ORBIX

Orbix Code Generation Toolkit Programmer’s Guide
Version 3.3, SP11 March 2012

PROGRESS

software
BUSINESS MAKING PROGRESSw

Progress Orbix v3.3.11

© 2012 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, Corticon,
Corticon (and design), DataDirect (and design), DataDirect Connect, DataDirect
Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery,
DataXtend, Dynamic Routing Architecture, Empowerment Center, Fathom, Fuse Mediation
Router, Fuse Message Broker, Fuse Services Framework, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, Pow-
erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empower-
ment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
RulesCloud, RulesWorld, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic,
Sonic ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our Technol-
ogy-Experience the Connection are registered trademarks of Progress Software Corporation
or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store,
Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event
Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, Progress
RPM, Progress Responsive Cloud, Progress Responsive Process Management, Progress
Software, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct,
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartCompo-
nent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic
Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Con-
tinuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or
service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the
U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any
other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements: One or more products in the Progress Orbix v3.3.11
release includes third party components covered by licenses that require that the following
documentation notices be provided:

Progress Orbix v3.3.11 incorporates OpenSSL/SSLeay v0.9.8.i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved. This pack-
age is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implemen-
tation was written so as to conform with Netscapes SSL. This library is free for commercial
and non-commercial use as long as the following conditions are adhered to. The following
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc.,
code; not just the SSL code. The SSL documentation included with this distribution is cov-
ered by the same copyright terms except that the holder is Tim Hudson (tjh@crypt-
soft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be
removed. If this package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a textual message at pro-
gram startup or in documentation (online or textual) provided with the package. Redistribu-
tion and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"”

The word 'cryptographic' can be left out if the rouines from the library being used are not
cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ""AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this
code cannot be changed. i.e. this code cannot simply be copied and put under another distri-
bution licence [including the GNU Public Licence.]

Progress Orbix v3.3.11 incorporates mcpp v2.6.4 from SourceForge (http://sourceforge.net/
softwaremap/index.php). Such technology is subject to the following terms and conditions:
Copyright (¢) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved.
This software including the files in this directory is provided under the following license.
Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met: 1. Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Orbix v3.3.11 incorporates IDL Compiler Front End v1.0 from Sun Microsystems.
Such technology is subject to the following terms and conditions: COPYRIGHT NOTICE
on OMG IDL CFE: Copyright 1992 Sun Microsystems, Inc. Printed in the United States of
America. All Rights Reserved. This product is protected by copyright and distributed under
the following license restricting its use. The Interface Definition Language Compiler Front
End (CFE) is made available for your use provided that you include this license and copy-
right notice on all media and documentation and the software program in which this product
is incorporated in whole or part. You may copy and extend functionality (but may not
remove functionality) of the Interface Definition Language CFE without charge, but you are
not authorized to license or distribute it to anyone else except as part of a product or pro-
gram developed by you or with the express written consent of Sun Microsystems, Inc.
("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may
not be used in advertising or publicity pertaining to distribution of Interface Definition Lan-
guage CFE as permitted herein. This license is effective until terminated by Sun for failure
to comply with this license. Upon termination, you shall destroy or return all code and doc-
umentation for the Interface Definition Language CFE. The Interface Definition Language
CFE may not be exported outside the United States without first obtaining the appropriate
government approvals. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS
IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF
DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED

WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC-
TION, MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES
OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE
DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN
OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST REV-
ENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun
logo are trademarks or registered trademarks of Sun Microsystems, Inc. SunSoft, Inc. 2550
Garcia Avenue Mountain View, California 94043

Updated: 07-Mar-2012

Contents

Preface
Audience
Organization of this Guide
Document Conventions

Part I Using the Toolkit

Chapter 1 Overview of the Code Generation Toolkit
IDL Compiler Architecture
Code Generation Toolkit Architecture
Orbix Code Generation Toolkit Components
The Bundled Applications
Approaches to Using the Toolkit
Known Limitations of Code Generation Toolkit

Chapter 2 Running the Demonstration Genies
Running Genies
Specifying the Application Location
Looking For Applications
Common Command-Line Arguments
What are the Bundled Genies?
Demonstration Genies
stats.tcl
idI2html.tcl

Chapter 3 Ready-to-Use Genies for Orbix C++ Edition
Using the C++ Genie to Kickstart New Projects
Generating a Client-Server Application
Choosing an Object Reference Distribution Method
Compiling and Running the Application
Generating a Partial Application
Command-Line Options to Generate Parts of an Application

17
17
19
20

25
26
27
27
28
29
29

31
31
32
33
33
35
36
36
37

39
39
40
41
41
43
45

Orbix Code Generation Toolkit Programmer’s Guide

-interface: Classes that Implement Interfaces

-smart: Smart Proxies

-loader: Loaders

-server: Server Main File

-client: Client Application

-incomplete: Skeletal Clients and Servers

-makefile: Makefile
Other Command-Line Options
Other C++ Genies
cpp_op.tcl—Generating Signatures of Individual Operations
cpp_print.tcl—Creating Print Functions for IDL Types
cpp_random.tcl—Creating Random Functions for IDL Types
cpp_equal.tcl—Creating Equality Functions for IDL Types
Configuration Settings

Chapter 4 Ready-to-Use Genies for Orbix Java Edition

Using the Java Genie to Kickstart New Projects
Generating a Client-Server Application
Choosing an Object Reference Distribution Method
Compiling and Running the Application
Generating a Partial Application
Command-Line Options to Generate Parts of an Application
-interface: Classes that Implement Interfaces
-smart: Smart Proxies
-loader: Loaders
-server: Server Main Function
-client: Client Application
-incomplete: Skeletal Clients and Servers
-makefile: Makefile
Other Command-Line Options
Other Java Genies
java_print.tcl—Creating Print Functions for IDL Types
java_random.tcl—Creating Random Functions for IDL Types
Configuration Settings

46
48
50
51
53
54
55
55
56
56
57
60
62
63

65
65
66
67
68
70
71
72
74
75
76
79
80
81
81
81
82
85
86

Contents

Part II Developing Genies

Chapter 5 Basic Genie Commands
Hello World Example
Hello World Tcl Script
Adding Command Line Arguments
Including Other Tecl Files
The source Command
The smart_source Command
Writing to a File
Embedding Text in Your Application
Embedding Text in Braces
Embedding Text in Quotation Marks
Embedding Text Using Bilingual Files
Debugging and the bi2tcl Utility

Chapter 6 Processing an IDL File

IDL Files and idlgen
Parsing the IDL File
Traversing the Parse Tree
Parse Tree Nodes
The node Abstract Node
The scope Abstract Node
The all Pseudo-Node
Nodes Representing Built-In IDL Types
Typedefs and Anonymous Types
Visiting Hidden Nodes
Other Node Types

Traversing the Parse Tree with rcontents
Searching an IDL File with idlgrep

Recursive Descent Traversal
Polymorphism in Tcl

Recursive Descent Traversal through Polymorphism

Processing User-Defined Types
Recursive Structs and Unions

89
90
90
90
91
91
92
93
95
95
96
97
929

101
101
102
103
105
105
108
111
111
113
114
115
115
115
120
121
121
123
124

Orbix Code Generation Toolkit Programmer’s Guide

Chapter 7 Configuring Genies 127
Processing Command-Line Arguments 127
Enhancing the idlgrep Genie 127
Processing the Command Line 128
Searching for Command-Line Arguments 131

More Examples of Command-Line Processing 132

Using idlgrep with Command-Line Arguments 133

Using std/args.tcl 135

Using Configuration Files 136
Syntax of an idlgen Configuration File 136
Reading the Contents of a Configuration File 137

The Standard Configuration File 139

Using idlgrep with Configuration Files 139
Chapter 8 Developing a C++ Genie 143
Identifiers and Keywords 144
C++ Prototype 145
Client-Side Prototype 146
Server-Side Prototype 147

Client Side: Invoking an Operation 149
Step 1—Declare Variables to Hold Parameters and Return Value 150

Step 2—Initialize Input Parameters 151

Step 3—Invoke the IDL Operation 152

Step 4—Process Output Parameters and Return Value 153

Step 5—Release Heap-Allocated Parameters and Return Value 154

Client Side: Invoking an Attribute 156
Server Side: Implementing an Operation 156
Step 1—Generate the Operation Signature 157

Step 2—Process Input Parameters 158

Step 3—Declare the Return Value and Allocate Parameter Memory 158

Step 4—Initialize Output Parameters and the Return Value 160

Step 5—Manage Memory when Throwing Exceptions 161

Server Side: Implementing an Attribute 163
Instance Variables and Local Variables 163
Processing a Union 166
Processing an Array 168
Processing an Any 171
Inserting Values into an Any 171

10

Contents

Extracting Values from an Any

Chapter 9 Developing a Java Genie
Identifiers and Keywords
Java Prototype
Client-Side Prototype
Server-Side Prototype
Client Side: Invoking an Operation
Step 1—Declare Variables to Hold Parameters and Return Value
Step 2—Allocate Holder Objects for inout and out Parameters
Step 3—Initialize Input Parameters
Step 4—Invoke the IDL Operation
Step 5—Process Output Parameters and Return Value
Client Side: Invoking an Attribute
Server Side: Implementing an Operation
Step 1—Generate the Operation Signature
Step 2—Process Input Parameters
Step 3—Declare the Return Value
Step 4—Initialize Output Parameters and the Return Value
Server Side: Implementing an Attribute
Instance Variables and Local Variables
Processing a Union
Processing an Array
Processing a Sequence
Processing an Any
Inserting Values into an Any
Extracting Values from an Any

Chapter 10 Further Development Issues
Global Arrays
The $idlgen Array
The $pref Array
The $cache Array
Re-Implementing Tcl Commands
More Smart Source
More Output
Miscellaneous Utility Commands
idlgen_read support_file

172

175
176
177
178
179
180
181
183
183
184
185
187
188
188
189
189
190
191
192
195
198
201
201
202
203

207
207
208
209
212
213
214
215
216
216

11

Orbix Code Generation Toolkit Programmer’s Guide

idlgen support file full name 218
idlgen gen comment block 218
idlgen process_list 219
idlgen pad_str 221
Recommended Programming Style 222
Organizing Your Files 222
Organizing Your Command Procedures 224
Writing Library Genies 225
Commenting Your Generated Code 228

Part III C++ Genies Library Reference

Chapter 11 C++ Development Library 231
Naming Conventions in API Commands 231
Naming Conventions for is_var 232
Naming Conventions for gen 233
Indentation 235
$pref(cpp,...) Entries 235
Groups of Related Commands 237
Identifiers and Keywords 237
General Purpose Commands 237
Servant/Implementation Classes 237
Operation Signatures 237
Attribute Signatures 238

Types and Signatures of Parameters 238
Invoking Operations 238
Invoking Attributes 238
Implementing Operations 239
Implementing Attributes 239
Instance Variables and Local Variables 239
Processing Unions 239
Processing Arrays 240
Processing Any 240
cpp_boa_lib Commands 241
Chapter 12 Other C++ Utility Libraries 305
Tecl API of cpp_print 305

12

Contents

Example of Use 306
Tcl API of cpp_random 308
Example of Use 309
Tcl API of cpp_equal 312
Example of Use 312
Full API of cpp_equal 312

Part IV Java Genies Library Reference

Chapter 13 Java Development Library 317
Naming Conventions in API Commands 317
Naming Conventions for gen 318
Indentation 319
Spref(java,...) Entries 320
Groups of Related Commands 322
Identifiers and Keywords 322
General Purpose Commands 322
Servant/Implementation Classes 322
Operation Signatures 322
Attribute Signatures 322

Types and Signatures of Parameters 323
Invoking Operations 323
Invoking Attributes 323
Implementing Operations 323
Implementing Attributes 323
Instance Variables and Local Variables 324
Processing Unions 324
Processing Arrays 324
Processing Any 324
java_boa_lib Commands 325
Chapter 14 Other Tcl Libraries for Java Utility Functions 381
Tcl API of java_print 381
Example of Use 383

Tcl API of java_random 384
Example of Use 386

Tcl API of java_equal 388

13

Orbix Code Generation Toolkit Programmer’s Guide

Example of Use 388
Equality Functions 389
Appendix A
User’s Reference 391
General Configuration Options 391
Configuration Options for C++ Genies 393
Configuration Options for Java Genies 395
Command Line Usage 398
stats 398
id12html 398
Orbix C++ Genies 399
cpp_genie 399
cpp_op 401
cpp_print 401
cpp_random 402
cpp_equal 402
Orbix Java Genies 403
java_genie 403
java_print 404
java_random 405
Appendix B
Command Library Reference 407
File Output API 407
Configuration File API 408
Command Line Arguments API 414
Appendix C
IDL Parser Reference 417
IDL Parse Tree Nodes 418
Table of Node Types 419
Built-in IDL types 423

14

Appendix D
Configuration File Grammar

Index

435

437

15

Orbix Code Generation Toolkit Programmer’s Guide

16

Preface

The Orbix Code Generation Toolkit is a flexible development tool that increases
programmer productivity by automating repetitive coding tasks. It is aimed at
both novice and expert users of Orbix, Progress Software’s implementation of the
Object Management Group’s (OMG) Common Object Request Broker
Architecture (CORBA).

The Orbix Code Generation Toolkit contains an IDL parser, idlgen, and
ready-made applications called genies that allow you to generate Java or C++
code from CORBA IDL files automatically. The Toolkit also contains command
libraries that you can use to develop your own genies.

Orbix documentation is periodically updated. New versions between releases are
available at this site:

http://communities.progress.com/pcom/docs/DOC-105220.

If you need assistance with Orbix or any other Progress products, go to http://
www.progress.com/orbix/orbix-support.html.

If you want to provide any comments on Progress documentation, go to http://
www.progress.com/en/about/contact.html.

Audience

There are two intended audiences for this book: genie users and genie
developers.

A genie user is a developer of Orbix applications, who uses the bundled genies to
accelerate development. Part I of this book is addressed at this audience. Genie
users need to be familiar with the OMG Interface Definition Language (IDL), and
the C++ or Java language.

17

http://communities.progress.com/pcom/docs/DOC-105220
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/en/about/contact.html

Orbix Code Generation Toolkit Programmer’s Guide

18

A genie developer customizes the bundled genies or develops completely new
genies to perform specialized tasks. Part II of this book is addressed at this
audience. Genie developers need to be familiar with the OMG IDL, the C++ or
Java language, and the Tcl scripting language.

Organization of this Guide

Organization of this Guide

This guide is divided into four parts and appendices:

Part I Using the Toolkit

This section of the guide is a user’s guide to the Orbix Code Generation Toolkit.
It provides an overview of the product and describes its constituent components.
It describes how to run the demonstration genies and the ready-to-run genies that
produce C++ and Java starting point code.

Part II Developing Genies

This section of the guide takes an in-depth look at the Orbix Code Generation
Toolkit and describes how to develop your own genies that are tailored to specific
needs.

Part III C++ Genies Library Reference

This section of the guide is a reference to the commands that you use to produce
C++ code from OMG IDL files.

Part IV Java Genies Library Reference

This section of the guide is a reference to the commands that you use to produce
Java code from OMG IDL files.

Appendices

The appendices provide reference material on configuration options, command
libraries, the IDL parser and configuration file grammar.

19

Orbix Code Generation Toolkit Programmer’s Guide

Document Conventions

20

This guide uses the following typographical conventions:

Constant width

Constant width
(bold)

Italic

Constant width (courier font) in normal text represents
portions of code and literal names of items such as classes,
functions, variables, and data structures. For example, text
might refer to the CORBA: : Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <iostream.h>

Constant width (courier font) in bold text represents either
command-line input or portions of code from Tcl bilingual
files. See “Embedding Text Using Bilingual Files” on
page 97.

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments to
commands or path names for your particular system. For
example:

% cd /users/your_name

This guide may use the following keying conventions:

No prompt

%

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT, or
Windows 98 command prompt.

Document Conventions

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[1] Brackets enclose optional items in format and syntax
descriptions.
{} Braces enclose a list from which you must choose an

item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Note that the examples in this guide include file names in UNIX format.

However, unless otherwise stated, all examples in this guide apply to the Orbix
Code Generation Toolkit on both UNIX and Windows platforms.

21

Orbix Code Generation Toolkit Programmer’s Guide

22

Part 1

Using the Toolkit

Overview of the Code Generation
Toolkit

The Orbix Code Generation Toolkit is a powerful development
tool that can automatically generate code from IDL files.

The code generation toolkit offers ready-to-run genies that generate code from
IDL files. You can use this code immediately in your development project. Used
in this way, the toolkit can dramatically reduce the amount of time for
development.

You can also use the code generation toolkit to write your own code generation
scripts, or genies. For example, you can write genies to generate C++ or Java
code from an IDL file, or to translate an IDL file into another format, such as
HTML, RTF, or LaTeX.

25

Orbix Code Generation Toolkit Programmer’s Guide

IDL Compiler Architecture

As shown in Figure 1.2, an IDL compiler typically contains three sub-
components. A parser processes an input IDL file and constructs an in-memory
representation, or parse tree. The parse tree can be queried to obtain arbitrary
details about IDL declarations. A back-end code generator then traverses the
parse tree and generates C++ or Java stub code.

26

IDL compiler

IDL
. Parser

* Parse Tree
> -

: Back-end

* | generator

code

Stub-code files

Figure 1.1: Standard IDL Compiler Components

Code Generation Toolkit Architecture

Code Generation Toolkit Architecture

At the heart of the code generation toolkit is the id1gen executable. It uses an
IDL parser and parse tree, but instead of a back end that generates stub code, the
back end is a Tcl interpreter. The core Tcl interpreter provides the normal features
of a language, such as flow-control statements, variables and procedures.

As shown in Figure 1.2, the Tcl interpreter inside idlgen is extended to
manipulate the IDL parser and parse tree with Tcl commands. This lets you
implement a customized back end, or genie, as a Tcl script.

Tcl

. Parser LT D/IEP:H] .—>" | Interpreter | \T]

A
)
TCI @4_
Library

Generated files

Figure 1.2: Code Generation Toolkit Components

Orbix Code Generation Toolkit Components

The Orbix Code Generation Toolkit consists of three components:

27

Orbix Code Generation Toolkit Programmer’s Guide

1. The idlgen executable: this is the engine at the heart of the Code
Generation Toolkit.

2. A number of pre-written genies: these genies generate useful starting point
code to help developers of Orbix applications.

3. Libraries of Tcl procedures: these libraries help users who want to write
their own genies. For example, there is a library which maps IDL
constructs into their C++ equivalents.

The Bundled Applications

28

Orbix Code Generation Toolkit comes with a number of bundled genies that can
be fed into Orbix Code Generation Toolkit to accomplish a number of different
tasks. The genies are also provided in source code form and so can be used as
reference material when writing your own genies. The full details of these genies
are discussed in Chapter 3, “Ready-to-Use Genies for Orbix C++ Edition”.

Note: The bundled genies can be used straight away. A genie user does not need
to know anything about Tcl or programming in Tcl.

Approaches to Using the ToolKkit

Approaches to Using the Toolkit

The Code Generation Toolkit is a powerful addition to the CORBA developer’s
toolkit. However it is not essential to master all the available features of the
Toolkit to make good use of it. As a starting point, it is a good idea to get to know
the capabilities of the bundled applications and decide whether or not these can
provide all that you want. If they cannot it is straightforward to extend or write
new genies that meet the exact requirements of a task.

The first two parts of this guide are addressed at different groups of users:

* Part [—A genie user’s guide covering installation, configuration, and a
full description of the bundled applications.

® Part II—A genie developer’s guide describing how to write new genies.

You need to read the second part only if you wish to extend the bundled genies or
write new ones.

Known Limitations of Code Generation ToolKkit

The IDL parser within IDLgen has some known limitations which will be
addressed in a future release:

* It does not support the re-opening of modules.

¢ It does not support the following types: long long, unsigned long long,
wchar, wstring and fixed

¢ It allows only one case label per union branch. For example, the following
is not allowed inside a union:

case 1l: case 2: long a;
IDLgen does support opaque types.

Finally, the IDL specification permits the use of anonymous sequences and arrays
in some circumstances. For example, the following is legal IDL:

struct tree {
long data;
1 sequence<tree> children;

29

Orbix Code Generation Toolkit Programmer’s Guide

2 typedef sequence< sequence<long> > longSegSeq;

struct foo {
3 long bar([10];
}i

The tree struct requires the use of an anonymous sequence 1 in order to define a
recursive type.

IDLgen provides full support for the use of anonymous sequences used in
recursive types. However, IDLgen does not provide full support for unnecessary
uses of anonymous types such as 2 or 3. IDLgen scripts can generate bad code for
such uses of unnecessary anonymous types. As such, we recommend that you
rewrite your IDL files to remove unnecessary anonymous types. For example, the
examples of anonymous types 2 and 3 above could be rewritten as follows:

typedef sequence<long> longSeq;
typedef longSeq longSegSeq;

typedef long longArray[10];
struct foo {
longArray bar;

}i

30

Running the Demonstration Genies

A number of ready-to-run genies are bundled with the Code
Generation Toolkit. This chapter describes these example
genies.

The Orbix Code Generation Toolkit comes with a collection of genies that can

accomplish a number of different tasks. This chapter discusses how these genies
work with idlgen:

* How to run a genie.
* What genies are supplied.

® A description of the demonstration genies.

Running Genies

In general, you can run a genie through the idlgen interpreter like this:

idlgen name-of-genie args-to-genie

For example, one of the demo genies converts IDL files to HTML. This genie is
held in the file id12html.tcl. You can run it as follows:

idlgen idl2html.tcl bank.idl shop.idl acme.idl
idlgen: creating bank.html
idlgen: creating shop.html
idlgen: creating acme.html

31

Orbix Code Generation Toolkit Programmer’s Guide

Specifying the Application Location

The idlgen executable locates the specified genie file by searching a list of
directories. The list of these directories is defined in the standard configuration
file idlgen.cfg under the setting idlgen.genie search path. The default
setting for this is:

idlgen.genie search path = [

non

,"./genie"

,install root + "/genies"

,install root + "/demo genies"
17

This default setting is to search:
1. The current directory.
2. The genies directory under the current directory.
3. The genies directory under the toolkit installation directory.
4. The demos directory under the toolkit installation directory.

The order of these directories in the list is the order in which idlgen searches for
the genie.

Note: You can alter this configuration setting to add additional directories. For
instance, if you write your own genies you could place them into a
separate directory and add this directory to idlgen.genie search path.

32

Running Genies

Looking For Applications

The idlgen executable provides a command-line option that lists all of the
available genies, in all of the directories that are specified in the search path:

idlgen -list

available genies are...

cpp_genie.tcl cpp_random.tcl java print.tcl
cpp_op.tcl idl12html.tcl java random.tcl
cpp_print.tcl java genie.tcl stats.tcl

You can pass a filter string to the -1ist option. For example, to show all the
genies whose names contain the cpp string, enter the following command:

idlgen -list cpp

matching genies are...
cpp_genie.tcl cpp op.tcl cpp_print.tcl cpp random.tcl

Common Command-Line Arguments

The bundled genies have some common command-line arguments. The simplest
one is the help command-line argument -h:

idlgen idl2html.tcl -h

usage: idlgen idl2html.tcl [options] [file.idl]+
options are:

-I<directory> Passed to preprocessor
—-D<name> [=value] Passed to preprocessor
-h Prints this help message
-v verbose mode

-s silent mode

There are also command-line arguments for passing information onto the IDL
preprocessor.

-I The include path for preprocessor.

-D Any additional preprocessor symbols to define.

33

Orbix Code Generation Toolkit Programmer’s Guide

For example:

idlgen idl2html.tcl -I/inc -I../std/inc bank.idl
or:

idlgen idl2html.tcl -I/inc -DDEBUG bank.idl

You may have to place quote marks around the parameters to these command-line
arguments if they contain white space:

idlgen idl2html.tcl -I"/Program Files" bank.idl

The final couple of common command-line arguments determine whether or not
the genies run in verbose or silent mode.

Running in verbose mode causes idlgen to tell you what it is doing:

idlgen idl2html.tecl -v bank.idl

idlgen: creating bank.htm
Running in silent mode suppresses the output:
idlgen idl2html.tcl -s bank.idl

If neither of these command-line settings are specified the default setting is
determined by the default.all.want diagnostics value in the idlgen.cfg
configuration file. If this is set to yes, idlgen defaults to verbose mode. If this is
set to no, idlgen defaults to silent mode.

34

What are the Bundled Genies?

What are the Bundled Genies?

The genies bundled with the Orbix Code Generation Toolkit can be grouped into
a number of categories:

Demonstration Genies

stats.tcl Provides statistical analysis of an IDL file’s content.
id12html.tcl Converts IDL files into HTML files.

Orbix C++ Specific Genies

cpp_genie.tcl Generates C++ code from an IDL file.

cpp_op.tcl Generates C++ code for new operations from an IDL
interface.

cpp_random.tcl Creates a number of C++ functions that generate random
values for all the types present in an IDL file.

cpp print.tcl Creates a number of C++ functions that can display all
the data types present in an IDL file.

cpp_equal.tcl Creates utility functions that test IDL types for equality.
Orbix Java Specific Genies
java_genie.tcl Generates Java code from an IDL file.

java_random.tcl Creates a number of Java methods that generate random
values for all the types present in an IDL file.

java_print.tcl Creates a number of Java methods that can display all the
data types present in an IDL file.

This chapter describes the demo genies. Chapter 3, “Ready-to-Use Genies for
Orbix C++ Edition” discusses the Orbix C++ specific genies.

Chapter 4“Ready-to-Use Genies for Orbix Java Edition”discusses the Orbix Java
specific genies.

For a full genie user’s reference, please refer to Appendix A on page 391. This
describes the configuration and command-line options that are available.

35

Orbix Code Generation Toolkit Programmer’s Guide

Demonstration Genies

stats.tcl

36

Two demonstration genies are shipped with the Orbix Code Generation Toolkit:

® stats.tcl

® idl2html.tcl

This genie provides a number of statistics based on an IDL file’s content. This
genie prints out a summary of how many times each IDL construct (such as
interface, operation, attribute, struct, union, module, and so on)

appears in the specified IDL file(s).
For example:

idlgen stats.tcl bank.idl

statistics for ’bank.idl’

branches inside unions (0 per union)
exceptions

fields inside exceptions (1.0 per exception)
enum types

const declarations

types in total

0 modules

5 interfaces

7 operations (1.4 per interface)

9 parameters (1.28571428571 per operation)
3 attributes (0.6 per interface)

0 sequence typedefs

0 array typedefs

0 typedef (not including sequences or arrays)
0 struct

0 fields inside structs (0 per struct)

0 unions

0

1

1

0

0

5

Demonstration Genies

idI2html.tcl

The statistics genie, by default, only processes the constructs it finds in the IDL
file specified. It does not take into consideration any IDL files that are referred to
with #include statements. You can use the -include command-line option to
process, recursively, all such IDL files as well. For example, the IDL file
bank.idl includes the IDL file account.idl:

// IDL
#include "account.idl"

interface Bank

{

}i

You can gain statistics from both account.idl and bank.idl files together with
this command:

idlgen stats.tcl -include bank.idl

This genie serve two purposes:

* This genie provides objective information which can be used to help
estimate the time it will take to implement some task based on the IDL.

* The implementation of this genie provides a useful demonstration of how
to write genies that process IDL files.

This genie takes an IDL file and converts it to an equivalent HTML file.
Consider this simple extract from an IDL file:

// IDL
interface bank {
exception reject {
string reason;
}i
account newAccount (in string name)
raises(reject);
void deleteAccount (in account a)
raises (reject);

37

Orbix Code Generation Toolkit Programmer’s Guide

You can convert this IDL file to HTML by running it through idlgen:
idlgen idl2html.tcl bank.idl

idlgen: creating bank.html
This is the resultant HTML file, when viewed in an appropriate HTML browser:

// HTIML
interface bank ({
exception reject {
string reason;
}i
account newAccount (
in string name)
raises (bank::reject);
void deleteAccount (
in account a)
raises (bank::reject);
}; // interface bank

The underlined words are the hypertext links that, when selected, move you to the
definition of the specified type. For example, clicking on account makes the
definition for the account interface appear in the browser’s window.

There is one configuration setting in the standard configuration file for this genie:

default.html.file ext File extension preferred by your web browser. This
is usually .html.

38

Ready-to-Use Genies for Orbix C++
Edition

The Orbix Code Generation Toolkit is packaged with several
genies for use with the Orbix C++ product. This chapter
explains what these genies are and how to use them effectively.

Using the C++ Genie to Kickstart New Projects

Many people start a new project by copying some code from an existing project
and then editing this code to change the names of variables, signatures of
operations, and so on. This is boring and time-consuming work. The C++ genie
(cpp_genie.tcl) is a powerful utility that eliminates this task. If you have an
IDL file that defines the interfaces for your new project, the C++ genie can
generate a demonstration, client-server application that contains all the starting
point code that you are likely to need for your project.

39

Orbix Code Generation Toolkit Programmer’s Guide

Generating a Client-Server Application

40

You can use the C++ genie to generate a complete client-server application. It
produces a makefile and a complete set of compilable code for both a client and
a server for the specified interfaces. For example:

idlgen cpp_genie.tcl -all finance.idl

finance.idl:

idlgen: creating account i.h
idlgen: creating account i.cxx
idlgen: creating bank i.h

idlgen: creating bank i.cxx
idlgen: creating smart account.h
idlgen: creating smart account.cxx
idlgen: creating smart bank.h
idlgen: creating smart bank.cxx
idlgen: creating loader.h

idlgen: creating loader.cxx
idlgen: creating server.cxx
idlgen: creating client.cxx
idlgen: creating call funcs.h
idlgen: creating call funcs.cxx
idlgen: creating it print funcs.h
idlgen: creating it print funcs.cxx
idlgen: creating it random funcs.h
idlgen: creating it random funcs.cxx
idlgen: creating Makefile

idlgen: creating Makefile.inc

The generated client application calls every operation in the server application
and passes random values as parameters to the operations and attribute get/set
methods. The server application then passes random values back in the inout,
out, and return values of the operations.

Choosing an Object Reference Distribution Method

Choosing an Object Reference Distribution Method

To establish initial contact between a client and a server application, the server
has to distribute initial object references to its clients. The cpp_genie.tcl genie
lets you select the object reference distribution method using a command-line
option. You can choose between three mutually exclusive methods of object
distribution, as described in Table 3.1.

Command-Line Description
Option
-file (Default)

Generate server code that distributes object references
by writing stringified object references to files.

Generate client code that reads the stringified object
references from the server-created files.

-ns Generate server code that distributes object references
by creating object bindings in the naming service.

Generate client code that reads the server-created
bindings by resolving the object names.

-bind (Deprecated)

Generate client code that creates object references,
based on the arguments passed to _bind ().

The generated server performs no special steps.

Table: 3.1: Object Distribution Methods

Compiling and Running the Application

The Makefile generated by the Orbix Code Generation Toolkit has a complete
set of rules for building both the client and server applications. To build the client
and server:

1. Compile the generated application. At a command prompt, enter the
following commands:

41

Orbix Code Generation Toolkit Programmer’s Guide

Windows
> nmake
UNIX

% make

2. Run the Orbix daemon. Open a new MS-DOS prompt or xterm window
(UNIX) and enter the following command:

Windows
> orbixd
UNIX

% orbixd

The Orbix daemon runs in the foreground and logs its activities to this
window.

3. Register the server with the Orbix daemon. At a command prompt, enter
the following command:

Windows
> nmake putit
UNIX
% make putit
4. Run the server. At a command prompt, enter the following command:
server
5. Run the client.

If you have generated the client code using either the -file or -ns option,
open a new MS-DOS prompt or xterm window (UNIX) and enter the
following command:

client

If you have generated the client code using the -bind option, open a new
MS-DOS prompt or xterm window (UNIX) and enter the following
command:

client ServerHostName
where ServerHostName is the name of the host where the server process is
running.

The client application invokes every operation, invokes all the attribute’s get and
set methods and displays the whole process to standard output.

42

Generating a Partial Application

This client-server application can be used to accomplish any of the following:

¢ Demonstrating or testing an Orbix client-server application for a particular
interface or interfaces.

* Generating sample code to see how to initialize and pass parameters.

* Generating a starting point for an application.

Generating a Partial Application

The genie can generate a whole client-server application or it can just generate the
parts desired by the programmer. To generate any kind of starting-point code
from an IDL file (or files) you must first choose which kind of code you wish to
generate.

One area of repetitive coding in Orbix occurs when the programmer wants to
write the classes that implement IDL interfaces. To generate the skeleton
implementation class for the account interface in the finance.idl file, run the
genie application as follows:

idlgen cpp_genie.tcl -interface -incomplete account
finance.idl

finance.idl:
idlgen: creating account i.h
idlgen: creating account i.cxx

The -interface option tells the genie to generate the classes that implement IDL
interfaces. The -incomplete option specifies that the operations and attributes of
the generated classes have empty bodies. Specifying the name of an interface (for
example, account) causes the genie to consider only that interface when
generating code.

The previous command generates the account _i.hand account_i.cxx files that
contain the outline of a class, account_1i, that implements the account interface.

For example, given the following definition of the account interface:

// IDL
interface account {
readonly attribute float balance;

void makeLodgement (in float f);

43

Orbix Code Generation Toolkit Programmer’s Guide

void makeWithdrawal (in float f);
}i
The following code is generated:

/] CH+
class account i

{
public:

: public virtual accountBOAImpl

virtual void makeLodgement (
CORBA::Float f,

CORBA: :Environment& env =
CORBA: : IT chooseDefaultEnv())

throw (CORBA: : SystemException) ;

virtual void makeWithdrawal (
CORBA::Float f,

CORBA: :Environment& env =
CORBA: : IT chooseDefaultEnv())

throw (CORBA: : SystemException) ;

virtual CORBA::Float balance (

CORBA: :Environment§& env =
CORBA: : IT chooseDefaultEnv())

}r

44

Command-Line Options to Generate Parts of an Application

Command-Line Options to Generate Parts of an
Application

The C++ genie generates a complete application by generating different files,
such as a client main file (client.cxx), server main file (server.cxx), smart
proxies, classes that implement IDL interfaces, a makefile and so on. The C++
genie provides command-line options to selectively turn the generation of each
type of code on and off. In this way, you can instruct the C++ genie to generate as
much or as little of an application as you want. Table 3.2 describes the various
command-line options:

Command-Line Description
Option
- (no) interface Generates the classes that implement the

interfaces in the IDL.

- (no) smart Generates smart proxy classes.

- (no) loader Generates a single loader class for all the
interfaces in an IDL.

- (no) server Generate a simple server main file.

- (no) client Generate a simple client application.

- (in) complete Generates skeletal clients and servers.

- (no)makefile Generates a Makefile that can build the server

and client applications.

Table: 3.2: C++ Genie Command-Line Options

Each of these command-line options is available in two forms, which can switch
the feature either on or off. For example, the -interface option generates
implementation classes; whereas the -nointerface option suppresses generation
of implementation classes.

These command-line options are described in the following sections.

45

Orbix Code Generation Toolkit Programmer’s Guide

-interface: Classes that Implement Interfaces

You can generate the classes that implement the interfaces in an IDL file using
the -interface option:

idlgen cpp_genie.tcl -interface bank.idl

This generates a class header and implementation code for each interface that
appears in the IDL file.

Consider the account interface that appears in the bank. id1 file. The account
interface is implemented by a generated class, account _i. The i suffix is
specified by the default.cpp.impl class suffix setting in the idlgen.cfg
configuration file. The account i class is defined in the account i.cxx file.

There are two mechanisms for implementing an interface: the T/IE approach and
the BOAImpl approach. The genie allows you to specify which one is to be used.
The option -boa specifies the BOAImpl approach, for example:

idlgen cpp_genie.tcl -interface -boa bank.idl
The option -tie specifies the TIE approach, for example:
idlgen cpp_genie.tcl -interface -tie bank.idl

The default approach is specified by the default.cpp genie.want boa entry in
idlgen.cfq.

By default, a function called _this () is generated for each implementation class.
This operation provides a reference to the CORBA object. For interfaces
implemented using the BOA approach, this() simply returns this. For
interfaces implemented using the TIE approach, this () returns the back pointer
which was initialized in a static create () method (described in the next
paragraph). The this () function makes it possible for a TIE object to pass itself
as a parameter to an IDL operation.

Note: The -no_this command-line option can be used to suppress the
generation of the this () operation.

46

Command-Line Options to Generate Parts of an Application

A related matter is how the constructors of an implementation class are used. In
the code generated by the C++ genie, constructors are protected and hence cannot
be called directly from application code. Instead, objects are created by calling a
public static operation called create (). If the TIE approach is used for
implementing interfaces, the algorithm used in the implementation of this
operation is as follows:

// Ct++
foo ptr foo i:: create(const char *marker,
CORBA: :LoaderClass *1=0)
{
foo i* obj
foo ptr tie obj;

1 obj = new foo i (marker, 1);
2 tie obj = new TIE foo(foo i) (obj, marker, 1);
3 obj->m this = tie obj; // set the back ptr

return tie obj;

}

The create() operation calls the constructor, 1. It then creates the TIE wrapper
object, 2, and sets a back pointer from the implementation object to its TIE
wrapper, 3. If the BOA approach is used instead then steps 2 and 3 are omitted. By
providing this create () operation, you can ensure that there is a consistent way
for application code to create CORBA objects, irrespective of whether the TIE or
BOA approach is used.

Another matter to be aware of is how modules affect the name of the
implementation class. The C++ genie flattens interface names that appear in
modules.

Consider this short extract of IDL:

// 1IDL
module finance {
interface account {

};
}i

The account interface here is implemented by a class finance account i. The
interface name has been flattened with the module name.

47

Orbix Code Generation Toolkit Programmer’s Guide

-smart: Smart Proxies

Use the -smart option to generate smart proxy classes for all the interfaces in an
IDL file:

idlgen cpp_genie.tcl -smart bank.idl

This generates a smart proxy class header and corresponding skeletal
implementation for each interface that appears in the IDL file.

Consider the account interface that appears in the bank. id1 file. The account
interface will have a smart proxy class called smart account. The smart prefix
is specified by the entry default.cpp.smart proxy prefixin idlgen.cfg.
The smart_account class is also created in a file of the same name and with a
class definition of the following form:

// C++
class smart account : public virtual account
{
public:
smart account (
char *OR,
CORBA: :Boolean diagnostics) ;
virtual ~smart account();

virtual void makeLodgement (
CORBA: :Float f,
CORBA: :Environment& env =
CORBA: : IT chooseDefaultEnv())
throw (CORBA: : SystemException) ;

virtual void makeWithdrawal (
CORBA: :Float f,
CORBA: :Environment& env =
CORBA: :IT chooseDefaultEnv())
throw (CORBA: : SystemException) ;

virtual CORBA::Float balance (
CORBA: :Environmenté& _env =
CORBA: :IT chooseDefaultEnv())
}i

48

Command-Line Options to Generate Parts of an Application

A corresponding smart proxy factory class is also created and appears in the same
file. In the case of the smart account proxy class, the corresponding factory
class is of the form:

// Ct++
class smart accountProxyFactoryClass
: public virtual accountProxyFactoryClass
{
public:
smart accountProxyFactoryClass (
CORBA: :Boolean factoryDiagnostics,
CORBA: :Boolean proxyDiagnostics);
virtual ~smart accountProxyFactoryClass();

virtual void *New (
char *OR,
CORBA: :Environmenté&) ;
virtual void *New (
ObjectReferenceImpl *OR,
CORBA: :Environmenté&) ;
}i

The constructor for this smart proxy factory takes two boolean parameters. The
first is used to turn diagnostic messages on and off in the New () operation of the
factory object. The second parameter is used to turn diagnostic messages on and
off in the operations of smart proxy objects. These diagnostic messages can be
useful both as a teaching aid and as a debugging aid.

A single instance of the smart proxy factory class is created at the end of the
generated source file, which in this case is the smart_account.cxx file:

// C++
smart accountProxyFactoryClass
my smart accountProxyFactoryClass(1,1);

The parameters passed to the constructor of this smart proxy factory activate both
forms of diagnostics. You can edit these parameters to turn off the diagnostics if
required.

49

Orbix Code Generation Toolkit Programmer’s Guide

-loader: Loaders

Use the -1oader option to generate a single loader class for all the interfaces in an
IDL file:

idlgen cpp_genie.tcl -loader bank.idl

This generates a single class that can be used as a loader for all the interface types
that exist in the processed IDL file.

The loader class is of the form:

// C++

class loader : public CORBA::LoaderClass

{

public:
loader (CORBA: :Boolean printDiagnostics);
virtual ~loader();

virtual CORBA::Object ptr load(

const char *it interface,
const char *marker,
CORBA: :Boolean isLocalRind,

CORBA: :Environmenté&) ;

virtual void save (
CORBA: :Object ptr obj,
CORBA: : saveReason reason,
CORBA: :Environmenté&) ;

virtual void record(
CORBA: :Object ptr obj,
char *g&marker,
CORBA: :Environmenté&) ;

virtual CORBA: :Boolean rename (
CORBA: :Object ptr obj,
char *gmarker,
CORBA: :Environmenté&) ;
}i

Like the smart proxy factory, the constructor for a loader takes a boolean
parameter which is used to turn diagnostic messages on and off.

50

Command-Line Options to Generate Parts of an Application

Note: The creation of the loader is in the generated server.cxx main file and
uses a true value when creating the loader, thereby enabling diagnostic
messages. You can alter this if required.

The 1oad () operation on this loader recreates an object by calling the static
create operation of the appropriate implementation class. The save () operation
on a loader delegates its responsibility by calling the loaderSave () operation
on the specified object. Each implementation class generated by the genie is given
this operation loaderSave ().

-server: Server Main File

Use the -server option to generate a simple server main file:
idlgen cpp_genie.tcl -server bank.idl
This generates a file called server.cxx which is of the form:

// C++
int main(int argc, char **argv)
{
// Local Variables
CORBA: :ORB var orbVar;
CORBA: :BOA var boaVar;
try {
orbvar = CORBA::0RB init (argc , argv, "Orbix");
boaVar = orbVar->BOA init (argc, argv, "Orbix BOA");
} catch (CORBA::SystemException e) {

cerr << "Unexpected System Exception :" << e << endl;
exit (1);
} catch (...) {
cerr << "Unexpected Exception." << endl;
exit (1);
}
bank var objl;

account var obj2;

51

Orbix Code Generation Toolkit Programmer’s Guide

orbVar->setDiagnostics (1) ;
try {
boaVar->impl is ready ("banksimpleSrv", 0);
} catch (CORBA: :SystemException &ex) {
cerr << "impl is ready() failed" << endl
<< ex << endl;
exit (1) ;
}
objl = bank i:: create("bank-1");
obj2 = account i:: create("account-1");

ofstream ofile;

ofile.open ("bank.ior");

ofile << objl-> object to string();
ofile.close ();

ofile.open ("account.ior");
ofile << obj2-> object to string();
ofile.close ();

/)===—=—==

// Main event loop.
[/ ===

try {

CORBA: :Orbix.processEvents () ;
} catch (CORBA: :SystemException &ex) {
cerr << "processEvents () failed" << endl
<< ex << endl;
exit (1) ;

return 0O;

52

Command-Line Options to Generate Parts of an Application

This server makes object references available to clients by writing them to files.
The object references for the bank object and the account object are converted to
string format and written to the files bank.ior and account.ior respectively.

If a loader had been requested by using the -loader option:
idlgen cpp_genie.tcl -server bank.idl

The server code would have included the following lines:

// C++

loader* srvLoader;

srvLoader = new loader(l);
objl = bank i:: create("bank-1", srvLoader);
obj2 = account i:: create("account-1", srvLoader);

-client: Client Application

Use the -client option to generate a simple client application:
idlgen cpp_genie.tcl -client bank.idl

This generates a source file client.cxx with a simple main (). The client source
file is of the form:

// C++
int main(int argc, char **argv)

{

bank var objl;

account var obj2;

[/ ===

// Set Orbix diagnostics level
e

CORBA: :Orbix.setDiagnostics (1) ;

ifstream iorfile;
char myIor [2048];
CORBA: :Object var tObj;

try {
iorfile.open ("bank.ior");
iorfile >> myIlor;
iorfile.close();
tObj = CORBA::0Orbix.string to object (myIor) ;

53

Orbix Code Generation Toolkit Programmer’s Guide

objl = bank:: narrow (tObj) ;

iorfile.open ("account.ior");

iorfile >> mylor;

iorfile.close();

t0Obj CORBA: :Orbix.string to object (myIor);
obj2 = account:: narrow (tObj);

} catch (CORBA::SystemException sysEx) {

cerr << "Unexpected Exception: " << sysEx << endl;
exit (1) ;

}

e

// Invoke the operations and attributes

[/ ========

call account get balance(objl);
call account makeLodgement (objl) ;
call account makeWithdrawal (objl);
call bank newAccount (obj2) ;

call bank deleteAccount (obj2);

return 0;
}
The client obtains references to each of the CORBA objects by reading stringified
object references from the files created by the server (bank.ior and
account.ior). The client then invokes every operation and attribute with random
parameter values.

-incomplete: Skeletal Clients and Servers

The -incomplete option is used to suppress the generation of dummy
implementation code for the generated client and server applications.

By default (or using the —complete option), the C++ genie produces dummy
implementations for the client and server whenever the -client, -server, and
—-interface options are specified. The dummy implementation provides the
following functionality:

54

Other Command-Line Options

® The client main () function contains code to invoke every operation and
attribute on every interface (-client option).

®* The server main () function contains code to create one instance of a
CORBA object for every interface and to distribute the object references
to clients (-server option).

® The bodies of operations and attributes are implemented by code that
prints out the parameters and generates random return values (-interface
option).

If the -incomplete option is specified, the generated code is reduced to the
minimum amount of boilerplate code in each case. For example, clients do not
invoke any remote operations and the bodies of operations and attributes are left
empty.

-makefile: Makefile

Use the -makefile option to obtain a makefile that can build the server and client
applications. The makefile also provides two other targets: clean and putit.

make clean
make putit

The putit target registers the server in the Implementation Repository and the
clean target removes any files generated during compilation and linking.

Other Command-Line Options

For a full list of the command-line options for the Orbix C++ Genie please refer
to the Appendix A, “User’s Reference” on page 391.

55

Orbix Code Generation Toolkit Programmer’s Guide

Other C++ Genies

In addition to the cpp_genie.tcl, a number of other C++ genies are supplied
with the Orbix Code Generation Toolkit, as shown in Table 3.3.

C++ Genie Description

cpp_op.tcl Generates C++ code for new operations from
an IDL interface.

cpp_print.tcl Creates a number of C++ functions that can
display all the data types present in an IDL file.

cpp_random. tcl Creates a number of C++ functions that
generate random values for all the types
present in an IDL file.

cpp_equal.tcl Creates utility functions that test IDL types for
equality.

Table: 3.3: Additional C++ Genies

The output from these genies can generate extra C++ source code that you might
find useful when you are writing your own applications. The following sections
discuss each of these genies in more detail.

cpp_op.tcl—Generating Signatures of
Individual Operations

The C++ genie is useful when starting a new project. However, IDL interfaces
often change during application development. For example, a new operation
might be added to an interface, or the signature of an existing operation might be
changed. Whenever such a change occurs, you have to update existing C++ code
with the signatures of the new or modified operations. This is where the
cpp_op.tcl genie is useful. This genie prints the C++ signatures of specified
operations and attributes to a file. The user can then paste these operations back
into the target source files.

56

cpp_print.tcl—Creating Print Functions for IDL Types

Imagine that the operation newAccount () is added to the interface bank. To
generate the new operation run the genie as follows:

idlgen cpp_op.tcl bank.idl "*::newAccount"

idlgen: creating tmp

Generating signatures for bank::newAccount

As this example shows, you can use wild cards to specify the names of operations
or attributes. If you do not explicitly specify any operations or attributes, the *
wild card is used by default, which causes the signatures of all operations and
attributes to be generated. By default, this genie writes the generated operations
into the file tmp. You can specify an alternative file name by using the -o
command-line option:

idlgen cppsig.tcl bank.idl -o ops.txt "*::newAccount"
idlgen: creating ops.txt
Generating signatures for bank::newAccount

By default, wild cards are matched only against the names of operations and
attributes in the specified file. If you specify the -include option then the
wildcards are matched against all operations and attributes in the included IDL
files too.

cpp_print.tcl—Creating Print Functions for
IDL Types

This genie generates utility functions to print IDL data types. It is run as follows:
idlgen cpp_print.tcl foo.idl

idlgen: creating it print funcs.h

idlgen: creating it print funcs.cxx

The names of the generated files are always it print funcs. {h, cxx},
regardless of the name of the input IDL file. The functions in these generated files
all have names of the form IT print XXX where XXX is the name of an IDL

type.

57

Orbix Code Generation Toolkit Programmer’s Guide

To illustrate the print functions, consider the following IDL definitions:

// IDL
enum employee grade {temporary, junior, senior};

struct EmployeeDetails {

string name;
long id;
double salary;
employee grade grade;

}i

typedef sequence<EmployeeDetails> EmployeeDetailsSeq;

When you run cpp_print.tcl on this IDL, utility print functions are generated
for all the user-defined IDL types (and also for built-in IDL types). The generated
print utility function for the EmployeeDetailsSeq type has the following
signature:

// C++

void IT print EmployeeDetailsSeq(ostream &out,
const EmployeeDetailsSeq &seq,
int indent = 0);

The signatures of print functions for the other IDL types are similar. This function
takes three parameters. The first parameter is the ostream to be used for printing.
The second parameter is the IDL type to be printed. The final parameter, indent,
specifies the indentation level at which the IDL type is to be printed. This
parameter is ignored when printing simple types such as long, short, string,
and so on. It is only used when printing a compound type such as a struct, in
which case the members inside the struct should be indented one level deeper
than the enclosing struct.

58

cpp_print.tcl—Creating Print Functions for IDL Types

An example of using the print functions is shown below:

// C++
#include "it print funcs.h"

void foo i::op(const EmployeeDetailsSeq &emp, ...)
{
if (m do logging) {

[/===

// Write parameter values to a log file

[/ ===

cout << "op() called; 'emp’ = ";

IT print EmployeeDetailsSeq(m log, emp, 1);
cout << endl;

// Rest of operation.

}

The contents of the log file written by the above snippet of code might look like
the following:

op() called; ’'emp’ parameter =
sequence EmployeeDetailsSeq length = 2 {

[0] =
struct EmployeeDetails {
name = "Joe Bloggs"
id = 42
salary = 29000
grade = 'senior'
} //end of struct EmployeeDetails
[1] =
struct EmployeeDetails {
name = "Joan Doe"
id = 96
salary = 21000
grade = 'junior'

} //end of struct EmployeeDetails
} //end of sequence EmployeeDetailsSeq

Aside from their use as a logging aid, these print functions can also be a very
useful debugging aid. For example, consider a client application that reads
information from a database, stores this information in an IDL struct and then
passes this struct as a parameter to an operation in a remote server. If you

59

Orbix Code Generation Toolkit Programmer’s Guide

wanted to confirm that the code to populate the fields of the struct from
information in a database was correct then you could use a generated print
function to examine the contents of the struct.

The C++ genie makes use of cpp_print.tcl so that the generated client and
server applications can print diagnostics showing the values of parameters that
are passed to operations.

cpp_random.tcl—Creating Random Functions for
IDL Types

This application generates utility functions to assign random values to IDL data
types. It is run as follows:

idlgen cpp_random.tcl foo.idl

idlgen: creating it random funcs.h
idlgen: creating it random funcs.cxx

The names of the generated files are always it random funcs. {h, cxx},
regardless of the name of the input IDL file. The functions in these generated files
all have names of the form IT random xxX where xXX is the name of an IDL
type. The functions generated for small IDL types (1ong, short, enum, and so on)
return the random value. Thus, you can write code as follows:

// C++

CORBA::Long 1;

CORBA: :Double d;

colour col; // an enum type
CORBA: :String var str;

1 = IT random long();
IT random double();
col = IT random col();
str IT random string();

(o}
I

60

cpp_random.tcl—Creating Random Functions for IDL Types

However, in the case of compound types (struct, union, sequence, and so on),
it would be inefficient to return the random value (since this would involve
copying a potentially large data-type on the stack). Instead, for these compound
types, the generated function assigns a random value directly to a reference
parameter. For example:

// Ct++

CORBA: :Any any;

EmployeeDetails emp; // a struct
EmployeeDetailsSeq seq; // a sequence

IT random any(any);
IT_random_EmployeeDetails(emp);
IT random EmployeeDetailsSeq(seq);

Aside from the functions to assign random values for various IDL types, the
following are also defined in the generated files:

// Ct++

void IT random set seed(unsigned long new seed);
unsigned long IT random get seed();

long IT random get rand(unsigned long range = 65536UL);
void IT random reset recursive limits();

IT random set seed() is used to set the seed for the random number generator.
IT random get seed() returns the current value of this seed.

IT random get rand() returns a new random number in the specified range.
IDL allows the declaration of recursive types. For example:

// IDL
struct tree {
long data;
sequence<tree> children;
}i

When generating a random tree, the IT random tree () function calls itself
recursively. Care must be taken to ensure that the recursion terminates. This is
done by putting a limit on the depth of the recursion.

IT random reset recursive limits() is used to reset the limit for a recursive
struct, a recursive union and type any (which can recursively contain other any
objects).

61

Orbix Code Generation Toolkit Programmer’s Guide

The generated random functions can be a very useful prototyping tool. For
example, when developing a client-server application, you often want to
concentrate your efforts initially on developing the server. You can write a client
quickly that uses random values for parameters when invoking operations on the
server. In doing this, you will have a primitive client that can be used to test the
server. Then when you have made sufficient progress in implementing and
debugging the server, you can concentrate your efforts on implementing the client

application so that it uses non-random values for parameters.

The C++ genie makes use of cpp_random. tcl so that the generated client can
invoke operations (albeit with random parameter values) on objects in the server.

cpp_equal.tcl—Creating Equality Functions for IDL

Types

The C++ language provides a built-in operator==() for the basic types such as
longand float. C++ also allows you to define operator==() in classes.
However, the OMG mapping from IDL to C++ does not specify that
operator==() is provided in the C++ data-types representing IDL types. Thus, if
EmployeeDetails is an IDL struct then, unfortunately, you cannot write C++

code such as:

// C++
EmployeeDetails empl;
EmployeeDetails emp?2;

. // initialise empl and emp2
if (empl == emp2) { ... }

62

Configuration Settings

Instead, you have to write code which laboriously compares each field inside
empl and emp2. The cpp_equal.tcl application addresses this issue by
generating functions to test for equality of IDL data types. It is run as follows:

idlgen cpp_equal.tcl foo.idl

idlgen: creating it equal funcs.h
idlgen: creating it equal funcs.cxx

The names of the generated files are always it equal funcs. {h, cxx},
regardless of the name of the input IDL file. The functions in these generated files
all have names of the form IT is eq XxX where XXX is the name of an IDL type.
You can use these functions as follows:

// C++
EmployeeDetails empl;
EmployeeDetails emp?2;
// initialise empl and emp?2
if (IT is eq EmployeeDetails(empl,emp2)) { ... }

These equality testing functions are generated for type any, TypeCode, and every

IDL struct, union, sequence, array, and exception. The function
IT is eq obj refs()is provided to test the equality of two object references.

Configuration Settings

The configuration settings for the C++ genie are contained in the scope
default.cpp genie inthe idlgen.cfg configuration file.

Some other settings are not, technically speaking, settings specifically for the
C++ genie, but are settings used by the std/cpp boa lib.tcl library, which
maps IDL constructs to their C++ equivalents. As the C++ genie uses this library
extensively, its outputs are affected by these settings. They are held in the scope
default.cpp.

For a full listing of these settings please refer to Appendix A, “User’s Reference”
on page 391.

63

Orbix Code Generation Toolkit Programmer’s Guide

64

Ready-to-Use Genies for Orbix Java
Edition

The Orbix Code Generation Toolkit is packaged with several
genies for use with Progress Software’s product OrbixWeb
which maps OMG IDL to the Java language. This chapter
explains what these genies are and how to use them effectively.

Using the Java Genie to Kickstart New Projects

Many people start a new project by copying some code from an existing project
and then editing this code to change the names of variables, signatures of
operations, and so on. This is boring and time-consuming work. The Java genie
(java_genie.tcl) is a powerful utility which eliminates this task. If you have an
IDL file that defines the interfaces for your new project then the Java genie can
generate a demonstration, client-server application that contains all the
starting-point code that you are likely to need for your project. In just a few
seconds, the Java genie can give your project a kickstart, and make you
productive immediately.

65

Orbix Code Generation Toolkit Programmer’s Guide

Generating a Client-Server Application

66

You can use the Java genie to generate a complete client-server application. It
produces a makefile and a complete set of compilable code for both a client and
server for the specified interfaces. For example:

idlgen java_genie.tcl -all -jp MyPackage finance.idl

finance.idl:

java genie.tcl: no change to idlgen/PrintFuncs.java

java genie.tcl: no change to idlgen/MyPackage/Printbank.java
java_genie.tcl: no change to idlgen/MyPackage/Printaccount.java
java_genie.tcl: no change to idlgen/MyPackage/PrintCashAmount.java
java genie.tcl: no change to idlgen/RandomFuncs.java

java genie.tcl: no change to idlgen/MyPackage/Randombank.java
java genie.tcl: no change to idlgen/MyPackage/Randomaccount.java
java genie.tcl: no change to idlgen/MyPackage/
RandomCashAmount. java

java_genie.tcl: no change to idlgen/RandomMyPackage.java

java genie.tcl: no change to MyPackage/bankCaller.java

java genie.tcl: no change to MyPackage/accountCaller.java

java genie.tcl: no change to MyPackage/bankLog.java
java_genie.tcl: no change to MyPackage/ clt opbankLog.java
java_genie.tcl: no change to MyPackage/ srv_opbankLog.java
java_genie.tcl: no change to MyPackage/accountLog.java

java genie.tcl: no change to MyPackage/ clt opaccountLog.java
java genie.tcl: no change to MyPackage/ srv_opaccountLog.java
java genie.tcl: no change to MyPackage/Log.java

java genie.tcl: no change to MyPackage/bankImpl.java
java_genie.tcl: no change to MyPackage/accountImpl.java
java_genie.tcl: no change to MyPackage/Smartbank.java

java genie.tcl: no change to MyPackage/Smartbank Factory.java
java genie.tcl: no change to MyPackage/Smartaccount.java

java genie.tcl: no change to MyPackage/Smartaccount Factory.java
java genie.tcl: no change to MyPackage/Loader.java

java genie.tcl: no change to client.java

java genie.tcl: no change to server.java

java genie.tcl: no change to Makefile

Choosing an Object Reference Distribution Method

The generated client application calls every operation in the server application
and passes random values as parameters to the operations and attribute get/set
methods. The server application then passes random values back in the inout,

out and return values of the operations.

Choosing an Object Reference Distribution Method

To establish initial contact between a client and a server application, the server
has to distribute initial object references to its clients. The java genie.tcl genie

lets you select the object reference distribution method using a command-line
option. You can choose between three mutually exclusive methods of object

distribution, as described in Table 4.1.

Command-Line
Option

Description

unspecified

(Default)

Generate server code that distributes object references
by writing stringified object references to files.

Generate client code that reads the stringified object
references from the server-created files.

-ns

Generate server code that distributes object references
by creating object bindings in the naming service.

Generate client code that reads the server-created
bindings by resolving the object names.

-bind

(Deprecated)

Generate client code that creates object references,
based on the arguments passed to _bind ().

The generated server performs no special steps.

Table: 4.1: Object Distribution Methods

67

Orbix Code Generation Toolkit Programmer’s Guide

Compiling and Running the Application

The Makefile generated by the code generation toolkit has a complete set of rules
for building both the client and server applications. To build the client and server:

1. Compile the generated application. At a command prompt, enter the
following commands:
Windows

> nmake depend
> nmake

UNIX

% make depend
% make

2. Run the Orbix daemon. Open a new MS-DOS prompt or xterm window
(UNIX) and enter the following command:

Windows
> orbixd
UNIX

% orbixd

The Orbix daemon runs in the foreground and logs its activities to this
window.

3. Register the server with the Orbix daemon. At a command prompt, enter
the following command:

Windows

> nmake putit
UNIX

% make putit

If you are using the default approach to object reference distribution
(writing stringified object references to file) or the bind () approach
(using the -bind option), proceed to directly to step 4.

If you are using the naming service approach to object reference
distribution (using the -ns option), you have to set up the naming service
as well.

Run the naming service. Open a new MS-DOS prompt or xterm window
(UNIX) and enter the following command:

68

Compiling and Running the Application

Windows

> nmake runns
UNIX

% make runns

Create the IT GenieDemo context in the naming service. At a command
prompt, enter the following command:

Windows

> nmake setup_ns

UNIX

% make setup ns

Run the server. At a command prompt, enter the following command:
Windows

> nmake runserver

UNIX

% make runserver

Run the client. Open a new MS-DOS prompt or xterm window (UNIX)
and enter the following command:

Windows

> nmake runclient
UNIX

% make runclient

The client application invokes every operation, invokes all the attribute’s get and
set methods and displays the whole process to standard output.

This client-server application can be used to accomplish any of the following:

Demonstrating or testing an Orbix client-server application for a particular
interface or interfaces.

Generating sample code to see how to initialize and pass parameters.

Generating a starting point for an application.

69

Orbix Code Generation Toolkit Programmer’s Guide

Generating a Partial Application

The genie can generate a whole client-server application or it can just generate the
parts desired by the programmer. To generate any kind of starting-point code
from an IDL file (or files) you must first choose which kinds of code you wish to
generate.

One area of repetitive coding in OrbixWeb occurs when the programmer wishes
to write the classes that implement the interfaces in the IDL file. To generate the
skeleton implementation class for the account interface in the finance.idl file,
you can run the genie in this way:

idlgen java_genie.tcl -interface -incomplete account
finance.idl

finance.idl:
idlgen: creating NoPackage/accountImpl.java

The -interface option tells the genie to generate the classes that implement IDL
interfaces. The -incomplete option means that such generated classes will be
“incomplete”, that is, their operations and attributes will have empty bodies
(rather than generated bodies which illustrate how to initialize parameters).
Specifying the name of an interface (account in the above example) causes the
genie to consider only that interface when generating code.

The previous command generates the file accountImpl.java that provides a
skeleton class called accountImpl for implementing the account interface.

For example, assume that the account interface is defined as follows:

// IDL
interface account {
readonly attribute float balance;

void makeLodgement (in float f);
void makeWithdrawal (in float f);
}i

The corresponding extract of generated code is:
// Java
public class accountImpl

implements accountOperations, Jjava.io.Serializable

{

70

Command-Line Options to Generate Parts of an Application

public void makeLodgement (float f)
{
}

public void makeWithdrawal (float f)
{
}

public float balance ()
{
}

}i

This saves the developer the time it would normally take to write this class by
hand.

You can either explicitly enable specific code-generation options or you can use
the -all option to turn them all on and then disable whichever options you do
not want. For instance, the previous example could have been typed as:

idlgen java_genie.tcl bank.idl -all -nosmart -noloader
-nomakefile -noclient -noserver -jp MyPackage

By default, any wildcards specified on the command line are matched only
against IDL interfaces in the specified file but if you specify the -include option
then the wild cards are matched against IDL interfaces in all the included IDL
files too.

Command-Line Options to Generate Parts of an
Application

The Java genie generates a complete application by generating different files,
such as a client main class (client.java), server main class (server.java),

smart proxies, classes that implement IDL interfaces, a makefile and so on. The
Java genie provides command-line options to selectively turn the generation of

71

Orbix Code Generation Toolkit Programmer’s Guide

each type of code on or off. In this way, you can instruct the Java genie to
generate as much or as little of an application as you want. Table 4.2 summarizes
the Java genie command-line arguments:

Command-Line Description
Option
- (no) interface Generates the classes that implement the

interfaces in the IDL.

- (no) smart Generates smart proxy classes.

- (no) loader Generates a single loader class for all the
interfaces in an IDL.

- (no) server Generates a simple server main class.
- (no) client Generates a simple client application.
- (in) complete Generates skeletal clients and servers.
- (no)makefile Generates a makefile that can build the server

and client applications.

-jp Specifies the package into which the generated
Java code is placed. If you do not specify a
package, the generated code is placed into a
package called NoPackage by default.

Table: 4.2: Java Genie Command-Line Options

These command-line options are detailed in the following sections.

-interface: Classes that Implement Interfaces
You can generate the classes that implement the interfaces in an IDL file, using
the -interface option:
idlgen java_genie.tcl -interface bank.idl -jp MyPackage

This generates a class and implementation code for each interface that appears in
the IDL file.

72

Command-Line Options to Generate Parts of an Application

Consider the interface, account, that appears in the bank.1id1 file. The account
interface is implemented by a class of the same name but suffixed by Impl. The
suffix is specified by the default.java.impl class_suffix setting in the
idlgen.cfg configuration file. The accountImpl class is also created in a file of
the same name.

There are two mechanisms for implementing an interface: the TIE approach and
the BOAImpl approach. The genie allows you to specify which one is to be used.
The option -boa specifies the BOAImpl approach, for example:

idlgen java_genie.tcl -interface -boa bank.idl -jp MyPackage
The option -tie specifies the TIE approach, for example:
idlgen java_genie.tcl -interface -tie bank.idl -jp MyPackage

The default approach is specified by the default.cpp genie.want boa entry in
idlgen.cfaq.

The this () method provides a reference to the CORBA object. For interfaces
implemented using the BOA approach, this() simply returns this. For
interfaces implemented using the TIE approach, this () returns the back pointer
that was initialized in a static create operation (described in the next
paragraph). The this () method makes it possible for a TIE object to pass itself
as a parameter to an IDL operation.

Note: The -no_this command-line option can be used to suppress the
generation of the this () method.

A related matter is how implementation class constructors are used. In the code
generated by the Java genie, constructors are protected and hence cannot be called
directly from application code. Instead, objects should be created by calling a
public static operation called create. If the TIE approach is used for
implementing interfaces, the algorithm used in the implementation of this method
is as follows:

// Java
foo _create(String marker, LoaderClass 1)
{

fooImpl obj

foo tie obj;

1 obj = new foolmpl (marker, 1);

73

Orbix Code Generation Toolkit Programmer’s Guide

2 tie obj = new tie foo(obj, marker, ());
3 obj.m this = tie obj; // set the back ptr
return tie obj;

}

The create operation calls the constructor, 1. It then creates the TIE wrapper
object, 2, and sets a back pointer from the implementation object to its TIE
wrapper, 3. If the BOA approach is used instead then steps 2 and 3 are omitted. By
providing this create () method, you can ensure that there is a consistent way
for application code to create CORBA objects, irrespective of whether the TIE or
BOA approach is used.

Another matter to be aware of is how modules affect the name of the
implementation class. The Java genie chooses to flatten interface names that
appear in modules.

Consider this short extract of IDL:

// IDL
module finance {
interface account {

}7
}:

The account interface here is implemented by a class accountImpl in the
finance package.

-smart: Smart Proxies
Use the -smart option to generate smart proxy classes for all the interfaces in an
IDL file:
idlgen java_genie.tcl -client -smart bank.idl
This generates a smart proxy class for each interface that appears in the IDL file.

Consider the account interface that appears in the bank. id1 file. The smart
proxy class for the account interface is called Smartaccount. The Smart prefix
is specified by the default.java.smart proxy prefix entry in idlgen.cfg.
The Smartaccount class is also created in a file of the same name with a class
definition of the following form:

// Java

74

Command-Line Options to Generate Parts of an Application

class Smartaccount extends accountStub

{

public Smartaccount ()
throws org.omg.CORBA.SystemException;

{ ...}

public void makeLodgement (float f)
{ ...}

public void makeWithdrawal (float f)
{ ...}

public Float balance () { ...}

}i

A corresponding smart proxy factory class is also created and appears in the same
file. In the case of the Smartaccount proxy class, the corresponding factory class
is of the form:

// Java

class Smartaccount Factory extends ProxyFactory

{

public Smartaccount Factory ()

{ ...}

public org.omg.CORBA.Object
New (org.omg.CORBA.portable.Delegate del)

{ ...}
}i

A single instance of the smart proxy factory class is created in the
createSmartProxyFactories () method in the client.java file.

-loader: Loaders

Use the -1oader option to generate a single loader class for all the interfaces in an
IDL file:

idlgen java_genie.tcl -loader bank.idl

75

Orbix Code Generation Toolkit Programmer’s Guide

This generates a single class that can be used as a loader for all the interface types
that exist in the processed IDL file.

The loader class is of the form:

// Java

public class Loader extends LoaderClass {
public Loader ()
{

super (true) ;

public

org.omg.CORBA.Object load(String it interface,
String marker,
boolean isLocalBind)

public
void save (org.omg.CORBA.Object obj,
int reason)

public
void record(org.omg.CORBA.Object obj,
StringHolder marker)
{ ...}
public
boolean rename (org.omg.CORBA.Object obj,
StringHolder marker)

}

The 1oad () method uses Java serialization to recreate previously saved objects. If
it cannot find a previously saved object it makes a new instance using create ().
The save () method uses Java serialization to write an object to file.

-server: Server Main Function

Use the -server option to generate a simple server main function:

76

Command-Line Options to Generate Parts of an Application

idlgen java_genie.tcl -server bank.idl
This generates a file called server. java which is of the form:

// Java

public static

void main (String[] args)

{
server srv = null;
org.omg.CORBA.ORB orb null;

process_cmd line args(args);
java.util.Properties p = null;

orb = org.omg.CORBA.ORB.init (args,p);
_OrbixWWeb.ORB (orb) .setConfigItem(

"IT IMPL READY IF CONNECTED", "false"
)7

_Srv = new server (orb,args) ;

System.out.println(
"Calling impl is ready(" +"genieSrv" + ",0)"
)i
try {
OrbixWeb.ORB(CORBA.Orbix) .impl is ready("genieSrv",0);
}
catch (SystemException se) {
System.out.println(
"Exception during impl is ready : " + se.toString()
)7
System.exit (1);

try {
System.out.println (
"Creating object objl = NoPackage.bankImpl"
)i
objl = NoPackage.bankImpl. create ("bank-1");
_OrbixWeb.ORB(CORBA.Orbix) .connect (objl);
System.out.println(
"Creating object obj2 = NoPackage.accountImpl"
)i
obj2 = NoPackage.accountImpl. create ("account-1");

77

Orbix Code Generation Toolkit Programmer’s Guide

78

}

_OrbixWeb.ORB(_CORBA.Orbix) .connect (obj2) ;
}
catch (SystemException se) {
System.out.println (
"Exception during creation of Implementation objects
+ se.toString ()
)7
System.exit (1);

"

}
if (!writeReference(objl, "bank.ref")) {
System.out.println(
"Failed to write object reference for bank"
)7
}
if (!'writeReference(obj2, "account.ref")) {
System.out.println(
"Failed to write object reference for account"

)7

System.out.println(
"Calling impl is ready (" + "genieSrv" + ", " 4+ "-1" 4+ ")"
)i
try {
_OrbixWeb.ORB(_CORBA.Orbix) .impl is ready("genieSrv",-1);
}
catch (org.omg.CORBA. SystemException se)
{
System.out.println(
"Exception during impl is ready :" + se.toString());
System.exit (1) ;

System.out.println("Server Exiting ... ");
System.exit (1) ;

This server makes object references available to clients by writing them to files.
The object references for the bank object and the account object are converted to
string format and written to the files bank.ref and account.ref respectively.

If a loader had been requested by using the -loader option:

idlgen java_genie.tcl -server -loader bank.idl

Command-Line Options to Generate Parts of an Application

The server code would have included the following lines:

// Java
srvLoader = new NoPackage.Loader () ;

objl

obj2

NoPackage.bankImpl. create ("bank-1", srvLoader) ;

NoPackage.accountImpl._create("account—l",srvLoader);

-client: Client Application

Use the -client option to generate a simple client application:

idlgen java_genie.tcl -client bank.idl

This generates a source file, client.java, with a simple main () function. The
client source file is of the form:

// Java

public static
void main (String [] args)

{

client this = null;

client.process cmd line args(args);
org.omg.CORBA.ORB orb = null;

try

{

}

Properties p = System.getProperties();
orb = org.omg.CORBA.ORB.init (args,p);

_this = new client (orb,args);
_this.getServerObjectsVialORReferenceFiles () ;
// call all the methods

_this.run();

catch (Exception ex)

{

ex.printStackTrace () ;

79

Orbix Code Generation Toolkit Programmer’s Guide

public void run () {
try
{
MyPackage.accountCaller.get balance (objl);
MyPackage.accountCaller.makeLodgement (objl) ;
MyPackage.accountCaller.makeWithdrawal (objl) ;

MyPackage.bankCaller.newAccount (obj2) ;
MyPackage.bankCaller.deleteAccount (obj2) ;
}

catch (Exception ex)

{
System.out.println ("Remote call failed\n");

ex.printStackTrace () ;

}

return;

The client obtains references to each of the CORBA objects by reading stringified
object references from the files created by the server (bank. ref and
account.ref). The client then invokes every operation and attribute with random
parameter values.

-incomplete: Skeletal Clients and Servers

The -incomplete option is used to suppress the generation of dummy
implementation code for the generated client and server applications.

By default (or using the ~complete option), the Java genie produces dummy
implementations for the client and server whenever the -client, -server, and
-interface options are specified. The dummy implementation provides the
following functionality:

® The client main () function contains code to invoke every operation and
attribute on every interface (-client option).

® The server main () function contains code to create one instance of a
CORBA object for every interface and to distribute the object references
to clients (-server option).

80

Other Command-Line Options

® The bodies of operations and attributes are implemented by code that

prints out the parameters and generates random return values (-interface
option).

If the -incomplete option is specified, the generated code is reduced to the
minimum amount of boilerplate code in each case. For example, clients do not
invoke any remote operations and the bodies of operations and attributes are left
empty.

-makefile: Makefile

Use the -makefile option to obtain a makefile that can build the server and client
applications. The makefile also provides two other targets: clean and putit.

make clean
make putit

The putit target registers the server in the Implementation Repository and the
clean target removes any files generated during compilation and linking.

Other Command-Line Options

For a full list of the command-line options for the Java genie please refer to the
Appendix A, “User’s Reference” on page 391.

Other Java Genies

In addition to the java_genie.tcl, a number of other Java genies are supplied
with the Orbix Code Generation Toolkit, as shown in Table 4.3.

C++ Genie Description

java_print.tcl Creates a number of Java functions that can
display all the data types present in an IDL file.

Table: 4.3: Additional Java Genies

81

Orbix Code Generation Toolkit Programmer’s Guide

C++ Genie Description

java random.tcl Creates a number of Java functions that
generate random values for all the types
present in an IDL file.

Table: 4.3: Additional Java Genies

The output from these genies can generate extra Java source code that you might
find useful when you are writing your own applications. The following sections
discuss each of these genies in more detail.

java_print.tcl—Creating Print Functions for
IDL Types

The genie java_print.tcl generates utility functions to print IDL data types. It
is run as follows:

idlgen java_print.tcl foo.idl

idlgen: creating PrintFuncs.java

The name of the generated file is PrintFuncs. java regardless of the name of the
input IDL file. The functions are generated in a Java class called
NoPackage.Print TypeName, and the print method is called TypeName (the
package, NoPackage, is specified by the default.java.printpackage name
configuration variable). To illustrate these print functions, consider the following
IDL definitions:

// IDL
enum EmployeeGrade {temporary, Jjunior, senior};

struct EmployeeDetails {

string name;
long id;
double salary;

EmployeeGrade grade;
i

typedef sequence<EmployeeDetails> EmployeeDetailsSeq;

82

java_print.tcl—Creating Print Functions for IDL Types

When you run java_print.tcl on the file containing the above IDL types,
utility print functions are generated for all the user-defined IDL types in that IDL
file (and also for the built-in IDL types). The generated print utility functions for
the EmployeeDetailsSeq type is placed in a class
idlgen.NoPackage.PrintEmployeeDetailsSeq

Two print methods are provided by the PrintEmployeeDetailsSeq class:

// Java
public class PrintEmployeeDetailsSeq
{
public static
void EmployeeDetailsSeq (
java.io.PrintStream os,
NoPackage.EmployeeDetails[] IT seq,
int indent

) ...)

public static
void EmployeeDetailsSeq (
java.io.PrintStream os,
NoPackage.EmployeeDetailsSeqHolder IT seq,
int indent
) { ...}
}

The methods are overloaded on the type of the second parameter. The first
method prints an EmployeeDetails sequence and the second method prints the
corresponding holder type, EmployeeDetailsSeqHolder.

The first parameter, os, is the stream used for printing. The second parameter,
IT segq, is the IDL type to be printed. The final parameter, indent, specifies the
indentation level at which the IDL type is to be printed. This parameter is ignored
when printing simple types such as long, short, string and so on. It is used
only when printing a compound type such as a struct, in which case the
members inside the struct should be indented one level deeper than the
enclosing struct.

An example using the print functions is shown below:

// Java
import idlgen.NoPackage.*;

void op(EmployeeDetailsSeq emp, ...)

83

Orbix Code Generation Toolkit Programmer’s Guide

if (m do logging) {

/) =====—==

// Write parameter values to a log file.
/===

System.out.println("op() called; 'emp’ = ");

PrintEmployeeDetailsSeq.EmployeeDetailsSeq (
m log, emp, 1
)i

// rest of operation
}

The contents of the log file written by the above snippet of code might look like
the following:

op() called; ’'emp’ parameter =
sequence EmployeeDetailsSeq length = 2 {

(0] =
struct EmployeeDetails {
name = "Joe Bloggs"
id = 42
salary = 29000
grade = 'senior'
} //end of struct EmployeeDetails
(1] =
struct EmployeeDetails {
name = "Joan Doe"
id = 96
salary = 21000
grade = 'junior'

} //end of struct EmployeeDetails
} //end of sequence EmployeeDetailsSeq

Aside from their use as a logging aid, these print functions can also be a very
useful debugging aid. For example, consider a client application that reads
information from a database, stores this information in an IDL struct and then
passes this struct as a parameter to an operation in a remote server. If you
wanted to confirm that the code to populate the fields of the struct from
information in a database was correct then you could use a generated print
function to examine the contents of the struct.

84

java_random.tcl—Creating Random Functions for IDL Types

The Java genie makes use of java_print.tcl so that the generated client and
server applications can print diagnostics showing the values of parameters that
are passed to operations.

java_random.tcl—Creating Random Functions for
IDL Types

The genie java random.tcl generates utility functions to assign random values
to IDL data types. It is run as follows:

idlgen java_random.tcl foo.idl

idlgen: creating RandomFuncs.java

The name of the generated file is RandomFuncs. java, regardless of the name of
the input IDL file. The functions are generated in a Java class called
idlgen.RandomFuncsTypeName, and the random method is simply called
RandomTypeName. The functions generated for small IDL types (1ong, short,
enum, and so on) return the random value.

Thus, you can write code as follows:

// Java

int 1;

Double d;

colour col; // an enum type
String str;

1 = idlgen.RandomFuncs.randomlong() ;
d = idlgen.RandomFuncs.randomdouble () ;
col = idlgen.RandomFuncs.randomcol () ;
str = idlgen.RandomFuncs.randomString () ;

Aside from the functions to assign random values for various IDL types, the
following are also defined in the generated files:

// Java

void idlgen.IT Random.set seed(long new seed);
long idlgen.IT Random.get seed();

long idlgen.IT Random.get rand(long range);

long idlgen.RandomFuncs.limitReached () ;

85

Orbix Code Generation Toolkit Programmer’s Guide

The methods can be explained as follows:

®* set seed() is used to set the seed for the random number generator.
®* get seed() returns the current value of this seed.
® get rand() returns a new random number in the specified range.

® limitReached () returns TRUE when the maximum recursion depth is
reached during the generation of a random value for a recursive type.

IDL allows the declaration of recursive types. For example:

// IDL

struct tree {
long data;
sequence<tree> children;

}i

When generating a random tree, the randomtree () function calls itself
recursively. Care must be taken to ensure that the recursion terminates. This is
done by putting a limit on the depth of the recursion. The max_recursive depth
member variable defines the limit for a recursive struct, a recursive union and
type any (which can recursively contain other any objects).

The Java genie makes use of java_random. tcl so that the generated client can
invoke operations (albeit with random parameter values) on operations in the
server.

Configuration Settings

The configuration settings for the Java genie are contained in the scopes:
® default.orbix web
® default.java genie

Some other settings are not, technically speaking, settings specifically for the
Java genie, but are settings used by the development libraries. As the Java genie
uses these command libraries extensively, its outputs are affected by these
settings. They are held in the scope:

® default.java

For a full listing of these settings please refer to Appendix A on page 391.

86

Part 11

Developing Genies

Basic Genie Commands

This chapter discusses some basic genie commands that are
used to include other genie scripts and produce output text.

As described in “Code Generation Toolkit Architecture” on page 27, the idlgen
interpreter provides a set of built-in commands that extend Tcl. Genies are Tcl
scripts that use these extensions in parallel with the basic Tcl commands and
features. These extensions allow you to parse IDL files easily and generate
corresponding code to whatever specification you require.

To develop your own genies, you must be familiar with two languages: IDL and
Tcl. You must also be familiar with the required output language and with the
IDL mapping specification for that language.

The following topics are covered in this chapter:
* Hello World example.
® Including other Tcl files.
® Writing to a file.
* Embedding text in your application.

® Debugging and the bi2tcl utility.

89

Orbix Code Generation Toolkit Programmer’s Guide

Hello World Example

The idlgen interpreter processes Tcl scripts in the same way as any other Tcl
interpreter. Tcl script files are fed into it and id1gen outputs the results to the
screen or to a file.

The idlgen interpreter can only process Tcl commands stored in a script file. It
does not have an interactive mode.

Note: Although idlgen is a Tcl interpreter, the common Tcl extensions, such as
Tk or Expect, are not built in. You cannot use idlgen to execute a Tk or
Expect script.

Hello World Tcl Script

Consider this simple Tcl script:

Tcl
puts "Hello, World"

Running this through the idlgen interpreter gives the following result:

idlgen hello.tcl

Hello, World

Adding Command Line Arguments

The idlgen interpreter adheres to the Tcl conventions for command-line
argument support. This is demonstrated in the following script:

Tcl

puts "argv0 is $argv0"

puts "argc is $argc"

foreach item S$Sargv {
puts "Hello, S$Sitem"

}

920

Including Other Tecl Files

Running this through idlgen yields the following results:

idlgen arguments.tcl Fred Joe Mary

argv0 is arguments.tcl
argc is 3

Hello, Fred

Hello, Joe

Hello, Mary

Including Other Tcl Files

The idlgen interpreter provides two alternative commands for including other
Tcl files into your genie script:

® The source command.

¢ The smart source command.

The source Command

Standard Tcl has a command called source. The source command is similar to
the #include compiler directive used in C++ and allows a Tcl script to use
commands that are defined (and implemented) in other Tcl scripts. For example,
to use the commands defined in the Tecl script foobar.tcl you can use the
source command as follows (the C++ equivalent is given, for comparison):

Tcl

source foobar.tcl
// C++

#include "foobar.h"

The source command has one limitation compared with its C++ equivalent: it
has no search path for locating files. This requires you to specify full directory
paths for other Tcl scripts, if the scripts are not in the same directory.

91

Orbix Code Generation Toolkit Programmer’s Guide

The smart_source Command

92

To locate an included file, using a search path, idlgen provides an enhanced
version of the source command, called smart source:

Tcl
smart source "myfunction.tcl"
myfunction "I can use you now"

Note: The search path is given in the idlgen.genie search path item in the
idlgen.cfg configuration file. For more details, see “General
Configuration Options” on page 391.

The smart_source command provides the following advantages over the simpler
source command:

® [t locates the specified Tcl file through a search path. This search path is
specified in the idlgen configuration file and is the same one used by
idlgen when it looks for genies.

® It has a built-in preprocessor for bilingual files. Bilingual files are
described in the section “Embedding Text Using Bilingual Files” on
page 97.

® Ithasapragma once directive. This prevents repeated sourcing of library
files and aids in overriding Tcl commands. This is described in “Re-
Implementing Tcl Commands™ on page 213.

Writing to a File

Writing to a File

Tcl scripts normally use the puts command for writing output. The default
behavior of the puts command is to:

¢ Print to standard output.
* Print a new line after its string argument.

Both behaviors can be overridden. For example, if the output is to go to a file and
no new line character is to be placed at the end of the output, you can use the puts
command as follows:

Tcl
puts -nonewline $some file id "Hello, world"

This syntax is too verbose to be useful. Genies regularly need to create output in
the form of a text file. The code generation toolkit provides utility functions to
create and write files that provide a more concise syntax for writing text to a file.

These utility functions are located in the std/output. tcl script. To use them
you must use the smart_source command. The following example uses these
utility commands:

Tcl

smart_source "std/output.tcl"
set class name "testClass"
set base name "baseClass"

open output file "example.h"

output "class $class name : public virtual "
output "$base name\n"

output "{\n"

output " public:\n"

output " ${class_name} () {\n"

output " cout << \"$class name CTOR\";\n"
output " \n"

output "};\n"
close output file

93

Orbix Code Generation Toolkit Programmer’s Guide

When this script is run through the idlgen interpreter, it writes a file, example.h,
in the current directory:

idlgen codegen. tcl

idlgen: creating example.h
The contents of this file are:

// C++
class testClass : public virtual baseClass
{
public:
testClass () {
cout << "testClass CTOR";

}r

Braces are placed around the class_name variable, so the Tcl interpreter does not
assume Sclass_name () is an array.

Table 5.1 shows the three commands that are used to create a file.

Command Result

open output file filename Opens the specified file for
writing. If the file does not exist,
it is created. If the file exists, it is
overwritten.

output string Appends the specified string to
the currently open file.

close output file Closes the currently open file.

Table: 5.1: Creating a File

94

Embedding Text in Your Application

Embedding Text in Your Application

Although the output command is concise, the example in “Writing to a File” on
page 93 is not easy to read. The number of output commands tends to obscure the
structure and layout of the code being generated. It is better to place code in the
Tcl script in a way that allows the layout and structure to be retained, while
allowing the embedding of commands and variables.

The idlgen interpreter allows a large block of text to be quoted by:
¢ Embedding text in braces.
¢ Embedding text in quotation marks.

* Embedding text using bilingual files.

Embedding Text in Braces

Using braces allows the text to be placed over several lines:

Tcl

smart source "std/output.tcl"
set class name "testClass"
set base name "baseClass"

open output file "example.h"
output {
class $class name : public virtual $base name
{
public:
${class_name} () {
cout << "$class name CTOR";
}
b
Running this script through idlgen results in the following example.h file:
// C++
class $class name : public virtual Sbase name
{
public:
${class name} () { cout << "$class name CTOR"; }

95

Orbix Code Generation Toolkit Programmer’s Guide

This code is easier to read than the code extract shown in “Writing to a File” on

page 93. It does not, however, allow you to substitute variables.

Embedding Text in Quotation Marks

96

The second approach is to provide a large chunk of text to the output command

using quotation marks:

Tcl

smart_source "std/output.tcl"
set class name "testClass"
set base name "baseClass"

open output file "example.h"
output "
class $class name : public virtual $base name
{
public:
${class _name} () {
cout << \"Sclass name CTOR\";

}

I

close output file

Running this script through the idlgen interpreter results in the following
example.h file:

// C++
class testClass : public virtual baseClass
{
public:
testClass () {
cout << "testClass CTOR";

}r

This is much better than using braces because the variables are substituted

correctly. However, a disadvantage of using quotation marks is that you must

remember to prefix embedded quotation marks with an escape character:

cout << \"$class name CTOR\";

Embedding Text in Your Application

Embedding Text Using Bilingual Files

A bilingual file contains a mixture of two languages: Tcl and plain text. A
preprocessor in the idlgen interpreter translates the plain text into output
commands.

In the following example, plain text areas in bilingual scripts are marked using
escape sequences. The escape sequences are shown in Table 5.2.

Tcl

smart source "std/output.tcl"
open output file "example.h"
set class name "testClass"
set base name "baseClass"

[***
class @Sclass name@ : public virtual @Sbase name@
{
public:
@Sclass name@() {
cout << "@Sclass name@ CTOR";

}
}
KKk

close output file

Escape Sequence Use

[Fx* To start a block of plain text.
xxx] To end a block of plain text.
@$variable@ To escape out of a block of plain

text to a variable.

@[nested command]@ To escape out of a block of plain
text to a nested command.

Table: 5.2: Bilingual File Escape Sequences

97

Orbix Code Generation Toolkit Programmer’s Guide

Compare this with the example in “Embedding Text in Braces” on page 95 that
uses braces; the bilingual version is easier to read and substitutes the variables
correctly.

It is much easier to write genies using bilingual files, especially if you have a
syntax-highlighting text editor that uses different fonts or colors to distinguish the
embedded text blocks of a bilingual file from the surrounding Tcl commands.
Bold font is used throughout this guide to help you distinguish text blocks.

Note: Bilingual files normally have the extension .bi. This is not required, but is
the convention used by all the genies bundled with the code generation
toolkit.

Syntax Notes

® To print the @ symbol inside a textual block use the following syntax:

Tcl

set at "@"
[*%%. ..

support@$at@iona.com
L k%]
* Similarly, if you want to print [*** or ***] in a file, print it in two parts so
it is not treated as an escape sequence.

® The bilingual file preprocessor does not understand standard comment
characters, such as #. For example, you cannot do the following:

Tcl
F KR

#some text here
#***]
Instead, use an if statement to disable the plain text block:

Tcl
if {0} |
[***

some text here
***]

}

98

Debugging and the bi2tcl Utility

Debugging and the bi2tcl Utility

Debugging a bilingual file can be awkward. The idlgen interpreter reports a line
number where the problem exists but because the bilingual file has been altered
by the preprocessor, this line number may not correspond to where the problem

actually lies.

The bi2tcl utility helps you avoid this problem by replacing embedded text in a
bilingual file with output commands, and generating a new but semantically
equivalent script. This can be useful for debugging purposes because it is easier to
understand runtime interpreter error messages with correct line numbers.

If you run the bilingual example from “Embedding Text Using Bilingual Files”
on page 97 through bi2tcl, a new file is created with output commands rather

than the plain text area:

bi2tcl codegen.bi codegen.tcl

The contents of the codegen.tcl file are:

Tcl

smart source "std/output.tcl”
open output file "example.h"
set class name "testClass"

set base name "baseClass"

output "class ";
output $class name;

output " : public virtual ";

output S$base name;
output "\n";

output "\{\n";

output " public:\n";

output " ",

output $class_name;

output " () \{\n";

output " cout << \"";

output $class name;
output " CTOR\";\n";
output " \\n";
output "\}\n";

close output file

929

Orbix Code Generation Toolkit Programmer’s Guide

The corresponding .bi and .tcl files are different in size. If a problem occurs
inside the plain text section of the script, the interpreter gives a line number that,
in certain cases, does not correspond to the original bilingual script.

100

Processing an IDL File

The IDL parser is a core component of the code generation
toolkit. It allows IDL files to be processed into a parse tree and
used by the Tcl application.

This chapter describes how the idlgen interpreter parses an IDL file and stores
the results as a tree. This chapter details the structure of the tree and its nodes, and
demonstrates how to build a sample IDL search genie, idlgrep.tcl. Appendix
C on page 417 provides a reference to the commands discussed in this chapter.

The following topics are covered in this chapter:
¢ IDL files and idlgen.
® Traversing the parse tree with rcontents.
® Recursive descent traversal.
® Processing user-defined types.

® Recursive structs and unions.

IDL Files and idlgen

The IDL parsing extension provided by the idlgen interpreter gives the
programmer a rich API that provides the mechanism to parse and process an IDL
file with ease. When an IDL file is parsed, the output is stored in an internal
format called a parse tree. The contents of this parse tree can be manipulated by a
genie.

101

Orbix Code Generation Toolkit Programmer’s Guide

Consider the following IDL, from finance.idl:
// IDL
interface Account ({
readonly attribute long accountNumber;
readonly attribute float balance;

void makeDeposit (in float amount) ;
}r

interface Bank {
Account newAccount () ;
i
Processing the contents of this IDL file involves two steps:
1. Parsing the IDL file.

2. Traversing the parse tree.

Parsing the IDL File

The built-in idlgen command, idlgen parse idl file, provides the
functionality for parsing an IDL file. It takes two parameters:

® The name of the IDL file.

* (optional) A list of preprocessor directives that are passed to the IDL
preprocessor.

For example, you can use this command to process the finance.idl IDL file.

Tcl

if {![idlgen parse idl file "finance.idl"]}{
exit 1

}

...# Continue with the rest of the application

If the IDL file is successfully parsed, the genie then has an internal representation
of the IDL file ready for examination.

Note: Warning or error messages that are generated during parsing are printed to
standard error. If parsing fails, idlgen parse idl file returns O (false).

102

IDL Files and idlgen

Traversing the Parse Tree

After an IDL file is processed successfully by the parsing command, the root of
the parse tree is placed into the global array variable $idlgen (root) .

The parse tree is a representation of the IDL, where each node in the tree
represents an IDL construct. For example, parsing the finance.id1 file forms the
tree shown in Figure 6.1.

$idlgen(root)

(finance.idl)

interface interface
(Account) (Bank)
attribute attribute operation operation
(balance) (accountNumber) (makeDeposit) (newAccount)
argument
(amount)

Figure 6.1: The Finance IDL File’s Parse Tree

A genie can invoke commands on a node to obtain information about the
corresponding IDL construct or to traverse to other parts of the tree related to the
node on which the command was performed.

Assume that you have traversed the parse tree and have located the node that
represents the balance attribute. You can determine the information associated
with this node by invoking commands on it:

Tcl
set type node [$balance_node typel

103

Orbix Code Generation Toolkit Programmer’s Guide

104

puts [Stype node 1 name]

> float

This example uses the type node command, which returns a node that represents
the attribute type. The type command is specific to attribute nodes. The
1 name node command, which obtains the local name, is common to all nodes.

Note: The parse tree incorporates the contents of all included IDL files, as well
as the contents of the parsed IDL file.

Youcanuse the is in main file node command to find out whether a
construct came from the parsed IDL file (as opposed to one of the included IDL
files):

Tcl
. # Assume interface node has been initialised
set name [$interface node 1 name]
if {![$interface node is in main file]} {
puts "S$name is in the main file"
} else {
puts "S$name is not in the main file"

}
The Tecl script generates the following output:

Account is in the main file

IDL Files and idlgen

Parse Tree Nodes

When creating the parse tree, idlgen uses a different type of node for each kind
of IDL construct. For example, an interface node is created to represent an IDL
interface, an operation node is created to represent an IDL operation and so on.
Each node type provides a number of node commands. Some node commands,
such as the local name of the node, are common to all node types:

Tcl
puts [Soperation node 1 name]

The Tecl script generates the following output:
newAccount

Some commands are specific to a particular type of node. For example, a node
that represents an operation can be asked what the return type of that operation is:

Tcl
set return type node [Soperation node return type]
puts [Sreturn type node 1 name]

The Tcl script generates the following output:
Account

The different types of node are arranged into an inheritance hierarchy, as shown
in Figure 6.2.

Types in boldface define new commands. For example, the field node type
inherits from the node node type, and defines some new commands, whereas the
char node type also inherits from the node node type, but does not define any
additional commands.

Two abstract node types do not represent any IDL constructs, but encapsulate the
common features of certain types of node. These two abstract node types are
called node and scope.

The node Abstract Node

Every node type inherits node commands. These commands can be used to find
out about the common features of any construct.

105

Orbix Code Generation Toolkit Programmer’s Guide

106

node
char — — field
octet — scope —— union_branch
float — A — argument
double — —— attribute
short — —— module —— constant
ushort — — interface — typedef
long — —— operation —— enum_val
ulong — — struct —— array
boolean — [exception —— sequence
Object — —— union — string
Typecode — L enum —— interface_fwd

Figure 6.2: Inheritance Hierarchy for Node Types

Note: Tclis not an object-oriented programming language, so these node objects

and their corresponding commands are described with a pseudo-code

notation.

Here is a pseudo-code definition of the node abstract node:

class node {
string
string
string
list<string>
string
integer
boolean

node type ()

1 name ()

s _name ()

s name list()
file()

line ()

is in main file()

Note: This is a partial definition of the node abstract node. For a complete
definition, see “IDL Parse Tree Nodes” on page 418.

IDL Files and idlgen

Two commonly used commands provided by the node abstract node are:

® 1 name (), which returns the name of the node.
® file(), which returns the IDL file in which this node appears.

All node types inherit directly or indirectly from this abstract node. For example,
the argument node, which represents an operation argument, inherits from node.
It supplies additional commands that allow the programmer to determine the
argument type and the direction modifier (in, inout, or out).

Here is a pseudo-code definition of the argument node type:

class argument : node {
node type ()
string direction ()

}

Assume that, in a genie, you have obtained a handle to the node that represents
the argument highlighted in this parsed IDL file:

// IDL

interface Account {
readonly attribute long accountNumber;
readonly attribute float balance;

void makeDeposit (in float amount);

}i

The handle to the amount argument is placed in a variable called argument node.
To obtain information about the argument, the Tcl script can use any of the
commands provided by the abstract node class or by the argument class:

Tcl

. # Some code to locate argument node
puts "Node type is ’[Sargument node node typel’"
puts "Local name is ’[$argument_node 1 name]’"
puts "Scoped name is ' [$Sargument node s name]’"
puts "File is ' [$argument node file]’"
puts "Appears on line ’ [$argument node line]’"
puts "Direction is ’[Sargument node direction]’"

107

Orbix Code Generation Toolkit Programmer’s Guide

Run the idlgen interpreter from the command line:

idlgen arguments.tcl

Node type is ’"argument’

Local name is ’amount’

Scoped name is ’‘Account::makeDeposit::amount’
File is ’finance.idl’

Appears on line ’5'

Direction is ’in’

The scope Abstract Node

The other abstract node is the scope node. The scope node represents constructs
that have scoping behavior—constructs that can contain nested constructs. The
scope node provides the commands for traversing the parse tree.

For example, a module construct can have interface constructs inside it. A node
that represented a module would therefore inherit from scope rather than node.

Note: The scope node inherits from the node abstract node.

Here is a pseudo-code definition of the scope abstract node:

class scope : node {

node lookup (string name)

list<node> contents (
list<string> constructs wanted,
function filter func=true func)

list<node> rcontents (
list<string> constructs wanted,
list<string> recurse into,
function filter func=true func)

}

The interface and module constructs are concrete examples of node types that
inherit from the scope node. An interface node type inherits from scope and
extends the functionality of the scope node by providing a number of additional
commands. These additional commands allow you to determine which interfaces
can be inherited. They also permit you to search for and determine the ancestors
of an interface.

108

IDL Files and idlgen

The pseudo-code definition of the interface node is:

class interface : scope {

list<node> inherits ()
list<node> ancestors ()
list<node> acontents ()

}

To locate a node, a search command can be performed on an appropriate scoping
node (in this case the root of the parse tree is used, as this is the primary scoping
node that most searches originate from):

Tcl
if {![idlgen parse idl file "finance.idl"]} {
exit 1

}

set node [$idlgen(root) lookup "Account::balance"]
puts [Snode 1 name]
puts [Snode s name]

Run the idlgen interpreter from the command line:
idlgen lookup.tcl

balance

Account: :balance

The job of the 1ookup command is to locate a node by its fully or locally scoped
lexical name.

Locating Nodes with contents and rcontents

There are two more scope commands that can be used to locate nodes in the parse
tree:

® The contents command.
® The rcontents command.

Both of these commands can be used to search for nodes that are contained within
a scoping node.

For example, to get to a list of the interface nodes from the root of the parse
tree, you can use the contents command:

Tcl
if {![idlgen parse idl file "finance.idl"]} {

109

Orbix Code Generation Toolkit Programmer’s Guide

exit
}
set want {interface}
set node list [$idlgen(root) contents S$want]
foreach node $node list {
puts [Snode 1 name]

}
Run the idlgen interpreter from the command line:

idlgen contents.tcl

Account
Bank

This command allows you to specify what type of constructs you want to search
for, but it only searches for constructs that are directly under the given node (in
this case the root of the parse tree).

The rcontents command extends the search so that it recurses into other scoping
constructs.

For example:

Tcl

if {![idlgen parse idl file "finance.idl"]} {
exit

}

set want {interface operation}

set recurse into {interface}

set node list [$idlgen(root) rcontents Swant $recurse into]
foreach node $node list {
puts "[S$node node type]: [$node s name]"

}

Run the idlgen interpreter from the command line:
idlgen contents.tcl

interface: Account

operation: Account::makeDeposit

interface: Bank

operation: Bank::findAccount
operation: Bank::newAccount

110

IDL Files and idlgen

This small section of Tcl code gives the scoped names of all the interface nodes
that appear in the root scope and the scoped names of all the operation nodes
that appear in any interfaces.

The all Pseudo-Node

For both contents and rcontents you can use a special pseudo-node name to
represent all of the constructs you want to look for or recurse into. This name is
all and you use it when you want to list all constructs:

Tcl
set everynode in tree [rcontents all all]

It is now very easy to write a genie that can visit (almost) every node in the parse
tree:

Tcl
if {![idlgen parse idl file "finance.idl"]} {
exit
}
set node list [$idlgen(root) rcontents all all]
foreach node $node list {
puts "[Snode node type]: [Snode s name]"

}

Try running the above script on an IDL file and see how the parse tree is traversed
and what node types exist. Remember to change the argument to the parsing
command to reflect the particular IDL file you want to traverse.

Note: This example genie visits most of the nodes in the parse tree. However, it
will not visit any hidden nodes. See “Visiting Hidden Nodes” on page 114
for a discussion on how to access hidden nodes in the parse tree.

Nodes Representing Built-In IDL Types

Nodes that represent the built-in IDL types can be accessed with the 1ookup
command defined on the scope node type. For example:

Tcl

111

Orbix Code Generation Toolkit Programmer’s Guide

foreach type name {string "unsigned long" char} {
set node [$idlgen(root) lookup Stype name]
puts "Visiting the ' [$node s name]’ node"

}
Run the idlgen interpreter from the command line:

idlgen basic_types.tcl

Visiting the ’string’ node
Visiting the ’unsigned long’ node
Visiting the ’char’ node

For convenience, the idlgen interpreter provides a utility command called

idlgen list builtin types that returns a list of all nodes representing the
built-in types. You can use it as follows:

Tcl
foreach node [idlgen list builtin types] {
puts "Visiting the [$node s name] node"

}

It is rare for a script to process built-in types explicitly. However, nodes
representing built-in types are accessed during normal traversal of the parse tree.
For example, consider the following operation signature:

// IDL

interface Account {

void makeDeposit (in float amount) ;

}i

If a script traverses the parse tree and encounters the node for the amount
parameter, then accessing the parameter’s ¢ype returns the node representing the
built-in type float:

#Tcl

Assume param node has been initialized
set param type [$param node type]
puts "Parameter type is [Sparam type s name]"

Run the idlgen interpreter from the command line:

idlgen param type.tcl

Parameter type is float

112

IDL Files and idlgen

Typedefs and Anonymous Types

Consider the following IDL declarations:

// IDL
typedef sequence<long> longSeq;
typedef long longArray[10][20];

This segment of IDL defines a sequence called longSeq and an array called
longArray

The following is a pseudo-code definition of the typedef class:

class typedef : node {
node base type ()
b
The base type command returns the node that represents the typedef’s
underlying type. In the case of:

// IDL
typedef sequence<long> longSeq;

The base type command returns the node that represents the anonymous
sequence.

When writing idlgen scripts, you might want to strip away all the layers of
typedefs to get access to the raw underlying type. This can sometimes result in
code such as:

Tcl
proc process type {type} {

If "type" is a typdef node then get access to
the underlying type.

set base type $type

while {[$base type node type] == "typedef"} {
set base type [Sbase type base type]

}

Process it based on its raw type

switch [$Sbase type node type] ({

struct { ...}

113

Orbix Code Generation Toolkit Programmer’s Guide

union {
sequence {
array {
default {

}

The need to write code to strip away layers of typedefs can arise frequently. To
eliminate this coding task, a command called true base type is defined in node.
For most node types, this command simply returns the node directly. However,
for typedef nodes, this command strips away all the layers of typedefs, and
returns the underlying type.

Thus, the previous example could be rewritten more concisely as:

Tcl
proc process_type {type} {
set base type [Stype true base type]
switch [$base type node type] {
struct { ..
union
sequence
array
default

e e e |

{
{
{
{

Visiting Hidden Nodes

As mentioned earlier (“The all Pseudo-Node” on page 111), using the a1l
pseudo-node as a parameter to the rcontents command is a convenient way to
visit most nodes in the parse tree. For example:

Tcl
foreach node [$idlgen (root) rcontents all all] {

}
However, the above code segment does not visit the nodes that represent:

¢ Built-in IDL types such as long, short, boolean, or string.

b Anonymous sSequences or anonymous arrays.

114

Traversing the Parse Tree with rcontents

The a11 pseudo-node does not really represent all types. However, it does
represent all types that most scripts want to explicitly process.

It is possible to visit these hidden nodes explicitly. For example, the following
code fragment processes all the nodes in the parse tree, including built-in IDL
types and anonymous sequences and arrays.

Tcl

set want {all sequence array}

set list [$idlgen(root) rcontents Swant all]

set everything [concat $list [idlgen list builtin types]]
foreach node $everything {

}

Other Node Types

Every construct in IDL maps to a particular type of node that either inherits from
the node abstract node or from the scope abstract node. The examples given have
only covered a small number of the IDL constructs that are available. The
different types of node are arranged in an inheritance hierarchy. For a reference
guide that lists all of the node types and available commands, see “IDL Parse Tree
Nodes” on page 418.

Traversing the Parse Tree with rcontents

This section discusses how to create idlgrep, a genie that can search an IDL file,
looking for any constructs that match a specified wild card. This genie is similar
to the UNIX grep utility, but is specifically for IDL files.

Searching an IDL File with idlgrep

An example use of the idlgrep genie is to search the finance.idl for any
construct that begins with an "a’ oran 'A’:

idlgen idlgrep.tcl finance.idl "[A]a]*"

Construct : interface
Local Name : Account

115

Orbix Code Generation Toolkit Programmer’s Guide

Scoped Name : Account
File : finance.idl
Line Number : 1

Construct : attribute

Local Name : accountNumber

Scoped Name : Account::accountNumber
File : finance.idl

Line Number : 2

The genie should examine the whole parse tree and look for constructs that match
the wild card criteria specified on the command line. It is limited to search only
for the interface, operation, exception, and attribute constructs.

The idlgrep genie is developed in a series of iterations:

® Search using contents.
® Search using rcontents.

® Complete search genie.

Search Using contents
The following is a first attempt at writing the id1grep genie:

Tcl
if {![idlgen parse idl file "finance.idl"]} {

exit 1
}
set want {interface operation attribute exception}
set node list [Sidlgen(root) contents Swant]
foreach node $node list {

puts [Snode s name]

}
Run the idlgen interpreter from the command line:

idlgen idlgrep.tcl

Account
Bank

116

Traversing the Parse Tree with rcontents

Using the contents command on the root scope obtains a list of all the
interface, operation, and attribute constructs that are in the root scope of
the finance.id1 file, and the root scope only. This set of results is incomplete as
the search goes no further than the root scope. The next iteration refines the
functionality of the idlgrep genie.

Search Using rcontents

The previous Tcl script could be expanded so that it traverses the whole parse tree
using only the contents command. However, the rcontents command enables a
more concise solution. The types of construct the genie is looking for appear only
in the module and interface scopes, so the genie only needs to search those
scopes.

This information is passed to the rcontents command in the following way:

Tcl
if {![idlgen parse idl file "finance.idl"]} {
exit 1
}
set want {interface operation attribute exception}
set recurse into {module interface}
set node list [S$Sidlgen(root) rcontents Swant Srecurse_into]
foreach node $node list {
puts "[Snode node type] [$node s name]"

}
Run the idlgen interpreter from the command line:

idlgen idlgrep.tcl

interface Account

attribute Account::accountNumber
attribute Account::balance
operation Account::makeDeposit
interface Bank

operation Bank::findAccount
operation Bank::newAccount

117

Orbix Code Generation Toolkit Programmer’s Guide

Complete Search Genie

Assume that another requirement for this utility is to allow a user to specify
whether or not the search should consider files in the #include statements. This
can be accomplished with code similar to the following:

Tcl
foreach node [$result_node_list} {
if {![same file function $node]} {
continue; # not interested in this node

}

. # Do some processing

}

You can code this more elegantly by using a further feature of the rcontents
command (this feature is also provided by contents). The general syntax of the
rcontents command invoked on a scope_node scope node is:

$scope node rcontents node types scope types [filter func]

By passing the optional filter func parameter to the rcontents command the
resulting list of nodes can be filtered in-line. The filter func parameter is the
name of a function that returns either true or false depending on whether or not
the node that was passed to it is to be added to the search list returned by
rcontents.

To complete the basic idlgrep genie, the filter func parameter is added to the
rcontents command and support is added for the wild card and IDL file
command line parameters:

Tcl

proc same file function {node} {
return [Snode is in main file]

}

if {Sargc != 2} {
puts "Usage idlgen.tcl <idlfile> <search exp>"
exit 1

}

set search for [lindex Sargv 1]

if {![idlgen parse idl file [lindex Sargv 0]1} {
exit

}

set want {interface operation attribute exception}

set recurse into {module interface}

118

Traversing the Parse Tree with rcontents

set node list [S$Sidlgen(root) rcontents Swant S$recurse into
same file function]

foreach node $node list {

if [string match $search for [$node 1 name]]

puts
puts
puts
puts
puts
puts

}

"Construct [Snode node type]"
"Local Name [$node 1 name]"
"Scoped Name : [$node s name]"
"File : [Snode file]"
"Line Number [$Snode linel"

Run the completed genie on the finance.id1 file:

idlgen idlgen.tcl finance.idl "[A}a]*"

Construct
Local Name
Scoped Name
File

Line Number

Construct
Local Name
Scoped Name
File

Line Number

To further test the genie, you can try it on a larger IDL file:

interface

: Account

Finance::Account
finance.idl
22

attribute

accountNumber

Finance: :Account: :accountNumber
finance.idl

23

idlgen idlgen.tcl ifr.idl "[Aja]*"

Construct
Local Name
Scoped Name
File

Line Number

Construct
Local Name
Scoped Name

attribute

absolute name

Contained: :absolute name
ifr.idl

73

interface

: AliasDef
: AliasDef

{

119

Orbix Code Generation Toolkit Programmer’s Guide

Recursive Descent Traversal

120

File

Line Number :

Construct
Local Name
Scoped Name
File

Line Number :

Construct
Local Name
Scoped Name
File

Line Number :

The next few chapters extend the ideas shown here and allow better genies to be
developed. For example, idlgrep.tcl could be easily improved by allowing the
user to specify more than one IDL file on the command line or by allowing
further search options to be defined in a configuration file. The commands that
allow the programmer to achieve such tasks are discussed in Chapter 7 on

page 127.

The main method of traversing an IDL parse tree is to use the scoping nodes to
locate and move to known nodes or known types of node. The previous examples
in this chapter show how a programmer can selectively move down the parse tree
and examine the sections that are relevant to the genie’s domain. However, a
more complete traversal of the parse tree is needed by some genies.

One such blind, but complete, traversal technique is to use the rcontents

command:

Tcl

if {![idlgen parse idl file "finance.idl"]} {

exit

}

set node list [Sidlgen(root) rcontents all all]

: ifr.idl

322

: interface
: ArrayDef
: ArrayDef
: ifr.idl

343

: interface

: AttributeDef
: AttributeDef
: ifr.idl

366

foreach node $node list {

puts "[Snode node type]:

}

[Snode s name]"

Recursive Descent Traversal

This search provides a long list of the nodes in the parse tree in the order of
traversal. However, the traversal structure of the parse tree is harder to extract
because this approach does not allow the parse tree to be analyzed on a node-by-
node basis as the traversal progresses.

Recursive descent is a general technique for processing all (or most) of the nodes
in the parse tree in a way that allows the nodes to be examined as the traversal
progresses. However, before explaining how to use recursive descent in idlgen
scripts, it is necessary to first explain how polymorphism is used in Tcl.

Polymorphism in Tcl

Consider this short application:

Tcl

proc eat vegetables {} {
puts "Eating some veg"

}

proc eat meat {} {
puts "Eating some meat"

}

foreach item { meat vegetables vegetables } {
eat_Sitem

}

Run this application through idlgen:
idlgen meatveg. tcl

Eating some meat

Eating some veg
Eating some veg

This demonstrates polymorphism using Tcl string substitution.

Recursive Descent Traversal through Polymorphism

Polymorphism through string substitution makes it easy to write recursive descent
scripts. Imagine a genie that converts an IDL file into another file format. The
target file is to be indented depending on how deep the IDL constructs are in the
parse tree.

// Converted IDL

121

Orbix Code Generation Toolkit Programmer’s Guide

module aModule

(

interface alnterface

(

void aOperation ()

)

This type of genie is perfect for the recursive descent mechanism. Consider the
key command procedure that performs the polymorphism in this genie:

Tcl
proc process_scope {scope} {
foreach item [$scope contents all] {
process_[$item node type] Sitem

}

As each scope node is examined it can be passed to the process scope
command procedure for further traversal. This procedure calls the appropriate
node processing procedure by appending the node type name to the string
process_. So, if a node that represents a module is passed to the process scope
procedure, it calls a procedure called process module. This procedure is defined
as follows:

Tcl

proc process module {m} {
output "[indent] module [S$m l_name]\n"
output " (\n"

increment indent level
process_scope Sm
decrement indent level

output "[indent])"
}

If the module contains interfaces, process_scope then calls a command
procedure called process_interface for each interface:

Tcl

proc process interface {i} {
output " [indent] interface [$i 1 name]\n"
output " (\n"

122

Processing User-Defined Types

increment indent level
process_scope S$i
decrement indent level

output "[indent])"
}

This genie can then start the traversal by simply calling the process_scope
command procedure on the root of the parsed IDL file:

Tcl
process_scope S$idlgen (root)

This example allows every construct in the IDL file to be examined and still
allows you to be in control when it comes to the traversal of the parse tree.

Processing User-Defined Types

The idlgen list builtin types command returns a list of all the built-in IDL
types. The idlgen interpreter provides a similar command that returns a list of all
the user-defined IDL types:

idlgen list user defined types exception

This command takes one argument that should be either exception or any other
string (for example, no exception or “”). If the argument is exception then
user-defined exceptions are included in the list of user-defined types that are
returned. If the argument is any string other than exception, the user-defined
exceptions are not included in the list of user-defined types that are returned. For
example:

Tcl

foreach type [idlgen list user defined types "exception"] {
process_[Stype node type] Stype

}

Another utility command provided by idlgen is:
idlgen list all types exception

This command is a simple wrapper around calls to
idlgen_list_builtin_typesand idlgen list user defined types.

123

Orbix Code Generation Toolkit Programmer’s Guide

Recursive Structs and Unions

124

IDL permits the definition of recursive struct and recursive union types. A
struct or union is said to be recursive if it contains a member whose type is an
anonymous sequence of the enclosing struct or union. The following are

examples of recursive types:

// IDL
struct tree {
long
sequence<tree>
}i
union widget switch (long) {
case 1l: string
case 2: sequence<widget>

}i

data;
children;

abc;
XYZ;

Recursive Structs and Unions

Some genies may have to do special-case processing for recursive types. The
idlgen interpreter provides the following utility commands to aid this task:

Table: 6.1: Utility Functions for Special-Case Processing

Command

Description

idlgen is recursive type type

idlgen is recursive member member

idlgen list recursive member types

Returns:
1:if type is a recursive type.
0: if type is not recursive.

For example, this command returns 1 for both
the tree and widget types.

Returns:

1: if member (a field of a struct or a branch of
a union) has a recursive type.

0: if member does not have a recursive type.

For example, the children field of the above
tree is a recursive member, but the data field
is not.

Traverses the parse tree and returns a list of all
the anonymous sequences that are used as
types of recursive members. For the above
IDL definitions, this command returns a list
containing the anonymous sequence<tree>
and sequence<widget> types used for the
children member of tree and the xyz
member of widget, respectively.

125

Orbix Code Generation Toolkit Programmer’s Guide

126

Configuring Genies

This chapter describes how to write genies that are easily
configurable for the genie user.
There are two related mechanisms that allow a genie user to specify their
preferences and options. These two mechanisms are:

® Processing command-line arguments.

® Parsing configuration files.

This chapter discusses these two topics and describes how to make your genies
flexible through configuration. Appendix B on page 407 provides a reference to
the commands discussed in this chapter.

Processing Command-Line Arguments

Most useful command-line programs take command-line arguments. Because
idlgen is predominately a command-line application, your genies will invariably
use command-line arguments as well. The code generation toolkit supplies
functionality to parse command-line arguments easily.

Enhancing the idlgrep Genie

Although the idlgrep application (“Processing an IDL File” on page 101) uses
command-line options it assumes that the IDL file is the first parameter and the
wild card is the second. Instead of hard coding these settings a more intelligent

127

Orbix Code Generation Toolkit Programmer’s Guide

approach to command-line processing that does not make assumptions about
argument ordering is preferable. It would also be useful if this application allowed
multiple IDL files to be specified on the command-line.

Processing the Command Line

Taking these points into consideration, the first thing the idlgrep genie must do
is find out which IDL files to process. It does this using the built-in
idlgen getarg command to search the command-line arguments for IDL files:

Tcl
set idl file list {}
set cl args format ({
{".+\\.[iI] [dD] [1L]" 0 idl file }
{"-h" 0 usage }
}
while {$argc > 0} {
Extract one option at a time from the command
line using ’idlgen getarg’
idlgen getarg $cl args format arg param symbol

switch $symbol {
idl file {lappend idl file list $Sarg}
usage {puts "Usage ..."; exit 1}
default {puts "Unknown argument S$arg"
puts "Usage ..."
exit 1
}
}
}
foreach file $idl_file_list {
puts $file
}

Note: Each time the idlgen getarg command is run, the $Sargc variable is
decremented and the command-line argument removed from $argv.

128

Processing Command-Line Arguments

The idlgen getarg command works by examining the command-line for any
argument that matches the search criteria provided to it. It then extracts all the
information associated with the matched argument and assigns the results to the
given variables.

The following is an example of what the preceding Tcl script does with some IDL
files passed as command-line parameters:

idlgen idlgrep.tcl bank.idl ifr.IDL daemon.iDl
bank.idl

ifr.IDL
daemon.iD1

If the genie user wants to see all of the available command-line options they can
use the -h option for help:

idlgen idlgrep.tcl -h

Usage...

129

Orbix Code Generation Toolkit Programmer’s Guide

Syntax for the idlgen_getarg Command

The idlgen getarg command takes four parameters:
idlgen getarg cl args format arg param symbol

The first parameter, c1_args format, is a data structure that describes which
command-line arguments are being searched for. The three parameters, arg
param symbol, are variable names that are assigned values by the

idlgen getarg command, as described in Table 7.1.

Arguments Purpose

arg The text value of the command-line argument that
was matched on this run of the command.

param The parameter (if any) to the command-line
argument that was matched. For example, a
command-line option -search a* would have the
parameter a*.

symbol The symbol for the command-line argument that
was specified in the format parameter. This can be
used to find out which command-line argument
was actually extracted.

Table: 7.1: idlgen getarg Arguments

Note: There is no need to use the smart source command to access the
idlgen getarg command, because idlgen getargis a built-in
command.

130

Processing Command-Line Arguments

Searching for Command-Line Arguments

This first parameter to the idlgen getarg command is a data structure that
describes the syntax of the command-line arguments to search for. In the idlgrep
application example, see page 127, this first parameter is set to the following:

Tcl

set cl args format {
{".+\\. [iI] [aD] [1L]" 0 idl file }
{"=-h" 0 usage }

}

This data structure is a list of sub-lists. Each sub-list is used to specify the search
criteria for a type of command-line parameter.

The first element of each sub-list is a regular expression that specifies the format
of the command-line arguments. In the example shown above, the first sub-list is
looking for any command-line argument that ends in .IDL or any case insensitive
equivalent of . IDL.

The second element of each sub-list is a boolean value that specifies whether or
not the command-line argument has a further parameter to it. A value 0 indicates
that the command-line argument is self-contained. A value 1 indicates that the
next command-line argument is a parameter to the current one.

The third element of each sub-list is a reference symbol. This symbol is what
idlgen getarg assigns to its fourth parameter if the regular expression element
matches a command-line argument. Typically, if the regular expression does not
contain any wild cards the symbol is identical to the first element. If the regular
expression does contain wild cards the symbol can be used later on in the
application to reference the command-line argument independently of its physical
value.

131

Orbix Code Generation Toolkit Programmer’s Guide

More Examples of Command-Line Processing

The following is another example of the idlgen getarg command as it loops
through some command-line arguments:

Tcl

set inc list {}

set idl list {}

set extension "not specified"
set cmd line args fmt {

{ "=-I.+" 0 include }
{ "-ext" 1 ext }
{ ".H\\.[iI] [dD] [1L]" 0 idlfile }

while {S$argc > 0} {
idlgen getarg $cmd line args fmt arg param symbol

switch $symbol {

include { lappend inc list Sarg }

ext { set extension S$param }
idlfile { lappend idl list Sarg }
default { puts "Unknown argument S$arg"

puts "Usage ...
exit 1

}
foreach include path $inc list {
puts "Include path is Sinclude path"

}
foreach idl file $idl list {

puts "IDL file specified is $idl file"
}

puts "Extension is $extension"

Run this application with appropriate command-line arguments:
idlgen cla.tcl bank.idl car.idl -ext cpp

IDL file specified is bank.idl

IDL file specified is car.idl
Extension is cpp

132

Processing Command-Line Arguments

The following is a different set of command-line parameters:
idlgen cla.tcl -I/home/iona -I/orbix/inc
Include path is /home/iona

Include path is /orbix/inc
Extension is not specified

Using idlgrep with Command-Line Arguments

To finish the idlgrep utility the search criteria must also be taken from the
command-line, as well as obtaining the list of IDL files to process:

Tcl
set idl file list {}
set search for "*"
set cl args format ({
{".A\\.[iI][dD] [1L]" 0 idl file }
{-s 1 reg exp }
}
while {$argc > 0} {
idlgen getarg $cl args format arg param symbol

switch $symbol {
idl file { lappend idl file list Sarg }
reg exp { set search for $param }
default { puts "usage: ..."; exit }
}
}
foreach file $idl file list {
grep file $file search for

}

133

Orbix Code Generation Toolkit Programmer’s Guide

The following is the full listing for the grep file command procedure:

Tcl
proc grep_file {file searchfor} {
global idlgen

if {![idlgen parse idl file $file]} {
return
}
set want {interface operation attribute exception}
set recurse into {module interface}
set node list [$idlgen(root) rcontents $want S$recurse into]
foreach node $node list {

if [string match $searchfor [$node 1 name]] {

puts "Construct : [Snode node typel]"
puts "Local Name [$node 1 name]"
puts "Scoped Name : [$node s name]"
puts "File : [$node file]"

puts "Line Number [$Snode linel™

puts nwn

}

Multiple IDL files can now be specified on the command-line, and the command-
line arguments can be placed in any order:

idlgen idlgrep2.tcl finance.idl -s "a*" ifr.idl

Construct : attribute

Local Name : accountNumber

Scoped Name : Account::accountNumber
File : finance.idl

Line Number : 21

Construct : attribute

Local Name : absolute name

Scoped Name : Contained::absolute name
File : ifr.idl

Line Number : 73

134

Processing Command-Line Arguments

Using std/args.tcl

The std/args.tcl library provides a command, parse_cmd line args, that
processes the command-line arguments common to most genies. In particular, it
picks out IDL file names from the command line and processes the following
command-line arguments: -1, -D, -v, -s, —-dir, and -h. The example below
illustrates how to use this library:

Tcl

smart source "std/args.tcl"

parse cmd line args idl file options

if {![idlgen parse idl file $idl file Soptions]} {
exit 1

}

. # rest of genie

Upon success, the parse_cmd line args command returns the name of the
specified IDL file through the id1 file parameter, and preprocessor options
through the options parameter. However, if the parse cmd line args
command encounters the -h option or any unrecognized option, or if there is no
IDL file specified on the command-line, it prints out a usage statement and calls
exit to terminate the genie. For example, if the above genie is saved to a file
called foo.tcl, it could be run as follows:

idlgen foo.tcl -h

usage: idlgen foo.tcl [options] file.idl
options are:

-I<directory> Passed to preprocessor
-D<name>[=value] Passed to preprocessor

-h Prints this help message

-v Verbose mode

-s Silent mode (opposite of -v option)
-dir <directory> Put generated files in <directory>

If you are writing a genie that needs only the above command-line arguments,
you can use the unmodified std/args.tcl library in your genie. If, however,
your genie requires some additional command-line arguments, you can copy the
std/args.tcl library and modify the copy so that it can process additional
command-line arguments. In this way, the std/args.tcl library provides a
useful starting point for command-line processing in your genies.

135

Orbix Code Generation Toolkit Programmer’s Guide

Using Configuration Files

The idlgen interpreter and the bundled genies use information in a configuration
file to enhance the range of options and preferences offered to the genie user.
Examples of configurable options are:

® The search path for the smart source command.

® Whether the genie user prefers the TIE or inheritance approach when
implementing an interface.

* File extensions for C++ or Java files.

The idlgen interpreter’s core settings and preferences are stored in a standard
configuration file that, by default, is called idlgen.cfg. This file is also used for
storing preferences for the bundled applications. It is loaded automatically, but
the built-in parser can be used to access other application-specific configuration
files if the requirement arises.

Syntax of an idlgen Configuration File

A configuration file consists of a number of statements that assign a value to a
name. The name, like a Tcl variable, can have its value assigned to either a string
or a list. The syntax of such statements is summarized in Appendix D on

page 435.

Text appearing between the # (number sign) character and the end of the line is a
comment:

This is a comment
x = "1" ;# Comment at the end

Use the = (equal sign) symbol to assign a string value to a name. Use a ; (semi-
colon) to terminate the assignment. The string literal must be enclosed by
quotation marks:

local domain = "iona.com";

Use the + (plus) symbol to concatenate strings. The following example sets the
host configuration item to the value amachine.iona.com:

host = "amachine" + "." + local domain;

136

Using Configuration Files

Use the = (equals) symbol to assign a list to a name and put the items of the list
inside matching [and] symbols:

initial cache = ["times", "courier"];

Use the + (plus) symbol to concatenate lists. In this example, the a1l
configuration item contains the list: times, courier, arial, dingbats.
all = initial cache + ["arial", "dingbats"];

Items in a configuration file can be scoped. This can, for example, allow
configuration items of the same name to be stored in different scopes.

In the following example, to access the value of dir, use the scoped named
fonts.dir:

fonts {
dir = "/usr/lib/fonts";
}i

Reading the Contents of a Configuration File

You can use the idlgen parse config file command to open a configuration
file. The return value of this command is an object that can be used to examine
the contents of the configuration file.

The following is a pseudo-code definition for the operations that can be
performed on the return value of this configuration file parsing command:

class configuration file {
enum setting type {string, list, missing}

string filename ()
list<string> list names|()
void destroy ()
setting type type (

string cfg name)
string get string(

string cfg name)
void set string(

string cfg name,
string cfg value)

list<string> get list(
string cfg name)
void set list(

137

Orbix Code Generation Toolkit Programmer’s Guide

string cfg item,
list<string> cfg value)

}

There are operations to list the whole contents of the configuration file
(1ist_names), query particular settings in the file (get string, get list), and
alter values in the configuration file (set string, set list).

The following Tcl program uses the parse command and manipulates the results,
using some of these operations:

Tcl
if { [catch {
set cfg [idlgen parse config file "shop.cfg"]
} err] } {
puts stderr Serr
exit
}
puts "The settings in '[$cfg filename]' are:"
foreach name [Scfg list names] {
switch [$cfg type S$name] {
string {puts "S$name:[$cfg get string Sname]"}
list {puts "Sname: [Scfg get list $name]"}

}
Scfg destroy

Note: You should free associated memory by using the destroy operation when
the configuration file has been completed.

Consider the case if the contents of the shop configuration file are as follows:

shop.cfg
clothes = ["Jjeans", "Jjumper", "coat"];
sizes {

waist = "32";

inside leg = "32";

}r

138

Using Configuration Files

Run this application through idlgen:
idlgen shopcfg.tcl

The settings in 'shop.cfg' are:
sizes.waist:32

sizes.inside leg:32
clothes:jeans jumper coat

Note: For more detail about the commands and operations discussed in this
section, Appendix B on page 407.

The Standard Configuration File

When idlgen starts, it reads the id1gen.cfg configuration file from the default
configuration directory. To use an alternative configuration file, set the

IT IDLGEN CONFIG FILE environment variable to the absolute pathname of the
alternative configuration file. The details of the configuration file are then stored
in a global variable called $idlgen (cfg). This variable can then be accessed at
any time by your own genies.

Note: There is no restriction on the name of the standard configuration file but it
is recommended that you follow the convention of naming it idlgen.cfg.

Using idlgrep with Configuration Files

Consider a new requirement to enhance the id1grep genie once more to allow the
genie user to specify which IDL constructs they want the search to include. The
genie user might also want to specify which constructs to search recursively. It
would be time consuming for the user to specify these details on the command-
line; it is better to have these settings stored in the standard configuration file.

Assume that the standard configuration file contains the following scoped entries:

idlgen.cfg
idlgrep {
constructs = ["interface", "operation"];

139

Orbix Code Generation Toolkit Programmer’s Guide

recurse into = ["module", "interface"];
I

The following code from the grep file command procedure must be replaced
(for a full listing of this command procedure, see page 134):

Tcl
set want {interface operation attribute exception}
set recurse into {module interface}

The following code must be inserted as the replacement:

Tcl
set want [$idlgen(cfg) get list "idlgrep.constructs"]
set recurse into [$idlgen(cfg) get list "idlgrep.recurse into"]

Running the idlgen interpreter with the new variation of the idlgrep genie gives
a more precise search:

idlgen idlgrep3.tcl finance.idl -s "A*"

Construct : interface
Local Name : Account
Scoped Name : Account
File : finance.idl

Line Number : 20
This is a good first step and gives the genie user a much more flexible application.

The current version of the application assumes that all of the configuration values
are present in the configuration file. The application can be improved such that it
automatically provides default values if entries are missing from the
configuration file.

The following Tcl script shows the improved version of the application:

Tcl
proc get cfg entry {cfg name default} {
set type [$cfg type Sname]
switch S$type {
missing {return $default}
default {return [Scfg get $type Sname]}

}

set want [get cfg entry $idlgen(cfg) "idlgrep.constructs" \
{interface operation}]

140

Using Configuration Files

set recurse into [get cfg entry $idlgen(cfg) \
"idlgen.recurse into" {module interface}]

The type operation allows you to determine whether the configuration item exists
and whether it is a list entry or a string entry. The code provides a default value if
the configuration entry is missing.

Default Values

There is another way you can provide a default value; the get stringand

get list operations can take an optional second parameter, which is used as a
default if the entry is not found. An equivalent of the above code (ignoring the
possibility that the entry could be a string entry) is:

Tcl

set want [$idlgen(cfg) get list "idlgrep.constructs" \
{interface module}]

set recurse into [$idlgen(cfg) get list "idlgen.recurse into" \
module interface}]

141

Orbix Code Generation Toolkit Programmer’s Guide

142

Developing a C++ Genie

The code generation toolkit comes with a rich C++ development
library that makes it easy to create code generation applications
that map IDL to C++ code.

The std/cpp boa lib.tcl file is a library of Tcl command procedures that map
IDL constructs into their C++ counterparts. The server-side IDL-to-C++ mapping
is based on the CORBA Basic Object Adapter (BOA) specification.

The following topics are covered in this chapter:

Identifiers and keywords.

C++ prototype.

Client side: invoking an operation.
Client side: invoking an attribute.
Server side: implementing an operation.
Server side: implementing an attribute.
Instance variables and local variables.
Processing a union.

Processing an array.

Processing an Any.

143

Orbix Code Generation Toolkit Programmer’s Guide

Identifiers and Keywords

There are a number of commands that help map IDL data types to their C++
equivalents.

The CORBA mapping generally maps IDL identifiers to the same identifier in
C++, but there are some exceptions required, to avoid clashes. For example, if an
IDL identifier clashes with a C++ keyword, it is mapped to an identifier with the
prefix .

Consider the following unusual, but valid, interface:

// IDL
interface Strange {

string for(in long while);
}i

The interface maps to a C++ class Strange in the following way:

// C++ - some details omitted
class strange : public virtual CORBA::Object
{

virtual char*

_for(

CORBA::Long while

)i

}i

Note: Avoid IDL identifiers that clash with keywords in C++ or other
programming languages that you use to implement CORBA objects.
Although they can be mapped as described, it causes confusion.

144

C++ Prototype

The application programming interface (API) for generating C++ identifiers is
summarized in Table 8.1. The s variants return fully-scoped identifiers
whereas the 1 variants return non-scoped identifiers.

Command Description

cpp_s_name node Returns the C++ mapping of a
node’s scoped name.

cpp_1 name node Returns the C++ mapping of a
node’s local name.

cpp_typecode s name type Returns the scoped C++ name
of the type code for type.

cpp_typecode 1 name type Returns the local C++ name of
the type code for type.

Table: 8.1: Commands for Generating Identifiers and Keywords

C++ Prototype

A typical approach to developing a C++ genie is to start with a working C++
example. This C++ example should exhibit most of the features that you want to
incorporate into your generated code. You can then proceed by reverse-
engineering the C++ example; developing a Tcl script that recreates the C++
example when it receives the corresponding IDL file as input.

The C++ example employed to help you develop the Tcl script is referred to here
as a C++ prototype. In the following sections, two fundamental C++ prototypes
are presented and analyzed in detail.

® The first C++ prototype demonstrates how to invoke a typical CORBA
method (client-side prototype).

® The second C++ prototype demonstrates how to implement a typical
CORBA method (server-side prototype).

The script derived from these fundamental C++ prototypes can serve as a starting
point for a wide range of applications, including the automated generation of
wrapping code for legacy systems.

145

Orbix Code Generation Toolkit Programmer’s Guide

The C++ prototypes described in this chapter use the following IDL:

// IDL

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {
longSeqg op (

in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);
}i

Client-Side Prototype

The client-side prototype demonstrates a CORBA invocation of the foo: :op ()
IDL operation. Parameters are allocated, a foo: :op () invocation is made, and the
parameters are freed at the end.

// C++

widget p widget;
char * p string;
longSeg* p longSeq;

long array p long array;
longSeg* result;

p _widget = other widget;
p_string = CORBA::string dup (other string);

e

// Invoke the operation
[/ ========

try {

146

C++ Prototype

_result = obj->op (
p_widget,
p_string,
p_longSeq,
p_long array);
} catch(const CORBA::Exception &ex) {
// handle the exception

process_string(p_string);
process_longSeq (*p longSeq) ;
process long array(p long array);
process_longSeq(* result);

CORBA: :string free(p string);
delete p longSeq;
delete result;

Server-Side Prototype

The server-side prototype demonstrates an implementation of the foo: :op () IDL
operation. This operation demonstrates the use of in, inout and out parameters
and has a return value. The code shown in the implementation deals with
deallocation, allocation, and initialization of parameters and return values.

// Ct++

longSeg*

foo i::0p(
const widgeté p_widget,
char *& p_string,
longSeg*& p_longSeq,
long array p_long array,

CORBA: :Environment &)
throw (CORBA: : SystemException)

147

Orbix Code Generation Toolkit Programmer’s Guide

F e
// Implement the logic of the operation...

//

// Process the input variables ’'p widget’ and 'p string’
//

// Calculate, or find, the output data

// "other string’, ’other longSeq’, ’other long array’
F e R
. // Not shown

[/===

// Declare a variable to hold the return value.
/===

// Allocate memory for "out" parameters
// and the return value, if needed.

p_longSeqg = new longSeq;
_result = new longSeq;

// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.

CORBA: :string free(p string);

p_string = CORBA::string dup(other string);

*p longSeq = other longSeq;

for (CORBA::ULong il = 0; il < 10; il ++) {
p_long array[il] = other long array[il];

}

* result = other longSeqg;

if (an _error occurs) {
// Before throwing an exception, we must
// free the memory of heap-allocated "out"
// parameters and the return value,
// and also assign nil pointers to these

// "out" parameters.

delete p longSeq;

148

Client Side: Invoking an Operation

Client Side:

This

p_longSeq = 0;
delete result;
throw some exception;

}

return result;

Invoking an Operation

section explains how to generate C++ code that invokes a given IDL

operation. The process of making a CORBA invocation in C++ can be broken
down into the following steps:

1.

Declare variables to hold parameters and return value.

The calling code must declare all in, inout and out parameters before
making the invocation. If the return type of the operation is non-void, a
return value must also be declared.

Initialize input parameters.

The calling code must initialize all in and inout parameters. There is no
need to initialize out parameters.

Invoke the IDL operation.

The calling code invokes the operation, passing each of the prepared
parameters and retrieving the return value (if any).

Process output parameters and return value.

Assuming no exception has been thrown, the caller processes the returned
inout, out and return values.

Release heap-allocated parameters and return value.

When the caller is finished, any parameters that were allocated on the heap
must be deallocated. The return value must also be deallocated.

The following subsections give a detailed example of how to generate complete

code

for an IDL operation invocation.

149

Orbix Code Generation Toolkit Programmer’s Guide

Step 1—Declare Variables to Hold Parameters and Return Value

150

The following example assumes that _var variables are not used, to show how
explicit memory management statements are generated. In practice, it is usually
better to use _var variables: their use automates cleanup and simplifies code,
especially when exceptions can be thrown.

The following Tcl script illustrates how to declare C++ variables to be used as
parameters to (and the return value of) an operation call:

Tcl
smart source "std/output.tcl"
smart source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1
}

idlgen set preferences S$idlgen (cfg)

open output file "testClt.cxx"

set op [$idlgen (root) lookup "foo::op"]
set is var 0
set ind lev 1

[

set arg list
[***

Sop contents {argument}]

*Hk]
foreach arg $arg list {

cpp_gen clt par decl Sarg $is var $ind lev
}
cpp_gen clt par decl $Sop $is var $ind lev
The Tecl script is explained as follows:

1. When an argument node appears as the first parameter of
cpp_gen clt par decl, the command outputs a declaration of the
corresponding C++ parameter.

Client Side: Invoking an Operation

2. When an operation node appears as the first parameter of
cpp_gen clt par decl, the command outputs a declaration of a variable
to hold the operation’s return value. If the operation has no return value,
the command outputs a blank string.

The previous Tcl code yields the following C++ code:
// C++

widget p widget;
1 char * p string;
2 longSeg* p longSeq;

long array p long array;
3 longSeg* result;

The name of the C++ variable that is declared to hold the return value, line 3, is
_result. In lines 1, 2, and 3, the C++ variables are declared as raw pointers. This
is because the is_var parameter is set to FALSE in calls to the

cpp_gen clt par decl command. If is var is TRUE, the variables are
declared as _var types.

Step 2—Initialize Input Parameters

The following Tcl script shows how to initialize in and inout parameters:

Tcl
[***
/)=======-
// Initialize "in" and "inout" parameters
/1-======-~
*kk]
1 foreach arg [$op args {in inout}] {
set type [Sarg type]
2 set arg ref [cpp clt par ref Sarg $is var]
set value "other [$type s uname]"
3 cpp_gen assign stmt Stype Sarg ref Svalue Sind lev 0

151

Orbix Code Generation Toolkit Programmer’s Guide

The Tcl script is explained as follows:

1. The foreach loop iterates over all the in and inout parameters.

2. The cpp clt par ref command returns a reference (not a pointer) to the
C++ parameter corresponding to the given argument node, Sarg.

3. An assignment statement is generated by the cpp _gen assign stmt
command for variables of the given $type. The $arg ref argument is put
on the left-hand side of the generated assignment statement and the
$value argument on the right-hand side. Note that this command expects
its second and third arguments to be references.

The previous Tcl script yields the following C++ code:

p_widget = other widget;
p_string = CORBA::string dup (other string);

Step 3—Invoke the IDL Operation

The following Tcl script shows how to invoke an IDL operation, pass parameters,
and assign the return value to a variable:

Tcl
1 set ret assign [cpp ret assign Sop]
set op name [cpp 1 name $Sop]
set start str "\n\t\t\t"
set sep str "oAn\ENENE"
2 set call args [idlgen process list $arg list \
cpp 1 name Sstart str $sep str]
[***
/1=
// Invoke the operation
//-=====--
try {

@Sret assign@Robj->@Sop name@ (@Scall args@) ;
} catch(const CORBA: :Exception &ex) {
// handle the exception
}

***]

152

Client Side: Invoking an Operation

The Tcl script is explained as follows:

1. The expression [cpp ret assign $op] returns the string, " result =".
If the operation invoked does not have a return type, it returns an empty
string, "".

2. The parameters to the operation call are formatted using the command
idlgen process list. For more about this command, see
“idlgen_process_list” on page 219.

The previous Tcl script yields the following C++ code:
// C++

try {
_result = obj->op (
p_widget,
p_string,
p_longSeq,
p_long array);
} catch(const CORBA::Exception &ex) {
. // handle the exception
}

Step 4—Process Output Parameters and Return Value

The following Tcl script shows that the techniques used to process output
parameters are similar to those used to process input parameters.

Tcl
[***
//--==-=----
// Process the returned parameters
JC——
*Hk]
1 foreach arg [$op args {out inout}] {

set type [Sarg type]
set name [cpp 1 name $arg]
2 set arg ref [cpp clt par ref $arg $is var]
[***

process_Q@[Stype s_uname]@(QSarg ref@) ;
***]

153

Orbix Code Generation Toolkit Programmer’s Guide

}
set ret type [$op return type]
if {[Sret type 1 name] != "void"} {
3 set ret ref [cpp clt par ref Sop $is var]
[***

process_@[Sret type s uname]@(@Sret ref@);
*Hok]

}
The Tcl script is explained as follows:

1. The foreach loop iterates over all the out and inout parameters.
2. The command cpp clt par ref returns a reference (not a pointer) to the
C++ parameter corresponding to the given argument node, $arg.

3. When an operation node $op is supplied as the first parameter to
cpp_clt par ref, the command returns a reference to the return value of
the operation.

The previous Tcl script yields the following C++ code:

// C++

process_string(p string);

process longSeq(*p longSeq) ;
process long array(p long array);
process longSeq(* result);

Step 5—Release Heap-Allocated Parameters and Return Value

The following Tcl script shows how to free memory associated with the
parameters and return value of an operation call. To illustrate explicit memory
management, the example assumes that is_var is set to FALSE.

Tcl
[***

***]

foreach arg Sarg list {
set name [cpp 1 name $arg]

154

Client Side: Invoking an Operation

cpp_gen clt free mem stmt S$arg S$is var Sind lev

}

cpp_gen clt free mem stmt Sop $is var $ind lev
The Tcl script is explained as follows:

1. The cpp gen clt free mem stmt command generates a C++ statement
to free memory for the parameter corresponding to $arg. If no memory
management is needed (either because the parameter is a stack variable or
because $is_var is equal to 1) the command generates a blank string.

2. When an operation node is supplied as the first parameter to the
cpp_gen clt free mem stmt command, a C++ statement is generated to
free the memory associated with the return value. If no memory
management is needed, the command generates a blank string.

The previous Tcl script yields the following C++ code to explicitly free memory:

// C++

CORBA: :string free(p string);
delete p longSeq;
delete result;

Statements to free memory are generated only if needed. For example, there is no
memory-freeing statement generated for p widget or p_long array, because
these parameters had their memory allocated on the stack rather than on the heap.

Note: It is good practice to set the is_var argument to TRUE so that parameters
and the result variable are declared as _var types. In this case memory
management is automatic and no memory-freeing statements are
generated. The resulting code is simpler and safer; vars clean up
automatically, even if an exception is thrown.

155

Orbix Code Generation Toolkit Programmer’s Guide

Client Side: Invoking an Attribute

To invoke an IDL attribute, you must perform similar steps to those described in
“Client Side: Invoking an Operation” on page 149. However, a different form of
the client-side Tcl commands are used:

cpp_clt par decl name type dir is var
cpp_clt par ref name type dir is var
cpp_clt free mem stmt name type dir is var
cpp_clt need to free mem name type dir is var

Similar variants are available for the gen counterparts of commands:

cpp_gen clt par decl name type dir is var ind lev
cpp_gen clt free mem stmt name type dir is var ind lev

These commands are the same as the set of commands used to generate an
operation invocation, except they take a different set of arguments. You specify
the name and type of the attribute as the first two arguments. The dir argument
can be in or return, indicating an attribute’s modifier or accessor respectively.
The is varand ind level arguments have the same effect as in “Step 1—
Declare Variables to Hold Parameters and Return Value” on page 150.

Server Side: Implementing an Operation

This section explains how to generate C++ code that provides the implementation
of an IDL operation. The steps typically followed are:

1. Generate the operation signature.
2. Process input parameters.

3. The function body first processes the in and inout parameters that it has
received from the client.

4. Declare return value and allocate parameter memory.

5. The return value is declared. Memory must be allocated for out
parameters and the return value.

6. Initialize output parameters and return value.
7. The inout and out parameters and the return value must be initialized.

8. Manage memory when throwing exceptions.

156

Server Side: Implementing an Operation

9. Itis important to deal with exceptions correctly. The inout and out
parameters and return value must always be freed before throwing an
exception.

Step 1—Generate the Operation Signature

There are two kinds of operation signature. The cpp_gen op sig_h command
generates a signature for inclusion in a C++ header file. The command
cpp_gen op_sig_cc generates a signature for the method implementation.

The following Tcl script generates the signature for the implementation of the
foo: :op operation:

Tcl
smart source "std/output.tcl"
smart source "std/cpp boa lib.tcl"

idlgen set preferences $idlgen (cfq)

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

}

open output file "testSrv.cxx"

set op [$idlgen (root) lookup "foo::op"]

cpp_gen op sig cc $op

The previous script generates the following C++ code:

// C++

longSeg*

foo i::0p(
const widgeté& p_widget,
char *& p_string,
longSeg*& p_longSeq,
long array p_long array,

CORBA: :Environment &)
throw (CORBA: : SystemException)

The names of the C++ parameters are the same as the parameter names declared
in IDL.

157

Orbix Code Generation Toolkit Programmer’s Guide

Step 2—Process Input Parameters

This step is similar to “Step 4—Process Output Parameters and Return Value” on
page 153. It is, therefore, not described in this section.

Step 3—Declare the Return Value and Allocate Parameter Memory

158

The following Tcl script declares a local variable that can hold the return value of
the operation. It then allocates memory for out parameters and the return value, if
required.

Tcl
set op [$idlgen (root) lookup "foo::op"]
set ret type [Sop return type]
set is var 0
set ind lev 1
[

set arg_list Sop contents {argument}]

if {[Sret type 1 name] != "void"} {

[***
/]=======-
// Declare a variable to hold the return value.
/1====mm=-

@[cpp _srv_ret decl Sop 0]@;

***]

}

[***
/1===mmmm-
// Allocate memory for "out" parameters
// and the return value, if needed.
//-======-

***]

foreach arg [Sop args {out}] {
cpp_gen srv par alloc $arg S$ind lev
}

cpp_gen srv par alloc $op $ind lev

Server Side: Implementing an Operation

The Tcl script is explained as follows:

1. The cpp_srv_ret decl command returns a statement that declares the
return value of the an operation. The first argument, $op, is an operation
node. The second (optional) argument is a boolean flag that indicates
whether or not the returned declaration also allocates memory for the
return value.

2. The cpp_gen srv par alloc command allocates memory for the C++
parameter corresponding to the $arg argument node.

3. When the Sop operation node is supplied as the first argument to the
cpp_gen _srv_par alloc command, the command allocates memory for
the operation’s return value.

The previous Tcl script generates the following C++ code:
// C++

// Allocate memory for "out" parameters
// and the return value, if needed.

p_longSeq = new longSeq;
_result = new longSeq;

The declaration of the result variable (line 1 of the Tcl script) is separated from
allocation of memory for it (line 3 of the Tcl script). This gives you the
opportunity to throw exceptions before allocating memory, which eliminates
memory management responsibilities associated with throwing an exception. If
you prefer to allocate memory for the result variable in its declaration, change
line 1 of the Tcl script so that it passes 1 as the value of the alloc mem
parameter, and delete line 3 of the Tcl script. If you make these changes, the
declaration of _result changes to:

longSeg* result = new longSeq;

159

Orbix Code Generation Toolkit Programmer’s Guide

Step 4—Initialize Output Parameters and the Return Value

The following Tcl script iterates over all inout and out parameters and the return
value, and assigns values to them:

Tcl
[***

// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.

*kk]
foreach arg [$op args {inout out}] {
set type [Sarg type]
1 set arg ref [cpp srv par ref $Sarg]
set name2 "other [$type s uname]"
if {[Sarg direction] == "inout"} {
2 cpp_gen srv_free mem stmt Sarg S$ind lev
}
3 cpp_gen assign stmt Stype $arg ref Sname2 \
$ind lev O
}
if {[$ret type 1 name] != "void"} {
4 set ret ref [cpp srv par ref $Sop]
set name?2 "other_[$ret_type S uname]"
5 cpp_gen assign stmt S$ret type S$ret ref \
Sname2 S$ind lev 0

}

The Tcl script is explained as follows:

1. The cpp srv_par ref command returns a reference to the C++ parameter
that corresponds to the $Sarg argument node.

2. Before an assignment can be made to an inout parameter, it is necessary
to explicitly free the old value of the inout parameter. The
cpp_gen srv_free mem stmt command generates a C++ statement to
free memory for the parameter corresponding to the Sarg argument node.

3. An assignment statement is generated by the cpp_gen assign stmt
command for variables of the given Stype. The $arg ref argument is put
on the left-hand side of the generated assignment statement and the
$name2 argument on the right-hand side. This command expects its second

160

Server Side: Implementing an Operation

and third arguments to be references. The last argument, the scope flag,
works around a bug in some C++ compilers; see “cpp_assign_stmt” on
page 249 for details.

4. When the $Sop operation node is supplied as the first argument to the
cpp_srv_par ref command, it returns a reference to the operation’s
return value.

5. This line generates an assignment statement to initialize the return value.
The previous Tcl script generates the following C++ code:

// C++

// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.

CORBA: :string free(p string);

p_string = CORBA::string dup (other string);

*p longSeq = other longSeq;

for (CORBA::ULong il = 0; il < 10; il ++) {
p_long array[il] other long array[il];

}

* result = other longSeg;

Step 5—Manage Memory when Throwing Exceptions

If an operation throws an exception after it allocates memory for out parameters
and the return value, some memory management must be carried out before
throwing the exception. These duties are shown in the following Tcl code:

Tcl
[***
if (an_error_ occurs) {
//=====-=-
// Before throwing an exception, we must
// free the memory of heap-allocated "out"
// parameters and the return value,
// and also assign nil pointers to these
// "out" parameters.
//-=====--
***]

foreach arg [$op args {out}] {
1 set free mem stmt [cpp srv free mem stmt Sarg]

161

Orbix Code Generation Toolkit Programmer’s Guide

162

if {$free mem stmt != ""} {
set name [cpp 1 name Sarg]

set type [Sarg typel
[***

@sfree mem stmt@;

@Sname@ = @[cpp nil pointer Stype]@;
*Hok]

}
cpp_gen srv_free mem stmt Sop 2
[***

throw some_exception;

***]
This Tcl script is explained as follows:

1. The cpp srv_free mem stmt command returns a C++ statement to free
memory for the parameter corresponding to $arg.

2. Nil pointers are assigned to out parameters using the cpp nil pointer
command.

3. When the $op operation node is supplied as the first argument to
cpp_gen srv_free mem stmt, the command generates a C++ statement
to free memory for the return value.

The previous Tcl script generates the following C++ code:

// C++
if (an_error occurs) {

// Before throwing an exception, we must
// free the memory of heap-allocated "out"
// parameters and the return value,

// and also assign nil pointers to these
// "out" parameters.

delete p longSeq;
p_longSeq = 0;

delete result;
throw some exception;

Server Side: Implementing an Attribute

Server Side: Implementing an Attribute

Recall that the cpp_srv_par alloc command is defined as follows:
cpp_srv_par alloc arg or op
The cpp_srv_par alloc command can take either one or three arguments.

* With one argument, the cpp_srv_par alloc command allocates memory,
if necessary, for an operation’s out parameter or return value:

cpp_srv_par alloc arg or op

* With three arguments the cpp_srv_par alloc command allocates
memory for the return value of an attribute’s accessor function:

cpp_srv_par alloc name type direction

The directionargument must be equal to return in this case.

This convention of replacing arg or op with several arguments is also used in
the other commands for server-side processing of parameters. Thus, the full set of
commands for processing an attribute’s implicit parameter and return value is:

cpp_srv_ret decl name type ?alloc mem?
cpp_srv par alloc name type direction
cpp_srv par ref name type direction
cpp_srv_free mem stmt name type direction
cpp_srv need to free mem type direction

It also applies to the gen counterparts:

cpp_gen srv_ret decl name type ind lev ?alloc mem?
cpp_gen srv_par alloc name type direction ind lev
cpp_gen srv_free mem stmt name type direction ind lev

Instance Variables and Local Variables

Previous sections show how to process variables used for parameters and an
operation’s return value. However, not all variables are used as parameters. For
example, a C++ class that implements an IDL interface might contain some
instance variables that are not used as parameters; or the body of an operation
might declare some local variables that are not used as parameters. This section
discusses commands for processing such variables. The following commands are
provided:

163

Orbix Code Generation Toolkit Programmer’s Guide

164

cpp_var decl name type is var
cpp_var free mem stmt name type is var
cpp_var need to free mem type is var

The cpp _var decl and cpp var free mem stmt commands have gen
counterparts:

cpp_gen var decl name type is var ind lev
cpp_gen var free mem stmt name type is var ind lev

The following example shows how to use these commands:

Tcl
set is var 0
set ind lev 1

[***
void some_func()
{
// Declare variables
***]

foreach type Stype list {
set name "my [Stype 1 name]"
cpp_gen var decl $Sname S$type $is var $ind lev

}

[***

// Initialize wvariables
*Hok]
foreach type Stype list {

set name "my [Stype 1 name]"

set value "other [Stype 1 name]"

cpp_gen assign stmt Stype $name Svalue $ind lev 0
}

[***

// Memory management
***]
foreach type Stype list {
set name "my [Stype 1 name]"

cpp_gen var free mem stmt $name Stype $is var $ind lev

}

[***

} // some_func()
***]

Instance Variables and Local Variables

The Tcl script is explained as follows:

1. The cpp gen var decl command returns a C++ variable declaration with
the specified name and type. The boolean is_var argument (equal to 0)
determines that the variable is not declared as a _var (smart pointer).

2. An assignment statement is generated by the cpp_gen assign stmt
command for variables of the given $type. The $name argument is put on
the left-hand side of the generated assignment statement and the $value
argument on the right-hand side. This command expects its second and
third arguments to be references. The last argument, the scope flag, is a
workaround for a bug in some C++ compilers; see “cpp_assign_stmt” on
page 249 for details.

3. The cpp gen var free mem stmt command generates a C++ statement
to free memory for the variable with the specified name and type.

If the type 1list variable contains the types string, widget (a struct) and
long array, the Tcl code generates the following C++ code:

// Ct++
void some func()

{

// Declare variables

char * my string;
widget my widget;
long array my long array;

// Initialize variables

my string = CORBA::string dup (other string);

my widget = other widget;

for (CORBA::ULong il = 0; il < 10; il ++) {
my long array[il] = other long array[il];

}

// Memory management
CORBA: :string free(my string);
} // some func()

The cpp_gen var free mem stmt command generates memory-freeing
statements only for the my string variable. The other variables are stack-
allocated, so they do not require their memory to be freed. If you modify the Tcl

165

Orbix Code Generation Toolkit Programmer’s Guide

code so that is_var is set to TRUE, my string’s type changes from char * to
CORBA: :String var and suppresses the memory-freeing statement for that

variable.

Processing a Union

166

When generating C++ code to process an IDL union, it is common to use a C++
switch statement to process the different cases of the union: the
cpp_branch case s label and cpp branch case 1 label commands are
used for this task. Sometimes you might want to process an IDL union with a
different C++ construct, such as an i f-then-else statement: the
cpp_branch s label and cpp branch 1 label commands are used for this
task. Table 8.2 summarizes the commands used for generating union labels.

Table: 8.2: Commands for Generating Union Labels

Command

Description

cpp _branch case s label
union branch

cpp_branch case 1 label
union branch

cpp_branch s label
union branch

cpp_branch 1 label
union branch

Returns the string "case scoped label",
where scoped label is the scoped name
of the given union branch, or "default"
for the default union branch.

Returns the string "case local label",
where local label is the local name of
the given union branch, or "default" for
the default union branch.

Returns the string "scoped label", where
scoped_label is the scoped name of the
given union branch, or "default" for the
default union branch.

Returns the string "local label", where
local label is the local name of the
given union branch, or "default" for the
default union branch.

Processing a Union

For example, given the following IDL:

// IDL
module m {
enum colour {red, green, blue};

union foo switch (colour) {

case red: long a;
case green: string b;
default: short c;

};
}i

The following Tcl script generates a C++ switch statement to process the union:

Tcl

set union [$idlgen (root) lookup "m::foo"]

[***
void some_func()
{

switch(u._d()) {
***]

foreach branch [Sunion contents {union branch}] {
set name [cpp 1 name S$branch]
set case label [cpp branch case s label $branch]

[***
@Scase label@:
// process u.Q@SnameQ ()
break;
***]

}; # foreach
[***

};
} // some_func()
***]

The Tcl script is explained as follows:

The foreach loop iterates over every branch of the given union.

2. The cpp branch case s label command generates the case label for the
given $branch branch node. If $branch is the default branch, the
command returns "default".

The previous Tcl script generates the following C++ code:

167

Orbix Code Generation Toolkit Programmer’s Guide

// C++
void some func ()
{
switch(u. d()) {
case m::red:
. // process u.a()
break;
case m::green:
. // process u.b()
break;
default:
. // process u.c()
break;
}r
} // some func()

The cpp branch case s label command works for all union discriminant
types. For example, if the discriminant is a long type, this command returns a

string of the form case 42 (where 42 is the value of the case label); if the
discriminant is type char, the command returns a string of the form case "a’.

Processing an Array

168

Arrays are usually processed in C++ using a for loop to access each element in
the array. For example, consider the following definition of an array:

// IDL
typedef long long array([5][7];

Assume that two variables, foo and bar, are both long array types. C++ code to
perform an element-wise copy from bar into foo might be written as follows:

// C++

void some func ()

{
CORBA: :ULong il;
CORBA: :ULong i2;
for (i1l = 0; il < 5; il ++) {

for (12 = 0; i2 < 7; 12 ++) {
foo[il][i2] = bar[il][i2];

Processing an Array

}

To write a Tcl script to generate the above C++ code, you need Tcl commands
that perform these tasks:

1. Declare index variables.
2. Generate the for loop’s header.
3. Provide the index for each element of the array " [i1] [i2]".
4. Generate the for loop’s footer.
The following commands provide these capabilities:

cpp _array decl index vars arr pre ind lev
cpp_array for loop header arr pre ind lev ?decl?
cpp_array elem index arr pre
cpp_array for loop footer arr indent

These commands use the following conventions:
® arrdenotes an array node in the parse tree.

* preis the prefix to use when constructing the names of index variables.
For example, the prefix i is used to get index variables called i1 and i2.

® ind levis the indentation level at which the for loop is to be created. In
the above C++ example, the for loop is indented one level from the left

side of the page.
The following Tcl script generates the for loop shown earlier:
Tcl
set typedef [$idlgen(root) lookup "long array"]
set a [Stypedef true base type]
set indent [cpp_indent [$a num dims]]
set index [cpp_array elem index $a "i"]
[* %%
void some_ func()
{
@[cpp array decl index vars $a "i" 1]@
@[cpp_array for loop header $Sa "i" 1]1@
@$indent@fooR$index@ = bar@$index@;
@[cpp array for loop footer $a 1]@
}
KKk

169

Orbix Code Generation Toolkit Programmer’s Guide

The amount of indentation to use inside the body of the for loop is calculated by
using the number of dimensions in the array as a parameter to the cpp_indent
command.

The cpp array for loop header command takes a boolean parameter called
decl, which has a default value of 0 (FALSE). If decl is set to TRUE, the index
variables are declared inside the header of the for loop. Thus, functionally
equivalent (but slightly shorter) C++ code can be written as follows:

// C++
void some func ()
{
for (CORBA::Ulong il = 0; il < 5; il ++) {
for (CORBA::Ulong 12 = 0; i2 < 7; i2 ++) {
foo[i11][i2] = bar[il][i2];

}

The Tcl script to generate this is also slightly shorter because it can omit the
cpp_array decl index vars command:

Tcl
set typedef $idlgen(root) lookup "long array"]
set a Stypedef true base type]

set indent

set index
[***

cpp_indent [$Sa num dims]]

cpp_array elem index $a "i"]

[
[
[
[

void some_func()

{
@[cpp array for loop header Sa "i" 1 1]@
@Sindent@foo@Sindex@ = bar@S$index@;
@[cpp array for loop footer Sa 1]@

}

***]

For completeness, some of the array processing commands have gen
counterparts:

cpp_gen array decl index vars arr pre ind lev
cpp_gen array for loop header arr pre ind lev ?decl?
cpp_gen array for loop footer arr indent

170

Processing an Any

Processing an Any

The commands to process the any type divide into two categories, for value
insertion and extraction. The following subsections discuss each category.

* Inserting values into an Any.

¢ Extracting values from an Any.

Inserting Values into an Any

The cpp_any insert stmt command generates code that inserts a value into an
any:

cpp_any insert stmt type any name value

This command returns the C++ statement that inserts the specified value of the
specified type into the any called any name. An example of its use is:

Tcl
smart source "std/output.tcl"
smart_source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

}

idlgen set preferences $idlgen (cfg)

open output file "any insert.cxx"

lappend type list [S$Sidlgen(root) lookup widget]

lappend type list [$idlgen(root) lookup boolean]

lappend type list [$idlgen(root) lookup long arrayl

foreach type $type list {
set var name my [$type s uname]
[*%*

@[cpp_any insert stmt S$type "an any" $var name]@;
***]

}

close output file

If the type 1list variable contains the types widget (a struct), boolean and
long array, the above Tcl code will generate the following:

171

Orbix Code Generation Toolkit Programmer’s Guide

// CH++

an_any <<= my widget;

an_any <<= CORBA::Any::from boolean (my boolean) ;
an_any <<= long array forany(my long array);

Extracting Values from an Any

Table 8.3 summarizes the commands that are used to generate code that extracts
values from an any.

Command Description

cpp_any extract var decl Declares a variable called name, of the
type name specified type, into which an any value
can be extracted.

cpp_any extract var ref Returns a reference to the variable called
type name name of the specified type.

cpp_any extract stmt type Extracts a value of the specified type from
any name name the any called any name into the variable
name.

Table: 8.3: Commands for Generating any Extraction Statements

The following example shows how to use these commands:

Tcl

foreach type Stype list {
set var name my [Stype s uname]

[***

@[cpp any extract var decl $Stype Svar name]@;
*Hk]

}

output "\n"

foreach type $type list {
set var name my [Stype s uname]
set var ref [cpp any extract var ref Stype $var name]
[***
if (Q@[cpp_any extract stmt Stype "an any" $var name]@) {
process_Q[Stype s uname]@(@Svar ref@);

172

Processing an Any

***]

If the variable type 1list contains the widget (a struct), boolean and
long array types then the above Tcl code generates the following C++:

// C++

widget * my widget;

CORBA: :Boolean my boolean;

long array slice* my long array;

if (an_any >>= my widget) {
process widget (*my widget);

}

if (an_any >>= CORBA::Any::to boolean (my boolean)) {
process_boolean (my boolean);

}

if (an_any >>= long array forany(my long array)) {
process long array(my long array);

173

Orbix Code Generation Toolkit Programmer’s Guide

174

Developing a Java Genie

The code generation toolkit comes with a rich Java development
library that makes it easy to create code generation applications
that map IDL to Java code.

The std/java boa lib.tcl file is a library of Tcl command procedures that
map IDL constructs into their Java counterparts. The server-side IDL-to-Java
mapping is based on the CORBA Portable Object Adapter specification.

The following topics are covered in this chapter:
® Identifiers and keywords.
® Java prototype.
® Client side: invoking an operation.
® Client side: invoking an attribute.
® Server side: implementing an operation.
® Server side: implementing an attribute.
* Instance variables and local variables.
® Processing a union.
® Processing an array.
® Processing a sequence.

® Processing an Any.

175

Orbix Code Generation Toolkit Programmer’s Guide

Identifiers and Keywords

There are a number of commands that help map IDL data types to their Java
equivalents.

The CORBA mapping generally maps IDL identifiers to the same identifier in
Java, but there are some exceptions required to avoid clashes. For example, if an
IDL identifier clashes with a Java keyword, it is mapped to an identifier with the
prefix .

Consider the following unusual, but valid, interface:

// IDL
interface Strange {

string for(in long while);
}i

The for () operation maps to a Java method with the following signature:

// Java
public java.lang.String Strange. for(int while);

Note: Avoid IDL identifiers that clash with keywords in Java or other
programming languages that you use to implement CORBA objects.
Although they can be mapped as described, it causes confusion.

The application programming interface (API) for generating Java identifiers is
summarized in Table 9.1. The s _variants return fully-scoped identifiers
whereas the 1 variants return non-scoped identifiers.

Command Description

java_s_name node Returns the Java mapping of a
node’s scoped name.

java_1 name node Returns the Java mapping of a
node’s local name.

java_typecode s name type Returns the scoped Java name
of the type code for type.

Table: 9.1: Commands for Generating Identifiers and Keywords

176

Java Prototype

Command Description

java typecode 1 name type Returns the local Java name of
the type code for type.

java_helper name type Returns the scoped name of the
Helper class associated with
type.

java_holder name type Returns the scoped name of the
Holder class associated with

type.

Table: 9.1: Commands for Generating ldentifiers and Keywords

Java Prototype

A typical approach to developing a Java genie is to start with a working Java
example. This Java example should exhibit most of the features that you want to
incorporate into your generated code. You can then proceed by reverse-
engineering the Java example; developing a Tcl script that recreates the Java
example when it receives the corresponding IDL file as input.

The Java example employed to help you develop the Tcl script is referred to here
as a Java prototype. In the following sections, two fundamental Java prototypes
are presented and analyzed in detail.

® The first Java prototype demonstrates how to invoke a typical CORBA
method (client-side prototype).

® The second Java prototype demonstrates how to implement a typical
CORBA method (server-side prototype).

The script derived from these fundamental Java prototypes can serve as a starting
point for a wide range of applications, including the automated generation of
wrapping code for legacy systems.

177

Orbix Code Generation Toolkit Programmer’s Guide

The Java prototypes described in this chapter use the following IDL:

// IDL

// File: ’'prototype.idl’

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);
}i

Client-Side Prototype

The client-side prototype demonstrates a CORBA invocation of the foo: :op ()
IDL operation. Parameters are allocated, a foo: :op () invocation is made, and the
parameters are freed at the end.

// Java

e

// Declare parameters for operation
e

Prototype.widget p_widget;
org.omg.CORBA.StringHolder p_string;
Prototype.longSegHolder p_longSeq;
Prototype.long arrayHolder p_long array;
int[] _return;

/) ===mmmm=

// BAllocate Holder Object for "inout" and "out" Parameters
/[=mmmmmme

p_string = new org.omg.CORBA.StringHolder () ;
p_longSeq = new Prototype.longSeqgHolder ();
p_long array = new Prototype.long arrayHolder ();

178

Java Prototype

p_widget = other widget;
p_string.value = other string;

[[==mmmmmm

// Invoke the operation
e

try {

_result = obj.op(
p_widget,
p_string,
p_longSeq,

p_long array);
} catch (Exception ex) {
// handle the exception

process_string(p_string);

process longSeq(p longSeq) ;
process long array(p long array);
process_longSeq(result);

Server-Side Prototype

The server-side prototype shows a sample implementation of the foo: :op () IDL
operation. This operation demonstrates the use of in, inout and out parameters.
It also has a return value. The code shown in the implementation deals with
deallocation, allocation and initialization of parameters and return values.

// Java
public int[] op(
Prototype.widget
org.omg.CORBA.StringHolder
Prototype.longSegHolder
Prototype.long arrayHolder

p_widget,
p_string,
p_longSeq,
p_long array

// Process 'in' and 'inout' parameters

179

Orbix Code Generation Toolkit Programmer’s Guide

process widget (p_widget);
process_string(p string);

[/ ========

// Declare a variable to hold the return value.
/)=

int[] _result;

[/ ===

// Assign new values to "inout" and "out"
// parameters, and the return value, if needed.

p_string.value = other string;
p_longSeq.value = other longSeq;
p_long array.value = other long array;
_result = other longSeq;

return result;

Client Side: Invoking an Operation

This section explains how to generate Java code that invokes a given IDL
operation. The process of making a CORBA invocation in Java can be broken
down into the following steps:

1. Declare variables to hold parameters and return value.

The calling code must declare all in, inout, and out parameters before
making the invocation. If the return type of the operation is non-void, a
return value must also be declared.

Allocate Holder objects for inout and out parameters.
Initialize input parameters.

The calling code must initialize all in and inout parameters. There is no
need to initialize out parameters.

4. Invoke the IDL operation.

The calling code invokes the operation, passing each of the prepared
parameters and retrieving the return value (if any).

5. Process output parameters and return value.

180

Client Side: Invoking an Operation

Assuming no exception has been thrown, the caller processes the returned
inout, out, and return values.

The following subsections give a detailed example of how to generate complete
code for an IDL operation invocation.

Step 1—Declare Variables to Hold Parameters and Return Value

The Tcl script below illustrates how to declare Java variables to be used as
parameters to (and the return value of) an operation call:

Tcl
smart source "std/output.tcl"
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1
}
idlgen set preferences $idlgen (cfg)
1 set pref (java genie,package name) "Prototype"

open output file "testClt.java"

set op [$idlgen (root) lookup "foo::op"]
set ind lev 2
set arg list [$Sop contents {argument}]
[***
/)=
// Declare parameters for operation
//=======-
***]
foreach arg $arg list {
2 java_gen clt par decl $arg $ind lev
}
3 java_gen clt par decl Sop $ind lev

The Tcl script is explained as follows:
1. Set the pref (java_genie, package name) array element equal to the
name of the Java package that contains the generated code.

2. When an argument node appears as the first parameter of
java_gen clt par decl, the command outputs a declaration of the
corresponding Java parameter.

181

Orbix Code Generation Toolkit Programmer’s Guide

3. When an operation node appears as the first parameter of
java_gen clt par decl, the command outputs a declaration of a
variable to hold the operation’s return value. If the operation has no return
value, the command outputs a blank string.

The previous Tcl script generates the following Java code:

//Java

e

// Declare parameters for operation
e

Prototype.widget p_widget;
org.omg.CORBA.StringHolder p_string;
Prototype.longSegHolder p_longSeq;
Prototype.long arrayHolder p_long array;
int[] _result;

182

Client Side: Invoking an Operation

Step 2—Allocate Holder Objects for inout and out Parameters

The following Tcl script shows how to allocate Holder objects for the inout and
out parameters:

#Tcl
[***
/)=======-
// Allocate Holder objects for "inout" and "out"
Parameters
/)===mmmmm
***]
1 foreach arg [$op args {inout out}] {

set arg name [java 1 name S$arg]
set type [$arg typel]
set dir [Sarg direction]
2 output " [java var alloc mem $arg name $type $dirl; \n"

}

The Tel script is explained as follows:

1. The foreach loop iterates over all the inout and out parameters.

2. The java var alloc memcommand generates a statement that initializes
the $arg name variable with a Holder object of Stype type.

The previous Tcl script generates the following Java code:

//Java

p_string = new org.omg.CORBA.StringHolder () ;
p_longSeq = new Prototype.longSeqHolder () ;
p_long array = new Prototype.long arrayHolder ();

Step 3—Initialize Input Parameters

The following Tcl script shows how to initialize in and inout parameters:

Tcl
[***

// Initialize "in" and "inout" parameters

183

Orbix Code Generation Toolkit Programmer’s Guide

*k k]

1 foreach arg [$Sop args {in inout}] {
set arg name [Java 1 name S$Sarg]
set type [$arg type]

set dir [$arg direction]
set value "other_[$type s _uname]"
2 java gen assign stmt Stype Sarg name $value $ind lev $dir

}
The Tecl script is explained as follows:

1. The foreach loop iterates over all the in and inout parameters.

2. An assignment statement is generated by the java gen assign stmt
command for variables of the given Stype. The $arg ref argument is put
on the left-hand side of the generated assignment statement and the
$value argument on the right-hand side.

The previous Tcl script generates the following Java code:

// Java

p_widget = other widget;
p_string.value = other string;

Step 4—Invoke the IDL Operation

The following Tcl script shows how to invoke an IDL operation, pass parameters,
and assign the return value to a variable:

Tcl
1 set ret assign [jJava_ret assign $op]
set op name [Java_1 name S$Sop]
set start str "\n\t\t\t"
set sep str ",AD\ENENE"
2 set call args [idlgen process list Sarg list \
java 1 name $start str Ssep str]
[***
//=======-
// Invoke the operation
//-=====—-

184

Client Side: Invoking an Operation

try {

@Sret assign@obj.@Sop name@ (@Scall args@) ;
} catch(Exception ex) {

// handle the exception
}

***]
The Tcl script is explained as follows:

1. The [java ret assign $op] expression returns the " result =" string.
If the operation invoked does not have a return type, it returns an empty
string, "".

2. The parameters to the operation call are formatted using the command
idlgen process_list. For more about this command,
“idlgen_process_list” on page 219.

The previous Tcl script generates the following Java code:

//Java

e

// Invoke the operation
[[==mmmmmm

try {

_result = obj.op(
p_widget,
p_string,
p_longSeq,

p_long array);
} catch (Exception ex) {

. // handle the exception
}

Step 5—Process Output Parameters and Return Value

The techniques used to process output parameters are similar to those used to
process input parameters, as in the following Tcl script:

Tcl
[***

185

Orbix Code Generation Toolkit Programmer’s Guide

186

foreach arg [$op args {out inout}] {

set type [$Sarg type]

set name [java 1 name S$arg]

set dir [Sarg direction]

set arg ref [java clt par ref Sarg]
[***

process_Q[Stype s uname]@(@Sarg ref@) ;
*k k]
}
set ret type [$op return typel
set name [java_ 1 name $Sarg]
if {[$ret type 1 name] != "void"} {

set ret ref [java clt par ref Sop]
[***

process_Q@[Sret type s_uname] @ (@Sret ref@);
*kk]

}

close output file
The Tcl script is explained as follows:

The foreach loop iterates over all the out and inout parameters.

2. The java _clt par ref command returns a reference to the Java
parameter corresponding to the given argument node Sarg.

3. When an operation node Sop is supplied as the first parameter to
java clt par ref, the command returns a reference to the return value
of the operation.

The previous Tcl script generates the following Java code:

//Java

process string(p string);
process_longSeq(p longSeq) ;
process long array(p long array);
process longSeq(result);

Client Side: Invoking an Attribute

Client Side: Invoking an Attribute

To invoke an IDL attribute, you must perform similar steps to those described in
“Client Side: Invoking an Operation” on page 180. However, a different form of
the client-side Tcl commands are used:

java clt par decl name type dir
java_clt par ref name type dir

Similar variants are available for the gen counterparts of commands:
java gen clt par decl name type dir ind lev

These commands are the same as the set of commands used to generate an
operation invocation, except they take a different set of arguments. You specify
the name and type of the attribute as the first two arguments. The dir argument
can be in or return, indicating an attribute’s modifier or accessor, respectively.
The ind level argument has the same effect as in “Step 1—Declare Variables to
Hold Parameters and Return Value” on page 181.

187

Orbix Code Generation Toolkit Programmer’s Guide

Server Side: Implementing an Operation

This section explains how to generate Java code that provides the implementation
of an IDL operation. The steps are:

1. Generate the operation signature.
2. Process input parameters.

The method body first processes the in and inout parameters that it has
received from the client.

3. Declare the return value.
4. Initialize output parameters and return value.

The inout and out parameters and the return value must be initialized.

Step 1—Generate the Operation Signature
The java_gen op sigcommand generates a signature for the Java method that
implements an IDL operation.

The following Tcl script generates the signature for the implementation of the
foo: : op operation:

Tcl
smart source "std/output.tcl"
smart _source "std/java boa lib.tcl"

idlgen set preferences S$idlgen (cfg)
set pref(java genie,package name) "Prototype"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1
}

open output file "testSrv.java"

set op [$idlgen (root) lookup "foo::op"]
java _gen op sig $op

188

Server Side: Implementing an Operation

The previous Tcl script generates the following Java code:

// Java
public int[] op(
Prototype.widget p_widget,
org.omg.CORBA. StringHolder p_string,
Prototype.longSegHolder p_longSeq,
Prototype.long arrayHolder p_long array

)
throws org.omg.CORBA. SystemException

The names of the Java parameters are the same as the parameter names declared
in IDL.

Step 2—Process Input Parameters

This step is similar to “Step 5—Process Output Parameters and Return Value” on
page 185. It is, therefore, not described in this subsection.

Step 3—Declare the Return Value

The following Tcl script declares a local variable that can hold the return value of
the operation:

Tcl

set op [$idlgen (root) lookup "foo::op"]
set ret type [Sop return type]

set ind lev 3

set arg list [$Sop contents {argument}]

if {[$ret type 1 name] != "void"} {

set type [$op return type]
set ret ref [java srv par ref Sop]

[***
A
// Declare a variable to hold the return value.
/)==m====-
1 @[java srv_ret decl Sret ref Stypel@;
***]

189

Orbix Code Generation Toolkit Programmer’s Guide

The preceding Tcl script can be explained as follows:

1. The java srv_ret decl command returns a statement that declares the
return value of the operation. The first argument is the name of the
operation node. The second argument is the type of the return value.

The output of the above Tcl is as follows:

//Java

[/ ===

// Declare a variable to hold the return value.
[/ ===

int[] _result;

Step 4—Initialize Output Parameters and the Return Value

190

The following Tcl script iterates over all inout and out parameters and, if
needed, the return value, and assigns values to them:

Tcl
[***
/1====mmm-
// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.
//-====-—-
***]
foreach arg [$op args {inout out}] {
set type [$Sarg type]
set arg ref [java srv par ref Sarg]
set name?2 "other_[$type s uname]"
set dir [Sarg direction]

java_gen assign stmt Stype $arg ref Sname2 $ind lev S$Sdir

}

if {[$ret type 1 name] != "void"} {

set ret ref [java srv par ref Sop]

set name2 "other [$ret type s uname]"

set dir "return"

java_gen assign stmt Stype $ret ref Sname2 $ind lev S$Sdir
[***

return @Sret ref@;
*kk]

Server Side: Implementing an Attribute

The Tcl script is explained as follows:

1. The java srv par ref command returns a reference to the Java
parameter corresponding to the Sarg argument node. If the argument is an
inout or out parameter the reference is of the form ArgName .value, as
is appropriate for assignment to Holder types.

2. When the $op operation node is supplied as the first argument to the

java_srv _par ref command, it returns a reference to the operation’s
return value.

The previous Tcl script generates the following Java code:

//Java

// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.

p_string.value = other string;
p_longSeqg.value = other longSeq;
{
for (int il = 0; i1l < 10 ; il ++) {
p _long array[il] = other long array[il];

for (int il = 0; il < 10 ; 411 ++) {
_return[il] = other_longSeq[il];

}

return result;

Server Side: Implementing an Attribute

The java srv_par alloc command is defined as follows:

java srv par alloc arg or op

191

Orbix Code Generation Toolkit Programmer’s Guide

The java srv par alloc command can take either one or three arguments.

* With one argument, the java_srv _par alloc command allocates
memory, if necessary, for an operation’s out parameter or return value:

java srv par alloc arg or op
* With three arguments the java srv par alloc command can allocate
memory for the return value of an attribute’s accessor method:
java srv _par alloc name type direction
The direction attribute must be set equal to return in this case.
This convention of replacing arg or op with several arguments is also used in

the other commands for server-side processing of parameters. Thus, the full set of
commands for processing an attribute’s implicit parameter and return value is:

java srv_ret decl name type ?alloc mem?
java srv par alloc name type direction
java srv par ref name type direction

It also applies to the gen_ counterparts:

java gen srv ret decl name type ind lev ?alloc mem?
java gen srv _par alloc name type direction ind lev

Instance Variables and Local Variables

192

Previous subsections show how to process variables used for parameters and an
operation’s return value. However, not all variables are used as parameters. For
example, a Java class that implements an IDL interface might contain some
instance variables that are not used as parameters; or the body of an operation
might declare some local variables that are not used as parameters. This section
discusses commands for processing such variables. The following command is
provided:

java var decl name type direction
The java_var decl command has a gen_ counterpart:

java gen var decl name type direction ind lev

Instance Variables and Local Variables

The following example shows how to use these commands:

Tcl
smart_source "std/output.tcl”
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

}

idlgen set preferences $idlgen(cfq)

open output file "variables.java"

lappend type list [$idlgen(root) lookup string]
lappend type list [$Sidlgen(root) lookup widget]
lappend type list [S$Sidlgen(root) lookup long array]

set ind lev 1

[***
void some_func()
{
// Declare variables
***]

foreach type $type list {
set name "my [Stype 1 name]"
java _gen var decl $name Stype "in" Sind lev

}

[***

// Initialize variables
*k k]
foreach type $type list {
set name "my [Stype 1 name]"
set value "other_[$type 1 name]"
java_gen assign stmt Stype $name $value $ind lev "in"

}

[***

} // some_func()
***]

close output file

193

Orbix Code Generation Toolkit Programmer’s Guide

The Tcl script is explained as follows:

1. The java gen var decl command returns a Java variable declaration
with the specified name and type. The "in" argument specifies the
direction of the variable, as if it was a parameter. If the direction is "out"
or "inout" a Holder type is declared.

2. An assignment statement is generated by the java gen assign stmt
command for variables of the given $type. The $name argument is put on
the left-hand side of the generated assignment statement and the $value
argument on the right-hand side.

If the type 1list variable contains the string, widget (a struct) and long array
types, the Tcl code generates the following Java code:

// Java
void some func ()

{

// Declare variables

java.lang.String my string;
NoPackage.widget my widget;
int[] my long array;

// Initialize variables
my string = other string;
my widget = other widget;
{
for (int il = 0; il < 10 ; 11 ++) |
my long array[il] = other long array[il];

}

} // some func ()

194

Processing a Union

Processing a Union

When generating Java code to process an IDL union, it is common to use a Java
switch statement to process the different cases of the union: the
java_branch case s label command is used for this task. Sometimes you
might want to process an IDL union with a different Java construct, such as an
if-then-else statement: the java branch 1 label command is used for this
task. Table 9.2 summarizes the commands used for generating union labels.

Table: 9.2: Commands for Generating Union Labels

Command

Description

java branch case 1 label
union branch

java branch case s label
union branch

java branch 1 label
union branch

java branch s label
union branch

Returns the "case local label"
string, where local label is the local
label of the union branch, or "default",
for the default union branch.

Returns the "case scoped label"
string, where scoped label is the
scoped label of the union branch, or
"default", for the default union branch.

Returns the "local label™ string, where
local label is the local label of the given
union branch, or "default", for the
default union branch.

Returns the "scoped label" string, where
scoped label is the scoped label of the
given union branch, or "default", for
the default union branch.

195

Orbix Code Generation Toolkit Programmer’s Guide

196

For example, given the following IDL:

// IDL

module m {
enum colour {red, green, blue};
union foo switch (colour) {

case red: long a;
case green: string b;
default: short c;

};
}i

The following Tcl script generates a Java switch statement to process the union:

Tcl
smart source "std/output.tcl"
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "union.idl"] } {
exit 1

}

idlgen set preferences Sidlgen(cfg)

open output file "union.java"

set union [$idlgen (root) lookup "m::foo"]

[***
void some_func()
{
//...
switch(u.discriminator () .value()) {
***]

foreach branch [$union contents {union branch}] {
set name [java 1 name Sbranch]
set case label [java branch case s label S$branch]

[***

@Scase label@:

// process u.Q@S$name@ ()
break;

***]
}; # foreach
[***

};
} // some_func()
***]

close output file

Processing a Union

The Tcl script is explained as follows:

The foreach loop iterates over every branch of the given union.

The java branch case s label command generates the case label for
the given Sbranch branch node. If $branch is the default branch, the
command returns "default".

This Tcl script generates the following Java code:

// Java

void some func ()

{

Y
switch(u.discriminator () .value()) {
case NoPackage.m.colour. red:
// process u.al()
break;
case NoPackage.m.colour. green:
// process u.b()
break;
default:
// process u.c()
break;

I

} // some func()

Case labels are generated in the form NoPackage.m.colour. red, of integer
type, instead of NoPackage .m.colour.red, of NoPackage.m.colour type,
because an integer type must be used in the branches of the switch statement.

The java branch case s label command works for all union discriminant
types. For example, if the discriminant is a long type, the command returns a
string of the form case 42 (where 42 is the value of the case label); if the
discriminant is type char, the command returns a string of the form case "a’.

197

Orbix Code Generation Toolkit Programmer’s Guide

Processing an Array

Arrays are usually processed in Java using a for loop to access each element in
the array. For example, consider the following definition of an array:

// IDL
typedef long long array([5][7];

Assume that two variables, foo and bar, are both long array types. Java code to
perform an element-wise copy from bar into foo might be written as follows:

// Java
void some method ()

{

1 int il;
int i2;
2 for (i1 = 0; i1 < 5 ; il ++) {
for (12 = 0; i2 < 7 ; i2 ++) {
3 foo[i11][i2] = bar[il][i2];
4 }

}

To write a Tcl script to generate the above Java code, you need Tcl commands
that perform the following tasks:

1. Declare index variables.
2. Generate the for loop’s header.
3. Provide the index for each element of the array "[i1] [12]".
4. Generate the for loop’s footer.
The following commands provide these capabilities:

java array decl index vars arr pre ind lev

java array for loop header arr pre ind lev ?decl?
java array elem index arr pre

java array for loop footer arr ind lev

198

Processing an Array

These commands use the following conventions:

® arrdenotes an array node in the parse tree.

* preis the prefix to use when constructing the names of index variables.
For example, the prefix i is used to get index variables called i1 and i2.

® ind Ievis the indentation level at which the for loop is to be created. In
the above Java example, the for loop is indented one level from the left
side of the page.

The following Tcl script generates the for loop shown earlier:

Tcl
smart source "std/output.tcl"
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "array.idl"] } {
exit 1

}
idlgen set preferences $idlgen (cfg)
open output file "array.java"

set typedef [$idlgen(root) lookup "long array"]
set a [Stypedef true base type]
set indent [Java indent [Sa num dims]]

set index [java array elem index Sa "i"]
[***

void some_method ()

{

@[java array decl index vars $a "i" 1]@

@[java array for loop header Sa "i" 1]@
@Sindent@foo@S$index@ = bar@$index@;
@[java array for loop footer $a 1]@

}
***]
close output file

The amount of indentation to use inside the body of the for loop is calculated by
using the number of dimensions in the array as a parameter to the java_indent
command.

199

Orbix Code Generation Toolkit Programmer’s Guide

The java array for loop header command takes a boolean parameter called
decl, which has a default value of 0 (FALSE). If decl is set to 1 (TRUE), the
index variables are declared inside the header of the for loop.

Functionally equivalent (but slightly shorter) Java code can be written as follows:

// Java
void some method ()
{
for (int il = 0; i1 < 5 ; il ++) {
for (int i2 = 0; i2 < 7 ; i2 ++) {
foo[il] [i2] = bar[il][i2];

}

The Tcl script to generate this is also slightly shorter, because it can omit the
java_array decl index vars command:

Tcl
set typedef $idlgen (root) lookup "long array"]
set a Stypedef true base type]

set indent

set index
[***

java_indent [$a num dims]]
java_array elem index $a "i"]

void some_method ()

{
@[java array for loop header Sa "i" 1 1]@
@Sindent@foo@Sindex@ = bar@Sindex@;
@[java array for loop footer Sa 1]@

}

***]

For completeness, some of the array processing commands have gen
counterparts:

java gen array decl index vars arr pre ind lev
java gen array for loop header arr pre ind lev ?decl?
java gen array for loop footer arr indent

200

Processing a Sequence

Processing a Sequence

Because sequences map to Java arrays, they are processed in a similar way to IDL
array types. The following commands are provided for processing sequences:

java sequence for loop header seq pre ind lev ?decl?
Jjava_ sequence elem index seq pre
java_sequence for loop footer seqg ind lev
The command parameters are:

[]

seg denotes a sequence node in the parse tree.

* preis the prefix to use when constructing the names of index variables.

For example, the prefix i is used to get index variables called 11 and i2.
® ind Ievis the indentation level at which the for loop is to be created.

® declis aflag that causes loop indices to be declared in the for loop header

when equal to 1 (TRUE). No indices are declared when dec1 is equal to 0
(FALSE).

These commands are used in an similar way to the array commands.

Processing an Any

The commands to process the any type divide into two categories, for value
insertion and extraction. The following subsections discuss each category.

® Inserting values into an Any.

¢ Extracting values from an Any.

201

Orbix Code Generation Toolkit Programmer’s Guide

Inserting Values into an Any

Table 9.3 summarizes the command that is used to generate code that inserts
values into an any.

Command Description

java_any insert stmt type Returns a Java statement that inserts the
any name value value variable of the specified type into
the any called any name.

Table: 9.3: Command for Generating any Insertion Statements

The following example Tcl script shows how to use this command:

Tcl
smart source "std/output.tcl"
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

}

idlgen set preferences Sidlgen (cfg)

open output file "any insert.java"

lappend type list [Sidlgen(root) lookup widget]
lappend type list [$idlgen(root) lookup boolean]
lappend type list [Sidlgen(root) lookup long array]

foreach type Stype list {

set var name my [Stype s uname]
[***

@[java any insert stmt $type "an any" $var name]@;
*Hok]

}

close output file

202

Processing an Any

If the type list variable contains the widget (a struct), boolean and
long_array types, the above Tcl code generates the following:

// Java
NoPackage.widgetHelper.insert (an any,my widget) ;
an_any.insert boolean (my boolean);

NoPackage.long arrayHelper.insert (an any,my long array);

Extracting Values from an Any

Table 9.4 summarizes the commands that are used to generate code that extracts
values from an any.

Command Description

java_any extract var decl Declares a variable called name, of the
type name specified type, into which an any value
can be extracted.

java_any extract var ref Returns a reference to the variable called
type name name of the specified type.

java_any extract stmt type | Extracts a value of the specified type from
any name name the any called any name into the variable
name.

Table: 9.4: Commands for Generating any Extraction Statements

The following example Tcl script shows how to use these commands:

Tcl
smart source "std/output.tcl”
smart_source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

}

idlgen set preferences $idlgen (cfq)

open output file "any extract.java"

lappend type list [$idlgen(root) lookup widget]
lappend type list [Sidlgen(root) lookup boolean]

203

Orbix Code Generation Toolkit Programmer’s Guide

204

lappend type list [$Sidlgen(root) lookup long array]

[***

try {
***]

foreach type Stype list {
set var name my [$type s uname]
[***

@[java any extract var decl Stype $Svar name]@;
*Hok]

}
output "\n"
foreach type Stype list {
set var name my [$type s uname]
set var ref [Java any extract var ref $type $var name]
[***
@[java any extract stmt Stype "an any" $var name]@
process_Q[Stype s uname]@(@S$var ref@);

***]

}

[***

}

catch (Exception e) {
System.out.println("Error: extract from any.");
e.printStackTrace() ;

}i

***]

close output file

Processing an Any

If the variable type 1list contains the widget (a struct), boolean and
long_array types, the above Tcl code generates the following Java code:

// Java

try {
NoPackage.widget my widget;
boolean my boolean;
int[] my long array;

my widget = NoPackage.widgetHelper.extract (an any)
process widget (my widget) ;

my boolean = an any.extract boolean ()
process boolean (my boolean) ;

my long array = NoPackage.long arrayHelper.extract (an any)
process long array(my long array);

}

catch (Exception e) {
System.out.println("Error: extract from any.");
e.printStackTrace () ;

}i

205

Orbix Code Generation Toolkit Programmer’s Guide

206

10

Further Development Issues

This chapter details further development facets of the code
generation toolkit that help you to write genies more effectively.

This chapter describes the following topics in detail:
® Global arrays.
¢ Re-implementing Tcl commands.
® Miscellaneous utility commands.

®* Recommended programming style.

Global Arrays

The code generation toolkit employs a number of global arrays to store common
information.

Some of these global arrays are discussed in previous chapters. For example,
$idlgen (root), see “Traversing the Parse Tree” on page 103, holds the results
of parsing an IDL file.

Note: When using arrays make sure you do not place spaces inside the
parentheses, otherwise Tcl will treat it as a different array index to the one
you intended. For example, $variable (index) is not the same as
Svariable(index).

207

Orbix Code Generation Toolkit Programmer’s Guide

The Sidlgen Array

This array contains entries that are related to the core id1gen executable.

$idlgen(root)
This variable holds the root of an IDL file parsed with the built-in parser. For
example:
Tcl
if {![idlgen parse idl file "finance.idl"]} {
exit

}
set node [$idlgen(root) lookup Account]

For more information, see Chapter on page 101.

Sidlgen(cfg)

This variable represents all the configuration settings from the standard
configuration file idlgen.cfg:

Tcl
set version [$idlgen(cfg) get string orbix.version number]

For more information, see “Using Configuration Files” on page 136.

Sidlgen(exe_and_script_name)

This variable contains the name of the id1gen executable together with the name
of the Tcl script being run. This variable is convenient for printing usage
statements:

Tcl
puts "Usage: S$idlgen(exe and script name) -f <file>"

Run the idlgen interpreter from the command line:

idlgen globalvars.tcl

Usage: idlgen globalvars.tcl -f <file>

208

Global Arrays

The Spref Array

It is best to avoid embedding coding preferences in a script that will be re-used in
many different circumstances. Passing numerous parameters to each command
procedure is impractical, so it is better to use a global repository of coding
preferences.

The code generation toolkit provides a number of mechanisms to support genie
preferences:

¢ Command line arguments.
* Configuration files.

Configuration files can, in coding terms, be time consuming to access. The
preference array caches the more common preferences found in a configuration
file. Users can specify values in the default scope of the standard configuration
file and they are placed in the $pref array during initialization of the idlgen
interpreter. This allows quick access to the main options without the overhead of
using the configuration file commands and operations. Command-line arguments
can then override any of the more static preferences specified in configuration
files.

This is an example configuration file, with some entries in the default scope:

default {

trousers {
waist = "32";
inside leg = "32";

}i

jacket {
chest = "42";
colour = "pink";

}i
}:

The corresponding entries in the preference array are as follows:

Spref (trousers,waist)
Spref (trousers, inside leg)
Spref (jacket, chest)

Spref (jacket, colour)

209

Orbix Code Generation Toolkit Programmer’s Guide

The idlgen interpreter automatically creates preference array values for all the
default scoped entries in the standard configuration file using the following
command:

Tcl
idlgen set preferences $idlgen (cfq)

Note: This command assumes that all names in the configuration file containing
is_orwant have boolean values. If such an entry has a value other than
0 or 1, or true or false, an exception is thrown.

This command takes the default scoped entries from the specified configuration
file and copies them into the preference array. This command can also be run on
configuration files that you have processed explicitly:

Tcl
if { [catch {
set cf [idlgen parse config file "shop.cfg"]
idlgen set preferences Scf
} err]
} else {
puts stderr Serr
exit

}
parray pref

Running this script on the described configuration file results in the following
output:

idlgen prefs.tcl

pref (trousers,waist) = 32
pref (trousers, inside leg) = 32
pref (jacket, chest) = 42
pref (jacket, colour) = pink

210

Global Arrays

It is good practice to ensure that the defaults in a configuration file take
precedence over default values in a genie. This behavior can be accomplished by
using the Tcl info exists command to ensure that a preference is set only if it
does not exist in the configuration file.

if { ![info exists pref (trousers,waist)] } {
set pref (trousers,waist) "30"

}

You should extend the default scope of the configuration file when your genie
requires an additional preference entry or new category. You can complement the
extended scope by using the described commands to place quick access
preferences in the preferences array.

The command procedures in the std/output.tcl library examine the entries
described in Table 10.1:

$pref(...) Array Entry Purpose

Spref (all,output dir) A file generated with the

open_output file command file is placed
in the directory specified by this entry. If
this entry has the value "." or "" (an empty
string), the file is generated in the current
working directory. The default value of this
entry is an empty string.

$pref (all,want diagnostics) If this has the value 1, diagnostic messages,

such as idlgen: creating foo i.h, are
written to standard output whenever a genie
generates an output file.

If this entry has the value 0, no diagnostic
messages are written. The -v (verbose)
command-line option sets this entry to 1
and the -s (silent) command-line option
sets this entry to 0.

The default value of this entry is 1.

Table: 10.1: $pref(...) Array Entries

211

Orbix Code Generation Toolkit Programmer’s Guide

The $cache Array

If a command is called frequently, caching its result can speed up a genie.
Caching the results of frequently called commands can speed up genies by up to
twenty per cent. Many of the commands supplied with the code generation toolkit
perform caching. This mechanism is useful for speeding up your own genies.

Consider this simple command procedure that takes three parameters and returns

aresult:
Tcl
proc foobar {a b c} {
set result ...; # set to the normal body

of the procedure here
return $result

}

To cache the results in the cache array the command procedure can be altered as
below:

Tcl
proc foobar {a b c} {
global cache
if { [info exists cache (foobar, $a, b, Sc) 1} {
return S$cache (foobar, $a, $b, $c)
}
set result ...; # set to the normal body
of the procedurehere
set cache (foobar, $a, $b, $Sc) Sresult
return S$result

}

You should only cache the results of idempotent procedures; that is, procedures
that always return the same result when invoked with the same parameters. For
example, a random-number generator function is not idempotent, and hence its
result should not be cached.

Note: A side-effect of the idlgen parse idl file command is that it destroys
$cache (...). This is to prevent a genie from having stale cache
information if it processes several IDL files.

212

Re-Implementing Tcl Commands

Re-Implementing Tcl Commands

Consider a genie which uses a particular Tcl command procedure extensively, but
you must now alter its behavior. The genie uses the following command
procedure a number of times:

Tcl
proc say hello {message} {
puts Smessage

}
There are a number of different ways you could alter the behavior of this
command procedure:

® Re-code the procedure’s body.

* Replace all instances where the genie calls this procedure with calls to a
new procedure.

® Use a feature of the Tcl language that allows you to re-implement
procedures without affecting the original procedure.

The third option allows the genie to use the new implementation of the command
procedure, while still allowing the process to be reversed if required. The new
implementation of the command procedure can be slotted in and out, when
required, without having to alter the calling code.

This is the new implementation of the say hello command procedure:

Tcl
proc say hello {message} ({
puts "Hello ’S$message’"

}

If a genie used say hello from the original script, it can use the original
procedure’s functionality:

Tcl
smart source "original.tcl"
say hello Tony

Run the idlgen interpreter from the command line:

idlgen application.tcl

Tony

213

Orbix Code Generation Toolkit Programmer’s Guide

However, to override the command procedure, the programmer only needs to
smart_source the new command procedure instead:

Tcl
smart source override.tcl
say hello Tony

Run the idlgen interpreter from the command line:

idlgen application.tcl

Hello ’'Tony’

More Smart Source

When commands are re-implemented, there is still a danger that a script might
smart_source the replaced command back in. This would cause the original (and
unwanted) version of the command to be re-instated.

Tcl

smart source "override.tcl"

smart _source "original.tcl"” ;# Oops
say hello Tony

Run the idlgen interpreter from the command line:

idlgen application.tcl

Tony

Smart source provides a mechanism to prevent this. This mechanism is
accomplished by using the pragma once directive to nullify repeated attempts to
smart_source a file.

For example, the following implementation prohibits the use of smart source
multiple times on the original command procedure. Here is the original
implementation with the new pragma directive added:

Tcl

smart source pragma once

proc say hello {message} {
puts Smessage

}

214

Re-Implementing Tcl Commands

The following Tcl script is the new implementation, but note that it uses
smart_source on the original file as well. This is to ensure that if anyone uses
the new implementation, the old implementation is guaranteed not to override the
new implementation later on.

Tcl
smart source "original.tcl"
smart source pragma once

proc say hello {message} ({
puts "Hello ’S$message’"

}

Now, when the genie accidentally uses smart source on the original command
procedure, the new procedure is not overridden by the original.

Tcl

smart source "override.tcl"

smart source "original.tcl" ;# Will not override
say hello Tony

Run the idlgen interpreter from the command line:

idlgen application.tcl

Hello ’Tony’

More Output

An alternative set of output commands is found in std/sbs_output.tcl. The
sbs prefix stands for Smart But Slower output. The Tcl commands that are
available in this alternative script have the same API as the ones available in std/
output.tcl, but they have a different implementation.

The main advantage of using this alternative library of commands is that it can
dramatically cut down on the re-compilation time of a project that contains auto-
generated files. A change to an IDL file might affect only a few of the generated
files, but if all the files are written out, the makefile of the project can attempt to
rebuild portions of the project unnecessarily.

The std/sbs_output.tcl commands only rewrite a file if the file has changed.
These overridden commands are slower because they write a temporary file and
run a diff with the target file. This is typically 10% slower than the equivalent
commands in std/output.tcl.

215

Orbix Code Generation Toolkit Programmer’s Guide

Miscellaneous Utility Commands

The following sections discuss miscellaneous utility commands provided by the
idlgen interpreter.

idlgen read_support_file

Scripts often generate lots of repetitive code, and also copy some pre-written code
to the output file. For example, consider a script that generates utility functions
for converting IDL types into corresponding Widget types. Such a script might be
useful if you want to build a CORBA-to-Widget gateway, or if you are adding a
CORBA wrapper to an existing Widget-based application. Typically, such a
script:

* Contains procedures that generate data-type conversion functions for user-
defined type such as structs, unions, and sequences.

® Copies (to the output files) pre-written functions that perform data-type
conversion for built-in IDL types such as short, long, and string.

You can ensure that pre-written code is copied to an output file by taking
advantage of the idlgen interpreter's bilingual capability: simply embed all the
pre-written code inside a text block as shown below:

proc foo copy pre written code {} {

[***

. put all the pre-written code here ...
***]

}

This approach works well if there is only a small amount of pre-written code, say
fifty lines. However, if there are several hundred lines of pre-written code this
approach becomes unwieldy. The script might contain more lines of embedded
text than of Tcl code, making it difficult to follow the steps in the Tcl code.

The idlgen read support file command is provided to tackle this scalability
issue. It is used as follows:

proc foo copy pre written code {} {
output [idlgen read support file "foo/pre written.txt"]
}

216

Miscellaneous Utility Commands

The idlgen read support file command searches for the specified file
relative to the directories in the script search path entry in the idlgen.cfg
configuration file (which makes it possible for you to keep pre-written code files
in the same directory as your genies). If idlgen read support file cannot
find the file, it throws an exception. If it can find the file, it reads the file and
returns its entire contents as a string. This string can then be used as a parameter
to the output command.

As shown in the above example, idlgen read support file can be used to
copy chunks of pre-written text into an output file. However, you can also use it
to copy entire files, as the following example illustrates:

proc foo copy all files {} {
foo copy file "pre written code.h"
foo copy file "pre written code.cc"
foo copy file "Makefile"

proc foo copy file {file name} {
open output file $file name
output [idlgen read support file "foo/$file name"]
close output file

}

Some programming projects can be divided into two parts:
® A genie that generates lots of repetitive code.

* Five or ten handwritten files containing non-repetitious code that cannot
be generated easily.

By using the idlgen read support file command as shown in the above
example, it is possible to shrink-wrap such a project into a genie that both
generates the repetitious code and copies the hand-written files (including a
Makefile). Shrink-wrapped scripts are a very convenient format for distribution.
For example, suppose that different departments in your organization have genies
implemented using the Widget toolkit/database. If you have written a genie that
enables you to put a CORBA wrapper around an arbitrary Widget-based genie,
you can shrink-wrap this genie (and its associated pre-written files) and distribute
it to the different departments in your organization, so that they can easily use it
to wrap their genies.

217

Orbix Code Generation Toolkit Programmer’s Guide

idlgen_support file full name

This command is used as follows:
idlgen support file full name local name

This command is related to idlgen read support file, but instead of
returning the contents of the file, it just locates the file and returns its full
pathname. This command can be useful if you want to use the file name as a
parameter to a shell command that is executed with the exec command.

idlgen_gen_comment_block

Many organizations require that all source-code files contain a standard comment,
such as a copyright notice or disclaimer. The idlgen gen comment block
command is provided for this purpose. Suppose that the
default.all.copyright entry in the idlgen.cfg configuration file is a list of
strings containing the following text:

Copyright ACME Corporation 1998.
All rights reserved.

When the idlgen interpreter is started, the above configuration entry is
automatically copied into $pref (all, copyright). If a script contains the
following commands:

set text Spref(all,copyright)
idlgen gen comment block $text "//" "-"

the following is written to the output file:

[/ e
// Copyright ACME Corporation 1998.
// All rights reserved.

218

Miscellaneous Utility Commands

The idlgen gen comment block command takes three parameters:

® The first parameter is a list of strings that denotes the text of the comment
to be written.

® The second parameter is the string used to start a one-line comment, for
example, // in C++ and Java, # in Makefiles and shell-scripts, and -- in
Ada.

¢ The third parameter is the character that is used for the horizontal lines that
form a box around the comment.

idlgen_process_list

Genies frequently process lists. If each item in a list is to be processed identically,
this can be achieved with a Tcl foreach loop:

foreach item $list {
process_item $item

}

However, some lists require slightly more complex logic. The classic case is a list
of parameters separated by commas. In this case, the foreach loop can be written
in the form:

set arg_list [$Sop contents {argument}]
set len [llength Sarg list]
set 1 1
foreach arg $arg list {
process_item $arg
if {$i < $len} { output "," }
incr i

}

This example shows that generating a separator (for example, a comma) between
each item of a list requires substantially more code. Furthermore, empty lists
might require special-case logic.

The idlgen interpreter provides the idlgen process list command to ease
the burden of list processing. This command takes six parameters:

idlgen process list list func start str sep str end str empty str

219

Orbix Code Generation Toolkit Programmer’s Guide

220

The idlgen process list command returns a string that is constructed as
follows:

If the 1ist is empty, empty str is returned. Otherwise:

1. The idlgen process list command initializes its result with
start str.

2. It then calls funcrepeatedly (each time passing it an item from list asa
parameter).

3. The strings returned from these calls are appended onto the result,
followed by sep strif the item being processed is not the last one in the
list.

4. When all the items in 1ist have been processed, end stris appended to
the result, which is then returned.

The start str, sep str, end str and empty str parameters have a default
value of "". Therefore you need to specify explicitly only the parameters that you
need. The following code snippet illustrates how idlgen process list can be
used:

proc 1 name {node} {
return [$node 1 name]
}
proc gen call op {op} {
set arg list [Sop contents {argument}]
set call args [idlgen process list Sarg list \
1 name "\n\t\t\t" ", \n\t\t\t"]

[***
try {
obj->@[Sop 1 name]@(@Scall args@) ;
} catch (...) { ... }
*Hok]

}

Miscellaneous Utility Commands

If the above gen_call op command procedure is invoked on two operations, one
that takes three parameters and another that does not take any parameters, then the
output generated might be something like:

try {
obj—>opl (
stock id,
quantity,
unit price);
} catch (...) { ..}
try {
obj->op2 () ;
} catch (...) { ...}

idlgen_pad_str

The idlgen pad str command takes two parameters:
idlgen pad str string pad len

This command calculates the length of the string parameter. If it is less than
pad_len, it adds spaces onto the end of string to make it pad len characters
long. The padded string is then returned. This command can be used to obtain
vertical alignment of parameter/variable declarations. For example, consider the
following example:

foreach arg S$Sop {

set type [[Sarg type] s name]

set name [$arg 1 name]

puts "[idlgen pad str Stype 12] Sname;"
}

For a given operation, the output of the above code might be as follows:

long wages;
string names;
Finance: :Account acc;
Widget foo;

As can be seen, the names of most of the parameters are vertically aligned.
However, the type name of the acc parameter is longer than 12 (the pad len)
causing acc to be misaligned. Using a relatively large value for pad Ien, such as
32, minimizes the likelihood of misalignment occurring. However, IDL syntax
does not impose any limit on the length of identifiers, so it is impossible to pick a

221

Orbix Code Generation Toolkit Programmer’s Guide

value of pad_len large enough to guarantee alignment in all cases. For this
reason, it is a good idea for scripts to determine pad len from an entry in a
configuration file. In this way, users can modify it easily to suit their needs. Some
commands in the cpp_boa 1lib.tcl library use

Spref (cpp, max_padding for types) for alignment of parameters and variable
declarations.

Recommended Programming Style

The bundled genies share a common programming style. The following section
highlights some aspects of this programming style and explains how adopting the
same style can help you when developing your own genies.

Organizing Your Files

222

The following code illustrates several recommendations for organizing the files in
your genies:

File: foo.tcl

smart_source "foo/args.tcl"
process cmd line args idl file preproc opts

set ok [idlgen parse idl file $idl file S$preproc_opts]
if {!$ok} { exit }

if {$pref (foo,want client)} {
smart source "foo/gen client cc.bi"
gen client cc

}

if {$pref (foo,want server)} {
smart source "foo/gen server cc.bi"
gen_server_cc

}

if {Spref (foo,want impl class)} {
smart source "foo/gen impl class h.bi"
smart source "foo/gen impl class cc.bi"

Recommended Programming Style

}

set want {interface}

set rec into {module}

foreach i [$idlgen(root) rcontents $want Srec into] {
gen impl class h $i
gen impl class cc $i

The above example demonstrates the following points:

Do not define all the genie's logic in a single file. Instead, write a small
mainline script that uses smart_source to access commands in other files.
This helps to keep the genie code modular.

If the mainline script of your genie is called foo.tcl, any associated files
should be in a sub-directory called foo. This helps to avoid clashing file
names. It also ensures that running the command idlgen -1list lists the
foo.tcl genie, but does not list any of the associated files that are used to
help implement foo.tcl.

Command procedures to process command-line arguments should be put
into a file called args. tcl (in the genie's sub-directory). The results of
processing command-line arguments should be passed back to the caller
either with Tcl upvar parameters or with the Spref array (or a
combination of both). If you use the $pref array then use the name of the
genie as a prefix for entries in $pref. For example, the args.tcl
command procedures in the cpp_genie. tcl genie uses the entry

Spref (cpp _genie,want client) to indicate the value of the -client
command-line option.

If your genie has several options (such as -client, -server) for
selecting different kinds of code that can be generated, place the command
procedures for generating each type of code into separate files, and
smart_source a file only if the corresponding command-line option has
been provided. This speeds up the genie if only a few options have been
generated because it avoids unnecessary use of smart source on files.

223

Orbix Code Generation Toolkit Programmer’s Guide

Organizing Your Command Procedures

The following code illustrates several recommendations for organizing the
command procedures in your genies:

proc gen impl class cc {i} {
global pref
set file [cpp impl class $i]S$pref (cpp,cc_file ext)
open output file $file

gen impl class cc file header
gen _impl class cc constructor
gen_impl class cc destructor

foreach op [$1 contents {operation}] {
gen impl class cc operation Sop
}

close output file

}

The above example demonstrates the following points:

Large procedures are broken into a collection of smaller procedures.
2. Avoid name space pollution of procedure names:
+ Use a common prefix for names of all procedures defined in a file.
+ You can use (an abbreviation of) the file name as the prefix.
3. Use gen_ as part of the prefix if the procedure outputs its result.
+ Example: cpp _gen operation h outputs an operation’s signature.
4. Procedures without gen_ in their name return their result.

+ Example: cpp_is fixed size returns a value.

224

Recommended Programming Style

Writing Library Genies

Let us suppose that your organization has many existing genies that are
implemented with the aid of a product called ACME. In order to aid the task of
putting CORBA wrappers around these genies, you decide to write a genie called
idl2acme.tcl that generates C++ conversion functions to convert IDL types to
their ACME counterparts, and vice versa. For example, if there is an IDL type
called foo and a corresponding ACME type called acme foo, id12acme.tcl
generates the following two functions:

void idl to acme foo(const foo &from, acme foo &to);
void acme to idl foo(const acme foo &from, foo &to);

The genie generates similar conversion functions for all IDL types. It can be run
as follows:

idlgen idl2acme.tcl some_file.idl

idlgen: creating idl2acme.h
idlgen: creating idl2acme.cc

The id12acme.tcl script can look something like this:
File: idl2acme.tcl

smart source "idl2acme/args.tcl"
parse cmd line args file opts

set ok [idlgen parse idl file S$file Sopts]

if {!$ok} { exit }

smart_source "std/sbs_output.tcl"

smart source "idl2acme/gen idl2acme h.bi"

smart source "idl2acme/gen idl2acme cc.bi"

gen_idl2acme h
gen idl2acme cc

225

Orbix Code Generation Toolkit Programmer’s Guide

Calling a Genie from Other Genies

Although being able to run id12acme.tcl as a stand-alone genie is useful, you
might decide that you would also like to call upon its functionality from inside
other genies. For example, you might modify a copy of the bundled
cpp_genie.tcl script in order to develop acme genie. tcl, which is a genie that
is tailored specifically for the needs of people who want to put CORBA wrappers
around existing ACME-based genies. In order to access the API of

idl2acme. tcl, the following lines of code can be embedded inside

acme genie.tcl:

smart source "idl2acme/gen idl2acme h.bi"
smart source "idl2acme/gen idl2acme cc.bi"

gen idl2acme h
gen idl2acme cc

This might seem like an elegant approach to take. However, it suffers from two
defects:

1. Scalability.

In the above example, acme genie.tcl requires just two smart source
commands to get access to the API of id12acme. tcl. However, a more
feature-rich library might have its functionality implemented in ten or
twenty files. Accessing the API of such a library from inside

acme genie.tcl would require ten or twenty smart source commands,
which is somewhat unwieldy. It is better if a genie can access the API of a
library with just one smart source command, regardless of how feature-
rich that library is.

2. Lack of encapsulation.

Any genie that wants to access the API of id12acme. tcl must be aware of
the names of the files in the id12acme directory. If the names of these
files ever change, it breaks any genies that make use of them.

Both of these problems can be solved.

226

Recommended Programming Style

When writing the id12acme.tcl genie, create the following two files:

idl2acme/lib-full.tcl
idl2acme/lib-min.tcl

The id12acme/1lib-full.tcl file contains the necessary smart source
commands to access the full API of the id12acme library. Therefore, a genie can
access this API with just one smart source command.

The id12acme/1lib-min.tcl file contains the necessary smart source
commands to access the minimal API of the id12acme library. In general, the
difference between the full and minimal APIs varies from one library to another
and should be clearly specified in the library's documentation.

The Full API

In the case of the id12acme library, the full API might define five procedures:
gen idl2acme h

gen idl2acme cc

gen_acme var decl stmt type name

gen idl2acme stmt type from var to var
gen acme2idl stmt type from var to var

These command procedures are used as follows:

® The gen idl2acme hand gen idl2acme cc procedures generate the
idl2acme.hand idl2ame.cc files, respectively.

® The gen acme var decl stmt procedure generates a C++ variable
declaration of an ACME type corresponding to the specified IDL type.

® The gen idl2acme stmt procedure generates a C++ statement that
converts an IDL type to an ACME type, and the gen acme2idl stmt
procedure generates a C++ statement that performs the data-type
translation in the opposite direction.

The Minimal API

The minimal API (as exposed by id12acme/1ib-min.tcl) includes the latter
three command procedures. A genie can smart_source the minimal API, to
generate code that makes calls to data-type conversion routines. A genie can
access the full API with smart source if it also needs to generate the
implementation of the data-type conversion routines. The reason for providing

227

Orbix Code Generation Toolkit Programmer’s Guide

both full and minimal libraries is that the minimal library is likely to contain only
a small amount of code, and hence can be accessed much faster with
smart_source than the full library, which typically contains hundreds or
thousands of lines of code. Thus, genies that require only the minimal API can
start up faster.

The concept of a minimal API might not make sense for some libraries. In such
cases, only the full library should be provided.

Commenting Your Generated Code

As your genies have a high likelihood of containing code written in another
language, it is even more important to comment both sets of code when creating
genies.

Putting block comments into the generated code:
® Documents your genie scripts.
* Documents the generated code.
* Shows the relationship between scripts and generated code.
* Isavery useful debugging aid.

The following is an example section of a Tcl (bilingual) script that has been
commented:

Tcl
proc gen impl class cc operation{ op } {
[***

// Function: @[cpp ident s name Sop]@
// Description: Implements the corresponding
// IDL operation

cpp_gen operation cc Sop ;# C++ signature of op

228

Part 111

C++ Genies
Library Reference

11

C++ Development Library

The code generation toolkit comes with a rich C++ development
library that makes it easy to create code generation applications
that map IDL to C++ code.

Naming Conventions in API Commands

The abbreviations shown in Table 11.1 are used in the names of commands
defined in the std/cpp boa lib.tcl library.

Abbreviation Meaning

clt Client

srv Server

var Variable

var decl Variable declaration

is var See “Naming Conventions for is_var” on page 232
gen See “Naming Conventions for gen ” on page 233
par/param Parameter

Table: 11.1: Abbreviations Used in Command Names.

231

Orbix Code Generation Toolkit Programmer’s Guide

Abbreviation Meaning

ref Reference

stmt Statement

mem Memory

op Operation

attr acc An IDL attribute's accessor

attr mod An IDL attribute's modifier.

sig Signature.

_cc A C++ code file—normally . cxx,. but the extension
is configurable.

_h A C++ header file.

Table: 11.1: Abbreviations Used in Command Names.

Command names in std/cpp boa 1lib.tcl start with the cpp prefix.

For example, the following statement generates the C++ signature of an operation

(for use in a header file) and assigns the result to the foo variable:

set foo [cpp op sig h $Sop]

Naming Conventions for is_var

The CORBA mapping from IDL to C++ provides smart pointers whose names
end in var. For example, an IDL struct called widget has a C++ smart pointer
type called widget var. Sometimes, the syntactic details of declaring and using
C++ variables depends on whether or not you use these _var types. For this
reason, some of the commands in std/cpp boa lib.tcl take a boolean
parameter called is _var, which indicates whether or not the variable being

processed was declared as a _var type.

232

Naming Conventions in API Commands

Naming Conventions for gen_

The names of some commands contain gen_, to indicate that they generate output
into the current output file. For example, cop_gen op sig_h outputs the C++
signature of an operation for use in a header file. Commands whose names omit
gen_return a value—which you can use as a parameter to the output command.

Some commands whose names do not contain gen_ also have gen counterparts.
Both forms are provided to offer greater flexibility in how you write scripts. In
particular, commands without gen_ are easy to embed inside textual blocks (that
is, text inside [*** and ***]), while their gen counterparts are sometimes
easier to call from outside textual blocks. Some examples follow:

The following segment of code prints the C++ signatures of all the
operations of an interface, for use in a .h file:

Tcl
foreach op [$inter contents {operation}] {
output " [cpp_op _sig h $opl;\n"

}

Note that the output statement uses spaces to indent the signature of the

operation, and follows it with a semicolon and newline character. The

printing of all this white space and syntactic baggage is automated by the

gen_ counterpart of this command, so the above code snippet could be

rewritten in the following, slightly more concise format:

Tcl

foreach op [$inter contents {operation}] {
cpp_gen op sig h Sop

}

233

Orbix Code Generation Toolkit Programmer’s Guide

234

The cpp_gen commands tend to be useful inside foreach loops to, for
example, declare operation signatures or variables. However, when
generating the bodies of operations in . cpp files, it is likely that you will
be making use of a textual block. In such cases, it can be a nuisance to
have to exit the textual block just to call a Tcl command, and then enter
another textual block to print more text. For example:

Tcl
[***

***]

cpp_gen op sig cc Sop
[***

{
... // body of the operation
}

***]

The use of commands without gen_ can often eliminate the need to toggle
in and out of textual blocks. For example, the above segment of code can
be written in the following, more concise form:

Tcl
[***

@lcpp_op_sig_cc Sopl@
{

... // body of the operation
}

***]

Indentation

Indentation

To allow programmers to choose their preferred indentation, all command
procedures in std/cpp _boa_ lib.tcl use the string in $pref (cpp, indent) for
each level of indentation they need to generate.

Some commands take a parameter called ind lev. This parameter is an integer
that specifies the indentation level at which output should be generated.

$pref(cpp,...) Entries

Some entries in the Spref (cpp,..) array are used to specify various user
preferences for the generation of C++ code, as shown in Table 11.2. All of these
entries are have a default values if there is no setting in the idlgen.cfgq file. You
can also force the setting by explicit assignment in a Tcl script.

$pref(...) Array Entry

Purpose

Spref (cpp,h file ext)

Specifies the filename extension for header
files. Its default value is .h.

Spref (cpp,cc_file ext)

Specifies the filename extension for code
files. Its default value is .cxx.

Spref (cpp, indent)

Specifies the amount of white space to be
used for one level of indentation. Its default
value is four spaces.

Spref (cpp, impl class suffix)

Specifies the suffix that is added to the name
of a class that implements an IDL interface.
Its default value is _i.

Spref (cpp, smart proxy suffix)

Specifies the prefix that is added to an IDL
interface to give the name of a smart proxy
class. Its default value is smart .

Table: 11.2: Spref(cpp,...) Array Entries

235

Orbix Code Generation Toolkit Programmer’s Guide

236

$pref(...) Array Entry

Purpose

$pref (cpp,want throw)

A boolean value that specifies whether or not
the C++ signatures of operations and
attributes should have a throw clause. Its
default value is true. It should be set to
false only if generating C++ code for an old
C++ compiler that does not support
exceptions.

Spref (cpp, server timeout)

Timeout (milliseconds) passed to

impl is ready () in the generated
server.cxx file. A value of -1 represents
infinity.

Spref (cpp, max_padding for types)

Specifies the padding to be used with C++
type names when declaring variables or
parameters. This padding helps to ensure that
the names of variables and parameters are
vertically aligned, which makes code easier to
read. Its default value is 32.

Table: 11.2: Spref(cpp,...) Array Entries

Groups of Related Commands

Groups of Related Commands

To help you find the commands needed for a particular task, each heading below
lists a group of related commands.

Identifiers and Keywords

cpp_1 name node
Cpp_s name node
cpp_typecode 1 name type
cpp_typecode s name type

General Purpose Commands

cpp_assign stmt type name value ind lev ?scope?
cpp_indent number

cpp is fixed size type

cpp_is keyword name

cpp _is var size type

cpp nil pointer type

cpp_sanity check idl

Servant/Implementation Classes
cpp_boa class s name interface node

cpp_impl class interface node
cpp_tie class interface node

Operation Signatures

Cpp_gen op sig cc operation node ?class name?
cpp _gen op sig h operation node
cpp _op sig cc operation node ?class name?
cpp_op _sig h operation node

237

Orbix Code Generation Toolkit Programmer’s Guide

Attribute Signatures

cpp_attr acc sig cc attribute node ?class name?
cpp_attr acc sig h attribute node
cpp_attr mod sig cc attribute node ?class name?
cpp_attr mod sig h attribute node

cpp_gen attr acc sig cc attribute node ?class name?
cpp_gen attr acc sig h attribute node
cpp_gen attr mod sig cc attribute node ?class name?
cpp_gen attr mod sig h attribute node

Types and Signatures of Parameters
cpp_param sig name type direction
cpp param sig op or arg
cpp_param type type direction
Ccpp_param type op or arg

Invoking Operations

cpp_assign stmt type name value ind lev ?scope?

cpp clt free mem stmt arg or op 1s var
cpp_clt need to free mem arg or op is var
cpp_clt par decl arg or op 1s var
cpp_clt par ref arg or op 1s var
cpp_gen clt free mem stmt arg or op is var ind lev
cpp_gen clt par decl arg or op is var ind lev

cpp_ret assign op

Invoking Attributes

cpp_clt free mem stmt name type dir is var
cpp_clt need to free mem name type dir is var
cpp_clt par decl name type dir is var

cpp_clt par ref name type dir is var
cpp_gen clt free mem stmt name type dir is var ind lev
cpp_gen clt par decl name type dir is var ind lev

238

Groups of Related Commands

Implementing Operations

cpp_gen srv_free mem stmt arg or op ind lev
cpp_gen srv par alloc arg or op ind lev

cpp _gen srv ret decl op ind lev ?alloc mem?
cpp_srv_free mem stmt arg or op
cpp_srv _need to free mem arg or op
cpp_srv_par alloc arg or op

cpp_srv_par ref arg or op

cpp_srv _ret decl op ralloc mem?

Implementing Attributes

cpp _gen srv_free mem stmt name type direction ind lev
cpp_gen srv_par alloc name type direction ind lev
cpp_gen srv_ret decl name type ind lev ?alloc mem?
cpp_srv_free mem stmt name type direction
cpp_srv _need to free mem type direction
cpp_srv par alloc name type direction

cpp_srv par ref name type direction

cpp_srv_ret decl name type ?alloc mem?

Instance Variables and Local Variables

cpp var decl name type is var
cpp_var free mem stmt name type is var
cpp_var need to free mem type is var

Processing Unions

cpp_branch case 1 label union branch
cpp branch case s label union branch
cpp branch 1 label union branch
cpp _branch s label union branch

239

Orbix Code Generation Toolkit Programmer’s Guide

Processing Arrays

cpp_array decl index vars arr pre ind lev
cpp_array elem index arr pre
cpp_array for loop footer arr indent
cpp_array for loop header arr pre ind lev ?decl?
cpp_gen array decl index vars arr pre ind lev
cpp_gen array for loop footer arr indent

cpp_gen array for loop header arr pre ind lev ?decl?

Processing Any

240

cpp_any insert stmt type any name value ?is var?
cpp_any extract stmt type any name name

cpp_any extract var decl type name

cpp_any extract var ref type name

cpp_boa lib Commands

cpp_boa lib Commands

Parameters

Notes

Examples

This section gives detailed descriptions of the Tcl commands in the cpp_boa 1lib
library in alphabetical order.

cpp_any_extract_stmt
cpp_any extract stmt type any name var name

This command generates a statement that extracts the value of the specified type
from the any called any name into the var name variable.

type A type node of the parse tree.
any name The name of the any variable.
var name The name of the variable into which the any is extracted.

var name must be a variable declared by cpp_any extract var decl.
The following example shows how to use the any extraction commands:

Tcl
foreach type $type list {
set var name my [$type s uname]

[***
@[cpp_any extract var decl Stype $var name]@;
***]

}

output "\n"

foreach type $type list {
set var name my [$type s uname]
set var ref [cpp any extract var ref Stype $Svar name]
[***
if (@[cpp_any extract stmt Stype "an any" $var name]@) {
process @[Stype s uname]@(@$var ref@);
}

***]

}

241

Orbix Code Generation Toolkit Programmer’s Guide

If the variable type 1list contains the type nodes for widget (a struct),
boolean and long_array, the previous Tcl script generates the following C++
code:

// C++

widget * my widget;

CORBA: :Boolean my boolean;

long array slice* my long array;

if (an_any >>= my widget) {
process widget (*my widget);

}

if (an_any >>= CORBA::Any::to boolean (my boolean)) {
process_boolean (my boolean) ;

}

if (an_any >>= long array forany(my long array)) f{
process long array(my long array);

}

See Also cpp_any insert stmt
cpp any extract var decl
cpp any extract var ref

cpp_any_extract_var decl

cpp_any extract var decl type name

This command declares a variable into which values from an any are extracted.
The parameters to this command are the variable’s type and name.

Parameters
type A type node of the parse tree.
name The name of the variable.
Notes If the value to be extracted is a simple type, such as a short, long, or boolean,

the variable is declared as a normal variable of the specified type. However, if
the value is a complex type such as struct or sequence, the variable is declared
as a pointer to the specified type.

242

cpp_boa lib Commands

Examples

See Also

Parameters

Notes

Examples

The following example shows how to use the cpp_any extract var decl
command:

Tcl
foreach type $type list {

set var name my [$type s uname]
[***

@[cpp_any extract var decl Stype $var name]@;
*kk]

}

If the type 1list variable contains the type nodes for widget (a struct),
boolean, and long array, the previous Tcl script generates the following C++
code:

// Ct+

widget * my widget;

CORBA: :Boolean my boolean;

long array slice* my long array;

cpp_any insert stmt
cpp_any extract var ref
cpp_any extract stmt

cpp_any_extract_var_ref
cpp_any extract var ref type name

This command returns a reference to the value in name of the specified type.

type A type node of the parse tree.
name The name of the variable.
The returned reference is either Sname or *$name, depending on how the variable

is declared by the cpp_any extract var decl command. If type is a struct,
union, or sequence type, the command returns *$name; otherwise it returns $name.

The following example shows how to use the cpp_any extract var ref
command:

Tcl
foreach type $type list {

243

Orbix Code Generation Toolkit Programmer’s Guide

See Also

Parameters

Examples

244

set var name my [$type s uname]

set var ref [cpp any extract var ref Stype $var name]
[***

process @[Stype s uname]@(@Svar ref@);
*kk]

}

If the type list variable contains the type nodes for widget (a struct), boolean,
and long array then the previous Tcl script generates the following C++ code:

// C++
process widget (*my widget);
process_boolean (my boolean);
process long array(my long array);

cpp_any insert stmt
cpp_any extract var decl
cpp_any extract stmt

cpp_any_insert_stmt

cpp_any insert stmt type any name value ?is var?

This command returns the C++ statement that inserts the specified value of the
specified type into the any called any name.

type A type node of the parse tree.

any name The name of the any variable.

value The name of the variable that is being inserted into the any.
is var TRUE if valueis a var variable.

The following Tcl fragment shows how the command is used:

Tcl

foreach type Stype list {
set var name my [$type s uname]
[***

@[cpp_any insert stmt $type "an any" $var name]@;
*kk]

}

cpp_boa lib Commands

See Also

If the type list variable contains the type nodes for widget (a struct), boolean,
and long_array, the previous Tcl script will generate the following C++ code:

// C++

an_any <<= my widget;

an_any <<= CORBA::Any::from boolean (my boolean);
an_any <<= long array forany(my long array);

cpp_any extract var decl
cpp_any extract var ref
cpp_any extract stmt

245

Orbix Code Generation Toolkit Programmer’s Guide

Parameters

Notes

Examples

246

cpp_array_decl_index_vars

cpp_array decl index vars array prefix ind lev
cpp_gen array decl index vars array prefix ind lev

This command declares the set of index variables that are used to index the
specified array.

array An array node in the parse tree.

prefix The prefix to be used when constructing the names of index
variables. For example, the prefix i is used to get index
variables called 11 and i2.

ind lev The indentation level at which the for loop is to be created.

The array indices are declared to be of type CORBA: : ULong.
Consider the following sample IDL:

// IDL
typedef long long arrayl[5][7];

The following Tcl script illustrates the use of the command:

Tcl
set typedef $idlgen(root) lookup "long array"]
set a Stypedef true base type]

set indent

set index
[***

cpp_indent [Sa num dims]]
cpp_array elem index $a "i"]

void some func()
{

@[cpp array decl index vars $Sa "i" 1]@

@[cpp _array for loop header $Sa "i" 1]@

@$indent@foo@RSindex@ = bar@$index@;
@[cpp_array for loop footer Sa 1]@

***]

cpp_boa lib Commands

See Also

Parameters

Examples

The amount of indentation to be used inside the body of the for loop, 2, is

calculated by using the number of dimensions in the array as a parameter to the

cpp_indent command, 1. The above Tcl script generates the following C++
code:

// C++

void some func ()

{
CORBA: :ULong i1;
CORBA: :ULong i2;
for (11 = 0; il < 5; i1l ++) {

for (i2 = 0; i2 < 7; 12 ++) {
foo[i1l][12] = bar[il][i2];

}

cpp _gen array decl index vars
cpp_array for loop header
cpp_array elem index
cpp_array for loop footer

cpp_array_elem_index

cpp_array elem index array prefix

This command returns, in square brackets, the complete set of indices required to

index a single element of array.

array An array node in the parse tree.
prefix The prefix to use when constructing the names of index
variables. For example, the prefix i is used to get index
variables called i1 and i2.
If arr is a two-dimensional array node, the following Tcl fragment:

Tcl

set indices [cpp array elem index Sarr "i"]

sets indices equal to the string, "[i1] [12]".

247

Orbix Code Generation Toolkit Programmer’s Guide

See Also

Parameters

Notes

See Also

Parameters

248

cpp_array decl index vars
cpp_array for loop header
cpp_array for loop footer

cpp_array_for loop footer

cpp_array for loop footer array ind lev
cpp_gen array for loop footer array ind lev

This command generates the for loop footer for the given array node, with
indentation specified by ind level.

array An array node in the parse tree.
ind lev The indentation level at which the for loop is created.
This command generates a number of close braces }’ that equals the number of

dimensions of the array.

cpp_array decl index vars
cpp_array for loop header
cpp_array elem index

cpp_array_for loop header

cpp_array for loop header array prefix ind lev ?declare?
cpp_gen array for loop header array prefix ind lev ?declare?

This command generates the for loop header for the given array node.

array An array node in the parse tree.

prefix The prefix to be used when constructing the names of index
variables. For example, the prefix i is used to get index
variables called 11 and i2.

ind lev The indentation level at which the for loop is created.

declare (Optional) This boolean argument specifies that index variables
are declared locally within the for loop. Default value is 0.

cpp_boa lib Commands

Examples Given the following IDL definition of an array:

// IDL
typedef long long array[5][7];

You can use the following Tcl fragment to generate the for loop header:

Tcl

set typedef [$idlgen(root) lookup "long array"]

set a [Stypedef true base type]
[***

@[cpp array for loop header $a "i" 1]@
*kk]

This generates the following C++ code:

// C++
for (i1 = 0; i1l < 5; il ++) {
for (i2 = 0; i2 < 7; i2 ++) {

Alternatively, using the command cpp_array for loop header $a "i" 1 1
results in the following C++ code:

// C++
for (CORBA::ULong il = 0; il < 5; il ++) {
for (CORBA::ULong i2 = 0; 12 < 7; 12 ++) {

See Also cpp_array decl index vars
cpp_gen array for loop header
cpp_array elem index
cpp_array for loop footer

cpp_assign_stmt

cpp_assign stmt type name value ind lev ?scope?
cpp_gen assign stmt type name value ind lev ?scope?

This command returns the C++ statement (with the terminating ;) that assigns
value to the variable name, where both are of the same type.

249

Orbix Code Generation Toolkit Programmer’s Guide

Parameters

type A type node of the parse tree.

name The name of the variable that is assigned to (left hand side of
assignment).

value A variable reference that is assigned from (right hand side of
assignment).

ind lev The number of levels of indentation.

scope (Optional) When performing assignment of arrays, the scope
flag determines whether or not the body of the generated for
loop is enclosed in curly braces ’ {*, ’ }’. The default value is 1
(TRUE).

Notes The assignment performs a deep copy. For example, if type is a string or
interfacethena string dup() or duplicate (), respectively, is performed on
the value.

The ind levand scope parameters are ignored for all assignment statements,
except those involving arrays. In the case of array assignments, a for loop is
generated, to perform an element-wise copy of the array’s contents. The ind_lev
(indentation level) parameter is required, because the returned for loop spans
several lines of code, and these lines of code need to be indented consistently. The
scope parameter is a boolean (with a default value of 1) that specifies whether or
not an extra scope (that is, a pair of braces { and }) should surround the for loop.
This extra level of scoping is a workaround for a scoping-related bug in some
C++ compilers.

Examples The following example illustrates the use of this command:

Tcl

set is var 0
set ind lev 1
[***
void some func()
{
***]
foreach type $type list {
set name "my [Stype 1 name]"

set value "other [$type 1 name]"
[***

250

cpp_boa lib Commands

See Also

Parameters

Notes

@[cpp_assign stmt S$type Sname $value $ind lev 0]@
*kk]

}

[***

} // some_func()
***]

If the variable type 1list contains the type nodes for string, widget (a struct),
and long_array, the above Tcl script generates the following C++ code:

// C++
void some func ()
{
my string = CORBA::string dup (other string);
my widget = other widget;
for (CORBA::ULong il = 0; il < 10; il ++) {
my long array[il] = other long array[il];

}

} // some func()

Note that the cpp_assign stmt command (and its gen_ counterpart) expect the
name and value parameters to be references (rather than pointers). For example,
if the variable my widget is a pointer to a struct (rather than an actual struct) then
the name parameter to cpp_gen assign_stmt should be *my widget instead of
my widget

Cpp_gen assign stmt
cpp_assign stmt array
cpp_clt par ref

cpp_attr_acc_sig h

cpp_attr acc sig h attribute
cpp_gen attr acc sig h attribute

This command returns the signature of an attribute accessor operation for
inclusion in a .h file.

attribute An attribute node in the parse tree.

The cpp_attr acc sig h command has no ; (semicolon) at the end of its
generated statement.

251

Orbix Code Generation Toolkit Programmer’s Guide

The cpp gen attr acc sig h command includes a ; (semicolon) at the end of
its generated statement.

Examples Consider the following sample IDL:

// IDL

// File: ’finance.idl’

interface Account {
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount) ;

i

The following Tcl script illustrates the use of the command:

Tcl

smart source "std/sbs_output.tcl"

smart source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

set attr [$idlgen(root) lookup "Account::balance"]

set attr acc sig h [cpp attr acc sig h Sattr]

output "Sattr acc sig h \n\n"

cpp_gen attr acc sig h S$attr

252

cpp_boa lib Commands

See Also

Parameters

Notes

Examples

The following output is generated by the Tcl script:

virtual CORBA::Float balance(
CORBA: :Environment & env=CORBA::IT chooseDefaultEnv())

virtual CORBA::Float balance (
CORBA: :Environment & env=CORBA::IT chooseDefaultEnv());

cpp _gen attr acc sig h
cpp_attr acc _sig cc
cpp_attr mod sig h
cpp_attr mod sig cc

cpp_attr_acc_sig_cc

cpp_attr acc sig cc attribute ?class?
cpp_gen attr acc sig cc attribute ?class?

This command returns the signature of an attribute accessor operation, for
inclusion in a . cc file.

attribute An attribute node in the parse tree.

?class? (Optional) The name of the class in which the accessor
operation is defined. If no class is specified, the default
implementation class name is used instead (given by
[cpp_impl class [$op definedgin]])

Neither the cpp_attr acc sig ccnorthe cpp gen attr acc sig cc
command put a ; (semicolon) at the end of the generated statement.

Consider the following sample IDL:

// IDL

// File: ’finance.idl’

interface Account {
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount) ;

}i

253

Orbix Code Generation Toolkit Programmer’s Guide

The following Tcl script illustrates the use of the command:

Tcl
smart source "std/sbs_ output.tcl"
smart source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

set attr [$idlgen(root) lookup "Account::balance"]
set attr acc sig cc [cpp attr acc sig cc $attr]

output "Sattr acc_sig cc \n\n"

cpp_gen attr acc sig cc Sattr
The following output is generated by the Tcl script:

CORBA: :Float
Account i::balance (
CORBA: :Environment &)

CORBA: :Float
Account 1i::balance (
CORBA: :Environment &)

See Also cpp_attr acc sig h
cpp_gen attr acc sig cc
cpp_attr mod sig h
cpp_attr mod sig cc

254

cpp_boa lib Commands

Parameters

Notes

Examples

cpp_attr_mod_sig_h

cpp_attr mod sig h attribute
cpp_gen attr mod sig h attribute

This command returns the signature of an attribute modifier operation for
inclusion in a .h file.

attribute Attribute node in parse tree.

The command cpp attr mod sig hhasno ; (semicolon) at the end of its
generated statement.

The related command cpp_gen attr mod sig_hdoes include a ; (semicolon) at
the end of its generated statement.

Consider the following sample IDL:

// IDL
// File: ’finance.idl’
interface Account {
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount);
}i

The following Tcl script illustrates the use of the command:

Tcl
smart source "std/sbs_output.tcl”
smart source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

set attr [$idlgen(root) lookup "Account::balance"]
set attr mod sig h [cpp attr mod sig h Sattr]
output "S$attr mod sig h \n\n"
cpp_gen attr mod sig h Sattr

The following output is generated by the Tcl script:

virtual void balance(

255

Orbix Code Generation Toolkit Programmer’s Guide

See Also

Parameters

Notes

Examples

256

CORBA: :Float _new value,
CORBA: :Environment & env=CORBA::IT chooseDefaultEnv())

virtual void balance (
CORBA: :Float _new value,
CORBA: :Environment & env=CORBA::IT chooseDefaultEnv());

cpp_attr acc sig h
cpp_attr acc_sig cc
cpp_attr mod sig cc

cpp_attr_mod_sig_cc

cpp_attr mod sig cc attribute ?class?
cpp_gen attr mod sig cc attribute ?class?

This command returns the signature of the attribute modifier operation for
inclusion in a . cc file.

attribute An attribute node in the parse tree.

?class? (Optional) The name of the class in which the modifier
operation is defined. If no class is specified, the default
implementation class name is used instead (given by
[cpp impl class [$op definediin]])

Neither the cpp_attr mod sig_ccnorthe cpp gen attr mod sig ccputa
; (semicolon) at the end of the generated statement.

Consider the following sample IDL:

// IDL
// File: ’finance.idl’
interface Account ({
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount) ;
}r

cpp_boa lib Commands

See Also

The following Tcl script illustrates the use of the command:

Tcl
smart_source "std/sbs_output.tcl"
smart source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

set attr [$idlgen(root) lookup "Account::balance"]
set attr mod sig cc [cpp attr mod sig cc Sattr]
output "Sattr mod sig cc \n\n"

cpp_gen attr mod sig cc Sattr
The following output is generated by the Tcl script:

void

Account_i::balance (
CORBA: :Float _new value,
CORBA: :Environment &)

void

Account_i::balance (
CORBA: :Float _new value,
CORBA: :Environment &)

cpp_attr acc sig h
cpp_attr acc _sig cc
cpp_attr mod sig h
cpp_gen attr mod sig cc

257

Orbix Code Generation Toolkit Programmer’s Guide

cpp_boa_class 1 name
cpp_boa class 1 name interface

This command returns the local name of the BOA skeleton class for that interface.

Parameters.
interface An interface node of the parse tree.
Examples Given an interface node $inter, the following Tcl extract shows how the
command is used:
Tcl
set class [cpp impl class S$inter]
[***
class @Sclass@
public virtual @[cpp boa class 1 name S$inter]@
{
public:
@Sclass@() ;
};
***]
The following interface definitions results in the generation of the corresponding
C++ code:.
// IDL // C++
interface Cow { class Cow i
... public virtual CowBOAImpl
}i {
public:
Cow 1i();
}i
// IDL // C++
module Farm { class Farm Cow i
interface Cow{ public virtual CowBOAImpl
R {
}; public:
}; Farm Cow i();
}i
See Also cpp tie class

258

cpp_boa lib Commands

Parameters

Examples

cpp boa s name

cpp_boa_class_s name
cpp_boa class s name interface

This command returns the fully scoped name of the BOA skeleton class for that
interface.

interface An interface node of the parse tree.

Given an interface node $inter, the following Tcl extract shows how the
command is used:

Tcl

set class [cpp impl class Sinter]
[***
class @Sclass@ :
public virtual @Q[cpp boa class s name $inter]@
{
public:
@Sclass@() ;
};

***]

259

Orbix Code Generation Toolkit Programmer’s Guide

The following interface definitions results in the generation of the corresponding

C++ code:.

// IDL
interface Cow {

}i

// CH++
class Cow i
public virtual CowBOAImpl
{
public:
Cow 1i();

}i

// IDL
module Farm {
interface Cow{

}:
};

// C++
class Farm Cow i
public virtual Farm::CowBOAImpl
{
public:
Farm Cow i();

}i

This command returns a non-scoped C++ case label for the union branch
union branch. The case keyword prefixes the label unless the label is default.
The returned value omits the terminating ’ : * (colon).

union branch A union branch node of the parse tree.

See Also cpp_tie class
cpp_boa 1 name
cpp_branch_case 1 label
cpp_branch case 1 label union branch

Parameters

Notes

260

This command generates case labels for all union discriminator types.

cpp_boa lib Commands

Examples

See Also

Consider the following IDL:

// IDL
module m {
enum colour {red, green, blue};

union foo switch (colour) {

case red: long a;
case green: string b;
default: short c;

};
}i

The following Tcl script illustrates the use of the command:

Tcl

set union [$idlgen (root) lookup "m::foo"]

foreach branch [$union contents {union branch}] {
output [cpp branch case 1 label Sbranch]
output "\n"

}; # foreach

The following output is generated by the Tcl script:

// C++
case red
case green
default

cpp branch 1 label
cpp_branch case s label
cpp_branch s label

261

Orbix Code Generation Toolkit Programmer’s Guide

Parameters.

Notes

Examples

See Also

262

cpp_branch_1 label
cpp_branch 1 label union branch

This command returns the non-scoped C++ case label for the union branch
union branch. The case keyword and the terminating ’ :* (colon) are both
omitted.

union branch A union branch node of the parse tree.

This command generates case labels for all union discriminator types.
Consider the following IDL:

// IDL
module m {
enum colour {red, green, blue};

union foo switch (colour) {

case red: long a;
case green: string b;
default: short c;

}i
}r

The following Tcl script illustrates the use of the command:

Tcl

set union [$idlgen (root) lookup "m::foo"]

foreach branch [$union contents {union branch}] ({
output [cpp branch 1 label $branch]
output "\n"

}; # foreach

The following output is generated by the Tcl script:

// C++
red
green
default

cpp_branch case 1 label
cpp branch case s label
cpp _branch s label

cpp_boa lib Commands

Parameters

Notes

Examples

See Also

cpp_branch_case s label
cpp _branch case s label union branch

This command returns a scoped C++ case label for the union branch
union branch. The case keyword prefixes the label unless the label is
default.The returned value omits the terminating ’ : 7 (colon).

union branch A union branch node of the parse tree.

This command generates case labels for all union discriminator types.
Consider the following IDL:

// 1IDL
module m {
enum colour {red, green, blue};

union foo switch(colour) {

case red: long a;
case green: string b;
default: short c;

};
};

The following Tcl script illustrates the use of the command:

Tcl

set union [$idlgen(root) lookup "m::foo"]

foreach branch [Sunion contents {union branch}] {
output [cpp branch case s label Sbranch]
output "\n"

}; # foreach

The following output is generated by the Tcl script:

// C++

case m::red
case m::green
default

cpp branch case 1 label
cpp_branch 1 label
cpp_branch s label

263

Orbix Code Generation Toolkit Programmer’s Guide

cpp_branch_s label
cpp_branch s label union branch

Returns a scoped C++ case label for the union branchunion branch. The case
keyword and the terminating ’ : 7 (colon) are both omitted.

Parameters
union branch A union branch node of the parse tree.
Notes This command generates case labels for all union discriminator types.
Examples Consider the following IDL:
// IDL
module m {
enum colour {red, green, blue};
union foo switch(colour) {
case red: long a;
case green: string b;
default: short c;
}i
}i
The following Tcl script illustrates the use of the command:
Tcl
set union [$idlgen (root) lookup "m::foo"]
foreach branch [$union contents {union branch}] ({
output [cpp branch s label $branch]
output "\n"
}; # foreach
The following output is generated by the Tcl script:
// C++
m: :red
m: :green
default
See Also cpp_branch case 1 label

cpp _branch 1 label
cpp branch case s label

264

cpp_boa lib Commands

cpp_clt free_ mem_stmt

cpp _clt free mem stmt name type direction is var
cpp_clt free mem stmt arg is var

cpp_clt free mem stmt op is var

cpp _gen clt free mem stmt name type direction is var
cpp _gen clt free mem stmt arg is var

cpp_gen clt free mem stmt op is var

This command returns a C++ statement that frees the memory associated with the
specified parameter (or return value) of an operation.

Parameters
name The name of the parameter or return value variable.
type A type node of the parse tree that describes the type of this
parameter or return value.
direction The parameter passing mode—one of in, inout, out, or
return.
is var A boolean flag to indicate whether the parameter variable is a
_var type or not. A value of 1 indicates a _var type.
arg An argument node of the parse tree.
op An operation node of the parse tree.
Notes The following variants of the command are supported:

® The first form of the command is used to free memory associated with an
explicitly named parameter variable.

® The second form of the command is used to free memory associated with
parameters.

¢ The third form of the command is used to free memory associated with
return values.

® The non-gen forms of the command omit the terminating ; (semicolon)
character.

® The gen forms of the command include the terminating ; (semicolon)
character.

265

Orbix Code Generation Toolkit Programmer’s Guide

If there is no need to free memory for the parameter (for example, if is var is 1
or if the parameter’s type or direction does not require any memory management)
this command returns an empty string.

Examples This example uses the following sample IDL:
// IDL
struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);
}i

The following Tcl script shows how to free memory associated with the
parameters and the return value of the foo: :op () union branch.

Tcl

*kx]
foreach arg $arg list {
set name [cpp 1 name $arg]
1 cpp_gen clt free mem stmt S$arg S$is var Sind lev
}

2 cpp_gen clt free mem stmt Sop $is var $ind lev

The sarg_list contains the list of argument nodes corresponding to the
foo::op () operation. To illustrate explicit memory management, the example
assumes that is_var is set to FALSE. Notice how the

cpp_gen clt free mem stmt command is used to free memory both for the
parameters, line 1, and the return value, line 2.

266

cpp_boa lib Commands

The Tcl code yields the following statements that explicitly free memory:

CORBA: :string free(p string);
delete p longSeq;
delete result;

Statements to free memory are generated only if needed. For example, there is no
memory-freeing statement generated for p widget or p_long array, because
these parameters have their memory allocated on the stack rather than on the
heap.

See Also cpp_gen clt free mem stmt
cpp_clt need to free mem

cpp_clt need to_free mem

cpp_clt need to free mem arg is var
cpp_clt need to free mem op is var

This command returns 1 (TRUE) if the client programmer has to take explicit
steps to free memory. Returns 0 (FALSE) otherwise.

Parameters
arg An argument node of the parse tree.
op An operation node of the parse tree.
is var A boolean flag to indicate whether the parameter variable is a
_var type or not. A value of 1 indicates a _var type.
Notes The following variants of the command are supported:
¢ The first form of the command is used to check parameters.
® The second form of the command is used to check return values.
See Also cpp_clt free mem stmt

267

Orbix Code Generation Toolkit Programmer’s Guide

Parameters

Notes

268

cpp_clt_par_decl

cpp_clt par decl name type direction is var
cpp_clt par decl arg is var

cpp_clt par decl op is var

cpp_gen clt par decl name type direction is var ind lev
cpp_gen clt par decl arg is var ind lev
cpp_gen clt par decl op is var ind lev

This command returns a C++ statement that declares a parameter or return value
variable.

name The name of a parameter or return value variable.

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out or
return.

is var A boolean flag to indicate whether the parameter variable is a
_var type or not. A value of 1 indicates a _var type.

arg An argument node of the parse tree.

op An operation node of the parse tree.

ind lev Number of levels of indentation (gen variants only).

The following variants of the command are supported:

® The first form of the command is used to declare an explicitly named
parameter variable.

® The second form is used to declare a parameter. The third form is used to
declare a return value.

® The non-gen forms of the command omit the terminating ; (semicolon)
character.

® The gen forms of the command include the terminating ; (semicolon)
character.

cpp_boa lib Commands

Examples

For most parameter declarations, is varis ignored and space for the parameter is
allocated on the stack. However, if the parameter is a string or an object reference
being passed in any direction, or if it is one of several types of out parameter that
must be heap-allocated, the 1s_var parameter determines whether to declare the
parameter as a _var or a normal pointer.

The following IDL is used in this example:

// IDL

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {
longSeq op (

in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);
i

The following Tcl script illustrates how to declare C++ variables that are intended
to be used as parameters to (or the return value of) an operation call:

Tcl
set op [$idlgen (root) lookup "foo::op"]
set is var 0
set ind lev 1
set arg list [$op contents {argument}]
[***
/ /===~
// Declare parameters for operation
//-=====--
***]

foreach arg Sarg list {

cpp_gen clt par decl Sarg $is var S$ind lev
}
cpp_gen clt par decl Sop $is var $ind lev

269

Orbix Code Generation Toolkit Programmer’s Guide

This Tcl script generates the following C++ code:

widget p widget;
1 char * p string;
2 longSeg* p longSeq;

long array p long array;
3 longSeg* result;

Line 3 declares the name of the return value to be _result. In lines 1, 2, and 3, the
C++ variables are declared as raw pointers. This is because the is_var parameter
is FALSE in calls to cpp_gen clt par decl.If is var is TRUE, the variables
are declared as _var types.

See Also cpp_gen clt par decl
cpp_clt par ref

cpp_clt_par_ref

cpp_clt par ref name type direction is var
cpp_clt par ref arg is var
cpp_clt par ref op is var

This command returns either $name or *$name, whichever is necessary to get a
reference to the actual data (as opposed to a pointer to the data).

Parameters.

name The name of the parameter or return value variable.

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out, or
return.

is var A boolean flag to indicate whether the parameter variable is a
_var type or not. A value of 1 indicates a _var type.

arg An argument node of the parse tree.

op An operation node of the parse tree.

270

cpp_boa lib Commands

Notes

Examples

This command is intended to be used in conjunction with cpp_clt par decl and
cpp_assign_stmt. If a parameter (or return value) variable has been declared,
using the command cpp clt par decl, a reference to that parameter (or return
value) is obtained, using the command cpp clt par ref.

References returned by cpp clt par ref are intended for use in the context of
assignment statements, in conjunction with the command
cpp_gen assign_ stmt. See the following example.

Given the following IDL:

// IDL

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);

}i
The following Tcl script shows how to initialize in and inout parameters:

Tcl

*kk]
foreach arg [$op args {in inout}] {

set type [Sarg type]

set arg ref [cpp clt par ref $arg $is var]

set value "other_[$type s uname]"

cpp_gen assign stmt Stype $arg ref Svalue $ind lev 0
}

The preceding script can be explained as follows:

1. The foreach loop iterates over all the in and inout parameters.

2. The cpp_clt par ref command is used to obtain a reference to a
parameter.

271

Orbix Code Generation Toolkit Programmer’s Guide

3. The parameter reference can then be used to initialize the parameter using
thecpp_qen_assign_stmtConnnand

The previous Tcl script yields the following C++ code:

p_widget = other widget;
p_string = CORBA::string dup (other string);

See Also cpp_clt par decl
cpp_assign stmt
Cpp_gen assign stmt
cpp 1 name

cpp_gen_array_decl_index_vars
cpp_gen array decl index vars array prefix ind lev

This command is a variant of cpp_array decl index vars that prints its result
directly to the current output.

cpp_gen_array_for loop_footer
cpp_gen array for loop footer array ind lev

This command is a variant of cpp_array for loop footer that prints its result
directly to the current output.

cpp_gen_array_for_loop_ header
cpp_gen array for loop header array prefix ind lev ?declare?

This command is a variant of cpp_array for loop header that prints its result
directly to the current output.

272

cpp_boa lib Commands

cpp_gen_assign_stmt
cpp_gen assign stmt type name value ind lev ?scope?

This command is a variant of cpp_assign_stmt that prints its result directly to
the current output.

cpp_gen_attr_acc_sig h
cpp_gen attr acc sig h attribute

This command is a variant of cpp_attr_acc_sig h that prints its result directly
to the current output.

cpp_gen_attr_acc_sig_cc
cpp_gen attr acc sig cc attribute ?class?

This command is a variant of cpp_attr acc_sig_cc that prints its result directly
to the current output.

cpp_gen_attr_mod_sig h
cpp_gen attr mod sig h attribute

This command is a variant of cpp_attr mod sig h that prints its result directly
to the current output.

cpp_gen_attr_mod_sig_cc
cpp_gen attr mod sig cc attribute ?class?

This command is a variant of cpp_attr mod sig_cc that prints its result directly
to the current output.

273

Orbix Code Generation Toolkit Programmer’s Guide

cpp_gen_clt free_ mem_stmt

cpp_gen clt free mem stmt name type direction 1is var
cpp_gen clt free mem stmt arg is var
cpp_gen clt free mem stmt op is var

This command is a variant of cpp_clt free mem stmt that prints its result
directly to the current output.

cpp_gen_clt_par_decl

cpp_gen clt par decl name type direction is var ind lev
cpp_gen clt par decl arg is var ind lev
cpp_gen clt par decl op is var ind lev

This command is a variant of cpp_clt par decl that prints its result directly to
the current output.

cpp_gen_op _sig h

cpp_gen op sig h op
cpp_gen op sig h initializer

This command is a variant of cpp_op sig h that prints its result directly to the
current output.

Cpp_gen_op_sig cc

cpp_gen op sig cc op ?class?
cpp_gen op sig cc initializer ?class?

This command is a variant of cpp_op sig cc that prints its result directly to the
current output.

cpp_gen_srv_free_ mem_stmt

cpp_gen srv_free mem stmt name type direction ind lev
cpp_gen srv_free mem stmt arg ind lev

274

cpp_boa lib Commands

cpp_gen srv_free mem stmt op ind lev

This command is a variant of cpp_srv_free mem stmt that prints its result
directly to the current output.

cpp_gen_srv_par_alloc

cpp_gen srv_par alloc name type direction ind lev
cpp_gen srv _par alloc arg ind lev
cpp _gen srv par alloc op ind lev

This command is a variant of cpp_srv par alloc that prints its result directly to
the current output.

cpp_gen_srv_ret decl

cpp _gen srv_ret decl name type ind lev ?alloc mem?
cpp_gen srv_ret decl op ind lev ?alloc mem?

This command is a variant of cpp_srv_ret decl that prints its result directly to
the current output.

cpp_gen_var_decl
cpp_gen var decl name type is var ind lev

This command is a variant of cpp_var decl that prints its result directly to the
current output.

cpp_gen_var_ free_mem_stmt
cpp_gen var free mem stmt name type is var

This command is a variant of cpp_var free mem stmt that prints its result
directly to the current output.

275

Orbix Code Generation Toolkit Programmer’s Guide

cpp_impl_class
cpp_impl class interface

This command returns the name of a C++ class that implements the specified IDL

interface.
Parameters
interface An interface node of the parse tree.

Notes The class name is constructed by getting the fully scoped name of the IDL
interface, replacing all occurrences of / : :* with _* (the namespace is flattened)
and appending $pref (cpp, impl class suffix), which has the default value

i.
Examples Consider the following Tcl script:

Tcl

set class [cpp impl class S$inter]
[***
class @Sclass@ {
public:
@Sclass@() ;
};

***]

The following interface definitions result in the generation of the corresponding

C++ code:
//IDL // Ct++
interface Cow { class Cow i {
public:
}i Cow 1();
}i
//IDL // Ct++
module Farm { class Farm Cow i {
interface Cow ({ public:
e Farm Cow i();
}i }i
}i

276

cpp_boa lib Commands

Parameters

Examples

Parameters

Notes

See Also

cpp_indent
cpp_indent ind lev

This command returns the string given by $pref (cpp, indent), concatenated
with itself $ind_lev times. The default value of Spref (cpp, indent) is four
spaces.

ind lev The number of levels of indentation required.

Consider the following Tcl script:

#Tcl

puts "[cpp _indent 1]One"
puts "[cpp indent 2]Two"
puts "[cpp indent 3]Three"

This produces the following output:

One
Two
Three

cpp_is_fixed_size
cpp_is fixed size type

This command returns TRUE if the node is a fixed-size node; otherwise it returns
FALSE. It is an error if the node does not represent a type.

type A type node of the parse tree.

The mapping of IDL to C++ has the concept of fixed size types and variable size
types. This command returns a boolean value that indicates whether the specified
type is fixed size.

The command is called internally from other commands in the std/
cpp_boa lib.tcl library.

cpp_is keyword
cpp is var size

277

Orbix Code Generation Toolkit Programmer’s Guide

cpp_is_keyword
cpp_is keyword string

This command returns TRUE if the specified stringis a C++ keyword,
otherwise it returns FALSE.

Parameters.

string The string containing the identifier to be tested.
Notes This command is called internally from other commands in the std/
cpp _boa lib.tcl library.
Examples For example:

Tcl
cpp_is keyword "new"; # returns 1
cpp_is keyword "cow"; # returns 0

See Also cpp is fixed size
cpp_is var size

cpp_is_var_size
cpp_is var size type

This command returns TRUE if the node is a variable-size node; otherwise it
returns FALSE. It is an error if the node does not represent a type.

Parameters

type A type node of the parse tree.

Notes The mapping of IDL to C++ has the concept of fixed size types and variable size
types. This command returns a boolean value that indicates whether the specified
type is variable size.

The command is called internally from other commands in the std/
cpp_boa lib.tcl library.

See Also cpp_is fixed size
cpp_is keyword

278

cpp_boa lib Commands

Parameters

Notes

See Also

cpp_l_name
cpp_1 name node

This command returns the C++ mapping of the node's local name.

node A node of the parse tree.

For user-defined types, the return value of cop 1 name is usually the same as the
node's local name, but prefixed with _ (underscore) if the local name conflicts
with a C++ keyword.

If the node represents a built-in IDL type, the result is the C++ mapping of the
type; for example:

short CORBA: : Short
unsigned short CORBA: :UShort
long CORBA: :Long
unsigned long CORBA: :ULong
char CORBA: :Char
octet CORBA: :Octet
boolean CORBA: :Boolean
string char *

float CORBA: :Float
double CORBA: :Double

any CORBA: :Any
Object CORBA: :Object

When cpp 1 name is invoked on a parameter node, it returns the name of the
parameter variable as it appears in IDL. You can use cpp_1 name in conjunction
with cpp_clt par decl to help generate an operation invocation: the command
cpp_clt par declisused to declare the parameters, and cpp_1 name returns the
name of the parameter in a form suitable for passing in the invocation.

Cpp_s_name
Cpp_S_uname
cpp_clt par decl
cpp_gen clt par decl

279

Orbix Code Generation Toolkit Programmer’s Guide

cpp_nil_pointer
cpp_nil pointer type

This command returns a C++ expression that denotes a nil pointer value for the

specified type.
Parameters
type A type node of the parse tree. The node must represent a type
that can be heap-allocated.

Notes The command returns a C++ expression that is a nil pointer (or a nil object
reference) for the specified type. It should be used only for types that might be
heap-allocated; that is, struct, exception, union, sequence, array, string,
Object, interface, or TypeCode.

This command can be used to initialize pointer variables. There is rarely a need to

use this command if you make use of var types in your applications.

cpp_op_sig_h

cpp_op sig h op

cpp_gen op sig h op

This command generates the signature of an operation for inclusion in .h files.
Parameters

op An operation node of the parse tree.

Notes The command cpp op sig hhasno ; (semicolon) at the end of its generated

statement.

The related command cpp_gen op sig hdoes include a ; (semicolon) at the end
of its generated statement.

280

cpp_boa lib Commands

Examples

See Also

Consider the following sample IDL:

// IDL
// File: ’finance.idl’
interface Account {
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount) ;
}i

The following Tcl script illustrates the use of the command:

Tcl
smart source "std/sbs_output.tcl”
smart_source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

set op [$idlgen(root) lookup "Account::makeDeposit"]

set op sig h [cpp op sig h $op]
output "$op sig h \n\n"

cpp_gen op sig h $op
The following output is generated by the Tcl script:

virtual void makeDeposit (
CORBA: :Float amount,
CORBA: :Environment & env=CORBA::IT chooseDefaultEnv())
throw (CORBA: : SystemException)

virtual void makeDeposit (
CORBA: :Float amount,
CORBA: :Environment & env=CORBA::IT chooseDefaultEnv ())
throw (CORBA: : SystemException) ;

cpp_gen op sig h
cpp _op sig cc

281

Orbix Code Generation Toolkit Programmer’s Guide

cpp_op_sig cc

cpp_op sig cc op ?class?
cpp_gen op sig cc op ?class?

This command generates the signature of the operation for inclusion in .cxx files.

Parameters

op An operation node of the parse tree.

?class? (Optional) The name of the class in which the method is
defined. If no class is specified, the default implementation
class name is used instead (given by [cpp impl class [Sop
defined in]]).

Notes Neither the cpp_op_sig ccnor the cpp_gen op sig _cc command put a
; (semicolon) at the end of the generated statement.
Examples Consider the following sample IDL:

// IDL

// File: ’finance.idl’

interface Account {
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount) ;

i
The following Tcl script illustrates the use of the command:

Tcl
smart_source "std/sbs output.tcl"
smart source "std/cpp boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

}

set op [$idlgen (root) lookup "Account::makeDeposit"]

set op sig cc [cpp op sig cc $op]

output "Sop sig cc \n\n"

cpp_gen op sig cc Sop

The following output is generated by the Tcl script:

void
Account i::makeDeposit (

282

cpp_boa lib Commands

See Also

Parameters

Notes

CORBA: :Float amount,
CORBA: :Environment &)
throw (CORBA: : SystemException)

void

Account i::makeDeposit (
CORBA: :Float amount,
CORBA: :Environment &)
throw (CORBA: : SystemException)

cpp_op _sig h
cpp_gen op sig cc

cpp_param_sig

cpp_param sig name type direction
cpp_param sig arg

This command returns the C++ signature of the given parameter.

name The name of a parameter or return value variable.

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out, or
return

arg An argument node of the parse tree.

This command is useful when you want to generate signatures for functions that
use IDL data types. The following variants of the command are supported:

¢ The first form of the command returns the appropriate C++ type for the
given type and direction, followed by the given name.

¢ The second form of the command returns output similar to the first but
extracts the type, direction and name from the argument node arg.

The result contains white space padding, to vertically align parameter names
when parameters are output one per line. The amount of padding is determined by
Spref (cpp, max_padding for types).

283

Orbix Code Generation Toolkit Programmer’s Guide

Examples

See Also

Parameters

Notes

284

Consider the following Tcl extract:
Tcl
set type [$idlgen(root) lookup "string"]

set dir "in"
puts "[cpp param sig "foo" Stype Sdir]"

The output generated by this script is:

const char * foo

cpp_param type
cpp_gen operation h
cpp_gen operation cc

cpp_param_type

cpp_param type type direction
cpp_param type arg
Cpp_param type op

This command returns the C++ parameter type for the node specified in the first
argument.

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out, or
return.

arg An argument node of the parse tree.

op An operation node of the parse tree.

This command is useful when you want to generate signatures for functions that
use IDL data types. The following variants of the command are supported:

® The first form of the command returns the appropriate C++ type for the
given type and direction.

® The second form of the command returns output similar to the first but
extracts the type and di rection from the argument node arg.

cpp_boa lib Commands

Examples

See Also

Parameters

See Also

Parameters

® The third form of this command is a shorthand for [cpp param type
[$Sop return type] "return"]. It returns the C++ type for the return
value of the given op.

The result contains white space padding, to vertically align parameter names
when parameters are output one per line. The amount of padding is determined by
Spref (cpp,max_padding for types).

The following Tcl extract prints out const char *:
Tcl
set type [$idlgen (root) lookup "string"]

set dir "in"
puts "[cpp param type Stype $dir]"

Cpp_param sig
cpp_gen operation h
cpp_gen operation cc

cpp_ret_assign
cpp_ret assign op

This command returns the " _result =" string (or a blank string, "", if op has a
void return type).

op An operation node of the parse tree.

cpp_assign stmt
cpp_gen assign stmt

Cpp_S_name
Cpp_s_name node

This command returns the C++ mapping of the node's scoped name.

node A node of the parse tree.

285

Orbix Code Generation Toolkit Programmer’s Guide

Notes This command is similar to the cpp 1 name command, but it returns the fully
scoped name of the C++ mapping type, rather than the local name.

Built-in IDL types are mapped as they are in the cpp_1 name command.

See Also cpp 1 name
cpp_s_uname

cpp_s_uname

Cpp_S_uname node

This command returns the node's scoped name, with each occurrence of the : :
separator replaced by an underscore _ character.

Parameters
node A node of the parse tree.

Notes The command is similar to [$node s uname] except, for special-case handling of
anonymous sequence and array types, to give them unique names.

Examples This routine is useful if you want to generate data types or operations for every
IDL type. For example, the names of operations corresponding to each IDL type
could be generated with the following statement:
set op name "op [cpp s uname $type]"

Some examples of IDL types and the corresponding identifier returned by
Cpp_S_uname:
//IDL //C++
foo foo
m: : foo m foo
m: : for m_for
unsigned long unsigned long
sequence<foo> anon_sequence foo
See Also cpp 1 name

Cpp_s_name

286

cpp_boa lib Commands

Notes

Examples

cpp_sanity_check_idl
cpp_sanity check idl

This command traverses the parse tree looking for unnecessary anonymous types
that can cause portability problems in C++.

Consider the following IDL typedef:
typedef sequence< sequence<long> > longSegSeq;

The mapping states that the IDL type longSegSeq maps into a C++ class with the
same name. However, the mapping does not state how the embedded anonymous
sequence sequence<long> is mapped to C++. The net effect of loopholes like
these in the mapping from IDL to C++ is that use of these anonymous types can
hinder readability and portability of C++ code.

To avoid these problems, use extra typedef declarations in IDL files. For
example, the previous IDL can be rewritten as follows:

typedef sequence<long> longSeq;
typedef sequence<longSeq> longSegSeq;

If cpp_sanity check idl finds anonymous types that might cause portability
problems, it prints out a warning message.

The following Tel script shows how the command is used:

Tcl

smart source "std/args.tcl"

smart_source "std/cpp boa lib.tcl"

parse cmd line args file options

if {![idlgen parse idl file $file Soptions]} {
exit 1

}
cpp_sanity check idl
. # rest of script

cpp_smart_proxy_class

cpp_smart proxy class interface

This command returns a C++ identifier that can be used as the name of a smart
proxy class for the specified IDL interface.

287

Orbix Code Generation Toolkit Programmer’s Guide

Parameters
interface An interface node of the parse tree.
Notes The class name is constructed by getting the fully scoped name of the IDL
interface, replacing all occurrences of : : with _and prefixing
Spref (cpp, smart_proxy prefix), which has the default value smart .
Examples Consider the following Tcl script:

Tcl

Node $inter is already initialized...
set sproxyc [cpp smart proxy class S$inter]
set proxyc [cpp_ s name S$Sinter]
[***
class @S$Ssproxyc@ :public virtual @Sproxyc@ {
public:
@$sproxyc() ;
};

***]

The following interface definitions result in the generation of the corresponding

C++ code.
//IDL // C++
interface Cow { class smart Cow :public virtual Cow
/. {
}; public:
smart Cow () ;
i
//IDL // C++
module Farm { class smart Farm Cow :public virtual
interface Cow { Farm: :Cow {
//... public:
}; smart Farm Cow () ;
i i

cpp_srv_free_mem_stmt

cpp_srv_free mem stmt name type direction
cpp srv free mem stmt arg

288

cpp_boa lib Commands

cpp_srv_free mem stmt op

cpp_gen srv_free mem stmt name type direction ind lev
cpp_gen srv free mem stmt arg ind lev

cpp_gen srv free mem stmt op ind lev

This command returns a C++ statement that frees the memory associated with the
specified parameter (or return value) of an operation on the server side.

Parameters
name The name of the parameter or return value variable.
type A type node of the parse tree that describes the type of this
parameter or return value.
direction The parameter passing mode—one of in, inout, out, or
return.
arg An argument node of the parse tree.
op An operation node of the parse tree.
ind lev Number of levels of indentation (gen variants only).
Notes The following variants of the command are supported:

The first form of the command is used to free memory associated with an
explicitly named parameter variable.

The second form of the command is used to free memory associated with
parameters.

The third form of the command is used to free memory associated with
return values.

The non-gen forms of the command omit the terminating ; (semicolon)
character.

The gen forms of the command include the terminating ; (semicolon)
character.

There are only two cases in which a server should free the memory associated
with a parameter:

When assigning a new value to an inout parameter, it might be necessary
to release the previous value of the parameter.

289

Orbix Code Generation Toolkit Programmer’s Guide

® Ifthe body of the operation decides to throw an exception after memory
has been allocated for out parameters and the return value, then the
operation should free the memory of these parameters (and return value)
and also assign nil pointers to these out parameters for which memory has
previously been allocated. If the exception is thrown before memory has
been allocated for the out parameters and the return value, then no
memory management is necessary.

Examples Given the following sample IDL:
// IDL
struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);
}i
If an operation throws an exception after it has allocated memory for out

parameters and the return value, some memory management must be carried out
before throwing the exception. These duties are shown in the following Tcl code:

Tcl
[***
if (an_error occurs) {
/ /===~
// Before throwing an exception, we must
// free the memory of heap-allocated "out"
// parameters and the return value,
// and also assign nil pointers to these
// "out" parameters.
//-=====--
***]
foreach arg [$Sop args {out}] {
1 set free mem stmt [cpp srv free mem stmt Sarg]
if {$free mem stmt != ""} {

set name [cpp 1 name $arg]
set type [Sarg type]

290

cpp_boa lib Commands

See Also

[***

@$free mem stmt@;
@Sname@ = Q@[cpp nil pointer Stypel@;
*kx]

}
cpp_gen srv_free mem stmt $Sop 2
[***

throw some exception;

***]

This script shows how cpp_srv_free mem stmt and

cpp_gen srv_free mem stmt, lines 1 and 3, respectively, can free memory
associated with out parameters and the return value. Nil pointers can be assigned
to out parameters by using the cpp nil pointer command, line 2.

The previous Tcl script generates the following C++ code:

// C++
if (an error occurs) {
/[====mm-

// Before throwing an exception, we must
// free the memory of heap-allocated "out"
// parameters and the return value,

// and also assign nil pointers to these
// "out" parameters.

delete p longSeq;
p_longSeq = 0;

delete result;

throw some exception;

}

cpp_gen srv free mem stmt
cpp_srv need to free mem

cpp_srv_need_to free mem

cpp_srv _need to free mem type direction
cpp_srv need to free mem arg
cpp_srv need to free mem op

291

Orbix Code Generation Toolkit Programmer’s Guide

This command returns 1 (TRUE) if the server program has to take explicit steps
to free memory when the operation is being aborted, by throwing an exception. It
returns 0 (FALSE) otherwise.

Parameters
type A type node of the parse tree that describes the type of this
parameter or return value.
direction The parameter passing mode—one of in, inout, out, or
return.
arg An argument node of the parse tree.
op An operation node of the parse tree.
Notes The following variants of the command are supported:
® The first form of the command is used to check whether the given type of
parameter (or return value), passed in the given direction, must be
explicitly freed when an exception is thrown.
® The second form of the command is used to check parameters.
® The third form of the command is used to check return values.
See Also cpp_srv_free mem stmt

cpp_srv_par_alloc

cpp_srv par alloc name type direction

cpp _srv par alloc arg

cpp_srv par alloc op

cpp_gen srv _par alloc name type direction ind lev
cpp_gen srv par alloc arg ind lev
cpp_gen srv par alloc op ind lev

This command returns a C++ statement to allocate memory for an out parameter
(or return value), if needed. If there is no need to allocate memory, this command
returns an empty string.

292

cpp_boa lib Commands

Parameters

Examples

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out, or
return

arg An argument node of the parse tree.

op An operation node of the parse tree.

ind lev The number of levels of indentation (gen variants only).

Given the following sample IDL:

// IDL

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);

}i

The following Tcl script declares a local variable that can hold the return value of
the operation. It then allocates memory for out parameters and the return value, if
required.

Tcl
set op [$idlgen (root) lookup "foo::op"]
set ret type [Sop return type]
set is var 0
set ind lev 1
set arg list [$op contents {argument}]
if {[$ret type 1 name] != "void"} {
[***
/1-===-==-
// Declare a variable to hold the return value.
//-======-

@[cpp_srv_ret decl Sop 0]@;

293

Orbix Code Generation Toolkit Programmer’s Guide

***]

}

[***
//-=——=——=
// Allocate memory for "out" parameters
// and the return value, if needed.
/)=~

***]

foreach arg [$Sop args {out}] {
cpp _gen srv par alloc $arg $ind lev
}
2 cpp_gen srv par alloc $op $ind lev

The previous Tel script generates the following C++ code:

// C++

// Allocate memory for "out" parameters
// and the return value, if needed.

p_longSeq = new longSeg;
_result = new longSeq;

The declaration of the result variable, line 1, is separated from allocation of
memory for it, line 2. This gives you the opportunity to throw exceptions before
allocating memory, which eliminates the memory management responsibilities
associated with throwing an exception. If you prefer to allocate memory for the
_result variable in its declaration, change line 1 in the Tcl script so that it passes
1 as the value of the alloc mem parameter, then delete line 2 of the Tcl script. If
you make these changes, the declaration of result changes as follows:

longSeg* result = new longSeq;

See Also cpp_gen_srv_par_alloc
cpp_srv _par ref
cpp_srv_ret decl

294

cpp_boa lib Commands

Parameters

Notes

Examples

cpp_srv_par_ref

cpp_srv _par ref name type direction
cpp_srv _par ref arg
cpp_srv_par ref op

This command returns a reference to the value of the specified parameter (or
return value) of an operation. The returned reference is either Sname or *$name,
depending on whether the parameter is passed by reference or by pointer.

name The name of a parameter or return value variable.

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out, or
return

arg An argument node of the parse tree.

op An operation node of the parse tree.

References returned by cpp clt par ref are intended for use in the context of
assignment statements, in conjunction with the cpp_gen assign stmt
command. See the following example.

Given the following sample IDL:

// IDL

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);

295

Orbix Code Generation Toolkit Programmer’s Guide

The following Tcl script iterates over all inout and out parameters and the return
value, and assigns values to them:

Tcl
[***

// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.

*kx]
foreach arg [$op args {inout out}] {
set type [Sarg type]
1 set arg ref [cpp srv par ref $Sarg]
set name2 "other [$type s uname]"
if {[Sarg direction] == "inout"} {
2 cpp_gen srv_free mem stmt Sarg S$ind lev
}
3 cpp_gen assign stmt Stype $arg ref Sname2 \
$ind lev O
}
if {[Sret type 1 name] != "void"} {
4 set ret ref [cpp srv par ref $Sop]
set name?2 "other_[$ret_type S uname]"
5 cpp_gen assign stmt S$ret type S$ret ref \
Sname2 S$ind lev 0

}

The cpp_srv par ref command, lines 1 and 4, can be used to obtain a reference
to both the parameters and the return value. For example, in the IDL operation
used in this example, the parameter p_longSeq is passed by pointer. Thus, a
reference to this parameter is *p_longSeq. A reference to a parameter (or the
return value) can then be used to initialize it using the cpp_gen assign stmt
command, lines 3 and 5.

It is sometimes necessary to free the old value associated with an inout
parameter before assigning it a new value. This can be achieved using the
cpp_gen srv_free mem stmt command, line 2. However, this should be done
only for inout parameters; hence the if statement around this command.

296

cpp_boa lib Commands

See Also

Parameters

The previous Tcl script generates the following C++ code:

// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.

CORBA: :string free(p string);

p_string = CORBA::string dup(other string);

*p_longSeq = other longSeq;

for (CORBA::ULong il = 0; il < 10; il ++) {
p_long array[il] = other long array[il];

}

* result =

other longSeq;

cpp_srv_par alloc
cpp_srv_ret decl

cpp_srv_ret_decl

cpp_srv_ret decl name type ?alloc mem?
cpp_srv_ret decl op “alloc mem?

cpp_gen srv_ret decl name type ind lev ?alloc mem?
cpp_gen srv_ret decl op ind lev ?alloc mem?

This command returns a C++ declaration of a variable that holds the return value
of an operation. If the operation does not have a return value this command
returns an empty string.

name

type

alloc mem

op

ind lev

The name of the parameter or return value variable.

A type node of the parse tree that describes the type of this
parameter or return value.

(Optional) The flag indicating whether memory should be
allocated. Default value is 1, meaning allocate.

An operation node of the parse tree.

The number of levels of indentation (gen variants only).

297

Orbix Code Generation Toolkit Programmer’s Guide

Notes Assuming that the operation does have a return value, if alloc mem is 1, the
variable declaration also allocates memory to hold the return value, if necessary.
If alloc_memis 0, no allocation of memory occurs, and instead you can allocate
the memory later with the cpp_srv_par alloc command. The default value of
alloc memis 1.

Examples Given the following sample IDL:
// IDL
typedef sequence<long> longSeq;

interface foo {
longSeq op();
}r

The following Tcl script declares a local variable that can hold the return value of
the operation. It then allocates memory for the return value, if required.

Tcl
set op [$idlgen (root) lookup "foo::op"]
set ret type [Sop return type]
set ind lev 1
if {[Sret type 1 name] != "void"} {
[***
/]-=======
// Declare a variable to hold the return value.
/===~
1 @[cpp srv_ret decl Sop 0]1@;
*kx]
}
2 cpp_gen srv par alloc $op $ind lev

298

cpp_boa lib Commands

See Also

Parameters

Examples

The previous Tcl script generates the following C++ code:

longSeg* result;

_result = new longSeq;

The declaration of the result variable, line 1, is separated from the allocation of
memory for it, line 2. This gives you the opportunity to throw exceptions before
allocating memory, which eliminates the memory management responsibilities
associated with throwing an exception. If you prefer to allocate memory for the
_result variable in its declaration, change line 1 in the Tcl script so that it passes
1 as the value of the alloc_mem parameter, then delete line 2 of the Tcl script. If
you make these changes, the declaration of result changes as follows:

longSeg* result = new longSeq;

cpp_srv_par alloc
cpp_srv par ref
cpp_gen srv_ret decl

cpp_tie class
cpp tie class interface

This command returns the name of the BOA tie macro for the IDL interface.

interface An interface node of the parse tree.

Given an interface node $inter, the following Tcl extract shows how the
command is used:

Tcl

set class [cpp impl class S$inter]
[***
@Sclass@* tied object = new @Sclass@();
@[cpp_s name $Sinter]@_ptr the tie =
new Q[cpp tie class Sinter]@(@Sclass@) (tied object);

299

Orbix Code Generation Toolkit Programmer’s Guide

See Also

Parameters

Notes

Examples

See Also

300

***]

If $inter is set to the node representing the IDL interface Cow, the Tcl code
produces the following output:

/] CH+
Farm Cow i* tied object = new Farm Cow i();
Farm::Cow ptr the tie =
new TIE Farm Cow(Farm Cow i) (tied object);

cpp boa class s name
cpp boa class 1 name

cpp_typecode 1 name
cpp_ typecode 1 name type

This command returns the local C++ name of the typecode for the specified
type.

type A type node of the parse tree.

For user-defined types, the command forms the type code by prefixing the local
name of the type with _tc . For the built-in types (such as long, and short), the
type codes are defined inside the CORBA module.

Examples of the local names of C++ type codes for IDL types:

// IDL // C++

cow _tc cow

farm: :cow _tc cow

long CORBA:: tc long

cpp_typecode s name

cpp_typecode s name

cpp_typecode s name type

cpp_boa lib Commands

Parameters

Notes

Examples

See Also

Parameters

This command returns the fully-scoped C++ name of the typecode for the
specified type.

type A type node of the parse tree.

For user-defined types, an IDL type of the form scope: : 1ocalName has the
scoped type code scope:: tc localName. For the built-in types (such as long
and short), the type codes are defined inside the CORBA module.

Examples of the fully-scoped names of C++ type codes for IDL types:

// IDL // C++

cow _tc cow

farm: :cow farm:: tc cow
long CORBA:: tc long

cpp_typecode 1 name

cpp_var_decl

cpp var decl name type is var
cpp_gen var decl name type is var ind lev

This command returns a C++ variable declaration with the specified name and
type.

name The name of the variable.

type A type node of the parse tree that describes the type of this
variable.

is var The boolean flag indicates whether the variable is a _var type.

A value of 1 indicates a _var type.

ind lev The number of levels of indentation (gen variants only).

301

Orbix Code Generation Toolkit Programmer’s Guide

Notes For most variables, the is var parameter is ignored, and the variable is allocated
on the stack. However, if the variable is a string or an object reference, it must be
heap allocated, and the is var parameter determines whether the variable is
declared as a _var (smart pointer) type or as a raw pointer.

All variables declared via cpp_var decl are references, and hence can be used
directly with cpp_assign_stmt.

Examples The following Tcl script illustrates how to use this command:

Tcl

set is var 0

set ind lev 1

[***
// Declare variables

*kx]

foreach type Stype list {
set name "my [Stype 1 name]"
cpp_gen var decl $Sname Stype $is var $ind lev

}

If variable type 1list contains the types string, widget (a struct), and
long array, the Tcl code generates the following C++ code:

// C++
// Declare variables
char * my string;
widget my widget;
long array my long array;
See Also cpp_gen var decl

cpp var free mem stmt
cpp var need to free mem

cpp_var_free_mem_stmt

cpp_var free mem stmt name type is var
cpp_gen var free mem stmt name type is var

This command returns a C++ statement that frees the memory associated with the
variable of the specified name and type. If there is no need to free memory for the
variable, the command returns an empty string.

302

cpp_boa lib Commands

Parameters

name The name of the variable.

type A type node of the parse tree that describes the type of this
variable.

is var A boolean flag to indicate whether the variable isa _var type or
not. A value of 1 indicates a _var type.

Examples The following Tcl script illustrates how to use the command:

Tcl
set is var 0
set ind lev 1
[***

// Memory management
*kk]
foreach type $type list {
set name "my [Stype 1 name]"
cpp _gen var free mem stmt $name Stype $is var $ind lev

}

If variable type 1list contains the types string, widget (a struct) and
long array, the Tecl script generates the following C++ code:

// C++
// Memory management
CORBA: :string free(my string);

The cpp_gen var free mem stmt command generates memory-freeing
statements only for the my string variable. The other variables are stack-
allocated, so they do not require their memory to be freed. If you modify the Tcl
code so that is var is set to TRUE, my string’s type changes from char * to
CORBA: :String var and the memory-freeing statement for that variable is
suppressed.

See Also cpp_var decl
cpp gen var free mem stmt
cpp_var need to free mem

cpp_var_need_to_free_mem

cpp var need to free mem type is var

303

Orbix Code Generation Toolkit Programmer’s Guide

This command returns 1 (TRUE) if the programmer has to take explicit steps to
free memory for a variable of the specified type; otherwise it returns 0 (FALSE).

Parameters
type
is var
See Also cpp_var_decl

A type node of the parse tree that describes the type of this
variable.

A boolean flag that indicates whether the variableisa var type
or not. A value of 1 indicates a var type.

cpp var free mem stmt

304

12

Other C++ Utility Libraries

This chapter describes some further Tcl libraries available for
use in your genies.

The stand-alone genies cpp print.tcl, cpp_random.tcl and cpp equal.tcl
are discussed in Chapter 3 “Ready-to-Use Genies for Orbix C++ Edition”. Aside
from being available as stand-alone genies, cpp_print.tcl, cpp_random.tcl
and cpp_equal.tcl also provide libraries of Tcl commands that can be called
from within other genies. This chapter discusses the APIs of these libraries.

Tcl API of cpp_print

The minimal API of the cpp_print library is made available by the following
command:

Tcl
smart source "cpp boa print/lib-min.tcl"

The minimal API defines the following command:

Tcl
cpp_print func name type

This command returns the name of the print function for the specified type.

If you want access to the full API of the cpp_print library, use the following
command:

Tcl
smart source "cpp boa print/lib-full.tcl”

305

Orbix Code Generation Toolkit Programmer’s Guide

The full library includes the commands from the minimal library and defines the
following commands:

Tcl
gen cpp print func h
gen cpp print func cc full any

These commands generate the files it print funcs.hand
it print funcs.cxx, respectively. The full any parameter to
gen cpp print func_cc is explained below

The Orbix runtime system has built-in type codes for the basic IDL types such as
long, short, string, and so on. However, by default, the Orbix IDL compiler
does not generate type codes for user-defined IDL types. Without these type
codes, you cannot insert a user-defined type into an any. This is not usually a
problem because most CORBA applications do not use either TypeCode or any,
and by not generating these extra type codes, the IDL compiler reduces
unnecessary code for most applications. If you want to write an genie that does
insert user-defined IDL types into an any, you must specify the -A command-line
option to the IDL compiler so that it will generate the necessary type codes.

Among the functions generated by gen _cpp print func ccare

IT print any() and IT print TypeCode (). When generating these functions,
gen cpp print func cc generates code that uses type codes of user-defined
IDL types only if the -2 option is to be given to the IDL compiler. The full any
parameter must be 1 if the -A option is to be given to the IDL compiler.
Otherwise, full any should have the value 0.

Example of Use

The following script illustrates how to use all the API commands of the
cpp_print library. Lines marked with * are relevant to the use of the cpp print
library.

Tcl

smart_source "std/sbs_ output.tcl"
smart source "std/cpp boa lib.tcl"

smart source "cpp boa print/lib-full.tcl"
if {Sargc != 1} {

puts "usage: ..."; exit 1

}

306

Tcl API of cpp_print

set file [lindex S$argv 0]
set ok [idlgen parse idl file Sfile]
if {!Sok} { exit }

gen cpp print funcs h

gen cpp print funcs cc 1

Generate a file which contains
calls to the print functions

set h file ext Spref(cpp,h file ext)
set cc file ext Spref (cpp,cc_file ext)
open output file "example func$cc file ext"

set type list [idlgen list all types "exception"]

[***

#include "it print funcs@$h file ext@

void example func()

{
f)mmmmmmmm
// Declare variables of each type
JC——

***]

foreach type $type list {

set name my [$type s uname]
[***

@[cpp var decl $name Stype 1]@;
*kk]

}; # foreach type

[***

//Initialize variables

// Print out the value of each variable

307

Orbix Code Generation Toolkit Programmer’s Guide

*k k]
foreach type $type list {
set print func [cpp print func name Stype]
set name my_[$type S _uname]
[***

cout << "@Sname@ =";
@Sprint func@ (cout, @Sname@, 1);
cout << endl;

***]

}; # foreach type

[***

} // end of example func()
***]

close output file

The source code of the C++ genie provides a larger example of the use of the

cpp_print library.

Tcl API of cpp_random

The minimal API of the cpp _random library is made available by the following

command:

Tcl
smart source "cpp boa random/lib-min.tcl"

The minimal API defines the following commands:

Tcl
cpp_random assign stmt type name
cpp_gen random assign stmt type name ind lev

The cpp_random assign stmt command returns a string representing a C++
statement that assigns a random value to the variable with the specified type and
name. The command cpp_gen random assign stmt outputs the statement at the

indentation level specified by ind lev.

308

Tcl API of cpp_random

If you want access to the full API of the cpp_random library, use the following
command:

Tcl
smart source "cpp boa random/lib-full.tcl"

The full library includes the command from the minimal library and additionally
defines the following commands:

Tcl
gen cpp random func h
gen cpp random func cc full any

These commands generates the files it random funcs.h and

it random funcs.cxx, respectively. The full any parameter to

gen cpp print func cc must have the value 1 if the -A command-line option is
to be given to the IDL compiler. Otherwise, full any should be 0.

Example of Use

The following script illustrates how to use all the API commands of the
cpp_random library. This example is an extension of the example shown in the
section “TCL API of cpp_print”. Lines marked with + are relevant to the use of
the cpp random library, while lines marked with * are relevant to the use of the
cpp_print library.

Tcl

smart source "std/sbs_output.tcl”
smart source "std/cpp boa lib.tcl"

smart source "cpp boa print/lib-full.tcl"

+ smart source "cpp boa random/lib-full.tcl"

if {Sargc !'= 1} {
puts "usage: ..."; exit
}
set file [lindex $argv 0]
set ok [idlgen parse idl file Sfile]
if {!Sok} { exit }

309

Orbix Code Generation Toolkit Programmer’s Guide

* gen _cpp print funcs h
* gen cpp print funcs cc 1

Generate it random funcs. {h,cxx}

gen cpp random funcs h
gen cpp random funcs cc 1

Generate a file which contains
calls to the print and random functions

set h file ext Spref(cpp,h file ext)
set cc file ext Spref (cpp,cc file ext)
open output file "example func$cc file ext"
set type list [idlgen list all types "exception"]
[***
* #include "it print funcs@$h file ext@
+ #include "it random funcs@$h file ext@
void example_ func()
{
/)-==mm==-
// Declare variables of each type
e
*kk]
foreach type Stype list {
set name my [$type s uname]
[***
+ @[cpp var decl $name Stype 1]@;
*kk]

}; # foreach type

[***

// Assign random values to each variable

310

Tcl API of cpp_random

***]

foreach type $type list {
set name my [$type s uname]
[***

@[cpp random assign stmt $type Sname]@;
*kk]

}; # foreach type

[***

***]
foreach type $type list {

set print func [cpp print func name Stype]

set name my_[$type S_uname]
[***

cout << "@S$name@ =";

@Sprint func@(cout, @Sname@, 1);
cout << endl;

***]

}; # foreach type

[***

} // end of example func()
***]

close output file

The source-code of the C++ genie provides a larger example of the use of the

cpp_random library.

311

Orbix Code Generation Toolkit Programmer’s Guide

Tcl API of cpp_equal

The minimal API of the cpp_equal library is made available by the following
command:

Tcl
smart_source "cpp boa equal/lib-min.tcl"

The minimal API defines the following commands:

Tcl
cpp_equal expr type namel name2
cpp_not equal expr type namel nameZ2

These commands return a string representing a C++ boolean expression that tests
the two specified variables namel and name2 of the same type for equality.

Example of Use

An example of the use of cpp equal expr and cpp not equal expr is as
follows:

Tcl
foreach type [idlgen list all types “exception”] {
set namel “my [Stype s uname] 17;
set name2 “my [Stype s uname] 2”;
[***
if (@[cpp equal expr $type $namel Sname2]@) {
cout << “values are equal” << endl;

}

***]

}; # foreach type

Full API of cpp_equal
If you want access to the fu/l API of the cpp_equal library then use the following
command:

Tcl
smart source "cpp boa equal/lib-full.tcl"

The full library includes the commands from the minimal library and additionally
defines the following commands:

312

Tcl API of cpp_equal

Tcl

gen cpp equal func h

gen:cpp:equal:func:cc full any

These commands generates the files it equal funcs.hand

it equal funcs.cxx, respectively. The full any parameter to

gen cpp equal func cc should be 1 if the -A command-line option is to be
given to the IDL compiler. Otherwise, full any should be 0.

313

Orbix Code Generation Toolkit Programmer’s Guide

314

Part IV

Java Genies
Library Reference

13

Java Development Library

The code generation toolkit comes with a rich Java development
library that makes it easy to create code generation applications
that map IDL to Java code.

Naming Conventions in API Commands

The abbreviations shown in Table 13.1 are used in the names of commands
defined in the std/java boa lib.tcl library.

Abbreviation Meaning

clt Client

srv Server

var Variable

var decl Variable declaration

gen See “Naming Conventions for gen " on page 318
par/param Parameter

ref Reference

Table: 13.1: Abbreviations Used in Command Names.

317

Orbix Code Generation Toolkit Programmer’s Guide

Abbreviation Meaning
stmt Statement
op Operation
attr acc An IDL attribute's accessor
attr mod An IDL attribute's modifier
sig Signature

Table: 13.1: Abbreviations Used in Command Names.

Command names in std/java boa lib.tcl start with the java prefix.

For example, the following statement generates the Java signature of an
operation:

[jJava op sig Sop]

Naming Conventions for gen_

The names of some commands contain gen , to indicate that they generate output
into the current output file. For example, java _gen op sig outputs the Java
signature of an operation. Commands whose names omit gen _return a value—
which you can use as a parameter to the output command.

Some commands whose names do not contain gen_ also have gen counterparts.
Both forms are provided to offer greater flexibility in how you write scripts. In
particular, commands without gen_ are easy to embed inside textual blocks (that
is, text inside [*** and ***]), while their gen_ counterparts are sometimes
easier to call from outside textual blocks.

318

Indentation

Some examples follow:

Indentation

The following segment of code prints the Java signatures of all the
operations of an interface:

Tcl
foreach op [$inter contents {operation}] {
output " [java op _sig $opl\n"

}

The output statement uses spaces to indent the signature of the operation,

and follows it with a newline character. The printing of this white space is

automated by the gen counterpart of this command. The above code

snippet could be rewritten in the following, slightly more concise, format:

Tcl

foreach op [$inter contents {operation}] {
java _gen op sig Sop

}

The use of commands without gen_ can often eliminate the need to toggle

in and out of textual blocks. For example:

Tcl
[***

@[java op sig Sopl@
{

// body of the operation
}

***]

To allow programmers to choose their preferred indentation, all commands in
std/java _boa lib.tcl use the string in $pref (java, indent) for each level of
indentation they need to generate.

Some commands take a parameter called ind lev. This parameter is an integer
that specifies the indentation level at which output should be generated.

319

Orbix Code Generation Toolkit Programmer’s Guide

$pref(java,...) Entries

Some entries in the Spref (java,...) array are used to specify various user
preferences for the generation of Java code, as shown in Table 13.2. All of these
entries have default values if there is no setting in the id1gen.cfg file. You can
also force the setting by explicit assignment in a Tcl script.

$pref(...) Array Entry Purpose

Spref (java, java_file ext) Specifies the filename extension for Java
source code files. Its default value is .java.

Spref (java, java_class_ext) Specifies the filename extension for Java
class files. Its default value is .class.

$Spref (java, indent) Specifies the amount of white space to be
used for one level of indentation. Its default
value is four spaces.

$pref (java, impl_class_suffix) Specifies the suffix that is added to the name
of a class that implements an IDL interface.
Its default value is Impl.

Spref (java, smart proxy prefix) Specifies the prefix that is added to an IDL
interface to give the name of a smart proxy
class. Its default value is Smart.

Spref (java,attr mod param name) Specifies the name of the parameter in the
Java signature of an attribute's modifier
operation. Its default value is new value.

Spref (java,max_padding for types | Specifies the padding to be used with Java

) type names when declaring variables or
parameters. This padding helps to ensure that
the names of variables and parameters are
vertically aligned, which makes code easier to
read. Its default value is 32.

Table: 13.2: $pref(java,...) Array Entries

320

$pref(java,...) Entries

$pref(...) Array Entry

Purpose

$pref (java,want throw) A boolean value that specifies whether or not

the Java signatures of operations and
attributes should have a throw clause. Its
default value is true.

Table: 13.2: $pref(java,...) Array Entries

321

Orbix Code Generation Toolkit Programmer’s Guide

Groups of Related Commands

To help you find the commands needed for a particular task, each heading below
lists a group of related commands.

Identifiers and Keywords

java 1 name node
java s name node
java typecode 1 name type
java typecode s name type

General Purpose Commands
java assign stmt type name value ?dir? ?scope?
java_indent number
java is keyword name
Servant/Implementation Classes
java boa class s name interface node

java impl class interface node
java tie class interface node

Operation Signatures
java gen op sig operation node ?class name?
java op sig operation node ?class name?
Attribute Signatures
java attr acc sig attribute node ?class name?
java attr mod sig attribute node ?class name?

java gen attr acc sig attribute node ?class name?
java gen attr mod sig attribute node ?class name?

322

Groups of Related Commands

Types and Signatures of Parameters

java param sig name type direction
java param sig op or arg

Jjava param type type direction

java param type op or arg

Invoking Operations

java_assign stmt type name value ?dir? ?scope?
java clt par decl name type dir

java clt par ref arg or op

java gen clt par decl arg or op ind lev
java ret assign op

Invoking Attributes

java _clt par decl name type dir
java_clt par ref name type dir
java gen clt par decl name type dir ind lev

Implementing Operations

java gen srv par alloc arg or op ind lev
java gen srv ret decl op ind lev ?alloc mem?
java srv par alloc arg or op
java_srv par ref arg or op

java srv ret decl op ?falloc mem?

Implementing Attributes

java gen srv par alloc name type direction ind lev
java gen srv ret decl name type ind lev ?alloc _mem?
java srv par alloc name type direction
java_srv par ref name type direction

java _srv_ret decl name type ?alloc mem?

323

Orbix Code Generation Toolkit Programmer’s Guide

Instance Variables and Local Variables

java var decl name type ?dir?

Processing Unions

java branch case 1 label union branch
java branch case s label union branch
java branch 1 label union branch
java branch s label union branch

Processing Arrays

java array decl index vars arr pre ind lev

java array elem index arr pre

java array for loop footer arr indent

java array for loop header arr pre ind lev ?decl?
java gen array decl index vars arr pre ind lev

java gen array for loop footer arr indent

java gen array for loop header arr pre ind lev ?decl?

Processing Any

java any extract stmt type any name name
java any extract var decl type name
java any extract var ref type name
java any insert stmt type any name value

324

java_boa_lib Commands

java_boa_lib Commands

Parameters

Notes

Examples

This section gives detailed descriptions of the Tcl commands in the
java boa_lib library.

java_any_extract_stmt
java_any extract stmt type any name var name

This command generates a statement that extracts the value of the specified type
from the any called any name into the var name variable.

type A type node of the parse tree.
any name The name of the any variable.
var name The name of the variable into which the any is extracted.

var name must be a variable declared by java_any extract var decl.

The following Tcl script illustrates the use of the java_any extract stmt
command:

Tcl

smart source "std/output.tcl”
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

idlgen set preferences $idlgen (cfqg)
open output file "any extract.java"

lappend type list [$idlgen(root) lookup widget]
lappend type list [$idlgen(root) lookup boolean]
lappend type list [$idlgen(root) lookup long array]

[***

try {
***]

325

Orbix Code Generation Toolkit Programmer’s Guide

326

foreach type Stype list {
set var name my [$type s_uname]
[***

@[java_any extract var decl S$type Svar name]@;
*Hok]

}
output "\n"
foreach type Stype list {
set var name my [S$Stype s _uname]
set var ref [java any extract var ref $type Svar name]
[***
@[java_any extract stmt S$type "an any" $var name]@
process_Q[Stype s uname]@(@Svar_ref@);

***]

}

[***

}i

catch (Exception e) {
System.out.println ("Error: extract from any.");
e.printStackTrace() ;

|

***]

close output file
If the type list variable contains the type nodes for widget (a struct),

boolean and long_array, the previous Tcl script generates the following Java
code:

// Java

try {
NoPackage.widget my widget;
boolean my boolean;
int[] my long array;

my widget = NoPackage.widgetHelper.extract (an any)
process widget (my widget) ;

my boolean = an any.extract boolean ()
process_boolean (my boolean) ;

my long array = NoPackage.long arrayHelper.extract (an any)
process long array(my long array);

java_boa_lib Commands

See Also

Parameters

Examples

}i

catch (Exception e) {
System.out.println ("Error: extract from any.");
e.printStackTrace () ;

}i

java_any insert stmt

java_any extract var decl
java any extract var ref

java_any_extract_var_decl
java_any extract var decl type name

This command declares a variable, into which values from an any are extracted.
The parameters to this command are the variable’s type and name.

type A type node of the parse tree.

name The name of the variable.

The following Tcl script illustrates the use of the java_any extract var decl
command:

Tcl
foreach type Stype list {

set var name my_ [$type s_uname]
[***

@[java_any extract var decl $type Svar namel@;
Kk

}

If the variable type 1list contains the type nodes for widget (a struct),
boolean, and long array, then the previous Tcl script generates the following
Java code:

//Java
NoPackage.widget my widget;
boolean my boolean;
int[] my long array;

327

Orbix Code Generation Toolkit Programmer’s Guide

See Also java_any insert stmt
java any extract var ref
java any extract stmt

java_any_extract var ref
java any extract var ref type name
This command returns a reference to the value in name of the specified type.

Parameters

type A type node of the parse tree.

name The name of the variable.

Notes The returned reference is always $name.

Examples The following Tcl script illustrates the use of the java_any extract var ref
command:

Tcl
foreach type Stype list {

set var name my [$type s_uname]

set var_ref [java any extract var ref Stype $var name]
[***

process_@[Stype s uname]@(@Svar ref@);
*Hk]

}

If the variable type 1ist contains the type nodes for widget (a struct), boolean,
and long array then the previous Tcl script generates the following Java code:

// Java
process widget (my widget);
process_boolean (my boolean) ;
process long array(my long array);

See Also java any insert stmt
java any extract var decl
java any extract stmt

328

java_boa_lib Commands

Parameters

Examples

java_any_insert_stmt

java_any insert stmt type any name value

This command returns the Java statement that inserts the specified value of the
specified type into the any called any name.

type A type node of the parse tree.
any name The name of the any variable.
value The name of the variable that is being inserted into the any.

The following Tcl script illustrates the use of the java_any insert stmt
command:

Tcl
smart source "std/output.tcl"
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

idlgen set preferences $idlgen (cfg)
open output file "any insert.java"

lappend type list [S$Sidlgen(root) lookup widget]
lappend type list [$idlgen(root) lookup boolean]
lappend type list [$idlgen(root) lookup long arrayl

foreach type $type list {

set var name my [$type s uname]
[*%*

@[java any insert stmt $type "an any" $var name]@;
***]

}

close output file

329

Orbix Code Generation Toolkit Programmer’s Guide

See Also

Parameters

Notes

Examples

330

If the type list variable contains the type nodes for widget (a struct),
boolean, and long array, the previous Tcl script generates the following Java
code:

// Java
NoPackage.widgetHelper.insert (an_any,my widget) ;
an_any.insert boolean (my boolean);

NoPackage.long arrayHelper.insert(an any,my long array);

java any extract var decl
java any extract var ref
java any extract stmt

java_array decl index vars

java array decl index vars array prefix ind lev
java gen array decl index vars array prefix ind lev

This command declares a set of index variables that are used to index the
specified array.

array An array node of the parse tree.

prefix The prefix to be used when constructing the names of index
variables. For example, the prefix i is used to get index
variables called 11 and i2.

ind lev The indentation level at which the for loop is to be created.

The array indices are declared to be of the int type.
Given the following IDL:

//1IDL
typedef long long arrayl[5][7];

java_boa_lib Commands

The following Tcl script illustrates the use of the java_array decl index vars
command:

Tcl

smart_source "std/output.tcl"

smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "array.idl"] } {
exit 1

idlgen set preferences $idlgen (cfqg)

open_output file "array.java"

set typedef [$idlgen(root) lookup "long array"]

set a [Stypedef true base type]

set indent [java indent [$a num dims]]

set index [java array elem index Sa "i"]

[***

void some_method ()

{
@[java_array decl index vars $Sa "i" 1]@
@[java array for loop header $a "i" 1]@
@Sindent@Rfoo@RS$index@ = bar@R$index@;
@[java_array for loop footer $Sa 1]@

}

***]

close output file

The amount of indentation to be used inside the body of the for loop, line 2, is
calculated by using the number of dimensions in the array as a parameter to the
java_indent command, line 1.

331

Orbix Code Generation Toolkit Programmer’s Guide

The previous Tcl script generates the following Java code:

// Java
void some method ()

{
int il;
int i2;

for (i1l = 0; 11 < 5 ; 11 ++) {

for (12 = 0; i2 < 7 ; 12 ++) {
foo[il][i2] = bar[il][i2];

}

See Also java gen array decl index vars
java array for loop header
java array elem index
java array for loop footer

java_array_elem_index
java array elem index array prefix

This command returns, in square brackets, the complete set of indices required to
index a single element of array.

Parameters
array An array node of the parse tree.
prefix The prefix to use when constructing the names of index
variables. For example, the prefix i is used to get index
variables called i1 and i2.
Examples If arr is a two-dimensional array node, the following Tcl fragment:

Tcl

set indices [Jjava array elem index Sarr "i"]

returns the string " [i1] [i2]".

332

java_boa_lib Commands

See Also

Parameters

Notes

See Also

java_array decl index vars
java array for loop header
java_array for loop footer

java_array for loop footer

java array for loop footer array ind lev
java_gen array for loop footer array ind lev

This command generates a for loop footer for the given array node with
indentation given by ind level.

array An array node of the parse tree.

ind lev The indentation level at which the for loop is created.
This command prints a number of close braces ’ }’ that equals the number of
dimensions of the array.

java array decl index vars
java array for loop header
java array elem index

java_array for loop header

java array for loop header array prefix ind lev ?declare?
java _gen array for loop header array prefix ind lev ?declare?

This command generates the for loop header for the given array node.

333

Orbix Code Generation Toolkit Programmer’s Guide

Parameters
array An array node of the parse tree.
prefix The prefix to be used when constructing the names of index
variables. For example, the prefix i is used to get index
variables called 11 and i2.
ind lev The indentation level at which the for loop is created.
declare This optional argument is set to 1 to specify that index variables
are declared locally within the for loop. Default value is 0.
Examples Given the following IDL definition of an array:
// IDL
typedef long long array([5][7];
The following Tcl script illustrates the use of the java_array for loop header
command:
Tcl
set typedef [$idlgen(root) lookup "long array"]
set a [Stypedef true base type]
[***
@[java array for loop header Sa "i" 1]@
***]
This produces the following Java code::
// Java
for (il = 0; il < 5; 1il++) {
for (12 = 0; i2 < 7; 1i2++) {
Alternatively, using the command java array for loop header $a "i" 1 1
results in the following Java code:
// Java
for (int il = 0; il < 5; il++) {
for (int i2 = 0; 12 < 7; i2++) {
See Also java _array decl index vars

java gen array for loop header
java array elem index
java array for loop footer

334

java_boa_lib Commands

Parameters

Notes

Examples

java_assign_stmt
java _assign stmt type name value ?direction? ?scope?

java _gen assign stmt type name value ind lev ?direction? ?scope?

This command returns the Java statement (with the terminating ;) that assigns
value to the variable name, where both are of the same type.

type A type node of the parse tree.

name The name of the variable that is assigned to (left-hand side of
assignment).

value A variable reference that is assigned from (right-hand side of
assignment).

ind lev Ignored.

direction (Optional) The parameter passing mode—one of in, inout,

out, Or return.

scope (Optional) Only affects array assignments. If equal to 1, the
lines of code that make an array assignment are enclosed in
curly braces. Otherwise the braces are omitted.
The default is 1.

The command generates a shallow copy assignment for all types except arrays,
for which it generates a deep copy assignment.

If the direction is specified as inout or out, the left-hand side of the generated
assignment statement becomes name .value, as is appropriate for Holder types.

The following Tcl script illustrates the use of the java assign stmt command:

Tcl

smart source "std/output.tcl”
smart_source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

}

idlgen set preferences $idlgen (cfq)

open output file "assign stmt.java"

335

Orbix Code Generation Toolkit Programmer’s Guide

set op [$idlgen (root) lookup "foo::op"]
set ind lev 1
[***
e
// Initialize "in" and "inout" parameters
/)-======-
*k k]

foreach arg [$Sop args {in inout}] {
set arg name [Java 1 name S$Sarg]
set type [$arg type]
set dir [$arg direction]
set value "other_[$type s _uname]"
java gen assign stmt Stype Sarg name $value $ind lev $dir

}

close output file

The Tecl script initializes the in and inout parameters of the foo: : op operation.
There is one in parameter, of widget type, and one inout parameter, of string

type.

// Java

p_widget = other widget;
p_string.value = other string;

Assignment to the p_string parameter, which is declared as a Holder type, is
done by assigning to p_string.value.

See Also java gen assign stmt
java assign stmt array
java clt par ref

336

java_boa_lib Commands

java_assign_stmt_array
java_assign stmt array type name value ind lev ?scope?

This command generates nested for loops that assign value to the name, where
both are type arrays.

Parameters
type A type node of the parse tree.
name The name of the variable that is assigned to (left hand side of
assignment).
value The name of the variable that is assigned from (right hand side
of assignment).
ind lev Initial level of indentation for the generated code.
scope (Optional) If equal to 1, the lines of generated code are enclosed
in curly braces. Otherwise the braces are omitted. The default is
1.
Examples The following Tcl script illustrates the use of the java_assign stmt array
command:
Tcl

smart source "std/output.tcl”
smart_source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "array.idl"] } {
exit 1

}

idlgen set preferences $idlgen (cfq)

open output file "assign array.java"

set typedef [$idlgen(root) lookup "long array"]

set a [Stypedef true base type]
set indent [java_indent [$a num dims]]
set index [java array elem index $a "i"]

set assign stmt [java assign stmt array $a "arrl" "arr2" 1]
[***

void some_method ()

{

337

Orbix Code Generation Toolkit Programmer’s Guide

@Sassign stmt@
}

***]

close output file
Given the following IDL definition of long_array:

// IDL
typedef long long array[5][7];

The Tcl script generates the following Java code:

// Java
void some method ()

{
{
for (int il = 0; il < 5 ; il ++) {
for (int i2 = 0; i2 < 7 ; i2 ++) {
arrl[il][i2] = arr2[il] [i2];

}

An extra set of braces is generated to enclose the for loops because scope has the
default value 1.

See Also java_gen assign_ stmt
java assign stmt
java clt par ref

java_attr_acc_sig

java attr acc sig attribute
java gen attr acc sig attribute

This command returns the signature of an attribute accessor operation.

Parameters

attribute An attribute node of the parse tree.

Notes Neither the java_attr acc_signorthe java gen attr acc_sigcommand put
a ; (semicolon) at the end of the generated signature.

338

java_boa_lib Commands

Examples

See Also

Consider the following sample IDL:

// IDL
// File: ’finance.idl’
interface Account {
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount) ;
}i

The following Tcl script illustrates the use of the java attr acc sigcommand:
Tcl

smart source "std/output.tcl”
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

idlgen set preferences $idlgen (cfq)
open output file "signatures.java"

set attr [$idlgen(root) lookup "Account::balance"]
set attr acc sig [java attr acc sig Sattr]

output "S$attr acc_sig \n\n"

close output file
The previous Tcl script generates the following Java code:

// Java
public float balance ()

java_attr acc sig h
java gen attr acc sig cc
java attr mod sig h
java_attr mod sig cc

339

Orbix Code Generation Toolkit Programmer’s Guide

java_attr_mod_sig

java attr mod sig attribute
java gen attr mod sig attribute

This command returns the signature of the attribute modifier operation.

Parameters
attribute Attribute node in parse tree.
Notes Neither the java_attr mod signor the java gen attr mod sigputa
; (semicolon) at the end of the generated statement.
Examples Consider the following sample IDL:

// IDL
// File: ’finance.idl’
interface Account ({
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount) ;
}r

The following Tcl script illustrates the use of the java_attr mod sig command:

Tcl
smart source "std/output.tcl"
smart_source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

}

idlgen set preferences S$idlgen (cfg)

open output file "signatures.java"

set attr [$idlgen (root) lookup "Account::balance"]
set attr mod sig [java attr mod sig Sattr]

output "Sattr mod sig \n\n"
java gen attr mod sig Sattr

close output file

340

java_boa_lib Commands

See Also

Parameters

Examples

The previous Tcl script generates the following Java code:

// Java
public
void balance (
float new value

public
void balance (

float new value
)
java_attr acc sig h
java_attr acc sig cc
java_attr mod sig h
java gen attr mod sig cc

java_boa_class_1 name
java boa class 1 name interface

This command returns the local name of the BOA skeleton class for that interface.

interface An interface node of the parse tree.

Given an interface node $inter, the following Tcl extract shows how the
command is used:

Tcl

set class [java impl class Sinter]
[***
public class Q@Sclass@ extends @[java boa class 1 name Sinter]@
{
/...
}i

***]

341

Orbix Code Generation Toolkit Programmer’s Guide

See Also

Parameters

Examples

342

The following interface definitions results in the generation of the corresponding

Java code:.
// IDL // Java
interface Cow { public class NoPackage.CowImpl
/] ... extends CowImplBase
}i {
/...

}i

// IDL // Java

module Farm {
interface Cow{
/...
}i

}r

public class NoPackage.Farm.CowImpl
extends CowImplBase

Y
}i

java boa class s name

java_boa_class_s_name

java boa class s name interface

This command returns the fully scoped name of the BOA skeleton class for that

interface.

interface An interface node of the parse tree.

Given an interface node $inter, the following Tcl extract shows how the

command is used:

Tcl

set class [java impl class Sinter]

[***

public class @Sclass@ extends @[java boa class s name $Sinter]@

{
//...
};

***]

java_boa_lib Commands

See Also

Parameters

Notes

The following interface definitions results in the generation of the corresponding

Java code:.
// IDL // Java
interface Cow { public class NoPackage.CowImpl
/... extends NoPackage.CowImplBase
i {
/]

}i

// IDL // Java

module Farm ({
interface Cow{
/..
}i

}i

public class NoPackage.Farm.CowImpl
extends NoPackage.Farm.CowImplBase

/]
}i

java boa class 1 name

java_branch_case_l_label

java branch case 1 label union branch

This command returns a non-scoped label for the union branch union branch.
The case keyword prefixes the label unless the label is default. The returned
value omits the terminating : 7 (colon).

union branch A union branch node of the parse tree.

This command generates labels for all union discriminator types. Labels that
clash with Java keywords are prefixed with an _ (underscore) character.

343

Orbix Code Generation Toolkit Programmer’s Guide

Examples Consider the following IDL:

// IDL
module m {
enum colour {red, green, blue};

union foo switch (colour) {

case red: long ar
case green: string Db;
default: short c;

i
i
The following Tcl script illustrates the use of the java branch case 1 label
command:

Tcl

set union [$idlgen (root) lookup "m::foo"]

foreach branch [$union contents {union branch}] {
output [java branch case 1 label $branch]
output "\n"

}; # foreach

The previous Tcl script generates the following Java code:

//Java

case red
case green
case default

See Also java branch case s label
java branch 1 label
java branch s label

java_branch_case_s_label
java branch case s label union branch

This command returns a scoped label for the union branch union branch. The
case keyword prefixes the label unless the label is default. The returned value
omits the terminating ’ :/ (colon).

344

java_boa_lib Commands

Parameters

Notes

Examples

See Also

union branch A union branch node of the parse tree.

This command generates labels for all union discriminator types. Labels that
clash with Java keywords are prefixed with an _ (underscore) character.

Consider the following IDL:

// IDL
module m {
enum colour {red, green, blue};

union foo switch (colour) {
case red: long a;
case green: string b;
default: short c;
}i
i

The following Tcl script illustrates the use of the java branch case s label
command:

Tcl

set union [$idlgen (root) lookup "m::foo"]

foreach branch [Sunion contents {union branch}] {
output [java branch case s label S$branch]
output "\n"

}; # foreach

The following output is generated by the Tcl script:

//Java

case NoPackage.m.colour. red
case NoPackage.m.colour. green
default

Case labels are generated in the form NoPackage.m.colour. red (of integer
type) instead of NoPackage.m.color. red (of NoPackage .m.colour type)
because an integer type must be used in the branches of the switch statement.

java branch case 1 label
java branch 1 label
java branch s label

345

Orbix Code Generation Toolkit Programmer’s Guide

java_branch_l_label
java branch 1 label union branch

This command returns a non-scoped label for the union branch union branch.

Parameters
union branch A union branch node of the parse tree.
Notes This command generates labels for all union discriminator types. Labels that
clash with Java keywords are prefixed with an _ (underscore) character.
Examples Consider the following IDL:
// IDL
module m {
enum colour {red, green, blue};
union foo switch(colour) {
case red: long a;
case green: string b;
default: short c;
}i
}i
The following Tcl script illustrates the use of the java branch 1 label
command:
Tcl
set union [$idlgen (root) lookup "m::foo"]
foreach branch [$union contents {union branch}] ({
output [java branch 1 label S$branch]
output "\n"
}; # foreach
The previous Tcl script generates the following Java code:
//Java
red
green
default
See Also java branch case 1 label

java branch case s label
java branch s label

346

java_boa_lib Commands

Parameters

Notes

Examples

See Also

java_branch_s label
java branch s label union branch

Returns a scoped label for a union branchunion branch.

union branch A union branch node of the parse tree.

This command generates labels for all union discriminator types.
Consider the following IDL:

// 1IDL
module m {
enum colour {red, green, blue};

union foo switch(colour) {

case red: long a;
case green: string b;
default: short c;

};
};

The following Tcl script illustrates the use of the java branch s label
command:

Tcl

set union [$idlgen(root) lookup "m::foo"]

foreach branch [Sunion contents {union branch}] {
output [java branch s label S$branch]
output "\n"

}; # foreach

The previous Tcl script generates the following Java code:

// Java
NoPackage.m.colour. red
NoPackage.m.colour. green
default

java branch case 1 label
java branch case s label
java branch 1 label

347

Orbix Code Generation Toolkit Programmer’s Guide

Parameters

Notes

348

java_clt_par_decl

java clt par decl name type direction

java gen clt par decl name type direction ind lev
java gen clt par decl arg ind lev

java gen clt par decl op ind lev

This command returns a Java statement that declares a client-side parameter or
return value variable.

name The name of the parameter or return value variable.

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out, or
return.

arg An argument node of the parse tree.

op An operation node of the parse tree.

ind lev The number of levels of indentation (gen variants only).

The following variants of the command are supported:

® The first form of the command is used to declare an explicitly named
parameter variable.

® The second form is used to declare a parameter.
¢ The third form is used to declare a return value.

® The non-gen forms of the command omit the terminating ; (semicolon)
character.

® The gen forms of the command include the terminating ; (semicolon)
character.

java_boa_lib Commands

Examples

The following IDL is used in this example:

// IDL

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);
}i
The Tcl script below illustrates how to declare Java variables that are intended to
be used as parameters to (or the return value of) an operation call:

Tcl

set op [$idlgen (root) lookup "foo::op"]
set ind lev 2

set arg_list [$op contents {argument}]
[***

***]

foreach arg Sarg list {

java gen clt par decl $arg $ind lev
}
java gen clt par decl $op $ind lev

The previous Tcl script generates the following Java code:

//Java

/[=mmmmme

// Declare parameters for operation
/==mmmmm

NoPackage.widget p_widget;
org.omg.CORBA.StringHolder p_string;
NoPackage. longSegHolder p_longSeqg;
NoPackage.long arrayHolder p_long array;
int[] _result;

349

Orbix Code Generation Toolkit Programmer’s Guide

The last line declares the name of the return value to be _result, which is the
default value of the variable $Spref (java, ret param name).

See Also java_gen clt par decl
java clt par ref

java_clt par_ref

java clt par ref name type direction
java clt par ref arg
java clt par ref op

This command returns name.value, if the parameter di rectionis inout or out
(as is appropriate for Holder types). Otherwise it returns name.

The single argument forms of this command derive the name, type, and
direction from the given argargument node or op operation node.

Parameters

name The name of the parameter or return value variable.

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out or
return.

arg An argument node of the parse tree.

op An operation node of the parse tree.

350

java_boa_lib Commands

Examples

Given this IDL:

// IDL

struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {
longSeq op (

in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);
i

The following Tcl script shows how to initialize in and inout parameters:

Tcl

***]
foreach arg [$op args {in inout}] {
set arg name [Jjava 1 name S$arg]
set type [$arg typel]
set dir [Sarg direction]
set arg ref [java clt par ref $Sarg]
set value "other_[$type s uname]"
java gen assign stmt $type $arg ref Svalue $ind lev Sdir

The foreach loop iterates over all the in and inout parameters.

2. The java_clt par ref command is used to obtain a reference to a
parameter

3. This reference can then be used to initialize the parameter with the
java_gen assign stmt command

351

Orbix Code Generation Toolkit Programmer’s Guide

See Also

352

The previous Tcl script generates the following Java code:

//Java

p_widget = other widget;
p_string.value = other string;

java clt par decl
java assign stmt
java gen assign stmt
java 1 name

java_gen_array decl index_ vars

java gen array decl index vars array prefix ind lev

This command is a variant of java array decl index vars that prints its

result directly to the current output.

java_gen_array for loop footer

java gen array for loop footer array ind lev

This command is a variant of java array for loop footer that prints its

result directly to the current output.

java_gen_array for loop header

java gen array for loop header array prefix ind lev ?declare?

This command is a variant of java array for loop header that prints its

result directly to the current output.

java_boa_lib Commands

java_gen_assign_stmt
java_gen assign stmt type name value ind lev ?dir? ?scope?

This command is a variant of java_assign_stmt that prints its result directly to
the current output.

java_gen_attr_acc_sig
java_gen attr acc sig attribute

This command is a variant of java_attr_acc_sig that prints its result directly to
the current output.

java_gen_attr_mod_sig
java_gen attr mod sig attribute

This command is a variant of java_attr mod sig that prints its result directly to
the current output.

java_gen_clt_par_decl

java gen clt par decl name type direction ind lev
java gen clt par decl arg or op ind lev

This command is a variant of java_clt par decl that prints its result directly to
the current output.

java_gen_op_sig
java gen op sig op

This command is a variant of java_op sig that prints its result directly to the
current output.

353

Orbix Code Generation Toolkit Programmer’s Guide

java_gen_srv_par_alloc

java gen srv par alloc name type direction ind lev
java gen srv par alloc arg ind lev
java gen srv par alloc op ind lev

This command is a variant of java srv par alloc that prints its result directly
to the current output.

java_gen_srv_ret decl

java gen srv ret decl name type ind lev

This command is a variant of java srv_ret decl that prints its result directly to
the current output.

java_gen_var _decl

java gen var decl name type direction ind lev

This command is a variant of java var decl that prints its result directly to the
current output.

java_helper_name
java helper name type
This command returns the scoped name of the Helper class associated with type.

Parameters

type A type node of the parse tree.
Notes Primitive IDL types (such as long and boolean) do not have associated Helper
classes.
Examples Given the following IDL:

//IDL
struct Widget {
short s;

354

java_boa_lib Commands

}i

typedef string StringAlias;

interface Foo {

void dummy () ;

}i

Examples of Java identifiers returned by [java helper name $type] are given

in Table 13.3:

Java Name of $type

Output from java helper name
Command

NoPackage.Widget

NoPackage.WidgetHelper

NoPackage.StringAlias

NoPackage.StringAliasHelper

NoPackage.Foo

NoPackage.FooHelper

Table: 13.3: Helper Classes for User-Defined Types

See Also java_holder name

java_holder_name

java holder name type

This command returns the scoped name of the Holder class associated with type.

Parameters
type
Examples Given the following IDL:
//IDL
struct Widget ({
short s;

}i

A type node of the parse tree.

typedef string StringAlias;

355

Orbix Code Generation Toolkit Programmer’s Guide

interface Foo {
void dummy () ;

}i

Examples of Java identifiers returned by [java holder name $type] are given
in Table 13.4:

Java Name of $type Output from java_holder name
Command

long IntHolder

boolean BooleanHolder

NoPackage.Widget NoPackage.WidgetHolder

NoPackage.StringAlias NoPackage.StringAliasHolder

NoPackage.Foo NoPackage.FooHolder

Table: 13.4: Holder Classes for User-Defined Types

See Also java_helper name

java_impl_class
java impl class interface

This command returns the name of the Java class that implements the specified
IDL interface.

Parameters.
interface An interface node of the parse tree.

Notes The class name is constructed by getting the fully scoped name of the IDL
interface, replacing all occurrences of 7 : : 7 with * .7 and appending
$pref (java, impl class suffix), which has the default value Impl.

Examples Consider the following Tcl script:

Tcl

set class [java impl class Sinter]

356

java_boa_lib Commands

Parameters

Examples

[***
public class @$class@ {
//...
};
***]
The following interface definitions result in the generation of the corresponding
Java code.

//IDL // Java
interface Cow { public class NoPackage.CowImpl {
/] /]
i }i
//IDL // Java
module Farm { public class NoPackage.Farm.CowImpl
interface Cow { {
/] /] ..
}i i
}i

java_indent
java indent ind lev

This command returns the string given by $pref (java, indent) concatenated
with itself $ind lev times. The default value of $pref (java, indent) is four
spaces.

ind lev The number of levels of indentation required.

Consider the following Tcl script:

#Tcl

puts “[java indent 1]One”
puts “[java indent 2]Two”
puts “[java indent 3]Three”

This produces the following output:

One
Two
Three

357

Orbix Code Generation Toolkit Programmer’s Guide

Parameters

Notes

See Also

Parameters

Notes

Examples

Examples

358

java_is_basic_type
java is basic type type
This command returns TRUE if type represents a built-in IDL type.

type A type node of the parse tree.
This command is the opposite of java user_defined_type. It is TRUE when
java user defined type is FALSE, and vice-versa.

java user defined type

java_is_keyword
java is keyword string

This command returns TRUE if the specified stringis a Java keyword,
otherwise it returns FALSE.

string The string containing the identifier to be tested.
This command is called internally from other commands in the std/
java boa lib.tcl library.
For example:

Tcl
java_is keyword “new”; # returns 1
returns 0

” .

java is keyword “cow”;

java_list recursive_member_types
java list recursive member types

This command returns a list of all user-defined type nodes that represent IDL
recursive member types.

Consider the following IDL:

//IDL

java_boa_lib Commands

struct Recur {
string name;
sequence<Recur> RecurSeq;

}i

struct Ordinary {
string name;
short s;

}i

interface TestRecursive {
Recur get recursive struct();

}i

The Recur struct is a recursive type because one of its member types,
sequence<Recur>, refers to the struct in which it is defined. The
sequence<Recur> member type is an example of a recursive member type.

The following Tcl script is used to parse the IDL file:

Tcl
smart source "std/output.tcl"
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "recursive.idl"] } {
exit 1

}

idlgen set preferences $idlgen (cfg)

open output file "recursive.java"
set type list [java list recursive member types]

foreach type $type list {
output "recursive type:
output [java s name Stype]
output "\n"
set parent [Stype defined in]
output "parent of recursive type:
output [java s name Sparent]
output "\n\n"

"

}

close output file

359

Orbix Code Generation Toolkit Programmer’s Guide

The output of this Tcl script is as follows:

recursive type: <anonymous-sequence>
parent of recursive type: Recur

One recursive member type, corresponding to sequence<Recur>, is found and
this member is defined in the Recur struct.

java_l name
java 1 name node

This command returns the Java mapping of the node's local name.

Parameters
node A node of the parse tree.

Notes For user-defined types the return value of java 1 name is usually the same as the
node's local name, but prefixed with _ (underscore) if the local name conflicts
with a Java keyword.

If the node represents a built-in IDL type then the result is the Java mapping of
the type; for example:
short short
unsigned short short
long int
unsigned long int
char char
octet byte
boolean boolean
string java.lang.String
float float
double double
any org.omg.CORBA.Any
Object org.omg.CORBA.Object
When java 1 name is invoked on a parameter node, it returns the name of the
parameter variable as it appears in IDL.
See Also java_s name

java s uname
java clt par decl

360

java_boa_lib Commands

Parameters

Notes

Examples

java gen clt par decl

java_op_sig

java op sig op
java gen op sig op

This command generates the Java signature of the op operation.

op An operation node of the parse tree.

Neither the java_op_signor the java gen op sigcommand put a
; (semicolon) at the end of the generated statement.

Consider the following sample IDL:

// IDL
// File: ’finance.idl’
interface Account {
attribute long accountNumber;
attribute float balance;
void makeDeposit (in float amount);
}i

The following Tcl script illustrates the use of the command:

Tcl
smart source "std/output.tcl"
smart source "std/java boa lib.tcl"

if { ! [idlgen parse idl file "finance.idl"] } {
exit 1

}

idlgen set preferences $idlgen (cfg)

open output file "signatures.java"

set op [$idlgen (root) lookup "Account::makeDeposit"]

set op sig [java op sig Sop]

output "Sop sig \n\n"

java_gen op sig Sop

361

Orbix Code Generation Toolkit Programmer’s Guide

See Also

Parameters

Notes

Parameters

362

close output file
The previous Tcl script generates the following Java code:

//Java
public void makeDeposit (
float amount

public void makeDeposit (
float amount

)

java op sig h
java gen op sig cc

java_package_name
java package name node

This command returns the Java package name within which this node occurs.

node A node of the parse tree.

User-defined IDL types are prefixed by the default scope.

java_param_sig
java param sig name type direction
java param sig arg

This command returns the Java signature of the given parameter.

name The name of a parameter or return value variable.

type A type node of the parse tree that describes the type of this
parameter or return value.

java_boa_lib Commands

Notes

Examples

See Also

direction The parameter passing mode—one of in, inout, out, or
return
arg An argument node of the parse tree.

This command is useful when you want to generate signatures for functions that
use IDL data types. The following variants of the command are supported:

® The first form of the command returns the appropriate Java type for the
given type and direction, followed by the given name.

® The second form of the command returns output similar to the first but
extracts the type, direction and name from the arg argument node.

The result contains white space padding to vertically align parameter names when
parameters are output one per line. The amount of padding is determined by
Spref (java,max padding for types).

Consider the following Tcl extract:
Tcl
set type [$idlgen (root) lookup "string"]

set dir "in"
puts "[Jjava param sig "foo" $type Sdir]"

The previous Tcl script generates the following Java code:

//Java
java.lang.String foo

java param type
java gen operation h
java_gen operation cc

java_param_type

java param type type direction
java param type arg
java param type op

This command returns the Java parameter type for the node specified in the first
argument.

363

Orbix Code Generation Toolkit Programmer’s Guide

Parameters

Notes

Examples

See Also

364

type A type node of the parse tree that describes the type of this
parameter or return value.

direction The parameter passing mode—one of in, inout, out, or
return.

arg An argument node of the parse tree.

op An operation node of the parse tree.

This command is useful when you want to generate signatures for methods that
use IDL data types. The following variants of the command are supported:

® The first form of the command returns the appropriate Java type for the
given type and direction.

® The second form of the command returns output similar to the first but
extracts the type and direction from the argument node arg.

® The third form of this command is a shorthand for [java param type
[Sop return type] "return"]. It returns the Java type for the return
value of the given op.

The result contains white space padding to vertically align parameter names when
parameters are output one per line. The amount of padding is determined by
$pref (java,max padding for types).

The following Tcl extract prints out java.lang.String:
Tcl
set type [$idlgen (root) lookup "string"]

set dir "in"
puts "[java param type Stype Sdir]"

java param sig
java gen operation

java_boa_lib Commands

Parameters

Examples

See Also

java_tie_class
java tie class interface

This command returns the local name of the BOA tie template for the IDL
interface.

interface An interface node of the parse tree.

Given an interface node $inter, the following Tcl extract shows how the
command is used:

Tcl
smart source "std/output.tcl”
smart source "std/java_boa lib.tcl"

if { ! [idlgen parse idl file "cow.idl"] } |
exit 1

}
idlgen set preferences $idlgen (cfqg)

open output file "tie class.java"
set inter [$idlgen(root) lookup "Cow"]

set class [java_impl class Sinter]
[***

@Sclass@ tied object = new Q@Sclass@();
@[java_s_name Sinter]@ the_tie = new @[java tie_class

$inter]@(tied_object) ;
***]

close output file

If sinter is set to the node representing the IDL interface, Cow, the Tcl code
produces the following output:

// Java
NoPackage.CowImpl tied object = new NoPackage.CowImpl () ;
NoPackage.Cow the tie = new tie Cow(tied object);

java_scoped tie class

365

Orbix Code Generation Toolkit Programmer’s Guide

java_scoped_tie_class
java scoped tie class interface

This command returns the scoped name of the BOA tie template for the IDL
interface.

Parameters

interface An interface node of the parse tree.

Examples Given an interface node $inter, the following Tcl extract shows how the
command is used:

Tcl
smart _source "std/output.tcl"
smart source "std/java _boa lib.tcl"

if { ! [idlgen parse idl file "cow.idl"] } {
exit 1

}
idlgen set preferences S$idlgen (cfg)

open_output file "tie class.java"
set inter [$idlgen(root) lookup "Cow"]

set class [java impl class S$inter]
[***

@Sclass@ tied object = new @Sclass@();
@[java_s_name $Sinter]@ the_tie
= new Q[java_scoped tie class S$inter]@(tied object);

*kk]
close output file

If sinter is set to the node representing the IDL interface, Cow, the Tcl code
produces the following output:

// Java
NoPackage.CowImpl tied object = new NoPackage.CowImpl () ;
NoPackage.Cow the tie = new NoPackage. tie Cow(tied object);

See Also java _tie class

366

java_boa_lib Commands

Parameters

Notes

See Also

Parameters

Notes

See Also

java_ret_assign
java_ret assign op

This command returns the " _result =" string (or a blank string, "", if op has a
void return type).

op An operation node of the parse tree.

The name of the result variable is given by $pref (java, ret param name). The
defaultis result.

java assign stmt
java gen assign stmt

java_s_name
java s name node

This command returns the Java mapping of the node's scoped name.

node A node of the parse tree.

This command is similar to the java 1 name command, but it returns the fully
scoped name of the Java mapping type, rather than the local name.

Built-in IDL types are mapped as they are in the java 1 name command.

java_ 1 name
java_ s uname

java_s uname
java s uname node

This command returns the node's scoped name, with each occurrence of the : :
separator replaced by an underscore /_’ character.

367

Orbix Code Generation Toolkit Programmer’s Guide

Parameters

node A node of the parse tree.

Notes The command is similar to [$node s _uname] except for special-case handling of
anonymous sequence and array types to give them unique names.

Examples This routine is useful if you want to generate data types or operations for every
IDL type. For example, the names of operations corresponding to each IDL type
could be generated with the following statement:

set op name "op [java s uname S$typel"
Some examples of IDL types and the corresponding identifier returned by

java s uname:

//IDL //Java

foo foo

m: : foo m_foo

m: :for m_for
unsigned long unsigned long
sequence<foo> _foo seq

See Also java 1 name
java s name

java_sequence_elem_index

java sequence elem index seq prefix

This command returns, in square brackets, the index of a segnode.
Parameters

seq A sequence node of the parse tree.

prefix The prefix to use when constructing the names of index
variables. For example, the prefix i is used to get an index
variable called i1.

368

java_boa_lib Commands

Examples

See Also

Parameters

Notes
See Also

Parameters

The following Tcl fragment:

Tcl

set index [java sequence elem index S$seq "i"]
returns the string, " [i1]".

java array decl index vars
java array for loop header
java_array for loop footer

java_sequence_for loop footer
java sequence for loop footer seq ind lev

This command generates a for loop footer for the given segnode with
indentation given by ind level.

seq A sequence node of the parse tree.

ind lev The indentation level at which the for loop is created.

This command prints a single close brace ’ }’.

java sequence for loop header
java sequence elem index

java_sequence_for_loop header
java sequence for loop header seq prefix ind lev ?declare?

This command generates the for loop header for the given array node.

seq Asequence node of the parse tree.

prefix The prefix used when constructing the names of index
variables. For example, the prefix i is used to get an index
variables called i1.

369

Orbix Code Generation Toolkit Programmer’s Guide

ind lev The indentation level at which the for loop is created.
declare (Optional) This boolean argument specifies that index variables
are declared locally within the for loop. Default value is 0.
Examples Given the following IDL definition of a sequence:

// IDL
typedef sequence<long> longSeq;

You can use the following Tcl fragment to generate the for loop header:
Tcl
set typedef [$idlgen (root) lookup "longSeq"]

set a [Stypedef true base type]
[***

int len = foo.length;

@[java sequence for loop header $a "i" 1 1]@
*Hok]

This produces the following Java code::

// Java
int len = foo.length;
for (int il = 0; il < len; il++) {

See Also java_sequence for loop footer
java sequence elem index

java_smart proxy_class

java smart proxy class interface

This command returns a Java identifier that can be used as the name of a smart
proxy class for the specified IDL interface.

Parameters

interface An interface node of the parse tree.

Notes The class name is constructed by getting the fully scoped name of the IDL
interface, replacing all occurrences of 7 : :* with ’ .’ and prefixing
$pref (java, smart_proxy prefix), which has the default value Smart.

370

java_boa_lib Commands

Examples

Consider the following Tcl script:

Tcl

set sproxyc [java smart proxy class $inter]
set proxyc [java s name S$inter]

[***

package @[java package name $inter]@;
class @S$sproxyc@ extends @$Sproxyc@ {
public @S$sproxyc@() {
//...
}i
}i

***]

The following interface definitions result in the generation of the corresponding
Java code.

//IDL // Java
interface Cow { package NoPackage;
// ... class SmartCow extends Cow {
}i public SmartCow () {
Y
}i
}i
//IDL // Java
module Farm { package NoPackage.Farm;
interface Cow { class SmartCow extends Farm.Cow({
// ... public SmartCow () {
}r /...
}i }i
i

371

Orbix Code Generation Toolkit Programmer’s Guide

java_srv_par_alloc

java srv par alloc name type direction

java srv par alloc arg

java srv par alloc op

java gen srv par alloc name type direction ind lev
java gen srv par alloc arg ind lev

java gen srv par alloc op ind lev

This command returns a Java statement to allocate memory for an out parameter
(or return value), if needed. If there is no need to allocate memory, this command
returns an empty string.

Parameters
type The type node of the parse tree that describes the type of this
parameter or return value.
direction The parameter passing mode—one of in, inout, out, or
return
arg An argument node of the parse tree.
op An operation node of the parse tree.
ind lev The number of levels of indentation (gen variants only).
Examples Given the following sample IDL:
// IDL
struct widget {long a;};
typedef sequence<long> longSeqg;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);

}i

372

java_boa_lib Commands

See Also

The following Tcl script allocates memory for out parameters.

Tcl
smart_source "std/output.tcl”
smart source "std/java boa lib.tcl"

idlgen set preferences $idlgen (cfg)
smart source "std/args.tcl"

if { ! [idlgen parse idl file "prototype.idl"] } {
exit 1

}

open output file "srv par alloc.java"

set op [$idlgen (root) lookup "foo::op"]

set ind lev 3

set arg list [$Sop contents {argument}]

[***
/)=======-
// Allocate memory for "out" parameters
e

***]

foreach arg [$op args {out}] {
java gen srv par alloc Sarg $ind lev
}

close output file
The previous Tcl script generates the following Java code:

// Java

p_longSeq = new NoPackage.longSegHolder () ;
p_long array = new NoPackage.long arrayHolder () ;

java gen srv par alloc
java srv par ref
java srv_ret decl

373

Orbix Code Generation Toolkit Programmer’s Guide

java_srv_par_ref

java srv par ref name type direction
java srv par ref arg
java srv par ref op

This command returns name.value, if the di rection parameter is inout or out
(as is appropriate for Holder types). Otherwise it returns name.

The single argument forms of this command derive the name, type, and
direction from the given arg argument node or op operation node.

Parameters
name The name of the parameter or return value variable.
type The type node of the parse tree that describes the type of this
parameter or return value.
direction The parameter passing mode—one of in, inout, out, or
return
arg An argument node of the parse tree.
op An operation node of the parse tree.
Examples Given the following sample IDL:
// IDL
struct widget {long a;};
typedef sequence<long> longSeq;
typedef long long array[10];

interface foo {

longSeq op (
in widget p_widget,
inout string p_string,
out longSeq p_longSeq,

out long array p long array);

}i

374

java_boa_lib Commands

See Also

The following Tcl script iterates over all inout and out parameters and the return
value, and assigns values to them:

Tcl
[***
//-======-
// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.
/)===m===-
***]
foreach arg [$op args {inout out}] {
set type [Sarg typel
set arg ref [java srv par ref Sarg]
set name?2 "other_[$type s _uname]"
[***
@Sarg ref@ = @$name2@;
*k k]
}
if {[$ret type 1 name] != "void"} {
set ret ref [java srv par ref Sop]
set name2 "other [S$ret type s uname]"
[***
@Sret ref@ = @$name2@;
*k k]

}

The java srv par ref command returns a reference to both the parameters and
the return value.

The previous Tcl script generates the following Java code:
//Java

// Assign new values to "out" and "inout"
// parameters, and the return value, if needed.

p_string.value = other string;
p_longSeq.value = other longSeg;
p_long array.value = other long array;
_result = other longSeq;

java_srv par alloc
java_srv_ret decl

375

Orbix Code Generation Toolkit Programmer’s Guide

java_srv_ret_decl

java srv_ret decl name type
java gen srv ret decl name type ind lev

This command returns the Java declaration of a variable that holds the return
value of an operation. If the operation does not have a return value this command
returns an empty string.

Parameters

name The name of a parameter or return value variable.

type The type node of the parse tree that describes the type of this
parameter or return value.

ind lev The number of levels of indentation (gen variants only).

Notes Assuming that the operation does have a return value, if alloc _mem is 1, the
variable declaration also allocates memory to hold the return value, if necessary.
If alloc memis 0, no allocation of memory occurs, and instead you can allocate
the memory later with the java srv par alloc command. The default value of
alloc memis 1.

Examples Given the following sample IDL:

// IDL
typedef sequence<long> longSeq;

interface foo {
longSeq op () ;
}i

The following Tcl script declares a local variable that can hold the return value of
the operation. It then allocates memory for the return value, if required.

Tcl

set op [$idlgen (root) lookup "foo::op"]
set ret type [$op return typel
set ind lev 1
set arg list [Sop contents {argument}]
if {[Sret type 1 name] != "void"} {
set type [Sop return type]

set ret ref [java srv par ref Sop]
[***

376

java_boa_lib Commands

See Also

Parameters

Notes

Examples

See Also

@[java srv ret decl Sret ref Stypel@;

***]

}

The previous Tcl script generates the following Java code:

// Java

[/ ========

// Declare a variable to hold the return value.
[/ ===

int[] _result;

java_srv par alloc
java srv par ref
java gen srv ret decl

java_typecode_| name
java typecode 1 name type

This command returns the local Java name of the typecode for the specified
type.

type A type node of the parse tree.

For user-defined types, the command returns IocalNameHelper.type (). For the
built-in types (such as long and short), the get primitive tc() method is
used to get the type code.

Examples of the local names of Java type codes for IDL types:

Cow CowHelper.type ()
Farm: :Cow CowHelper. type ()
long org.omg.CORBA.ORB.init () .get primiti

ve tc(org.omg.CORBA.TCKind.tk long)

java typecode s name

377

Orbix Code Generation Toolkit Programmer’s Guide

java_typecode_s_name
java typecode s name type

This command returns the fully-scoped Java name of the typecode for the
specified type.

Parameters
type A type node of the parse tree.

Notes For user-defined types, an IDL type of the form scope: : 1ocalName has the
scoped type code scope: : localNameHelper. type (). For the built-in types (such
as long, and short), the get primitive tc() method is used to get the type
code.

Examples Examples of the fully-scoped names of Java type codes for IDL types:

Cow NoPackage.CowHelper. type ()

Farm: :Cow NoPackage.Farm.CowHelper. type ()

long org.omg.CORBA.ORB.init () .get primiti
ve tc(org.omg.CORBA.TCKind.tk long)

See Also java typecode 1 name
java_user_defined_type
java user defined type type
This command returns TRUE if type represents a user-defined IDL type.

Parameters

type A type node of the parse tree.
See Also java_is basic type

378

java_boa_lib Commands

Parameters

Examples

java_var_decl

java var decl name type direction
java gen var decl name type direction ind lev

This command returns the Java variable declaration with the specified name and
type. The direction parameter determines whether a plain type or a Holder
type is declared.

name The name of the variable.

type The type node of the parse tree that describes the type of this
variable.

direction The parameter passing mode—one of in, inout, out, or
return

ind lev The number of levels of indentation (gen variants only).

The following Tcl script illustrates how to use this command:
Tcl

set ind lev 1

[***

// Declare variables
***]

foreach type $type list {
set in name "in [$type 1 name]"
java_gen var decl $in name Stype "in" $ind lev

set inout name "inout [$type 1 name]"
java gen var decl $inout name $type "inout" $ind lev

379

Orbix Code Generation Toolkit Programmer’s Guide

If variable type list contains the types string, widget (a struct), and
long_array, the Tcl code generates the following Java code:

//Java

// Declare variables

java.lang.String in string;

org.omg.CORBA.StringHolder inout string;

NoPackage.widget in widget;

NoPackage.widgetHolder inout widget;

int[] in long array;

NoPackage.long arrayHolder inout long array;
See Also java gen var decl

380

14

Other Tcl Libraries for Java Utility
Functions

This chapter describes some further Tcl libraries available for
use in your genies.

The stand-alone genies java_print.tcl, java_ random.tcl and
java_equal.tcl are discussed in Chapter 3 “Ready-to-Use Genies for Orbix
C++ Edition”. Aside from being available as stand-alone genies,

java print.tcl, java random.tcl and java_equal.tcl also provide libraries
of Tcl commands that can be called from within other genies. This chapter
discusses the APIs of these libraries.

Tcl API of java print

The minimal API of the java print library is made available by the following
command:

Tcl
smart source "Jjava print/lib-min.tcl"

The minimal API defines the following command:

Tcl
java print func name type

This command returns the name of the print function for the specified type.

381

Orbix Code Generation Toolkit Programmer’s Guide

If you want access to the full API of the java_print library then use the
following command:

Tcl
smart source "java print/lib-full.tcl"

The full library includes the commands from the minimal library and defines the
following command:

Tcl
gen java print func full any

This command generates several files.

gen java print func generates the class PrintFuncs.Java in the package
Idlgen. All the print functions, such as printany () and printTypeCode (), for
the IDL basic types are members of the PrintFuncs.Java class.

In addition to the PrintFuncs.Java class, another Java class is generated for
each of the IDL types in your source IDL file. This class is called Print<type
name> and contains a method with the same name as the IDL type name. This
class is contained in the package Idlgen.<type package name>. For example,
the following IDL produces corresponding Java print class:

//IDL //Java
module outer({
interface inner{
struct mystruct{

idlgen.outer.inner.Printmystruct

}

When generating PrintFuncs.Java, gen java print func generates code that
uses TypeCodes of user-defined IDL types only if the -2 option is to be given to
the IDL compiler.

382

Tel API of java_print

Example of Use

The following script illustrates how to use all the API commands of the
java_print library. Lines marked with * are relevant to the usage of the
java_print library.

Tcl
smart_source "std/sbs_output.tcl"
smart source "std/java boa lib.tcl"

smart source "Jjava print/lib-full.tcl”

if {Sargc != 1} {
puts "usage: ..."; exit 1
}
set file [lindex $argv 0]
set ok [idlgen parse idl file Sfile]
if {!Sok} { exit }

Generate a file which contains
calls to the print functions

set java file ext Spref(java,java file ext)
open output file "example func$java file ext"

set type list [idlgen list all types "exception"]
[***
package @[java package name ""]@
public class Example{
public static void func() {

*kk]
foreach type $type list {

set name my [$type s uname]
[***

383

Orbix Code Generation Toolkit Programmer’s Guide

@[java var decl Sname Stype 1]@;
*xk]

}; # foreach type

[***
//Initialize variables
//=======-
// Print out the value of each variable
/)=======-
***]

foreach type Stype list {
set print func [java print func name $type]
set name my_[$type S _uname]

[***

System.out.println("@Sname@ =") ;
@Sprint func@ (cout, @S$name@, 1);

***]

}; # foreach type

[***

} // end of func()

} //end of class
*xk]

close output file

The source code of the Java genie provides a larger example of the use of the
java print library.

Tcl API of java_random

The minimal API of the java random library is made available by the following
command:

Tcl
smart source "java random/lib-min.tcl"

384

Tel API of java_random

The minimal API defines the following commands:

Tcl
java random assign stmt type name
java _gen random assign stmt type name ind lev

The java random assign stmt command returns a string representing a C++
statement that assigns a random value to the variable with the specified type and
name. The command java_gen random assign stmt outputs the statement at
the indentation level specified by ind lev.

If you want access to the full API of the java_random library then use the
following command:

Tcl
smart source "java random/lib-full.tcl"

The full library includes the command from the minimal library and additionally
defines the following commands:

Tcl
gen java random func full any

gen java random func generates the class RandomFuncs.Java in the package
Idlgen. All the random functions, such as randomany () and

randomTypeCode (), for the IDL basic types are members of the
RandomFuncs . Java class

In addition to the RandomFuncs. Java class, another Java class is generated for
each of the IDL types in your source IDL file. This class is called Random<type
name> and contains a method with the same name as the IDL type name. This
class is contained in the package Idlgen.<type package name>. For example,
the following IDL produces corresponding Java print class:

//IDL //Java
module outer(
interface inner({
struct mystruct{

idlgen.outer.inner.Randommystruct

385

Orbix Code Generation Toolkit Programmer’s Guide

Example of Use

The following script illustrates how to use all the API commands of the
java_random library. This example is an extension of the example shown in the
section “TCL API of java_print”. Lines marked with "+" are relevant to the use of
the java_random library, while lines marked with "*" are relevant to the use of
the java_print library.

Tcl
smart_source "std/sbs_ output.tcl"
smart source "std/java boa lib.tcl"

* smart source "java print/lib-full.tcl"
+ smart source "java random/lib-full.tcl"
if {Sargc != 1} {
puts "usage: ..."; exit
}
set file [lindex S$Sargv 0]
set ok [idlgen parse idl file $file]
if {!Sok} { exit }

Generate PrintFuncs.Java

* gen java print funcs 1

Generate RandomFuncs.Java

+ gen java random funcs 1

Generate a file which contains
calls to the print and random functions

set java file ext Spref(java,java file ext)
open output file "Example$java file ext"

set type list [idlgen list all types "exception"]

[***

386

Tel API of java_random

package @[java package name ""]@
public class Example({
public static void func() {

void Example ()

{
/)===mmmm-
// Declare variables of each type
//-======-

***]

foreach type $type list {

set name my [$type s uname]
[*%*

@[java var decl $name Stype 1]@;
*Hk]

}; # foreach type

[***
//-=====-
// Assign random values to each variable
/1=======

***]

foreach type $type list {

set name my [$type s uname]
[***

@[java random assign stmt Stype $name]@;
*Hk]

}; # foreach type

[***
//--=-=-=--=
// Print out the value of each variable
/) =mmmmmmm

*Hk]

foreach type $type list {

set print func [java print func name S$type]
set name my_[$type S_uname]
[*%*

System.out.println ("@Sname@ =") ;

387

Orbix Code Generation Toolkit Programmer’s Guide

@Sprint func@(cout, @Sname@, 1);

***]

}; # foreach type

[***

} // end of Example ()
}

***]

close output file

The source-code of the C++ genie provides a larger example of the use of the
java_random library.

Tcl API of java_equal

The minimal API of the java equal library is made available by the following
command:

Tcl
smart source "java equal/lib-min.tcl"

The minimal API defines the following commands:

Tcl
java equal expr type namel name2
java not equal expr type namel nameZ

These commands return a string representing a Java Boolean expression that tests
the two specified variables namel and name2 of the same type for equality.

Example of Use

An example of the use of java equal expr and java not equal expr isas
follows:

Tcl
foreach type [idlgen list all types “exception”] {
set namel “my [Stype s uname] 17;

set name2 “my [Stype s uname] 27;
[***

if (Q[java equal expr Stype $namel Sname2]@) {

388

Tel API of java_equal

System.out.println("values are equal");

}

***]

}; # foreach type

Equality Functions

Unlike cpp_print and cpp_random there is no full cpp_equal API. The equality
functions used by IDLgen are implemented in a pre-written class called
EqualFuncs. This Java class uses Java Reflection (Java’s Runtime Type
Information System) to perform the comparisons. For example, any two CORBA
objects can be compared by calling:

// Java
IT is eq object (Object objl, Object obj2);

The methods in this class can only be used for CORBA types as they make
assumptions about classes based on the way the IDL compiler generates code.

As the equality functions use Java Reflection they cannot distinguish between the
mappings of certain IDL types, for example:

//IDL
typedef sequence <long> apples;
typedef sequence <unsigned long> oranges;

Both the above typedefs map to a Java int [], so if the Java instance of apples
and oranges contain the same number of elements and the same values the
equality functions return TRUE. It is the responsibility of the programmer to ensure
that the parameters to the equality functions are of the same type.

389

Orbix Code Generation Toolkit Programmer’s Guide

390

Appendix A

User’s Reference

This appendix presents reference material about all the
configuration and usage details for Orbix Code Generation

Toolkit and for the genies provided with the Orbix Code
Generation Toolkit.

General Configuration Options

Table 14.1 describes the general purpose configuration options available in

standard configuration file idlgen.cfgq.

Configuration Option

Description

idlgen.install root

The IDLgen installation directory.

idlgen.genie search path

Search order used by the
smart_source command.

idlgen.config dir

The IDLgen configuration directory.

idlgen.tmp dir

Directory that Orbix Code Generation
Toolkit should use when creating
temporary files.

idlgen.builtin types

A list of the basic IDL types supported
by the genies. In general, this list might
be a subset of all the types understood

by the IDL parsing engine. See release
notes for details.

Table: 14.1: Configuration File Options

391

Orbix Code Generation Toolkit Programmer’s Guide

Configuration Option

Description

default.

all.want diagnostics

Setting for diagnostics:
yes: Genies print diagnostic messages.

no: Genies stay silent.

default.

all.copyright

The copyright notice that appears at the
top of all generated files.

default.

orbix.install root

The Orbix C++ Edition installation
directory.

default.

orbix.version number

The version of Orbix C++ Edition.
Supported values are 2.2, 2.3, 3.0 and
3.3.

default.

orbix.is multi threaded

Set equal to:
yes: for multi-threaded Orbix.
no: for single-threaded Orbix.

Note: Orbix is multi-threaded on most
platforms.

default.

orbix web.install root

The Orbix Java Edition installation
directory.

default.

orbix web.
version number

The version of Orbix Java Edition.
Supported values are 2.2, 2.3, 3.0 and
3.3.

default.

orbix web.
is multi threaded

Set equal to:
yes: for multi-threaded Orbix.
no: for single-threaded Orbix.

Note: Orbix is multi-threaded on most
platforms.

392

Table: 14.1: Configuration File Options

Configuration Option

Description

default.html.file ext

File extension preferred by your web
browser (.html for most platforms).

Table: 14.1: Configur

ation File Options

Configuration Options for C++ Genies

Table 14.2 describes the configuration options specific to C++ genies in the

standard configuration file idlgen.cfg:

Configuration Option

Purpose

idlgen.preprocessor.cmd

You should not have to change
this entry.

Location of a C++ preprocessor.

idlgen.preprocessor.args

Arguments to pass to the
preprocessor. You should not
have to change this entry.

idlgen.preprocessor.suppress_lines

Used internally by idlgen. You
should not have to change this

entry.

default.cpp genie.want boa

Sets the approach used when
writing C++ classes that
implement IDL interfaces:

yes: Use the BOA approach.
no: Use the TIE approach.

default.cpp genie.want this

Do you want the generated C++
class to have a this ()
function?

Table: 14.2: Configuration File Options for C++ Genies

393

Orbix Code Generation Toolkit Programmer’s Guide

394

Configuration Option

Purpose

default.cpp.compiler

The C++ compiler that is used in
generated makefiles.

default.

cpp.

cc file ext

File extension preferred by your
C++ compiler (for example, . cc,
.Cpp, .Cxx, Or .C).

default

.Cpp.

h file ext

File extension preferred by your
C++ compiler (usually .h).

default.

Ccprp.

impl class suffix

Suffix for your C++ classes that
implement IDL interfaces.

default.

Ccprp.

smart proxy prefix

Prefix for your C++ classes that
implement smart proxies for IDL
interfaces.

default

.Cpp.

server timeout

Timeout (milliseconds) passed
to impl is ready () in the
generated server.cxx file. A
value of -1 represents infinity.

default.

Ccprp.

want throw

This allows you to set throw
clauses on the C++ signatures of
IDL operations and attributes.
Setting:

yes: Your C++ compiler
supports exceptions.

no: Your C++ compiler does not
support exceptions.

Table: 14.2: Configuration File Options for C++ Genies

Configuration Option Purpose

default.cpp.want named env This allows the

CORBA: :Environment
parameter at the end of operation
and attribute signatures to be
named. Setting:

yes: Named.

no: Anonymous.

default.cpp.max padding for types The width (in characters) of the
field occupied type names when
declaring parameters and
variables. The use of padding
vertically aligns parameter and
variable names.

Table: 14.2: Configuration File Options for C++ Genies

Configuration Options for Java Genies

Table 14.2 describes the configuration options specific to Java genies in the
standard configuration file idlgen.cfg:

Configuration Option Purpose

default.java.java install dir Location of Java compiler. For
example: D:\jdk1.2.

default.java.version number Version of the Java compiler
referenced by

java install dir. For
example: 1.1, 1.2 0r1.3.

default.java.java file ext File extension preferred by your
Java compiler.

Table: 14.3: Configuration File Options for Java Genies

395

Orbix Code Generation Toolkit Programmer’s Guide

Configuration Option

Purpose

default.java.java class ext

Class name extension preferred
by your Java compiler.

default.java.package name

Default top-level package name
for classes generated by a Java
genie.

default.java.printpackage name

Default package name for
generated print utility classes.

default.java.randompackage name

Default package name for
generated random value utility
classes.

default.java.equalpackage name

Default package name for
generated equality testing utility
classes.

default.java.loader class name

Local name of loader class
generated by java genie.tcl.

default.java.serialized file ext

File extension for loaders.

default.java.serialized dir

Directory to store serialized
files.

default.java.server name

Default server name.

default.java.server timeout

Timeout (milliseconds) passed
to impl is ready () in the

generated server.java file. A
value of -1 represents infinity.

default.java.impl class suffix

Suffix for your Java classes that
implement IDL interfaces.

default.java.smart proxy prefix

Prefix for your Java classes that
implement smart proxies for IDL
interfaces.

Table: 14.3: Configuration File Options for Java Genies

396

Configuration Option

Purpose

default.java.smart proxy factory suff
ix

Suffix for your Java classes that
implement smart proxy factories
for IDL interfaces.

default.java.print prefix

Prefix for your java classes that
implement print methods for
IDL types.

default.java.random prefix

Prefix for your java classes that
implement random methods for
IDL types.

default.java.want javadoc comments

Controls the generation of
JavaDoc comments in generated
code:

yes: Generate JavaDoc
comments.

no: Do not generate JavaDoc
comments.

default.java.want throw sys except

This allows you to set throw
clauses on the Java signatures of
IDL operations and attributes.
Setting:

yes: Your Java compiler
supports exceptions.

no: Your Java compiler does not
support exceptions.

default.java.impl is ready timeout

The timeout value to pass to
impl is ready

default.java.final

Generate final classes and
methods.

Table: 14.3: Configuration File Options for Java Genies

397

Orbix Code Generation Toolkit Programmer’s Guide

Configuration Option Purpose

default.java.nohangup Set to true if you want the
server to remain alive while a
client is connected.

default.java.appendLog Set to true if you want the
server logs to be appended.

Table: 14.3: Configuration File Options for Java Genies

Command Line Usage

This section summarizes the command-line arguments used by the genies
bundled with the Orbix Code Generation Toolkit.

stats
idlgen stats.tcl [options] [file.idl]+
The command line options are:
-I<directory> Passed to preprocessor.
-D<name> [=value] Passed to preprocessor.
-h Prints a help message.
-include Count statistics for files in #include
statement too.
idl12html

idlgen idl2html.tcl [options] [file.idl]+

The command line options are:

-I<directory> Passed to preprocessor.

-D<name>[=value] Passed to preprocessor.

398

Orbix C++ Genies

cpp_genie

Prints help message.
Verbose mode (default).

Silent mode.

idlgen cpp genie.tcl [options] file.idl [interface wildcard]*

The command line options are:

-I<directory>
-D<name> [=value]
-h

-v

-s

-dir <directory>

—-include

-boa

-tie

- (no) interface
- (no) smart

- (no) loader

- (no)client

- (no) server

- (no)makefile

Passed to preprocessor.

Passed to preprocessor.

Prints help message.

Verbose mode (default).

Silent mode.

Put generated files in the specified directory.

Process interfaces in files in #include
statement too.

Use the BOA approach.

Use the TIE approach (opposite of -boa
option).

Generate implementation of IDL interfaces.
Generate smart proxies for IDL interfaces.
Generate skeleton loader classes.

Generate skeleton client class.

Generate skeleton server class.

Generate a Makefile to build all the generated
files.

399

Orbix Code Generation Toolkit Programmer’s Guide

400

-file

-ns

-bind

-iorloc <directory>

-all

- (no)var

- (no) any

- (in) complete

- (no) inherit

-(no) this

(Default.) Distribute object references using
the file system. Mutually incompatible with
-ns and -bind.

Distribute object refernces using the CORBA
Naming Service. Mutually incompatible with
-file and -bind.

(Deprecated.) Use _bind () to create object
references on the client side. Mutually
incompatible with -ns and -file.

Specifies the directory where stringified
object reference files are stored. This option
is used in combination with the -file option.
Default is . (current directory).

Shorthand for specifying all of the options:

-interface, —client, -server, —-makefile,
-loader, and -smart.

Use var types in the generated code. This is
the default.

Generate support for any and TypeCode. The
default is not to support these types.

Generate complete applications. This is the
default. If incomplete applications are
chosen, the client application does not invoke
any operations and the server application
does not return random values.

Use inheritance of implementation classes
(default).

Generate operation _this () in
implementation class.

cpp_op

cpp_print

idlgen cpp op.tcl [options] file.idl [operation or attribute

wildcard]*

The command line options are:

-I<directory>
-D<name> [=value]
-h

-v

-s

-o file

—include

- (no)var

- (in) complete

Passed to preprocessor.

Passed to preprocessor.

Prints help message.

Verbose mode (default).

Silent mode.

Writes the output to the specified file.

Process operations and attributes in files in
#include statements too.

Use var types in generated code (default).

Generate bodies of operations and attributes
(default).

idlgen cpp print.tcl [options] file.idl

The command line options are:

-I<directory>
—-D<name>[=value]
-h

- (no) any

-dir <directory>

Passed to preprocessor.
Passed to preprocessor.
Prints help message.

Generate code to support any and TypeCode.
The default is not to generate print functions
for these types.

Put generated files in the specified directory.

401

Orbix Code Generation Toolkit Programmer’s Guide

cpp_random

cpp_equal

402

idlgen cpp random.tcl [options] file.idl

The command line options are:

-I<directory>
-D<name> [=value]
-h

- (no) any

-dir <directory>

Passed to preprocessor.
Passed to preprocessor.
Prints help message.

Generate code to support any and TypeCode.
The default is not to generate random
functions for these types.

Put generated files in the specified directory.

idlgen cpp equal.tcl [options] file.idl

The command line options are:

-I<directory>
-D<name>[=value]
-h

- (no) any

-dir <directory>

Passed to preprocessor.
Passed to preprocessor.
Prints help message.

Generate code to support any and TypeCode.
The default is not to generate equal functions
for these types.

Put generated files in the specified directory.

Orbix Java Genies

java_genie

idlgen java genie.tcl [options] file.idl [interface wildcard]*

The command line options are:

-I<directory>
-D<name> [=value]
-h

-v

-s

-jP <package name>

—-dir <directory>

—-include

-boa

-tie

- (no) interface
- (no) smart

- (no) loader

- (no)client

- (no) server

- (no)makefile

—-ns

Passed to preprocessor.
Passed to preprocessor.
Prints help message.
Verbose mode (default).
Silent mode.

Package into which generated files are
placed.

Put generated files in the specified directory.

Process interfaces in files in #include
statement too.

Use the BOA approach.

Use the TIE approach (opposite of -boa
option).

Generate implementation of IDL interfaces.
Generate smart proxies for IDL interfaces.
Generate skeleton loader classes.

Generate skeleton client class.

Generate skeleton server class.

Generate a Makefile to build all the generated
files.

Distribute object references using the
CORBA Naming Service. Mutually
incompatible with -bind.

403

Orbix Code Generation Toolkit Programmer’s Guide

-bind

-all

- (no)var

- (no) any

- (in) complete

- (no) inherit
-(no) this

-target=<0S>

java_print

(Deprecated.) Use _bind () to create object
references on the client side. Mutually
incompatible with -ns.

Shorthand for specifying all of the options:

—-interface, -client, -server, —-makefile,
-loader, and -smart.

Use var types in the generated code. This is
the default.

Generate support for any and TypeCode. The
default is not to support these types.

Generate complete applications. This is the
default. If incomplete applications are
chosen, the client application does not invoke
any operations and the server application
does not return random values.

Use inheritance of implementation classes
(default).

Generate operation _this () in
implementation class.

Use in combination with the -makefile
switch to generate a makefile for a specific
platform. The supported <0S> values are
"windows" and "unix". Default is your
installation platform.

idlgen java print.tcl [options] file.idl

The command line options are:

-I<directory>

-D<name>[=value]

-h

404

Passed to preprocessor.
Passed to preprocessor.

Prints help message.

- (no) any

-dir <directory>

java_random

Generate code to support any and TypeCode.

The default is not to generate print functions
for these types.

Put generated files in the specified directory.

idlgen java random.tcl [options] file.idl

The command line options are:

-I<directory>
-D<name> [=value]
-h

-dir <directory>

Passed to preprocessor.
Passed to preprocessor.

Prints help message.

Put generated files in the specified directory.

405

Orbix Code Generation Toolkit Programmer’s Guide

406

Appendix B
Command Library Reference

This appendix presents reference material on all the commands
that the Code Generation Toolkit provides in addition to of the
standard Tcl interpreter.

File Output API
The following commands provide support for file output.
Location std/output.tcl For normal output.
std/sbs_output.tcl For Smart But Slow output.

open_output_file
Synopsis open output file filename

Description Opens the specified file for writing.

Notes If the file already exists it is overwritten.
Example open output file "my code.cpp"
See Also close output file

output

407

Orbix Code Generation Toolkit Programmer’s Guide

close_output_file
Synopsis. close output file

Description. Closes the currently opened file.

Notes. Throws an exception if there is no currently opened file.
Example. close output file
See Also close output file

flush output

output
Synopsis output string
Description Writes the specified string to the currently open file.
Notes Throw an exception if there is no currently opened file.
Example output "Write a line to a file"
See Also close output file

open output file

Configuration File API

This section lists and describes all the operations associated with configuration
files. These commands are discussed in Chapter 7, “Configuring Genies”.

Conventions A pseudo-code notation is used for the operation definitions of the configuration
file variable that results in parsing a configuration file:

class derived node : base node {
return type operation (param type param name)

}

408

Synopsis.

Description

Notes

Example

See Also

idlgen_parse_config_file
idlgen parse config file filename

Parses the given configuration file. If parsing fails the command throws an
exception, the text of which indicates the problem. If parsing is successful this
command returns a handle to a Tcl object which is initialized with the contents of
the specified configuration file. The pseudo-code representation of the resultant
object is:
class configuration file {

enum setting_typé>{string, list, missing}

string filename ()
list<string> list names ()
void destroy ()
setting type type (

string cfg name)
string get string(

string cfg name)
void set string(

string cfg name,

string cfg value)

list<string> get list(
string cfg name)
void set list(

string cfg name,
list<string> cfg value)
}

None.

if { [catch {
set my cfg file [idlgen parse config file "mycfg.cfg"]
} err] } |
puts stderr Serr
exit

}

destroy
filename

409

Orbix Code Generation Toolkit Programmer’s Guide

Synopsis
Description
Notes

Example
See Also

Synopsis
Description
Notes

Example

See Also

Synopsis

Description

Notes

Example

See Also

410

destroy

Scfg destroy

Frees any memory taken up by the parsed configuration file.
None.

$my cfg file destroy

idlgen parse config file

$cfg filename

Scfg filename

Returns the name of the configuration file which was parsed.
None.

$my cfg file filename
> mycfg.cfg

idlgen parse config file

list_ names
$cfg list names

Returns a list which contains the names of all the entries in the parsed
configuration file.

No assumptions should be made about the order of names in the returned list.

puts "[Smy cfg file filename] contains the following entries..."

foreach name [Smy cfg file list names] {
puts "\t$name"

}

> orbix.version

> orbix.is multithreaded

> cpp.file ext

filename

Synopsis.

Description

Notes

Example

See Also

Synopsis

Description

Notes

Example

See Also

Synopsis

Description

type
Scfg type

A configuration file entry can have a value that is either a string or a list of
strings. This command is used to determine the type of the value associated with
the name.

If the specified name is not in the configuration file this command returns
missing

switch [$my cfg file type "foo.bar"] {
string { puts "The ’foo.bar’ entry is a string" }
list { puts "The ’foo.bar’ entry is a list" }
missing { puts "There is no ’foo.bar’ entry" }

}

list names

get string
Scfg get string name [default value]

Returns the value of the specified name. If there is no name entry then the default
value (if supplied) is returned.

An exception is thrown if any of the following errors occur:
¢ There is no entry for name and no default value was supplied.
¢ The entry for name exists but is of type list.

puts [Smy cfg get string "foo bar"]
> my value

get list

set string

get_list
Scfg get list name [default list]

Returns the list value of the specified name. If there is no name entry then the
default list (if supplied) is returned.

411

Orbix Code Generation Toolkit Programmer’s Guide

Notes An exception is thrown if any of the following errors occur:

® There is no entry for name and no default list was supplied.
® The entry for name exists but is of type string.

Example foreach item [$my cfg get list my list] { puts $item }
> valuel
> value?2
> value3

See Also get string

set list

set_string

Synopsis $cfg set string name value

Description Assigns value to the specified name.

Notes If the entry name already exists it is overridden. The updated configuration
settings are not written back to the file.

Example $my cfg set string "foo.bar" "another value"

See Also get string
set_list

Synopsis $cfg set list name value

Description Assigns value to the specified name.

Notes If the entry name already exists, it is overridden. The updated configuration
settings are not written back to the file.

Example $my cfg set list my string ["this", "is", "a", "list"]

See Also get list

412

idlgen_set_preferences

Synopsis idlgen set preferences $cfg

Description This procedure iterates over all the entries in the specified configuration file and
for each entry that exists in the default scope it creates an entry in the Spref
array. For example, the $cfg entry default.foo.bar = "apples" results in

Spref (foo, bar) being set to "apples".

Notes This procedure assumes that all names in the configuration file containing is_or
want_have boolean values. If such an entry has a value other than 0 or 1, an
exception is thrown.

During initialization, Orbix Code Generation Toolkit executes the statement:
idlgen set preferences $idlgen (cfg)

As such, default scoped entries in the Orbix Code Generation Toolkit
configuration file is always copied into the $pref array.

Example if { [catch {
set my cfg [idlgen parse config file "mycfg.cfg"]
idlgen set preferences Smy cfg
} err] } {
puts stderr Serr
exit

}

See Also idlgen parse config file

413

Orbix Code Generation Toolkit Programmer’s Guide

Command Line Arguments API

Synopsis

Description

Notes

Example

414

This sections details commands that support command-line parsing. These
commands are discussed in Chapter 7, “Configuring Genies”.

idlgen_getarg
idlgen getarg sformat arg param symbol
Extracts the command line arguments from $argv using a user-defined search
data structure.
format (in) A data structure describing which command-line
parameters you wish to extract.

argument (out) The command-line argument that was matched on this run
of the command.

parameter (out) The parameter (if any) of the command-line argument
that was matched.

symbol (out) The symbol for the command-line argument that was
specified in the format parameter. This can be used to find
out which command-line argument was actually
extracted.

Format must be of the following form:

set format {
{"regular expression" [0]|1l] symbol}

}

set cmd line args format ({

{ "-I.+" 0 -I }
{ "-D.+" 0 -D }
{ "=v" 0 -v }
{ "-h" 0 usage }
{ "-ext" 1 -ext }
{ ".H\\.[iI] [dD] [1L] 0 idl file}

}

while { Sargc > 0 } {

idlgen getarg Scmd line args format arg param symbol

switch $symbol {

|
<
U U DU

default {

}

See Also idlgen parse config file

puts "Preprocessor directive: $Sarg"}
puts "IDL file: S$Sarg" }

puts "option: -v" }

puts "option: -ext; parameter S$param" }
puts "usage: "

exit 1

puts "unknown argument S$Sarg"}

puts "usage:
exit 1

415

Orbix Code Generation Toolkit Programmer’s Guide

416

Appendix C
IDL Parser Reference

Location

Synopsis

Description

Notes

Example

See Also

This appendix presents reference material on all the commands
that the Code Generation Toolkit provides to parse IDL files
and manipulate the results.

Built-in commands.

idlgen_parse_idl_file
idlgen parse idl file file preprocessor directives

Parses the specified IDL £ile with the specified preprocessor-directives being
passed to the preprocessor. The preprocessor directives parameter is
optional. Its default value is an empty list.

If parsing is successful the root node of the parse tree is placed into the global
variable $idlgen (root), and idlgen parse idl filereturns 1 (true). If
parsing fails then error messages are written to standard error and

idlgen parse idl filereturns 0.

Tcl

if { [idlgen parse idl file "bank.idl" {-DDEBUG}]}{
puts "parsing succeeded"

} else {
puts "parsing failed"

}
IDL Parse Tree Nodes.

417

Orbix Code Generation Toolkit Programmer’s Guide

IDL Parse Tree Nodes

This section lists and describes all the possible node types that can be created
from parsing an IDL file.

Conventions This section uses the following typographical conventions:
1. A pseudo-code notation is used for the operation definitions of the
different nodes that can exist in the parse tree:

class derived node : base node {
return type operation(param type param name)

}

Abstract classes are in italics.

2. In the examples given the highlighted line in the IDL corresponds to the
node used in the Tcl script. In this example, the module finance is the

node referred to in the Tcl script as the variable $module.

// IDL # Tcl
module Finance ({ puts [Smodule 1 name]
interface Account { > Finance

}i

418

Table of Node Types

Synopsis.

Definition

All the different types of nodes are arranged into an inheritance hierarchy as
shown in Figure 14.1:

node
char —
octet — scope
float | A
double —
short — —— module
ushort — — interface
long — —— operation
ulong — — struct
boolean — — exception
Object — —— union
Typecode — — enum

field
union_branch
argument
attribute
constant
typedef
enum_val
array
sequence
string
interface_fwd

Figure 14.1: Inheritance Hierarchy for Node Types

Types shown in bold define new operations. For example, type field inherits
from type node and defines some new operations, while type char also inherits
from node but does not define any additional operations. There are two abstract
node types that do not represent any IDL constructs, but encapsulate the common
features of certain types of node. These two abstract node types are called node

and scope.

node

This is the abstract base type for all the nodes in the IDL parse tree. For example,
the nodes interface, module, attribute, long are all sub-types of node

class node {
string
string
string
string
list<string>

node_type ()

1 name ()
Ss_name ()
s_uname ()

s name list()

419

Orbix Code Generation Toolkit Programmer’s Guide

Example

420

string
integer
boolean

node

node
list<string>
boolean

}
node type
1 name

S_name

S_uname

s name list

defined in

true base type

file

line

pragma list

is in main file

is imported

// IDL
module Finance {

file()

line ()

is in main file()
defined in()

true base type()
pragma list()

is imported ()

The name of parse-tree node’s class.
Local name of the node, for example, balance.

Fully scoped name of the node, for example
account: :balance.

Fully scoped name of the node, but with all
occurrences of "::" replaces with and underscore. For
example account balance.

Fully scoped name of the node in list form.
The node of the enclosing scope.

For almost all node types, this operation returns a
handle to the node itself. However, for a typedef node,
this operation strips off all the layers of typedef and
returns a handle to the underlying type. See the
discussion in “Typedefs and Anonymous Types” on
page 113.

IDL file which contained the node.

Line number in the IDL file where the construct was
defined.

A list of the relevant pragmas in the IDL file.

True if not in an IDL file referred to in an #include
statement.

Opposite of is in main file.

exception noFunds {
string reason;

Synopsis

Definition

Methods

}i

Tcl

puts [Snode node type] > exception
puts [$node 1 name] > noFunds
puts [$node S_name] > Finance: :noFunds
puts [Snode s uname] > Finance noFunds
puts [$node s name list] > Finance noFunds
set module [$node defined in]
puts [Smodule 1 name] > Finance

scope

Abstract base type for all the scoping constructs in the IDL file. An IDL construct

is a scope if it can contain other IDL constructs. For example, a module is a
scope because it can contain the declaration of other IDL types. Likewise, a

struct is a scope because it contains the fields of the struct.

class scope :

node

list<node>

list<node>

lookup name

node {

lookup (string name)

contents (
list<string> constructs wanted,
function filter func = "")

rcontents (
list<string> constructs wanted,
list<string> recurse nto,
function filter func = "")

Get a handle to the named node.

contents node types [func]

proc func { node } {
return 1 if node is to be included
return 0 if node is to be excluded

}

421

Orbix Code Generation Toolkit Programmer’s Guide

Example

422

Obtain a list of handles to all the nodes that match the types
in the node types list. An optional function name func can
be provided for extra filtering. This function must take one
parameter and return either true or false. The parameter is the
handle to a located node, the function can then return true if it
wants that node in the results list or false if it is to be
excluded.

rcontents node types scope types [func]

// 1IDL

Exactly the same as contents but also recursively traverses
any contained scopes as specified in the scope types list.
The pseudo-type all can be used as a value for the
constructs wanted and recurse into parameters of the
contents and rcontents operations.

module finance ({
exception noFunds {
string reason;

}r

interface account {

}i
}i

Tcl

set exception [$finance lookup noFunds]
puts [Sexception 1 name] > noFunds

foreach node

[$finance contents {all}] {

puts [$node 1 name] > noFunds

account

foreach node [$finance rcontents {all} {exception}]

{

puts [$node 1 name] > noFunds

reason
account

Built-in IDL types

Synopsis

Definition

Example

Synopsis

Definition

Example

All the built-in IDL types (long, short, string, and so on) are represented by types
which inherit from node and do not define any additional operations.

class char : node {}
class octet : node {}
class float : node {}
class double : node {}
class short : node {}
class ushort : node {}
class long : node {}
class boolean : node {}
class Object : node {}
class TypeCode : node {}
class NamedValue : node {}
class Principal : node {}

// IDL
interface bank {
void findAccount (in long accNumber, inout branch brchObj);

}i

Tcl
puts [$long type 1 name] > long

argument
An individual argument to an operation.

class argument : node {
node type ()
string direction()

}

type The data type of the argument.
direction The passing direction of the argument: in, out or inout.
// IDL

interface bank {
void findAccount (in long accNumber, inout branch brchObj);

423

Orbix Code Generation Toolkit Programmer’s Guide

Synopsis

Definition

Example

Synopsis

Definition

424

}i

Tcl

puts [Sargument direction] > in

set type [Sargument type]

puts [Stype 1 name] > long

puts [Sargument 1 name] > accNumber
array

An anonymous array type.

class array : node {
node elem type ()
list<integer> dims ()
}
elem type The data type of the array.
dims The dimensions of the array.
// IDL

module finance {
typedef long longArray[10][20];

}i

Tcl
set type [Sarray base type]
puts [Stype 1 name] > long
puts [Sarray dims] > 10 20
puts [Sarray 1 name] > longArray
attribute
An attribute.
class attribute : node {
boolean is readonly ()
node type ()

}

is readonly

type

Determines whether the attribute is read only or not.
The type of the attribute.

Example

Synopsis.

Definition.

Description

Example

Synopsis

Definition

// IDL
interface bank {
attribute readonly string bankName;

}i

Tcl
puts [Sattribute is readonly] > 1
set type [Sattribute type]
puts [Stype 1 name] > string
puts [Sattribute 1 name] > bankName
constant
A const.

class constant : node {

string value ()

node type ()
}
value The value of the constant.
type The data type of the constant.
// IDL

module finance {
const long bankNumber= 57;

}i

Tcl

puts [S$const value] > 57

set type [Sconst typel

puts [Stype 1 name] > long

puts [Sconst 1 name] > bankNumber
enum_val

A single entry in an enumeration.

class enum val : node {
string value ()

425

Orbix Code Generation Toolkit Programmer’s Guide

Example

Synopsis

Definition

Example

Synopsis

Definition

Example

426

string type ()
}
value The value of the enumerated entry.
type A name given to the whole enumeration.
// IDL

enum colour {red, green, blue};

Tcl

puts [Senum val value]

puts [Senum val 1 name]

puts [[$enum val type] 1 name]

cnum
The enumeration.

class enum : scope {

}
// IDL

enum colour{red, green, blue};

Tcl
puts [Senum s name]

exception
An exception.

class exception : scope {

}

// IDL
module finance{
exception noFunds {
string reason;
float amountExceeded;
}r

> 2
> blue
> colour

> colour

}i

Tcl

puts [Sexception 1 name] > noFunds

field
Synopsis. A field is an item inside an exception or structure.
Definition class field : node {

node type ()

}

type The type of the field.
Example // IDL

struct cardNumber {
long binNumber;
long accountNumber;

}i

Tcl
set type [$field type]
puts [Stype 1 name] > long
puts [S$field 1 name] > binNumber
interface
Synopsis An interface.
Definition class interface : scope {
list<node> inherits ()
list<node> ancestors ()
list<node> acontents (
list<string> constructs wanted
function filter func = "")
}
Description
inherits The list of interfaces this one derives from.
ancestors The list of all the interfaces that are ancestors of this one.

427

Orbix Code Generation Toolkit Programmer’s Guide

acontents Like the normal scope: : contents command but searches
ancestor interfaces as well.

Notes An interface is an ancestor of itself.

Example // IDL
module finance ({
interface bank {

}i
}:

Tcl
puts [S$interface 1 name] > bank

interface_fwd

Synopsis A forward declaration of an interface.
Definition class interface : node {
node full definition()

}
full definition The actual interface.

Example // IDL
interface bank;

interface bank {
account findAccount (in string accountNumber) ;

}i

Tcl

set interface [Sinterface fwd full definition]

set operation [$interface lookup "findAccount"]

puts [Soperation 1 name] > findAccount

428

module

Synopsis A module.

Definition class module : scope {
}

Example // IDL

module finance ({
interface bank {

}i
}i

Tcl
puts [$Smodule 1 name] > finance
operation
Synopsis An interface operation.
Definition class operation : scopef{
node return type ()
boolean is oneway ()
list<node> raises list()

list<string> context list()

list<node> args (
list<string> dir list,
function filter func = "")

}

return_type The return type of the operation.
is oneway Determines whether the operation is a oneway or not.
raises list A list of handles to the exceptions that can be raised.

context list A list of the context strings.

429

Orbix Code Generation Toolkit Programmer’s Guide

args The operation class is a subtype of scope and hence it
inherits the contents operation. Invoking contents on an
operation returns a list of all the argument nodes contained
in the operation. Sometimes you may want to get back a list
of only the arguments which are passed in a particular
direction. The args operation allows you to specify a list of
directions for which you want to inspect the arguments. For
example, specifying {in inout} for the dir list
parameter causes args to return a list of all the in and inout
arguments.

Example // IDL
interface bank

{
long newAccount(in string accountName)
raises(duplicate, blacklisted) context("branch");

}r

Tcl

set type [Soperation return type]

puts [Stype 1 name] > long

puts [Soperation is oneway] >0

puts [Soperation 1 name] > newAccount
puts [Soperation context list] > branch

sequence
Synopsis An anonymous sequence.

Definition class sequence : node {
node elem type ()
integer max size ()

}
elem type The type of the sequence.

max_size The maximum size, if the sequence is bounded. Otherwise
the value is 0.

430

Example // IDL
module finance {
typedef sequence<long, 10> longSeq,

}i

Tcl

set typedef [$idlgen (root) lookup
"Finance: :longSeq"]

set seq [$typedef base type]

set elem type [S$seqg elem type]

puts [Selem type 1 name] > long
puts [Stypedef 1 name] > longSeq
puts [Sseg max size] > 10
puts [$seq 1 name] > <anonymous_sequence>
string
Synopsis A bounded or unbounded string data type.
Definition class string : node {
integer max size ()
}
max size The maximum size if the string is bounded. Otherwise the
value is 0.
Example // IDL
struct branchDetails({
string<100> branchName;
}i
Tcl
set type [S$field typel
puts [$field 1 name] > branchName
puts [Stype max size] > 100
puts [Stype 1 name] > string

431

Orbix Code Generation Toolkit Programmer’s Guide

Synopsis.

Definition.

Example

Synopsis

Definition

Example

432

struct
A structure.

class struct : scope {

}

// IDL
module finance {
struct branchCode
{
string cateogory;
long zoneCode;
}i
}i

Tcl
puts [Sstructure s name]

> finance: :branchCode

typedef
A type definition.
class typedef : node {
node base type ()
}
base_type The data type of the typedef.
// IDL

module finance

{

typedef sequence<account,

}i

Tcl

set $sequence [Stypedef base type]

puts [$sequence max_size]
puts [Stypedef 1 name]

100> bankAccounts;

> 100
> bankAccounts

Synopsis.

Definition

Example

Synopsis

Definition

union
A union.

class union : scope {

node disc type()
}
disc_type The data type of the discriminant.
// IDL
union accountType switch(long) {
case 1: string accountName;
case 2: long accountNumber;
default: account accountObij;
i
Tcl
puts [Sunion 1 name] > accountType
set type [Sunion disc type]
puts [Stype 1 name] > long

union_branch
A single branch in a union.

class union branch : node {

string 1 label()
string s_label ()
string s label list()
string type ()
}
1 label The case label.
s _label The scoped case label.

s_label list The scoped label in list form.

type The data type of the branch.

433

Orbix Code Generation Toolkit Programmer’s Guide

Example // IDL
module finance ({
union accountType switch(long) {

case 1: string accountName;
case 2: long accountNumber,;
default: account accountObj;
}r
}r
Tcl
set type [$union_branch typel
puts [Stype 1 name] > long
puts [$union_branch 1 name] > accountNumber
puts [Sunion branch 1 label] > 2
puts [Sunion branch s label] > 2

434

Appendix D

Configuration File Grammar

This appendix summarizes the syntax of the the configuration
file used with the Code Generation Toolkit.

config file

statement

named scope

assign statement

string expr
array expr

string

array

identifier
]*

[statement]*

named _scope ‘;’
assign statement ‘;’

identifier ‘{‘' [statement]1* ‘}’/

identifier ‘=’ string expr
identifier ‘=’ array expr

string [‘+’ string]*

array [“t’ array]*

w ”

identifier

‘[string expr [‘,’ string expr]* ‘]’
identifier

[fa-z] | [A-Z] | [0-9] | *_’ i vt

Comments start with # and extend to the end of the line.

435

Orbix Code Generation Toolkit Programmer’s Guide

436

Index

Index

Symbols

_ prefix 144,176

_var types 165, 166

.bi extension 98

@ See escape sequences

*** See escape sequences

$cache array 212

$cfg filename command 410

$idlgen array 208

$idlgen(cfg) 139,208
$idlgen(exe_and_script_name) 208
$idlgen(root) 208

$pref array 209

$pref(cpp,cc_file_ext) 235
$pref(cpp,h_file ext) 235
$pref(cpp,impl_class_suffix) 235
$pref(cpp,indent) 235
$pref(cpp,max_padding_for types) 236
$pref(java,attr mod param_name) 320
$pref(java,impl_class_suffix) 320
$pref(java,indent) 320

$pref(java,java class_ext) 320
$pref(java,java_file_ext) 320
$pref(java,max padding for types) 320

A

abstract nodes
node type 105

aliases 114

allocating memory 158

anonymous arrays 114

anonymous sequences 29, 114, 125

anonymous types 113
cpp_sanity_check idl 287

anys
cpp_any_extract stmt 172, 241
cpp_any_extract_var decl 172,242
cpp_any_extract var ref 172, 243
cpp_any_insert_stmt 171, 244
extracting data 172,203
extracting data example 172
inserting data 171, 202
java_any extract stmt 203, 325
java_any extract var decl 203, 327
java_any extract var ref 203, 328

java_any insert stmt 202, 329
processing 171, 201

API
cpp_equal library 312
cpp_print library 305
cpp_random library 308
java_equal library 388
java_ print library 381
java_random library 384

applications
C++ signatures 237

args.tcl 135

arrays 198
$cache 212
$idigen 208
$pref 209
copying 168, 198
cpp_array_decl index vars 169, 246
cpp_array_elem_index 169, 247
cpp_array for loop footer 169, 248
cpp_array for loop_header 169, 248
cpp_gen array decl index vars 170, 246
cpp_gen_array_for loop footer 170, 248
cpp_gen_array for loop_header 170, 248
global 207
index variable declaration 170
java_array_decl index_vars 198, 330
java_array elem index 198, 332
java_array for loop footer 198, 333
java_array for loop header 198, 333
java_assign_stmt 337
java_gen array decl index vars 200, 330
java_gen array for loop footer 200, 333
java_gen_array for loop header 200, 333
processing 168, 198

assignment statements
and variables 165
cpp_assign_stmt 249
cpp_gen_assign_stmt 160, 249
cpp_ret_assign 285
generating 194
java_assign_stmt 335, 337
java_gen_assign_stmt 184, 335
java_ret assign 367

attr mod_param_name 320

attribute signatures
cpp_attr_acc_sig cc 253
cpp_attr_acc_sig h 251
cpp_attr mod_sig_cc 256
cpp_attr mod sig h 255

437

Orbix Code Generation Toolkit Programmer’s Guide

cpp_gen_attr acc_sig_cc 253 C++
cpp_gen_attr_acc_sig h 251 cpp_branch_case 1 label 166, 260
cpp_gen_attr mod_sig _cc 256 cpp_branch_case s label 263
cpp_gen_attr mod_sig h 255 cpp_branch 1 label 262
java_ attr acc_sig 338 cpp_branch s label 264
java_attr mod_sig 340 Java
java_gen attr acc_sig 338 java_branch_case 1 label 195
java gen attr mod sig 340 java branch 1 label 343, 346
attributes label type 197

cpp_gen_srv_free mem_stmt 163 cc_file ext 235
cpp_gen_srv_par alloc 163 cl args format data structure 131
cpp_gen_srv_ret_decl 163 client applications
cpp_srv_free mem stmt 163 generating 79
cpp_srv_need to free mem 163 generating C++ 53
cpp_srv_par_alloc 163 close output file 93
cpp_srv_par ref 163 close output_file command 408
cpp_srv_ret_decl 163 Code Generation Toolkit
implementing 163, 191 packaged C++ genies 39
invoking 156, 187 command-line arguments
java clt par decl 187 args.tcl 135
java_clt_par ref 187 cl args format 131
java_gen clt par decl 187 default values 140
java_srv_par alloc 191,192 example 132
type operation 104 genies 33

idlgen_getarg 130

B parsing 131

processing 127
regular expression 131
search for IDL files 128

base_type operation 113
basic types
java_is_basic_type 358

bi2tcl utility 99 standard arguments 135
ili 1 fil commands
. légsl;int:oels 9987 for anys 240, 324
symbol 98 for arrays 240, 324
bi2tcl utility 99 for attribute implementation 239, 323

for attribute invocations 238, 323

for attribute signatures 238, 322

for operation implementation 239, 323
for operation invocations 238, 323

for operation signatures 237, 322

for parameters 238, 323

for servant classes 237, 322

comment characters 98
debugging 99

escape sequences 97
file extension 98
preprocessor 92

C for unions 239, 324
C++ compiler bugs for variables 239, 324
workaround 165 general purpose 237, 322
C++ development library 143, 231 idlgen_getarg 128
C++ file extension 235 idlgen_is_recursive_member 125
C++ genie 39 idlgen_is_recursive type 125
command line arguments 45 idlgen_list all types 123
configuration 63 idlgen_list builtin_types 112
case labels 195 idlgen_list recursive_member_types 125

438

Index

idlgen list_user defined types 123

idlgen_parse config file 137

idlgen process_list 153, 185,219, 221

idlgen_read support file 216

idlgen_set preferences 210

idlgen_support file full name 218

Java 367
configuration

C++ genie 63

Java genie 86
configuration files

$idlgen(cfg) 208

$pref array 209

common preferences 209

default scope 209

default values 141

get_list operation 138

get_string operation 138

grammar 435

idlgen_parse config file 137

idlgen_set preferences 210

idlgen.cfg 136

list names operation 138

lists 137

operations on 138

padding 222

set_list operation 138

set_string operation 138

standard file 139

syntax 136

using 136
configuring IDLgen

reference 391, 393, 395
contents operation 109, 116
copyright notices

generating 218
cpp_any_extract stmt 172, 241
cpp_any_extract var decl 172,242
cpp_any_extract var ref 172,243
cpp_any insert_stmt 171,244
cpp_array_decl index vars 169, 246
cpp_array_elem_index 169, 247
cpp_array_for loop footer 169, 248
cpp_array_for loop header 169, 170, 248
cpp_assign_stmt 249
cpp_attr_acc_sig_cc 253
cpp_attr_acc_sig h 251
cpp_attr_ mod_sig_cc 256
cpp_attr mod_sig h 255
cpp_boa class_s name 258,259

cpp_boa_lib 241
cpp_boa lib.tcl 143
cpp_boa_tie_s name 299
cpp_branch_case 1 label 166, 260
cpp_branch _case s label 166,263
cpp_branch 1 label 166, 262
cpp_branch_s_label 166, 264
cpp_clt_free mem_stmt 156, 265
cpp_clt need to free mem 156, 267
cpp_clt_par _decl 156,268
cpp_clt par ref 154, 156, 270
cpp_equal API library 312
cpp_equal.tcl 62
Cpp_gen_

naming convention 234
cpp_gen_array decl index vars 170, 246
cpp_gen_array_for loop footer 170,248
cpp_gen_array for loop header 170,248
cpp_gen_assign_stmt 160, 249
cpp_gen_attr_acc_sig_cc 253
cpp_gen_attr_acc_sig h 251
cpp_gen attr mod_sig _cc 256
cpp_gen_attr mod_sig h 255

cpp_gen clt free mem stmt 155, 156, 265

cpp_gen_clt par decl 156, 268
cpp_gen_op_sig cc 157,282
cpp_gen_op_sig h 157,280

cpp_gen_srv_free mem_stmt 160, 162, 163, 289

cpp_gen srv_par alloc 159, 163,292
cpp_gen_srv_ret_decl 163,297
cpp_gen var_decl 164, 301
cpp_gen_var_free mem_stmt 164, 302
cpp_genie.tcl 39, 399, 403

-client 53

command line arguments 45

configuration 63

-file 41

generating complete C++ application 40

generating partial C++ application 43

-incomplete 54

-interface 46

-loader 50

-makefile 55

-ns 41

-server 51

-smart 48
cpp_impl class 276, 287
cpp_indent 170, 277
cpp_is_fixed size 277
cpp_is_keyword 278

439

Orbix Code Generation Toolkit Programmer’s Guide

cpp_is var size 278

cpp_l name 145,279
cpp_nil_pointer 162, 280
cpp_op_sig_cc 282

cpp_op_sig h 280

cpp_op.tel 56, 401

cpp_param_sig 283

cpp_param_type 284

cpp_print API library 305
cpp_print.tcl 57,401, 404
cpp_random API library 308
cpp_random.tcl 402, 405
cpp_ret_assign 153, 285
cpp_s_name 145, 285

cpp_s_uname 286

cpp_sanity _check idl 287
cpp_srv_free mem_ stmt 162, 163, 288
cpp_srv_need to free mem 163,291
cpp_srv_par_alloc 163,292
cpp_srv_par ref 160, 161, 163,295
cpp_srv_ret_decl 159, 163,297
cpp_typecode | name 145, 300
cpp_typecode s name 145, 300
cpp_var_decl 164, 301

cpp_var_free mem_stmt 164, 302
cpp_var need to free mem 164, 303

D
debugging 99
declarations
return value 181
variable 181
default scope 209
demo genies
description 36
idI2html.tcl 36
stats.tcl 36
destroy command 410
diagnostic messages 211

E
embedding text 95
enum node 426
equality functions
generating C++ 62
escape sequences 97
exception node 426
exceptions 161

440

F

file
in which a node appears 107
writing to from Tcl 93

file extensions 136

fixed size types 277

for loop footer 333

for loop header 333

G
gen_
naming convention 233, 318
genie_search path 92
genies
C++ genie 39
caching results 212
calling other genies 226
command-line arguments 33
commenting 228
cpp_equal.tcl 62
cpp_genie.tcl 39
cpp_op.tcl 56
cpp_print.tcl 57
cpp_random.tcl 60
demos 36
developing for Java 177
full APT 227
in code generation architecture 27
introduction 31
Java genies 65
java_genie.tcl 65
java_print.tcl 82
java_random.tcl 85
libraries 225
minimal API 227
options
genie_search path 92
Orbix C++ tools 39
organising files 222
packaged C++ 39
performance 212, 215
running 31
searching for 33
standard command-line arguments 135
types available 35
get list command 411
get_list operation 138
get_string command 411
get_string operation 138

Index

global arrays 207

H
h file ext 235
header file extension 235
helper types 354
hidden nodes 114
holder types 177, 355
declaring 194
generating 350
inout and out parameters 183

|

idempotent procedures 212
identifiers
clash with C++ keywords 144, 176
cpp_boa_class s name 258, 259
cpp_1 name 145,279
cpp_s_name 145, 285
cpp_s uname 286
cpp_typecode 1 name 145
cpp_typecode s name 145
java boa class 1 name 341
java_boa class s name 342
java_helper name 177, 354
java_holder name 177, 355
java_1 name 176, 360
java_s name 176
java_typecode 1 name 177
java_typecode s name 176
IDL files
$idlgen(root) 208
and idlgen 101
in command-line arguments 128
parsing 102
root 208
searching 115
IDL parser 101
IDL types
represented by nodes 111
idI2html.tcl 37, 398
idlgen
and IDL files 101
and Tcl 90
bilingual files 97
command-line arguments 90
debugging 99
embedding text
using quotation marks 97

escape sequences 97

executable name 208

IDL parser 27, 101

idlgen support file full name 218

including files 92

script name 208

search path 92

simple example 90

smart_source 92

standard configuration file 139
idlgen_gen comment block 218
idlgen_getarg 128

syntax 130
idlgen_getarg command 414
idlgen_is_recursive_member 125
idlgen is_recursive type 125
idlgen list all types 123
idlgen_list builtin_types 112
idlgen_list_recursive_member_types 125
idlgen_list user defined types 123
idlgen_pad_str 221
idlgen parse config_file 137

example 137
idlgen_parse_config_file command 409
idlgen parse idl file 102
idlgen_parse idl file command 417
idlgen_process_list 153, 185,219
idlgen read support file 216
idlgen_set default preferences command 413
idlgen_set preferences 210
idlgen support file full name 218
idlgrep 115

with configuration files 139
impl class_suffix 235, 320
ind_lev parameter 235, 319
indent 235, 320
indentation 235, 319

cpp_indent 170,277

java_indent 199, 357
index variables 199

declaring 330

initializing 200
inheritance approach 136
interface node 105

pseudo code definition 109
interfaces

generating 72

generating C++ 46
invoking operations 149, 180
is_in _main_file operation 104

441

Orbix Code Generation Toolkit Programmer’s Guide

is_var flag 165, 166
IT IDLGEN CONFIG FILE environment
variable 139

J

Java genie 65
command line arguments 71
configuration 86
java_any extract stmt 203, 325
java_any extract var decl 203, 327
java_any extract var ref 203, 328
java any insert stmt 202, 329
java_array decl index vars 198, 330
java_array elem_index 198,332
java_array for loop footer 198, 333
java_array for loop header 198, 333
java_assign_stmt 335, 337
java_attr acc_sig 338
java_attr mod_sig 340
java_boa class_| name 341
java_boa class_s name 342
java_boa lib library 325
java_boa lib.tcl 175
java_boa tie s name 365, 366
java_branch case 1 label 195
java_branch_case s label 195
java branch 1 label 195, 343, 346
java branch_s label 344, 347
java_class_ext 320
java_clt par decl 187, 348
java clt par ref 186, 187,350
java_equal API library 388
java_ file ext 320
java_gen array decl index vars 200, 330
java_gen_array for loop footer 200, 333
java_gen array for loop header 200, 333
java_gen assign_stmt 184, 335
java_gen attr acc_sig 338
java_gen attr mod sig 340
java_gen clt par decl 181, 187, 348
java_gen op sig 188,361
java_gen srv_par alloc 192,372
java gen srv_ret decl 192,376
java_gen var decl 192,379
java_genie.tcl 65
-client 79
command line arguments 71
configuration 86
generating complete Java application 66
generating partial application 70

442

-incomplete 80

-interface 72

-loader 75

-makefile 81

-ns 67

-server 76

-smart 74
java_helper name 177,354
java_holder name 177,355
java_impl class 356,370
java_indent 199, 357
java_is basic_type 358
java_is_keyword 358
java_1 name 176, 360
java_list recursive_member_types 358
java_op_sig 361
java_package name 362
java_param_sig 362
java param_type 363
java_print API library 381
java_print.tcl 82
java_random API library 384
java ret assign 185,367
java_s name 176, 367
java_s uname 367
java_sequence elem_index 201, 368
java_sequence_for loop footer 201, 369
java_sequence for loop header 201, 369
java srv_par alloc 191, 192,372
java_srv_par_ref 191, 192,374
java_srv_ret decl 190, 192, 376
java_typecode 1 name 177,377
java_typecode s name 176, 378
java_user defined type 378
java var alloc_ mem 183
java_var decl 192,379

K

keywords
clash with IDL identifiers 144, 176
cpp_is_keyword 278
java_is_keyword 358

L
1 name operation 104
libraries
C++ development 317
java boa lib 325
library

Index

C++ development 143, 231
Java development 175
library genies 225
list names command 410
list names operation 138
lists
idlgen_process_list 219
in configuration files 137
processing 219
loaders
generating 75
generating C++ 50
local names 279
cpp_typecode 1 name 300
java_boa class | name 341
java_1 name 360
java_typecode 1 name 377
lookup operation 111

M

makefile
generating 81
generating for C++ 55

max_padding_for types
C++ 236
Java 320

memory management 154
allocating parameters 158
and exceptions 161
cpp_clt free mem stmt 156, 265
cpp_clt need to free mem 156,267
cpp_gen_clt_free mem_stmt 155, 156, 265
cpp_gen srv_free mem_stmt 160, 162, 289
cpp_gen var_free mem_stmt 302
cpp_srv_free mem_stmt 162, 288
cpp_srv_need to free mem 291
cpp_var_free mem_stm 302
cpp_var need to free mem 303
of variables 163

N
naming conventions 231, 317
nil pointers 162, 280
nodes
abstract nodes 105, 108
all pseudo-node 111, 115
argument node 107, 181, 423
direction operation 423
type operation 423

array node 424
dims operation 424
elem_type operation 424
attribute node 424
is_readonly operation 424
type operation 424
base ndoe
s name_list operation 420
base node 419
defined_in operation 420
file operation 420
is_imported operation 420
is_in_main_file operation 420
1 name operation 420
line operation 420
node_type operation 420
pragma_list operation 420
s_name operation 420
s_uname operation 420
true_base_type operation 420
boolean node 423
char node 423
constant node 425
type operation 425
value operation 425
contents operation 109
double node 423
enum node 426
enum_val node 425
type operation 426
value operation 426
exception node 426
field node 427
type operation 427
file operation 107
filtering with rcontents 118
float node 423
gaining list 109, 110
hidden nodes 111, 114
inheritance hierarchy 105
interface node 105, 427
acontents operation 428
ancestors operation 427
inherits operation 427
interface_fwd node 428
full definition operation 428
is_in_main_file operation 104
1 _name operation 104
long node 423
module node 429

443

Orbix Code Generation Toolkit Programmer’s Guide

NamedValue node 423
node type 105
node types listed 115
Object node 423
octet node 423
operation node 105, 182, 429
args operation 430
context_list operation 429
is_oneway operation 429
raises_list operation 429
return_type operation 429
package name of 362
Principal node 423
rcontents operation 110
representing IDL types 111
scope node 421
contents operation 116, 421
lookup operation 111, 421
rcontents operation 117, 422
scope type 108
scoped name 367
sequence node 430
elem_type operation 430
max_size operation 430
short node 423
string node 431
max_size operation 431
struct node 432
true_base_type operation 114
TypeCode node 423
typedef node 113,432
base_type operation 113,432
union node 433
disc_type operation 433
union_branch node 433
1 label operation 433
s_label operation 433
s label list operation 433
type operation 433
ushort node 423

0

opaque types 29

open_output_file 93

open_output file command 407

operation body 156

operation node 105

operation signatures 157, 188, 322
cpp_gen_op_sig cc 157,282
cpp_gen_op_sig h 157,280

444

cpp_op_sig_cc 282
cpp_op_sig h 280
java_gen op_sig 188, 361
java_op_sig 361

operations

get list 138

get string 138

implementing 188
cpp_boa_tie s name 299
cpp_gen_srv_ret decl 297
cpp_impl class 276, 287
cpp_srv_ret decl 297
java boa tie s name 365, 366
java_impl class 356, 370

invocation of 152

invoking 180, 184

list names 138

set_list 138

set_string 138

type 141

output command 408
output commands 215
output files

copying pre-written code to 216

output from IDLgen 215
output.tcl library

P

preferences 211

package name 362

setting in Tcl script 181

padding 236

idlgen process_list 221

parameter allocation 292
parameter declarations 348
parameter signatures 323

java param_sig 362

parameters

allocation 158, 159, 163
cpp_clt_free mem_stmt 156
cpp_clt_par_decl 156, 268
cpp_clt_par_ref 156,270
cpp_gen clt par decl 156,268
cpp_gen_srv_par alloc 292
cpp_param_sig 283
cpp_param_type 284
cpp_srv_par_alloc 163,292
cpp_srv_par_ref 295

free memory 154
idlgen_process_list 153,219

Index

initialization 160, 190
Java
allocation 183
in and inout 183
initialization 183
java_clt_par decl 187, 348
java_clt par ref 186, 187,350
java_gen clt par decl 181, 187, 348
java_gen srv_par alloc 372
java_param_type 363
java srv_par alloc 372
java_srv_par_ref 191, 192, 374
processing 153, 185
references 160
server-side processing 156, 188
signatures 238
parse tree
$idlgen(root) 103
and IDL parser 27
filtering nodes traversed 118
hidden nodes 111
introduction 101
nodes 105
rcontents operation 115
recursive descent traversal 120
root node 103
structure 103
traversing 108, 111, 121
user-defined IDL types 123
visiting all nodes 115
parse_cmd line args command 135
polymorphism
in Tel 121
pragma once directive
for smart_source 214
Preface 17
preferences 235, 320
$pref(cpp,cc_file ext) 235
$pref(cpp,h_file ext) 235
$pref(cpp,impl_class_suffix) 235
$pref(cpp,indent) 235

$pref(cpp,max_padding for types) 236
$pref(java,attr mod param name) 320

$pref(java,impl _class_suffix) 320
$pref(java,indent) 320
$pref(java,java class_ext) 320
$pref(java,java file ext) 320

$pref(java,max_padding for types) 320

padding 222
print functions

generating 82
generating C++ 57
procedures
general purpose 237, 322
organising 224
re-implementing 213
programming style 222
prototype
C++ 145
client-side 146
invoking an operation 149
Java 177
client-side 178
server-side 147, 179
prototype.idl 178

R

random functions
generating 85
generating C++ 60
rcontents operation 110, 117
traversing the parse tree 115
recursive descent traversal 120
polymorphism 121
recursive struct and union types 124
recursive types

java_list_recursive_member types 358

references 154
cpp_srv_par ref 161,295
java_any extract var ref 328
java_clt par ref 186, 350
java_srv_par_ref 192,374
regular expression 131
return value declarations 181
return values
allocation 297
cpp_gen_srv_ret_decl 297
cpp_ret_assign 153, 285
cpp_srv_ret decl 159,297
declaring 189
free memory 154
initialization 160, 190
java_gen srv_ret decl 192,376
java_ret assign 185,367
java_srv_ret_decl 192,376
processing 153, 185

S
sanity check 287

445

Orbix Code Generation Toolkit Programmer’s Guide

sbs_output.tcl library 215
scope flag 165
scope type 108
scoped names 258, 259
cpp_s_name 285
cpp_s_uname 286
cpp_typecode s name 300
java boa class s name 342
java_s name 367
java_s uname 367
java_typecode s name 378
search path 92
sequences
java_sequence elem index 201, 368
java_sequence for loop_ footer 201, 369
java_sequence for loop header 201, 369
servants
cpp_boa_tie_s name 299
cpp_impl class 276, 287
java boa tie s name 365, 366
java_impl class 356,370
server mainline
generating 76
generating C++ 51
set_list command 412
set_list operation 138
set_string command 412
set_string operation 138
signatures
generating for C++ operations 56
skeletal clients and servers
generating 80
generating C++ 54
smart pointers 232
smart proxies
generating 74
generating C++ 48
smart_source 92
avoiding multiple inclusion 214
pragma once directive 214
stats.tcl 36, 398
strings
padding 221
structs
recursive 124
switch statements 166, 195

T
Tel
and genies 89

446

command-line arguments 90
embedding text 95
in braces 95
using quotation marks 96
including files 91
interpreter 27
polymorphism 121
pragma once 92
puts 93
search path 92
simple example 90
source command 91
writing to a file 93
TIE approach 136, 299, 365, 366
true_base_type operation 114
type command 411
type nodes
java_param_type 363
type operation 104, 141
typecodes
cpp_typecode 1 name 300
cpp_typecode s name 300
java_typecode 1 name 377
java_typecode s name 378
typedefs 113

U

union labels 166

unions
cpp_branch _case | label 166, 260
cpp_branch _case s label 166,263
cpp_branch 1 label 166, 262
cpp_branch_s label 166, 264
example 167
java_branch_case 1 label 195
java_branch case s label 195
java branch 1 label 195, 343, 346
java_branch_s_label 344, 347
processing 166, 195
recursive 124

user-defined IDL types
java_user defined type 378
processing 123

v

variable declarations 181
variable size types

cpp_is_var size 278
variables

Index

allocation of 163, 192

and assignment statements 165
cpp_gen var_decl 164, 301
cpp_gen var free mem_ stmt 164, 302
cpp_var_decl 164, 301

cpp_var_free mem_stmt 164, 302
cpp_var need to free mem 164, 303
example 165

free memory 163, 192

instance and local 163, 192
java_gen var decl 192,379
java_var decl 192,379

447

Orbix Code Generation Toolkit Programmer’s Guide

448

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I Using the Toolkit
	Overview of the Code Generation Toolkit
	IDL Compiler Architecture
	Code Generation Toolkit Architecture
	Orbix Code Generation Toolkit Components
	The Bundled Applications

	Approaches to Using the Toolkit
	Known Limitations of Code Generation Toolkit

	Running the Demonstration Genies
	Running Genies
	Specifying the Application Location
	Looking For Applications
	Common Command-Line Arguments

	What are the Bundled Genies?
	Demonstration Genies
	stats.tcl
	idl2html.tcl

	Ready-to-Use Genies for Orbix C++ Edition
	Using the C++ Genie to Kickstart New Projects
	Generating a Client-Server Application
	Choosing an Object Reference Distribution Method
	Compiling and Running the Application
	Generating a Partial Application
	Command-Line Options to Generate Parts of an Application
	-interface: Classes that Implement Interfaces
	-smart: Smart Proxies
	-loader: Loaders
	-server: Server Main File
	-client: Client Application
	-incomplete: Skeletal Clients and Servers
	-makefile: Makefile

	Other Command-Line Options
	Other C++ Genies
	cpp_op.tcl—Generating Signatures of Individual Operations
	cpp_print.tcl—Creating Print Functions for IDL Types
	cpp_random.tcl—Creating Random Functions for IDL Types
	cpp_equal.tcl—Creating Equality Functions for IDL Types
	Configuration Settings

	Ready-to-Use Genies for Orbix Java Edition
	Using the Java Genie to Kickstart New Projects
	Generating a Client-Server Application
	Choosing an Object Reference Distribution Method
	Compiling and Running the Application
	Generating a Partial Application
	Command-Line Options to Generate Parts of an Application
	-interface: Classes that Implement Interfaces
	-smart: Smart Proxies
	-loader: Loaders
	-server: Server Main Function
	-client: Client Application
	-incomplete: Skeletal Clients and Servers
	-makefile: Makefile

	Other Command-Line Options
	Other Java Genies
	java_print.tcl—Creating Print Functions for IDL Types
	java_random.tcl—Creating Random Functions for IDL Types
	Configuration Settings

	Part II Developing Genies
	Basic Genie Commands
	Hello World Example
	Hello World Tcl Script
	Adding Command Line Arguments

	Including Other Tcl Files
	The source Command
	The smart_source Command

	Writing to a File
	Embedding Text in Your Application
	Embedding Text in Braces
	Embedding Text in Quotation Marks
	Embedding Text Using Bilingual Files

	Debugging and the bi2tcl Utility

	Processing an IDL File
	IDL Files and idlgen
	Parsing the IDL File
	Traversing the Parse Tree
	Parse Tree Nodes
	The node Abstract Node
	The scope Abstract Node
	The all Pseudo-Node
	Nodes Representing Built-In IDL Types
	Typedefs and Anonymous Types
	Visiting Hidden Nodes
	Other Node Types

	Traversing the Parse Tree with rcontents
	Searching an IDL File with idlgrep

	Recursive Descent Traversal
	Polymorphism in Tcl
	Recursive Descent Traversal through Polymorphism

	Processing User-Defined Types
	Recursive Structs and Unions

	Configuring Genies
	Processing Command-Line Arguments
	Enhancing the idlgrep Genie
	Processing the Command Line
	Searching for Command-Line Arguments
	More Examples of Command-Line Processing
	Using idlgrep with Command-Line Arguments
	Using std/args.tcl

	Using Configuration Files
	Syntax of an idlgen Configuration File
	Reading the Contents of a Configuration File
	The Standard Configuration File
	Using idlgrep with Configuration Files

	Developing a C++ Genie
	Identifiers and Keywords
	C++ Prototype
	Client-Side Prototype
	Server-Side Prototype

	Client Side: Invoking an Operation
	Step 1—Declare Variables to Hold Parameters and Return Value
	Step 2—Initialize Input Parameters
	Step 3—Invoke the IDL Operation
	Step 4—Process Output Parameters and Return Value
	Step 5—Release Heap-Allocated Parameters and Return Value

	Client Side: Invoking an Attribute
	Server Side: Implementing an Operation
	Step 1—Generate the Operation Signature
	Step 2—Process Input Parameters
	Step 3—Declare the Return Value and Allocate Parameter Memory
	Step 4—Initialize Output Parameters and the Return Value
	Step 5—Manage Memory when Throwing Exceptions

	Server Side: Implementing an Attribute
	Instance Variables and Local Variables
	Processing a Union
	Processing an Array
	Processing an Any
	Inserting Values into an Any
	Extracting Values from an Any

	Developing a Java Genie
	Identifiers and Keywords
	Java Prototype
	Client-Side Prototype
	Server-Side Prototype

	Client Side: Invoking an Operation
	Step 1—Declare Variables to Hold Parameters and Return Value
	Step 2—Allocate Holder Objects for inout and out Parameters
	Step 3—Initialize Input Parameters
	Step 4—Invoke the IDL Operation
	Step 5—Process Output Parameters and Return Value

	Client Side: Invoking an Attribute
	Server Side: Implementing an Operation
	Step 1—Generate the Operation Signature
	Step 2—Process Input Parameters
	Step 3—Declare the Return Value
	Step 4—Initialize Output Parameters and the Return Value

	Server Side: Implementing an Attribute
	Instance Variables and Local Variables
	Processing a Union
	Processing an Array
	Processing a Sequence
	Processing an Any
	Inserting Values into an Any
	Extracting Values from an Any

	Further Development Issues
	Global Arrays
	The $idlgen Array
	The $pref Array
	The $cache Array

	Re-Implementing Tcl Commands
	More Smart Source
	More Output

	Miscellaneous Utility Commands
	idlgen_read_support_file
	idlgen_support_file_full_name
	idlgen_gen_comment_block
	idlgen_process_list
	idlgen_pad_str

	Recommended Programming Style
	Organizing Your Files
	Organizing Your Command Procedures
	Writing Library Genies
	Commenting Your Generated Code

	Part III C++ Genies Library Reference
	C++ Development Library
	Naming Conventions in API Commands
	Naming Conventions for is_var
	Naming Conventions for gen_

	Indentation
	$pref(cpp,…) Entries
	Groups of Related Commands
	Identifiers and Keywords
	General Purpose Commands
	Servant/Implementation Classes
	Operation Signatures
	Attribute Signatures
	Types and Signatures of Parameters
	Invoking Operations
	Invoking Attributes
	Implementing Operations
	Implementing Attributes
	Instance Variables and Local Variables
	Processing Unions
	Processing Arrays
	Processing Any

	cpp_boa_lib Commands

	Other C++ Utility Libraries
	Tcl API of cpp_print
	Example of Use

	Tcl API of cpp_random
	Example of Use

	Tcl API of cpp_equal
	Example of Use
	Full API of cpp_equal

	Part IV Java Genies Library Reference
	Java Development Library
	Naming Conventions in API Commands
	Naming Conventions for gen_

	Indentation
	$pref(java,…) Entries
	Groups of Related Commands
	Identifiers and Keywords
	General Purpose Commands
	Servant/Implementation Classes
	Operation Signatures
	Attribute Signatures
	Types and Signatures of Parameters
	Invoking Operations
	Invoking Attributes
	Implementing Operations
	Implementing Attributes
	Instance Variables and Local Variables
	Processing Unions
	Processing Arrays
	Processing Any

	java_boa_lib Commands

	Other Tcl Libraries for Java Utility Functions
	Tcl API of java_print
	Example of Use

	Tcl API of java_random
	Example of Use

	Tcl API of java_equal
	Example of Use
	Equality Functions

	Appendix A User’s Reference
	Appendix B Command Library Reference
	Appendix C IDL Parser Reference
	Appendix D Configuration File Grammar
	Index

