
Migrating Orbix Applications

to Orbix 2000 and Orbix 3.3

IONA Technologies
October 2000

 Orbix is a Registered Trademark of IONA Technologies PLC.

 OrbixWeb is a Registered Trademark of IONA Technologies PLC.

 IONA iPortal Suite is a Trademark of IONA Technologies PLC.

 While the information in this publication is believed to be accurate, IONA Technologies PLC makes no
warranty of any kind to this material including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

 COPYRIGHT NOTICE

 No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form
or by any means, photocopying, recording or otherwise, without prior written consent of IONA
Technologies PLC. No third-party intellectual property right liability is assumed with respect to the use
of the information contained herein. IONA Technologies PLC assumes no responsibility for errors or
omissions contained in this white paper. This publication and features described herein are subject to
change without notice.

 Copyright © 1999, 2000 IONA Technologies PLC. All rights reserved.

 All products or services mentioned in this white paper are covered by the trademarks, service marks, or
product names as designated by the companies that market those products.

 M2552

Summary

This migration guide is aimed at customers who have developed and deployed
applications based on IONA's Orbix 3 and OrbixWeb 3, and earlier versions of
Orbix. This document provides detailed technical guidelines for migrating your
CORBA application from the early versions of Orbix and OrbixWeb, which are
CORBA 2.1-based, to the Orbix 2000 generation of products, which are CORBA
2.3-based.

There are two main parts in this migration guide:

Part I Migrating to Orbix 2000—provides detailed guidelines for migrating Orbix
and OrbixWeb to Orbix 2000 (C++ and Java editions), for customers who are
ready to migrate to a CORBA 2.3-based system.

Part II Migrating to Orbix 3.3—provides detailed guidelines for migrating Orbix and
OrbixWeb to Orbix 3.3 (C++ and Java editions), for customers who want to stay
with a CORBA 2.1-based system for the moment.

For up-to-date news and advice on migrating to Orbix 2000, see the IONA web site
at: http://www.iona.com/moving_forward.

Table of Contents
Introduction.. 1

Migration Resources...2

Migration Options ..3

Migrating to Orbix 2000..3

Migrating to Orbix 3.3...4

Mixed Deployment..4

Part I Migrating to Orbix 2000 v1.1 .. 5

Overview .. 6

IDL Migration ... 6

The context Clause...6

The opaque Type ...7

The Principal Type ...7

Client Migration .. 7

Replacing the _bind() Function..7

CORBA Naming Service ..8

Object-to-String Conversion..8

The ORB::resolve_initial_references() Operation9

Callback Objects..9

IDL-to-C++ Mapping...10

The CORBA::Any Type ..10

The CORBA::Environment Parameter ..10

System Exception Semantics ...11

Dynamic Invocation Interface ..11

Server Migration.. 11

Function Signatures..12

Object IDs versus Markers...12

CORBA Objects versus Servant Objects...12

BOA to POA Migration..13

Creating an Object Adapter ..13

Defining an Implementation Class...13

The Tie Approach ...15

Creating and Activating a CORBA Object ...15

Migrating Proprietary Orbix 3 Features....................................... 17

Orbix 3 Locator..17

The CORBA Naming Service ..18

The CORBA Initialization Service ..19

Filters...19

Request Logging...20

Piggybacking Data on a Request ..20

Multi-Threaded Request Processing ..21

Accessing the Client's TCP/IP Details ..22

Security Using an Authentication Filter..22

Loaders ..22

Smart Proxies..23

Replace Smart Proxies by Equivalent Orbix 2000 Features24

Implement Smart Proxy-Like Functionality ...24

Transformers ...25

I/O Callbacks and Connection Management...25

Connection Management ...26

Session Management ..26

Basic Services... 27

Interface Repository ...27

CORBA Naming Service..27

Interoperability.. 28

The Orbix Protocol (POOP)..28

Administration and Deployment .. 29

General Command-Line Tools..29

Naming Service Command Line Tools ..31

Activation Modes ...32

Part II Migrating to Orbix 3.3.. 34

Overview .. 35

APIs and Features that have been Removed or Changed.............. 36

Modifications to _bind() / bind() in C++ and Java.......................................36

Unsupported Forms of _bind() / bind() ..37

Fully Qualified _bind() / bind() ...37

C++ Function Signatures for _bind() ..39

Java Method Signatures for bind() ..39

Locator ...39

The CORBA::LocatorClass ...40

The Locator Files and Associated Utilities..40

Non-Native C++ Exceptions ...40

Example 1 ...41

Example 2 ...42

Throwing Exceptions...43

Exception Handling in Filters..43

CORBA::ORB::useNativeExceptions ...43

Class CORBA::NatExcResetter ...43

CORBA::Object Class ...44

Thread Model..44

New Internal Thread Model ...45

New Thread API...45

Functions Dropped from the Old Thread API..46

New IOCallback Functions...46

Lock Model ...48

CORBA::ORB::defaultTxTimeout..48

CORBA::Environment Class...49

Accessing Data Members ..49

Member Functions Removed..50

CORBA::CollocateResetter Class ..50

Fixed Data Type ..51

Processing CORBA.h ..52

DEF_TIE and TIE macros ..53

Interoperability with Orbix 2000 ... 54

IDL Compiler Switches ...54

GIOP/IIOP Level Environment Variable..55

Invalid Object Reference and Object Not Exist System Exceptions55

Communications Failure/Transient System Exceptions55

Further Reading .. 57

Contact Details ... 58

1

Introduction

Three years ago, IONA undertook an enormous investment in its next-generation
product set. The result, announced last October 1999, is the IONA iPortal Suite, a
comprehensive platform for building enterprise portals and other large-scale
distributed applications. In parallel to the development of Orbix 2000 and the
other components of iPortal Suite, IONA has maintained its commitment to the
Orbix 3 product family. Orbix 3.3 is the current shipping version of this family.
Orbix 3.3 is for those Orbix customers who have deployed applications in the field
and who require the latest platform support, fixes to existing product problems and
good interoperability between existing applications and Orbix 2000. With both
Orbix 2000 and Orbix 3.3 in active use, Orbix 2.3 and OrbixWeb 3.1 are nearing
the end of their respective lifecycles. Accordingly, IONA has decided that it will
continue support for these products only until March 31st, 2001.

The recommended path for customers upgrading to a new version of Orbix is to
move to Orbix 2000. Because Orbix 2000 is a CORBA 2.3-compliant ORB, it
offers many new features over previous versions of Orbix:

• Portable interceptor support.

• Codeset negotiation support.

• Value type support.

• Asynchronous method invocation (AMI) support.

• Persistent State Service (PSS) support.

• Dynamic any support.

Orbix 2000 also offers some unique benefits over other commercial ORB
implementations, including:

• ORB extensibility using IONA's patented adaptive runtime technology (ART).

Orbix 2000 has a modular structure built on a micro-kernel architecture.
Required ORB modules, ORB plug-ins, are specified in a configuration file and
loaded at runtime, as the application starts up. The advantage of this approach
is that new ORB functionality can be dynamically loaded into an Orbix
application without rebuilding the application.

2

• Improved performance.

The performance of Orbix 2000 has been optimized, resulting in a performance
that is faster than Orbix 3.x and OrbixWeb 3.x in every respect.

• Advanced deployment and configuration.

Orbix 2000 supports a flexible model for the deployment of distributed
applications. Applications can be grouped into configuration domains and
organized either as file-based configuration domains or as configuration
repository-based configuration domains.

• Rapid application development using the Orbix code generation toolkit.

The code generation toolkit is an extension to the IDL compiler that generates a
working application prototype—based on your application IDL—in a matter of
seconds.

Migration Resources

IONA is committed to assisting you with your migration effort to ensure that it
proceeds as easily and rapidly as possible. The following resources are currently
available:

• IONA's migration web page, including the latest news and links to further
resources, is at: http://www.iona.com/moving_forward

• This migration guide.

A technical document providing detailed guidance on converting source code to
Orbix 2000 and Orbix 3.3. The document aims to provide comprehensive
coverage of migration issues, and to demonstrate how features supported in
earlier Orbix versions can be mapped to Orbix 2000 features

• Professional Services migration packages.

IONA's Professional Services organization has put together a set of consultancy
packages that facilitate rapid migration to Orbix 2000 or Orbix 3.3. Details of
Professional Services assessment and migration packages are available at:
http://www.iona.com/info/services/ps/migration.htm

3

Migration Options

The recommended migration route is to proceed directly to Orbix 2000. The
CORBA 2.3 specification, on which Orbix 2000 is based, has been tightened to a
degree that standardizes almost every aspect of CORBA programming. Migrating
your source code to Orbix 2000 thus represents a valuable investment, because
your code will be based on a stable, highly standardized programming interface.

• Migrating to Orbix 2000—is recommended in most cases. Orbix 2000 is the
latest generation in the family of Orbix products and will be the main focus of
development and innovation from now on.

• Migrating to Orbix 3.3—is appropriate in some cases, where the effort of
migration to Orbix 2000 is not justified. For example, Orbix 3.3 might be an
appropriate migration choice for CORBA applications that are approaching the
end of their deployed lifespan. IONA's Professional Services division and IONA
Customer Support are available to advise you on the most appropriate migration
strategy for your system.

• Mixed Deployment—is appropriate when a number of CORBA applications are
in deployment simultaneously. Some applications might be upgraded to use
Orbix 2000 whilst others continue to use Orbix 3.x and OrbixWeb 3.x. This
kind of mixed environment requires on-the-wire compatibility between the
generation 3 products and Orbix 2000. Extensive testing has been done to
ensure interoperability with Orbix 2000.

The following sections summarize the main technical issues that affect each
migration path.

Migrating to Orbix 2000

On the client side, the main issue for migration is that the Orbix _bind() function
is not supported in Orbix 2000. The CORBA Naming Service is now the
recommended mechanism for establishing contact with CORBA servers.

On the server side, the basic object adapter (BOA) must be replaced by the
portable object adapter (POA). This is one of the major differences between the
CORBA 2.1 and the CORBA 2.3 specifications. The POA is much more tightly
specified than the old BOA; hence server code based on the POA is well
standardized.

Orbix 3.x and OrbixWeb 3.x support a range of proprietary features not covered by
the CORBA standard—for example, the Orbix locator, filters, loaders, smart
proxies, transformers and I/O callbacks. When migrating to Orbix 2000, the
proprietary features must be replaced by standard CORBA 2.3 features. This

4

migration guide details how each of the proprietary features can be replaced by
equivalent Orbix 2000 functionality.

Migrating to Orbix 3.3

Orbix 3.3 is the final release of the IONA's CORBA 2.1-based ORB technology. The
Orbix 3.3 product includes both a C++ ORB, formerly Orbix, and a Java ORB,
formerly OrbixWeb, in a single package. A number of services are bundled with the
Orbix 3.3 product including, the Interface Repository, the CORBA Naming Service,
the CORBA Events Service, the CORBA Security Service (OrbixSSL), a DCOM
bridge (OrbixCOMet), and an IIOP firewall (Orbix Wonderwall). The CORBA
Transaction Service (OrbixOTS) is available separately.

If you choose the migration path to Orbix 3.3, chances are that you will need to
deploy Orbix in a mixed Orbix 3.3 / Orbix 2000 environment at some point in the
future. Consequently, Orbix 3.3 has been optimized to achieve the best possible
degree of on-the-wire interoperability with Orbix 2000.

The main issue for migration to Orbix 3.3 (affecting both Orbix and OrbixWeb
legacy code) is that _bind() calls must be modified to use the fully qualified form
of _bind(). This is described in detail in the section "Modifications to _bind()" in
Part II.

Mixed Deployment

Both Orbix 3.3 and Orbix 2000 have been modified to achieve an optimum level of
on-the-wire compatibility between the two products.

Consult the Orbix 2000 Interoperability Guide for detailed advice on configuring a
mixed deployment. The guide is available from the Orbix 2000 documentation
pages: http://www.iona.com/docs/orbix2000/orbix200011.html

5

Part I
Migrating to
Orbix 2000 v1.1

6

Overview

This part of the migration guide provides technical guidelines on migrating your
Orbix or OrbixWeb system to use Orbix 2000. The following topics are discussed:

• IDL Migration.

• Client Migration.

• Server Migration.

• Migrating Proprietary Orbix 3 Features.

• Basic Services.

• Interoperability.

• Administration and Deployment.

IDL Migration

Orbix 2000 supports a number of new IDL data types, notably valuetypes and
abstract interfaces. However, the subset of IDL supported by Orbix 3 remains
largely unchanged in Orbix 2000. In most cases, legacy IDL can be used in an
Orbix 2000 application without making any changes.

A few changes that might affect migration of IDL to Orbix 2000 are described in
the following subsections.

The context Clause

According to IDL grammar, a context clause can be added to an operation
declaration, to specify extra variables that are sent with the operation invocation.
For example, the following Account::deposit() operation has a context clause:

//IDL

interface Account {
void deposit(in CashAmount amount)

context("sys_time", "sys_location");
//...

};

The context clause is supported by Orbix 3, but is not supported by Orbix 2000.
IDL contexts are generally regarded as type-unsafe and might be removed from a

7

future revision of the CORBA specification. Orbix clients that use them need to be
migrated, to transmit their context information using another mechanism, such as
service contexts, or perhaps as normal IDL parameters.

The opaque Type

The object-by-value (OBV) specification, introduced in CORBA 2.3 and supported
in Orbix 2000, replaces opaques. To ensure rapid migration, replace opaque-based
functionality with custom value types that allow you to implement your own
marshaling rules for values.

The Principal Type

The CORBA specification deprecates the Principal IDL type; therefore the
Principal IDL type is not supported by Orbix 2000. However, Orbix 2000 has
some limited on-the-wire support for the Principal type, to support
interoperability with Orbix 3.

Client Migration

Migration of client code from Orbix 3 to Orbix 2000 is generally straightforward,
because relatively few changes have been made to the client-side API. Clients that
use Orbix-specific features are a special case—they are dealt with in "Migrating
Proprietary Orbix 3 Features".

The main issue affecting client migration is that the Orbix _bind() function is no
longer supported in Orbix 2000 and must be replaced.

Replacing the _bind() Function

The _bind() function is not supported in Orbix 2000. All calls to _bind() must
be replaced by one of the following:

• CORBA Naming Service.

• Object-to-string conversion.

• The ORB::resolve_initial_references() operation.

8

CORBA Naming Service

The naming service is the recommended replacement for _bind() in most
applications. Migration to the naming service is straightforward on the client side.
The triplet of (markerName, serverName, hostName), used by the _bind()
function to locate an object, is replaced by a simple name in the naming service.

When using the naming service, an object's name is an abstraction of the object
location—the actual location details are stored in the naming service. Object
names are resolved using these steps:

1. An initial reference to the naming service is obtained by calling
resolve_initial_references() with NameService as its argument.

2. The client uses the naming service reference to resolve the names of CORBA
objects, receiving object references in return.

Orbix 2000 supports the CORBA Interoperable Naming Service, which is
backward-compatible with the old CORBA Naming Service and adds support for
using stringified names.

Object-to-String Conversion

CORBA offers two CORBA-compliant conversion functions:

CORBA::ORB::object_to_string()
CORBA::ORB::string_to_object()

These functions allow you to convert an object reference to and from the stringified
interoperable object reference (stringified IOR) format. These functions enable a
CORBA object to be located as follows:

1. A server generates a stringified IOR by calling
CORBA::ORB::object_to_string().

2. The server passes the stringified IOR to the client, for example by writing the
string to a file.

3. The client reads the stringified IOR from the file and converts it back to an
object reference, using CORBA::ORB::string_to_object().

Because they are not scalable, these functions are generally not useful in a large-
scale CORBA system. Use them only to build initial prototypes or proof-of-concept
applications.

9

The ORB::resolve_initial_references() Operation

The CORBA::ORB::resolve_initial_references() operation provides a
mechanism for obtaining references to basic CORBA objects, for example the
naming service, the interface repository, and so on.

Orbix 2000 allows the resolve_initial_references() mechanism to be
extended. For example, to access the BankApplication service using
resolve_initial_references(), simply add the following variable to the Orbix
2000 configuration:

initial_services:BankApplication = "IOR:010347923849..."

Use this mechanism sparingly. The OMG defines the intended behavior of
resolve_initial_references() and the arguments that can be passed to it. A
name that you choose now might later be reserved by the OMG. It is generally
better to use the naming service to obtain initial object references for application-
level objects.

Callback Objects

Callback objects must live in a POA, like any other CORBA object; hence, there are
certain similarities between a server and a client with callbacks. The most sensible
POA policies for a POA that manages callback objects are:

Policy Type Policy Value

Lifespan Policy TRANSIENT

ID Assignment Policy SYSTEM_ID

Servant Retention Policy RETAIN

Request Processing Policy USE_ACTIVE_OBJECT_MAP_ONLY

By choosing a TRANSIENT lifespan policy, you remove the need to register the
client with an Orbix 2000 locator daemon.

These policies allow for easy management of callback objects and an easy upgrade
path. Callback objects offer one of the few cases where the root POA has
reasonable policies, provided the client is multi-threaded (as it normally is for
callbacks).

10

IDL-to-C++ Mapping

The definition of the IDL-to-C++ mapping has changed little going from Orbix 3 to
Orbix 2000 (apart from some extensions to support valuetypes). The following
sections describe the changes that affect legacy Orbix 3 code.

The CORBA::Any Type

In Orbix 2000, it is not necessary to use the type-unsafe interface to Any. Recent
revisions to the CORBA specification have filled the gaps in the IDL-to-C++
mapping that made these functions necessary. That is, the following functions are
deprecated in Orbix 2000:

// C++
// CORBA::Any Constructor.
Any(

CORBA::TypeCode_ptr tc,
void* value,
CORBA::Boolean release = 0

);

// CORBA::Any::replace() function.
void replace(

CORBA::TypeCode_ptr,
void* value,
CORBA::Boolean release = 0

);

The CORBA::Environment Parameter

The signatures of IDL calls no longer contain the CORBA::Environment
parameter. This parameter was needed for languages that did not support native
exception handling. However, Orbix applications also use it for operation timeouts.
Timeout functionality is a quality of service (QoS) policy that is defined in the
CORBA 3 Messaging Specification and will be implemented in future releases of
Orbix 2000.

11

System Exception Semantics

Orbix and OrbixWeb clients that catch specific system exceptions may need to
change the exceptions they handle when they are migrated to Orbix 2000.
Orbix 2000 follows the latest CORBA standards for exception semantics. The two
system exceptions most likely to affect existing code are:

When this Happens Orbix and OrbixWeb
Raise

Orbix 2000 Raises

Server object does not
exist

INV_OBJREF OBJECT_NOT_EXIST

Cannot connect to server COMM_FAILURE TRANSIENT

System exception minor codes are completely different between OrbixWeb 3.2 and
Orbix 2000 for Java. Applications which examine minor codes need to be modified
to use Orbix 2000 for Java minor codes.

Dynamic Invocation Interface

Orbix-proprietary dynamic invocation interface (DII) functions are not available in
Orbix 2000. Code that uses CORBA::Request::operator<<() operators and
overloads must be changed to use CORBA-compliant DII functions.

Note: Orbix 2000 generated stub code consists of sets of statically generated
CORBA-compliant DII calls.

Server Migration

Server code typically requires many more changes than client code. The main issue
for server code migration is the changeover from the basic object adapter (BOA) to
the portable object adapter (POA).

It is relatively easy to migrate a BOA-based server by putting all objects in a simple
POA that uses an active object map; however, this approach is unable to exploit
most of the functionality that a POA-based server offers. It is worth while
redesigning and rewriting servers so they benefit fully from the POA.

12

Function Signatures

In Orbix 2000 (C++), two significant changes have been made to C++ function
signatures:

• The CORBA::Environment parameter has been dropped.

• New types are used for out parameters. An out parameter of T type is now
passed as a T_out type.

Consequently, when migrating C++ implementation classes you must replace the
function signatures that represent IDL operations and attributes.

Object IDs versus Markers

Orbix 2000 uses a sequence of octets to compose an object’s ID, while Orbix 3
uses string markers. CORBA provides helper methods string_to_ObjectId()
and ObjectId_to_string() to convert between the two types; hence migration
from marker dependencies to Object IDs is straightforward.

CORBA Objects versus Servant Objects

Orbix 2000 introduces the concept of servant objects, which are instances of a
class that implements an IDL interface.

In Orbix 3 there is no need to distinguish between a CORBA object and a servant
object. When you create an instance of an implementation class in Orbix 3, the
instance already has a unique identity (represented by a marker) and therefore
represents a unique CORBA object.

In Orbix 2000, a distinction is made between the identity of a CORBA object (its
object ID) and its implementation (a servant). When you create an instance of an
implementation class in Orbix 2000, the instance is a servant object, which has no
identity. The identity of the CORBA object (represented by an object ID) must be
grafted on to the servant at a later stage, in one of the following ways:

• The servant becomes associated with a unique identity—this makes it a CORBA
object, in a similar sense to an object in a BOA-based implementation.

• The servant becomes associated with multiple identities—this case has no
parallel in a BOA-based implementation.

The mapping between object IDs and servant objects is controlled by the POA and
governed by POA policies.

13

BOA to POA Migration

The Orbix 3 BOA is replaced by the POA in Orbix 2000. This affects the following
areas of CORBA application development:

• Creating an object adapter.

• Defining an implementation class.

• The tie approach.

• Creating and activating a CORBA object.

Creating an Object Adapter

In Orbix 3, a single BOA instance is used. All CORBA objects in a server are
implicitly associated with this single BOA instance.

In Orbix 2000, an application can create multiple POA instances (using the
PortableServer::POA::create_POA() operation in C++ and the
org.omg.PortableServer.create_POA() operation in Java). Each POA
instance can be individually configured, using POA policies, to manage CORBA
objects in different ways. When migrating to Orbix 2000, you should give careful
consideration to the choice of POA policies, to obtain the maximum benefit from
the POA's flexibility.

Defining an Implementation Class

The most common approach to implementing an IDL interface in Orbix is to use
the inheritance approach. Consider the following IDL fragment:

//IDL
module BankSimple {

Account {
//...

};
};

14

The BankSimple::Account IDL interface can be implemented by defining a class
that inherits from a standard base class. The name of this standard base class for
Orbix 3 and Orbix 2000 is shown in Table 1.

Description Base Class Name

Orbix 3, C++ base class (BOA) BankSimple::AccountBOAImpl

Orbix 2000, C++ base class (POA) POA_BankSimple::Account

Orbix 3, Java base class (BOA) BankSimple._AccountImplBase

Orbix 2000, Java base class (POA) BankSimple.AccountPOA

Table 1 Standard Base Classes for the Inheritance Approach.

Consider a legacy Orbix 3 application that implements BankSimple::Account in
C++ as the BankSimple_Account_i class. The BankSimple_Account_i class
might be declared as follows:

// C++
// Orbix 3 Version
// Inheritance Approach
class BankSimple_Account_i : BankSimple::AccountBOAImpl {
public:

// Declare IDL operation and attribute functions...
};

When this implementation class is migrated to Orbix 2000, the
BankSimple::AccountBOAImpl base class is replaced by the
POA_BankSimple::Account base class, as follows:

// C++
// Orbix 2000 Version
// Inheritance Approach
class BankSimple_Account_i : POA_BankSimple::Account {
public:

// Declare IDL operation and attribute functions...
};

15

The Tie Approach

The tie approach is an alternative mechanism for implementing IDL interfaces. It
allows you to associate an implementation class with an IDL interface using a
delegation approach rather than an inheritance approach.

In Orbix 2000 (C++) the tie classes are generated using C++ templates. When
migrating from Orbix 3 to Orbix 2000, all DEF_TIE and TIE preprocessor macros
must be replaced by the equivalent template syntax.

In Orbix 2000 (Java) the tie approach is essentially the same as in Orbix 3.
However, the names of the relevant Java classes and interfaces are different. For
example, given an IDL interface, Foo, an Orbix 2000 servant class implements the
FooOperations Java interface and the associated Java tie class is called
FooPOATie.

Creating and Activating a CORBA Object

To make a CORBA object available to clients, you should:

1. Create an implementation object. An implementation object is an instance
of the class that implements the operations and attributes of an IDL
interface. In Orbix 3, an implementation object is the same thing as a
CORBA object. In Orbix 2000, an implementation object is a servant object,
which is not the same thing as a CORBA object.

2. Activate the servant object. Activating a servant object attaches an identity
to the object (a marker in Orbix 3 or an object ID in Orbix 2000) and
associates the object with a particular object adapter.

In Orbix 3, creating and activating an object are rolled into a single step. For
example, in C++ you might instantiate a BankSimple::Account CORBA object
using the following code:

// C++
// Orbix 3
// Create and activate a new 'Account' object.
BankSimple_Account_i * acc1

= new BankSimple_Account_i("object_id");

This step creates the CORBA object and attaches the object_id identity to it
(initializing the object's marker). The constructor automatically activates the
CORBA object.

16

In Orbix 2000, creating and activating an object are performed as separate steps.
For example, in C++ you might instantiate a BankSimple::Account
CORBA object using the following code:

// C++
// Orbix 2000

// persistent_poa - A POA that has already been created
// and initialized.

// Step 1: Create a new 'Account' object.
BankSimple_Account_i * acc1

= new BankSimple_Account_i();

// Step 2: Activate the new 'Account' object.
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("object_id");
persistent_poa->activate_object_with_id(oid, acc1);

Activation is performed as an explicit step in Orbix 2000. The call to
PortableServer::POA::activate_object_with_id() attaches the
object_id identity to the object and associates the persistent_poa object
adapter with the object.

17

Migrating Proprietary Orbix 3 Features

The Orbix 3 product family provides a rich set of features that extends the core
CORBA 2.1 specification and allows you to customize your CORBA application in
ways not covered by the standard. Since these proprietary features were first
introduced, the CORBA 2.3 standard has evolved to a level of maturity such that
the proprietary features are no longer required. Orbix 2000 implements a range of
standards-compliant CORBA 2.3 features that replace the proprietary features.

The following proprietary features of Orbix 3 have been removed from Orbix 2000:

• Orbix 3 Locator.

• Filters.

• Loaders.

• Smart Proxies.

• Transformers.

• I/O Callbacks.

If your legacy Orbix 3 application uses one of these proprietary features, you should
replace it with a standards-compliant feature of Orbix 2000, as described in the
following subsections.

Orbix 3 Locator

The Orbix 3 locator is an Orbix-specific feature that is used in combination with
_bind() to locate server processes. Because Orbix 2000 does not support
_bind(), it cannot use the Orbix 3 style locator.

Note: Orbix 2000 has a feature called a locator, which is not related in any way
to the Orbix 3 locator. The Orbix 2000 locator is a daemon process,
itlocator, that locates server processes for clients.

18

If your legacy code uses the locator, you must replace it with one of the following
Orbix 2000 features:

• The CORBA Naming Service.

• The CORBA Initialization Service.

The CORBA Naming Service

If your legacy code uses the load-balancing feature of the Orbix 3 locator, you can
effectively replace this by the ObjectGroup feature of the CORBA Naming Service.
Object groups are an Orbix-specific extension to the naming service that allow you
to register a number of servers under a single name.

Table 2 shows how the Orbix 3 locator maps to the equivalent naming service
functionality .

Orbix 3—Locator Orbix 2000—Naming Service

Entry in the locator file, mapping the
server name, SrvName, to a single
server host, HostName:

SrvName:HostName:

Object binding in the naming service,
mapping a name to a single object
reference.

Entry in the locator file, mapping the
server name, SrvName, to multiple
host names:

SrvName:Host1,Host2,Host3:

Object group in the naming service,
mapping a name to multiple object
references.

Overriding functionality of
CORBA::LocatorClass.

Custom implementation of the
IT_LoadBalancing::ObjectGroup
interface.

Table 2 Replacing the Orbix 3 Locator by the Naming Service

The naming service is the preferred way to locate objects in Orbix 2000. It is a
standard service and is highly scalable.

19

The CORBA Initialization Service

The initialization service uses the
CORBA::ORB::resolve_initial_references() operation to retrieve an
object reference from an Orbix 2000 configuration file, DomainName.cfg.

Table 3 shows how the Orbix 3 locator maps to the equivalent initialization service
functionality.

Orbix 3—Locator Orbix 2000—Initialization Service

Entry in the locator file, mapping the
server name, SrvName, to a single
server host, HostName:

SrvName:HostName:

Entry in the DomainName.cfg file,
mapping an ObjectId to a single
object reference:

initial_references:ObjectId:
reference = "IOR:00...";

Entry in the locator file, mapping the
server name, SrvName, to multiple
host names:

SrvName:Host1,Host2,Host3:

No Equivalent

Override functionality of
CORBA::LocatorClass.

No Equivalent

Table 3 Replacing the Orbix 3 Locator by the Initialization Service

The initialization service can only be used as a replacement for the Orbix 3 locator
when a simple object lookup is needed.

Filters

Filters are a proprietary Orbix 3 mechanism that allow you to intercept invocation
requests on the server and the client side.

Orbix 2000 does not support the filter mechanism. Instead, a variety of Orbix
2000 features replace filters, depending on the purpose for which the filters were
used in Orbix 3.

20

Table 4 summarizes the typical uses of Orbix 3 filters alongside the equivalent
features supported by Orbix 2000.

Orbix 3 Filter Feature Orbix 2000 Equivalent Feature

Request logging. Use portable interceptors.

Piggybacking data on a Request. Use portable interceptors.

Multi-threaded request processing. Use a multi-threaded POA and
(optionally) a proprietary WorkQueue
POA policy.

Accessing the client's TCP/IP details. Not supported.

Security using an authentication filter. Full security support will be provided in
the Orbix 2000 enterprise edition.

Table 4 Orbix 2000 Alternatives to Filter Features

The following sections discuss how each of the filter features can be implemented
in Orbix 2000.

Request Logging

In Orbix 2000, request logging is supported by the new portable interceptor
feature. Interceptors allow you to access a CORBA request at any stage of the
marshaling process, offering greater flexibility than Orbix filters. You can use them
to add and examine service contexts. You can also use them to examine the
request arguments.

Note: The CORBA Portable Interceptor specification is still undergoing review and
might be subject to changes before final ratification.

Piggybacking Data on a Request

In Orbix 3, filters support a feature, piggybacking, that enables you to add and
remove extra arguments to a request message.

In Orbix 2000, piggybacking is replaced by the CORBA-compliant approach of
using service contexts. A service context is an optional block of data that can be
appended to a request message, as specified in the IIOP 1.1 standard. The content
of a service context can be arbitrary and multiple service contexts can be added to
a request.

21

Multi-Threaded Request Processing

In Orbix 3, concurrent request processing is supported using an Orbix thread filter.
The mechanism is flexible because it gives the developer control over the
assignment of requests to threads.

In Orbix 2000, request processing conforms to the CORBA 2.3 specification. Each
POA can have its own threading policy:

• SINGLE_THREAD_MODEL—ensures that all servant objects in that POA have
their functions called in a serial manner. In Orbix 2000, servant code is called
only by the main thread, therefore no locking or concurrency-protection
mechanisms need to be used.

• ORB_CTRL_MODEL—leaves the ORB free to dispatch CORBA invocations to
servants in any order and from any thread it chooses.

Because the CORBA 2.3 specification does not specify exactly what happens when
the ORB_CTRL_MODEL policy is chosen, Orbix 2000 makes some proprietary
extensions to the threading model.

The multi-threaded processing of requests is controlled using the Orbix 2000 work
queue feature. Two kinds of work queue are provided by Orbix 2000:

• Automatic Work Queue—a work queue that feeds a thread pool. When a POA
uses an automatic work queue, request events are automatically dequeued and
processed by threads. The size of the thread pool is configurable.

• Manual Work Queue—a work queue that requires the developer to explicitly
dequeue and process events.

Manual work queues give developers greater flexibility when it comes to multi-
threaded request processing. For example, prioritized processing of requests
could be implemented by assigning high-priority CORBA objects to one POA
instance and low-priority CORBA objects to a second POA instance. Given that
both POAs are associated with manual work queues, the developer can write
threading code that preferentially processes requests from the high-priority
POA.

22

Accessing the Client's TCP/IP Details

Some Orbix 3 applications use Orbix-specific extensions to access socket-level
information, such as the caller's IP address, in order to implement proprietary
security features. These features are not available in Orbix 2000, because
providing access to low-level sockets would considerably restrict the flexibility of
CORBA invocation dispatch.

It is recommended that you use an implementation of the security service
instead—the security service will be made available with the enterprise edition of
Orbix 2000.

Security Using an Authentication Filter

Some Orbix 3 applications use authentication filters to implement security features.
In Orbix 2000, it is recommended that you use the security service that will be
made available with the enterprise edition of Orbix 2000.

Loaders

The Orbix 3 loader provides support for the automatic saving and restoration of
persistent objects. The loader provides a mechanism that loads CORBA objects
automatically into memory, triggered in response to incoming invocations.

The Orbix 3 loader is replaced by equivalent features of the Portable Object
Adapter (POA) in Orbix 2000. The POA can be combined with a servant manager
to provide functionality equivalent to the Orbix 3 loader. There are two different
kinds of servant manager:

• Servant activator—triggered only when the target CORBA object cannot be
found in memory.

• Servant locator—triggered for every invocation.

23

Taking the PortableServer::ServantActivator class as an example, the
member functions of CORBA::LoaderClass correspond approximately as shown
in Table 5.

CORBA::LoaderClass Member
Function

ServantActivator Member Function

save() etherealize()

load() incarnate()

record() No equivalent function.

An Orbix 2000 object ID (equivalent to an
Orbix 3 marker) can be specified at the
time a CORBA object is created. This gives
sufficient control over object IDs.

rename() No equivalent function.

An Orbix 2000 object ID (equivalent to an
Orbix 3 marker) cannot be changed after a
CORBA object has been created.

Table 5 Comparison of Loader with Servant Activator Class

A servant locator can also be used to replace the Orbix 3 loader. In general, the
servant locator is more flexible than the servant activator and offers greater scope
for implementing sophisticated loader algorithms.

Smart Proxies

The Orbix 3 smart proxies feature is a proprietary mechanism for overriding the
default implementation of the proxy class. This allows applications to intercept
outbound client invocations and handle them within the local client process
address space, rather than using the default proxy behavior of making a remote
invocation on the target object. Smart proxies can be used for such purposes as
client-side caching, logging, load-balancing, or fault-tolerance.

Orbix 2000 does not support smart proxies. The primary difficulty is that, in the
general case, it is not possible for the client-side ORB to determine if two object
references denote the same server object. The CORBA standard restricts the client-
side ORB from interpreting the object key or making any assumptions about it.
Orbix 3 was able to avoid this limitation by making assumptions about the
structure of the object key. This is neither CORBA-compliant nor interoperable with
other ORBs.

24

At best, the ORB can only determine that two object references are equivalent if
they have exactly the same server location (host and port in IIOP) and object key.
Unfortunately, this may be an unreliable indicator if object references pass through
bridges, concentrators, or firewalls that change the server location or object key.

In this case, it is possible for two object references denoting the same
CORBA object to appear different to the ORB, and thus have two different smart
proxy instances. Since smart proxies are commonly used for caching, having two
smart proxy instances for a single CORBA object is unacceptable.

The following sections discuss the approaches you can take to migrate applications
that use smart proxies.

Replace Smart Proxies by Equivalent Orbix 2000 Features

Two uses for smart proxies include logging and fault tolerance. A smart proxy
implementation of fault tolerance usually involves caching a standby server's object
reference on the client side. Table 6 shows how these smart proxy tasks can be
mapped to equivalent features in Orbix 2000.

Orbix 3 Smart Proxy Task Orbix 2000 Equivalent Feature

Logging Orbix 2000 built-in logging facility or
portable interceptors.

Fault Tolerance Activator-based failover or naming
service-based load balancing.

Table 6 Orbix 2000 Alternatives to Smart Proxy Features

For logging that requires access to request parameters, portable interceptors can be
used in Orbix 2000. Portable interceptors are similar to Orbix 3 filters, but they are
more flexible in that they allow you to read request parameters.

Implement Smart Proxy-Like Functionality

In some cases, smart proxy functionality might not map to an equivalent feature in
Orbix 2000—for example, a smart proxy that implements client-side caching of
data. In cases like this, you have no option but to implement smart proxy-like
functionality in Orbix 2000, which can be done as follows:

1. Create a local implementation of the object to be proxified, by writing a
class that derives from the client-side stub class.

2. Each time the client receives an object reference of the appropriate type,
wrap the object reference with a corresponding smart proxy. Before doing

25

so, it must determine the target object’s identity by making an invocation on
the remote target object, asking it for a system-wide unique identifying
name. It is this key step that avoids the object identity problem described
in "Smart Proxies".

Based on the system-wide unique identifying name, the application can then either
create a new smart proxy, or reuse the target object’s existing smart proxy. The
client application should consistently use the smart proxy in place of the regular
proxy throughout the application.

Transformers

Transformers are a deprecated feature of Orbix 3 that allow you to apply
customized encryption to CORBA request messages. This could be used to
implement a primitive substitute for a security service.

In Orbix 2000, transformers are not supported. It is recommended, instead, that
you use the security service that will be made available with the enterprise edition
of Orbix 2000.

I/O Callbacks and Connection Management

Orbix 2000 does not allow access to TCP/IP sockets or transport level information.
This is incompatible with the Orbix 2000 architecture, which features a pluggable
transport layer. You can replace TCP/IP with another transport plug-in such as IP
multicast (which is connectionless), simple object access protocol (SOAP),
hypertext transfer protocol (HTTP), asynchronous transfer mode (ATM), and so on.
For example, the shared memory transport (SIOP) does not use file descriptors or
sockets. Because Orbix 2000 has no equivalent to the Orbix IOCallback
functionality, you must migrate any code that uses it.

The Orbix 3 IOCallback functionality is generally used for two main purposes:

• Connection management—The number of TCP/IP connections that can be
made to a single process is typically subject to an operating system limit. Some
form of connection management is required if this limit is likely to be reached
in a deployed system.

• Session management—The IOCallback functionality can be used to
implement an elementary session-tracking mechanism. The opening of a
connection from a client defines the beginning of a session and the closing of
the connection defines the end of the session.

The following subsections discuss how this functionality can be migrated to
Orbix 2000.

26

Connection Management

Orbix 2000 provides an active connection manager (ACM) that allows the ORB to
reclaim connections automatically, and thereby increases the number of clients
that can concurrently use a server beyond the limit of available file descriptors.

IIOP connection management is controlled by four configuration variables:

plugins:iiop:incoming_connections:hard_limit sets the maximum
number of incoming (server-side) connections allowed to IIOP. IIOP refuses
new connections above this limit.

plugins:iiop:incoming_connections:soft_limit determines when IIOP
starts to close incoming connections.

plugins:iiop:outgoing_connections:hard_limit sets the maximum
number of outgoing (client-side) connections allowed to IIOP. IIOP refuses new
outgoing connections above this limit.

plugins:iiop:outgoing_connections:soft_limit determines when IIOP
starts to close outgoing connections.

The ORB first tries to close idle connections in least-recently-used order. If there
are no idle connections, the ORB closes busy connections in least-recently-opened
order.

Active connection management effectively remedies file descriptor limits that has
constrained past Orbix applications. If a client is idle for a while and the server
ORB reaches its connection limit, it sends a GIOP CloseConnection message to
the client and closes the connection. Later, the same client can transparently
reestablish its connection, to send a request without throwing a CORBA exception.

Note: In Orbix 3, Orbix tended to throw a COMM_FAILURE on the first attempt at
reconnection; server code that anticipates this exception should be
reevaluated against current functionality.

Orbix 2000 is configured to use the largest upper file descriptor limit on each
supported operating system (OS). On a UNIX OS, it is typically possible to rebuild
the OS kernel to obtain a larger number. However, active connection management
should make this unnecessary.

Session Management

Because Orbix 2000 features a pluggable transport layer, it is not appropriate to
relate the duration of a client session to the opening and closing of TCP/IP
connections from clients. This type of session management, which is typically

27

implemented using I/O callbacks in Orbix 3, has to be migrated to an alternative
model.

Orbix 2000 session management can be implemented using advanced features of
the POA. For example, the duration of a client session could be based on a
timeout. Clients that are inactive for a certain length of time can have their
sessions terminated. This model of session management can be implemented by
associating a servant locator with a POA, which tracks the length of time for which
each session is idle.

Basic Services

Orbix is bundled with some basic services, such as the interface repository and the
CORBA Naming Service. Because these service are based mainly on the CORBA
standard, there are not many changes between Orbix 3 and Orbix 2000.

Interface Repository

Migrating source code that uses the Interface Repository (IFR) to Orbix 2000 is
straightforward. Link the migrated application against the stub code derived from
the Orbix 2000 version of the interface repository. No further changes should be
necessary.

However, interoperability between Orbix 3 applications and the Orbix 2000 IFR
server is not supported. In a mixed Orbix 3 and Orbix 2000 environment, Orbix 3
applications should therefore continue to use an Orbix 3 IFR server. Significant
changes were made to the IFR specification in CORBA 2.3, which break
interoperability with the older IFR specification, and Orbix 2000 is written to
conform to the CORBA 2.3 specification.

CORBA Naming Service

The Orbix 2000 naming service is backward compatible with Orbix 3 in two
respects:

• Source code backward compatibility—source code that is written to use the
standard naming service interfaces can be migrated to Orbix 2000 without
modification.

• On-the-wire backward compatibility—Orbix 3 applications can interoperate
with the Orbix 2000 naming service. If you need to interoperate Orbix 3
applications, it is recommended that you recompile the naming stub code from
the Orbix 2000 IDL files.

28

Orbix 2000 adds a new interface, CosNaming::NamingContextExt, which is
defined by the CORBA Interoperable Naming Service specification. This interface
adds support for using names in stringified format .

The naming service load-balancing extensions provided in Orbix 3 are also present
in Orbix 2000. The Orbix 2000 load-balancing interfaces are only slightly different
from Orbix 3, requiring small modifications to your source code.

Interoperability

In many cases, it is not practical to migrate all components of a deployed system
to Orbix 2000 right away. Orbix 3 and Orbix 2000 applications might need to
coexist and interoperate with each other for a period of time. For this reason,
Orbix 2000 has been extensively tested to ensure on-the-wire compatibility with
Orbix 3 legacy applications.

The minimum versions and patch releases recommended for interoperating Orbix 3
with Orbix 2000 are shown in Table 7.

Product Version and Patch Number

Orbix 3.0.1-20

OrbixWeb 3.2.0-05

Orbix 2.3.5 for OS/390

OrbixCOMet 3.0.1-20

Table 7 Minimum Orbix 3 Product Versions for Interoperability

Interoperability with Orbix 2000 is not supported for Orbix versions lower than
those shown in Table 7. IONA Product Support can advise you on the optimum
Orbix version to use in your mixed Orbix 3 and Orbix 2000 environment.

The Orbix 2000 documentation set includes an Interoperability Guide that
provides essential advice on how to configure Orbix 3 and Orbix 2000 to
interoperate with each other.

The Orbix Protocol (POOP)

Orbix 2000 only supports CORBA-compliant transport protocols such as IIOP. If
you have older (pre-Orbix 2.3) systems that rely on POOP, or code that calls
CORBA::Orbix.bindUsingIIOP(0), you must change it to use IIOP. Otherwise,
the Orbix client cannot invoke on any Orbix 2000 component.

29

Administration and Deployment

The administration of Orbix 2000 has changed significantly from Orbix 3. The
major differences are:

• The Orbix 3 daemon, orbixd, is replaced by two Orbix 2000 daemons, the
locator daemon and the activator daemon.

The locator daemon helps clients to find Orbix 2000 servers.

The activator daemon launches dormant Orbix 2000 servers in response to a
client's request for service.

• The locator daemon locates a CORBA object based on the POA name
embedded in an object reference. Hence, POA names play an important role in
the configuration of the locator daemon.

This contrasts with the behavior of the Orbix 3 daemon, which locates a
CORBA object based on the server name embedded in an object reference.

• Orbix 2000 introduces the concept of configuration domains and provides the
option of configuring a deployed system using either a central configuration
server or a file-based configuration.

• The Orbix 2000 command-line administration tools have been unified under a
single tool, itadmin.

General Command-Line Tools

Table 1 compares the Orbix 3.3 general purpose command-line tools with the
Orbix 2000 tools.

Description Orbix 3.3 Orbix 2000

Show implementation
repository (IMR) entry.

catit itadmin process show

Security commands. chownit

chmodit

No equivalent

Show configuration dumpconfig itadmin config dump

30

Description Orbix 3.3 Orbix 2000

Associate hosts into
groups

grouphosts No equivalent

C++ IDL compiler idl idl

CodeGen toolkit idlgen idlgen

Java IDL compiler idlj idl

Interface Repository ifr itifr

Kill a server process killit itadmin process stop

List servers lsit itadmin locator list

Create sub-directory in
IMR

mkdirit No equivalent

Orbix Daemon orbixd itlocator/itactivator

Ping servers pingit No equivalent

List active servers psit itadmin process list

Add definition to IFR putidl idl -R

Register server in IMR putit itadmin process create

Show IFR definition readifr itadmin ifr show

Remove sub-directory
from IMR

rmdirit No equivalent

Unregister server from IMR rmit itadmin process remove

31

Description Orbix 3.3 Orbix 2000

Remove definition
from IFR

rmidl itadmin ifr remove

Associate servers with
groups

servergroups No equivalent

Associate hosts with
servers

serverhosts No equivalent

Table 8 Comparison of Orbix 3.3 and Orbix 2000 General Command-Line Tools

Naming Service Command Line Tools

Table 9 compares the Orbix 3.3 naming service command-line tools with the
Orbix 2000 tools.

Description Orbix 3.3 Orbix 2000

Add a member to an object
group

add_member itadmin nsog add_member

Print IOR of an object
group

cat_group No equivalent

Print IOR of an object
group member

cat_member itadmin nsog show_member

Print IOR of given name catns itadmin ns resolve

Remove an object group del_group itadmin nsog remove

Remove a member from
an object group

del_member itadmin nsog remove_member

List all groups list_groups itadmin nsog list

32

Description Orbix 3.3 Orbix 2000

List the members of an
object group

list_members itadmin nsog list_member

List bindings in a context lsns itadmin ns list

Create an object group new_group itadmin nsog create

Create an unbound context newncns itadmin ns newnc

Select a member of an
object group

pick_member No equivalent

Bind a name to a context putncns itadmin ns bind -context

Create a bound context putnewncns itadmin ns newnc

Bind a name to an object putns itadmin ns bind -object

Rebind a name to a
context

reputncns No equivalent

Rebind a name to an
object

reputns No equivalent

Remove a binding rmns itadmin ns remove

Table 9 Comparison of Orbix 3.3 and Orbix 2000 Naming Command-Line Tools

Activation Modes

BOA activation modes, shared, unshared, per-method, per-client-pid and
persistent, are used for a variety of reasons—for example, to achieve multi-
threaded behavior in a single-threaded environment, to increase server reliability,
and so on. The two most popular modes are:

• Shared mode—which enables all clients to communicate with the same server
process.

33

• Per-client-pid mode—which enforces a 1-1 relationship between client process
and server process, is sometimes used to maximize server availability.

The POA provides three shared activation modes: always, on-demand and never.
Migration of source code should be straightforward, because the choice of
activation mode has almost no impact on BOA or POA-based server code.

The additional activation modes provided by Orbix 3 (not shared mode) are
typically used to achieve some form of load-balancing that is transparent to the
client. The Enterprise version of Orbix 2000, to be released in the near future, will
include transparent locator-based load balancing over a group of replica POAs. This
will answer the needs currently addressed by Orbix 3 activation modes.

34

Part II
Migrating to Orbix 3.3

35

Overview

Issues for migrating from Orbix 3.0 to Orbix 3.3 can be broken down into the
following categories:

1. APIs and features in Orbix 3.0 that have changed or been eliminated in
Orbix 3.3.

2. Considerations for interoperating with Orbix 2000, especially in a
heterogeneous environment involving a mixture of Orbix 3.0, 3.3, and 2000
clients and servers.

Note: Most of the improvements made to Orbix 3.3 to improve interoperability
with Orbix 2000 (item 2 above), were retrofitted into Orbix 3.0.1 at patch
20.

Many necessary changes are flagged as compile-time errors. It is relatively easy to
find and correct these kinds of error and make the function calls conform to the
new APIs. A few items have to be searched for manually, because they do not
generate compile-time errors. For each of the changed items, the following sections
indicate whether the compiler detects the API change or whether a manual search
is required.

36

APIs and Features that have been
Removed or Changed

Support for some long-deprecated functions and features has been dropped from
Orbix 3.3. Other features have been changed to improve compatibility and
interoperability with Orbix 2000.

Modifications to _bind() / bind() in C++ and Java

The _bind function is generated for each class representing an IDL interface.
_bind() / bind() provides a primitive, non-CORBA-compliant, way to connect an
initial client proxies with a server object. However, the preferred, CORBA-
compliant approaches for establishing initial client proxies are to use
resolve_initial_references(), the Naming Service, Trader Service, or an
application-level factory/finder interface. The _bind() function has been
deprecated for some time.

In Orbix 3.3, _bind has been significantly changed, but not altogether eliminated.
_bind had various complex and esoteric forms, which have been eliminated. The
most common and straightforward use of _bind, called fully qualified _bind, can
still be used. For functionality beyond fully qualified _bind, you need to change
code to use fully qualified _bind or one of the preferred alternative approaches.

The _bind function takes three arguments, and implies a fourth. For example:

CORBA::Object_var a = Account::_bind("M:S", "H");

supplies the following four pieces of data to the ORB runtime:

• Account is the name of the target object interface, or parent interface. The
result can be stored in an Account_var or a base class pointer of Account
(for example Object_var).

• M is the marker of the target object.

• S is the name of the CORBA server in which to look for the target object.

• H is the host name of the machine on which to look for the CORBA server.

37

Unsupported Forms of _bind() / bind()

In Orbix 3.0, some _bind arguments could be omitted, leading to various _bind
modes. All of these partially qualified _bind modes have been eliminated.

• Polymorphic bind—The interface name could be any base interface of the
target object.

• Anonymous bind—The marker could be omitted, implying that the ORB could
choose any object that satisfied the other criteria.

• Implied server bind—The server name could be omitted, implying that the ORB
would use the interface name as the server name (Account in this case).

• Locator bind—The host name could be omitted, implying that the ORB would
use the Locator to examine the host or hostgroup files (or a user algorithm) to
determine the host the server might be running on.

The above forms of _bind could even be combined, such as anonymous
polymorphic _bind, or anonymous locator _bind, and so on.

Fully Qualified _bind() / bind()

Fully qualified _bind is the only mode supported in Orbix 3.3. It requires the
following:

1. The interface name is exactly the most derived interface of the target object.

2. The marker is specified for the target object.

3. The server is specified for the target object.

4. The host is specified for the target object.

With fully qualified _bind, it is generally necessary to set the marker explicitly.
Look for where objects are instantiated in the server, with either the BOA or TIE
approach, and confirm that a marker string is supplied to the constructor or used in
a call to _marker().

38

It is important to understand what functionality occurs on the client and what
functionality occurs on the server:

• The marker, server, and host parameters are verified on the client. If an Orbix
3.3 client calls _bind without a marker, server or host, _bind throws a
CORBA::BAD_PARAM System Exception.

• The interface type is verified on the server. If the interface is not specified
correctly, an Orbix 3.3 server throws a CORBA::INV_OBJREF
SystemException.

These semantics have an impact on mixed environments, where Orbix 3.0 /
OrbixWeb 3.2 (or earlier) interoperates with Orbix 3.3. When interoperating with
an Orbix 3.3 server, an Orbix 3.0 / OrbixWeb 3.2 (or earlier) client:

1. Can use fully qualified bind, without modifying the client.

2. Can omit the host name and server name without modifying the client,
because these parameters are resolved on the client.

3. Can omit the marker (anonymous bind) without modifying the client,
provided the Orbix.ENABLE_ANON_BIND_SUPPORT environment
variable is set to TRUE on the server (default is TRUE). Setting this
environment variable to FALSE improves the Orbix 3.3 speed.

The anonymous bind is the most common of the esoteric bind modes. This
switchable backwards compatibility eases migration while allowing you,
eventually , to take advantage of the Orbix 3.3 performance improvements
related to fully qualified _bind.

4. Cannot use polymorphic bind. The Orbix 3.3 server would return a
CORBA::INV_OBJREF system exception in this case. This case requires
the client to be modified.

If CORBA::ORB::collocated set to TRUE, the fully qualified bind requirements
are reduced to specifying only the marker and exact interface. Because an in-
process object lookup is going to be performed, the host is ignored and the server
name can be omitted. Alternatively, if the server name is present, it must be the
server name associated with the current server process.

39

C++ Function Signatures for _bind()

The IDL compiler generates a set of overloaded _bind functions to handle the
various forms of _bind. Some of these have changed because they are no longer
needed:

_bind(const char* markerServer, const char* host, const
CORBA::Context& ctx) remains unchanged.

_bind() removed.

_bind(const char* markerServer = 0, const char* host = 0)
changed to the following (no longer has default args)

_bind(const char* markerServer, const char* host)

When explicitly binding to the Orbix daemon, orbixd, use a 0 (zero) marker value:

IT_daemon::_bind("0:IT_daemon", host);

When explicitly binding to the IFR, use a marker of the IDL type for the repository
object (all IFR object markers are IFR type names):

Repository::_bind("IDL\\:iona.com/Repository:IFR", host);

Java Method Signatures for bind()

The idlj compiler also generates a set of overloaded bind() methods to handle
the various bind forms. The following have been removed and the remaining
bind() calls remain the same.

bind () removed.

bind(org.omg.CORBA.ORB orb) removed.

Locator

The Orbix locator is a non-CORBA-compliant feature that resolves the host name in
_bind when no host name is explicitly provided. This functionality is no longer
needed with fully qualified _bind. The Orbix Locator is actually a set of features,
which have changed as follows:

40

The CORBA::LocatorClass

The CORBA::LocatorClass has been removed because it is not needed, now
that bind is fully qualified. If you have legacy code that uses a
CORBA::LocatorClass to provide host resolution logic, you should move that
logic to an independent class, and invoke the behavior to resolve the host name
before calling _bind. Alternatively, you can use configuration variables to specify
the host or, preferably, the IOR, of well-known server objects:

IT_<ServiceName>_HOST = ". . .";
Common.Services.ServiceName = "IOR: . . .";

These objects are accessed through the CORBA-compliant
CORBA::ORB::resolve_initial_references() function, instead of
_bind.

The Locator Files and Associated Utilities

The files associated with the locator, Orbix.hst and Orbix.grp, are of limited
usefulness in Orbix 3.3 because they are no longer used by _bind(). However,
these files are still accessible through operations defined on the IT_daemon IDL
interface—for example lookUp(), addHostsToServer(), addHostsToGroup()
and so on.

The utilities that edit the locator files, serverhosts, servergroups,
grouphosts, lhosts, are no longer provided with Orbix 3.3. The Orbix.hst and
Orbix.grp files can be edited using a regular text editor instead.

It is no longer meaningful to have an IT_daemon entry in the locator files.

Non-Native C++ Exceptions

Only native C++ exceptions are supported. This means that the TRY/CATCH
macros are no longer supported and exceptions are not raised via the
CORBA::Environment variable argument. However, the
CORBA::Environment variable can still be used as the mechanism to pass a
per-call timeout value, if such functionality is needed.

You should search your client and server source code for TRY/CATCH macros and
convert it to use C++ try/catch. Code with TRY/CATCH macros will no longer
compile. The following example shows a code fragment before and after being
migrated to use try/catch.

41

Example 1

Consider the following original code, which uses the TRY/CATCH macros to handle
an exception raised by an Account::withdraw() operation:

Original Code

Account_var a = . . .;
TRY
{

a->withdraw(100.00, IT_X);
}
CATCH(Bank::InsufficientFunds, e)
{

cout << "insufficient funds" << endl;
}
ENDTRY

The TRY/CATCH macros declare and use a variable named IT_X, which is used to
propagate exception information.

Compare the original code with the following revised code, which has been
modified to use the native C++ try/catch:

Revised Code

Account_var a = . . .;
try
{

a->withdraw(100.00);
}
catch (const Bank::InsufficientFunds& e)
{

cout << "insufficient funds" << endl;
}

42

Example 2

Another possibility is that the client exception-handling code is written directly,
using the CORBA::Environment variable without the TRY/CATCH macros. This
typically means the exception handling logic is an if-block, testing the
CORBA::Environment variable. For example:

Original Code

Account_var a = . . .;
CORBA::Environment e;

a->withdraw(100.00, e);
if (e.is_exception("Bank::InsufficientFunds"))
{

cout << "insufficient funds" << endl;
}

Compare this with the following revised code, which has been modified to use the
native C++ try/catch:

Revised Code

Account_var a = . . .;

try
{

a->withdraw(100.00);
}
catch (Bank::InsufficientFunds& e)
{

cout << "insufficient funds" << endl;
}

The second example (using CORBA::Environment) is not as easy to search for as
the first example (using TRY/CATCH macros), because there are no TRY/CATCH
macros to search for. It is best also to search for explicit usages of
CORBA::Environment and is_exception.

Note: The second example still compiles in its original form. It is valid to declare
and use CORBA::Environment, but it cannot be used for exceptions.

The impact of not changing the code in the second example can be severe. If the
call to withdraw() raises an exception, in the original code the C++ runtime
looks for the nearest enclosing try/catch block and does not consider the
subsequent if statement.

43

Throwing Exceptions

Throwing an exception within a server is not done by setting the
CORBA::Environment variable, but using a C++ throw.

Exception Handling in Filters

The CORBA::Environment variable can still be used to test and set exceptions
within filters, as in Orbix 3.0.

CORBA::ORB::useNativeExceptions

Because only native C++ exceptions are supported, the following functions have
been removed:

CORBA::Boolean CORBA::ORB::nativeExceptions()
CORBA::Boolean CORBA::ORB::nativeExceptions(Boolean)

Code that formerly depended on these functions can assume that
nativeExceptions() always returns TRUE. For example:

Original Code

if (CORBA::Orbix.nativeExceptions())
{

... //code for native exceptions being TRUE
}
else
{

... //code for native exceptions being FALSE
}

Revised Code

... //code for native exceptions being TRUE

Class CORBA::NatExcResetter

Because only native C++ exceptions are supported, the
CORBA::NatExcResetter() class has been removed, as it is no longer
meaningful. Code that uses the CORBA::NatExcResetter() class should be
deleted.

44

CORBA::Object Class

The following functions have been removed from CORBA::Object, as they are no
longer meaningful. CORBA::Object is the base class of all generated classes for
IDL interfaces. The following were never documented APIs, so, in general, should
not have been used by Orbix developers. Any code that uses the following
functions, should be deleted.

• void CORBA::Object::_restate()

• void CORBA::Object::_marshall()

• void CORBA::Object::_unmarshall()

• void CORBA::Object::_fixOnAccess()

• CORBA::PPTR* CORBA::Object:_makeDummyPptr()

• Enumeration CORBA::Object::OBJECT_STATE

• CORBA::Object::Object(const Object*)

Note: CORBA::Object::Object(const CORBA::Object&) is still
available. However, CORBA::Object::operator=(const
CORBA::Object&) is not available.

Thread Model

The internal thread model has been updated in Orbix 3.3. This has no direct
impact on application-level threads, but has some implications for Orbix
configuration.

• New internal thread model—replaces the old internal thread model for
monitoring the network.

• New thread API—controls the number of threads and file descriptors (FDs)
used for network connections.

• Functions dropped from the old thread API—functions associated with the old
internal thread model are no longer supported.

• New IOCallback functions—warn when a process is running low on FDs or
has reached a hard FD limit (all FDs used).

• Lock model—The mt.h and ThreadArch.cxx source files are no longer
supplied with Orbix 3.3.

45

New Internal Thread Model

The internal thread model for Orbix has been re-designed. This has no effect on the
application level thread model that the user interacts with via the
CORBA::ThreadFilter class. All ThreadFilter models, such as per-request,
per-object, per-client, and so on, are still usable. The internal thread model is used
by Orbix to listen for network connections from clients and to read and write
network messages on established connections. One visible advantage of the new
thread model is that it is easier for you to configure.

When you run an Orbix application, Orbix starts a number of internal threads in a
thread pool. These threads work together to listen for incoming connection
attempts from clients and read requests from the network. Ultimately, requests are
processed by an application thread, using a thread model written by the user.

The internal network threads use a leader-follower design. This means that one
thread in the pool is blocked on a call to the low-level TCP/IP select(), and
when activity occurs, this thread processes it. Simultaneously another thread is
dispatched from the pool to perform another low-level TCP/IP select(). When a
thread completes its current task, it is returned to the pool.

New Thread API

The size of the internal network thread pool is controlled by the
IT_DEF_NUM_NW_THREADS configuration parameter. The default value is 1. The
user can change this default if a larger initial internal network thread pool is
needed.

The following new function can be used to control the number of threads in the
internal thread pool:

CORBA::Boolean CORBA::ORB::add_nw_threads(
CORBA::ULong num_threads

)

The add_nw_threads() function can be used to increase the number of threads in
the internal network thread pool at any time. The num_threads parameter
specifies the number of threads to add to the thread pool—the size of the thread
pool can only be increased, not reduced.

The default thread pool size, 1, is the best setting for most applications. A network
thread is responsible for only a little bit of work, which consists of reading the

46

TCP/IP buffer and depositing the message on an event queue for processing by an
application thread.1

In general terms, the number of network threads should only be increased if both
of the following conditions hold:

1. There are lots of simultaneous requests/replies to a process.

2. A single network thread has insufficient capacity to service the TCP/IP
buffers.

Functions Dropped from the Old Thread API

The following API functions associated with the old thread model have been
removed:

• void CORBA::ORB::maxConnectionThreads(CORBA::ULong max)

• CORBA::ULong CORBA::ORB::maxConnectionThreads() const

• void CORBA::ORB::maxFDsPerConnectionThread(

CORBA::ULong max

)

• CORBA::ULong CORBA::ORB::maxFDsPerConnectionThread() const

New IOCallback Functions

As Orbix opens and closes connections, it consumes file descriptors. File
descriptions (FDs) are process-level resources, and are also used for non-Orbix
activities, such as file I/O, database access, and so on. The number of FDs in a

1 The network thread is also responsible for re-combining any IIOP-fragment
messages (that is, what the network thread hands off is a complete IIOP
message). However, IIOP fragments are rarely used—in particular, in Orbix 3,
they are never generated (Orbix 3 has the ability to process IIOP fragments but
not generate them). It is also important to note that unmarshalling the IIOP
message occurs in the application thread, after the hand off from the network
thread. So network threads do very little work. The cost of additional network
thread on a single-processor machine is a context switch (which is relatively
expensive); on multi-processor machines, the network threads could be
distributed, across the processors. Of course, with any system, increasing the
number of threads is not a guaranteed increase in performance, and depends on
hardware and operating system.

47

process is a limited resource, and in general Orbix cannot assume that all available
FDs can be used by Orbix (for example, some may need to be reserved for
database activity).

Orbix allows a client or server to receive a callback for certain connection and file
descriptor (FD) events. Callbacks exist for opening and closing a connection to
another Orbix program. For the new thread model, additional callbacks have been
developed to allow the user to monitor the consumption of FDs. The user can
specify both soft and hard limits on the number of FDs Orbix can use.

To receive the new callbacks, define a class that inherits from the Orbix
CORBA::IT_IOCallback class. The CORBA::IT_IOCallback class has been
extended with three new callback events that allow the user to monitor the
consumption of FDs:

// C++
class IT_IOCallback
{

public:
...
// The following functions are called when the number
// of FDs used by Orbix hits a soft or hard limit set
// by the user.

// The low-watermark (soft limit) has been reached
virtual void AtOrbixFDLowLimit(int numFDsUsed);

// The hard limit has been reached.
// This implies that Orbix is no longer listening for
// new connections (which would consume another FD).
virtual void StopListeningAtFDHigh(int numFDsUsed);

// Orbix has resumed listening after the number of FDs
// has gone below the hard limit.
virtual void ResumeListeningBelowFDHigh(

int numFDsUsed
);

};

48

The AtOrbixFDLowLimit(), StopListeningAtFDHigh(), and
ResumeListeningBelowFDHigh() functions, combined with new configuration
variables IT_FD_WARNING_NUMBER and IT_FD_STOP_LISTENING_POINT, give
users flexibility to monitor consumption of FDs:

• When the number of Orbix FDs reaches IT_FD_WARNING_NUMBER, either on the
way up or the way down, AtOrbixFDLowLimit() is called.

• When the number of Orbix FDs reaches IT_FD_STOP_LISTENING_POINT,
StopListeningAtFDHigh() is called.

• When an Orbix FD is freed up or the number of FDs made available to Orbix is
increased, ResumeListeningBelowFDHigh() is called.

Lock Model

The internal lock model has been changed to use the Orbix 2000 lock classes. The
mt.h and ThreadArch.cxx files are no longer supplied with Orbix 3.3. Legacy
code that uses the classes in mt.h must use the previous versions of these files
(and consider it application code, not IONA code), or change the code to use a
different mechanism.

CORBA::ORB::defaultTxTimeout

The single CORBA::ORB::defaultTxTimeout() function has been replaced by
two functions. Originally, the function signature was:

// C++
// Original 'defaultTxTimeout()' signature
CORBA::ULong
CORBA::ORB::defaultTxTimeout(

CORBA::ULong val = CORBA::INIFINITE_TIMEOUT,
CORBA::Environment& env = CORBA::IT_chooseDefaultEnv

);

49

This has been replaced by two functions, one that is an accessor and one that is a
mutator:

// C++
// Accessor function
CORBA::Ulong
CORBA::ORB::defaultTxTimeout();

// Mutator function
CORBA::ULong
CORBA::ORB::defaultTxTimeout(

CORBA::ULong val,
CORBA::Environment& env = CORBA::IT_chooseDefaultEnv

);

The orginal accessor-like functionality would also mutate the timeout to
CORBA::INFINITE_TIMEOUT, for example:

CORBA::ULong t = CORBA::Orbix.defaultTxTimeout();

Accessing the value and changing it are now clearly separated. It is unlikely that
this change affects any client code, but you should verify this by searching for all
calls to defaultTxTimeout().

CORBA::Environment Class

Changes have been made to the CORBA::Environment class that affect some data
members and member functions.

Accessing Data Members

Data members of the CORBA::Environment class that used to be public have
been made private. The data members are now accessed using accessor/mutator
function pairs. For example, the m_request data member:

// C++
CORBA::Request* CORBA::Environment::m_request

is now accessed using the following functions:

// C++
CORBA::Request* CORBA::Environment::request();
void CORBA::Environment::request(CORBA::Request*);

50

The m_timeout data member:

// C++
CORBA::ULong CORBA::Environment::m_timeout

is now accessed using the following functions:

// C++
CORBA::ULong CORBA::Environment::timeout() const;
void CORBA::Environment::timeout(CORBA::ULong val);

Attempting to access the m_request or m_timeout member variables directly
generates compiler errors. Your code should be changed to use the
accessor/mutator functions instead.

Member Functions Removed

Three CORBA::Environment functions, which were only needed to support the
TRY/CATCH macros, have been removed:

// C++
void CORBA::Environment::propagate()
void CORBA::Environment::acknowledge()
CORBA::Boolean CORBA::Environment::uncaught()

The following function has been removed:

// C++
void Request::mk_arg(CORBA::TypeCode_ptr, void*)

It was supplied only on NT, and was redundant. This should not affect your code.

CORBA::CollocateResetter Class

The default CORBA::Environment parameter in the CollocateResetter
constructor has been removed. The function signature is now:

// C++
CORBA::CollocateResetter::CollocateResetter(Boolean
tmpSetting)

This is unlikely to affect your code. Any occurrences will be flagged as compiler
errors, which can be easily fixed by removing the CORBA::Environment argument
passed to the constructor.

51

Fixed Data Type

Orbix 3.0 and 3.3 support the IDL fixed data type. This data type maps to a C++
class. The function signatures for the Orbix 3.0 fixed data type class conform to the
original OMG specification, but it turns out there were errors in the specification.
Orbix 3.3 corrects these errors by changing the function signatures.

The changes primarily concern the use of references in return types. For example,
the original specification uses:

// C++
template<unsigned short d, short s>
class CORBA_Fixed<d, s>
{

public:
template<unsigned short d, short s>
CORBA_Fixed<d, s> operator= (const CORBA_Fixed<d, s>&

val);
};

which defines operator=() with the wrong return type. A basic assignment would
work, but complex (rarely coded) expressions would potentially fail. For example,
consider the following assignment statement:

// C++
CORBA_Fixed<d, s> x = 0;
CORBA_Fixed<d, s> y = 0;

(x = y)++; //expect x equal to 1, y equal to 0;
//in reality x would be 0, and y would be 0.

The expression fails, because the assignment return value is a new (temporary)
instance of CORBA_Fixed<d, s>, instead of a CORBA_Fixed<d, s>& reference to
the left-hand side, x, of the expression.

The operator=() assignment operator should have the following signature:

// C++
template<unsigned short d, short s>
CORBA_Fixed<d, s>& operator=(

const CORBA_Fixed<d, s>& val
);

The implementation of the fixed data type class now throws a
CORBA::DATA_CONVERSION system exception whenever the attempted operation
would exceed the bounds described by the IDL fixed data type.

52

Processing CORBA.h

The CORBA.h header aggregates the various CORBA header files. The included
class declarations have been segmented into more files, resulting in a greater
number of files, although the total number of declarations in those files has
decreased. The increased segmentation should help you to locate specific header
files more easily (for example, when confirming an API signature).

Access to the runtime API is provided by a single #include <CORBA.h> line, as
before—no changes are needed as a result of this reorganization.

In Orbix 3.0, users have to #define EXCEPTIONS to use the full range of CORBA
system exceptions. This is no longer necessary in Orbix 3.3. Continuing to
#define EXCEPTIONS does no harm (code still compiles and runs), but it is
superfluous.

In Orbix 3.0, users have to #define WANT_ORBIX_FDS to use the full range of
APIs for Orbix internal file descriptors. This is no longer necessary in Orbix 3.3.
Continuing to #define WANT_ORBIX_FDS does no harm (code still compiles and
runs), but it is superfluous.

Some operating system header files conflict with CORBA.h. This problem occurred
in Orbix 3.0 as well, but in Orbix 3.3 the user has more control over the
mechanism for resolving the conflict. For example, some operating systems
headers have a line, #define minor, in them. But minor is used as a function
name on the exception class. Since the preprocessor makes the macro substitution
first, this creates an error in the code. Orbix 3.0 would #undef the conflicting
macros. This is still done in Orbix 3.3. However, all of the #undefs have been
grouped together in CORBA.h, and are controlled by an ORBIX_DONT_UNDEF
macro, for example:

// In CORBA.h
#ifndef ORBIX_DONT_UNDEF
#undef minor
. . .
#endif

Nothing needs to be done if you want the standard symbols to be #undef’ed as
they always have been. However, if you want more control over this (for example,
to #undef the symbols yourself, and then re-#define them later) you can
#define ORBIX_DONT_UNDEF prior to #include <CORBA.h>.

53

DEF_TIE and TIE macros

The original versions of the DEF_TIE and TIE macros were superseded by new
versions in Orbix 2.0. The original macros have been removed from Orbix 3.3.
Legacy code using the original macros should be modified to use the newer
macros. This requires a straightforward search-and-replace.

For an IDL interface, Account, and an implementation class, Account_i, the
original DEF_TIE and TIE macros were of the following form, taking both the
interface name and implementation class name as parameters:

DEF_TIE(Account, Account_i)
TIE(Account, Account_i)

The newer DEF_TIE and TIE macros (introduced in Orbix 2.0) use the interface
name as part of the macro name, and only have the implementation class name as
a parameter:

DEF_TIE_Account(Account_i)
TIE_Account(Account_i)

Your code should be searched for TIE, and any occurrences of the old macros
changed to the newer form. The old macros generate a compile-time error in
Orbix 3.3

54

Interoperability with Orbix 2000

The following items describe features added to Orbix 3.3 to enhance
interoperability with Orbix 2000. Most of these features were retrofitted to Orbix
3.0.1, and are available in Orbix 3.0.1 patch 20 or later.

A detailed guide to interoperability between Orbix 3.3 and Orbix 2000 v1.1 is
available from the Orbix 2000 documentation pages in the Orbix 2000
Interoperability Guide, http://www.iona.com/docs/orbix2000/orbix200011.html

IDL Compiler Switches

Two new IDL compiler switches have been added to make the Orbix 3.3 IDL
compiler recognize the same keyword set as Orbix 2000 and employ the new IDL-
to-C++ mapping. Orbix 3.3 continues to support the CORBA IDL that Orbix 3.0
supports. These switches provide additional consistency to a user working in a
mixed Orbix 3.3/Orbix 2000 environment.

Orbix 2000 supports a richer set of IDL data types than Orbix 3.3, giving rise to
additional IDL keywords. For example, valuetype is an IDL keyword in Orbix
2000 associated with objects-by-value (OBV). Orbix 3.3 does not provide OBV,
and hence does not recognize valuetype as a keyword. Therefore, in Orbix 3.3.,
valuetype, could be used as an interface name, operator name, and so on.
However, with this usage of valuetype allowed by the Orbix 3.3 IDL compiler,
the same IDL would not compile under Orbix 2000 due to conflict with the
keyword. A switch can be used in the Orbix 3.3 IDL compiler to increase its
keyword set. This would have the effect of causing the above usage of valuetype
to be an IDL compile-time error. The switch is -k23.

The original OMG mapping for IDL-to-C++ dealt with the presence of C++
keywords in the IDL by prefixing _ (underscore) to the C++ identifier. For example
if int is used as the name of an IDL interface operation, it is mapped to a C++
_int() function (int() would be illegal C++). Orbix 3.3 still employs this
mapping by default. However, Orbix 2000 uses a new OMG mapping for IDL-to-
C++, which employs a leading _cxx_ instead of a leading underscore. The
mapping change does not affect interoperability. For convenience, you might wish
to employ the same mapping in all of your C++ code, regardless of whether it is
Orbix 3.3 or Orbix 2000. The Orbix 3.3 IDL compiler has a -cpp_prefix switch
to control whether a leading underscore or leading _cxx_ is used for C++
keywords in the IDL.

55

GIOP/IIOP Level Environment Variable

In Orbix 3.3, the GIOP/IIOP level defaults to 1.1 instead of 1.0. This is a change
from Orbix 3.0. This should cause no problems, and provides increased
interoperability with Orbix 2000.

Note: Orbix 3.0.1patch20 does not incorporate this change.

Invalid Object Reference and Object Not Exist
System Exceptions

Orbix 3.0 uses the INV_OBJREF CORBA system exception to indicate that an
object cannot be located in a server. This might be because the IOR is malformed
(and hence can never be used to locate an object), or the server (or loader) could
not find an object with the given marker. These two cases should really be
distinguished, and in Orbix 2000 they are. In Orbix 2000, INV_OBJREF is used
only to indicate that the IOR is malformed, and OBJECT_NOT_EXIST is used when
an object for a valid IOR cannot be located.

Orbix 3.3 continues to work as Orbix 3.0 did. This is acceptable for an Orbix 3.3-
only environment, which relies exclusively on INV_OBJREF. However, consider a
mixed Orbix 3.3/Orbix 2000 environment. If an Orbix 3.3 client that is written to
handle only INV_OBJREF exceptions connects to an Orbix 2000 server, the server
might raise an OBJECT_NOT_EXIST exception, which the client is not prepared to
handle. An Orbix 3.3 configuration variable can be used to indicate if
OBJECT_NOT_EXIST exceptions should be mutated into INV_OBJREF exceptions by
the ORB. This allows the client to continue to work exclusively with INV_OBJREF
exceptions. The configuration variable can also be used on an Orbix 3.3 server to
indicate whether INV_OBJREF exceptions should be mutated into
OBJECT_NOT_EXIST exceptions for Orbix 2000 clients.

The configuration variable is USE_ORBIX3_STYLE_SYSTEM_EXCEPTIONS, and
defaults to TRUE.

Note: This feature was retrofitted into Orbix 3.0.1 patch 20.

Communications Failure/Transient System Exceptions

Orbix 3.0 uses the COMM_FAILURE system exception to indicate that a remote call
could not be processed, due to low-level communications failure. The failure might
have occurred as the client was sending the request (implying that the request did
not reach the server), or the failure might have occurred while the client was
waiting for the reply (implying that the request did reach the server). These two

56

cases should really be distinguished, and in Orbix 2000, they are. In Orbix 2000,
TRANSIENT is used for communication failures that imply that the target did not
receive the message, and COMM_FAILURE is used for communication failures that
imply that the target did receive the message, but an expected reply was not
received.

The USE_ORBIX3_STYLE_SYSTEM_EXCEPTIONS configuration variable can be used
in Orbix 3.3 to have it distinguish COMM_FAILURE and TRANSIENT.

The USE_ORBIX3_STYLE_SYSTEM_EXCEPTIONS configuration variable defaults to
TRUE.

Note: This feature was retrofitted into Orbix 3.0.1 patch 20.

57

Further Reading

1. Henning, Michi and Stephen Vinoski. Advanced CORBA Programming
with C++. Addison Wesley Longman, 1999.

2. IONA Technologies. Orbix 2000 Interoperability Guide.
http://www.iona.com/docs/orbix2000.html

3. Object Management Group (OMG). The Common Object Request Broker:
Architecture and Specification, Revision 2.3. 1998.

58

Contact Details

 IONA Technologies PLC

 The IONA Building

 Shelbourne Road

 Dublin 4

 Ireland

 Phone: .. +353 1 637 2000

 Fax: .. +353 1 637 2888

 IONA Technologies Inc.

 200 West St

 Waltham, MA 02451

 USA

 Phone: .. +1 781 902 8000

 Fax: .. +1 781 902 8001

 IONA Technologies Japan Ltd.

 Akasaka Sanchome Bldg 7/F

 3-21-16 Akasaka

 Minato-ku, Tokyo

 Japan 107-0052

 Phone: .. +813 3560 5611

 Fax: .. +813 3560 5612

 Support: .. support@iona.com

 Training: ... training@iona.com

 Sales: ... sales@iona.com

 FTP Site: ... ftp.iona.com

World Wide Web: www.iona.com

www.iona.com

59

	Title
	Summary
	Introduction
	Migration Resources
	Migration Options
	Migrating to Orbix 2000
	Migrating to Orbix 3.3
	Mixed Deployment

	Overview
	IDL Migration
	The context Clause
	The opaque Type
	The Principal Type

	Client Migration
	Replacing the _bind() Function
	CORBA Naming Service
	Object-to-String Conversion
	The ORB::resolve_initial_references() Operation

	Callback Objects
	IDL-to-C++ Mapping
	The CORBA::Any Type
	The CORBA::Environment Parameter

	System Exception Semantics
	Dynamic Invocation Interface

	Server Migration
	Function Signatures
	Object IDs versus Markers
	CORBA Objects versus Servant Objects
	BOA to POA Migration
	Creating an Object Adapter
	Defining an Implementation Class
	The Tie Approach
	Creating and Activating a CORBA Object

	Migrating Proprietary Orbix 3 Features
	Orbix 3 Locator
	The CORBA Naming Service
	The CORBA Initialization Service

	Filters
	Request Logging
	Piggybacking Data on a Request
	Multi-Threaded Request Processing
	Accessing the Client's TCP/IP Details
	Security Using an Authentication Filter

	Loaders
	Smart Proxies
	Replace Smart Proxies by Equivalent Orbix 2000 Features
	Implement Smart Proxy-Like Functionality

	Transformers
	I/O Callbacks and Connection Management
	Connection Management
	Session Management

	Basic Services
	Interface Repository
	CORBA Naming Service

	Interoperability
	The Orbix Protocol (POOP)

	Administration and Deployment
	General Command-Line Tools
	Naming Service Command Line Tools
	Activation Modes

	Overview
	APIs and Features that have been�Removed or Changed
	Modifications to _bind() / bind() in C++ and Java
	Unsupported Forms of _bind() / bind()
	Fully Qualified _bind() / bind()
	C++ Function Signatures for _bind()
	Java Method Signatures for bind()

	Locator
	The CORBA::LocatorClass
	The Locator Files and Associated Utilities

	Non-Native C++ Exceptions
	Example 1
	Example 2
	Throwing Exceptions
	Exception Handling in Filters

	CORBA::ORB::useNativeExceptions
	Class CORBA::NatExcResetter
	CORBA::Object Class
	Thread Model
	New Internal Thread Model
	New Thread API
	Functions Dropped from the Old Thread API
	New IOCallback Functions

	Lock Model
	CORBA::ORB::defaultTxTimeout
	CORBA::Environment Class
	Accessing Data Members
	Member Functions Removed

	CORBA::CollocateResetter Class
	Fixed Data Type
	Processing CORBA.h
	DEF_TIE and TIE macros

	Interoperability with Orbix 2000
	IDL Compiler Switches
	GIOP/IIOP Level Environment Variable
	Invalid Object Reference and Object Not Exist�System Exceptions
	Communications Failure/Transient System Exceptions

	Further Reading
	Contact Details

