ORBIX

Orbix Programmer’s Guide Java Edition
Version 3.3, SP11 March 2012

PROGRESS

software
BUSINESS MAKING PROGRESSw



Progress Orbix v3.3.11

© 2012 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, Corticon,
Corticon (and design), DataDirect (and design), DataDirect Connect, DataDirect
Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery,
DataXtend, Dynamic Routing Architecture, Empowerment Center, Fathom, Fuse Mediation
Router, Fuse Message Broker, Fuse Services Framework, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, Pow-
erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empower-
ment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
RulesCloud, RulesWorld, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic,
Sonic ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our Technol-
ogy-Experience the Connection are registered trademarks of Progress Software Corporation
or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store,
Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event
Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, Progress
RPM, Progress Responsive Cloud, Progress Responsive Process Management, Progress
Software, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct,
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartCompo-
nent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic
Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Con-
tinuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or
service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the
U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any
other marks contained herein may be trademarks of their respective owners.



Third Party Acknowledgements: One or more products in the Progress Orbix v3.3.11
release includes third party components covered by licenses that require that the following
documentation notices be provided:

Progress Orbix v3.3.11 incorporates OpenSSL/SSLeay v0.9.8.i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved. This pack-
age is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implemen-
tation was written so as to conform with Netscapes SSL. This library is free for commercial
and non-commercial use as long as the following conditions are adhered to. The following
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc.,
code; not just the SSL code. The SSL documentation included with this distribution is cov-
ered by the same copyright terms except that the holder is Tim Hudson (tjh@crypt-
soft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be
removed. If this package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a textual message at pro-
gram startup or in documentation (online or textual) provided with the package. Redistribu-
tion and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"”

The word 'cryptographic' can be left out if the rouines from the library being used are not
cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.



The licence and distribution terms for any publically available version or derivative of this
code cannot be changed. i.e. this code cannot simply be copied and put under another distri-
bution licence [including the GNU Public Licence.]

Progress Orbix v3.3.11 incorporates mcpp v2.6.4 from SourceForge (http://sourceforge.net/
softwaremap/index.php). Such technology is subject to the following terms and conditions:
Copyright (¢) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved.
This software including the files in this directory is provided under the following license.
Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met: 1. Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Orbix v3.3.11 incorporates IDL Compiler Front End v1.0 from Sun Microsystems.
Such technology is subject to the following terms and conditions: COPYRIGHT NOTICE
on OMG IDL CFE: Copyright 1992 Sun Microsystems, Inc. Printed in the United States of
America. All Rights Reserved. This product is protected by copyright and distributed under
the following license restricting its use. The Interface Definition Language Compiler Front
End (CFE) is made available for your use provided that you include this license and copy-
right notice on all media and documentation and the software program in which this product
is incorporated in whole or part. You may copy and extend functionality (but may not
remove functionality) of the Interface Definition Language CFE without charge, but you are
not authorized to license or distribute it to anyone else except as part of a product or pro-
gram developed by you or with the express written consent of Sun Microsystems, Inc.
("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may
not be used in advertising or publicity pertaining to distribution of Interface Definition Lan-
guage CFE as permitted herein. This license is effective until terminated by Sun for failure
to comply with this license. Upon termination, you shall destroy or return all code and doc-
umentation for the Interface Definition Language CFE. The Interface Definition Language
CFE may not be exported outside the United States without first obtaining the appropriate
government approvals. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS
IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF
DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED



WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC-
TION, MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES
OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE
DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN
OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST REV-
ENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun
logo are trademarks or registered trademarks of Sun Microsystems, Inc. SunSoft, Inc. 2550
Garcia Avenue Mountain View, California 94043

Updated: 07-Mar-2012



Contents

Preface
Audience
Organization of the Orbix Java Edition Documentation
Organization of this Guide
Document Conventions

Part 1

Getting Started

Chapter 1 Introduction to CORBA and Orbix Java
CORBA and Distributed Object Programming
The Role of an Object Request Broker
The Structure of a CORBA Application
The Structure of a Dynamic CORBA Application
Interoperability between Object Request Brokers
The Object Management Architecture
The CORBAservices
The CORBAfacilities
How Orbix Java Implements CORBA

Chapter 2 Getting Started with Orbix Java
Prerequisites
Setting ORB Properties for the Orbix ORB
Using the orb.properties File
Using Java Interpreter Arguments
Hello World Example
Development from the Command Line
Steps to Implement the Hello World! Application
Step 1—Define the IDL Interface
Step 2—Generate Starting Point Code.

19
19
20
20
22

27
27
28
29
30
32
33
34
34
35

37
37
38
38
39
39
41
41
41
42



Orbix Programmer’s Guide Java Edition

Step 3—Complete the Server Program
Step 4—Complete the Client Program
Step 5—Build and Run the Demonstration

Chapter 3 Developing Applications with Orbix Java
Developing a Distributed Application with Orbix Java
Defining IDL Interfaces
Compiling IDL Interfaces

Checking your Configuration
Running the IDL Compiler
Implementing IDL Interfaces
Writing an Orbix Java Server Application
Initializing the ORB
Creating an Implementation Object
Registering an Object with the Naming Service
Error Handling for Server Applications
Writing the Client Application
Initializing the ORB
Getting a Reference to an Object
Invoking IDL Attributes and Operations
Compiling the Client and Server
Compiling the Server Application
Compiling the Client Application
Registering the Server
Running the Orbix Java Daemon
Using Putit;
Running the Client Application
Summary of the Programming Steps
Orbix Java IDL Compilation
Examining the Generated Interfaces and Classes

Chapter 4 Developing Applets with Orbix Java
Review of Orbix Java Programming Steps
Providing a Server
Writing a Client Applet
Creating the User Interface
Adding Orbix Java Client Functionality

Getting a Reference to an Object

43
43
44

49
50
50
52
52
52
53
57
57
58
58
61
62
62
62
64
67
67
68
69
69
69
70
72
73
76

79
79
80
80
81
84
86



Contents

Invoking IDL Attributes and Operations 88
Handling Exceptions in Orbix Java Client Applets 90
Creating the Applet 91
Initializing the ORB 92
Adding the Applet to a HTML File 93
Compiling the Client Applet 94
Running the Client Applet 95
Security Issues for Java Applets 95
Learning more about Orbix Java 926

Part 11

CORBA Programming with Orbix Java

Chapter 5 Introduction to CORBA IDL 101
IDL Modules and Scoping 102
Defining IDL Interfaces 102

IDL Attributes 103
IDL Operations 104
Inheritance of IDL Interfaces 107
Forward Declaration of IDL Interfaces 110
Overview of the IDL Data Types 111
IDL Basic Types 111
IDL Constructed Types 112
IDL Template Types 114
Arrays 116
Fixed Types 117
IDL Pseudo-Object Types 118
Defining Aliases and Constants 119

Chapter 6 IDL to Java Mapping 121
Overview of IDL to Java Mapping 122
Mapping for Basic Data Types 124
Mapping for Modules 126

Scoped Names 126



Orbix Programmer’s Guide Java Edition

The CORBA Module
Mapping for Interfaces
Client Mapping
Helper Classes for Type Manipulation
Holder Classes and Parameter Passing
Server Implementation Mapping
Approaches to Interface Implementation
Object References
Mapping for Derived Interfaces
Mapping for Constructed Types
Enums
Structs
Unions
Mapping for Strings
Mapping for Sequences
Mapping for Arrays
Mapping for Fixed Types
Mapping for Constants
Mapping for Typedefs
Mapping for Exception Types
System Exceptions
User-Defined Exceptions
Naming Conventions
Parameter Passing Modes and Return Types

Chapter 7 Using and Implementing IDL Interfaces

10

Overview of an Example Application
Overview of the Programming Steps
Defining IDL Interfaces to Application Objects
Compiling IDL Interfaces
Implementing the IDL Interfaces

The TIE Approach to Implementing Interfaces

The ImplBase Approach to Implementing Interfaces
Developing the Server Application

Implementing the Bank Interface

Implementing the Account Interface

Writing the Server

Object Initialization and Connection

Comparison of Methods for Connecting to the ORB

127
127
128
130
132
137
138
143
145
150
150
151
153
156
157
159
160
161
162
163
163
163
166
167

169
169
170
170
171
172
172
174
176
176
179
181
183
186



Contents

Developing the Client Application 187
Obtaining a Reference to a Bank Object 188
Alternatives to the Naming Service 190
Making Remote Invocations 191

Registration and Activation 192

Execution Trace 194

Comparison of the ImplBase and TIE Approaches 198
Providing Different Implementations of the Same Interface 199
Providing Different Interfaces to the Same Implementation 199

Chapter 8 Making Objects Available in Orbix Java 201

Identifying CORBA Objects 202
Interoperable Object References 202
Orbix Java Object References 203
Accessing Object References 204
Assigning Markers to Orbix Java Objects 205

Using the CORBA Naming Service 208
The Interface to the Naming Service 209
Format of Names within the Naming Service 211
Making Contact with the Naming Service 212
Associating Names with Objects 213
Using Names to Find Objects 213
Associating a Compound Name with an Object 214
Federation of Name Spaces 215

Binding to Objects in Orbix Java Servers 216
The bind() Method 217
Example Calls to bind() 219
Binding and Exceptions 219

Using Object Reference Strings to Create Proxy Objects 220

Chapter 9 Exception Handling 223

User-Defined Exceptions 224
The IDL Definitions 224
The Generated Java Code 225

System Exceptions 227
Obtaining Information from System Exceptions 228

Example of Server-Side Exception Handling 229

Example of Client-Side Exception Handling 231

11



Orbix Programmer’s Guide Java Edition

Handling Specific System Exceptions 232
Chapter 10 Using Inheritance of IDL Interfaces 235
Single Inheritance of IDL Interfaces 235
The IDL Interfaces 236

The Client-Side Generated Types 237

Using Inheritance in a Client 241
Using Inheritance in a Server 242
The TIE Approach 242

The ImplBase Approach 244
Multiple Inheritance of IDL Interfaces 245
Implementing Multiple Inheritance 247
Chapter 11 Callbacks from Servers to Clients 249
Implementing Callbacks in Orbix Java 249
Defining the IDL Interfaces 250
Writing a Client 250
Writing a Server 253
Callbacks and Bidirectional Connections 255
Avoiding Deadlock in a Callback Model 255
Using Non-Blocking Operation Invocations 256

Using Multiple Threads of Execution 258

An Example Callback Application 259
The IDL Specification 261

The Client Application 262

The Central Server Application 268

Part 111

Running Orbix Java Programs

Chapter 12 Running Orbix Java Clients 277
Running Client Applications 277
Running Orbix Java Client Applets 278

Loading a Client Applet from a File 279

12



Contents

Loading a Client Applet from a Web Server
Security Issues for Client Applets
Debugging Orbix Java Clients
Possible Platform Dependencies in Orbix Java Clients
Using the Orbix Java Wrapper Utilities
Using owjava as a Front End to the Java Interpreter
Using owjavac as a Front End to the Java Compiler
Using the Interpreter and Compiler without the Wrapper Utilities

Chapter 13 Registration and Activation of Servers
The Implementation Repository
Activation Modes
Primary Activation Modes
Secondary Activation Modes
Persistent Server Mode
Implementation Repository Entries
The Orbix Java Putitj Utility for Server Registration
Examples of Using Putitj
Additional Registration Commands
Activation and Pattern Matching
Persistent Servers
Unregistered Servers
Activation Issues Specific to IIOP Servers
Security Issues for Orbix Java Servers
Identity of the Caller of an Operation
Server Security
Activation and Concurrency
Activation Information for Servers
IDL Interface to the Implementation Repository
Using the Server Manager
About the Java Daemon (orbixdj)

Chapter 14 Using the Orbix Java Daemon
Overview of the Java Daemon
Features of the Java Daemon
Using the Java Daemon
Starting the Java Daemon
Configuring the Java Daemon

280
280
281
282
282
283
283
284

285
286
287
287
288
289
290
291
293
294
295
295
297
297
298
298
298
300
301
302
303
303

305
306
306
307
307
308

13



Orbix Programmer’s Guide Java Edition

Viewing Output with the Graphical Console
In-Process Activation of Servers

Guidelines for Developing In-Process Servers
Scope of the Java Daemon

Activation

Java Version

IT _daemon Interface

Utilities

Markers and the Implementation Repository

Security

Server Names

In-Process Servers

Chapter 15 ORB Interoperability
Overview of GIOP
Coding
Message Formats
Internet Inter-ORB Protocol (IIOP)
IIOP in Orbix Java
Example using IIOP in a Platform-Independent Application
Configuring an IIOP Port Number for an Orbix Java Server
Interoperability between Orbix and Orbix Java

Chapter 16 Orbix Java Diagnostics
Setting Diagnostics

Diagnostics Levels
Alternative Approaches to Setting Diagnostics

Part IV

Advanced CORBA Programming

Chapter 17 Type any
Constructing an Any Object
Inserting Values into an Any Object

14

310
312
312
315
315
315
315
316
316
316
317
317

319
320
320
320
323
323
324
330
331

333
333
334
335

341
342
342



Contents

Extracting Values from an Any Object
Any as a Parameter or Return Value
Additional Methods

Chapter 18 Dynamic Invocation Interface
Using the DII
Programming Steps for Using the DII
Examples of Clients Using the DII
The CORBA Approach to Using the DII
Creating a Request
Setting up a Request Using _request()
Alternative approach
Setting up a Request Using _create _request()
Invoking a Request
Using the DII with the Interface Repository
Setting up a Request to Read or Write an IDL Attribute
Operation Results
Interrogating a Request
Resetting a Request Object for Reuse
Deferred Synchronous Invocations
Using Filters with the DII

Chapter 19 Dynamic Skeleton Interface
Uses of the DSI
Using the DSI
Creating Dynamiclmplementation Objects
Example of Using the DSI

Chapter 20 The Interface Repository

Configuring the Interface Repository

Runtime Information about IDL Definitions

Using the Interface Repository
Installing the Interface Repository

Structure of the Interface Repository Data
Simple Types

Abstract Interfaces in the Interface Repository
Class Hierarchy and Abstract Base Interfaces
Interface IRObject

345
347
347

349
351
352
353
354
355
356
357
360
362
362
363
363
364
364
365
367

369
370
371
371
373

377
378
378
379
379
380
384
385
385
386

15



Orbix Programmer’s Guide Java Edition

Containment in the Interface Repository
The Contained Interface
The Container Interface
Containment Descriptions
Type Interfaces in the Interface Repository
Named Types
Unnamed Types
Retrieving Information from the Interface Repository
Example of Using the Interface Repository
Repository IDs
OMG IDL Format
Pragma Directives

Chapter 21 Service Contexts

The Orbix Java Service Context API
Service Context Handlers
Service Context Lists
ORB Interfaces

Using Service Contexts in Orbix Java Applications
ServiceContext Per Request Model
ServiceContext Per-Object Model
Service Context Main Components

Service Context Handlers and Filter Points

Part V

Advanced Orbix Java Programming

Chapter 22 Filters
Introduction to Per-Process Filters
Pre-Marshalling Filter Points
Post-Marshalling Filter Points
Failure Points
Introduction to Per-Object Filters
Using Per-Process Filters

16

388
390
391
393
396
397
399
400
403
405
405
406

409
410
410
412
412
414
414
418
419
421

425
427
427
428
429
432
433



Contents

An Example Per-Process Filter 435
Installing a Per-Process Filter 438

How to Create a System Exception 438
Piggybacking Extra Data to the Request Buffer 440
Retrieving the Size of a Request Buffer 443
Defining an Authentication Filter 443

Using Per-Object Filters 444
IDL Compiler Switch to Enable Object Filtering 446
Thread Filters 447
Multi-Threaded Clients and Servers 447
Thread Programming in Orbix Java 449
Models of Threading 450
Implementing Threads in Orbix Java 451
Chapter 23 Smart Proxies 453
Proxy Classes and Smart Proxy Classes 454
Proxy Classes 454

Smart Proxy Classes 454
Requirements for Smart Proxies 454
Creating a Smart Proxy 456
Benefits of Using Smart Proxies 457

Using Smart Proxies 458
Creating a Smart Proxy 458

A Sample Client 462
Chapter 24 Loaders 465
Overview of Creating a Loader 466
Specifying a Loader for an Object 467
Connection between Loaders and Object Naming 468
Loading Objects 470
Saving Objects 471
Writing a Loader 472
Example Loader 472
Coding the Loader 477
Polymorphism 480
Approaches to Providing Persistent Objects 481
Disabling the Loaders 483

17



Orbix Programmer’s Guide Java Edition

Chapter 25 Opaque Types

Using Opaque Types
IDL Definition
Compiling the IDL Definition
Mapping of Opaque Types to Java
Implementing the Opaque Type
The Helper Class
The Holder Class

Chapter 26 Transforming Requests
Transforming Request Data
The IE.Iona.OrbixWeb.Features.IT reqTransformer Class
Registering a Transformer
An Example Transformer

Appendix A
IDL Compiler Switches

Index

18

485
487
487
487
488
488
489
490

491
492
492
493
495

499

503



Preface

Orbix Java Edition is an implementation of the Common Object Request Broker
Architecture (CORBA) from the Object Management Group (OMG). Orbix Java
maps CORBA functionality to the Java programming language. It combines a
powerful standards-based approach to distributed application development with
the flexibility of the Java environment.

Orbix documentation is periodically updated. New versions between releases are
available at this site:

http://communities.progress.com/pcom/docs/DOC-105220

If you need assistance with Orbix or any other Progress products, go to http://
www.progress.com/orbix/orbix-support.html.

If you want to provide any comments on Progress documentation, go to http://
WWWw.progress.com/en/about/contact.html .

Audience

The Orbix Programmer’s Guide Java Edition and the Orbix Programmer’s
Reference Java Edition are intended for use by application programmers and
designers wishing to familiarize themselves with CORBA distributed
programming and its application in the Java environment. The Orbix
Administrator’s Guide Java Edition describes how to use various command line
and GUI tools during Orbix Java operation. These guides assume that you are
familiar with the Java programming language.

19


http://communities.progress.com/pcom/docs/DOC-105220
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/en/about/contact.html
http://www.progress.com/en/about/contact.html

Orbix Programmer’s Guide Java Edition

Organization of the Orbix Java Edition
Documentation

The complete Orbix Java Edition documentation set includes the following
manuals:

® The Orbix Programmer’s Guide Java Edition provides a complete guide to
Orbix Java programming.

* The Orbix Programmer’s Reference Java Edition provides an exhaustive
reference for the Orbix Java application programming interface(API).

® The Orbix Administrator's Guide Java Edition explains how to configure
and manage the components of the Orbix Java environment using the
command line and Orbix Java GUI tools.

Organization of this Guide

20

The Orbix Programmer’s Guide Java Edition is divided into the following five
parts:

Part I Getting Started

This part of the guide introduces basic CORBA concepts, and introduces Orbix
Java by describing a simple programming example. It works through the steps
required to write client and server Java applications. This also provides an
example of integrating client functionality with Java applets.

Many of the concepts that form the basis of Part II are introduced in this part.

Part I CORBA Programming with Orbix Java

Part II provides a more complete description of developing CORBA programs in
Java using Orbix Java.



Preface

This part of the guide provides an outline of the CORBA Interface Definition
Language (IDL) and the standard Object Management Group (OMG) mapping
from IDL to Java. It shows how to program a simple application and provides
information on various aspects of programming a distributed application,
including the use of the Naming Service to identify objects in the system.

Part III Running Orbix Java Programs

This part describes the issues involved in running Orbix Java programs. An
important aspect of this description is a complete introduction to the Orbix Java
Implementation Repository. The Java daemon, orbixdj, is also introduced.

Part IV Advanced CORBA Programming

This part of the guide explains more advanced features of Orbix Java as specified
by the CORBA standard. In particular, it provides the information needed to use
the Dynamic Invocation Interface that allows a client to issue requests on objects
whose interfaces may not have been defined at the time the application was
compiled.

Part V Advanced Orbix Java Programming

Orbix Java provides a number of interfaces to allow you to influence runtime
behaviour for particular deployment scenarios. Part V explains how you can
replace different components of Orbix Java, and the circumstances where the use
of these Orbix Java specific features is advantageous.

21



Orbix Programmer’s Guide Java Edition

Document Conventions

This guide uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text represents
portions of code and literal names of items such as classes,
functions, variables, and data structures. For example, text
might refer to the CORBA: : Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments to
commands or path names for your particular system. For
example:

% cd /users/your name

Note: some command examples may use angle brackets to
represent variable values you must supply.

This guide may use the following keying conventions:

No prompt

%

22

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.



Preface

[]

{1

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

23



Orbix Programmer’s Guide Java Edition

24



Part 1

Getting Started







Introduction to CORBA and Orbix

Java

Orbix Java is a software environment that allows you to build
and integrate distributed applications. Orbix Java is a full
implementation of the Object Management Group’s (OMG)
Common Object Request Broker Architecture (CORBA)
specification. This chapter introduces CORBA and describes
how Orbix Java implements this specification.

CORBA and Distributed Object Programming

The diversity of modern networks makes the task of network programming very
difficult. Distributed applications often consist of several communicating
programs written in different programming languages and running on different
operating systems. Network programmers must consider all of these factors when
developing applications.

The Common Object Request Broker Architecture (CORBA) defines a
framework for developing object-oriented, distributed applications. This
architecture makes network programming much easier by allowing you to create
distributed applications that interact as though they were implemented in a single
programming language on one computer.

27



Orbix Programmer’s Guide Java Edition

CORBA also brings the advantages of object-oriented techniques to a distributed
environment. It allows you to design a distributed application as a set of
cooperating objects and to reuse existing objects in new applications.

The Role of an Object Request Broker

28

CORBA defines a standard architecture for Object Request Brokers (ORBs). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The role of the ORB is to
hide the underlying complexity of network communications from the
programmer.

An ORB allows you to create standard software objects whose methods can be
invoked by client programs located anywhere in your network. A program that
contains instances of CORBA objects is often known as a server.

When a client invokes a member method on a CORBA object, the ORB intercepts
the method call. As shown in Figure 1.1, the ORB redirects the method call across
the network to the target object. The ORB then collects results from the method
call and returns these to the client.

Client Host Server Host

Object
r

Object Request Broker

Method
Call ‘ ‘

Figure 1.1: The Object Request Broker



Introduction to CORBA and Orbix Java

The Nature of Objects in CORBA

CORBA objects are standard software objects implemented in any supported
programming language. CORBA supports several languages, including Java,
C++ and Smalltalk.

With a few calls to an ORB’s application programming interface (API), you can
make CORBA objects available to client programs in your network. Clients can
be written in any supported programming language and can invoke the member
methods of a CORBA object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in the
CORBA Interface Definition Language (IDL). The interface definition specifies
what member methods are available to a client, without making any assumptions
about the implementation of the object.

To invoke member methods on a CORBA object, a client needs only the object’s
IDL definition. The client does not need to know details such as the programming
language used to implement the object, the location of the object in the network,
or the operating system on which the object runs.

The separation between an object’s interface and its implementation has several
advantages. For example, it allows you to change the programming language in
which an object is implemented without changing clients that access the object. It
also allows you to make existing objects available across a network.

The Structure of a CORBA Application

The first step in developing a CORBA application is to define the interfaces to
objects in your system, using CORBA IDL. You then compile these interfaces
using an IDL compiler.

An IDL compiler generates Java from IDL definitions. This Java includes client
stub code, which allows you to develop client programs, and server skeleton
code, which allows you to implement CORBA objects.

As shown in Figure 1.2 on page 30, when a client calls a member method on a
CORBA object, the call is transferred through the client stub code to the ORB. If
the client has not accessed the object before, the ORB refers to a database, known

29



Orbix Programmer’s Guide Java Edition

as the Implementation Repository, to determine exactly which object should
receive the method call. The ORB then passes the method call through the server
skeleton code to the target object.

Client Host Server Host
Object
Client ‘

Client Object
Stub Skeleton
Code Code

Method Object Request Broker

Call

Figure 1.2: Invoking on a CORBA Object

The Structure of a Dynamic CORBA Application

30

One difficulty with normal CORBA programming is that you have to compile the
IDL associated with your objects and use the generated Java code in your
applications. This means that your client programs can only invoke member
methods on objects whose interfaces are known at compile-time. If a client
wishes to obtain information about an object’s IDL interface at runtime, it needs
an alternative, dynamic approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the
IDL interfaces implemented by objects in your network. A client program can
query this database at runtime to get information about those interfaces. The
client can then call member methods on objects using a component of the ORB
called the Dynamic call Interface (DII), as shown in Figure 1.3 on page 31.



Introduction to CORBA and Orbix Java

Client Host Server Host
Object
Client ‘
Object
D11 Skeleton

Code

Method Object Request Broker

Call ‘ ‘

Figure 1.3: Client Invoking a Method Using the DII

CORBA also supports dynamic server programming. A CORBA program can
receive method calls through IDL interfaces for which no CORBA object exists.
Using an ORB component called the Dynamic Skeleton Interface (DSI), the
server can then examine the structure of these method calls and implement them
at runtime. Figure 1.4 on page 32 shows a dynamic client program
communicating with a dynamic server implementation.

Note: The implementation of Java interfaces in client-side generated code
supplies proxy functionality to client applications. This must not be
confused with the implementation of /DL interfaces in Orbix Java servers.

31



Orbix Programmer’s Guide Java Edition

Client Host Server Host
Object
Client 1
D11 DS$1
Method Object Request Broker
Call ‘ ‘

Figure 1.4: Method Call Using the DII and DSI

Interoperability between Object Request Brokers

32

The components of an ORB make the distribution of programs transparent to
network programmers. To achieve this, the ORB components must communicate
with each other across the network.

In many networks, several ORB implementations coexist and programs
developed with one ORB implementation must communicate with those
developed with another. To ensure that this happens, CORBA specifies that ORB
components must communicate using a standard network protocol called the
Internet Inter-ORB Protocol (IIOP).



Introduction to CORBA and Orbix Java

The Object Management Architecture

An ORB is one component of the OMG’s Object Management Architecture
(OMA). This architecture defines a framework for communications between
distributed objects. As shown in Figure 1.5, the OMA includes four elements:

* Application objects.

* The ORB.

* The CORBAsetrvices.

* The CORBAfacilities.
Application objects are objects that implement programmer-defined IDL
interfaces. These objects communicate with each other, and with the
CORBAservices and CORBAfacilities, through the ORB. The CORBAservices

and CORBAfacilities are sets of objects that implement IDL interfaces defined by
CORBA and provide useful services for some distributed applications.

Application Objects

O X
O 0 A ® A @)
A A A

vV VYy VY VY v

Object Request Broker

A A A A A 4 A
v Vv YyvyYy
-8 oot
CORBAservices CORBAfacilities

Figure 1.5: The Object Management Architecture

33



Orbix Programmer’s Guide Java Edition

When writing Orbix Java applications, you might require one or more
CORBAservices or CORBAfacilities. This section provides a brief overview of
these components of the OMA.

The CORBAservices

The CORBAservices define a set of low-level services that allow application
objects to communicate in a standard way. These services include the following:

® The Naming Service. Before using a CORBA object, a client program
must get an identifier for the object, known as an object reference. This
service allows a client to locate object references based on abstract,
programmer-defined object names.

® The Trading Service. This service allows a client to locate object
references based on the desired properties of an object.

® The Object Transaction Service. This service allows CORBA programs to
interact using transactional processing models.

® The Security Service. This service allows CORBA programs to interact
using secure communications.

* The Event Service. This service allows objects to communicate using
decoupled, event-based semantics, instead of the basic CORBA function-
call semantics.

Progress Software implements several CORBAservices including all the services
listed.

The CORBAfacilities

The CORBAfacilities define a set of high-level services that applications
frequently require when manipulating distributed objects. The CORBAfacilities
are divided into two categories:

® The horizontal CORBA facilities.
® The vertical CORBAfacilities.

34



Introduction to CORBA and Orbix Java

The horizontal CORBAfacilities consist of user interface, information
management, systems management, and task management facilities. The vertical
CORBAfacilities standardize IDL specifications for market sectors such as
healthcare and telecommunications.

How Orbix Java Implements CORBA

Orbix Java is an ORB that fully implements the CORBA 2.0 specification. By
default, all Orbix Java components and applications communicate using the
CORBA standard I1OP protocol.

The components of Orbix Java are as follows:

® The IDL compiler parses IDL definitions and produces Java code that
allows you to develop client and server programs.

® The Orbix Java runtime is called by every Orbix Java program and
implements several components of the ORB, including the DII, the DSI,
and the core ORB functionality.

® The Orbix Java daemon is a process that runs on each server host and
implements several ORB components, including the Implementation
Repository. An all-Java counterpart to the daemon process is also
included. This daemon process is known as the Java Daemon, also referred
to as orbixdj.

* The Interface Repository server is a process that implements the Interface
Repository.

Orbix Java also includes several programming features that extend the
capabilities of the ORB. These features are described in Part IV, “Advanced
CORBA Programming”.

The Orbix Java GUI Tools and the Orbix Java command-line utilities allow you to
manage and configure the components of Orbix Java.

35



Orbix Programmer’s Guide Java Edition

36



Getting Started with Orbix Java

You can use the Orbix Code Generation Toolkit to develop an
Orbix application quickly.
Given a user-defined IDL interface, the toolkit generates the bulk of the client

and server application code, including makefiles. You then complete the
distributed application by filling in the missing business logic.

Prerequisites

Before proceeding with the demonstration in this chapter you need to ensure:
® The Orbix developer’s kit is installed on your host.
® Orbix is configured to run on your host platform.

®  Your Java development kit (JDK) is configured to use the Orbix ORB
runtime (see “Setting ORB Properties for the Orbix ORB” on page 38).

The Orbix Administrator's Guide Java Edition contains more information on Orbix
configuration, and details of Orbix command line utilities.

37



Orbix Programmer’s Guide Java Edition

Setting ORB Properties for the Orbix ORB

Sun Microsystem’s Java development kit (JDK) comes with a built-in ORB
runtime that is used by default. However, you cannot use Sun’s ORB runtime
with Orbix applications. You must configure the JDK to use the Orbix ORB
runtime instead by setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass to the appropriate values. You can set the
ORB properties in one of the following ways:

® Using the orb.properties file.

® Using Java interpreter arguments.

Using the orb.properties File

38

Setting the org.omg.CORBA.ORBClass and org. omg.CORBA.ORBSingletonClass
system properties in the orb.properties file is the preferred way to configure
your JDK to use the Orbix ORB runtime.

Location of the orb.properties File.

The orb.properties file is located in the JDKHome/5re/1ib directory, where
JDKHome is the JDK root directory.

Contents of the orb.properties File.
The orb.properties file should contain the following two lines of text:

org.omg.CORBA.ORBClass=IE. Iona.OrbixWeb.CORBA.ORB
org.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.singletonO
RB

The first line sets org.omg.CORBA.ORBClass to the name of a class that
implements org.omg.CORBA . ORB.

The second line sets org.omg.CORBA.ORBSingletonClass to the name of a class
that implements the static ORB instance returned from
org.omg.CORBA.ORB.init () (taking no arguments).



Getting Started with Orbix Java

Note: By setting system properties org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass in the orb.properties file, as
detailed above, you effectively specify the Orbix ORB classes as the ORB
runtime for the JDK. This might affect other applications that use the same
JDK but want to use different ORB classes—if this is the case, you should
consider using the alternative mechanism for setting ORB properties,
given in the following sub-section.

Using Java Interpreter Arguments

You can use the -Dproperty_name=property_value option on the Java Interpreter
to specify the org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass properties. For example, to set the ORB
properties for an orbix app Orbix application:

java -Dorg.omg.CORBA.ORB=IE.Iona.OrbixWeb.CORBA.ORB
-Dorg.omg.CORBA.ORBSingletonClass=IE. Iona.OrbixWeb.CORBA.sin
gletonORB orbix app

Hello World Example

This chapter shows how to create, build and run a complete client/server
demonstration with the help of the Orbix Code Generation Toolkit. The
architecture of this example system is shown in Figure 2.1.

The client and server applications communicate with each other using the Internet
Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a client invokes a
remote operation a request message is sent from the client to the server the

39



Orbix Programmer’s Guide Java Edition

40

Client Machine Server Machine

Client Application Server Application

ORB Operation Call - » | /CORBA
Code Result Code /‘ i

IDL Interface

A

Figure 2.1: Client Making a Single Operation Call on a Server

operation has completed, a reply message containing the return values from the
operation is sent back to the client. This completes a single remote CORBA
invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

//IDL
interface Hello {

string getGreeting();
}i

The IDL declares a single Hello interface, which exposes a single operation
getGreeting (). This declaration provides a language neutral interface to
CORBA objects of type Hello.

The concrete implementation of the He11o CORBA object is written in Java and
is provided by the server application. The server could create multiple instances
of Hello objects if required. However, the generated code generates only one
Hello object.

The client application has to locate the Hello object—it does this by reading a
stringified object reference from the file Hello.ior. There is one operation
getGreeting () defined on the Hello interface. The client invokes this operation
and exits.



Getting Started with Orbix Java

Development from the Command Line

Starting point code for Orbix client and server applications can be generated
using the idlgen command line utility.

The idlgen utility can be used on Windows and UNIX platforms.

Steps to Implement the Hello World! Application

Implement the Hello World! application with the following steps:

1.
2.
3.

Define the IDL interface, Hello.

Generate starting point code.

Complete the server program.

Implement the single IDL getGreeting () operation.
Complete the client program.

Insert a line of code to invoke the getGreeting () operation.

Build and run the demonstration.

Step 1—Define the IDL Interface

Create the IDL file for the Hello World! application. First of all, make a directory
to hold the example code:

Windows
> mkdir C:\OCGT\HelloExample

UNIX

% mkdir -p OCGT/HelloExample

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.

41



Orbix Programmer’s Guide Java Edition

Enter the following text into the file hello.idl:

//IDL
interface Hello {

string getGreeting();
}i

This interface mediates the interaction between the client and the server halves of
the distributed application.

Step 2—Generate Starting Point Code.

Generate files for the server and client application using the Orbix Code
Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample
(UNIX) enter the following command:

idlgen java_genie.tcl -client -server -interface -makefile
-jP HelloExample hello.idl

This command logs the following output to the screen while it is generating the
files:

hello.idl:

java genie.tcl: creating idlgen/PrintFuncs.java

java genie.tcl: creating idlgen/HelloExample/PrintHello.java
java genie.tcl: creating idlgen/RandomFuncs.java

java genie.tcl: creating idlgen/HelloExample/RandomHello.java
java_genie.tcl: creating idlgen/RandomHelloExample.java

java genie.tcl: creating HelloExample/HelloCaller.java

java genie.tcl: creating HelloExample/HelloImpl.java

java genie.tcl: creating client.java

java genie.tcl: creating server.java

java genie.tcl: creating .deps

java genie.tcl: creating Makefile

The files you can edit to customize the client and server applications are:

Client Files Server Files

client.java server.java
HelloExample/HelloImpl.java

Table: 2.2: Main Java source files for the Hello World! application

42



Getting Started with Orbix Java

Step 3—Complete the Server Program

Complete the implementation class, Hel1loImpl, by providing the definition of the
HelloImpl.getGreeting () method. This Java method provides the concrete
realization of the Hello: :getGreeting () IDL operation.

Edit the HelloImpl.java file.

Delete most of the generated boilerplate code occupying the body of the
HelloImpl.getGreeting method and replace it with the line of code highlighted
in bold font below:

//Java
//File ’'HelloImpl.java’

public java.lang.String getGreeting ()
throws org.omg.CORBA.SystemException
{

java.lang.String _result;

_result = "Hello World!";

return result;

Step 4—Complete the Client Program

Complete the implementation of the client main () function in the client.java
file. You must add a couple of lines of code to make a remote invocation of the
getGreeting () operation on the Hello object.

Edit the client.java file.

43



Orbix Programmer’s Guide Java Edition

Search for the line where the HelloExample.HelloCaller.getGreeting ()
method is called. Delete this line and replace it with the line of code highlighted
in bold font below:

//Java
//File: ’'client.java’

try
{

// Invoke all the operations,attributes defined in Hello
// including all derived operations,attributes

System.out.println("Greeting is: " + objl.getGreeting())
}
catch (Exception ex)
{
System.out.println ("Remote call failed\n");
ex.printStackTrace () ;

The obj1 object reference refers to an instance of a Hello object in the server
application. It is already initialized for you.

A remote invocation is made by invoking getGreeting () on the objl object
reference. The ORB automatically establishes a network connection and sends
packets across the network to invoke the HelloImpl.getGreeting () method in
the server application.

Step 5—Build and Run the Demonstration

44

The Makefile generated by the code generation toolkit has a complete set of rules
for building both the client and server applications. To build the client and server:



Getting Started with Orbix Java

Windows

At a command-line prompt, from the C:\OCGT\HelloExample directory enter:

> nmake depend
> nmake

UNIX

At a command-line prompt, from the OCGT/HelloExample directory enter:

% make depend
% make

Run the Demonstration

Run the application as follows:

1.

Run the Orbix daemon.

The Orbix daemon is responsible for bootstrapping connections between
CORBA clients and servers and can, if necessary, activate dormant servers
on demand. Information about CORBA servers is stored in the the
Implementation Repository, a database of CORBA servers maintained by
the Orbix daemon. Exactly one Orbix daemon runs on each server host.

Open a new MS-DOS prompt, or xterm window (UNIX).
Windows

> orbixd

UNIX

% orbixd

The Orbix daemon runs in the foreground and logs its activities to this
window.

Register the server with the daemon.

Every Orbix server must be registered with the Orbix daemon before it
runs for the first time. Registration only needs to be performed once per
server.

Open a new MS-DOS prompt, or xterm window (UNIX).

45



Orbix Programmer’s Guide Java Edition

46

Windows

At a command-line prompt, from the C:\0CGT\HelloExample directory
enter:

> nmake putit
UNIX

At a command-line prompt, from the OCGT/HelloExample directory enter:
% make putit
This script outputs the following lines to the screen:

Registering server persistently in Implementation
Repository
putit genieSrv -persistent
[255:New Connection
(foobar.iona.ie, IT daemon, *,userid,pid=310,optimised) ]
chmodit 1l+all genieSrv
[321:New Connection
(foobar.iona.ie, IT daemon, *,userid,pid=310,optimised) ]
chmodit i+all genieSrv
[354:New Connection
(foobar.iona.ie, IT daemon, *,userid,pid=310,optimised) ]

The makefile uses the Orbix putit utility to register the server—see the
Orbix Administrator’s Guide C++ Edition for details.

Run the server program.

Open a new MS-DOS prompt, or xterm window (UNIX). Enter the
following command:

Windows

> nmake runserver

UNIX

% make runserver

The server outputs the following lines to the screen:

Starting server...

Ak kA khk kA khkhhkhhh kA hkhhAhhdhhrhkhkrhhhkhhkdhkrhkhkdhkhdhhkhkdhkhrhrkhkhhrkkxkx
Start Date : Aug 15, 2000 5:32:57 PM ;

Calling impl is ready(genieSrv,0)

[ New Connection (localhost,IT daemon, *,,pid=310) ]
Creating object objl = HelloExample.HelloImpl

created



Getting Started with Orbix Java

Object to serialize:
HelloExample. tie Hello:IOR[type="IDL:Hello:1.0"
IOPProfile

[ITIOP1.0 host=foobar.iona.ie port=1570
:\foobar.iona.ie:genieSrv

:Hello-1::IFR:Hello ]] with object to string
:IOR:000000000000000e49444c3a48656c6c6£3a312e3000000000
000001000000000000005d0001000000000017636861726c69652e6
475626c696e2e696£6e612e6965000006220000000000353a5¢c6368
61726c69652e6475626c696e2e696£6e61269653a67656e6965537
2763a48656c6c6£2d313a3a4946523a48656c6¢c6£00 to the Outp
utStream: java.io.ObjectOutputStream@60bc08

Calling impl is ready (genieSrv, -1)

The server performs the following steps when it is launched:

+ It instantiates and activates a single Hel11o CORBA object.

+ The stringified object reference for the Hello object is written to the
Hello.ref file.

+ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

Run the client program.

Open a new MS-DOS prompt, or xterm window (UNIX). Enter the
following command:

Windows

> nmake runclient
UNIX

% make runclient

The client outputs the following lines to the screen:

ok rhkhkhk kA hhkhkhhkhhrhhkrhhkrhkhkhkkrhhkhkhhkhkhkrhkrhkrhkhkrhkhkrhkkhkxkkxk

Start Date : Aug 15, 2000 5:36:59 PM ;

Using IOR References...

Read object reference for Hello

Hello Object Reference read by client:
IOR[type="IDL:Hello:1.0" IOPProfile[IIOP1.0
host=foobar.iona.ie
port=1570:\foobar.iona.ie:genieSrv:Hello-1::IFR:Hello
11

[ New IIOP Connection (foobar.iona.ie,genieSrv,

null, ,pid=0) ]

47



Orbix Programmer’s Guide Java Edition

[ New IIOP Connection (foobar.iona.ie,genieSrv,
null,,pid=0) ]
Greeting is: Hello World!

The client performs the following steps when it runs:

+ It reads the stringified object reference for the Hello object from the
Hello.ref file.

+ It converts the stringified object reference into an object reference.

+ It calls the remote Hello: :getGreeting () operation by invoking on
the object reference. This causes a connection to be established with
the server and the remote invocation to be performed.

5. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is running.
The passing of the object reference from the server to the client in this way is
suitable only for simple demonstrations. Realistic server applications use the
CORBA naming service to export their object references instead (see “Using the
CORBA Naming Service” on page 208).

48



Developing Applications with Orbix

Java

This chapter introduces Orbix Java with a step-by-step
description of how to create a simple banking application. These
steps include defining an Interface Definition Language (IDL)
interface, implementing this interface in Java, and developing
a standalone client application. The Orbix Java IDL compiler
and the files it generates are also introduced at the end of this
chapter.

This chapter illustrates the programming steps using a banking example. In this
example, an Orbix Java server program implements two types of objects: a single
object implementing the Bank interface, and multiple objects implementing the
Account interface. A client program uses these clearly defined object interfaces
to create and find accounts, and to deposit and withdraw money.

The source code for the example described in this chapter is available in the
demos\BankSimpleTie directory of your Orbix Java installation.

49



Orbix Programmer’s Guide Java Edition

Developing a Distributed Application with Orbix

Java

To create a distributed client-server application in Java using Orbix Java, you
must perform the following programming steps:

6.
7.
8.
9.

Define the IDL interfaces.
Compile the IDL interfaces.
Implement the IDL interfaces.

Write the server application.

10. Write the client application.

11. Compile the client and server.

12. Register the server in the Implementation Repository.
13.Run the client.

This chapter outlines these programming steps in detail, using a banking example.

Defining IDL Interfaces

50

Defining IDL interfaces to your objects is the most important step in developing
an Orbix Java application. These interfaces define how clients access objects,
regardless of the location of those objects on the network.

An interface definition contains attributes and operations. Attributes allow clients
to read and write to values on an object. Operations are functions that clients can
call on an object.

For example, the following IDL from the banking example defines two interfaces
for objects that represent a bank application. These interfaces are defined within
an IDL module to prevent clashes with similarly named interfaces defined in
subsequent examples.



Developing Applications with Orbix Java

The IDL interfaces to the banking example are defined as follows:

// IDL
// In file Banksimple.idl

module BankSimpleTie {
typedef float CashAmount;

interface Account;

interface Bank {
Account create account (in string name);
Account find account (in string name);
i

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount) ;
void withdraw (in CashAmount amount) ;
}i
}i

This code is explained as follows:

1.

An IDL module is a container construct that groups IDL definitions into a
common namespace. Using a module is not mandatory, but it is good
practice.

This is a forward declaration to the Account interface. This allows you to
refer to Account in the Bank interface, before actually defining Account.

The Bank interface contains two operations: create account () and
find account (), allowing a client to create and search for an account.

The Account interface contains two readonly attributes: name and
balance. Clients can read a balance or name, but cannot write to them. If
the readonly keyword is omitted, clients can also write to these values.

The Account interface also contains two operations: deposit () and
withdraw (). The deposit () operation allows a client to deposit money in
an account. The withdraw () operation allows a client to withdraw money
from an account.

51



Orbix Programmer’s Guide Java Edition

The parameters to these operations are labelled with the IDL keyword in. This
means that their values are passed from the client to the object. Operation
parameters can be labelled as in, out (passed from the object to the client) or
inout (passed in both directions).

Compiling IDL Interfaces

You must compile IDL definitions using the Orbix Java IDL compiler. Before
running the IDL compiler, ensure that your configuration is correct.

Checking your Configuration

To set up configuration for the IDL compiler, you should check that Orbix Java
can find its root configuration file, iona.cfq.

You should ensure that the environment variable IT CONFIG PATH is set to the
directory in which iona.cfg resides. By default, this is the config directory of
your installation. You should also include the config directory on your classpath.

Running the IDL Compiler

52

To compile the IDL interfaces, enter the following command at the operating
system prompt:

idlj -jP Demos BankSimple.idl

This command generates a number of Java files that are used to communicate
with Orbix Java. The generated files are located in the
Demos\BankSimpleTie\java output directory. Discussion of these files is
deferred until, “Orbix Java IDL Compilation” on page 73.

The -3p switch passed to the IDL compiler specifies the package name into which
all generated Java classes are placed. This helps to avoid potential name clashes.
In the banking example, all application files are placed within a package called
Demos.BankSimpleTie.



Developing Applications with Orbix Java

Implementing IDL Interfaces

You must implement the IDL interfaces using the code generated by the IDL
compiler. The banking example uses the TIE approach to implement its IDL
interfaces. You can also use the Imp/Base approach. Both of these approaches are
discussed in detail in “Implementing the IDL Interfaces” on page 172.

Implementing the Bank Interface

Implementing the Bank IDL interface using the 77E approach involves creating
an implementation class that implements the IDL-generated class
_BankOperations.

In this example, the implementation class created for the Bank IDL interface is
BankImplementation.

// Java
// In file BankImplementation.java

package Demos.BankSimpleTie;

import IE.Iona.OrbixWeb. OrbixWeb;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import java.util.*;
1 public class BankImplementation
implements BankOperations {

// Default Constructor.
2 public BankImplementation ( org.omg.CORBA.ORB Orb ) {
m orb = Orb;
m list = new Hashtable();

// Implementation for create account().
3 public Account create account ( String name ) {
Account m account = null;
AccountImplementation m account impl = null;

// Check if account already exists.
if (m list.get ( name ) != null ) {

53



Orbix Programmer’s Guide Java Edition

System.out.println ( "- Account for " + name
+ " already exists, " + "finding details." );
return find account ( name );

System.out.println ("Creating new account for " + name +".");

// Create a new account.

try {
4 m account impl = new AccountImplementation (name, 0.0F);
m account = new tie Account(m account impl, “Marker”);
5 m orb.connect (m account) ;

}
catch ( SystemException se ) {
System.out.println ( "[ Exception raised when creating
Account. 1" );

// Add account to table of accounts.
m_list.put ( name, m account );
return m account ;

// Implementation for find account() .

6 public Account find account ( String name ) {
Account m acc = null;
m acc = ( Account ) m list.get ( name );
if (m acc == null ) {

// Account not in table.
System.out.println ("Unable to find Account for"
+ name + "." );

}

return m acc;

54



Developing Applications with Orbix Java

This code is described as follows:

1. The implementation class must implement the IDL-generated interface
_BankOperations. This maps the attributes and operations in the IDL
definitions to Java methods.

2. The 0Orb parameter to the BankImplementation default constructor refers
to the server’s ORB.

3. The implementation for the IDL operation create account () takes the
account name as a parameter and returns a reference to the newly created
account.

4. Using the TIE approach, you must tie together the implementation class
and the IDL interface using the automatically generated Java TIE class.
In this example, the IDL compiler generates the TIE class tie Account
for the IDL interface Account. You must then pass an object that
implements the IDL interface as a parameter to the constructor for the TIE
class.

Connect the implementation object to the Orbix Java runtime.

The implementation for the IDL operation find account () takes the
account name as a parameter and returns a reference to the account
searched for.

Implementing the Account Interface

The implementation class for the Account IDL interface should inherit from the
IDL-generated interface AccountOperations:

// Java
// In file BankImplementation.java

package Demos.BankSimpleTie;

public class AccountImplementation
implements AccountOperations {

// Constructor

public AccountImplementation (String name,float bal) {
this.m name = name;
m balance=bal;

55



Orbix Programmer’s Guide Java Edition

System.out.println ("- Creating account for " +
m name + ". Initial " + "balance of £" + bal );

// Implementation for IDL name accessor.
public String name () {

return m name;
}
// Implementation for IDL balance accessor.
public float balance() {

return m balance;

// Implementation for IDL operation deposit().

public void deposit ( float amount ) {
System.out.println ( "- Depositing £" + amount + "
into " + m name + "'s account" );

m balance += amount;

// Implementation for IDL operation withdraw() .

public void withdraw ( float amount ) {
System.out.println ( "- Withdrawing £" + amount +
" from " + m name + "'s account" );
m balance -= amount;

}
The IDL attributes name and balance are implemented by corresponding Java

accessor methods. All mapped attributes and operations are defined in the Java
interface AccountOperations, generated by the IDL compiler.

56



Developing Applications with Orbix Java

Writing an Orbix Java Server Application

To write a Java program that acts as an Orbix server, perform the following steps:

1. Initialize the server connection to the ORB.

2. Create an implementation object by creating instances of the
implementation classes.

3. Register the implementation object in the Naming Service.

This section describes each of these programming steps in turn.

Initializing the ORB

All clients and servers must call org.omg.CORBA.ORB.init () to initialize the
ORB. This returns a reference to the ORB object. The ORB methods defined by the
CORBA standard can then be invoked on this instance. You should use the
parameterized version of the init () method, defined as follows:

static public org.omg.CORBA.ORB init
(String[] args, java.util.Properties props)

This method is passed an array of strings as command-line arguments, and a list
of Java properties. Either of these values may be null. This version of the init ()
method returns a new fully functional ORB Java object each time it is called.

Note: Calling ORB.init () without parameters returns a singleton ORB with
restricted functionality.

Refer to the Orbix Programmer’s Reference Java Edition for further details on the
org.omg.CORBA.ORB class.

57



Orbix Programmer’s Guide Java Edition

Creating an Implementation Object

To create an implementation object, you must create an instance of your
implementation class in your server program. Typically a server program creates
a small number of objects in its main () function, and these objects may in turn
create further objects. In the banking example, the server creates a single Bank
object in its main () function. This bank object then creates accounts when
create_account () is called by the client.

For example, to create an instance of the Bank IDL interface in your server
main () function, using the TIE approach, do the following:

Bank m bank = new tie Bank(new BankImplementation (m orb),
“myBankMarker”) ;

This creates a new server implementation object, passing a reference to the server
ORB.

Registering an Object with the Naming Service

58

You must register your implementation objects with the CORBA Naming
Service. This provides a flexible CORBA-defined way to locate objects. The
Naming Service allows a name to be bound to an object, and allows that object to
be found subsequently by resolving that name within the Naming Service.

CORBA Object References

A CORBA object reference identifies an object in your system. A server that
holds an object reference can register it with the Naming Service, giving it a name
that can be used by other components of the system to find the object.

The Naming Service maintains a database of bindings between names and object
references. A binding is an association between a name and an object reference.
Clients can call the Naming Service to resolve a name, and this returns the object
reference bound to that name.

The Naming Service provides operations to resolve a name, to create new
bindings, to delete existing bindings, and to list the bound names. A name is
always resolved within a given naming context.



Developing Applications with Orbix Java

The following server program initializes the ORB, creates a
BankImplementation object, and registers this object in the Naming Service:

// Java
// In file Server.java.

package Demos.BankSimpleTie;

1 import Demos.IT DemoLib.*;
import IE.Iona.OrbixWeb.Features.Config;
import IE.Iona.OrbixWeb. OrbixWeb;
import org.omg.CORBA.*;
public class Server {
public static void main ( String args([] ) {

// Initalize the ORB

org.omg.CORBA.ORB Orb = ORB.init ( args, null );
// Create a new bank Server
new Server (Orb);
}
// Server constructor.
public Server ( org.omg.CORBA.ORB Orb ) ({
m orb = Orb;
System.out.println( "Server started on port "
+ Config.getConfigItem ("IT IIOP LISTEN PORT") );
// Create a new Naming Service wrapper.
try {

}

m ns wrapper = new IT NS Wrapper (m orb,
m_demo context name);
m ns wrapper.initialise();

catch ( org.omg.CORBA.UserException userEx ) {

System.out.println ( "[ Exception raised during
creation of naming "+ "service wrapper.]" );

59



Orbix Programmer’s Guide Java Edition

String serverName = new String ("IT Demo/
BankSimple/Bank") ;

5 m bank = new tie Bank ( new BankImplementation
(m_orb)) ;
try {
6 m ns_wrapper.registerObject ("Bank", m bank );
}
catch ( org.omg.CORBA.UserException userEx ) {
System.out.println( "[Exception registering
Bank in " + "NamingService.]");

// Wait for client connections.

try {
7 _OrbixWeb.ORB (m orb) .processEvents
( 10000 * 60 );
}
catch ( SystemException se ) {
System.out.println (" [ Exception during creation
of implementation : " + se.toString() + " 1" );

System.exit (1) ;

private final String m demo context name =
“IT Demo.BankSimple";
}

This code is described as follows:

1. To simplify the use of the Naming Service, a Naming Service wrapper is
provided. This hides the low-level detail of the CORBA Naming Service.

2. Initialize the ORB for an Orbix Java application using the parameterized
version of ORB.init ().
3. The server () constructor creates the bank implementation object and

adds an entry for it to the Naming Service. If the entry already exists, it is
replaced. The Orb parameter refers to the server’s ORB.

4. Create a Naming Service wrapper object. The banking example uses
Naming Service wrapper methods to simplify the use of the Naming
Service.

60



Developing Applications with Orbix Java

5. Create a new server implementation object, and pass a reference to the
server ORB.

6. Register the bank object in the Naming Service using the wrapper method
registerObject (). This object is now known as Bank in the Naming
Service.

7. Start the server listening for incoming invocations.

For details of different methods for connecting the implementation objects to the
Orbix Java runtime, refer to “Object Initialization and Connection” on page 183.

Error Handling for Server Applications

If an error occurs during an Orbix Java method call, the method may raise a Java
exception to indicate this. To handle these exceptions, you must enclose Orbix
Java calls in try statements. Exceptions thrown by Orbix Java calls can then be
handled by subsequent Java catch clauses. All Orbix Java system exceptions
inherit from the class org.omg.CORBA. SystemException.

In the banking example, the code in the catch clause displays details of possible
system exceptions raised by Orbix Java. It does this by printing the result of the
SystemException.toString () method to the Java System.out print stream.

The constructor for the IDL-generated BankOperations type may raise a system
exception, so the instantiation of this object must be enclosed in a try statement.
Refer to “Exception Handling” on page 223 for more details.

61



Orbix Programmer’s Guide Java Edition

Writing the Client Application

Writing client applications involves writing Java clients that access
implementation objects through IDL interfaces. You must perform the following
steps:

1. Initialize the client connection to the ORB.

2. Get a reference to an object.

3. Invoke attributes and operations defined in the object’s IDL interface.

This section describes each of these steps in turn.

Initializing the ORB

All clients and servers must call org.omg.CORBA.ORB.init () to initialize the
ORB. This returns a reference to the ORB object. The ORB methods defined by the
standard can then be invoked on this instance. You should use the parameterized
version of the init () method, defined as follows:

static public org.omg.CORBA.ORB init
(String[] args, ava.util.Properties props)

In the banking example, the client initializes the ORB, and passes it as a
parameter to the client constructor, as follows:

// Java
// In file Client.java

// Initilize the ORB
org.omg.CORBA.ORB Orb = ORB.init ( args,null );

// Create a new client
new Client (Orb);

Getting a Reference to an Object

62

The CORBA-defined way to get a reference to an object is to use the Naming
Service. When an object reference enters a client address space, Orbix Java
creates a proxy object that acts as a local representative for the remote
implementation object. Orbix Java forwards operation invocations on the proxy
object to corresponding methods in the implementation object.



Developing Applications with Orbix Java

The following sample code shows how the client uses Naming Service wrapper
methods to obtain an object reference:

// Java
// In file Client.java

public void connectToBank {
// Get the hostname from the user interface.
1 String host = m client frame.Get HostName () ;

_OrbixWeb.ORB(m_orb) .setConfigltem
("IT NAMES SERVER HOST", host

try {
2 m ns wrapper = new IT NS Wrapper ( m orb,
m_demo context name);
}
catch ( org.omg.CORBA.UserException userEx ) {

m client frame.printToMessageWindow ("[ Exception
raised during creation of naming" + "service
wrapper.]" );
}
try {
3 org.omg.CORBA.Object obj = m ns wrapper.resolveName
("Bank") ;
4 m bank = BankHelper.narrow ( obj );
m client frame.printToMessageWindow ("Connection
succeeded." );

}

catch ( org.omg.CORBA.UserException userEx ) {
m client frame.printToMessageWindow ( "[ Exception
raised getting Bank reference " + userkEx + "]" );

}

This code is described as follows:

1. Set the Naming Service hostname to the hostname input by the user.

2. Create a new Naming Service wrapper object.

63



Orbix Programmer’s Guide Java Edition

3. The methodm ns wrapper.resolveName () retrieves the object reference
from the Naming Service placed there by the server. The parameter is the
name of the object to resolve. This must match the name used by the
server when it called registerObject ().

4. The return type from resolveName () is of type org.omg.CORBA.Object.
You must call BankHelper.narrow () to cast from this base class to the
Bank IDL class, before you can make invocations on remote Bank objects.
The client stub code generated for every IDL class contains the
BankHelper.narrow () method definition for that class.

Invoking IDL Attributes and Operations

64

To access an attribute or an operation associated with an object, call the
appropriate Java method on the object reference. The client-side proxy redirects
this call across the network to the appropriate Java method for the implementation
object.

Orbix Java enables you to invoke IDL operations using normal Java method calls.
The following code extract shows the code called when you choose to create an
account, using the interactive GUI shown in Figure 3.1 on page 65:

// Create a user account.

public void createNewAccount () {
Account new account = null;
String current name = m client frame.Get UserName () ;
try {

// Call the IDL-defined method create account().
new account = m bank.create account (current name) ;
m _client frame.Set Balance (0f);

m client frame.printToMessageWindow ("Created

account for " + current name + "." );
}
catch ( SystemException se ) {
m _client frame.printToMessageWindow ( "[ Exception
raised during account creation. " + se + " ] ");



Developing Applications with Orbix Java

[=2 O1bixweb Bank Application [_ | |
(Bank Location rCreate Account r.n-::-::uunt Transactions |
User Name : |h'1”<9| |
Type : | Current - |
Balance :
Update | | Create
Exit

Figure 3.1: Creating an Account using the Bank GUI

65



Orbix Programmer’s Guide Java Edition

Similarly, the following Java code is called when you choose to find an account:

// Java.
// In file Client.java.

// Find a user account.
private Account getCurrentUserAccount () {
try {
// Call the IDL-defined method find account ().
return m bank.find account
(m_client frame.Get UserName() );
}
catch ( SystemException ex ) {
m client frame.printToMessageWindow
( "[ Exception raised finding account for "
+ m client frame.Get UserName ()+ "]");
}

return null;

}
The following code extract shows the Java called when the user chooses to make
a deposit into an account:

// Java.
// In file ClientGUIFrame.java.

public void DepositButton mouseClicked() {
Account user account =
m_client.getCurrentUserAccount();

if ( user account != null ) {
try {
user account.deposit
(Get Transaction Amount () );

m_client.updateCurrentUserBalance();

}

catch ( SystemException se ) {
printToMessageWindow ( " [ Exception raised
duringaccount deposit. 1");

66



Developing Applications with Orbix Java

Compiling the Client and Server

Details of compiling the client and server are specific to the Java development
environment used. However, it is possible to describe general requirements.
These are illustrated here using the Sun Java Developer’s Kit (JDK)I. This is the
development environment used by the Orbix Java demonstration makefiles.

To compile an Orbix Java application, you must ensure that the Java compiler can
access the following:

® The Java API classes located in the rt.jar file in the jre/1ib directory of
your JDK installation.

® The Orbix Java API classes located in the OrbixWeb.jar file in the 1ib
directory of your Orbix Java installation.

® The config directory of your Orbix Java installation.

® Any other classes required by the application.

Compiling the Server Application

To compile the server application, you must invoke the Java compiler on the user-
generated source files, and on files generated by the IDL compiler. In the banking
server example, the user-generated source files are as follows:

® Server.java

® BankImplementation.java

® AccountImplementation.java
The IDL-generated files are as follows:

® BankSkeleton.java

® BankOperations.java

® tie Bank.java

® BankStub.java

® BRank.java

1. The JDK version number must be 1.1.x or higher.

67



Orbix Programmer’s Guide Java Edition

® AccountSkeleton.java

® AccountOperations.java
® tie Account.java

® AccountStub.java

® Account.’java

The IDL-generated files are located in the demos\BankSimpleTie\java
directory . Discussion of the IDL-generated files is deferred until “Orbix Java
IDL Compilation” on page 73.

Compiling the Client Application

To compile the client application, invoke the Java compiler on the client source
file and on the files generated by the IDL compiler. In this example, the source
file is Client.java, and the generated files are as follows:

® BankStub.java
® Bank.java
® AccountStub.java

® Account.java

Using Orbix Java Utilities

You can use the standard Java command line to compile all the required Java
source files. Alternatively, Orbix Java provides a convenience tool called
owjavac.pl that acts as a front end to your chosen Java compiler. This tool
passes the default classpath and classes directories to the compiler, avoiding
the need to set environment variables.

The Orbix Java demos\BankSimpleTie directory provides a script that calls
owjavac.pl as required. To compile the Java source files, enter the appropriate
command from the BankSimpleTie\java directory:

UNIX % make

Windows > compile

68



Developing Applications with Orbix Java

You can use these commands for all the Orbix Java demonstrations from the
appropriate demos directory. These commands run the IDL compiler and compile
the Java source files.

For details on the use of the owjava.pl and owjavac.pl wrapper utilities, refer to
“Using the Orbix Java Wrapper Utilities” on page 282.

Registering the Server

Registering the server in the Implementation Repository allows the server to be
launched automatically. The Implementation Repository is a server database that
maintains a mapping from the server name to the name of the Java class that
implements the server. If the server is registered, it is automatically run through
the Java interpreter when a client binds to the Bank object.

Running the Orbix Java Daemon

Before registering the server, you should ensure that an Orbix Java daemon
process (orbixd or orbixdj) is running on the server machine.

To run the Orbix Java daemon, enter the orbixdj command from the bin
directory of your Orbix Java installation. To run the Orbix Java daemon, enter the
orbixd command.

On Windows, you can also start a daemon process by clicking on the appropriate
menu item from the Orbix Java folder.

Using Putitj

Once an Orbix Java daemon process is running, you can register the server. To
register the Bank server, use the putitj command as follows:

putitj -j Bank Demos.BankSimpleTie.Server

The -j switch indicates that the specified server should be launched via the Java
Interpreter. The second parameter to putitj is the server name, Bank in this
example. The third parameter is the name of the class that contains the server’s
main () method (Demos.BankSimpleTie.Server in this example). This is the
class that should be run through the Java interpreter.

69



Orbix Programmer’s Guide Java Edition

The server registration step is automated by a script in the demos\BankSimpleTie
directory that executes the putitj command. Refer to the Orbix Administrator’s
Guide Java Edition for more details on the putitj command.

Running the Client Application

To run the client application you must run the Java interpreter on the bytecode
(.class files) produced by the Java compiler. When running an Orbix Java client
application, you must ensure that the interpreter can access the following:

® The Java API classes located in the rt.jar file in the jre/1ib directory of
your JDK installation.

® The Orbix Java API classes located in the OrbixWeb.jar file in the 1ib
directory of your Orbix Java installation.

® The config directory of your Orbix Java installation.

* Any other classes required by the application.

Using Orbix Java Utilities

You can use the owjava.pl tool as an alternative to the standard Java command
line. This is a wrapper utility that acts as a front end to your chosen Java
interpreter. The owjava.pl tool passes the default classpath to the interpreter,
avoiding the need to set up environment variables. Refer to “Using the Orbix Java
Wrapper Utilities” on page 282 for more details on this convenience tool.

A script named Client in the demos\BankSimpleTie\java directory implements
this step. To run the client application, use the following command:

Client server_host

The Bank GUI then appears as shown in Figure 3.2 on page 71.

70



Developing Applications with Orbix Java

E%’,i‘ Orbixweb Bank Application M= E3 |

(Bank Location I/Create Account rn-::-::uunt Transactions |

Host Hame : |duh|in.inna_ie |

Connect

Exit

Figure 3.2: The Bank GUL

71



Orbix Programmer’s Guide Java Edition

Summary of the Programming Steps

72

The steps involved in creating a distributed client-server application using Orbix
Java are as follows:

1.

Define the interfaces to objects used by the application, using CORBA
standard IDL.

2. Compile the IDL to generate the Java code.

. Implement the IDL interface using the generated code.

Write a server, using the generated code as follows:
i. Initialize the server connection to the ORB.

ii. Create an implementation object by creating instances of the
implementation classes.

iii. Register the implementation object in the Naming Service.

Write a client application to use the CORBA objects located in the server
as follows:

iv. Initialize the client connection to the ORB.
v. Get a reference to an object.

vi. Invoke attributes and operations defined in the object’s IDL interface.

6. Compile the client and server applications.

7. Register the server in the Orbix Java Implementation Repository.

8. Run the client application.



Developing Applications with Orbix Java

Orbix Java IDL Compilation

This section examines the Orbix Java IDL compilation process, focusing on the
Java classes and interfaces generated by the IDL compiler.

The Orbix Java IDL compiler produces Java code corresponding to the IDL
definitions. For example, the mapped Java code consists of code that allows a
client to access an object through the Bank interface, and code that allows a Bank
object to be implemented in a server.

The IDL compilation produces Java constructs (six classes and two interfaces)
from the IDL interface Bank. Each public Java class or interface is located in a
single source file with a .java suffix. Each source file is located in a directory
that follows the Java mapping for package names to directory structures.

By default, the Orbix Java IDL compiler creates a local java directory into which
the generated Java directory structure is placed. You can specify an alternative
target directory using the compiler switch -30.2

Each generated file contains a Java class or interface that serves a specific role in
an application. For example, the following files are generated for the Bank IDL

interface:
Client-Side Mapping Description
Bank A Java interface whose methods define the
Java client view of the IDL interface.
_BankStub A Java class that implements the methods
defined in the Bank interface. This class
provides functionality that allows client
method calls to be forwarded to a server.
Server-Side Mapping Description
_BankSkeleton A Java class used internally by Orbix Java

to forward incoming server requests to
implementation objects. You do not need to
know the details of this class.

2. Refer to “IDL Compiler Switches” on page 499 for a full description.

73



Orbix Programmer’s Guide Java Edition

_BankImplBase

_tie Bank

_BankOperations

Client and Server-Side
Mapping
BankHelper

BankHolder

BankPackage

74

An abstract Java class that allows server-
side developers to implement the Bank
interface using the ImplBase approach.

A Java class that allows server-side

developers to implement the Bank interface
using delegation. This approach to interface
implementation is called the TIE approach.

The TIE approach is an Orbix Java -specific
feature, and is not defined by the CORBA
specification. It is the recommended
approach for Orbix Java due to the
restriction to single inheritance in Java.

A Java interface, used in the TIE approach
only, that maps the attributes and operations
of the IDL definition to Java methods. These
methods must be implemented by a class in
the server, using the TIE approach.

Description

A Java class that allows you to manipulate
IDL user-defined types in various ways.

A Java class defining a Holder type for
class Bank. This is required for passing Bank
objects as inout or out parameters to and
from IDL operations. Refer to “Holder
Classes” on page 95.

A Java package used to contain any IDL
types nested within the Bank interface; for
example, structures or unions.



Developing Applications with Orbix Java

_BankStub

BankSimple.idl

IDL Compiler

Generated
Classes and
Interfaces

BankSimple

Client
Application

Client
ByteCode

) 4
Java Compiler

_BankSkeleton

Server
ByteCode

e

BankSimple
Object
Application

Figure 3.3: Overview of the Compiling the Bank IDL Interface

75



Orbix Programmer’s Guide Java Edition

Examining the Generated Interfaces and Classes

The relationships between the Java types produced by the IDL compiler can be
illustrated by a brief examination of the generated source code.

Client-Side Mapping

The Java files Bank.java and BankStub.java support the client-side mapping.
The Bank.java file maps the operations and attributes in BankSimple.idl to
Java methods as follows:

// Generated by the Orbix Java IDL compiler
package Demos.BankSimpleTie;

public interface Bank extends org.omg.CORBA.Object {
public Demos.BankSimpleTie.Account create account
(String name) ;
public Demos.BankSimpleTie.Account find account
(String name) ;
public java.lang.Object deref() ;
}

This Java interface defines an Orbix Java client view of the IDL interface defined
in BankSimple.idl. The Java interface is implemented by the Java class
_BankStub in the file BankStub.java as follows:

// Generated by the Orbix Java IDL compiler
package Demos.BankSimpleTie;
public class BankStub
extends org.omg.CORBA.portable.ObjectImpl
implements Demos.BankSimpleTie.Bank {

public BankStub () ({}

public Demos.BankSimpleTie.Account
create account (String name) {

76



Developing Applications with Orbix Java

public Demos.BankSimpleTie.Account
find account (String name) {

}

public static final String interfaces[] =
{"IDL:BankSimple/Bank:1.0"};

public String[] ids() {return interfaces;}
public java.lang.Object deref() {return null;}

}

The primary role of the BankStub Java class is to transparently forward client
invocations on Bank operations to the appropriate implementation object in the
server. The IDL is mapped to the Java interface Bank to allow for multiple
inheritance. The implementation is then supplied by the corresponding
_BankStub.

The create account () and find account () IDL operations are mapped to
corresponding Java methods. The parameters, which are IDL basic types in the
IDL definition, are mapped to equivalent Java basic types. For example, the IDL
type long (a 32-bit integer type) maps to the Java type int (also a 32-bit integer
type). For IDL types that have no exact Java equivalent, an approximating class
or basic type is used. Refer to “IDL to Java Mapping” on page 91 for a complete
description.

Server-Side Mapping

Orbix Java provides support for two approaches to implementing an IDL
interface:
® The TIE approach, which uses delegation.

The generated Java constructs used in the TIE approach are the interface
_BankOperations and the class tie Bank.

The TIE approach is used in this chapter to implement the BankSimple
IDL interfaces.

* The ImpliBase approach, which uses inheritance.

The generated Java class used in the ImplBase approach is
_BankImplBase.

77



Orbix Programmer’s Guide Java Edition

78

The use of the TIE and ImplBase approaches is discussed in detail in
“Implementing the IDL Interfaces” on page 172. The TIE approach, which uses
delegation, is preferred for many Java applications and applets.

After the IDL interface has been implemented, a server creates an instance of the
implementation class. This server then connects the created object to the ORB
runtime, which passes incoming invocations to the implementation object.



Developing Applets with Orbix Java

This chapter extends the banking example from Chapter 3,,
“Developing Applications with Orbix Java”. It explains how to
use Orbix Java to create a downloadable client applet that
communicates with a back-end server. The programming steps
differ on the client side only. You should be familiar with the
material covered in Chapter 3 before continuing with this
chapter.

Review of Orbix Java Programming Steps

Recall the programming steps typically required to create a distributed client-
server application using Orbix Java:

1.

Define the interfaces to objects used by the application,
using CORBA IDL.

Generate Java code from the IDL using the IDL compiler.
Implement the IDL interface, using the generated code.

Write a server that creates instances of the generated classes and informs
Orbix Java when initialization is complete.

Write a client application that connects to the server and uses server
objects.

6. Compile the client and server applications.

7. Register the server in the Implementation Repository.

79



Orbix Programmer’s Guide Java Edition

8. Run the client application.

This chapter uses the banking IDL interface outlined in “Defining IDL
Interfaces” on page 50. The sample code described in this chapter is available in
the demos/BankSimpleApplet directory of your Orbix Java installation.

Providing a Server

This chapter illustrates a distributed architecture in which a downloadable client
applet communicates with an Orbix Java server through an IDL interface. This
client-server architecture is a common requirement in the Java environment
where small, dynamic client applets are downloaded to communicate with large,
powerful back-end service applications. Architectures in which full Orbix Java
servers are coded as downloadable applets are less common, and are not
described here.

The example server used in this chapter is developed in “Writing an Orbix Java
Server Application” on page 57. The Orbix Java programming steps for writing
servers are identical for Java applications and Java applets. The main differences
between programming for Java applications and Java applets occur when writing
the client.

Writing a Client Applet

80

This section develops a simple Java applet, providing a graphical user interface to
the banking IDL interface. The example used builds upon the concepts already
introduced in “Writing the Client Application” on page 62.

Writing the client applet can be broken down into four sub-steps, each
corresponding to a particular demonstration source file, as follows:

Programming Step Source File

1. Creating the user interface BankPanel.java
2. Adding Orbix Java client functionality BankEvents.java
3. Creating the applet BankApplet.java
4. Adding the client to a HTML file Index.html



Developing Applets with Orbix Java

These files are located in the demos\BankSimpleaApplet\java directory of your
Orbix Java installation. The package name for the Java classes in this example is
Demos .BankSimpleApplet. This example assumes that the file BankSimple.idl
is compiled with the following command:

idlj -jP Demos BankSimple.idl

Developing an Orbix Java client can be completely decoupled from developing
the server. For this reason, when compiling the IDL file, the package name
chosen for the client can differ from the package name for the server.

Creating the User Interface

The GUI source code in BankPanel . java uses the Java Abstract Windowing
Toolkit package (java.awt) to create and arrange each of the elements within a
java.awt.Panel container. You should refer to your Java documentation for
details of the AWT.

The BankSimpleApplet GUI shown in Figure 4.1 on page 83 consists of three

tabs:

Bank Location Used to specify a Naming Service host and get a
reference to a Bank object.

Accounts Used to create, find and update specified
accounts.

Transactions Used to make withdrawals and deposits for

specified accounts.

The following code sample names the individual GUI components, such as
buttons and text fields. The details of how the GUI is implemented are not
discussed:

// Java
// In file BankPanel.java.

package Demos.BankSimpleApplet;
import java.awt.*;

public class BankPanel extends Panel ({

81



Orbix Programmer’s Guide Java Edition

82

// Button String constants

final String m connect string = "Connect";

final String m disconnect string = "Disconnect";
final String m withdraw string = "Withdraw";

final String m deposit string = "Deposit";

final String m create string = "Create New Account";
final String m update string = "Update";

// Labels

Label m user label = new Label ("Username");

Label m balance label = new Label ("Acount Balance");
Label m transaction label = new Label

("Transaction Amount");
Label m hostname label = new Label ("Host");
// Buttons
Button m connect button;
Button m disconnect button;
Button m withdraw button;
Button m deposit button;
Button m create button;
Button m update button;

// Text fields

TextField m transaction field;
TextField m user field;
TextField m balance field;
TextField m hostname field;

// Sub panels

Panel m top panel = new Panel();
Panel m bottom panel = new Panel();
// Constructor

public BankPanel () {



Developing Applets with Orbix Java

E%’,i‘ Orbixweb Bank Application M= E3 |

(Bank Location I/Create Account rn-::-::uunt Transactions |

Host Hame : |duh|in.inna_ie |

Connect

. Ext |

Figure 4.1: The Banking Graphical User Interface

83



Orbix Programmer’s Guide Java Edition

Adding Orbix Java Client Functionality

In the banking applet example, all Orbix Java client functions are initiated by GUI
button clicks. For the purposes of illustration, the applet maps GUI button clicks
directly to individual operations on a Bank object. Operation parameter values
and results are sent and returned using text boxes. This allows the client to receive
notification of a button click event, and to determine which button received the
event. The client can then react by calling the appropriate operation on a Bank or

Account proxy object.

A subclass of BankPanel named BankEvents acts as the container for the various
buttons and text fields. The following is an outline of the source code for the class
BankEvents. The button implementation methods defined here are expanded on

later in this section:

// Java
// In file BankEvents.java.

package Demos.BankSimpleApplet;

import java.awt.*;
import Demos.IT DemoLib.*;
import org.omg.CORBA.ORB;

import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb. OrbixWeb;
import IE.Iona.OrbixWeb. CORBA;

public class BankEvents extends BankPanel ({

// Constructor.
public BankEvents () {
super () ;

org.omg.CORBA.ORB Orb = ORB.init (this,null);

m orb = Orb;

}

// Notify appropriate method for action event.
public boolean action (Event event,
if ( m _connect string.equals(arg)) {

connect () ;

84

Object argqg)



Developing Applets with Orbix Java

else if ( m disconnect string.equals(arg)) {
disconnect () ;
}
else if ( m withdraw string.equals(arg)) {
withdraw () ;
}
else if ( m deposit string.equals(arg)) {
deposit () ;
}
else if (m create string.equals(arg)) {
create () ;
}
else if (m update string.equals(arg)) {
update () ;
}
return true;
}
// Connect button implementation.
public void connect () {
// Details later in this section.

// Exit button implementation.
public void disconnect () {
m bank = null;

public void update() {
updateCurrentUserBalance () ;

// Deposit button implementation.
public void deposit () {
// Details later in this section.

// Withdraw button implementation.
public void withdraw() {

85



Orbix Programmer’s Guide Java Edition

// Create button implementation.
public void create() {
// Details later in this section.

}

// Update button implementation.
private void updateCurrentUserBalance ()

// Find button implementation.
private Account getCurrentUserAccount ()
// Details later in this section.

}

private void displayMsg (String msg) {
// Details later in this section.

}

Getting a Reference to an Object

86

public void connect () {

String hostname;

// Get hostname from the text field.
hostname = m hostname field.getText();

{

{

The BankEvents class provides methods to handle the client functionality
required for the GUI buttons shown in Figure 4.1 on page 83. The following
sections explain the button implementations in detail.

The CORBA-defined way to get a reference to an object is to use the Naming
Service. When an object reference enters a client address space, Orbix Java
creates a proxy object that acts as a local representative for the remote
implementation object. Orbix Java forwards operation invocations on the proxy
object to corresponding methods in the implementation object.

The Connect button on the Bank Location tab is implemented by the Connect ()
method. This uses Naming Service wrapper functions to obtain a Bank object



Developing Applets with Orbix Java

try {

//Set the naming service hostname
1 _OrbixWeb.ORB (m orb) .setConfigItem
("IT NAMES SERVER HOST", hostname);

}

catch (Exception ex) {
displayMsg ("First exception caught:

"+ex.toString());

// Create a new Naming Service wrapper
try {
2 m ns wrapper = new IT NS Wrapper
(m_orb, m demo context name);
}
catch (org.omg.CORBA.UserException user ex) {
displayMsg ("Exception raised during creation of
naming service wrapper: " + user ex.toString());
}
try {
org.omg.CORBA.Object m obj =
3 m ns wrapper.resolveName ("Bank") ;
displayMsg ("After resolving name");

4 m bank = BankHelper.narrow (m obj);
displayMsg ("Connect succeeded!");
}
catch (org.omg.CORBA.UserException user ex) {
displayMsg ("Exception raised getting bank
reference: "+user ex.toString());

}
catch (Exception ex) {
displayMsg ("Exception caught: "+ex.toString()):;

}

This code is described as follows:

1. Set the Naming Service hostname to that input by the user.

2. Create a new Naming Service wrapper object.

87



Orbix Programmer’s Guide Java Edition

3. The method nsWrapper.resolveName () retrieves the object reference
from the Naming Service placed there by the server. The parameter is the
name of the object to resolve, in this case Bank.This must match the name
used by the server when it called registerObject ().

4. The return type from resolveName () is of type org.omg.CORBA.Object.
You must call BankHelper.narrow () to cast from this base class to the
Bank IDL class, before you can make invocations on remote Bank objects.
The client stub code generated for every IDL class contains the
BankHelper.narrow () function definition for that class.

Disconnecting from a Server

The Exit button functionality is implemented as follows:

public void disconnect () {
m bank = null;

}

This destroys a previously created proxy object by assigning it a Java null value.
This does not actually close the connection; to do this, you must call the
following:

m _orb.closeConnection (m _bank);

Invoking IDL Attributes and Operations

88

To access an attribute or an operation associated with an object, call the
appropriate Java method on the object reference. The client-side proxy redirects
this call across the network to the appropriate Java method for the implementation
object.

Orbix Java enables you to invoke IDL operations using normal Java method calls.
The following code extracts show the code called when you select the appropriate
GUI button.

Creating an Account

The Create button functionality is implemented as follows:

// Create button implementation.
public void create() {
Account new account = null;



Developing Applets with Orbix Java

String current name = m user field.getText();
try{

new account = m bank.create account

(current name) ;
m balance field.setText
(String.valueOf ((float)0));
displayMsg ("Created an account for "+
current name) ;

}
catch (SystemException se) {

displayMsg ("Exception raised during creation

of account "+se.toString());

}

The create () method enables the IDL-defined method create account () to be
called on the proxy object m bank.

Finding an Account
The Find button functionality is implemented as follows:

// Find button implementation.
private Account getCurrentUserAccount () {
try {
return m bank.find account
(m user field.getText());
}
catch (SystemException se) {
displayMsg ("Exception raised finding account
for "+ m user field.getText()):
}
return null;

}

This enables the IDL-defined method find account () to be called on the
m_bank proxy object.

89



Orbix Programmer’s Guide Java Edition

Making a Deposit
The Deposit button functionality is implemented as follows:

public void deposit () {
Account user account = getCurrentUserAccount () ;
float amount = Float.valueOf
(m_transaction field.getText()).floatValue():;

if (user account != null) {
try {
user_account.deposit(amount);
updateCurrentUserBalance () ;

}

catch (SystemException se) {
displayMsg ("Exception raised while
attempting a deposit "+se.toString());

}

This allows the IDL-defined deposit () method to be called on proxy objects
located via the find account () method. The Withdraw button functionality is
implemented in a similar way.

Handling Exceptions in Orbix Java Client Applets

In the example described in “Writing the Client Application” on page 62, Orbix
Java system exceptions are handled in catch clauses by displaying the exception
toString () output in the System.out print stream. This information is helpful
when you are debugging Orbix Java clients. In a client applet, however, it may
not be practical to output the information to a print stream. In this example,
exception strings are displayed in information dialog boxes. The file
MsgDialog.java implements a generic dialog class for this purpose:

// In file MsgDialog.java
package Demos.BankSimpleApplet;

import java.awt.*;

920



Developing Applets with Orbix Java

public class MsgDialog extends Frame {
protected Button button;
protected Msg label;
public MsgDialog(String title, String message) {
// Details omitted.
}

// Other class details omitted.
}

The details of this class implementation is not important. Orbix Java error-

handling can be added to the BankEvents class by defining a display method as
follows:

private void displayMsg (String msg) {
Demos.SimpleBankApplet.MsgDialog m msg dialog =
new Demos.SimpleBankApplet.MsgDialog
("Bank Operation Result", msqg);
m msg _dialog.resize(380,200);
m msg_dialog.show () ;

}

This allows any string, including system exception strings, to be displayed in a
dialog box.

Creating the Applet

To create the BankSimple client applet, define a subclass of
java.applet.Applet and add a BankEvents object to this class:

// Java
// In file BankApplet.java.
package Demos.BankSimpleApplet;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.INITIALIZE;
import java.applet.*;

import java.awt.*;

import org.omg.CORBA.ORB;

91



Orbix Programmer’s Guide Java Edition

public class BankApplet extends Applet {

// Main display panel
BankEvents m bank events;

public void init () {
try {
ORB.init (this, null);
}
catch (INITIALIZE ex) {
System.err.println ("failed to initialize: "+ex);

}

// Create new panel.
m_bank_events = new BankEvents ();

// Add panel to applet.
this.add (m bank events);

}

Initializing the ORB

92

Because Orbix Java uses the standard OMG IDL to Java mapping, all client and
server applets must call org.omg.CORBA.ORB. init () to initialize the ORB. This
returns a reference to the ORB object. You can then invoke the ORB methods
defined by the standard on this instance.

The example applet, BankApplet.java, uses the following version of
org.omg.CORBA.ORB.init ():

ORB.init (Applet app, java.util.Properties props)

You must use this version of init () for applet initialization. In the example, the
client applet passes a reference to itself using the this parameter. The props
parameter, used to set configuration properties, is set to null. This means that the
default system properties are used instead.

This version of the init () method returns a new fully functional ORB Java
object each time it is called. Refer to the Orbix Programmer’s Reference Java
Edition for further information on class org.omg.CORBA.ORB and ORB. init () .



Developing Applets with Orbix Java

Adding the Applet to a HTML File

In HTML terms, an Orbix Java applet client behaves exactly like a standard Java
applet. It can be included in a HTML file using the standard <APPLET> tag, as
shown in the file Index.html:

// HIML
// In file Index.html

<HTML>
<HEAD>

<TITLE>Orbix Java BankSimpleApplet demo</TITLE>
</HEAD>

<BODY>
<H1>Bank Client</H1>

<APPLET CODE="Demos/BankSimpleApplet/
BankSimpleApplet.class"
1 CODEBASE="../../classes/"
archive="0OrbixWeb.jar”
WIDTH=390 HEIGHT=560>
<PARAM NAME="org.omg.CORBA.ORBClass”
2 VALUE="1IE.Iona.OrbixWeb.CORBA.ORB>
<PARAM NAME="org.omg.CORBA.ORBSingletonClass”
VALUE="IE.Iona.OrbixWeb.CORBA.singletonORB>
</APPLET>
</BODY>
</HTML>

This HTML is described as follows:
1. The CODEBASE attribute of the HTML <APPLET> tag indicates the location
of the additional classes required by the applet.

2. Pass the parameter value IE. Iona.OrbixWeb.CORBA.ORB to enable use
of the Orbix Java ORB implementation. This means that Orbix Java -
specific methods such as bind () can be used.

93



Orbix Programmer’s Guide Java Edition

Compiling the Client Applet

94

The instructions for compiling an Orbix Java applet are identical to those for a
standard Orbix Java application, as described in “Compiling the Client and
Server” on page 67.

You must ensure that the Java compiler can access the Java API packages
(including java.awt for this sample code), the Orbix Java

IE. Iona.OrbixWeb.CORBA package, and any applet-specific classes. Invoke the
compiler on all the Java source files for the application.

The following files are required for the banking example:

_BanksStub.java
Bank.java
_AccountStub.java
Account.java
BankPanel.java
BankEvents.java
BankApplet.java
MsgDialog.java

Msg.java

The Orbix Java demos/BankSimpleApplet directory provides a script that
invokes the owjavac.pl wrapper utility as required. To compile the client applet,
enter the appropriate command at the operating system prompt:

UNIX % make

Windows > compile



Developing Applets with Orbix Java

Running the Client Applet

When running the client applet, you must use a Web browser or an applet viewer
to view the HTML file. For example, you can use the JDK appletviewer as
follows:

appletviewer Index.html

Java applets differ slightly from standalone Java applications in their
requirements for accessing class directories. Before running the viewer, you can
specify the locations of required classes in the CLASSPATH environment variable.
The classes required are identical to those for an Orbix Java client application:

® The Java API classes located in the rt.jar file in the jre/1ib directory of
your JDK installation.

® The Orbix Java API classes located in the OrbixWeb.jar file in the 1ib
directory of your Orbix Java installation.

® The config directory of your Orbix Java installation.
* Any other classes required by the application.

An alternative approach is to provide access to all the classes the applet requires
in a single directory. Instead of setting environment variables, you can use the
CODEBASE attribute of the HTML <APPLET> tag to indicate the location of the
required classes. This approach is recommended, and is the approach used in
“Creating the Applet” on page 91. The Orbix Java configuration files are loaded
from the location specified by the CODEBASE attribute of the <APPLET> tag. If you
do not specify the CODEBASE attribute, the directory containing HTML file is used
as the default location.

Refer to the Orbix Administrator’s Guide Java Edition for more details on the
Orbix Java configuration files.

Security Issues for Java Applets
Java applets are subject to important security restrictions that are imposed by the
Java environment and Web browsers. The severity of these restrictions is often

dependent on browser technology. Refer to the Orbix Administrator’s Guide Java
Edition for details about using Orbix Java on the Internet.

95



Orbix Programmer’s Guide Java Edition

Learning more about Orbix Java

96

Parts II and III of this guide describe Orbix Java features in more detail and
expand on the information presented in Part 1. Specifically, Parts II and III
include the following:

An overview of the structure of distributed applications.

An introduction to IDL and the corresponding mapping of IDL to the Java
programming language. Both client and server programmers must be
familiar with this mapping.

Further examples of using Orbix Java to define an interface to a system
component and write client and server programs.

How to make objects available in Orbix Java, using the CORBA-defined
Naming Service and the Orbix Java -specific bind () method.

The use of inheritance when defining IDL interfaces, allowing an interface
to be defined by extending others.

More details on compiling IDL definitions, and registering Orbix Java

servers in the Implementation Repository.

Details on enabling communication between independently developed
implementations of the CORBA standard, using IIOP (Inter-ORB
Interoperability Protocol).

Parts IV and V of this guide discuss advanced features that extend the power of
Orbix Java, for example:

Filters can be installed in your system to allow programs to monitor or
control incoming or outgoing requests.

A proxy is a local representative or stand-in for a remote object. A smart
proxy is an intelligent stand-in. You can write Smart proxies to optimize
the performance of a component as perceived by a client.

To facilitate applications such as browsers, the interface of an object can
be examined at runtime, using the Interface Repository.



Developing Applets with Orbix Java

* If Orbix Java fails to find an object being sought by a client or server, it
informs /oader objects, which can load the object from some persistent
store. Interfacing Orbix Java to a persistent store, therefore, involves
writing a loader object and installing this within programs that directly use
that persistent store. As a result, Orbix Java is not tied to using any specific
persistent store from a particular vendor.

® Orbix Java has an inbuilt mechanism for searching the distributed system
for a server. If this mechanism is not appropriate or if it needs to be
augmented, you can write a locator object and install this.

* Some applications, such as browsers, must be able to use all of the
interfaces defined in a system—even those interfaces that did not exist
when the browser was compiled. Orbix Java supports such applications via
its Dynamic Invocation Interface.

A full description of the API to Orbix Java is supplied in the Orbix Programmer’s
Reference Java Edition.

97



Orbix Programmer’s Guide Java Edition

98



Part 11

CORBA Programming
with Orbix Java







Introduction to CORBA IDL

The CORBA Interface Definition Language (IDL) is used to
define interfaces to objects in your network. This chapter

introduces the features of CORBA IDL and illustrates the syntax
used to describe interfaces.

The first step in developing a CORBA application is to define the interfaces to the
objects required in your distributed system. To define these interfaces, you use
CORBA IDL.

IDL allows you to define interfaces to objects without specifying the
implementation of those interfaces. To implement an IDL interface you must:

1. Define a Java class that can be accessed through the IDL interface.

2. Create objects of that class within an Orbix Java server application.

You can implement IDL interfaces using any programming language for which
an IDL mapping is available. An IDL mapping specifies how an interface defined
in IDL corresponds to an implementation defined in a programming language.
CORBA applications written in different programming languages are fully
interoperable.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, and Smalltalk. The Orbix Java IDL compiler
converts IDL definitions to corresponding Java definitions, in accordance with
the standard IDL to Java mapping.

101



Orbix Programmer’s Guide Java Edition

IDL Modules and Scoping

An IDL module defines a naming scope for a set of IDL definitions. Modules
allow you to group interface and other IDL type definitions into logical name
spaces. When writing IDL definitions, always use modules to avoid possible
name clashes.

The following example illustrates the use of modules in IDL:

// IDL
module finance {
interface account {

}i
}i
The interface account is scoped within the module finance. IDL definitions are
available directly within the scope in which they are defined. In other naming
scopes, you must use the scoping operator : : to access these definitions. For
example, the fully scoped name of interface account is finance: :account.

IDL modules can be reopened. For example, a module declaration can appear
several times in a single IDL specification if each declaration contains different
data types. In most IDL specifications, this feature of modules is not required.

Defining IDL Interfaces

102

An IDL interface describes the functions that an object supports in a distributed
application. Interface definitions provide all the information that clients need to
access the object across a network.

Consider the example of an interface that describes objects that implement bank
accounts in a distributed application.



Introduction to CORBA IDL

The IDL interface definition is as follows:

//IDL
module finance {
interface account {
// The account owner and balance.
readonly attribute string owner;
readonly attribute float balance;

// Operations available on the account.
void makelLodgement (in float amount,
out float newBalance);
void makeWithdrawal (in float amount,
out float newBalance);
}i
bi
The definition of interface account includes both attributes and operations. These
are the main elements of any IDL interface definition.

IDL Attributes

Conceptually, IDL attributes correspond to variables that an object implements.
Attributes indicate that these variables are available in an object and that clients
can read or write their values.

In general, each attribute maps to a pair of functions in the programming language
used to implement the object. These functions allow client applications to read or
write the attribute values. However, if an attribute is preceded by the keyword
readonly, clients can only read the attribute value.

For example, the account interface defines the attributes balance and owner.
These attributes represent information about the account which the object
implementation can set, but which client applications can only read.

103



Orbix Programmer’s Guide Java Edition

IDL Operations

IDL operations define the format of functions, methods, or operations that clients
use to access the functionality of an object. An IDL operation can take parameters
and return a value, using any of the available IDL data types.

For example, the account interface defines the operations makeLodgement () and
makeWithdrawal () as follows:

//IDL
module finance {
interface account {
// Operations available on the account.
void makeLodgement (in float amount,
out float newBalance);
void makeWithdrawal (in float amount,
out float newBalance);

}i
}i
Each operation takes two parameters and has a void return type. The parameter
definitions must specify the direction in which the parameter value is passed. The
possible parameter-passing modes are as follows:

in The parameter is passed from the caller of the
operation to the object.

out The parameter is passed from the object to the caller.

inout The parameter is passed in both directions.

Parameter-passing modes clarify operation definitions and allow an IDL compiler
to map operations accurately to a target programming language.

104



Introduction to CORBA IDL

Raising Exceptions in IDL Operations

IDL operations can raise exceptions to indicate the occurrence of an error.
CORBA defines two types of exceptions:

* System exceptions
These are a set of standard exceptions defined by CORBA.

* User-defined exceptions
These are exceptions that you define in your IDL specification.

All IDL operations can implicitly raise any of the CORBA system exceptions. No
reference to system exceptions appears in an IDL specification. Refer to the Orbix
Administrator’s Guide Java Edition appendices for a complete list of the CORBA
system exceptions.

To specify that an operation can raise a user-defined exception, first define the
exception structure and then add an IDL raises clause to the operation
definition. For example, the operation makeWithdrawal () in interface account
could raise an exception to indicate that the withdrawal has failed, as follows:

// IDL
module finance {
interface account {
exception WithdrawalFailure {
string reason;

}i

void makeWithdrawal (in float amount,
out float newBalance)
raises (WithdrawalFailure) ;

bi
}i
An IDL exception is a data structure that contains member fields. In this example,
the exception WithdrawalFailure includes a single member of type string.

The raises clause follows the definition of operation makeWithdrawal () to
indicate that this operation can raise exception WithdrawalFailure. If an
operation can raise more then one type of user-defined exception, include each
exception identifier in the raises clause and separate the identifiers using
commas.

105



Orbix Programmer’s Guide Java Edition

106

Invocation Semantics for IDL Operations

By default, IDL operation calls are synchronous. This means that a client calls an
operation and blocks until the object has processed the operation call and returned
a value. The IDL keyword oneway allows you to modify these invocation
semantics.

If you precede an operation definition with the keyword oneway, a client that calls
the operation will not block while the object processes the call. For example, you
could add a oneway operation to interface account that sends a notice to an
account object, as follows:

module finance {
interface account {
oneway void notice(in string text);

}i
}i
Orbix Java does not guarantee that a oneway operation call will succeed. Thus, if
a oneway operation fails, a client may never know. There is only one
circumstance in which Orbix Java indicates failure of a oneway operation. If a
oneway operation call fails before Orbix Java transmits the call from the client
address space, Orbix Java raises a system exception.

Note: A oneway operation cannot have any out or inout parameters and cannot
return a value. In addition, a oneway operation cannot have an associated
raises clause.

Passing Context Information to IDL Operations

CORBA context objects allow a client to map a set of identifiers to a set of string
values. When defining an IDL operation, you can specify that the operation
should receive the client mapping for particular identifiers as an implicit part of
the operation call. To do this, add a context clause to the operation definition.

Consider the example of an account object, where each client maintains a set of
identifiers, such as sys_time and sys location, that map to information that the
operation makeLodgement () logs for each lodgement received.



Introduction to CORBA IDL

To ensure that this information is passed with every operation call, extend the
definition of makeLodgement () as follows:

// IDL
module finance {
interface account {
void makelLodgement (in float amount,
out float newBalance)
context ("sys time", "sys location");

bi
bi
A context clause includes the identifiers for which the operation expects to
receive mappings. IDL contexts are rarely used in practice.

Inheritance of IDL Interfaces

IDL supports inheritance of interfaces. An IDL interface can inherit all the
elements of one or more other interfaces.

For example, the following IDL definition illustrates two interfaces called
checkingAccount and savingsAccount. Both of these inherit from an interface
named account:

// IDL
module finance {
interface account {

i

interface checkingAccount : account {
readonly attribute overdraftLimit;
boolean orderChequeBook ();

}i

interface savingsAccount : account {
float calculatelInterest ();
bi
bi
Interfaces checkingAccount and savingsAccount implicitly include all
elements of interface account.

107



Orbix Programmer’s Guide Java Edition

108

An object that implements checkingAccount can accept calls on any of the
attributes and operations of this interface, and also on any of the elements of
interface account. However, a checkingAccount object may provide different
implementations of the elements of interface account to an object that
implements account only.

The following IDL definition shows how to define an interface that inherits both
checkingAccount and savingsAccount:

// IDL
module finance {
interface account {

}i
interface checkingAccount : account {
}i
interface savingsAccount : account {

}i

interface premiumAccount
checkingAccount, savingsAccount ({

i
}i
Interface premiumAccount is an example of multiple inheritance in IDL.
Figure 5.1 on page 109 illustrates the inheritance hierarchy for this interface.

If you define an interface that inherits from other interfaces containing a constant,
type, or exception definition of the same name, you must fully scope that name
when using the constant, type, or exception.

Note: An interface cannot inherit from other interfaces that include operations or
attributes that have the same name.




Introduction to CORBA IDL

account

checkingAccount savingsAccount

premiumAccount

Figure 5.1: Multiple Inheritance of IDL Interfaces

The Object Interface Type

IDL includes the pre-defined interface Object, which all user-defined interfaces
inherit implicitly. The operations defined in this interface are described in the
Orbix Programmer’s Reference Java Edition. While interface Object is never
defined explicitly in your IDL specification, the operations of this interface are
available through all your interface types. In addition, you can use Object as an
attribute or operation parameter type to indicate that the attribute or operation
accepts any interface type, for example:

// IDL
interface ObjectLocator {

void getAnyObject (out Object obj);
}i

It is not legal IDL syntax to explicitly inherit interface Object.

109



Orbix Programmer’s Guide Java Edition

Forward Declaration of IDL Interfaces

In IDL, you must declare an IDL interface before you reference it. A forward
declaration declares the name of an interface without defining it. This feature of
IDL allows you to define interfaces that mutually reference each other.

For example, IDL interface account could include an attribute of IDL interface
type bank, to indicate that an account stores a reference to a bank object. If the
definition of interface bank follows the definition of interface account, you
would make a forward declaration for the bank interface as follows:

// IDL
module finance ({
// Forward declaration of bank.
interface bank;
interface account {
readonly attribute bank branch;

}i

// Full definition of bank.
interface bank {

}r
}s

The syntax for a forward declaration is the keyword interface followed by the
interface identifier.

Note: It is not possible to inherit from a forwardly declared interface. You can
only inherit from an interface that has been fully specified.

The following IDL definition, for example, is not permitted:

//IDL

module finance({
//Forward declaration of bank.
interface bank;

interface account Bigbank:bank({

}

110



Introduction to CORBA IDL

Overview of the IDL Data Types

In addition to IDL module, interface, and exception types, there are four main
categories of data type in IDL:

® Basic types

® Constructed types

* Template types

® Pseudo object types

This section examines each IDL data type in turn, and describes how you can
define new data type names, arrays, and constants in IDL.

IDL Basic Types
Table 5.2 lists the basic types supported in IDL.
IDL Type Range of Values
short -215...2%-1 (16-bit)
unsigned short 0...2%-1 (16-bit)
long 231, ..231-1 (32-bit)
unsigned long 0...232-1 (32-bit)
long long —203...2%3-1 (64-bit)
unsigned long long 0...2%-1 (64-bit)
float IEEE single-precision floating point numbers.
double IEEE double-precision floating point numbers.
char An 8-bit value.
wchar A 16-bit value.
boolean TRUE or FALSE.

Table: 5.2: The IDL Basic Types

111



Orbix Programmer’s Guide Java Edition

IDL Type Range of Values

octet An 8-bit value that is guaranteed not to undergo
any conversion during transmission.

any The any type allows the specification of values
that can express an arbitrary IDL type.

Table: 5.2: The IDL Basic Types

The any data type allows you to specify that an attribute value, an operation
parameter, or an operation return value can contain an arbitrary type of value to
be determined at runtime. Refer to “Type any” on page 341 for more details.

IDL Constructed Types

IDL provides three constructed data types:

®  enum

® struct

® union
Enum

An enumerated type allows you to assign identifiers to the members of a set of
values, for example:

// IDL
module finance {
enum currency {pound, dollar, yen, franc};

interface account {
readonly attribute float balance;
readonly attribute currency balanceCurrency;

}r
}i

In this example, attribute balanceCurrency in interface account can take any
one of the values pound, dollar, yen, or franc to indicate the currency
associated with the attribute balance.

112



Introduction to CORBA IDL

Struct

A struct data type allows you to package a set of named members of various
types, for example:

// IDL
module finance {
struct customerDetails {
string name;
short age;

i

interface bank {
customerDetails getCustomerDetails (
in string name) ;

bi
bi
In this example, the struct customerDetails has two members: name and age.
The operation getCustomerDetails () returns a struct of type customerDetails
that includes values for the customer name and age.

Union

A union data type allows you to define a structure that can contain only one of
several alternative members at any given time. A union saves memory space,
because the amount of storage required for a union is the amount necessary to
store its largest member.

All IDL unions are discriminated. This means that they associate a label value
with each member. The value of the label indicates which member of the union
currently stores a value.

113



Orbix Programmer’s Guide Java Edition

For example, consider the following IDL union definition:

// IDL

struct DateStructure {
short Day;
short Month;
short Year;

bi

union Date switch (short) {

case 1l: string stringFormat;;

case 2: long digitalFormat;

default: DateStructure structFormat;
bi

The union type Date is discriminated by a short value. For example, if this short
value is 1, the union member stringFormat stores a date value as an IDL string.
The default label associated with the member structFormat indicates that if the

short value is not 1 or 2, the structFormat member stores a date value as an IDL
struct.

The type specified in parentheses after the switch keyword must be an integer,
char, boolean or enum type and the value of each case label must be compatible
with this type.

IDL Template Types

IDL provides two template types:
® string

® sequence

String

An IDL string represents a character string, where each character can take any
value of the char basic type.

If the maximum length of an IDL string is specified in the string declaration, the
string is bounded. Otherwise, the string is unbounded.

114



Introduction to CORBA IDL

The following example shows how to declare bounded and unbounded strings:

// IDL
module finance {

}i

interface bank {
// A bounded string with maximum length 10.
attribute string sortCode<10>;
// BAn unbounded string.
attribute string address;

}i

Sequence

In IDL, you can declare a sequence of any IDL data type or user-defined data
type. An IDL sequence is similar to a one-dimensional array of elements.

An IDL sequence does not have a fixed length. If the sequence has a fixed
maximum length, the sequence is bounded. Otherwise, the sequence is
unbounded.

For example, the following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

// IDL
module finance {

interface account {
i

struct limitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<account, 50> accounts;

i

struct unlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<account> accounts;

}i

115



Orbix Programmer’s Guide Java Edition

A sequence must be named by an IDL typedef declaration (described in
“Defining Aliases and Constants” on page 119) before it can be used as the type
of an IDL attribute or operation parameter. This is illustrated by the following
code:

// IDL
module finance {
typedef sequence<string> customerSeqg;

interface bank {
void getCustomerList (out customerSeq names) ;

}i
}i

Arrays

In IDL, you can declare an array of any IDL data type. IDL arrays can be
multidimensional and always have a fixed size. For example, you can define an
IDL struct with an array member as follows:

// IDL
module finance {
interface account {

b7

struct customerAccountInfo {
string name;
account accounts[3];

}i

interface bank {
getCustomerAccountInfo (in string name,
out customerAccountInfo accounts);

}r
}i

In this example, struct customerAccountInfo provides access to an array of
account objects for a bank customer, where each customer can have a maximum
of three accounts.

116



Introduction to CORBA IDL

As with sequences, an array must be named by an IDL typedef declaration
before it can be used as the type of an IDL attribute or operation parameter. The

following code illustrates this:

// IDL
module finance {
interface account {

bi
typedef account accountArray([100];

interface bank {
readonly attribute accountArray accounts;

}i

Note: Arrays are a less flexible data type than an IDL sequence, because an array
always has a fixed length. An IDL sequence always has a variable length,
although it may have an associated maximum length value.

Fixed Types

The fixed data type allows you to represent a number in two parts: a digit and a
scale. The digit represents the length of the number, and the scale is a non-
negative integer that represents the position of the decimal point in the number,
relative to the rightmost digit.

module finance {
typedef fixed<10,4> ExchangeRate;

struct Rates {
ExchangeRate USRate;
ExchangeRate UKRate;
ExchangeRate IRRate;
}i
bi
In this case, the ExchangeRate type has a digit of size 10, and a scale of 4. This
means that it can represent numbers up to (+/-)999999.9999.

117



Orbix Programmer’s Guide Java Edition

The maximum value for the digits is 31, and scale cannot be greater than digits.
The maximum value that a fixed type can hold is equal to the maximum value of
a double.

Scale can also be a negative number. This means that the decimal point is moved
scale digits in a rightward direction, causing trailing zeros to be added to the
value of the fixed. For example, fixed <3, -4> with a numeric value of 123
actually represents the number 1230000. This provides a mechanism for storing
numbers with trailing zeros in an efficient manner.

Note: Fixed <3, -4> can also be represented as fixed <7, 0>.

Constant fixed types can also be declared in IDL. The digits and scale are
automatically calculated from the constant value. For example:

module Circle {
const fixed pi = 3.142857;
bi

This yields a fixed type with a digits value of 7, and a scale value of 6.

IDL Pseudo-Object Types

118

CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to some programming languages. These object types have
interfaces defined in IDL, but do not have to follow the normal IDL mapping for
interfaces, and are not generally available in your IDL specifications.

You can use only the following pseudo-object types as attribute or operation
parameter types in an IDL specification:

® NamedValue
® Principal

® TypeCode



Introduction to CORBA IDL

To use any of these three types in an IDL specification, include the file orb.idl
in the IDL file as follows:

// IDL
#include <orb.idl>

This statement indicates to the IDL compiler that types Namedvalue, Principal,
and TypeCode may be used. The file orb.id1 does not actually exist in your
system. Do not name any of your IDL files orb.id1.

For more information on these types, refer to “IDL to Java Mapping” on page 91,
and to the Orbix Programmer’s Reference Java Edition.

Defining Aliases and Constants

IDL allows you to define aliases (new data type names) and constants. This
section describes how to use these IDL features.

Using Typedef to Create Aliases

The typedef keyword allows you define a more meaningful or simple name for
an IDL type. The following IDL provides a simple example of using this
keyword:

// IDL
module finance {
interface account {

}i
typedef account standardAccount;
bi

The identifier standardAccount can act as an alias for type account in
subsequent IDL definitions. CORBA does not specify whether the identifiers
account and standardAccount represent distinct IDL data types in this example.

119



Orbix Programmer’s Guide Java Edition

Constants

IDL allows you to specify constant data values using one of several basic data
types. Refer to the IDL Reference in the Orbix Programmer’s Reference Java
Edition indicates which data types you can use to define constants.

To declare a constant, use the IDL keyword const, for example:

// IDL
module finance {
interface bank {
const long MaxAccounts = 10000;
const float factor = (10.0 - 6.5) * 3.91;

}s
}i

The value of an IDL constant cannot change. You can define a constant at any
level of scope in your IDL specification.

120



IDL to Java Mapping

This chapter describes Orbix Java's mapping of IDL to Java,
using the Orbix Java IDL to Java compiler. Orbix Java's
implementation of the IDL to Java mapping conforms with
version 1.1 of the standard OMG IDL/Java Language Mapping
speciﬁcation.l This chapter explains the rules used to convert
IDL definitions into Java source code, as well as how to use the
generated Java constructs.

An IDL definition is used to specify the interface for an object. This interface
must then be implemented using an appropriate programming language. To allow
implementation of interfaces in Orbix Java, the IDL specified interfaces are
mapped to Java, using the Orbix Java IDL to Java compiler. This compilation
produces a set of classes that allow the client to invoke operations on a remote
object as if it were located on the same machine.

This chapter is designed to illustrate the fundamentals of the IDL to Java
mapping, and to serve as a reference for more detailed technical information
required when writing applications.

1. The IDL/Java Language Mapping specification is available from the OMG web site at
http://www.omg.org

121



Orbix Programmer’s Guide Java Edition

Overview of IDL to Java Mapping

122

The principal elements of the IDL to Java mapping are outlined as follows:

Basic Types

Basic types in IDL are mapped to the most closely corresponding Java type. All
mapped basic types have holder classes that support parameter passing modes.
Refer to “Mapping for Basic Data Types” on page 124.

Mapping for Modules

An IDL module is mapped to a Java package of the same name. Scoped names are
used for types defined in interfaces within a module. Refer to “Mapping for
Modules” on page 126 for details.

Mapping for Interfaces and Operation Parameters

IDL interfaces are mapped to Java interfaces and classes that provide client-side
and server-side support. Provision is made for two approaches to interface
implementation: the T/IE and /Implbase approaches.

Attributes within IDL interfaces are mapped to a pair of overloaded methods
allowing the attribute value to be set and retrieved.

Operations within IDL interfaces are mapped to Java methods of the same name
in the corresponding Java interface.

Helper classes are generated by the IDL compiler. These contain a number of
static methods for type manipulation. Refer to “Helper Classes for Type
Manipulation” on page 130.

Holder classes are generated by the IDL compiler for all user-defined types to
implement parameter-passing modes in Java. Holder classes are needed because
IDL inout and out parameters do not map directly into the Java parameter-
passing mechanism. Holder classes for the basic types are available in the
org.omg.CORBA package. Refer to “Holder Classes and Parameter Passing” on
page 132.



IDL to Java Mapping

Mapping for Constructed Types

Constructed types map to a Java final class, containing methods and data
members appropriate to the mapped type. For a full description of mapping for
enum, struct, and union types, refer to “Mapping for Constructed Types” on
page 150.

Mapping for Strings

IDL strings, both bounded and unbounded, map to the Java type String. Orbix
Java performs bounds checking for String parameter values passed as bounded
strings to IDL operations. Refer to “Mapping for Strings” on page 156.

Mapping for Sequences and Arrays

IDL sequences, both bounded and unbounded, map to Java arrays of the same
name. Orbix Java performs bounds checking for bounded sequences. Helper and
holder classes are generated for mapped IDL sequences. Refer to “Mapping for
Sequences” on page 157.

IDL arrays map directly to Java arrays of the same name. Orbix Java performs the
bounds checking, because Java arrays are not bounded. Refer to “Mapping for
Arrays” on page 159.

Mapping for Fixed Types

IDL fixed types map to the Java java.math.BigDecimal class. Refer to
“Mapping for Fixed Types” on page 160.

Mapping for Constants

Constants map to public static final fields in a corresponding Java interface.
If the constant is not defined in an interface, the mapping first generates a public
interface with the same name as the constant. Refer to “Mapping for Constants”

on page 161.

123



Orbix Programmer’s Guide Java Edition

Mapping for Typedefs

Typedefs are mapped to the corresponding Java mapping for the original IDL
type. A helper class is generated for the declared type. The IDL to Java mapping
for constants and typedefs is described in “Mapping for Typedefs” on page 162.

Mapping for Exceptions

IDL standard system exceptions are mapped to Java final classes that extend
org.omg.CORBA. SystemException and provide access to IDL exception code.
IDL user-defined exception types map to a final class that derives from
org.omg.CORBA.UserException. User-defined exceptions have helper and
holder classes generated. Refer to “Mapping for Exception Types” on page 163.

Mapping for Basic Data Types

124

The IDL basic data types are mapped to corresponding Java types as shown in

Table 6.1.
IDL JAVA Exceptions
short short
long int
unsigned short short
unsigned long int
long long long

unsigned long long | long

float float
double double
char char CORBA: : DATA CONVERSION
wchar char CORBA: : DATA CONVERSION

Table: 6.1: Mapping for Basic Types



IDL to Java Mapping

IDL JAVA Exceptions

string java.lang.String CORBA: :MARSHAL
CORBA: : DATA CONVERSION

wstring java.lang.String CORBA: :MARSHAL
CORBA: : DATA CONVERSION

boolean boolean

octet byte

any org.omg.CORBA.Any

Table: 6.1: Mapping for Basic Types

You should note the following features of the IDL to Java mapping for basic

types:

Holder Classes for Parameter Passing

All IDL basic types have holder classes available in the org. omg.CORBA
package to provide support for the out and inout parameter-passing
modes. For more details on holder classes refer to “Holder Classes and
Parameter Passing” on page 132.

IDL Long Maps to Java Int
The 32-bit IDL long is mapped to the 32-bit Java int.
IDL Unsigned Types Map to Signed Java Types

Java does not support unsigned data types. All unsigned IDL types are
mapped to the corresponding signed Java types. You should ensure that
large unsigned IDL type values are handled correctly as negative integers
in Java.

IDL Chars and Java Chars

IDL chars are based on the 8-bit character set for ISO 8859.1. Java chars
come from the 16-bit UNICODE character set. Consequently, IDL chars
only represent a small subset of Java chars. On marshalling, if a char has
a value outside the range defined by the character set, a

CORBA: : DATA CONVERSION exception is thrown. The 16-bit IDL wchar
represents the full range of Java chars, and maps to the Java primitive type
char.

125



Orbix Programmer’s Guide Java Edition

e IDL Strings

IDL string types map to the Java type String. On marshalling, range
checking for characters and bounds checking of the string is performed.
Character range violations raise a CORBA: : DATA CONVERSION exception;
bounds violations raise a CORBA: : MARSHAL exception. IDL wstring types,
both bounded and unbounded, also map to the Java type String.

* Booleans

The IDL boolean type constants TRUE and FALSE map to the Java
boolean type literals true and false.

* Type any
The mapping for type any is described in full in “Type any” on page 341.

Mapping for Modules

An IDL module is mapped to a Java package of the same name. All IDL type
declarations within the module are mapped to a corresponding Java class or
interface declaration within the generated package. IDL declarations not enclosed
in any modules are mapped into the Java global scope. The use of modules is
recommended.

Scoped Names

126

All types defined within an IDL module are mapped within a Java package with
the same name as that module. For example, if an interface named bank is defined
inside the module IDLDemo, then the Java interface for bank is scoped as
IDLDemo .bank.

Similarly, any type defined inside an interface is scoped first by the module name,
if defined, and then by a package named <type>Package, where <type> is the
interface name. Therefore, if bank defines a structure called Details, the
corresponding class is scoped as IDLDemo .bankPackage.Details.

IDL types which are not defined inside either a module or an interface are not
included in a Java package. This creates the potential for naming collisions with
other globally defined Java types. To avoid the generation of such naming
collisions, always define your IDL within modules. Alternatively, use the -5p



IDL to Java Mapping

compiler option, which specifies a package prefix that is added to generated
types. This makes it possible to use globally defined IDL types within a package
scope.

Refer to the Orbix Administrator’s Guide Java Edition for more details on the use
of compiler options.

The CORBA Module

The objects and data types pre-defined in CORBA are logically defined within an
IDL module called corsa. IDL maps the CORBA module to a Java package
called org.omg.CORBA. In line with this mapping, the OMG keyword Object
maps to org.omg.CORBA.Object.

In Orbix Java, the org.omg.CORBA set of classes represents the OMG standard
abstract runtime. The actual implementation of the Orbix Java ORB resides in the
IE. Iona.OrbixWeb package.

Mapping for Interfaces

An IDL interface maps to a public Java interface of the same name, and a number
of other generated Java constructs. This discussion focuses on the client-side and
server-side mapping, and on helper and holder classes. These classes have roles
on both the client side and the server side.

IDL interface definitions are compiled by the IDL to Java compiler. The
following Java constructs are generated, where <type> represents a user-defined
interface name:

Generated Files Description Side

<type>.java Java Reference interface  client
_<type>Stub.java Java Stub class client
_<type>Skeleton. java Java Skeleton class server
_<type>ImplBase.java ImplBase class server
_tie <type>.java TIE class server

127



Orbix Programmer’s Guide Java Edition

_<type>Operations.java Java interface server

(used with TIE class)
<type>Helper. java Java Helper class client/server
<type>Holder. java Java Holder class client/server
<type>Package Java package. client/server

Note: The classes tie <type>.javaand <type>Operations.java are
specific to Orbix Java. To generate files defined by CORBA only, use the
-joMG IDL compiler switch.

This section uses the IDL interface account to show how an IDL interface is
mapped to Java:

// IDL
module bank demo({
interface account {
readonly attribute float balance;

void makeLodgement (in float sum);
void makeWithdrawal (in float sum);
I
I

Client Mapping

128

The Orbix Java client provides proxy functionality for the IDL interface. The IDL
compiler generates the following client-side Java constructs for each IDL
interface:

* Java Reference interface
® Java Stub class
® Java Helper class

® Java Holder class



IDL to Java Mapping

Java Reference Interface

A Java Reference Interface type has the naming format <type>.java. It defines
the client view of the IDL interface, listing the methods that a client can call on
objects that implement the IDL type. The interface extends the base
org.omg.CORBA.Object interface.

The following Java Reference interface for the IDL interface account illustrates
the Java mapping for IDL attributes and operations:

// Java generated by the Orbix Java IDL compiler

package bank demo;
public interface account
extends org.omg.CORBA.Object {
public float balance();
public void makeLodgement (float sum);
public void makeWithdrawal (float sum);

}

The read-only attribute balance maps to a single Java method, because there is
no requirement for setting its value.

The IDL operations makeLodgement and makeWithdrawal map to methods of the
same name in the corresponding Java interface.

Java Stub Class

The Java Stub class generated by the IDL compiler implements the Java interface
and provides the functionality to allow client invocations to be forwarded to the
server.This class has a naming format of <type>Stub.java. This generated
class is used internally by Orbix Java and you do not need to understand how it
works.

Java Helper classes and Java Holder classes are discussed in the following two
sections.

129



Orbix Programmer’s Guide Java Edition

Helper Classes for Type Manipulation

A Java Helper class is also generated by the Java mapping. Helper classes contain
methods that allow IDL types to be manipulated in various ways. The IDL-to-
Java compiler generates helper classes for all IDL user-defined types. The naming
format for helper classes is <type>Helper, where <type> is the name of an IDL
user-defined type.

Helper classes include methods that support insertion and extraction of the
account object into and from Java Any types. Interface Helper classes also have
static class methods for narrow () and bind (). The narrow () method takes an
org.omg.CORBA.Object type as an argument, and returns an object reference of
the same type as the class. The bind () 2 method may be used to create a proxy for
an object that implements the IDL interface. A proxy object is a client-side
representative for a remote object. Operations invoked on the proxy result in
requests being sent to the target object.

The following code illustrates the Java Helper class generated from the IDL
account interface:

// in file accountHelper.java

// Java generated by the Orbix Java IDL compiler
//

import org.omg.CORBA.Any;

import org.omg.CORBA.Object;

import org.omg.CORBA.TypeCode;

import org.omg.CORBA.portable.OutputStream;
import org.omg.CORBA.portable.InputStream;

public class accountHelper {
1 public static void insert (Any any, account value) {

}
public static account extract (org.omg.CORAny any) {

}

130

2. bind() is a feature specific to Orbix Java. If you wish to use only those features defined in the
CORBA specification, you should compile your IDL using the —jOMG switch.



IDL to Java Mapping

public static

}
public static

}
public static

}
public static

}
public static

}
public static

TypeCode type () {

String id () |

account read (InputStream stream) ({

void write (OutputStream stream, account value) {

final account bind(String markerServer) {

final account bind

(String markerServer, String host) {

public static

final account bind

(String markerServer, org.omg.CORBA.ORB orb) {

}
public static

final account bind

(String markerServer, String host, org.omg.CORBA.ORB orb) {

}
public static

account narrow (Object obj) {

These methods provided by helper classes are described as follows:

1. The insert(

) and extract () methods allow for IDL interface types to be

passed as a parameter of IDL type any. Refer to “Type any” on page 341
for more details.

2. The type () method returns a TypeCode for a specified interface.

TypeCodes allow runtime querying of type information for an Any type.
They can also be used for interrogating the Interface Repository.

131



Orbix Programmer’s Guide Java Edition

3. The id () method is used to retrieve the Repository ID for the object.

4. The read () and write () methods allow the type to be written to and from
a stream.

5. The bind () method provides an alternative to using the Naming Service,
and is a feature specific to Orbix Java.

The Naming Service is the preferred method for locating objects in
servers.

Using the Bind Method

A client wishing to use the IDL interface should bind an object of the Java
class type to the target implementation object in the server, assigning the
result to the Java Reference interface type.

For example, a client could bind to an account implementation object by
calling the bind () static method on the Java accountHelper class as
follows:

// Java

account aRef;

aRef = accountHelper.bind

(“accMarker:serverName”, hostname) ;

This returns a proxy object that can be accessed using the methods defined
in the account interface.

6. The narrow () method allows an interface to be safely cast to a derived
interface. For example, it allows an org . omg . CORBA. Object to be narrowed to
the object reference of a more specific type. For IDL-defined objects, you must
use narrow () rather than the normal Java cast operation. Failure of the
method raises a CORBA: :BAD PARAM exception.

Refer to “Mapping for Derived Interfaces” on page 145 for further
information on narrowing object references.

Holder Classes and Parameter Passing

132

IDL in parameters always map directly to the corresponding Java type. This
mapping is possible because in parameters are always passed by value, and Java
supports by-value passing of all types. Similarly, IDL return values always map
directly to the corresponding Java type.



IDL to Java Mapping

IDL inout and out parameters, however, must be passed by reference, because
they may be modified during an operation call, and do not map directly into the
Java parameter passing mechanism. In the IDL to Java mapping, IDL inout and
out parameters are mapped to Java Holder classes. Holder classes simulate
passing by reference. The client supplies an instance of the appropriate Java
holder class passed by value, for each IDL out or inout parameter. The contents
of the holder instance are modified by the call, and the client uses the contents
when the call returns.

There are two categories of holder classes:

* Holders for basic types.

* Holders for user-defined types.

Holders for Basic Types

Holder classes for basic Java types and the Java string type, are available in the
package org.omg.CORBA. The name format used is <type>Holder, where <type>
is the name of a basic Java type, with initial capital letter; for example,
IntHolder

An example of the implementation for IntHolder follows:

// Java
package org.omg.CORBA;
public class IntHolder ({
public int value;
public IntHolder () {}
public IntHolder (int wvalue) {
this.value = value;

}

1. The holder class stores an int value as a member variable.

2. The value can be initialized by the constructor and accessed directly. The
holder class simulates passing by reference to method invocations and so
facilitates the modification of an int, which would not be possible if the
int were passed directly.

133



Orbix Programmer’s Guide Java Edition

134

Holders for User-Defined Types

Holder classes for user-defined types, including IDL interface types, are
generated by the Java mapping. The name format is <type>Holder.For example,
given an IDL interface account, the following Holder class is generated:
// in file accountHolder.java
// Java generated by the Orbix Java IDL compiler
//
public final class accountHolder {

public account value;

public accountHolder() {};

public accountHolder (account value) {

this.value = value;

}

1. The holder class stores an account value as a member variable, which can
be initialized by the constructor and accessed directly.

Invoking an Operation using Holder Classes

When using holder classes to pass inout and out parameters, the following rules
apply:
® The client programmer must supply an instance of the appropriate holder
Java class that is passed, by value, for each IDL out or inout parameter.

The contents of the holder instance are modified by the call, and the client
then uses the contents after the call returns.

® For the inout parameter, the client must initialize the holder with a valid
value. The operation can examine the value supplied by the client and may
change the value if it wishes. The final value at the end of the operation
(changed or not) is returned to the client.

® For the out parameter, the client does not need to initialize the holder with
a value, because any value in the holder is ignored. The operation should
not use the initial value in the holder and must supply a valid value to be
returned to the client.



IDL to Java Mapping

To illustrate the use of holder types, consider the following IDL definition:
// IDL

void newAccount
(in string name, out account acc, out string accID)

The IDL compiler maps this operation to a method of Java interface bank as
follows:

// In package bank demo.bank,

public void newAccount (String name, bank demo.accountHolder acc,
org.omg.CORBA.StringHolder accID);

This method returns an object reference to the interface account and a string
value of a variable accID, which is an account number automatically generated
by the server object. Holder classes are generated for the out return values to
allow the server to pass back new values to the client.

The holder class accountHolder stores a value member variable of type
Account, which may be modified during the operation call.

// Java generated by the Orbix Java IDL compiler
// accountHolder.java
package bank demo
public final class accountHolder {
public bank demo.account value;
public accountHolder () {}
public accountHolder (bank demo.account value) {

}

1. The value variable is of type account.

2. wvalue can be initialized by a constructor and accessed directly. The
holder class simulates passing by reference to method calls and so allows
value to be changed. This would not be possible if value was passed
directly.

A client application can be coded as follows:

// Java
// In file javaclientl.java.

135



Orbix Programmer’s Guide Java Edition

import org.omg.CORBA.SystemException;

public class javaclientl{
public static void main (String args([]) {
bank bRef = null;
account aRef = null;
accountHolder aHolder = new accountHolder ();
float £ = (float) 0.0;

try {
// Bind to any bank object
// in BankSrv server.
bRef = bankHelper.bind ("BankMarker:BankSrv");

// Obtain a new bank account.
bRef.newAccount ("Joe", aHolder);

}

catch (SystemException se) {
System.out.println (

"Unexpected exception on bind");

System.out.println (se.toString ());
System.exit (1) ;

// Retrieve value from Holder object.
aRef = aHolder.value;

try {
// Invoke operations on account.
aRef.makeLodgement ((float)56.90);
f = aRef.balance () ;
System.out.println ("Current balance is + f);
}
catch (SystemException se) {
System.out.println (
"Unexpected exception"
+ " on makeLodgement or balance");
System.out.println (se.toString ());
System.exit (1) ;

136



IDL to Java Mapping

In the server, the implementation of method newAccount () receives the Holder
object for type account and may manipulate the value field as required. For
example, in this case the newAccount () method can instantiate a new account
implementation object as follows:

// Java
// In class bankImplementation.
public void newAccount
(String name,bank demo.accountHolder acc) {
accountImplementation accImpl =
new accountImplementation (0, name);

acc.value = new tie account
(accImpl, “Marker”);

Note:

If the account parameter is labelled inout in the IDL definition, the
value member of the Holder class must be instantiated before calling the
newAccount () operation.

Server Implementation Mapping

The Java mapping generates four classes to support server implementation in
Orbix Java. The following files are generated:

A Java Skeleton class, with the name format <type>Skeleton.java,
used internally by Orbix Java to dispatch incoming server requests to
implementation objects. You do not need to know the details of this class.

An abstract Java ImplBase class, with the name format
_<type>ImplBase.java, that allows server-side developers to implement
interfaces using the ImplBase approach.

A Java TIE class, with the name format tie <type>.java, that allows
server-side developers to implement interfaces using delegation (the TIE
approach3).

3. The TIE Approach is specific to Orbix Java. If you wish to use only those features defined in the
CORBA specification, you should compile the IDL using the —jOMG switch.

137



Orbix Programmer’s Guide Java Edition

* A Java Operations interface, with the name format <type>Operations,
that is used in the TIE approach to map the attributes and operations of the
IDL definition to Java methods. This class is specific to Orbix Java, and is
used to support implementation using the TIE approach.

Approaches to Interface Implementation

Orbix Java supports two approaches to the implementation of IDL interfaces in
Java applications:

® The ImplBase approach.
® The TIE approach.

This section discusses the Java types generated to enable each implementation
method.

Both approaches to interface implementation share the common requirement that
you must create a Java implementation class. This class must fully implement
methods corresponding to the attributes and operations of the IDL interface.

The ImplBase Approach

To support the ImplBase approach, the IDL compiler generates an abstract Java
class from each IDL interface definition. This abstract class is named by adding
ImplBase to the IDL interface name, prefixed by an underscore. For example,
the compiler generates class _accountImplBase from the definition of interface
account.

To implement an IDL interface using the ImplBase approach, you must create a
Java class that extends the corresponding ImplBase class and implements the
abstract methods.

For example, given the IDL definition for interface account, the compiler
generates the abstract class _accountImplBase as follows*:

138

4. In this code example, imports such as the marker and loader constructors are
specific to Orbix Java. To generate code that uses only those features defined in
the CORBA specification, compile the IDL using the —joMG switch.



IDL to Java Mapping

// Java generated by the Orbix Java IDL compiler
// _accountImplBase.Jjava
//
import IE.Iona.OrbixWeb.Features.LoaderClass;
public abstract class _accountImplBase

extends _accountSkeleton implements account {

public accountImplBase () {

}

public accountImplBase (String marker) {

}

public _accountImplBase (LoaderClass loader) {

}
public accountImplBase (String marker,
LoaderClass loader) {

}

A sample class, that implements the IDL interface account could contain code
similar to the following:

// Java Implementation Class

class accountImplementation
extends accountImplBase {

public accountImplementation () {

}
public float balance() {

}
public String get name ()

}

public void makelLodgement (float sum) {

139



Orbix Programmer’s Guide Java Edition

140

public void makeWithdrawal (float sum) {
}

}

Once the IDL interface has been implemented using the ImplBase approach, the
server application should simply instantiate one or more objects of the
implementation class. These objects can then handle client requests through the
IDL interface in question.

The TIE Approach

The IDL compiler generates a Java interface that defines the minimum set of
methods that you must supply in order to implement an IDL interface using the
TIE approach. The TIE approach is specific to Orbix Java. To use only those
features defined in the CORBA specification, compile your IDL with the -350MG
switch.

The name of this Java interface has the following format:
_<type>Operations

For example, given the IDL definition of type account, the IDL compiler
generates the Java interface _accountOperations as follows:

// Java generated by the Orbix Java IDL compiler

public interface accountOperations ({
public float balance();
public void makeLodgement (float sum);
public void makeWithdrawal (float sum)

}

To support the TIE approach to implementation, the IDL compiler generates a
non-abstract Java class from each IDL interface definition. This class is named by
appending the IDL interface name to the string tie . For example, the compiler
generates class _tie account from the definition of interface account:

// Java generated by the Orbix Java IDL compiler
// in file tie account.java

import IE.Iona.OrbixWeb. OrbixWeb;

import IE.Iona.OrbixWeb.Features.LoaderClass;



IDL to Java Mapping

public class tie account extends accountSkeleton
implements account {
public tie account( accountOperations impl) {

}
public tie account
(_accountOperations impl, String marker) {

}
public tie account
(_accountOperations impl, LoaderClass loader) {

}
public tie account
(_accountOperations impl, String marker,
LoaderClass loader) {

}
public float balance() {

}
public String get name ()

}

public void makeLodgement (float sum) {

}
public void makeWithdrawal (float sum) {

}
public java.lang.Object deref() {

}

}

When implementing an IDL interface using the TIE approach, the Java
implementation class must directly implement the Operations interface. Unlike
the ImplBase approach, the implementation class is not required to inherit from
any other Java class. The TIE approach is therefore the recommended approach

141



Orbix Programmer’s Guide Java Edition

142

for Java programming, because of Java’s restriction to single inheritance. Refer to
“Using and Implementing IDL Interfaces” on page 169 for a detailed discussion
of the TIE and ImplBase approaches.

The class account Implementation could be outlined using the TIE approach as
follows:

// Java generated by the Orbix Java IDL compiler
// in file accountImplementation.java
class accountImplementation implements accountOperations {

public accountImplementation() {}
public float balance () {

}

public float get name() {

public void makeLodgement (float sum) {

public void makeWithdrawal (float sum) {

}

When you have created an implementation class that implements the required
Operations interface, the server application should instantiate one or more
objects of this type. For each implementation object, the server should also
instantiate an object of the corresponding TIE class, passing the implementation
object as a parameter to the TIE constructor, as in the following example:

accountImpl = new accountImplementation (“Marker”) ;
account x = new tie account
(accountImpl, “Marker”);

Each TIE object stores a reference to a single implementation object. Client
operation invocations through the IDL interface are routed to the appropriate TIE
object, which then delegates the call to the appropriate method in its
implementation object.



IDL to Java Mapping

Object References

When an interface type is used in IDL, this denotes an object reference. For
example, consider the IDL operation newAccount () defined as follows:

// IDL
interface account;
interface bank {
account newAccount (in string name) ;

i

The return type of newAccount () is an object reference. An object reference
maps to a Java interface of the same name. This interface allows IDL operations
to be invoked on the object reference with normal Java method invocation syntax.
For example, the newAccount () operation could be invoked as follows:

// Java
bank b;
account a;

b = bankHelper.bind

(“BankMarker:bankServer,
hostname) ;

a = b.newAccount ("Chris");

a.makeLodgement ((float) 10.0);

The server implementation of operation newAccount () creates an account
implementation object, stores a reference to this object, and returns the object
reference to the client. For example, using the ImplBase approach and an
implementation class named accountImplementation, you could do the
following:

class bankImplementation
extends bankImplBase {

public account m_acc;

public bankImplementation () {
m acc=null;

}

public account newAccount (String name) {
account a = null;

143



Orbix Programmer’s Guide Java Edition

try |
a = new accountImplementation (0,name);

m acc = aj;
return a;

}
Similarly, you could use the TIE approach as follows:

class bankImplementation
implements bankOperations {

public account m_acc;

public bankImplementation () {
m_acc=null;

}

public account newAccount (String name) {
account a = null;

try {
a = new tie account(
new accountImplementation
(0, name), “Marker”);

}

m acc = a;

return a;

}

If the operation newAccount () returned the account object reference as an inout
or out parameter value, you must pass the generated class accountHolder to the
newAccount () Java method. accountHolder is a class that can contain an
account object reference value.

144



IDL to Java Mapping

Mapping for Derived Interfaces

This section describes the mapping for interfaces that inherit from other
interfaces. Additional details of this mapping are provided in “Using Inheritance
of IDL Interfaces” on page 235.

IDL interfaces support both single and multiple inheritance. On the client side,
the Orbix Java IDL compiler maps IDL interfaces to Java interfaces, which also
support single and multiple inheritance, and generates Java classes that
implement proxy functionality for these interfaces. Inherited interfaces in IDL are
mapped to extended interfaces in Java; the inheritance hierarchy of the Java
interfaces matches that of the original IDL interfaces.

Consider the following example:

// IDL

interface account {
readonly attribute float balance;
attribute String name;

void makeLodgement (in float sum);
void makeWithdrawal (in float sum);

}i

interface checkingAccount : account {
void overdraftLimit (in float limit);

}i
The corresponding Java interface for type checkingAccount is:

// Java generated by the Orbix Java IDL compiler

//

public interface checkingAccount extends account {
public void setOverdraftLimit (float limit) ;

}

The corresponding Java stub class implements all methods for both account and
checkingAccount. The generated class is as follows:

// Java generated by the Orbix Java IDL compiler
import org.omg.CORBA.portable.ObjectImpl;

public class checkingAccountStub
extends ObjectImpl implements checkingAccount {

145



Orbix Programmer’s Guide Java Edition

public checkingAccountStub () {}

public void overdraftLimit (float limit) {

public float balance () {

public float get name () {

public void makeLodgement (float sum) {

public void makeWithdrawal (float sum) {

public String[] _ids () {

}

As expected, Java code that you write that uses the checkingAccount interface
can call the inherited makeLodgement () method:

// Java

checkingAccount checkingAc;

// Code for binding checkinglAc {

checkingAc.makeLodgement ( (float) 90.97) ;

}

Assignments from a derived to a base class object reference are allowed, for
example:

// Java
account ac = checkingAc;

146



IDL to Java Mapping

Normal or cast assignments in the opposite direction—from a base class object
reference to a derived class object reference—are not generally allowed. Use the
narrow () method to bypass this restriction where it is safe to do so, as described
in “Narrowing Object References” on page 149.

On the server side, the IDL compiler generates a Java Operations interface for
each IDL interface. The generated Java interface defines the minimum set of
implementation methods required for the IDL interface when using the TIE
approach to implementation. The inheritance hierarchy of generated Operations
interfaces matches that of the original IDL interfaces.

To implement an IDL interface that derives from another, define an
implementation class that extends the ImplBase class for the required interface
and implements all the methods defined in the ImpIBase class.

For example, given the IDL definition of account and checkingAccount, a
checkingAccount implementation class appears as follows:

// Java
// In file checkingAccountImplementation.java.

import org.omg.CORBA.FloatHolder;

public class checkingAccountImplementation
extends checkingAccountImplBase {

public checkingAccountImplementation () {

}
public float balance () {

}
public float get name() {

}

public void makeLodgement (float sum) {

}
public void makeWithdrawal (float sum) {

147



Orbix Programmer’s Guide Java Edition

148

public void overdraftlLimit (float limit) {

}

Using the TIE approach, the implementation class should implement the
generated Operations interface for the relevant IDL type. The implementation
class must implement each method defined in the Operations interface and all
interfaces from which it inherits. However, you can achieve this using an
inheritance hierarchy of implementation classes, because the TIE approach,
unlike the ImplBase approach, imposes no implicit inheritance requirements on
such classes.

For example, if the IDL type account is implemented by class
accountImplementation, using the TIE approach, you can implement IDL
interface checkingAccount with type checkingAccountImplementation as
follows:

// Java
// In file checkingAccountImplementation.java

public class checkingAccountImplementation
extends accountImplementation,
implements checkingAccountOperations {

public checkingAccountImplementation() {}

public void overdraftLimit (float limit) {



IDL to Java Mapping

Narrowing Object References

In the checkingAccount example, if you know that a reference of type account
actually references an object that implements interface checkingAccount, you
can narrow the object reference to a checkingAccount reference.

To narrow an object reference, use the narrow () method, defined as a static
method in each generated Interface helper class.

// Java Generated by Orbix Java IDL Compiler
import org.omg.CORBA.Object;
public class checkingAccountHelper {

public static final checkingAccount narrow (Object
src) |

}
You can call the narrowed object reference as follows:

// Java
account ay;

a = getCheckingAccountObject () ;
checkingAccount c;

// Narrow a to be a checkingAccount.
c = checkingAccountHelper.narrow(a) ;

If the parameter passed to THelper.narrow () is not of class T or one of its
derived classes, T.narrow () raises the CORBA.BAD PARAM exception.

149



Orbix Programmer’s Guide Java Edition

Mapping for Constructed Types

Enums

150

The following sections describe the IDL to Java mapping for the enum, struct
and union constructed types.

An enum declaration creates a correspondence between a set of integer values and
a set of named values.

The following IDL definition illustrates an enum construct:

//IDL
enum Fruit { apple, orange};

An enum is mapped to Java according to the rules described for the mapping of
the enum Fruit in the following example.

// Java generated by the Orbix Java IDL compiler

public final class Fruit {
public static final int apple = 0;
public static final Fruit apple = new Fruit( apple);
public static final int orange = 1;
public static final Fruit orange = new Fruit( orange);
public int value () {

}

public static Fruit from int (int value) {

The IDL enum called Fruit maps to a Java final class of the same name.

2. The enum values map to a static final member variable, prefixed by an
underscore (_), for example, apple = 0; these underscored values can
be used in switch statements and also to represent enums as integers.

3. Each value in the enum object also maps to a public static final
member variable with the same name as the value.

4. The value () method retrieves the integer value associated with each value
of the enum. The integer values are assigned sequentially, beginning with
0.



IDL to Java Mapping

Structs

5. The from int () method returns the value enum object from a specified
integer value.

A holder class is also generated for enums, in this case FruitHolder.

Because only a single instance of an enum value object exists, the default
java.lang.Object implementation of equals () and hash() can be used on
objects associated with the enum.

A struct type allows you to form an aggregate structure of variables, which may
be of the same or different types.

Consider the struct in the following IDL definition:

// IDL
interface Clock {
struct Time {
short hour;
short minute;
short second;

}i

void updateTime (in Time current);
void currentTime (out Time current);
}i

The rules by which an IDL struct is mapped to Java are illustrated in the Java
mapping for the Time struct.

The IDL to Java compiler maps the Time structure as follows:

// Java generated by the Orbix Java IDL compiler
// Time.java
package ClockPackage;
public final class Time {
public short hour;
public short minute;
public short second;

151



Orbix Programmer’s Guide Java Edition

152

public Time () {}
public Time (short hour, short minute,
short second) {

1. The IDL struct called Time maps to a final Java class of the same
name.

2. The Time class contains one instance variable for each field
(hour, minute, second) in the structure.

3. There are two constructors (in this case, Time) for the structure class: the
first, Time (), takes no arguments, and initializes all fields in the structure
to null or zero.

4. The second constructor takes the fields in the structure as arguments
Time (short hour, short minute, short second), and initializes the
structure.

The interface Clock maps to the Java Reference interface Clock as follows:

// Java generated by the Orbix Java IDL compiler
// Clock.java
import org.omg.CORBA.Object;
import ClockPackage.Time;
import ClockPackage.TimeHolder;
public interface Clock extends Object {
public void updateTime (Time current);
public void currentTime (TimeHolder current) ;

AWN =

}

1. Holder classes are generated for all struct types, with the name format
<type>Holder, where <type> is the name of the struct, in this case
Time.

2. The operations map to public Java methods of the same name, the in
parameter mapping directly to the corresponding Java type Time.

3. The out parameter is mapped to a TimeHolder type to allow the values to
be passed correctly.



IDL to Java Mapping

Unions

IDL supports discriminated unions. A discriminated union consists of a
discriminator and a value: the discriminator indicates what type the value holds.

Note: Union types do not exist in Java, you should therefore only use the union
mapping to support legacy IDL that already makes use of unions.

Consider the following example:

//IDL for account

//example of a discriminated Union
interface account {};

interface currentAccount : account {};
interface depositAccount : account {};

1 union accountType switch (short)

{
case 1: currentAccount curAcc;
case 2: depositAccount depacc;
default: account genAcc;

bi

1. Here, in the union accountType, the switch discriminator indicates
which case label value is being held.

The IDL discriminated union defined above maps to Java as follows:
// Java generated by the Orbix Java IDL compiler
public final class accountType {

public accountType () {}
public short discriminator () {

N =

}

3 public currentAccount curAcc() {

}

4 public void curAcc (currentAccount value) {

153



Orbix Programmer’s Guide Java Edition

5 public void curAcc (currentAccount value,
short discriminator) {

public depositAccount depacc() {

public void depacc (depositAccount value) {

public void depacc (depositAccount value,
short discriminator)

public account genAcc() {

public void genAcc (account value) {

{

public void genAcc (account value, short discriminator) {

1. The union accountType maps to a public final class of the same name,
with a corresponding default constructor, accountType () .

2. The value returned by the discriminator () method indicates which
variable in the union currently stores a value. You should check the value
returned by this method to determine which accessor method should be

used.

3. For each variable in the union, there is a corresponding accessor method of

the same name (curAcc () , depAcc and the default

genAcc) that retrieves

the value held in the variable. The accessor method used in the application
code is determined by the value returned by the discriminator ()

method.

4. The modifier methods for each variable in the union are used to
automatically set the value for the discriminator () method.

5. An additional modifier method is available to set the value of variables for

use in situations where more than one case label is

used. Only one case

label is used in this example, so this method is not relevant here.

154



IDL to Java Mapping

In rare cases, where a variable has more than one corresponding case label, the
simple modifier method for that variable sets the discriminator to the value of the
first case label. The secondary modifier method allows an explicit discriminator
value to be passed, which may be necessary if a variable has more than one case
label. When the value of a variable corresponds to the default case label, the
modifier method sets the discriminant to a unique value, distinct from other case
label values.

Note: If you pass a bad discriminator value, the secondary modifier throws an
exception.

The following code shows how to assign a depositAccount:

// Java
1 depositAccount dep;
2 accountType accType = new accountType () ;
3 accType.depAcc (dep, (short)?2);

// Java

currentAccount cur;
depositAccount dep;
account acc;

4 switch (accType.discriminator ()) {
case 1: cur = accType.curAcc ();
break;
case 2: dep = accType.depAcc ();
break;

default: acc = accType.genAcc ();
}
Create a new depositAccount object.

Create an instance of the union type.

Pass the value for depositAccount using the modifier method.

WD =

Invoke the discriminator () method to retrieve the active value in the
union.

155



Orbix Programmer’s Guide Java Edition

Mapping for Strings

156

IDL bounded and unbounded strings map to the Java type java.lang.String.
As a Java String is fundamentally unbounded, Orbix Java checks the range of
String parameter values passed as bounded strings to IDL operations. If the
actual string length is greater than the bound value, the org.omg.CORBA . MARSHAL
exception is thrown.

The IDL type wstring, which can represent the full range of UNICODE
characters, also maps to the Java type string.Range violations for the IDL
string types raise CORBA: : DATA CONVERSION and CORBA: :MARSHAL exceptions.

IDL string parameters defined as inout or out map to Java method parameters
of type org.omg.CORBA.StringHolder. This Holder class contains a Java
String value, which you can update during the operation invocation.

Consider the following IDL definition:

// IDL

interface Customer {
void setCustomerName (in string name);
void getCustomerName (out string name);

i
This maps to the following Java Reference interface:

// Java generated by the Orbix Java IDL compiler
import org.omg.CORBA.Object;
import org.omg.CORBA.StringHolder;

public interface Customer extends Object {
1 public void setCustomerName (String name) ;
2 public void getCustomerName (StringHolder name) ;

}i

IDL operations are mapped to Java methods of the same name.

2. IDL out parameters are mapped to StringHolder types to allow
parameter passing.

The StringHolder class available in the org.omg.CORBA package is as follows:

// Java
package org.omg.CORBA;



IDL to Java Mapping

public class StringHolder ({
public String value;

public StringHolder () {}

public StringHolder (String value) {
this.value = value;

}

The following code demonstrates how a client application could invoke the IDL
operations defined in the Customer interface:

// Java

Customer cRef;

String inName = "Chris";

String outName;

StringHolder outNameHolder = new StringHolder();

// Here, cRef is set to reference a
// Customer (code omitted).

cRef.setCustomerName (inName) ;
cRef.getCustomerName (outNameHolder)
outName = outNameHolder.value;

The server programmer receives the StringHolder variable as a parameter to the
implementation method and simply assigns the required string to the value field.

Mapping for Sequences

IDL bounded and unbounded sequences are mapped to Java arrays of the same
name. In the case of bounded sequences, Orbix Java performs bounds checking
on the mapped array during any operation invocations. This check ensures that
the array length is less than the maximum length specified for the bounded
sequence. A CORBA: :MARSHAL exception is raised when the length of a bounded
sequence is greater than the maximum length specified in the IDL definition.

Both holder and helper classes are generated for each of these sequence types.

The following IDL definition provides an example of declaring IDL sequences:

157



Orbix Programmer’s Guide Java Edition

a b wWON -

158

// IDL
module finance {
interface account {
attribute string Name;
attribute float AccNumber;
}i

struct limitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<account, 50> accounts;

}i

struct unlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<account> accounts;
}i
}i

Given the preceding example, the IDL compiler produces the following generated
classes; one for the bounded sequence, and another for the unbounded sequence:

// Java generated by the Orbix Java IDL compiler
// Bounded sequence
package Finance;

public final class limitedAccounts {
public String bankSortCode;
public account[] accounts;
public limitedAccounts () {}
public limitedAccounts (String bankSortCode,
account[] accounts) {

1. AnIDL struct maps to a Java public final class of the same name (in
this case, 1imitedAccounts).



IDL to Java Mapping

2. The string type is mapped to a Java member variable of type String.

3. The bounded sequence account is mapped to a Java array of the same
name.

4. The struct has two constructors; the first of which is a null constructor.

5. The second constructor initializes the public member variables,
bankSortCode and the account array.

Unbounded sequences are mapped in the same way as bounded sequences.
However, bounds checking is not performed on the mapped array during
operation invocations.

Mapping for Arrays

IDL arrays map directly to Java arrays. However, Java arrays are not bounded;
therefore, Orbix Java explicitly checks the bound of an array when an operation is
called with the array as an argument.

Arrays are fixed-length objects, so a CORBA: : MARSHAL exception is thrown if the
length of an array is not equal to the length specified in the IDL file. The length of
the array can be made available in Java by bounding the array with an IDL
constant, which is mapped according to the rules specified for constants.

A holder class for the array is also generated, with the format <array
name>Holder.

As a simple example, consider the following IDL definition for an array:

// IDL
typedef short BankCode[3];

interface Branch {
attribute string location;
attribute BankCode code;
bi

This maps to:

// Java generated by the Orbix Java IDL compiler
// in file Branch.java
import org.omg.CORBA.Object;

159



Orbix Programmer’s Guide Java Edition

public interface Branch extends Object {
public String location();
public void location (String value);
public short[] code();
public void code (short[] wvalue);

Mapping for Fixed Types

The IDL fixed type maps to the Java class java.math.BigDecimal. The way IDL
fixed types map to Java depends on whether or not they are declared within an
IDL interface.

Fixed Types Declared outside an IDL Interface
The following sample IDL shows a fixed type declared outside an IDL interface:

// IDL
const fixed myFixed = 9999.99;
typedef fixed<6, 2> fixedIn;

The const myFixed is mapped to a single Java file called myFixed.java. This
creates a java.math.BigDecimal called value, which is initialized to 9999.99

The typedef fixedIn is mapped to a <name>Helper file and a <name>Holder
file, as is normal for other typedef types.

Fixed Types Declared within an IDL Interface
The following sample IDL shows a fixed type declared within an IDL interface:

// IDL
interface exchangeRate(
const fixed myFixed = 9999.99;
typedef fixed<6, 2> fixedIn;
}i

160



IDL to Java Mapping

The const myFixed is handled in a file named exchangeRate.java (the
<interface name>.java file). The typedef Helper and Holder files are in a Java
package directory as usual.

Refer to “Fixed Types” on page 117 for more details of this IDL type.

Mapping for Constants

The way IDL constants map to Java depends on whether or not they are declared
within an IDL interface.

Constants Defined within an IDL Interface

An IDL constant defined within an interface maps to a public static final
member of the corresponding Java Reference interface generated by the IDL to
Java compiler.

For example, consider the following IDL:

// IDL
interface ConstDefIntf {
const short MaxLen = 4;

i

This maps to the following Java class:

// Java generated by the Orbix Java IDL compiler
// in file ConstDeflInt.java
import org.omg.CORBA.Object;

public interface ConstDefIntf extends Object {
public static final short MaxLen = 4;

}

You can then access the constant by scoping with the Java class name, for
example:

// Java
short len = ConstDefIntf.MaxLen;

161



Orbix Programmer’s Guide Java Edition

Constants Declared outside an IDL Interface

Those constants that are declared outside an IDL interface are mapped to a
public interface with the same name as the constant and containing a public
static final field named value. The value field holds the value of the
constant. Because these Java classes are only required at compile time, the Java
compiler normally inlines the value when the classes are used in other Java code.

Consider the following IDL:

// IDL
module ExampleModule {
const short MaxLen = 4;

}i
This maps to the following Java class:

// Java generated by the Orbix Java IDL compiler
package ExampleModule;

public interface MaxLen {
public static final short value = 4;

}

You can then access the constant by scoping with the Java interface name, for
example:

// Java
short len = ExampleModule.MaxLen.value;

Mapping for Typedefs

162

Java has no language construct equivalent to the IDL typedef statement. The
Java mapping resolves the typedef to the corresponding base IDL type, and
maps this base type according to the IDL Java mapping. A Helper class for the
declared type is also produced. If the type is a sequence or array, Holder classes
are also generated for the declared types.

All distinct IDL types, including those declared as typedefs, require a unique
Repository ID within the Interface Repository. For this reason, Helper classes for
the types declared as typedefs are automatically generated with the format:

<declared Type>Helper



IDL to Java Mapping

For example, consider the following typedef declaration:

// IDL

struct CustomerDetails {
string Name;
string Address;

i

typedef CustomerDetails BankCustomer;

The CustomerDetails structure maps to a Java class as described in “Mapping

for Constants” on page 161. The typedef statement results in an additional
BankCustomerHelper class.

Mapping for Exception Types

CORBA defines two categories of exception type:

¢ IDL standard system exceptions.

¢ IDL user-defined exceptions.

System Exceptions

IDL standard system exceptions are mapped to final Java classes that extend
org.omg.CORBA. SystemException. These classes provide access to the IDL
major and minor exception code, as well as a string describing the reason for the
exception. IDL system exceptions are unchecked exceptions. This is because the
class org.omg.CORBA. SystemException is derived from
java.lang.Runtime.Exception.

For further information on the mapping of IDL System Exceptions to Java, refer
to the Orbix Programmer’s Reference Java Edition.

User-Defined Exceptions

An IDL user-defined exception type maps to a final Java class that derives from
org.omg.CORBA.UserException, which in turn derives from
java.lang.Exception. Helper and Holder classes are also generated. IDL user-
defined exceptions are checked exceptions.

163



Orbix Programmer’s Guide Java Edition

164

If the exception is defined within an IDL interface, its Java class name is defined
within the interface package called <interface name>Package. Where a module
has been defined, the Java class name is defined within the scope of the Java
package corresponding to the IDL module enclosing the exception.

Consider the following IDL user-defined exception:

//IDL
module Exceptions {
interface Illegal {
exception reject {
string reason;
short s;
}i
}i
}i
The reject exception maps as follows:

// Java generated by the Orbix Java IDL compiler
// in file reject.java
import org.omg.CORBA.UserException;

public final class reject extends UserException {
public String reason;
public short s;
public reject () {

}

public reject (String reason, short s) {

}

The mapping of the reject exception illustrates the rules used by the IDL-to-
Java compiler when mapping exception types. The reject exception maps to the
final class reject, which extends org.omg.CORBA.UserException.
Instance variables for the fields reason and s, defined in the exception, are also
provided. There are two constructors in the mapped exception: reject () is the
default constructor and the reject (String reason, short s) constructor
initializes each exception member to the given value.



IDL to Java Mapping

Now consider an interface with an operation that can raise a reject IDL
exception:

// IDL
interface bank {
exception reject {

}i

account newAccount () raises (reject);

}i

A server can throw a bankPackage.reject exception in exactly the same way as
a standard Java exception.

An Orbix Java client can test for such an exception when invoking the
newAccount () operation as follows:

// Java
bank b;
account a;

try {
a = b.newAccount ();
}
catch (bankPackage.reject rejectEx) {
system.out.println ("newAccount () failed");
system.out.println ("reason for failure = " +
rejectEx.reason) ;

}

Orbix Java exception handling is described in detail in “Exception Handling” on
page 223.

165



Orbix Programmer’s Guide Java Edition

Naming Conventions

166

IDL identifiers are mapped to an identifier of the same name in Java. There are,
however, certain names that are reserved by the Java mapping. When these occur
within IDL definitions, the mapping uses a prefixed underscore () to distinguish
the mapped identifier from a reserved name.

Reserved names in Java include the following:

Java keywords.

If an IDL definition contains an identifier that exactly matches a Java
keyword, the identifier is mapped to the name of the identifier preceded by
¢ 7 as follows:

_<keyword>

Refer to the Java Language Specification for more details about Java
keywords.

The Java class <type>Helper, where <type> is the name of an IDL user-
defined type.

The Java class <type>Holder, where <type> is the name of an IDL user-
defined type.

When a typedef alias is used, the resulting Java class has the format
<alias>Holder.

The Java classes <basicJavaType>Holder, where <basicJdavaType>
represents a Java basic type to which an IDL basic type is mapped.
Refer to Table 6.1 on page 124 for details of these types.

The Java package name <interface>Package, where <interface> is the
name of an already-defined IDL interface.



IDL to Java Mapping

Parameter Passing Modes and Return Types

Table 6.2 shows the mapping for the IDL parameter passing modes and return
types. Refer to “Holder Classes and Parameter Passing” on page 132 for more
details. All type that are not user-defined Holders are in org.omg.CORBA.

IDL Type In Inout Out Return
Basic Types

short short ShortHolder ShortHolder short
long int IntHolder IntHolder int
unsigned short short ShortHolder ShortHolder short
unsigned long int IntHolder IntHolder int
long long long LongHolder LongHolder long
unsigned long long LongHolder LongHolder long
long

float float FloatHolder FloatHolder float
double double DoubleHolder DoubleHolder double
boolean boolean BooleanHolder BooleanHolder boolean
char char CharHolder CharHolder char
wchar char WcharHolder WcharHolder char
octet byte ByteHolder ByteHolder byte
any Any AnyHolder AnyHolder Any
IDL User-Defined Types

enum <type> <type>Holder <type>Holder <type>
struct <type> <type>Holder <type>Holder <Qype>
union <type> <type>Holder <type>Holder <type>

Table: 6.2: Mapping for Parameters and Return Values

167




Orbix Programmer’s Guide Java Edition

IDL Type In Inout Out Return
string String StringHolder StringHolder String
wstring String WstringHolder WstringHolder String
sequence array <type>Holder <type>Holder array

array array <type>Holder <type>Holder array
Pseudo-IDL Types

NamedValue NamedValue NamedValueHolder NamedValueHolder NamedValue
TypeCode TypeCode TypeCodeHolder TypeCodeHolder TypeCode
object reference <type> <type>Holder <type>Holder <type>

168

Table: 6.2: Mapping for Parameters and Return Values




Using and Implementing IDL
Interfaces

This chapter describes how servers can create objects that
implement IDL interfaces, and explains how clients can access
these objects through IDL interfaces. It shows how to use and
implement CORBA objects through a detailed description of the
banking application introduced in Chapter 3, “Developing
Applications with Orbix Java ™.

Overview of an Example Application

In the banking example, an Orbix Java server creates a single distributed object
that represents a bank. This object manages other distributed objects that
represent customer accounts at the bank.

A client contacts the server by getting a reference to the bank object. This client
then calls operations on the bank object, instructing the bank to create new
accounts for specified customers. The bank object creates account objects in
response to these requests and returns them to the client. The client can then call
operations on these new account objects.

This application design, where one type of distributed object acts as a factory for
creating another type of distributed object, is very common in CORBA.

169



Orbix Programmer’s Guide Java Edition

The source code for the example described in this chapter is available in the
demos\BankSimpleTie directory of your Orbix Java installation.

Overview of the Programming Steps

The programming steps are outlined as follows:

NSk =

8.

Define the IDL interfaces to the application objects.

Compile the IDL using the IDL-to-Java compiler.

Implement the IDL interfaces.

Write a server application that creates implementation objects.
Write a client application that accesses implementation objects.
Run an Orbix Java daemon process.

Register the server in the Implementation Repository.

Run the client.

Subsequent chapters add further functionality to the IDL interfaces defined in this
chapter; for example, user-defined exceptions and inheritance. At this stage, the
basic interfaces are sufficient to illustrate the main points.

Defining IDL Interfaces to Application Objects

This example uses two IDL interfaces: an interface for the bank object created by
the server, and an interface that allows clients to access the account objects
created by the bank.

The IDL interfaces are defined as follows:

170

// IDL
// In BankSimple.idl

module BankSimpleTie {

typedef float CashAmount;
interface Account; // forward reference



Using and Implementing IDL Interfaces

// A factory for Bank accounts.
interface Bank {
// Create new account with specified name.
Account create account (in string name);
// Find the specified account.
Account find account (in string name);

}i

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount) ;
void withdraw (in CashAmount amount) ;

bi
bi
In this example, the server creates a Bank object that accepts operation calls such
as create account () from clients. The operation create account () instructs
the Bank object to create a new Account object in the server. The operation
find account () instructs the Bank object to find an existing Account object.

All of the objects (both Bank and Account objects) are created in a single server
process. A real system could use several different servers and many server
processes.

Compiling IDL Interfaces

It is assumed that the BankSimple.id1l source file is compiled using the
following IDL compiler command:

idlj -jP Demos BankSimple.idl

Refer to “IDL to Java Mapping” on page 91 for more details on the classes
generated by the IDL to Java compiler.

171



Orbix Programmer’s Guide Java Edition

Implementing the IDL Interfaces

Orbix Java supports two mechanisms for relating an implementation class to its
IDL interface:

®* The ImplBase approach
® The TIE approach

The TIE approach is preferred for the majority of implementations in Java. This is
due to the restriction of single inheritance of classes in Java, which limits the
ImplBase approach. However, both approaches can be used in the same server, if
required.

This section briefly describes how you can implement an interface using both of
these approaches. Refer to “Comparison of the ImplBase and TIE Approaches”
on page 198 for more details.

Note: The choice of implementation method in an Orbix Java server does not
affect the coding of client applications.

The TIE Approach to Implementing Interfaces

172

The TIE approach to defining an implementation class is shown in Figure 7.1 on
page 173.

Using the TIE approach, you can implement the IDL operations and attributes in a
class that does not inherit from the automatically generated ImplBase class.
Instead, use the automatically generated Java TIE class to tie together the
implementation class and the IDL interface.

The IDL compiler generates a Java TIE class for each IDL interface. The name of
the Java TIE class takes the form of tie prefixed to the name of the interface.
For example, the IDL compiler generates the TIE class _tie Account for the
IDL interface type Account. An object that implements the IDL interface is
passed as a parameter to the TIE class constructor.



Using and Implementing IDL Interfaces

Account (IDL interface)

l

IDL Compiler » AccountOperations
(Java interface
that defines
implementation)
—» Account (Java interface)
implements A implements
\

_tie Account (Java class)
I

[
| references

|
\

AccountImplementation

(Java class that you write to
implement interface Account)

Figure 7.1: The TIE Approach to Defining an Implementation Class

To use the TIE approach you must define a new class, AccountImplementation,
which implements the operations and attributes defined in the IDL interface. This
class need not inherit from any automatically generated class; however, it must
implement the Java interface AccountOperations.

173



Orbix Programmer’s Guide Java Edition

Instantiating TIE Objects

To instantiate an object of type tie Account, pass an object of type
AccountImplementation to the TIE class constructor; in this case,
_tie Account().

A TIE object is thus created that delegates incoming operation invocations to the
methods of your AccountImplementation object.

Interface AccountOperations generated by the IDL compiler is as follows:

// Java generated by the Orbix Java IDL compiler.
package Demos.BankSimpleTie;

public interface AccountOperations {
public String name();
public float balance();
public void deposit (float amount) ;
public void withdraw (float amount) ;

The ImplBase Approach to Implementing Interfaces

174

For each IDL interface, Orbix Java also generates an abstract Java class named
_<type>ImplBase, where <type> represents the name of a user-defined IDL
interface. For example, the class AccountImplBase is generated for the IDL
interface Account. To indicate that a Java class implements a given IDL interface,
that class should inherit from the corresponding ImplBase class. This approach is
termed the Imp/Base Approach, and is the implementation method defined by the
CORBA specification.

Because each ImplBase class is the Java equivalent of an IDL interface, a class
that inherits from this implements the operations of the corresponding IDL
interface. To support the use of the ImplBase approach, the Orbix Java IDL
compiler produces the Java interface Account and the Java class
_AccountImplBase



Using and Implementing IDL Interfaces

Figure 7.2 shows the ImplBase approach to implementing IDL interfaces for the
Account interface.

Account (IDL interface)

IDL Compiler » Account (Java Interface)

implements
_AccountImplBase (Java class)

implements

AccountImplementation (Java class that you write to
implement the interface Account)

Figure 7.2: The ImplBase Approach to Defining an Implementation Class

This chapter gives an overview of the ImplBase approach. Throughout the rest of
this guide, the TIE approach to implementing IDL interfaces is used. The TIE
approach is the method of choice for the majority of Java applications.

175



Orbix Programmer’s Guide Java Edition

Developing the Server Application

In this section, the banking example is used to illustrate both the TIE and
ImplBase approaches. The error handling necessary for a full banking application
has been omitted; for example, checking if the account is overdrawn. Refer to
“Exception Handling” on page 223 for details.

The following Java classes are used to implement the Bank and Account IDL
interfaces:

AccountImplementation Implements the Account IDL interface.

BankImplementation Implements the Bank IDL interface.

Implementing the Bank Interface

176

This section implements the Bank IDL interface using both the TIE and ImplBase
approaches.

Using the TIE Approach

With the TIE approach, an implementation class does not have to inherit from any
particular base class. Instead, the implementation class must implement the Java
Operations interface generated by the IDL compiler.

You must notify Orbix Java that this class implements the IDL interface by
creating an object of the TIE class, which is also generated by the IDL compiler.

Using the TIE approach, you can write the code for the Bank implementation
class as follows:

// Java
// In file BankImplementation.java.
package Demos.BankSimpleTie;

import IE.Iona.OrbixWeb. OrbixWeb;
import org.omg.CORBA.ORB;

import org.omg.CORBA.SystemException;
import java.util.*;

public class BankImplementation
implements BankOperations ({



Using and Implementing IDL Interfaces

// Constructor for Bank implementation object.
public BankImplementation (org.omg.CORBA.ORB Orb) {
m orb = Orb;
m list = new Hashtable();

// Implementation for IDL operation create account ()
public Account create account (String name) {
Account m _account = null;

AccountImplementation m_account impl = null;

if ( m list.get ( name ) != null ) {
System.out.println ( "- Account for " + name + "

already exists, " + "finding details." );

return find account ( name );

}

System.out.println ( "- Creating new account for "

+ name + "." );

// Create a new account.

try {

m_account impl = new AccountImplementation
(name, 0.0F);
m account = new tie Account
(m_account impl, "“Marker”);

m_orb.connect ( m _account );

}

catch ( SystemException se ) {
System.out.println ( "[ Exception raised when

creating Account. 1" );

// Add account to table
m_list.put ( name, m account );
return m_account;

// Implementation for IDL operation find account().
public Account find account (String name) {

Account m acc = null;

m acc = (Account) m_list.get (name) ;

177



Orbix Programmer’s Guide Java Edition

178

if ( m_acc == null ) {
// account not in table.
System.out.println ("- Unable to find Account
for " + name + ".");

}

return m_acc;

// Reference to the ORB.
private org.omg.CORBA.ORB m orb = null;

// Table of accounts.
private Hashtable m list;

}
The BankImplementation class implements the BankOperations Java interface
generated by the IDL compiler.
The IDL-defined method create account () creates an
AccountImplementation object and then passes this object to the TIE class
constructor, tie Account (). The create account () method returns an object
that implements Java interface Account. This IDL-generated type defines the
client view of the IDL interface Account.

Using the ImplBase Approach

Using this approach, you must indicate that a Java class implements a specific
IDL interface by inheriting from the corresponding ImplBase class generated by
the IDL compiler. You can write the ImplBase code for the Bank implementation
class as follows:

// Java
// In file BankImplementation.java.

package Demos.BankSimpleImplBase;
import IE.Iona.OrbixWeb. OrbixWeb;

public class BankImplementation
extends BankImplBase {



Using and Implementing IDL Interfaces

// Constructor for Bank implementation object.
public BankImplementation (ORB Orb) {

// Same as for the TIE approach.
}

// Implementation for IDL operation create account() .
public Account create account (String name) {
Account m account = null;

// Create a new account
try {
m _account = new AccountImplementation
(name, 0.0F);
m orb.connect ( m account );

}
catch ( SystemException se ) {
System.out.println ( "[ Exception raised when
creating Account. 1" );

}

The BankImplementation class inherits the BankImplBase Java class
generated by the IDL compiler.

The IDL-defined method create account () creates an
AccountImplementation object and returns an object that implements Java
interface Account.

Implementing the Account Interface

This section implements the Account IDL interface using both TIE and ImplBase
examples.

Using the TIE Approach

When using the TIE approach, your account class implementation must
implement the AccountOperations interface generated by the IDL compiler.

179



Orbix Programmer’s Guide Java Edition

The AccountImplementation class is coded as follows:

// Java

// In file AccountImplementation.java.

package Demos.BankSimpleTie;

public class AccountImplementation

180

implements AccountOperations ({

public AccountImplementation (String name, float bal) {

this.m name = name;
m balance=bal;
System.out.println ("- Creating account for " +
m name + ". Initial " + "balance of £" + bal );

// Implementation for IDL name attribute.
public String name () {
return m name;

// Implementation for IDL balance attribute.
public float balance () {
return m balance;

// Implementation for IDL operation deposit().
public void deposit (float amount) {
System.out.println ( "- Depositing £" + amount +
into " + m name + "'s account" );
m balance += amount;

// implementation for IDL operation withdraw() .
public void withdraw (float amount) {

System.out.println ("- Withdrawing £" + amount + "
from " + m name + "'s account" );
m balance -= amount;

// Account user's name.
private String m name = null;

"



Using and Implementing IDL Interfaces

// Account user's balance
private float m balance = 0.0F;

Using the ImplBase Approach

When using the TIE approach, your account class implementation must inherit
the AccountImplBase class generated by the IDL compiler. The
AccountImplementation class is coded as follows:

// Java
// In file AccountImplementation.java.

package Demos.BankSimpleImplBase;

public class AccountImplementation
extends AccountImplBase {

}

This class is identical, in every other respect, to the AccountImplementation
class used for the TIE approach.

Writing the Server

This section shows the code for the banking server, using both TIE and ImplBase
examples.

Using the TIE Approach

To create a bank implementation object, the server must pass the constructor for
the bank implementation class to the TIE constructor, tie Bank(). You can
implement the server using the TIE approach as follows:

// Java
// In file Server.java

package Demos.BankSimpleTie;
// Import Naming Service wrapper methods.

import Demos.IT DemoLib.*;
import IE.Iona.OrbixWeb.Features.Config;

181



Orbix Programmer’s Guide Java Edition

import IE.Iona.OrbixWeb. OrbixWeb;
import org.omg.CORBA.*;

public class Server ({
public static void main ( String args([] ) {
// Initalize the ORB.
org.omg.CORBA.ORB Orb = ORB.init (args, null);
// Create a new bank Server
new Server ( Orb );

// Server constructor.
public Server ( org.omg.CORBA.ORB Orb ) {
m orb = Orb;

// Create a new Naming Service wrapper.
try {
m ns wrapper = new IT NS Wrapper ( m orb,
m demo context name );
m ns_wrapper.initialise();

}

catch ( org.omg.CORBA.UserException userEx ) {

}

String serverName = new String ( "IT Demo
/BankSimple" );

// Create a new server implementation object.
m bank = new tie Bank
(new BankImplementation(mforb));

try {

m ns_wrapper.registerObject ( "Bank", m bank );
}
catch ( org.omg.CORBA.UserException userEx ) {

// Wait for client connections.
try {
_OrbixWeb.ORB ( m orb ).processEvents
(10000 * 60 );
}

catch ( SystemException se ) {

182



Using and Implementing IDL Interfaces

Using the ImplBase Approach

Using the ImplBase approach, the server must create a new bank implementation
object by passing a reference to the server ORB to the constructor for the
BankImplementation class:

// Java
// In file Server.java
package Demos.BankSimpleImplBase;

public class Server {

// Create a new server implementation object.
m bank = new BankImplementation ( m orb );
}

This class is identical, in every other respect, to the Server class used for the TIE
approach.

Object Initialization and Connection
An implementation object must be connected to the Orbix Java runtime before it
can handle incoming operation invocations.

There are two ways to connect implementation objects to the Orbix Java
runtimes:

¢ Using ORB.connect () and ORB.disconnect ().

These methods are the CORBA-defined way of connecting an
implementation to the runtime.

® Using BOA.impl is ready ().

This is an Orbix Java -specific way of connecting implementation objects
to the runtime.

183



Orbix Programmer’s Guide Java Edition

184

Using ORB.connect() and ORB.disconnect()

The OMG standard way of connecting an implementation to the runtime is to use
org.omg.CORBA.ORB. connect (). The Orbix Java runtime can continue to make
invocations on the implementation until it is disconnected using
org.omg.CORBA.ORB.disconnect (). Refer to the API Reference on interface
BOA in the Orbix Programmer’s Reference Java Edition for more details.

As an example, consider the following code, that instantiates a Bank
implementation object and connects it to the runtime. The implementation object
is disconnected at a later stage.

import org.omg.CORBA.ORB;
ORB orb = ORB.init (args,null);

Bank mybank =
new tie Bank(new BankImplementation (orb));

orb.connect (mybank) ;

orb.disconnect (mybank) ;

Note: ORB.connect () is automatically called when you instantiate an Orbix
Java object. However, for strict CORBA compliance, you should
explicitly call ORB. connect () in your application code.

Using BOA.impl is ready()

A server is normally coded so that it initializes itself and creates an initial set of
objects. It then calls impl is ready () to indicate that it has completed its
initialization and is ready to receive operation requests on its objects. The
impl is ready () method normally does not return immediately. It blocks the
server until an event occurs, handles the event, and then re-blocks the server to
wait for another event.

The impl is ready () method consists of four overloaded methods, as follows:

// Java
// In package IE.Iona.OrbixWeb.CORBA
// in interface BOA.



Using and Implementing IDL Interfaces

public void impl is ready ();
public void impl is ready (String serverName);
public void impl is ready (int timeout);

public void impl is ready
(String serverName, int timeout);

The Server Name Parameter

The serverName parameter to impl is ready () is the name of a server as
registered in the Implementation Repository.

When a server is launched by the Orbix Java daemon process, the server name is
already known to Orbix Java and therefore does not need to be passed to
impl is ready () . However, when a server is launched manually, the server
name must be communicated to Orbix Java. The normal way to do this is using
the first parameter to impl is ready (). To allow a server to be launched either
automatically or manually, you should specify the serverName parameter.

By default, Orbix Java servers must be registered in the Implementation
Repository, using the putitj command. Therefore, if an unknown server name is
passed to impl is ready (), the call is rejected. However, the Orbix Java
daemon can be configured to allow unregistered servers to be run manually.
Refer to “Registration and Activation of Servers” on page 285 for more details on
the Orbix Java daemon and the putitj command.

The Timeout Parameter

The impl is ready () method returns only when a timeout occurs or an
exception occurs while processing an event. The timeout parameter indicates the
number of milliseconds to wait between events. A timeout occurs if Orbix Java
has to wait longer than the specified timeout for the next event. A timeout of zero
causes impl is ready () to process an event, if one is immediately available,
and then return.

A server can time out either because it has no clients for the timeout duration, or
because none of its clients use it for that period. The system can also be instructed
to make the timeout active only when the server has no current clients. The server

185



Orbix Programmer’s Guide Java Edition

should remain running as long as there are current clients. This is supported by
the method setNoHangup (), defined in interface BOA. Refer to the Orbix
Programmer’s Reference Java Edition for more details on interface BOA.

You can explicitly pass the default timeout as CORBA.IT DEFAULT TIMEOUT.
The default value of the CORBA.IT DEFAULT TIMEOUT parameter is one minute.
You can specify an infinite timeout by passing CORBA.IT INFINITE TIMEOUT.

Comparison of Methods for Connecting to the ORB

186

This section outlines some of the merits and drawbacks of the impl is ready ()
and ORB. connect () / ORB.disconnect () methods for connecting to the ORB.

The primary advantage of using impl is ready () is that it allows server
registration and event processing to be decoupled. This gives the programmer
who implements the server more control over event processing. This is the BOA
approach familiar to users of previous versions of Orbix Java.

The ORB. connect () / ORB.disconnect () approach complies with the CORBA
specification defined in the OMG IDL to Java mapping. Using this approach,
Orbix Java implicitly connects an implementation object to the runtime when the
object is instantiated. By default, when ORB. connect () is first called in a server,
a background thread that processes events is created, and the server makes itself
known to the Orbix Java daemon.

Correspondingly, calling ORB.disconnect () on the last registered object stops
all event processing. You can disable this behaviour by setting the configurable
item IT IMPI, READY IF CONNECTED to false.

When this approach is used in servers launched persistently, the server has no
means of specifying a server name. The server name must be specified using
setServerName () or by passing it on the command line to the Java VM using
-DOrbixWeb.server name.

By default, even if the target object has been disconnected, the server continues to
process requests until the last object has been disconnected. This can result, for
example, in an INV_OBJREF exception to a client in response to an incoming
request for a disconnected object. It is important, therefore, to explicitly
disconnect all objects when you want your server to exit. It is also important to
disconnect all objects so that they can call their loaders, if any exist, in order to
save themselves. Refer to “Loaders” on page 465 for more details.



Using and Implementing IDL Interfaces

In the case of out-of-process servers, where each launched server has its own
system process, you can disconnect all objects using the following call:

_OrbixWeb.ORB (orb) .shutdown (true) ;

In the case of in-process servers, this method has no effect. Refer to the Orbix
Administrator’s Guide Java Edition for details on in-process servers. By default,
servers are activated out-of-process.

You can combine the two approaches used for connecting to the ORB. In fact, if
you call BOA event-processing operations, a combined approach is used.
ORB.connect () is implicitly called when the implementation object is
instantiated. Also, in Orbix Java, several threads can concurrently call
processEvents ().

Note: Disconnecting the last object by default causes all BOA event-processing
calls to exit.

Developing the Client Application

From the point of view of the client, the functionality provided by the banking
application is defined by the IDL interface definitions. A typical client program
locates a remote object, obtains a reference to the object, and then invokes
operations on the object. These are important concepts in distributed systems.

This section discusses developing the client application in terms of these three
concepts.

® Object location involves searching for an object among the available
servers on available nodes. The CORBA-defined way to do this is to use
the Naming Service.

® Obtaining a reference involves establishing the facilities required to make
remote invocations possible. This involves setting up a proxy. A reference
to the proxy can then be returned to the client. Obtaining a reference is
also termed binding to an object.

®* Remote invocations in Orbix Java occur when normal Java method calls
are made on proxies.

187



Orbix Programmer’s Guide Java Edition

Obtaining a Reference to a Bank Object

The banking client uses Naming Service wrapper methods to find and obtain a
reference to a Bank object. Remote function invocations can then be made on the
object. These concepts are illustrated in the following code extracts from the
client application:

// Java
// In file Client.java

package Demos.BankSimpleTie;

import Demos.IT DemoLib.*;

import Demos.BankInterface.BankGUIFrame;
import IE.Iona.OrbixWeb. OrbixWeb;
import IE.Iona.OrbixWeb. CORBA;

import org.omg.CORBA.ORB;

public class Client {
public static void main ( String args([] ) {

// Initilize the ORB

org.omg.CORBA.ORB Orb = ORB.init ( args,null );
// Create a new client

new Client ( Orb );

// Client constructor.
public Client (org.omg.CORBA.ORB Orb) {
super ( Orb, m account types );
m orb = Orb;
m client frame = new ClientGUIFrame (this, m orb);

188



Using and Implementing IDL Interfaces

// Connects to the bank
public void connectToBank () {
// Get the host name from the user interface.
String host = m client frame.Get HostName () ;
m client frame.printToMessageWindow
("Hostname got "+host);

// Set the naming service host name.
_OrbixWeb.ORB ( m orb ).setConfigItem(
"IT NAMES SERVER HOST", host );

// Create a new naming service wrapper.
try {

m ns wrapper = new IT NS Wrapper ( m orb,

m _demo context name );

}
catch ( org.omg.CORBA.UserException userEx ) {

m client frame.printToMessageWindow ( "[ Exception

raised during creation of naming" +

"service wrapper.]" );
}
try {

org.omg.CORBA.Object obj =

m ns wrapper.resolveName ("Bank")
m _bank = BankHelper.narrow (obj);

m client frame.printToMessageWindow ("Connection
succeeded." );
}
catch ( org.omg.CORBA.UserException userEx ) {
m client frame.printToMessageWindow ( "[ Exception
raised getting Bank reference " + userkEx + "]" );

189



Orbix Programmer’s Guide Java Edition

Alternatives to the Naming Service

Using the Naming Service is the CORBA-defined way to establish
communications with a particular object. There are two other ways that a client
can obtain a reference to an object that it needs to communicate with:

* Using a return value or an out parameter to an IDL operation call.

® Using the Orbix Java -specific bind () mechanism.

Using a Return Value or an Out Parameter

A client can also receive an object reference as a return value or as an out
parameter to an IDL operation call. This results in the creation of a proxy in the
client’s address space. Operation create account (), for example, returns a
reference to an Account object, and a client that calls this operation can then
make operation calls on the new object.

Using the Orbix Java -Specific Bind Method

The following code sample shows how a client could obtain a reference to a Bank
object using the Orbix Java -specific bind () operation:

// Search for an object offering the bank
// server and construct a proxy.
try {
System.out.println
("Attempting to bind to :bank on "+hostname);
mybank = BankHelper.bind
("BankMarker:Bank", hostname) ;
}
catch (org.omg.CORBA.SystemException ex) {
System.out.println
("Exception during bind : " + ex.toString());
}
System.out.println
("Connection to " 4+ hostname + " succeeded.\n");

The bind mechanism is implemented by the static member method bind () of the
BankHelper class generated by the IDL compiler. This method takes a parameter
that specifies the location of the required implementation object in the system.
Orbix Java can choose any Bank object within the named server.

190



Using and Implementing IDL Interfaces

The value returned by BankHelper.bind () is a proxy object reference.

Making Remote Invocations

The proxy object reference returned by the Naming Service provides access to
remote Bank operations using the Java methods defined on interface Bank. The
client can invoke these operations by calling the equivalent Java methods on the
proxy object. The proxy is responsible for forwarding the invocation requests to
the target server implementation object and returning results to the client.

The Java interfaces Account and Bank are generated by the IDL compiler. These
interfaces define the Java client view of the IDL Account and Bank interfaces.

The generated code for interface Account is as follows:

// Java generated by the IDL compiler
package Demos.BankSimpleTie;

public interface Account
extends org.omg.CORBA.Object {

public String name () ;

public float balance();

public void deposit(float amount) ;
public void withdraw(float amount) ;

public java.lang.Object deref() ;

191



Orbix Programmer’s Guide Java Edition

The generated code for interface Bank is as follows:

// Java generated by the IDL compiler

package Demos.BankSimpleTie;
public interface Bank
extends org.omg.CORBA.Object {

public Demos.BankSimpleTie Account
create_account(String name) ;

public Demos.BankSimpleTie Account
find account (String name) ;

public java.lang.Object deref() ;
}

Both Java types inherit from the Java interface org.omg.CORBA.Object. This is
an Orbix Java interface that defines functionality common to all IDL object
reference types. Refer to the API Reference in the Orbix Programmer’s Reference
Java Edition on org.omg.CORBA.Object for further information on this extra
functionality.

Registration and Activation

192

The last step in developing and installing the banking application is to register the
Bank server in the Implementation Repository.

Running the Orbix Java Daemon

Before registering the server, you should ensure that an Orbix Java daemon
process (orbixd or orbixdj) is running on the server machine.

To run the Orbix Java daemon, enter the orbixdj command from the bin
directory of your Orbix Java installation. To run the Orbix Java daemon, enter the
orbixd command.

On Windows, you can also start a daemon process by clicking on the appropriate
menu item from the Orbix Java menu.



Using and Implementing IDL Interfaces

The Implementation Repository

The Orbix Java Implementation Repository records the server name and the
details of the Java class that should be interpreted in order to launch the server.
Implementation Repository entries consist of the class name, the class path, and
any command-line arguments that the class expects.

Every node in a network that runs servers must have access to an Implementation
Repository. Implementation repositories can be shared using a network file
system.

You can register a server in the Implementation Repository using the putitj
command, which takes the following simplified form:

putitj putitj switches -java server name
-classpath classpath class name
command-line arguments for server

For example, you could register the Bank server as follows:
putitj -java Bank Demos.BankSimpleTie.Server

The class Demos.BankSimpleTie. Server is then registered as the
implementation code for the server Bank at the current host.

The putitj command does not cause the specified server class to be interpreted.
The Java interpreter can be explicitly invoked on the class, or the Orbix Java
daemon can cause the class to be interpreted in response to an incoming operation
invocation. It uses the Orbix Java configurable IT DEFAULT CLASSPATH as its
classpath when searching for the class. You can specify an alternative classpath
using the putitj utility. Refer to the Orbix Administrator’s Guide Java Edition for
more details.

193



Orbix Programmer’s Guide Java Edition

Execution Trace

This section examines the events that occur when the Bank server and client are
run. The TIE approach is used to show the initial trace, and the ImplBase
approach is then discussed. This is followed by a comparison between the TIE
approach and the ImplBase approach.

Server Side

First, a server with name Bank is registered in the Implementation Repository.
When an invocation arrives from a client, the Orbix Java daemon launches the
server by invoking the Java interpreter on the specified class. The server
application creates a new TIE object, of type tie Bank, for an object of class
BankImplementation:

// Java

// In file Server.java

public Server (org.omg.CORBA.ORB Orb) {
m orb = Orb;

// Create a new server implementation object.

m bank = new tie Bank
(new BankImplementation(m orb), “Marker”);

Client Side

The client first obtains a reference to the Bank object, using the Naming Service,
for example:

// Java
// In file Client.java.

public class Client {
public void connectToBank () {

org.omg.CORBA.Object obj =
m ns wrapper.resolveName ("Bank")

194



Using and Implementing IDL Interfaces

m bank = BankHelper.narrow (obj);

When the object reference has been obtained, the Orbix Java daemon launches an
appropriate process by invoking the Java interpreter on the server class, if the
process is not already running.

This results in the automatic generation of a proxy object in the client. This acts
as a stand-in for the remote BankImplementation object in the server. The object
reference m_Bank within the client is now a remote object reference as shown in
Figure 7.3 on page 196.

The client programmer is not aware of the TIE object. Nevertheless, all remote
operation invocations on the BankImplementation object are via the TIE object.

The client program proceeds by asking the bank to open a new account:

// Java
// In file Client.java.
// In class Client

Account new account = null;
String current name = m client frame.Get UserName () ;
try {

new account = m bank.create account
(current name ) ;

}

catch ( SystemException se ) {

i

When the m _bank.create account () call is made, the method
BankImplementation.create account () is called (via the TIE) within the bank
server. This generates a new AccountImplementation object and associated TIE
object. The TIE object is added to the BankImplementation object’s list of
existing Accounts. Finally, create account () returns the Account reference
back to the client.

A new proxy is created at the client-side for the Account object. This is
referenced by the new account variable as shown in Figure 7.3 on page 196.

195



Orbix Programmer’s Guide Java Edition

196

If the ImplBase approach is used, the final diagram is as shown in Figure 7.4 on

page 197.
Client Server
Saggnk ccountImplementation
— » | Bank object
Proxy
BankImplementation
object
Account
new_account .
T s .manages
Account 4
proxy .
_tie Bank _tie Account
object object
l Y )
T T '
. L — - = |
Orbix Java Orbix Java
classes L 4 - - - - - - - — . classes

Figure 7.3: Client Creates Object (TIE Object)




Using and Implementing IDL Interfaces

Client Server
bank
m_ bank .
_ | Bank Ac;ountlmplementatlon
proxy object
/ A

manages ,’
.

account
new_account .

’

—_—

Account .
proxy BagkImplementatlon
object
l \
T t f T
) | Lo o 1 | Orbix Java
rbix
OcliassJezéva Lo Jd . classes

Figure 7.4: Client Creates Object (ImplBase Approach)

197



Orbix Programmer’s Guide Java Edition

Comparison of the ImplBase and TIE Approaches

198

The TIE and ImplBase approaches to interface implementation impose similar
overheads on the implementation programmer. However, there are two
significant differences that may affect your choice of implementation strategy:

® The ImplBase approach requires the implementation class to extend a
generated base class, while the TIE approach merely requires the
implementation of a Java interface.

® The TIE approach requires the creation of an additional object for each
implementation object instantiated in a server.

The first of these differences has important implications for the viability of the
ImplBase approach in most applications. Java does not support multiple
inheritance, so the inheritance requirement that the ImplBase approach imposes
on implementation classes limits the flexibility of those classes and eliminates the
possibility of reusing existing implementations when implementing derived
interfaces. The TIE approach does not suffer from this restriction and, for this
reason, is the recommended approach for Orbix Java applications.

The creation of a TIE object for each implementation object can be a significant
decision factor in applications where a large number of implementation objects
are created and tight restrictions on the usage of virtual memory exist. In addition,
the delegation of client invocations by TIE objects implicitly involves an
additional Java method invocation for each incoming request.

Of course, it is not necessary to choose one approach exclusively; because both
can be used within the same server.

The next two sections examine two aspects of IDL interface implementation:
* Providing different implementations of the same interface.

* Implementing different interfaces with a single implementation class.



Using and Implementing IDL Interfaces

Providing Different Implementations of the Same Interface

Both the ImplBase and TIE approaches allow you to provide a number of
different implementation classes for the same IDL interface. This is an important
feature, especially in a large heterogeneous distributed system. An object can then
be created as an instance of any one of the implementation classes. Client
programmers do not need to know which implementation class is used.

Providing Different Interfaces to the Same Implementation

Using the TIE approach, you can have a Java implementation class that
implements more than one IDL interface. This class must implement the
generated Java Operations interfaces for all the IDL interfaces it supports. The
class must therefore implement all the operations defined in those IDL interfaces.
This common class is simply instantiated and passed to the constructor of any TIE
objects created for a supported IDL interface. This is a way of giving different
access privileges to the same object.

With the ImplBase approach, it is not possible to implement different interfaces in
a single implementation class, because each interface requires the implementation
class to extend an IDL-generated base class.

199



Orbix Programmer’s Guide Java Edition

200



Making Objects Available in Orbix

Java

A central requirement in a distributed object system is that
clients must be able to locate the objects they wish to use. This
chapter describes how you can make objects available in
servers and enable clients to locate these objects in clients.

Before using a CORBA object, a client must establish contact with it. To do this,
the client must get an object reference for the required object. An object reference
is a unique value that tells an ORB where an object is and how to communicate
with it.

An important issue for every CORBA application is how servers can make object
references available to clients, and how clients can retrieve these references to
establish contact with objects. This chapter describes three solutions to this issue:

* Using the CORBA Naming Service.
® Using the Orbix Java -specific bind () method.
* Using object reference strings to create proxy objects.

These solutions are presented after a brief introduction to how object references
work in CORBA.

201



Orbix Programmer’s Guide Java Edition

Identifying CORBA Objects

Every CORBA object is identified by an object reference, which is a unique value
that includes all the information an ORB requires to locate and communicate with
the object. When a client gets an object reference, the ORB creates a proxy in the
client’s address space. When the client calls an operation on the proxy, the ORB
transmits the request to the target object.

Orbix supports two protocols for communications between clients and servers:
® The CORBA standard Internet Inter-ORB Protocol (ITOP).
This is the default protocol.
® The Orbix protocol.

Each of these communication protocols has its own object reference format. The
Orbix protocol requires an Orbix Java object reference format. IIOP requires the
CORBA Interoperable Object Reference (IOR) format. This section introduces
object references and shows how you may use the fields of an object reference.

Interoperable Object References

202

An object that is accessible via IIOP is identified by an interoperable object
reference (IOR). Because an ORB’s object reference format is not prescribed by
the OMG, the format of an IOR includes the following:

* An ORB’s internal object reference.
* An internet host address.
® A port number.

An IOR is managed internally by the ORB. It is not necessary for you to know the
structure of an IOR. However, an application may wish to publish the stringified
form of an object’s IOR. You can obtain the stringified IOR by calling the
method org.omg.CORBA.ORB.object to_string() with the required object,
or object to string() on the IE. Iona.Orbixileb.CORBA.ObjectRef
interface of the required object.



Making Objects Available in Orbix Java

Orbix Java Object References

Every object created in an Orbix Java application has an associated Orbix Java
object reference. This object reference includes the following information:

* An object name that is unique within its server. This is referred to as the
object’s marker.

® The object’s server name

This is sometimes called an implementation name in CORBA
terminology.

® The server’s hostname.

For example, the object reference for a bank account would include the object’s
marker name, the name of the server that manages the account, and the name of
the server’s host. The bank server could, if necessary, create and name different
bank objects with different names, all managed by the same server.

In more detail, an Orbix Java object reference is fully specified by the following
fields:

* Object marker.

® Server name.

® Server hostname.

¢ IDL interface type of the object.

¢ Interface Repository (IFR) server in which the definition of this interface
is stored.

* JFR server host.

203



Orbix Programmer’s Guide Java Edition

Accessing Object References

204

All Orbix Java objects implement the Java interface org.omg.CORBA.Object.
This interface supplies several methods common to all object references,
including object to string(), which produces a stringified form of the object
reference. The form of the resultant string depends on the protocol being used. In
the case of IIOP, a string representation of an IOR is produced. In the case of
Orbix Protocol, a string of the following form is produced:

:\server_host:server_name:marker:IFR_host:
IFR_server:IDL_interface



Making Objects Available in Orbix Java

IE.Tona.Orbixieb.CORBA.ObjectRef also provides access to the individual
fields of an object reference string via the following set of accessor methods:

// Java

// in package IE.Iona.OrbixWeb.CORBA,

// in interface ObjectRef.

public String host();

public String implementation();

public String marker();

public String interfaceHost();

public String interfaceImplementation();
public String interfaceMarker();

Orbix Java automatically assigns the server host, server name and IDL interface
fields when an object is created. It is not generally necessary to update these
values.

Orbix Java also assigns a marker value to each object, but you may choose
alternative marker values in order to explicitly name Orbix Java objects. The
assignment of marker names to objects is discussed in the following section.

In gen