid, in Cbject obj)
rai ses(Inval i dNane) ;
b
b
For example, in C++:
1 /] C++
2 CORBA:: Object_var obj = ... // Get a nane service reference sonmehow

3 orb -> register_initial _reference("NanmeService", obj);

2 Get a reference to the naming service, for example by reading a stringified object refer-
ence and converting it with st ri ng_t o_obj ect, or by any other means.

3 Add the reference to the ORB’s list of initial references.

Or in Java:

1 // Java
2 org.ong. CORBA. Obj ect obj =...// Get a nane service reference sonmehow
3 orb.register_initial _reference("NaneService", obj);

1-3 This is the same as the C++ version above.

6.5.3 The Initial Service Locator

In addition to providing the ORBACUS Implementation Repository, the IMR server (see
Chapter 7) acts as an initial service locator. That is, assuming that the IMR server is prop-
erly configured, the name of the host running the IMR server is the only information
needed to find a particular initial service.

To locate an initial service with name f 0o, the IMR server must first be configured with
the initial reference of this service. This may be done with the - ORBI ni t Ref command-
line option or the ooc. or b. ser vi ce configuration property (see Chapter 4 for details).
Next, the client that wishes to connect to f 00 must be configured with the default initial
reference specifying the host running the IMR server. The - ORBDef aul t | ni t Ref com-
mand-line option or the ooc. or b. def aul t _i ni t _r ef configuration property may be

used to configure the default initial reference. For example, given that the IMR server is
running on imr-host, then the client can be started with the option:

- ORBDef aul t | ni t Ref =cor bal oc: : i nr - host

When the client is configured with this default initial reference it may invoke
resolve_initial _references("foo") onthe ORB to obtain a reference to f 0o.

ORBacus 111

Locating Objects

112 ORBacus

CHAPTER 7

The Implementation
Repository

The ORBAcUS Implementation Repository (IMR) provides support for the indirect bind-
ing! of persistent object references. The key advantage of indirect binding is that it loosens
the coupling between clients and servers so that the location of the server can change with-
out affecting the client. In practical terms, this is accomplished by providing the client
with an IOR that actually refers to the IMR, rather than to the server itself. The IMR also
provides the ability to start servers on demand using the Object Activation Daemon
(OAD).

The CORBA specification does not standardize how servers and the IMR interact, it only
suggests functionality for vendors to implement. Hence, the interface between servers and
the IMR is strictly proprietary. Due to the proprietary interface between servers and the
IMR, servers using the IMR must be developed using ORBACUS for C++ or Java. How-
ever, the interaction between clients and the IMR is strictly specified by the GIOP specifi-
cation, so any client that is CORBA compliant may interact with the IMR.

1. Binding refers to the process of opening a connection and associating an object reference with its
servant.

ORBacus 113

The Implementation Repository

7.1

7.1.1

7.1.2

Background

How It All Works

When a server is using the IMR, object references created by one of its persistent POAs
refer to the IMR rather than to the server itself. When the client makes a request using this
reference, the IMR receives the request, activates the server (if necessary) using the OAD,
and returns a new object reference to the client that identifies the server at its current host
and port. The client then establishes a connection with the server using the new object ref-
erence and communicates directly with the server, without the intervention of the IMR.
However, should the server fail, a well-behaved client will contact the IMR again, which
may restart the server and allow the client to resume its activities.

Information Managed by the IMR

The IMR provides support for the indirect binding and automatic activation of servers
within a given domain. In order to provide this support, the IMR manages three types of
entities: OADs, servers, and POAs.

OADs

An OAD is responsible for the activation of servers on a given host. Each OAD is regis-
tered in the IMR using a host name. The IMR also maintains the status of each OAD. If
the OAD is running and in a ready state it will have a status of up, otherwise, its status will
be down.

Servers

Servers are registered with a name that is unique within the domain and the host corre-
sponding to the OAD that is responsible for the server. Since the name is unique within the
domain, it is not currently possible to register the same server with multiple OADs. The
server name that is registered in the IMR can be any string, but it must be the same as the
name used by the server (i.e., the name specified by the - ORBser ver _nane option, or
equivalent property). The attributes of a server that are stored by the IMR are summarized
below:

host The host corresponding to the OAD that is responsible for the server.

exec The path of server executable (the . exe extension must be included on
Windows platforms). If this attribute is not set, then the IMR will not
activate the server.

114

ORBacus

Background

args The arguments to be supplied when starting the server executable. Note
that “- ORBser ver _nanmne server-name” is automatically appended to
the arguments before the server process is started.

rundir The directory that the server process will be started from. If this
attribute is not set, then the server process will be started from the root
directory. For Windows platforms, the full path must be specified in the
exec attribute even if this attribute is set.

node The activation mode. The possible values are: shar ed, only one server
process is created which is used by all clients, and per si st ent , the
server process is started when the IMR starts and is used by all clients.

acti vat e- poas If this attribute is set to t r ue (default), then all persistent POAs will be
registered automatically. If set to f al se, then persistent POAs are not
registered automatically.

updat e-ti meout The amount of time (in milliseconds) to wait for server status updates.
failure-tineout The amount of time (in seconds) to wait for the server to start.
max- spawns The maximum number of tries to start the server.

The IMR also maintains various state information for each server:

* The internal ID of the server.

* The status of the server process. The valid values are f or ked, st arti ng, runni ng,
st oppi ng, and st opped.

* Whether or not the server was started manually.

* The number of times that the server process has been spawned.

Server processes inherit environment settings from the environment in which the OAD
was started. Hence, path, library path, and class path environment variables can be used by

the server application. This is especially useful in the case of shared library and class path
settings. (Note that the class path may also be set in the ar gs attribute.)

On Windows platforms, the exec attribute may refer to an executable or batch file. On
UNIX platforms, the exec attribute may refer to an executable or a shell script with

#! interpreter
as its first line. However, if a batch file or shell script is used, then it should accept the -

ORBser ver _nane option since it is automatically appended to the ar gs attribute by the
IMR.

ORBacus 115

The Implementation Repository

7.1.3

In the case of Java servers, a batch file or shell script should be created to start the server.
An alternative is to set the exec attribute to the Java interpreter and to use the ar gs
attribute to specify the class implementing the server.

POAs

The IMR allows implicit registration of POAs when the server is started. This can be
enabled or disabled for each server using the act i vat e_poas server attribute. If implicit
registration is enabled, then the user does not have to register any of the POAs; instead, the
server transparently notifies the IMR whenever a call to cr eat e_PQA is made by the
application code.

If the user disables implicit registration, then the user must register all persistent POAs
(i.e., POAs with the PERSI STENT life span policy). POAs are registered using the name of
its server and the name of the POA. Note that any transient POAs (POAs with the

TRANSI ENT life span policy) created by the server are not registered with the IMR.

The IMR also maintains the status for each POA, which indicates the state of its POA
Manager. The valid values are i nacti ve, acti ve, hol di ng, and di scar di ng.

IMR Security

It is very important that only the IMR’s public port (also referred to as its forward port) be
accessible outside of the network firewall. Otherwise, anyone can mimic the IMR and
cause an OAD to run any command they decide.

For additional security, the information managed by the IMR may only be modified when
the IMR is running in administrative mode. That is:

e OAD registration and removal,

e server registration and removal,

« modification of server attributes, and

* POA registration and removal

are only possible when the IMR is running in administrative mode. An attempt to modify

the information managed by the IMR when it is not running in administration mode will
result in a CORBA: : NO_PERM SSI ON exception.

116

ORBacus

Synopsis

7.2

7.2.1

Synopsis

Usage

The IMR and OAD are currently implemented using ORBACUS for C++, but ORBACUS
for Java servers can also be launched by the IMR. Both the IMR and OAD are contained in
the IMR server, which may be started in one of three modes:

mast er Start only the IMR.
sl ave Start only the OAD.
dual Start both the IMR and OAD.

Command-line usage is as follows:

inr
[-h,--help] [-v,--version] [-m--naster] [-s,--slave]
[-a,--administrative] [-d,--database] [-A --admi n-port]
[-F,--forward-port] [-S,--slave-port] [-L, --locator-port]

ORBacus 117

The Implementation Repository

7.2.2

Options

-h

--help

-V

--version

-m

--mast er

-s

--sl ave

-a
--admnistrative

-d DI RECTORY
- -dat abase DI RECTORY

-A PORT
--adm n-port PORT

-F PORT
--forward-port PORT

-S PORT
--slave-port PORT

-L PORT
--locator-port PORT

Display the command-line options supported by the server.

Display the version of the server.

Run the server in mast er mode.?

Run the server in S| ave mode.?

Run the IMR in administrative mode. The IMR will run in non-
administrative mode by default.

Specifies the directory in which the IMR maintains its database
files. If not specified, the current working directory is used.

Specifies the IMR's administrative port. This is the port that the
OADs and IMR-enabled servers use to communicate with the
IMR. For security reasons, access to this port can be restricted.
If not specified, port 9999 is used.

Specifies the IMR's public port, which is used by clients for
server requests. If not specified, the port 9998 is used.

Specifies the port used by the OAD. Note that all of the OADs in
a domain must use the same port. If not specified, the port 9997
is used.

Specifies the port used by the Initial Service Locator (see “The
Initial Service Locator” on page 111). If not specified, the port
2809 is used.

a. Note that only one of the - mor - S options may be specified. Also, if neither the - mor - s
option is specified, then the server is started in dual mode.

Windows NT Native Service

The imr server is also available as a native Windows NT service.

ntinrservice

[-h,--help] [-i,--install] [-s,--start-install]

118

ORBacus

Synopsis

[-u,--uninstall] [-d, --debug]

-h

-~hel p Display the command-line options supported by the service.

—install Install the service. The service must be started manually.

-S

. Install and start the service.
--start-install

-u
--uninstall

-d
- - debug

Uninstall the service.

Run the service in debug mode.

In order to use the IMR server as a native Windows NT service, first add the desired con-
figuration properties to the HKEY_LOCAL_MACHI NE NT registry key (see “Using the Win-
dows NT Registry” on page 60 for more details). For example, add the

ooc. i nr.adm n_port,ooc.inr.forward_port,andooc.inr.slave_port proper-
ties so that the IMR and OAD will use non-default ports.

Next the service should be installed with:

ntinrservice -i

This adds the ORBacus | npl enent ati on Reposit ory entry to the Ser vi ces dialog

in the Control Panel. To start the service, select the ORBacus | npl enent at i on

Reposi t ory entry, and press St ar t . If the service is to be started automatically when the
machine is booted, select the ORBacus | npl enent ati on Reposi t or y entry, then click

St art up. Next select St art up Type - Aut omat i ¢, and press OK. Alternatively, the ser-
vice could have been installed using the - s option, which configures the service for auto-
matic start-up:

ntinrservice -s

If you want to remove the service, run:

ntinrservice -u

Note: If the executable for the service is moved, it must be uninstalled and re-installed.

Any trace information provided by the service is be placed in the Windows NT Event
Viewer with the title | MRSer vi ce. To enable tracing information, add the desired trace
configuration property (i.e., one of the ooc. i nr. t r ace properties or one of the

ORBacus 119

The Implementation Repository

ooc. or b. t r ace properties) to the HKEY_LOCAL_MACHI NE NT registry key with a
REG_SZ value of at least 1.
7.2.3 Configuration Properties

In addition to the standard configuration properties described in Chapter 4, the IMR also
supports the following properties:

ooc.imr.mode
Value: nast er, sl ave, dual

Specifies the mode in which the imr server will be started.

ooc.imr.administrative
Value: true, f al se

If set to t r ue, then run the IMR in administrative mode. For details refer to the - a com-
mand-line option.

ooc.imr.dbdir
Value: directory

Equivalent to the - d command-line option.

ooc.imr.admin_port
Value: port

Equivalent to the - Acommand-line option.

ooc.imr.forward_port
Value: port

Equivalent to the - F command-line option.

ooc.imr.slave_port
Value: port

Equivalent to the - S command-line option.

120 ORBacus

Connecting to the Service

7.3

ooc.imr.locator_port
Value: port

Equivalent to the - L command-line option.

ooc.imr.trace.peer_status
Value: level >= 0

Defines the output level for IMR diagnostic messages related to communications with the
OAD:s. The default level is 0, which produces no output.

ooc.imr.trace.process_control
Value: level >= 0

Defines the output level for IMR diagnostic messages related to the forking and death of
server processes. The default level is 0, which produces no output.

ooc.imr.trace.server_status
Value: level >= 0

Defines the output level for IMR diagnostic messages related to the status of servers and
POAs. The default level is 0, which produces no output.

Connecting to the Service

Servers that use the IMR must be configured with the IMR initial reference. The object
key of the IMR is | MR, hence, a URL-style object reference of the IMR service running on
host i nr host at port 20000 would be:

corbal oc: :inrhost: 10000/ 1 MR

Using this object reference, a server can configure the IMR initial reference with the prop-
erty:
ooc. orb. servi ce. | MR=cor bal oc: : i nr host: 10000/ | MR

An alternative to using the above property is to use the - ORBI ni t Ref command-line
option. Refer to Chapter 6 for more information on URLs and configuring initial services.

ORBacus 121

The Implementation Repository

7.4

7.4.1

Utilities

Implementation Repository Administration

The i nT admi n utility provides complete control over the IMR, OADs and servers in a

domain. Its command interface is shown below:

-h, --help
- - add- oad [host]

--add-server server-name [exec [host]]

- - add- poa server-name poa-name
--renove-oad [hosi]

--renove- server server-name
--renove- poa server-name poa-name
--get-oad-status [host]

--get-server-info server-name

--get - poa- st at us server-name poa-name
--1ist-oads

--list-servers

--list-poas server-name

--tree

--tree-oad [hosf]

--tree-server server-name

--set-server server-name {exec| host|
args| rundir| node| acti vat e_poas|
update_tinmeout|failure_tineout|
max_spawns} value

--start-server server-name

Display this information.
Register an OAD for the specified host.

Register a server under the OAD specified
by host with the given exec attribute.

Register a POA for the specified server.
Unregister an OAD.

Unregister a server.

Unregister a POA.

Get the status of an OAD.

Get the attributes and state information for a
Server.

Get the status of a POA.
List all OADs.

List all servers.

List all POAs.

Display all OADs, servers and POAs in a
tree like format.

Display an OAD and its associated servers
and POAs in a tree like format.

Display a server and its associated POAs in
a tree like format.

Set an attribute of a server (e.g.,
--set-server srv max_spawns 2
sets the max_spawns attribute for the
server Sr v to 2).

Start a server.

122

ORBacus

Utilities

7.4.2

--stop-server server-name Stop a server.

--reset-server server-name Reset a server.

Note that the i nr admi n utility also needs to be configured with the IMR initial reference
(see “Connecting to the Service” on page 121).

The host argument is optional. If host is not specified the local host name is used. The
ser ver - nane argument refers to the name of the server. The format of the poa- nanme
argument is poal/ poa2/ poa3, where poal is a child of the Root POA, poa2 is a child of
poal, and poa3 is a child of poa2. Refer to “Information Managed by the IMR” on

page 114 for further details.

In very rare circumstances, it's possible for the IMR and OAD to become confused as to
the state of a server. In this case it might be necessary to manually reset the state of the
server using the - - r eset - ser ver command. It is also necessary to use this command if
the server continually crashes on startup and has reached the maximum number of retries
specified by its max_spawns attribute. This prevents the OAD from continually starting
the same broken server.

Making References

The nmkr ef utility creates IMR-based object references for use by clients. Since the Object
ID is required to create a reference, this utility can only be used to create references for
objects created by POAs using the USER | D object identification policy. Its usage is
shown below.

nkref [-H inr-host] server-nane object-id poal/poa2/.../poan

imr-host The host that the imr server is running on. If the host is not specified,
then | ocal host is used.

server-name The name of the server as registered in the IMR.
object-id The Object ID used by the object.
poallpoal.../.poan The POA which creates the object, where poal is a child of the Root

POA, poa? is a child of poal, and so on.

The nkr ef utility uses the ooc. i nr. f orwar d_port property (see “Configuration Prop-
erties” on page 120). If this property is not set then nkr ef will use 9998.

ORBacus 123

The Implementation Repository

7.4.3

7.5

Upgrading the IMR Database

The i nr dbupgr ade utility is used to upgrade an earlier version of the IMR database.
Command-line usage is as follows:

i nt dbupgr ade dat abase-directory

The dat abase- di r ect or y parameter is used to specify the IMR database directory.

Getting Started with the Implementation Repository

To use the IMR, several steps must be taken. These steps are presented below and are
explained by way of example. In this example we assume that ORBACUS has been
installed in the directory / usr/ | ocal / ORBacus and the executablesi nr,i nr admi n and
mkr ef all exist in a directory that is in the search path.

1.

Determine the physical architecture.

In this example, we have a network with three hosts: mast er, sl avel and sl ave2.
The host mast er is used to run only the IMR. The hosts sl avel and sl ave2 are
used to run individual CORBA servers.

Create a configuration file for the IMR and OADs.

First, create a configuration file for the IMR containing the following:
inr.conf

ooc. inr.adm n_port=10000

ooc.inr.forward_port=10001

ooc.inr.slave_port=10002

ooc. i nr. node=nast er

ooc. i nr.dbdir=/usr/| ocal / ORBacus/ db

This file is placed in the / usr/ | ocal / ORBacus/ et c directory on host nast er. This
configuration file can also be used by the nkr ef utility.

Second, create a configuration file for the OADs containing the following:

oad. conf

ooc. orb. servi ce. | MR=cor bal oc: : mast er: 10000/ | MR
ooc.inr.slave_port=10002

ooc. i nr. node=sl ave

ooc. inr.dbdir=/usr/l ocal / ORBacus/ db

This files is placed in the / usr/ | ocal / ORBacus/ et c directory on hosts sl avel
and sl ave2.

Start the IMR in administrative mode.

On host mast er, run:

124

ORBacus

Getting Started with the Implementation Repository

intr -ORBconfig /usr/local/ORBacus/etc/inr.conf --admnistrative
4. Start the OADs.

On host sl avel, run:
int -ORBconfig /usr/local/ORBacus/ et c/oad. conf

On host sl ave2, run:
int -ORBconfig /usr/local/ORBacus/ etc/oad. conf
Each OAD automatically registers itself with the IMR. Note that an OAD can also be

registered manually using the i nr adni n utility. For example, to register the OAD on
host sl avel, run:

imadm n -ORBI nit Ref | MR=cor bal oc:: master: 10000/ 1 MR \
--add-oad sl avel

5. Add each server to the IMR.

In our example, we will run one server on each OAD. The server names are Ser ver 1

and Ser ver 2 and are located in/ usr/ | ocal / bi n on their respective hosts.

First, we register the servers using the i nr admi n utility:

i ntadmi n - ORBI nit Ref | MR=corbal oc: : mast er: 10000/ | MR \
--add-server Serverl "/usr/local/bin/serverl" slavel

i nradm n - ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ 1 MR \
--add-server Server2 "/usr/local/bin/server2" slave2

Next, we set the server arguments:

i ntadm n - ORBI nit Ref | MR=corbal oc: : mast er: 10000/ | MR \
--set-server Serverl args \
"-ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR

i ntadm n - ORBI nit Ref | MR=corbal oc: : mast er: 10000/ | MR \
--set-server Server2 args \
"-ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR

A C++ server can automatically register itself with the IMR using the -

ORBr egi st er command-line option. For example, to registered Ser ver 1, run the
following on sl avel:

/usr/local/bin/serverl -ORBregister Serverl \
- ORBI ni t Ref | MR=cor bal oc: : nast er: 10000/ | MR
If the server requires command-line options, then these options must be added using
the i nr adni n utility.
6. Add each POA to the IMR.

ORBacus 125

The Implementation Repository

In this example, the servers are registered without setting the act i vat e_poas
attribute, so the attribute defaults to t r ue. Hence, all persistent POAs will be regis-
tered automatically. If this were not the case, the POAs would have to be registered
manually.

Configure your servers to use the IMR.
There are three ways to configure a server to use the IMR:

a) Use the - ORBr egi st er command-line option (only available for C++ servers).
This option is used for server registration and can only be used when starting the
server for the first time.

b) Use the - ORBser ver _nane command-line option.

c¢) Use the ooc. or b. server _nane configuration property. This configuration
property is equivalent to the - ORBser ver _nane command-line option and may
be set in a configuration file or programmatically prior to initializing the ORB in
a server.

In this example, the IMR is responsible for starting the servers. Hence, when the
server is started, the - ORBser ver _nane option is automatically added to the argu-
ment list.

Create object references for use by the clients.

A server can always be used to create references for its objects. However, if an object
is created by a POA that uses the USER | D object identification policy, then the

mkr ef utility can also be used to create a reference for the object. Using the mkr ef
utility is discussed below.

Assume each server has a single primary object. Ser ver 1 uses Qbj ect 1 for its
Object ID and Ser ver 2 uses Obj ect 2. Also, each server creates a persistent POA
called Mai n to hold its objects. To create object references for these objects, run the
following on mast er :

nkref -ORBconfig /usr/local/ORBacus/etc/inr.conf \
Serverl Chjectl Main > bjectl. ref

nkref -ORBconfig /usr/local/ORBacus/etc/inr.conf \
Server2 Object2 Main > Object2.ref

The i nr. conf configuration file contains the properties needed by the nkr ef utility.

After all OADs, servers and POAs are registered, it is recommended to restart the IMR in
non-administrative mode. This will prevent any accidental (or unauthorized) modifica-
tions.

126

ORBacus

Programming Example

7.6

© 00N O~ WNBR

e o
~No s wWNRPO

[ee]

12

16

Programming Example

In this section, we will show how to modify the C++ version of the “Hello World” server
(see Chapter 2) to use a persistent object reference. This will allow the server to use the
IMR for indirect binding. Modifications to the Java version of the server are similar. The
code for both the C++ and Java persistent “Hello World” servers may be found in the
deno/ hel | o_i nr directories of the ORBACUS for C++ and Java distributions.

The “Hello World” server presented in Chapter 2 uses the Root POA to activate its Hello
servant. Since the Root POA uses the TRANSI ENT life span policy, the object reference it
creates will not be persistent. Hence, the “Hello World” server must be modified so that
the Hello servant is activated using a child POA with the PERSI STENT life span policy.
The new child POA will also use the USER | D object identification policy so that the

mkr ef utility may be used. Further, the Hello servant is no longer activated under the Root
POA, so it becomes necessary for it to override the _def aul t _POAmethod. The modified
servant’s class declaration is shown below:

/] C++
#i ncl ude <Hel | o_skel . h>

class Hello_inpl : public POA Hell o,
publ i ¢ Portabl eServer: : Ref Count Ser vant Base

{ Por t abl eServer:: POA var poa_;

public:
Hel | o_i npl (Port abl eServer:: PQOA ptr);
virtual void say_hello() throw CORBA:: SystenException);
virtual Portabl eServer::POA ptr _default_ POA();

i

Private member to store the servant’s default POA.
A constructor must be defined to allow the assignment of the servant’s default POA.

Declaration of the _def aul t _POA method.

The remainder of the class declaration is unchanged. The definition of the constructor and
_def aul t _PQOA method follow:

ORBacus 127

The Implementation Repository

1
2
3
4

[l C++

Hel l o_i npl::Hello_inpl(Portabl eServer::POA ptr poa)
poa_(Portabl eServer:: POA:: _duplicate(poa)

{
}

Port abl eServer:: POA ptr Hello_inpl::_default_PQOA()
{

}

return Portabl eServer:: PQA:: _duplicate(poa_);

The modified portion of the server program is shown below:

[l C++

i nt
run(CORBA: : ORB_ptr orb, int argc)

CORBA: : Obj ect _var poaChj =

orb -> resolve_initial _references("Root POA");
Por t abl eServer:: POA var rootPoa =

Por t abl eServer: : POA: : _narrow poa(hj);

Por t abl eSer ver: : POAManager _var manager =
root Poa -> t he_POAManager () ;

CORBA: : Pol i cyList pl(2);

pl .l ength(2);

pl[0] = rootPQA -> create_lifespan_policy(
Por t abl eSer ver: : PERSI STENT) ;

pl[1] = rootPQA -> create_id_assignment_policy(
Port abl eServer:: USER_I D);

Port abl eServer:: POA var hel | oPOA =
root POA -> create_POA("hell 0", manager, pl);

Hel l o_i npl * hellolmpl = new Hel I o_i npl (hel | oPQOA);
Port abl eServer:: Servant Base_var servant = hell ol npl;
Port abl eServer:: ojectld_var oid =

Port abl eServer::string_to_Objectld("hello");
hel | oPCA -> activate_object_with_id(oid, servant);
Hel l o_var hello = hellolnpl -> _this();

128

ORBacus

Programming Example

31 CORBA: : String_var s = orb -> object_to_string(hello);
32 of streamout ("Hello.ref");

33 out << s << endl;

34 out. cl ose();

35

36 manager -> activate();

37 orb -> run();

38

39 return O;

40 }

14-22 Create a new POA using PERSI STENT life span policy and the USER_| D object identifica-
tion policy.

24-25 Create the Hello servant.
26- 27 Using the string " hel | 0", create an object id.

28 Activate the servant with the new POA.

The remainder of the code is unchanged.

ORBacus 129

The Implementation Repository

130 ORBacus

CHAPTER 8

The Implementation
Repository Console

The ORBAcCUS Implementation Repository (IMR) includes a graphical client for adminis-
tering the service called the ORBAcCUS IMR Console. The ORBAcUS IMR Console pro-
vides complete control over the IMR, OADs and servers in a domain.

ORBacus 131

The Implementation Repository Console

8.1

8.1.1

8.1.2

8.1.3

8.2

8.2.1

Synopsis
Usage

com ooc. | MRConsol e. Mai n
[--1o00k CLASS] [--windows] [--motif] [--mac] [-h,--help]

--l1 ook CLASS Use the specified Look & Feel class.

--w ndows Use the Windows Look & Feel (if available).
--notif Use the Motif Look & Feel (if available).
--nmac Use the Macintosh Look & Feel (if available).
-h

Display the command-line options supported by the program.

CLASSPATH Requirements

The ORBAcuUS IMR Console requires the classes in OB. j ar, OBl MR. j ar, OBUti | . j ar
and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or greater) of
JDK.

Implementation Repository Service Lookup

In order to locate an IMR Service, the application uses the initial IMR Service, as pro-
vided to the ORB with options such as - ORBser vi ce or - ORBconf i g. If the service is
not found, an error is displayed and the IMR Console exits.

The Menus

The menus provide access to all of the features of the application. In addition, the most
common actions are also available in the toolbar, as well as in a popup menu that is dis-
played when pressing the right mouse button over an item in the binding table or context
tree.

The File Menu

The File menu contains the Exit menu item, which is used to exit the ORBAcUS IMR Con-
sole.

132

ORBacus

The Menus

8.2.2

8.2.3

The Edit Menu

The operations in the Edit menu provide the means for manipulating OADs, servers and
POAs.

Create Create a new OAD, server, or POA.

Modify Modify the selected object.

Delete Delete the selected object.

Cut Move the selected server to the clipboard.

Paste Insert the server contained in the clipboard under the selected OAD.
Start Start the selected server.

Stop Stop the selected server.

Reset Reset the state of the selected server.

The Create menu item creates a child object under the selected object. OADs are created
under the “IMR Domain” root object, servers are created under OADs, and POAs are cre-
ated under servers.

The Modify menu item applies to all objects. However, servers are currently the only
objects that have attributes that can be modified.

To delete an object, the Delete menu item is used. This operation recursively deletes all
children under the selected item.

The Cut and Paste menu items only apply to servers and are used to move servers to differ-
ent hosts. Note that OAD for the desired host must be selected when using Paste.

In very rare circumstances, it's possible for the IMR and OAD to become confused as to
the state of a server. In this case it might be necessary to manually reset the state of the
server using the Reset menu item. It also necessary to use this item if the server continually
crashes on startup and has reached the maximum number of retries specified by its
max_spawns attribute. This prevents the OAD from continually starting the same broken
server.

The View Menu

The View menu contains the Refresh menu item. The Refresh menu item is used to update
the console when the contents of the IMR have been changed from outside the console.
Note that clicking or expanding an item will refresh the item.

ORBacus 133

The Implementation Repository Console

8.3 The Toolbar and the Popup Menu

In addition to the operations offered by the menu bar, some frequently needed functions
are available by icons located in the toolbar. The toolbar contains all of the items of the
Edit menu and the Refresh item of the View menu. The toolbar is shown below in Figure
8.1.

Dfelx] (&[] [»[=]e] |o]

When selecting an OAD, server or POA with the right mouse button, a popup menu with a
choice of operations will be displayed as shown in Figure 8.2. This popup menu provides

Create..,
Modify...
Delete...
Cut

Start...

Reset..,

Refresh

Figure 8.2: The popup menu

the same operations as the toolbar.

134 ORBacus

CHAPTER 9

ORBacus Names

9.1

9.1.1

A CORBA object is often represented by an object reference in the form of a “stringified”
IOR, a lengthy string that is difficult to read and cumbersome to use. It is much more nat-
ural to think of an object in terms of its name, which is a core feature of the CORBA Nam-
ing Service. In the Naming Service, objects are registered with a unique name, which can
later be used to resolve their associated object references.

ORBAcCuUs Names is compliant with [10]. This chapter does not provide a complete
description of the service. It only provides an overview, suitable to get you started. For
more information, please refer to the specification.

Synopsis

Usage

ORBAcuUs includes functionally equivalent implementations of the Naming Service in
C++ and Java.

C++

naneser v
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-t,--timeout M NS]
[-c, --callback-tineout SECS]

ORBacus 135

ORBacus Names

9.1.2

Java

com ooc. CosNani ng. Ser ver
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-t,--timeout M NS]
[-c, --callback-timeout SECS]

Options
-h . . .
--hel p Display the command-line options supported by the server.
-V . .
. Display the version of the server.
--version
- . .
—ior Prints the stringified IOR of the server to standard output.
-n Disables automatic updates, i.e., callbacks that notify interested
- - no- updat es clients of changes to the naming service.
-s Use this option only when starting a persistent server using a
--start new database.
Enables persistence for the server. All of the bindings created by
-d FILE the server will be saved to the specified file. If you are starting
--dat abase FILE the server for the first time using this database, you must also
use the - S command-line option.
-t MNS Specifies the timeout in minutes after which a persistent server

automatically compacts its database. The default timeout is five

--timeout M NS .
minutes.

Specifies the timeout in seconds to be used for the ORBACUS
timeout policy (OB: : Ti neout Pol i cy). The default
timeout is five seconds. See Chapter 15 for more information.

-c SECS
--cal | back-ti meout SECS

Windows NT Native Service

The C++ version of ORBACUS Names is also available as a native Windows NT service.

nt naneservi ce
[-h,--help] [-i,--install] [-s,--start-install]

136

ORBacus

Synopsis

[-u,--uninstall] [-d, --debug]

-h

-~hel p Display the command-line options supported by the server.

—_install Install the service. The service must be started manually.

-S

. Install the service. The service will be started automatically.
--start-install

-u
--uninstall

-d
- - debug

Uninstall the service.

Run the service in debug mode.

In order to use the Naming Service as a native Windows NT service, it is first necessary to
add the ooc. nanmi ng. port configuration property to the HKEY_LOCAL_MACHI NE NT
registry key (see “Using the Windows NT Registry” on page 60 for more details). If the
service is to be persistent, the path to the database file must be stored in the following
property:1

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Pr operti es\ ooc\ nam ng\ dat abase
Next the service should be installed with:

nt naneservi ce -i

This adds the ORBacus Nami ng Servi ce entry to the Ser vi ces dialog in the Control
Panel. To start the naming service, select the ORBacus Nami ng Ser vi ce entry, and press
St ar t . If the service is to be started automatically when the machine is booted, select the
ORBacus Nami ng Servi ce entry, then click St art up. Next select Startup Type -
Aut onat i ¢, and press OK. Alternatively, the service could have been installed using the
- s option, which configures the service for automatic start-up:

nt naneservi ce -s

If you want to remove the service, run:

nt naneservi ce -u

1. Please note that services do not have access to network drives, so the path to the database must be
on a local hard drive.

ORBacus 137

ORBacus Names

9.1.3

9.1.4

Note: If the executable for the Naming Service is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service will be placed in the Windows NT Event
Viewer with the title Nam ngSer vi ce. To enable tracing information, add the desired
trace configuration property (i.e., the ooc. nani ng. trace_| evel property or one of the
ooc. or b. t r ace properties) to the HKEY_LOCAL_MACHI NE NT registry key with a
REG_SZ value of at least 1.

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS
Names also supports the following properties:

ooc. nanm ng. cal | back_t i meout =SECS Equivalent to the - ¢ command-line option.

ooc. nam ng. dat abase=FI LE Equivalent to the - d command-line option.
ooc. nami ng. no_updat es Equivalent to the - N command-line option.
ooc. nam ng. port =PORT Specifies the port number on which the service

should listen for new connections. Note that this
property is only considered if the 0ooc. oa. port
property is not set.

ooc. nam ng. ti meout =M NS Equivalent to the - t command-line option.

ooc. nam ng.trace_| evel =LEVEL Defines the output level for diagnostic messages
printed by ORBACUS Names. The default level
is 0, which produces no output. A level of 1 or
higher produces messages related to database
operations, a level of 2 or higher produces
messages related to adding and removing listeners,
and a level of 3 or higher produces messages
related to binding operations.

Persistence

ORBACUS Names can optionally be used in a persistent mode, in which all data managed
by the service is saved in a file. If you do not run the service in its persistent mode, all of
the data will be lost when the service terminates.

It is also important to note that when using the service in its persistent mode, you should
always start the service on the same port (see Chapter 4 for more information).

138

ORBacus

Connecting to the Service

9.1.5

9.2

9.3

CLASSPATH Requirements

ORBAcUs Names for Java requires the classes in OB. j ar and OBNami ng. j ar.

Connecting to the Service

The object key of the Naming Service is NaneSer vi ce, which identifies an object of type
CosNami ng: : OBNani ngCont ext . The OBNami ngCont ext interface is derived from the
standard interface CosNami ng: : Nam ngCont ext Ext and provides additional ORBA-
cus-specific functionality. For a description of the OBNam ngCont ext interface, please
refer to the documented IDL file nami ng/ i dl / OBNami ng. i dl .

The object key can be used when composing URL-style object references. For example,
the following URL identifies the naming service running on host nshost at port 10000:

cor bal oc: : nshost : 10000/ NaneSer vi ce

Refer to Chapter 6 for more information on URLs and configuring initial services.

Using the Naming Service with the IMR

The Naming Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it is important to note that the cor bal oc URL-style object reference
described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the Naming Service must be created using one of the following methods (where
Nami ngSer ver refers to the server name configured with the IMR):

« start the Naming Service with the options:
--ior -ORBserver_nanme Nam ngServer
causing the Naming Service to print its reference to standard output.

* use the nkr ef utility:
nkref Nam ngServer NaneServi ce Root Cont ext POA

When using the Naming Service with the IMR, the service must be started with the option
- ORBser ver _nane Nam ngSer ver, where Nam ngSer ver refers to the server name
configured with the IMR. When the IMR is configured to start the Naming Service, this
option is automatically added to the service’s arguments. However, when the Naming Ser-
vice is started manually, the option must be present. For further information on configur-
ing a service with the IMR, refer to “Getting Started with the Implementation Repository”
on page 124.

ORBacus 139

ORBacus Names

9.4

9.4.1

Naming Service Concepts

Bindings

Object references registered with the Naming Service are maintained in a hierarchical
structure similar to a filesystem. A file in a filesystem is analogous to an object binding in
the Naming Service. The equivalent for a folder in a filesystem is a naming context in
Naming Service terms. The pieces of information stored in a Naming Service are called
bindings. A binding consists of an object’s name and its type, as defined in the

CosNami ng module:

/1 1D
typedef string Istring;

struct NanmeConponent

{
Istring id;
Istring Kind;
s

t ypedef sequence<NaneConponent > Nane;

enum Bi ndi ngType

{
nobj ect ,
ncont ext
b
struct Binding
{
Name bi ndi ng_nane;
Bi ndi ngType bi ndi ng_type;
b

As you can see, each name consists of one or more components, like a file is fully speci-
fied by its path in a filesystem. Each name component consists of two strings, i d and

ki nd, which could be likened to a file’s name and its extension. Generally, the filesystem
analogy works very well when describing the Naming Service structures.

A new Naming Service entry, i.e., a binding, is created with the following operations:

/1 1DL
voi d bind(in Name n, in Object obj)
rai ses(Not Found, Cannot Proceed, |nvalidNane, AlreadyBound);

140

ORBacus

Naming Service Concepts

9.4.2

voi d bind_context(in Nane n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, |nvalidNane, AlreadyBound);

Nam ngCont ext new_context();

Nam ngCont ext bi nd_new _context (i n Nane n)
rai ses(Not Found, Cannot Proceed, |nvalidNane, AlreadyBound);

bi nd registers a new object with the Naming Service, whereas a new context is registered
with bi nd_cont ext . For each operation, an object reference and a Nanme are expected as
parameters. New naming context objects are created with new_cont ext or

bi nd_new_cont ext . bi nd_cont ext and bi nd_new_cont ext throw an

Al r eadyBound exception if the name is already in use in the target context.

To create a new binding without being concerned if the specified binding already exists,
use the following operations:

/1 1DL
void rebind(in Nanme n, in Cbject obj)
rai ses(Not Found, Cannot Proceed, |nvalidNane);

voi d rebind_context(in Name n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, |nvalidNane);

Use the unbi nd operation to delete a particular binding:

/1 1DL
voi d unbi nd(i n Nane n)
rai ses(Not Found, Cannot Proceed, |nvalidNane);

Name Resolution

Besides registering objects, an equally important task of the Naming Service is name reso-
Iution. A name is passed to the r esol ve or r esol ve_str operation and an object refer-
ence is returned if the name exists.

/1 1D
oj ect resolve(in Nane n)

rai ses(Not Found, Cannot Proceed, |nvalidNane);
oj ect resolve_str(in StringName n)

rai ses(Not Found, Cannot Proceed, |nvalidNane);

The resol ve and r esol ve_st r operations are only useful when a particular name is
known in advance. Sometimes it is necessary to ask for a list of all bindings registered
with a particular naming context. The | i st operation returns a list of bindings.

ORBacus 141

ORBacus Names

9.5

9.5.1

~NOoO OO~ WN PR

/1 1DL
t ypedef sequence<Bi ndi ng> Bi ndi ngLi st ;

void list(in unsigned | ong how _many,
out BindingList bl, out Bindinglterator bi);

If the number of bindings is especially large, the Bi ndi ngl t er at or interface is provided
so that you don’t have to query for all available bindings at once. Simply get a certain
number of bindings specified with how_many, and get the rest, if any, using the

Bi ndi nglterator.

/1 DL
i nterface Bindinglterator

{

bool ean next _one(out Binding b);

bool ean next _n(in unsigned | ong how_nany,
out Bi ndi ngList bl);

voi d destroy();
b

Make sure that you destroy the iterator object when it is no longer needed.

Programming Example

ORBAcuUSs includes simple C++ and Java examples that demonstrate how to use the
CORBA Naming Service. These examples are located in the folder nami ng/ denp. We
will concentrate on the Java example, but the C++ example works similarly. The example
expects a Naming Service server to be already running and that the server’s initial refer-
ence can be resolved by the ORB. Because of its volume we have split the code into sev-
eral parts for the discussion below.

Initialization

The first code fragment deals with initializing the ORB.

/1 Java
java.util.Properties props = System getProperties();
props. put (" or g. ong. CORBA. ORBCl ass", "com ooc. CORBA. ORB") ;
props. put (" or g. ong. CORBA. ORBSi ngl et onC ass",

"com ooc. CORBA. ORBSI ngl et on");

org.ong. CORBA. ORB orb = nul|;

142

ORBacus

Programming Example

8 try
9 {
10 orb = ORB.init(args, props);
11
12 or g. ong. CORBA. Obj ect poaGhj = null;
13 try
14 {
15 poaCbj = orb.resolve_initial_references("Root POA");
16 }
17 cat ch(org. ong. CORBA. ORBPackage. | nval i dName ex)
18 {
19 t hr ow new Runti meException();
20 }
21 POA root POA = PQAHel per. narr ow poaQhj);
22 POAManager manager = root POA. t he_POAManager () ;
23
24 or g. ong. CORBA. Obj ect obj = null;
25 try
26 {
27 obj = orb.resolve_initial_references("NaneService");
28 }
29 cat ch(org. ong. CORBA. ORBPackage. | nval i dName ex)
30 {
31 t hr ow new Runti meException();
32 }
33
34 if(obj == null)
35 {
36 t hr ow new Runti meException();
37 }
38
39 Nam ngCont ext Ext nc = nul | ;
40 try
41 {
42 nc = Nam ngCont ext Ext Hel per. narrow(obj) ;
43 }
44 cat ch(or g. ong. CORBA. BAD_PARAM ex)
45 {
46 t hr ow new Runti meException();
47 }

10- 22 Usually the application is initialized in the mai n method. For more information on ORB
initialization see Chapter 4.

ORBacus 143

ORBacus Names

24-32 In the next step we try to connect to the Naming Service by supplying “NameService” to
resol ve_initial _references.Ifl nval i dNane is thrown, there is no Naming Ser-
vice available because the ORB doesn’t know anything about this service.

34-47 Ifcallingresol ve_initial _references was successful, the object reference is
checked and narrowed in order to verify that it supports the interface
CosNani ng: : Nam ngCont ext Ext . If the nar r ow operation raises
CORBA: : BAD_PARAM the object does not support the interface. This is considered to be an
error because we explicitly asked for a Naming Service instance.

9.5.2 Binding

In the next step some sample bindings are created and bound to the Naming Service.

1 // Java

2 Named_i npl i mpl A = new Naned_i npl ();

3 Named_i npl i nmpl A1 = new Naned_i npl ();

4 Named_i npl i npl A2 = new Named_i npl ();

5 Named_i npl i npl A3 = new Named_i npl ();

6 Named_i npl i npl R = new Named_i npl ();

7 Named_i npl i mpl C = new Naned_i npl () ;

8 Named a = inpl A _this(orb);

9 Named al = inpl Al. _this(orb);

10 Named a2 = inpl A2. _this(orb);

11 Named a3 = inpl A3. _this(orb);

12 Named b = inpl B. _this(orb);

13 Named ¢ = inpl C. _this(orb);

14

15 try

16 {

17 NameConponent[] nclNane = new NaneConponent|[1];
18 nclNanme[0] = new NameConponent ();

19 nclName[0].id = "ncl";

20 nciName[0] . kind = "";

21 Nam ngCont ext ncl = nc. bi nd_new_cont ext (nc1Nane);
22

23 NameConmponent [] nc2Nanme = new NanmeConponent|[2] ;
24 nc2Nanme[0] = new NameConponent () ;

25 nc2Name[0] .id = "ncl";

26 nc2Name[0] . kind = "";

27 nc2Name[1] = new NameConponent () ;

28 nc2Nanme[1] .id = "nc2";

29 nc2Nanme[1] . kind = "";

30 Nam ngCont ext nc2 = nc. bi nd_new_cont ext (nc2Nan®e) ;

144 ORBacus

Programming Example

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

NameConponent [] aName = new NanmeConponent [1] ;
aName[0] = new NaneConponent () ;

aName[0].id = "a";

aName[O] . kind = "";

nc. bi nd(aNane, a);

NameConponent [] alName = new NameConponent[1];
alNane[0] = new NameConponent ();

alNane[0].id = "al";

alNane[0].kind = ""

nc. bi nd(alName, al);

NameConponent [] a2Name = new NameConponent [1] ;
a2Nane[0] = new NameConponent () ;

a2Nane[0].id = "a2";

a2Nane[0] . kind = ""

nc. bi nd(a2Name, a2);

NameConponent [] a3Name = new NanmeConponent [1];
a3Nane[0] = new NanmeConponent () ;

a3Nane[0].id = "a3";

a3Nane[0] . kind = "";

nc. bi nd(a3Name, a3);

NameConponent [] bName = new NanmeComponent [2] ;
bNane[0] = new NameConponent () ;

bNane[0].id = "ncl";

bNane[0].kind = "";

bNane[1] = new NanmeConponent () ;

bNange[1].id = "b";

bNane[1].kind = "";

nc. bi nd(bNane, b);

NameConponent[] cName = new NaneConponent[3] ;
cName[0] = new NaneConponent () ;

cName[0].id = "ncl";

cName[O] . kind = "";

cName[1] = new NaneConponent () ;

cName[1].id = "nc2";

cName[1] . kind = "";

cName[2] = new NaneConponent () ;

cName[2].id = "c";

cName[2] . kind = "";

ORBacus

145

ORBacus Names

75
76

17-75

9.5.3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

nc. bi nd(cNane, c);
}

Several sample objects are created that will later be bound to our Naming Service. These
objects implement an interface called Named. In this example, the details of this interface
are not important. Naned might even be an interface without any operations defined in it.

Create and bind some new contexts and bind the sample objects to these contexts. Each
binding name consists of several NameConponent s that are similar to the path compo-
nents of a file located somewhere in a filesystem. Objects are bound with the Naming Ser-
vice’s bi nd operation; for contexts, the corresponding operation bi nd_cont ext is used.
In addition to the object’s IOR, both operations expect a unique binding name. If a name
already exists, an Al r eadyBound exception is thrown. There are also other exceptions
you might encounter at this stage, e.g., | | | egal Nane if an empty string was provided as
part of a NameConponent .

Exceptions

This code fragment deals with exceptions that may be thrown by the Naming Service
operations.

/1l Java
cat ch(Not Found ex)
{
Systemerr.print("Got a ‘Not Found exception (");
swi t ch(ex. why. val ue())
{
case Not FoundReason. _m ssi ng_node:
Systemerr.print("mssing node");
br eak;

case Not FoundReason. _not context:
Systemerr.print("not context");
br eak;

case Not FoundReason. _not _obj ect:
Systemerr.print("not object");
br eak;

}

Systemerr.printin(")");
ex. printStackTrace();
t hr ow new Syst emException();

146

ORBacus

Programming Example

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

9.5.4

o O~ WN P

ex)
7
8
9
10

2-10

cat ch(Cannot Proceed ex)

{
Systemerr.println("Got a ‘ Cannot Proceed’ exception");
ex. printStackTrace();
t hr ow new Syst enException();

}

catch(I nval i dName ex)

{

Systemerr.println("Got an ‘InvalidNane’ exception");
ex. printStackTrace();
t hr ow new Syst enException();

cat ch(Al readyBound ex)

{
Systemerr.println("CGot an ‘Al readyBound exception");
ex. printStackTrace();
t hr ow new Syst enmException();

}

Catch exceptions. Don’t ever forget to do this. It can be useful to call pri nt St ackTr ace
on the exception object in order to get detailed information about the program flow caus-
ing the exception.

The Event Loop

Next we start listening for requests.

/1l Java
try
{

}
cat ch(org. ong. Port abl eServer. POAManager Package. Adapt er | nacti ve

manager . activate();

{
}

orb.run();

t hr ow new Runti meException();

Everything is ready now, so we can listen for requests by calling act i avat e on the POA
Manager and r un on the ORB.

ORBacus 147

ORBacus Names

9.5.5 Releasing Resources

Some cleanup work should be done before exiting the program. Every binding must be
properly unbound and the ORB must be destroyed.

1 // Java
2 nc. unbi nd(cNane) ;
3 nc. unbi nd(bNarne) ;
4 nc. unbi nd(aNane) ;
5 nc. unbi nd(alNane) ;
6 nc. unbi nd(a2Nane) ;
7 nc. unbi nd(a3Nane) ;
8 nc. unbi nd(nc2Nane) ;
9 nc. unbi nd(nclNane) ;
10 }
11 catch(Runti meException ex)
12 {
13 status = 1;
14 }
15
16 if (orb !'= null)
17 {
18 try
19 {
20 orb.destroy();
21 }
22 catch(const Runti neException ex)
23 {
24 status = 1;
25 }
26 }
27
28 System exit(status);
2-9 All bindings are unbound.

16-26 destroy is called on the ORB. This releases the resources used by the ORB.

The complete example can be found in the folder nam ng/ deno included with the ORBA-
CUS distribution.

148 ORBacus

CHAPTER 10

ORBacus Names Console

10.1

10.1.1

ORBAcuUs Names includes a graphical client for administering the service called the
ORBAcus Names Console. The application can manage any CORBA-compliant Naming
Service, but additional features are provided when used with ORBACUS Names.

Synopsis

Usage

com ooc. CosNam ngConsol e. Mai n
[-f,--file FILE] [-i,--ior] [-n,--no-updates] [--1ook CLASS]
[--windows] [--motif] [--mac] [-h,--help] [-v, --version]

-f FILE . .
—_file EILE Read the Naming Service IOR from FI LE.
: I_ i or Print the stringified IOR of the Naming Service to standard output.

-n Disables automatic updates, i.e., callbacks that notify interested clients of
- - no- updat es changes to the naming service.

--1 ook CLASS Use the specified Look & Feel class.

--w ndows Use the Windows Look & Feel (if available).

ORBacus 149

ORBacus Names Console

10.1.2

10.1.3

10.2

10.2.1

--notif Use the Motif Look & Feel (if available).
--mac Use the Macintosh Look & Feel (if available).
: r]hel o Display the command-line options supported by the program.

CLASSPATH Requirements

The ORBAcCUS Names Console requires the classes in OB. j ar, OBNami ng. j ar,

OBUti | . j ar and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or
greater) of JDK.

Naming Service Lookup

In order to locate a Naming Service, the application takes the following steps on start-up:

» First it checks whether a Naming Service reference was given with the -f option.

« If'this is not the case, then the initial Naming Service is used, as provided to the ORB
with options like -ORBservice or -ORBconfig.

If both of the above steps fail, an error window is displayed and the Names console exits.

The Menus

The menus provide access to all of the features of the application. In addition, the most
common actions are also available in the toolbar, as well as in a popup menu that is displayed
when pressing the right mouse button over an item in the binding table or context tree.

The File Menu

This menu contains operations that create bindings and define the current root context.

New Window Opens an additional control window.

Switch Root Context Selects a new root naming context.

Load Context Recursively loads a naming context from a file.

Save Context As Recursively saves the selected naming context to a file.

Save IOR to File Saves the stringified IOR of the currently selected item to a file.
Close Window Closes the current window.

Exit Quits the ORBACUS Names Console.

150

ORBacus

The Menus

After starting the application, the current root context is the naming context corresponding
to the IOR specified on the command line or the initial Naming Service, as provided to the
ORB with options like -ORBservice or -ORBconfigby. You can make another naming
context the root context using Switch Root Context. The new root context’s IOR is speci-
fied in the Enter IOR dialog window, as shown in Figure 10.1. The IOR can be entered

B3 Enter IOR |]

) Target IOR. @ From File Browse...

Figure 10.1: Entering an IOR

directly or can be read from a file. If an IOR is entered manually you usually either use the
URL-style notation as described in Chapter 6, or you copy a stringified object reference
into the dialog box using “Cut & Paste”. After selecting Browse a file containing an IOR
can be selected.

Sometimes it is not desirable to completely replace the currently visible root context by
another root context. For example, you may need to copy bindings from one context to
another. If this is the case, simply open an additional window for the new root context
using New Window. You can then switch the root context in only one window without
affecting the information displayed in the other one. Using two windows, you can easily
transfer bindings from one context to another using “Cut & Paste”.

Complete naming contexts can be loaded from a special file with naming context informa-
tion. Such a file, which was previously created with Save Context As, is loaded with Load
Context. The bindings saved to this file are added to the current naming context.

When saving a naming context, the console checks each context for accessibility. If a con-
text cannot be accessed, i.e., if its contents cannot be saved, a message is displayed in the

error window. You also get an error message if the console detects a recursion. The bind-

ings contained in the naming context leading to the recursion is not saved.

Use Save IOR to File in order to create a file that contains the stringified IOR of the cur-
rently selected binding or context.

With Close Window the current window is closed. Closing the last window causes the
application to terminate. Exit can be used to terminate the application regardless of how
many windows are open.

ORBacus 151

ORBacus Names Console

10.2.2

The Edit Menu

The operations in this menu provide the means for creating and deleting objects and for
changing the Naming Service structure.

New Context Creates a new naming context.

New Binding Creates a new binding for an object.
Delete Deletes the selected items.

Link Creates a new binding for an existing naming context.
Unlink Unbinds the selected items.

Cut Moves the selected items to the clipboard.
Copy Copies the selected items to the clipboard.
Paste Inserts the clipboard contents.

Change ID Edits the ID field of the selected item.
Change Kind Edits the Kind field of the selected item.
Change IOR Edits the IOR of the selected item.

Select all Selects all items in the object table.
Invert Selection Inverts the current selection.

New contexts and bindings are created with the operations New Context and New Binding,
respectively. If one of these functions is selected, a new context or object binding with a

unique name is added to the current context. For new object bindings an IOR can be spec-
ified.

Use Delete to remove the selected items from a naming context. Deleting Naming Service
entries removes all selected bindings from their parent context. The objects belonging to
these bindings are not affected. Destroying Naming Service information only affects the
actual Naming Service data, not the objects themselves.

Use Link to create a new binding for an existing naming context, where the naming con-
text is specified by an IOR. The operation Unlink unbinds the selected items. For objects,
Unlink is equivalent to Delete, but for contexts, Unlink differs in that the context is not
destroyed. Since a context is not destroyed using Unlink, it should only be used when
there are multiple bindings to a context in order to avoid orphaned contexts.

The console supports a clipboard that you can use to move bindings between different
contexts. Data is transferred to the clipboard using the Cut or Copy commands. Cut moves
the currently selected items to the clipboard and deletes the original entries, whereas Copy

152

ORBacus

The Menus

10.2.3

simply creates a copy in the clipboard but keeps the source entry unchanged. When new
data is transferred to the clipboard, the old clipboard contents are replaced. Using Paste,
you can add the clipboard data into a naming context. The clipboard contents are not
changed by this operation, i.e., you can Paste the same items several times. Note that if
naming contexts are transferred to the clipboard, their contents are not evaluated before
they are pasted. It is during the Paste operation that the bindings of a context are dupli-
cated. This means that if new bindings are added to a context after a Cut or Copy opera-
tion, these bindings will be present after pasting this context.

An item registered with the Naming Service has three modifiable attributes: its ID, its
Kind and its IOR. The ID and Kind attributes can be edited by simply double-clicking the
ID or Kind field in the table. You can also change binding attributes with the correspond-
ing menu operations Change ID, Change Kind and Change IOR. Entering a new IOR for an
existing name effectively replaces an object registered with the Naming Service by
another object with the same name.

Use Select all to select all of the entries in the binding table. The current table selection can

be inverted using Invert Selection.

The View Menu

The operations in this menu control the appearance of the console window as well as the
presentation of the Naming Service data.

Toolbar Toggles the toolbar visibility.

Status Bar Toggles the statusbar visibility.

Error Window Toggles the error message window visibility.

Simple List Displays minimum object information.
Details Displays additional object information.
Sort Sets sorting mode for object list.

Refresh Updates the complete window contents

A toolbar that gives access to frequently needed operations is normally present below the
menu. If you don’t have a need for this toolbar or if you just want to save space on the
screen, you can switch it off with the Toolbar toggle button. The same applies to the status
bar where information about the currently selected item is displayed. The status bar dis-
plays an object’s repository ID, the host where this object is located and the port it is
bound to. If an item with a nil object reference is selected or if multiple items are selected,
the status bar is empty.

ORBacus 153

ORBacus Names Console

10.2.4

If an error occurs while editing bindings, the console automatically displays a new win-
dow with information about what went wrong. Usually this information consists of excep-
tion data. The visibility of this window can be explicitly controlled with the Error Window
toggle button.

If the console is connected to ORBACUS Names, as described in Chapter 9, the console
can display timestamp information for each binding by making use of proprietary features
of ORBAcUS Names. This information is shown in the binding table if the Details display
mode instead of the Simple List mode is active.

Usually the console sorts the items in the binding table in ascending alphabetical order,
with naming contexts being listed at the top. You can change this order with the options
available in the Sort menu. Bindings can be sorted by their ID or Kind fields. If the
extended attributes are displayed, items can also be sorted by date and time. You can
reverse the sort order by selecting the current sorting mode a second time in the View
menu or by clicking on the table header cells. In this case, the display switches from
ascending to descending order and vice versa.

If the contents of a naming context have been changed by a third party and you want to
update the information displayed in the console window, selecting Refresh updates the dis-
play. If the console is connected to ORBACUS Names, a refresh is done automatically each
time a change occurs.

The Tools Menu
The operations available in this menu are meant as tools for your everyday work.

Ping Checks the accessibility of the selected items.

Clean up Unbinds inaccessible objects from the current context.

Sometimes it is useful to check if an object bound to a name still exists or if the object ref-
erence associated with it has become invalid, for example, because of a server crash. To
perform such a check, select all the objects you want to check and start the Ping operation.
The console tries to contact each of the selected objects and displays the time it took to get
a connection to them in a separate window. This is very similar to the Windows or Unix
pi ng command for an IP address or a host name. If there is a time-out while trying to con-
tact an object, this information is displayed in the Ping Window and the console continues
with the next object.

If you want objects that cannot be contacted, for example because of a server breakdown,
to be unbound from the current context, Clean up does the job. Clean up non-recursively
tries to connect to the selected objects. If there is a communication failure or the

154

ORBacus

The Toolbar

10.3

ORBacus Names Ping Window 1] 3
Pinging “Sophed (luke.software.bruker.de)' ... 11 ms =
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns
Pinging “Sophed [(luke.software.bruker.de)' ... 0 ns
Pinging “Sophed (demosophe.esr.bruker.de)' ... 0 ns
Pinging “Sophed (luke.software.bruker.de)' ... 20 ns
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns
Pinging “Sophed (luke.software.bruker.de)' ... 20 ns
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns
Pinging “Sophed [(luke.software.bruker.de)' ... 100 ms
Pinging “Sophed (demosophe.esr.bruker.de)' ... 0 ns
Pinging “Sophed (luke.software.bruker.de)' ... 10 ns
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns
Pinging “Sophed (luke.software.bruker.de)' ... 30 ns
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns
Pinging “Sophed (luke.software.bruker.de)' ... 30 ns
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns
Pinging “Sophed [(luke.software.bruker.de)' ... 0 ns
Pinging “Sophed (demosophe.esr.bruker.de)' ... 10 ns
Pinging “Sophed [(luke.software.bruker.de)' ... 0 ns

| Close | | Clear | | Stop | | Continue

Figure 10.2: The Ping Window

_non_exi st ent () operation returns true for a particular object, the corresponding bind-
ing is automatically removed. Clean up should be used with care.

The Toolbar

In addition to the operations offered by the menu bar, some frequently needed functions
are available by icons located in the toolbar, as shown in Figure 10.3.

i I 0 (=

Figure 10.3: A closer look at the toolbar

The icon on the toolbar’s left is the Upwards icon which changes the naming context to the
parent of the context currently being displayed. The next five icons correspond to the New
Context, New Binding, Cut, Copy, Paste and Delete items as described in “The Edit Menu”
on page 152.

ORBacus 155

ORBacus Names Console

The Simple List and Details items from the View menu are the next two icons in the toolbar.
They determine whether the binding table displays only the ID and Kind fields, or, if
ORBAcCUS Names is available, also the date and time the binding was last modified.

The last item in the menubar corresponds to the Refresh operation from the View menu.

10.4 The Popup Menu

When selecting an item in the binding table or a tree node with the right mouse button, a
popup menu with a choice of operations is displayed as shown in Figure 10.4. This is

Cut

Copy

Change ID
Change Kind
Change IOR...

Delete
Unlink

Save IOR to File...

Figure 10.4: A popup menu offers important operations

another convenient alternative for executing frequently used operations.

156 ORBacus

CHAPTER 11

ORBacus Properties

11.1

11.1.1

The CORBA Property Service! permits you to annotate an object with extra attributes
(called properties) that were not defined by the object’s IDL interface. Properties can rep-
resent any value because they make use of the CORBA Any data type.

ORBACUS Properties is compliant with [10]. This chapter does not provide a complete
description of the service. It only provides an overview, suitable to get you started. For
more information, please refer to the specification.

Synopsis

Usage

ORBAcuUs includes functionally equivalent implementations of the Property Service in
C++ and Java.

C++

propserv
[-h,--help] [-v,--version] [-i,--ior]

1. Note that the Property Service has nothing to do with the properties used for configuration pur-
poses. Configuration properties are described in “ORB Properties” on page 49.

ORBacus 157

ORBacus Properties

11.1.2

11.1.3

11.2

Java

com ooc. CosPropertyService. Server

[-h,--help] [-v,--version] [-i,--ior]
Options
-h . . .
--hel p Display the command-line options supported by the server.
v . Display the version of the server.
--version
: I_ i or Prints the stringified IOR of the server to standard output.

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS
Properties also supports the following properties:

0ocC. property. port =PORT Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if the ooc. oa. port
property is not set.

CLASSPATH Requirements

ORBACUS Properties for Java requires the classes in OB. j ar and OBPr operty.j ar.

Connecting to the Service

The object key of the Property Service is Pr oper t ySer vi ce, which identifies an object
of type CosPropertyServi ce: : PropertySet Def Fact ory.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the Property Service running on host pr ophost at port
10000:

cor bal oc: : prophost : 10000/ PropertyServi ce

Refer to Chapter 6 for more information on URLs and configuring initial services.

158

ORBacus

Using the Property Service with the IMR

11.3

11.4

11.4.1

Using the Property Service with the IMR

The Property Service may be used with the Implementation Repository (IMR). However,

if used with the IMR, it is important to note that the corbaloc URL-style object reference

described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the Property Service must be created using one of the following methods (where
Pr oper t ySer ver refers to the server name configured with the IMR):

» start the Property Service with the options:
--ior -ORBserver_nanme PropertyServer
causing the Property Service to print its reference to standard output.

e use the nkr ef utility:
nkref PropertyServer PropertyService PropertyServi cePOA

When using the Property Service with the IMR, the service must be started with the option
- ORBser ver _nanme PropertyServer, where PropertyServer refers to the server
name configured with the IMR. When the IMR is configured to start the Property Service,
this option is automatically added to the service’s arguments. However, when the Property
Service is started manually, the option must be present. For further information on config-
uring a service with the IMR, refer to “Getting Started with the Implementation Reposi-
tory” on page 124.

Property Service Concepts

Creating Properties

A property handled by the CORBA Property Service consists of two components: the
property’s name and its value. The name is a CORBA st ri ng and the associated value is
represented by a CORBA Any:

/1 1DL
typedef string PropertyNane;

struct Property

{
PropertyName property_nane;
any property_val ue;

b

New properties are created using a factory object implementing the Pr oper t ySet inter-
face. A new property is created using the def i ne_pr operty operation:

/1 1D

ORBacus 159

ORBacus Properties

11.4.2

voi d define_property(in PropertyNane, in any property_val ue)
rai ses(Invali dPropertyNanme, ConflictingProperty,
Unsupport edTypeCode, UnsupportedProperty,
ReadOnl yPr operty);

As a property consists of a name—value pair, both the name and the value are the parame-
ters to this operation.

Querying for Properties

As soon as a property is defined, the Pr oper t ySet can be queried for the property’s
value with the get _pr operty_val ue operation:

/1 1DL
any get_property_value(in PropertyNane property_nane)
rai ses(PropertyNot Found, InvalidPropertyNane);

For a particular property name, this call either returns the Any associated with that name or
throws an exception if a property with the name does not exist.

You can not only query for a particular property value, but also for a list of all the proper-
ties defined within a Pr opert ySet . The get _al | _properti es operation serves this
purpose:
/1 1DL
void get_all _properties(in unsigned | ong how _nany,

out Properties nproperties, out Propertieslterator rest);

This operation works similar to the | i st call offered by the Naming Service. In both
cases the maximum number of items to be returned at once is specified. An iterator imple-
menting the Properti eslterat or interface gives access to the remaining items, if any.

/1 1DL
interface Propertieslterator

{
voi d reset();
bool ean next _one(out Property aproperty);

bool ean next_n(in unsigned | ong how_nany,
out Properties nproperties);

voi d destroy();

160

ORBacus

Property Service Concepts

11.4.3

If you are only interested in a list of property names you can get this list by calling
get _al | _property_nanes:

/1 1DL

void get_all _property_names(in unsigned | ong how_many,
out PropertyNanes property_nanes,
out PropertyNaneslterator rest);

Aswith get _al | _properti es alist of names as well as an iterator is returned. This iter-
ator implements the Pr opert yNanesl t er at or interface:

/1 1DL
i nterface PropertyNaneslterator

{

void reset();
bool ean next _one(out PropertyName property_nane);

bool ean next_n(in unsigned | ong how_nany,
out PropertyNanes property_nanes);

voi d destroy();
b

The iterators should always be destroyed when they are no longer needed.

Sometimes it is useful to know of how many properties a Pr oper t ySet consists of. This
information is provided by get _nunber _of _properti es:

/1 1D
unsi gned | ong get _nunber _of _properties();

Note that you have to be careful if you intend to use the return value of

get _nunber _of _properti es as the input value for the how_nany parameter of

get _al | _properti es inorder to get a complete property list. You always have to check
the Properti eslterator for properties that were not returned as part of the

Properti es sequence returned by get _al | _properti es, otherwise you might miss a
property that was defined by another process between your calls to

get _nunber _of propertiesandget_all _properti es.

Deleting Properties

If a property has become obsolete it can be deleted from the Pr oper t ySet with
del et e_property:

ORBacus 161

ORBacus Properties

11.5

© 00O NOO O WNBR

NNRNNMNNNRPRRPRPRRRPRRERPR
O U DN WNRPROOO®NO®UDMWNLERO

/1 1DL
voi d del ete_property(in PropertyNane property_nane)
rai ses(PropertyNot Found, InvalidProperty, FixedProperty);

As you might have guessed by this operation’s signature, there are properties that cannot
be deleted at all. This kind of property is called a Fi xedPr oper ty. The Property Service
defines several other special property types, such as read-only properties. Please refer to
the OMG Property Service [9] specification for details.

Programming Example

The Property Service test suite, which is part of the ORBACUS distribution, provides a
good example of how to create properties and query for their values. The code below is
based on excerpts of this test suite, which is located in the directory property/test. We
will concentrate on an example in Java here. As with the previous examples, the Java code
is very similar to what is necessary in C++. The example demonstrates how to create prop-
erties and how to get a list of all the properties defined within a Pr opertySet .

/1l Java

or g. ong. CORBA. Obj ect obj = null;

try
{
obj = orb.resolve_initial _references("PropertyService");
}
cat ch(org. ong. CORBA. ORBPackage. | nval i dNanme ex)
{
/1 An error occurred, Property Service is not avail able
}
if(obj == null)
{
/1 The object reference is invalid
}
PropertySet Def Factory factory = null;
try
{

factory = PropertySet Def Fact or yHel per. narrow(obj);

}
cat ch(or g. ong. CORBA. BAD_PARAM ex)

/1 This object does not inplenent the Property Service

162

ORBacus

Programming Example

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

}
PropertySet Def set = factory.create_propertysetdef();

Any anylLong = orb.create_any();
Any AnyString = orb.create_any();
Any anyShort = orb.create_any();
anyLong. i nsert _| ong(12345L);
anyString.insert_string(“Foo");
anyShort.insert_short((short)0);

try
{
set. define_property(“LongProperty”, anyLong);
set. define_property(“StringProperty”, anyString);
set. define_property(“ShortProperty”, anyShort);
}
cat ch(ReadOnl yProperty ex)
{
/1 An error occurred
}
catch(ConflictingProperty ex)
{
/1 An error occurred
}
cat ch(Unsupport edProperty ex)
{
/1 An error occurred
}
cat ch(Unsupport edTypeCode ex)
{
/1 An error occurred
}
catch(I nval i dPropertyName ex)
{
/1 An error occurred
}
Properti esHol der ph = new PropertiesHol der();

PropertieslteratorHol der ih = new PropertieslteratorHol der();
set.get_all _properties(0, ph, ih);

PropertyHol der h = new PropertyHol der();

70 whil e(i h. val ue. next _one(h))
71 {
ORBacus 163

ORBacus Properties

72
73
74
75

5-27

29

31-36

38-63

65-73

75

/1l The next property is now stored in h.value

}

i h. val ue. destroy();

Get a Property Service reference and check for errors.

The Pr opert ySet Def Fact ory object is used to create a Pr oper t ySet Def instance.
Note that Pr oper t ySet Def is a subclass of Pr oper t ySet .

Each property consists of a name and a value in the form of a CORBA Any.

Three properties are defined. The first has the name “LongProperty” and stores a | ong
value. The second one is called “StringProperty” and stores a st r i ng. The remaining

property represents a shor t value. If for some reason a property cannot be created, an
exception is thrown.

Now we try to get a list of all the properties that were previously defined. With

get _al |l _properti es the PropertySet Def returns its properties. As we have set the
how_many parameter to 0, we have to use the Properti eslterator for each item. An
application would normally provide a positive integer for how_nmany.

The iterator has fulfilled its duty and can now be destroyed.

164

ORBacus

CHAPTER 12

ORBacus Time

12.1

12.1.1

The CORBA Time Service provides the means to obtain the current time along with an
error estimate. The service also provides operations related to time and intervals.

This chapter does not provide a complete description of the Time Service. It only provides
an overview, suitable for getting started. For detailed information, please refer to the Time
Service specification [9].

Compliance Statement

ORBAcuUs Time is compliant with [9] and conforms to the Basic Time Service. The fol-
lowing presents the necessary documentation for conformance.

Criteria to Be Followed for Secure Time
The Time Service specification states:

The following types of operations must be protected against unauthorized invocation. They
must also be mandatorily audited:

* Operations that set or reset the current time
* Operations that designate a time source as authoritative

* Operations that modify the accuracy of the time service or the uncertainty interval of
generated timestamps.

ORBacus 165

ORBacus Time

12.1.2

12.2

12.2.1

The UNIX and Windows NT/2000 operating systems do not provide mandatory auditing
for the system time, which is the source of time for ORBACUS Time. Hence, ORBACUS
Time cannot provide secure time. As required, the Ti meUnavai | abl e exception is raised
when the secur e_uni ver sal _t i me operation of the Ti meSer vi ce interface is
invoked.

Proxies and Time Uncertainty
The specification states:

In a CORBA system, the use of proxy objects can render time values unreliable by intro-
ducing unpredictable latency between the time the time server object generates a times-
tamp and the time the caller s time server proxy receives the timestamp and returns it to
the caller.

ORBACcUSs Time prevents this problem from occurring by requiring a Time Service imple-
mentation in every address space that will need to make Time Service calls.

Synopsis

Usage

As stated in 12.1.2, ORBAcCUS Time can only be used as a collocated server, so there is no
server executable. In C++, the Time Service is initialized with
OB: : Ti meSer vi cel ni t (), which is declared in OB/ Ti neSer vi ce. h. For example:

/] C++

int main(int argc, char* argv[])

{
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);
OB:: TineServicelnit(orb, argc, argv);
/1

}

In Java, the Time Service is initialized in a similar manner:

/1 Java
public static void nmain(String args[])
{
java. util.Properties props = System getProperties();
props. put (" or g. ong. CORBA. ORBCl ass", "com ooc. CORBA. CRB") ;
props. put (" or g. ong. CORBA. ORBSi ngl et onCl ass",
"com ooc. CORBA. ORBSI ngl eton") ;

166

ORBacus

Time Service Concepts

12.2.2

12.2.3

12.3

12.3.1

org. ong. CORBA. ORB orb = org.ong. CORBA. ORB.init(args, null);
com ooc. CosTi ne. Ti mreService.init(orb, args);
/1

}

To obtain a reference to the Time Service after initialization, the client must invoke
resolve_initial _references("Ti neService") onthe ORB.

In addition to the standard command-line arguments described in Chapter 4, clients that

use ORBACUS Time accept the following command-line option:

- TI MEi naccuracy VALUE Specifies the inaccuracy of time in 100 nanosecond units. The
default is 0.

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS
Time also supports the following property:

ooc. time.inaccuracy=VALUE Equivalent to the - TI MEi haccur acy command-line
option.

CLASSPATH Requirements

ORBAcus Time for Java requires the classes in OB. j ar and OBTi ne. j ar.

Time Service Concepts

The section presents an overview of the Time Service specification. For details refer to
[9]. ORBACUS specific extensions are also presented.

Representation of Time

The Time Service uses the Universal Time Coordinated (UTC) representation from the
X/Open DCE Time Service.

Absolute UTC time is defined as follows:

Time units 100 nanoseconds (1077 seconds)

ORBacus 167

ORBacus Time

12.3.2

1
2

19

Base time 15 Oct 1582 00:00:00
Approximate range AD 30,000

Absolute UTC time in the Time Service always refers to time in Greenwich Time (GMT)
Zone.

Note that the base time used in the Time Service differs from the base time of the com-
monly used POSIX time representation. The base time of the POSIX time representation
is 1 January 1970 00:00:00.

Relative UTC time is defined as follows:

Time units 100 nanoseconds (10”7 seconds)

Approximate range +/- 30,000

Basic Types

Data structures used by the Time Service are declared in the Ti neBase module. An over-
view of the various structure follow:

/1 1DL
nodul e Ti neBase

unsi gned | ong | ong TineT;
unsi gned | ong | ong | naccuracyT;
short TdfT,;
struct UtcT
{
TineT tinme;
unsi gned | ong i naccl o;
unsi gned short inacchi;
Tdf T tdf;
b
struct Interval T
{
Ti meT | ower _bound;
Ti meT upper _bound;
b
H

168

ORBacus

Time Service Concepts

14-18

12.3.3

1
2
3

© 0 ~NO Oh

10
11
12
13
14
15
16
17
18
19
20

An absolute or relative time.

The value of inaccuracy in an absolute or relative time in units of 100 nanoseconds. The
inaccuracy defines an error envelope around a time value that has a lower bound of
max(0, tinme - inaccuracy) and anupper bound of mi n(maxi mumtine, tinme +
i naccur acy) . Only the first 48 bits of the 64 available bits are used to hold inaccuracy.
Using a value requiring more than 48 bits as an inaccuracy argument of a Time Service
operation will raise a CORBA: : BAD_PARAMexception.

The time displacement factor is in the form of minutes of displacement from the Green-
wich Meridian. Displacements East of the meridian are positive, and displacements West
are negative. Hence, adding the time displacement factor to an absolute time will give the
time in the local time zone.

Represents an absolute or relative time along with its associated inaccuracy and time dis-
placement factor. Note that i naccl o and i nacchi together make the 48 bit inaccuracy
value.

Represents a time interval.

Enumerations

Enumerations used by the Time Service are declared in the CosTi me module. An over-
view of the various enumerations follow:

/1 1D
nodul e CosTi e
{
enum Conpari sonType
{
I nterval C
M dC
b
enum Ti meConpari son
{
TCEqual To,
TCLessThan,
TCGr eat er Than,
TCl ndet er mi nat e
b
enum Over | apType
{
OrCont ai ner,
OrCont ai ned,
Oroverl ap,

ORBacus 169

ORBacus Time

21
22
23

16-21

12.3.4

12.3.5

A WN P

OTrNoOver | ap
b
1

This enumeration defines two types of time comparisons. | nt er val C comparisons take
into account the error envelope. M dC comparisons ignore the error envelope and per-
forms the comparison based solely on the time values.

This enumeration defines the possible results of a time comparison. M dC comparisons
can never result in TCl ndet er mi nat e. | nt er val C comparisons result in
TCl ndet er mi nat e if the error envelops overlap.

This enumeration defines the type of overlap between two intervals.

* OTCont ai ner implies that interval A wholly contains interval B. The overlap
interval is equal to interval B.

» OrCont ai ned implies that interval B wholly contains interval A or intervals A and B
are equal. The overlap interval is equal to interval A. (Note: the specification does
not define the result comparing equivalent intervals.)

e OTOver| ap indicates that neither interval wholly contains the other but there is
overlap. The overlap interval is the intersection of the two intervals.

* OTNoOver | ap indicates that the two intervals do not intersect. The overlap interval is
the gap between the two intervals.

Exceptions

In addition to the standard CORBA exceptions, the Time Service may raise the

Ti neUnavai | abl e exception that is declared in the CosTi me module. ORBACUS Time
will always raise the Ti meUnavai | abl e exception when the

secur e_uni ver sal _ti me operation of the Ti meSer vi ce interface is invoked. This is
because ORBACUS Time does not provide secure time.

The Universal Time Object

The Universal Time Object (UTO) represents an absolute or relative time along with its
associated inaccuracy and time displacement factor. The UTO also provides various oper-
ations related to time. The UTO is declared in the CosTi me module as follows:

/1 1DL
nodul e CosTi ne
{

interface TIQ [// forward decl aration

170

ORBacus

Time Service Concepts

© 0N O,

10
11
12
13
14
15
16
17

10

11

12-13

14

15

12.3.6

~NoO OO~ WDN PR

interface UTO

{
readonly attribute TineBase:: TineT tineg;
readonly attribute TineBase::|InaccuracyT inaccuracy;
readonly attribute TineBase:: Tdf T tdf;
readonly attribute TinmeBase::UtcT utc_tine;
UTO absol ute_time();
Ti meConpari son conpare_ti me(
i n ConparisonType conparison_type, in UTO uto);
TIOtime_to_interval (in UTO uto);
TIO interval ();
3
1
Attributes of the UTO.

UtcT structure containing the same attributes as the UTO.

Return a UTO with the absolute time corresponding to the relative time of the UTO. Will
raise a CORBA: : DATA_CONVERSI ON exception in the case that the operation would result
in a overflow.

Compare the time of the UTO parameter with the time of the UTO (the time of the UTO
parameter is the second parameter in the comparison). See “Enumerations” on page 169
for details. Will raise a CORBA: : BAD_PARAMexception if the UTO parameter is nil or if its
inaccuracy attribute is greater then the maximum allowable inaccuracy.

Return a TIO representing the time interval between the time of the UTO and the time of
the UTO parameter. Will raise a CORBA: : BAD_PARAMexception if the UTO parameter is
nil or if its inaccuracy attribute is greater then the maximum allowable inaccuracy.

Return a TIO representing the error envelope of the UTO.

The Time Interval Object

The Time Interval Object (TIO) represents a time interval and provides various operations
related to time intervals. The TIO is declared in the CosTi me module as follows:

/1 1DL
nodul e CosTi ne
{

interface TIO

{

readonly attribute TineBase::Interval T tinme_interval;
Over | apType spans(in UTO tinme, out TIO overlap);

ORBacus 171

ORBacus Time

8 Over |l apType overlaps(in TIO interval, out TIO overlap);
9 UTo time();

10 }s

1}

6 The time interval represented by the TIO.

7 Compare the time interval of the TIO (interval A) with the associated error envelope of the
UTO parameter (interval B). See “Enumerations” on page 169 for details. Will raise a
CORBA: : BAD_PARAMexception if the UTO parameter is nil or if its inaccuracy attribute is
greater then the maximum allowable inaccuracy.

8 Compare the time interval of the TIO (interval A) with the time interval of the TIO param-
eter (interval B). See “Enumerations” on page 169 for details. Will raise a
CORBA: : BAD_PARAMexception if the TIO parameter is nil or if its lower bound is greater
than its upper bound.

9 Return a UTO with an associated error envelop equal to the time interval of the TIO and a
time equal to the midpoint of the time interval. Will raises a CORBA: : DATA_CONVERSI ON
exception if the resulting inaccuracy is greater than the maximum allowable inaccuracy.

12.3.7 The TimeService Object
The TimeService Object provides operations for getting the current time and creating arbi-
trary UTOs and TIOs. The TimeService is declared in the CosTi me module as follows:

1 // 1D

2 nodul e CosTi e

3 {

4 interface TimeService

5 {

6 UTO uni versal _tinme()

7 rai ses(Ti meUnavai | abl e);

8 UTO secure_uni versal _tinme()

9 rai ses(Ti meUnavai | abl e);

10 UTO new_uni versal _time(in TinmeBase:: TineT tinme,
11 in TimeBase: : | naccuracyT inaccuracy,
12 in TinmeBase:: Tdf T tdf);
13 UTO uto_fromutc(in TineBase::UcT utc);
14 TIO new_interval (i n TinmeBase:: Ti meT | ower,
15 in TinmeBase:: Ti meT upper);
172 ORBacus

Time Service Extensions

16
17

8-9

10-13

14-15

12.4

© 00 NO O WNBRF

NNNNNRPRPRPRPRERRERERPRPRE
A WNPOO®O®NO®UMWNLERO

}s
}s

Return a UTO with the current time.

Since ORBACUS Time is not secure, this operation will always raise a Ti mreUnavai | abl e
exception.

Both new_uni versal _ti me and ut o_f r om ut ¢ return a UTO with the specified
attributes.

Return a TTIO with the specified lower and upper bounds.

Time Service Extensions

ORBACUSs provides additional operation for working with the structures defined in the
Ti meBase module. In C++, these operations are provided by the Ti neHel per class and
global functions and are part of the OB module. Declarations are as follows:

[l C++
nodul e OB

{

cl ass Ti meHel per
{
public:
static const CORBA::ULongLong MaxTineT =
OB_ULONGLONG(Oxffffffffffffffff);
static const CORBA::ULongLong Maxl naccuracyT =
OB_ULONGLONG(Oxffffffffffff);

static TineBase:: U cT utcNow(Ti neBase: : | naccuracyT = 0);
static TimeBase::UtcT utcMn();
static TineBase:: U cT utcMax();
static tineval toTineval (const TineBase:: U cT&);
static tineval toTineval (Ti neBase:: Ti neT);
static TineBase::Interval T tol nterval T(Ti mreBase: : Ti neT,
Ti meBase: : | naccuracyT);
static TineBase:: U cT toUt cT(Ti neBase: : Ti neT,
Ti meBase: : | naccuracyT, TinmeBase::TdfT = 0);
static TineBase:: U cT toUtcT(const TineBase::Interval T&);
static char* toString(const TineBase::UcT&):;
static char* toTimeString(const TineBase::UcT&);

ORBacus 173

ORBacus Time

25
26
27
28
29
30
31
32
33
34
35
36
37
38

10-11

13

14

15

16-17

18-19

20-21

22

23-25

28-36

static char* toString(Ti neBase:: Ti neT);

}s

bool operator<(const TineBase:: U cT& const Ti neBase:: U

cT&);

bool operator<=(const TineBase:: U cT& const TineBase::UCcT&);

bool operator>(const TineBase:: U cT& const Ti meBase:: U

cT&);

bool operator>=(const Ti neBase:: Ut cT& const TineBase::UcT&);
bool operator==(const Ti neBase:: Ut cT& const TineBase:: U cT&):;
bool operator!=(const TineBase:: Ut cT& const TineBase::UcT&);

Ti meBase: : Ut cT operator+(const TineBase:: U cT& Ti neBase
Ti neBase: : Ut cT operator+(Ti neBase: : Ti meT, const Ti neBase
Ti meBase: : Ut cT operator-(const TineBase:: U cT& TimeBase

}; // end of nodule OB

o TimeT) ;
Ut ceT&);
D TimeT) ;

The maximum value of the Ti meT type.

The maximum value of the | naccur acyT type.
Return the current UTC time.

Return the minimum UTC time.

Return the maximum UTC time.

Return the equivalent POSIX time.

Create an interval from a time value and its inaccuracy (similar to
UTC:. :tine_to_interval).

Create a UTC time from its different components.
Create a UTC time from an interval (similar to TI O : ti e).
Return the string representation of the UTC time.

e toString(const TineBase:: U cT&) returns the time and date,

* toTineString(const TineBase:: U cT&) returns only the time, and

* toString(TineBase:: Ti neT) returns a string of the form
seconds: m | |iseconds.

Use CORBA: : string_free() to free the return value.
Various relational and arithmetic operators.

Similar operations are available in Java. Declarations are as follows:

174

ORBacus

Time Service Extensions

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

9

10

12

13

14

15

/1 Java
package com ooc. CosTi ne

i mport org.ong. CORBA. *;
i mport org.ong. Ti neBase. *;

public class TineHel per

{
public final static |ong MaxTimeT = OxffffffffffffffffL;
public final static |long MaxlnaccuracyT = OxfffffffffffflL;
public static UtcT utcNow | ong i naccuracy);
public static UtcT utcMn();
public static UtcT utcMax();
public static long toJavaMIlis(UcT utc);
public static long toJavaMIlis(long tine);
public static Interval T tolnterval T(long time, |ong inaccuracy);
public static UWcT toUtcT(long tine, |ong inaccuracy, short tdf);
public static UtcT toUtcT(long tine, long inaccuracy);
public static UtcT toUtcT(Interval T inter);
public static String toString(UtcT utc);
public static String toTineString(UcT utc);
public static String toString(long time);
public static bool ean | essThan(UtcT a, UcT b);
public static bool ean | essThanEqual (UtcT a, UtcT b);
public static bool ean greaterThan(UcT a, UcT b);
public static bool ean greaterThanEqual (UtcT a, UtcT b);
public static bool ean equal (UtcT a, UtcT b);
public static bool ean not Equal (UtcT a, UtcT b);
public static UcT add(UcT a, long t);
public static UcT add(long t, UWcT a);
public static UtcT subtract(UtcT a, long t);

}

The maximum value of the Ti meT type.

The maximum value of the | naccur acyT type.
Return the current UTC time.

Return the minimum UTC time.

Return the maximum UTC time.

Return the equivalent POSIX time in milliseconds.

ORBacus 175

ORBacus Time

16

17

Return the equivalent POSIX time in milliseconds.

Create an interval from a time value and its inaccuracy (similar to
UTC :time_to_interval).

18 Create a UTC time from its different components.
19 Create a UTC time from an interval (similar to TI O : ti re).
21-23 Return the string representation of the UTC time. See description of C++ versions above.
25-33 Various relational and arithmetic operators.
12.5 Programming Example
This section presents a simple program that uses ORBACUS Time to implement a stop
watch. The program is presented in C++, but the Java implementation is similar. The pro-
gram is split into three functions mai n(), run() and st opwat ch(). mai n() only cre-
ates the ORB, initializes the Time Service, and calls r un() :
1 /] C++
2 #include <OB/ CORBA. h>
3 #include <OB/ Ti neService. h>
4 #include <OB/ Ti meHel per. h>
5
6 #include <iostreanp
7
8 using namespace std;
9
10 int run(CORBA:: ORB ptr);
11 int stopwatch(CosTine:: Ti meService_ptr);
12
13 int main(int argc, char* argv[])
14 {
15 int status = EXI T_SUCCESS;
16 CORBA: : ORB _var orb;
17
18 try
19 {
20 orb = CORBA:: ORB_init(argc, argv);
21 OB:: TineServicelnit(orb, argc, argv);
22 status = run(orb);
23 }
24 catch(const CORBA: : Excepti on& ex)
25 {
26 cerr << ex << endl;
176 ORBacus

Programming Example

10-11

20

21

22

30-41

© 00N O WN PR

B
= O

status = EXI T_FAI LURE;
}
i f(!CORBA: :is_nil(orb))
{
try
{
orb -> destroy();
}
catch(const CORBA: : Excepti on& ex)
{
cerr << ex << endl;
status = EXI T_FAI LURE;
}
}
return status;
}
Several header files are included. OB/ CORBA. h provides standard CORBA definitions,

OB/ Ti meSer vi ce. h provides ORBAcCUS Time definitions, and OB/ Ti neHel per . h pro-
vides definitions for ORBACUS Time extensions.

Forward declarations for the r un() and st opwat ch() functions.

Initialize the ORB.

Initialize the Time Service.

Call the run() helper function.

If the ORB was successfully created, it is destroyed.

The run method resolves the Time Service initial reference and calls st opwat ch() :

[l C++

i nt

{

run(CORBA: : ORB_ptr orb)

CORBA: : Obj ect _var obj;

try
{
obj = orb -> resolve_initial _references("“Ti neService”);
}
catch(const CORBA:: ORB:: I nval i dName&)
{

ORBacus 177

ORBacus Time

12 cerr << "Can't resolve 'TinmeService'" << endl;
13 return EXI T_FAI LURE;

14 }

15

16 i f(CORBA::is_nil(obj))

17 {

18 cerr << "'TimeService' is a nil object reference" << endl;
19 return EXI T_FAI LURE;

20 }

21

22 CosTime:: Ti meService_var ts =

23 CosTime: : Ti meService::_narrow(obj);

24

25 i f(CORBA: :is_nil(ts))

26 {

27 cerr << "'TineService' is not a TinmeService "
28 << "object reference" << endl;

29 return EXI T_FAI LURE;

30 }

31

32 return stopwatch(ts);

33 }

8 Using the ORB reference, r esol ve_i ni ti al _r ef er ence is invoked to obtain a refer-
ence to the Time Service.

23-23 The reference is then narrowed to a reference of type CosTi ne: : Ti neSer vi ce.

st opwat ch() uses the Time Service to implement a stop watch:

1 /] C++

2 int stopwatch(CosTine:: TineService_ptr ts)

3 {

4 CosTi ne: : UTO var start;

5 CosTi nme: : UTO var st op;

6

7 try

8 {

9 cout << "Press Enter to start " << flush;
10 cin.get();

11 start = ts -> universal _tinme();

12 cout << "Press Enter to stop " << flush;
13 cin.get();

14 stop = ts -> universal _tinme();

15 }

178 ORBacus

Programming Example

16 cat ch(const CosTi ne: : Ti meUnavai | abl e&)

17 {

18 cout << "Time not avail able" << endl;

19 return EXI T_FAI LURE;

20 }

21

22 CORBA: : String_var str =

23 OB: : TineHel per::toTinmeString(start -> utc_time());

24 cout << "Start tinme: " << str << endl;

25

26 str = OB::TineHel per::toTimeString(stop -> utc_tine());

27 cout << "Stop tine: " << str << endl;

28

29 Ti neBase: : Ti neT el apsed = stop -> time() - start -> tinme();
30 cout << "Elapsed tinme: " << (unsigned |long)(elapsed / 10000)
31 << " ms" << endl;

32

33 return EXI T_SUCCESS;

34 }

7-20 Get the start and stop times.
22-27 Output the start and stop times.

29-31 Compute elapsed time and output result.

ORBacus

179

ORBacus Time

180 ORBacus

CHAPTER 13

ORBacus Events

13.1

13.1.1

Some applications need to exchange information without explicitly knowing about each
other. Often a server isn’t even aware of the nature and number of clients that are inter-
ested in the data the server has to offer. A special mechanism is required that provides
decoupled data transfer between servers and clients. This issue is addressed by the
CORBA Event Service.

ORBAcuUs Events is compliant with [9]. This chapter does not provide a complete descrip-
tion of the service. It only provides an overview, suitable to get you started. For more
information, please refer to the specification.

Synopsis

Usage

ORBAcuUs includes functionally equivalent implementations of the Event Service in C++
and Java.

C++

eventserv

[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u, --untyped-service]

ORBacus 181

ORBacus Events

13.1.2

Java

com ooc. CosEvent . Server

[-h,--hel p]

[-v,--version] [-i,--ior] [-t,--typed-service]

[-u, --untyped-service]

Options

-h
--help

-V
--version

-
--ior

-t
--typed-service

-u

--untyped-service

Display the command-line options supported by the server.

Display the version of the server.

Print the stringified IOR of the server to standard output.

Run a typed event service.

Run an untyped event service. This is the default behavior.

Windows NT Native Service

The C++ version of ORBACUS Events is also available as a native Windows NT service.

nt event servi ce
[-hv_-hel p]

[-i,--install] [-s,--start-install]

[-u,--uninstall] [-d, --debug]

-h

--help

-

--instal

-s
--start-instal
-u

- -uni nst al

-d

- - debug

Display the command-line options supported by the server.

Install the service. The service must be started manually.

Install and start the service.

Uninstall the service.

Run the service in debug mode.

182

ORBacus

Synopsis

13.1.3

In order to use the Event Service as a native Windows NT service, it is first necessary to
add the ooc. event . port property to the HKEY_LOCAL_MACHI NE NT registry key (see
“Using the Windows NT Registry” on page 60 for more details).

Next the service should be installed with:

nt event service -i

This adds the ORBacus Event Servi ce entry to the Ser vi ces dialog in the Control
Panel. To start the event service, select the ORBacus Event Servi ce entry, and press
St art . If the service is to be started automatically when the machine is booted, select the
ORBacus Event Servi ce entry, then click St artup. Next select Startup Type -
Aut omat i ¢, and press OK. Alternatively, the service could have been installed using the
- s option, which configures the service for automatic start-up:

nt event service -s

If you want to remove the service, run:

nt event service -u

Note: If the executable for the Event Service is moved, it must be uninstalled and re-
installed.

Any trace information provided by the service is be placed in the Windows NT Event
Viewer with the title Event Ser vi ce. To enable tracing information, add the desired trace
configuration property (i.e., one of the ooc. event . t r ace properties or one of the

ooc. or b. t r ace properties) to the HKEY_LOCAL_MACHI NE NT registry key with a
REG_SZ value of at least 1.

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS
Events also supports the following properties:

ooc. event.inactivity_timeout=sec Proxies that are inactive for the specified number
of seconds will be reaped. The default value is four
hours.

ooc. event. max_events The maximum number of events in each event
queue. If this limit is reached and another event is
received, the oldest event is discarded.The default
value is 10.

ORBacus 183

ORBacus Events

13.14

The maximum number of times to retry before
giving up and disconnecting the proxy. The default
value is 10.

Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if the ooc. oa. port
property is not set.

This specifies the number of milliseconds between
successive calls to pull on Pul | Suppl i er.
Default value is 0.

This specifies the frequency (in seconds) in which
inactive proxies will be reaped. The default value
is thirty minutes. Setting this property to 0 disables
the reaping of proxies.

Specifies the initial amount of time in milliseconds
that the service waits between successive
retries. The default value is 1000.

A doubl e that defines the factor by which the
retry_ti meout property should be multiplied
for each successive retry.

Defines the output level for event diagnostic mes-
sages printed by ORBACUS Events. The default
level is 0, which produces no output. A level of 1
or higher produces event processing information
and a level of 2 or higher produces event creation
and destruction information.

Defines the output level for lifecycle diagnostic
messages printed by ORBACUS Events. The
default level is 0, which produces no output. A
level of 1 or higher produces lifecycle information
(e.g. creation and destruction of Suppliers and
Consumers).

Equivalent to the - t command-line option.

ORBAcUSs Events generates diagnostic messages if the ooc. orb. t race_I evel property

184

ooc. event.nax_retries

ooc. event . port =port

ooc. event. pul | _i nterval =nsec
ooc. event . reap_frequency=sec
ooc.event.retry_timeout =nsec
ooc.event.retry_multiplier=n
ooc. event . trace. event s=LEVEL
ooc. event.trace.|ifecycl esLEVEL
ooc. event.typed_service
Diagnostics

is set to 2.

ORBacus

Connecting to the Service

13.1.5

13.2

CLASSPATH Requirements

ORBAcuUs Events for Java requires the classes in OB. j ar and OBEvent . j ar.

Connecting to the Service

The object key of the Event Service depends on whether it is running as a “typed” or

“untyped” service. The object keys and corresponding interface types are shown in Table
13.1.

Object Key Interface Type
Even.t Def aul t Event Channel CosEvent Channel Admi n: :
Service Event Channel

Typed Event CosTypedEvent Channel Admi n: :
Service Def aul t TypedEvent Channel TypedEvent Channel

Table 13.1: Primary Object Keys and Interface Types

The object key can be used when composing URL-style object references. For example,
the following URL identifies the untyped event service running on host evhost at port
10000:

cor bal oc: : evhost : 10000/ Def aul t Event Channel
Refer to Chapter 6 for more information on URLs and configuring initial services.

ORBAcus Events also provides proprietary “factory” interfaces which allow construction
and administration of multiple event channels in a single service. The object keys and cor-
responding interface types of the factories are shown in Table 13.2.

Object Key Interface Type

Event

Channel Def aul t Event Channel Factory OBEvent Channel Factory: :
Event Channel Factory

Factory

Typed Event .

Channel Def aul t TypedEvent Channel Fact ory OBTypedEvent Channel Factory: :
TypedEvent Channel Fact ory

Factory

Table 13.2: Factory Object Keys and Interface Types

ORBacus 185

ORBacus Events

13.3

For a description of the factory interfaces, please refer to the documented IDL files
event /i dl / OBEvent Channel Factory.idl and
event/idl / OBTypedEvent Channel Factory.idl .

Using the Event Service with the IMR

The Event Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it is important to note that the cor bal oc URL-style object reference
described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the “untyped” Event Service must be created using one of the following methods
(where Event Ser ver refers to the server name configured with the IMR):

« start the Event Service with the options:
- ORBserver_nane Event Server --ior
causing the Event Service to print its reference to standard output.

* use the nkr ef utility:
nkref Event Server Def aul t Event Channel Event Servi cePOA

For the “typed” Event Service, the object reference must be created using one of the fol-
lowing methods:

» start the Event Service with the options:
- ORBserver _nane Event Server --typed-service --ior
causing the Event Service to print its reference to standard output.

e use the nkr ef utility:
nkref Event Server Def aul t TypedEvent Channel Event Servi cePOA

Object references for the ORBACUS proprietary “factory” objects can be created using the
following commands:

nkref Event Server Defaul t Event Channel Factory Event Servi cePQA
nkref Event Server Defaul t TypedEvent Channel Factory Event Servi cePOA

When using the Event Service with the IMR, the service must be started with the option

- ORBserver _nanme Event Server, where Event Ser ver refers to the server name con-
figured with the IMR. When the IMR is configured to start the Event Service, this option
is automatically added to the service’s arguments. However, when the Event Service is
started manually, the option must be present. For further information on configuring a ser-
vice with the IMR, refer to “Getting Started with the Implementation Repository” on
page 124.

186

ORBacus

Event Service Concepts

13.4

13.4.1

13.4.2

Event Service Concepts

The Event Channel

The Event Service distributes data in the form of events. The term event in this context
refers to a piece of information that is contributed by an event source. An event channel
instance accepts this information and distributes it to a list of objects that previously have
connected to the channel and are listening for events.

The Event Service specification defines two distinct kinds of event channels: untyped and
typed. Whereas an untyped event channel forwards every event to each of the registered
clients in the form of a CORBA Any, a typed event channel works more selectively by
supporting strongly-typed events which allow for data filtering. We will only discuss the
untyped event channel here. For information on typed event channels, and more details on
the Event Service in general, please refer to the official Event Service specification [9].

Event Suppliers and Consumers

Applications participating in generating and accepting events are called suppliers and con-
sumers, respectively. Suppliers and consumers each come in two different versions,
namely, push suppliers and pull suppliers, and push consumers and pull consumers.

What’s the difference between pushing events and pulling events? Let’s have a look at the
consumer side first. Some consumers must be immediately informed when new events
become available on an event channel. Such consumers usually act as push consumers.
They implement the PushConsuner interface which ensures that the event channel
actively forwards events to them using the push() operation:.

/1 1DL
i nterface PushConsuner

{
void push(in any data)
rai ses(Di sconnect ed);

voi d di sconnect _push_consuner ();

b

Push consumers are passive, that is, are servers. Conversely, pull consumers are active,
that is, are clients. Pull consumers poll an event channel for new events. As events may
arrive at a greater rate than they are polled for by a pull consumer or accepted and pro-
cessed by a push consumer, some events might get lost. A buffering policy implemented
by the event channel determines whether events are buffered and what happens in case of
an event queue overflow.

ORBacus 187

ORBacus Events

13.4.3

13.4.4

Like consumers, suppliers can also use push or pull behavior. Push suppliers are the more
common type, in which the supplier directly forwards data to the event channel and thus
plays the client role in the link to the channel. Pull suppliers, on the other hand, are polled
by the event channel and supply an event in response, if a new event is available. Polling
isdone by the try_pul | () operation if it is to be non-blocking or by the blocking

pul I () call:

/! 1DL
interface Pull Supplier
{

any pul | ()

rai ses(Di sconnect ed);

any try_pull (out bool ean has_event)
rai ses(Di sconnect ed) ;

voi d di sconnect _pul | _supplier();

Event Channel Policies

The untyped event channel implementation included in the ORBACUS distribution features
a simple event queue policy. Events are buffered in the form of a queue, i.e., a certain
number of events are stored and, in case of a buffer overflow, the oldest events are dis-
carded.

Event Channel Factories

The standard CORBA Event Service provides no support for managing the lifecycle of
event channels; as a result, applications requiring multiple channels are often forced to run
a separate instance of the Event Service for each channel. To remedy this situation,
ORBAcus Events provides optional, proprietary interfaces for event channel administra-
tion.

The OBEvent Channel Fact ory: : Event Channel Fact ory interface describes the fac-
tory for untyped event channels:

/1 1D
nodul e OBEvent Channel Fact ory
{

typedef string Channelld;
t ypedef sequence<Channel | d> Channel | dSeq;

exception Channel Al readyExi sts {};

188

ORBacus

Event Service Concepts

exception Channel Not Avai | abl e {};

i nterface Event Channel Factory

{

CosEvent Channel Admi n: : Event Channel
create_channel (in Channel 1d id)
rai ses(Channel Al r eadyExi sts);

CosEvent Channel Adm n: : Event Channel
get _channel _by_id(in Channel Id id)
rai ses(Channel Not Avai | abl e) ;

Channel 1 dSeq get _channel s();

voi d shutdown();
}
}

The OBTypedEvent Channel Fact ory: : TypedEvent Channel Fact ory interface
describes the factory for typed event channels:

/1 1DL

nodul e OBTypedEvent Channel Factory
{

i nterface TypedEvent Channel Factory
{

CosTypedEvent Channel Admi n: : TypedEvent Channel
create_channel (i n OBEvent Channel Factory:: Channel | d id)
rai ses(OBEvent Channel Fact ory: : Channel Al r eadyExi sts);

CosTypedEvent Channel Admi n: : TypedEvent Channel
get _channel _by_i d(i n OBEvent Channel Factory:: Channel I d id)
rai ses(OBEvent Channel Fact ory: : Channel Not Avai | abl e) ;

OBEvent Channel Fact ory: : Channel | dSeq get _channel s();

voi d shut down();
i
i

At start-up, the untyped Event Service creates a single channel having the identifier

Def aul t Event Channel , and the typed Event Service creates a single channel having the
identifier Def aul t TypedEvent Channel . A channel’s identifier also serves as its object
key; therefore, a channel can be located using a cor bal oc: URL (see “corbaloc: URLs”

ORBacus 189

ORBacus Events

13.5

on page 105). For example, a channel with the identifier Tel enet r yDat a can be located
on the host myhost at port 2098 using the following URL:

cor bal oc: : nyhost : 2098/ Tel enmet r yDat a

To obtain the object reference of a channel factory, use a cor bal oc: URL with the object
key as shown in Table 13.1 on page 185. For example, assuming the untyped Event Ser-
vice is running on host myhost at port 2098, here is how a C++ application can obtain the
object reference of the channel factory and create a channel with the identifier

Tel enet ryDat a:

/] C++
CORBA: : Obj ect _var obj = orb -> string_to_object(
"corbal oc: : myhost: 2098/ Def aul t Event Channel Factory");
OBEvent Channel Fact ory: : Event Channel Factory_var factory =
OBEvent Channel Fact ory: : Event Channel Factory:: _narrow(obj);
CosEvent Channel Admi n: : Event Channel _var channel =
factory -> create_channel ("Tel enetryData");

Here is the same example in Java:

/1 Java

org. ong. CORBA. Obj ect obj = orb.string_to_object(
"corbal oc: : myhost : 2098/ Def aul t Event Channel Factory");

com ooc. OBEvent Channel Fact ory. Event Channel Factory factory =
com ooc. OBEvent Channel Fact ory. Event Channel Fact or yHel per.
narr om obj) ;

or g. ong. CosEvent Channel Adni n. Event Channel channel =
factory. create_channel ("Tel enetrybData");

Programming Example

In the Event Service example that comes with ORBACUS, two supplier and two consumer
clients demonstrate how to use an untyped event channel to propagate information. The
pieces of information transferred by this example are strings containing the current date
and time. After starting the Event Service server, you can start these clients in any order.
The demo applications obtain the initial Event Service reference as already demonstrated,
i.e., by calling r esol ve_i ni ti al _r ef er ences. When started, each supplier provides
information about the current date and time and each client displays the event data in its
console window.

This is the push supplier’s main loop:

/1 Java
whi | e(consumer_ !'= null)

190

ORBacus

Programming Example

© 0 ~NO O W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

4-8

10-17

19-25

O WN R

{
java.util.Date date = new java.util.Date();
String s = "PushSupplier says: " + date.toString();
Any any = orb_.create_any();
any.insert_string(s);
try
{
consuner _. push(any);
}
cat ch(Di sconnected ex)
{
/1 Supplier was di sconnected from event channel
}
try
{
Thr ead. sl eep(1000) ;
}
catch(I nterruptedException ex)
{
}
}

The current date and time is inserted into the Any.

The event data, in this example date and time, are pushed to the event channel. From the
push supplier’s view the event channel is just a consumer implementing the
PushConsuner interface.

After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that the event
channel explicitly polls the supplier for new events. This is done by either pul | () or
try_pul | (). The pull supplier doesn’t see anything from the event channel but an object
implementing the Pul | Consuner interface. The following example shows the basic lay-
out of a pull supplier:

/1 Java
public Any pull ()
{

java.util.Date date = new java.util.Date();
String s = "Pull Supplier says: " + date.toString();

ORBacus 191

ORBacus Events

(0]

10
11
12
13
14
15
16
17
18
19

13-19

© 00N O~ WN B

e =
N P O

13

Any any = orb.create_any();
any.insert_string(s);
return any,

}

public Any

try_pul | (Bool eanHol der has_event)

{
has_event.val ue = true;
return pull ();

}

Date and time are inserted into the Any.

In this example new event data can be provided at any time, sotry_pul | () always sets
has_event to tr ue in order to signal that an event is available. It then returns the actual
event data.

After examining the most important aspects of the event suppliers’ code, we are now
going to analyze the consumers’ code. The push consumer with its push() operation is
shown first:

/1 Java
public void push(Any any)
{

try

{

String s = any.extract_string();
System out . println(s);

}
cat ch(MARSHAL ex)
{
/1 1gnore unknown event data
}

}

The push consumer’s push() operation is called with the event wrapped in a CORBA
Any. In this code fragment it is assumed that the Any contains a string with date and time
information. In case the Any contains another data type a MARSHAL exception is
thrown.This exception can be ignored here because other events aren’t of interest. After
extracting the string it is displayed in the console window.

192

ORBacus

Programming Example

© 00O ~NOO O~ WDNPR

NNNNRPRRPRPEPRREPRRERRPRPR
WNPOOOWNO®UMWNLERO

24

15-23

In contrast to the push consumer, the pull consumer has to actively query the event chan-
nel for new events. This is how the pull consumer loop looks:

/1 Java
whi | e(supplier_ !'= null)
{
Any any = null;
try
{
any = supplier_.pull();
}
cat ch(Di sconnect ed ex)
{
/1 Supplier was di connected from event channel
}
try
{
String s = any.extract_string();
System out. println(s);
}
cat ch(MARSHAL ex)
{
/1 1gnore unknown event data
}

}
A CORBA Any is prepared for later use.

Using pul | (), the consumer polls the event channel for new events. The event channel
acts as a pull supplier in this case. The pul | () operation blocks until a new event is avail-
able.

The consumer expects a string wrapped in a CORBA Any. The string value is extracted
and displayed. If an exception is raised the Any contained some other data type which is
simply ignored.

In all of these examples the event channel acts either as a consumer (if the clients are sup-
pliers) or a supplier (if the clients are consumers) of events. Actually each client is not
directly connected to the event channel but to a proxy that receives or sends events on
behalf of the channel. For more information on the Event Service and for the complete
definitions of the IDL interfaces, please refer to the official Event Service specification.

ORBacus 193

ORBacus Events

194 ORBacus

CHAPTER 14

The Interface Repository

14.1

14.1.1

A CORBA Interface Repository (IFR) is essential for applications using the dynamic fea-
tures of CORBA, such as the Dynamic Invocation Interface and DynAny. The IFR holds
IDL type definitions and can be queried and traversed by applications.

The ORBACUS Interface Repository is compliant with [4]. This chapter does not provide a
complete description of the IFR. For more information, please refer to the specification.

Synopsis

Usage

The ORBACUS Interface Repository is currently only provided with ORBAcUS for C++.

irserv
[-h,--help] [-v,--version] [-e NAME, --cpp NAME] [-d, --debug]
[-i,--ior] [-DNAVE] [-DNAME=DEF] [-UNAME] [-IDIR [-E]
[--case-sensitive] [FILE ...]

-h . . .

--hel p Display the command-line options supported by the server.

-V . Display the version of the server.

--version

ORBacus 195

The Interface Repository

-e NAME

--cpp NAME Use NAME as the preprocessor program.

-d Print diagnostic messages. This option is for ORBACUS internal

- -debug debugging purposes only.

: I_ i or Print the stringified IOR of the server to standard output.

- DNAME Defines NAME as DEF, or 1 if DEF is not provided. This option is passed

- DNAME=DEF directly to the preprocessor.

- UNAMVE Removes any definition for NAME. This option is passed directly to the
preprocessor.

.IDR Adds DI Rto the include file search path. This option is passed directly to
the preprocessor.

-E Run only the preprocessor.

The semantics of OMG IDL forbid identifiers in the same scope
to differ only in case. This option relaxes these semantics, but is
only provided for backward compatibility with non-compliant
IDL.

--case-sensitive

FILE ... IDL files to be loaded into the repository.

14.1.2 Windows NT Native Service

ntirservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d, --debug]

-h

--hel p Display the command-line options supported by the server.

—_install Install the service. The service must be started manually.

-S

. Install the service and start it.
--start-install

-u
--uninstall

-d
- - debug

Uninstall the service.

Run the service in debug mode.

196 ORBacus

Synopsis

14.1.3

In order to use the IFR as a native Windows NT service, it is first necessary to add the
ooc. i fr.port configuration property to the HKEY_LOCAL_MACHI NE NT registry key
(see “Using the Windows NT Registry” on page 60 for more details).

Next the service should be installed with:

ntirservice -i

This adds the ORBacus | nterface Repository Service entry to the Ser vi ces dia-
log in the Control Panel. To start the naming service, select the ORBacus | nterface
Reposi tory Servi ce entry, and press St ar t . If the service is to be started automati-
cally when the machine is booted, select the ORBacus I nterface Repository

Ser vi ce entry, then click St art up. Next select Startup Type - Aut onati c, and
press OK. Alternatively, the service could have been installed using the - s option, which
configures the service for automatic start-up:

ntirservice -s

If you want to remove the service, run:

ntirservice -u

Note: If the executable for the Interface Repository is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is placed in the Windows NT Event Viewer
with the title | RSer vi ce. To enable tracing information, add the desired trace configura-
tion property (i.e., one of the ooc. or b. t r ace properties) to the HKEY_LOCAL_ MACHI NE
NT registry key with a REG_SZ value of at least 1.

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, the ORBACUS
Interface Repository also supports the following properties:

ooc.ifr.opti ons=0PTS Allows command-line options to be passed to the Win-
dows NT Native service at start-up. Note that absolute
pathnames should be used when specifying include direc-
tives, IDL files, etc.

ooc.ifr. port=PORT Specifies the port number on which the service should lis-
ten for new connections. Note that this property is only
considered if the 00C. 0a. port property is not set.

ORBacus 197

The Interface Repository

14.2 Connecting to the Interface Repository

The object key of the IFR is Def aul t Reposi t or y, which identifies an object of type
CORBA: : Reposi tory.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the IFR running on host i f r host at port 10000:
corbal oc: :i frhost: 10000/ Def aul t Reposi tory

Refer to Chapter 6 for more information on URLs and configuring initial services.

14.3 Configuration Issues

Although applications can interact with the IFR as with any other CORBA server, it does
have special status within the ORB. Specifically, use of the standard operation
Obj ect:: get_interface() requires the presence of an IFR:

/1 PIDL
interface Object

{

InterfaceDef get_interface();

}s

The exact semantics of get _i nt er f ace can be a source of confusion. In ORBACUS, as
with most other ORBs, the get _i nt er f ace operation is a remote operation. That is,
when a client invokes get _i nt er f ace on an object reference, the request is sent to the
server. The server knows the interface type of the object reference and interacts with the
IFR to locate the appropriate CORBA: : | nt er f aceDef object to return to the client.
Therefore, the server must be configured for the IFR. It is not necessary to configure the
client for the IFR if the client’s only interaction with the IFR is via get _i nt er f ace.

14.4 Interface Repository Utilities

14.4.1 irfeed
IDL files can be loaded into the IFR at runtime using i r f eed. See the description of the
i rserv command for more information on the command-line options.

irfeed [-h,--help] [-v,--version] [-e NAME --cpp NAMVE] [-d, --debug]
[- DNAME] [-DNAME=DEF] [-UNAME] [-IDIR] [-E] FILE ...

198 ORBacus

Programming Example

14.4.2

14.5

© 00O ~NO O~ WN PR

NNNMNNNNNMNNNRPRPRRPRPRRERPRPRREER
O~NOU A WNRPEPO®OO®ONOOWONMWRNLEREO

irdel

Type definitions can be removed from the IFR using i r del . See the description of the
i rserv command for more information on the command-line options.

irdel [-h,--help] [-v,--version] nane ...

The nane argument represents the scoped name of the type to be removed. A scoped name
has the form “X::Y::Z”. For example, an interface | defined in a module Mcan be identi-
fied by the scoped name “M::I”.

Programming Example

Below is a simple example in Java that demonstrates how to obtain an | nt er f aceDef
object and display its contents:

/1 Java
i mport org.ong. CORBA. *;

org.ong. CORBA.ORB = ... // initialize the ORB
org.ong. CORBA. Obj ect obj = ... // get object reference sonmehow

org. ong. CORBA. Obj ect defCbj = obj._get_interface_def();
if(defbj == null)
{
Systemerr.println("No Interface Repository avail able");
Systemexit(1);
}

I nterfaceDef def = InterfaceDef Hel per.narrow def Obj);
org. ong. CORBA. | nt er f aceDef Package. Ful | | nt erf aceDescri pti on desc =
def . descri be_interface();

int i;

Systemout.println("name = " + desc. nane);
Systemout.printin("id =" + desc.id);
Systemout.println("defined_in =" + desc.defined_in);
Systemout.println("version =" + desc.version);
System out.println("operations:");

for(i = 0 ; i < desc.operations.length ; i++)

{

Systemout.printin(i + ": " + desc.operations[i].nang);

ORBacus 199

The Interface Repository

29
30
31
32
33
34
35
36
37
38
39

5-8

16-17

19-39

}
Systemout.println("attributes:");
for(i = 0 ; i < desc.attributes.length ; i++)
{
Systemout.println(i + ": " + desc.attributes[i].nane);
}
System out. println("base_interfaces:");
for(i = 0 ; i < desc.base_interfaces.length ; i++)
{
Systemout.println(i + ": " + desc.base_interfaces[i]);
}

After initializing the ORB and obtaining an object reference, we invoke
_get _interface_def ! on the object.

If no interface definition could be found, _get _i nterface_def returns nil.

Narrow the object reference to | nt er f aceDef . We now have a reference to an object in
the IFR that describes the most-derived type of our object reference.

Request a complete description of the interface.
Print information about the interface, including the names of its operations and attributes.

A complete example of how to use the IFR can be found in the ob/ deno/ r eposi tory
subdirectory.

1. Recent versions of the IDL-to-Java mapping introduced the _get _i nt er f ace_def operation,
which returns or g. ong. CORBA. Obj ect instead of or g. ong. CORBA. | nt er f aceDef . Portable
Java applications should use _get _i nt er f ace_def . In C++, the operation is
_get_interface.

200

ORBacus

CHAPTER 15

Using Policies

15.1

Overview

The ORB and its services may allow the application developer to configure the semantics
of its operations. This configuration is accomplished in a structured manner through inter-
faces derived from the interface CORBA: : Pol i cy.

There are two basic types of policies: those used to configure the ORB and those used to
create a new POA. Furthermore, the configuration of ORB policy objects is accomplished
at two levels:

* ORB Level: These policies override the system defaults. The ORB has an initial
reference ORBPol i cyManager. A Pol i cyManager has a set of operations through
which the current set of overriding policies can be obtained, and new policies can be
applied.

* Object Level: The object interface contains operations to retrieve and set policies for
itself. Policies applied at the object level override those applied at the thread level, or
the ORB level.

For more information on Policies, the Pol i cyManager interface and the
CORBA: : Obj ect policy operations see [8] and [4].

ORBacus 201

Using Policies

15.2

Supported Policies

The following is a brief description of the ORBACUS-specific policies that are currently
supported. For a detailed description, please refer to Appendix B. For standard policies,
please refer to [4].

OB::ACMTimeoutPolicy

This policy determines whether the ORB performs “active connection management”
(ACM) on the connection associated with an object reference. The policy specifies a time
after which idle connections are shutdown. A value of 0 means no timeout. The default for
this policy is the value of the ooc. or b. cl i ent _t i meout property (see
“ooc.orb.client_timeout” on page 50).

OB::ConnectionReusePolicy

This policy determines whether the ORB is permitted to reuse a communications channel
between peers. If this policy is f al se then each object will have a new communications
channel to its peer. The default for this policy is t r ue.

OB::ConnectTimeoutPolicy

If an object has this policy and a connection cannot be established after val ue millisec-
onds, a CORBA: : NO_RESPONSE exception is raised.

OB::InterceptorPolicy

This policy determines whether interceptors will be called. This policy can be set on an
ORB or object reference to control client-side interceptors, and can be set on a POA to
control server-side interceptors.

OB::LocationTransparencyPolicy

This policy determines how strictly the ORB will enforce location transparency. The
default behavior is strict enforcement, but an application may wish to sacrifice strict
CORBA compliance to improve performance for local invocations.

OB::ProtocolPolicy

This policy is used to force the selection of a particular protocol. If this policy is set, then
the protocol with the identified tag will be used, if possible. If it is not possible to use this
protocol, a CORBA: : NO_RESOURCES exception will be raised.

202

ORBacus

Programming Examples

15.3

15.3.1

OB::RequestTimeoutPolicy

If an object has this policy and no response is available for a request after val ue millisec-
onds, a CORBA: : NO_RESPONSE exception is raised.

OB::RetryPolicy

This policy is used to specify whether requests should be retried after communication fail-
ures.

OB:: TimeoutPolicy

If an object has this policy and a connection cannot be established or no response is avail-
able for a request after val ue milliseconds, a CORBA: : NO_RESPONSE exception is raised.
If an object has OB: : Connect Ti meout Pol i cy or OB: : Request Ti neout Pol i cy set,
those policies have precedence.

Programming Examples

Connection Reuse Policy

The following examples demonstrate how to set OB: : Connect i onReusePol i cy at both
the ORB level and the object level in C++ and Java. Setting a policy at the ORB level
means that the ORB will honor this policy for all newly created objects. Existing objects
maintain their current set of policies. Setting a policy at the object level overrides any
ORB level policies applied to that object.

Setting the connection reuse policy to f al se at the ORB level means that the ORB will
create a new connection from the client to the server for each new proxy object instead of
reusing existing ones. Setting the connection reuse policy to f al se at the object level
means that the client does not reuse connections to the server only for a particular proxy
object.

If the connection reuse policy is set to t r ue at some later point, communications channels
that were previously created with a connection reuse policy set to f al se will not be
reused. That is, the connection reuse policy is sticky, in the sense that the reuse policy that
was in effect at the time that a communications channel is created stays with it. Setting the
reuse policy at the object level means that for a client the ORB will not reuse the commu-
nications channel that is associated with the proxy object.

ORBacus 203

Using Policies

© 00N O WN B

PP
= O

11

© 00N O~ WN B

B
= O

=
'

=

=

Connection Reuse Policy at ORB Level

Our first example shows how the connection reuse policy can be set at the ORB level. First
in C++:

Il C++

CORBA: : Any bool Any;

bool Any <<= CORBA:: Any: :from bool ean(0);

CORBA: : Pol i cyLi st policies;

policies.length(1l);

policies[0] = orb -> create_policy(0B:: CONNECTI ON_REUSE_PCLI CY_I D,
bool Any) ;

CORBA: : Obj ect _var pnOhj =
orb -> resolve_initial _references("ORBPol i cyManager");

CORBA: : Pol i cyManager _var pm = CORBA: : Pol i cyManager:: _narrow pnchj);

pm -> add_pol i cy_overrides(policies);

Create an any and insert the value 0 (false).
Create a sequence containing one policy object.

Ask the ORB to create a connection reuse policy. Pass the any that contains the value for
this policy.

Obtain the ORB level policy manager object.
Add the policies to the ORB level policy manager.

And here is the same example in Java:

/1 Java
org. ong. CORBA. Any bool Any = orb.create_any();
bool Any. i nsert _bool ean(fal se);
or g. ong. CORBA. Policy[] policies = new org. ong. CORBA. Policy[1];
policies[0] =
orb. create_policy(com ooc. OB. CONNECTI ON_REUSE_POLI CY_I D. val ue,
bool Any);
or g. ong. CORBA. Pol i cyManager pm =
or g. ong. CORBA. Pol i cyManager Hel per. nar r ow(
orb.resolve_initial _references("ORBPolicyManager"));
pm add_pol i cy_overrides(policies);

This is equivalent to the C++ version.

204

ORBacus

Programming Examples

Connection Reuse Policy at Object Level

And now the same example, but at the object level. C++ first:

1 /] C++

2 CORBA: : Any bool Any;

3 bool Any <<= CORBA:: Any: : from bool ean(0);

4 CORBA:: PolicyList policies(1);

5 policies.length(1);

6 policies[0] = orb -> create_policy(OB:: CONNECTI ON_REUSE _POLI CY_I D,

7 bool Any) ;

8 CORBA: : Obj ect _var newChj =

9 obj -> _set_policy_overrides(policies, CORBA: :ADD OVERRI DE);
2-6 This is the same as in the example for the ORB level.

Set the policy on the object by using the _set _pol i cy_overri des method. This
method returns a new object that has the set of policies applied.

And here is the same example in Java:

1 // Java
2 org.ong. CORBA. Any bool Any = orb.create_any();
3 bool Any.insert_bool ean(fal se);
4 org.ong. CORBA. Policy[] policies = new org. ong. CORBA. Policy[1];
5 policies[0] =
6 orb. create_policy(com ooc. OB. CONNECTI ON_REUSE _POLI CY_I D. val ue,
7 bool Any);
8 org.ong. CORBA. bj ect newChj =
9 obj . _set_policy_override(policies,
10 or g. ong. CORBA. Set Overri deType. ADD_OVERRI DE) ;

1-9 This is equivalent to the C++ version.

15.3.2 Timeout Policy

This example shows how to configure timeouts at the object level. As usual, the C++ ver-
sion is presented first, followed by the Java version:

/] C++

CORBA: : Any ULongAny;

ULongAny <<= (CORBA:: ULong) 1000;

CORBA: : Pol i cyLi st policies(1);

policies.length(1);

policies[0] =orb ->create_policy(OB:: TI MEQUT_PCLI CY_I D, ULongAny);

o O~ WDN P

ORBacus 205

Using Policies

7 CORBA: : Obj ect _var newChj =
8 obj -> _set_policy_overrides(policies, CORBA:: ADD OVERRI DE);

2-6 We want to set the timeout to a value of 1000 milliseconds.

7-8 Set the policy on the object by using the _set _pol i cy_overri des method. This
method returns a new object that has the set of policies applied.

And now the same example in Java:

1 // Java
2 org.ong. CORBA. Any ULongAny = orb.create_any();
3 ULongAny.insert_ul ong(1000);
4 org.ong. CORBA. Policy[] policies = new org. ong. CORBA. Pol i cy[1];
5 policies[0] =
6 orb. create_policy(comooc. OB. Tl MEQUT_PCLI CY_I D. val ue,
7 ULongAny) ;
8 org.ong. CORBA. bj ect newChj =
9 obj . _set_policy_override(policies,
10 or g. ong. CORBA. Set Overri deType. ADD_OVERRI DE) ;
1-10 This is equivalent to the C++ version.

Note that you can also set the timeout policy at the ORB level.

206 ORBacus

CHAPTER 16

Concurrency Models

16.1

16.1.1

16.1.2

Introduction

What is a Concurrency Model?

A concurrency model describes how an Object Request Broker (ORB) handles communi-
cation and request execution. There are two main categories of concurrency models, sin-
gle-threaded concurrency models and multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaves while a request is sent
or received in a single-threaded environment. For example, one model is to simply let the
ORB block on sending and receiving messages. Another model is to let the ORB do some
work while sending and receiving messages, for example to receive user input through a
keyboard or a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of multiple threads,
for example to send and receive messages “in the background.” Multi-threaded concur-
rency models also describe how several threads can be active in the user code and the strat-
egy the ORB employs to create these threads.

Why different Concurrency Models?

There is no “one size fits all” approach with respect to concurrency models. Each concur-
rency model provides a unique set of properties, each having advantages and disadvan-

ORBacus 207

Concurrency Models

16.1.3

16.2

16.2.1

tages. For example, applications using callbacks must have a concurrency model that
allows nested method invocations to avoid deadlocks. Other applications must be opti-
mized for speed, in which case a concurrency model with the least overhead will be cho-
sen.

Some ORBs are highly specialized, providing only the most frequently used concurrency
models for a specific domain. ORBACUS takes a different approach by supporting several
concurrency models.

ORBacus Concurrency Models Overview

ORBAcuUSs allows different concurrency models to be established for the client and server
activities of an application. The client-side concurrency models are Blocking, Reactive and
Threaded. The server-side concurrency models are Reactive, Threaded, Thread-per-Cli-
ent, Thread-per-Request and Thread Pool.

Single-Threaded Concurrency Models

Blocking Clients

The blocking concurrency model is the simplest one. It only applies to the client side and
means that the ORB blocks while sending requests.

A special case are oneway requests,1 which do not block the ORB. If the ORB determines
that sending the oneway request would cause blocking, it puts the oneway request into a
request buffer. Whenever the client tries to send another request to the same server, this
buffer’s contents are sent first.

Because of its simplicity, the blocking concurrency model is the fastest model available.
There is no overhead, neither for calls to operations like sel ect ? (because the ORB is
allowed to block on a single connection), nor for any thread creation or context switches.

1. A oneway request is a request for which no reply is received. Therefore a oneway request cannot
return any results and there is no guarantee that a oneway request was properly executed by a
server.

2. sel ect isused for synchronous I/O multiplexing. For more information, see the sel ect Unix
manual page.

208

ORBacus

Single-Threaded Concurrency Models

16.2.2 Reactive Clients and Servers

Reactive servers use calls to operations like sel ect in order to simultaneously accept
incoming connection requests, to receive requests from multiple clients and to send back
replies. This is shown in Figure 16.1.

1 1 1
connect
_____ [_41 accept
f() %
@ dispatch
- - connect
acceptli] ¢ — — — —
f()
dispatch Lpm B

Y

disconnect

e [g close

disconnect

close

Client A Server Client B

Figure 16.1: Reactive Server

Reactive clients also use operations like sel ect to avoid blocking. This means that while
a request to a server is sent or a reply from that server is received, the client can simulta-
neously send buffered requests to other servers or receive and buffer replies. This is very
useful for oneway operations or the Dynamic Invocation Interface (DII) operation
send_def er r ed in combination with get _r esponse or pol | _r esponse.

ORBacus 209

Concurrency Models

However, the main advantage of a reactive client becomes apparent if it is used together
with a reactive server in mixed client/server applications. A mixed client/server applica-
tion is a program that is both a client and server at the same time. Without the reactive con-
currency model it is not possible to use nested method calls in single-threaded
applications, which are absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First A tries to call
a method f on B. Before this method returns, B calls back A by invoking method g. This
scenario is quite common, and for example is used in the popular Model-View-Controller
pattern [1].

For blocking clients this scenario is shown in Figure 16.2. As you can see, the callback g

- -
> " @ dispatch

1 1

Client/Server A Client/Server B

Figure 16.2: Blocking Client

from B to A does not succeed, because A blocks while waiting for a reply for f from B. In
contrast, if the reactive concurrency model for the client is used, A can dispatch incoming
requests while waiting for B’s reply for f . This is shown in Figure 16.3.

The reactive concurrency models are also very fast. There is no overhead for thread cre-
ation or context switching. Only an additional call to an operation like sel ect is needed
before operations such as send, r ecv or accept can be used by the ORB.!

The maximum nesting level for the reactive concurrency model is usually much higher
than for threaded concurrency models. The reason is that the maximum nesting level for

1. For more information on send_def err ed, get _response and pol | _r esponse, see the
chapter “The Dynamic Invocation Interface” in [4].
1. Instead of directly using operations like sel ect , ORBACUS uses a Reactor to provide for flex-

ible integration with existing event loops and to allow the installation of user supplied event han-
dlers. See “The Reactor” on page 215 for more information.

210

ORBacus

Multi-Threaded Concurrency Models

> <« dispatch

dispatch Lpe B

.

]

A

T T

Client/Server Client/Server

Figure 16.3: Reactive Client/Server

threaded models is determined by the maximum number of threads allowed per process,
whereas the reactive concurrency model is only limited by the maximum stack size per
process.

16.3 Multi-Threaded Concurrency Models

16.3.1 Threaded Clients and Servers

A threaded client uses two separate threads for each connection to a server, one for send-
ing requests and another for receiving replies. This model has the advantage that oneway
requests can be sent “in the background”, i.e., without blocking the user thread execution.
The separate receiver thread allows messages to be received and buffered for later retrieval
by the user thread with DII operations such as get _r esponse or pol | _r esponse.

Like a threaded client, a threaded server uses separate threads for receiving requests from
clients and sending replies. Additionally, there is a separate thread dedicated to accepting
incoming connection requests, so that a threaded server can serve more than one client at a
time.

ORBAcuUS’s threaded server concurrency model allows only one active thread in the user
code. This means that even though many requests can be received simultaneously, the exe-
cution of these requests is serialized. This is shown in Figure 16.4. (For simplicity, the
“dispatch” arrows and the corresponding return arrows are omitted in this and all follow-
ing diagrams.) In the example, the threaded server has two clients connected to it and thus
two receiver threads (sender threads not shown). First A calls f on the server. If, before f

ORBacus 211

Concurrency Models

16.3.2

>@ 9()I_

Y

A

1 ‘TI T
Client A Threaded Server Client B

Figure 16.4: Threaded Server

returns, B tries to call another operation g, this request is delayed until f returns. The same
is true for A’s call to h, which must wait until g returns.

Allowing only one active thread in user code has the advantage of the user code not having
to take care of any kind of thread synchronization. This means that the user code can be
written as if for a single threaded system, but without losing the advantage of the ORB
optimizing its operation by using multiple threads internally.

The threaded concurrency model is still fast. No calls to operations like sel ect are
required. Time consuming thread creation is only necessary when a new client is connect-
ing, but not for each request. However, thread context switching makes this approach
slower than the reactive concurrency model, at least on a single-processor computer.

Thread-per-Client Server

The thread-per-client server concurrency model is very similar to the threaded server con-
currency model, except that the ORB allows one active thread-per-client in the user code.
This is shown in Figure 16.5. A’s call to f and B’s call to g are carried out simultaneously,
each in its own thread. However, if A tries to call another operation h (for example by
sending requests from different threads in a multi-threaded client or by using the DII oper-
ation send_def er r ed in a single-threaded client) as long as f has not finished yet, the
execution of h is delayed until f returns.

The thread-per-client model is still efficient. Like with the threaded concurrency model,
no threads need to be created, except when new connections are accepted.

212

ORBacus

Multi-Threaded Concurrency Models

P

A

T T_I T T
Client A Thread-per-Client Client B
Server

Figure 16.5: Thread-per-Client Server

16.3.3 Thread-per-Request Server

If the thread-per-request server concurrency model is chosen, the ORB creates a new
thread for each request. This is shown in Figure 16.6. (For simplicity there are no separate

1 ‘ 1 1

f()

90)
-

h() -

T T T T
Client A Thread-per-Request Client B
Server

Figure 16.6: Thread-per-Request Server

arrows for dispatch and thread creation in the diagram.) With the thread-per-request

ORBacus 213

Concurrency Models

16.3.4

model, requests are never delayed. When they arrive, a new thread is created and the
request is executed in the user code using this thread. On return, the thread is destroyed.

Besides using a reactive client together with a reactive server, the thread-per-request server
in combination with a threaded client is the only other model that allows nested method
calls with an unlimited nesting level. The thread pool model also allows nested method
calls, but the nesting level is limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem results from
the overhead involved in creating new threads, namely one for each request.

Thread Pool Server

The thread pool model uses threads from a pool to carry out requests, so that threads have
to be created only once and can then be reused for other requests. Figure 16.7 shows an

1 [

—
Py
f—

f—

|

—
|~
f

J T|Q
—

l

A A A |

T T

Client Thread Pool
Server

Figure 16.7: Thread Pool Server

example with one client and a thread pool server with three threads in the pool. (Sender
and receiver threads are not shown.) The first three operation calls f , g and h can be car-
ried out immediately, since there are three threads in the pool. However, the fourth request
i is delayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool concurrency model per-
forms better than the thread-per-request model. The thread pool is a good trade-off if on

214

ORBacus

Selecting Concurrency Models

16.4

16.5

16.5.1

16.5.2

the one hand frequent thread creation and destruction result in unacceptable performance,
but on the other hand delaying the execution of concurrent method calls is also not desired.
Selecting Concurrency Models

Concurrency models can be selected either by properties or command-line parameters (see
Chapter 4). The default concurrency models are shown in Table 16.1.

Client Server
Java Blocking | Threaded
C++ Blocking Reactive

Table 16.1: Default Concurrency Models

The Reactor

What is a Reactor?

In “reactive” mode (see “Reactive Clients and Servers” on page 209), ORBACUS uses a
so-called “Reactor” for event dispatching [14]. Simply speaking, the Reactor is an
instance in ORBACUS (a singleton) where special objects — so-called event handlers —
can register if they are interested in specific events. These events can be network events,
such as an event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to ORBACUS when used with reactive concurrency mod-
els. If you use ORBAcCUS with any other concurrency model, for example any of the multi-
threaded models, the following examples are not applicable. Also, since ORBACUS for
Java currently doesn’t support the reactive model at all, the following only applies to
ORBAcUS for C++.

Available Reactors

Currently there are three Reactors supported by ORBAcCUS:

* The standard “select” Reactor which relies on the Berkeley Sockets sel ect function.

* A special Reactor for use with the X11 Window System. This Reactor handles X11
events (which for example can trigger X11 callbacks) and CORBA network events
simultaneously.

ORBacus 215

Concurrency Models

* A special Reactor for use with Microsoft Windows 95/98/NT/2000. This Reactor
handles Windows messages and CORBA network events simultaneously.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is to be used, it
must be initialized explicitly.

The X11 Reactor

An application that wants to use the X11 Reactor can obtain a special X11 Reactor using
OB: : Get X11React or (), which it must pass to OBCORBA: : ORB_i nit ():

/] C++
#i nclude <X11/Intrinsic. h>

#i ncl ude <OB/ CORBA. h>

i ncl ude <OB/ Logger . h>

#i ncl ude <OB/ Properties. h>
#i ncl ude <OB/ X11. h>

© 00N O~ WDNPR
s>

int main(int argc, char* argv[])

10 {

11 Xt AppCont ext appCont ext ;

12 W dget topLevel = XtApplnitialize(&ppContext, "MApplication”,
13 0, 0, &argc, argv, 0, 0, 0);
14

15 OB: : Reactor _var reactor = OB:: Get X11React or (appCont ext);

16

17 CORBA: : ORB_var = OBCORBA:: ORB_init(argc, argv,

18 OB::Properties::_nil(), OB::Logger:: _nil(), reactor);

19

20 /1 POA initialization not shown

21

22 orb -> run();

23

24 /1 Cd eanup not shown

25 }

1-7 Include header files.
11-13 Initialize the X11 application.
15 Use the X11 application context to obtain a X11 Reactor.

17 Initialize the ORB using the ORBACUS-specific OBCORBA: : ORB_i nit ().

216 ORBacus

The Reactor

22

© 000N O~ WNBR

NNNNRPRPRPERERPRERRPRPPR
WNPFPOO®OWNOWOMWRNLERERO

13

15-16

20

Enter the CORBA event loop. This loop will also dispatch X11 events. Alternatively, the

standard X11 event loop may be called, which will also dispatch CORBA events.

The Windows Reactor

Using a Windows Reactor is very similar to using a X11 Reactor:

/] C++
#i ncl ude <W ndows. h>
#i ncl ude <0OB/ CORBA. h>
#i ncl ude <OB/ Logger. h>
#i ncl ude <OB/ Properties. h>
#i ncl ude <OB/ OBW ndows. h>
int main(int argc, char* argv[])
{
HI NSTANCE hl nst ance = Get Mbdul eHandl e(0) ;
OB: : Reactor _var reactor = OB:: Get WndowsReact or (hl nst ance) ;
CORBA: : ORB_var = OBCORBA:: ORB_init(argc, argv,
OB:: Properties::_nil(), OB::Logger::_nil(), reactor);
/1 POA initialization not shown
orb -> run();
/1 d eanup not shown
}
Include header files.

Use the Windows application instance to get a Windows Reactor.

Initialize the ORB using the ORBACUS-specific OBCORBA: : ORB_i ni t ().

Enter the CORBA event loop, which now also dispatches Windows events. The standard
Windows event loop may also be called, which will then also dispatch CORBA events.

ORBacus

217

Concurrency Models

218 ORBacus

CHAPTER 17

The Open

Communications Interface

17.1

17.2

17.2.1

What is the Open Communications Interface?

The Open Communications Interface (OCI) defines common interfaces for pluggable pro-
tocols. It supports connection-oriented, reliable “byte-stream” protocols. That is, protocols
which allow the transmission of a continuous stream of bytes (octets) from the sender to
the receiver.

TCP/IP is one possible candidate for an OCI plug-in. Since ORBACUS uses GIOP, such a
plug-in then implements the IIOP protocol. Other candidates are SCCP (Signaling Con-
nection Control Part, part of SS.7) or SAAL (Signaling ATM Adaptation Layer).

Non-reliable or non-connection-oriented protocols can also be used if the protocol plug-in
itself takes care of reliability and connection management. For example, UDP/IP can be
used if the protocol plug-in provides for packet ordering and packet repetition in case of a
packet loss.

Interface Summary

Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets
and a position counter, which determines how many octets have already been sent or
received.

ORBacus 219

The Open Communications Interface

17.2.2

17.2.3

17.2.4

17.2.5

17.2.6

Transport

The Transport interface allows the sending and receiving of octet streams in the form of
Buffer objects. There are blocking and non-blocking send/receive operations available, as
well as operations that handle time-outs and detection of connection loss.

Acceptor and Connector

Acceptors and Connectors are Factories [2] for Transport objects. A Connector is used to
connect clients to servers. An Acceptor is used by a server to accept client connection
requests.

Acceptors and Connectors also provide operations to manage protocol-specific IOR pro-
files. This includes operations for comparing profiles, adding profiles to IORs or extract-
ing object keys from profiles.

Acceptor and Connector Factories

Acceptor and Connector Factories are used by clients to create Acceptors and Connectors.
Acceptors are created infrequently, usually only when POA Managers are created. Con-
nectors, however, need to be created by clients whenever a new connection to a server has
to be established.

The only component of the OCI that is configurable by applications is the Acceptor. When
creating a new Acceptor, an Acceptor Factory takes a sequence of protocol-specific
parameters which are used to configure the Acceptor. Each plug-in implementation should
document these configuration parameters. The configuration parameters for the plug-ins
included with ORBACUS are described later in this chapter.

The Registries

The ORB provides Acceptor and Connector Factory Registries. These registries allow the
plugging-in of new protocols. Transport, Connector, Connector Factory, Acceptor Factory
and Acceptor must be written by the plug-in implementors. The Connector Factory must
then be registered with the ORB’s Connector Factory Registry and the Acceptor Factory
must be registered with the ORB’s Acceptor Factory Registry.

The Info Objects

Info objects provide information on Transports, Acceptors and Connectors. A Transport
Info provides information on a Transport, an Acceptor Info on an Acceptor and a Connec-
tor Info on a Connector. To get information for a concrete protocol, these info objects

220

ORBacus

Interface Summary

must be nar r ow’d to an info object for this protocol, for example, in the case of an IIOP
plug-in, a OCl : : Transpor t | nf o must be narrowd to OCl : : | | OP: : Transport | nf o.

17.2.7 Class Diagram

Figure 17.1 shows the classes and interfaces of the OCI (except for the Buffer and Info

1 ORB OA C 1
Connector Acceptor
Factory Factory
Registry Registry
n n
Connector C ’ -) 4 ; Acceptor
Factory onnector ranspori cceptor Factory
creates » creates » < creates < creates
P;OtoFf?l' Protocol- Protocol- Protocol- Proto.col-
Coll)l‘:lcelcltf)r Specific Specific Specific :peclﬁc

Connector Transport Acceptor ceeptor
Factory Factory

Figure 17.1: OCI Class Diagram

interfaces). ORBACUS provides abstract base classes for the interfaces Connector Factory,
Connector, Transport, Acceptor Factory and Acceptor. The protocol plug-in must inherit
from these classes in order to provide concrete implementations for a specific protocol.
ORBACUS also provides concrete classes for the interfaces Buffer, Connector Factory
Registry and Acceptor Factory Registry. Instances of Connector Factory Registry and
Acceptor Factory Registry can be obtained via the ORB operation

resol ve_initial _references, using the identifiers “OCIConFactoryRegistry” and
“OCIAccFactoryRegistry”, respectively. Concrete implementations of Connector Factory

ORBacus 221

The Open Communications Interface

17.3

17.4

17.4.1

1
2
3

© 0N O h

10

12
13
14

must be registered with the Connector Factory Registry, and concrete implementations of
Acceptor Factory must be registered with the Acceptor Factory Registry.

OCI Reference

This chapter does not contain a complete reference of the OCI. It only explains OCI basics
and, in the remainder of this chapter, how it is used from the application programmer’s
point of view for the most common tasks. For more information on how to use the OCI to
write your own protocol plug-ins, and for a complete reference, please refer to

Appendix E.

OCI for the Application Programmer

The following information only applies to the standard ORBACUS IIOP plug-in. For other
plug-ins, please refer to the plug-in’s documentation.

A “Converter” Class for Java

As you will see in the following examples, the OCI info objects return port numbers as
IDL unsi gned short values and IP addresses as an array of 4 IDL unsi gned oct et
values. This works fine for C++, but in Java this causes a problem, because there are no
unsigned types in Java. The Java mapping simply maps unsigned types to signed types.
Consider for example the IP address 126.127.128.129. In Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java byt e type, are
-128 and -127.

To avoid this problem, we will use a helper class which converts port numbers and IP
addresses to Java i nt types. This helper class looks as follows:

/1 Java
final class Converter
{
static int port(short s)
if(s <0)
return Oxffff + (int)s + 1;
el se
return (int)s;
}
static int[] addr(byte[] bArray)
{

int[] iArray = new int[4];

222

ORBacus

OCI for the Application Programmer

15
16
17
18
19
20
21
22
23

4-10

12-22

}s

for(int i =0 ; i <4 ; i++)
if(bArray[i] < 0)
iArray[i] = Oxff + (int)bArray[i] + 1;
el se

iArray[i] = (int)bArray[i];

return i Array;

Converts short port numbers to i nt .

Converts byt e[] IP addressestoint[].

The converter class is used throughout the examples in the sections below.

17.4.2 Getting Hostnames and Port Numbers

© 00O ~NO O WDN PR

P PR RPRRPRPRRPPRPR
W ~No U~ WN RO

The following code fragments show how it is possible to find out on what hostnames and
port numbers a server is listening. First the C++ version:

/] C++
QOCl : : Accept or Seq_var acceptors = poaManager -> get_acceptors();
for(CORBA::ULong i = 0 ; i < acceptors -> length() ; i++)
{
OCl :: Acceptorinfo_var info = acceptors[i] -> get_info();
OCl::110P:: Acceptorlnfo_var iioplnfo =
OCl::110P:: Acceptorlnfo::_narrow(info);
i f(!CORBA: :is_nil(iioplnfo))
{
CORBA: : StringSeq_var hosts = iioplnfo -> hosts();
CORBA: : Ushort port = iioplnfo -> port();
cout << "host: " << host[0] << endl;
cout << "port: " << port << endl;
}
}

2 The list of registered acceptors is requested from the POA Manager.

4 The f or loop iterates over all acceptors.

6-8 The info object for the acceptor is requested and narrowed to an IIOP acceptor info object.

ORBacus 223

The Open Communications Interface

10 Thei f block is only entered in case the info object really belongs to an IIOP plug-in.

12-16 The hostname and port number are requested from the IIOP acceptor info object and
printed on standard output.

The Java version is basically equivalent to the C++ code and looks as follows:

1 // Java

2 comooc. OCl. Acceptor[] acceptors = poaManager.get_acceptors();
3

4 for(int i =0 ; i < acceptors.length ; i++)

5 {

6 com ooc. OCl . Acceptorinfo info = acceptors[i].get_info();
7 comooc. OCl. |1 OP. Acceptorinfo iioplnfo =

8 com ooc. OCl . | | OP. Accept or | nf oHel per. narrow(i nfo);

9

10 if(iioplnfo !'= null)

11 {

12 String[] hosts = iioplnfo.hosts();

13 short port = Converter.port(iioplnfo.port());

14

15 Systemout.printin("host: " + host[O0]);

16 Systemout.println("port: " + port);

17 }

18 }

2-12 This is equivalent to the C++ version.
13 The converter class is used to get a port number in i nt format.

15-16 Like in the C++ version, the hostname and port number are printed on standard output.

17.4.3 Determining a Client’s IP Address

To determine the IP address of a client within a server method, the following code can be
used in a servant class method implementation:

1 /] C++

2 CORBA: : Obj ect _var baseCurrent =

3 orb -> resolve_initial _references("OCl Current");

4 OCl::Current_var current = OCl::Current::_narrow baseCurrent);

5

6 OCl::Transportinfo_var info = current -> get_oci _transport_info();
7 OCl::110P::Transportinfo_var iioplnfo =

8 OCl::110P::Transportinfo::_narrow(info);

224 ORBacus

OCI for the Application Programmer

10
11
12
13
14
15
16
17
18
19

2-4

10

12-18

© 000N O~ WNBR

P PR EPRPRRPRERPRPPR
© O ~NOOUNWNPRP O

i f(!CORBA: :is_nil(iioplnfo))

{
OCl::110P::InetAddr renmoteAddr = iioplnfo -> renote_addr();
CORBA: : UShort renotePort = iioplnfo -> renote_port();
cout << "Call from "
<< renpteAddr[0] << '.' << renpteAddr[1] << '.'
<< renpteAddr[2] << '.' << renpteAddr[3]
<< ":" << renotePort << endl;
}

The OCI current object is requested and nar r ow’d to the correct OCl : : Current type.

The info object for the transport is requested and nar r ow’d to an IIOP transport info
object.

The remainder of the example code is only executed if this was really an IIOP transport
info object.

The address and the port of the client calling this operation are obtained and printed on
standard output.

The Java version looks as follows:

/1 Java
org. ong. CORBA. Obj ect baseCurrent =
orb.resolve_initial _references("OCl Current");
comooc.OCl. Current current =
com ooc. OCl . Current Hel per. narrow baseCurrent);

com ooc. OCl . TransportInfo info = current.get_oci_transport_info();
comooc. OCl. |11 OP. Transportinfo iioplnfo =
com ooc. OCl . | | OP. Transport | nf oHel per. narr owm basel nf o) ;

if(iioplnfo !'= null)

{
int[] remoteAddr = Converter.addr(iioplnfo.renmote_addr());
int remotePort = Converter.port(iioplnfo.remte_port());

Systemout.printin("Call from " +
remot eAddr[0] + "." +
remot eAddr[1] + "." +
remot eAddr[2] + "." +

ORBacus 225

The Open Communications Interface

20 remot eAddr[3] + ":" + renotePort);
21 }

2-11 This code is equivalent to the C++ version.
13-14 Again, the port number must be converted from short toi nt.

16-20 This is also equivalent to the C++ version.

17.4.4 Determining a Server’s IP Address

To determine the server’s IP address and port that an object will attempt to connect to, the
following code can be used:

1 /] C++

2 CORBA:: bject_var obj = ... // Get an object reference sonmehow
3

4 OCl::Connectorlnfo_var info = obj -> get_oci_connector_info();
5 OCl::110P::Connectorlnfo_var iioplnfo =

6 OCl::110P:: Connectorlnfo::_narrow(info);

7

8 if(!CORBA: :is_nil(iioplnfo))

9 {

10 OCl::110P:: 1 net Addr_var renpoteAddr = iioplnfo -> renoteAddr();
11 CORBA: : UShort remotePort = iioplnfo -> renmote_port();

12

13 cout << "WII connect to: "

14 << renpteAddr[0] << '.' << renpteAddr[2] << '.'

15 << renmpteAddr[2] << '.' << renoteAddr[3]

16 << ":" << renotePort << endl;

17 }

4-6 Get the OCI connector info and narrow to an IIOP connector info
8 Theif block is only executed if this really was an IIOP connector info.
10-16 The address and port are obtained and displayed on standard output.

The Java version looks as follows:

/1 Java
org. ong. CORBA. Obj ect obj = ... // Get an object reference sonehow

org. ong. CORBA. portabl e. Cbj ectlnpl objlnmpl =
(org. ong. CORBA. port abl e. Cbj ect | npl) obj ;
com ooc. CORBA. Del egat e obj Del egate =

o O WN B

226 ORBacus

The IIOP OCI Plug-in

[ee]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

14

16-23

17.5

17.5.1

(com ooc. CORBA. Del egat e) obj | npl . _get _del egate();

com ooc. OCl . ConnectoriInfo info =
obj Del egat e. get _oci _connector _i nfo();
com ooc. OCl . |1 OP. Connectorlnfo iioplnfo =
com ooc. CCl . | | OP. Connect or | nf oHel per. narrow(i nfo);

if(iioplnfo !'= null)

{
int[] remoteAddr = Converter.addr(iioplnfo.renpote_addr());
int remotePort = Converter.port(iioplnfo.renmte_port());
Systemout.println("WIIl connect to: " +
remot eAddr[0] + "." +
remot eAddr[1] + " +
remot eAddr[2] + " +
renmot eAddr[3] + ' + renotePort);
}

We need to retrieve the ORBACUS-specific Del egat e object so that we can get the con-
nector info.

Get the OCI connector info and narrow to an IIOP connector info.
The i f block is only entered if this really was an IIOP connector info.

The address and port are obtained and displayed on standard output.

The IIOP OCI Plug-in

The IIOP plug-in implements the Internet Inter-ORB Protocol as described in [4]. By
default, the ORB automatically installs the client and server (i.e., Connector Factory and
Acceptor Factory) components of the IIOP plug-in, and IIOP is the default protocol used
by the ORB.

ITOP Acceptor Configuration

The configuration parameters for the IIOP Acceptor are described in Table 17.2.

ORBacus 227

The Open Communications Interface

Table 17.2: IIOP Acceptor Configuration Parameters

Name

Type

Description

backlog

unsigned short

The maximum length of the listen backlog queue. Note
that the operating system may have a smaller limit
which will override this value. If not specified, a default
value of 50 is used in Java, and 5 in C++.

bind

string

The hostname or dotted decimal address of the network
interface on which to bind the socket. If not specified,
the socket will be bound to all available interfaces.

host

CORBA::StringSeq

A sequence of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Using IIOP 1.0, multiple
addresses are represented as multiple tagged profiles.
Using IIOP 1.1 or later, multiple addresses can be
represented as either multiple tagged profiles, or as a
single tagged profile with a tagged component for each
additional address. The mul ti _pr of i | e parameter
determines how multiple addresses are represented in
IIOP 1.1 or later. If this parameter is not specified, the
canonical hostname is used.

multi_profile

boolean

Ift r ue, multiple addresses in the host parameter are
represented as multiple tagged profiles in an IOR. If

f al se, multiple addresses are represented as a single
tagged profile (using the first address in the host
sequence as the primary address), with all additional
addresses represented as alternate addresses in tagged
components. If IIOP 1.0 is in use, multiple addresses are
always represented as multiple tagged profiles, because
IIOP 1.0 does not support tagged components. If not
specified, the default value is f al se.

numeric

boolean

Ift rue, and if host is not specified, then the canonical
dotted decimal address is advertised in IORs. If not
specified, the default value is f al se.

port

unsigned short

Specifies the port on which the acceptor should listen for
new connections. If not specified, the default value is 0,
which causes the operating system to select an unused
port.

Typical configurations include the following:

228

ORBacus

The Bi-directional OCI Plug-in

17.6

17.6.1

* No parameters: The Acceptor will use the canonical hostname and a port selected by
the operating system.

* Port only: Specifying a port is typically required to create “persistent” object
references.

* Host and port: The canonical hostname is incorrect or cannot be determined reliably,
so a hostname is specified.

* Multiple hosts and port: The host is known by several names. The client should
attempt at least one connection to each address until finding one that succeeds or until
all addresses have been exhausted.

* Bind: A host has multiple network interfaces, but the acceptor should only be bound
to one of them.

The Bi-directional OCI Plug-in

The ORBAcUS Bi-directional plug-in offers a solution for distributed systems where secu-
rity restrictions interfere with a client's ability to receive callbacks.

This capability is especially useful in two common situations:

« Firewalls prevent the server from establishing a separate connection back to the client
* Browser restrictions prevent an applet from accepting connections
Note: This plug-in does not implement the Bi-directional IIOP standard defined by

CORBA 2.3. This plug-in uses a proprietary protocol that is not interoperable with other
ORBs.

How does it work?

The Bi-directional plug-in uses a layered design that theoretically enables any connection-
oriented OCI plug-in to support bi-directional functionality. Initially however, only bi-
directional IIOP is supported.

In Figure 17.1, a server is shown that is capable of receiving both bi-directional IIOP con-
nections and regular IIOP connections.

ORBacus 229

The Open Communications Interface

Figure 17.1: Connection Requirements

Server
OClI 0ClI
Bi-dir II0P
OClI
I1OP
Requests & Requests Callbacks
Callbacks
0ClI 0CI
1[0 11I0P
OCI .
Bi-dir Client B
Client A

Any callback requests from the Server to Client A will travel down the existing connec-
tion already established by the client. On the other hand, any callback requests from the
Server to Client B require a new IIOP connection to be established from the server to the
client.

17.6.2 Peers

The Bi-directional plug-in requires each peer in a bi-directional connection to have a
unique identifier, called the “peer ID”. Currently, this identifier is just a simple ISO-
LATINT string. In IIOP terms, a unique endpoint is derived from the hostname/port com-
bination. However, since the Bi-directional OCI plug-in has no knowledge of the underly-
ing protocol, a separate identification scheme is currently required, and must be provided
by the application. It is therefore the application's responsibility to ensure that each server
and client has a unique peer ID.

In ITOP, object references can be made “persistent” (i.e., valid across process restarts) by
ensuring that the process is restarted on the same host and port, and that the object keys in
the object references will continue to be valid. The same is true of peer IDs. If you want a
bi-directional IIOP object reference to remain valid across process restarts, you must use

230 ORBacus

The Bi-directional OCI Plug-in

17.6.3

17.6.4

the same peer ID, host, port and object key. Conversely, if an object reference is transient,
then the peer ID can vary along with the host, port and object key.

POA Managers

When using the Bi-directional plug-in, a POA Manager must be created specifically for
accepting bi-directional connections. If the application only wishes to accept bi-direc-
tional connections, then only one POA Manager is required. If the application wishes to
accept both bi-directional and regular IIOP connections, then at least two POA Managers
are required.

There are really two ways a POA Manager can accept an incoming bi-directional IIOP
connection:

* By listening on a port for new TCP/IP connections, just like with regular IIOP
* By listening for new callback connections on existing outgoing connections
A server will typically want to enable both options, but a security-restricted client will

only want to enable the second option, since listening on a port is often forbidden (or
pointless, if a firewall prevents incoming TCP/IP connections).

The implication of enabling only the second option is that a server wishing to connect to a
client will only be able to do so if there is an existing bi-directional connection from the
client to the server. If not, the server will receive a TRANSIENT exception.

Initialization and Configuration

The initialization steps can be summarized as follows:

* Initialize the ORB
* Create a POA Manager with one or more Bi-directional acceptors
¢ Create POAs, activate servants, etc.

e Activate POAManager

The cr eat ePOAManager method initializes the Bi-directional OCI plug-in for IIOP and
returns a new POA Manager:

/'l Java

package com ooc.BiDir;

public class |IOP

{
public static org.ong. Portabl eServer. POAManager
cr eat ePOAManager (

ORBacus 231

The Open Communications Interface

String nane,

org. ong. CORBA. ORB or b,

String[] args,
java.util.Properties properties);

}

/] C++
#include <OB/BiDirl1OPlnit. h>

namespace OBBi Di r
{
nanespace || OP
{
Por t abl eSer ver: : POAManager _ptr creat ePOAManager (
const char* nane,
CORBA: : ORB_ptr orb,
int& argc, char** argv,
OB: : Properties_ptr properties):
i
b

The cr eat ePOAManager method supports the following properties:

ooc. bidir. peer=id Specifies the peer identifier for this ORB. This
property is required.

ooc. bi di r. node=cl i ent| server| bot h Specifies the bi-directional mode. If the value is
cl i ent, then only callback connections will
be accepted. If the value is ser ver, then bi-
directional connections will only be accepted
on a port. The default value is bot h, in which
both kinds of connections are accepted.

The following command-line option is also supported:

-BI Dl Rpeer 1D Equivalent to ooc. bi di r. peer.

If the command-line option and the ooc. bi di r. peer property are both defined, the
command-line option has precedence.

232

ORBacus

The Bi-directional OCI Plug-in

17.6.5

Because the Bi-directional plug-in can be layered upon the IIOP plug-in, the IIOP config-
uration properties are still applicable. See Chapter 4 for more information.

Several common scenarios are described in detail below.

Notes:

* In general, the plug-in should be initialized prior to resolving the RootPOA.

e The POA Manager returned by cr eat ePOAManager must be passed to cr eat e_POA
for all POAs you want associated with that POA Manager.

Scenario: Server accepts only bi-directional IIOP connections

Solution: Configure the Root POA Manager for bi-directional IIOP. As long as no other
POA Manager is created, the server will accept only bi-directional connections.

Scenario: Server accepts both regular and bi-directional IIOP connections

Solution: Use the Root POA Manager for regular IIOP connections, and create a new POA
Manager for bi-directional connections.

Remember that each POA Manager must be activated in order to dispatch requests to its
POAs.

Scenario: Client only accepts connections on existing outgoing bi-directional connections

Solution: Use the Root POA Manager in “client mode”, i.e., do not listen on a port. This is
accomplished by setting the ooc. bi di r. node property to cl i ent .

For details on how to create POA Managers, see “Creating POA Managers” on page 65. A
complete example of using the Bi-directional plug-in is provided in the subdirectory
bi di r/ deno/ hel | o.

Bi-directional Acceptor Configuration

The configuration parameters for the Bi-directional Acceptor are described in Table 17.1.

ORBacus 233

The Open Communications Interface

Table 17.1: Bi-directional Acceptor Configuration Parameters

Name

Type

Description

callback

boolean

Specifies whether the factory should create a “callback
acceptor”, i.e., one that can only receive callback
connections. Note that only one callback acceptor can be
created per ORB. If not specified, the default value is
fal se.

params

OCI::ParamSeq

Provides a sequence of parameters for use in creating a
protocol-specific acceptor. For example, when creating a
bi-directional IIOP acceptor, these parameters are used
by the Bi-directional plug-in to create an IIOP acceptor.
This parameter can only be specified when the

cal | back parameteris f al se.

234

ORBacus

e EXCEPLIONS and Error

Messages

18.1 CORBA System Exceptions

The CORBA specification defines the standard system exceptions shown in Table 18.1. In

UNKNOWN Unknown exception type
BAD_PARAM An invalid parameter was passed
NO_MEMORY Failure to allocate dynamic memory
IMP_LIMT Implementation limit was violated

COW _FAI LURE

Communication failure

| N\V_OBJREF

Invalid object reference

NO_PERM SSI ON

The attempted operation was not permitted

| NTERNAL Internal error in ORB
MARSHAL Error marshalling a parameter or result
I NI TI ALI ZE Failure when initializing ORB

NO_I MPLEMENT

Operation implementation unavailable

Table 18.1: Standard CORBA System Exceptions

ORBacus

235

Exceptions and Error Messages

BAD_TYPECCDE

Bad typecode

BAD_OPERATI ON

Invalid operation

NO_RESOURCES

Insufficient resources for a request

NO_RESPONSE

Response to a request is not yet available

PERSI ST_STCORE

Persistent storage failure

BAD_| N\V_ORDER

Routine invocation out of order

TRANSI ENT Transient failure, request can be reissued
FREE_NMEM Cannot free memory

I NV_I DENT Invalid identifier syntax

I NV_FLAG Invalid flag was specified

| NTF_REPCS Error accessing interface repository
BAD_CONTEXT Error processing context object
OBJ_ADAPTER Failure detected by object adapter

DATA_CONVERSI ON

Error in data conversion

OBJECT_NOT_EXI ST

Non-existent object, references should be discarded

TRANSACTI ON_REQUI RED

Active transaction context required

TRANSACTI ON_ROLLEDBACK

Transaction has rolled back or is marked to be rolled
back

I NVALI D_TRANSACTI ON

Invalid transaction context

| N\V_POLI CY

Invalid Policy

CODESET_| NCOVPATI BLE

Incompatible client and server native code sets

REBI ND Thrown on a OBJECT_FORWARD or
LOCATION_FORWARD status, depending on the
RebindPolicy

TI MEQUT Time-to-live period was exceeded

TRANSACTI ON_UNAVAI LABLE

Transaction service context could not be processed

Table 18.1: Standard CORBA System Exceptions

236

ORBacus

CORBA System Exceptions

TRANSACTI ON_MODE

Mismatch between TransactionPolicy and current
transaction mode

BAD_QOS

Object cannot support the required QOS

Table 18.1: Standard CORBA System Exceptions

the following subsections the minor exception codes are presented. Minor codes that are
ORBACUS-specific are presented as MinorCodeName”, that is, are tagged with the super-

script “*’.

ORBacus

237

Exceptions and Error Messages

18.1.1

18.1.2

18.1.3 BAD_PARAM Minor Exception Code

INITIALIZE Minor Exception Code

M nor ORBDest r oyed

ORB already destroyed

UNKNOWN Minor Exception Code

M nor UnknownUser Excepti on

Unknown user exception

M nor Val ueFact or yErr or

Failure to register, unregister or
lookup value factory

M nor Reposi toryl dExi sts

Repository ID already exists in
Interface Repository

M nor NaneExi st s

Name already used in Interface
Repository

M nor | nval i dCont ai ner

Target is not a valid container

M nor NaneC ashl nl nheri t edCont ext

Name clash in inherited context

M nor BadAbstract I nterfaceType

Incorrect type for abstract
interface

M nor BadScheneNane

Bad scheme name

M nor BadAddr ess

Bad address

M nor BadScheneSpeci fi cPart

Bad scheme specific part

M nor O her

Other

M nor I nval i dAbst ract | nterfacel nheritance

Invalid abstract interface
inheritance

M nor I nval i dval uel nheritance

Invalid valuetype inheritance

M nor I nval i dSer vi ceCont ext | d

Invalid service context ID

M nor Obj ect | sNul |

Object parameter to
obj ect _to_ior() isnull

M nor | nval i dConponent | d

Invalid component ID

238

ORBacus

CORBA System Exceptions

M norlnvalidProfileld

Invalid profile ID

M nor Dupl i cat eDecl ar at or”

Duplicate declarator

M nor | nval i dval uehbdi fier

Invalid valuetype modifier

M nor Dupl i cat eVal uel ni t *

Duplicate valuetype initializer

M nor Abst r act Val uel ni t "

Abstract valuetype cannot have
initializer

M nor Dupl i cat eBaseType*

Base type appears more than
once

M nor Si ngl eThr eadedOnl y*

ORB does not support multiple
threads

M nor NameRedef i ni ti onl nl medi at eScope*

Invalid name redefinition in an
immediate scope

M nor | nval i dVval ueBoxType*

Invalid type for valuebox

ORBacus

239

Exceptions and Error Messages

18.1.4

18.1.5

18.1.6

NO_MEMORY Minor Exception Code

. . *
M nor Al | ocati onFai l ure

Memory allocation failure

IMP_LIMIT Minor Exception Code

M nor MessageSi zeLimi t ¥

Maximum message size exceeded

M nor ThreadLi mi t "

Can’t create new thread

COMM_FAILURE Minor Exception Code

*
M nor Recv

recv() failed

M nor Send”

send() failed

*
M nor RecvZer o

recv() returned zero

M nor SendZero”

send() returned zero

M nor Socket "

socket () failed

M nor Set sockopt *

set sockopt () failed

M nor Get sockopt ¥

get sockopt () failed

M nor Bi nd”

bi nd() failed

M norLi sten”

l'i sten() failed

M nor Connect "

connect () failed

M nor Accept ¥

accept () failed

M nor Sel ect *

sel ect () failed

M nor Get host nane”

get host nane() failed

M nor Get host bynama*

get host bynane() failed

M nor WBASt ar t up*

WBASt ar t up() failed

M nor WSACI eanup*

WBAC eanup() failed

M nor NoG OP"

Not a GIOP message

240

ORBacus

CORBA System Exceptions

M nor UnknownMessage*

Unknown GIOP message

M nor W ongMessage*

Wrong GIOP message

*
M nor MessageEr r or

Got a message error message

M nor Fr agnment *

Invalid fragment message

M nor UnknownReq| d*

Unknown request ID

R *
M nor Ver si on

Incompatible GIOP version

M nor Pi pe*

Creation of pipe failed

ORBacus

241

Exceptions and Error Messages

18.1.7 MARSHAL Minor Exception Code

M nor NoVal ueFact ory

Unable to locate value factory

M nor ReadOver f | ow"

Input stream buffer overflow

M nor ReadBool eanOver f | ow"

Overflow while reading boolean

M nor ReadChar Over f | ow’

Overflow while reading char

M nor Read\WChar Over f | ow’

Overflow while reading wchar

M nor ReadOct et Over f | ow’

Overflow while reading octet

M nor ReadShor t Over f | ow’

Overflow while reading short

M nor ReadUShor t Over f | ow"

Overflow while reading ushort

M nor ReadLongOverf | ow'

Overflow while reading long

M nor ReadULongOver f | ow'

Overflow while reading ulong

M nor ReadLongLongOver f | ow'

Overflow while reading longlong

M nor ReadULongLongOver f | ow'

Overflow while reading ulonglong

M nor ReadFl oat Over f | ow"

Overflow while reading float

M nor ReadDoubl eOver f | ow"

Overflow while reading double

M nor ReadLongDoubl eOver f | ow'

Overflow while reading longdouble

M nor ReadSt ri ngOver f ow'

Overflow while reading string

M nor ReadSt ri ngZer oLengt h*

Encountered zero-length string

M nor ReadSt ri ngNul | Char

Encountered null char in string

M nor ReadSt ri ngNoTer mi nat or”

Terminating null char missing in string

M nor ReadWst ri ngOver f | ow'

Overflow while reading wstring

M nor ReadWst r i ngZer oLengt h*

Encountered zero-length wstring

M nor ReadWst ri ngNul | Wehar *

Encountered null char in wstring

M nor ReadWst ri ngNoTer mi nat or”

Terminating null char missing in wstring

M nor ReadFi xedOver f | ow’

Overflow while reading fixed

ORBacus

CORBA System Exceptions

M nor ReadFi xed! nval i d*

Invalid encoding for fixed value

M nor ReadBool eanArrayOverfl ow'

Overflow while reading boolean array

M nor ReadChar ArrayOver f ow'

Overflow while reading char array

M nor ReadWChar ArrayOver f | ow'

Overflow while reading wchar array

M nor ReadCct et ArrayOverf |l ow'

Overflow while reading octet array

M nor ReadShort ArrayOver f | ow'

Overflow while reading short array

M nor ReadUShort ArrayOverf | ow'

Overflow while reading ushort array

M nor ReadLongAr rayOver f | ow'

Overflow while reading long array

M nor ReadULongAr r ayOver f | ow'

Overflow while reading ulong array

M nor ReadLongLongArrayOQverfl ow'

Overflow while reading longlong array

M nor ReadULongLongArr ayOver f | ow'

Overflow while reading ulonglong array

M nor ReadFl oat ArrayOverfl ow'

Overflow while reading float array

M nor ReadDoubl eArrayOverfl ow'

Overflow while reading double array

M nor ReadLongDoubl eArrayOverf |l ow'

Overflow while reading longdouble
array

M nor Readl nvTypeCodel ndirecti on"

Invalid type code indirection

M nor Wit eQbj ect Local *

Attempt to marshal a locality-
constrained object

M nor LongDoubl eNot Supported*

Long double is not supported

ORBacus

243

Exceptions and Error Messages

18.1.8 NO_IMPLEMENT Minor Exception Code

M nor M ssi ngLocal Val uel npl enent ati on

Missing local value
implementation

M nor | nconpat i bl eVal uel npl enent at i onVer si on

Incompatible value
implementation version

18.1.9 NO_RESOURCES Minor Exception Code

M nor I nval i dBi ndi ng

Portable Interceptor operation not supported in
binding

18.1.10BAD_INV_ORDER Minor Exception Code

M nor DependencyPr event sDest ructi on

Dependency exists in Interface Repository
prevents destruction of object

M nor | ndestructi bl eObj ect

Attempt to destroy indestructible object in
Interface Repository

M nor Dest r oyWoul dBI ock

Operation would deadlock

M nor Shut downCal | ed

ORB has shutdown

M nor I nval i dPI Cal |

Invalid Portable Interceptor call

M nor Ser vi ceCont ext Exi st's

A service context already exists with the
given ID

M nor Pol i cyFact or yEXi sts

A factory already exists for the given
PolicyType

M nor BadConcModel *

Invalid concurrency model

M nor ORBRunni ng*

ORB: : run() already called

M nor Request Al r eady Sent *

Request has already been sent

M nor Request Not Sent *

Request has not yet been sent

M nor ResponseAl r eadyRecei ved”

Response has already been received

244 ORBacus

Non-Compliant Application Asserts

18.1.11 TRANSIENT Minor Exception Code

M nor Request Cancel | ed Request has been cancelled
M nor Connect Fai | ed” Request has been cancelled
M nor d oseConnect i on” Got a ‘close connection’ message

Active connection management closed

M nor Act i veConnect i onManagenent * .
connection

Forced connection shutdown because of

M nor For cedShut down” .
timeout

18.1.12INTF_REPOS Minor Exception Code

M nor Nol nt f Repos Interface Repository is not available

M nor LookupAnbi guous” Search name for | ookup() is ambiguous

M nor I 11 egal Recursi on” Illegal Recursion

M nor NoEnt ry " IFR is not populated with a required definition.

18.1.130BJECT_NOT_EXIST Minor Exception Code

Attempt to pass unactivated (unregistered)

M nor Unr egi st er edVal ue .
value as an object reference

18.1.14INV_POLICY Minor Exception Code

No PolicyFactory for the PolicyType has been

M nor NoPol i cyFact ory registered

18.2 Non-Compliant Application Asserts

If the ORBACUS library was compiled without the preprocessor definition - DNDEBUG
defined, ORBACUS tries to detect common programming mistakes that lead to non—com-
pliant CORBA applications. If such a mistake is found an error messages like this will
appear:

Non- conpl i ant application error detected:

ORBacus 245

Exceptions and Error Messages

Application used wong nenory allocation function

After detecting such an error, the ORBACUS library dumps a core (Unix only) and prints
the file and line number where the error was detected. You can use the core dump in order
to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implemented

This is not an application error. This error message appears if an application attempts to
use a feature that has not yet been implemented in ORBACUS. In this case the only thing
that can be done is to wait for the next ORBACUS version that has this particular feature
implemented.

Application used a deprecated feature that is not implemented anymore

This is not an application error. This error message appears if an application attempts to
use a feature that is no longer implemented in ORBACUS. In this case the only thing that
can be done is to avoid using this particular feature.

Application used wrong memory allocation function

If this message appears, an incorrect memory allocation function has been used. A com-
mon mistake that leads to this error is to use mal | oc, st rdup and f r ee (or the newand
del et e operator) instead of CORBA: : string_al | oc and CORBA: : stri ng_dup and
CORBA: : stri ng_free for string memory management.

Memory that was already deallocated was deallocated again

This message indicates multiple memory deallocations. For example, if
CORBA: : string_free is called twice on the same string, this message will be displayed.

Object was deleted without an object reference count of zero

This message appears if an object was deleted by calling del et e on its object reference.
Never use the del et e operator for that; use CORBA: : r el ease instead.

Object was already deleted (object reference count was already zero)

This message appears if the number of r el ease operations on an object reference is
greater than the number of _dupl i cat e operations.

246

ORBacus

Non-Compliant Application Asserts

Sequence length was greater than maximum sequence length

This message indicates that the application tried to set the length of a bounded sequence to
a value greater than its maximum length.

Index for sequence operator[]() or remove() function was out of range

This message appears if the argument to the sequence member functions operator[] or
r enove exceeds the sequence length.

Buffer size not equal to sequence bound

This message indicates that the application attempted to call al | ocbuf on a bounded
sequence with an argument not equal to the sequence bound.

Null pointer was used to initialize T_var type

This message indicates an attempt to initialize a _var type with a null pointer.

operator->() was used on null pointer or nil object reference

This message indicates an attempt to use oper at or - > on an uninitialized _var type.

Application tried to dereference a null pointer

Some CORBA _var types have built-in conversion operators to a C++ reference type, i.e.,
some _var types for type T have a conversion operator to T& This message appears if an
application uses this conversion operator on an uninitialized _var type.

Null pointer was passed as string parameter or return value

According to the IDL—to—C++ mapping specification, no null pointers may be passed as
string parameters or return values. This message appears if an application tries to do so.

Null value passed as parameter

This message indicates that an application attempted to pass a null value across an IDL
interface.

Self assignment caused a dangling pointer

This message appears if the content of a _var type is assigned to itself. For example, the
following code will lead to this error message:

ORBacus 247

Exceptions and Error Messages

A WDN PR

A WN PR

/1 Somehow get a pointer to a variable struct
Avari abl eStruct _var var = ...

AVari abl eStruct* ptr = var;

var = ptr;

This will result in a dangling pointer, because var will free its own content on assignment.

Replacement of Any content by its own value caused a dangling pointer

This message appears if there is an attempt to replace the content of an Any by its own
value. For example:

char* s = CORBA::string_dup("Hello, world!");
CORBA: : Any any;

any <<= s;

any <<= s;

Inserting s into any twice will result in a dangling pointer, because any will free its own
value (which is s) on assignment.

Invalid union discriminator type used

This message appears if the discriminator type argument to

CORBA: : ORB: : creat e_uni on_t ¢ denotes a type invalid for union discriminators. Valid
types have a CORBA: : TCKi nd that is one of CORBA: : t k_short , CORBA: : t k_ushort,
CORBA: : t k_I ong, CORBA: : t k_ul ong, CORBA: : t k_char, CORBA: : t k_bool ean or
CORBA: :tk_enum

Union discriminator mismatch

This message either indicates an attempt to set a union discriminator to an invalid value
with the _d modifier function or the use of a wrong accessor function, i.e., an accessor
function that does not correspond to the type of the union’s actual value.

Uninitialized union used

If this message appears, an uninitialized union (i.e., a union that was created with the
default constructor and that was not set to any legal value) was used.

248

ORBacus

Non-Compliant Application Asserts

CORBA::Any::operator<<=(Exception*) cannot be used with --no-type-codes

This message indicates that CORBA: : Any: : oper at or <<=(Except i on*) was invoked
for an exception for which no TypeCode is available. That is, the IDL defining the excep-
tion was compiled with the - - no- t ypecodes option.

An operation on an unembedded recursive TypeCode was invoked

If this message appears, an operation was invoked on a recursive TypeCode that has not
yet been embedded.

An already embedded TypeCode was reused

This message indicates that an application attempted to embed a recursive TypeCode that
was already embedded.

LongDouble type is not supported on this platform

This message appears when an application uses the CORBA: : LongDoubl e type on a plat-
form which does not support this type.

ORBacus 249

Exceptions and Error Messages

250 ORBacus

weona BOOt Manager Reference

A.1 Interface OB::BootManager

interface BootManager

Interface to manage bootstrapping of objects.

Exceptions

NotFound
exception Not Found

{
}s

This exception indicates that a binding has not been found.

AlreadyExists
exception Al readyExists
{
b

This exception indicates that a binding already exists.

ORBacus 251

Boot Manager Reference

Operations

add_binding
voi d add_bi ndi ng(in Portabl eServer:: Cbjectld oid,

in Object obj)
rai ses(Al readyExi sts);

Add a new binding to the internal table.

Parameters:
oi d - The object id to bind.
obj - The object reference.

Raises:
Al r eadyExi st s - Thrown if binding already exists.

remove_binding
voi d renove_bi ndi ng(in Portabl eServer:: Cbjectld oid)

rai ses(Not Found) ;
Remove a binding from the internal table.

Parameters:
oi d - The object id to remove.

Raises:
Not Found - Thrown if no binding found.

set_locator
void set_|locator(in BootlLocator |ocator);

Set the BootLocator. The BootLocator is called when a binding for an object id does not exist in
the internal table.

Parameters:
| ocat or - The BootLocator reference.

See Also:
BootLocator

252

ORBacus

Interface OB::BootLocator

A.2 Interface OB::BootLocator

interface BootLocator

Interface used by BootManager to assist in locating objects.

See Also:
BootManager

Operations

locate
void | ocate(in Portabl eServer:: Objectld oid,
out Cbject obj,
out bool ean add)
r ai ses(Boot Manager : : Not Found) ;

Locate the object coresponding to the given object id.

Parameters:
oi d - The object id.
obj - The object reference to associate with the id.
add - Whether the binding should be added to the internal table.

Raises:
Not Found - Raised if no binding found.

ORBacus 253

Boot Manager Reference

254 ORBacus

weons (ORBacus Policy Reference

B.1 Module OB

Constants

ACM_TIMEOUT_POLICY_ID
const CORBA: : Pol i cyType ACM TI MEOUT POLI CY_ID = 1330577418;

This policy type identifies the active connection management (ACM) timeout policy.

CONNECTION_REUSE_POLICY_ID
const CORBA: : Pol i cyType CONNECTI ON_REUSE PCLICY_|I D = 1330577411,

This policy type identifies the connection reuse policy.

CONNECT_TIMEOUT_POLICY_ID
const CORBA: : Pol i cyType CONNECT_TI MEQUT_POLI CY_I D = 1330577416;

This policy type identifies the connect timeout policy.

INTERCEPTOR_POLICY_ID
const CORBA: : Pol i cyType | NTERCEPTOR PCLI CY_I D = 1330577415;

ORBacus 255

ORBacus Policy Reference

This policy type identifies the interceptor policy.

LOCATION_TRANSPARENCY_POLICY_ID
const CORBA: : Pol i cyType LOCATI ON_TRANSPARENCY_POLI CY_I D = 1330577414,

This policy type identifies the location transparency policy.

LOCATION_TRANSPARENCY_RELAXED
const short LOCATI ON_TRANSPARENCY_RELAXED = 1,

The LOCATI ON_TRANSPARENCY_RELAXED LocationTransparencyPolicy value.

LOCATION_TRANSPARENCY_STRICT
const short LOCATI ON_TRANSPARENCY_STRICT = 0;

The LOCATI ON_TRANSPARENCY_STRI CT LocationTransparencyPolicy value.

PROTOCOL_POLICY_ID
const CORBA:: PolicyType PROTOCOL_PCLI CY_I D = 1330577410;

This policy type identifies the protocol policy.

REQUEST_TIMEOUT_POLICY_ID
const CORBA: : Pol i cyType REQUEST_TI MEOUT_PCOLI CY_I D = 1330577417;

This policy type identifies the request timeout policy.

RETRY_ALWAYS
const short RETRY_ALWAYS = 2;

The RETRY_ALWAYS RetryPolicy value.

RETRY_NEVER
const short RETRY_NEVER = 0;

The RETRY_NEVER RetryPolicy value.

RETRY_POLICY_ID
const CORBA: : Pol i cyType RETRY_POLICY_ID = 1330577412;

This policy type identifies the retry policy.

256 ORBacus

Module OB

RETRY_STRICT
const short RETRY_STRICT = 1;

The RETRY_STRI CT RetryPolicy value.

TIMEOUT_POLICY_ID
const CORBA:: PolicyType TI MEOUT_POLICY_ID = 1330577413;

This policy type identifies the timeout policy.

ORBacus 257

ORBacus Policy Reference

B.2 Interface OB::ACMTimeoutPolicy

interface ACMTimeoutPolicy
inherits from CORBA::Policy

The active connection management (ACM) timeout policy. This policy can be used to specify a
time after which idle connections are shut down by the client.

Attributes

value
readonly attribute unsigned | ong val ue;

If an object has an ACMTi neout Pol i cy set, the connection associated with this object refer-
ence will be shut down after it has been idle for val ue seconds. The default value is the value
of the property ooc. or b. cl i ent _ti meout . A value of 0 means no timeout.

258

ORBacus

Interface OB::ConnectTimeoutPolicy

B.3 Interface OB::ConnectTimeoutPolicy

interface ConnectTimeoutPolicy
inherits from CORBA::Policy

The connect timeout policy. This policy can be used to specify a maximum time limit for connec-
tion establishment.

See Also:
TimeoutPolicy

Attributes

value
readonly attribute unsigned | ong val ue;

If an object has a Connect Ti neout Pol i cy set and a connection cannot be established after
val ue milliseconds, a CORBA: : NO_RESPONSE exception is raised. The default value is - 1,
which means no timeout.

ORBacus 259

ORBacus Policy Reference

B.4 Interface OB::ConnectionReusePolicy

interface ConnectionReusePolicy
inherits from CORBA::Policy

The connection reuse policy. This policy determines whether connections may be reused or are pri-
vate to specific objects.

Attributes

value
readonly attribute bool ean val ue;

If an object has a Connect i onReusePol i cy set with val ue set to FALSE, then other object
references will not be permitted to use connections made on behalf of this object. If set to TRUE,
then connections are shared. The default value is TRUE.

260

ORBacus

Interface OB::InterceptorPolicy

B.5 Interface OB::InterceptorPolicy

interface InterceptorPolicy
inherits from CORBA::Policy

The interceptor policy. This policy can be used to control whether interceptors are called on method
invocations on both the client and the server side.

Attributes

value
readonly attribute bool ean val ue;

If an object has an | nt er cept or Pol i cy set and val ue is FALSE then any installed intercep-
tors are not called. Otherwise, interceptors are called for each method invocation. The default
value is TRUE.

ORBacus 261

ORBacus Policy Reference

B.6 Interface OB::LocationTransparencyPolicy

interface LocationTransparencyPolicy
inherits from CORBA::Policy

The location transparency policy. This policy is used to control how strict the ORB is in enforcing
location transparency. This is useful for performance reasons.

Attributes

value
readonly attribute short val ue;

LOCATI ON_TRANSPARENCY_STRI CT ensures strict location transparency is followed.

LOCATI ON_TRANSPARENCY_RELAXED relaxes the location transparency guarantees for perfor-
mance reasons. Specifically for collocated method invocations, the dispatch concurrency model
will be ignored, and policy overrides are not removed. The default value is

LOCATI ON_TRANSPARENCY_RELAXED.

262

ORBacus

Interface OB::ProtocolPolicy

B.7 Interface OB::ProtocolPolicy

interface ProtocolPolicy
inherits from CORBA::Policy

The protocol policy. This policy is used to force the selection of a specific protocol.
Attributes

value
readonly attribute OCl::Protocolld val ue;

Ifa Prot ocol Pol i cy is set, then the protocol with the given identifier will be used, if possible.
If it is not possible to use this protocol, a CORBA: : NO_RESOURCES exception will be raised. By
default, the ORB chooses the protocol to be used.

ORBacus 263

ORBacus Policy Reference

B.§8 Interface OB::RequestTimeoutPolicy

interface RequestTimeoutPolicy
inherits from CORBA::Policy

The request timeout policy. This policy can be used to specify a maximum time limit for requests.

See Also:
TimeoutPolicy

Attributes

value
readonly attribute unsigned | ong val ue;

If an object has a Request Ti meout Pol i cy set and no response to a request is available after
val ue milliseconds, a CORBA: : NO_RESPONSE exception is raised. The default value is - 1,
which means no timeout.

264

ORBacus

Interface OB::RetryPolicy

B.9 Interface OB::RetryPolicy

interface RetryPolicy
inherits from CORBA::Policy

The retry policy. This policy is used to specify whether requests are retried after communication
failures (i.e., CORBA: : TRANSI ENT and CORBA: : COW _FAI LURE exceptions).

Attributes

value
readonly attribute short val ue;

RETRY_NEVER indicates that requests should never be retried, and the exception is re-thrown to
the application. RETRY_STRI CT will retry once if the exception completion status is
COMPLETED_NQ in order to guarantee at-most-once semantics. RETRY_ALWAYS will retry once,
regardless of the exception completion status. The default value is RETRY_STRI CT. Note:
Many TCP/IP stacks do not provide a reliable indication of communication failure when send-
ing smaller requests, therefore the failure may not be detected until the ORB attempts to read
the reply. In this case, the ORB must assume that the remote end has received the request, in
order to guarantee at-most-once semantics for the request. The implication is that when using
the default setting of RETRY_STRI CT, most communication failures will not cause a retry. This
behavior can be relaxed using RETRY_ALWAYS.

ORBacus 265

ORBacus Policy Reference

B.10 Interface OB::TimeoutPolicy

interface TimeoutPolicy
inherits from CORBA::Policy

The timeout policy. This policy can be used to specify the default timeout for connection establish-
ment and requests. If an object also has Connect Ti meout Pol i cy or Request Ti meout Pol i cy
set, those values have precedence.

See Also:
ConnectTimeoutPolicy, RequestTimeoutPolicy

Attributes

value
readonly attribute unsigned | ong val ue;

If an object has a Ti meout Pol i cy set and a connection cannot be established or no response to
a request is available after val ue milliseconds, a CORBA: : NO_RESPONSE exception is raised.
The default value is - 1, which means no timeout.

266

ORBacus

weone ReActor Reference

C.1 Interface OB::Reactor

interface Reactor

A generic Reactor interface.

Operations

register_handler
voi d regi ster_handl er (i n Event Handl er handl er,
i n Mask handl er _nask,
in TypeMask type_mask,
in Handl e h);

Register an event handler with the Reactor, or change the registration of an already registered
event handler.

Parameters:
handl er - The event handler to register.
mask - The type of events the event handler is interested in.
t ype_mask - The category the event handler belongs to.
h - The event handler's handle.

ORBacus 267

Reactor Reference

unregister_handler
voi d unregi ster_handl er (i n Event Handl er handl er);

Remove an event handler from the Reactor.

Parameters:
handl er - The event handler to remove.

dispatch
bool ean di spatch(in TypeMask type_nmask);

Dispatch events.

Parameters:
t ype_mask - If not zero, this operation will return once all registered event handlers that
match the type mask have unregistered.

Returns:
TRUE if all event handlers that match the type mask have unregistered, or FALSE if event
dispatching has been interrupted.

interrupt_dispatch
void interrupt_dispatch();

Interrupt event dispatching. After calling this operation, i nt er r upt () will return with FALSE.

dispatch_one_event
bool ean di spatch_one_event(in |l ong timeout);

Dispatch at least one event.

Parameters:
ti meout - The timeout in milliseconds. A negative value means no timeout, i.e., the opera-
tion will not return before at least one event has been dispatched. A zero timeout means that
the operation will return immediately if there is no event to dispatch.

Returns:
TRUE if at least one event has been dispatched, or FALSE otherwise.

event_ready
bool ean event _ready();

268

ORBacus

Interface OB::Reactor

Check whether an event is available.

Returns:
TRUE if an event is ready, or FALSE otherwise.

ORBacus 269

Reactor Reference

270 ORBacus

weons LOZZEr Reference

D.1 Interface OB::Logger

interface Logger
The ORBacus message logger interface.
Operations

info
void info(in string nsg);

Log an informational message.

Parameters:
nmsg - The message.

error
void error(in string nmsg);

Log an error message.

Parameters:

ORBacus

271

Logger Reference

msg - The error message.

warning
void warning(in string nsg);

Log a warning message.

Parameters:
msg - The warning message.

trace
void trace(in string category,
in string nsg);

Log a trace message.

Parameters:
cat egory - The trace category.
msg - The trace message.

272

ORBacus

weone Open Communications
Interface Reference

E.1 Module OCI

The Open Communications Interface (OCI). The definitions in this module provide a uniform inter-
face to network protocols. This allows for easy plug-in of new protocols or other communication
mechanisms into ORBs that implement the OCI. Furthermore, protocol implementations need only
to be written once and can then be reused with all OCI compliant ORBs. For more information,
please see the OCI documentation.

Aliases

BufferSeq
t ypedef sequence<Buf f er> Buf f er Seq;

Alias for a sequence of buffers.

IOR
typedef 1OP::10R IOR;

Alias for an IOR.

Profileld
typedef IOP::Profileld Profileld;

ORBacus 273

Open Communications Interface Reference

Alias for a profile id.

ProfileldSeq
t ypedef sequence<Profileld> ProfileldSeq;

Alias for a sequence of profile ids.

ObjectKey
t ypedef CORBA:: Cctet Seq Obj ect Key;

Alias for an object key, which is a sequence of octets.

TaggedComponentSeq
t ypedef | OP:: TaggedConponent Seq TaggedConponent Seq;

Alias for a sequence of tagged components.

Handle
typedef | ong Handl e;

Alias for a system-specific handle type.

Protocolld
t ypedef unsigned | ong Protocolld;

Alias for a protocol id.

ProfileInfoSeq
t ypedef sequence<Profilelnfo> Profil el nfoSeq;

Alias for a sequence of basic information about profiles.

ParamSeq
t ypedef sequence<Parank Par anfeq;

Alias for a sequence of parameters.

CloseCBSeq
t ypedef sequence<C oseCB> C oseCBSeq;

274 ORBacus

Module OCI

Alias for a sequence of close callback objects.

ConnectorSeq
t ypedef sequence<Connect or > Connect or Seq;

Alias for a sequence of Connectors.

ConnectCBSeq
t ypedef sequence<Connect CB> Connect CBSeq;

Alias for a sequence of connect callback objects.

AcceptorSeq
t ypedef sequence<Accept or> Accept or Seq;

Alias for a sequence of Acceptors.

AcceptCBSeq
t ypedef sequence<Accept CB> Accept CBSeq;

Alias for a sequence of accept callback objects.

AccFactorySeq
t ypedef sequence<AccFactory> AccFactorySeq;

Alias for a sequence of AccFactory objects.

ConFactorySeq
t ypedef sequence<ConFactory> ConFact orySeq;

Alias for a sequence of Connector factories.

Structs

ProfileInfo

struct Profilelnfo

{
hj ect Key key;
octet nwmjor;
octet m nor;
Profileld id;
unsi gned | ong i ndex;

ORBacus

275

Open Communications Interface Reference

TaggedConponent Seq conponents;
3

Basic information about an IOR profile. Profiles for specific protocols contain additional data.
(For example, an IIOP profile also contains a hostname and a port number.)

Members:
key - The object key.
maj or - The major version number of the ORB's protocol. (For example, the major GIOP
version, if the underlying ORB uses GIOP.)
m nor - The minor version number of the ORB's protocol. (For example, the minor GIOP
version, if the underlying ORB uses GIOP.)
i d - The id of the profile that contains this information.
i ndex - The position index of this profile in an IOR.
conmponent s - A sequence of tagged components.

Param
struct Param

{
string nane;
any val ue;

b
A parameter represented as a name/value pair.
Members:

nane - The parameter name.
val ue - The parameter value.

Exceptions
InvalidParam
exception InvalidParam
{
Par am p;
string reason;
b

A parameter is invalid. Either the name is unrecognized, the value has the wrong type, or the
value is invalid.

Members:
p - The offending parameter.

276 ORBacus

Module OCI

r eason - The reason why this parameter is invalid.

FactoryAlreadyExists
exception FactoryAl readyExi sts

Protocol Id id;
b

A factory with the given protocol id already exists.

Members:
i d - The protocol id.

NoSuchFactory
exception NoSuchFactory

Protocol Id id;
}s

No factory with the given protocol id could be found.

Members:
i d - The protocol id.

ORBacus

277

Open Communications Interface Reference

E.2 Interface OCI::Buffer

interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets and a posi-
tion counter, which determines how many octets have already been sent or received. The IDL inter-
face definition for Buffer is incomplete and must be extended by the specific language mappings.
For example, the C++ mapping defines the following additional functions:

* Cctet* data(): Returns a C++ pointer to the first element of the array of octets, which repre-
sents the buffer's contents.

* Cctet* rest(): Similar to dat a(), this operation returns a C++ pointer, but to the n-th ele-
ment of the array of octets with n being the value of the position counter.

Attributes

length
readonly attribute unsigned |ong |ength;

The buffer length.

pos
attribute unsigned | ong pos;

The position counter. Note that the buffer's length and the position counter don't depend on each
other. There are no restrictions on the values permitted for the counter. This implies that it's
even legal to set the counter to values beyond the buffer's length.

Operations

advance
voi d advance(in unsigned |ong delta);

Increment the position counter.

Parameters:
del t a - The value to add to the position counter.

rest_length
unsi gned | ong rest_| ength();

278

ORBacus

Interface OCI::Buffer

Returns the rest length of the buffer. The rest length is the length minus the position counter's
value. If the value of the position counter exceeds the buffer's length, the return value is unde-
fined.

Returns:
The rest length.

is_full
boolean is_full();

Checks if the buffer is full. The buffer is considered full if its length is equal to the position
counter's value.

Returns:
TRUE if the buffer is full, FALSE otherwise.

ORBacus 279

Open Communications Interface Reference

E.3 Interface OCI::Transport

interface Transport

The interface for a Transport object, which provides operations for sending and receiving octet
streams. In addition, it is possible to register callbacks with the Transport object, which are invoked
whenever data can be sent or received without blocking.

See Also:
Connector
Acceptor

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.

handle
readonly attribute Handl e handl e;

The "handle" for this Transport. The handle may only be used to determine whether the Trans-
port object is ready to send or to receive data, e.g., with sel ect () on Unix-based operating
systems. All other uses (e.g., calls toread(),wite(), cl ose()) are strictly non-compliant.
A handle value of -1 indicates that the protocol plug-in does not support "selectable" Trans-
ports.

Operations

close
voi d cl ose();

Closes the Transport. After calling cl ose, no operations on this Transport object and its associ-
ated TransportInfo object may be called. To ensure that no messages get lost when cl ose is
called, shut down should be called first. Then dummy data should be read from the Transport,

280 ORBacus

Interface OCI:: Transport

using one of the r ecei ve operations, until either an exception is raised, or until connection clo-
sure is detected. After that its save to call cl ose, i.e., no messages can get lost.

Raises:
COWM _FAI LURE - In case of an error.

shutdown
voi d shut down();

Shutdown the Transport. Upon a successful shutdown, threads blocking in the r ecei ve opera-
tions will return or throw an exception. After calling shut down, no operations on associated
TransportInfo object may be called. To fully close the Transport, cl ose must be called.

Raises:
COWM FAI LURE - In case of an error.

receive
voi d receive(in Buffer buf,
i n bool ean bl ock);

Receives a buffer's contents.

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the buffer is full. If set to FALSE, the oper-

ation fills as much of the buffer as possible without blocking.

Raises:
COWM FAI LURE - In case of an error.

receive_detect
bool ean receive_detect(in Buffer buf,
i n bool ean bl ock);

Similar to r ecei ve, but it signals a connection loss by returning FALSE instead of raising
COW _FAI LURE.

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the buffer is full. If set to FALSE, the oper-

ation fills as much of the buffer as possible without blocking.

ORBacus 281

Open Communications Interface Reference

Returns:
FALSE if a connection loss is detected, TRUE otherwise.

Raises:
COWM _FAI LURE - In case of an error.

receive_timeout
voi d receive_tineout(in Buffer buf,
in unsigned |long timeout);

Similar to r ecei ve, but it is possible to specify a timeout. On return the caller can test whether
there was a timeout by checking if the buffer has been filled completely.

Parameters:
buf - The buffer to fill.
ti meout - The timeout value in milliseconds. A zero timeout is equivalent to calling
recei ve(buf, FALSE).

Raises:
COW_FAI LURE - In case of an error.

send
voi d send(in Buffer buf,
i n bool ean bl ock);

Sends a buffer's contents.

Parameters:
buf - The buffer to send.
bl ock - If set to TRUE, the operation blocks until the buffer has completely been sent. If set
to FALSE, the operation sends as much of the buffer's data as possible without blocking.

Raises:
COWM FAI LURE - In case of an error.

send_detect
bool ean send_detect (i n Buffer buf,
i n bool ean bl ock);

Similar to send, but it signals a connection loss by returning FALSE instead of raising
COW _FAI LURE.

282

ORBacus

Interface OCI:: Transport

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the entire buffer has been sent. If set to

FALSE, the operation sends as much of the buffer's data as possible without blocking.

Returns:
FALSE if a connection loss is detected, TRUE otherwise.

Raises:
COW _FAI LURE - In case of an error.

send_timeout
voi d send_tinmeout (in Buffer buf,
in unsigned |long tineout);

Similar to send, but it is possible to specify a timeout. On return the caller can test whether
there was a timeout by checking if the buffer has been sent completely.

Parameters:
buf - The buffer to send.
ti meout - The timeout value in milliseconds. A zero timeout is equivalent to calling

send(buf, FALSE).

Raises:
COW_FAI LURE - In case of an error.

get_info
Transportinfo get _info();

Returns the information object associated with the Transport.

Returns:
The Transport information object.

ORBacus 283

Open Communications Interface Reference

E.4 Interface OCI::Transportinfo

interface TransportInfo

Information on an OCI Transport object. Objects of this type must be narrowed to a Transport
information object for a concrete protocol implementation, for example to OCl : : | | OP: : Tr ans-
por t | nf o in case the plug-in implements IIOP.

See Also:
Transport

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.

connector_info
readonly attribute Connectorlnfo connector_info;

The ConnectorInfo object for the Connector that created the Transport object that this Trans-
portlnfo object belongs to. If the Transport for this TransportInfo was not created by a Connec-
tor, this attribute is set to the nil object reference.

acceptor_info
readonly attribute Acceptorlnfo acceptor_info;

The AcceptorInfo object for the Acceptor that created the Transport object that this Transport-
Info object belongs to. If the Transport for this TransportInfo was not created by an Acceptor,
this attribute is set to the nil object reference.

Operations

describe
string describe();

284

ORBacus

Interface OCI::Transportinfo

Returns a human readable description of the transport.

Returns:
The description.

add_close_cb
voi d add_cl ose_cb(in C oseCB cb);

Add a callback that is called before a connection is closed. If the callback has already been reg-
istered, this method has no effect.

Parameters:
cb - The callback to add.

remove_close_cb
voi d renove_cl ose_cb(in C oseCB ch);

Remove a close callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.

ORBacus 285

Open Communications Interface Reference

E.5 Interface OCI::CloseCB

interface CloseCB
An interface for a close callback object.

See Also:
TransportInfo

Operations

close_cb
void close_cb(in Transportinfo transport_info);

Called before a connection is closed.

Parameters:
transport _i nf o - The TransportInfo for the new closeion.

286 ORBacus

Interface OCI::Connector

E.6 Interface OCI::Connector

interface Connector

An interface for Connector objects. A Connector is used by CORBA clients to initiate a connection
to a server. It also provides operations for the management of IOR profiles.

See Also:
ConFactory
Transport

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.

Operations

connect
Transport connect ();

Used by CORBA clients to establish a connection to a CORBA server. It returns a Transport
object, which can be used for sending and receiving octet streams to and from the server.

Returns:
The new Transport object.

Raises:
TRANSI ENT - If the server cannot be contacted.
COWM _FAI LURE - In case of other errors.

connect_timeout
Transport connect _tineout (in unsigned |ong tineout);

ORBacus 287

Open Communications Interface Reference

Similar to connect , but it is possible to specify a timeout. On return the caller can test whether
there was a timeout by checking whether a nil object reference was returned.

Parameters:
ti meout - The timeout value in milliseconds.

Returns:
The new Transport object.

Raises:
TRANSI ENT - If the server cannot be contacted.
COWM _FAI LURE - In case of other errors.

get_usable_profiles

Profil el nfoSeq get_usable_profiles(in IOR ref,
in CORBA:: PolicyList policies);

From the given IOR and list of policies, get basic information about all profiles for which this
Connector can be used.

Parameters:
ref - The IOR from which the profiles are taken.
pol i ci es - The policies that must be satisfied.

Returns:
The sequence of basic information about profiles. If this sequence is empty, there is no pro-
file in the IOR that matches this Connector and the list of policies.

equal

bool ean equal (in Connector con);

Find out whether this Connector is equal to another Connector. Two Connectors are considered
equal if they are interchangeable.

Parameters:
con - The connector to compare with.

Returns:
TRUE if the Connectors are equal, FALSE otherwise.

288

ORBacus

Interface OCI::Connector

get_info
Connectorlnfo get_info();

Returns the information object associated with the Connector.

Returns:
The Connector information object.

ORBacus 289

Open Communications Interface Reference

E.7 Interface OCI::ConnectoriInfo

interface ConnectorInfo

Information on a OCI Connector object. Objects of this type must be narrowed to a Connector
information object for a concrete protocol implementation, for example to OCl : : | | OP: : Connec-
t or I nf o in case the plug-in implements IIOP.

See Also:
Connector

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.
Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_connect_cb
voi d add_connect _cb(in Connect CB cb);

Add a callback that is called whenever a new connection is established. If the callback has
already been registered, this method has no effect.

Parameters:

290 ORBacus

Interface OCI::ConnectorInfo

cb - The callback to add.

remove_connect_cbh
voi d renove_connect _cb(in Connect CB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.

ORBacus 291

Open Communications Interface Reference

E.8 Interface OCI::ConnectCB

interface ConnectCB
An interface for a connect callback object.

See Also:
ConnectorInfo

Operations

connect_cb
voi d connect _cb(in Transportlnfo transport_info);

Called after a new connection has been established. If the application wishes to reject the con-
nection CORBA: : NO_PERM SSI ON'may be raised.

Parameters:
transport _i nf o - The TransportInfo for the new connection.

292 ORBacus

Interface OCI::Acceptor

E.9 Interface OCI::Acceptor

interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to accept client connection
requests. It also provides operations for the management of IOR profiles.

See Also:
AccRegistry

AccFactory
Transport

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.

handle
readonly attribute Handl e handl e;

The "handle" for this Acceptor. Like with the handle for Transports, the handle may only be
used with operations like sel ect () . A handle value of -1 indicates that the protocol plug-in
does not support "selectable" Transports.

Operations

close
void cl ose();

Closes the Acceptor. accept orl i st en may not be called after cl ose has been called.

Raises:
COWM _FAI LURE - In case of an error.

ORBacus 293

Open Communications Interface Reference

listen

void listen();

Sets the acceptor up to listen for incoming connections. Until this method is called on the accep-
tor, new connection requests should result in a connection request failure.

Raises:
COWM _FAI LURE - In case of an error.

accept

Transport accept (i n bool ean bl ock);

Used by CORBA servers to accept client connection requests. It returns a Transport object,
which can be used for sending and receiving octet streams to and from the client.

Parameters:
bl ock - If set to TRUE, the operation blocks until a new connection has been accepted. If set
to FALSE, the operation returns a nil object reference if there is no new connection ready to
be accepted.

Returns:
The new Transport object.

Raises:
COWM FAI LURE - In case of an error.

connect_self

Transport connect _sel f();

Connect to this acceptor. This operation can be used to unblock threads that are blocking in
accept .

Returns:
The new Transport object.

Raises:
TRANSI ENT - If the server cannot be contacted.
COWM FAI LURE - In case of other errors.

add_profiles

void add_profiles(in Profilelnfo profile_info,

294

ORBacus

Interface OCI::Acceptor

inout IOR ref);

Add new profiles that match this Acceptor to an IOR.

Parameters:
profil e_i nf o - The basic profile information to use for the new profiles.
ref - The IOR.

get_local_profiles
Profil el nfoSeq get_l| ocal _profiles(in IOR ref);

From the given IOR, get basic information about all profiles for which are local to this Accep-
tor.

Parameters:
ref - The IOR from which the profiles are taken.

Returns:
The sequence of basic information about profiles. If this sequence is empty, there is no pro-
file in the IOR that is local to the Acceptor.

get_info
Acceptorinfo get_info();

Returns the information object associated with the Acceptor.

Returns:
The Acceptor information object.

ORBacus 295

Open Communications Interface Reference

E. 10 Interface OCI::Acceptorinfo

interface AcceptorInfo

Information on an OCI Acceptor object. Objects of this type must be narrowed to an Acceptor
information object for a concrete protocol implementation, for example to OCl : : | | OP: : Accep-
t or I nf o in case the plug-in implements IIOP.

See Also:
Acceptor

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.
Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_accept_cb
voi d add_accept _ch(in AcceptCB ch);

Add a callback that is called whenever a new connection is accepted. If the callback has already
been registered, this method has no effect.

Parameters:

296 ORBacus

Interface OCI::AcceptorInfo

cb - The callback to add.

remove_accept_cb
voi d renove_accept _cb(in AcceptCB cb);

Remove an accept callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.

ORBacus 297

Open Communications Interface Reference

E. 11 Interface OCI::AcceptCB

interface AcceptCB
An interface for an accept callback object.

See Also:
Acceptorlnfo

Operations

accept_cb
voi d accept_ch(in Transportlnfo transport_info);

Called after a new connection has been accepted. If the application wishes to reject the connec-
tion CORBA: : NO_PERM SS| ON may be raised.

Parameters:
transport _i nf o - The TransportInfo for the new connection.

298 ORBacus

Interface OCI::AccFactory

E. 12 Interface OCI::AccFactory

interface AccFactory
An interface for an AccFactory object, which is used by CORBA servers to create Acceptors.

See Also:
Acceptor
AccFactoryRegistry

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.
Operations

create_acceptor
Acceptor create_acceptor(in ParanSeq parans)
rai ses(lnvalidParanj;

Create an Acceptor using the given configuration parameters. Refer to the plug-in documenta-
tion for a description of the configuration parameters supported for a particular protocol.

Parameters:
par ans - The configuration parameters.

Returns:
The new Acceptor.

Raises:
I nval i dPar am- If any of the parameters are invalid.

ORBacus 299

Open Communications Interface Reference

get_info
AccFactorylnfo get_info();

Returns the information object associated with the Acceptor factory.

Returns:
The Acceptor

300 ORBacus

Interface OCI::AccFactorylInfo

E. 13 Interface OCI::AccFactorylnfo

interface AccFactorylInfo
Information on an OCI AccFactory object.

See Also:
AccFactory

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.
Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

ORBacus

301

Open Communications Interface Reference

E. 14 Interface OCI::AccFactoryRegistry

interface AccFactoryRegistry
A registry for Acceptor factories.

See Also:
Acceptor
AccFactory

Operations

add_factory
void add_factory(in AccFactory factory)
rai ses(FactoryAl readyExi sts);

Adds an Acceptor factory to the registry.

Parameters:
fact ory - The Acceptor factory to add.

Raises:
Fact or yAl r eadyEXxi st s - If a factory already exists with the same protocol id as the

given factory.

get_factory
AccFactory get_factory(in Protocolld id)
rai ses(NoSuchFactory);

Returns the factory with the given protocol id.

Parameters:
i d - The protocol id.

Returns:
The Acceptor factory.

Raises:
NoSuchFact ory - If no factory was found with a matching protocol id.

get_factories

302 ORBacus

Interface OCI::AccFactoryRegistry

AccFactorySeq get _factories();
Returns all registered factories.

Returns:
The Acceptor factories.

ORBacus 303

Open Communications Interface Reference

E. 15 Interface OCI::ConFactory

interface ConFactory
A factory for Connector objects.

See Also:
Connector
ConFactoryRegistry

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.
Operations

create_connectors
Connect or Seq create_connectors(in | OR ref,
i n CORBA:: PolicyList policies);

Returns a sequence of Connectors for a given IOR and a list of policies. The sequence includes
one or more Connectors for each IOR profile that matches this Connector factory and satisfies
the list of policies.

Parameters:
r ef - The IOR for which Connectors are returned.
pol i ci es - The policies that must be satisfied.

Returns:
The sequence of Connectors.

equivalent
bool ean equivalent(in IOR iorl,

304 ORBacus

Interface OCI::ConFactory

in IORior2);

Checks whether two IORs are equivalent, taking only profiles into account matching this Con-
nector factory.

Parameters:
i or 1 - The first IOR to check for equivalence.
i or 2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FALSE otherwise.

hash
unsi gned | ong hash(in I OR ref,
in unsigned | ong maxi num ;

Calculates a hash value for an IOR.

Parameters:
r ef - The IOR to calculate a hash value for.
maxi mum- The maximum value of the hash value.

Returns:
The hash value.

get_info
ConFactorylnfo get _info();

Returns the information object associated with the Connector factory.

Returns:
The Connector factory information object.

ORBacus 305

Open Communications Interface Reference

E. 16 Interface OCI::ConFactorylnfo

interface ConFactoryInfo
Information on an OCI ConFactory object.

See Also:
ConFactory

Attributes

id
readonly attribute Protocolld id;

The protocol id.

tag
readonly attribute Profileld tag;

The profile id tag.

Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_connect_cb
voi d add_connect _cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If the callback has
already been registered, this method has no effect.

Parameters:
cb - The callback to add.

306 ORBacus

Interface OCI::ConFactorylnfo

remove_connect_cb
voi d renove_connect _ch(in Connect CB ch);

Remove a connect callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.

ORBacus 307

Open Communications Interface Reference

E. 17 Interface OCI::ConFactoryRegistry

interface ConFactoryRegistry
A registry for Connector factories.

See Also:
Connector
ConFactory

Operations

add_factory
voi d add_factory(in ConFactory factory)
rai ses(FactoryAl readyExi sts);

Adds a Connector factory to the registry.

Parameters:
fact ory - The Connector factory to add.

Raises:
Fact or yAl r eadyEXxi st s - If a factory already exists with the same protocol id as the

given factory.

get_factory
ConFactory get_factory(in Protocolld id)
rai ses(NoSuchFactory);

Returns the factory with the given protocol id.

Parameters:
i d - The protocol id.

Returns:
The Connector factory.

Raises:
NoSuchFact ory - If no factory was found with a matching protocol id.

get_factories

308 ORBacus

Interface OCI::ConFactoryRegistry

ConFact orySeq get _factories();
Returns all registered factories.

Returns:
The Connector factories.

ORBacus 309

Open Communications Interface Reference

E. 18 Interface OCI::Current

interface Current
inherits from CORBA::Current

Interface to access Transport and Acceptor information objects related to the current request.
Operations

get_oci_transport_info
TransportlInfo get_oci_transport_info();

This method returns the Transport information object for the Transport used to invoke the cur-
rent request.

get_oci_acceptor_info
Acceptorinfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which created the Trans-
port used to invoke the current request.

310

ORBacus

Module OCI::I10OP

E.19 Module OCI::IIOP

This module contains interfaces to support the IIOP OCI plug-in.
Aliases

InetAddr
typedef octet |netAddr[4];

Alias for an array of four octets. This alias will be used for address information from the various
information classes. The address will always be in network byte order.

Constants

TAG_IIOP
const Protocolld TAG II1OP = 1330577409;

The protocol id for the ORBAcUS IIOP plug-in.

ORBacus 311

Open Communications Interface Reference

E.20 Interface OCI::1IOP:: Transportinfo

interface TransportInfo
inherits from OCI::TransportInfo

Information on an IIOP OCI Transport object.

See Also:
Transport
TransportInfo

Attributes

addr
readonly attribute |net Addr addr;

The local 32 bit IP address.

port
readonly attribute unsigned short port;

The local port.

remote_addr
readonly attribute |InetAddr renote_addr;

The remote 32 bit IP address.

remote_port
readonly attribute unsigned short renote_port;

The remote port.

312 ORBacus

Interface OCI::IIOP::ConnectorInfo

E.21 Interface OCI::IIOP::Connectorinfo

interface ConnectorInfo
inherits from OCI::ConnectorInfo

Information on an IIOP OCI Connector object.

See Also:
Connector
ConnectorInfo

Attributes

remote_addr
readonly attribute |InetAddr renote_addr;

The remote 32 bit IP address to which this connector connects.

remote_port
readonly attribute unsigned short renote_port;

The remote port to which this connector connects.

ORBacus

313

Open Communications Interface Reference

E.22 Interface OCI::IIOP::Acceptorinfo

interface AcceptorInfo
inherits from OCI::AcceptorInfo

Information on an IIOP OCI Acceptor object.

See Also:
Acceptor
AcceptorInfo

Attributes

hosts
readonly attribute CORBA: :StringSeq hosts;

Hostnames used for creation of IIOP object references.

addr
readonly attribute | netAddr addr;

The local 32 bit IP address on which this acceptor accepts.

port
readonly attribute unsigned short port;

The local port on which this acceptor accepts.

314 ORBacus

Interface OCI::IIOP::AccFactorylnfo

E.23 Interface OCI::1IOP::AccFactorylnfo

interface AccFactorylInfo
inherits from OCI::AccFactorylnfo

Information on an IIOP OCI Acceptor Factory object.

See Also:
AccFactory

ORBacus 315

Open Communications Interface Reference

E.24 Interface OCI::IIOP::ConFactorylnfo

interface ConFactoryInfo
inherits from OCI::ConFactorylnfo

Information on an IIOP OCI Connector Factory object.
See Also:

ConFactory
ConFactoryInfo

316

ORBacus

References

(1]

(2]
(3]

(4]

(3]

(6]

(7]

Buschman, F., et al. 1996. Pattern-Oriented Software Architecture: A System of Patterns.
New York: Wiley.

Gamma, E., et al. 1994. Design Patterns. Reading, MA: Addison-Wesley

Henning, M., and S. Vinoski. 1999. Advanced CORBA Programming with C++. Reading,
MA: Addison-Wesley.

Object Management Group. 1999. The Common Object Request Broker: Architecture and
Specification. Revision 2.3.1. ftp://www.omg.org/pub/docs/formal/99-10-07.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. C++ Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-45.pdf. Framingham, MA: Object
Management Group.

Object Management Group. 1999. IDL/Java Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-53.pdf. Framingham, MA: Object
Management Group.

Object Management Group. 1999. Portable Interceptors.
ftp://ftp.omg.org/pub/docs/orbos/99-12-02.pdf. Framingham, MA: Object Management
Group.

ORBacus 317

References

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Object Management Group. 1998. CORBA Messaging.
ftp://ftp.omg.org/pub/docs/orbos/98-05-06.pdf. Framingham, MA: Object Management
Group.

Object Management Group. 1998. CORBAservices: Common Object Services
Specification. ftp://www.omg.org/pub/docs/formal/98-12-09.pdf. Framingham, MA:
Object Management Group.

Object Management Group. 1999. Naming Service Specification.
ftp://ftp.omg.org/pub/docs/ptc/99-12-03.pdf. Framingham, MA: Object Management
Group.

IONA Technologies, Inc. 2001. JTHREADS/C++. http://www.orbacus.com/jtc/. Waltham,
MA: IONA Technologies, Inc.

IONA Technologies, Inc. 2001. JTHREADS/C++ User s Manual. Waltham, MA: IONA
Technologies, Inc.

IONA Technologies, Inc. 2001. ORBACUS. http://www.orbacus.com/ob/. Waltham, MA:
IONA Technologies, Inc.

Schmidt, D. C. 1995. “Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching.” In Pattern Languages of Program
Design, ed. James O. Coplien and Douglas C. Schmidt. Reading, MA: Addison-Wesley.

318

ORBacus

A
Applet 104

B

Basic Object Adapter 76
Bindings 140

BOA 76

Boot Manager 106

C
Callbacks 68
Code Generators 31
Command-line Options 58
Concurrency Models
Blocking 208
Reactive 209
Thread Pool 214
Threaded 211
Thread-per-Client 212
Thread-per-Request 213
Configuration File 59
Currently Executing Request 95

D
demo program 17
Documenting IDL Files 41

E

Event Charnel 187
Event Consumers 187
Event Loop 71

Event Service 181
Event Suppliers 187
Exceptions 235

H
Hostname 100, 223
HTML 41

ORBacus 319

|
IFR 195
11OP
Configuration 55
Installation 51
Implementation Repository 113
Implementation Repository Administration 122
IMR 113
IMR Console 131
included IDL files 40
Initial Services 108
Configuring 110
Resolving 108
Interface Repository 195
IP Address 224,226
irdel 199
irfeed 198

J
javadoc 44
JDK 1.2 48

N

Name Service
Configuration 138
Initialization 142
Persistence 138

Names Console 149

Netscape 72

o
OAD 113
Object Activation Daemon 113
Object Adapter
Configuration 53
Initialization 48
Object Key 101
Object References 97
Objects
Locating 97

320 ORBacus

Persistent 89
Transient 89
ocr 219
Acceptor 220
Acceptor Factory 220
Bi-directional Plug-in 229
Connector 220
Connector Factory 220
IIOP Plug-in 227
Info Objects 220
Registries 220
Transport 220
Open Communications Interface 219
Options
hidl 37
idl 32
irgen 39
jidl 36
ridl 38
ORB
Configuration 49
Destruction 70
Initialization 47
ORBacus Names 135

P

POA 76,116

POA Manager 65
Creating 65
Root POA Manager 67

Policies 201
ConnectionReusePolicy 202
ConnectTimeoutPolicy 202
InterceptorPolicy 202
LocationTransparencyPolicy 202
ProtocolPolicy 202
RequestTimeoutPolicy 203
RetryPolicy 203
TimeoutPolicy 203

ORBacus 321

Popup Menu 156

port 100,223

Portable Object Adapter 76

Programming Examples
Event Service 190
Implementation Repository 127
Interface Repository 199
Name Service 142
ocrt 222
Policies 203
Property Service 162
Time Service 176

Properties
ooc.bidirmode 232
ooc.bidir.peer 232
ooc.config 49
ooc.event.max_events 183
ooc.event.max_retries 184
ooc.event.port 184
ooc.event.pull_interval 184
ooc.event.retry_multiplier 184
ooc.event.retry_timeout 184
ooc.event.trace.events 184
ooc.event.trace.lifecycle 184
ooc.event.typed_service 184
ooc.ifr.options 197
ooc.ifrport 197
ooc.iiop.acceptor.manager.backlog 56
ooc.iiop.acceptor.manager.bind 57
ooc.iiop.acceptor.manager.host 57
ooc.iiop.acceptor.manager.multi_profile 57
ooc.iiop.acceptor.manager.numeric 57
ooc.iiop.acceptor.manager.port 58
ooc.iiop.backlog 55
ooc.iiop.bind 55
ooc.iiop.host 56
ooc.iiop.multi_profile 56
ooc.iiop.numeric 56

322 ORBacus

ooc.iiop.port 56

ooc.imr.dbdir 120

ooc.imr.trace.oad 121
ooc.naming.callback_timeout 138
ooc.naming.database 138
ooc.naming.no_updates 138
ooc.naming.port 138
ooc.naming.timeout 138
ooc.naming.trace_level 138
ooc.orb.client_shutdown_timeout 49
ooc.orb.client_timeout 50
ooc.orb.conc_model 50
ooc.orb.default_init_ref 50
ooc.orb.default_wcs 50
ooc.orb.giop.max_message_size 50
ooc.orb.id 51

ooc.orb.init_iiop 51
ooc.orb.native_cs 51
ooc.orb.native_wes 51
ooc.orb.oa.conc_model 53
ooc.orb.oa.host 54
ooc.orb.oa.numeric 54,55
ooc.orb.oa.port 54
ooc.orb.oa.thread_pool 54
ooc.orb.oa.version 54
ooc.orb.poamanager.manager.conc_model 54
ooc.orb.poamanager.manager.host 54
ooc.orb.poamanager.manager.numeric 35
ooc.orb.poamanager.manager.port 55
ooc.orb.poamanager.manager.version 55
ooc.orb.raise_dii_exceptions 51
ooc.orb.server_name 52
ooc.orb.server_shutdown_timeout 52
ooc.orb.server_timeout 52
ooc.orb.service.name 52
ooc.orb.trace.connections 52
ooc.orb.trace.retry 53
ooc.property.port 158

ORBacus 323

ooc.time.inaccuracy 167
Property Service 157

R

Reactor 215
Recursion 151
RTF 41

S

Security 74

Servants 76
Activation 86
Cc++ 84
Deactivation 89
Delegation 79
Inheritance 77
Java 85

T
Time Service 165
Toolbar 134, 155

)

URL 103,105
corbaloc 105
corbaname 107
file 107
relfile 108

w
Windows NT Registry 60
Windows Reactor 217

X
X11 Reactor 216

324 ORBacus

	CHAPTER 1 Introduction
	1.1 What is ORBacus?
	1.2 About this Document
	1.3 Getting Help

	CHAPTER 2 Getting Started
	2.1 The “Hello World” Application
	2.2 The IDL Code
	2.3 Implementing the Example in C++
	2.3.1 Implementing the Server
	2.3.2 Implementing the Client
	2.3.3 Compiling and Linking
	2.3.4 Running the Application

	2.4 Implementing the Example in Java
	2.4.1 Implementing the Server
	2.4.2 Implementing the Client
	2.4.3 Compiling
	2.4.4 Running the Application

	2.5 Summary
	2.6 Where to go from here

	CHAPTER 3 The ORBacus Code Generators
	3.1 Overview
	3.2 Synopsis
	3.3 Description
	3.4 Options for idl
	3.5 Options for jidl
	3.6 Options for hidl
	3.7 Options for ridl
	3.8 Options for irgen
	3.9 The IDL-to-C++ Translator and the Interface Repository
	3.10 Include Statements
	3.11 Documenting IDL Files
	3.12 Using javadoc

	CHAPTER 4 ORB and Object Adapter Initialization
	4.1 ORB Initialization
	4.1.1 Initializing the C++ ORB
	4.1.2 Initializing the Java ORB for Applications
	4.1.3 Initializing the Java ORB in JDK 1.2/1.3

	4.2 Object Adapter Initialization
	4.2.1 Initialization of the Object Adapter

	4.3 Configuring the ORB and Object Adapter
	4.3.1 ORB Properties
	4.3.2 OA Properties
	4.3.3 IIOP Properties
	4.3.4 Command-line Options
	4.3.5 Using a Configuration File
	4.3.6 Using the Windows NT Registry
	4.3.7 Defining Properties
	4.3.8 Precedence of Properties
	4.3.9 Advanced Property Usage

	4.4 Using POA Managers
	4.4.1 Creating POA Managers
	4.4.2 The Root POA Manager
	4.4.3 Dispatching Requests
	4.4.4 Callbacks
	4.4.5 Advanced Configuration Example

	4.5 ORB Destruction
	4.5.1 Destroying the C++ ORB
	4.5.2 Destroying the Java ORB

	4.6 Server Event Loop
	4.7 Applets
	4.7.1 Compatibility with Netscape
	4.7.2 Initializing the Java ORB for Applets
	4.7.3 Adding ORBacus Applets to Web Pages
	4.7.4 Defining ORB Options for an Applet
	4.7.5 Defining the ORB Class Parameters
	4.7.6 Security Issues

	CHAPTER 5 CORBA Objects
	5.1 Overview
	5.2 Implementing Servants
	5.2.1 Implementing Servants using Inheritance
	5.2.2 Implementing Servants using Delegation

	5.3 Creating Servants
	5.3.1 Creating Servants using C++
	5.3.2 Creating Servants using Java

	5.4 Activating Servants
	5.4.1 Implicit Activation of Servants using C++
	5.4.2 Implicit Activation of Servants using Java
	5.4.3 Explicit Activation of Servants using C++
	5.4.4 Explicit Activation of Servants using Java

	5.5 Deactivating Servants
	5.5.1 Deactivation of Servants using C++
	5.5.2 Deactivation of Servants using Java
	5.5.3 Transient and Persistent Objects

	5.6 Factory Objects
	5.6.1 Factory Objects using C++
	5.6.2 Factory Objects using Java
	5.6.3 Caveats
	5.6.4 Obtaining the POA for a Servant
	5.6.5 Getting the POA for a Currently Executing Request

	CHAPTER 6 Locating Objects
	6.1 Obtaining Object References
	6.2 Lifetime of Object References
	6.2.1 Hostname
	6.2.2 Port Number
	6.2.3 Object Key

	6.3 Stringified Object References
	6.3.1 Using a File
	6.3.2 Using a URL
	6.3.3 Using Applet Parameters

	6.4 Object Reference URLs
	6.4.1 corbaloc: URLs
	6.4.2 corbaname: URLs
	6.4.3 file: URLs
	6.4.4 relfile: URLs

	6.5 Initial Services
	6.5.1 Resolving an Initial Service
	6.5.2 Configuring the Initial Services
	6.5.3 The Initial Service Locator

	CHAPTER 7 The Implementation Repository
	7.1 Background
	7.1.1 How It All Works
	7.1.2 Information Managed by the IMR
	7.1.3 IMR Security

	7.2 Synopsis
	7.2.1 Usage
	7.2.2 Windows NT Native Service
	7.2.3 Configuration Properties

	7.3 Connecting to the Service
	7.4 Utilities
	7.4.1 Implementation Repository Administration
	7.4.2 Making References
	7.4.3 Upgrading the IMR Database

	7.5 Getting Started with the Implementation Repository
	7.6 Programming Example

	CHAPTER 8 The Implementation Repository Console
	8.1 Synopsis
	8.1.1 Usage
	8.1.2 CLASSPATH Requirements
	8.1.3 Implementation Repository Service Lookup

	8.2 The Menus
	8.2.1 The File Menu
	8.2.2 The Edit Menu
	8.2.3 The View Menu

	8.3 The Toolbar and the Popup Menu

	CHAPTER 9 ORBacus Names
	9.1 Synopsis
	9.1.1 Usage
	9.1.2 Windows NT Native Service
	9.1.3 Configuration Properties
	9.1.4 Persistence
	9.1.5 CLASSPATH Requirements

	9.2 Connecting to the Service
	9.3 Using the Naming Service with the IMR
	9.4 Naming Service Concepts
	9.4.1 Bindings
	9.4.2 Name Resolution

	9.5 Programming Example
	9.5.1 Initialization
	9.5.2 Binding
	9.5.3 Exceptions
	9.5.4 The Event Loop
	9.5.5 Releasing Resources

	CHAPTER 10 ORBacus Names Console
	10.1 Synopsis
	10.1.1 Usage
	10.1.2 CLASSPATH Requirements
	10.1.3 Naming Service Lookup

	10.2 The Menus
	10.2.1 The File Menu
	10.2.2 The Edit Menu
	10.2.3 The View Menu
	10.2.4 The Tools Menu

	10.3 The Toolbar
	10.4 The Popup Menu

	CHAPTER 11 ORBacus Properties
	11.1 Synopsis
	11.1.1 Usage
	11.1.2 Configuration Properties
	11.1.3 CLASSPATH Requirements

	11.2 Connecting to the Service
	11.3 Using the Property Service with the IMR
	11.4 Property Service Concepts
	11.4.1 Creating Properties
	11.4.2 Querying for Properties
	11.4.3 Deleting Properties

	11.5 Programming Example

	CHAPTER 12 ORBacus Time
	12.1 Compliance Statement
	12.1.1 Criteria to Be Followed for Secure Time
	12.1.2 Proxies and Time Uncertainty

	12.2 Synopsis
	12.2.1 Usage
	12.2.2 Configuration Properties
	12.2.3 CLASSPATH Requirements

	12.3 Time Service Concepts
	12.3.1 Representation of Time
	12.3.2 Basic Types
	12.3.3 Enumerations
	12.3.4 Exceptions
	12.3.5 The Universal Time Object
	12.3.6 The Time Interval Object
	12.3.7 The TimeService Object

	12.4 Time Service Extensions
	12.5 Programming Example

	CHAPTER 13 ORBacus Events
	13.1 Synopsis
	13.1.1 Usage
	13.1.2 Windows NT Native Service
	13.1.3 Configuration Properties
	13.1.4 Diagnostics
	13.1.5 CLASSPATH Requirements

	13.2 Connecting to the Service
	13.3 Using the Event Service with the IMR
	13.4 Event Service Concepts
	13.4.1 The Event Channel
	13.4.2 Event Suppliers and Consumers
	13.4.3 Event Channel Policies
	13.4.4 Event Channel Factories

	13.5 Programming Example

	CHAPTER 14 The Interface Repository
	14.1 Synopsis
	14.1.1 Usage
	14.1.2 Windows NT Native Service
	14.1.3 Configuration Properties

	14.2 Connecting to the Interface Repository
	14.3 Configuration Issues
	14.4 Interface Repository Utilities
	14.4.1 irfeed
	14.4.2 irdel

	14.5 Programming Example

	CHAPTER 15 Using Policies
	15.1 Overview
	15.2 Supported Policies
	15.3 Programming Examples
	15.3.1 Connection Reuse Policy
	15.3.2 Timeout Policy

	CHAPTER 16 Concurrency Models
	16.1 Introduction
	16.1.1 What is a Concurrency Model?
	16.1.2 Why different Concurrency Models?
	16.1.3 ORBacus Concurrency Models Overview

	16.2 Single-Threaded Concurrency Models
	16.2.1 Blocking Clients
	16.2.2 Reactive Clients and Servers

	16.3 Multi-Threaded Concurrency Models
	16.3.1 Threaded Clients and Servers
	16.3.2 Thread-per-Client Server
	16.3.3 Thread-per-Request Server
	16.3.4 Thread Pool Server

	16.4 Selecting Concurrency Models
	16.5 The Reactor
	16.5.1 What is a Reactor?
	16.5.2 Available Reactors

	CHAPTER 17 The Open Communications Interface
	17.1 What is the Open Communications Interface?
	17.2 Interface Summary
	17.2.1 Buffer
	17.2.2 Transport
	17.2.3 Acceptor and Connector
	17.2.4 Acceptor and Connector Factories
	17.2.5 The Registries
	17.2.6 The Info Objects
	17.2.7 Class Diagram

	17.3 OCI Reference
	17.4 OCI for the Application Programmer
	17.4.1 A “Converter” Class for Java
	17.4.2 Getting Hostnames and Port Numbers
	17.4.3 Determining a Client’s IP Address
	17.4.4 Determining a Server’s IP Address

	17.5 The IIOP OCI Plug-in
	17.5.1 IIOP Acceptor Configuration

	17.6 The Bi-directional OCI Plug-in
	17.6.1 How does it work?
	17.6.2 Peers
	17.6.3 POA Managers
	17.6.4 Initialization and Configuration
	17.6.5 Bi-directional Acceptor Configuration

	CHAPTER 18 Exceptions and Error Messages
	18.1 CORBA System Exceptions
	18.1.1 INITIALIZE Minor Exception Code
	18.1.2 UNKNOWN Minor Exception Code
	18.1.3 BAD_PARAM Minor Exception Code
	18.1.4 NO_MEMORY Minor Exception Code
	18.1.5 IMP_LIMIT Minor Exception Code
	18.1.6 COMM_FAILURE Minor Exception Code
	18.1.7 MARSHAL Minor Exception Code
	18.1.8 NO_IMPLEMENT Minor Exception Code
	18.1.9 NO_RESOURCES Minor Exception Code
	18.1.10 BAD_INV_ORDER Minor Exception Code
	18.1.11 TRANSIENT Minor Exception Code
	18.1.12 INTF_REPOS Minor Exception Code
	18.1.13 OBJECT_NOT_EXIST Minor Exception Code
	18.1.14 INV_POLICY Minor Exception Code

	18.2 Non-Compliant Application Asserts

	APPENDIX A Boot Manager Reference
	A.1 Interface OB::BootManager
	A.2 Interface OB::BootLocator

	APPENDIX B ORBacus Policy Reference
	B.1 Module OB
	B.2 Interface OB::ACMTimeoutPolicy
	B.3 Interface OB::ConnectTimeoutPolicy
	B.4 Interface OB::ConnectionReusePolicy
	B.5 Interface OB::InterceptorPolicy
	B.6 Interface OB::LocationTransparencyPolicy
	B.7 Interface OB::ProtocolPolicy
	B.8 Interface OB::RequestTimeoutPolicy
	B.9 Interface OB::RetryPolicy
	B.10 Interface OB::TimeoutPolicy

	APPENDIX C Reactor Reference
	C.1 Interface OB::Reactor

	APPENDIX D Logger Reference
	D.1 Interface OB::Logger

	APPENDIX E Open Communications Interface Reference
	E.1 Module OCI
	E.2 Interface OCI::Buffer
	E.3 Interface OCI::Transport
	E.4 Interface OCI::TransportInfo
	E.5 Interface OCI::CloseCB
	E.6 Interface OCI::Connector
	E.7 Interface OCI::ConnectorInfo
	E.8 Interface OCI::ConnectCB
	E.9 Interface OCI::Acceptor
	E.10 Interface OCI::AcceptorInfo
	E.11 Interface OCI::AcceptCB
	E.12 Interface OCI::AccFactory
	E.13 Interface OCI::AccFactoryInfo
	E.14 Interface OCI::AccFactoryRegistry
	E.15 Interface OCI::ConFactory
	E.16 Interface OCI::ConFactoryInfo
	E.17 Interface OCI::ConFactoryRegistry
	E.18 Interface OCI::Current
	E.19 Module OCI::IIOP
	E.20 Interface OCI::IIOP::TransportInfo
	E.21 Interface OCI::IIOP::ConnectorInfo
	E.22 Interface OCI::IIOP::AcceptorInfo
	E.23 Interface OCI::IIOP::AccFactoryInfo
	E.24 Interface OCI::IIOP::ConFactoryInfo

	References

